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Summary 

Wireless sensor networks have emerged as one of the new fields of research where 

their potential applications may range widely from elderly healthcare, military defense, 

wildlife monitoring, disaster recovery, construction safety monitoring, tsunami warning 

systems, target tracking, intrusion detection and others. Owing to their relatively small 

form factor and cheap manufacturing costs, sensors may be deployed in high density to 

monitor an area of interest. One main challenge in deploying such wireless networks is 

the energy scarcity problem since sensors are often powered only by regular batteries. 

This energy conservation issue in sensor networks is paramount and complicated by 

application requirements such as network connectivity, sensing coverage, information 

delay, and implementation cost constraints, which are not all taken into account in the 

existing literature. While energy expenditure in the network must be controlled, the 

sensor network must still serve the purpose of the sensor network application.  

We propose a class of deterministic wakeup schemes, the cyclic symmetric block 

designs (CSBD), related to the field of Combinatorics. We consider important 

requirements of sensor network applications and propose appropriate CSBD wakeup 

schedules to conserve energy for each purpose. We describe the application of CSBD-

based schemes to three main categories of sensor networks – Agent-based sensor 

networks, Query-based sensor networks, and Ad-hoc and sparse sensor networks. Each 

category of sensor networks operates with different requirements/assumptions and we 

provide detailed analysis and discussion on the benefits of CSBD in our work. We further 

support and justify our claims with comprehensive simulation studies and selected 

implementation results.  

Keywords: 

 Combinatorics, Energy Conservation, Energy Saving, Wakeup Scheme, Wireless 
Sensor Networks, Adaptation
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Chapter 1:  Introduction 

1.1. Wireless Sensor Networks & Their Key Challenges 

The widespread interest in wireless sensor networks research in recent years may be 

attributed to the possibility of such networks emerging as a disruptive force in shaping the 

way many activities are carried out. With the ability to sense, store and communicate a 

host of different kinds of information about the environment from seismic data to air 

quality records to electromagnetic fluctuations, the potential impact of sensor networks on 

many different disciplinary fields can be considerably diverse and huge. With further 

advancements in reducing the form factors of such sensors, the realistic deployment size 

of sensor networks can also be predictably large. 

While sensor networks can be applied to solve many different problems across 

various different platforms, several challenges arise from this relatively new domain of 

research. Being small in size and wireless, most sensors are powered only by batteries, 

and energy becomes a scarce resource in such networks. The issue of managing or 

controlling the use of energy for the sensors’ operations is principally important. The 

physical deployment of sensors to sense the environment presents itself a sensing 

coverage and deployment density problem. This coverage problem is further complicated 

by sensors optionally switching themselves off during certain periods to conserve energy. 

Depending on the application, a sufficiently good coverage of the intended environment 

under monitoring may be required. With sensors deployed in large numbers, each 

collecting vast amounts of data individually, organization of sensor information and data 

flow within the network becomes another huge challenge. Since sensors are often 

scattered randomly during deployment, efficient and cost-effective localization 

techniques for individual sensors to discover either their absolute or relative positions in 

the sensing field may also be necessary. Other main challenges may include security 
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issues, routing issues and collision avoidance issues related to deploying sensor networks 

in large numbers or in high density scenarios. 

1.2. Real world Implementations of Sensor Networks 

The most commonly known and probably the de-facto sensor network platform, is the 

Berkeley family of motes from Crossbow Technology Inc. [1]. Other competing 

platforms include the Cricket [2], the WINS Sensoria nodes [3] and the Specknet [5, 4] 

systems. The influence of such sensor networks on applications is wide-ranging, and this 

section can only highlight a fraction of the many real-world applications of sensor 

networks.  

Collaborations between Fujitsu laboratories, Venturi Wireless and San Jose State 

University [6] report on a sensor networks prototype developed for the purpose of elderly 

healthcare. The aim is to monitor the medication conditions of elderly patients by 

integrating Radio Frequency Identification (RFID) technology with sensor network 

technology. Similarly, the collaboration between Motion Analysis Laboratory at the 

Spaulding Rehabilitation Hospital and Harvard University [7, 8] are developing a sensor 

board for monitoring limb movements and muscle activity of stroke patients during 

rehabilitation exercise. 

The Sensor Networks Research Group at the University of Wisconsin [9] successfully 

deployed a sensor network at 29 Palms, California to detect and classify signals from 

moving military targets. In their experiments, acoustic, seismic and passive infrared 

signals were collected from two different types of military vehicles – the Assault 

Amphibian Vehicle (AAV) and the Dragon Wagon (DW). The University of California at 

Berkeley also designed and deployed 100 sensors in a 400m2 outdoor sensing field for the 

purpose of vehicle tracking and intruder interception. 

Sensor networks have also been applied to habitat and wildlife monitoring. 

Noticeably, the deployment at Great Duck Island [10] with about 200 sensors measure 
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basic environmental parameters such as light, pressure, temperature and humidity 

information to serve as long-term baseline data for further work. At James Reserve, 

sensors are also deployed to monitor the ecosystem for understanding the response of 

vegetation to climate changes. The collaboration between Intel Corporation and the 

University of California at Berkeley also developed a habitat monitoring kit for biologists 

and researchers to reliably collect data from previously inaccessible locations.  

Recently, the building and construction sector has also developed interests in 

employing wireless sensing technologies to monitor the health of structural beams during 

construction and excavations. As it is a legal requirement in many countries for 

construction companies to sufficiently monitor supporting beams in any construction 

activity, the current cabled-sensing solutions that are in use are costly. In-lay cables are 

expensive and are commonly severed accidentally in work sites thereby incurring 

frustrating schedule delays and costly repair overheads. Moreover, in muddy terrains and 

deep troughs, cabling becomes impossible and manual monitoring by a worker becomes 

necessary. Manual monitoring involves manual recording of long strings of data and 

identification numbers that are often erred by human mistakes. 

Researchers from the University of Pittsburgh [11] are also hoping to develop a 

network of ocean floor mobile sensors to complement existing deep water tsunami 

detection buoys in the Pacific and Indian Oceans. By offering greater coverage of the 

ocean floor, detections that are previously missed by the more expensive deep water 

buoys that are spaced far apart, may be picked up by the cheaper sensor network that is in 

place. 

1.3. Related Work 

As real world sensor network deployment is becoming a trend and reality, the key 

problem of conserving energy in sensors has encouraged many researchers to devise 
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various solutions based upon different assumptions. In this section, we provide a review 

of some of these related works in energy conservation techniques. 

1.3.1 Existing Energy-Conservation Wakeup Schemes 

The Random Wakeup Solution 

Paruchuri et. al. proposed the Random Asynchronous Wakeup (RAW) scheme [12] 

where each node randomly wakes up once in every time frame, be awake for a 

predetermined fixed time and then sleeps again. Data is sent from a node N to a 

forwarding set of neighbouring nodes so that delay can be minimized. The forwarding set 

includes all nodes that lie in the area intersection of the circular transmission range of 

node N and the circular range of a certain radius centered about the destination node. It is 

reported that for 10 nodes in the forwarding set, a per-hop packet loss rate of 18% is 

expected. In their work, a node deployment density of at least 10/RC
2 is used where RC is 

the communication radius of nodes. This also represents the frequency at which nodes 

wake up but find no other nodes in communication range to transmit or forward data. 

However, wakeup schedules are time-asynchronous owing to the randomness in the 

solution. Delays incurred are small because of numerous choices in forwarding nodes in 

the forwarding sets. 

Kumar et. al. proposed the Random Independent Scheduling (RIS) [13] where time is 

divided into cycles using some time synchronization method. At the start of each cycle, 

every node independently takes on an “Awake” mode with probability p and “Sleep” 

mode with probability (1 – p). Therefore, RIS uses this parameter p to control network 

lifetime. RIS also determines how nodes should be initially deployed to ensure 

asymptotic m-coverage. In asymptotic m-coverage, the network is m-covered only when 

the number of sensors deployed approaches infinity. However, although RIS has no 

communication overheads and requires no location information, it does not address 

connectivity issues and the problem of nodes waking up to find no communicable 
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neighbours is obvious. The scheme is also not robust against node failures and requires 

expensive time-synchronization techniques that inhibit scalability. 

The Connected Dominating Set Wakeup Solution 

A connected dominating set (CDS) of a network graph G(V, E) with nodes V and 

links E, is a set of nodes V’ ⊂ V such that every node not in V’ is connected to at least one 

node in V’ by some link in E; and the subgraph induced by V’ is also connected. CDS 

sensor nodes are switched to the “Awake” or “On” state while non-CDS sensor nodes are 

put to the “Sleep” or “Off” state. The CDS in a network therefore acts as a “backbone” of 

nodes where information may be sent from one node to another across the network in 

relatively short time. To reduce energy consumption as much as possible, many 

algorithms aim to elect a minimum connected dominating set (MCDS), i.e. a CDS with 

minimum cardinality. Election of nodes to form the MCDS is an NP-complete problem, 

but in practice, heuristics may be used to form a CDS that approximates the MCDS. 

Centralized CDS election algorithms such as that by Guha and Khuller (GH) [13] can 

theoretically be implemented in a distributed manner, albeit with higher control overhead 

in exchanging neighbour information. Topology Management by Priority Ordering, 

TMPO [14] is a distributed algorithm that elects CDS nodes in an energy-aware network 

by addressing the load-balancing aspect of the network, but without considering sensing 

coverage. Yet, another algorithm SPAN [15] is a distributed randomized algorithm that 

maintains the original connectivity of the network via the “backbone” of nodes, based on 

a “willingness” factor that is dependent on remaining node energy and neighbour count. 

Wu and Li (WL) [16] further proposed an algorithm similar to SPAN that incorporates 

additional pruning rules to reduce the cardinality of the elected CDS of sensor nodes. 

CDS election schemes require periodic broadcasts which limit true energy savings. 

The Two-Channel Paging Wakeup Solution 
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The Sparse Topology and Energy Management (STEM) protocol [17] for sensor 

networks proposes the use of two channels, one for data transmission and the other as a 

control or paging channel to wake up neighbouring sensor nodes. When a sensor node has 

data to send, it uses a wakeup tone or beacon message to wake up the necessary 

neighbouring nodes using the paging channel and transmits actual data on the data 

channel. In this manner, sensors are reactively being turned on as and when required. The 

drawback of such a solution is that it requires the cost of two channels and energy savings 

are insignificant because the paging channel is required to be always at the “monitoring” 

state or in “Idle” mode (in contrast to “Sleep” mode) to receive possible wakeup beacons. 

In the “Idle” mode, the sensor node continues to monitor the channel for possible control 

packets to facilitate the transition into other modes of operation. It is widely known that 

energy savings are not significant [18, 71, 89] when nodes are merely set to the “Idle” 

mode instead of the “Sleep” mode, where the latter switches off its communication 

module completely. Moreover, for nodes to operate in the “Idle” mode, the required dual 

channel communication increases implementation costs. However, connectivity of the 

network is equivalent to one that is fully awake and delays incurred in data transmission 

are minimized, less the time to wakeup neighbouring sensors. 

While STEM uses a separate channel to page neighbouring nodes into the “Awake” 

mode, the Power Aware Multi-Access Protocol with Signaling (PAMAS) [19] proposes 

the use of a separate signaling channel that conserves energy by turning off the sensor 

node if it has no data to send and a neighbour node is transmitting at the same time to 

another node. Again, the added cost is the extra channel and its maintenance.  

The Information-Configured Wakeup Solution 

There are schemes that configure their sensor wakeup schedules based on information 

received from neighbouring sensor nodes. The Probing Environment and Adaptive 

Sleeping (PEAS) algorithm [20] for sensor networks is one where nodes configure their 
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wakeup times based on counting the number of neighbouring nodes that they discover 

after deployment.  It is assumed that nodes wake up asynchronously after they are first 

deployed, after which sensor nodes that operates in “Awake” mode send PROBE 

messages to neighbours. If no replies were received, the node stays in the “Awake” mode 

until it is completely depleted of its energy. If at least one reply is received, the node 

operates in the “Sleep” mode. Nodes in the “Sleep” mode regularly wake up to send 

PROBE messages. The probing range may also be chosen to meet certain sensing 

coverage criterion. PEAS is time-asynchronous and assumes a very dense network 

deployment scenario. Since nodes in PEAS permanently operate in the “Awake” mode 

and subsequently deplete of all their energies once they discover no PROBE replies, 

energy consumption in the network is unbalanced and may cause network partitioning. 

Gui et. al. improved PEAS by proposing the Probing Environment and Collaborative 

Adaptive Sleeping (PECAS) scheme [21] with additional features that allow a sensor 

node that is already in the “Awake” mode to go back into “Idle” or “Sleep” mode beyond 

some energy threshold limit. Thus, PECAS can also be classified under the “Paging 

Solution” described earlier when equipped with this dual channel capability. 

While PEAS and PECAS are all configured by neighbour count, the Coverage 

Configuration Protocol (CCP) [22] configures the wakeup times of a sensor node by the 

degree of sensing coverage of its neighbour nodes. The scheme establishes a relationship 

between sensing coverage and network connectivity where a m-covered network implies 

a m-connectivity network, for as long as the communication range is twice its sensing 

coverage radius (double range property). With this, CCP strives to maximize the number 

of sleeping nodes, while maintaining both m-coverage and m-connectivity in the network 

at the same time. Each node first evaluates if its coverage area is m-covered and this 

computational complexity is O(N3) [23] where N is the number of sensors within a 

distance of two times its sensing coverage radius. If it is m-covered, it is also m-connected 
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and the node goes into “Idle” mode, and subsequently into the “Sleep” mode after 

expiration of a random timer. Nodes in the “Sleep” mode periodically enter the “Idle” 

mode to monitor the channel to check if the area is still m-covered. If not, it enters the 

“Awake” mode; otherwise, it goes back to “Sleep” mode. CCP operates together with 

SPAN [15] for the case when the double range property fails. SPAN is used as a 

connectivity preserving scheme and some nodes working under CCP+SPAN remains in 

“Awake” mode even if they are redundant in sensing coverage so that desired 

connectivity is maintained. 

Wakeup schemes may also be configured by information other than neighbour count 

or neighbour sensing coverage. The Adaptive Self-Configuring Sensor Networks 

Topologies (ASCENT) [24] protocol measures neighbour connectivity as well as data 

loss rate to configure wakeup times. Each node keeps track of monotonically increasing 

sequence numbers in packets and infers the data loss rate. Nodes also infer the number of 

active neighbours by keeping track of packets received from each neighbour. Therefore, 

there is no periodic probing required to discover neighbours. ASCENT aims to achieve 

optimal and maximum connectivity that minimizes collision rate. The drawback of 

ASCENT is its assumption of a very dense network scenario and that network 

partitioning is not a key issue. 

The Deterministic Wakeup Solution 

A class of deterministic wakeup solutions based on the field of Combinatorics [25, 

26] has been proposed. Combinatorics is a branch of mathematics concerned with the 

selection, arrangement and operation of elements in a set. In sensor wakeup schemes 

context, they represent the arrangement of a number of wakeup time slots in a set of all 

available time slots within one time cycle. Each sensor is assigned one time schedule 

based on this arrangement. Zheng et. al. [27] proposed a cyclic symmetric block design 

(CSBD) where every sensor schedule has exactly one active wakeup slot overlap with any 
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other sensor schedule in the set. All wakeup schedules in this design are also cyclic shifts 

of each other. Each sensor is assigned one schedule based on the design set. The existence 

of such a design is not trivial and implies that any sensor node using any schedule from 

this set is always guaranteed to be able to communicate multi-hop to any other node in the 

set within bounded time. Moreover, many other properties such as network connectivity 

and node sensing coverage can also be shown to be preserved within bounded time. 

Unlike most other straightforward deterministic schemes, this design is time-

asynchronous despite wakeup times being arranged in slots and cycles, thereby requiring 

no expensive synchronization of clocks amongst the sensor nodes. This is achieved by 

having beacons announcing the beginning of every active time slot in each schedule. This 

scheme also consider only nodes in the “Awake” mode and “Sleep” mode and do not put 

nodes in the “Idle” mode, thereby without requiring separate communication module for 

channel monitoring and this save on implementation cost. Being deterministic, it is also 

easy to see that they are easy to implement and deploy requiring less operational 

overheads. At the moment, the work in such wakeup techniques is currently only limited 

to the Mobile Ad-hoc NETwork (MANET) context where nodes are mobile by default 

with no sensing capabilities. 

1.3.2 Other Energy-Conservation Methods in Sensor Networks 

Energy Conservation in Routing 

Techniques in energy conservation are not limited to wakeup schemes for sensors. 

Intelligent routing methods that are energy-aware may be deployed in conjunction with an 

underlying wakeup scheme to jointly conserve power in sensor networks. In [86, 85], 

both propose energy-efficient routing algorithms for sensor network applications. [86] 

ensures that delay constraints of applications are met while performing energy-efficient 

routing, and [85], aggregates packet streams during routing, and demonstrates that energy 
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reductions can be achieved by a factor of 2 to 3. We shall, however, defer the discussion 

on data aggregation later. 

In [87], the authors identified the drawbacks of single-path routing and multi-path 

routing in terms of guaranteed delivery and energy consumption. While single-path 

routing saves more energy, it often suffers from poor packet delivery ratios because of the 

unpredictable nature of the network nodes and its environment. Although multi-path 

solutions ensure better packet delivery probabilities, energy consumption scales with the 

number of paths used. [87] proposes to forward data along a single path and repairs the 

path ‘on the fly’ only when a link breakage is detected. [87] demonstrates that both 

delivery guarantees and energy usage can be controlled with their proposed protocol. 

[36] investigates an agent-based approach to routing to conserve energy. Before a 

next-hop node is considered in routing, data agents take into consideration both routing 

cost and remaining node energies. The probability of choosing a next-hop node is 

therefore proportional to its remaining energy and inversely proportional to its routing 

cost. Data aggregation is also considered in their routing protocol. 

Yet, one of the most popular and influential data dissemination paradigms in sensor 

networks is Directed Diffusion (DD) [88]. It proposes a novel data-centric approach to 

disseminate or ‘route’ data in a sensor network, which can result in significant energy 

savings. In DD, data is named using attribute-value pairs so that a sensing task can be 

disseminated throughout the sensor network as an interest for that named data. The 

dissemination process itself sets up ‘gradients’ in the network that ‘attracts’ events so that 

the ‘data’ can be matched to ‘interest’. Events flow towards originators of interests along 

multiple paths, where only one, or a small number of paths, are ‘reinforced’ for data 

propagation. Since routing paths, or more appropriately data dissemination paths, are 

decided based on data and interests, such an approach also facilitates data aggregation 

along paths in the network, thereby saving energy. 
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In-Network Data Aggregation Energy Conservation 

Data aggregation techniques in sensor networks promise to conserve energy by 

attempting to aggregate, suppress or summarize information before every transmission. 

This acknowledges the fact that communication energy forms the bulk of energy usage in 

sensors, and seeks to minimize packet transmissions or reduce the size of every 

transmission. The Temporal coherency-aware In-Network Aggregation (TiNA) [80] 

scheme is the first of such schemes to exploit temporal correlation in a sequence of sensor 

readings to support energy-efficient quality of data in the context of in-network 

aggregation. It is possible to increase the quality of data during an aggregation process 

when the time given to perform readings is too short for all data to be propagated up 

through the network. Depending on where in the network the sensor is, the information 

kept is different. In TiNA, every leaf node keeps only the last reading successfully sent or 

reported to its parent, while each internal node keeps both last reported reading, and the 

last view it received from each child node. The basic idea behind temporal coherency is to 

send a reading from the sensor only if the reading differs from the last recorded reading 

by more than some stated tolerance. This tolerance can be user-dependent or network-

dictated if the network cannot support the specified tolerance level. [80] shows that power 

consumption may be reduced by up to 60% without any loss of data quality and the 

network lifetime may be extended by up to three times. These results, however, ignore the 

possibility of an underlying wakeup scheme that can potentially further extend network 

lifetime, and can be employed in conjunction with data aggregation methods. 

A predecessor of TiNA is the Tiny AGgregation (TAG) [60] service for ad-hoc sensor 

networks. Here, temporal correlations between sensor readings are not taken into account. 

Instead, it provides a declarative interface for data collection and aggregation, inspired by 

selection and aggregation facilities in database query language. TAG also distributes and 

executes aggregation queries in the sensor network in a power-efficient manner. By 
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making use of the original SQL specification options of COUNT, MIN, MAX, SUM and 

AVERAGE, information may be quickly summarized and the amount of transmissions 

required largely reduced, thereby achieving power consumption efficiency. TAG further 

provides a general classification of aggregate functions so that their proposed service is 

not limited to just five of the original aggregator specifications. In their results, COUNT, 

MIN, MAX and AVERAGE aggregators using in-network TAG service significantly 

reduces the number of bytes transmitted in the network, while other functions such as 

MEDIAN and COUNT DISTINCT show very little or no improvements compared to 

centralized processing. 

The performance of data aggregation, however, depends very much on network 

density. For dense networks, the proportion of redundant information is usually higher 

than sparse networks. The effect and impact of data aggregation techniques on the 

performance of applications can therefore vary. [81] compares a greedy aggregation 

approach with an opportunistic aggregation method over different network densities. The 

greedy approach appears to have better energy efficiency, particularly for denser 

networks. The key explanation for this is that denser networks offer more shortest paths 

from a source to a sink that greedy algorithms depend on. For sparse networks, [82] offers 

an aggregation technique that allow two nodes that wish to communicate at roughly the 

same time to discover each other at a cost that is proportional to their network distance. 

The authors in [82] further evaluate the quality of a sparse aggregation tree that is formed 

as a result. Other related work on in-network aggregation includes [83], which 

investigates single-level aggregation and hierarchical aggregation to conserve energy in 

the network, and [84] which proposes a model-driven data acquisition method in sensor 

networks, by enriching interactive sensor querying with statistical modeling techniques. 

Queries are therefore answered by introducing approximations (based on some pre-



 

 22

defined model) with probabilistic confidences. Again, one of the objectives is to conserve 

energy by approximating answers to a query. 
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1.4. Motivation & Contributions 

Limitations of Existing Wakeup Schemes 

The random wakeup solutions rely on dense network deployment scenarios and do 

not provide any deterministic guarantees in terms of data delays and network connectivity. 

For the CDS-based wakeup methods, election of MCDS nodes is an NP-complete 

problem and they hardly consider sensing coverage issues. While two-channel paging 

wakeup solutions are costly to implement on a large scale and energy savings in the 

“Idle” mode are not known to be significant, deterministic wakeup schemes that are cost-

effective to implement have not been analyzed and studied in detailed in the sensor 

network context. In the case of the various information-configured wakeup solutions, they 

may incur high operation overheads in terms of periodic control messages, have high 

computational complexities in translating measured information into wakeup schedules 

for sensors, or can sometimes be over-simplistic. Moreover, none of these wakeup 

techniques address database issues where sensors may be queried for information by 

application users. The idea of treating a sensor network as a distributed database of stored 

information forms an important part of the sensor networks research literature. However, 

little is known of the performance of such sensor database systems when applied with 

wakeup schemes for sensors. Indeed, existing energy conservation techniques each have 

their limitations and do not address a majority of the specific issues that are important to 

sensor networks deployment. 

While energy conservation in sensor networks is vital in extending the useful lifetime 

of a network, it is also important to consider several performance aspects of sensor 

networks that directly affect its applicability in the real world. In our opinion, the 

following factors are crucial: 

• Network connectivity issues, 

• Sensing coverage issues,  
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• Query waiting delays from sensors, and 

• Implementation costs. 

Existing schemes do not consider all these aspects and their applications in the real 

world can only be limited and specific. This motivates our work to propose a unified 

energy-efficient wakeup architecture for sensor networks that considers all these issues at 

the same time.  

Our Proposed Solution 

We have selected to base our work on a class of mathematically-inspired 

deterministic wakeup methods – the Cyclic Symmetric Block Design (CSBD) that 

researchers have often overlooked, and thus is lacking in detailed research analysis. We 

shall show later in this thesis, that this class of deterministic wakeup schemes, and its 

variants, are simple to implement, and are capable of addressing all the issues 

(connectivity, coverage, query delays and implementation issues) that are crucial for real 

world application. CSBD promises to address all these issues where other existing 

wakeup schemes do not consider, or only consider them in part. Our proposed CSBD 

design is therefore superior to existing schemes that are unable to address all these issues 

simultaneously. Since CSBD is deterministic, the amount of computational overheads is 

minimal. We show further that communication overhead can also be low with our 

proposed On-Demand Neighbour Discovery (ODND) scheme. 

In our work, we highlight that although time is discretized and slotted in CSBD 

wakeup schemes, time-asynchronous neighbour discovery can be guaranteed within some 

finite time, thereby requiring no costly time synchronization techniques to be 

implemented in the nodes. Similarly, we show further that sensing coverage and network 

connectivity can both be guaranteed to be preserved within some known bounded time. 

Since this time bound may be configured by setting certain parameters in the design set, 

our designs are generally applicable to a wide-ranging set of applications from delay-
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insensitive monitoring applications to real-time target tracking and intrusion detection 

applications. We shall also show that our proposed wakeup design possesses interesting 

properties when the sensor network is treated and queried as a distributed database by 

different classes of users. One such property is that our wakeup design guarantees a 

theoretical zero waiting time for query replies to reach the users that are approximately 

one-hop away from the event of interest, provided that certain criteria are fulfilled. 

Both CSBD, in its original form, and its variants are proposed to suit different 

application needs. In cases where CSBD works well in its original form, we show how it 

may be configured to take into account several key design considerations. In cases where 

additional constraints are to be fulfilled, we propose variants for CSBD to meet these 

additional requirements. In particular, we proposed the Tracking Wakeup Schedule 

Function (TWSF) for target tracking applications and the Adaptive Wakeup Schedule 

Function (AWSF) for sparse networks in certain environments. In such cases, variant-

solutions of CSBD continue to inherit a subset of the desirable properties from its parent 

design. 

The main contributions of this thesis can be summarised as follows: 

• We examine and analyze in detail, a class of deterministic wakeup methods – 

CSBD, based on the mathematical field of Combinatorics. Analysis and study 

have been focused on the four factors of Sensing Coverage, Network 

Connectivity, Query Waiting Delays and Implementation issues related to 

sensor networks. 

• We propose the use of CSBD, and its variants, to different classes of sensor 

systems, namely the Agent-Based Sensor Network Systems, the Query-Based 

Sensor Network Systems, the Ad Hoc Sparse Sensor Network Systems and 

even a combination of these systems. 
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• A list of related publications based on our work has been included in Appendix 

A 

1.5. Organization of thesis 

This thesis is organised as follows: We justify the choice of our selected approach to 

conserving energy using Cyclic Symmetric Block Designs (CSBD) based on the 

mathematical field of Combinatorics in Chapter 2. We apply our analysis and study to 

Agent-Based Sensor Networks in Chapter 3, Query-Based Sensor Networks in Chapter 4, 

and Ad Hoc and Sparse Sensor Networks in Chapter 5. We conclude our work and 

highlight possible future work in Chapter 6. 
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Chapter 2:  Combinatorics-Based Wakeup Scheme and Its 

Properties 

We base our solution on a class of deterministic wakeup schemes related to the field 

of Combinatorics. In particular, we are interested in the Cyclic Symmetric Block Design 

(CSBD) first proposed by Zheng [27] in the context of MANETs for its time-

asynchronous neighbour discovery property, which we will provide further discussion. In 

this chapter, we first provide an overview of this design and its characteristics in sections 

2.1 and 2.2. We describe neighbour discovery and data transmission issues in CSBD in 

section 2.3, and introduce our “on-demand” neighbour discovery technique. Subsequently, 

we analyze and discuss this design with respect to two of the four important sensor 

network factors: Network Connectivity in section 2.4, and Implementation Costs in 

section 2.5. The other two consideration factors of Sensing Coverage and Query Waiting 

Delays will be discussed in later chapters as their analysis is more specific in nature. We 

summarize this chapter in section 2.6. 

2.1. The Cyclic Symmetric Block Design (CSBD)  

In recent years, cyclic symmetric block designs, related to the field of Combinatorics 

[25, 26], have slowly found their way into applications that solve real world problems. 

Apart from its known mathematical elegance, they have also showed promise in solving 

problems related to resource scheduling [28], data security [29], networking [27] and 

other applications [30].  

A node is defined to be in the “Sleep” mode (or “Switched Off”) when there are no 

data transmissions, reception of data and channel monitoring activities. Otherwise, it is in 

the “Awake” or “Active” mode (or “Switched On”). We do not discuss an intermediate 

state – the “Idle” mode where nodes are not completely switched off but continue to 
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monitor the channel for packets while suppressing transmissions. It is known [18, 71, 89] 

from hardware behaviour that putting nodes to “Idle” mode is almost as energy costly as 

packet reception. Due to small transmission distances, power consumed while receiving 

data can at times be even higher than power consumed while transmitting packets [89]. In 

the “Idle” mode, both the computing subsystem consisting of a microprocessor or 

microcontroller and the communication subsystem consisting of a short range wireless 

communication component in a sensor node cannot be switched off if the channel is to be 

monitored. This explains why it is almost as energy consuming to operate in the “Idle” 

mode as it is in packet reception, except that control packet sizes that are processed in 

“Idle” mode are smaller than data packets. [89] therefore concludes that operating the 

radio in “Idle” mode does not provide any advantage in power and schemes that ignore 

this fact leads to fallacious savings in power consumption. The radio should be 

completely shut off (“sleep” mode) whenever possible, to obtain energy savings. 

In block designs, we define a wakeup mechanism that associates each node with a slot 

of length L, termed as the wakeup schedule function (WSF). The WSF of a node ν can be 

represented as a polynomial of order L –1 as 
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where L is the length of the schedule, ai = {0, 1}, ∀i ∈ [0, L –1], and x is a 

placeholder. When ai = 1, the node wakes up in slot i and sleeps otherwise. By definition, 

Mζ = fζ (1) is the total number of slots in which a node ζ is scheduled to be awake every L 

slots. The  (v, k′, λ)-design is defined as v schedules of length v slots each; with k′ active 

slots in each schedule, and any two schedules have exactly λ overlapping active slots. A 

special class of cyclic designs exists, called the cyclic symmetric (k2+k+1,k+1,1) design, 

where L = v = k2+k+1, k′ = k+1, λ = 1 Existence of such a wakeup design is only 

guaranteed for values of k that are powers of a prime number (we discuss the possibility 
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of overcoming this constraint in section 3.3). In the design, any schedule can be 

compactly represented using any single schedule with an offset because all slots (active or 

sleep) in a schedule are cyclic translations of a single schedule. There are (k+1) active 

slots in every schedule and there is exactly 1 overlap between any two schedules in the 

design. Figure 1 illustrates a cyclic symmetric (13,4,1) design. The choice of this class of 

design with L = v = k2+k+1 , k′ = k+1, λ = 1 ensures that there is exactly one overlap 

between any two arbitrarily chosen schedules. Other polynomial choices for v are not 

known to provide such guarantees. 

 

Figure 1: The Cyclic Symmetric (13,4,1) Block Design with k = 3. 

 

Figure 2: Illustrating geometric symmetry in the Cyclic Symmetric (13,4,1) design. Lines/Curves 
represent schedules and dots represent time slots. Numbers correspond to time slot numbers in 
Figure 1. 
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2.1.1 Symmetries of CSBD 

The Cyclic Symmetric design can be interpreted and better understood in terms of 

symmetry. Symmetry often offers elegance and simplicity in implementation to solve 

complex real-world problems. We are therefore motivated to explicitly quantify 

symmetry for the cyclic symmetric (k2+k+1,k+1,1) design in this section. 

Consider any cyclic symmetric (k2+k+1,k+1,1) design (see Figure 1). The symmetric 

property of such designs can be stated as follows: 

Symmetry 1. The number of active schedules at any time slot is equal to the number of 

active time slots in any schedule. 

Symmetry 1 can also be restated in terms of energy, where the total amount of awake 

energy consumed by all unique schedules in the design at any time slot is equal to the 

total amount of awake energy consumed by any schedule in one cycle. The duality of the 

terms “time slot” and “schedule” used in Symmetry 1 is also revealed, for they can be 

interchanged. This duality is, in fact, a known principle in projective planes finite 

geometry [26, 31], which our designs are also related to. To visualize the symmetry, 

consider the following mapping: 

• Every unique time slot is mapped to a unique point. 

• Every unique schedule is mapped to a unique line. 

It is therefore required that every line should contain k+1 distinct points and every 

point must lie on k+1 distinct lines. Note that the axioms of Finite Geometry are very 

different from those of Euclidean Geometry. It is beyond the scope of this thesis to 

discuss these axioms, but briefly, there is no measure of distance and there are only a 

finite number of points in Finite Geometry. A point can only be defined when two lines 

intersect. By the term “line”, a line need not be a straight line or of finite length. 

Therefore, circles and curves are to be defined as lines. In particular, the projective plane 
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has no parallel lines and therefore, any two lines in the plane must intersect (related to 

Symmetry 3, which we shall describe later). 

Figure 2 shows geometric illustrations of the cyclic symmetric (13,4,1) design. White 

and black dots in the figure represent a total of 13 points and the 13 lines are also printed 

dotted, solid, or solid-bold for clarity. The numbers are labeled to correspond to time slots 

in Figure 1. It may first appear that there are a lot of line intersections in Figure 2, but 

only the dots (white and black) are to be interpreted as real intersection points. Figure 2(i) 

shows that every line passes through exactly 4 points and every point lies on exactly 4 

lines (because k = 3). This figure however, still does not exhibit sufficient visual 

symmetry. Suppose we define the solid-bold line to be at infinity, in the form of an outer 

circle, as shown in Figure 2(ii). In addition, each pair of antipodal points on this outer 

circle corresponds to just one point (these points are shown as black dots). Figure 2(i) is 

therefore equivalent to Figure 2(ii), but with the latter exhibiting much more visual 

symmetry. Figure 3 further illustrates the visual symmetry of other designs that have low 

orders, namely k=2 and k=4 respectively. 

 

Figure 3: Illustrating geometric symmetry. (i) The Cyclic Symmetric (7,3,1). (ii) Symmetry of 
(7,3,1). (iii) The Cyclic Symmetric (21,5,1). (iv) Symmetry of (21,5,1). 

 

In this thesis, we choose to use the term “Symmetry” in a broader sense to refer to 
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resulting invariance (or self-similarity) of certain properties in the schedules after a 

defined set of mathematical operations has been applied.  

Consider any arbitrary schedule in the design and denote a wakeup slot in the 

schedule as “1” and a sleep slot as “0”. Let the rth schedule be generated by r shifts of the 

original schedule and put the rth schedule in the rth row of a (k2+k+1) by (k2+k+1) square 

matrix R, where r < (k2+k+1). R is then an incidence circulant matrix. We further define a 

row vector Rr as the elements of the rth row of R and a column vector Rq as the elements 

of qth row of R, with r < (k2+k+1). Denote U to be the set of all schedules (rows of matrix 

R) in the cyclic symmetric (k2+k+1,k+1,1) design space. We state: 

Symmetry 2a. The cyclic shift of any U1 belonging to the set U is always another schedule 

U2 also belonging to the set U. 

Symmetry 2b. The transpose of the circulant matrix R is itself another circulant matrix. 

Symmetry 3.  The matrix product of Rr with Rq is always the same and equal to unity for 

all r ≠ q. 

Because of Symmetry 3, all lines in the projective plane must therefore intersect 

exactly at only one distinct point. These symmetries provide the “hidden forces” for 

solutions that employ them to solve different aspects of the energy conservation problem 

in wireless networks. 

2.2. Characteristics of CSBD  

In the description of these properties, the term “schedule” can also be interpreted as 

“node” because each node operates one schedule from the design. Let Tslot be the slot time 

and Tcycle be one cycle time of the design. 

Lemma 1. Let awakeT  be the longest duration of continuous active slots in a cyclic 

symmetric (k2+k+1, k+1, 1) schedule. Then, slotawake TT 2= . 

Proof: Suppose there were no continuous (adjacent) awake slots in a schedule for at 

least 2 time slots, a cyclic shift of this schedule would not generate 1 overlap in any slots 
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between these two schedules and would contradict the definition of the design. Similarly, 

if there were more than 2 continuous time slots that the schedule dictates the sensor to be 

stay awake, a cyclic shift would generate more than 1 overlap, contradictory to the 

definition again. Hence, Tawake = 2Tslot.  

Lemma 2. There exists only one Tawake in any cyclic symmetric (k2+k+1, k+1, 1) 

design. 

Proof: Suppose there is more than one longest continuous duration of two active slots 

(because Tawake = 2Tslot by Lemma 1), in a schedule. A cyclic shift of this schedule would 

generate more than one overlap of awake slots between these two schedules. Therefore, 

by proof of contradiction, there is only one such longest continuous duration of 2Tslot in a 

cyclic symmetric schedule.  

Lemma 3. There are exactly one duration of continuous active slots of length 2Tslot 

and exactly (k-1) active slots of length Tslot in any cyclic symmetric (k2+k+1, k+1, 1) 

design. 

Proof: This follows immediately from Lemmas 1 and 2.  

Lemma 4. The length of any durations of continuous sleep slots from a selected 

schedule in a cyclic symmetric (k2+k+1, k+1, 1) design is unique within that schedule. 

Proof: We need to prove that in any schedule, there exists no two continuous 

durations of sleep slots that are of equal length. Suppose we assume that there exists two 

continuous durations of sleep slots that are of equal length, and we label them as sleep 

duration Dur1 and Dur2. Since all schedules in the design are cyclic shifts of each other, 

there exist a finite number of shifts such that Dur1 and Dur2 will coincide. This implies 

that the two schedules that Dur1 and Dur2 coincide will have two overlapping wakeup 

slots, and this contradicts the definition of the design. Hence, the result.  



 

 34

Lemma 5. Let Tsleep be the longest duration of continuous sleep slots in any cyclic 

symmetric (k2+k+1, k+1, 1) design. Then, Tsleep is upper bounded by 

. 

Proof: To find the upper bound for Tsleep, it is necessary to arrange all (k+1) awake 

slots as close to each other as possible in a total of (k2+k+1) empty slots. By Lemmas 3 

and 4, this is only possible with the arrangement of an increasing number of sleep slots 

between every duration of continuous awake slots. Since there exists only one longest 

duration of awake slots of length 2Tslot with all other active slots lasting only Tslot, and the 

integer function that generates an increasing number of sleep slots between them is 

increasing only at the smallest rate when it is starting from 1 sleep slot with an 

incremental step of also 1 sleep slot. We get: 

 
 (2) 

 
 (3) 

 
 (4) 

 

Corollary 5.1. 
. 

This is because ( ) slotslot TkkTkk 1
2
1)1(

2
1 2 ++<+  for all k > 0.  

Lemma 6. Consider any Tsleep duration in any schedule from a cyclic symmetric 

(k2+k+1, k+1, 1) design. All other schedules in the design (other than the schedule under 

consideration) have at least one wakeup active slot during Tsleep. 
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Proof: By definition, Tsleep is the longest duration of continuous sleep slots in any 

schedule. Suppose that there exists a schedule Si (other than the schedule under 

consideration) with no wakeup slot during Tsleep, then two cases can occur: 

• Case 1: Si has a continuous duration of sleep slots exactly equal to Tsleep. 

• Case 2: Si has a continuous duration of sleep slots longer than Tsleep. 

For case 1, Si would then have at least two overlaps with the original schedule. This 

contradicts the definition of the (k2+k+1,k+1,1) design of exactly one overlap between 

schedules. 

Since Si must be some cyclic shift of the original schedule, case 2 contradicts the 

definition that Tsleep is the longest duration of continuous sleep slots in the original 

schedule under consideration. Therefore, there exists no schedule in the design that would 

not wake up at least once in the duration of Tsleep.  

Lemma 7. All schedules from the cyclic symmetric (k2+k+1, k+1, 1) design have at 

least one awake slot within a time duration of cycleslot TTkk
2
1)2(

2
1 2 ≈++ . 

Proof: By Lemma 6, all schedules (except the schedule under consideration) must have 

been at least one awake slot within Tsleep. Since Tsleep is upper-bounded by slotTkk )1(
2
1

+  

in Lemma 5, all schedules must have at least one awake slot within slotTkk )1(
2
1

+ . To 

include the schedule under consideration, an additional Tslot is required. Hence, all 

schedules have at least one awake slot within a time duration of  

cycleslotslotslot TTkkTTkk
2
1)2(

2
1)1(

2
1 2 ≈++=++ .  

These fundamental properties of CSBD serve to provide further insights into network 

connectivity (section 2.4), sensing coverage (section Chapter 1: 3.1.1) and query waiting 

delays (section 4.1.1) in sensor networks which we shall investigate in turn. 
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2.3. Asynchronous Neighbour Discovery and Data Transmissions 

Sensor nodes, each using one schedule from the chosen CSBD set, are required to 

discover their immediate one-hop neighbourhood for the purpose of bookkeeping and 

inference (e.g. node failures). Since any two unique schedules have exactly one overlap 

“Awake” slot within one time cycle, the opportunities for neighbour discovery is 

guaranteed with a cycle. (Note that for nodes using the same schedules in the CSBD set, 

there are k+1 slot opportunities to discover each other within one time cycle). We further 

adopt the notion of using BEACON messages [27] to advertise the presence of a node to 

its immediate neighbours as illustrated in Figure 4. BEACON messages are advertised at 

the beginning of each “Awake” slot in the schedule at slot times t=0, t=1, t=5 and t=11. 

We illustrate later (section 2.4) that although time slots appear slotted, neighbour 

discovery is still guaranteed when these slot times are misaligned with its neighbour’s. 

 

 

Figure 4: Illustrating BEACON messages as discussed in Zheng’s work [27] for neighbour 
discovery. 

 

We highlight that the work in [27] is designed for mobile nodes where the set of 

neighbour nodes with respect to an arbitrary node change very often. Periodic BEACON 

messages are therefore very important to update the set of new neighbours every cycle. In 

our context for static sensor nodes or nodes with limited mobility, these BEACON 

messages are usually only important during the initial neighbour discovery phase when 

sensors are first deployed. Since the network topology does not usually change rapidly 

with time, the use of such BEACONs can be largely reduced after deployment. 
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In fact, we propose an “On-Demand” Neighbour Discovery (ODND) mechanism 

where a sensor node only transmits BEACONs under certain predefined condition(s). One 

such predefined condition can be the availability of loss-sensitive data to transmit to its 

neighbours. Another predefined condition can be based on time elapsed since the last 

neighbour discovery event. A combination of these conditions can also be implemented. 

For the time duration between successive neighbour discovery events, sensor nodes may 

assume that their previous sets of discovered neighbours remain valid. Note that ODND 

will take two time cycles to complete between any two neighbouring sensor nodes. 

After neighbour discovery, an arbitrary sensor node may now transmit data to the set 

of neighbour nodes that they “hear” BEACON messages from. It is also possible to adopt 

the approach as in [27], where nodes may optionally send an “Awake Request (AREQ)” 

signal to its neighbours to request them to stay “Awake” for the next subsequent time slot 

(if they are scheduled into “Sleep” mode in the next slot) if data transmissions cannot be 

completed within the current time slot. This can happen when the assigned Tslot value is 

small or when traffic load is high. However, the receiver node may still reject such an 

AREQ request if its battery energy is low or for some other reasons. In [27], these AREQ 

requests are made on a per-slot basis for power control and management purposes. In the 

rest of this thesis, although we have implemented AREQ packets for our simulations, we 

have largely ignored the effect of clock synchronization mismatches to simplify our 

analytical work. 

2.4. Network Connectivity 

When a sensor network is deployed, its maximum or full network connectivity is to 

be determined by its physical arrangement of sensor nodes in the field when all nodes are 

in the “Awake” mode. Our main concern in network connectivity is therefore restricted to 

its preservation as nodes are switched off and on based on CSBD schedules. In [27], the 
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authors introduced the concept of a network being connected within some finite time, 

instead of being connected at all times. We formally define: 

Definition 2.4.1 A network of nodes is (n,T)-connected if there exists at least one path 

that connects any two nodes in the network within a time duration of T when (n-1) nodes 

(and their incident links) are removed. 

Definition 2.4.2. Full connectivity is defined to be the maximum connectivity 

achievable when all nodes are awake. 

Now, let NG be a network of sensor nodes. Assume that the original network graph, G, 

where all nodes are awake at the same time, is α-connected. G is said to be α-connected if 

any two nodes in the network remain connected when any (α - 1) nodes and their incident 

links are removed (no time constraint). Nodes in NG employ any arbitrarily (randomly) 

chosen schedule from the cyclic symmetric (k2+k+1,k+1,1) design with a slot time of Tslot. 

We assume that sensor network nodes are static, and we have: 

Theorem 2.4.1. The network NG is (α ,NhopTcycle)-connected where Tcycle = 

(k2+k+1)Tslot and Nhop is the maximum number of hops between any two nodes in the 

network dictated by the routing algorithm. 

Proof: Let Tcycle be the cycle time for the cyclic symmetric (k2+k+1,k+1,1) design. 

With a total of k2+k+1 slots in each cycle, Tcycle = (k2+k+1)Tslot. Since there is exactly one 

overlap between any two arbitrarily chosen schedules in the design, the longest wait 

duration to travel from one node to a neighbouring node is Tcycle. Assume there are a 

maximum of Nhop hops between any two nodes in the network, it takes a maximum time 

duration of NhopTcycle to move between any two nodes in the network because network 

topology does not change within this time duration. Since G is α-connected, and the 

union of all network graphs generated by NG within one Tcycle (≤ NhopTcycle) is the graph G 

itself, NG must also be α-connected within the maximum time duration of NhopTcycle. 

Hence, NG is (α,NhopTcycle)-connected.  
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Therefore, the network connectivity of a system using CSBD wakeup will be 

preserved within Tcycle per hop. If information is to traverse Nhop hops, then network 

connectivity is preserved within NhopTcycle. Indeed, depending on the application 

requirement, the value of Tcycle may be tuned accordingly so that the desired network 

connectivity can be achieved. 

The network connectivity of CSBD remains preserved even if time clocks are not 

synchronized amongst the individual sensor nodes. This is a consequence of the 

symmetries we have described in Section 2.1. Zheng [27] showed that neighbour nodes 

are always able to discover each other within bounded time even if time slots in the 

schedules are misaligned. Therefore, the network remains connected in bounded time 

despite non-synchronized clocks.  

Theorem 2.4.2. Consider any two neighbour nodes X and Y in the network operating 

schedules SX and SY from the same cyclic symmetric (k2+k+1,k+1,1) design. Nodes X and 

Y can always discover each other within bounded time for any arbitrary time offset of the 

schedule SY from SX, or vice versa. 

Proof: Refer to [27].  

We illustrate this pictorially in Figure 5. In Zheng’s work for MANETs, every node 

transmits a BEACON message at the beginning of every “Awake” slot for neighbour 

discovery. This frequent BEACON messages are necessary for a continuously mobile 

node network because neighbour nodes change very often. We have argued that in the 

sensor network context, where sensor nodes are either always static or have limited 

mobility, such BEACON messages can be largely reduced using ODND (section 2.3). 

The idea behind time-asynchronous neighbour discovery involves two neighbour nodes, 

such as S1 and S2 in Figure 5, with a time offset in one of the schedules with respect to 

the other due to non-synchronized clocks. Because schedules are cyclic in nature, both 

nodes S1 and S2 can discover each other within Tcycle. With respect to S1’s clock, S2 
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“hears” the BEACON from S1 at time slot 0 and S1 “hears” the BEACON from S2 at 

time slot 1, and both nodes discover each other. If clock asynchrony or clock drifts are 

severe, this will affect the amount of remaining active time for data transmissions. In such 

cases, we have discussed in section 2.3 that nodes send “Awake Request” (AREQ) 

packets to signal to the recipient node to stay awake for one or more subsequent time slots 

to complete the necessary data transmissions. 

 

Figure 5: Illustrating asynchronous neighbour discovery with misaligned time slots. 
 
AREQ packets, however, may not be an ideal solution if data flows across the node are 

large, especially if they behave like gateway nodes in the network where network traffic 

often traverses. AREQ packets may cause such gateway nodes to always expend more 

energy by having to always stay awake in their usual sleep slots. A simple way to solve 

this is for such gateway nodes to broadcast a local timestamp piggy-backed in the 

BEACONs within one time cycle on a regular basis so that its immediate 1-hop neighbor 

nodes can be approximately time-synchronized with such gateways. Time-

synchronization of other nodes is less critical between other senders and receivers. It is 

important to realize that such coarse and approximate time-synchronization is an attempt 

to reduce unnecessary energy consumption caused by AREQ packets and is not a 

necessity or requirement for the operation of our wakeup schemes. 
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2.5. Implementation Costs 

The implementation costs of CSBD-based wakeup schemes are low compared to 

many other existing schemes. The main advantage of CSBD lies in its deterministic 

wakeup, which incurs few computational and communication overheads. Yet, symmetries 

in its design (section 2.1) offer additional features such as bounded-time connectivity 

discussed in section 2.4. We shall also show in later chapters that CSBD offers other 

features including bounded-time coverage (section 3.1.1) and bounded-time query 

waiting delays (section 4.1.1). The selection and distribution of schedules from the CSBD 

to sensor nodes is different for different applications requirements, and we shall discuss 

them later in their appropriate chapters. Compared to RIS [13], our proposed method does 

not require distributed time synchronization techniques that are expected to be costly over 

a large scale. Compared to CDS-based methods and information-configured schemes, 

CSBD-based schemes are expected to have lower operational computation and 

communication overheads. Unlike MANETs, sensor network nodes are often static and 

asynchronous neighbour discovery costs in CSBD is largely reduced by ODND 

(discussed in Section 2.3). Compared to paging wakeup methods such as STEM [17], 

PAMAS [19], and even PECAS [21], our proposed solution do not require any dual-

communication channel to function, thereby simplifying the hardware architecture and 

reducing implementation costs for deployment. Moreover, CSBD-based systems put 

nodes completely to the “Sleep” mode instead of merely the “Idle” mode. This simplifies 

implementation code complexity and saves more energy. 

One other alternative approach to solve this energy conservation problem is by 

computing optimal schedules at a fixed one-time cost without using CSBD or other 

designs as a starting point and subsequently distributes these optimal schedules to the 

sensors. The drawback of such an approach is often the inability for optimal schedules to 

adapt to dynamical changes, such as node failures. Recomputing new optimal schedules 
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for every node failure can be prohibitively costly at runtime. While our CSBD-based 

schemes are designed for static sensor networks, they are also capable of handling nodes 

with limited mobility, which would add an additional dimension of complexity when 

solving for optimal schemes. Moreover, we shall show later that one particular CSBD-

based scheme offer certain characteristics such as zero query waiting delays (section 4.1.1) 

which can be considered as a form of optimal schedule under given conditions. 

We provide more detailed overheads analysis with our simulation results in 

subsequent chapters. 

2.6. Summary 

In this chapter, we discussed the symmetries of the Cyclic Symmetric Block Design 

(CSBD) and investigated its fundamental characteristics. In particular, these 

characteristics are particularly important for understanding network connectivity, sensing 

coverage and query waiting delays in the context of sensor networks. We have discussed 

neighbour discovery and data transmission issues in CSBD-based wakeup schemes. We 

introduce an “On-Demand” Neighbour Discovery (ODND) scheme for sensor networks. 

We have provided an analysis of network connectivity based on CSBD in this chapter as 

it is generally applicable to our works in chapters 3 and 4. Similarly, we provided a 

discussion on implementation costs of CSBD systems in a more general context. We 

defer the discussion of sensing coverage and query waiting delays to later chapters 

because their analysis is more application specific. 
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Chapter 3:  Agent-Based Sensor Networks 

Several sensor network systems have been proposed with the use of “agents” to 

monitor and track events in the network. As data are being continuously generated from 

sensors, these data measurements may be correlated to each other as they may be related 

by the same event of interest. Mobile agent-based systems [33, 34, 35] gained their 

reputation in applications where the event is persistent in the network and propagates 

from one part of the network to another. A mobile event is usually characterized by a 

target, and can include a moving vehicle, a human target, a hurricane, an ant raid event by 

the Ceraphachys Ant species, etc. Applications may therefore include target tracking, 

intrusion detection, target interception, disaster management, wildlife monitoring etc. As 

the event is mobile and moves in the network, the mobile agent also moves with the event 

real-time in an attempt to perform the necessary data collection from sensors, event 

association, event classification, event identification, and other event management 

functions. We provide a formal definition of an “Agent”: 

Definition 3.1. An Agent is a piece of information, data or software code that uniquely 

identifies a target in the sensor network and moves within some distance of the target as it 

traverses the network. 

In [36], L. Gan et. al. proposed the use of autonomous mobile data agents in their 

sensor networks to transport data independently to a sink. In [34], a mobile agent-based 

signal and information processing computing model is proposed for sensor networks. A 

multi-agent framework is also proposed for real-time tracking in [37], where the influence 

of agent behaviour on tracking accuracies have been analysed. For distributed multisensor 

data fusion, the use of mobile agents also seems to be an effective way to save bandwidth 

and reduce latencies [38]. In fact, D. B. Lange et. al. [39] spelled out seven good reasons 

why mobile agents should be used. However, research topics involving the interactions 
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between an underlying energy conserving wakeup scheme and agent-based sensor 

network systems have been generally lacking. 

Since a majority of the agent-based literature has been focused on target tracking, we 

therefore choose to limit the rest of our discussion in this chapter to this application 

although our work can equally apply well to any agent-based application. 

In this chapter, we assume that tracking is to be performed real-time by agents and 

sensor deployment is required to be dense (e.g. at least 3-covered for tracking 

applications to resolve target location in 2D space). As such, information delays and 

collision probability becomes important factors to consider in this application scenario. 

Section 3.1.1 discusses CSBD-based sensing coverage issues in sensor networks. Section 

3.1.2 discusses delay issues in CSBD while section 3.1.3 discusses schedule diversity 

issues related to collision probability in CSBD. Section 3.1.4 further analyzes node 

lifetimes in CSBD networks and section 3.3 briefly outlines a typical data fusion 

algorithm based on the particle filtering approach. Both sections 3.2 and 3.4 discuss 

implementation issues with CSBD systems for tracking under the assumption that 

maximum target speed vmax is known before deployment. Section 3.5 then improves 

CSBD wakeup by introducing a scheme that can be deployed without prior knowledge of 

vmax. We summarise our work in this chapter in section 3.6. 

3.1. Key Design Considerations 

3.1.1 Sensing Coverage  

Apart from network connectedness (section 2.4), another key function of sensor 

networks is to sense. During deployment of sensors, the sensing coverage of the entire 

sensor network as a whole is an important consideration for the practical purposes of 

applications. Numerous wakeup schemes [13, 40, 41, 42] have been proposed to optimize 

sensing opportunities while conserving network energy. We have previously described 

the Randomized Independent Scheduling (RIS) scheme [13] in Section 1.3.1 that ensures 
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asymptotic m-coverage. The Sponsored Sector Scheduling (SSS) scheme [40] is also 

capable of preserving existing sensing coverage in the network by allowing a sensor node 

to turn itself off only if its sensing area is completely covered by other neighbour sensors. 

In [41], the Maximization of Sensor Network Life (MSNL) scheme was formulated as a 

maximization problem that maximizes network lifetime while promising to preserve m-

coverage. The Lightweight Deployment-Aware Scheduling (LDAS) [42] challenged the 

need of GPS and location information in the network and proposed to provide statistical 

guarantees to sensing coverage when such location information is not available in the 

network.  

All these existing schemes, however, define sensing coverage as a requirement at all 

time instants. While this may be useful for some applications, it tends to be excessive for 

most. For instance, a temperature monitoring or event recording application may not 

require a region to be always m-covered. It is often sufficient when such guarantees are 

provided within some known bounded time. Even for real-time applications such as target 

tracking, an m-covered network by m different sensors (m ≥ 3 to resolve target location in 

2D space) within a tolerable time duration smaller than the time resolution of data fusion 

algorithms [33, 35, 43] or user requirement at the application level is sufficient. The 

experience with many data fusion algorithms [43, 44] is that they only require sensing 

data at discrete time steps based on an iterative measurement-prediction approach. Such 

schemes include [45] Kalman Filtering, Extended Kalman Filtering, Particle Filtering and 

other Bayesian-based state estimation approaches. This suggests that it is sufficient that 

sensing coverage of the network is preserved within some finite time duration, and not for 

all time instants. We shall provide more discussion on data fusion algorithms in a later 

section (section 3.2). 

Definition 3.1.1.1. An area A is (m,T)-covered if every point in A is always covered by 

the sensing coverage radii of at least m different sensor nodes within a time duration of T. 
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Let NG be a network of sensor nodes deployed in some 2D geographical space. Let 

the region covered by all nodes in NG when awake be denoted as A, and assume that A is 

β-covered (ignoring edge effects of A). Nodes in NG employ any arbitrarily (randomly) 

chosen schedule from the cyclic symmetric (k2+k+1,k+1,1) design with a slot time of Tslot. 

Theorem 3.1.1.1. Region A is ⎟
⎠
⎞

⎜
⎝
⎛ ++ slotTkk )2(

2
1, 2β -covered. 

Proof: By Lemma 7 (see section 2.2), all sensor nodes are awake at least once within 

a time duration of slotTkkT )2(
2
1 2 ++=β . Since region A is β-covered by nodes in NG 

when all are awake at the same time, any point P in A must be covered by β different 

sensors at any one time. Since these β different sensors must employ cyclic symmetric 

(k2+k+1,k+1,1) design, they must have woken up at least once within βT .  Region A is 

therefore ⎟
⎠
⎞

⎜
⎝
⎛ ++ slotTkk )2(

2
1, 2β -covered.  

What Theorem 3.1.1.1 implies, is that if an area A is β-covered by a network of sensor 

nodes, NG, that are always awake, then A is also necessarily ⎟
⎠
⎞

⎜
⎝
⎛ ++ slotTkk )2(

2
1, 2β –

covered by that same network of nodes operating the cyclic symmetric (k2+k+1,k+1,1) 

design wakeup schedules. 

Definition 3.1.1.2. Full coverage is defined to be the maximum coverage achievable 

when all sensor nodes are awake. 

Corollary 3.1.1.1. For a cyclic symmetric (k2+k+1,k+1,1) design wakeup network, it 

takes approximately 2Nhop times longer to guarantee full connectivity than to guarantee 

full coverage. 

Proof: This follows from the result of Theorems 3.1.1.1 and 2.4.1 since 

hop
slot

slothop N
Tkk

TkkN
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Corollary 3.1.1.2. For a cyclic symmetric (k2+k+1,k+1,1) design wakeup network, it 

takes approximately twice as long to guarantee information propagation across one 

network hop than to guarantee full coverage. 

Proof: The proof follows from Corollary 3.1.1.1 and set Nhop = 1.  

The convenience of our results is now obvious. For any application that requires 

preservation of the original β-coverage in sensing and resides at most Nhop hops away 

from the event, the delay, Du, experienced is approximately upper-bounded by: 

cyclehopu TND ⎟
⎠
⎞

⎜
⎝
⎛ +≈

2
1

 (5) 

Suppose an application can only tolerate a time resolution of Tres, then the following 

condition must be satisfied: 

( ) slothopres TkkNT 1
2
1 2 ++⎟
⎠
⎞

⎜
⎝
⎛ +≥  (6) 

Theorem 3.1.1.2. A β-covered network implies a β-connected network, if RC ≥ 2RS, 

where RC is the communication range of sensors and RS is their sensing coverage radius. 

Proof: The proof can be found in [46].  

Theorem 3.1.1.3.  For a cyclic symmetric (k2+k+1,k+1,1) design wakeup network that 

is β-covered when all nodes are awake, it is also: 

 ( )2/])2[(, 2
slotTkk ++β  -covered, and ( )slothop TkkN )1(, 2 ++β  -connected if 

SC RR 2≥  . 

Proof: The proof follows directly from Theorems 2.4.1, 3.1.1.1 and 3.1.1.2.  

For the purpose of clarity, we term sensor nodes that employ CSBD for the objective 

of providing sensing coverage and connectivity within bounded time as Bounded-Time 

Covered/Connected (BTC) Nodes. 
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3.1.2 Delay 

Apart from bounded-time coverage preservation (section 3.1.1) and bounded-time 

connectivity preservation (section 2.4) requirements, another important consideration 

factor in target tracking is delay. The speed at which information (or agent) propagates 

from node to node may be slower than the speed of the mobile target as it traverses 

boundaries of nodes, because nodes are not always “awake”. This therefore renders the 

target “untrackable”, given that the agent speed is slower. This is actually a more specific 

form of the requirement where information travel per hop is upper-bounded by less than 

Tcycle. To be more specific, we state: 

Theorem 3.1.2.1. Assume that sensor nodes operate wakeup schedules from the same 

cyclic symmetric (k2+k+1,k+1,1) design. Data packets from one node to the next hop wait 

at most Tcyclic,sleep = k(k+1)Tslot where Tslot is the slot time. 

Proof: Since there is exactly one overlap “awake” slot between any two arbitrarily 

chosen schedules in the design, say at slot Soverlap, the longest time duration a data packet 

needs to wait is when it arrives at a time Soverlap which has just elapsed. Hence, the longest 

wait duration for the next Soverlap to arrive is 

slotslotslotsleep,cyclic T)k(kTT)kk(T 112 +=−++=  

We assume that sensors are randomly distributed in a geographical area of interest 

and that they are deployed such that the area of interest is sensing-covered to the required 

degree. Suppose that the communication range of sensors, RC, is some factor ω of its 

sensing coverage radius RS, where ω ∈ ℜ and ω > 0. Hence, 

RC  = ωRS.  (7) 

A communication link is maintained between any two nodes whenever the condition 

d ≤ ωRS is satisfied, where d denotes the distance between the two nodes. 
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Neighbour nodes need to wakeup sufficiently often to exchange tracking information 

and this depends on the time durations between overlapping active slots in the schedules 

of the neighbouring nodes. 

Definition 3.1.2.1: The longest non-common wakeup time (LNWT) between any two 

schedules in a wakeup design is defined to be the longest time duration between any two 

nodes using schedules in a wakeup design such that both nodes are not awake at the same 

time. 

 

Figure 6:  (a) LNWT = 12 Tslot.  (b) LNWT = 4 Tslot. 
 

As an illustration, Figure 6(a) shows that the LNWT between the two schedules is 

12Tslot and Figure 6(b) shows the LNWT is 4Tslot. 

In the remaining of this section, we find the desired LNWTtrack, the longest non-

common wakeup time between any two schedules (nodes) given that targets can move no 

faster than a known maximum speed of vmax. Suppose the maximum distance between the 

Agent and the target is to be no more than H communication hops. We consider several 

cases for H. 

Case 1: H=1 

We assume that RC = αRS, where α is a natural number (α∈ℵ). For ease of 

explanation, we first consider the case α = 3. It will be easy to see later that the result can 
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also be extended to α > 3, but there will be no solution for α < 3. In Figure 7, the agent 

resides at an arbitrary node i. The objective is to ensure that the agent can be transferred 

to any one-hop neighbor node j, before the target leaves the sensing coverage radius of 

node i, within the longest possible time duration where both nodes are not awake at the 

same time. If this condition is met, all one-hop neighbours can then potentially receive the 

Agent before the target actually enters into their sensing regions. Note that it is not the 

focus of this thesis to discuss target velocity prediction or schemes that propose sending 

the same agent to multiple second hops to minimize tracking and target association errors. 

We assume that this is done by existing algorithms [47, 48]. 

 

Figure 7: Illustrating the proof of a tracking delay bound. 
 

Since RC = 3RS and we assume the region is completely sensing-covered, there must 

exist a geographical ring of radius RS that is covered only by one-hop neighbours of node 

i (Figure 7). We consider the worst case that a target’s movement is such that it will result 

in the fastest possible departure from node i. For any moving target X, the worst case (i.e. 

the shortest time to leave the one-hop neighborhood of node i) happens when it is at the 

edge of sensing coverage of node i (i.e. at a distance RS from the node), and the target 
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moves at a maximum speed vmax in an outward radial direction away from node i. If the 

distance travelled by the target during the time when the two nodes are not both awake at 

the same time is more than RS, the target will no longer be in the one-hop neighbourhood 

of node i: 

Strackmax RLNWTv >  (8) 

Therefore, the target only remains “trackable” when the reverse condition is true: 

track

S
LNWT

R
v ≤max

 (9) 

It is easy to see that the condition may be generalized for any α ≥ 3 such that RC = 

αRS. Therefore, 

( )
slots
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or 
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⎥
⎦

⎥
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⎣

⎢ −
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slot

S
track Tv

R
LNWS

max
max,

2α

slots (11) 

where ⎣ ⎦x is the largest integer smaller or equal to x, and trackLNWS  is the largest 

number of slots in a tracking schedule such that both node i and any of its neighbour 

nodes do not have overlapping “awake” slots. For α ≤ 2, no such bounds can be derived. 

We call this “The α ≤ 2 Constraint” and we shall relax it later for cases when this 

condition cannot be fulfilled (section 3.3). 

Case 2: H > 1 

The extension of results to a general H-hop agent case is not straightforward. This is 

because of the infinite possibilities in deployment topologies. For instance, from Figure 7, 

it is clearly possible that when H = 2, the second hop node (node m) can be at a distance 

of just over 3RS from node i, but still within communication range of node j. As δ→0, the 

delay bound per hop can be written as: 
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( )
⎥
⎦

⎥
⎢
⎣

⎢ −
=

slot
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track Tv

R
LNWS

max
max, 2

2α

slots (12) 

which is always smaller than (11). For H=3 and α=3, we prove that any third hop 

node from a reference node i cannot be within a distance of 4RS. 

 

Figure 8: Illustrating the proof of a third hop node outside 4Rs for α = 3. 
 

Proof: Consider Figure 8. We shall prove by contradiction and first assume that there 

exists a third hop node g within a distance of 4RS of any arbitrary node i. Let P be the 

point where the straight line joining nodes i and g intersect with the outer circumference 

of the ring of one-hop neighbours of node i. Since the ring must be covered only by one-

hop neighbour nodes of i and that point P is part of this ring, there must exist some node j 

that will cover point P and one-hop away from node i. In order for node j to be both 

furthest from node g and cover point P at the same time, node j must be centered along 

the straight line joining both nodes g and i, and at a distance of less than or equal to RS 

from point P. Since the communication radius of node j is also 3RS, node g would be in 

communication range of node j. Node g would therefore have been a second hop node, 

instead of a third hop node, and we arrive at a contradiction. 
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Therefore, any third hop node of node i must be at least 4Rs away.  

By a similar proof, if RC = αRS, where α > 2, the 3rd hop node must be at least 

( ) sR12 −α  from node i because the one-hop covered ring size (linear radial distance from 

the inner circumference to the outer circumference of the ring) would have been 

( ) sR2−α . With this, the delay bound can also be derived appropriately. 

For H > 3, it is usually beyond the practical scope of tracking agents to be too far 

away from the target and we shall not attempt to derive bounds for those cases. For 

simplicity, we focus only on the H=1 case from now on. 

3.1.3 Schedule Diversity 

Most agent-based systems, such as the target tracking application, usually involve a 

dense sensor deployment. It is therefore important to ensure that the choice of schedules 

by sensor nodes is diverse, and collision probability may be reduced. In this section, we 

consider schedule diversity issues in CSBD-based wakeup schemes for dense sensor 

networks and predict packet collision probabilities. In this section, we assume that 

Multiple Access Control (MAC) layer collision avoidance techniques are not available. 

Consider any sensor network deployment of Ndeploy nodes with a uniform deployment 

density of ρdeploy (where ρdeploy is the ratio of Ndeploy to area of deployment), with each 

node randomly (arbitrarily) selecting a wakeup schedule from CSBD (cyclic symmetric 

(k2+k+1,k+1,1) design). For small values of k, more sensor nodes will be using the same 

schedules per unit area. We term this as a lack of schedule diversity within that 

neighbourhood area. As more nodes operating the same schedules wakeup at the same 

times, more transmission collisions are expected, leading to either more packet 

retransmissions, thereby depleting more node energies, or leading to more frequent packet 

losses. Therefore, this illustrates the importance of diversity of schedules and the 

motivation for choosing larger values of k. 
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We assume a uniform distribution of nodes on a 2D geographical plane, and all nodes 

have a communication range RC. The number of sensor nodes NI, within a radius of RC of 

any arbitrary reference node that have the potential of having packet collisions with that 

reference node is: 

NI  ≈ πρdeploy RC
2. (13) 

 
Figure 9: Collision Probability for different values of k with RC=150m, ptx=20%. 

 

Let ptx be the probability that a node will transmit a packet when it is in the awake 

mode. To simplify the analysis, we assume that whenever two nodes transmit in the same 

time slot (even if it is at different times within the same slot), a collision will occur. The 

probability of a collision is therefore: 
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We use an approximation instead by assuming that the diversity of schedules in a 

locality is sufficiently good so that the probability of more than two schedules 

transmitting at the same time within an overlapping active time slot is small and that ptx is 

not large. Hence, 
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Figure 9 shows that INcollisionP ,  decreases as k increases for different values of node 

deployment densities. The nulls in the graphs are a result of the prime power constraint 

which we have previously mentioned in section 2.1 (see section 3.3). 

3.1.4 Node Lifetime 

In this section, we show that the node lifetimes can be lower bounded because of the 

deterministic nature of the wakeup slots in the schedule. Assume that each awake time 

slot consumes Eawake units of energy (for simplicity, this also includes transmission 

energy), and the total energy in each node is Enode, then the maximum energy consumed 

per Tcycle per node is (k+1)Eawake and the network lifetime, ζlife, of each node is lower 

bounded by: 

( )
( ) awake

nodeslot
LBlifelife Ek

ETkk
1
12

, +
++

=≥ ςς  (16) 

Setting equality in (6) and substituting into (16), we get: 

( )( ) awakehop

noderes
LBlifelife ENk

ET
5.01, ++

=≥ ςς
 (17) 

In (17), LBlife,ς  increases as k decreases for any fixed resT .  
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Figure 10: Theoretical node lifetime bound for different application time resolution requirements 

with Nhop=1. 

 

Figure 10 illustrates this trend further for different application requirements of Tres. 

Again, the null values for certain k values are because of the prime power constraint (see 

section 2.1, 3.3). 

 

3.2. Agent-Based Data Fusion for Target Tracking 

Agent-based sensor network systems have been popularly employed for the data 

fusion problem in target tracking. The use of agents in data fusion offers the availability 

of a mobile fusion center, where data collected from different sensors and across different 

sensing modes can be fused all at once in a consistent manner for target identification, 

association, classification and localization. This allows researchers to focus on the signal 

processing data fusion aspect of the problem and make other simplifying assumptions 

such as small data latencies to the agent (fusion center). This is possible because the agent 
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“follows” the event or the target where sensing data is generated and is expected to be 

only one or two hops away from the event (section 3.1.2).  

Tracking of targets is usually modeled as a dynamic system, by using Bayesian 

network representation where the state of the targets can be estimated using Maximum A 

Posterior (MAP). However, in most cases, the measurements and state distributions are 

non-Gaussian, and the dynamic system is not linear. The dynamic equation of Bayesian 

network representation therefore becomes not trackable. Recently, importance sampling, 

especially particle filtering [45], has been widely recognized to solve problems of this 

nature effectively. In [49, 50] Hu employed a signal propagation model to localize the 

target source, and then obtain the target location. Indeed, a similar problem and its 

accompanying solution exists in the field of heat transfer where the Markov chain Monte 

Carlo (MCMC) algorithm [45] is used to obtain estimates of the statistics of the unknown 

heat flux [51]. By using the MCMC sampling strategy it is possible to extend the 

Bayesian inference approach to inverse problems having high-dimensional, non-standard 

distribution, and/or complex distribution functions. These previous works therefore 

provide good methods for solving the target localization problem. 

The problem of fusing data from multiple sensors and across multiple modalities for 

tracking in sensor networks remains largely unsolved. We formulated the target tracking 

problem using inverse source localization in the context of sensor networks where particle 

filtering is used to implement the tracking [43]. As the primary focus of this thesis is 

sensor energy conservation rather than data fusion algorithms, this section only briefly 

outlines this application layer algorithm for the following purposes: 

• To appreciate the fusion approach of a typical distributed algorithm for target 

tracking 

• To demonstrate that such algorithms provide a convenient way to define the time-

resolution accuracy of the tracking, Tres, that can be used in (6) 
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• To provide details of the application layer tracking algorithm that is implemented 

in our simulations where results are obtained 

Particle filters can be thought of as a mathematical tool for the probabilistic 

estimation of a physical state in the presence of noise (that can be non-Gaussian), in our 

case, the state of interest is target location. However, the physical state cannot be 

measured directly, but can only be inferred through measurements, such as acoustic 

and/or seismic waves detections, etc. at the sensing detector (In our case, we infer 

distance from measured acoustic and seismic wave energies in each sensor). The 

relationship between measurements and the real physical state are related or represented 

by likelihood probability functions in particle filters. A measurement in any one sensing 

mode is therefore able to influence/predict the state according to a weighting function, 

which is given by the product of the measurement likelihood functions. The physical state 

is then, also represented by a probability function, which changes and gets refined with 

each new measurement by updating the weighting function in the filtering algorithm. To 

estimate the continuous probability function representing the state, particles are used to 

discretize the probability function over the state space. Each particle can therefore be 

thought of as the state having a certain value, with a certain probability. The expectation 

of the value of the state can then be computed by averaging over all particles.  

We summarize the particle filter implementation of Bayesian filter for target tracking 

in sensor networks using acoustic and seismic sensors as the Cross-Sensor Cross-

Modality (CSCM) data fusion algorithm: 
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CSCM Algorithm 

1. Initialize xi, i=1,2,…,LT where xi is the target state of the ith particle, and LT is the total 

number of particles. 

2. Prediction 

 FOR each particle i = 1: LT,  

 Draw 11 −− += j
i
j

i
j dispxx , where j is a discrete time index and 1−jdisp  is the 

displacement of the target at time j-1 

3. Determine the active neighborhood by the threshold of received sensor signals to 

generate vector zaco and zsei, where zaco is the measured acoustic signal strength and zsei is 

the measured seismic signal strength. 

4. Each particle is associated with a particle weight to be computed by the weight update 

equation: 

 )|()|( i
j

seii
j

acoi
j xzpxzpw = , where p(•|•) is the likelihood function. 

5. Normalization: weights i
jw  need to be normalized over all i so that the sum of all 

weights adds up to unity. 

6. Compute expectation of the target state using: 
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7. Resample – drop those samples with too small weights, and split those samples with 

largest weights so that the number of samples remain to be LT. 

The CSCM algorithm is therefore a series of prediction-measurement steps at each 

discrete time j. The time interval between successive time steps can be determined by the 

user and can therefore be used to set Tres in (6). The elegance of such a data fusion 

approach requires only predicted information from the previous time step and 

measurements from the current time step. Moreover, data from different sensors and 

across different modalities can be fused using the same consistent mathematical tool – 
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particle filtering. The choice of the likelihood functions in step 4 can be obtained from 

[43]. 

3.3. Overcoming the Prime Power Constraint 

In section 2.1, we stated that the existence of (k2+k+1,k+1,1)-designs are only 

guaranteed when k is an integer power of a prime number. However, because node 

schedules are not required to be unique, this constraint can be removed easily. One 

approach is as follows: Let ℵ be the set of all natural numbers. For any general value of 

M = L ∈ ℵ, L > 3, we start off with a design with L- = (k′)2 + k′ + 1 number of schedules 

where k′ is the largest integer power of a prime such that L- ≤ M. These schedules can first 

be assigned to the L- sensing nodes and the remaining (L–L-) sensing nodes can be 

randomly assigned repeated schedules found in the previous L- set of sensing nodes. 

Therefore, supposing there are 100 sensor nodes, one could choose k = 8 so that 

k2+k+1=73 of these sensor nodes have unique schedules while the remaining 27 can 

randomly be assigned repeated schedules from the same (73,9,1) CSBD design. This 

ensures a good degree of schedule diversity (section 3.1.3) in the nodes. 

Since analysis in our previous sections does not require schedule assignments to be 

unique, their results continue to apply. 

3.4. Applying CSBD for Target Tracking 

In this section, we use the results from sections 2.4, 3.1.1, 3.1.2 and 3.1.3 to solve for 

the design parameters k and Tslot, and the required deployment density ρdeploy for a target 

tracking application. We consider three different requirements of a tracking system. 

• Requirement A: Coverage/Connectivity Preservation 

• Requirement B: Collision Control  

• Requirement C: Information/Agent Travel Speed 

Requirement A is satisfied by considering the more stringent of the two requirements 

between coverage and connectivity within some bounded time, Tres. This has been 
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discussed at length in Sections 2.4 and 3.1.1. Suppose the coverage requirement is more 

stringent, we assume Nhop = 1 in (6): 

)1(32 2 ++= kkTT slotres  (18) 

If the connectivity requirement is a more stringent constraint, an equivalent 

expression for connectivity that is similar to (6) can be written. (18) can then be rewritten 

in terms of connectivity.  

Requirement B has been discussed in section 3.1.3 and the relevant equation to 

consider is (15). 

Requirement C has been discussed in Sections 3.1.2. Using Theorem 3.1.2.1 and (10), 

and assuming H =1, we obtain: 
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 (19) 

With equations (18), (19) and (15), the variables k, Tslot and ρdeploy can then be solved. 

Suppose we consider further that the deployment density cannot be controlled and 

ρdeploy is therefore not a variable, but a constant. The value of k can then be determined 

immediately by using (15). Given k, Tslot can be computed using (18), and (19) then 

becomes a condition to check that information propagation in the network is indeed faster 

than the maximum achievable speed of the target vmax. We shall adopt this latter approach 

in our simulations studies later.  

With the computed Tslot and k values, the lower bound for node lifetime can be 

computed using (16) or (17). In some practical cases, the condition that RC > 2RS (which 

forms the foundation of our derivations in section 3.1.2) may not be achievable. This 

problem can be solved by increasing the node density (assuming that this is possible) by 

first assuming that the sensing radius of nodes is smaller than its actual achievable radius 

and deploying more sensors to fill the “sensing gaps”. The derived results will therefore 
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still apply. We provide our simulation results related to CSBD-based target tracking in the 

next section. 

3.4.1 Simulation Results 

While analytical reasoning and derivations have been provided in previous sections, 

this section attempts to compare our proposed CSBD with other wakeup schemes in terms 

of several performance metrics. We choose an agent-based target tracking application as 

the scenario for our simulations. 

It is not a straightforward task to find the ideal wakeup schemes to compare with 

CSBD, for the reason that no other scheme to the best of our knowledge, simultaneously 

considers coverage/connectivity in bounded time, information travel time and collision 

control as target tracking requirements in the network, in an energy-constraint sensor 

network. We have nonetheless, selected RAW [12] as a representative algorithm for 

random wakeup schemes and PECAS [21] as a representative algorithm for on-demand 

wakeup schemes to compare with CSBD. Similar to CSBD, both RAW and PECAS are 

time-asynchronous schemes. 

Simulation Setup 

Simulations are performed using Network Simulator 2 with a random (uniformly 

distributed) deployment of 1,000 nodes with RS, = 50m and α = 3 in a geographical 

square area of 1km by 1km with each node arbitrarily using one of the schedules from an 

original (k2+k+1,k+1,1) design. We assume that a tracking application requires a collision 

probability of less than 10% and ptx = 0.2. Then, using (15), k = 5. Assuming that the 

application requirement is such that Tres = 1s, we set Tslot = 21.5ms (unless otherwise 

stated in some simulations) and assume that Enode = 16.56 kJoules and Eawake = 0.17625 

Joules. In our simulation, we assume the average speed of the target to be 15m/s (about 

54km/h) with vmax assumed to be 30m/s (about 108km/h), unless otherwise stated. These 

simulation parameters are summarized in Table 1.  
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Table 1: Simulation parameters for target tracking 
 

Total Nodes 1,000 Deployment Field 1km x 1km 
RS 50m Tres 1s 
α 3 Tslot 21.5ms 
k 5 Enode 16.56 kJoules 
vmax 30m/s Eawake 0.17625 Joules 

 

With these parameters, we test that the condition in (19) is satisfied, implying that 

agent’s speed is faster than the maximum speed of the target. The scenario is repeated for 

100 times, each time with a different random sensor deployment in the 1km by 1km 

sensor field and with different targets (unless otherwise stated, the number of targets in 

the sensor field is five, with each target randomly generated at any location inside the 

sensor field) moving in the field with Gauss-Markov mobility [78] for a total simulation 

time of lifeς10 , where we compute 3, ≈LBlifeς hrs. Note that this is just a lower bound 

assuming full duration transmissions in all wakeup slots in all nodes. For information 

routing, Geographic Routing (GR) [71] is used. Agents (some software code 

implementation) propagate from one node to another following the target for the purpose 

of feature extraction, target classification, target association, intrusion monitoring or other 

purposes, such that Nhop = H = 1. We assume that target velocity prediction has zero 

errors and target association with measured signals is 100% accurate (so as to single out 

certain tracking errors to be described later). We assume a mobile command center where 

this information fusion takes place and for simplicity, this is assumed to be where the 

agent is. 
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Delay and Delay Variances 

 

Figure 11: Delay Performance 
 

We investigate the delay and delay variance performance of our CSBD design, and 

compare with a random wakeup scheme RAW with a similar duty cycle. Figure 11 shows 

that the CSBD design outperforms RAW by a good margin in terms of delay and delay 

variance.  For instance at the average target speed of 15m/s, CSBD more than halves the 

average delay compared to RAW and operates with very low delay variance not 

exceeding 0.05s. Delay variance of CSBD is low because of the deterministic nature of its 

wakeup schedule. We have not shown the delay performance of PECAS in the graph 

because the scheme essentially employs a different technique using a dual-radio 

architecture to track targets. Both delay and delay variance for PECAS are approximately 

zero for an agent that is one-hop away from the target (ignoring propagation and 

processing delays). Although this appears to have significantly outperformed CSBD, it is 

important to note that the tradeoff for PECAS will then be in terms of a more costly 

implementation and a shorter node lifetime for multiple targets, which we shall show later. 

The simulations also show that the delay performance of RAW is poorer than CSBD at 

higher speeds because the average number of hops packets have to traverse to reach the 
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mobile agent is more than RAW than it is for CSBD. In fact, the delay and delay variance 

performances for CSBD hardly changes because the number of hops packets have to 

traverse is almost certainly just one hop. 

 

Energy Consumption and Network Lifetime 

We assume that the network lifespan is the time duration until any sensor node in the 

network is completely depleted of energy [73, 74]. For network lifetime comparison with 

PECAS, we assume that the idle mode power parameter for PECAS is 35mW and 

simulation results in Figure 12 indicate that CSBD outlasts PECAS by about 1.67 times in 

terms of average network lifespan for five targets. The main reason is that PECAS puts 

nodes to the idle mode when not involved in tracking targets so that the channel can still 

be monitored for possible packets. This is known to conserve very little energy compared 

to CSBD nodes being set to sleep mode when not in operation. 

 

Figure 12: Network Lifetime Performance for RC = 150m. 
 

Furthermore, energy consumption in PECAS nodes becomes approximately 25% 

higher than CSBD nodes when more targets are in the network. This is because in PECAS, 

more nodes are required to be woken up to track more targets. Our solution, CSBD, 

however, is rather independent (ignoring transmission energies which must be consumed 
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for both PECAS and CSBD) of the number of targets in the network because of its fixed 

schedules. For the case of RAW, it achieves a poorer lifetime performance compared to 

CSBD because of the more transmissions required to forward data to the agent and 

wasted energy in transmissions due to more collisions. 

In section 3.1.4, we note that the CSBD lifetime in (17) is a lower bound and a 

function of the application time resolution requirement Tres. Figure 13 illustrates the 

CSBD lifetime with different values of Tres for 5 and 25 targets. All these values of Tres 

can be tested to satisfy the condition in (19). As the number of targets increase, the 

simulated lifetime approaches the approximate theoretical bound. 

 

Figure 13: Network Lifetimes and approximate lower bound for different Tres values. 
 

In a practical deployment scenario for target tracking with Tres = 5s, we can expect to 

achieve of an average network lifetime of more than 10 days. Again, this is based on the 

assumption that two standard AA alkaline batteries are used for each node. If lithium-

based AA batteries are used, the lifetime performance can extend approximately by 

another seven times. In some sensor network deployments, it is also possible that extra 

battery packs are connected to each node so that every node can connect up to six AA-
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sized batteries. The average node lifetime can therefore potentially be extended to more 

than 210 days. 

Tracking Continuity and Target Speeds 

We define the Loss of Continuity in Tracking (LCT) as the loss of the ability to 

perform an association between the target and the agent that was first created to track that 

target. When this happens, nodes are unable to distinguish between the detection of a new 

target and the continual tracking of an old target. In our simulations, we assume that LCT 

is equivalent to the event that the target is found to be out of the sensing coverage radius 

of the node that the agent resides. 

For LCT performance comparison across schemes with different average target 

speeds, we discover that the agent in RAW has much higher LCT compared to CSBD (as 

promised by the algorithm because information travels faster than the target). In our 

simulation, PECAS also has low LCT because of its double-radio architecture, assuming 

no velocity prediction and data association errors in the application layer. As the average 

speeds of targets are increased, it becomes progressively easier for RAW to “lose” targets 

and LCT increases. Figure 14 investigates this trend in LCT for different average target 

speeds with the maximum speeds vmax set to be always 30m/s. In one simulation, we 

assume the communication channel to be lossless and no packet collisions could occur to 

first identify the underlying trend in LCT. RAW LCT increases at a faster-than-linear rate 

to more than 90% at an average speed of 25m/s. CSBD and PECAS LCT remains at 0% 

for all target speeds. 
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Figure 14: Loss of Continuity in Tracking (LCT) for different average target speeds 
 

When the channel is lossy, packets are lost even within a single hop and both CSBD 

and PECAS would have encountered packet losses. These packet losses are due to 

channel impairments, represented by log-normal shadowing with a variance of 10dBm, 

and packet collisions when more than one node transmit packets at the same time. 

Collectively, packet loss rate is about 5%. It is thus possible for targets to be “lost” when 

they move fast enough and packet retransmissions do not happen quickly enough. In this 

set of simulations, packets are retransmitted after some random backoff time if no 

acknowledgement packet is received from the agent (located at some node one-hop away 

from the target) within twice the propagation delay. 

Our simulations in Figure 14 show that the LCT of CSBD is no more than 1%, even 

at high average speeds of 25m/s. One reason is that the agent is always within one hop of 

the target. The LCT of PECAS is slightly higher primarily because of more collision 

losses. CSBD handles losses due to collision better because of the arrangement of active 

slots in its schedules. On the other hand, a lossy channel affects RAW drastically with its 

LCT reaching 91% and 100% for average target speeds of 20m/s and 25m/s respectively. 
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In these simulations, the node density is fixed such that (15) is satisifed. If, however, 

the deployment density is increased, the probability of packet collisions would be higher 

resulting in lower throughput and more packet losses. More energy is also expended if 

packet retransmissions are required. If the deployment density is lower, as long as k and 

Tslot remains the same and the network remains connected, performance in terms of 

network lifetime and LCT should remain the same, if not better. Of course, if the 

deployment density is so sparse such that the network is eventually disconnected, packet 

losses and LCT will also increase. 

3.5. Tracking Wakeup Schedule Function (TWSF) 

The results in sections 3.4 are sufficient to track any target of a known maximum 

speed vmax by solving simultaneous equations for the values of k, Tslot and ρdeploy. However, 

these values must be computed before deployment. Suppose vmax is not known before 

deployment and the network is to be configured later to track a mobile target of any 

maximum speed that is to be specified after deployment. This section addresses this 

problem and introduces the Tracking Wakeup Schedule Function (TWSF) for the purpose. 

TWSF is also based on an initial CSBD design, but is coupled with an adaptation 

technique. 

Suppose we start off with an arbitrary CSBD from which schedules are selected for 

sensor nodes with a certain k value. Assume that we choose a reasonably large value for k 

for the moment with the motivation of having a low duty cycle. We would then attempt to 

add in a sufficient number of new “Awake” slots into the CSBD so that a target of an 

arbitrary maximum speed vmax can be tracked. The challenge now is to determine the slot 

times at which New “Awake” Slots (NAS) should be added so that ideally, the least 

amount of energy is expended (because every new “Awake” slot added increases energy 

consumption for the nodes). Our strategy is to add sufficient NAS between any two 

schedules at regular intervals so that the LNWT (see definition 3.1.2.1) between them is 
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eventually small enough for the tracking to be possible. This strategy is repeated for all 

schedule pairs that are neighbours of each other in the deployment.  

Consider (11) and Theorem 3.1.2.1 for the H=1 hop case, and the original CSBD 

schedules of any two arbitrary sensor nodes. For a target to remain “trackable”, the 

maximum number of NAS required between these two nodes, Snew,max, is the maximum 

number of adjacent sleep slots in any one of the schedule, TCyclic,sleep, divided by the 

longest allowable duration that both schedules are not awake at the same time is given as: 
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The ⎣ ⎦x  operation and the unity term in the denominator is the result of integer 

division. For analysis purpose, we may remove the rounding down operation and the 

unity term in the denominator by an inequality: 
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This is the maximum number of additional slots required for CSBD between any two 

nodes to track a target with maximum speed maxv  within its sensing field such that H=1. 

Suppose that each node has a maximum of maxdeg,N  neighbours, the maximum number of 

new slots required for any node in the network (taking into account of all its neighbours) 

is simply bounded by: 
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For the extension of results to a H=2 hop agent case, it can similarly be shown that: 
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which is always larger than (21). 
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Based on the above derivations, it is then possible to present an algorithm that adapts 

CSBD to a tracking-enabled design that tracks targets that is predicted to move at some 

maximum speed maxv  after deployment. This can be achieved by strategically adding 

additional NAS based on the result in (11). 

Assuming H=1, we present our 1-hop Agent TWSF algorithm below for any arbitrary 

node i: 
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1-HOP AGENT TWSF ALGORITHM PSEUDO CODE FOR NODE I 

Let 
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trackingEnabled = False 

while trackingEnabled = False 

 maxDeg = True 

for j ∈ J do 

 if Ndeg(i) < Ndeg(j) then maxDeg = False 

end for 

resultID = False 

if  maxDeg = True 

 counter = 0  // initialize to zero 

 For timeslot = 1 to (k2+k+1), 

 If i and j are not both awake, 

 counter = counter + 1 

 If counter > LNWStrack,max then 

  //Add a new active slot to both schedules 

  call addNewSlot() 

  counter = 0 

  End If 

 Else 

  counter = 0 

 End If 

 End For 

 // sends ID and new schedule to 1-hop neighbour nodes 

 call notifyOneHop( )  

 trackingEnabled = True 

 else if maxDeg = False 

 while resultID = False 

  resultID = listenNotify( )  

  // waits for the return of ID (& new schedule)  

  // of the tracking-enabled neighbour 

 end while 

end if 

end while 

 

Figure 15: Distributed 1-hop Agent TWSF Algorithm 
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where 

 I is the set of all nodes in the network, 

 J is the set of all 1-hop neighbour nodes of a reference node i ∈ I that has not yet 

adapted for target tracking (i.e. not tracking-enabled yet), 

 LNWS  is the longest time duration (in slots) between common wakeup times 

between any node i and any of its one-hop neighbour node j ∈ J in the original 

CSBD, 

 slotT  is the duration of one slot time, and 

NDeg(X) refers to the degree of a node X. 

Each node first computes max,trackLNWS  for a given maxv , known after deployment. 

The floor operation rounds down the expression to an integer. At first, all nodes are not 

tracking enabled (trackingEnabled = False). If the node is not one with the highest degree 

amongst its neighbours, it listens for a message through the function listenNotify() from 

other neighbours until it is the largest degree neighbour that is not tracking-enabled (i.e. 

trackingEnabled = False). The function listenNotify() returns a True value to the variable 

resultID when an ID message together with the new schedule from a neighbouring node 

has been received. The node can then proceed to retest the condition if it is the highest 

degree node amongst the rest of the other neighbours (those that are not target-tracking 

enabled yet). If this is not true, the loop continues. Otherwise, the node can now perform 

a search through every time slot of every of its neighbour nodes, and when necessary, 

assigns a new slot common to itself and the respective neighbour node using the 

addNewSlot() function. The addNewSlot() function is only necessarily called when both a 

neighbour node and itself are not awake at the same time for more than max,trackLNWS  slots. 

After all slot assignments, the algorithm sends a message through the function call 

notifyOneHop() to all its one hop neighbours that it has completed its slot assignments 

and subsequently terminates the algorithm by setting trackingEnabled = True. 
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Let C be the number of actual NAS assigned between two neighbour nodes. Now, 

every sensor node will have at most (CNdeg,max+k+1) “Awake” slots after the adaptation. 

Assuming that each awake time slot consumes Eawake units of energy (for simplicity, this 

also includes transmission energies), the maximum energy consumed per Tcycle per node is 

(CNdeg,max+k+1)Eawake. Let the total energy in each node be denoted by Enode, then the 

network lifetime, lifeς , of each node can be given by: 
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Note that the bound is a worst-case minimum bound and not the typical average node 

lifetime. If the network lifetime is defined as the time duration until the first network node 

is completely depleted of energy, then the network lifetime is also exactly bounded by the 

same expression. 

The presented TWSF algorithm therefore guarantees the per-hop delay bound derived 

in (11), total new slots bounds derived in (21) and (22), and node lifetime bound derived 

in (24). Having formulated these worst-case performance quality-of-service (QoS) 

guarantees, we provide simulation results to investigate the typical average performance 

of the TWSF algorithm. 
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Figure 16: An example (13,4,1) network. 

 

As an example, we consider the network of nodes in Figure 16 employing the 

(13,4,1)-design as shown in Figure 1. Suppose we have RS = 50m, vmax = 10m/s, α = 3 and 

Tslot = 1s. The TWSF algorithm will therefore ensure that LNWTs between any two nodes 

in the deployment is no more than 50/(10 × 1) = 5 time slots. In any locality (nodes within 

one hop), only the highest degree neighbour will initiate the algorithm and there will be 

no contention in assigning NAS. In cases where there are two or more nodes with the 

highest degree, the node with the largest schedule number (or serial number) will initiate 

assignment of slots. In our example, both nodes C and I will initiate the slot assignment 

with all their neighbours. We note that node F is a neighbour node to both C and I. In this 

case, node F answers the slot assignment request from the node with the highest 

neighbour count, that is node C, before it attends to node I. Again, if both nodes C and F 

have the same neighbour counts, node F answers to the node with the larger schedule 

number (it would have been node I in this case). 
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Subsequently, after slot assignments have been completed for both nodes C and I, 

both nodes will set the condition trackingEnabled = True. Note that by now, the 

following slot assignments between the following node pairs have been completed: 

• C and A, C and B, C and E, C and F, C and K 

• I and F, I and H, I and J, I and K 

The next generation of nodes with the next highest degrees in their neighbourhoods 

includes nodes J, F and K. By the same algorithm, the following slot assignments 

between the following node pairs will be performed: 

• F and D, F and H 

• K and E, K and L 

Note that there are no more slot assignments necessary for node J because it only has 

one neighbour (node I). Further, it is also worthy to note that although slot assignment is 

“considered” for the K-E node pair, no additional slots are added. This is because 

previous slot assignments between node pairs K and C, node pairs E and C, and node 

pairs K and I are already sufficient. 

The third generation of nodes that will initiate slot assignments includes nodes D, E, 

H and M. Here, the following node pairs were considered: 

• D and A, D and G 

• E and B, E and M 

• H and G 

• M and L 

Similarly, not all node pairs considered will have new slot assignments. Node pairs E 

and B, and node pairs H and G do not require new “Awake” slots. 

Finally, all neighbour nodes of the remaining nodes A, B and G will then have 

trackingEnabled set to True. The resulting wakeup schedule after TWSF is shown in 

Figure 17. 
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Figure 17: TWSF-Enabled Schedules using example in Figure 16. 
 

Note that the properties discussed in sections 3.1.1 and 2.4 remains valid for TWSF-

enabled schedules because only new slots are added with none shuffled and none 

removed. In the final design of Figure 17, a total of 40 NAS were added, representing 

about 77% more “Awake” slots needed to track the target. Still, the total duty cycle of all 

nodes considered is about 54% with Tslot = 1s. From a trace of the number of NAS 

assigned between any two neighbour nodes in the deployment, no more than two NAS 

per node-pair are required. This certainly verifies our bound in (21) where we have 

( ) 4.2
5023

)1(10)4(3
max, =

−
≤newS slots. 

Another useful attribute of TWSF is its flexibility to revert back to its original CSBD 

design by removing all previously assigned NAS when tracking of such a target is no 

longer required. This saves energy and makes TWSF re-configurable to other user 

requests of a different vmax. Yet, its underlying CSBD design continues to guarantee 

minimum delay bounds, sensing coverage time bounds, connectivity time bounds and 

other features. 
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As new slots are added, the probability of collision will also increase, especially if the 

number of targets to be tracked increases. However, it is important to note that TWSF is a 

wakeup scheme, and it does not prevent the implementation of a concurrent MAC layer 

scheme to improve throughput. Further, we can also formulate an expression similar to 

(14) to solve for an approximate ρdeploy value if there is a certain degree of control over 

the density of deployment. 

3.5.1 Simulation Results 

TWSF simulations are performed using Network Simulator 2 with a random 

(uniformly distributed) deployment of 100 nodes in a geographical square area of 1km by 

1km with each node arbitrarily using one of the schedules from the original (13,4,1) 

CSBD design (before TWSF is implemented). We assume that the sensing coverage 

radius of sensors is RS = 50m with α = 3, and Tslot = 1s. Assume further that a single target 

traverse into the sensor field using the Gauss-Markov Mobility Model [78]. In our 

simulation, we investigated the average speeds of the target to be either 10m/s (about 

36km/h) or 15m/s (about 54km/h), with vmax assumed to be 20m/s (about 72km/h). The 

scenario is repeated for 100 times, each time with a different random sensor deployment 

in the 1km by 1km sensor field and with a different target moving into the field with 

Gauss-Markov mobility for a total simulation time of 80,000 simulation seconds. We 

further use Enode = 16.56 kJoules and Eawake = 0.17625 Joules based on two AA batteries 

per node and 100% transmission time during all active slots with 100mW transmission 

power, 45mW active mode power, 90mW sensing power and negligible sleep mode 

power. These simulation parameters are summarized in Table 2. 

Table 2: Simulation parameters for TWSF Simulations 
 

Total Nodes 100 Deployment Field 1km x 1km 
RS 50m Tslot 1s 
α 3 Enode 16.56 kJoules 
vmax 20m/s Eawake 0.17625 Joules 
Transmission Power 100mW Active Mode Power 45mW 
Sensing Power 90mW Sleep Mode Power 0mW 
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Geographic Routing (GR) [71] is used. We simulate agents (some software code 

implementation, section 3.2) that propagate from one node to another following the target 

for the intended purpose of feature extraction, target classification, target association, 

target tracking, intrusion monitoring or other purposes. However, no actual data fusion 

algorithms are implemented in this part of the simulations studies. We assume that target 

velocity prediction has zero errors, so as to single out the Loss of Continuity in Tracking 

(LCT) errors described later. We assume a mobile command center where this 

information fusion takes place (for simplicity, assumed to be where the agent is). We 

investigate the delay, delay variance and LCT performance of our TWSF algorithm and 

compare with regular (13,4,1)-CSBD and RAW [12].  

The LCT is defined as the loss of the ability to perform an association between the 

target and the agent that was first created to track that target. When this happens, nodes 

are unable to distinguish between the detection of a new target and the continuation of the 

tracking of an old target. 

 

Figure 18: Delay Performance Comparison 
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Figure 18 shows that TWSF outperforms regular (13,4,1)-CSBD by a good margin in 

terms of delay and delay variances for both average target speeds. This is primarily 

because of the larger duty cycle of TWSF after new active slot assignments. We have also 

performed other simulations comparing between TWSF and CSBD, and discovered that a 

doubling of duty cycle reduces the average delay by about 2.8 times. In RAW, the duty 

cycle is made equivalent to that of TWSF and the performance is also not as good. The 

energy consumption of TWSF is the same as RAW and about twice that of CSBD. For 

LCT performance comparison across schemes, we discover interestingly that the agent in 

CSBD has an LCT of about 40%, while TWSF experiences no such problem with an LCT 

of 0% (as promised by the algorithm). The reason why CSBD LCT is high is because 

LNWT in CSBD are not sufficiently small enough to track targets of the maximum speed 

vmax = 20m/s. On the contrary, TWSF has been adapted just for this purpose and LCT is 

therefore 0%.  

3.6. Summary 

We proposed CSBD-based wakeup for agent-based sensor networks and analyzed 

sensing coverage, delay, schedule diversity and node lifetime aspects of the problem. We 

further introduced a typical agent-based data fusion algorithm using the particle filters 

approach (section 3.2), applied to target tracking. Before we apply CSBD for target 

tracking, we discussed how the prime power constraint in CSBD might be overcome. 

While the CSBD-based target tracking relies on prior knowledge of the maximum target 

speed, we introduced another algorithm TWSF that do not require this prior knowledge 

for deployment. TWSF is also based on CSBD and inherently possesses the desirable 

properties of a CSBD because no “Awake” slots are shuffled or removed; only added. We 

have provided simulation results for both CSBD and TWSF tracking. 

For CSBD-based tracking, results indicate its superiority in terms of delay, delay 

variance and tracking continuity of the target (LCT). Even in the presence of a lossy 
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communication channel (with packet collisions), LCT of CSBD is low at high average 

speeds. In terms of energy consumption, CSBD also outlast PECAS for multiple targets 

in the network.  

TWSF results reveal that when a CSBD is used without a proper choice of the 

parameter k, both delays and LCT can be very high. This happens when the maximum 

target speed vmax is not known before deployment and an insufficiently large duty cycle 

results in the poor performance. After adaptation with the TWSF algorithm, delays can be 

dramatically reduced and the continuity of tracking can be satisfied. 
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Chapter 4:  Query-Based Sensor Networks 

While agent-based systems are widely used for collecting real-time data from sensors 

as they are generated, query-based systems serve as a cache and storage solution for users 

to query information about the network or environment data of the past. These two 

systems can also be complimentary to each other, and can be implemented together in a 

single application. This chapter discusses in detail, the practical issues of implementing a 

Query-based sensor network based on CSBD.  

 Section 4.1 is concerned with a type of delay called the Query Waiting Delay that is 

only specific to query-based database sensor networks operating some underlying wakeup 

schedule. Results in section 4.1 are established on three major constraints. Section 4.2 

attempts to relax each of these constraints. In section 4.3, we encourage the use of a 

query-based sensor system to compliment that of an agent-based one. We further show in 

section 4.4 that such a system can work well for static nodes, as well as for sensor nodes 

that have limited mobility for the purpose of energy balancing in the network. In section 

4.5, we provide simulation and implementation results of our solution. We summarise this 

chapter in section 4.6. 

4.1. Key Design Considerations 

4.1.1 Query Waiting Delays 

The popularity of many query-based sensor networks may be attributed to its diverse 

applicability to solve numerous problems in the real-world environment. These query-

based solutions are made possible by advancements in query in-network processing and 

data aggregation technologies [52, 53, 54, 55, 56] that have been developed over the years 

for large-scale distributed sensor systems that are most often limited in terms of resources 

and energy. Query-based sensor networks are not only conceptualized in theory, but with 

real world implementations [1, 57, 58], thereby opening up the possibilities of a wide 

variety of sensor monitoring, detection and tracking applications.  
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The COUGAR project at Cornell University [57] is one of the first attempts to view a 

sensor network as a distributed database. The main idea is to use declarative queries to 

abstract the user from the physical details of query processing (such as node selection for 

data collection). A Query Optimizer, located on the sensor gateway, is responsible for 

generating a query plan that specifies both the data flow and exact in-network 

computation plans for the incoming query before sending it to all relevant nodes. 

The TinyDB [58] implementation effort of the Acquisitional Query Processing 

technology [52] focuses on opportunities that arise in sensor networks when 

specifications of time and sampling constraints are added in data streams produced by 

sensors in queries. Time constraints determine how long the query should run and 

sampling constraints determine how often sensors should collect data. The system 

therefore hides from the user how actual queries are processed and how results are 

returned, allowing the user to focus on analyzing the query results.  

Data Aggregation techniques in sensor networks also offer opportunities to conserve 

communication energy by summarizing measured data. In [59], the authors construct an 

analytical model that describes energy, timeliness of data and the degree of data 

aggregation performed. The control of lossy aggregation is by means of a feedback loop 

that responds to the amount of data generated against system capacity. Such aggregation 

service in sensors can, in practice, be provided by Tiny AGgregation (TAG) [60] 

designed for TinyOS [61] by the use of aggregate functions that may include COUNT, 

MIN, MAX, SUM and AVERAGE operations, classified according to state requirements. 

It may not be immediately obvious that symmetry in the cyclic symmetric 

(k2+k+1,k+1,1) design has yet, another benefit, other than ensuring bounded-time sensing 

coverage and connectivity in sensor networks. In this section, unless otherwise stated, we 

refer to the term “coverage” or “coverage requirement” as just m-coverage. While results 

in Section 3.1.1 apply to applications that require sensing coverage within known 
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bounded time, this section assumes the requirement of network sensing at all times while 

analyzing the data querying aspect of the network.  

These two results (in both the previous and current sections) may then be applied 

either differently in separate applications, or as a two-tier solution for a single application, 

which we shall illustrate further. 

With sensors deployed in a sensor field, individual sensors record environmental or 

sensed data in a distributed way. A distributed database of information is therefore 

naturally constructed. Any user can then query this sensor network for information. 

However, since sensors are put on some sleep-wake schedule, the required information 

may not always be available for querying. We term this waiting time due to the temporary 

unavailability of sensors (in “Sleep” mode) where the query response, whether wholly or 

in part, is to be generated as the Query Waiting Delay (QWD). In this section, our interest 

in delay is only primarily restricted to QWD. Processing and propagation delays are 

ignored because they are hardware and medium dependent, but wakeup schedule 

independent. Routing delays are affected by processing delays, propagation delays and 

the underlying wakeup schedules of the nodes. We provide simulation results of routing 

delays in a later section while our analysis in this section remains focused on QWD. 

Sensors are often deployed in excess due to their small form-factor and relatively 

cheap cost, more than one sensor often measure the same event at the same time. We 

focus on one such region where all sensors in this region are in sufficient proximity to 

measure the same event. Let the set of all sensors in this region of sufficient proximity be 

the set US. This, in fact, is the m-coverage requirement for some m. For the moment, we 

further impose the following assumptions: 

• The 1-Hop User Constraint: The user (or application/agent) is 1-hop away from 

all sensors in the set US. 

• The Unique Schedule Constraint: All sensors in the set US have unique wakeup 
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schedules selected from a (k2+k+1,k+1,1) cyclic symmetric design. 

• The Design Space Spanning Constraint: The set of all sensors in US has 

schedules that span the (k2+k+1,k+1,1) cyclic symmetric design. This means we 

assume that there are exactly k2+k+1 sensors and each using a unique schedule 

from the design set. 

We shall relax all of these assumptions in a later discussion. As applications may 

have different requirements, the concept of different classes of query users arises. From 

the last constraint, it is clear that the region under consideration is always m = (k+1)-

covered (by Symmetry 1). This leads to a relatively dense network of nodes but this 

ensures at least m sensors measures the same event at any one time and we later show that 

QWD can be minimized for a class of query users known as coarse data (CD) users. 

Definition 4.1.1. Coarse Data (CD) users require coarse information about the 

environment of a region of interest and are satisfied with any one of the many possible 

responses for every non-overlapping time interval TI that spans some desired time 

duration TD. 

Definition 4.1.2. All Data (AD) users require detailed information about the 

environment of a region of interest and can only be satisfied with all possible responses 

for every non-overlapping time interval TI that spans some desired time duration TD. 

For instance, in a temperature acquiring application, users that are interested in the 

temperature of a particular region within some time duration may be classified as CD 

users. Temperature information usually varies slowly across both space and time and it is 

not necessary to acquire all the sensor reports of temperature in that region. One response 

(assuming accurate enough) from one of the many sensors in the region may be sufficient. 

On the other hand, users that are interested in tracking a target of interest in a region may 

be classified as AD users. In order to evaluate the exact target coordinate through 

triangulation (using ultrasonic sensors as an example), positioning data from at least three 
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sensors are required; and with more sensor readings available, the variance of the tracking 

result can be minimized. Other applications may also fall somewhere in between the two 

classes of users. This is true because even for the temperature-monitoring example, more 

than one sensor reading is usually required for error reduction; and for the target-tracking 

application, we may not require the retrieval of all the sensor readings to calculate the 

“center of mass” of the target location due to energy concerns. In many cases, we wish to 

have some kind of tradeoff between accuracy and energy. Nevertheless, we have defined 

these two classes of users in sensor networks to highlight the possible extremes and 

simplify our analysis later. 

Definition 4.1.3. A query of length TQ is defined to be the duration of a set of past 

measurements over which is of interest to the user. 

Definition 4.1.3 may be interpreted by considering the following commonly used 

SQL query statements: 

SELECT temp 

FROM sensors as s 

WHERE s.time <=TQ1 AND s.time > TQ2 

 

Here, (TQ1 – TQ2) = TQ. We pose the problem in the following manner: 

Problem D1. For a cyclic (k2+k+1,k+1,1) design, determine the delay bounds it takes 

to reply a query of any length TQ in the set US. 

Problem D2. For a cyclic (k2+k+1,k+1,1) design, determine the energy bounds it takes 

to reply a query of length TQ in the set US. 

We further classify our solution according to the class of user that issues the query. 

Theorems 4.1.1, 4.1.2 and 4.1.3 apply to CD users while Theorems 4.1.4 and 4.1.5 apply 

to AD users. 

Theorem 4.1.1. A cyclic symmetric (k2+k+1,k+1,1) design guarantees the existence of a 
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zero Query Waiting Time (QWD) for a CD user at any arbitrary time slot. 

Proof. Let NR be the number of nodes in the set US. Let AS be the set of all sensors 

(k+1 sensors in total) in the set US that are awake at any arbitrary time slot S. Since these 

sensors already have one overlapping active slot in slot S, there are zero remaining 

overlaps in the remaining (NR –1) time slots between them. The intersection of all the 

remaining active time slots (other than the active time slot of S) in AS is the null set. This 

is equivalent to arranging (k+1)2 – (k+1) remaining active slots into NR – 1 remaining 

empty time slots with no two active slots occupying the same empty slot. In order for the 

condition to be satisfied and for all active slots from sensors in AS to cover the entire 

duration of Tcycle, there must be exactly the same number of remaining empty slots as 

there are remaining active slots. Hence,  

(k+1)2 – (k+1) = NR – 1 (25) 

Solving gives: 

NR = k2 + k +1. (26) 

Since all active slots in AS that span Tcycle will also span all time durations because of 

the schedule repetition after every Tcycle, this is sufficient proof that as long as our design 

is of the (k2+k+1,k+1,1) design, it is possible to guarantee zero QWD for CD users. Since 

the proofs are obtained without imposing any restrictions at the time instant of querying, 

there will always exist a zero QWD response for CD users at any arbitrary time slot.  

Theorem 4.1.2. For a cyclic symmetric (k2+k+1,k+1,1) design, an upper bound delay 

on a query of length TQ ≤ 2Tslot  for a CD user is given by )1(
2
1

+kk Tslot for minimized 

energy consumption. 

Proof: We assume that in order to minimize energy consumption to respond to a 

query, a response solution from a minimum number of sensor nodes is required, even at 

the expense of a larger delay. We would therefore like to find an upper bound for this 

delay that minimizes energy. Suppose a query of length TQ is sent to the sensor nodes and 
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assume that TQ ≤ 2Tslot. In this case, there exists a single sensor that can reply to this 

query for a CD user because of the cyclic property and the fact that Tawake  = 2Tslot (from 

Lemma 1). The worst possible delay arises when the sensor, whose required data are 

stored in the longest continuous duration of active slots, has the next wakeup time furthest 

away from the time instant of querying. This is equivalent to the longest continuous 

duration of sleeping slots, Tsleep, in the schedule. By Lemma 5, this delay DME, is upper-

bounded by )1(
2
1

+kk Tslot.  

In the proof of Theorem 4.1.2, we have largely ignored that energy consumed by a 

sensor node to reply to a query is proportional to the length of each data packet. In fact, 

our assumption is that the energy required for a sensor to reply to a query is a constant 

given by some E. We make this assumption based on overheads incurred in each 

transmission and extra retransmission energies consumed due to possible packet 

collisions when more than one sensor node needs to reply to a single query from the same 

user that is only 1-hop away. Having a simplified model for energy consumption for 

replying queries also simplifies analysis and reveals underlying theoretical trends. 

Theorem 4.1.1 is therefore a minimum QWD theorem while Theorem 4.1.2 is a QWD 

bound theorem using minimum energy for CD users. 

Theorem 4.1.3. For queries of length TQ ≤ 2Tslot, using a cyclic (k2+k+1,k+1,1) 

design, the energy required to reply to a CD user  query is bounded by [E, 2E]. 

Proof: Since TQ ≤ 2Tslot, it is easy to see that the lower energy bound is simply E, 

because there exists a single sensor schedule that can provide all the query results. On the 

other hand, the upper bound is 2E because database information in a maximum time span 

of 2Tslot can always be contained in at most 2 different sensors. Therefore, only at most 2 

sensors need to reply to the query.  

Theorem 4.1.3 is thus an energy bound theorem to reply to a query from CD users. 

For clarity, we illustrate the physical interpretations of Theorems 4.1.1, 4.1.2 and 4.1.3 
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using an example. Consider a cyclic symmetric (7,3,1) design with k = 2 as illustrated in 

Figure 19. 

 
 

Possible 
Combinations QWD Cost 

{S1 ∪ S2} Tslot 2E 
{S1 ∪ S7} 0 2E 
{S4 ∪ S2} 3Tslot 2E 
{S4 ∪ S7} 3Tslot 2E 

{S3} 2Tslot E
 

Figure 19: Illustrating different possible solutions to the same CD query request in a (7,3,1) 
design. 

 

Assume a CD user query of duration 2Tslot with interests in the data contained at times 

t = 2s and t = 3s time slots and that the current time is t = 7s. The sensor nodes {S1, S2, 

S3, S4 and S7} either contain partial or all relevant information of interest. In order to 

satisfy this criterion of the CD user, we need to reply with data from both time slots 2 and 

3. Hence, possible combinations, their maximum delays and communication costs are 

given in Figure 19. As an example, consider the possible combination {S1 ∪ S2}. S1 

contains data from time slot t = 3s and S2 contains data from time slot t = 2s. However, 

only S1 is awake at time t = 7s. In order to wait for the data from S2, time duration of one 

Tslot is required (when t = 8s). Hence, QWD is Tslot. Since this combination of {S1 ∪ S2} 

requires two sensors to respond to the query, cost is 2E. Using Theorems 4.1.1, 4.1.2 and 

4.1.3, there exists a zero QWD solution, the QWD bound for minimum energy is 3Tslot 

and the energy bound is [E, 2E]. The zero QWD solution of Figure 19 has energy of 2E 

and the minimum energy solution has delay of 2Tslot, within our formulated theoretical 

bounds. 

We have so far described two solutions based on our CSBD design, one of QWD 

(Theorem 4.1.1) and one based on minimum energy (Theorem 4.1.2). In Figure 20, both 

are illustrated. For the zero QWD solution, the energy consumption increases with 
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increasing user query lengths from a minimum of E to a maximum of 3E. As the query 

length increases, the required data have more chances of being stored in more sensors. 

Therefore, more sensors have to reply to the request to minimize the delay. For the 

minimum energy solution, the upper delay bound fluctuates with increasing query lengths 

TQ, giving no clear trend at first. Intuitively, the length of the query should be one of the 

influencing factors because the longer the query length, the more information is required 

from the network and delay is expected to increase. This trend is not evident in Figure 20 

because there is another competing factor. If we explore the total number of possible 

combinations, NC, of sensors available for satisfying the query request for different query 

lengths, we can discover that the delay has an approximate inverse relationship with NC. 

When NC is large, the likelihood of finding a lower delay solution is greater. When NC is 

small, this possibility become limited and often, this delay is not one that is small. These 

two factors contribute to the observed fluctuating delay behavior. 

 

Figure 20: (a) Delay and (b) Energy Behaviours for varying CD user query lengths with the 
cyclic symmetric (7,3,1) design. 

 

Theorem 4.1.4. For a cyclic (k2+k+1,k+1,1) design and assuming AD users, the delay 

of a query on all collected sensor readings in the region is upper bounded by DAD 

= slotTkk )2(
2
1 2 ++ ≈ cycleT

2
1 . 

Proof: By definition 4.1.2, this is a worst-case scenario where the AD user demands 
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every single piece of available data over the entire schedule cycle. It is sufficient to find 

the longest wait duration for all sensors in US to wake up at least once. By Lemma 7, all 

sensors must have at least one wake slot up within any duration of 

cycleslot TTkk
2
1)2(

2
1 2 ≈++  to answer the query. Hence, the result.  

Theorem 4.1.5. For a cyclic (k2+k+1,k+1,1) design, the energy expenditure per query 

request is (k2+k+1)E. 

Proof: AD users require all possible responses that exist in the region of interest. All 

sensors in the set US must respond to the query. Hence, energy is (k2+k+1)E.  

We note that the proofs of Theorem 4.1.4 and 4.1.1 make use of the same Lemma 7. 

The same property in the symmetry of the cyclic symmetric design can be used to either 

guarantee bounded-time coverage, or if continuous time coverage is required, that 

property can be used to bound the worst-case QWD for AD users. Of course, the tradeoffs 

lie in the restrictions that are spelled out earlier as constraints: The 1-Hop User 

Constraint, The Unique Schedule Constraint and The Design Space Spanning Constraint. 

Fortunately, all these constraints can be slightly relaxed for the practical purpose of 

sensor deployment and we shall discuss them later (section 4.2).  

For the purpose of clarity, we term sensor nodes that employ CSBD for the objective 

of providing minimized query times in a sensor database as Database Wakeup Schedule 

Function (DWSF) Nodes. 

4.2. Relaxation of Constraints 

In section 4.1, we recall that CSBD-based wakeup can guarantee bounded QWD 

times and offers a minimum query response energy solution for different classes of users 

(namely CD and AD users). However, all the results are only applicable if the three 

constraints “The 1-Hop User Constraint”, “The Unique Schedule Constraint”, and “The 

Design Space Spanning Constraint” are satisfied. In this section, we attempt to relax these 

constraints for practical purposes. 
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The 1-Hop User Constraint 

The derivations presented for Theorems 4.1.1 to 4.1.5 are based on the assumption 

that the user can immediately query the set of all sensors AS with awake slots in some 

arbitrary time slot S. If this were not true, and that in order to query a sensor in the set AS 

requires a relaying of information in one or more hops through another sensor not in the 

set AS, additional QWD through these hops may be incurred and not been accounted for. 

The derived results will therefore not apply. However, this can be overcome by ensuring 

that the selection of slot time, Tslot, is sufficiently large so that no additional QWD will be 

incurred even though additional processing delays, processτ , and transmission delays, txτ , 

are required. This is reasonable only if processτ  and txτ  are small compared to QWD. 

Alternative, another solution is to combine the benefits of this query-based solution with 

an agent-based approach (section 3.1.2) by ensuring that the agent is at most 1-hop away 

from the sensors of interest. 

The Unique Schedule Constraint 

This constraint can be removed only when there are sufficient nodes in the set US to 

span the cyclic symmetric (k2+k+1,k+1,1) design. If there are more than k2+k+1 nodes 

within sufficient proximity to measure the same event, those extra nodes can always re-

use schedules from the same (k2+k+1,k+1,1) design and all our derived results would still 

hold true.  

As a consequence of this constraint, query-based solutions are best engaged in 

selected strategic locations in a sensor network that is primarily agent-based. We will 

illustrate this in a later section and this is also our recommended choice for 

implementation. Alternatively, the deployment density of sensors can be set very dense 

with sufficient sensor redundancies to ensure the set US spans the CSBD design set. 
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The Design Space Spanning Constraint 

Suppose there are less than k2+k+1 nodes of sufficient proximity to measure the same 

event. It is then necessary to have at least some of nodes in US to operate the union of 

multiple schedules. Such nodes can be treated as multiple “virtual nodes” located at 

exactly the same geographical location running multiple concurrent schedules using the 

same hardware. In this case, the duty cycles of sensor nodes in US are no longer all the 

same, but at least 1
1

2 ++

+

kk
k

. The set of “virtual nodes” and real nodes continue to 

maintain symmetries 1, 2 and 3 in the wakeup design. 

Again, we recommend that query-based solutions be employed relatively sparingly on 

top of a mostly agent-based system where additional storage and caching facilities in the 

network (from the query-based solutions) compliment an existing agent-based real-time 

monitoring or tracking application. 

4.3. Complementing the Agent-Based System 

As a consequence of the constraints discussed in section 4.2, a query-based solution 

where nodes may be queried for past information can only guarantee Theorems 4.1.1 to 

4.1.5 when the sensor density is relatively dense compared to agent-based systems. If 

sensor density is not a limitation, query-based solution can certainly be implemented as a 

standalone system in sensor networks. However, since sensor density directly affects 

implementation costs, as we have suggested, a better approach is to allow the query-based 

solution to be applied as a complimentary solution to an existing agent-based system. We 

propose a 2-tier sensor architecture for this purpose. 

For clarity, we term sensor nodes that employ the agent-based solution for providing 

bounded-time coverage/connectivity, information delay and collision control as BTC 

nodes. We term sensor nodes that employ the query-based solution for providing 

bounded-time query delays and query response energies as DWSF nodes. It is important 
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to note that both BTC and DWSF nodes essentially employ exactly the same CSBD-

based wakeup, but only for two very different purposes. BTC nodes are involved in real-

time monitoring or tracking of events, while DWSF nodes function as storage and 

caching facilities in the network to store past or important information about the network 

and its environment. 

Consider a target tracking or intrusion detection application. As discussed in section 

3.2, real-time tracking can be achieved by fusing measurements from one or more of 

these sensing modalities such as acoustic, magnetic or seismic sensors for reliable 

accuracy. Even within this tracking domain, seismic waves may travel at a different speed 

underground than acoustic waves in air, and underground seismic waves can sometimes 

travel a further distance than acoustic waves in a noisy environment and vice versa. The 

tracking problem is therefore not as straightforward as previously believed and sensing 

information from different modalities of the same target may not be available all at the 

same time. The importance of the role of DWSF nodes as a distributed storage or caching 

facility with bounded querying times to meet the real-time requirements of the data fusion 

application is therefore clear. 

It is often not sufficient to merely track targets, but also to identify the nature of the 

target in intrusion detection applications. Chemical and temperature sensing information 

are often exploited to judge if a target is friendly or hostile. The diffusion speeds of 

chemicals and temperature from the target source to the sensors is always much slower 

than modalities used for tracking (such as acoustic or seismic). Moreover, the processing 

times for chemical testing in sensors are often slower than sound detection or vibration 

detection. The need for a sensor network to assume the role of a distributed storage 

database is obvious for caching measurements from slow sensing modes. Future in-

network querying of these measured data by possibly decision fusion algorithms to 
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identify threats is then possible. We propose a two-tier network for applications such as 

target tracking and intrusion detection, illustrated in Figure 21. 

Suppose all BTC nodes are deployed randomly using seismic and acoustic sensors for 

tracking. With some computed value of k based on Tres requirement in (6), our network 

guarantees (m,T1)-coverage, (m,T2)-connectivity and per-hop delay of DH, for some 

bounded T1, T2 and DH  derived in section 3.1.1. The deployment of DWSF nodes that 

sense chemicals and temperature require strategic placement on the field. A set of DWSF 

nodes is put under the charge of a leader node (which can be a BTC node). Each leader 

node is approximately 1 hop away from all DWSF nodes in each Query-Storage facility 

(see The 1-Hop User Constraint, section 4.2). In Figure 21, as the target leaves Query-

Storage Facility 2, the leader node makes a query on its DWSF nodes to collect possible 

detections of chemical deposits within time bounds provided in section 4.1, and updates a 

tracking agent (section 3.2) as it propagates in the sensing field with the target. 

 

Figure 21: Illustrating BTC and DWSF nodes in a two-tier solution for a target tracking 
application. 



 

 96

 
4.4. Mobile Sensor Nodes 

In our previous discussions, we have so far restricted sensor nodes to purely static 

nodes in the network which are not mobile after first deployment. Yet, in some situations, 

as the sensor network operates, uneven traffic load distribution in the network may cause 

early network partitioning and subsequently, reduce the usability and even network 

lifetime of the system. Inspired by the grouping behaviour of Emperor Penguins in the 

Antarctic region, the authors [62] proposed a distributed mobility algorithm – Energy-

Aware Swap Protocol (ESAP) for wireless nodes. The algorithm draws parallel between 

the heat loss of a penguin and the routing energy burden of wireless nodes, where 

neighbour nodes swap positions with each other depending on their energy levels. This is 

indeed a valid reason why sensor nodes need to be mobile. The requirement of having a 

sensor network that provides guarantees in terms of delay, coverage and connectivity, 

together with the requirement of having sensor nodes to be mobile may become a real 

challenge. 

Fortunately, for our proposed wakeup schedule, our solution is simple. We note that 

our results for BTC nodes in section 3.1.1 and 2.4 are based on sensor nodes randomly 

selecting a schedule from a cyclic symmetric (k2+k+1,k+1,1) design. There is no 

requirement that nodes must operate unique schedules (unlike DWSF nodes). There is no 

difference if we were to interchange the schedules of any two arbitrary nodes in the 

network. There is therefore, no difference if we were to interchange any two nodes in the 

network. Coverage, connectivity and per-hop delays are still guaranteed (or preserved) by 

the governing equations in sections 3.1.1, 2.4 and 3.1.2. For results in section 4.1 

applicable to DWSF nodes, all the derived results apply as long as nodes or schedules are 

interchanged only between DWSF nodes within the proximity that measures the same 

event. This is the case for our proposed two-tier architecture in Figure 21 where such 

DWSF nodes are deployed within the same region.  
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ESAP is therefore an algorithm that promises to work with both BTC and DWSF 

nodes that employ the CSBD wakeup design for two different purposes. Our proposed 

system works equally well for static sensor nodes, as well as for sensor nodes with limited 

mobility for load/energy balancing. 

4.5. Database Wakeup Schedule Function (DWSF) 

We have therefore proposed the Database Wakeup Schedule Function (DWSF) as a 

sensor wakeup scheme for sensors to sense and store information about the environment 

for future querying operations. DWSF is based on CSBD, and provides bounded QWD 

and other properties to different user classes. In particular, for the CD user class, this 

QWD bound is zero, ignoring processing and propagation delays (Theorem 4.1.1). We 

further provide simulation results and implementation results and experiments with real 

motes [1]. As we have previously argued our preference for DWSF nodes to be deployed 

to compliment an agent-based system, simulation scenarios presented in this section will 

be focused on the two-tier implementation presented in Figure 21. 

4.5.1 Simulation Results 

Simulation results in this section focus on the two-tier architecture as described in 

section 4.3 using the target tracking and intrusion detection application example that 

combines BTC and DWSF nodes, both employing the CSBD wakeup design, but with 

different objectives.  

Simulation Setup 

5,000 BTC nodes are deployed uniformly distributed in a flat geographical area of 

about 1km by 1km. BTC nodes provide the necessary routing of information and data in a 

multi-hop manner from one part of the network to another. BTC nodes are equipped with 

multiple mode sensing capabilities, consisting of measuring acoustic signals and seismic 

signals from targets. Data from both sensing modes are later fused with the use of a data 

fusion algorithm to estimate the location of the target. BTC nodes therefore also 
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guarantee that connectivity and sensing coverage is bounded within some known finite 

time (Theorem 3.1.1.1 applies). All BTC nodes randomly choose a schedule from the 

cyclic symmetric (21, 5, 1) wakeup design, with a slot time of Tslot=0.01s (unless 

otherwise specified). 

Ninety-one DWSF nodes are arranged in thirteen groups of seven nodes each.  Since 

DWSF nodes serve as Query-Storage facility in the network, each group of DWSF nodes 

may be arranged evenly on the circumference of a circle of radius RS, where RS is the 

sensing coverage radii of the DWSF sensor nodes. For the purpose of simulation, the 

center of the circle for each group of DWSF nodes is termed as a landmark and is 

determined randomly in the simulation area of 1km by 1km. In reality, the positioning of 

each group of DWSF nodes should be strategically located near important landmarks on a 

real geographical map, such as where major road crossings and sensitive areas requiring 

security validations are found. DWSF nodes are equipped with sensing chemical deposits 

to identify if targets are friendly or adversary. All DWSF nodes in the same group span 

the cyclic symmetric (7, 3, 1) wakeup design, with a slot time of Tslot=0.5s (unless 

otherwise specified).  

For simplicity, we set the sensing radii of all nodes to be the same at RS = 50m and 

their communication radii set to RC = 120m. We assume that all nodes have acquired 

knowledge of their own position in the sensor field for any target tracking to be 

meaningful. 

For the acoustic signal model, we adopt, as in [43] the acoustic energy decay function 

in free and homogenous space given by: 
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where aco
nz  is the acoustic signal received by the nth sensor, nzn is the noise term that 

summarizes the net effects of background additive noise and modeling errors. gn and rn 
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are the gain factor and location of the nth sensor, respectively. S and y are respectively, the 

energy emitted by the source and its location. 

For the seismic signal model, we similarly adopt the signal attenuation model as in 

[43] given by: 
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where d is the distance, and κ is attenuation factor, being 0.0013 – 0.003 in [75]. In 

our simulations, we choose κ = 0.00215. All other parameters are set to values as 

provided in [43]. The fusion algorithm, based on a particle-filtering approach, is also 

given as the Cross-Sensor Cross-Modality (CSCM) Data Fusion Algorithm in section 3.2 

and [43]. The elegance of such a data fusion approach requires only information from the 

previous time step and measurements from the current time step to compute the 

estimation of the required target location. Such an approach has also been proven to 

provide good results even in the presence of non-Gaussian noise and non-linearity in the 

target motion. Moreover, signals from different modalities can be fused in the same 

consistent mathematical framework to ensure superiority in terms of tracking accuracies 

in the estimations. Using (6), it can be shown that the data fusion iteration time step can 

be set to 0.5s. 

For chemical sensing in DWSF nodes, we assume the concentration of chemicals is 

diffused in free space in the absence of wind. This relation is given by [76]: 
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where chem
nz  is the number of chemical trace particles received by the nth sensor, C is 

the number of chemical trace particles at the source and D is a diffusion constant. For 

simulation purposes, D=1 and C=106. This sensing mode is not fused with the other 

signals because its role is solely the identification of the target type as friendly or 
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adversary, rather than for resolving target location. A DWSF sensor node will decide 

independently the presence of an adversary target if the detection concentration is such 

that 1000>chem
nz . Depending on the target-sensor distance nry − , the detection time is 

of the order of seconds to minutes. As the target traverses into a group of DWSF nodes 

(landmark), the agent issues a CD query (unless otherwise indicated) on the DWSF nodes 

requiring chemical trace reports. DWSF nodes in the group subsequently monitor the 

region for such chemical traces only when they are in the “Awake” mode for a total 

duration of 10s, managed by a leader node (which is a BTC node within one-hop from all 

DWSF nodes in the group). Any reports of harmful chemical traces reported to the leader 

node from the group within the 10s window will be forwarded to the agent for target 

identification. For simplicity, we assume that a single report of harmful chemical trace 

from a single DWSF node shall trigger the identification of the target as an adversary. As 

such, this justifies the use of CD queries (unless otherwise indicated). Theorem 4.1.1 

therefore applies. 

Three landmarks (where each landmark is represented as a group of seven DWSF 

nodes) in the sensor field are randomly selected to determine the target path. The origin of 

the target is randomly selected in the sensor field when it approaches each of the three 

landmarks in turn. The target motion model from the target origin to the first landmark, 

and from one landmark to the next, is determined by the Random Waypoint motion 

model [77]. The average target speed is 12m/s (or 43.2km/h) and the maximum target 

speed, vmax, is capped at 20m/s (or 72km/h). We only focus on a single target at any one 

time in our simulations. Once a target has stopped (at the last landmark), it vanishes and a 

new target is generated in the sensor field after a pause of 1s. Simulations are performed 

until the first BTC node in the network is completely depleted of energy. 

In our simulations, the Agent-based tracking approach [33, 38] is used where the 

agent is responsible for the data fusion using the CSCM algorithm, target identification, 
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and is implemented as a software code that propagates in the network with the target as it 

moves through the network (see Figure 21). Hence, all information is routed towards the 

mobile agent for computation of the target location and for its identification. As the agent 

passes through one BTC node to the next, it leaves a “passer-by marker” (PBM) in that 

node for some stipulated time τPBM. The PBM serves as a trail for delayed queried 

information from DWSF nodes to find its way to the mobile agent. Data from DWSF 

nodes are forwarded to its associated agent in the form of a limited broadcast where only 

BTC nodes with an associated PBM may re-broadcast the data to its neighbors. Further, 

in our selection of parameters, we have ensured that RC > 2RS and vmax ≤ Rs/Tcycle, (see (9)) 

so that it is assured that target location information can reach the agent from BTC nodes 

within one communication network hop. 

Performance metrics includes information delay, network lifetime, accuracy of target 

tracking and accuracy of target identification. Note that some of these metrics rely on 

good sensing coverage and connectivity of the network, which we have analyzed 

rigorously for our proposed scheme. These metrics thus serve as performance benchmarks 

for comparisons between our proposed two-tier BTC and DWSF wakeup architecture and 

two other wakeup schemes, RAW [12] and PECAS algorithm [21]. RAW is selected as a 

representative algorithm from the random wakeup schemes category and PECAS is 

selected as a representative algorithm for the on-demand wakeup schemes category. 

Similar to our two-tier BTC and DWSF architecture, both RAW and PECAS are time-

asynchronous schemes. 

The RAW scheme requires nodes to randomly wakeup to sense and route information 

in the network. No synchronization of clocks between individual sensor nodes is required. 

The PECAS scheme is also time-asynchronous where nodes start working only if there is 

no other working neighbour node within a minimum specified distance. For PECAS, a 

node can be defined to be working if it is a designated network node for forwarding data 
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in the network, or equivalently, in the “Awake” mode. PECAS nodes that are not in the 

“Awake” mode may then wake up periodically to check that they can remain in the same 

operational mode. To avoid unbalanced energy usage in the network, PECAS allows 

sensor nodes that are already in working mode to go back to “Idle” mode after some time 

so that other neighbouring nodes may wakeup to perform the duty of sensing and routing. 

With the use of a dual radio architecture (see section 1.3.1), it is therefore important to 

acknowledge that PECAS is very close to the ideal scenario of having perfect sensing 

coverage subjected to the initial sensor deployment arrangement, and having perfect 

connectivity, subjected only to extra delays and overheads used to switch nodes from the 

“Idle” to the “Awake” mode. The performances of this scheme serve as benchmarks for 

our proposed scheme to achieve, while in an attempt to extend network lifetime 

substantially and without the additional cost of a second radio channel. 

To ensure a fair comparison, the same random network deployment scenario is used 

for the simulations for all three different wakeup architectures. The routing protocol is the 

geographic routing (GR) scheme [71] employing a store-and-forward approach to data 

forwarding. Data is stored and only forwarded to the next node in the routing table at the 

next available opportunity when the neighbour node is awake. Loss packets are not 

retransmitted due to the real-time requirement of the application. We further provide 

simulation results that include the implementation of the energy-balancing algorithm 

ESAP (see section 4.4) for BTC nodes in our proposed solution. 

Delay and Network Lifetime 

In the use of the term “information delay” in this section, we refer to the time duration 

from which data packets are transmitted upon detection of a target, to the arrival of those 

packets at the agent. We ignore all packet losses and we do not consider the accuracy of 

the information in the packets for the moment. 
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For the performance metric – network lifetime, we assume that the network lifetime is 

the time duration from the start time of the simulation to the time at which the first BTC 

node is completely depleted of energy. 

It is important to acknowledge that information delay in the network is closely related 

to the network lifetime by tuning several parameters of each wakeup scheme. For instance, 

each RAW node may be tuned to randomly wakeup less often to conserve energy, but the 

tradeoff lies in the speed at which information is able to propagate in the network. 

Although PECAS is not as tunable as the other schemes, working nodes may be made to 

switch to the “Idle” mode more often to better balance the energy, and hence, improve 

network lifetime. 

In an attempt to ensure fair comparison of “information delay”, we perform several 

simulations with each wakeup scheme until the network lifetimes of each scheme are 

approximately equal (within 5% error from each other). Figure 26 shows the delay 

performance for two types of data, namely target tracking packets (TTP) and target 

identification packets (TIP). TTP originates from BTC nodes while TIP originates from 

DWSF nodes. 

 

Figure 22: Delay performance for different wakeup schemes for different packet types. In the 
simulations, the network lifetimes of all three schemes are within a 5% difference from each 
other. 
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From Figure 22, our two-tier solution shows a negligible difference in terms of delay 

when compared with PECAS. Information about the target location (TTP packets) 

reaches the mobile agent (which moves as the target moves) in approximately 0.11s for 

both schemes. We further discovered that it is possible to substantially improve network 

lifetime for our two-tier solution and TTP delay remains approximately the same. 

Moreover, unlike PECAS, our two-tier solution comes at no extra overheads in terms of a 

second monitoring channel for the “Idle” mode. 

RAW TTP delays are about 1.2s, that is in excess of 4.5 times that of our proposed 

solution. The randomness of the RAW solution provides no per-hop delay guarantees and 

average longer wait periods between hops are experienced. 

In all three schemes, TIP packets arrive substantially later than TTP packets because 

chemical diffusion times are much slower than sound waves and ground waves 

propagation. 

 

Figure 23: Tradeoff between network lifetime and packet delay for the proposed two-tier BTC + 
DWSF scheme, with and without energy balance algorithm ESAP (section 4.4). 
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To further understand the tradeoff between TTP delay and network lifetime, Figure 

23 shows that a TTP delay of approximately 0.11s can be maintained even when the 

network lifetime is extended by almost four times. The curve without ESAP is used in 

reaching this conclusion. The ESAP curve will be discussed in a later subsection. A 

lifetime extension of four times cannot be repeated with the PECAS scheme. In fact, 

PECAS cannot be as readily fine-tuned as the other schemes to achieve slower delays so 

that network lifetime may be improved. In Figure 23, as the TTP delay increases, the 

network lifetime improvement increases at a decreasing rate. 

Target Tracking and Target Identification Accuracy 

While the delays in which information reach the mobile agent is important, the 

accuracy of that information reaching the agent is equally crucial. Here, the slot time has 

been set to Tslot = 0.01s for our two-tier BTC + DWSF solution so that the TTP delay is 

approximately 0.25s with an average network lifetime that is expected to last 8 times 

longer than PECAS. Our objective is to show that even with such a configuration, target 

tracking accuracy and target identification accuracy is comparable to PECAS and 

substantially outperforms that of RAW. 

We first define the Target Tracking Accuracy (TTA) as the percentage of time (over 

the entire simulation time per simulation) in which the predicted target location is within 

a distance error of δ from the actual location of the target at any one time. For our 

simulations, we set δ = 5m.  

We further define the percentage of False Negatives (PFN) as the number of times an 

adversary target has been mistakenly identified as a friendly target taken as a percentage 

of the total number of targets in one set of simulations. PFN arises when information 

about the identification of an adversary target does not reach the agent. We further 

assume that an adversary target will be mistaken as a friendly target if its associated TIP 

packets do not reach the target within a stipulated time of ωTIP = 15s. 
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Table 3: Comparing target tracking accuracies (TTA) and identification errors (PFN) across 
different wakeup schemes. Both the proposed Two-tier scheme and RAW has a network lifetime 

that is about 8 times longer than PECAS when the comparisons are made. 
 

Schemes TTA PFN 

Two-tier BTC + DWSF 95.3% 1.86% 

PECAS 96.2% 1.24% 

RAW 71.0% 9.98% 

 

In Table 3, we show that despite our proposed two-tier scheme having a low duty 

cycle such that network lifetime lasts about 8 times longer than PECAS, their TTA and 

PFN are very similar. TTA is affected by the availability of sensed target data and 

network connectivity. We have earlier proven (section 3.1.1) that coverage for two-tier 

BTC + DWSF is guaranteed given equation in (6) is satisfied. TTA for two-tier is 

therefore similar to that of PECAS. For RAW, the tracking inaccuracies of about 29% 

arises mainly from information arriving to the agent at a later time, thereby causing larger 

errors between the perceived target location and the ground truth. 

We have also shown earlier (section 4.1) that since QWD for CD queries is zero 

(Theorem 4.1.1), the arrival of packets to the mobile agent in both the two-tier and 

PECAS scheme are very similar in the absence of such query waiting times. Such PFN 

errors are largely due to packet losses that are not re-transmitted. Such errors can thus be 

effectively reduced with the implementation of mechanisms to retransmit TIP packets. 

Target identification errors for RAW as depicted in PFN performs poorly, in comparison, 

due to lack of such specific guarantees when queries are made. Moreover, since TIP data 

arrives much later than TTP data, the randomness in which RAW nodes wakeup add to 

the delays in which such queried packets are delivered to the mobile agent. 
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We have also performed two other sets of simulations with appropriate parameters 

such that two-tier BTC + DWSF have network lifetimes that are approximately (within 

5% error) 4 times and 12 times that of PECAS. 

Table 4: Target tracking accuracies (TTA) and identification errors (PFN) for the proposed Two-
tier scheme when its network lifetime is 4 times, 8 times and 12 times that of PECAS. 

 

Schemes TTA PFN Network Lifetime 

Two-tier BTC + DWSF 73.24% 8.74% ≈12 × PECAS 

Two-tier BTC + DWSF 95.3% 1.86% ≈8 × PECAS 

Two-tier BTC + DWSF 95.31% 1.3% ≈4 × PECAS 

 

Table 4 shows the results. When the network lifetime is 12 × PECAS, equation (6) could 

not be satisfied using the same application value of Tres = 0.5s, and the TTA falls 

significantly because sensing coverage is no longer guaranteed within the time resolution 

requirement of the application. The longer cycle time in the design further affects the 

timeliness in which TIP packets reach the agent, thereby causing poorer performance in 

PFN. 

When the network lifetime is 4 × PECAS, equation (6) is satisfied but resulting in no 

further improvement in TTA compared to the 8 × PECAS case because the latter case is 

already one in which nodes have slot times that are sufficiently small not to be noticeable 

by the data fusion application.  

Energy Balance with ESAP 

We further implement the energy balance algorithm ESAP on BTC nodes in our two-

tier architecture to study the effects on network lifetime. As expected, Figure 23 shows 

that with ESAP, network lifetime can be extended by another 1.787 times on average 

because nodes positions are exchanged to balance energy usage in the network so that the 

time at which the first BTC node is completely depleted of energy happens much later. 
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A Study of CD and AD Queries 

We have previously assumed that a single report from a single DWSF node detecting 

sufficient harmful chemical traces will trigger the belief that the target is adversary. In 

this set of simulations, we assume that all reports from the same group of DWSF nodes 

near the same landmark must be collected before forwarding to the mobile agent to reach 

a conclusion on the identification of the target. As such, AD queries must be issued and 

the QWD is then bounded by the result given in Theorem 4.1.4. For simplicity, we 

assume that for as long as more than half the nodes belonging to the same landmark 

detect the harmful chemical traces, the target is marked as adversary. 

Table 5: Comparing CD queries and AD queries for the Two-tier BTC + DWSF scheme across 
different performance metrics. 

 
Metrics CD queries AD queries 

TIP Delay 4.2s 6.02s 

TTA 95.3% 91.77% 

PFN 1.86% 2.47% 

 

Since the QWD bound on AD queries is approximately half the cycle time on the 

DWSF schedules (larger than the QWD bound for CD queries, which is theoretically 

zero), the TIP delay increases by about 43.3% (from 4.2s to 6.02s). This analytically 

computed QWD bound for AD queries using Theorem 4.1.4 is 2s. Note that this bound 

should not be compared directly with 6.02s because the latter includes processing delays 

and multi-hop propagation times from the storage facility to the agent. This increase in 

delay subsequently affects tracking accuracies, TTA, as well as target identification errors, 

PFN. TTA is therefore reduced from 95.3% to 91.77% and PFN errors are increased from 

1.86% to 2.47%. Still, these tracking accuracy and identification errors are reasonable and 

remain acceptable. 
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4.5.2 Implementation Experimental Results 

We implemented a small network of eight DWSF nodes using real Crossbow MICA2 

motes [18] with one leader node and seven member nodes. The leader node is assumed to 

be always “Awake” with the remaining seven motes running the standard CSBD (7,3,1) 

wakeup scheme (see Figure 1(i)). Both query delay and energy measurements were made. 

Delay Results 

The leader node issues time-stamped queries from both CD and AD users to its 

member nodes. The times (as measured by the leader node) at which member nodes reply 

the queries are measured from this experiment. Figure 24 shows the delays encountered 

for member nodes to reply to queries with different slot time values. These delays 

therefore correspond to the time between the instant the leader node issues a query and 

the instant it receives a reply from each member node that is in the “Awake” mode in the 

region. 

 

Figure 24: Query delays for slot times. Tslot = 2 seconds 
 

We observe that the maximum value of this delay is bounded by Lemma 7 or 4Tslot. 

That is, the delay is proportional to the duration of the longest “sleeping” period of the 
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CSBD (7,3,1). We notice that the minimum delays observed are not exactly equal to zero 

but are slightly greater than zero (several milliseconds). This is due to the fact that some 

delay is incurred by the processing of the received queries before the motes can send their 

replies as well as by the communication between the leader node and its member nodes. 

However, these results prove that our solution implies no additional delay beyond these 

unavoidable delays, verifying Theorem 4.1.1. 

Figure 25 shows the delay for AD queries for different varying query lengths (see 

Definition 4.1.3). These queries are requests for data from measurements at TslotAgo time 

slots in the past for several periods of interest (see definition of TQ in section 4.1). The 

average value corresponds to the average over 300 queries run with random values of 

TslotAgo and random inter-arrival time between two queries. The value of Tslot was fixed 

at 2 seconds for this simulation. These results show that for queries of lengths between 2 

and 4 Tslot, the minimum value varies almost linearly with the query length before 

becoming nearly constant. The maximum and average delays are also constant for queries 

greater than or equal to 4 Tslot. This can be explained based on the chosen schedule. In 

particular, we observe that the maximum value of the delay is nearly constant and slightly 

greater than 6 = 3 x Tslot (except for the query of length greater than 6 Tslot). This result is 

coherent with our bound in Theorem 4.1.4. The maximum delay corresponds to the delay 

of the case where the leader node always has to wait for the data from a member node that 

has just entered its longest “sleeping” period of the schedule. The increase of the 

maximum delay for queries longer than 6 Tslot is due to the delay introduced by packet 

loss due to congestion. In fact, the longer the query, the more data has to be transmitted. 

Still, it is within the bound we claim in Theorem 4.1.4. 

We do not show the case of CD queries, as their delays are all slightly greater zero. 
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Figure 25: Query Delay for Queries of Different Query Lengths. Tslot = 2 seconds. 
 

Energy Results 

For energy measurements, the leader node sends requests to member nodes requesting 

for data in the current time slot. For each result, 400 queries (both CD and AD user 

queries) were sent at random times by the leader node and we averaged the energy spent 

by the motes to reply. 

Table 6: Ratio of energy spent by a mote with CSBD over the energy spent by a mote that is 
always “Awake”. 

 
Tslot 0.1 sec 1 sec 2 sec 4 sec 6 sec 10 sec 

Ratio (%) 62.57 61.15 60.15 59.46 59.7 59.61 

 

Table 6 reveals that the energy results for six different Tslot values. As expected, these 

values are all greater than the theoretical value of 58.36% based on the MICA2 mote 

power benchmark number quoted by the PowerTOSSIM [79] group. This is due to extra 

energies consumed to turn on and off the radio. Logically, we observe that this added 

energy is less significant if we consider higher values of Tslot. 
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4.6. Summary 

Treating sensor networks as a distributed database of information has opened up a 

wealth of research opportunities in the subject. While existing work focus on query 

language, query routing, data aggregation and in-network processing techniques, we 

discovered yet another problem to solve when such a sensor network is coupled with an 

underlying energy conservation wakeup scheme. We analyzed query waiting delays and 

query response energies for different classes of users/applications using CSBD, and 

propose to use this solution to compliment an agent-based sensor network. Although both 

agent-based and query-based sensor networks are based on the same CSBD design, they 

have been used for a very different purpose. CSBD wakeup in BTC nodes primarily 

ensures bounded-time sensing coverage and bounded multi-hop tracking delays in agent-

based sensor networks, and CSBD wakeup in DWSF nodes primarily ensures bounded-

time query delays. Both solutions can be applied in a single two-tier architecture to 

complement each other. We have also shown that our wakeup scheme work equally well 

with static nodes, as well as with mobile nodes. We tested our proposed solution with 

extensive simulation results and an actual implementation of the CSBD design to real 

sensor motes to make measurements. 

In our two-tier architecture simulations, target tracking delays from the target to an 

agent that is one-hop away is as low as 0.11s. Target identification delay is also almost as 

low as the idealized PECAS algorithm. Yet, our solution promises to ensure a network 

lifetime that can be several times longer than PECAS. Our solution achieves 95.3% target 

tracking accuracies and 1.86% target identification errors. We show that with energy 

balancing in the network, lifetime can be further extended by about 1.787 times on 

average. 

In our implementation results, we performed delay and energy measurements with 

real Crossbow motes. We verified the zero query delay theorem (Theorem 4.1.1) and 
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tested other delay bounds on different classes of user queries and different slot times. We 

also showed that the ratio of energy used by a mote with CSBD to the energy used by a 

mote that is always “Awake” is higher for smaller slot times. This arises because more 

energy is required to switch motes between the on and off modes when slot times are 

shorter. 
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Chapter 5:  Ad-Hoc and Sparse Sensor Networks 

Agent-based and query-based systems have been designed for relatively denser 

networks. In some scenarios, a dense deployment of sensors is not practical, usually 

because of cost concerns. This chapter is about sparse networks that are deployed in an 

ad-hoc fashion (e.g. in harsh environments), and how wakeup schemes should be 

designed for this purpose. By the term ad-hoc, we refer to nodes being deployed in a more 

or less random manner, without prior order or organization. The term Ad-hoc is not meant 

to refer to a network with mobile nodes in this chapter. In section 5.1, we illustrate 

scenarios where ad-hoc and sparse sensor networks are often deployed. We explore the 

limitations of existing wakeup schemes in the context of an ad hoc and sparse network in 

section 5.2. We subsequently introduce our proposed wakeup scheme in section 5.3, and 

discuss asynchronous neighbour discovery issues in section 5.4, data transmissions and 

algorithm maintenance issues in section 5.5, network connectivity and sensing coverage 

issues in section 5.6 and other algorithm properties in section 5.7. We further justify our 

algorithm with a specific application scenario in section 5.8. We summarise this chapter 

in section 5.9. 

While solutions in previous chapters rely on the cyclic-symmetric property of CSBD, 

this chapter proposes another solution that deviates from this property. However, our 

solution remains related to CSBD and remains a deterministic wakeup scheme. 

5.1. Scenarios for Deployment of Ad hoc and Sparse Networks 

Ad hoc and sparse sensor networks may be deployed for a variety of reasons. For 

instance, in a sensor search and rescue mission, such networks may be deployed in hostile 

environments with unreliable communication channels. Examples of these hostile 

environments may include fire-fighting environments, floods, underwater communication, 

underground communication and even communication on other terrestrial planets.  
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In a fire-fighting environment, communication may be temporary or permanently 

disrupted due to physical changes in the environment and even physical damages to 

sensors. Collapsing structures in a fire may also cause frequent changes in the network 

topology and change network size as sensors are destroyed. An initially dense network in 

such hostile environments may become sparse with time and algorithms or protocols 

designed for such purposes must be able to adapt. Similarly, a high altitude land rescue 

mission using sensor networks affected by adverse weather conditions can also pose 

challenging communication problems. In underwater communication networks, the 

communication channel is primarily acoustic and it may be subjected to severe fading and 

multipath effects, and easily susceptible to environmental noise. Noise sources may 

originate from snapping shrimps [63], blue whales and other aquatic animals, and man-

made sources including motors of large commercial vessels and underwater drilling 

activities. Another limitation with acoustic communication is its low data rate compared 

to electromagnetic wave propagation. For space exploration projects, communication can 

also be a big issue on planets where atmospheric pressure and air composition is largely 

different from Earth’s. Replacement of batteries on distant planets is almost prohibitively 

expensive and sensor networks that are proposed for this purpose [64, 65] must take into 

consideration such energy constraints and communication challenges. 

However, in many situations, it is cost concerns that explain why sensor networks are 

deployed sparse. Very often, sensors that are to be deployed in harsh environments are 

not expected to be recoverable, recyclable or reusable. Deploying such sensors in large 

numbers can be commercially unviable. Where sensors may be recoverable and reusable, 

they may still require special protection casing and impact-proof designs that adds to the 

cost of deployment. In this case, dense deployment of these specialized sensor networks 

is similarly not possible.  
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5.2. Limitations of Existing Wakeup Schemes 

We take the underwater environment scenario as one example to explain limitations 

of existing wakeup schemes in more detail.  

One major difference between land and underwater systems is the medium of 

propagation. Land systems communicate wirelessly over electromagnetic radio channels 

where bit rates can reach as much as 250kbps [66] for MICAz IEEE 802.15.4 radio 

systems. In contrast, underwater communications can only be achieved using acoustics 

propagation. The WHOI modem [67] for instance has a data rate of only 80bps or 300-

5000bps, some three orders slower. This single difference has important implications. 

First, achievable data transmission speed becomes slower and this makes any time 

synchronization efforts very challenging, if not impossible. Second, underwater acoustics 

communication is largely affected by many external factors including water temperature, 

water pressure, and more prone to diffraction and fading effects, thereby inducing 

unreliability in the communication channel. Third, since data rate is significantly slower 

underwater, more energy may be consumed to transmit the same volume of data 

compared to on land transmissions. Energy conservation using dual radio systems where 

hardware is put on standby using the “Idle” mode may not be practical. 

Owing to slower achievable data transmission rates in the underwater context, 

schemes that require time synchronization to operate such as RIS [13] will not be possible. 

With nodes spaced far apart, synchronization will become even more challenging with 

acoustics-based communication. Electromagnetic-based communication underwater is 

known only to travel over very short distances [69] and is only suitable for short-range 

underwater communications. Unless the network is dense, such techniques remain not 

realizable.  

The unreliability of the underwater channel presents a very difficult environment for 

wakeup schemes that require substantial amounts of control overheads to operate. With 
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frequent and unpredictable losses in control packets, schemes that rely on recurrent 

communication with its neighbouring nodes to acquire information to adjust its own 

wakeup schedule will not prove too useful. Such schemes may include the “Paging 

Wakeup” class of schemes such as STEM [17], PAMAS [19] and PECAS [21]. Moreover, 

these schemes require a dual-communication channel to put nodes to the “Idle” mode to 

monitor the channel and the cost of such technologies for underwater can be exceedingly 

high as it is not default or common technology. 

Another major difference between land and underwater sensor networks is the node 

form factor. Underwater nodes still continue to be of a larger form factor size compared 

to the increasingly popular small mote-sized form factor of land sensors. Although inter-

sensor node communication may be more challenging underwater, storage capacities, 

computation and processing capabilities of such nodes are often superior than those of 

mote-sized land sensors, subjected to energy constraints. Due to their larger form factor 

and special water-sealing requirements, they are more costly and realistically, result in 

sparser deployment densities. A single Crossbow MICAz mote cost $300 [68] each while 

that of an underwater acoustic modem alone can costs in excess of $3000 [70], an order 

of 10 times more.  

Due to its large form factor and high deployment cost, underwater network schemes 

that rely on a dense deployment are not practical. These schemes, including ASCENT 

[24], PEAS [20], PECAS [21], RAW [12] etc., will not work as expected in a sparse 

deployment scenario compared to a dense deployment. Even for our proposed 

deterministic Agent-based and Query-based schemes in chapters 3 and 4 will not be ideal, 

for they are not designed to operate under such conditions.  

Cost, coupled with the fact that more energy is usually expended per data bit 

transmitted underwater than on land, explains the true importance of energy conservation 

underwater despite having more energy storage due to their larger form factors. Moreover, 
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changing of batteries for wireless nodes in UWSN is far more laborious and costly 

compared to land systems. Energy conservation techniques proposed for land systems are 

unsuitable for underwater deployment due to insufficiently realistic assumptions or 

different ambient operating conditions. This motivates us to propose a separate scheme 

for sparse networks. 

5.3. Adaptive Wakeup Schedule Function (AWSF) 

In dense networks, the neighbour count per node is large. The probability of a sensor 

node waking up to discover that are no other nodes in its communication range is small. It 

is appropriate at this point to state: 

Definition 5.3.1. The “Lonely Node Problem” is the phenomenon when nodes wakeup 

to find no other neighbour nodes within its communication range. 

 

Figure 26: Illustrating The “Lonely Node Problem” in Sparse Networks. 
 

In sparse networks, the neighbour count per node is small and the probability of the 

“Lonely Node Problem” occurrence becomes large. The “Lonely Node Problem” is, in 

fact, a direct measure of energy wastage in the network. If there exists no opportunity for 
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a node to communicate at a certain time slot, there is little reason why that node should be 

awake at that time slot. Intuition reveals that the node should wake up at time slots that 

maximizes its communication opportunities with its neighbours within one time cycle, 

given any duty cycle. We illustrate further with an example. 

Consider a sparse network of 13 nodes (labelled A to M) randomly deployed as in 

Figure 26 employing the (13,4,1) cyclic design of Figure 1, with each sensor having its 

own arbitrary wakeup schedule assignment (S1 to S13). Lines between two nodes indicate 

bi-directional communication links. A mobile sink is connected to both nodes A and B. 

Notice that some of these sensors may have very few neighbour nodes, particularly those 

near the perimeter edges of the network, and those near communication obstacles. As an 

example, consider node J assigned with the schedule S10. The only neighbour of node J 

is node I. Since the time slot overlap between schedules S10 and S9 happens only at t = 9, 

the wakeup times of S10 at t = 1, 7 and 10 offer no additional connectivity (or routing) 

benefit to the network. In fact, these represent energy inefficiencies in the CSBD and this 

is the main problem that we shall solve. Note that this problem is not unique to cyclic 

block designs. Even in random wakeup schemes having the same duty cycle, it is possible 

for sensors to wake up only to find that there are no other active neighbors to 

communicate with. 

We propose our Adaptive Wakeup Schedule Function (AWSF) in 2 stages – WSF 

Pruning and WSF Reconstruction. The term “Adaptive” is used because the wakeup 

scheme “adapts” to sensor deployment topology. 
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Figure 27: (a) AWSF pruning where crosses indicate active time slots that are pruned off; and (b) 
BRS scheme for a cyclic symmetric (13,4,1)-design. Integers indicate the number of active slot 
overlaps with neighbour nodes, or equivalently reassignment priorities. Light-gray boxes refer to 
randomly reassigned slots amongst slots with the same non-zero priority number in the schedule, 
dark-gray boxes refer to either original active slots or reassigned slots with unique priority 
numbers in the schedule, and black boxes refer to slots reassigned based on a special case. 
 

Stage 1: WSF Pruning 

After deployment and the initial neighbour discovery phase, every node will have 

knowledge about their neighbours. [27] also suggests that nodes discover their 

neighbours’ WSF offset relative to its own. The problem discussed in the previous section 
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can then be solved by putting node J to sleep at those known times when there are no 

active neighbours. The WSF of node J can therefore be pruned from f(x)= x+x7+x9+x10 to 

f(x)=x9, thereby potentially reducing energy consumption by 75% for node J. Therefore, 

Figure 27a. shows active slots in time slots t= 1, 7 and 10 for node J are removed (or 

pruned). Similarly for other nodes, active slots are pruned whenever that active slot does 

not coincide with another active slot in any of its immediate neighbours’ schedules. 

Figure 27a. illustrates WSF pruning of the original 52 active slots to 30 active slots for all 

the nodes in the network. This solution is unique and depends only upon the network 

connectivity matrix. However, we would like to point out that the 75% energy savings of 

node J may not be valuable, for if node I exhausts its batteries much faster than node J 

due to the higher duty cycle of the former, network isolation does not come any later. 

Moreover, if the sink is mobile and connects itself to only node J instead, then WSF 

pruning has a negative effect on routing delays. With node J being the only gateway node 

to the rest of the sensor network, WSF pruning will also reduce the responsiveness of the 

network by approximately the same factor of four fold! Alternatively, instead of operating 

with the new WSF after the pruning stage, the “energy savings” can be put to better use to 

enhance the immediate connectivity of the network by reconstructing a new WSF. The 

mobile sink problem can also be solved at the same time. 

Stage 2: WSF Reconstruction 

Here, the spatial location of the sensor affects the WSF design. In the example of 

Figure 27a, the WSF pruning stage reduces the duty cycles of sensors without reducing 

the original network connectivity of the network. Let psi be the number of pruned off time 

slots for node i. In the reconstruction stage, each sensor attempts to introduce a maximum 

of psi new active time slots into its own WSF so that connectivity with its neighbours can 

be improved. In this way, duty cycles of every node do not exceed that of the original 

before pruning. Choosing time slots to be active can be done by examining the 
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neighbours’ WSF schedules after the pruning. The strategy is to choose a time slot that 

will maximize connectivity with all neighbour nodes. While many reconstruction 

schemes may be devised, we introduce a Basic Reconstruction Scheme (BRS). 
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Basic Reconstruction Scheme (BRS) 

To illustrate this scheme, consider node A with schedule S1. During the pruning stage, 

node A frees up two active time slots for reconstruction. To avoid confusion later, we 

denote a free active slot as “Released Slot” (RS). From the connectivity diagram, node A 

is only connected to nodes C and D. If there exists a time slot in which both C and D are 

awake at the same time, that time slot would be the first to be made active by node A. The 

declaration of an initial sleep slot into an active slot is called “Free Slot Assignment” 

(FSA). Indeed, there are three possible combinations for node A, namely {C}, {C, D} and 

{D}. The second combination indicates maximum overlap with the neighbour set at time 

slots t=3. The algorithm therefore makes a FSA at t = 3 for node A. Since the initial 

number of RS is equal to 2, there remains one other possible assignment but with two 

possible time slots. The algorithm then randomly selects any one of the possible time 

slots (t=2 or t=4) with equal probability and makes a FSA. Figure 27a reveals all the 

possible time slots for all nodes. The integers represent the number of overlaps with 

neighbouring nodes in that time slot. In a sense, the integers also represent the priority for 

FSA for each node. Time slots with larger integers are always selected first for FSA 

provided there are enough RSs for the assignment. When there are insufficient RSs to 

cover all the possible time slots with equal priorities, the algorithm does a random 

selection, uniform distributed over the set of possible time slots. 

A special case arises for node J since it has more RSs than possible slot assignment 

positions based solely on the pruned schedule of its only neighbour. In this case, the last 

FSA cannot be made until node J informs all its neighbours (in this case only to node I) of 

this case in an “Assignment Request” (AR) message, where the latter will choose a time 

slot that both nodes can stay awake at the same time. In this example, node I has already 

assigned all of its RSs before the AR message arrives and is able to inform node J to stay 

awake at t=5. In the event that node I also has more RSs than possible slot assignment 
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positions, it defers the reply to node J until it receives a solution from one of its other 

neighbour nodes. This seldom happens as it indicates that the connectivity graph of nodes 

approximates a straight line deployment. Figure 27b illustrates one possible result after 

the reconstruction stage using BRS. Light gray boxes are those chosen at random by BRS. 

Black boxes are those selected on the basis of the special case of BRS. From Figure 27b, 

the duty cycles of all nodes remain the same as the original cyclic design of Figure 1. Yet, 

the “Lonely Node Problem” of the cyclic wakeup has been eliminated. The mobile sink 

problem is also solved in this new AWSF design. 

5.4. Asynchronous Neighbour Discovery 

As mentioned in previous chapters, it is not realistic to assume time synchronization 

in large-scale distributed sensor networks. Unfortunately, nodes in a distributed network 

require the discovery of neighbour nodes and knowledge about their neighbours’ active 

time slots for bookkeeping and node failure inference. In both the Zheng’s original work 

[27] (section 2.3) and RAW [12] BEACON messages are set up to achieve this without 

synchronizing clocks (section 2.4). We use a similar strategy for AWSF. During initial 

deployment, the schedules of our AWSF nodes use the original CSBD design. We set up 

our BEACONs for neighbour discovery and data transmissions in the same way as 

previously discussed for the CSBD system in section 2.3. 

Our AWSF scheme undergoes WSF-Pruning and WSF-Reconstruction next. The 

schedules of all neighbours after these stages will remain connected by at least one time 

slot as long as the original communication graph is connected. However, for the worst 

case of two neighbours being connected by only one time slot, due to the pruning of the 

schedules, neighbour discovery become uni-directional in the presence of slot mis-

alignments. Figure 28a illustrates this. 

Schedules C and F only have one active slot overlap. The dark gray slots represent 

BEACONs, where nodes transmit at the beginning of each active slot (see section 2.4) 
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[27]. The horizontal axis is the time axis. Due to slot mis-alignment, when C sends the 

BEACON, F is unable to hear. F mistakenly concludes that C is no longer a neighbour. 

However, C is able to hear F’s BEACON when sent. The C-F link becomes unidirectional. 

To solve this, we allow nodes to send out another BEACON just before it goes back into 

sleep mode. Figure 28(b) shows the implementation. Light gray slots represent additional 

BEACONs required. In this way, both C and F detect the presence of each other and the 

bidirectional property of the C-F link is restored. Once the reconstruction stage has 

completed, it is mandatory that neighbours exchange their schedules so that F is able to 

make inference about the time discrepancies of node C. Hence, F can send data to C as 

long as C is detected to be “alive” in the last cycle. AWSF is therefore an asynchronous 

wakeup scheme where no time synchronization is required for neighbour discovery and 

subsequently, for data transmissions. 

 

 

Figure 28: (a) Illustrating Slot Mis-alignment and loss of bidirectional C-F link for the worst case 
of one active slot overlap between schedules. (b) Illustrating Slot Mis-alignment and restoration 
of bidirectional C-F link for the worst case of one active slot overlap between schedules. 

 

We emphasis that as our sensor network is assumed to be static with no mobile nodes. 

We could again employ On-Demand Neighbour Discovery (ODND) described in section 
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2.3. Finally, we would like to point out that although time slot misalignment will not 

affect neighbor discovery, it will have an effect on data throughput capacity if slot time, 

Tslot, is too small for data packets to complete their transmission within that slot. However, 

as we have discussed in section 2.3, we can use AREQ packets on a per-slot basis to 

allow for the completion of data transmissions across a slot boundary. 

5.5. Data Transmission and AWSF Maintenance 

Nodes transmit data to their neighbours as long as they hear BEACONs from them in 

the last Tlost time units. Due to communication imperfections such as fading, nodes may 

temporarily be unable to hear from their neighbours. However, if no BEACONs are 

received from them for more than Tlost cycles, they are believed to be “lost” (e.g. run out 

of battery life or malfunctioned). AWSF Maintenance is then activated (see below). We 

also adopt, as in [27], the option for sender nodes to request their neighbours to stay 

awake for the next time slot (assuming they are scheduled to go into sleep mode next) to 

adapt to high traffic loads. Essentially, the sender node signals to the neighbour receiver 

node using packets to stay awake in the next slot to prepare for more data. The receiver 

node may reject the request if its own battery life is limited. Further, such requests have to 

be made on a per-slot basis for power control and management purposes. 

In real world deployment, nodes may malfunction or die with time. Consider the 

AWSF-BRS solution of Figure 27. When node G has exhausted its batteries, node H finds 

itself waking up to find no communicable neighbours in time slot t=7. It is important to 

note that this problem is not unique to our AWSF scheme. The original CSBD design has 

this exact same problem by examining Figure 1 and Figure 26. Random wakeup schemes 

such as RAW [12] is already prone to this problem from the very statistical nature of its 

solution. By the use of BEACONs previously described, nodes can detect neighbours that 

are no longer reachable. AWSF maintenance is then activated per node and the usual 
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WSF pruning and reconstruction stages are applied again. After maintenance, nodes 

exchange their WSF schedules with their immediate neighbours. 

5.6. Network Connectivity and Sensing Coverage 

It is not difficult to see that with our AWSF solving the “Lonely Node Problem”, 

network connectivity is improved over the cycle schedule. If we define the Real Degree 

of a node X, Deg(X), as the ratio of the sum of neighbours, NS, detected in all active time 

slots of X over one cycle to the total number of active time slots in one cycle, the 

improvements in Deg(X), ∀X ∈ {∪Sx} for AWSF over the original CSBD can be very 

substantial. For our illustrative example of Figure 27b, improvements range from 220% to 

400% for different nodes. If we define the Real Network Degree, DegNet(N), of a 

network, N, as the average of all Real Node Degrees of all nodes in the network, then it 

can be computed that DegNet(AWSF) = 1.827 and DegNet(CSBD) = 0.731, an 

improvement of 250%. Indeed, AWSF achieves about 62.5% of the maximum possible 

network connectivity, but with a duty cycle of about only 30.77%. On the other hand, 

CSBD achieves only 25% of the maximum connectivity with the same duty cycle.  

Figure 29 illustrates this improvement graphically. Note the peculiar case of the graphs 

for t=10. For the CSBD, the node degree for the active nodes is zero at time slot t=10. No 

real network connectivity is achieved by switching on the nodes. In the AWSF case, these 

nodes are put to sleep instead, and with their released active slots transferred to other time 

slots. 
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Figure 29: Comparing network connectivity for AWSF-BRS and CSBD at time snapshots t=3, 4 
and 10. Awake nodes are coloured grey and Sleep nodes are coloured white. Both schemes have 
the same duty cycle over one cycle. All nodes in AWSF always find a neighbour to communicate 
when in wakeup mode. 

 

To further illustrate the impact of improved network connectivity of AWSF on 

routing delays, we consider a simple example. Suppose at time slot t=6, node I has data 

for the sink (Figure 26). Suppose the route has been determined (by the routing algorithm, 

say shortest path) to be I → F → C → A. Using AWSF, this data arrives at the sink after 

8Tslot. However, using CSBD, this data can only reach the sink after 20Tslot! The bulk of 

the cyclic WSF delays are the sleep delays, which our AWSF solution minimized. The 

superiority of our AWSF solution compared to CSBD is very encouraging, as we have 

not yet considered routing optimizations. When more intelligent routing schemes are 

incorporated, such as routing based on forwarding sets [12], further improvements can be 

anticipated. 

In section 3.1.1, we provided an analysis on sensing coverage for CSBD systems. 

Here, AWSF is no longer cyclic-symmetric (although its adaptation was initially based on 
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a CSBD). However, sensing coverage remains at its worse bounded in time by 

slotTk )1( 2 + . using the same definitions as in Theorem 3.1.1.1, we state: 

Theorem 5.6.1. Region A is ( )slotTk )1(, 2 +β -covered for AWSF networks. 

Proof: In AWSF, schedules are no longer cyclic-symmetric. However, each schedule 

still contains (k+1) awake slots and individual schedules still repeat themselves after one 

cycle time. All sensor nodes are therefore awake at least once within a time duration of 

slotslot TkTkkkT )1()111( 22 +=+−−++=β . By a similar line of argument as in 

Theorem 3.1.1.1, region A is therefore ( )slotTk )1(, 2 +β -covered.  

5.7. Other Properties of AWSF 

Property 5.7.1. Nodes operating AWSF always wake up to find at least one neighbour 

to communicate. 

Proof: Consider the original communication graph, G(V,E), of nodes in set V and 

links in set E.  Let Vi ⊆ V be the subset of all nodes that are in active mode in time slot i 

and Ei ⊆ E be the set of all links that connect two nodes of Vi in time slot i in a cyclic 

symmetric (k2+k+1,k+1,1) design. By definition, Vi always has (k+1) members (that is, 

the cardinality of Vi is k+1) and note that Ei can be an empty set. Gi(Vi, Ei) is therefore the 

graph of active nodes at time slot i. Pruning considers the partition of the set Vi as follows. 

Let Vpi ⊆ Vi be the subset of all nodes in Vi that are connected by at least one of the links 

in Ei. Vpi’, the complement set of Vpi, is therefore the subset of all nodes in Vi that are not 

connected by any links found in Ei. Pruning removes the set Vpi’ from the graph Gi. Hence, 

the pruned graph of active nodes at time slot i can be denoted by Gpi(Vpi,Ei). If Ei = {∅}, 

then Vpi = {∅} and Gpi is an empty graph. If Ei ≠ {∅}, by definition of the partitioned set 

Vpi, all nodes in Gpi wakes up to find at least one neighbour to communicate. 

Let the set of nodes Vri ⊂ V and the set of links Eri ⊂ E be added to Gpi during 

reconstruction. We denote this new graph after reconstruction as Gri. By definition of 
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reconstruction, Vri ∩ Vpi = {∅}, Eri ∩ Ei = {∅}, cardinality of set Vri is less than or equal 

to the cardinality of set Vi, and every link in Eri always connects one node from the set Vpi 

and one node in Vri. If Vpi = {∅}, then Vri = {∅} and Gri is an empty graph. This property 

is not concerned with this case. If Vpi ≠ {∅}, every node in the set Vri has a neighbour in 

the set Vpi. This implies that every node in the graph Gri(Vri ∪ Vpi, Eri ∪ Epi) also has a 

neighbour at every time slot i. Nodes in the AWSF always wake up to find at least one 

neighbour to communicate.  

Property 5.7.2. AWSF is delay upper-bounded.  

Assuming the original network is a connected network and in the worst case, any two 

neighbouring schedules will have at least one overlapping active slot within the cycle 

time after the pruning stage. During reconstruction stage, even if no new active slots are 

added with respect to any neighbour, the delay is bounded within Tcycle. We assume that 

data packets can be delivered with Tslot and that there is clock synchronization 

mismatches are negligible. 

5.8. An Application of AWSF 

It turns out that our algorithm AWSF fits well to an application for offshore 

underwater oil exploration. Oil exploration and trading companies may have potential 

interests in such technologies that will save costs in the long run. Currently, in order to 

discover new underwater oil wells, an array of sensors are towed from behind a ship to 

collect data about the seafloor and analyzed at a later stage. This array of sensors can 

potentially span a geographical area larger than the ship itself and every such operation is 

costly. We propose a Underwater Wireless Sensor Network (UWSN) architecture with 

static sensor nodes for underwater event monitoring and optional patrolling Autonomous 

Underwater Vehicles (AUVs) as mobile users accessing information from the UWSN 

anywhere, anytime. Static nodes are capable of communicating with each other wirelessly 

over an acoustic channel and also with the AUVs. The UWSN may also be wirelessly 
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linked up to an offshore platform for data analysis without AUVs. Figure 30 shows such 

an architecture for an example underwater seismic monitoring application for undersea oil 

field detection. 

The nature of oil discovery is that whenever an area has been surveyed to be negative 

for the possibility of oil deposits, it no longer requires any surveillance for perhaps, a very 

long time, in the order of months to years. This means that sensors can be switched off to 

a “hibernation” mode for a very long period of time (hibernation period) and switched 

back to the “operational” mode after that. Time synchronization amongst the sensors on 

their next wakeup cycle becomes a very fatal problem after years of node isolation 

rendering many existing schemes not practical. AWSF becomes a natural solution for it is 

not only a time asynchronous scheme during its operational cycle, it is also locally 

optimally connected. It works very well in a sparsely connected network scenario such as 

in this underwater application. Since AWSF is derived from a CSBD, AWSF wakeup 

schedules can be changed back to a CSBD before any hibernation periods so that even if 

sensors have slightly changed positions due to water currents or when clock drifts have 

become extremely severe in their next scheduled operational cycle, they are still able to 

discover each other and re-initiate the AWSF algorithm again. 
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Figure 30: Potential UWSN for seismic imaging of underwater oil fields 
 

The CSBD, originally proposed for mobile nodes is disadvantaged by the “Lonely 

Node Problem”. In UWSNs, sensor nodes are usually deployed stationary. The RAW 

scheme [12] cannot guarantee delay bounds and is similarly prone to the “Lonely Node 

Problem”. Moreover, such schemes rely upon a dense sensor deployment strategy, often a 

luxury in any UWSN. In contrast, our AWSF proposal adapts to deployment topography 

in a completely distributed fashion to support fast routing in UWSNs. The network 

architecture designer first plans for a desired duty cycle for the underwater nodes based 

on the desired lifetime of the UWSN. Each node then adaptively performs the AWSF 

algorithm to compute their respective “Sleep” times based on immediate neighbour 

information without the need for location information. We have shown (section 5.4) that 

our AWSF solution is time-asynchronous and bounded in delays. We show later that 

AWSF has better average delays and smaller delay variances compared to competitor 

schemes. AWSF eliminates the “Lonely Node Problem” where nodes wakeup to find no 

communicable neighbours, thereby substantially reducing energy wastage. Further, the 
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sparser the deployment density, the better AWSF becomes in terms of improving network 

connectivity compared to CSBD. Since AWSF assumes complete shutdown of its 

communication module in the “Sleep” mode, it is largely different from wakeup schemes 

that merely put nodes to the “Idle” mode for “data snooping”. Moreover, AWSF does not 

assume any dual communication channels and is simple to implement. All these features 

of AWSF are ideal for this proposed underwater oil field discovery application. 

5.8.1 Simulation Results 

Simulation Setup 

For our simulations, we consider the scenario as in Figure 30 with an underwater grid 

of 100 nodes (10 x 10). We choose the Geographic Routing (GR) scheme [71] for 

illustration. The first 73 primary nodes employ a standard (73,9,1) schedule; with the 

remaining 27 secondary nodes redeploying any schedules from the primary nodes. The 

choice of k = 8 is used so that k2 + k + 1 = 73 is the largest integer smaller than 100. This 

allows the network to have maximum schedule diversity and at the same time, the entire 

design set of schedules are used at least once in the network. The sensor network is 

assumed to be deployed in a flat topography and covering an area of 100 x 100 units2 

with an approximate 10 units separation between nodes. Node density is therefore about 

0.14/units2. Communication range of nodes is taken to be about 15 units, and transmission 

rate is 300bps. Arbitrary mobile users (such as an Underwater Autonomous Vehicle or 

AUV) may query for information about any location from any arbitrary location in the 

sensor network. Query arrivals are assumed to be independent and Poisson distributed. 

The simulation ceases when the count of total queries reaches 10,000.  

Other than our proposed AWSF-BRS scheme (section 5.3), we make comparisons 

with other schemes including RAW [12] and that a regular CSBD design. 

Delay Simulation Studies 
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Figure 31: Comparing the delay results across different routing wakeup schemes. The delay 
bound is a loose bound assuming the worst-case possible number of hops in the network. All 
schemes use the same node duty cycle of about 12.4%. 

 

Figure 31 compares AWSF-BRS, CSBD and the RAW. AWSF-BRS has the lowest 

average delays, delay deviations and lowest maximum delays. CSBD is not as efficient as 

AWSF because of the “Lonely Node” problem. RAW fails in comparison to even CSBD 

because the latter has at least the guarantee that any two neighbours will wake up in the 

same time slot within one cycle. There is no such guarantee in RAW. With a 12.4% duty 

cycle, packets have to wait on average of 65Tslot before a one-hop progress is made. With 

an average hop count from an arbitrary source to an arbitrary sink to be about 5, the 

average delay is indeed about 5 × 65 = 325Tslot. Clever routing techniques [12, 72] (other 

than simple GR) may also be applied with AWSF or CSBD so that delays can be further 

reduced or other tradeoffs could be made. In our simulations, the maximum delay of 

RAW is also found to be exceedingly high owing to its statistical nature with no bounded 

delay guarantees. In fact, both the AWSF and CSBD solutions are within the worst-case 

delay bound, while the RAW solution can exceed this bound. The worst-case delay bound 

is a loose bound computed based on the maximum possible number of hops possible in 

the network using the GR protocol. 
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Energy and Overhead Simulation Studies 

AWSF wakeup scheme incurs additional energy to send BEACONs in order to 

perform proper neighbour discovery. However, we have also previously discussed in 

section 2.3 that BEACON energy can be largely saved by ODND for static sensor 

networks. With ODND, we use the condition that neighbour discovery is only necessary 

after every 100Tcycle (approximately every 12 minutes). In this set of simulations, we 

assume that the transmission power is 10W, the sensing power is 9W, the power in the 

active mode of 3W and finally the power consumed in the sleep mode is negligible. Tslot is 

set to 5s and BEACONs are transmitted over 2% of Tslot. AWSF without ODND 

consumes about 33.9kJ of beaconing power (Figure 32a). In comparison, CSBD (also 

without the ODND option) consumes only 26.2kJ in beaconing. However, with ODND, 

AWSF can perform significantly better and consumes only 10.2kJ. For RAW, we have 

assumed that no beaconing is required. While CSBD expends less beaconing power than 

AWSF in general, it utilizes its wakeup time slots much less efficiently. The power 

wastage for CSBD amounts to 32.9kJ and that of RAW is 50.1kJ. Our AWSF proposal 

does not incur any wastage. AWSF therefore remains the most energy efficient when both 

the beaconing and “lonely node” wastage factors are taken into consideration. However, 

AWSF incurs more one-time setup costs than the other wake-up schemes (Figure 32b). 

AWSF initialization time is about four times that of CSBD; and consumes three times 

more energy in initial schedule exchanges. The long initialization time is a result of the 

additional pruning and reconstruction phases of AWSF. After each phase, schedules need 

to be exchanged between neighbours for bookkeeping, thereby incurring additional 

energy. RAW is assumed to have zero initialization time once deployed and assumes no 

requirement of schedule exchanges. 
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Figure 32a: Comparing energy overheads for different routing wakeup schemes. 
 

 

Figure 33b: Comparing delay for different routing wakeup schemes. 
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Network Lifetime Simulation Studies 

We further compare network lifetimes for our proposed AWSF with CSBD, PEAS 

[20] and PECAS [21]. Since nodes in PEAS will continue to stay awake until they are 

completely depleted of energy, there is no balanced distribution of energy consumption 

among sensors in a region. Therefore, if we define [73, 74] the lifetime of a sensor 

network as the duration of time until the first sensor node fails due to energy depletion, 

the lifetime of a PEAS network is theoretically far less than that of our AWSF proposal, 

by assuming that the traffic and event generation pattern is also approximately randomly 

distributed. This idea is confirmed by Table 7 that summarizes the lifetime of CSBD 

(without ODND), AWSF (without ODND), PEAS and PECAS. 

Table 7: Comparing Network Lifetimes (in default units) 
 

 CSBD AWSF PEAS PECAS 

Lifetime 1668.03 1572.69 715.99 1220.89 

 

It reveals that the average lifetime of an AWSF network is 2.33 times longer than that 

of a PEAS network. Active PECAS nodes go back to sleep after a fixed time interval. 

Depending on its value, the lifetime of the network may differ. In Table 7, we report the 

best average lifetime that is obtained for different parameter values. This table shows that 

the average lifetime of a network of nodes running AWSF is about 37% longer than a 

network of nodes running PECAS with a sleeping period of 10 time units (equivalent to 

about 122 periodic checks to its average lifetime). Moreover, if the periodic check in 

PECAS is reduced to one check every 500 time units, the improvement of AWSF over 

PECAS is significantly more obvious (68%). The lifetime variance of PECAS is also very 

large with occasional very long lifetimes, depending on the actual topology. Note that 

energy savings in PECAS is actually smaller than PEAS because of the periodic message 

exchanges in PECAS: it extends the overall network lifetime by balancing energy 
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expenditure in the network. CSBD has a longer lifetime than AWSF because of the 

additional beaconing energies and overheads incurred by the latter.  

An additional point to note is that these lifetime values for CSBD and AWSF are 

reported without ODND. With ODND, less beaconing energies are expensed and their 

lifetimes are expected to be even longer. 

5.9. Summary 

Where sensors can be deployed relatively dense, we have previously proposed our 

CSBD solution for agent-based sensor networks (BTC sensor nodes), and proposed the 

same CSBD solution for query-based sensor networks (DWSF sensor nodes). However, 

we have described why, in some scenarios, a dense deployment of sensor nodes is not 

possible. We described limitations of existing wakeup methods in such scenarios and 

proposed our solution – the Adaptive Wakeup Schedule Function (AWSF). Unlike all our 

previous solutions, AWSF is not cyclic-symmetric, but remains time-asynchronous in 

neighbour discovery and is a deterministic wakeup scheme adapted from the original 

CSBD design. We have analysed network connectivity and sensing coverage issues in 

AWSF-based networks, and provided simulation results to support our proposal.  

We compared our scheme with PEAS, PECAS, RAW and regular CSBD. AWSF 

incurs smaller average delays and delay variances. Although it incurs more one-time 

setup overhead costs in terms of longer initialization times and more initial schedule 

exchange energies, these are comparatively negligible compared to the “Lonely Node” 

energy savings and improved beaconing technique using ODND. 
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Chapter 6:  Conclusion and Future Work 

6.1. Conclusion 

We have provided a comprehensive and detailed analysis of one class of deterministic 

wakeup schemes based on Combinatorics, for the purpose of energy conservation in 

battery-powered wireless sensor networks. Although these cyclic symmetric block design 

(CSBD) wakeup schedules are time slotted, it has been shown that they can work even 

without clock synchronization amongst sensors, by employing BEACON messages. For 

static sensor networks, we proposed “On-Demand Neighbour Discovery” (ODND) that 

promises to reduce communication overheads from BEACON control messages 

significantly. Moreover, CSBD ensures that data propagation times are always bounded at 

worst by almost one cycle time for every network hop. 

We further show that CSBD schedules preserves sensing coverage in finite time and 

preserves network connectivity within bounded time. We justified that these requirements 

are sufficient from the perspective of applications. These wakeup designs can then be 

applied to agent-based sensor networks where an agent actively follows the event or 

target in realtime for reasons that are meaningful to the application. We illustrated with a 

target-tracking example and developed an adapted algorithm (Tracking Wakeup Schedule 

Function – TWSF) for tracking in the absence of prior knowledge of the target maximum 

speed. TWSF also allows a network to be reconfigurable (in terms of its wakeup 

schedules) for different application requirements. 

We also show that CSBD schedules can also be used to synchronize wakeup times for 

data collection. The distributed database that is created in this way can guarantee bounded 

query delay times for different classes of users. In a special case, this delay bound is 

theoretically zero. We encouraged the use of query-based CSBD for specialized data 

collection to complement agent-based sensor networks. We demonstrated this possibility 



 

 140

with a two-tier architecture using a target tracking and target identification application as 

an example. 

Both agent-based and query-based sensor networks require a relatively dense 

deployment of sensors. For ad-hoc and sparse networks, we introduced an Adaptive 

Wakeup Schedule Function (AWSF) that works to optimize local network connectivity 

and eliminates the “Lonely Node Problem”, where nodes wakeup to find no other 

neighbour nodes in its communication range. Sparse networks are often deployed because 

of cost concerns and physical limitations in the deployment scenario. 

Simulations are used to support our claims in agent-based sensor networks, query-

based sensor networks and ad-hoc & sparse sensor networks. In some cases, we 

implemented CSBD-based schemes to real Crossbow sensor motes where real 

experimental measurements are reported. 

Finally, CSBD-based schemes are simple and cost-effective to implement with little 

overheads and implementation costs, owing to their deterministic nature. CSBD-based 

schemes do not require dual-radio channels, do not require costly time-synchronization 

across the network and have low computational complexities and low communication 

overheads. CSBD schemes are distributed and they are easily adaptable to different 

application scenarios. 

6.2. Future Work 

The scope for the application of CSBD to sensor networks is huge with many possible 

future research directions and areas of focus. In this section, we briefly discuss some 

possibilities. 

For query-based sensor networks, we have focused primarily on the minimal delay 

solution in replying queries. However, we have also showed the existence of another 

solution – the minimal energy solution. The impact of this latter solution on application 

requirements is not investigated. Since the minimum delay solution is, in general, 
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different from the minimum energy solution, it would be particularly interesting to derive 

the set of all possible query response combinations where both maximum delay and 

maximum energy are minimized simultaneously, subject to certain application constraints. 

This set of responses may not yield a delay that is as small as the minimum delay solution 

or energy as small as the minimum energy solution, but is expected to provide solution(s) 

that satisfies the constraints, if it exists. Further, we have focused on query lengths that 

are within two slot times, which is why the minimum energy solution can always be 

obtained from a single schedule, and thus unique. The uniqueness and the number of such 

minimum energy solutions in existence for longer query lengths for a given CSBD are 

however, not known. There has not been any analytical or comprehensive study of query 

lengths that exceed two slot times. This is not an easy problem to solve given the growing 

number of possibilities in the way queries are replied for longer query lengths. We have 

only provided an exhaustive search result of the query delay and energy graphs with 

respect to different query lengths for a small (7,3,1) system in Figure 20. This problem is 

clearly more difficult if the system is much larger with a larger k value. 

In our work, we have shown how CSBD may be adapted for target tracking using 

Tracking Wakeup Schedule Function (TWSF) and Adapted Wakeup Schedule Function 

(AWSF). In TWSF, new active slot assignments are made to the original CSBD schedules 

so that real-time applications, such as target tracking, are possible with the use of an agent. 

In AWSF, existing active slots in the CSBD are rearranged according to neighborhood 

information to locally minimize energy consumption in the network. There are indeed 

many other different ways in which CSBD may be adapted for other purposes. Like 

TWSF and AWSF, some of these adaptations may continue to inherit desirable properties 

of the original CSBD. One such possibility is in the area of data aggregation, by assuming 

that the network “learns” sources and sinks by observing traffic flows. As data flows 

become predictable, its underlying wakeup scheme may also be adapted in such a way to 
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minimize delay while data is aggregated along the path to its destination sink with nodes 

using a known duty cycle schedule. Such an approach to network data aggregation, where 

not all network nodes are awake at the same time, is expected to continue to have 

bounded-time delays, sensing coverage and network connectivity while controlling 

energy expenditure on a per-node basis through its CSBD-based schedule.  

While research in CSBD for sensor networks continues to be important, it is equally 

crucial to deploy this system to the real world for testing and validation. We have had 

preliminary implementation experience with Crossbow motes. It is our immediate future 

work to realize the deployment of CSBD-based wakeup schemes for sensor networks in 

real application scenarios. One such scenario is in the monitoring of structural beams for 

construction work where costly cabled-monitoring systems and manual monitoring are 

still in use today. With CSBD, this potentially saves construction companies high 

recurring operating costs and reduces errors and time wastage when cables are cut or 

when readings are erred by human monitoring. 
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Appendix B – List of Definitions, Lemmas, Theorems, 
Corollaries and Properties 

Definitions 
 

Definition 2.4.1 A network of nodes is (n,T)-connected if there exists at least one path 
that connects any two nodes in the network within a time duration of T when (n-1) 
nodes (and their incident links) are removed. 
 
Definition 2.4.2. Full connectivity is defined to be the maximum connectivity 
achievable when all nodes are awake. 
 
Definition 3.1. An Agent is a piece of information, data or software code that uniquely 
identifies a target in the sensor network and moves within some distance of the target 
as it traverses the network. 
 
Definition 3.1.1.1. An area A is (m,T)-covered if every point in A is always covered by 
the sensing coverage radii of at least m different sensor nodes within a time duration 
of T. 

 
Definition 3.1.1.2. Full coverage is defined to be the maximum coverage achievable 
when all sensor nodes are awake. 

 
Definition 3.1.2.1: The longest non-common wakeup time (LNWT) between any two 
schedules in a wakeup design is defined to be the longest time duration between any 
two nodes using schedules in a wakeup design such that both nodes are not awake at 
the same time. 

 
Definition 4.1.1. Coarse Data (CD) users require coarse information about the 
environment of a region of interest and are satisfied with any one of the many 
possible responses for every non-overlapping time interval TI that spans some desired 
time duration TD. 

 
Definition 4.1.2. All Data (AD) users require detailed information about the 
environment of a region of interest and can only be satisfied with all possible 
responses for every non-overlapping time interval TI that spans some desired time 
duration TD. 

 
Definition 4.1.3. A query of length TQ is defined to be the duration of a set of past 
measurements over which is of interest to the user. 
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Definition 5.3.1. The “Lonely Node Problem” is the phenomenon when nodes wakeup 
to find no other neighbour nodes within its communication range. 

Lemmas 
 

Lemma 1. Let awakeT  be the longest duration of continuous active slots in a cyclic 
symmetric (k2+k+1, k+1, 1) schedule. Then, slotawake TT 2= . 

 
Lemma 2. There exists only one Tawake in any cyclic symmetric (k2+k+1, k+1, 1) 
design. 

 
Lemma 3. There are exactly one duration of continuous active slots of length 2Tslot 
and exactly (k-1) active slots of length Tslot in any cyclic symmetric (k2+k+1, k+1, 1) 
design. 

 
Lemma 4. The length of any durations of continuous sleep slots from a selected 
schedule in a cyclic symmetric (k2+k+1, k+1, 1) design is unique within that schedule. 

 
Lemma 5. Let Tsleep be the longest duration of continuous sleep slots in any cyclic 
symmetric (k2+k+1, k+1, 1) design. Then, Tsleep is upper bounded by 

. 

 
Lemma 6. Consider any Tsleep duration in any schedule from a cyclic symmetric 
(k2+k+1, k+1, 1) design. All other schedules in the design (other than the schedule 
under consideration) have at least one wakeup active slot during Tsleep. 

 
Lemma 7. All schedules from the cyclic symmetric (k2+k+1, k+1, 1) design have at 

least one awake slot within a time duration of cycleslot TTkk
2
1)2(

2
1 2 ≈++ . 

 
 
Theorems 
 

Theorem 2.4.1. The network NG is (α ,NhopTcycle)-connected where Tcycle = 
(k2+k+1)Tslot and Nhop is the maximum number of hops between any two nodes in the 
network dictated by the routing algorithm. 
 
Theorem 2.4.2. Consider any two neighbour nodes X and Y in the network operating 
schedules SX and SY from the same cyclic symmetric (k2+k+1,k+1,1) design. Nodes X 
and Y can always discover each other within bounded time for any arbitrary time 
offset of the schedule SY from SX, or vice versa. 
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Theorem 3.1.1.1. Region A is ⎟
⎠
⎞

⎜
⎝
⎛ ++ slotTkk )2(

2
1, 2β -covered. 

 

Theorem 3.1.1.2. A β-covered network implies a β-connected network, if RC ≥ 2RS 
 
Theorem 3.1.1.3.  For a cyclic symmetric (k2+k+1,k+1,1) design wakeup network 
that is β-covered when all nodes are awake, it is also: 

 ( )2/])2[(, 2
slotTkk ++β  -covered, and ( )slothop TkkN )1(, 2 ++β  -connected if 

SC RR 2≥  . 
 
Theorem 3.1.2.1. Assume that sensor nodes operate wakeup schedules from the same 
cyclic symmetric (k2+k+1,k+1,1) design. Data packets from one node to the next hop 
wait at most Tcyclic,sleep = k(k+1)Tslot where Tslot is the slot time. 
 
Theorem 4.1.1. A cyclic symmetric (k2+k+1,k+1,1) design guarantees the existence of 
a zero Query Waiting Time (QWD) for a CD user at any arbitrary time slot. 
 
Theorem 4.1.2. For a cyclic symmetric (k2+k+1,k+1,1) design, an upper bound delay 

on a query of length TQ ≤ 2Tslot  for a CD user is given by )1(
2
1

+kk Tslot for minimized 

energy consumption. 

 

Theorem 4.1.3. For queries of length TQ ≤ 2Tslot, using a cyclic (k2+k+1,k+1,1) 
design, the energy required to reply to a CD user  query is bounded by [E, 2E]. 
 

Theorem 4.1.4. For a cyclic (k2+k+1,k+1,1) design and assuming AD users, the delay 
of a query on all collected sensor readings in the region is upper bounded by DAD 

= slotTkk )2(
2
1 2 ++ ≈ cycleT

2
1 . 

 
Theorem 4.1.5. For a cyclic (k2+k+1,k+1,1) design, the energy expenditure per query 
request is (k2+k+1)E. 
 

Theorem 5.6.1. Region A is ( )slotTk )1(, 2 +β -covered for AWSF networks. 
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Corollaries 
 

 

Corollary 5.1. 
. 

 

 
Corollary 3.1.1.1. For a cyclic symmetric (k2+k+1,k+1,1) design wakeup network, it 
takes approximately 2Nhop times longer to guarantee full connectivity than to 
guarantee full coverage. 

 
Corollary 3.1.1.2. For a cyclic symmetric (k2+k+1,k+1,1) design wakeup network, it 
takes approximately twice as long to guarantee information propagation across one 
network hop than to guarantee full coverage. 

 
 
Properties 
 

Property 5.7.1. Nodes operating AWSF always wake up to find at least one neighbour 
to communicate. 

 

Property 5.7.2. AWSF is delay upper-bounded. 
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Appendix C – List of Common Acronyms 

AD All Data (user class)  

AREQ “Awake REQuest” Packets  

ASCENT Adaptive Self-Configuring sEnsor Networks Topologies  

AUV Autonomous Underwater Vehicles  

AWSF Adaptive Wakeup Schedule Function  

BRS Basic Reconstruction Scheme  

BTC Bounded-Time Connectivity/Coverage  

CC Command Center  

CD Coarse Data (user class)  

DD Directed Diffusion (paradigm)  

CSBD Cyclic Symmetric Block Design  

CSCM Cross-Sensor Cross-Modality (data fusion algorithm)  

DWSF Database Wakeup Schedule Function  

ESAP Energy-Aware Swap Protocol  

LCT Loss of Continuity in Tracking  

LNWS Longest Non-common Wake Slots  

LNWT Longest Non-common Wake Time  

MANET Mobile Ad-hoc NETwork  

NAS New “Awake” Slots  

ODND On-Demand Neighbour Discovery  

PAMAS Power Aware Multi-Access protocol with Signalling  

PEAS Probing Environment and Adaptive Sleeping  

PECAS Probing Environment and Collaborative Adaptive Sleeping  

PFN Percentage of False Negatives  

QWD Query Waiting Delay  

RAW Random Asynchronous Wakeup  

RIS Random Independent Scheduling  

STEM Sparse Topology and Energy Management  

TAG Tiny Aggregation (service)  

TiNA Temporal coherency-aware In-Network Aggregation  

TIP Target Identification Packets  

TTA Target Tracking Accuracy  

TTP Target Tracking Packets  
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TWSF Tracking Wakeup Schedule Function  

UWSN UnderWater Sensor Network  

WSF Wakeup Schedule Function  

 


