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Abstract

Nowadays, not only is the current frequency spectrum almost completely allocated,

but also the demand for it is daily increasing. According to recently released studies

[1], less than 1/5 of the currently licensed frequency spectrum is being efficiently

used. This fact have motivated considerable research efforts on improving spectral

utilization efficiency. Recently, emerging as a promising technology to achieve this

improvement, cognitive radio (CR) has been proposed as a new form of cooperative

model for wireless communications. One important feature of the CR is that the

secondary (cognitive) user is allowed to coexist with the primary (licensed) users.

The key idea in CR is that the cognitive user is assumed to be an intelligent user

which is capable of sensing and perceiving the environment so that it adapts its way

of communication in order to enhance the performance.

In this work, a causal (non-anticipating) cognitive radio (CCR) model is proposed

in which the primary and secondary users transmit their messages simultaneously

during all the transmission time. In this model, not only is the secondary user a

sender with a message to send, but it also acts as a relay which cooperates with

the primary user. We refer such a model as interference channel with Causal Unidi-

rectional Cooperation (IC-CUC) or CCR model. An achievable rate region for the

IC-CUC is established using a combination of various encoding and decoding meth-

ods. Also, the derived achievable rate region in the Gaussian case is demonstrated

and compared with the existing results.
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Chapter 1

Introduction

1.1 Background

Wireless communications began to develop in 1888 when H. R. Hertz demonstrated

the theory of electromagnetic waves. Transmitting data to further distances with

higher transmission rates was later made possible based on the advances in analog

modulations and demodulation techniques (such as AM and FM ). The main bottle-

neck at that time was the thermal noise at the electronic circuits (amplifiers, mixers,

and filters). At that point, it was widely perceived that the only way to reduce the

communication error is to increase the transmitter power while zero error deemed to

be practically imposable. In 1948, Shannon opened a new chapter in communication

theory when he founded what today is known as information theory. In his original

paper [38], he showed that for a prescribed transmitter power, one can achieve reliable

communications by incorporating a proper coding scheme. He also showed that for

any rate more than the channel capacity there will be an inevitable error independent

1
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of the applied technique1. He also obtained this capacity as

C = max
p(x)

I(X; Y ) (1.1.1)

for a point-to-point discrete memoryless channel (DMC) with the channel input X

and channel output Y . His work proved that there is a code which can achieve the

capacity of the channel, but it did not show how to construct such a code.

Since then, there has been a large number of research efforts in this area. One

interesting question to be addressed is the achievable limits when the number of users

is more than one. Multiple Access Channel (MAC), Broadcast Channel (BC), and

Interference Channel (IC) can be pointed out as appealing examples of multiuser

channels. The capacity region of the MAC was first obtained by Ahlswede [2]. This

channel is of interest because the uplink in mobile communications can be modeled by

a MAC. Downlink can, on the other hand, be modeled by a BC. The capacity region

of the BC is unknown in general, and it is only known when the channel is degraded.

Cover [9] and Gallager [17] investigated the degraded BC and obtained its capacity.

The best inner bound on the capacity of this channel was established by Marton [30].

Sato [33] obtained a general form for the outer bound of such a channel. The IC

models the communication scenario in which each of users has its own transmitter

and receiver. The capacity of this channel is unknown in general. This capacity is

only known in some special cases [8, 34]. The best achievable rate region (the inner

bound) until today is obtained by Han and Kobayashi (HK) [20] whereas the tightest

outer bounds in the Gaussian case so far were given by [16, 37].

1Shannon’s work can be juxtaposed with the revolutionary work of Einstein (1905) in which he
claimed that “nothing can travel faster than light”, but he did not propose any solution how to
reach the speed of light.
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In addition to mentioned channel types, Relay Channel (RC) [42] is another ap-

pealing type of multi user communication channels. Relay is an extra node that

receives the signal from the sender and cooperate with the sender via decode-and-

forward, compress-and-forward, or amplify-and-forward. Most of the information the-

oretic results have been obtained by Cover, El Gamal, and Aref [10, 14]. The capacity

of the RC is known when the relay is degraded from the primary receiver. This capac-

ity was obtained by applying Block-Markov superposition encoding and list decoding

by Cover [10] where he used a binning method to convey the message in two steps.

Later, it was shown that sliding window decoding [47] achieves the same performance.

Unlike the binning method, a window of k + 1 blocks of codewords for k relays (two

blocks in the case of single relay) are used in the sliding window decoder to decode

the message of the first codeword of the block. At the sender, the messages are su-

perimposed onto each other (for single relay, each new message is superimposed onto

the previous message). Willems [44] proposed a decoding technique know as backward

decoding for the MAC with feedback. This decoding method was later shown to be

capacity achieving for the RC as well [47]. This coding technique was simpler with

the cost of delay in decoding at the receiver. Xie and Kumar [48] have shown that the

backward decoding can achieve a higher rate in comparison with the sliding window

decoding when there are multiple independent sources.

In addition to relaying, another scenario of cooperation can arise when a certain

type of side information is available at the transmitter, receiver, or both. Particulary,

this side information can be the state of the channel. When this Channel Sate Infor-

mation (CSI) is available at the transmitter (CSIT), there are two different situations

depending on how the CSIT has been acquired. In the first one, before sending a
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symbol through the channel, encoder is aware of the channel state that this symbol

is going to encounter. In other words, encoder has a knowledge about the CSI (only)

until the present time. In the second situation, the transmitter knows the complete

CSI before sending a codeword Xn. The former is termed as causal CSIT, and the

latter is termed as non-causal CSIT.

Shannon [39], as a pioneer, investigated the capacity of the point-to-point chan-

nel when causal CSI is available at the transmitter. By constructing an equivalent

channel, which has the same capacity as the original one, he obtained the capacity

of such channels. He also showed that knowing only the current channel state would

result in the same capacity. Ever since, there has been numerous works examining

different types of side information in order to find the performance limits of the under-

lying communication systems (a comprehensive relevant subject review has recently

been given by Keshet et al. [24]). For instance, Shannon model was studied in the

multi user configurations by Sigurjonsson and Kim [40]. The non-causal CSI was first

studied by Kuznetsov and Tsybakov [28] in which they proposed a primitive coding

scheme for this channel. Later, Gel’fand and Pinsker [19] found its capacity as

C = max
p(u,x|s)

(

I(U ; Y ) − I(U ; S)
)

, (1.1.2)

where U is an auxiliary random variable with finite cardinality, and the maximization

is subjected to the constraint that U → (S,X) → Y forms a Markov chain. This

result was extended to the Gaussian channel by Costa [7] which is today known

as Dirty Paper Coding (DPC). Costa showed that any (White Gaussian) additive

interference known at the transmitter can surprisingly be canceled thoroughly at the

receiver. As one special case, the encoder can (perfectly) overhear the message of the

other user(s) in a causal manner. This encoder which we term it as Causal Cognitive
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Encoder motivates investigating channels in which the encoder is able to perceive the

channel state. Encoders with overhearing capability were first studied by Willems

[45] in multiple access channels with cribbing encoders. Using the backward decoding

technique [44, 50], the capacity region of such channels was obtained. Willems’ results

were later generalized by Khojastepour et al. [25] to the case in which each encoder

receives a noisy version of the other encoder’s codeword. Recently, Tuninetti [41] and

Cao [5] have studied the CE’s in an IC shell.

According to a report recently released by FCC [1], only 15 percent of the cur-

rently licensed frequency spectrum is being efficiently used. Besides, the demand for

frequency spectrum is rapidly increasing. These two issues have motivated consider-

able research efforts on improving spectral utilization efficiency. Recently, emerging

as a promising technology to achieve this improvement, Cognitive Radio (CR) [21] has

been proposed as a new form of cooperative model for the wireless communications.

One important feature of the CR is that the secondary (cognitive) users are allowed

to coexist with the primary (licensed) users. The key idea in CR is that the cognitive

user is assumed to be a smart user which is capable of sensing and perceiving the

environment and adapting its way of communication in order to enhance the perfor-

mance. Most of the previous studies of the CR assume that the secondary user has

complete or partial a priori (non-causal) knowledge about the message being sent

by the primary user [13, 22, 23, 29, 46]. This genie-aided CR [13] is also known as

the Interference Channel with Degraded Message Set (IC-DMS) [23] or Interference

Channel with Unidirectional Cooperation. In a general sense, IC-DMS refers to an

IC in which primary user transmits its message to the respective receiver, and the

cognitive user as a secondary sender has a non-causal knowledge about the message
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of the fist sender. This knowledge can be complete as discussed in [13] or partial as

studied in [29]. Having the non-causal state information at the cognitive user moti-

vates using DPC to mitigate (or even eliminate in the Gaussian case) the undesired

effect of interference at the receivers as well as cooperation with the first sender to

facilitate data transferring to the first receiver. This facilitation is feasible because

the cognitive user which knows the message of the first sender can allocate a portion

of its power to transmit the message of the first user. As mentioned, the informa-

tion theoretic studies on the CR were initialized by Devroye et al. [13], in which a

rate splitting technique and DPC is used to develop an achievable rate region for the

IC-DMS. This region is later improved by [22] using a combination of DPC, cooper-

ation, and collaboration. Like [13, 20], [22] also uses the rate splitting technique for

encoding the message in the first sender to enlarge the achievable rate region. The

results of [22] has been expanded by Marić et al. [29] to a more general case when

the cognitive user has a partial knowledge about the message of the primary user.

In [23] the capacity of cognitive user without sacrificing the rate of the first user is

determined for the Gaussian channel. This capacity is, however, valid only for the

case when the communication link between the cognitive sender and primary receiver

is weak.

Nevertheless, the primary assumption of non-causal knowledge requires that the

secondary user has a priori knowledge about the message of the primary user before

the message is actually transmitted. This assumption may not be feasible in real-

istic communication scenarios where the senders and receivers are non-anticipating

(causal). The causal CR was first investigated in [13]. Specifically, the paper [13]

adopts a two-phase transmission protocol in which the first phase of transmission is
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solely allocated for the secondary user to perfectly obtain causal knowledge about the

message being sent from the primary user while in the second phase both the primary

and secondary users are allowed to transmit their messages simultaneously.

1.2 Contributions and Outline

In this dissertation, we propose a new Causal (non-anticipating) Cognitive Radio

(CCR) model in which the primary and secondary users transmit their message simul-

taneously during all the transmission time. In this model, not only is the secondary

user a sender that has its own message to send, but it also acts as a relay [10] which

cooperates with the primary user. We refer such a model as the Interference Channel

with Causal Unidirectional Cooperation (IC-CUC). Our model is analogous to the

notion of generalized feedback proposed in [41] and interference channels with confer-

encing [5]. However, in [41, Theorem 1], each sender (performing partially decode and

forward) is less capable than receivers in decoding the message of the other sender.

We establish an achievable rate region for the IC-CUC by using a combination of

rate splitting, block Markov superposition encoding [10, 27, 9], and sliding-window

decoding [47]. We also demonstrate the derived achievable rate region in the Gaussian

case and compare it with the existing result in [13]. Result of this research has been

published in [36].

This dissertation is organized as following:

In Chapter 2, the necessary mathematical tools needed throughout the work is

studied. All of the definitions and theorems follow standard information theory text

books [11, 12, 18, 31, 49]. In the first part of this chapter, the concept of entropy and

mutual information are introduced. Next, the method of type and typical sequences
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are discussed. Typical sequences are used in decoder design where the decoder seeks

in the set of codewords to find a message whose codeword is jointly typical with

the channel output. Then, the differential entropy is defined and it is shown that

the signals with normal distribution are entropy maximizers among all input signals

with the same variance. Moreover, this chapter elaborates on important results in

information theory. As a case in point, the Shannon capacity is discussed and the

random coding is shown to be capacity achieving.

The main contribution of this dissertation is included in Chapter 3. As mentioned,

a new model for the CR is proposed and its performance is studied. To analyze the

performance, we first obtain an inner bound. Then, the inner bound is illustrated in

the Gaussian case and it is shown that it outperforms the existing results.

In Chapter 4, the concluding remarks are pointed out. Moreover, the further

research is outlined, and some heuristics that can potentially improve the performance

are discussed.

In Appendix A, the Fourier Motzkin elimination method for the Theorem 3.2.1 is

derived in details.



Chapter 2

Preliminaries

This chapter is devoted to develop mathematical tools needed to analyze multiuser

channels. First, the axioms of probability and measure theory are introduced. Then,

entropy is shown to be an appropriate criteria to measure the amount of information

contained in a random variable (RV). Next, the amount of information gain about

a RV by knowing another RV is given. In this concept, Kullback–Libler distance is

stated as a non-metric measure for the distance of two probability functions. More-

over, the method of types as a powerful technique for bounding error probability is

discussed. Lastly, these results are extended to continuous random variables and it

is shown that Gaussian distribution maximizes the entropy.

2.1 The Axioms of Probability Theory

Throughout this dissertation, capital letters (A), lower case letters (a), and calli-

graphic letters (A) denote RV’s, their sample values, and their alphabets respectively.

A similar convention is used for the random vectors and their values. A Kolmogorov

probability space is shown by a triple (Ω,F , µ) [4]. The first component, Ω, is a

nonempty set comprising all possible outcomes. Each element ω of Ω is called an

9
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outcome and Ω is called the sample space. The second component, F , is a σ-algebra

set including events which are subsets of Ω. The third component, µ, is a probability

measure on F . Being a σ-algebra set means that F satisfies

(i) Ω ∈ F ,

(ii) ∀A ⊂ Ω, A ∈ F → Ac ∈ F ,

(iii) A,B ∈ F → A ∪ B ∈ F .

Also, the µ-measure µ : F 7→ [0, 1] satisfies

(i) µ(A) ≥ 0, ∀A ∈ F ,

(ii) ∀A,B ∈ F , A ∩ B = ∅ → µ(A ∪ B) = µ(A) + µ(B),

(iii) µ(Ω) = 1.

As an example, consider the experiment of tossing a coin. The possible outcomes

of this experience are “heads” (H) and “tails” (T ). Then, the set Ω is {T,H}, and

the set of events is F = {{}, {H}, {T}, {H,T}}. Given that the coin is fair, the µ

measure on F can be written as

µ({}) = 0, µ({H}) = 1
2
, µ({T}) = 1

2
, µ({H,T}) = 1.

A RV X in a finite set X is a mapping X : Ω 7→ X such that X−1(x) ∈ F for

every x ∈ X . The probability of an event defined in terms of RV’s means µ-measure

of the corresponding subset of Ω, e.g.,

Pr{X ∈ A} , µ({ω : X(ω) ∈ A,ω ∈ Ω}).



11

The notation of “X
iid
∼ p(x)” is used to denote that the RV X is drawn independent

and identically distributed (i.i.d.) according to the probability measure p(·) on X .

The notation of Xj
i , i ≤ j is used to show the vector (Xi, Xi+1, · · · , Xj). For

brevity, Xj
1 is shown by Xj, i.e., the index i is omitted when i = 1. A sequence of

tuples on X n×Yn×· · ·×Zn is shown by (xn, yn, · · · , zn) which is by definition equiv-

alent to
(

(x1, y1, · · · , z1), (x2, y2, · · · , z2), · · · , (xn, yn, · · · , zn)
)

. The set cardinality is

denoted by | · |, and the empty set is denoted by ∅ (clearly, |∅| = 0). The events in

the most general sense are usually shown by EI(·) where I pertains to the node in

which the event happens. In addition, the compliment of an event EI(·) is shown by

Ec
I(·).

The number of occurrence of a specific symbol, a ∈ X , in a sequence xn is shown

by the notation N(a ; xn).

2.2 An Information Measure

We first introduce the concept of information1 of a random event. An event can be

outcome of an experiment, received symbol in a communication channel, etc. The

term information is analogous to the words surprise and uncertainty, and these three

terms usually convey the same concept. Before the event there is an amount of

uncertainty. When the event happens, there is an amount of surprise. After the

event, there is a gain in the amount of information. Let the RV X represent a sample

event with the probability p(x). We use the notation I(p) as a measure to determine

1There are two widely used information measures in communications theory which are entropy

and Fisher information. The entropy will be introduced in this work, and Fisher information is

defined as the variance of the score function, i.e., J(θ) = Eθ

[

∂

∂θ
ln f(X; θ)

]2

. Interestingly, these
two information measures are related to each other. It is shown in [11, Section 17.8] that while
entropy is related to the volume of typical sets, fisher information is related to the surface area of
the typical set with respect to the definition of continuous typical sets stated in Definition 2.5.3.
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the amount of information carried by the event outcome x. From what we mentioned

above, it can be intuitively understood that the amount of information of an event

x is inversely related to the probability of occurrence of that event. The more we

expect an event to happen beforehand, the less we get surprised by the occurrence of

that event, or in other words, the less information we gain by knowing that event has

happened. Moreover, I(p) has to be possessed of the following properties

(i) Information of an event is positive, i.e., I(p) ≥ 0.

(ii) The information measure should be additive, i.e., I(p1p2) = I(p1) + I(p2).

(iii) I(p) is a continuous function on p.

A logarithmic function of the probability distribution satisfies these three properties,

i.e., I(p) = log 1
p(x)

. If the base of logarithmic function is 2, the information is

measured in bits, and if the base is e, the information is measured in nats2.

While I(pi) is the amount of information (uncertainty) of the variable xi, our

objective is to know how much information the RV X contains in average. The

expected value of the I(p) is the desired quantity and is called entropy of the random

variable X. In brief, the entropy of a RV measures the uncertainty of that RV. In

other words, it gives the amount of information required to describe a RV.

Definition 2.2.1. The entropy H(X) of a discrete RV X is defined by

H(X) = Ep log
1

p(X)
=

∑

x∈X

p(x) log
1

p(x)
. (2.2.1)

However, if the RV X is binary, i.e.,

X =

{

1 with probability p,

0 with probability 1 − p,
(2.2.2)

2Throughout this dissertation it is assumed that all the logarithmic functions are taken in base
2 unless otherwise is stated.
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where 0 ≤ p ≤ 1, we use an alternative representation for H(X) as follows

H(p) = − (p log p + (1 − p) log(1 − p)) . (2.2.3)

Definition 2.2.2. The joint entropy H(X,Y ) of a pair of discrete random variables
(X,Y ) with a joint probability distribution p(x, y) is defined as

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y). (2.2.4)

Definition 2.2.3. The conditional entropy H(Y |X) for (X,Y ) ∼ p(x, y) is defined
as

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x) (2.2.5)

= −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x) (2.2.6)

= −
∑

x∈X

∑

y∈Y

p(x, y) log p(y|x) (2.2.7)

= −E log p(Y |X). (2.2.8)

Theorem 2.2.1 (Chain rule). [11, Theorem 2.2.1, page 17]

H(X,Y ) = H(X) + H(Y |X). (2.2.9)

The chain rule can be generalized to multiple random variables as following

H(Xn) =
n

∑

i=1

H(Xi|X
i−1). (2.2.10)

For the sake of convention, we sometimes use H(P ) or H(p) instead of H(X) if

the RV X is drawn according to the probability distribution p(x).

2.3 Distance of Probability Distributions and Mu-

tual Information

Suppose there are two different probability distributions p(x) and q(x) on the RV x.

Knowing how much these two probability distributions are similar to each other plays



14

an important role to conceive communication problems. To address this question,

a measure to specify the distance between two distributions is needed. To define

such a measure, we use the previously defined measure of the information of each

individual distributions. The difference between the information of p(x) and q(x),

i.e., dq||p(x) = I(q(x)) − I(p(x)) will be a criteria showing how far two distributions

are at the sample point x. We are interested to know how far two distributions are

in average, and hence we take the expected value of dq||p(X). Since it does not make

sense if the distance is negative, the expected value is taken with respect to p(x) so

that this parameter becomes positive.

Definition 2.3.1. The relative entropy or Kullback–Libler (KL) distance3 between
two probability mass functions p(x) and q(x) is defined as

D(p||q) = Ep[I(q) − I(p)] (2.3.1)

= Ep log
1

q(X)
− Ep log

1

p(X)
(2.3.2)

=
∑

x∈X

p(x) log
p(x)

q(x)
. (2.3.3)

In this definition, we used the conventions that 0 log 0
0

= 0, 0 log 0
q

= 0, and

p log p

0
= ∞.

To introduce the concept of mutual information, consider a communication chan-

nel with the channel input symbol xi and the channel output symbol yi in i-th channel

use. Prior to reception of yi, a priori probability that xi was sent is p(xi). After re-

ceiving yi, a posteriori probability that xi was sent is p(xi|yi). In other words, there

3A function ρ(x, y) is metric if for all x, y,

• ρ(x, y) ≥ 0,

• ρ(x, y) = ρ(y, x),

• ρ(x, y) = 0 if and only if x = y,

• ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

Consequently, the KL distance is not metric.
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is an information gain on what has been sent due to reception of yi. This informa-

tion gain is shown by I(xi; yi) = log(1/p(xi)) − log(1/p(xi|yi)) where − log p(xi) is

the amount of uncertainty (information) in xi, and − log p(xi|yi) is the amount of

uncertainty (information) in xi after knowing yi. Therefore, I(xi; yi) is the amount of

information (in bits) which has been transferred through the channel. As usual, we

are interested to know how much we achieve in average.

Definition 2.3.2. The mutual information I(X; Y ) of two RV’s X,Y with joint
distribution p(x, y) and marginal distributions p(x) and p(y) is defined as

I(X; Y ) = H(X) − H(X|Y ) (2.3.4)

= D(p(x, y)||p(x)p(y)). (2.3.5)

Fig. 2.1 shows the relationship between entropy and mutual information in a Venn

diagram. As can be seen, I(X; Y ) represents the common part of H(X) and H(Y ).

From the diagram the following can be inspected

I(X; Y ) = H(X) − H(X|Y ) (2.3.6)

= H(Y ) − H(Y |X) (2.3.7)

= H(X) + H(Y ) − H(X,Y ) (2.3.8)

= I(Y ; X). (2.3.9)

2.4 Typical Sequences

Definition 2.4.1. A sequences xn ∈ X n is said to be ǫ-strongly typical if the sample
frequencies are close to the true values. More precisely,

T (n)
ǫ (X) =

{

xn ∈ X n :

∣

∣

1
n
N(a ; xn) − P (a)

∣

∣ < ǫ
|X |

, if P (a) > 0

N(a ; xn) = 0, if P (a) = 0

}

. (2.4.1)

In other words, type of any sequence in the typical set does not differ more than

ǫ/ |X | form true probability in any component.
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H(X) H(Y )

I(X; Y )

H(X|Y ) H(Y |X)

H(X,Y )

Figure 2.1: Relationship between entropy and mutual information. Entropy of each
set is shown by a circle. The intersection of two circles represents the amount of
mutual information as shown on the figure.

Definition 2.4.2. A sequence of tuples (xn, yn, · · · , zn) ∈ X n ×Yn ×· · ·×Zn is said
to be ǫ-strongly typical with respect to distribution p(x, y, · · · , z) on X ×Y × · · ·×Z
if

(i) For all (x, y, · · · , z) ∈ X × Y × · · · × Z, we have

∑

ū

∣

∣

∣

∣

1

n
N(ū ; ¯̄u) − p(ū)

∣

∣

∣

∣

< ǫ, (2.4.2)

where |Ū | = |X ||Y| · · · |Z|, ū = (x, y, · · · , z), ¯̄u = (xn, yn, · · · , zn), and N(ū ; ¯̄u)
is the number of occurrence of (x, y, · · · , z) in the sequence of tuples (xn, yn, · · · , zn).

(ii) For all (x, y, · · · , z) ∈ X × Y × · · · × Z with p(x, y, · · · , z) = 0,
N(x, y, · · · , z ; xn, yn, · · · , zn) = 0.

The set of sequences (xn, yn, · · · , zn) ∈ X n×Yn×· · ·×Zn such that (xn, yn, · · · , zn)

is ǫ-strongly typical is called the strongly typical set and is denoted by T
(n)
ǫ (XY · · ·Z)

or T
(n)
ǫ when the random variables are understood from the context. An alternative

definition of typical sets based on Kullback-Leibler distance of empirical probability
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distribution of xn (i.e., Pxn(xn)) and true probability distribution of x (i.e., Q(x)) is

given in [11, Section 11.2].

Definition 2.4.3. A sequence yn ∈ Y is said to be ǫ-strongly conditionally typical
with the sequence xn with respect to the conditional distribution PY |X(·|·) if

(i) For all (a, b) ∈ X × Y with P (b|a) = PY |X(b|X = a) > 0

1

n
|N(a, b ; xn, yn) − P (b|a)N(a ; xn)| ≤

ǫ

|Y| + 1
, (2.4.3)

(ii) N(a, b ; xn, yn) = 0 for all (a, b) such that V (b|a) = 0.

The set of all such sequences is called as the conditionally typical set and denoted

by T
(n)
ǫ (Y |Xn = xn) or in abbreviated form as T

(n)
ǫ (Y |x).

Lemma 2.4.1 (Asymptotic Equipartition Property (AEP)). Let Xi
iid
∼ p(x). Then

Pr(T
(n)
ǫ ) → 1 as n → ∞.

Theorem 2.4.2 (Probability of jointly typicality). [11, Lemma 10.6.2, page 327]

Let Y1, Y2, · · · , Yn
iid
∼ p(y). For any xn ∈ T

(n)
ǫ (X), the probability that (xn, Y n) ∈

T
(n)
ǫ (XY ) is bounded by

Pr
(

(xn, Y n) ∈ T (n)
ǫ

) .
= 2−n(I(X;Y )±δ(ǫ)), (2.4.4)

where δ(ǫ) → 0 as ǫ → 0 and n → ∞.

Theorem 2.4.3. [11, Theorem 15.2.3, page 524] Let T
(n)
ǫ denote the typical set for

the probability mass function p(s1, s2, s3), and let Pr(S′
1 = s1, S′

2 = s2, S′
3 = s3) =

∏n

i=1 p(s1i|s3i)p(s2i|s3i)p(s3i), then Pr{(S′
1, S′

2, S′
3) ∈ T

(n)
ǫ }

.
= 2−n(I(S′

1;S′

2|S
′

3)±δ(ǫ)), where
δ(ǫ) → 0 as ǫ → 0 and n → ∞.

2.5 Differential Entropy

In this section, we extend the definition of entropy to the continuous RV.

Definition 2.5.1. The differential entropy h(X) of a continuous random variable X
with probability density function f(x) is defined as

h(X) =

∫

SX

f(x) log
1

f(x)
dx (2.5.1)

where SX = {x : f(x) > 0} is the support set of X. We show the support set as S
when the RV is clear from the context.
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Since differential entropy depends only on probability distribution, it is sometimes

written as h(f) instead of h(X).

Theorem 2.5.1. Let X1, X2, · · · , Xn
iid
∼ f(x). Then,

−
1

n
log f(X1, X2, · · · , Xn) → E[− log f(x)] = h(X) in probability. (2.5.2)

Definition 2.5.2. The volume Vol (A) of a set A ⊂ R
n is defined as

Vol (A) =

∫

A

dx1 dx2 · · · dxn (2.5.3)

=

∫

A

dxn. (2.5.4)

Definition 2.5.3. The typical set T
(n)
ǫ with respect to f(x) for ǫ > 0 and any n is

defined as

T (n)
ǫ =

{

xn ∈ Sn :

∣

∣

∣

∣

−
1

n
log f(xn) − h(X)

∣

∣

∣

∣

≤ ǫ

}

, (2.5.5)

where f(xn) =
∏n

i=1 f(xi).

Theorem 2.5.2. [11, Theorem 8.2.2, page 245] The typical set T
(n)
ǫ satisfies the

following properties

1. Pr
(

T
(n)
ǫ

)

> 1 − ǫ for n sufficiently large.

2. Vol
(

T
(n)
ǫ

)

≤ 2n(h(X)+ǫ) for all n.

3. Vol
(

T
(n)
ǫ

)

≥ (1 − ǫ)2n(h(X)−ǫ) for n sufficiently large.

This theorem states that for large n, the volume that contains almost all of the

sequences approaches to 2nh in the first order of exponent. On the other hand, this

volume is an n-dimensional volume; and therefore, the corresponding side length

(2nh)
1
n = 2h. In other words, the differential entropy is the logarithm of the side

length of the smallest volume that contains almost all of the sequences4.

As in discrete case, we extend the definition to multiple variables.

4While entropy is related to the volume of typical set, Fisher Information is related to the surface
of the typical set.
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Definition 2.5.4. The differential entropy of a set of random variables Xn with
probability density function f(xn) is defined as

h(Xn) = −

∫

Sn

f(xn) log f(xn) dxn. (2.5.6)

Definition 2.5.5. The conditional entropy of X,Y with joint probability function
f(x, y) is defined as

h(Y |X) = −

∫

SX∪SY

f(x, y) log f(y|x) dx dy. (2.5.7)

Theorem 2.5.3 (Entropy of a multi variable normal distribution). [11, Theorem
8.4.1, page 249] Let X1, X2, · · · , Xn have a multi variable normal distribution with
respective means µ1, · · · , µn and covariance matrix K, i.e., Xn ∼ N (µ,K). Then

h(Xn) = h(N (µ,K)) (2.5.8)

=
1

2
log |2πeK| bits, (2.5.9)

where |2πeK| denotes the determinant of 2πeK, and µ is a column vector
(

µ1 µ2 . . . µn

)T
.

Proof: The proof of this theorem is given in the mentioned reference based on

matrix expansion. We will give an alternative proof based on the properties of matrix

operators which is more comprehensive.

Let the vector x be a column vector
(

x1 x2 . . . xn

)T

. The probability density

function of f(xn) : X n 7→ R can be written as

f(xn) =
1

|2πK|
1
2

e−
1
2
(x−µ)T K−1(x−µ). (2.5.10)

Then

h(Xn) = −E[ln f(xn)] nats (2.5.11)

=
1

2
ln |2πK| +

1

2
E

[

(x − µ)T K−1(x − µ)
]

(2.5.12)

(a)
=

1

2
ln |2πK| +

1

2
E

[

tr
(

(x − µ)T K−1(x − µ)
)]

(2.5.13)
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(b)
=

1

2
ln |2πK| +

1

2
E

[

tr
(

(x − µ)(x − µ)T K−1
)]

(2.5.14)

=
1

2
ln |2πK| +

1

2
tr

(

E
[

(x − µ)(x − µ)T K−1
])

(2.5.15)

=
1

2
ln |2πK| +

1

2
tr

(

K K−1
)

(2.5.16)

=
1

2
ln |2πK| +

1

2
n (2.5.17)

=
1

2
ln |2πeK| (2.5.18)

=
1

2
log |2πeK| bits, (2.5.19)

where

(a) follows form the fact that (x − µ)T K−1(x − µ) is an scalar and trace of any

scalar is equal to that scalar.

(b) can be justified by considering the fact that tr(AB) = tr(BA) for any pair of

interchangeable matrices Am×n and Bn×m. �

Definition 2.5.6. The relative entropy between two distributions f and g on xn is
defined as

D(f ||g) =

∫

f log
f

g
dxn. (2.5.20)

Definition 2.5.7. The mutual information I(X; Y ) between two RV’s X and Y
with joint density f(x, y) is defined as

I(X; Y ) = D(f(x, y)||f(x)f(y)) (2.5.21)

=

∫

f(x, y) log
f(x, y)

f(x)f(y)
dx dy. (2.5.22)

Theorem 2.5.4 (Normal distributions are entropy maximizers). [11, Theorem 8.6.5,
page 254] Let the random vector Xn ∈ R have zero mean and covariance K =
E[XXT ]. Then h(Xn) ≤ 1

2
log |2πeK|, with equality if and only if X ∼ N (0, K).
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2.6 Channel Coding Theorem

In 1948, Shannon published his original paper [38] in which he founded what today

is known as information theory. In his work, Shannon obtained the capacity of the

point-to-point Discrete Memoryless Channel (DMC) using random coding method at

the encoder and jointly typical decoder at the receiver. Prior to Shannon’s, it was

wrongly conceived that the only way to increase the error free data transmission rate

is to increase the transmission power. Shannon showed that by coding the message,

the zero transmission error can be obtained with any transmission power if the rate by

which the data is being transmitted is less than the channel capacity. His pioneering

work opened a new chapter in communication theory, and since then, considerable

efforts have been made in this area. In this chapter, we present some of the works

and well-known results, which will be used in the rest of this work as basic building

blocks to establish our results.

A basic single user communication system model is illustrated in Fig. 2.2. As can

be seen, this model comprises a message w, an encoder which encodes the message

set onto codeword xn, a DMC, and a decoder that maps the channel outputs onto

a message estimate. The channel is shown by (X , p(y|x),Y) where X is the set of

channel input alphabets, Y is the set of channel output alphabets, and p(y|x) is the

channel transition probability function.

The channel input Xn is subjected to a constraint

1

n

n
∑

i=1

E {φ (Xi)} ≤ Γ, (2.6.1)

where φ : X 7→ {0} ∪ R
+ is the transmission cost function [32], R

+ is the set of all

positive real numbers, and Γ > 0 is a constant.



22

W Xn Y n Ŵ
Encoder Channel Decoder

Figure 2.2: Basic single user communication channel. The channel is represented by a
conditional probability mass function p(yn|xn). The encoder maps each message into
a codeword xn. Inversely, the decoder maps the channel output yn into a message
estimate.

Being memoryless implies that p(yn|xn) =
∏n

i=1 p(yi|xi). We further define (2nR, n)

code for this channel which consists of the following:

1. A set of messages W =
{

1, 2, · · · , 2nR
}

. Throughout this work, we assume that

the message w is uniformly distributed on W .

2. An encoding function that assigns a codeword xn(w) to each message w. The

set of all codewords
{

xn(1), xn(2), · · · , xn(2nR)
}

is called codebook C.

3. A decoding function g(·) that maps the channel output yn onto the message set

W , i.e., ŵ = g(yn), ŵ ∈ W.

The rate R of the code is defines as logarithm of the message size divided by the

number of channel use. in other words,

R =
log |W|

n
bits per channel use. (2.6.2)

As can bee seen, we do incorporate this definition into the size of the message set and

represent5 the number of messages by 2nR.

5Later, we will drive bounds on the rate of different types of channels and these bounds may
not result in an integer message set size, i.e., 2nR is not an integer. To address this problem, the
number of messages is represented by the floor of this quantity, i.e., ⌊2nR⌋ or 2n⌊R⌋. For the sake
of convenience, we will not use the floor operator ⌊·⌋ on the message set size, but as a subtle and
obvious assumption, the number of messages are always an integer.
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For above mentioned channel, let λw = Pr {ŵ 6= w|w sent} be the conditional

probability of error given that the transmitted message is w. Then, the average

probability of error P
(n)
e for a code (2nR, n) can be defined as

P (n)
e =

1

2nR

2nR

∑

w=1

λw. (2.6.3)

A rate R is said to be achievable if there is a code such that P
(n)
e → 0 as n → ∞.

The supreme of all achievable rates is called the channel capacity.

Theorem 2.6.1 (Shannon [38]). The capacity of a discrete memoryless channel is
given by

C = max
X∼p(x)

I(X; Y ). (2.6.4)

Proof outline: The proof of this theorem is fundamental and seems to be a panacea

for various channel types since it involves typical steps being used in other channels.

The proof consists of the following steps. The first step is to prove achievablity of

the capacity. In other words, it should be shown that any rate R < C is achievable,

meaning that there exists a sequence of codes (2nR, n) with probability of error P
(n)
e →

0. The second step is to prove the converse, meaning to justify that for any sequence

of (2nR, n) codes with P
(n)
e → 0, the rate R is less than the capacity C. 6

Proof of achievablity

Codebook generation: A random coding argument is used. Generate 2nR i.i.d.

codewords xn according to p(xn) =
∏n

i=1 p(xi) and label them as xn(w), where w ∈

W =
{

1, 2, · · · , 2nR
}

. The generated codebook C is revealed to both the sender and

the receiver before any transmission is being taken place.

6Achievablity proof results in an achievable rate and the converse part will result in an upper

bound. The capacity region lies between these two bounds. For any channel, the capacity region
is known if these two bounds completely coincide. Otherwise, only the inner and outer bounds to
capacity will be known.
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Encoding: Suppose that w is the message which is about to be sent. Then the

corresponding codeword xn(w) will be transmitted as the channel input.

Decoding: Let the channel output Y n be the received sequence. The decoder

declares that message ŵ was sent if there exists one and only one index ŵ ∈ W such

that (xn(ŵ), Y n) ∈ T
(n)
ǫ ; otherwise, an error is declared.

Probability of error: Assuming that w was sent, the error occurs if (xn(w), Y n) 6∈

T
(n)
ǫ , or there is an index i 6= w such that (xn(i), Y n) ∈ T

(n)
ǫ . Let the error event E

be the average of P
(n)
e over all codebooks and all messages w. Then

Pr {E} =
∑

C

p(C)P (n)
e (C) (2.6.5)

=
∑

C

p(C)
1

2nR

2nR

∑

w=1

λw(C) (2.6.6)

= 2−nR

2nR

∑

w=1

∑

C

p(C)λw(C) (2.6.7)

=
∑

C

p(C)λ1(C) (2.6.8)

= Pr(E|w = 1). (2.6.9)

Furthermore, we define the event E(i) as

E(i) =
{

(xn(i), Y n) ∈ T (n)
ǫ

}

, i ∈ W. (2.6.10)

Hence

Pr(E|w = 1) = Pr
{

Ec(1)
⋃

∪2nR

k=2E(k)
}

(2.6.11)

≤ P (Ec(1)) +
2nR

∑

k=2

P (E(k)). (2.6.12)
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According to the Lemma 2.4.1, P (Ec(1)) → 0 for n sufficiently large. In addition,

since xn(1) and xn(k), k 6= 1 are independent, the channel output Y n (which is as

a result of the channel input xn(1)) and all other codewords xn(k), k 6= 1 are inde-

pendent as well. Therefore, the probability of E(k), k 6= 1 is less than 2−n(I(X;Y )−ǫ)

(according to Theorem 2.4.2), and

Pr(E) ≤ ǫ +
2nR

∑

k=2

2−n(I(X;Y )−ǫ) (2.6.13)

= ǫ + (2nR − 1)2−n(I(X;Y )−ǫ) (2.6.14)

≤ ǫ + 2−n(I(X;Y )−R−ǫ) (2.6.15)

≤ ǫ (2.6.16)

for n sufficiently large and R < I(X; Y ) − ǫ.

Proof of converse

In the converse part it must be shown that any sequence of (2nR, n) code with P
(n)
e → 0

results in R ≤ C.

The joint p.d.f. of the tuple (W,Xn, Y n) can be written as

(W,Xn, Y n) ∼ p(w, xn, yn) = p(w)p(xn|w)
n

∏

i=1

p(yi|xi) (2.6.17)

where p(w) is assumed to be uniform over the message set, i.e., p(w) = 2−nR. By

Fano’s inequality,

H(W |Ŵ ) ≤ 1 + nRP (n)
e , nǫn (2.6.18)

where ǫn → 0 as n → ∞. Furthermore, since Ŵ is a function of Y n, data-processing

inequality implies that H(W |Y n) ≤ H(W |Ŵ ). We can now write

nR
(a)
= H(W ) (2.6.19)
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= I(W ; Y n) + H(W |Y n) (2.6.20)

(b)

≤ I(Xn; Y n) + nǫn (2.6.21)

= H(Y n) − H(Y n|Xn) + nǫn (2.6.22)

(c)
= H(Y n) −

n
∑

i=1

H(Yi|Xi) + nǫn (2.6.23)

(d)

≤
n

∑

i=1

H(Yi) −
n

∑

i=1

H(Yi|Xi) + nǫn (2.6.24)

=
n

∑

i=1

I(Xi; Yi) + nǫn (2.6.25)

≤ nC + nǫn (2.6.26)

where

(a) holds because the messages are uniformly distributed over the message set W ,

(b) follows from Fano’s inequality,

(c) can be justified considering the fact that the channel is memoryless, and each

channel putput yi is independent form other channel inputs xk, k 6= i given xi,

(d) follows form the fact that entropy of multiple random variables is less than sum

of entropies of those random variables.

And furthermore, by dividing to n we have

R ≤ C + ǫn (2.6.27)

where ǫn → 0 as n → ∞; and therefore, R ≤ C. �
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Xi Yi

Zi

Figure 2.3: Block diagram of a point to point continuous channel with additive white
Gaussian noise. The channel has a conditional probability mass function f(y|x).

Continuous alphabet

When the noise is additive Gaussian noise7 (which is the case in many practical

communication channels), the alphabet sets of the channel input and channel output

are assumed to be continuous.

Figure 2.3 depicts a point-to-point communication channel with additive white

Gaussian noise. As shown, the channel output Y = X + Z where Z is an additive

zero mean Gaussian noise with variance N , i.e., E[Z2] = N . The channel input X

is a zero mean random variable with power E[X2] limited to P . The noise and the

transmitted codeword are assumed to be independent. The capacity of this channel

can be written as

C = max
p(x)

I(X; Y ) (2.6.28)

= max
p(x)

[H(Y ) − H(Y |X)] (2.6.29)

= max
p(x)

[H(X + Z) − H(X + Z|X)] (2.6.30)

= max
p(x)

H(X + Z) − H(Z). (2.6.31)

7Noise in wireless communication channels mainly arises at the receiver because of the thermal
noise at the amplifiers. This thermal noise can be perfectly modeled by a Gaussian function. There
are, however, other sources of noise which are modeled differently. For instance, the noise in optical
communication channels can be modeled by a poisson arrival process.
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We must find a proper distribution for X that maximizes H(X + Z). Considering

Theorem 2.5.4, the distribution of X +Z must be normal so must be the distribution

of X because Z is already normal and summation of two normal distribution is normal

as well. Hence,

C = H(X + Z) − H(Z), where X ∼ N (0, P ) (2.6.32)

=
1

2
log

∣

∣2πeE[(X + Z)2]
∣

∣ −
1

2
log

∣

∣2πeE[Z2]
∣

∣ (2.6.33)

=
1

2
log

(

1 +
P

N

)

. (2.6.34)

2.7 Multiple Access Channel

Figure 2.4 demonstrates a Discrete Memoryless MAC (DM-MAC). As can be seen,

a DM-MAC consists of two8 encoders, two message sets, a memoryless channel with

probability transition matrix p(y|x1, x2), and one decoder. Encoder t assigns a code-

word Xn
t to each message wt ∈ Wt, where t = 1, 2 is the transmitter index. Decoder

maps the channel output Y n onto message estimations (ŵ1, ŵ2). A (2nR1 , 2nR2 , n) code

for the MAC consists of

1. Two message sets W1 =
{

1, 2, · · · , 2nR1
}

and W2 =
{

1, 2, · · · , 2nR2
}

. Like

the point-to-point case, we assume that the messages (w1, w2) are uniformly

distributed on W1 ×W2.

2. Two encoding functions that assign codewords xn
1 (w1) and xn

2 (w2) to each mes-

sage pair (w1, w2).

8In a more general case, a multiple access channel can include multiple senders and single receiver.
This case, however, can be easily studied by generalizing the multiple access channel with two senders
to that with multiple senders.
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Encoder 1

Encoder 2

Decoder

W1

(Ŵ1, Ŵ2)

W2

Xn
1

Xn
2

Y n

p(y|x1, x2)

Figure 2.4: A discrete memoryless MAC. Each encoder maps the message onto a
codeword and the decoder maps the channel putpuy Y n onto a pair of message esti-
mate (Ŵ1, Ŵ2). The channel has a conditional probability mass function p(y|x1, x2).

3. A decoding function g(·) that maps each channel output Y n onto the message

set W1 ×W2, i.e., (ŵ1, ŵ2) = g(yn), (ŵ1, ŵ2) ∈ W1 ×W2.

For the above mentioned channel, let Pr {(ŵ1, ŵ2) 6= (w1, w2)|(w1, w2) sent} be the

conditional probability of error given that the transmitted message is (w1, w2). Then,

the average probability of error P
(n)
e for a code (2nR1 , 2nR2 , n) can be defined as

P (n)
e =

1

2n(R1+R2)

∑

(w1,w2)∈W1×W2

Pr {(ŵ1, ŵ2) 6= (w1, w2)|(w1, w2) sent} . (2.7.1)

The capacity region of MAC was derived in [2].

2.8 Summary

In this chapter, necessary mathematical concepts and theorems were introduced.

Firstly, the concept of entropy and information measure have been defined. As dis-

cussed, the entropy is a necessary concept to define the distance between probability

functions and to define mutual information between two (or more) RVs. Then, the

concept of typical sequences and jointly typicality were introduced, and they were
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generalized to the continuous RV. Next, the fundamental capacity theorem of a sin-

gle user DMC was stated and the proof was given. Lastly, the MAC was mentioned

as an example of multi-user communication channels.



Chapter 3

Cognitive Radio

As mentioned before, cognitive radio is one of the most promising cooperative models.

It was mentioned in Chapter 1.1 that there has been a large number of works studying

this model. In this chapter, we introduce the Casual Cognitive Radio mathematical

model, and then, study its achievable performance. A practical Gaussian case is

illustrated and compared with existing results.

3.1 Mathematical Channel Model

Consider the discrete memoryless IC-CUC as illustrated in Fig. 3.1. The discrete

memoryless IC-CUC is denoted by (X1×X2, p(y1, y2, y|x1, x2),Y1×Y2×Y), where X1

and X2 are the finite input alphabets of the primary and secondary users respectively,

Y1 and Y2 are the finite output alphabets of receivers 1 and 2 respectively, and

p(·, ·, ·|x1, x2) is a collection of probability distributions on Y1×Y2×Y given (x1, x2) ∈

X1 ×X2. Following the standard notation adopted in [11], we define a (2nR1 , 2nR2 , n)

code for the IC-CUC in the following.

Definition 3.1.1. A
(

2nR1 , 2nR2 , n
)

code for the IC-CUC consists of two message
sets W1 = {1, 2, . . . , 2nR1} for the primary user and W2 = {1, 2, . . . , 2nR2} for the

31
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secondary user, an encoding function

X1 : {1, 2, . . . , 2nR1} → X n
1 ,

a set of functions {fi}
n
i=1 which will be termed as broadcasting relay functions such

that
x2i = fi

(

w2, Y
i−1

)

,

with w2 ∈ W2, and Y i−1 = (Y1, Y2, . . . , Yi−1), and two decoding functions

g1 : Yn
1 → W1, g2 : Yn

2 → W2.

It should be noted that the broadcasting relay (the secondary user) is non-anticipating.

This means that the current output of the secondary user (x2) depends only on the

past received samples as well as the message w2. The channel is assumed to be memo-

ryless; therefore, for any choice of p(w1), p(w2), encoding functions, and broadcasting

relay functions, the probability mass function over W1×W2×X n
1 ×X n

2 ×Yn
1 ×Yn

2 ×Yn

is given by

p(w1, w2, xn
1 , xn

2 , yn
1 , yn

2 , yn) = p(w1)p(w2)

×
n

∏

i=1

p(xi1|w1)p(x2i|w2, yi−1)p(y1i, y2i, yi|x1i, x2i).

Note by Eerr, the event that an error happens in decoder 1 or 2. The average proba-

bility of error (happening the event Eerr) of the code is defined by

P (n)
e =

1

2n(R1+R2)

∑

w1,w2

Pr















g1(Y
n
1 ) 6= w1

or

g2(Y
n
2 ) 6= w2

∣

∣

∣

∣

∣

w1, w2

sent















.

The probability of error is calculated under the uniform distribution over the code-

words w1 ∈ W1 and w2 ∈ W2.

Definition 3.1.2. A rate pair (R1, R2) is called achievable for the IC-CUC if there

is a sequence of
(

2nR1 , 2nR2 , n
)

codes with P
(n)
e → 0. The capacity region of the

IC-CUC is the union of set of all achievable rates.

In this dissertation, the primary and secondary users are also referred to as sender

1 and sender 2 respectively as depicted in Fig. 3.1.
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Enc1

Enc2

g1

g2

x1

x2

y1

y2

y

w1

w2

ŵ1

ŵ2

p(y1, y2, y|x1, x2)

Sender 1

Sender 2

Figure 3.1: Channel model for an IC-CUC, a causal configuration for the CR. x1 and
x2 are the channel inputs, and y1, y2, y are the channel outputs.

X1

Y : X2

Y1

Y2

Figure 3.2: A mnemonic channel diagram for the IC-CUC. Solid lines represent the
communication channel between a sender and the receiver.

3.2 An Achievable Rate Region

In this section, we establish an achievable rate region for the IC-CUC by using a com-

bination of different coding schemes. The coding scheme needs to take into account

the dual roles of the sender 2, which acts as a relay to cooperate with the primary

user as well as a sender to transmit its own message to receiver 2. Thus, the sender

2 can be thought as a relay which broadcasts two sets of messages.

In order to demonstrate the achievable region for an IC-CUC, auxiliary random

variables Q, U11, U12, U21, U22, X11, X12, X21, and X22 are defined over the finite sets

Q, U11, U12, U21, U22, X11, X12, X21, and X22 in a random coding argument, where Q

plays the role of a time-sharing random variable [11]. Denote by P the set of all joint
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probability distributions p(·) on Z that can be decomposed as

p(z) = p(u11|q)p(u12|q)p(u21|q)p(u22|q)

×p(x11|u11, q)p(x12|u12, q)p(x21|u21, q)

×p(x22|u22, q)p(x1|x11, x12, q)

×p(x2|x21, x22, u11, u12, q)

×p(y1, y2, y|x1, x2), (3.2.1)

where Z = (Q, U11, U12, U21, U22, X11, X12, X21, X22, X1, X2, Y1, Y2, Y ).

Theorem 3.2.1. For an IC-CUC any non-negative rate pair (R1, R2), where R1 =
R11 + R12, R2 = R21 + R22, satisfying

R11 ≤ I(X11; Y |U11U12X12Q), (3.2.2)

R12 ≤ I(X12; Y |U11U12X11Q), (3.2.3)

R11 + R12 ≤ I(X11X12; Y |U11U12Q), (3.2.4)

R11 ≤ I(X11; Y1|X12X21U11U12U21Q)

+I(U11; Y1|U12U21Q), (3.2.5)

R12 ≤ I(X12; Y1|X11X21U11U12U21Q)

+I(U12; Y1|U11U21Q), (3.2.6)

R11 + R12 ≤ I(X11X12; Y1|X21U11U12U21Q)

+I(U11U12; Y1|U21Q), (3.2.7)

R11 + R21 ≤ I(X11X21; Y1|X12U11U12U21Q)

+I(U11U21; Y1|U12Q), (3.2.8)

R12 + R21 ≤ I(X12X21; Y1|X11U11U12U21Q)

+I(U12U21; Y1|U11Q), (3.2.9)

R11 + R12 + R21 ≤ I(X11X12X21; Y1|U11U12U21Q)

+I(U11U12U21; Y1|Q), (3.2.10)

R21 ≤ I(X21; Y2|X12X22U12U21U22Q)

+I(U21; Y2|U12U22Q), (3.2.11)

R22 ≤ I(X22; Y2|X12X21U12U21U22Q)

+I(U22; Y2|U12U21Q), (3.2.12)



35

R12 + R21 ≤ I(X12X21; Y2|X22U12U21U22Q)

+I(U12U21; Y2|U22Q), (3.2.13)

R12 + R22 ≤ I(X12X22; Y2|X21U12U21U22Q)

+I(U12U22; Y2|U21Q), (3.2.14)

R21 + R22 ≤ I(X21X22; Y2|X12U12U21U22Q)

+I(U21U22; Y2|U12Q), (3.2.15)

R12 + R21 + R22 ≤ I(X12X21X22; Y2|U12U21U22Q)

+I(U12U21U22; Y2|Q), (3.2.16)

is achievable for some Z ∈ P.

Proof Outline: The key idea in Theorem 3.2.1 is to use regular encoding at the

senders and sliding-window decoding [47] at the receivers. The rate of each sender is

split into two parts Rt1 and Rt2 such that Rt = Rt1 + Rt2, t = 1, 2. Therefore, sender

t has message indices wt1 ∈ {1, 2, . . . , 2nRt1}, and wt2 ∈ {1, 2, . . . , 2nRt2}, t = 1, 2 to

send. By splitting the rate, receiver 1 (or 2) can also decode a part of the message

of sender 2 (or 1) instead of treating it entirely as noise. During the encoding phase,

sender 1 sends xn
1 (w11,b, w12,b|w11,b−1, w12,b−1) in block b. Before sending the block b,

sender 2 decodes messages of sender 1 in the previous block, i.e., w11,b−1, w12,b−1. Then,

sender 2 superimposes its messages, i.e., w21,b, w22,b, onto w11,b−1, w12,b−1 and its own

messages in the previous block and sends xn
2 (w21,b, w22,b|w11,b−1, w12,b−1, w21,b−1, w22,b−1)

in the block b. After receiving block b, receiver 1 decodes the message tipple

(ŵ11,b−1, ŵ12,b−1, ŵ21,b−1), and receiver 2 decodes the message tipple

( ˆ̂w12,b−1, ˆ̂w21,b−1, ˆ̂w22,b−1).

Note that in [41, Theorem 3], the messages at sender 2 is not split, and instead

is treated entirely as noise at its non-pairing receiver. This encoding approach may

potentially reduce the achievable rate region.
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Proof of Theorem 3.2.1

As mentioned before, in order to represent the achievable region for the IC-CUC in

Theorem 3.2.1, auxiliary random variables Q, Utr, and Xtr are defined over the finite

sets Q, Utr, and Xtr in a random coding argument where t, r = 1, 2. Therefore, the

family p(q, u11, u12, u21, u22, x11, x12, x21, x22, x1, x2, y1, y2, y) can be written as (3.2.1).

A regular block Markov superposition coding argument similar to [47] is used. For

notational simplicity, the time-sharing random variable Q is omitted throughout the

proof, but it can be easily substituted back using a standard time-sharing argument

(see [11], [10] for details).

Codebook generation:

• Generate 2nRtr i.i.d. codewords un
tr(w

′
tr), w′

tr ∈ Wtr = {1, . . . , 2nRtr}, according

to
∏n

i=1 p(utri) where t, r = 1, 2.

• For each codeword un
tr(w

′
tr), generate 2nRtr i.i.d. codewords xn

tr(wtr, w
′
tr), wtr ∈

Wtr, according to

∏n

i=1 p(xtri|utri(w
′
tr)) where t, r = 1, 2.

• For each message tuple (w11, w12, w
′
11, w

′
12), generate an i.i.d. codeword

xn
1 (w11, w12, w

′
11, w

′
12) according to

∏n

i=1 p(x1i|x11i(w11, w
′
11), x12i(w12, w

′
12)).

• For each message tuple (w′
11, w

′
12, w

′
21, w

′
22, w21, w22), generate an i.i.d. codeword

xn
2 (w21, w22, w

′
11, w

′
12, w

′
21, w

′
22) according to

∏n

i=1 p(x2i|x21i(w21, w
′
21), x22i(w22, w

′
22), u11i(w

′
11), u12i(w

′
12)).

Therefore, the codebook C0 is generated and revealed to all senders and receivers.

Repeating above process, another random codebook C1 similar to C0 is generated.
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These codebooks are used alternatively as follows: In block b the coodebook Cb mod 2

is used. Hence, codewords in two consecutive blocks are independent.

Encoding: In block b, sender 1 sends xn
1 (w11,b, w12,b, w11,b−1, w12,b−1) in order to

transmit the message pair (w11,b, w12,b) where wtr,b is the message being transmitted

in block b and wtr,b−1 is the message being transmitted in block b−1 for r, t = 1, 2. At

the beginning of block b, sender 2 has the estimation ¯̂w11,b−1, ¯̂w12,b−1, of the messages

of sender 1 in the previous block, i.e., w11,b−1, w12,b−1 (see the decoding part). In

the bth block, sender 2 sends xn
2 (w21,b, w22,b, w21,b−1, w22,b−1 ,̄̂ w11,b−1 ,̄̂ w12,b−1) in order

to transmit message pair (w21,b, w22,b). Note that the rate of senders 1 and 2 are

defined as R1 = R11 + R12 and R2 = R21 + R22 respectively.

Note that in block b, sender 2 knows U1r, r = 1, 2 part of the message being

transmitted by sender 1. Therefore, sender 2 can use dirty paper coding [7] to mitigate

the interference effect caused by sender 1 at receiver 2. This encoding scheme has

been used in [5] for interference channels with conferencing. However, whether it can

outperform the encoding scheme adopted in this paper is not clear and is currently

under investigation.

Decoding: At the relay, we apply the regular encoding sliding-window decoding [27,

47], which achieves the same rate as the irregular encoding successive decoding [10]

for the single relay channel. At the end of block b, decoding happens at the sender

2, receiver 1, and receiver 2 simultaneously.

Sender 2 declares that ( ¯̂w11,b, ¯̂w12,b) was sent if there is a unique message pair

( ¯̂w11,b, ¯̂w12,b) ∈ W11 ×W12 such that

(

xn
11(

¯̂w11,b, w11,b−1), x
n
12(

¯̂w12,b, w12,b−1),u
n
11(w11,b−1), u

n
12(w12,b−1), Y

n
b

)

∈ T (n)
ǫ , (3.2.17)
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if such a pair exists and is unique; otherwise, an error is declared.

Receiver 1 declares that message triple (ŵ11,b−1, ŵ12,b−1, ŵ21,b−1) ∈ W11×W12×W21

is sent such that in both blocks b and b − 1

(

un
11(ŵ11,b−1), u

n
12(ŵ12,b−1), u

n
21(ŵ21,b−1), Y

n
1,b

)

∈T (n)
ǫ , (3.2.18)

(

xn
11(ŵ11,b−1, w11,b−2), x

n
12(ŵ12,b−1, w12,b−2),

xn
21(ŵ21,b−1, w21,b−2), u

n
11(w11,b−2),

un
12(w12,b−2), u

n
21(w21,b−2), Y

n
1,b−1)

)

∈T (n)
ǫ , (3.2.19)

if such a message triple exists and is unique; otherwise, an error is declared.

Receiver 2 declares that message triple ( ˆ̂w12,b−1, ˆ̂w21,b−1, ˆ̂w22,b−1) ∈ W12×W21×W22

is sent such that in both blocks b and b − 1

(

un
12(

ˆ̂w12,b−1), u
n
21(

ˆ̂w21,b−1), u
n
22(

ˆ̂w22,b−1), Y
n
2,b

)

∈T (n)
ǫ , (3.2.20)

(

xn
12(

ˆ̂w12,b−1, w12,b−2), x
n
21(

ˆ̂w21,b−1, w21,b−2),

xn
22(

ˆ̂w22,b−1, w22,b−2), u
n
12(w12,b−2),

un
21(w21,b−2), u

n
22(w22,b−2), Y

n
2,b−1

)

∈T (n)
ǫ , (3.2.21)

if such a message triple exists and is unique; otherwise, an error is declared. Table 3.1

summarizes the encoding and decoding process for Theorem 3.2.1. As can be seen,

during the first block, receivers 1 and 2 do not decode any message. In other words,

the actual rate of senders are b−1
b

Rt, t = 1, 2. This rate, however, approaches Rt as

b → ∞.

Analysis of Probability of Error: To obtain the probability of error for de-

coding in block b, we assume that no error has been made in decoding the previous
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b − 1 blocks. On the other hand, the codewords are independently and uniformly

generated. In addition, the codebook in the block b is independent of that in block

b − 1. Therefore, without loss of generality, it can be assumed that in blocks b − 1

and b, the messages wtr,b−1 = 1, and wtr,b = 1 were sent for r, t = 1, 2. Moreover, we

state the following definition and lemma as they will be frequently used in the proof.

Considering (3.2.17) – (3.2.21), we define events E(·), E1u(·), E1x(·), E2u(·), and

E2x(·) as (3.2.22) – (3.2.26) respectively.

E(ijkl):={(xn
11(i, k), xn

12(j, l), u
n
11(k), un

12(l), y
n) ∈ T (n)

ǫ }, (3.2.22)

E1u(ijk):={(un
11(i), u

n
12(j), u

n
21(k), yn

1 ) ∈ T (n)
ǫ }, (3.2.23)

E1x(ijklmn):={(xn
11(i, l), x

n
12(j,m), xn

21(k, n), un
11(l),

un
12(m), un

21(n), yn
1

)

∈ T (n)
ǫ }, (3.2.24)

E2u(ijk):={(un
12(i), u

n
21(j), u

n
22(k), yn

2 ) ∈ T (n)
ǫ }, (3.2.25)

E2x(ijklmn):={(xn
12(i, l), x

n
21(j,m), xn

22(k, n), un
12(l),

un
21(m), un

22(n), yn
2 ) ∈ T (n)

ǫ }. (3.2.26)

Let the event that an error occurs at the sender 2 in block b be Ee,b(Y ). Therefore,

at the sender 2, an error in decoding (w11,b, w12,b) occurs with the probability

Pr(Ee,b(Y ))

= Pr(Ee,b(Y )|(w11,b, w12,b, w11,b−1, w12,b−1) = (1, 1, 1, 1))

= Pr
(

Ec(1111)
⋃

∪k 6=1E(k111)
⋃

∪l 6=1E(1l11)

⋃

∪k 6=1
l 6=1

E(kl11)
∣

∣1111
)

, (3.2.27)

where Ec(·) indicates the complement of the event E(·), and Pr(·) is the probability
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measure.

For a randomly i.i.d. generated codebook, the probability of the events E(k111),

E(1l11), and E(kl11) for k, l 6= 1 are the same as those for E(2111), E(1211), and

E(2211) respectively given that (w11,b, w12,b, w11,b−1, w12,b−1) = (1, 1, 1, 1) was sent.

On the other hand, according to joint asymptotic equipartition property (AEP) [11,

Theorem 15.2.1], Pr(Ec(1111)|1111) approaches to zero when n → ∞. We further

apply the union bound to (3.2.27) and we will have

Pr(Ee,b(Y ))

≤ (2nR11 − 1)P (E(2111)|1111) +

(2nR12 − 1)P (E(1211)|1111) +

(2nR11 − 1)(2nR12 − 1)P (E(2211)|1111). (3.2.28)

Moreover, by letting s1 = {xn
11}, s2 = {yn}, and s3 = {un

11, u
n
12, x

n
12}, it directly follows

from Theorem 2.4.3 that

Pr(E(2111)|1111)
.
= 2−nI(X11;Y |U11U12X12)±6ǫ).

Note that given the message tuple (w11,b, w12,b, w11,b−1, w12,b−1) = (1, 1, 1, 1) was sent

, the probability mass function P (xn
11(2, 1), xn

12(1, 1), un
11(1), un

12(1), yn) can be de-

composed as P (xn
11(2, 1)|xn

12(1, 1), un
11(1), un

12(1)) × P (yn|xn
12(1, 1), un

11(1), un
12(1)) ×

P (xn
12(1, 1), un

11(1), un
12(1)).

Using the same approach, by adopting s1 = {xn
12}, s2 = {yn}, and s3 = {un

11, u
n
12, x

n
11},

we have

Pr(E(1211)|1111)
.
= 2−n(I(X12;Y |U11U12X11)±6ǫ),

and further,

Pr(E(2211)|1111)
.
= 2−n(I(X11X12;Y |U11U12)±6ǫ),
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as n → ∞. By substituting these quantities in (3.2.28), we have Pr(Ee,b(Y )) → 0

when n is sufficiently large and (3.2.2) – (3.2.4) hold.

Denote by Ee,b(Y1)the event that an error occurs at the receiver 1 in block b. At the

receiver 1, an error in decoding (ŵ11,b−1, ŵ12,b−1, ŵ21,b−1) occurs with the probability

Pr(Ee,b(Y1))

= Pr
(

Ee,b(Y1)|(w11,b−1, w12,b−1, w21,b−1, w11,b−2,

w12,b−2, w21,b−2) = (1, 1, 1, 1, 1, 1)
)

= Pr
(

(Ec
1u(111) ∪ Ec

1x(111111))

⋃

∪k 6=1(E1u(k11) ∩ E1x(k11111))

⋃

∪l 6=1(E1u(1l1) ∩ E1x(1l1111))

⋃

∪k 6=1
l 6=1

(E1u(kl1) ∩ E1x(kl1111))

⋃

∪ k 6=1
m6=1

(E1u(k1m) ∩ E1x(k1m111))

⋃

∪ l 6=1
m6=1

(E1u(1lm) ∩ E1x(1lm111))

⋃

∪ k 6=1
l 6=1
m6=1

(E1u(klm) ∩ E1x(klm111))
∣

∣111111
)

, (3.2.29)

where E1u(·) ∩ E1x(·) means that both events E1u(·) and E1x(·) happen simultane-

ously. Note that the codebooks in two consecutive blocks are independent; hence, the

probability of E1u(·) ∩ E1x(·) can be written as a product of probabilities of E1u(·)

and E1x(·). By applying the union bound to (3.2.29) and using the same argument

as that used to compute (3.2.27), we have

Pr(Ee,b(Y1)) ≤

(2nR11 − 1) Pr(E1u(211)|111) Pr(E1x(211111)|111111) +

(2nR12 − 1) Pr(E1u(121)|111) Pr(E1x(121111)|111111) +
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(2nR11 − 1)(2nR12 − 1) Pr(E1u(221)|111) Pr(E1x(221111)|111111) +

(2nR11 − 1)(2nR21 − 1) Pr(E1u(212)|111) Pr(E1x(212111)|111111) +

(2nR12 − 1)(2nR21 − 1) Pr(E1u(122)|111) Pr(E1x(122111)|111111) +

(2nR11 − 1)(2nR12 − 1)(2nR21 − 1) ×

Pr(E1u(222)|111) Pr(E1x(222111)|111111), (3.2.30)

where Pr(E1u(·)|111) denotes the probability of E1u(·) given that massage triple

(w11,b−1, w12,b−1, w21,b−1) = (1, 1, 1) was sent, and Pr(E1x(·)|111111) denotes the prob-

ability of event E1x(·) given that massage tuple

(w11,b−1, w12,b−1, w21,b−1, w11,b−2, w12,b−2, w21,b−2) = (1, 1, 1, 1, 1, 1) was sent.

Let s1 = {un
11}, s2 = {yn

1 }, and s3 = {un
12, u

n
21}. By applying Theorem 2.4.3, we

have

Pr(E1u(211)|111)
.
= 2−n(I(U11;Y1|U12U21)±6ǫ). (3.2.31)

Using a similar argument for each of Pr(E1u(·)|111) in (3.2.30), it can be written that

Pr(E1u(121)|111)
.
= 2−n(I(U12;Y1|U11U21)±6ǫ), (3.2.32)

Pr(E1u(221)|111)
.
= 2−n(I(U11U12;Y1|U21)±6ǫ), (3.2.33)

Pr(E1u(212)|111)
.
= 2−n(I(U11U21;Y1|U12)±6ǫ), (3.2.34)

Pr(E1u(122)|111)
.
= 2−n(I(U12U21;Y1|U11)±6ǫ). (3.2.35)

The probability of E1u(222) given message triple (w11,b−1, w12,b−1, w21,b−1) = (1, 1, 1)

was sent can be computed as

Pr(E1u(222)|111)

=
∑

(un
11,un

12,un
21,yn

1 )∈T
(n)
ǫ

p(un
11, u

n
12, u

n
21, y

n
1 )
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(a)
= |T (n)

ǫ |p(un
11)p(un

12)p(un
21)p(yn

1 )
(b).
= 2n(H(U11U12U21Y1)±2ǫ)2−n(H(U11)±ǫ)2−n(H(U12)±ǫ)

×2−n(H(U21)±ǫ)2−n(H(Y1)±ǫ)

(c).
= 2n(H(U11U12U21Y1)±2ǫ)2−n(H(U11U12U21)±3ǫ)

×2−n(H(Y1)±ǫ)

.
= 2−n(I(U11U12U21;Y1)±6ǫ), (3.2.36)

where

(a) follows from the fact that codewords are generated randomly, identically, and

independently.

(b) follows from [11, Theorem 15.2.1],

(c) can be justified by considering [11, Theorem 15.2.1] and the fact that U11, U12,

and U21 are generated independently.

To calculate Pr(E1x(211111)) given (w11,b−1, w12,b−1, w21,b−1, w11,b−2, w12,b−2, w21,b−2) =

(1, 1, 1, 1, 1, 1), let s1 = {xn
11}, s2 = {yn

1 }, and s3 = {xn
12, x

n
21, u

n
11, u

n
12, u

n
21}, and then,

apply Theorem 2.4.3. Therefore, Pr(E1x(211111)|111111) can be written as

Pr(E1x(211111)|111111)
.
= 2−n(I(X11;Y1|X12X21U11U12U21)±6ǫ). (3.2.37)

Using a similar argument, the remaining probability terms in (3.2.30) can be com-

puted as follows

Pr(E1x(121111)|111111)
.
= 2−n(I(X12;Y1|X11X21U11U12U21)±6ǫ), (3.2.38)

Pr(E1x(221111)|111111)
.
= 2−n(I(X11X12;Y1|X21U11U12U21)±6ǫ), (3.2.39)
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Table 3.1: Summary of encoding and decoding processes for Theorem 3.2.1.

Block 1 2 · · · b − 1 b

X1

xn
1 (w11,1,
w12,1,
∅, ∅)

xn
1 (w11,2, w12,2,
w11,1, w12,1)

· · ·
xn

1 (w11,b−1, w12,b−1,
w11,b−2, w12,b−2)

xn
1 (w11,b, w12,b,
w11,b−1,
w12,b−1)

X2

xn
2 (w21,1,
w22,1,

∅, ∅, ∅, ∅)

xn
2 (w21,2, w22,2,
w11,1, w12,1,
w21,1, w22,1)

· · ·
xn

2 (w21,b−1, w22,b−1,
w11,b−2, w12,b−2,
w21,b−2, w22,b−2)

xn
2 (w21,b, w22,b,
w11,b−1, w12,b−1,
w21,b−1, w22,b−1)

Y
¯̂w11,1, ¯̂w12,1

¯̂w11,2, ¯̂w12,2 · · · ¯̂w11,b−1, ¯̂w12,b−1
¯̂w11,b, ¯̂w12,b

Y1 ∅, ∅, ∅
ŵ11,1, ŵ12,1,

ŵ21,1
· · ·

ŵ11,b−2, ŵ12,b−2,
ŵ21,b−2

ŵ11,b−1, ŵ12,b−1,
ŵ21,b−1

Y2 ∅, ∅, ∅
ˆ̂w12,1,

ˆ̂w21,1, ˆ̂w22,1

· · ·
ˆ̂w12,b−2,

ˆ̂w21,b−2, ˆ̂w22,b−2

ˆ̂w12,b−1,
ˆ̂w21,b−1, ˆ̂w22,b−1

Pr(E1x(212111)|111111)
.
= 2−n(I(X11X21;Y1|X12U11U12U21)±6ǫ), (3.2.40)

Pr(E1x(122111)|111111)
.
= 2−n(I(X12X21;Y1|X11U11U12U21)±6ǫ), (3.2.41)

Pr(E1x(222111)|111111)
.
= 2−n(I(X11X12X21;Y1|U11U12U21)±6ǫ). (3.2.42)

By substituting these probabilities into (3.2.30), we have Pr(Ee,b(Y1)) → 0 when

n is sufficiently large and (3.2.5) – (3.2.10) hold.

We further define the event that an error occurs in the block b at receiver 2

by Ee,b(Y2). In a similar manner, we can obtain the probability of error in decoding

( ˆ̂w12,b−1, ˆ̂w21,b−1, ˆ̂w22,b−1) at receiver 2, i.e., Pr(Ee,b(Y2)). The procedure for calculating

the Pr(Ee,b(Y2)) can be imitated from that for Pr(Ee,b(Y1)) (i.e., (3.2.29) – (3.2.35),

and (3.2.37) – (3.2.42)) by slight changes in indices. By doing so, it can be seen that

Pr(Ee,b(Y2)) → 0 when n → ∞ and (3.2.11) – (3.2.16) hold.

Finally, it must be shown that any propensity for a catastrophic error propagation

through out the blocks is excluded. We do this step using the same approach as
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that in [10, 47]. Denote the union of the Ee,b(Y ), Ee,b(Y1), and Ee,b(Y2)by Fb, i.e.,

Fb = Ee,b(Y ) ∪ Ee,b(Y1) ∪ Ee,b(Y2). In other words, Fb is the event of an error (false

decoding) in block b at the receivers 1, 2, or sender 2. Also, denote the complement

of this event (no error occurs in the block b) by F c
b . Now, the probability of error can

be written as

P (n)
e = Pr

(

∪b
i=1Fi

)

= Pr
(

∪b
i=1

(

Fi − ∪i−1
j=1Fj

))

=
b

∑

i=1

Pr
(

Fi ∩ F c
1 ∩ F c

2 · · · ∩ F c
i−1

)

≤
b

∑

i=1

Pr
(

Fi|F
c
1 ∩ F c

2 · · · ∩ F c
i−1

)

. (3.2.43)

Thus, if Pr
(

Fi|F
c
1 ∩ F c

2 · · · ∩ F c
i−1

)

→ 0, i = 1, . . . , b, then P
(n)
e → 0. �

As mentioned before, sender 2 in Theorem 3.2.1 acts as a DF relay. Therefore, as

a subtle assumption, the channel output Y1 should be a degraded form of Y for this

coding scheme; otherwise, the rate of sender 1 is unnecessarily limited by the sender

2.

An alternative approach for decoding at receivers can be backward decoding [50].

Although it rises to large delay, the backward decoding can give a simplified descrip-

tion for the achievable rate region. It has also been shown that the backward decoding

outperforms sliding-window and successive decoding in the channels involving mul-

tiple access [48, 45], or in other words, channels with multi independent sources.

This potential improvement of backward decoding over sliding widow decoding in

our scenario (where the sources are not thoroughly independent) is currently under

investigation.

As can be seen, the rate region, {(R1, R2)}, in Theorem 3.2.1 is given in an
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Figure 3.3: Comparison between achievable rate regions in the Gaussian CCR (GIC-
CUC): (I) IC (HK rate region), (II) CCR in [13] when c2 = 10, (III) Theorem 3.2.1
when c = 1, (IV) Theorem 3.2.1 when c2 = 10. Channel parameters are P1 = 6,
P2 = 6, N = 1, N1 = 1, N2 = 1, a = 0.55, and b = 0.55.

implicit form. We further apply the well-known Fourier-Motzkin elimination to obtain

an explicit rate region. Define the right hand sides of (3.2.5) – (3.2.16), (3.2.2) –

(3.2.4) as c1, c2, . . . , c15 respectively, and define a1 = min{c1, c15}, a2 = min{c2, c16},

a4 = min{c3, c17}, ai = ci (i = 4, 5, 6, . . . , 15). The derivation procedure is shown in

Appendix A and only the final result is presented here. The explicit rate region is

given as

R1 ≤ min{a1 + a5, a1 + a9, a2 + a4, a6, a4 + a5, a4 + a9,

a1 + a10, a1 + a2, a3}, (3.2.44)
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Figure 3.4: Comparison between achievable rate regions in the Gaussian CCR (GIC-
CUC): (I) IC (HK rate region), (II) CCR in [13] when c2 = 10, (III) Theorem 3.2.1
when c = 1, (IV) Theorem 3.2.1 when c2 = 10. Channel parameters are P1 = 6,
P2 = 1.5, N = 1, N1 = 1, N2 = 1, a = 0.55, and b = 0.55.

R1 + R2 ≤ min{a4 + a12, a1 + a5 + a8, a1 + a9 + a8, a2 +

a4 + a8, a6 + a8, a1 + a5 + a10, a1 + a9 + a10,

a2 + a4 + a10, a6 + a10, a1 + a4 + a10,

a1 + a5 + a10, a1 + a7 + a10, a1 + a9 + a10,

a4 + a10,
1
2(a1 + a4 + a10 + a12), a1 + a12}, (3.2.45)

R2 ≤ min{a4 + a8, a5 + a8, a7 + a8, a8 + a9, a4 + a10,

a5 + a10, a7 + a10, a9 + a10, a11, a12}, (3.2.46)
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Figure 3.5: Achievable rate region for (I) HK region, (II) GIC-CUC when c2 = 1,
and (III) GIC-CUC when c2 = 10. Other channel parameters are P1 = 1.5, P2 = 6,
N = 1, N1 = 1, N2 = 1, a = 0.55, and b = 0.55. The point on the boundary
of the regions marked by RCRdemonstrates the achievable rate by sender 1 as if no
interference is caused by sender 2.

3R1 + 2R2 ≤ min{2(a1 + a10) + a4 + a5, 2(a1 + a10) + a4 + a9}, (3.2.47)

R1 + 2R2 ≤ min{a4 + a5 + 2a8, a4 + a9 + 2a8, a4 + a5 + 2a10,

a4 + a9 + 2a10, a4 + a8 + a12, a4 + a10 + a12}, (3.2.48)

2R1 + R2 ≤ min{2a1 + a5 + a10, 2a1 + a9 + a10, a1 + a6 + a10,

a1 + a2 + a4 + a10 }. (3.2.49)

Further, the region in Theorem 3.2.1 is illustrated for the Gaussian case in Figs. 3.3,
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Figure 3.6: Achievable rate region for GIC-CUC for channel parameters P1 = 6,
P2 = 6, N = 1, N1 = 1, N2 = 1, c2 = 10, (I) a = 0.74, and b = 0.74, (II) a = 0.2, and
b = 0.54, (III) a = 0.54, and b = 0.2, (IV) a = 1.5, and b = 1.5. The point on the
boundary of the regions marked by RCR denotes the achievable rate by sender 1 as
if no interference is caused by sender 2.

3.4, 3.5, and 3.6.

3.3 The Gaussian IC-CUC

In this section, the achievable rate region in Theorem 3.2.1 is demonstrated for the

Gaussian IC-CUC (GIC-CUC). Without loss of the information-theoretic optimality,

the GIC-CUC can be converted into the GIC-CUC in the standard form through

invertible transformations. We thus only focus on the GIC-CUC in the standard
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form represented as follows:

Y1 = X1 + a X2 + Z1, (3.3.1)

Y2 = bX1 + X2 + Z2, (3.3.2)

Y = c X1 + Z, (3.3.3)

where Z1, Z2, and Z are additive white Gaussian noises whose powers are N1, N2,

and N respectively. X1 and X2 are the inputs of Gaussian IC-CUC with respective

maximum transmit powers P1 and P2. To compute the achievable rate region in

Theorem 3.2.1, all random variables in (3.2.1) should be mapped into gaussian random

variables. In order to map the generated codebook into Gaussian random variables,

normal kernels U11, U12, U21, U22, X ′
11 ,X ′

12, X ′
21, and X ′

22 with zero means and unit

variances are defined. Using these kernels for 0 ≤ αt, βt, γt, λ, ξ ≤ 1, and ᾱt = 1− αt,

β̄t = 1 − βt, γ̄t = 1 − γt, λ̄ = 1 − λ, ξ̄ = 1 − ξ, where t = 1, 2, the codebook can be

mapped as

X11 =
√

γ1α1P1 X ′
11 +

√

γ1ᾱ1P1 U11, (3.3.4)

X12 =
√

γ̄1β1P1 X ′
12 +

√

γ̄1β̄1P1 U12, (3.3.5)

X1 = X11 + X12, (3.3.6)

X21 =
√

λγ2α2P2 X ′
21 +

√

λγ2ᾱ2P2 U21, (3.3.7)

X22 =
√

λγ̄2β2P2 X ′
22 +

√

λγ̄2β̄2P2 U22, (3.3.8)

X2 = X21 + X22 +

√

λ̄ξP2 U11 +

√

λ̄ξ̄P2 U12. (3.3.9)

By this mapping, the mutual information terms in (3.2.2) – (3.2.16) can be computed.

In a general sense, the interference channel (IC), when there is no cooperation

between either senders or receivers, can be thought as a special case of the CCR
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(see [13, Protocol 3]). The HK region is the best known achievable rate region for

this channel [20]. In addition, [13] proposes three other protocols for the CCR and

derives the convex hull of all those four protocols as an achievable rate region for

CCR.

Figs. 3.3 and 3.4 illustrate and compare rate regions of HK region for IC, CCR

in [13], and Theorem 3.2.1. As demonstrated in Figs. 3.3 and 3.4, when there is a low

noise channel between sender 1 and CR (for example c2/N = 10 in this case), both

regions in [13] and Theorem 3.2.1 outperforms the HK rate region. On the other hand,

when this channel is noisy (for example c2/N = 1), the the rate region for CCR in [13]

almost reduces to HK rate region, while the rate region of Theorem 3.2.1 includes that

of HK. As shown in Figs. 3.3 and 3.4, the rate region in Theorem 3.2.1outperforms

that of the CCR in [13].

Fig. 3.5 shows the achievable rate region for the GIC-CUC when the sender 2 has

more power than sender 1. As can be seen, the sender 2’s cooperation can significantly

increase the rate of sender 1. Fig. 3.6 shows the achievable rate region for different

channel gains. As expected, the weaker interference results in better performance.

There is indeed an interesting point in this region (RCR) in which sender 1 can

achieve its point to point capacity, i.e, 0.5 log(1+P1/N1), as if there is no interference

caused by the sender 2. This point can be thought as a rate pair in which the cognitive

user does not degrade the performance of the primary user while having a non-zero

rate. In other words, the point may be considered as a performance criteria for the

cognitive radio. Therefore, the goal for cognitive users is to achieve maximum rate

while letting the primary user to have the point to point capacity.
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3.4 Summary

In this chapter, we proposed a coding scheme for the IC-CUC and derived an achiev-

able rate region for this channel. It was also shown that the derived achievable rate

outperforms that of CCR in [13] when the receiver 1 is a degraded form that of the

sender 2. This improvement becomes more pronounced as Y1 becomes more degraded

form Y (for example when c2/N ≫ 1 in the Gaussian channel).



Chapter 4

Conclusion

In this dissertation, we mainly studied the CR in an information theoretic perspec-

tive. For this purpose, the necessary mathematical tools were defined and introduced

in Chapter 2. Firstly, the concept of entropy as an information measure has been

defined. The entropy as a quintessential concept was used to define the distance of

probability distributions and mutual information between two (or more) RVs. Next,

the fundamental capacity theorem of a single user DMC was stated and the proof

was given according to what Shannon [38] had arrived at. As mentioned the proving

steps in this theorem tends to be a panacea for almost all other channels. In other

words, to achieve the capacity region, we first obtain an inner bound on capacity, and

then, an outer bound. If the inner and outer bounds completely overlap with each

other, the capacity is obtained. As it was shown (and also Shannon [38] showed), ran-

dom coding and jointly typical decoder achieve the capacity as the codeword length

approaches to infinity.1

1It is, however, interesting that such an inefficient decoder can achieve the capacity. There are
basically two different types of decoders. The first one is Maximum Likelihood (ML) decoder. In ML
decoder, the decoder calculates the probability of sent symbol given the received symbol. Then the
symbol with highest probability is declared as the transmitted symbol. The second type of decoders
is the Jointly Typical decider. This decoder compares that empirical probability of received codeword
and each of the possible transmitted codewords. Then, it declares the transmitted codeword if this

53
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Chapter 3 elaborates on the main contribution of this dissertation. In this chapter,

the new causal concurrent model for the CR was investigated. In this model, the

cognitive user has the dual role of relaying the message of the first user as well

as broadcasting its own message. Moreover, the nature of the channel is of the

interference channel. Therefore, a combination of coding methods is used to establish

the achievable rate region. First of all, the rates are split into two parts so that each

receiver can decode a part of other sender’s message instead of treating it entirely as

noise. Secondly, since there is one cooperative node (which is the CR), two blocks

of messages are superimposed onto each other. In other words, the CR decodes the

message of current block and will forward it in the next block. The performance

of the overall coding and decoding scheme is shown to outperform that of existing

results. This performance improves when the channel between the primary and the

secondary users has a high capacity. Also, it was shown that by implementing the

proposed coding scheme, the primary user can have its point to point capacity as if

there is no interference by the second user while the second user can have a nonzero

rate. Nonetheless, the performance of our coding scheme suffers severe degradation

when the channel between sender 1 and sender 2 is more noisy than the one between

sender 1 and receiver 1. This scenario happens when two senders are geometrically

far apart from each other.

As a future work, the case when the receiver 1 is not degraded from sender 2 can

be investigated. In this case, the compress and forward method [6, 10] should be

applied to the relay part of the model. Therefore, the CR is not obligated to decode

the message of the first sender thoroughly, and consequently, the rate of the first

empirical probability is close to the actual probability.
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sender will not be limited by the CR. In other words, the CR will not be a bottle

neck for the rate of the first user. Another interesting question to be addressed is

the capacity of the CR when the primary user holds the point to point capacity. In

addition, there seems to be some other techniques that can potentially enlarge the

achievable rate region. For instance, the known message at the CR can be treated as

a known state whose interference effect can be mitigated by incorporating Gel’fand

Pinsker binning method [19]. In other words, given that the Un
1r,b is known for the

second sender, DPC can be used to mitigate the interference effect on the second

sender.

As a cooperator, the CR can act selfishly meaning that it consumes all of its

power to transmit its own message. On the other hand, the CR can sacrifice and

allocate significant portion of its power to amplify the received state. In other words,

it can help to resolve the uncertainly about the first sender’s message at the primary

receiver. The optimum tradeoff between these two situations is interesting to be

investigated as a future work. On one hand, the CR can amplify the message of the

first user as a known state information [26]. On the other hand, the cognitive radio

might need to mask the message of the first user rather than conveying it. State

masking was studied in the work of Merhav and Shamai [32]. Masking of the state is

important to address the privacy issue. In other words, it is important to know how

much can be learned about the state at the second receiver form the channel output.

The cooperation discussed in this dissertation is unidirectional meaning that one

of the senders receive the message of the other one. This cooperation can also be

bidirectional. The bidirectional cooperation has been investigates under different

names [5, 41]. The overall rate region of an interference channel with bidirectional
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cooperation is the union of rate regions of that with cooperation from sender one to

the sender two and vise versa. The ultimate goal in interference channel with perfect

bidirectional cooperation is to reach the capacity of the MIMO broadcast channel.

This capacity has been obtained by Weingarten et al. [43] for the Gaussian channel.



Appendix A

Fourier Motzkin Elimination for

Theorem 3.2.1

As shown in Chapter 3, the rate region, {(R1, R2)}, in Theorem 3.2.1 is given in an

implicit form. To obtain the rate region in an explicit form, the Fourier Motzkin

elimination method [35, pp. 155–157] has to be applied.

The rate region in Theorem 3.2.1 is rewritten here again as

R11 ≤ a1,

R12 ≤ min{a2, a8},

R21 ≤ min{a3, a9},

R11 + R12 ≤ a4,

R11 + R21 ≤ a5,

R12 + R21 ≤ min{a6, a11},

R11 + R12 + R21 ≤ a7,

R22 ≤ a10,

R12 + R22 ≤ a12,

R21 + R22 ≤ a13,

57
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R12 + R21 + R22 ≤ a14.

Firstly, we replace R11, R12, R21, R22 with S1, T1, S2, T2 respectively, and add the

nonnegativity conditions on the rates. Hence,

S1 ≤ a1,

T1 ≤ min{a2, a8},

T2 ≤ min{a3, a9},

R1 ≤ a4,

S1 + T2 ≤ a5,

T1 + T2 ≤ min{a6, a11},

R1 + T2 ≤ a7,

S2 ≤ a10,

T1 + S2 ≤ a12,

R2 ≤ a13,

T1 + R2 ≤ a14,

−S1 ≤ 0,

−T1 ≤ 0,

−S2 ≤ 0,

−T2 ≤ 0.

Then, S1 and S2 will be substituted with their respective values R1 −T1 and R2 −T2.

Hence,

R1 − T1 ≤ a1,
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T1 ≤ min{a2, a8},

T2 ≤ min{a3, a9},

R1 ≤ a4,

R1 − T1 + T2 ≤ a5,

T1 + T2 ≤ min{a6, a11},

R1 + T2 ≤ a7,

R2 − T2 ≤ a10,

T1 + R2 − T2 ≤ a12,

R2 ≤ a13,

T1 + R2 ≤ a14,

−T1 ≤ 0,

−T2 ≤ 0,

−R1 + T1 ≤ 0,

−R2 + T2 ≤ 0.

Suppose the objective is now to eliminate the variable T1. To do so, we cluster these

equations in three groups. The first group contains all in inequalities in which sign of

T1 is positive. The second group contains all inequalities in which T1 has a negative

sign, and the rest will be in the third group. In other words,

T1 ≤ min{a2, a8},

T1 + T2 ≤ min{a6, a11},

T1 + R2 − T2 ≤ a12,

T1 + R2 ≤ a14,
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T1 − R1 ≤ 0,

−T1 ≤ 0,

−T1 + R1 ≤ a1,

−T1 + T2 + R1 ≤ a5,

T2 ≤ min{a3, a9},

R1 ≤ a4,

R1 + T2 ≤ a7,

R2 − T2 ≤ a10,

R2 ≤ a13,

−T2 ≤ 0,

−R2 + T2 ≤ 0.

Then, all the inequalities from the first group are added with all inequalities in the

second group, and as a result, there will be 5 × 3 = 15 new inequalities. These

inequalities in addition to the ones from the third group result in total 15 + 7 = 22

inequalities. The inequalities with a similar left hand side can be embedded together

and it can be written

T2 ≤ min{a3, a5, a6, a9, a11},

R1 + T2 ≤ min{a1 + a6, a1 + a11, a2 + a5, a5 + a8, a7},

R1 + 2T2 ≤ min{a5 + a6, a5 + a11},

R1 + R2 + T2 ≤ min{a5 + a14},

−R2 + T2 ≤ 0,

R2 − T2 ≤ min{a10, a11},
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R1 + R2 − T2 ≤ a1 + a12,

R1 ≤ min{a1 + a2, a1 + a8, a4},

R2 ≤ min{a13, a14},

R1 + R2 ≤ min{a1 + a14, a5 + a12}.

In the next step, the variable T2 has to be eliminated. To do so, the inequality set

will be grouped in a similar manner, and we will have

T2 ≤ min{a3, a5, a6, a9, a11},

T2 + R1 ≤ min{a1 + a6, a1 + a11, a2 + a5, a5 + a8, a7},

T2 +
1

2
R1 ≤

1

2
min{a5 + a6, a5 + a11},

T2 + R1 + R2 ≤ min{a5 + a14},

T2 − R2 ≤ 0,

−T2 + R2 ≤ min{a10, a11},

−T2 + R1 + R2 ≤ a1 + a12,

R1 ≤ min{a1 + a2, a1 + a8, a4},

R2 ≤ min{a13, a14},

R1 + R2 ≤ min{a1 + a14, a5 + a12}.

After eliminating T2 and embedding the appropriate inequalities, we will have

R1 ≤ min{a1 + a5, a1 + a9, a2 + a4, a6, a4 + a5, a4 + a9,

a1 + a10, a1 + a2, a3}, (A.0.1)

R1 + R2 ≤ min{a4 + a12, a1 + a5 + a8, a1 + a9 + a8, a2 +

a4 + a8, a6 + a8, a1 + a5 + a10, a1 + a9 + a10,
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a2 + a4 + a10, a6 + a10, a1 + a4 + a10,

a1 + a5 + a10, a1 + a7 + a10, a1 + a9 + a10,

a4 + a10,
1
2(a1 + a4 + a10 + a12), a1 + a12}, (A.0.2)

R2 ≤ min{a4 + a8, a5 + a8, a7 + a8, a8 + a9, a4 + a10,

a5 + a10, a7 + a10, a9 + a10, a11, a12}, (A.0.3)

3R1 + 2R2 ≤ min{2(a1 + a10) + a4 + a5, 2(a1 + a10) + a4 + a9}, (A.0.4)

R1 + 2R2 ≤ min{a4 + a5 + 2a8, a4 + a9 + 2a8, a4 + a5 + 2a10,

a4 + a9 + 2a10, a4 + a8 + a12, a4 + a10 + a12}, (A.0.5)

2R1 + R2 ≤ min{2a1 + a5 + a10, 2a1 + a9 + a10, a1 + a6 + a10,

a1 + a2 + a4 + a10 }, (A.0.6)

and that is the final step since we have the explicit rate region including only R1 and

R2.
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