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Summary 

One of the most important tasks in composing an XML query/update is to express the 

data semantics. XML data, especially data-centric ones, capture rich data semantics, 

including object classes, n-ary relationship types (n≥2), relationship attributes, 

functional dependencies, semantic dependencies, etc. Although indispensable to query 

writing and processing, these semantics are not captured by DTD or XML Schema 

(XSD). Instead, these data semantics are known by users or captured in a rich 

semantic data model such as ORA-SS. The current XML query standard, XQuery, is 

difficult to use due to it complex syntax and requirement of additional knowledge of 

data semantics. Therefore, two alternatives: keyword search and graphical languages 

(or graphical user interfaces) have been proposed to improve the usability of XML 

queries. Between the two approaches, a keyword query is too simple such that it is not 

able to precisely specify the structure or semantics of the query/result. As a 

consequence, keyword search only returns ranked approximate answers to users; and 

the recall and precision of the answers are not always high. Furthermore, the keyword 

search approach cannot express many queries operations such as grouping and join. 

On the other hand, graphical languages and graphical user interfaces (GUIs), which 

express the structure and query semantics for XML intuitively, are more powerful 

than keyword search. However, existing graphical XML query languages and GUIs 

are developed on the basis of DTD/XSD, thus they are flawed in expressing the rich 

data semantics. 
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In this thesis, we propose an expressive user-friendly graphical XML query 

language, named as GLASS, to address the difficulty of representing and interpreting 

complex queries semantics via/from (relatively) simple graphical notations. GLASS 

can explicitly and precisely express the rich data semantics, which are captured in 

ORA-SS, in both query condition and result construction. When a user does not know 

enough data semantics, GLASS can check whether the user’s query result is 

semantically meaningless and suggest possible revisions based on ORA-SS schema. 

In order to define the formal semantics of GLASS and support algebraic query 

optimization, a new algebra, called G-algebra, is proposed. In comparison with 

existing XML query algebra works, G-algebra is designed to support rich data 

semantics, and interpret the semantics of GLASS queries correctly and efficiently. It 

includes various distinctive operators for both query condition and result construction, 

such as swap, merge and group. Moreover, the rich data semantics that are not 

captured in DTD/XSD schemas should also be validated during XML data update. In 

order to reflect this, we derive a set of semantics constraints with respect to the ORA-

SS schema, among which, some constraints such as the semantic dependency have not 

been discussed in existing validation works for XML updates. In addition, we also 

propose tactics to speed up the update validation by avoiding unnecessary full-

document scan. 

Finally, as the SQLX has been widely accepted as a standard to publish XML 

data from an object-relational database (ORDB), a translation from GLASS to SQLX 

is presented. Here, the ORDB storage schema should reflect the rich data semantics in 

the XML data. We derive the ORDB storage schema from the ORA-SS schema. The 

translation result is executable for such XML repository in an ORDBMS (object-

relational database management system). 
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1 Introduction 

XML [69] data, especially the data-centric ones, may contain some important data 

semantics that are not captured in DTD or XML Schema [76] (XSD). Such data 

semantics, including object classes, object IDs, n-ary (n≥2) relationship types, 

relationship attributes, semantic dependencies, etc, are crucial to represent query 

conditions, specify result structures and perform content updates in XML. Although these 

rich data semantics are not included in DTD/XSD, they should be instead known by data 

owners or programmers, or described as additional rules, or captured in a rich semantic 

data model in order to write correct queries. Otherwise, without enough data semantics, 

many problems will occur in a structured XML query language (either textual or 

graphical): query semantics may not be precisely expressed, query operators in its algebra 

may not be correctly processed and update results can be semantically invalid. Such 

problems are inevitable to all existing XML query languages developed on the basis of 

DTD, XSD or their equivalents if a user does not know enough semantics. 

Given the importance of rich data semantics, we use ORA-SS to capture them, 

including object classes, object IDs, n-ary (n≥2) relationship types, relationship 

attributes, semantic dependencies, etc, in ORA-SS [45] (Object-Relationship-Attribute 

model for Semi-Structured data). Then, in this thesis, we present our research on 

graphical XML query languages based on the ORA-SS. We demonstrate how the rich 

data semantics are used to enhance the language express power, interpret query 

Chapter 1
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semantics and process query operators (in algebra) correctly and support validating 

semantic constraints during XML updates. 

1.1 The criteria of a good graphical XML query language 

Currently, the standard XML query language is XQuery [75]. XQuery is a powerful 

functional language with nested expressions but it is difficult to use especially for 

common users. XQuery concerns both query conditions and result constructions. Its 

FLWOR expressions are more like a programming language than a query language. To 

overcome the difficulty in the use of XQuery, many solutions have been proposed such 

as keyword search and graphical languages (and graphical user interfaces). 

Keyword search on XML data [17, 19, 43, 44, 46, 64, 66] is based on IR-style, 

which is highly desirable in the situations where a user may not know the data schema, 

or a user does not know how to express his/her search in a structured textual query 

language or the schema is so complex that he/she cannot easily formulate a query. 

Therefore, a keyword query is usually a list of words without explicit structural or 

semantic information; and the keyword search result can hardly recall all correct 

answers with a high precision. As a conclusion, keyword search is not designed to 

express queries requiring structural or semantic information such as grouping, join, 

user-defined result construction or XML updates. 

In comparison, graphical query languages [9, 12, 13, 18, 20, 34, 47, 48, 51, 53, 60] 

are often structured, which means a user is required to know the data schema (both data 

structure and semantics) and the syntax of the graphical language he/she uses. 

Nevertheless, the visual notations in a graphical language can intuitively represent the 

output structure, path navigation and query condition, which is more powerful than the 

keyword search approach and more user-friendly than textual languages such as XQuery. 

We summarize 3 criteria for designing a graphical XML query language. They 

are intuitiveness, correctness and expressiveness. 
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(1) Intuitiveness is the most important feature of a graphical query language. If the 

representation of a graphical query language is as complex as its textual equivalent 

expressions (e.g. the XQuery expressions), it loses the spirit of the graphical language 

even if it has the same expressive capability as the textual one. The criterion of 

intuitiveness indicates that the language design must keep the balance between the 

number of graphical notations and the complexity of graphical query representation. 

(2) Correctness requires that the graphical query must express the semantics of user 

queries exactly. In other words, a query graph should have a uniquely interpretation 

with respect to the semantics of a user-defined query. Because two XML data with the 

same DTD/XSD specification may contain totally different data semantics, we need to 

know the important data semantics to interpret a query and construct its result 

correctly. 

(3) Expressiveness indicates that a good graphical query language should be able to 

express various kinds of queries:  

 select, project and join (with respect to their counterparts in SQL),  

 aggregation (group-by) and aggregation functions,  

 logics (e.g. AND, OR), quantifiers (e.g. EXIST/FORALL), negation with 

quantifiers (e.g. NOT EXIST),  

 user-defined result reconstruction (e.g. construction of new nodes, swapping1) 

 data updates (e.g. insertion, deletion).  

The above three criteria is the core value we pursue in this thesis. The works in this 

thesis, from the design of our graphical query language to the extension of graphical 

XML update expressions, from the proposal of our query algebra to the semantic 

validation of XML updates, are all centered on the three criteria. 
                                                 
1 The swapping operation restructures an XML document by changing the hierarchical position of two XML 
element types. The two element types can be parent-child or ancestor-descendant. After the swapping, the position 
of the attribute types and sub-element types of the two swapped XML element types are also changed. 
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1.2 Research objectives 

In this thesis, we aim to investigate the methodology of designing a graphical query 

language for XML that satisfies the 3 criteria of a good graphical query language based 

on the rich data semantics. The specific research objectives are described as follows. 

(1) Design a graphical XML query language: 

So far, some research works have been proposed on graphical XML query 

languages. However, because the data models they used are poor in representing data 

semantics in XML, the present graphical XML query languages and GUIs ignore the 

rich data semantics that can be implicitly contained in XML data, especially data-

centric ones. As a consequence, they are limited in functionality where some important 

features in XQuery such as quantifiers, negation, swapping and updates are not 

supported, because these operations require the understanding of data semantics. 

Therefore, we design our graphical XML query language, named GLASS [53], based 

on the data semantics captured in ORA-SS. 

(2) Propose an algebra for our graphical XML query language: 

Although there have been several proposals of XML query algebra, none of them are 

proposed for graphical XML query languages. In our research, we notice that some kinds 

of queries that are difficult to write in XQuery can be elegantly and intuitively expressed 

by graphs. For example, to swap two element types in the tree hierarchy with their 

attributes and sub-element types is hard to write in XQuery but the graphical expression 

of swapping is straight forward. Therefore, we believe that graphical XML query 

languages have their own features in comparison with textual ones; and for such specific 

features in graphical XML query languages, it is necessary to propose an algebra that 

works for them. In our research, we propose G-algebra for GLASS based on ORA-SS. 

Based on our G-algebra, we define the formal semantics of our graphical XML query 

language and open the door of algebraic optimization for graphical XML queries. 

(3) Translate our graphical XML query language into the present query standard: 
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The translation between two query languages is a common application when the 

two languages are comparable with each other. Meanwhile, it is also a good method to 

apply a newly developed graphical query language in existing query engines that use 

textual query standards. In our research, having investigated the current research 

works from both academic and industrial fields, we consider storing our XML data in 

an object-relational database management system (ORDBMS) and translating our 

graphical XML query language into SQLX [70], an XML extended SQL standard. 

(4) Validate semantic constraints for XML updates: 

Recently, the XQuery standard has been extended to support XML updates. The 

XML updates bring the problem of validation that the updated XML data must conform 

to both structural and semantic constraints according to its schema. Although there have 

been a number of works presented on validating XML updates, only a few are 

concentrated on semantic constraints. These few works only consider keys and 

functional dependencies in XML data, which is far from enough to cover the semantics 

in ORA-SS schema. In this thesis, with respect to the ORA-SS, we derived a set of 

semantic constraints (including object IDs, relationship types, relationship attributes, 

and semantic dependencies) and validate them for XML updates. 

1.3 The contribution of this thesis 

To achieve the above research objectives, we propose our graphical XML query 

language, algebra, translation method and semantic validation in a step-wise fashion. 

First of all, we propose GLASS [53] (Graphical LAnguage for Semi-Structure data) 

and its extension for XML update (denoted as GLASSU) [56] on the basis of ORA-SS. In 

comparison with existing graphical XML query languages and GUIs, GLASS supports 

the rich data semantics that are explicitly or implicitly contained in XML such as 

relationship types, and relationship attributes, which is important for many application 

on data-centric XML data. Therefore, GLASS can express query correctly when 
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semantics are concerned. Meanwhile, GLASS combines the advantages of both 

graphical and textual languages where XML data structures and (simple) query 

conditions are expressed as graphs and complex query conditions/logics are written in a 

textual box which we call Condition Logic Window (CLW). As a result, GLASS is 

more flexible in use than current existing graphical XML query languages. 

Second, we propose G-algebra. G-algebra is proposed for GLASS. If the canonical 

data semantics are captured by an ORA-SS schema, G-algebra can use the rich data 

semantics to interpret GLASS queries correctly and guarantee semantically meaningful 

result. Moreover, according to the unique features of graphical XML query languages, G-

algebra extends the operator set of current XML query algebra where new operators such 

as grouping, merging and swapping are included. These operators need the concept of 

object classes, object IDs, n-ary (n≥2) relationship types and relationship attributes to be 

processed correctly. These rich data semantics are captured in ORA-SS schema. The 

operator set of G-algebra is presented in Chapter 4. G-algebra is proposed for two 

purposes: to define the formal semantics of GLASS and to support algebraic query 

optimization. 

The third contribution is the translation from GLASS to SQLX [55]. It is a trend 

that XML and traditional object-relational data will be combined into one database 

management system. They may share the same storage but be published in different 

formats. The object-relational storage should reflect the data semantics hidden in the 

XML data and consider the document order if it is important. In this thesis, our object-

relational storage schema is derived from the ORA-SS schema so that the semantics 

captured in ORA-SS schema is lossless in our XML repository. Based on our storage 

method, we are able to translate GLASS into SQLX correctly process the translation 

result in an ORDBMS such as Oracle 10g. 

Finally, we have done some preliminary research on semantic validation for XML 

updates and present it in the appendix of this thesis. We propose a set of semantic 
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constraints derived from ORA-SS schema and do semantic validation of these semantic 

constraints [54]. In comparison with present works on semantic validation, our set of 

semantic constraints includes object classes and object IDs, n-ary (n≥2) relationship 

types and their participation constraints, relationship attributes, functional and multi-

valued dependencies, and semantic dependencies, which are not captured in DTD/XSD 

schemas. Furthermore, we also propose two tactics: detecting duplicate instances and 

finding the first occurrence based on the semantics in ORA-SS to accelerate validation 

progress because we can avoid unnecessary full-document scan.  

We believe that, our work in this thesis has richly extended the research on 

graphical XML query languages, and GLASS (and the GLASSU extension) is an 

innovative and practical graphical XML query language. 

1.4 The organization of this thesis 

In this section, we outline the organization of this thesis.  

In Chapter 2, we compare our work in this thesis with other related work and give 

an overview of the ORA-SS. The rich data semantics captured in ORA-SS are used in 

all our research work in this thesis. 

In Chapter 3, we present GLASS with the extension works for updating XML data 

(aka. GLASSU). We demonstrate how we express various user queries and updates 

using our graphical notations via a series of examples with increasing complexity. In 

this chapter, we also discuss our translation algorithm from GLASS to SQLX. 

In Chapter 4, we propose the G-algebra and its operator set. The formal semantics 

of GLASS is defined in Chapter 5 with the translation from GLASS query graphs to G-

algebra expressions. The property of G-algebra operators and the algebraic optimization 

are then discussed in Chapter 6. 

In Chapter 7, we summarize the contribution of this thesis and highlight some 

future research directions. 
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2 Related Works 

With respect to the major contributions of this thesis, the related work will include the 

following 3 aspects. First of all, we give an overview of the existing graphical 

languages and graphical user interfaces (GUIs) of XML query such as XML-GL[12, 

13, 20]/XQBE[9], and QURSED[60]. We compare their effectiveness and weakness 

in expressing various user queries. Then, we review the state of art of XML query 

algebra. We compare existing research works such as XML Query Algebra [29, 73] 

and TAX [35] and show why they are insufficient to express graphical XML queries. 

After that, we review current works on XML update validation of both structural and 

semantic constraints. From the literature review, we explain the importance of 

semantic validation to XML updates. 

Finally, at the end of this chapter, we introduce the ORA-SS [45] model and the 

semantic information it captures. 

2.1 Graphical languages and GUIs of XML query 

A graphical XML query language is a language that uses visual components instead of 

merely text to represent the semantics of XML queries. In some sense, a graphical 

query language is a special case of a graphical query user interface. Traditionally, GUIs 

of XML query use predefined forms to pose conditions and return results. In contrast, a 

Chapter 2
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graphical query language is more flexible because users can express more complex 

query conditions such as aggregation and define their own output structure. 

The first graphical query language may be the QBE (Query By Example) of IBM in 

1970s [22]. QBE brings a completely new concept and provides users the freedom of 

query. An important milestone in graphical query language is G-log [61]. G-log is a 

declarative query language based on graphs combined with the expressive power of logic. 

It is claimed as a non-deterministic complete query language that can express a large 

variety of queries for both structured and semistructured data. However, G-log is not 

purposely designed for XML. Although G-log is powerful, it is not so intuitive or easy to 

use. Therefore, many applications are then developed based on G-log. For example, WG-

Log [21] is a system (WG-Log is also the name of the user language in this system.) 

developed in late 1990s for querying web data. 

The first graphical XML query language is XML-GL [12, 13, 20] which is also 

inspired by G-log. Around the same period, other graphical query interfaces for XML 

data were proposed such as Graphical XML Query Language [34], XMLApe Query 

Language [48], and QURSED [60]. Meanwhile, the original XML-GL also evolved to 

XQBE [9]. 

In the rest of this section, we will briefly introduce and discuss existing graphical 

XML query languages and user interfaces in 3 sub-sections. In section 2.1.1, we discuss 

graphical XML query languages such as XML-GL/XQBE, which are the most closely 

related work to this thesis. In section 2.1.2, we briefly introduce form-based graphical 

query interfaces including Graphical XML Query Language, XMLApe Query Language, 

BBQ[47, 51]/Equix[18]. Because form-base query interfaces share many common 

features, we only present some typical applications and use examples to show their pros 

and cons. In section 2.1.3, we discuss a special case of form-based query interfaces, 

QURSED. It is special because it is in fact a developer tool rather than a query interface 

itself. We are interested in the underlying tree query language (TQL) used in QURSED. 

 



 
10 

2.1.1 XML-GL and XQBE 
The base of XML-GL is the graphical representation of XML data, which is called 

XML graph. 

 
Figure 2.1 An example of XML graph 

XML graph is used to represent both a DTD schema and an XML document. In Figure 

2.1, an element type is represented by a labeled rectangle if it is not a leaf node in an 

XML tree. The label of the rectangle is the name of the element type. Otherwise, if an 

element type only contains PCDATA, it will be expressed as a blank circle. An ID 

attribute is represented with a solid circle; and ID reference (IDREF) or references 

(IDREFS) are arrows pointing to the referred element types. Containment relationships 

are expressed as arrows from parent-elements to child-elements. Wildcards, such as *, + 

and ?, in DTD are translated to range expressions, such as (0:n), (1:n) and (0:1) 

respectively, which are labeled beside arrows. XML graph uses an arc, marked XOR, 

crossing several containment relationship arrows to express the XOR relation between 

those sub-elements; and a slash crossing the first containment relationship arrow under 

an element type to indicate the implied order among its sub-elements. Based on this 

example, we introduce an XML-GL query example from [12] in Figure 2.2. 

The query in Figure 2.2 means: select and extract <manufacturer> elements from 

NHSC data where some model has <rank> less than or equal to 10. This XML-GL 

query consists of two parts separated by a vertical real line. The left hand side (LHS) 

represents concepts that are used to extract elements from the target document. The 

right hand side (RHS) shows the concepts that are used to construct the result 
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document produced by the query. In addition, a zigzag line connects two 

“manufacturer” element types in Figure 2.2, denoting the bindings passed from the 

LHS to the RHS. 

 
Figure 2.2 An example of XML-GL from [12] 

In general, an XML-GL query consists of four parts: 

• An extract part specifies the scope of the query. This part indicates both target 

documents and target elements, which is equivalent to the from clauses in SQL. In 

Figure 2.2, the extract part is the URL label above the “manufacturer” in the LHS 

graph. 

• A match part specifies logical conditions that should be satisfied in the target 

elements for the query. This part is optional and is equivalent to the where clause 

in SQL. In Figure 2.2, the match part is the expression “<=10” under the “rank” in 

the LHS. 

• A clip part identifies the sub-elements of the extracted elements that satisfy the 

match part retained in the query result. This part corresponds to the select clause 

in SQL. In Figure 2.2, the clip part is the sub-elements “model” and “rank” below 

the “manufacturer” element in the LHS. 

• A construct part specifies the new elements to be included in the result document 

and the relationships to the extracted elements. This counterpart in SQL of construct 

part is the (extended) create view statement, which also permits the user to design a 

view himself. In Figure 2.2, the construct part is the RHS graph. 

The work in [12] introduced the basic concepts and simple queries in the XML-GL 
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language. The work in [13] presented complex query examples including set operations 

(UNION, INTERSECTION and DIFFERENCE) and conditional output construction 

(IF-THEN). The work in [20] discussed the XML-GL language formally, and presented 

how to process XML-GL queries and construct results with the help of intermediate 

tables. XQBE [9] is proposed as an evolution work of XML-GL. XQBE keeps most of 

the features of XML-GL because they share the same concept of query construction. 

Nevertheless, XQBE claims to be more efficient than XML-GL because some 

construction notations have been improved to meet the requirement of XQuery. For 

example, bindings are explicitly specified in XQBE while, in XML-GL, some bindings 

are implicitly represented which may cause ambiguous meanings. Most improvements 

of XQBE in comparison with XML-GL concern the language design. For all queries 

that can be expressed by XML-GL, XQBE can express them more simply. 

However, XML-GL and XQBE still have many problems in expressing XML 

queries especially when XML data contain relational semantics. Because the data model 

used is the XML graph, equivalent to DTD/XSD, they do not capture rich data 

semantics such as relationship types, functional dependencies, multi-valued 

dependencies and relationship attributes. As a result, XML-GL/XQBE queries cannot 

express these rich data semantics when they are involved in XML queries. Even if we 

find the XQuery expression first and translate it into XML-GL/XQBE query, they 

cannot check whether the query result is constructed in a semantically meaningful way. 

Consider the following DTD structure about course, student and grade. 

DTD 2.1: <!ELEMENT course (cid, cname, student+)> 
      <!ELEMENT cid (#PCDATA)> 
      <!ELEMENT cname (#PCDATA)> 
      <!ELEMENT student (sid, sname, grade)> 
            <!ELEMENT sid (#PCDATA)> 
            <!ELEMENT sname (#PCDATA)> 
            <!ELEMENT grade (#PCDATA)> 

Intuitively, we know that the grade is the grade of a student in a course, i.e. the grade 
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functionally depends on both course and student. Then for a query that swaps the 

hierarchical position of the course element and the student element, we expect to 

construct a view in which the student element is the parent of course element. Based on 

the semantics of grade, we expect a result with the following DTD structure. 

DTD 2.2: <!ELEMENT student (sid, sname, course+)> 
      <!ELEMENT sid (#PCDATA)> 
      <!ELEMENT sname (#PCDATA)> 
      <!ELEMENT course (cid, cname, grade)> 
            <!ELEMENT cid (#PCDATA)> 
            <!ELEMENT cname (#PCDATA)> 
            <!ELEMENT grade (#PCDATA)> 

Notice that, the grade has to be kept below the course element after the swapping so 

that the semantics of grade is preserved in the result. Otherwise, if the grade element 

is moved up with the student element, the grade and course elements will become 

siblings and we cannot tell which grade is for which course in the result. 

The above query example shows the importance of data semantics in XML query. 

In DTD, the grade element is no different from sid or sname element. How to write 

such a swapping query in XQuery depends on the user’s knowledge about the data 

semantics. Unfortunately, XML-GL/XQBE cannot express such a query of swapping.  

Another problem of XML-GL/XQBE is in the language design for representing 

logic expressions. For example, consider the following DTD description about a part. 

<!ELEMENT part (pid, pname, color, price, weight)> 

Then, we pose a query to return pid and pname of those parts that satisfy either of the 

following two conditions: (1) price is cheaper than 10 dollars; (2) color is white and 

weight is less than 8 pounds. The query logic can be described as “price<10 OR (color 

= ‘white’ AND weight ≤ 8)”. Such kind of query logics will make XML-GL/XQBE 

query graphs very redundant or unclear. 

2.1.2 Form-based XML query interfaces 

There have been various works on creating a graphical interface for XML query. Most 
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of them are called form-based query interfaces because the query is posed in a nested 

form. Here we review the Graphical XML Query Language [34], XMLApe Query 

Language [48], BBQ [47, 51]/Equix [18]. 

Ankur Gupta and Zahid Khan [34] developed an intuitive and simple form-based 

query language for selectively extracting information from well-formed XML 

documents. The forms are nested and generated according to the following five rules. 

1. Each complex element type is contained within a colored box; 

2. For every string, there appears a drop-down menu with options {IS, 

LIKE}(where LIKE is for wildcard matches); 

3. For every number, there appears a set of operator, operand pairs; 

4. Along with every condition appears a MORE button that allows users to 

specify more conditions for that attribute or terminal type; 

5. To specify join attributes, you can color the two attributes the same color. 

 

 

 

 

 

<!ELEMENT person (firstname?,lastname,fulladdress)> 
<!ATTLIST person id ID> 
<!ELEMENT firstname PCDATA> 
<!ELEMENT lastname PCDATA> 
<!ELEMENT fulladdress (company?, city, addressline+)> 

<!ELEMENT company PCDATA> 
<!ELEMENT city PCDATA> 
<!ELEMENT addressline PCDATA> 

Figure 2.3 The nested form used in Graphical XML Query Language 
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Consider the DTD of person information and the nested form of the DTD in Figure 

2.3. As we can see, this graphical query interface allows users to specify condition(s) 

on every terminal element. 

Figure 2.4 A query example of Join. 

Consider a query example using join. Suppose we have another document called 

“order”, and we want to return the last name of authors of books in the “order” 

document if the author is inside the “person” record and his/her first name begins with 

letter “S”. This query will be represented as the two forms in Figure 2.4. The join field 

is the “lastname”, which is highlighted with the same color in both forms. The returned 

fields, which should be displayed in the result, are ticked in the checkboxes. 

The Graphical XML Query Language is an interesting and colorful application 

that can indeed help users pose their basic query requirements such as selection, 

projection, and join. However, the limitations of the language are also obvious. 

First of all, the language is not efficient. From the example in Figure 2.4, we can 

see that only two checkboxes are ticked (books and lastname) and one condition field 

is filled in the two nested forms of the XML data. The system will always give the 

complete nested form because it cannot predict which fields may not be used. As a 
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result, many fields are left unchecked or blank in a query form. 

The second problem is the nested form may not be a good idea when the XML 

has a recursive structure. Also, the nested form does not allow users to reconstruct the 

data, making it inflexible to use. 

The third problem is the language too simple to express aggregation and many 

other query operations beyond selection, projection and join. 

The fourth problem is the nested form is just equivalent to DTD, and as a 

consequence it cannot represent rich semantics in either data or query. 

XMLApe [48] is an interface for querying and displaying results based on XML 

Schema [76]. Figure 2.5 shows an example XMLApe query. XMLApe also maps the 

XML schema into a series of nested forms. However, XMLApe forms only have the 

same default color (illustrated by white in this thesis). Different colors (illustrated 

with patterns and grey scales) in XMLApe indicate different joins where two fields 

should have the same color (i.e. patterns or grey scales) if they are equal. 

 

Figure 2.5 An example of XMLApe query interface 

The query result is constructed in the same nested form as the query. Figure 2.6 

gives an example of one possible result of the query in Figure 2.5. There may be a 

long sequence of results and the user can select the required ones by checking the 
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outputs one by one. 

 

Figure 2.6 One possible result returned by the query in Figure 2.5 

The above example shows that XMLApe supports set-oriented, easy-to-use query. 

However, like Graphical XML Query Language, XMLApe has almost the same 

problems of insufficiency in query representation, inflexibility in result construction 

and ignorance of rich data/query semantics. The language design also has some 

problem. For example, the color for join can only represent equi-join. 

Equix [18] represents an XML document as a tree according to the DTD. It 

supports the visual construction of complex query types such as aggregation, negation 

and quantification. All query logics and conditions are posed on the tree so that Equix is 

also known as tree-based XML query. However, Equix has some limitations. Only one 

tree can be specified at a time in Equix, which means join between two document trees 

is not allowed. The restructuring capability of Equix is limited hence users cannot 

change the hierarchical structure of the original schema. Further, no new element types 

can be defined unless it is an aggregation result. 

BBQ [47, 51] is the GUI of XMAS which could be regarded as a simplified 

version of XML-QL [24]. The XML document is also displayed as a tree with a 
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directory-like look where users can specify query conditions and joins among elements. 

The interface of BBQ is similar to Equix but BBQ allows multiple trees. Therefore, 

BBQ is more expressive than Equix. However, BBQ does not support aggregation and 

the restructuring capability is as limited as Equix. 

The tree-based XML query interface is a variation of the form-based ones. 

However, the idea of posing query conditions and logics on trees leads to the tree query 

language which we will discuss in the following section. 

2.1.3 QURSED and Tree Query Language (TQL) 
One of the applications that support XML query on the web is called web-based query 

forms and reports (QFRs) for XML data. The idea of QFR includes three aspects: (1) 

the schema of the source data, (2) the specification of query logic and (3) a set of 

templates for result construction. The relationship among the three aspects is shown in 

Figure 2.7. 

Schemas of Source Data

Specification of Query Logics

A Set of Template for Result
Construction

Data

Users

Data providers

Application
Designers

A QFR application
 

Figure 2.7 The structure of a QFR application 

Based on the schemas, application designers should provide a set of templates for 

result construction and specify the query logic of each template. The specification is 

the link between construction templates and source schemas. Notice that, the 

specification of query logic is done by application designers, not the user. Users can 

only see a set of predefined forms, probably containing most of the content they are 
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interested in, and pose predicates of their queries in these forms such as values, 

comparison operators (e.g. “=”, “>”) and some logic operators (e.g. AND, OR). The 

input will work with the specification of query logics that are defined by application 

designers between the templates and source schema to find the result in source data. 

The form or form set where the user pose his/her query is also the form to return the 

result. The result is called a report. In comparison with the original query form, only 

the chosen fields (which are checked by the user himself) are displayed in the report. 

There have been many generators of QFRs such as XQForms [62] and the 

famous QURSED.  

QURSED is designed for the development of QFRs for XML data. The core of 

QURSED is the Tree Query Language (TQL) which is used internally in the system to 

express XML queries as trees with logic nodes AND and OR. There are two kinds of 

trees in TQL: the condition tree to specify query conditions and the construction tree 

to indicate output structures. 

For example, consider the following DTD description about a part. 

<!ELEMENT part (pid, pname, (color| weight), price)> 

The condition “(color = ‘white’ AND price<10) OR (weight ≤ 8 AND price < 6)”. 

AND
part

pid

pname
*

*
OR

AND

AND

color

price
*

*

weight

price
*

*

$PID

$PNAME

$COLOR

$PRICE

$WEIGHT

$PRICE

$COLOR = "white" AND $PRICE < 10

$WEIGHT <= 8 AND $PRICE < 6

 
Figure 2.8 An example of TQL condition tree 

This query logic can be represented as a condition tree as shown in Figure 2.8. The 
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logic node AND and OR indicates the logic in tree structure. For example, the OR node 

in Figure 2.8 (only one OR node there) means there are two different structures of part 

element. The arrows are bindings. The value node “*” is binding to a variable. The 

logic node is binding to a logic expression. 

For the QFR application developers using QURSED, there is a QURSED Editor 

which shows the XML schemas and the HTML pages. The developers should one by 

one specify the logic connection between the schemas and HTML pages using TQL in 

the editor, which is not an easy job. The TQL expressions about query logics are 

defined based on the knowledge of the developers on both the source data semantics 

and the result semantics. However, it is possible that users have different (perhaps 

wrong) interpretations of data semantics from either data providers or application 

developers. Therefore, QFR applications are usually developed for a particular group of 

people according to their specific semantics in the result. 

If we treat TQL as a graphical XML query language, there are two major 

problems. First of all, as a stand alone language, TQL uses XML schemas in 

DTD/XSD which do not capture rich data semantics such as relationship types, 

relationship attributes, and functional dependencies. Therefore, TQL does not directly 

represent these rich semantics in data or queries. 

The second problem is its complexity. TQL only has a small set of concepts and 

notations concerning either logics or tree structures. As a result, every query is 

represented as a combination of logic operators and tree structures in TQL, which is 

hard to understand and, hence, hard to write. Common XML queries such as 

aggregation and restructuring are very complicated to represent in TQL. 

2.1.4 Summary of graphical XML query languages and GUIs 
In this section, we have reviewed the history of graphical XML query languages and 

user-interfaces. 
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We have discussed the graphical XML query languages: XML-GL and its 

evolution XQBE. Their lack of rich semantics2 and flaw in logic representation mean 

that their graphical queries have ambiguous meanings. 

We have also reviewed the form-based XML query interfaces and their variation 

with tree-based interfaces. Typical works such as Graphical XML Query Language, 

XMLApe, BBQ and Equix have been discussed. There are two common problems of 

this particular group of works: (1) restructuring is limited; and (2) they lack rich 

semantics. As a conclusion, they have too many limitations in use and they cannot 

guarantee that the result is semantically meaningful. 

We have investigated the web-based query forms and reports (QFRs) for XML 

data. Many works have been proposed on how to generate a QFR application and 

some developer-oriented tools have been developed. One of the most important ones 

is QURSED. Each QFR system is a domain specific application for a particular group 

of users according to their special query semantics and output requirements. However, 

the tree query language (TQL) used in QURSED can be used as a stand alone XML 

query language. TQL combines tree structure with extended logic nodes. It represents 

query logics and result constructions in two different trees. The problem of TQL is its 

complexity. It provides only basic tree structuring and logic operators which are hard 

to understand and write. Without a rich semantic data model, the correctness of a TQL 

query is dependent on the developer’s knowledge. 

2.2 XML query algebra 

It is common to translate a query language into algebra to precisely define the formal 

semantics of the query language and for query optimization. 

The first XML query proposed was XQL or XML-QL [24]. The formal language 

                                                 
2 Again, the rich semantics here means relationship types, relationship attributes, functional dependencies, multi-
valued dependencies, etc. 

 



 
22 

semantics were defined in XML Query Algebra [29, 73]. When the XQL proposal 

was improved and became the XQuery standard, the XML Query Algebra was not 

changed much. It still defines the formal semantics of XQuery. As a consequence, 

most developers of XML query engines based on XQuery follow the semantics 

defined in XML Query Algebra. Nevertheless, some researchers want to develop their 

own XML query engines and use their own query language or even algebra. A typical 

example is the TIMBER system and the TAX algebra [35]. 

If we look at graphical languages, the situation is totally different. Because 

graphical query languages are always proposed as GUIs of their textual counterparts, 

they are always translated into textual query languages rather than algebra. So far, all 

graphical XML query languages and user interfaces are translated into XQuery or 

XPath [74] expressions to be processed. However, these existing works ignore two 

important points.  

(1) One graph is more than thousand words. When querying or reconstructing an 

XML data, graphical representations are usually more concise and intuitive than textual 

expressions. For example, the swapping of two element types in the hierarchical 

structure can be naturally expressed in graphical languages. Suppose we want to swap 

the position of course and student element types in the hierarchical structure in DTD 

2.1 and obtain a result structure as DTD 2.2 (See Section 2.1.2.1), the graphical 

representation is straightforward (There are examples in Chapter 3). In comparison, a 

possible XQuery to achieve this swapping is shown in Example 2.1. To write the 

XQuery correctly may not be so easy for a common user. 

In XQuery, there is no explicit operator or constructor that indicates this query 

involves swapping. The semantics of the above query is not intuitive and is hard to 

write. Swapping is also a nightmare in the translation from a graphical XML query to 

XQuery expressions. Moreover, swapping is not the only one; other query operations 
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such as grouping are also hard to translate because there are no direct mappings of 

swapping or grouping between graphical XML query expressions and XQuery 

expressions.  

Example 2.1: An XQuery example of swapping 
for $root in doc("...")... 
for $sid in distinct-values ($root /course/student/sid) 
for $sname in distinct-values ($root /course/student[sid=$sid ]/sname) 
return  
  <student> 
  <sid>{$sid}</sid> 
  <sname>{$sname}</sname> 
        { 
            for $c in $root /course[student/sid = $sid ] 
            return 
            <course> 
 {$c/cid} 
 {$c/cname} 
 {$c/student[sid=$sid ]/grade} 
            </course> 
        }  
  </student>  

(2) Data semantics matters. XML data may explicitly (e.g. with ORA-SS schema) 

or implicitly (e.g. DTD/XSD only) contain rich data semantics including relationship 

types, relationship attributes, object classes, functional dependencies, etc. Different data 

semantics may lead to different behaviors when reconstructing or updating an XML 

data. In our graphical XML query language (GLASS), many features, such as swapping, 

grouping and quantifiers, concern the semantics in XML data. To support these queries 

and guarantee meaningful results, we need to extent current XML query algebra works 

to support the rich data semantics contained in XML. 

In the rest of this section, we discuss the related works on XML query algebra. 

2.2.1 XML Query Algebra 
The XML Query Algebra [29, 73] is proposed by W3C as a formal semantic 

definition for XQL and now XQuery. It is a well defined algebra for a functional 

language. It has defined a set of operators including projection, iteration, selection, 
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join, quantification, aggregation, restructuring, function and structural recursion. The 

algebra is like a programming language and focuses on how to traverse the tree 

structure iteratively to match and obtain XML elements and attributes. 

There are two major shortcomings of the algebra. The first one is that XML Query 

Algebra does not intuitively reflect query semantics and query logic. The only thing we 

can see from XML Query Algebra expressions is how to do iteration and traverse the 

tree structure. There is no declarative algebra operator such as SELECTION, 

PROJECTION or JOIN, everything is defined based on iteration. The second one is that 

XML Query Algebra does not have swapping. The restructuring operation was defined 

vaguely because every change in structure can be a restructuring. 

2.2.2 Tree Algebra for XML (TAX) 
TAX [35] is proposed by the University of Michigan for their native XML database 

system called TIMBER. The operator set of TAX is a natural extension of that in 

relational algebra which includes selection, projection, join and grouping. The most 

innovative feature of TAX is the so-called tuple of trees. It is an analogue to the 

concept of tuple in relational algebra where, in TAX, it is a collection (i.e. a set that 

allows duplicates3) of trees; and, within the same collection, all trees have the same 

pattern (i.e. matches in structure and value). TAX can express most XML queries with 

respect to the FLWOR expressions in XQuery. 

The problem of TAX is that it is not designed to support the rich semantics that 

possibly contained in XML data. We know that two XML documents with the same 

DTD/XSD schema may have different semantic meanings (See Example 4.1 in 

Chapter 4) while the pattern tree in TAX cannot tell the difference in data semantics. 

Therefore, when semantics are concerned, TAX cannot interpret a query correctly. 

                                                 
3 The duplicate here means two tree members have the same structure and the same value but come from different 
position in the original document tree. 
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And some restructuring operations such as swapping or merging are not supported by 

TAX because they may require the rich semantics. 

2.2.3 XML View Construction Operators 
The XML view construction operators are proposed in [14] based on ORA-SS (Object-

Relationship-Attribute data model for Semi-Structured data). The motivation of the 

work is to preserve the XML data semantics in a user-defined XML view according to 

the original semantics captured in ORA-SS. They have defined four operators for view 

construction: Selection, Projection, Join and Swap. The Swap operator is just the 

swapping we have mentioned at the beginning of Section 2.2. They have presented the 

rules of the four operators to construct a semantically valid XML view. 

However, this work considers only four view construction operators. As an 

algebra for XML query, it is not enough. For example, it does not include grouping 

and aggregation. 

2.2.4 Other XML Algebra Works 
Beside the work mentioned above, there has been a lot of other work on XML query 

languages or XML database systems with their own algebra.  

Lorel [1, 49] is the name of both the language and the XML database system 

developed on an object-oriented database management system. The Lorel language 

has an OQL-like syntax and the Lorel algebra is an extension on OQL algebra with 

XML result construction. 

XCQL algebra [58] is proposed and used in Enosys, an XML integration platform. 

The XCQL algebra is also a variation of OQL algebra. It contains grouping and 

supports nested query plans.  

UnQL language and algebra [11] is developed on the data model called structural 

recursion. The idea of structural recursion is to tie a recursive program to a recursive 
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structure. The UnQL syntax is similar to SQL which also uses the “select … where …” 

clause. The UnQL algebra focuses mainly on tree pattern matching using their 

structural recursion techniques. The algebra does not support grouping or swapping. 

XAL [30] is proposed as an algebra for XML query optimization. It consists of a set 

of logic operators including projection, selection, join and a set of meta-operators such as 

map, Kleene star, and construction. It does not have grouping or swapping operators. 

2.2.5 Summary of XML query algebra works 
We generalize three facts of current existing XML query algebra works. 

The XML Query Algebra [29, 73] is defined for XQuery. However, its operator 

set does not intuitively reflect the query semantics. It is not a suitable logic algebra. 

Some operators, such as “restructuring”, are defined vaguely. 

Most XML query algebras that were developed later have the marks of relational 

or object algebra. The reason is twofold. On one hand, these query algebra works are 

developed based on a relational, object or object-relational database management 

system. On the other hand, the well understood and developed relational/object 

algebra is an excellent starting point for database people to define XML query 

algebras. People introduce new data models and find the counterpart of XML query 

operators in relational/object algebra and then they enjoy the rich fruit of 

relational/object algebra in query optimization. However, these works based on 

relational/object techniques often focus on how to match and obtain a query result but 

ignore how to construct or re-construct the query result. Some important restructuring 

operations, such as swapping and merging, are not supported because they do not 

have their counterparts in relational/object algebra. 

Some works have taken into account the full requirement of XML query and the 

rich semantics contained in XML data such as relationship types, and relationship 

attributes. Such works as [14] have defined innovative operators including swapping 

 



 
27 

for XML view definition. However, as an XML query algebra, they do not have some 

important query operators including group, merge and set operators. In fact, these 

works inspired us to propose our algebra for graphical XML query language (G-

algebra) in this thesis. 

2.3 XML update validation 

To be a fully featured language standard, XML should not only support queries but also 

updates. Updates of XML data have a long history since the birth of XML. In the late 

1990s, when the Lorel system was developed, it supported updates of XML in an OQL-

like syntax based on object-oriented database management systems. The first working 

draft of XML updates, known as XUpdate [40], was proposed by W3C in 2000. In this 

draft, several update operators have been defined such as insert (with before or after), 

append (i.e. insert as the last child element), remove and update. Then in 2001, the 

research work in [65] discussed the cooperation between XQuery and XML update 

operators including insert, delete, update, rename and replace. The discussion was 

focused on the implementation method of updating XML data that are mapped and 

stored in relational DBMSs. 

Based on the existing research work, W3C released the new standard called XQuery 

Update Facility [77] in July 2006. The new standard has formally defined 4 update 

operators (insert, delete, replace and rename) and a new operator named transform. The 

transform operator will make a copy (i.e. create a view) from a data source; and the 

XML update will be applied to the copy instead of the original data source. 

Meanwhile, XML update has a problem of validating the updated XML data, i.e. 

the result of the update must conform to certain constraints. These constraints consist of 

two aspects: structural constraints and semantic constraints. 

The structural constraints are related to the hierarchical structure of the XML data 

defined in XML Schema (XSD) or DTD including data types, values, parent-child 
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containments and participation constraints (of the binary parent-child containment 

relationship only). In contrast, the semantic constraints are related to the semantics 

that are not captured in XSD/DTD but contained in XML data such as object classes, 

object IDs, n-ary (n≥2) relationship types, the participation constraints of the object 

classes in a n-ary relationship type, relationship attributes, semantic dependencies, 

functional and multi-valued dependencies. 

The validation of XML updates must guarantee that the update result is consistent 

with the constraints. The constraints, either structural or semantic, are basically 

derived from the semantics captured in XML data schemas. Therefore, the richer data 

semantics is captured, the more semantic constraints we can find in an XML schema. 

2.3.1 Structural validation of XML 
In the field of structural constraint validation, many different XML schema languages 

have been proposed to enhance the expressive power of XSD/DTD. Here are some 

example works. 

The RELAX NG [71] is a schema language for XML developed OASIS system. 

In comparison with XSD, RELAX is simpler and it supports both an XML syntax and 

a non-XML syntax in describing XML schema. It supports XML namespaces and 

treats attributes uniformly with elements. It supports unordered contents and mixed 

contents unrestrictedly. 

The Schematron [36] is a rule-based schema language for XML. Being different 

from other grammar-based schema languages, Schematron makes assertions about the 

presence or absence of tree patterns in XML data using XPath expressions. The 

assertions are the rules defined in Schematron that are used to validate XML data. 

The EPML [50] or Event-driven Process chain Markup Language is an XML-

based interchange format for event-driven process chains (EPC). The EPC was 

originally introduced in 1992 as a wide-spread method for business process modeling. 
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The EPML is used to describe EPC specifications using XML syntax. From our 

perspective, the EPML is an application of XML or a specialized XML schema 

language. In fact, it is an XML description of an EPC diagram. It fully uses the 

expressive power of XML to describe structures, the structure of the diagram. The 

business constraints and logics are originally contained in the EPC diagrams. The 

EPML description is just a textual version of EPC diagrams. It describes everything as 

a structure. For example, a logic node XOR in EPC diagram will be directly defined 

as an element “XOR” in EPML and the arcs in an EPC diagrams are defined as “arc” 

elements with attributes that describe the start node and end node of the arc. Thus, 

EPML does not define business rules directly; it describes the diagram structure 

instead. It is not helpful in describing the semantics in any XML data unless there is 

an EPC diagram. 

The CLiX [52] (Constraint Language in XML) is an XML schema language that 

tries to combine XPath expressions with first-order logic expressions. The purpose of 

CLiX is to let users/developers express complex constraints on the structure and 

content of XML data. It is similar to Schematron in that CLiX rule expressions are 

also assertions. It is more expressive than Schematron because CLiX uses first-order 

logic while Schematron uses Boolean logic. Therefore, CLiX assertions are more 

compact than those in Schematron. 

The work in [39] introduces special structural constraints in XML. The special 

structural constraints are in the form of path implication, co-occurrence and absence. 

However, in functionality, these structural constraints can be expressed as assertions 

in Schematron or CLiX. 

Beyond various XML schema languages, there is a lot of work [4, 5, 7, 37] that 

discusses how to do the incremental validation of structural constraints more 

efficiently. Other works may be concerned more specialized fields. For example, [15] 
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has proposed how to apply validation in XML streams; and [8] has talked about how 

to do document correction incrementally. 

2.3.2 Semantic validation of XML 
In comparison with the structural constraints, semantic constraints are usually not 

represented in XSD/DTD schemas and they are subjective in some sense because they are 

the concepts of users/developers who define the data. Some kinds of semantic constraints 

have already been widely studied. The semantic constraints, which are also called 

integrity constraints in many works [10, 26, 27], focus on keys and functional 

dependencies. Meanwhile, some researchers build their XML database system on the 

base of relational database management systems and their XML data are in relational 

storage. For example, the research work in [65] focuses on updating XML data on the 

basis of relational storage. The research work in [23] discussed how to propagate the 

semantic constraints about keys and functional dependencies (on a universal relation) in 

XML to relational storage. 

2.3.3 Summary of current XML update validation research work 
There are two major problems in current studies on validating semantic constraints for 

XML documents. 

The first problem is their semantic constraints (keys and functional dependencies) 

are not enough. Data-centric XML data can be stored in relational databases. The 

semantics of n-ary (n≥2) relationship types and relationship attributes is difficult to be 

captured by structural constraints with logic. Moreover, the same functional dependency 

may have different semantic meanings in different contexts, which we call “semantic 

dependencies” (See Appendix A), which cannot be captured by only keys and functional 

dependencies. Since ORA-SS can capture semantics such as relationship types, 

relationship attributes, functional/multi-valued dependencies and semantic dependencies, 

etc, we are able to validate more semantic constraints. Without knowing the original data 
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semantics, an XML update result can be semantically invalid. 

The second problem is that the traditional relational model is not able to handle 

the semantic constraints and validations in XML. Relational data is structured while 

XML data is tree-structured. When XML data is updated, i.e. new sub-trees are inserted 

or old sub-trees are deleted or original sub-trees are modified. Checking the consistency 

of data with respect to both structural and semantic constraints is a challenge. 

Traditional validation methods in relational databases do not support the hierarchical 

structure in XML. A better solution is to use the object-relational data model. We use 

the concept of object classes and object IDs instead of keys. Then, the relationship types, 

object attributes, relationship attributes and functional/multi-valued dependencies are 

defined using object IDs. For example, when we need to check two object instances, we 

just check their object ID values. The two object instances are identical if they have the 

same object ID value. However, inside the two instances, their contents may be 

different from each other because some of their sub-elements can be optional so that 

they appear in one instance and are absent in the other.  

2.4 The data model: ORA-SS 

The ORA-SS (Object-Relationship-Attribute model for Semi-Structured data) is a rich 

semantic data model for XML. The ORA-SS models XML (also other semi-structured) 

data via three core concepts: 

 Object classes, for those sets of real world entities, 

 Relationship types among different object classes, and 

 Attributes of either object classes or relationship types. 

The ORA-SS not only intuitively reflects the tree structure of XML schema via 

diagrams but also captures the semantics about object classes, relationship types and 

attributes that are usually modeled by object-relational data models. 
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In this section, we introduce the ORA-SS data model as a foundation of the work 

in this thesis. We present the concepts in the ORA-SS, explain the representation of 

semantics with examples, and then compare ORA-SS with other XML schema 

languages and/or data models. 

2.4.1 An overview of ORA-SS 
A complete ORA-SS model consists of four diagrams: instance diagram, schema 

diagram, functional dependency diagram and inheritance diagram.  

(1) The instance diagram represents the XML data instance, i.e. an XML document tree. 

(2) The schema diagram is a directed graph that describes the structure of an XML data 

instance and constraints on the data. 

(3) The functional dependency diagram indicates additional functional dependencies 

inside the data. Here, “additional” refer to those functional dependencies that are 

difficult to derive from the schema diagram. 

(4) The inheritance diagram focuses on specialization/generalization relationships 

among different object classes. 

The schema diagram is the core of ORA-SS. The instance diagram, corresponding to 

the XML document tree, is an instance of the schema diagram. The functional 

dependency diagram and inheritance diagram complement the schema diagram. 

The work in this thesis is mainly concerned with the schema diagram and instance 

diagram. The required semantic information in our work can be obtained from the schema 

diagram (sometimes with the functional dependency diagram). 

2.4.2 The semantics in ORA-SS 

Figure 2.9 shows an XML data set on supplier, part and project together with the 

XML schema description. 
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The structure of the data set can be concisely written in DTD or shown as the 

data guide as shown in Figure 2.10. 

The XML schema definition (XSD) in Figure 2.9 mainly focuses on structural 

constraints of XML data. We can see that it describes the hierarchical structure of XML, 

the data types and their participation constraints (minimum and maximum occurrence). 

The corresponding DTD and DataGuide are even simpler than the original XSD schema. 

However, the XSD cannot capture semantic constraints among different element 

(attribute) types such as the following example. 

<xs:schema xmlns:xs = “…”> 
<xs:element name = “spj”> 
   <xs:complexType> 
   <xs:sequence> 
   <xs:element name="supplier"> 
      <xs:complexType> 
      <xs:sequence> 
                <xs:attribute name="sid" type="xs:string" use="required"/> 
                <xs:element name="sname" type=" xs:string"/> 
                <xs:element name="location" maxOccurs="unbounded"> 
                   <xs:complexType> 
                   <xs:sequence> 
                         <xs:element name="country" type=" xs:string"/> 
                         <xs:element name="city" type=" xs:string"/> 
                         <xs:element name="street" type=" xs:string"/> 
                   </xs:sequence> 
                   </xs:complexType> 
                </xs:element> 
                <xs:element name="part" maxOccurs="unbounded"> 
                   <xs:complexType> 
                   <xs:sequence> 
                         <xs:element name="pid" type=" xs:string"/> 
                         <xs:element name="pname" type=" xs:string"/> 
                         <xs:element name="price" type=" xs:string"/> 
                         <xs:element name="project" maxOccurs="unbounded"> 
                            <xs:complexType> 
                            <xs:sequence> 
                                  <xs:element name="jid" type=" xs:string"/> 
                                  <xs:element name="jname" type=" xs:string"/> 
                                  <xs:element name="qty" type=" xs:string"/> 
                            </xs:sequence> 
                            </xs:complexType> 
                         </xs:element> 
                    </xs:sequence> 
                    </xs:complexType> 
                </xs:element> 
      </xs:sequence> 
      </xs:complexType> 
   </xs:element> 
   </xs:sequence> 
   </xs:complexType> 
</xs:element> 
</xs:schema> 

Figure 2.9 The XSD schema of the XML data about project, supplier and part 
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<!ELEMENT spj (supplier+)> 
     <!ELEMENT supplier (sname, location+, part+)> 
          <!ATTLIST supplier sid ID #REQUIRED> 
          <!ELEMENT sname (#PCDATA)> 
          <!ELEMENT location (country, city, street)> 
              <!ELEMENT country (#PCDATA)> 
              <!ELEMENT city (#PCDATA)> 
              <!ELEMENT street (#PCDATA)> 
          <!ELEMENT part (pid, pname, price, project*)> 
              <!ELEMENT pid (#PCDATA)> 
              <!ELEMENT pname (#PCDATA)> 
              <!ELEMENT price (#PCDATA)> 
              <!ELEMENT project (jid, jname, qty)> 
                  <!ELEMENT jid (#PCDATA)> 
                  <!ELEMENT jname (#PCDATA)> 
                  <!ELEMENT qty (#PCDATA)> 

spj 
     supplier 
             sid 
             sname 
         location 
                 country 
                 city 
                 street 
         part 
                 pid 
                 pname 
                 price 
             project 
                    jid 
                    jname 
                    qty 

DTD DataGuide 

Figure 2.10 The corresponding DTD and DataGuide for the schema in Figure 2.9 

Suppose, a user (most probably the provider of the data) knows that, 

(1) The sid, pid and jid are the ID attributes of supplier, part and project respectively; 

(2) The price is determined by both supplier and part, i.e. with the same supplier and 

the same part with respect to their sid and pid value, the price value must be the 

same; 

(3) The qty (quantity) is the quantity of a certain part supplied by a supplier to a project, 

which means the qty is decided by the combination of supplier, part and project. 

XML schema definition (XSD) cannot fully express the above semantics in XML 

schema. Neither DTD nor DataGuide can. However, ORA-SS schema can handle the 

problem naturally as shown in the schema diagram in Figure 2.11. 

supplier

project

part
sid sname

pid pname

jid jname

price

qty

SP, 2, *, +

SPJ, 3, *, +SP

SPJ

location

country city street

*

 

Figure 2.11 The ORA-SS schema diagram of the XML data set 

The schema diagram in Figure 2.11 intuitively reflects the tree structure of the XML 

data set using the concepts of object classes and attributes in ORA-SS.  
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(1) Supplier, part and project are modeled as object classes and represented as 

rectangles. 

(2) Then, all other elements are treated as attributes and denoted as circles, where 

(i) XML attributes are directly modeled as attributes (e.g. sid) 

(ii) XML elements with PCDATA only are also treated as attributes in ORA-SS 

(e.g. sname) 

(iii)Some XML element with sub-structures can also be treated as a composite 

attribute in ORA-SS if it is not suitable to be modeled as an object class (e.g. 

location) 

(iv) If an ORA-SS attribute is an ID attribute of an object class, then the attribute 

in ORA-SS will be represented as a solid circle (e.g. sid, pid and jid). 

(v) If an ORA-SS attribute belongs to a relationship type, then the relationship 

type name is added on the edge that points to the attribute (e.g. price and qty). 

(vi) Without specification, an attribute by default belongs to its parent object class 

or composite attribute type. 

Supplier Part

Project

SP

SPJ

0:n1:n

0:n

1:n

 
Figure 2.12 The composite entity in ER diagram 

(3) There are two relationship types defined in the schema diagram as labels on the 

arrows between/among object classes. The definition of relationship types is in 

the format of “name, degree, parent-participation constraint, child-participation 

constraint, order (optional)”. For example, 

(i) The label “SP, 2, *, +” means that there is a binary relationship type, named 

“SP”, between the object classes supplier and part, where each supplier 
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supplies 0 to many different parts and each part is supplied by one or more 

different suppliers. 

(ii) The label “SPJ, 3, *, +” means there is a ternary relationship type, named “SPJ”, 

among supplier, part and project. The ternary relationship definition is in fact a 

binary relationship type between the object class project and the binary 

relationship type SP. The concept is shown in Figure 2.12, which is similar to 

the composite entity in ER diagram. Thus, the participation constraint means 

that each supplier supplies a part to 0 to many different projects; and each 

project has many suppliers supplying various parts (may not be identical). 

(iii)For those attributes that belong to the relationship types, assign the 

relationship type name accordingly. 

2.4.3 ORA-SS vs. DTD/XSD 
Comparing the ORA-SS schema (Figure 2.11) with the XSD schema (Figure 2.9), we 

find that ORA-SS can express more semantics than XSD such as follows. 

(1) ORA-SS models the concept of n-ary relationship types (n≥2). 

(2) ORA-SS uses the concept of object ID instead of keys or ID XML attributes. In 

comparison with the XML ID attribute, the ORA-SS object ID can be specified in 

any nested level, which is more flexible. In comparison with the OEM [59] object 

ID, the ORA-SS object ID can be repeated when the object instance has duplicates, 

which is semantically more meaningful4. In comparison with keys, the ORA-SS 

object ID is simpler and easier to use5. 

(3) ORA-SS represents the participation constraints of all object classes participating 

in a relationship type. 

(4) ORA-SS distinguishes relationship attributes from object class attributes. 

                                                 
4 In OEM, each node in an XML document tree including elements, attributes and PCDATA/CDATA values is an 
object instance. Each object instance will be assigned with a unique object ID. Therefore, duplicate instances will 
have different object ID in OEM, and thus, OEM object ID cannot identify natural object instances. 
5 The concept of keys in XML is usually complex because it needs to be specified as either a global key or a local 
key. Moreover, it is also not good for data with multi-valued dependencies. 
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All the above features of ORA-SS have proven important in modeling XML data [45]. 

Many other data models for XML, such as the OEM, DataGuide, proposed on the 

base of DTD/XSD are not able to model all or some of the above semantic features. A 

detailed comparison between ORA-SS and other XML data models is given in [45]. 

We choose ORA-SS models as the basis of our work in this thesis because the 

semantics represented by ORA-SS are extremely useful and crucial to a query language 

in language design, ambiguity pruning, result validation and query optimization. 

2.4.4 Summary of ORA-SS 
In this section, we have briefly presented the data model we used in this thesis: ORA-

SS. It is a rich semantic data model ideally for XML. It not only models the concept of 

semi-structured data such as references and ordering but also captures the semantics 

that are important to query, construct, update and validate XML data, such as object IDs, 

n-ary (n≥2) relationship types, participation constraints on object classes, difference 

between object attributes and relationship attributes. No matter whether the ORA-SS 

schema is available or not, these semantics are always important. Without these 

semantics, a user may not be able to write some XML queries correctly. Nor can he/she 

perform some XML restructuring or updating. Because such important semantics can 

be captured in ORA-SS schema, we choose the ORA-SS as the base of our work in this 

thesis. 
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Chapter 3

3 GLASS: a Graphical Query Language 
for Semi-Structured Data 

GLASS [53] (Graphical query LAnguage for Semi-Structured data) is a visual query 

language designed based on ORA-SS for semi-structured data, especially XML data. The 

purpose of GLASS is to exploit the graphical representation of XML data to express 

XML query and restructuring. The choice of using graphical method rather than the 

traditional textual one is motivated by the following considerations. 

(1) XML documents have a hierarchical structure that can be intuitively represented as a 

tree or a graph with the consideration of references between elements. 

(2) The query conditions in XML queries are actually the descriptions of paths in the tree 

structure or sub-graphs from the graph-based representation of XML document. That 

is, the interesting part selected by an XML query can also be naturally expressed as 

graphs. 

(3) The restructuring of XML document to create a new document from one or more 

existing XML documents can be regarded as the creation of a new graph. 

(4) In practice, graphical user interfaces are already used in XML design and edit such as 

the tools of AltovaTM XML Spy [68] and so the representation is already familiar to 

users.  

Therefore, according the above considerations, we choose the graphical method to 

design the syntax of GLASS. During our design work, we have studied many other 
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graphical XML query languages and GUIs, developed or under-development. We found 

that almost all of the existing designs and applications had limitations and even 

ambiguities when used. To achieve the design of a correct and concise graphical XML 

query language, GLASS combines the advantages of both graphs and text. Besides, 

GLASS also uses the rich semantics in ORA-SS instead of DTD/XSD. The two 

improvements of GLASS in comparison with other existing designs and applications 

are based on the following two facts. 

(1) A graph is stronger for representing the hierarchical structure of the XML data 

than text; and text is stronger for describing the complex query logics than graph. 

Although the query conditions concerning data structure and value comparison 

can be drawn as sub-graph or variations of the graphical representation of an 

XML document, it does not mean the query logics can be handled the same. The 

logics, such as and, or, not and quantifiers will require extra graphical notations 

and the visual combination among different query graphs for each query 

conditions can be very complex. In GLASS, our solution is to just write complex 

query logics rather than draw them in graphs. This improvement makes GLASS 

more concise in graphical representation and brings the extra benefit of flexibility 

in drawing GLASS queries. 

(2) Semantics are important in graphical query interpretation. In our research, we find 

that a graphical query expression can be interpreted in different ways by different 

people if they do not know all the language syntax, or they have different 

understandings of data semantics. As a result, a user may draw a graphical query 

and the query engine may not interpret the same query meaning as what the user 

wants. A good solution is to put the canonical data semantics in the data schema. 

Unfortunately, current existing graphical XML language designs and GUI 

applications all use DTD, XSD or their equivalents, which do not have sufficient 

semantic information to detect and prune the semantic ambiguities in a graphical 
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XML query. Therefore, we need ORA-SS and the rich semantic information it 

captures to ensure the correct interpretation of GLASS queries. 

3.1 GLASS in a nutshell 

A typical GLASS query consists of four parts, 

(1) Right Hand Side Graph (RHS Graph) – defines the output structure of the query 

result. It is a compulsory part for any user query. 

(2) Left Hand Side Graph (LHS Graph) – denotes the basic conditions of a user query. 

It presents the fundamental features of interest to the user. 

(3) Link Set – specifies the bindings between the RHS Graph and LHS Graph. When 

two graph entities are linked, they are visually connected by a line, which means 

the data type and value of the entity in the RHS are exactly the same as the linked 

entity in LHS. 

(4) Condition Logic Window (CLW) – It is an optional part where users write 

conditions, rules and constructions that are difficult to draw. The CLW includes 

− Logic expressions by using condition identifiers, logic operators including 

AND, OR and NOT and the quantifiers (EXIST and FORALL); 

− Mathematical expressions and comparison expressions; 

− Reconstruction statements such as the clause  

IF <logic expression | comparison expression> THEN EXTRACT … 

Many notations in GLASS are inherited from those in ORA-SS schema diagram. 

Object classes are represented as rectangles; attributes as circles; relationship types as 

arrows (with labels); and IDREFs as dashed arrows. Beyond the above, some new 

notations, such as Box of group entity and Condition Identifier, are introduced to meet 

the requirements of posing query conditions and reconstructing results. A more 

detailed explanation about the notations and concepts in GLASS are given with 
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examples in the following section. 

3.2 Notations and concepts 

3.2.1 Basic notations and concepts 
The basic notations and concepts are the graphical representations of XML data, for 

both structure (schema) and contents (instance). For this part of our work, GLASS uses 

the representation system of ORA-SS schema diagram and instance diagram.  

(1) Nodes 

(a) Rectangles are used for the XML elements that can be naturally treated as object 

instances. ORA-SS does not regard every element (attribute and value) as an object 

instance as OEM [59] does. In GLASS, rectangles represent both object classes and 

their instances. Such a double meaning in notations is useful for a graphical language 

because users do always mix the concept of object class and object instance. Generally 

speaking, in the query condition part, rectangles are more like “instances” while, in the 

reconstruction part, they are more like “classes”. 

(b) Circles are used to represent the XML elements and XML attributes that can be 

naturally treated as attributes6 of one object class (aka. object attributes) or a certain 

combination of object class (aka relationship attributes). There are many different 

attribute types in ORA-SS and GLASS. Beside the normal attributes, we have object ID 

attributes, composite attributes (e.g. the “location” of the “supplier” in Figure 2.11) and 

derived attributes (user-defined new attributes in query results). Like the rectangle, the 

circle also has the same double meaning of both attribute types and instances in GLASS. 

(2) Edges 

(a) Arrows are used to represent relationship types in ORA-SS models. The default 

relationship type in ORA-SS is the parent-child relationship. The labels on arrows 

specify extra semantics including n-ary (n≥2) relationship types and relationship 

                                                 
6 Here, the object class and attribute can be thought as the entity and attribute in ER model. 
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attributes in the tree structure, which are described by the user who knows the data. The 

representation of relationship types and relationship attributes in ORA-SS is not a mere 

complementary specification but also a guide in managing XML data that guarantees 

the query result to be semantically meaningful. 

(b) Dashed arrows are used to represent the IDREF/IDREFS in DTD/XSD.  

Both types of arrows, the solid or dashed, are reused from ORA-SS diagram. 

3.2.2 Advanced notations and concepts 
Besides the basic notations and concepts, there are new notations and concepts 

designed for GLASS as a query language for XML. 

(1) Links 

The link is a bridge between the query part (LHS graph) and the result 

construction part (RHS graph). A link is a solid line that connects two nodes, one in 

LHS graph and the other in RHS graph, which means the data represented by the two 

nodes in both side graphs are the same. In other words, it means the node in the RHS 

graph is derived from the node in the LHS graph if they are linked together.  

In GLASS, all links between the nodes in the LHS graph and the RHS graph 

must be explicitly specified. By default, all nodes in the RHS graph are directly linked 

with the source data unless they are specified to be derived from the LHS graph by 

satisfying certain conditions. 

(2) Box of group entities 

The idea of grouping and aggregation functions in XML is actually borrowed 

from the “group-by … having…” clause in SQL for relational data. However, XQuery 

does not readily represent the same clause with reserved key word “group by”. 

Therefore, the representation of grouping in XQuery can be very complex and hard to 

write especially when grouping ancestor-nodes by descendant-nodes.  

To represent grouping in graphical query languages, we use the keyword 
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“_group” and the box of group entities. The box covers a sub-graph in a GLASS 

query and represents a group entity that consists of all nodes inside the box. It is 

useful in multi-field grouping. For example, a box can hold “supplier” and “project” 

together to express an aggregation of “part” by both “supplier” and “project”. 

In practice, the box of the group entity can be regarded as a composite node in a 

GLASS query graph. 

(3) Node Identifier and Condition Identifier 

Both identifiers are user-defined unique names of entities in query graphs. The 

entities include all nodes (including boxes of group entities) and edges. 

The node identifiers are the unique names given to nodes or boxes. They start 

with “$” and are assigned at the right side of data icons or boxes between two “:”s. 

The node identifiers are later used in the expressions in the condition logic window to 

represent the corresponding nodes in query graph. 

The condition identifiers are the unique names given to the conditions. They are 

assigned between two “:”s after the type name of the connection but do not begin with 

“$”.The condition identifiers are always assigned on edges and stand for certain parts 

of query conditions. 

For both identifiers, the colons are not parts of the identifiers but distinguish them 

from the names of relationship types. 

(4) Condition Logic Window (CLW) 

The condition logic window is an optional part in a GLASS query. It is a place to 

write logic expressions and statements (e.g. IF-THEN) for complex query conditions 

rather than draw them in the graph. As we mentioned in Section 3.1, there are 3 

different types of expressions in the CLW. Each expression ends with a semi-colon “;”. 

For the logic expressions, the operator AND, OR, and NOT work with the 

condition identifiers as operands. Brackets “( )” shall be used to indicate the priority 

where necessary. The default logic operator among different logic expressions is 
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AND. 

The mathematical expressions are concerned with the values of the attributes in 

the query graph. In CLW, the attributes are represented by their node identifiers 

defined in the query graph. 

The reconstruction statement  

IF <logic expression> THEN EXTRACT <list of node identifiers> 

means construct the part of data represented by the node identifiers when the logic 

expression after “IF” is true. 

3.3 Representing simple XML queries 

In this section, we discuss how GLASS represents simple XML queries including the 

basic output construction (or simple projection), Projection (with predicates), 

Selection and Join. 

3.3.1 Output construction 
Consider the XML document in Figure 3.1 (the ORA-SS schema of the XML data is 

shown in Figure 2.9). Figure 3.2 and Figure 3.3 list 5 different output construction 

queries and their corresponding results. The semantic meaning of the 5 output 

constructions are as follows. 

Query 1: Extract all supplier elements with their object attributes from the ORA-SS 

schema. 

Query 2: Extract all supplier elements and all the nested contents below including all 

object classes and attributes. 

Query 3: Extract all supplier elements with attributes that are originally defined as 

XML attribute types. 

Query 4: Extract all supplier elements with attributes that are originally defined as 

XML element types; if the attribute is a composite one, then extract all 

contents below including both sub-element types and XML attribute types. 
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Query 5: Extract all supplier elements with sid and sname; in the result, reconstruct 

sid as element types and change sname into attribute types of supplier. 

Example 3.1 The XML document “spj.xml” 

<spj> 
    <supplier sid=”S001”> 
        <sname>Alfa</sname> 
        <location> 
              <country>Britain</country> 
              <city>Manchester</city> 
              <street>Green Park …</street> 
        </location> 
        <location> 
              <country>Scotland</country> 
              <city>Edinburgh</city> 
              <street>Mayflower Rd …</street> 
        </location> 
        <part> 
              <pid>P001</pid> 
              <pname>screw</pname> 
              <price>5</price> 
              <project> 
                    <jid>J001</jid> 
                    <jname>Diving helm</jname> 
                    <qty>64</qty> 
              </project> 
              <project> 
                    <jid>J003</jid> 
                    <jname>Rocket boots</jname> 
                    <qty>80</qty> 
              </project> 
        </part> 
        <part> 
              <pid>P002</pid> 
              <pname>bearing</pname> 
              <price>25</price> 
              <project> 
                    <jid>J002</jid> 
                    <jname>Rocket helm</jname> 

                    <qty>4</qty> 
              </project> 
        </part> 
    </supplier> 
<supplier sid=”S002”> 
        <sname>Beta</sname> 
        <location> 
              <country>France</country> 
              <city>Leon</city> 
              <street>Locust St …</street> 
        </location> 
        <part> 
              <pid>P001</pid> 
              <pname>screw</pname> 
              <price>5.5</price> 
              <project> 
                    <jid>J001</jid> 
                    <jname>Diving helm</jname> 
                    <qty>32</qty> 
              </project> 
              <project> 
                    <jid>J002</jid> 
                    <jname>Rocket helm</jname> 
                    <qty>100</qty> 
              </project> 
        </part> 
        <part> 
              <pid>P003</pid> 
              <pname>bearing</pname> 
              <price>35</price> 
        </part> 
    </supplier> 
    … 
</spj> 

Figure 3.1 The XML data set of supplier, part and project 

supplier

 

supplier

*

 

supplier

@
 

supplier

@ E
sname sid

supplier

E
 

 

Query 5 Query 1 Query 2 Query 3 Query 4 

Figure 3.2 Five query examples of output construction 

Here we should emphasize that the information of whether an attribute is an attribute 

type or an element type in the original XML data is also stored when the DTD or 

XSD schema is enhanced into an ORA-SS schema. Therefore, by default, the output 

construction should follow the original XML data type. 
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Result of Query 1 Result of Query 4
    <supplier sid=”S001”> 
        <sname>Alfa</sname> 
        <location> 
              <country>Britain</country> 
              <city>Manchester</city> 
              <street>Green Park …</street> 
        </location> 
        <location> 
              <country>Scotland</country> 
              <city> Edinburgh</city> 
              <street>Mayflower Rd …</street> 
        </location> 
    </supplier> 
    <supplier sid=”S002”> 
        <sname>Beta</sname> 
        <location> 
              <country>France</country> 
              <city>Leon</city> 
              <street>Locust St …</street> 
        </location> 
    </supplier> 
    … 

    <supplier> 
        <sname>Alfa</sname> 
        <location> 
              <country>Britain</country> 
              <city>Manchester</city> 
              <street>Green Park …</street> 
        </location> 
        <location> 
              <country>Scotland</country> 
              <city> Edinburgh</city> 
              <street>Mayflower Rd …</street> 
        </location> 
    </supplier> 
    <supplier> 
        <sname>Beta</sname> 
        <location> 
              <country>France</country> 
              <city>Leon</city> 
              <street>Locust St …</street> 
        </location> 
    </supplier> 
    …

Result of Query 2 (omitted, the answer 
should display everything in Figure 3.1 
except the root node “spj”) 

Result of Query 5
    <supplier sname=”Alfa”> 
        <sid>S001</sid> 
    </supplier> 
    <supplier sname=”Beta”> 
        <sid>S002</sid> 

Result of Query 3  
    <supplier sid=”S001”> 
    </supplier> 
    <supplier sid=”S002”> 

    </supplier> 
    … 

    </supplier> 
    … 

Figure 3.3 The results of the five queries in Figure 3.2 

Query 1 and 2 show how GLASS construct the result with the concept of object 

classes and attributes in ORA-SS. By using the default output method, the result is 

automatically organized in the original structure, data type and document order and 

even the user may not know exactly what the attributes are and how they are defined 

in original XML. 

Query 3 and 4 demonstrate the GLASS output construction in a lower level that 

is directly concerned with XML data types. The circles with “@” and “E” are the 

wildcards of all XML attribute types and element types respectively. 

Based on Query 3 and 4, Query 5 does a reconstruction by changing the original 

XML data types of sid and sname. Notice that, according to the current XML 

specification, no multi-valued attribute type is supported. Thus, only single-valued or 
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optional attributes can shift between XML attribute types and element types. 

3.3.2 Projection and Selection 
The query examples of simple output construction can be regarded as simple 

projections without any predicates. In XML query, projection is a fundamental 

operation defined as generating a set of XML segments that conform to a given XPath 

expression. When predicates are added into query conditions, selection and projection 

are combined together as the following example. 

Query 6 (Projection with predicates, Selection) 

To find all suppliers with a location in Briton (country = ‘Briton’); display 

their sid, sname and the locations in Briton only. 

GLASS query graph 

suppliersupplier

location

country
='Briton'

location

Figure 3.4 Query 6 in GLASS 

Figure 3.4 shows the GLASS query graph for Query 6. The key point of Query 6 is 

that only those locations at Briton should be displayed in the result. Therefore, though 

supplier “S001” has two locations, only the one in Briton should be extracted in the 

result. To achieve this, XQuery (See the XQuery version in Appendix B) uses 

variable binding such that a variable is defined for each location element and bound 

with each value of the variable $sx for supplier in the iteration. This binding is crucial 

and irreducible. 

In contrast, GLASS uses explicit links instead of variable binding. The link 

between two supplier object classes means all supplier instances in the result are 

selected by matching the query conditions in the LHS graph. The link between two 

location attributes means all location elements in the result should match the condition 
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in the LHS graph too. Without the second link, the query will display all locations 

(including those outside Briton) of the supplier if it has at least one location in Briton. 

Explicit linking is one of the most important features in GLASS in comparison 

with other graphical XML query languages. Just like the variable bindings in XQuery, 

it is crucial in expressing the exact meaning of an XML query. 

3.3.3 Join 
GLASS supports join operations in one document or within many documents. 

Suppose our document in Example 3.1 is in file “spj.xml” and there is another 

document “project.xml” whose ORA-SS schema is shown in Figure 3.5. 

project

j_id jname budget member

JM, 2, +, +

m_id name job_title

JM

*

 

Figure 3.5 The ORA-SS schema of “project.xml” 

Query 7. (Join in one document) 

Display the information about the suppliers in pairs (without duplicates) if 

the two suppliers supply the same parts to same projects. 

Figure 3.6 shows both the XQuery and GLASS version for Query 7, a join within one 

document. The key points of Query 7 are how GLASS represents a join field and how 

to express the result construction. 

In Figure 3.6, to represent the join field, GLASS just points the arrows from two 

suppliers to the same part. The label “SPJ, 3” on the arrow from part to project is 

important which means the supplier, part and project are bound together in this query 

condition. Without this label, the LHS graph will have an ambiguous meaning that 

people cannot tell whether the project is related to the two suppliers or not. 

Moreover, because ORA-SS schema has already defined the object ID attributes, 
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it means the pid values of two part instances are equal when we say the two part 

instances are the same. Therefore, in GLASS, it is not necessary to draw two pid 

nodes and specify they are equal, which makes the query graph concise. 

GLASS query graph 

supplier

suppliersupplier

part

project

supplier

supplier_pair

<

SPJ, 3

 
Figure 3.6 Query 7 in GLASS 

The RHS graph of Figure 3.6 introduces a list type node named “supplier_pair” which 

contains two different suppliers in an ascending order (denoted by the label “<” in the 

RHS graph) on their ID attributes (i.e. sid as defined in ORA-SS schema diagram). 

The list type node is used to help users achieve the result structure they need. It 

contributes to a list of nodes with tag name “supplier_pair” and each contains a pair of 

supplier instances that satisfy the conditions in the LHS graph. 

Query 8. (Join between two documents) 

Display the project information with its members from “project.xml” if the 

project uses part “P001” in “spj.xml” 

part

project

project

    pid
='P001'

project
"spj.xml" "project.xml"

jid j_id

*

 
Figure 3.7 Query 8 in GLASS, Join 2 documents 

For object classes from different documents (URLs), GLASS extends the notation of 
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rectangles in ORA-SS by adding captions. The key point of Query 8 is how to express 

the join fields when they have different names. Figure 3.7 demonstrates the most 

general version of join in GLASS. Two nodes are connected by a line if they are the 

join field; and, by default, there is an equi-join. For non-equi-join, the comparison 

expressions can be assigned on the line. 

3.4 Representing complex XML queries 

In this section, we describe more complex XML queries including aggregation, 

negation, quantifiers and conditional result construction. 

3.4.1 Grouping and aggregation functions 
Query 9. Group project instances under each supplier, display supplier information 

and the count of unique project instances. 

supplier

project

supplier

_group

num_of_project

   CNT
_UNIQUE

 
Figure 3.8 Grouping and aggregation function in GLASS 

Query 9 is a typical example of grouping and applying an aggregation function. The 

GLASS representation of Query 9 is shown in Figure 3.8. The label “_group” on the 

arrow from supplier to project means “to group project under supplier”. The dotted 

circle in the RHS graph means the attribute is user-defined and its value is derived 

from the original data, in this example, by applying an aggregation function. The 

hexagon on link between project and the derived attribute “num_of_project” is used to 

apply aggregation functions to get the result, and is called an “aggregation gate”. The 

gate is only used for result constructions with values derived from aggregation 

functions. Otherwise, when aggregation functions are used only in predicates, there 
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will be no such “gate” on the links. 

Query 10 Query 11 

part

project

part

_group

CNT_UNIQUE > 6

pid
supplier

_group

CNT_UNIQUE < 4

part

project

part

_group

CNT_UNIQUE > 6

pid
supplier

_group

CNT_UNIQUE < 4

Figure 3.9 Aggregation with and without box in GLASS 

Query 10: Display the part with its pid if the part is supplied by less than 4 different 

suppliers and supplied to more than 6 different projects in total by all 

suppliers. 

Query 11: Display the part with its pid if the part is supplied by less than 4 different 

suppliers and supplied to more than 6 different projects by one of these 

suppliers. 

Query 10 and 11 are literally similar but significantly different in query meaning. The 

difference is indicated by the usage of box in GLASS. 

In Query 10, there are two conditions that independently group supplier and project 

under each part; then calculate the aggregation function(s) and do the selection. In 

GLASS, this query semantics is intuitively represented as two groupings below the same 

part in the LHS graph. 

In Query 11, the grouping of project is under each distinct combination of part and 

suppliers instead of merely the part. To express the multiple grouping fields, we use the 

box of group entity. In Figure 3.9, a box is drawn in the LHS graph and covers the part 

and supplier. The arrow with label “_group” from the box to the project means “to group 

project under each pair of part and supplier”. The grouping field consists of part and 

supplier, or pid and sid equivalently. 

Figure 3.9 demonstrates another important feature in GLASS where the hierarchical 
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structure of the original schema can be changed. This feature gives users more freedom in 

drawing a GLASS query so that they can pay more attention to the query semantics than 

to data structures. For example, consider the two group operations in Query 10, Figure 3.9. 

In the original schema, supplier is the parent of part and project is the child of part. 

However, the two group operations, no matter whether it groups parent node under child 

node or vice versa, are expressed in the same way. When there is a “_group” label, the 

arrow is not considered as a path (structural) constraint but a grouping constraint. This 

makes the grouping more intuitive in use. 

3.4.2 Logics, quantifiers and negation 
Query 12. Find the part whose pname begins with “b” and is either supplied by less 

than 4 different suppliers or supplied to more than 6 different projects by 

one supplier; display the part with pid and pname. 

Query 12 demonstrates the scenario of complex logics in GLASS query. Figure 3.10 

is the GLASS representation of Query 12 using condition identifiers, logic 

expressions and CLW. 

part

project

part

_group

CNT_UNIQUE > 6

supplier

_group

CNT_UNIQUE < 4pname
='b%'

:A: :B:

:C:

CLW

A AND (B OR C);  
Figure 3.10 Condition Identifiers, logic expression and CLW 

There are 3 condition identifiers declared in the LHS of the query graph: A, B and C. 

Quoted by a pair of colons, the condition identifiers are assigned on the three edges in 

the LHS graph which represent three different conditions. 

(1) Condition identifier “A” is on the arrow from part to pname, which means the part 

should have a pname beginning with character “b”; 
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(2) Condition identifier “B” is on the arrow from part to supplier with “_group” label, 

which means the part is supplied by less than 4 different suppliers; 

(3) Condition identifier “C” is on the arrow from the box to project with “_group” 

label, which means the part is supplied to more than 6 different projects by one 

supplier. 

By default, all conditions are connected with logic operator AND unless the logic is 

rewritten in CLW. The connection between the query graph and the logic expression 

is through the use of condition identifiers. In Figure 3.10, the expression is written as 

“A AND (B OR C);”. 

Using the CLW, GLASS can easily express the quantifications and negations as 

shown in the following example. 

Query 13: Find the parts that have never been supplied to project “J001” by any 

suppliers. 

Query 13 is a typical example of negation using a quantifier. Once again, a condition 

identifier is declared in Figure 3.11, which means the part has been supplied to project 

“J001” by some supplier. Then, the expression in the CLW “NOT EXIST A;” negates 

the condition “A” as specified in Query 13. 

part

project

part

    jid
='J001'

:A:

CLW
NOT EXIST A;

 
Figure 3.11 Express quantifiers and negation in GLASS with CLW 

The use of CLW in this section demonstrates a significant feature of GLASS – the 

flexibility in use. When there is a series of queries on the same data set, with similar 

data structures and predicates, but different combinations of query logics, GLASS 
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does not require the whole query graph to be re-drawn. Our users just need change the 

query graph a little and rewrite the logic expressions in CLW. This feature not only 

makes the query easier to draw, but also easier to understand. 

3.4.3 Conditional construction 
The conditional construction is to construct an output with an IF-THEN clause. 

Consider the following query example, 

Query 14: Display all suppliers, 

• if the supplier supplies part “P001”, then display its sid, sname and locations 

• otherwise, display its sid and sname only. 

supplier

part

supplier

    pid
='P001'

:A:

sid sname location
:$loc:

CLW

IF (A) THEN EXTRACT $loc;
 

Figure 3.12 Conditional constructions, the IF-THEN clause in CLW 

Query 14 requires all suppliers displayed in document order; and only those that have 

supplied part “P001” will have their location information. To represent the query, we 

use an “IF-THEN” clause in CLW as shown in Figure 3.12. We declare a condition 

identifier “A” in the LHS graph indicating the condition of different constructions and 

a node identifier “$loc” in the RHS graph referring to the node “location” in the result. 

Without a link between the two suppliers, the supplier in the result (RHS graph) is 

NOT related to the supplier in the LHS graph. This means all suppliers in the result 

are directly extracted from the data source, which keeps the original document order. 

The IF-THEN clause in the CLW takes effect during the extraction by checking 

whether the supplier satisfies the condition indicated by “A”. Only when the condition 
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is satisfied, the contents referred by the node identifiers after the key word 

“EXTRACT” will be constructed. 

3.5 GLASS vs. XML-GL 

GLASS and XML-GL (including XQBE) may be the only two graphical query languages 

designed for XML. In comparison with other form-based query GUIs, GLASS and XML-

GL both use graphical XML data models and represent XML queries as labeled graphs. 

To meet the requirements of XML query in both condition describing and result 

constructing, both languages have a LHS-RHS structure and share some similarities in 

notation. The first glance over the two languages, especially from the experience of 

simple query examples, may give a sense of commonality. However, GLASS and XML-

GL have significant differences even in their foundations – the data models. From the 

ideas of their language design to the solutions of representing complex XML queries, 

from the precision of expressing query meaning to the correctness of query evaluation, 

GLASS and XML-GL are thoroughly different in all aspects except perhaps some similar 

notations. 

3.5.1 The data models and the ideas of language design 
XML-GL uses a graphical model for XML, called XML Graph, a one-to-one mapping 

between visual components and XML specifications. Therefore, XML Graph is only a 

visual XML document or a DTD/XSD document; and it has no extra semantics besides 

DTD/XSD. Meanwhile, XML-GL is a mapping from XPath expressions and XQuery 

built-in functions to a labeled graph representation system. As a result, the structure, 

especially the hierarchical order, of XML-GL query graph is crucial. Different structure 

means different tree pattern in matching. 

In contrast, GLASS uses ORA-SS to capture rich data semantics that are implicitly 

contained in XML data. With the rich semantics, we can reconstruct an XML document 
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in the RHS graph and guarantee it semantically meaningful. In the LHS graph, as shown 

in Query 10 and 11, the original hierarchical order can be changed in grouping because 

this change can intuitively express the idea of grouping. Except the grouping, the 

hierarchical order is still important where two structures A B and B A are thought 

different paths in GLASS. If the LHS graph of GLASS conforms to the original 

hierarchical structure of DTD/XSD/ORA-SS schema, except the sub-graph about 

grouping, we call the GLASS query well-formed. Particularly, if there is an ORA-SS 

schema and all relationship types appeared in the LHS graph of a GLASS query 

conforms to the ORA-SS schema, we call the query semantically well-formed. In this 

thesis, all query examples about GLASS are semantically well-formed. 

3.5.2 Bindings or links 
XML-GL uses the implicit bindings in its query which means: if two nodes, one in the 

LHS and the other in the RHS, have the same name, then they are bound together. 

However, this could be a disaster that greatly decreases the correctness of XML-GL 

expressions. For example, the implicit binding cannot express the semantics in Query 6. 

In contrast, GLASS only uses explicit bindings (links) in query. We simplify the 

representation of the data structure but not omit links in our query graphs. 

3.5.3 Semantics in representation and interpretation 
XML-GL and its data model do not capture data semantics, which will cause many 

problems in query representation and interpretation. For example, without knowing that 

the pid identifies the part instance, a user cannot draw an XML-GL query to group project 

instance under each distinct part instance because all part elements in the XML document 

(Figure 3.1) are in fact empty! This example indicates that drawing an XML-GL graph 

can be as difficult as writing an XQuery expression. 

In comparison to XML-GL, GLASS relies on the semantics in ORA-SS. If a user 

does not have enough knowledge about the data semantics, he/she can still draw a 
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GLASS query, and the rest of the work is done by the system. From the ORA-SS schema, 

the system can find the corresponding object IDs for grouping, element merging, 

duplicates pruning, etc. 

3.5.4 Graphs and texts 
XML-GL claims that it represents everything in graphs. This is true but this means 

they have to introduce extra more notations to express logical and mathematical 

expressions. Some XML-GL examples show that the mathematical part, which is 

irrelevant to the tree-pattern matching, can be more complex and even larger than the 

data structure part for matching. Moreover, XML-GL has many problems in 

expressing logic expressions especially negation and quantifiers. In fact, XML-GL 

claims not to support universal quantifier. If XML-GL were able to correctly express 

negation and existential quantifier, it should not be a problem. 

Table 3.1 XML-GL/XQBE VS. GLASS 

 XML-GL/XQBE GLASS 
Data Model DTD/XSD ORA-SS 
Selection, Projection & Join Yes Yes 
Queries on Ordered Data Yes Yes 
Support “group by” operator Yes Yes 
Support Aggregation Function Yes Yes 
Support Negation (NOT) Yes Yes 
Support Qualifiers(∀, ∃) No Yes 
Conditional Output Construction 
(e.g. With IF-THEN Clause) No Yes 

User-defined elements/attributes Yes Yes 
Reconstruction with Swapping No Yes 
Reconstruction with Merging No Yes 
Support View Validation No Yes 

Having noticed the weak points of graphs in expressing mathematical and logical 

expressions, we preserve the use of text in GLASS. As shown by our examples in 

Section 3.4, the textual expressions in CLW can easily handle very complex query 

logic and fully support the use of quantifiers and negation. 

The comparison between XML-GL/XQBE and GLASS in their expressive 

 



 
58 

capabilities is presented in Table 3.1. 

3.6 The translation from GLASS to SQLX 
To translate a graphical language into a textual standard language proves a practical 

method to implement the graphical language and verify its expressive capability. In this 

section, we present how to translate GLASS to SQLX [70] to query XML data stored in 

an object-relational database management system (ORDBMS). This part of work has 

been published in [55]. 

3.6.1 SQLX and ORDBMS storage 
SQLX (also known as SQL/XML) is an XML-related specification that expands SQL. 

The syntax of SQLX combines the features in XML document processing and 

traditional SQL. The purpose of the SQLX is to publish XML documents from 

relational tables, where there are mappings between the data types in both sides and it 

also provides a set of functions to build the tree structure of XML documents. We 

choose SQLX because it is now a standard supported by most ORDBMS vendors in 

their systems such as OracleTM 10g [38], SQL ServerTM 2005 [57], DB2TM 9 [6]; and 

it is a package solution to querying XML data stored in ORDB. Before we exam the 

features of SQLX, we discuss our method to store XML data in ORDBMS. 

Object Relations 
      supplier (sid, sname, location (country, city, street)*) 
     part (pid, pname) 
     project (jid, jname) 
Relationship Relations 
      SP (sid, pid, price) 
     SPJ (sid, pid, jid, qty) 

Figure 3.13 The ORDB schema of the storage of the XML data in Example 3.1 

When XML data is stored in an ORDB, with respect to its ORA-SS schema, each 

object class will be stored in an object relation with its object attributes and each 

relationship type will be stored in a relationship type relation with its relationship 

attributes. The composite attributes will be stored as a nested relation inside an object 
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relation or relationship type relation according to the ORA-SS schema (e.g. the 

location in Figure 2.11). Thus the ORA-SS schema in Figure 2.11 will lead to the 

ORDB schema in Figure 3.13. 

Notice that, in such a storage method, the document order of the XML data is 

considered to be unimportant. Otherwise, if the document order is important, we 

should introduce extra column(s) for ordinal numbers in object/relationship relations 

where necessary and thus we can restore the original document order when 

constructing an XML output. For example, if the order of part instances below each 

supplier instance is important, the relationship relation SP can be defined as “SP(sid, 

pid, order_pid, price)” where the order_pid is the ordinal number of pid (i.e. part 

instance). Moreover, if one part instance appears multiple times and the order between 

its pid and pname is inconsistent, it means the order is determined by the position of 

the part instance, i.e. the path from the root to the part instance in the tree structure. 

Because the path consists of supplier and part, we can now define the relationship 

relation SP as “SP(sid, pid, order_pid, price, pos_pid, pos_pname)”, where pos_pid 

and pos_pname indicate the position of pid and pname7. 

When we restore the original document order in an XML output, the key point is that 

we must find which instance is the one we should construct if the instance has appeared 

multiple times. For example, when a part instance is constructed with a supplier instance8, 

we should at first find the corresponding record in the relation SP according to pid and sid; 

and then, we use the pos_pid and pos_pname to construct the pid and pname (in the 

object relation part) in a correct order. 

To simplify the problem and highlight the core part of our translation method from 

GLASS to SQLX, we assume that the XML data is not order-sensitive in this section. 

When XML data are stored in ORDBMS, SQLX can be used to query the data and 

                                                 
7 Because the value of pname is determined by pid, we still have the object relation part in Figure 3.13. 
8 If an object/attribute/relationship instance is constructed stand-alone, it means all duplicates of the instances will 
be constructed. 
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construct the result in XML format. The most fundamental functions in SQLX are 

XMLELEMENT, XMLATTRIBUTES and XMLAGG, which is enough for us to 

construct all XML documents. XMLELEMENT creates an XML element and 

XMLATTRIBUTES constructs the attributes for an element. XMLAGG is a function that 

produces a forest of elements from a collection of elements. We use an example to show 

how these functions work and construct an XML document. 

 

 

 

 

 

<supplier sid = “S001”> 
      <partname>screw</partname> 
      <partname>bearing</partname> 
</supplier> 
<supplier sid = “S002”> 
      <partname>screw</partname> 
      <partname>bearing</partname> 
</supplier> 
… 

The SQLX query A possible output from the SQLX 

SELECT XMLELEMENT 
                (  NAME “supplier”, 
                   XMLATTRIBUTES (supplier.sid AS “sid”) 
                   SELECT XMLAGG 
                   (   XMLELEMENT (NAME “partname”, part.pname) 
                   ) 
                   FROM part, SP 
                   WHERE part.pid = SP.pid 
                        AND SP.sid = supplier.sid 
                ) 
FROM supplier    

 
2. 

 
 

5. 
 
 

8. 
 

 
11. 

1.

3.
4.

6.
7.

9.
10.

Figure 3.14 A SQLX query example 

Example 3.2 (A demonstration of SQLX, query on Example 3.1, Figure 3.1) 

Display all supplier instances with their sid; and below each supplier display the 

names of all the part instances it supplies. In the result, the sid is constructed as 

an XML attribute type of the supplier element; and the part name (pname) is 

constructed as a new element type “partname”. 

From Example 3.2, we can see the following features of SQLX: 

(1)  SQLX has a nested structure which agrees with the nested structure of the result 

XML. 

(2)  SQLX can define new element types in the result XML (e.g. Line 5 defines a new 

element type partname). 

(3)  The relation among the XML elements (attributes) in the result is defined in the 

WHERE clauses (e.g. Line 8 and 9 are the join between the relation “part” and “SP” 

in Figure 3.13 to restore the original parent-child relation between part and supplier). 

3.6.2 Translation algorithm 
The basic idea of the translation algorithm is to traverse the expanded RHS graph in 
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depth-first order to nest the SQLX query blocks according to the tree structure of the RHS 

graph. The XML construction functions in SQLX can be different depending on the data 

types (element or attribute) in the XML result. The join constraints in the WHERE 

clauses are added between parent-child/ancestor-descendant blocks according to the 

relationship type information in the RHS; and the constraints from LHS/CLW are only 

for the linked nodes in the RHS. 

Observing the SQLX syntax, we find that, the SELECT and FROM clause can be 

generated directly by checking the GLASS query graph and the ORA-SS schema. 

Thus, the main task in translation is the generation of query conditions, the WHERE 

clause. Before the translation, we need preprocess the GLASS query graph with the 

following 2 steps. 

Preprocess step 1. Expand the abbreviated RHS graph 

For all abbreviated representations in the RHS, we expand all object attributes of the 

corresponding object class. As for the relationship attributes, we expand all object classes 

participating in the relationship type that appear in the RHS. To secure that the result 

should be meaningful, we move the relationship attribute down to the lowest object class 

in the hierarchical structure among all participating object classes. 

Preprocess step 2. Build a condition tree with respect to the LHS graph and CLW 

The expressions in the WHERE clause consist of two parts: one is the join 

expressions (often on the ID attributes) between two object classes if they are parent and 

child (or ancestor-descendant) in the graph; the other part is the query conditions/logic 

indicated in the LHS and CLW. The join expressions can be naturally retrieved from the 

ORA-SS schema. Thus in this step, we build a condition tree that combines the LHS and 

CLW together for generating the second part of the WHERE clause expressions. 

The connection between the LHS graph and the expressions in CLW is the user-

defined condition identifiers. Basically, each condition identifier has a specific scope 

 



 
62 

which is a sub-graph of the LHS graph. The specific scope, which we call the active range 

of a condition identifier, is defined in Chapter 5 (Definition 5.5). 

part

project

_group

CNT_UNIQUE > 6

supplier

_group

CNT_UNIQUE < 4pname
='b%' The active range of A

The active range of B

The active range of C  
Figure 3.15 The active ranges of the condition identifiers in Query 12 

part : nid1

pname
='b%'

part : nid1

supplier : nid2

_group

CNT_UNIQUE < 4

part : nid1

project

_group

CNT_UNIQUE > 6

supplier : nid2

[OR]
[AND]

SP SPJ

 
Figure 3.16 The condition tree of Query 12 

For example, the active ranges of the condition identifiers in Query 12 are illustrated in 

Figure 3.15. Then, according to the logic expression in the CLW, we can add logic nodes 

into the tree structure as shown in Figure 3.16. 

In Figure 3.16, the original LHS graph of Query 12 is split into 3 sub-graphs where 

each sub-graph corresponds to a query condition identified by a condition identifier. 

The three part nodes in Figure 3.16 are the copies of the same part node in Figure 3.15 

and hence they have the same node id (system generated). Notice that, in practice, the 

node with the same id means they are bound to the same variable in translation. 

3.6.2.1 The generation of WHERE clause 

Based on the condition tree, we can generate the WHERE clause expressions. 

Given a linked node N in the RHS, the left-linked node of N in the LHS is NL. 

The general WHERE clause of NL, denoted as W(NL), is generated as follows.  
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Rule for generating where clauses from condition tree:  

If NL is an attribute node, then W(NL) is the value comparison expressions on NL. 

If NL is an object class, then W(NL) is  

CASE 1. there is a (negated) quantifier in front of NL, then we generate 

   WHERE [NOT] EXIST (SELECT NL FROM … W(NLC) <op> W(NLP) <op> W(NL’)) 

CASE 2. there is a “_group” label following NL, then we generate 

   WHERE NL IN (SELECT DISTINCT NL FROM…W(NLC) <op> W(NLP) <op> W(NL’)) 

CASE 3. there is a “_group” label in front of NL under object class M, then we generate 

   WHERE NL IN (SELECT NL, AGG(NL) FROM …W(NLC) <op> W(NLP) <op> W(NL’) 

                              GROUP BY  M  HAVING value comparison on AGG(NL))  

CASE 4. for all other cases, we generate 

   WHERE NL IN (SELECT NL FROM …W(NLC) <op> W(NLP) <op> W(NL’)) 

In the above rule, NLC is the child node of NL; NL’ is the copy node of NL; and if NL is 

associated in a relationship type of D degree, then NLP is the D-1 ancestor nodes of NL. 

Notice that, when W(NLP) is generated, we exclude node NL so that the recursion is 

terminable. Moreover, we ignore the parent nodes when generating W(NLC) and 

W(NLP) if the nodes are not included NLP. The <op> is the logic operator, defaulting 

to “AND”, connecting the where clauses. 

It should be emphasized that W(NLP) is indispensable when   

(1) NL is not the root in TC, and  

(2)  In the RHS, N does not have a parent/ancestor node that is linked. 

Otherwise, W(NLP) can be omitted. 

For example, in the RHS of Query 12, the part node is linked with the part node 

in the LHS. According to the condition tree in Figure 3.16, from left to right, the first 

condition is in CASE 4; the second and third condition is in CASE 2. The translation 

result of Query 12 is presented as follows. 

SELECT XMLELEMENT(NAME “part”, XMLELEMENT (NAME “pid”, P1.pid) 
                                            XMLELEMENT (NAME “pname”, P1.pname) 

)FROM part P1  
WHERE P1.pname LIKE “b%” 

AND ( P1.pid IN (SELECT DISTINCT pid FROM part P2 
                         WHERE (SELECT COUNT(DISTINCT sid) FROM SP WHERE P2.pid = SP.pid)<4) 
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                  OR  
                  P1.pid IN (SELECT DISTINCT pid FROM part P3 
                                     WHERE (SELECT DISTINCT sid FROM supplier  
                                                     WHERE(SELECT COUNT(DISTINCT jid) FROM SPJ 
                                                            WHERE SPJ.pid = P3.pid AND SPJ.sid = sid)>6)) 
                ) 

Algorithm 3.1: Translation from GLASS to SQLX 

Input: GLASS query graph 
Output: SQLX query description  

//Begin 
1. Map single side GLASS query graph into two-side graph;  
2. Expand the RHS of GLASS query graph; 
3. Create TC from LHS and CLW; 
4. Create an empty SQLX query description; 
5. For each root node N in the expanded RHS graph 
6. { 
7.        Generate_SQLX(N) 
8.        {  
9.              //generate the select clause 
10.              IF (N is root OR N is a single-valued element type in XML)  
11.                   {Generate SELECT XMLELEMENT for N;} 
12.              ELSE IF (N is an attribute in XML)  
13.                   {Generate XMLATTRIBUTES for N; } 
14.              ELSE                                                                                           //all other cases 
15.                    {Generate SELECT XMLAGG(XMLELEMENT) for N;} 
16.               //Traverse the RHS graph in depth-first order 
17.               For all child nodes NC of N from left to right 
18.                    {Generate_SQLX(NC);} 
19.              //generate the from clause 
20.               Generate FROM clause for N; 
21.              //generate the where clause 
22.               Generate WHERE clause associated with N’s parent/ancestor nodes if any;  
23.               IF (N is linked with a node in LHS)  
24.                    {Generate WHERE clause from N’s left-linked node in TC;} 
25.               Return the generated SQLX expressions; 
26.        } 
27. } 

//End 
 

Algorithm 3.2: Generate the set of condition tree 

INPUT: the LHS graph GL, CLW 
OUTPUT: the condition trees TC 

Step 1. TC = GL         // TC is a forest if GL contains multi-graph 
Step 2. Add aggregation info (where there is a “_group” label) onto the arrows in TC. If there is a box of 

group entity, it will be regarded as ONE composite node in TC.  
Step 3. Add relationship info (the degree and the name of the relationship type) onto the arrows in TC. 

If the relationship type is a projection from one of the original relationship type in ORA-SS 
schema, we represent it as “R[o1, o2, …, oD], D” where D is the degree, R is the name of the 
original relationship type, and o1 to oD are the D object classes. 

Step 4. Add condition identifiers into the TC. Generally, given a condition identifier cid on an arrow 
from node A to B, then cid is directly added on the corresponding arrows in TC. If the cid 
appears k times in the CLW, we copy the active range of cid (from node A) k-1 times as sibling 
nodes of A.  

Step 5. For all logic expressions in CLW, add logic operators and quantifiers into TC. The position of 
the inserted operators/quantifiers is in accordance with their position relatively to the condition 
identifiers in the logic expressions in CLW. 

Step 6. Eliminate all universal quantifiers (FORALL) in TC by applying logic transformation to negated 
existential quantifiers. 
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Here we present the algorithms of both condition tree generation and translation. The 

generation of the WHERE clause follows the rule in Section 3.6.2.1. 

Soundness and completeness of the translation algorithm 

After preprocessing, the entire semantics of a GLASS query can be retrieved by 

combining the expanded RHS, the constructed condition tree and the Link Set (the 

preprocessed query graph is denoted as the core query graph). Intuitively, the 

expanded RHS hold the required object class, attributes and relationship types as well 

as the structure of the result. For those linked nodes in the RHS, we refer to the LHS, 

find their corresponding left-linked nodes in the condition tree and check the 

condition constraints against them.  

The target query answering with the semantics defined in Section 3.3 and 3.4 (the 

canonical target instance) can be constructed on the base of the condition tree TC, 

expanded RHS and Link set. The construction is described as follows,  

Step 1. For each link in the Link set, the linked nodes in the RHS compose the core 

selected tuples; 

Step 2. For each combination of core selected tuples on the relation set R defined in the 

ORA-SS schema, if it matches the TC, then we add the tuples into the canonical 

target instance;  

Step 3. For all non-linked nodes in the RHS, find them from the relation set R and join 

them with the core selected tuples; 

Step 4. Transform the join result, a temporary table of the canonical target instance, into 

a tree via a series of group where the group field is determined by the 

relationship types defined in the RHS. 

Based on the above definition of canonical target instance, we have the following 

statements that, 
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Given a GLASS query G, K is the core query graph of G (i.e. K is the combination of 

the TC, expanded RHS and Link set of G); S is the translated SQLX query from G. Let I 

be the source data instance, which is a set of relations in ORDB; and J be the canonical 

target instance. S(I) is the result of evaluating S on I; and K(J) is the result of 

evaluating K on J. We have S(I) ⊆ K(J) (soundness) and K(J) ⊆ S(I) (completeness).  

Proof:  Let SCORE be the SQL query formed by removing the XML functions in S, TJ is 

the temporary table of J before it is transformed into XML format. For each tuple t ∈ 

SCORE(I), we must have t∈TJ because if t matches the SCORE, it satisfies the condition 

in TC and be added into TJ. Similarly, we have each tuple u ∈TJ that also have 

u∈SCORE(I) so that SCORE (I) = TJ. 

Let SX be the XML functions in S where S(I) = SX(SCORE(I)); let V be the 

expanded RHS of G, which is an XML view defined in ORA-SS, and ∑V(TJ) is a 

mapping from the table TJ to V which satisfies the relationship type constraints in V. 

Then we have SX(SCORE(I)) = ∑V(TJ) because SX satisfies all relationship type 

constraints in V.  

Notice that, the proof is only available on the source data I that is modeled using the 

ORA-SS schema because the source data I is stored in the relation set R according to 

ORA-SS schema and all relationship types in GLASS query graphs are derived from R. 

The time complexity of the translation algorithm 

Given a GLASS query graph G, let GR be the expanded RHS of G, TC be the 

condition tree, L be the Link set. The size of GR is |GR| = the number of object class nodes 

in GR; the size of TC is |TC| = the number of object class nodes in TC; and the size of L is 

|L| = the number of links between LHS and RHS. Then, the complexity of the translation 

algorithm is O(|GR|+|L|×|TC|). 

3.7 GLASS case tools 
The case tool of GLASS consists of 3 major functional modules: ORA-SS schema 
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editor, GLASS query editor and the GLASS-to-SQLX translator. 

The ORA-SS schema editor 

 

Figure 3.17 The GUI of the ORA-SS schema editor in our case tool 

Figure 3.17 demonstrates the GUI of the ORA-SS schema editor in our case tool. The 

five buttons on the top of the main window, from left to right, are selection cursor, 

attribute constructor, object class constructor, arrows and references. 

(1) The selection cursor is used to select a graphical component in the main window; 

(2) Attribute constructor and object class constructors are used to create attributes and 

object classes in the schema diagram; 

(3) Arrows and references are used to create the connections among object classes and 

attributes in the schema diagram. Relationship types are then added on the arrows. 

Right clicking on a graphical component allows a user to specify the properties of the 

component. For example, a user can specify that the qty is the attribute of the relationship 

type JSP and it is an XML element type (i.e. not an XML attribute type). 

The GLASS query editor 

Figure 3.18 is the screen shot of the GLASS query editor, which consists of 3 parts: 

(1) The left part is the schema panel where users can import an ORA-SS schema 

diagram; 

(2) The upper right part is the query panel where the GLASS query graph is drawn; 
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(3) The lower right part is the condition logic window where complex query logic 

expressions can be written. 

At the top of the query panel, there are more constructor buttons than those in schema 

editor. The 5th, 6th and 7th button are the new constructors of the box of group entity, 

aggregation function and link. 

 
Figure 3.18 The GUI of the GLASS query editor 

In the query panel, the components in GLASS query graphs can be either dragged from 

the schema panel or constructed by the buttons. In the CLW, the logic operators, 

quantifiers and the key word “IF”, “THEN” and “EXTRACT” are listed to help users 

write logic expressions. 

 

Figure 3.19 The menu to translate the 
GLASS into SQLX 

Figure 3.20 The translated SQLX 
expressions 
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The GLASS-to-SQLX translator 

The algorithm translating GLASS to SQLX presented in Section 3.6 contributes to the 

translator module in our case tool. 

Using the command “Show Translated Query” on the “Operation” menu in 

Figure 3.19, a user can get the SQLX translation of the GLASS query in a new 

window like the screen shot in Figure 3.20. 

3.8 GLASSU – GLASS with update extension 

3.8.1 Preliminary information about W3C XML update facilities 
In July 2006, the W3C released the new standard called XML update facility [77]. In the 

new standard, there are four XML update operators: insert, delete, replace, rename; and 

one auxiliary operator - transform to make copies (views) for modification.  

Terms in explanation: All keywords are written in capital letters. The src_exp and 

tgt_exp refer to source expression and target expression in XML updating respectively. 

The tgt_exp is the navigation to the place(s) where the update operation should be applied. 

It is a compulsory component in every update expression. In contrast, the src_exp refers 

to those newcomers in the result after the update operation, which is used in insertion and 

replacement. 

The general format and the semantics of the five operators are explained as follows. 

(1) Insert 

The general format of the insert expression is 

DO INSERT src_exp prep tgt_exp 

which means insert the node(s) with its (their) substructures described by the src_exp 

into a document at a certain position about the node(s) specified by the tgt_exp. The 

prep is the preposition that specifies the position of the insertion, which can be INTO 

(by default), BEFORE, AFTER, AS FIRST and AS LAST. 
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(2) Delete 

The general format of the delete expression is 

DO DELETE tgt_exp 

which means delete the sub-trees rooted at the node(s) specified by the tgt_exp. 

(3) Replace 

The replace has two different formats for either semantics of replacing nodes with 

sub-structures or modifying the values of certain nodes. 

The first format, corresponding to the first semantic meaning, is 

DO REPLACE tgt_exp WITH src_exp 

which means replace the node(s) with sub-structures specified by the tgt_exp with the 

node(s) with sub-structures described by the src_exp. The src_exp nodes will take the 

hierarchical position of the nodes of tgt_exp. 

The second format, corresponding to the second semantic meaning, is 

DO REPLACE VALUE OF tgt_exp WITH src_exp 

which means modify the value (i.e. PCDATA or CDATA content) of the node (i.e. 

instance of XML element or attribute respectively) specified by the tgt_exp with the 

value of the src_exp without changing the original node’s name, position and its sub-

structures in the document tree. 

(4) Rename 

The general format of the delete expression is 

DO RENAME tgt_exp AS new_name 

where the new_name can be either a string or a variable. The rename operator only 

changes the tag name of an XML element or the name of an XML attribute.  

(5) Transform 

The transform operator is not an update operator. It is used to create a view to which 

the 4 XML update operators will be applied. The format of the transform operator is 

 



 
71 

TRANSFORM $var := src_exp MODIFY update_exp 

where $var is the user-defined name (in the form of a variable) of the created nodes in 

the view with sub-structures specified by src_exp; update_exp is the expression(s) of 

the above 4 XML update operators we have listed. 

With the transform expression, the updates are used to create a view with the 

nodes of $var. Therefore, the update_exp in the transform expression will not be 

applied to the original XML document. 

3.8.2 The notations for XML updates 
Contrasting this with our previous work, GLASS, the graphical representation of XML 

updates should be more precise in specifying paths and positions (especially for insertion) 

in an XML document tree. It also requires a one-to-one mapping from XML components 

to visual notations. To meet the requirement of XML update, we add new notation. 

Table 3.2 The visual notations and their meanings for XML updates 

XML and XML 
update components 

Notations for 
XML updates in 

GLASSU 

Notation 
name Notation meaning 

Complex XML element Supplier  Rectangle Supplier is a complex 
element in XML 

Simple XML element Sname Circle Sname is a simple 
element in XML 

XML attribute @Sid Circle with “@” Sid is an attribute in 
XML 

Action, the XML update 
operator 

INSERT
target source

 Curved rectangle An INSERT action 

Value of XML element  or 
XML attribute   Filled triangle - 

Functions, mathematical 
formulas 

+1  Hexagon To increase the value 
by 1 

Parent-child relationship 
(“/”)  Arrow - 

Ancestor-descendant 
relationship (“//”) 

+  
Arrow  

(with “+”) - 

IDREF/IDREFS Dashed Arrow  

In Table 3.2, we list all the notations of graphical XML updates.  

(1) The attribute in ORA-SS (the circle) can be either a simple element or an attribute in 

an XML document tree. However, when drawing a graph for updating or querying, 
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we should specify the original data type exactly. Thus, we use the circle with “@” to 

distinguish XML attributes from simple XML elements. 

(2)  The Value node (the filled triangle) is important for XML updates with respect to the 

semantics of the keyword “VALUE OF”. If it is below an element, it means the 

PCDATA content of the element; if it is below an attribute, it means the CDATA 

value of the attribute.  

(3) The label of the Action node (curved rectangle) can be the 4 basic update 

operators: insert, delete, replace and rename. 

3.8.3 Extension of the update part 

An XML update graph consists of 3 parts, from left to right, they are: 

(1) Condition part - indicates where the update operation shall be applied, which is an 

optional part for updates if the update operation is not applied to the source data9; 

(2) View part - generates a view from the condition part for updating, the specification 

of output, which is an optional part when the update is applied to the source data; 

(3) Action part - specifies what kind of update operation is applied and the 

corresponding sources for modification, which is a required part for any graphical 

update expressions. 

Condition part,
original data

source

View
construction

part

Action
part

(optional) (required)(optional)

Condition part
Result construction

part
GLASS

LHS graph RHS graph

GLASSU

(optional) (required)

 

Figure 3.21 The comparison between the structures of GLASS and GLASSU 

The condition part and view part are separated by a single vertical line; and the view 

part and action part are distinguished by a double vertical line. Figure 3.21 indicates the 

                                                 
9 This means a transform operation is applied. 
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relation between the extension GLASSU and the original GLASS. 

Although both the condition part and view part are optional in the graphical 

representation for XML update, they cannot be omitted at the same time. When the view 

part is omitted, the single vertical line between the condition part and view part should not 

be omitted. As a consequence, we have 3 different formats of graphical XML update 

expressions. 

(1) Format 1 contains all three parts. In such a format, a view is generated according 

to the specification in the condition part. If the target arrow of the action part 

points to the source (condition) part, it means the update should change the 

source data. Otherwise, if the target arrow points to the view part, the update is 

applied to construct a view only. 

(2) Format 2 contains the condition part and action part, which is used when the 

update action is applied to the source data, probably the most common format of an 

update. 

(3) Format 3 contains the view part and action part, which is used when the update 

action is applied to construct a view. 

Example 3.3 (Supplier, part and project data set for update) 
The schema of spj.xml:  
<!ELEMENT supplier (part+)> 
     <!ATTLIST   supplier   sid   ID #REQUIRED> 
     <!ELEMENT sname (#PCDATA)> 
     <!ELEMENT part (price, spec?, project*)> 
         <!ATTLIST part   pid   CDATA #IMPLIED 
                                       pname  CDATA> 
         <!ELEMENT price (#PCDATA)> 
         <!ELEMENT spec (#PCDATA)> 
         <!ELEMENT project (jname, qty)> 
            <!ATTLIST project  jid  CDATA #IMPLIED > 
            <!ELEMENT jname (#PCDATA)> 

supplier

part

project

sid

pid

sp, 2, +, +

spj, 3, *, +

jid

sname

pname price

jname qty

sp

spjspec
?

 
            <!ELEMENT qty (#)PCDATA>

The DTD schema The ORA-SS schema diagram 
The schema of project.xml:  

<!ELEMENT project (jname, description, member+,  
                                     numOfMember)> 
     <!ATTLIST  project jid ID #REQUIRED> 
     <!ELEMENT jname (#PCDATA)> 
     <!ELEMENT description (#PCDATA)> 
     <!ELEMENT member (mname, jobTitle+)> 
          <!ATTLIST member mid CDATA #IMPLIED > 
          <!ELEMENT mname (#PCDATA)> 
          <!ELEMENT jobTitle (#PCDATA)> 

project

member
jid

mid
+

jname description numOfMember

mname jobTitle

pm, 2, +, +

pm

      <!ELEMENT numOfMember (#PCDATA)> 
The DTD schema The ORA-SS schema diagram 
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3.8.4 Our graphical XML update expressions 
In our following discussion, all query examples are proposed on the XML data 

“spj.xml” and “project.xml” with their ORA-SS schemas in Example 3.3. 

3.8.4.1  Insertion, target arrow and source link 

Query 15. In the “spj.xml”, insert a new project instance that the supplier “S001” supplies 

the part “P001” to the new project; and the quantity of the part is 100 units. 

In the action part, there is an INSERT action with two out-stretching edges. One edge 

is a line that links the action with the new project instance. This line, which we call 

“source-line”, is used to link the action and the graphical expressions corresponding 

to the src_exp. The other edge is an arrow which points to the part. The arrow, which 

we call “target-arrow”, points to the target node and/or target position of the action 

corresponding to the tgt_exp. By default, the target arrow points to the parent node 

with the default preposition “INTO”. We can add the key word label “AS FIRST” or 

“AS LAST” on the target arrow, which indicates that the inserted instance will be the 

first/last child element of the target node. Particularly, when the label is the 

preposition “BEFORE” or “AFTER”, the target arrow should point to the node for 

reference which is in fact the sibling node of the inserted instance. For example, if the 

“project” instance in Query 15 is required to be inserted after the attribute “price” 

below the target “part” instance, the target-arrow should have a label “AFTER” and 

point to the node “price” instead of the “part”. This is also consistent to the syntax of 

XML update standard. 

FOR $p IN doc(“spj.xml”)/supplier[@sid= “S001”] 
/part[@pid = “P001”] 

RETURN 
       DO INSERT 
            <project @jid = “J003”> 
                    <jname>Rocket</jname> 
                    <qty>100</qty> 
            </project > 
             INTO 

supplier

part

  @pid
='P001'

@sid
='S001'

INSERT
spj.xml

project

  @jid
='J003'

  jname
='Rocket '

 qty
=100             $p 

GLASSU update expression XML update expression

Figure 3.22 The XML update expression and our graphical representation of Query 15. 
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3.8.4.2  Replacement and function 

Query 16. In “project.xml”, project “J001”, the member “M. Antony” is replaced by 

“J. Caesar” and “J. Caesar” should take all job titles of “M. Antony”. 

(without VALUE OF) 

Query 17. In the “spj.xml”, increase the price value of part “P001” under each 

supplier by 10%. (with VALUE OF) 

The example of Query 16 (Figure 3.23) demonstrates the semantics of replacing 

nodes without using the keyword “VALUE OF”. Because the original member “M. 

Antony” will be replaced, we should remember his job titles in project “J001” before 

it is replaced. To achieve this, we should use the transform expression to create a 

temporary view at first. After that, we construct the new member instance “J. Caesar” 

and put the job titles in the temporary view under “J. Caesar”. Finally, we replace the 

new instance to the old one in the original data. 

In comparison, Query 17 (Figure 3.24) is a replacement on the value of an XML 

node. In the condition part, the triangle below the price means “the value of the price 

element”; and in the action part, the target-arrow points to the triangle under the price 

in the condition part. The source-line that links to the price attribute indicates which 

nodes are involved in the function or mathematical formula in the hexagon. This is 

important when several different attributes are involved or the source node appears 

under different object class nodes. 

FOR $j IN doc(“project.xml”)/project[@jid = “J001”] 
LET $m := $j/member[mname = “M. Antony”] 
RETURN 
        TRANSFORM 
           COPY $c := $m 
       DO REPLACE 
           $m 
       WITH 
           <member @mid = ‘M007’> 
                 <mname>J. Caesar</mname> 
                 $c/jobTitle 

member

REPLACE
project

project.xml

 @jid
='J001'

   mname
='M. Antony'

member

jobT itle

member

jobTitle

   mname
='J. Caesar'

   mid
='M007'

 
           </member> 

GLASSU update expression XML update expression 

Figure 3.23 The XML update expression and our graphical representation of Query 16 
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REPLACE

 price*1.1 @pid
= 'P001'

supplier
spj.xml

part

price

 

FOR $p IN doc(“spj.xml”)/supplier 
                  /part[@pid = “P001”] 
RETURN 
    DO REPLACE VALUE OF 
           $p/price 
    WITH 
           $p/price*1.1 
 

GLASSU update expression XML update expression 

Figure 3.24 The XML update expression and our graphical representation of Query 17 

3.8.4.3  Deletion 

FOR $oct IN doc(“project.xml”)/project[@jid= ‘J001’] 
/member[mname=‘G. Octavian’] 

$jt IN $oct/jobTitle 
WHERE $jt = “Project leader” 
RETURN 
       DO DELETE 

project

DELETE

project.xml

       jobTitle
='Project leader'

member

     mname
='G. Octavian'

 @jid
='J001'

 
               $jt 

GLASSU update expression XML update expression 

Figure 3.25 The XML update expression and our graphical representation of Query 18 

Query 18. In the “project.xml”, below the project “J001”, the member “G. Octavian” will 

no longer be the project leader. Thus, we will delete the corresponding job title. 

In comparison with the other update operators, the delete operator always has only one 

operand – the target node(s) to delete. 

3.8.4.4  Rename and Transformation 

Query 19. Create a view from “project.xml”, rename the first member element of 

each project as “project_leader”. 

FOR $p IN doc(“project.xml”)/project 
RETURN 
        TRANSFORM 
           COPY $tp := $p 
        DO RENAME 
           $tp/member[1] 
        AS 
          “project_leader” 
        RETURN $tp 

project
project.xml

RENAME

member

[1]

project_leader

 
GLASSU update expression XML update expression 

Figure 3.26 The XML update expression and our graphical representation of Query 19 

The graphical XML update expression in Figure 3.27 creates a view of the original 

data; and, within the view, it renames the first member element under each project 

element as project leader. This rename will not change the source data. 
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3.9 Summary 

In this chapter, we have presented GLASS, a graphical XML query language, based 

on ORA-SS. We have introduced the notations and concepts in GLASS. Through a 

series of examples with increasing complexity, we have discussed how to use GLASS 

to express various XML queries including selection, projection, join, aggregation, 

negation and conditional reconstruction. After that, we compared XML-GL and 

GLASS to show the main differences and advantages of GLASS.  

From the discussion and comparison, GLASS has the following features in 

comparison with other graphical XML query languages and GUIs. 

(1) Using ORA-SS, a rich semantic data model for XML data; 

(2) Thinking of XML in object classes, relationship types and attributes, the original 

hierarchical data structure in the schema can be changed in GLASS so that users 

can concentrate on query semantics (guaranteed by (1)); 

(3) Representing XML queries correctly when semantics concerns (provided by (1)); 

(4) Using text to express complex query logical and mathematical expressions; 

(5) Using explicit bindings (links) to eliminate ambiguities in result construction; 

Besides, in this chapter, we have presented the algorithm of translating GLASS 

into SQLX. Because the SQLX is supported by most ORDBMS vendors today, our 

GLASS queries can be translated into SQLX expressions and applied to an XML data 

repository based on ORDBMS. In our discussion, the ORDB storage schema is derived 

from the ORA-SS schema of the XML data. No matter whether the ORA-SS schema is 

available or not, the semantics information about object classes, object IDs, n-ary (n≥2) 

relationship types and relationship attributes are always important to the design of an 

ORDB storage schema for XML data. If the data owner (database designer) designs the 

ORDB storage schema based on these rich data semantics, our translation method 

presented in this chapter applies. Otherwise, without knowing object classes or object 
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IDs, people may use the node ID (same as the object ID in OEM) to identify different 

nodes in an XML document tree; without knowing n-ary (n≥2) relationship types or 

relationship attributes, all terminal nodes (i.e. the leaves in the XML document tree) are 

determined by the paths from document root to the terminal nodes where the paths are 

identified by the node IDs. In such a case, we can treat all internal nodes as “object 

classes” and all leaf nodes as “relationship attributes” where the “relationship types” are 

the paths consist of internal nodes; and thus our translation method still applies. 

Based on our translation algorithm, we have implemented a case tool of GLASS 

which allows users to edit/import an ORA-SS schema, draw a GLASS query and 

obtain the SQLX translation. 

Finally, we have proposed the GLASSU, an extension of GLASS for XML updates. 

This extension enhances the expressive capability of the original GLASS and adds new 

functionalities to it. XML update raises the problem of validation.  

In our work, we use ORA-SS schema, which means we are able to validate the 

semantic constraints of our XML data with respect to ORA-SS. This problem is 

discussed in the Appendix A of this thesis. 
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4 G-algebra: an Algebra of GLASS 

In the database world, it is common to translate a query language into an algebra. The 

purpose of the translation is to either define the formal semantics of the query language 

precisely or lead to algebraic query optimization. In this chapter, we propose the logical 

algebra of GLASS, which we call G-algebra. The “G-” here means for graphical XML 

query. We introduce a data model, called collection of trees with relationship types, and 

present a set of operators on the collection of trees with relationship types. Compared 

with existing algebra works for XML query, G-algebra is more expressive in 

representing graphical query conditions and it supports the rich data semantics 

contained in XML data that are concerned to a graphical query. 

This chapter is organized as follows. In Section 4.1, we present our motivation 

and objectives of G-algebra. In Section 4.2, we introduce our data model of G-algebra, 

the collection of trees with relationship types. In Section 4.3, we discuss one by one 

the operators of G-algebra with examples. Finally, we summarize the chapter in 

Section 4.4. 

4.1 Motivation and Objectives of G-algebra 

As we have mentioned in the literature review at Chapter 2, various work on XML 

query algebra has been proposed. Some work [14, 28, 29, 35, 47] was originally 

designed for tree data query; some [1, 11, 16, 58] was purposely extended from existing 

Chapter 4
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object-relational and/or relational algebra; and some others [2, 31] was even borrowed 

from information retrieval techniques. However, none of the existing works fulfills the 

requirements of graphical XML query languages in expressiveness and correctness. For 

example, consider an XML document about supplier, part and project with the ORA-SS 

schema in Figure 4.1. When two object classes (supplier and part) are swapped and they 

are associated with some relationship types (the binary relationship type “SP”), current 

existing XML query algebras may not be able to detect relationship attributes (e.g. price) 

and handle them correctly unless everything is clearly specified in a user query. 

However, common users may not know about the domain specific data semantics in 

XML data. Therefore, we capture the rich data semantics in ORA-SS so that our query 

engine can handle them for our users. With the rich data semantics in ORA-SS, we 

SHOULD do more things than other works. For example, we know relationship types 

and hence we should check both relationship types and structures/values when we 

evaluate a GLASS query. With the rich data semantics, we also find that we CAN do 

more things than other works. For example, we can define the merging, grouping and 

swapping as a part of our algebra operator set because we have enough semantic 

information to process them correctly. 

supplier

project

part
sid sname

pid pname

jid jname

price

qty

SP, 2, +, +

SPJ, 3, *, +SP

SPJ

 

Figure 4.1 The ORA-SS schema of an XML document about supplier, part and project 

The G-algebra is proposed based on the consideration of the following two perspectives. 

(1) The first perspective is to the granularity of a data model. The term “granularity” 

refers to the size of the target to which the algebra operators are applied. The 

granularity we compared includes “element-attribute level” and “sub-tree level”. For 
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example, given an XML query algebra, if its operators are applied to each element or 

attribute instances, the algebra has the granularity of element-attribute level. 

Similarly, if the algebra operators are applied to a collection of sub-trees, the algebra 

is in sub-tree level. 

Most algebra works that use OEM [59] data model or its equivalents (e.g. DataGuide 

[32], DOM [3, 72], XML Graph [20] etc.) naturally have the granularity of “element-

attribute level”. In these works, each element/attribute instance is modeled as an object 

instance. For every such object instance, a tuple is introduced and recorded with: the data 

type (element or attribute), the tag name (element name) or attribute name, the value of 

the element/attribute, the instance ID, and a label of the instance. The label of the instance 

can be different for different labeling methods. For example, if the regional code labeling 

method is used [33, 67], the instance label may include the start, end, level value10, which 

records the position of the instance in document order. 

There are two main problems with this modeling method. 

(i) Each node is separated into a different tuple. Therefore, when we compute the 

transitive closure on parent-child links to determine ancestor-descendant 

relationships, we have to perform a series of join operations continuously, which 

is very expensive. 

(ii) Every element/attribute instance is treated as an object instance in OEM. Hence, 

the object instance ID identifies different element or attribute instances rather than 

real-world object instances. For example, in Figure 4.1, if the part with pid = P001 

is supplied by several different suppliers, it will appear several times in the 

document “SPJ.xml”. If all duplicates of the part “P001” instance have a different 

object ID in OEM, the object ID cannot tell whether they refer to the same real-

world object instance unless the pid value is checked. 

                                                 
10 In some works, such as [13], the tuple <pre, post, level> is used instead of <start, end, level> with the same 
semantic meaning. 
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Some researchers have proposed the idea of using a collection of trees, where all 

the trees have the same pattern. The pattern, also known as a tree pattern, is defined as 

<T, F>, where T is the tree structure of the pattern and F is a set of predicates applicable 

to those nodes in T. As a result, the collection conforming to a given tree pattern should 

match both the structure of T and the predicates in F. The relation between a tree pattern 

and its tree collection is similar to the relation between an XML schema and its 

document instance. The tree structure of a pattern (T) is a sub-schema derived from the 

original XML schema. An XML query can be regarded as a tree pattern (or several tree 

patterns) with extra algebra operators applied to the tree collection(s) conforming to the 

tree pattern(s). 

This method was first introduced in Aqua [63], and later developed in TAX [35], 

with the granularity of “sub-tree level”. The “sub-tree level” modeling is flexible 

because the pattern of the collection can be of the size from a single node to a whole 

document. The idea of tree patterns and tree collections is especially suitable for 

graphical XML query because a graphical query is a graph that describes a tree pattern 

and the query result is the tree collection conforming to the tree pattern. Moreover, a 

complex query graph can be decomposed into several simple sub-query graphs, which 

correspond to the feature that a complex tree pattern can be decomposed into several 

sub-tree patterns. 

Concluding the first perspective, we propose our G-algebra with the granularity 

of “sub-tree level”. 

(2) The second perspective is the data semantics in a data model. The data semantics 

is extremely crucial for writing, interpreting and evaluating a query. However, we 

do not expect that a common user may have the full knowledge about the data they 

want to query. A good solution is to capture the rich data semantics and save them 
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as a part of the schema of the data.  

Unfortunately, most existing XML algebra works use DTD [69]/XSD [76], OEM 

or their equivalents that do not capture enough data semantics, which will cause 

severe problems in query evaluation. For example, consider the following XML 

schema written in DTD about supplier, part and project. 

Example 4.1 (Problems of XML query without sufficient semantic information) 
<!ELEMENT spj (supplier+)> 
     <!ELEMENT supplier (sname, location+, part+)> 
          <!ATTLIST supplier sid ID #REQUIRED> 
          <!ELEMENT sname (#PCDATA)> 
          <!ELEMENT part (pid, pname, price, project*)> 
              <!ELEMENT pid (#PCDATA)> 
              <!ELEMENT pname (#PCDATA)> 
              <!ELEMENT price (#PCDATA)> 
              <!ELEMENT project (jid, jname, qty)> 
                  <!ELEMENT jid (#PCDATA)> 
                  <!ELEMENT jname (#PCDATA)> 
                  <!ELEMENT qty (#PCDATA)> 

Figure 4.2 The DTD schema of an XML document about supplier, part and project 

There can be 2 totally different semantic meanings on the value of qty element. 

(a) The qty is the quantity of one particular part used in one project, provided 

by one supplier. 

(b) The qty is the (total) quantity of the part used by the project in the document. 

Suppose we have two XML documents, “SPJ1.xml” contains the data with the first 

semantic meaning; and “SPJ2.xml” contains the data with the second. Both 

documents conform to the DTD in Figure 4.2. Here are two severe problems in query 

evaluation. 

(i) The first problem is the semantic false in compatibility. Consider the following 

tree structure in Figure 4.3, if we match it in both SPJ1.xml and SPJ2.xml, we will 

obtain two result collections with the same structure. Without knowing the 

difference in data semantics, an algebra will wrongly treat the two collection 

union-compatible. 
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supplier

part

project

qty  
Figure 4.3 A tree structure consists of supplier, part, project and qty 

(ii) The second problem is the inconsistency in operation for relationship attribute. 

Suppose a user pose a query to swap the hierarchical position between supplier 

and project. Without enough semantic information, no current existing XML 

query engine can automatically handle the qty element and guarantee a semantic 

meaningful answer. If the user has specified how to treat the qty element in the 

query, no existing system can tell whether the user specification is correct or not. 

As a conclusion of the second perspective, we propose G-algebra on the basis of 

the semantic information in the ORA-SS [45]. 

4.2 The collection of trees with relationship types (CTR) 

In relational algebra, all operations are defined on collections of tuples. These 

operations then form the declarative algebraic expressions and contribute to alternative 

data access plans. Similarly, for XML data, we use the collection of trees with 

relationship types as the data model and define our G-algebra operators on it. 

In this section, we redefine the concept of collection of trees (CT) as given in TAX to 

the collection of trees with relationship types (CTR). We assume that the XML data for 

query already has an ORA-SS schema11. We first define the pattern tree with enhanced 

semantics about relationship types. Then, we define the matching of pattern tree in an 

XML document tree. After that, we define the CTR conforming to a pattern tree with 

                                                 
11 With user input, XML schema written in DTD, XSD, etc., can be transformed into ORA-SS with enhanced 
information about object classes, relationship types, (ORA-SS) attributes and the association between XML 
elements/attributes (now modeled as object classes and ORA-SS attributes) and the relationship types. 
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relationship types. Finally, we illustrate the concepts presented in this section with an 

example. 

Definition 4.1 (Pattern tree with relationship types, PTR): A pattern tree with 

relationship type is a 3-dimensional tuple P = <T, F, R>, where T = <N, E> is a 

labeled tree such that, 

(i) N is the node set, where the nodes are from ORA-SS object classes and 

attributes in ORA-SS schema diagram, which can be either an XML element 

or an XML attribute; 

(ii) E is the edge set including parent-child (PC), ancestor-descendant (AD), and 

reference edges; 

(iii) F is the set of predicates applicable to nodes in N with the format 

“node_name: predicate”, where the predicate in F includes: 

(a) Value comparison equations: e.g. price: > 80; pname: = ‘S%’12; 

(b) XQuery build-in functions on XML element/attribute values and names: 

e.g. jname: Contains(jname, ‘punch’)13 

(c) Boolean operation (NOT, AND, OR) and the existential quantifier 

(EXIST) in combination with the expression of (a) and/or (b): e.g. 

part: NOT EXIST (pname = ‘S%’)14 

(iv) R is the set of relationship types contained in the pattern tree, assigned as 

labels on the edges in E.□ 

Intuitively, a PTR is a sub-tree from ORA-SS schema diagrams with predicates 

(declared in F) and relationship types derived from the ones in the original schema 

(specified in R). A PTR is a query. However, a query is not merely a PTR. A 

graphical query shall be considered as a set of PTRs (for both query condition and 

                                                 
12 It means the pname value is a string beginning with “S”. 
13 It means the jname value contains the string “punch”. 
14 It means that there should be no pname value that begins with “S”. 
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result reconstruction) with a series of algebra operators applied on those collections of 

trees conforming to the PTRs. 

A PTR indicates a sub-schema (the tree structure T and the relationship type set R) 

and a set of predicates (F). The next definition describes how to match a given PTR in 

an XML document tree. 

Definition 4.2 (Matching of a PTR in an XML document): Formally, given an XML 

document tree X and a PTR: P = <T, F, R>, the matching of P in X is a total mapping  

f: P X from the nodes in T to those in X such that: 

(i) (Structure preservation) For nodes u, v in T, if edge (u, v) is a PC (or AD 

or reference) edge in T; then (f(u), f(v)) is also a PC (or AD or reference) 

edge in X. 

(ii) (Constraint preservation) The image under the mapping  f in X must 

satisfy the condition constraints in F. 

(iii) (Relationship type preservation) For nodes u, v in T, if edge (u, v) is 

labeled with a set of relationship {r1, r2, …, rn} in R; then the edge (f(u), f(v)) 

in X must also be labeled with the same set of relationships {r1, r2, …, rn}. 

This objective can be achieved using ORA-SS schema.□ 

Definition 4.2 does not consider the document order of nodes in XML. If order is 

important then we can extend the structure preservation object in the mapping f as 

follows, 

(Structure preservation with order) For each pair of nodes u, v in T, if u is 

the parent (or child, ancestor, descendant, preceding-sibling, following-

sibling) of v in T; then f(u) is also the parent (or child, ancestor, descendant, 

preceding-sibling, following-sibling respectively) of f(v) in X. 

A matching instance of a PTR in an XML document is also a tree. We adopt the term 

in TAX and name the tree instance as witness tree, or witness tree with relationship 

 



 
87 

types (WTR) with respect to our definition in Definition 4.1. 

Definition 4.3 (Witness tree with relationship types, WTR): Given an XML document 

tree X, a PTR: P; each tree-structured instance of the matching of P in X is a witness 

tree with relationship types (WTR) of P.□ 

The collection of the WTRs of a PTR contains all matching results of the PTR 

individually. Therefore, duplicate members may be included if there are duplicate 

matching results in the document tree X. If the output needs to be merged on the 

common paths or the duplicates needs to be eliminated, we will use G-algebra 

operators (e.g. merge) accordingly. The following example demonstrates the concepts 

of the PTR, matching and collection of WTRs. 

Example 4.2 (An illustration of the concept of PTR and WTRs) 

supplier

part

project

sid sname

pid pname price

jid jname qty

sp, 2, +, +

sp spj, 3, *, +

spj

 

supplier

part

project

sid sname

pid pname price

jid jname qty

sp, 2, +, +

sp pj, 2, *, +

pj

 
(a) The ORA-SS schema diagram of the document 

“SPJ1.xml” 
(b) The ORA-SS schema diagram of the 

document “SPJ2.xml” 

Figure 4.4 The ORA-SS schemas for SPJ1.xml and SPJ2.xml in Example 4.1 

supplier

part part

project project projectproject

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

price:
5

jid:
J001

jname:
Sorter

qty:
150

jid:
J003

jname:
Punch

qty:
200

pid:
P002

pname:
nut

price:
3.5

jid:
J001

jname:
Sorter

qty:
100

jid:
J002

jname:
Collator

qty:
50

supplier

part

project

sid:
S002

sname:
Blake

pid:
P002

pname:
nut

price:
3.65

jid:
J002

jname:
Collator

qty:
40

Document Root

...

 
Figure 4.5 The instance diagram of the document “SPJ1.xml” 
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Figure 4.4 gives the ORA-SS schemas of both documents and their different semantics 

in Example 4.1. Figure 4.4(a) represents “SPJ1.xml”. Figure 4.5 is an instance diagram 

of the document SPJ1.xml, which means that the data instances conform to the ORA-

SS schema diagram in Figure 4.4(a). 

supplier

part

project

sid sname

pid pname

jid jname qty:
   100

sp, 2, +, +

spj, 3, *, +

spj

≥  
Figure 4.6 An example PTR 

We propose an example PTR in Figure 4.6. In the PTR:  

(i) The tree structure T is just the nodes and edges in the figure, T is a sub-tree of 

the schema diagram in Figure 4.4(a). 

(ii) The predicate set F contains one predicate that “qty: ≥ 100”. 

(iii) The relationship type set R is {sp, spj}. 

The relationship types can be either specified by users in their queries or automatically 

added by the query engine according to ORA-SS schema. 

If we match the PTR in Figure 4.6 into the document “SPJ1.xml”, with the 

example fragment illustrated by the instance diagram in Figure 4.5, we will get the 

collection of WTRs shown in Figure 4.7. 

Observing the collection members in Figure 4.7, we can see that every sub-tree 

instance in the document tree (Figure 4.5) that matches the PTR in Figure 4.6 should be 

an individual member. Therefore, some internal nodes will be repeated several times if 

it matches the pattern tree in different instances. For example, the supplier instance with 

sid = S001, sname = Adams, though it appears only once in the instance diagram in 

Figure 4.5, it appears three times in Figure 4.7. The reason is that there are three 

 



 
89 

different sub-tree instances of the supplier “S001” matching the PTR in Figure 4.6. 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J003

jname:
Punch

qty:
200

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

...{ }

 
Figure 4.7 The collection of the witness trees in “SPJ1.xml” of the pattern tree in Figure 4.6 

In the rest of this thesis, when we talk about CTR or “collection of trees”, it means a 

collection of WTRs. 

Note: In the rest of this chapter, all examples of G-algebra operators are presented on 

the basis of the collection of WTRs. The examples are used to demonstrate how we 

define the G-algebra operators, not how we implement them. Besides, because a G-

algebra expression may be just a part of a user query, the result collection of each 

example may not be the final output of a user query. 

4.3 G-algebra operators 

In this section, we present the G-algebra operator set including traditional set operators, 

selection, projection, join, swapping, merging and grouping, as well as other useful 

operators such as rename and ordering, which are necessary for an XML query algebra. 

4.3.1 Traditional set operators 
Like relational algebra where operators are defined on collections of tuples, operators 

in G-algebra are defined on collections of trees. Because XML data can be order 

sensitive and the tree structure data may contain redundant XML elements/attributes, 

we formally define the following terms for 4 different kinds of collections. 

Definition 4.4 (Different kinds of collections: Set, Bag, Sequence and List): Given a CTR: 
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W, we formally define that 

(i) W is a bag if (1) it may contain duplicate tree members and (2) the order among 

the tree members in W is not important. 

(ii) W is a set if (1) it contains no duplicate tree members and (2) the order among 

the tree members in W is not important. 

(iii) W is a sequence if (1) it may contain duplicate tree members and (2) the order 

among the tree members in W is important. 

(iv) W is a list if (1) it contains no duplicate tree members and (2) the order among 

the tree members in W is important. □ 

The relationship among the four different kinds of collections is illustrated in Figure 

4.8.  

  Order 
  Without order With order 

Content 

Without 
duplicates Set List 

May with 
duplicates Bag Sequence 

Figure 4.8 The comparison among 4 different collection types 

Bag Sequence

Set List

eliminate duplicates eliminate duplicates

claim order sensitive

claim order sensitive

claim order insensitive

claim order insensitive  
Figure 4.9 The relation among 4 different collection types 

A Bag (Sequence) can become a Set (List) by eliminating duplicate members by 

adding the preserved keyword UNIQUE in front of the Bag (Sequence). For example, 

if the collection W is a Bag (Sequence), the collection W’ = UNIQUE(W) is a Set 

(List). But, a Set (List) can not be returned to a Bag (Sequence) because it is hard to 

get back those eliminated duplicate members unless we have a copy of the original 

Bag (Sequence). 

A Set (Bag) can be transformed to a List (Sequence) if it is claimed to be order 
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sensitive via the preserved key word WITH_ORDER added before the Set (Bag). For 

example, if the collection W is a Set (Bag), the collection W” = WITH_ORDER(W) is 

a List (Sequence). In contrast, a List (Sequence) can be returned to a Set (Bag) with 

the key word WITHOUT_ORDER. 

To apply the traditional set operators Union (∪), Intersection (∩) and Difference 

(-) between two collections requires that the two collections must be union-

compatible. Two collections are union-compatible if (1) they are of the same 

collection type (i.e. bag, set, sequence or list) and (2) their PTRs have the same 

structure and relationship type set.15 

In comparison with the traditional set operators, the situation in XML is more 

complex because both member order and duplication shall be considered. We extend 

the traditional set operators as follows. Suppose that we have two union-compatible 

collections U and V. 

Definition 4.5 (Equality between two tree-structured members) 

Two tree-structured members u and v are equal (denoted as u = v) if  

(1) (Pattern Equality) They conform to the same PTR; and 

(2) (Value Equality) For each node instance in the tree structure of u, its counter-

node instance in v has the same value as that in u.□ 

The equality between two tree-structured members defined in Definition 4.5 is also 

known as the deep-equality in XML data. 

Union:  U∪V returns a collection containing all members that occur in either U or V. 

The result collection W has the same PTR as U and V. Also, the collection W 

should be of the same kind of collection, i.e. Set, Bag, Sequence or List, as 

U and V. To achieve this, the members in W are obtained as follows. 
                                                 
15 Here, it means only their predicate sets can be different from each other. 
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CASE 1  (U and V are Sets): For each tree-structured member wi ∈ W, we have either 

wi∈U or wi∈V (or both). Also, for each wi ∈ W, we do not have wj ∈ W (i≠j) 

where wi = wj. 

CASE 2  (U and V are Bags): W is initialized as a copy of U; then all members in V 

are appended into W. If a member appears twice in U and three times in V, it 

will appear five times in W. 

CASE 3  (U and V are Lists): W is initialized as a copy of U; then we scan each 

member v in V from left to right, if v is not included in W, the member v is 

appended into W. Because U and V are originally lists, there are no duplicate 

members in U or V. Thus, we just need check whether V’s members have 

occurred in W to avoid duplication. Suppose that U has n members {u1, 

u2, …, un}, V has m members {v1, v2, …, vm}, and there are k members in V 

(k≤m) that do not occur in U. Then, W contains n+k members and those 

members in W are organized in the follow order such that: from left to right, 

(i) The first n members in W are from U where wi = ui, 1≤i≤n; and 

(ii) The following k members in W are from V, which are the k members that 

do not occur in U. The k members are kept in the same order as they are 

in V. 

CASE 4  (U and V are Sequences): W is initialized as a copy of U; then, all members 

in V are appended into W after those members from U. If U has n members 

{u1, u2, …, un} and V has m members {v1, v2, …, vm}, W contains n+m 

members. The members in W are organized in the following order such that: 

from left to right, 

(i) The first n members in W are from U where wi = ui, 1≤i≤n; and 

(ii) The following m members in W are from V where wn+j = vj, 1≤j≤m. 
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Then, we define the extended Intersection and Differences. 

Intersection: U∩V returns a sub-collection of U that contains all tree-structured 

members that also occur in V. To obtain the result collection W= U∩V, we 

should check each tree members in U. For each member u∈U, if there is a 

member v∈V such that u = v, we add u into W. 

Difference: U-V returns a collection containing those tree-structured members that 

occurs in U but not in V. The result collection W is defined as follows. W is 

initialized as a copy of U; after that, for each tree-structured member w∈W, 

if there is a member v∈V such that w = v, we remove w from W. 

The extended Union, Intersection and Difference have the following features. 

(1) The result collection W is always of the same collection type (Set, Bag, List or 

Sequence) as both union operand collections U and V. 

(2) If U and V are sets, the union (intersection and difference) operation is just a 

traditional union (intersection and difference) operation for sets. 

(3) If U and V are bags (or sequences), the extended union operation keeps all 

duplicate members in either U or V (or both). However, the extended intersection 

and difference operation only keeps the duplicate members in the left-hand-side 

operand U. 

(4) If U and V are lists (or sequences), the extended union (intersection and 

difference) operation makes a convention of member order according to the left-

hand-side operand collection (In our example, the left-hand-side operand 

collection is U). The original member order in U or V is also kept in the result 

collection W. Therefore, if the member order is concerned, we do not have U∪V 

= V∪U (or U∩V = V∩U), which is one of the most important differences of 

XML algebra from relational algebra. 
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We now illustrate the above definitions through several examples. Suppose we have 

two lists U and V as follows. 

supplier

part

project

sid sname

pid pname

jid jname qty:
   100

sp, 2, +, +

spj, 3, *, +

spj

≥

supplier

part

project

sid sname

   pid:
='P002'

pname

jid jname qty

sp, 2, +, +

spj, 3, *, +

spj

 
The PTR of V The PTR of U 

- The PTR of the list U means: we match those tree-structured instances whose 

qty values are no less than 100. 

- The PTR of the list V means: we match those tree-structured instances whose 

pid values are equal to ‘P002’. 

Then, from the XML document “SPJ1.xml” in Figure 4.5, we obtain members in U 

and V shown in Figure 4.10. 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J003

jname:
Punch

qty:
200

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

{ }U =

 
supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
50

supplier

part

project

sid:
S002

sname:
Blake

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
40

{ }V =

 
Figure 4.10 Two example lists, U and V 

The list W1=U∪V is shown in Figure 4.11. 

The list W2=U∩V is shown in Figure 4.12. 

The list W3=U-V is shown in Figure 4.13. 
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supplier

part

project

sid sname

pid pname

jid jname qty

sp, 2, +, +

spj, 3, *, +

spj

≥F = {qty:   100 OR pid: = 'P002'}

 
The PTR of the list W1 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J003

jname:
Punch

qty:
200

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

{ }
supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
50

supplier

part

project

sid:
S002

sname:
Blake

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
40

The content of the list W1 

Figure 4.11 The PTR and content of W1 = U∪V 
supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

{ }
supplier

part

project

sid sname

pid pname

jid jname qty

sp, 2, +, +

spj, 3, *, +

spj

≥F = {qty:   100 AND pid: = 'P002'}

 
The PTR of the list W2 The content of the list W2 

Figure 4.12 The PTR and content of W2 = U∩V 

supplier

part

project

sid sname

pid pname

jid jname qty

sp, 2, +, +

spj, 3, *, +

spj

≥F = {qty:   100 AND NOT EXIST (pid: = 'P002')}

 
The PTR of the list W3 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J003

jname:
Punch

qty:
200

{ }

 
The content of the list W3 

Figure 4.13 The PTR and content of W3 = U-V 

Discussion: pruning of duplicate-in-node 

Because XML data may contain duplicate contents, we have to extend our set 
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operations to support the duplicate content, which is important to the correctness of 

evaluating groupings and aggregation functions.  

The term duplicate used in this thesis is the short form of “duplicate-in-value”, 

which means two (tree) instances have the same structure and value but they are 

located in different positions in the original document tree. However, when we apply 

the set operations, we may meet the “duplicate-in-node” that two tree instances are 

from the same position (identical) in the original document. The duplicate-in-value is 

allowed but the duplicate-in-node should be automatically eliminated. For example, 

recall the example in Figure 4.10. If U and V are considered as bags or sequences16, 

the union between U and V according to the extended definition (CASE 2 and 4), we 

will obtain the result shown in Figure 4.14. To differentiate the new result from W1, 

we call it Wn, which contains duplicate-in-node. Compare the collection Wn with the 

original document tree in Figure 4.5, we can find that the 3rd and 4th members in Wn 

are duplicate-in-node. 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150
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part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J003

jname:
Punch

qty:
200
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project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

{

}
supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
50

supplier

part

project

sid:
S002

sname:
Blake

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
40

supplier

part

project

sid:
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sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

Wn =

 

Figure 4.14 An example of duplicate-in-node 

To know whether two tree members are duplicate-in-node, we can use the node id. The 
                                                 
16 We avoid this problem by considering U and V are lists in the original example. 
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node id identifies node instances in an XML document tree and the node id can be 

obtained when the XML document is first parsed or labeled. Then we can compare the 

node id in one tree member from another to know whether they are identical in the 

position of the original document tree. For our example of Wn, when we find the 3rd and 

4th members are the same sub-tree in “SPJ1.xml”, one of them should be removed 

from the collection. 

With the node id and automatic pruning of duplicate-in-node, the extension of Union 

is correct and safe. In our query evaluation, the collection is by default a bag. If the data is 

order-sensitive (according to the schema definition) or the query is specified as order 

important, then the collection is a sequence. If an aggregation function is applied with the 

keyword UNIQUE (e.g. CNT_UNIQUE), the collection will be a set or list respectively. 

In the rest of this thesis, we assume that duplicate-in-node is automatically pruned 

and, without specification, the term duplicate refers to duplicate-in-value. 

4.3.2 Extended Cartesian product 
The Cartesian product of two CTRs, U and V, denoted as U×V, is defined as follows. 

Definition 4.6 (Extended Cartesian product): U and V are two CTRs, U has n 

members and V has m members. The Cartesian product W=U×V is a collection of n×m 

tree-structured members such that  

(1) For each tree ui in U and vj in V, there is a new tree wij in W with a new root 

element type (namely root_cartesian_product), where the left child tree in wij is ui 

and the right child tree is vj. 

(2) The order of the tree members in the Cartesian product result is primarily 

determined by U (the left hand side operand collection).□ 

For example, recall the two lists U and V in Figure 4.10. W4 = U×V is a list with 9 

members as shown in Figure 4.15. 
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supplier

part

project

sid sname

pid pname

jid jname
qty:
   100

sp, 2, +, +

spj, 3, *, +

spj

≥

root_cartesian_product <

supplier

part

project

sid sname

pid:
='P002'

pname

jid jname qty

sp, 2, +, +

spj, 3, *, +

spj

 
The PTR of W4 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

{ }
supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
50

supplier

part

project

sid:
S002

sname:
Blake

pid:
P002

pname:
nut

jid:
J002

jname:
Collator

qty:
40

root_cartesian_product

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

root_cartesian_product

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

root_cartesian_product

...

The content (first three members) of W4 

Figure 4.15 The pattern tree and the content of W4 = U×V 

Notice that, because XML data can be order-sensitive, we do not have U×V = V×U in 

XML query algebra. In the PTR of a Cartesian product result, e.g. the W4, we add the 

order mark “<”17 beside the introduced root element “root_cartesian_product” which 

means the order of its sub-elements is important. 

4.3.3 Merging 
In this section, we introduce important operators in G-algebra including merging, 

selection, projection, join, swapping and grouping. In comparison with traditional 

relational algebra, XML queries include both query predicates and a result 

construction part. Therefore, the operators of XML query are concerned with not only 

extracting XML data according to query conditions but also restructuring the data into 

a specified format. 

The merging operation is formally defined as follows. 

Definition 4.7 (Merging): Given a CTR: U, the PTR of U is P = <T, F, R>. The 

                                                 
17 The order mark “<” has already been a part of the notation in ORA-SS schema diagram. 

 



 
99 

merging operation is denoted as  

Merge<M>(U) 

where M is the merging field, a sub-set of T. The merging field M can be one node or 

one structure, which indicates the node or the structure that should be merged. 

The merging result W = Merge<M>(U) is obtained via the following steps. 

(1) The PTR of W is the same as that of U. 

(2) For each member u in U, we check the instances specified by M in u which are 

the sub-trees of u that match the structure of M. We compare the instances of M 

in u, and we say two instances m1 and m2 are identical (m1 = m2), if: 

a. m1 and m2 have the same parent node18 (with respect to node id); and 

b. m1 and m2 have the same structure (according to M); and 

c. If a node N∈M, N is an object class, the object ID attribute of N is nid, 

and the instances of N in m1 and m2 are n1 and n2 respectively, n1 and n2 

have the same nid value; and 

d. If a node N∈M, N is an attribute, and the instances of N in m1 and m2 are 

n1 and n2 respectively, n1 and n2 have the same value. 

(3) If m1 = m2, we create a new instance m’ such that, 

a. m’ is initially a copy of m1 and attached to the same parent node of m1; 

b. For each object class node N∈M, the object ID attribute is nid, the 

instances of N in m’ and m1 are n’ and n1 respectively, the nid value of n’ 

equals that of n1. 

c. For each attribute node N∈M, the instances of N in m’ and m1 are n’ and 

n1, the value of n’ equals that of n1. 

(4) After the m’ is created, all sub-trees of m1 and m2 that consist of the nodes that 

are NOT included in M, are moved and attached as sub-trees of m’ according to 
                                                 
18 If M includes the root of T, the parent node is thought to be the collection itself, a virtual root of all tree-
structured members in U. Moreover, we use the term “node” instead of “object instance” because if one object 
instance appear in two different tree members, they are treated as two different nodes. 
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their corresponding parent nodes. After the movement, single-valued attributes 

(both object class attributes and relationship attributes) will be merged even if 

they are not specified in M, multi-valued attributes should remain unchanged. 

(5) When all sub-trees have been moved to m’, m1 and m2 will be removed from the 

member u. We repeat the process from (3) to (5) until all identical instances of 

M in u are merged. Notice that, the newly merged instance in step (3) and (4) 

should be treated as an ordinary member in U, which should be considered in 

the next loop. □ 

Particularly, when M includes the root of T, all instances of M will include the root node 

of all tree-structured members in U. In such a case, we imagine that all members in U 

are connected to one common virtual root node. Thus, the comparison between different 

M instances is among all different members in the whole collection U, and different 

members will be merged if their corresponding M instances are identical. Here we use 

an example to illustrate our definition of the merging operation. 

Example 4.3 (Merging): We recall the example collection U and its PTR in Example 4.2. 

supplier

part

project

sid sname

pid pname

jid jname
qty:
   100

sp, 2, +, +

spj, 3, *, +

spj

≥  
The PTR of U 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J003

jname:
Punch

qty:
200

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

...{ }
 

The content of U 

Figure 4.16 The example collection U for merging 
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supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

project

jid:
J003

jname:
Punch

qty:
200

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

...{ }
supplier

part

project

sid sname

pid pname

jid jname
qty:
   100

sp, 2, +, +

spj, 3, *, +

spj

≥  
The PTR of W. The content of W. 

Figure 4.17 The merging result W of the collection U 

The merging operation  

W = Merge<supplier/part>(U) 

means merge the members in U according to the structure “supplier/part” or the 

parent-child pairs of supplier and part. 

The result of merging is shown in Figure 4.17. We can see that, the PTR of W is 

the same as that of U. The merging operation is applied according to supplier-part 

instances along the path “supplier/part”. The instances are identified by the object ID 

attributes of the object instances along the given path. In this example, the supplier-

part instances are identified by the value of both sid and pid. 

Example 4.4 (Merging, “1+1≠2” of the merging field) This example is used as a 

comparison with Example 4.3 in the merging field. The comparison shows that the 

whole merging field is NOT the sum of its sub-fields. 

W’ = Merge<part>(Merge<supplier>(U)) 

Consider the merging expression above, which means we merge the supplier instances 

first and, then, we merge the part instances on the basis of the previous merge. When 

the supplier instances are merged in the first step, the intermediate result should be as 

follows. 
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supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

part

project
pid:
P001

pname:
screw

jid:
J003

jname:
Punch

qty:
200

part

project
pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

...{ }

 
Figure 4.18 The intermediate result after the supplier instances are merged in U 

Then, we apply the second merging on part instances to the intermediate result 

collection in Figure 4.18, the final result W’ should be as follows. 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150

project

jid:
J003

jname:
Punch

qty:
200

part

project
pid:
P002

pname:
nut

jid:
J001

jname:
Sorter

qty:
100

...{ }

 
Figure 4.19 The final result W’ in the merging Example 4.4 

Comparing the two collections in Figure 4.17 and Figure 4.19, we can see that the 

results of Example 4.3 and 4.4 have a totally different structure. 

In general, a merge operation requires the semantic information in ORA-SS 

including object ID attributes, relationship types and relationship attributes. Since an 

XML element can be empty (without any XML attribute types or PCDATA content) 

such as the part element in Figure 3.1, traditional XML query algebra cannot identify 

such kind of elements. However, with the knowledge of object ID and ORA-SS, our 

G-algebra can compare and merge XML elements even if a user may not thoroughly 

describe how to merge them. 

4.3.4 Select 
The selection operation obtains a sub-collection that satisfies the selection predicates from 

a given CTR. Since the select operator is defined similarly to that in relational algebra, we 

 



 
103 

still use the Greek letter σ to represent a selection with the following format: 

σC(U) 

where U is a collection of trees; and C is the selection predicate. 

The selection predicate C may contain  

(1) comparison operator =, ≠, <, ≤, ≥ and >, e.g. pname = ‘S%’;  

(2) XPath expressions and functions, e.g. Contains(//project/name, ‘punch’) where the 

path expression is necessary if the name element is used both under project and 

supplier in some XML document; 

(3) logic operators ∧ (and) and ∨ (or), e.g.  

pname = ‘S%’ ∨ Contains(//project/name, ‘punch’); 

(4) negated-existential quantifier NOT EXIST (As in SQL, the universal quantifier is 

represented by negated existential in G-algebra.); The range of the quantifier is the 

node type specified before the “:”. For example: the predicate 

supplier: NOT EXIST (pname = ‘S%’)  

means that “for each identical supplier instance, there should not exist any pname 

beginning with the letter S”. 

Example 4.5 (Selection) 

The collection U we used refers to the collection in Figure 4.7, Example 4.2. 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw
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...{ }U =

 
(I) The first selection expression example includes the predicate type (1), (2) and (3): 

σContains(//jname, ‘punch’) ∨ (//qty>120)(U) 

The expression means select tree members from U that either have jname that contains 

the word “punch” or qty value greater than 120. It will obtain the following sub-collection 
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from U. 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

qty:
150
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...{ }
 

Figure 4.20 The sub-collection obtained from U by the selection in Example 4.5 (I) 

(II) The second selection example shows the use of a quantifier in a predicate type (4). 

σsupplier: NOT EXIST (pname = ‘S%’)(U) 

The above expression means select the tree members from U that, for each supplier 

object instance, have no descendant node pname with value beginning with “S”. The 

supplier object instance is identified by its OID attribute sid. Therefore, the semantics 

of the selection is equivalent to “if we group the pname instance by each supplier 

instance according to sid, there should be no pname with value beginning with the 

letter S in the group”. The quantifier is applied to each group of pname under each 

distinct supplier instance. 

With respect to the known (listed) content of our example collection U, the result 

collection of the second selection should be NULL.  

The semantics of NOT with a quantifier (EXIST or FORALL) requires a double 

check for both structure and value with respect to the semantic information in ORA-

SS. The structure check is according to the PTR of the collection (The most primitive 

PTR is the ORA-SS schema). For example, in Figure 4.4(a), the “pname” attribute is 

required (i.e. not optional). Therefore, if a supplier instance does not have any 

descendant instance called pname, it means the supplier does not supply any parts at 

all, which satisfies the selection predicate of (II) in Example 4.5 and should be 

selected into the result. 
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However, if the “pname” attribute is optional because some part names are 

unavailable and/or some part names can be omitted if the part instance is a duplicate19, 

then, in such a case, if a supplier supplying a part without a pname, we cannot simply 

assume whether the pname is unavailable or omitted. We need to check the part 

instance with other part instances with respect to their pid to find the result. If the part 

instance has a duplicate with pname, then that pname is just the pname of current part 

instance because pname is an object attribute. We are able to do this because, from the 

ORA-SS schema, we know that “pid” is the ID attribute of part and pname is the 

object attribute of part which is determined by “pid”. Without this semantic 

information, selection with quantifiers cannot be correctly evaluated. 

4.3.5 Projection 
Given a CTR, the projection operation gets a new collection from the original one by 

extracting the specified nodes, edges, and relationship types. A projection is denoted as, 

П<T, R>(U) 

where U is a CTR; T is the tree pattern (i.e. nodes and edges) that should be projected; 

and R is the set of relationship types that should be derived from the original 

relationship types in ORA-SS schema when only a subset of their participating object 

classes is projected out. Therefore, the key point of projection is how to handle the 

relationship attributes in a derived relationship type. 

Recall the XML data “SPJ1.xml” presented in Figure 4.5. On “SPJ1.xml”, a user 

wants to project the information about parts including the pid, pname and price. 

Because the user does not know about the data semantics, he thinks that the price is 

determined by part only and each part just has one price according to the DTD in 

Figure 4.2. Thus, he draws a simple projection in GLASS as shown in Figure 4.21. 

                                                 
19 This is acceptable because we still have the pid. 
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Example 4.6 (projection of relationship attribute) 

part

pid pricepname  

Figure 4.21 A user projection that leads to meaningless results 

Obviously, the query in Figure 4.21 will get a semantically meaningless result 

because the price is in fact a relationship attribute which is determined by both 

supplier and part. Based on the semantics captured in ORA-SS schema, we can find 

this problem and notify the user that his query has a flaw in semantics. The 

notification message can be of the form “the same part under different supplier may 

have different price value” so that the semantics is easier to understand. 

In general, when a projection contains relationship attributes (e.g. price) and the 

projected field only contains a subset of the participating object classes of the 

corresponding relationship types (e.g. part of “sp”), we should  

(i) present the semantics of the relationship type and relationship attribute to the 

user and inform the user that the result can be meaningless in semantics; and  

(ii) help the user revise the query by either not projecting the relationship attribute 

or applying aggregation functions such as AVG (average) and SUM.□ 

From the above example, we can see that the semantics of relationship types and 

relationship attributes are important to projection. Without knowing such semantics, 

the projection of relationship attributes can be semantically meaningless. 

4.3.6 Join 
In relational algebra, when two tables have some common columns, they can be 

joined on these columns with certain join conditions. The concept of join in XML is 

analogous to that in relational algebra if we regard the XML schema as the 

counterpart of the relational schema. Nevertheless, the XML data are tree-structured 

and the XML schemas are more complex than relational ones. An XML join can be 
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based on either structure (according to paths, tag/attribute names) or value 

(PCDATA/CDATA values). 

4.3.6.1 Structural join 

For structural joins, there must be common parts between the schemas (or PTRs) of 

two XML documents (or CTRs). Furthermore, to achieve a tree-structured schema of 

the join result, the common part should include the root node of (at least) one or both 

schemas (PTRs).  

Example 4.7 (Join, equijoin on common structure) 

There are two XML documents: one is the “SPJ1.xml” whose ORA-SS schema is in 

Figure 4.4(a) and the instance diagram is in Figure 4.5; the other one is a new 

document called “PJ.xml” about parts and projects. The ORA-SS schema and the 

instance diagram of “PJ.xml” are presented in Figure 4.22 and 4.23. 

part

project description
pid pname

jid jname

pj, 2, *, +

total_qty

pj

spec grade

?

 
Figure 4.22 The ORA-SS schema diagram of “PJ.xml” 

part

project

spec:
D9×2.8×7

grade:
900 Mpa/650℃

pid:
P001

pname:
screw

jid:
J001

jname:
Sorter

total_qty:
    500

part

project
pid:
P001

pname:
screw

jid:
J003

jname:
Punch

total_qty:
    470

desciption

...

document root

 
Figure 4.23 The instance diagram of “PJ.xml” 

We can join the two documents on their common structures, i.e. the sub-tree including 

the object class nodes part, project and their object class attributes such as pid, pname, 

jid and jname. The join is written in the following expression. 

doc(“SPJ1.xml”)  part[pid, pname, project[jid, jname]] doc(“PJ.xml”) 
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The join field represents the tree like structure of the common part by using nested 

square brackets (“[ ]”). When we do such a structural join, we need to compare two 

instances with the structure specified in the join field, which is similar to the situation 

of merging (Section 4.3.3). If we have the ORA-SS schema of both documents, the 

join can be represented concisely as follows. 

doc(“SPJ1.xml”)  part/project doc(“PJ.xml”) 

Otherwise, if the ORA-SS schemas are unavailable, we suggest that the join 

expression be represented as follows: 

doc(“SPJ1.xml”)  part[pid, pname, project[jid, jname]] doc(“PJ.xml”) 

where the underlined text (pid and jid) in the join field are the identifying attributes for the 

join. 

supplier

part

project

sid sname

pid pname price

jid jname qty

sp, 2, +, +

sp spj, 3, *, +

spj
description

pj, 2, *, +

total_qty

pj

spec grade

?

 
(a) The schema diagram (PTR) of the join result 

supplier

part

projectproject

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

price:
5

jid:
J001

jname:
Sorter

qty:
150

jid:
J003

jname:
Punch

qty:
200

Document Root

...

spec:
D9×2.8×7

grade:
900 Mpa/650℃

total_qty:
    500

total_qty:
    470

desciption

 
(b) The content corresponding to the knowing document instances 

Figure 4.24 The schema and content of the join result 

The PTR and the content of the join result are given in Figure 4.24. The example 

indicates three important features of structural joins. 

(1) The join field is the common structure in both join operands. The join field must 

contain the top level nodes of the right-hand-side operand. 
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(2) If there are object classes inside the join field, they are identified by their OID 

attributes. The OID attributes can be found in ORA-SS schema. If there is no 

ORA-SS schema, the identifying attribute should be explicitly specified. 

(3) The join is NOT commutative. 

4.3.6.2 Value join 

Sometimes, we may join two documents (CTRs) without any common structure. We 

join them based on attribute values where the attribute name in one document is 

different from that in the other. In such a case, the join result cannot be merged into 

one tree-like structure. To solve this problem, we follow the method used in the 

extended Cartesian product (Section 4.3.2), as demonstrated in the following example. 

Example 4.8 (Join, equijoin on values without merging common structure) 

The first document is the “SPJ1.xml” whose ORA-SS schema is in Figure 4.4(a) and 

the instance diagram is in Figure 4.5; and the second document is “JM.xml” shown in 

Figure 4.25 and 4.26. 

project

member
pid pname

mid mname

jm, 2, *, +

property contact
*

budget

 
Figure 4.25 The ORA-SS schema diagram of “JM.xml” 

project

member

contact:
6347788

jid:
J001

jname:
Sorter

mid:
S001

mname:
Adams

property:
part vender

...

document root

budget:
15000

contact:
8796534

member

contact:
9788727

mid:
0134

mname:
Nick Ham

property:
person

...

 
Figure 4.26 The instance diagram of the “JM.xml” 

In the document “JM.xml”, there is information about projects and their project 

members. There is an attribute called “property” below each member instance 

indicating whether the member is a person or a part vendor. Particularly, the member 
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ids (mid) of part vendors agree with the supplier ids (sid) in the “SPJ1.xml”.The 

following join represents the join of the two documents according to jid and sid(mid).  

doc(“SPJ1.xml”)  (“SPJ1.xml”)/supplier/sid = (“JM.xml”)/project/member/mid  

                                                                      AND (“SPJ1.xml”)/supplier//project/jid = (“JM.xml”)/project/jid  

                                                                      AND (“JM.xml”)/project/member/property = ‘part vender’ doc(“JM.xml”) 

There are three conditions inside the join field which indicate that the supplier in 

“SPJ1.xml” and the member in “JM.xml” should be of the same instance (sid equal to 

mid); the project in “SPJ1.xml” and “JM.xml” should be of the same instance (jid 

should be equal); and, to guarantee that only “part vendor” members are picked out, 

the member property should be “part vendor”. 

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

price:
5

jid:
J001

jname:
Sorter

qty:
150

project

member

contact :
6347788

jid:
J001

jname:
Sorter

mid:
S001

mname:
Adams

property:
part vender

budget:
15000

contact :
8796534

project

member

contact:
6347788

jid:
J001

jname:
Sorter

mid:
S001

mname:
Adams

property:
part vender

budget:
15000

contact:
8796534

supplier

part

project

sid:
S001

sname:
Adams

pid:
P002

pname:
nut

price:
3.5

jid:
J001

jname:
Sorter

qty:
100

root_join root_join

document root

...

 

Figure 4.27 The result instance tree of the value join example 

In the join result (Figure 4.27), we introduce a new root node “root_join” where the 

left child tree is a tree instance from the left join operand “SPJ1.xml” and the right 

child tree is a tree instance from the right join operand “JM.xml”. 

4.3.6.3 Discussion on join in general: 

Like relational algebra, join is a special case of Cartesian production that contains 

conditions. In the same sense, the structural join we discussed in (4.3.6.1) is a special case 

of value joins (4.3.6.2) where the join fields have the same tree structure in both documents. 

Generally, the join in G-algebra is defined as an extended Cartesian product with 

conditions. The join is represented in the following form: 

U  C V 
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where U and V are two XML documents (CTRs) and C is the join field. The join field C 

can either be a specified tree structure (without value comparison) or a set of value 

comparison expressions among different nodes in both documents. Particularly, if C 

indicates a structure, it must contain the top level node in the schema (structure) of the 

right join operand. Due to the order sensitiveness of XML data, neither structural join 

nor value join is commutative. 

4.3.7 Swapping 
In XML, users may restructure the XML data into their own formats. One of the 

important restructuring operations is the swapping or to swap two different nodes 

(usually with different tag names) in the hierarchical structure. 

The swapping can be either between two sibling nodes or between ancestor-

descendent nodes. The swapping between sibling nodes is used to change node orders, 

which is trivial. However, the swapping between ancestor-descendent nodes is very 

complicated and it should be solved elegantly only using the rich semantics in ORA-SS 

schemas. To describe the swapping operation clearly, we introduce an example first. 

Example 4.9 (Swapping) 

Based on the “SPJ1.xml”, swap the hierarchical position between supplier and project. 

The Figure 4.28 shows the changes in schema after the swapping. 

supplier

part

project

sid sname

pid pname price

jid jname qty

sp, 2, +, +

sp spj, 3, *, +

spj

project

part

supplier

jid jname

pid pname

pricesid sname qty

sp, 2, +, +

sp

jp, 2, +, *

jps

swap
jps, 2, +, +

 
Figure 4.28 The changes in schema diagram after the swapping 

There are several important changes in the schema diagram. 

(1) The hierarchical position of supplier and project is swapped. After the swapping, 

project is at the top level and the supplier is the child node of part, and a 

descendent node of project. 
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(2) The object class attributes are moved along with their corresponding object 

classes. For example, the sid and sname are moved downward with supplier and 

the jid and jname are moved upward with project. 

(3) The relationship types change accordingly. For example, a new binary relationship 

type jp between project and part is derived from the original ternary relationship 

type spj. Based on jp, we can define a new ternary relationship type jps. Notice that, 

jps is NOT equivalent to spj because it is only a subset of spj where there is no 

absence of project instances. The original spj is the outer-join result of sp and jps. 

(4) The relationship attributes are changed according to their corresponding 

relationship types. If a relationship type is not changed such as the binary 

relationship type sp, the corresponding relationship attribute (e.g. price) should be 

moved to the object class node participating in the relationship type and located at 

the lowest hierarchical level (e.g. supplier in sp after the swapping). If a relationship 

type is changed such as the ternary relationship type spj, the corresponding 

relationship attribute (e.g. qty) should be moved to the object class node 

participating in the new relationship type (e.g. jps) and located at the lowest 

hierarchical level (e.g. supplier in jps after the swapping). 

Document Root

supplier

part

project

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

price:
5

jid:
J001

jname:
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sname:
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pname:
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pname:
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price:
3.5

jid:
J002

jname:
Collator

qty:
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supplier

part

sid:
S001

sname:
Adams

pid:
P002

pname:
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price:
3.5

qty:
100

supplier

sid:
S002

sname:
Blake

price:
3.65

qty:
40

...

 
Figure 4.29 The instance diagram of the swapping result 

The result instance diagram of our swapping example is shown in Figure 4.29. 

To achieve the swapping result, we define a naïve three-stage method: splitting 

(selection) stage, swapping stage and merging stage. 
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(1) Splitting stage: the first stage is also called selection stage because we select to 

split the no-leaf nodes. The selection predicate is a path expression describing the 

original tree structure, or we use the wildcard “*”. For instance, in our swapping 

example on “SPJ1.xml”, we can write the following selection expression, 

σsupplier[sid, sname, part[pid, pname, price, project[jid, jname, qty]]](“SPJ1.xml”) 

 or, in short, as 

σ*(“SPJ1.xml”) 

 The result of the selection will split the original document tree into a collection 

of trees where each tree only contains one supplier, one part and one project 

object instances. 
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Figure 4.30 The temporary result after the splitting stage 

(2) Swapping stage: the second stage is also the core part of the method where we 

directly do swapping between (among) instance nodes. In each tree instance, we 

apply the swapping and move attributes accordingly. The swapping rule is 

briefly described as follows. 

Swapping rules: 

(i) Object class attribute instances should be relocated together with their 

corresponding object instances (e.g. jid, jname with project). 

(ii) Relationship attribute instances should be relocated to the object class 

instances that participate in the relationship type instance and located at 

the lowest level in the hierarchical structure (e.g. the relocation of price 

and qty). 
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The temporary result after the swapping stage is shown in Figure 4.31. 
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Figure 4.31 The temporary result after swapping stage 

It is obvious that the order of the tree instance is not changed though the 

structure has been changed. 

(3) Merging stage: the last stage is applied to merge common nodes. The 

corresponding merging expression begins from the top level object class and 

level by level ends at the leaf level object classes. In our example, the merging 

expression is 

Mergesupplier (Mergepart (Mergeproject(U))) 

where U is the temporary result after the swapping stage. 

After the merging stage, we will get the result in Figure 4.29. If we compare the 

Figure 4.31 and 4.29, we can see that the tree instance order is changed because of the 

merging. When the top level node instances are merged, the first and the third tree 

instances in Figure 4.31 are merged together (project “J001”); and the fourth and fifth 

instances are merged together (project “J002”). According to the merging rules in 

Section 4.3.3, single-valued attributes will be automatically merged. Multi-valued 

attributes can be kept unless they are explicitly merged. 

Generally, a swapping operation is defined as 

Swapnode1, node2(U) 

where U is the target collection of trees; node1 and node2 are the two nodes that need 

to be swapped. 
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4.3.8 Grouping and aggregation functions 
The grouping can be used for either reconstruction or applying aggregation functions 

later. In G-algebra, the reconstruction functionality of grouping is performed as 

Merging. Therefore, the grouping discussed in this section is just used with 

aggregation functions. 

The grouping operation is denoted in the form of 

Group<A, B, r>(U) [with AGG] [as dname] 

where A is a set of grouped fields; B is a set of groupby fields; r is a relationship type 

where the grouping should be applied; and U is a target document (CTR). The whole 

expression means group A instances by (below) each distinct B instances with respect 

to the relationship type r in document (CTR) U. The optional components of grouping 

include an aggregation function AGG and a user-defined name dname of the derived 

nodes to contain the result of the aggregation function. 

For example, suppose a user wants to calculate the total quantity of each different 

part used in each different project in the document “SPJ1.xml” (Figure 4.5). 

Example 4.10 (Grouping) 

Group<qty, //part[pid]/project[jid], spj> (“SPJ1.xml”) with SUM(qty) as SUM_qty 

The expression means, in “SPJ1.xml”, we check the part-project instance pairs in the 

ternary relationship type spj according to their pid and jid values (the underlined 

attributes); and for each distinct pair of part-project instances, we group the 

corresponding qty attribute instances below it; and for each group, we calculate the sum 

of qty values, create a new derived attribute “SUM_qty” to contain the sum result. 

Sometime, the groupby field can be a non-ID attribute or even a relationship 

attribute. For example, if a user wants to categorize the member instances according 

to their property in the “JM.xml” (see Figure 4.25 and 4.26), he could use the 

following query: 

Group<//member, //member/[property], jm> (“JM.xml”) with UNIQUE(member) 
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where the function UNIQUE means to eliminate redundant member instances 

according to member’s OID attribute. In this example, the groupby field is the 

attribute: property. 

There is a constraint among A, B and r that the grouped field A and the object 

classes in field B, are associated with the same relationship type r. 

The group operation reconstructs the grouped field and groupby field into a new 

collection with a new PTR. 

part

project
pid:
P001

jid:
J001

SUM_qty:
    670

qty:
170

{ }
qty:
150

...

part

project
pid:
P001

jid:
J003

SUM_qty:
   800

qty:
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qty:
200

...

part

project
pid:
P002

jid:
J001

SUM_qty:
   250

qty:
70

qty:
100

...

 
Figure 4.32 The grouping result of Example 4.10 

Figure 4.32 shows the result of Example 4.10 where the qty nodes are grouped under 

each tree members with respect to a distinct part-project pairs. For each group of qty 

nodes, the aggregation function SUM is applied and the result is generated as the 

value of the derived element type SUM_qty. 

The semantics of HAVING can be performed by applying a selection to the 

grouping result on the derived nodes of aggregation functions. 

4.3.9 Miscellaneous operators 
4.3.9.1 Sorting 

The sorting operation obtains a new order among the tree members in a collection. 

The general format of sorting is 

Sort<A, C>(U) 

where U is a CTR; A is the node need to be sorted; and C is the criteria for sorting. 

In XML, the sorting operation only sorts the node of A under its parent within 

each tree member in U; and when A is the root of the PTR of U, the sorting operation 

will sort all tree members in U. The sorting criteria C is a list (i.e. ordered set) of sort-
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by attributes with the reserved keyword ascending(asc)/descending(dsc), where the 

priority is decreasing from left to right in the C list. 

Example 4.11 (Sorting in collection): 

Here we recall the collection in Figure 4.32, the grouping result for sorting. The 

sorting expression 

Sort<part, (SUM_qty: asc)>(U) 

means sort the tree members in U according to the value of SUM_qty node in 

ascending order. The result after sorting is presented in Figure 4.33. 
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Figure 4.33 The sorted result of Example 4.11 

4.3.9.2 Rename 

The rename operator changes the name of a collection, without changing the contents 

or the pattern tree with relationship types of the collection.  

The format of rename is  

Rename U as V 

which means rename the collection name U as V. 

The rename operator is used internally especially when a collection is joined with itself. 

4.4 Summary 

In this chapter, we propose G-algebra and present its operator set with examples. G-

algebra is proposed to meet the expressiveness and flexibility of GLASS. We define 

the pattern tree and the collection of its match images (witness trees) with the 

extension of relationship types. Then the G-algebra operator set is defined on and for 

the collections of trees with relationship types (CTRs). 

In comparison with other XML algebra work, 
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(1) G-algebra is more expressive, especially for graphical XML query languages, 

because it directly supports the operators Swap, Group and Merge. 

(2) G-algebra can interpret the semantics of GLASS query correctly because G-

algebra uses the rich semantic information in ORA-SS schema. 

(3) G-algebra operators are concerned with both querying and restructuring XML data. 

(4) With the help of ORA-SS schema, G-algebra can inform the user if his/her query 

may lead to a semantically meaningless result. 

It should be emphasized that, without the semantics captured in ORA-SS schemas, 

many XML queries cannot be correctly written or interpreted. For example, Selection 

(with quantifiers), Merge and Group require the semantics of object ID to identify 

object instances; and Project, Join and Swap need more semantics about relationship 

types and relationship attribute to obtain semantically meaningful result. Without 

adequate semantics, none of these operators can be correctly processed. 

The other advantages and features of G-algebra will be discussed in Chapters 5 

and 6. In Chapter 5, we discuss the translation from GLASS to G-algebra expressions 

and define the formal semantics of GLASS. In Chapter 6, we focus on the inference 

rules of G-algebra operators, which are concerned with query plan generation and 

query optimization.  
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5 The Formal Semantics of GLASS 

5Chapter 

Graphical languages may be intuitive to users but they tend not to be as easy for 

systems (software) to process. In practice, graphical query expressions and GUIs are 

usually translated into their textual equivalents before they are evaluated. For example, 

graphical XML query languages are often translated into XQuery, SQLX, etc. 

However, the translation still has some unsolved problems such as follows. 

(1) It is difficult to map some graphical representations into textual expressions 

directly (e.g. swapping). 

(2) The selection of the target textual language for the translation depends on how the 

XML data is stored and whether the textual translation is executable on that 

platform. For example, XPath and XQuery are more preferable for native XML 

documents; but SQLX is more useful for XML repository in an ORDBMS such as 

Oracle 10g. 

(3) The translation result of a graphical XML query is a textual query that still needs 

to be interpreted into algebraic expressions for evaluation or optimization, which 

may not be as efficient. 

An alternative solution is to translate a graphical query language into an algebra, 

which brings the following advantages. 

(1) Using a proper algebra, we can map the distinctive features and operators in a 
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graphical language into algebraic expressions that clearly represent the query 

semantics. For example, G-algebra can directly express the XML restructuring 

operations such as Merge and Swap in GLASS. 

(2) The algebra expression can be used to define the formal semantics of a graphical 

query language. We can compare the expressive capability of two languages by 

translating one into another. However, to define the formal semantics of a 

language, an algebra is probably the best choice. Logically, two queries are 

equivalent if their algebraic interpretations are equivalent (with respect to the 

inference rules of the algebra). 

(3) If an algebra is physically implemented, a graphical language can be evaluated 

and/or optimized directly without the intermediate textual language translation. 

Therefore, in this chapter, we translate GLASS into G-algebra expressions. The 

translation contributes to the formal semantics of GLASS query graphs.  

5.1 The translation from GLASS to G-algebra 

The basic idea of the translation from GLASS to G-algebra is to decompose the 

complex graphical patterns into simple ones at first, then interpret the simple 

graphical patterns into algebraic expressions. After that, we combine the simple 

algebra expressions (interpretation) together with the logic expressions in CLW. 

Finally, we create a set of mappings from either the evaluation result of the 

LHS/CLW or the source data to the query result. We define the concepts and terms in 

Section 5.1.1 and 5.1.2. All examples of the definitions are presented in Section 5.2. 

5.1.1 The LHS graph and logic expressions in CLW 
Before we decompose a GLASS query graph, we give several definitions of the terms 

that will be used in our discussion later. 
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Definition 5.1 (General-connected in GLASS):  

Two nodes n and m are general-connected if 

− there is an arrow or dashed arrow connecting n and m; or 

− there is an arrow or dashed arrow connecting n and a group box that contains m 

(or vice versa).□ 

Definition 5.2 (General-connected Graph):  

A graph <N, E> is a general-connected graph if  

− N contains only one node; or 

− ∀n∈N, ∃m∈N such that n≠m, and n and m are general-connected. □ 

Definition 5.3 (Simple LHS graph):  

A simple LHS Graph is as a general-connected sub-graph of the LHS graph defined as 

follows, 

− (Type 1) the graph formed by an object node with its object attribute nodes is a 

simple LHS graph; 

− (Type 2) if there is a relationship type in an ORA-SS schema, which contains all 

object nodes and relationship attributes nodes in the graph, then it is a simple 

LHS graph. 

− (Type 3) if there is a derived relationship type (defined by users or generated 

automatically by the query engine on the basis of the relationship types in an 

ORA-SS schema) that contains all object nodes and attribute nodes in the graph, 

then it is a simple LHS graph. □ 

Intuitively, a simple LHS graph is a pattern tree that contains one relationship type at 

most. The objective of decomposing the LHS graph is to obtain a set of simple LHS 

graphs. The algorithm to achieve this objective is listed below. 
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Algorithm 5.1: Decomposing the LHS graph into a set of simple LHS graphs 

Input: a LHS graph 

Output: a set of simple LHS graphs 

Algorithm: 

Step 1. Traverse all the object classes and relationship types in the ORA-SS schema, then 

we can generate all simple LHS graph of “object class – object attributes” (Type 

1) and “object class/…/object class – relationship attributes” (Type 2). We mark 

the corresponding nodes and edges in the LHS graph and  

Step 2. Each un-marked edge in the LHS with its nodes forms the simple LHS graph of 

derived relationship types (Type 3). 

Theorem 5.1 Given a LHS graph G, there is a set of simple LHS graphs {G1, G2, ..., 

Gk} that covers all the nodes and edges in G. □ 

The proof is trivial based on the algorithm above. 

By default, each node in a query graph has a unique internal node id. If a node 

has a user-defined node identifier, the user-defined node identifier will be treated as 

the id of the node instead of the default one. Therefore, we can restore the original 

LHS graph from the set of simple LHS graphs using the node id, which means a LHS 

graph can be equivalently expressed by a set of simple LHS graphs. 

Definition 5.4 (Intermediate interpretation of simple LHS graph):  

The intermediate interpretation of a simple LHS graph G is a finite set of operations 

on the object class, (derived) relationship types and attributes in G, which is denoted 

as Int(G). The operations here are select, project, group (merge) and swap. □ 

To obtain the intermediate interpretation of a simple LHS graph is not difficult 

because each simple LHS graph contains only one (derived) relationship type. In each 

simple LHS graph, object attributes are connected with corresponding object classes 

(Type 1) and relationship attributes are associated with the (derived) relationship 
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types (Type 2 and 3). Therefore, the intermediate interpretation of a simple LHS 

graph is: 

Algorithm 5.2: Interpreting simple LHS graphs 

Input: a simple LHS graph 

Output: an interpretation, i.e. a G-algebra expression 

Algorithm: 

Step 1. Project the object classes and attributes (of either object class or relationship 

types) according to the simple LHS graph; 

Step 2. Apply swapping and/or grouping if any; 

Step 3. Select the object classes and attributes that satisfy the selection predicates. 

Beside the selection predicates directly drawn in LHS graphs, the logical operators 

(AND and OR) and quantifiers (EXIST and FORALL) in CLW shall be considered in 

the interpretation of simple LHS graphs. In a CLW, the logical expressions, are 

directly related with the conditions and query semantics in LHS graphs; the 

mathematical expressions are concerned with values; and the IF-THEN statement is 

only used for conditional construction. Therefore, in the following discussion, we 

focus on the interpretation of the logic expressions in CLW. 

In CLW, the syntax of the logic expressions can be described as 

Expression := Condition Identifier‘;’ 

Expression := FORALL Condition Identifier‘;’ 

Expression := NOT EXIST Condition Identifier‘;’ 

Expression := Expression OR Expression‘;’ 

Expression := Expression AND Expression‘;’ 

Expression := NOT Expression‘;’ 

The connection between the logical expressions and the query graph is the condition 

identifier, a user-defined identifier that stands for a sub-graph. The semantics of the 

sub-graph is the semantics of the condition identifier. The sub-graph represented by a 
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condition identifier is defined as follows. 

Definition 5.5 (Active range of Condition Identifier) Given a condition identifier Cid, 

the active range of Cid, denoted as TCid, is a sub-graph that  

(1) If an arrow (or dashed arrow) EAB, pointing from node A to B, is labeled with the 

Cid, then {EAB, A, B} ∈ TCid. 

(2) If two arrows (or dashed arrows) EAB, EBC, making a directed path from node A 

to C via B, and EAB ∈ TCid, then {EBC, C} ∈ TCid. □ 

Intuitively, the TCid is the sub-graph that includes the node A, B, all descendant nodes 

of B, and the nodes referenced by B or B’s descendants as well as the corresponding 

edges. If there are two condition identifiers: Cid1 and Cid2, and Cid2 is labeled on an 

arrow (dashed arrow) that is included in TCid1, then we have TCid1 ⊇ TCid2. 

Definition 5.6 (Satisfaction of condition identifier) In a GLASS query posed on an 

XML document X, Cid is a condition identifier in the query graph, TCid is its active 

range, 

(1) If TCid does not contain any other condition identifiers, Cid is satisfied if there is a 

sub-document-tree in X that matches the query conditions in TCid.  

(2) If TCid contains other condition identifiers {Cid1, Cid2, …, Cidn}, then Cid is 

satisfied if there is a sub-document-tree in X that matches the query condition in TCid 

and the logical expressions (in CLW) that consist of Cid1, Cid2, …, Cidn. □ 

Definition 5.6 indicates that, if we have two condition identifiers Cid1 and Cid2 such 

that TCid1 ⊇ TCid2, the satisfaction of Cid1 implies the satisfaction of Cid2. Based on 

Definition 5.6, we define the semantic meaning of the expressions with quantifiers. 

Definition 5.7 (The semantic of universally-quantified expressions on condition 

identifier in CLW) Given a condition identifier Cid, assigned on an arrow (or dashed 

arrow) from node A to node B,  
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CASE 1 CASE 2 CASE 3 

A A

BB

:Cid: :Cid:

 

A

B

r
:Cid:

 

A

B

r
:Cid:

 
Figure 5.1 Three different cases of a condition identifier discussed in Definition 5.7 

CASE 1.  (A is an object class, B is A’s attribute; or A is a complex attribute, B is A’s 

sub-attribute) In such a case, B is associated with A only; thus “FORALL 

Cid” is TRUE when, there exists an instance of A such that all B instances 

associated with it satisfy Cid. 

CASE 2. (A is an object class, B is a relationship attribute of r) Generally, if r is n-ary, 

A participates in r together with n-1 other object classes, namely O1, …, On-1; 

then “FORALL Cid” is TRUE when, there exists a tuple <obj1, …, objn-1, 

a> where obji is the instance of Oi, and a is the instance of A, such that all B 

instances associated with this tuple in r satisfy Cid. 

CASE 3. (A and B are both object classes in relationship type r) Generally, if r is n-

ary, A and B participate in r together with n-2 other object classes, namely 

O1, …, On-2; Then “FORALL Cid” is TRUE when, there exists a list of 

instances {obj1, …, objn-2, a} where obji is the instance of Oi, and a is the 

instance of A, such that for every instance bj of B that associates with the list 

as a tuple < obj1, …, objn-2, a, bj> in r satisfy Cid. □ 

Note: The semantics of existential-quantified expression can be defined similarly. 

Based on the intermediate interpretation of simple LHS graphs, we define the 

evaluation of LHS graph with logic expression in CLW as follows. 

Definition 5.8 (Companionate, Joinable and Independent Simple LHS Graphs)  

Given two simple LHS Graphs G1 and G2, 

(1) G1 and G2 are companionate (denoted as G1∞G2) iff n1 is a node in G1, n2 is a 
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(2) Particularly, when G1 and G2 are companionate, n is one of the common nodes 

between G1 and G2; then G1 and G2 is joinable iff there is such a node n that is 

the root of either G1 or G2. 

(3) G1 and G2 are independent iff G1 and G2 do not have any common nodes. □ 

Intuitively, two trees are companionate if they have common nodes; they are 

joinable if the common nodes contain the root of one of the trees so that the two trees 

can be joined into one tree structure; if the common nodes cannot join the two trees 

into one tree structure, they are companionate but not joinable. 

When we do an evaluation, we combine all the intermediate interpretations of 

simple LHS graphs according to the logic expressions in CLW. 

Definition 5.9 (Evaluation) The evaluation of two simple LHS graphs is defined as 

follows. 

Given two simple LHS graphs G1 and G2, G1∞G2, and their intermediate 

interpretation Int(G1) and Int(G2), if there are two condition identifier Cid1 in G1 and 

Cid2 in G2, and there is a logic expression in CLW in the form of “Cid1 Op Cid2”, 

where Op is the logic operator AND and OR. 

CASE 1 (G1 and G2 are joinable, suppose, the root of G2 is a node in G1) 

CASE 1-a.  (the logic operator is AND) The evaluation of G1 and G2 is a natural 

join (equi-join) between Int(G1) and Int(G2) on the root of G2;  

CASE 1-b.  (the logic operator is OR) The evaluation of G1 and G2 is a full outer 

join between Int(G1) and Int(G2) on the root of G2. 

CASE 2 (G1 and G2 are companionate but not joinable) Suppose NC is a set of 

common nodes between G1 and G2, project all instances of NC from G1 and G2 into 

two lists, GC1 and GC2, respectively. Notice that, NC is only a set of node types (in 

detail, they are either element tags or attribute names) that appear in both G1 and G2. 
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Thus, the instances of NC in G1 and G2, i.e. the members in GC1 and GC2, are different. 

CASE 2-a.  (the logic operator is AND) The evaluation of G1 and G2 are in two 

collections, the first one is the natural join between Int(G1) and GC2 

on NC and the other one is the natural join between Int(G2) and GC1 

on NC. 

CASE 2-b.  (the logic operator is OR) The evaluation of G1 and G2 are in two 

collections, that is the original Int(G1) and Int(G2). □ 

The evaluation of LHS graph and CLW is the result when all simple LHS graphs of 

the LHS are evaluated. The evaluation result is written in G-algebra expressions. The 

interpretation of simple LHS graphs and the evaluation of the interpretations are 

demonstrated in Section 5.2 with examples. 

5.1.2 The RHS graph and result reconstruction statements in CLW 
In GLASS, the RHS graph is a tree pattern for result construction which is a mapping 

from the matched XML fragments or the original document tree to the result with 

respect to the tree pattern described by the RHS graph. 

Definition 5.10 (Derived node): 

A derived node is a user-defined node in the RHS graph which does not appear in the 

original data schema. A derived node must be linked with another node in the LHS 

graph. □ 

Definition 5.11 (Derived relationship type) 

A derived relationship type is a new relationship type derived from the original data 

schema. It can be explicitly defined by users or derived by the software if the data has 

an ORA-SS schema. □ 

Definition 5.12 (Construction) The construction is a mapping M from the source data 

X and the evaluation result of the LHS (and CLW) Σ to the result of a query VR with 
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the structure (and relationship types) defined in RHS graph. 

M = MXnode ∪ MXrel ∪ MΣ node ∪ MΣrel 

where  

MXnode is the mapping from nodes in X to non-linked nodes in VR,  

MXrel is the mapping from relationship types in X to relationship types in VR;  

MΣ node is the mapping from linked nodes in Σ to linked nodes in VR  

MΣrel is the mapping from relationship types in Σ to relationship types in VR  

(MΣrel is available iff all object classes participating in the relationship type are 

linked.) 

We denote the construction from X and Σ to VR on the link set L as ML((X, Σ) VR). □ 

In Definition 5.12, the result construction is considered as a set of mapping rules. If 

the mapping rule set is empty, it means the result is just the evaluation result of the 

LHS graph. Notice that, if a RHS node is not linked with any nodes in the LHS graph, 

it is mapped directly from the source XML document. The mapping rules are in fact 

G-algebra expressions of all operators defined in Chapter 4. 

Besides, the conditional construction (i.e. IF-THEN clause in CLW) is also a part 

of the mapping rules. An IF-THEN clause: 

IF (exp) THEN EXTRACT (node identifier) 

means we should do the mapping of the node (and the relationship types concerning the 

node) identified by the node identifier if the logic expression exp is true. The exp in the 

IF-THEN clause is independent of the other logic expressions outside the clause in the 

CLW. 

Definition 5.13 (Result of GLASS query) Given an XML dataset X with ORA-SS 

schema(s) and a GLASS query graph QG, then the result of QG on X is given by ML((X, 

Σ) VR), where L is the link set in QG, Σ is the evaluation result of the LHS (and CLW) 

and VR is the result view defined in the RHS. □ 
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The result of a GLASS query is a series of G-algebra expressions. In the next section, 

we use examples to illustrate how to translate GLASS queries into G-algebra 

expressions. 

5.2 Examples of translation 

In this section, we show how GLASS queries are translated to G-algebra expressions. 

We use two documents for the queries: “SPJ.xml” whose ORA-SS schema is in 

Figure 4.4(a); and “JM.xml” whose ORA-SS schema is in Figure 5.2. 

project

member
jid jname

mid mname posit ion

jm, 2, +, +

jm

+
 

Figure 5.2 The ORA-SS schema diagram of JM.xml 

Example 5.1 (3 Queries for the translation from GLASS to G-algebra): 

(Query 1)  From “SPJ.xml”, find the supplier whose sname is “Adams”; that supply 

some parts with price>100 to some projects whose jname contains 

“punch”; and for these projects, if they are also contained in “JM.xml”, 

they have some members with a position called “Quality Examiner”. In the 

result, display the supplier with all supplier attributes; display the part 

with price >100 and all part attributes; and display all projects that use the 

part supplied by all suppliers with their project id (jid) and jname. 

(Query 2) Find the suppliers who have provided more than 3 different parts for one 

project. 

(Query 3) Find the suppliers such that every part of each supplier has been provided 

to project “J001”. 
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supplier

part

project

project

member

supplier

part

project

sname:
='Adams'

price:
>100

       jname:
Contains('punch')

jid        position:
='Quality Examiner'

jid jname

SPJ.xml
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spj, 3

sp, 2
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Figure 5.3 GLASS query graph of Query 1 

supplier

part

project

supplier

:Con1:

spj, 3

   jid
='J001'

CLW

FORALL Con1;

supplier

project

part

supplier

*

CNT_UNIQUE>3

_group
spj, 3

 
Figure 5.4 GLASS query graph of 

Query 2 
Figure 5.5 GLASS query graph of 

Query 3 

Figure 5.3, 5.4 and 5.5 show the GLASS representation of Query 1, 2, and 3 

respectively. 

We use Query 1 to illustrate how the translation works step by step. 

Step 1. Decomposition of LHS graph: 

According to Definition 5.3 and Algorithm 5.1, the original LHS graph will be 

decomposed into 4 simple LHS graphs as shown in Figure 5.6. G2 is of Type 1; and G1, 

G3, G4 are of Type 2. Each node is automatically assigned with a node id (as nidXX 

following a colon). The nodes with the same node id are decomposed from the same 

node in the original LHS graph, such as the node supplier and part in G2, G3 and G4. 

After that, we should add object IDs into these simple LHS graphs and obtain the 

decomposed result in Figure 5.7. 

The object ID attributes must be added because we need them to identify object 
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instances in query evaluation and result construction. Notice that, in our example data 

set, internal nodes such as supplier, part and project do not contain any values 

(PCDATA contents). Therefore, the matching results of G2, G3, G4, (in Figure 5.6) 

must include the object ID of corresponding object instances so that we can apply 

merge (join, or group) them. 

supplier

part

project

project

member

sname:
='Adams'

price:
>100

       jname:
Contains('punch')

jid

SPJ.xml

JM.xml

spj, 3

project :nid01

member :nid02 jid

JM.xml

supplier :nid05
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supplier :nid05

part :nid07

price:
>100

SPJ.xml

supplier :nid05

part :nid07

project :nid09

       jname:
Contains('punch')

jid
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:nid03

:nid04 :nid06

:nid08 :nid04 :nid10

decompose
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G3
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Figure 5.6 Decompose the LHS graph of Query 1 into a set of simple LHS graphs 

project :nid01

member :nid02 jid

JM.xml

supplier :nid05

sname:
='Adams'

SPJ.xml

supplier :nid05

part :nid07

price:
>100

SPJ.xml

supplier :nid05

part :nid07

project :nid09

       jname:
Contains('punch')

jid

SPJ.xml

spj, 3

:nid03

:nid04 :nid06

:nid08 :nid04 :nid10

Add OID

G1 G2

G3

G4
        position:
='Quality Examiner'

project :nid01

member :nid02 jid

JM.xml

supplier :nid05

sname:
='Adams'

SPJ.xml

supplier :nid05

part :nid07

price:
>100

SPJ.xml

supplier :nid05

part :nid07

project :nid09

       jname:
Contains('punch')

jid

SPJ.xml

spj, 3

:nid03

:nid04 :nid06

:nid08 :nid04 :nid10

G1 G2

G3

G4
        position:
='Quality Examiner'

sid

sid

pidsid

pid

:nid11

:nid12

:nid11

:nid11

:nid12

 
Figure 5.7 The decomposition result is automatically added with object ID attributes 

according to ORA-SS diagram 

After the ID attributes are automatically added, the decomposed LHS graphs are 

ready for further interpretation and evaluation. In the following steps, when we 

mention G1, G2, G3 and G4, they refer to the G1, G2, G3 and G4 in Figure 5.7 
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where the object IDs are added. 

Step 2. The intermediate interpretation of simple LHS graphs 

Int(G1) = σposition = ‘Quality Examiner’ (П<project[jid, member[position]]>(“JM.xml”))          (exp 5.1) 

Int(G2) = σsname = ‘Adams’ (П<supplier[sid, sname]>(“SPJ.xml”))                                 (exp 5.2) 

Int(G3) = σprice > 100 (П<supplier[sid, part[pid, price]]>(“SPJ.xml”))                               (exp 5.3) 

Int(G4) = σContains(jname, ‘punch’) (П<supplier[sid, part[pid, project[jid, jname]]]>(“SPJ.xml”))  (exp 5.4) 

The interpretations of the four simple LHS graphs in Figure 5.7 are listed above. As 

described in Algorithm 5.2, we do the projection first according to the tree structure of 

each simple LHS graph; and then apply the selection with the query constraints in 

each graph. 

Step 3. The evaluation of the LHS graph 

By checking the internal node id, we know that,  

(1) G1 and G4 are companionate, but not joinable; 

(2) G2, G3 and G4 are joinable. 

The evaluation progress is bottom-up where we start from those simple LHS graphs in 

the lower hierarchical position. When there is a join, the interpretation of the lower 

simple LHS graph is always at the right hand side. 

The evaluation of G1 and G4 is: 

We firstly project their common node in the simple LHS graph, project and jid, and 

get the following two collections, 

WGC1 = П<project[jid]>(Int(G1))                                                                            (exp 5.5) 

WGC4 = П<project[jid]>(Int(G4))                                                                            (exp 5.6) 

Therefore, the evaluation results of G1 and G4 are in two collections, 

Eva(G1, G4) = {Int(G1)  project[jid] WGC4;   Int(G4)  project[jid] WGC1}        (exp 5.7) 

The evaluation of G2, G3 and G4 is 
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Eva(G2, G3, G4) = {Int(G2)  supplier[sid] (Int(G3)  supplier[sid, part[pid]] Int(G4))} 

(exp 5.8) 

Then, we should combine the intermediate result in exp 5.7 and 5.8 to get the 

evaluation of the whole LHS graph of Query1: Eva(G1, G2, G3, G4). Basically, we 

have 2 different methods to combine the intermediate results. 

Method 1: 

In Figure 5.3, the LHS graph of Query 1 consists of two sub-query graphs. The 

Eva(G2, G3, G4) represents the structure and query semantics of the right sub-query 

graph concerning the “SPJ.xml”. Because the common node jid of both sub-query 

graphs is not a root node, the two sub-query graphs are companionate but not 

joinable. Then, according Definition 5.9, we project the common nodes (exp 5.9 

and 5.10) and obtain the evaluation of the whole LHS graph in exp.11. 

WGC1 = П<project[jid]>(Int(G1))                                                                            (exp 5.9) 

WE234 = П<project[jid]>(Eva(G2, G3, G4))                                                           (exp 5.10) 

Eva(G1, G2, G3, G4) = {Int(G1)  project[jid] WE234;  

Eva(G2, G3, G4)  project[jid] WGC1}                        (exp 5.11) 

Method 2: 

Consider the two intermediate evaluation Eva(G1, G4) and Eva(G2, G3, G4), we can 

see that the simple LHS graph G4 is the common one. Therefore, we can replace the 

Int(G4) in Eva(G2, G3, G4) with the join expression between Int(G4) and WGC1 in 

Eva(G1, G4). The final result consists of two expressions: one is the first expression 

from Eva(G1, G4) concerning G1; and the other is the modified Eva(G2, G3, G4) 

after the replacement of Int(G4). 

Eva(G1, G2, G3, G4) = Eva(G2, G3, Eva(G1, G4)) 

                               = {Int(G1)  project[jid] WGC4;  

                                    Int(G2)  supplier[sid] (Int(G3)  supplier[sid, part[pid]] ( 
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                                                                                        Int(G4)  project[jid] WGC1)) 

                                   }                                                                                 (exp 5.12) 

The two expressions in exp 5.11 and exp 5.12 are equivalent. 

The first method is like a rolling snow ball that, we start from one simple LHS 

graph; and then the evaluation among joinable simple LHS graphs one by one. The 

size of the intermediate evaluation is gradually increased. After that, we do evaluation 

among the simple LHS graphs that are companionate but not joinable. Finally, all 

intermediate evaluations are combined together. 

The second method is bottom-up. In the first step, we evaluate all pairs of simple 

LHS graphs that are companionate but not joinable. In the second step, we generate 

evaluation of all joinable simple LHS graphs. After the second step, if a simple LHS 

graph appears in two intermediate evaluations, the two evaluation results cannot be 

joinable20. In other words, they are companionate but not joinable. Thus, we use the result 

in the first step, replace the interpretation of the common simple LHS graph and combine 

the two intermediate evaluations together. When the all intermediate evaluations of the 

first step and the second step are combined into one, we get the final evaluation and stop. 

The two evaluation results in exp 5.11 and 5.12 indicate that one GLASS query 

graph can have different query plans. This fact leads to the problem of query 

optimization which will be discussed in Chapter 6. 

Step 4. Complete the RHS by expanding the abbreviated representations; and 

decompose the RHS graph. 

The expansion of the RHS graph is to add those abbreviated nodes in GLASS 

representation. 

 

                                                 
20 The proof of this property is trivial because, if two evaluation results are joinable, they shall be already joined as 
one evaluation in the first step. 
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Rule 5.1 (Rules of expanding the abbreviated parts in RHS graphs): 

(1) If the ORA-SS attribute is an attribute of the object class, it shall be displayed; 

(2) If the ORA-SS attribute is an attribute of a relationship type r, and the 

relationship type r is also extracted in the RHS graph, then the relationship 

attributes of r shall be displayed; 

(3) For both (1) and (2), if the attribute is a complex attribute with substructure, 

then expand its substructure also. 

According the second rule, we display the ORA-SS attribute price, which is an 

attribute of the relationship type sp in the original schema diagram in Figure 5.3, since 

both supplier and part object classes are extracted in the result and they naturally hold 

the original binary relationship type sp. 
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Figure 5.8 The expansion and decomposition of the RHS graph of Query 1 

The decomposition of the RHS graph is similar to that of the LHS graph. The only 

difference is that,  

(1) for those nodes with links, they have the same node id as the node they linked 

in the LHS graph; and 

(2) for those nodes with links, their object ID attribute nodes also have the same 

node id as their counterparts in the LHS graph. 
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Step 5. The mappings from the evaluation of the LHS graph (and CLW if any) or the 

source document to the query result. 

supplier :nid05

part :nid07 project :nid16

jid

sp, 2 pj, 2

sid

pid price

sp

part :nid07

:nid11

:nid12 :nid15
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part :nid07

pid pname
:nid12 :nid14

project :nid16

jid jname
:nid17 :nid18

G5

G6

G7 G8 G9

The gray components come from
the evaluation of LHS graph

The white components come from
the original XML documents

pid
:nid12

 
Figure 5.9 The mappings to the result of Query 1 

The mappings are actually a series of G-algebra expressions applied on the data from 

which the decomposed RHS graph shall be mapped. 

Map(G5) = П<supplier[sid]>(Eva(G1, G2, G3, G4))  supplier[sid] П<supplier[sid, sname]>(“SPJ.xml”) 

Map(G6) = П<part[pid]>(Eva(G1, G2, G3, G4))  part[pid] П<part[pid, pname]>(“SPJ.xml”) 

Map(G7) = П<supplier[sid, part[pid]], sp>(Eva(G1, G2, G3, G4))  

                                                     supplier[sid, part[pid]] П<supplier[sid, part[pid, price]]>(“SPJ.xml”) 

Map(G8) = П<part[pid]>(Eva(G1, G2, G3, G4))  part[pid] П<part[pid, project[jid]]>(“SPJ.xml”) 

Map(G9) = П<project[jid, jname]>(“SPJ.xml”) 

If a decomposed RHS graph consists of two nodes and one is from the source and 

the other is from the evaluation result of the LHS graph, then, the mapping is a join 

between both sides with respect to object IDs (the nodes are object classes) or values 

(the nodes are attributes). For example, the mappings of G5, G6, G7 and G8 are joins 

between two projections where each projection is a mapping of nodes from one side. 

Particularly, in Map(G8), the project and project id (jid) are from the source data. The 

right operand of the join in Map(G8) is a projection of the binary relationship type pj 

between part and project from the original ternary relationship type spj. As a 

consequence, after the join, the project instances in the result may contain those 

project instances that do not contain “punch” in their name. 

 



 
137 

Finally, we join all decomposed RHS graphs together and obtain the result. 

ResultQuery1 = Map(G5)  supplier[sid] ( 

                                 Map(G7)  part[pid] ( 

                                             Map(G6)  part[pid] ( 

                                                        Map(G8)  part[pid] Map(G9) 

                                                                              ) 

                                                                  ) 

                                                             ) 

The translation results of Query 2 and Query 3 are presented as follows. For ease of 

reading and comparison with the original query graphs, we write the translation of the 

LHS, RHS and the result separately. 

(Query 2) 

LHS: V1 = σCNT_UNIQUE_part>3(Group<part, (supplier, project), spj>(“SPJ.xml”)  

                                      with CNT_UNIQUE(part) as CNT_UNIQUE_part 

                                                  ) 

RHS: V2 = Пsupplier[sid, sname](“SPJ.xml”) 

Result: V = Пsupplier[sid, sname](V1  supplier[sid, sname]V2) 

(Query 3) 

LHS & CLW:  V1 = Пsupplier[sid, sname](σsupplier: NOT EXIST (project[jid = ‘J001’])(“SPJ.xml”)) 

 V2 = Пsupplier[sid, sname](“SPJ.xml”) 

 V3 = V2 – V1 

RHS: V4 = Пsupplier[sid, sname](“SPJ.xml”) 

Result:  V = V3 supplier[sid, sname]V4 

5.3 Summary 

In this chapter, we have discussed the translation from GLASS query graph to G-
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algebra expressions. The translation is also the formal definition of the GLASS query 

semantics. The idea of the translation is to decompose a large complex query graph 

into an equivalent set of small simple query graphs (decomposition); then the simple 

query graphs are interpreted into simple G-algebra expressions (interpretation); after 

that, the interpretation results are combined together with the logic expressions in 

CLW according to certain rules (evaluation); finally the query result is constructed by 

a series of mappings from either source data or the evaluation result (construction). 

We have demonstrated the translation from GLASS queries to G-algebra 

expressions. From the examples, we can see that the semantics of object IDs, 

relationship types and relationship attributes are very important to interpret GLASS 

correctly. 

Although we use GLASS as the sample language for the translation, G-algebra also 

works with other languages (e.g. XML-GL/XQBE), if the language only expresses a 

subset of GLASS query. However, because of some potential differences in data 

models, the translation requires some adjustment. For example, XML-GL/XQBE use 

DTD/XSD which do not contain the information of object IDs, relationship types, or 

relationship attributes. Such information is assumed to be known by users when they 

draw an XML-GL/XQBE query. Therefore, when we translate an XML-GL/XQBE 

query into G-algebra, we only consider parent-child or ancestor-descendant 

relationships. In such a scenario, if the user query is not written correctly, the translation 

result is also wrong. However, if we have an ORA-SS schema, we can find some 

problems (e.g. the discussion of Projection in Section 4.3.5) in a user query that may 

lead to a semantically meaningless result. 
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6 Toward Algebraic Optimization for 
GLASS 

As we mentioned in Chapter 4, there are two objectives for proposing a query algebra: 

one is to define the formal semantics of a query language, and the other is to support 

query optimization for the language. In Chapter 4, we presented the operator set of G-

algebra. Then, in Chapter 5, we discussed the translation from GLASS query graphs 

to G-algebra expressions. The translation result is used to define the formal semantics 

of GLASS. 

Based on Chapters 4 and 5, we now concentrate on the second objective of G-

algebra – toward the algebraic optimization for GLASS. In this chapter, we present 

the inference rules among different G-algebra operators. The inference rules, which 

are also called “equations” in traditional relational algebra, provide a foundation for 

generating different query plans. These query plans, with equivalent semantics, can be 

applied to various optimization processes for different purposes, for example, to 

enhance the process speed, to reduce I/O cost, to minimize temporary storage of 

intermediate results. We use the word “toward” because, in this chapter, we do not 

include the details of optimization processes. We focus on the inference rules and we 

introduce examples to give a sense of how our query plans work in query optimization. 

Chapter 6
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6.1 Inference rules in G-algebra 

In Chapter 4, we have defined a set of operators of G-algebra to express graphical 

XML queries. Some operators are defined by analogy with their counterparts in 

relational algebra, such as selection, projection and join. Some operators are 

particularly defined for tree-structured data (e.g. XML) and graphical XML query 

languages, such as merge and swap. Like all other existing query algebra works, G-

algebra also has a set of inference rules among these different operators which form 

the foundation of query plan generation and optimization. 

In this section, we present the set of inference rules in G-algebra. Some rules, 

especially those of selection, projection and join, are similar to those in relational 

algebra because the operators are basically borrowed from relational algebra. For such 

obvious rules, we will not explain them in detail. We will put our effort into the rules 

of those distinctive operators in G-algebra, such as swap and merge. 

6.1.0 Preparation 
Before we start our discussion on inference rules, we shall recall some concepts defined 

in Chapter 4, which will be used throughout our discussion in this chapter. 

Collection 

The term collection is an extended concept on traditional sets, where the collection 

may contain duplicate members. There are 4 different kinds of collections depending on 

whether there are duplicate members and whether the order among collection members 

is important. In this chapter, we use the term collection for general cases that cover all 4 

different kinds of collections. 

Pattern tree, collection of trees 

A pattern tree refers to a Pattern Tree with Relationship types (PTR) we have 

defined in Chapter 4 (Definition 4.1). Intuitively, it is a sub-schema from an ORA-SS 

schema diagram, which contains both tree structure and relationship types. Besides, 
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with respect to the requirement of queries, it can have simple conditions on value(s) of 

some nodes in its tree structure. Therefore, a pattern tree can also be treated as a simple 

XML query. 

A collection of trees is a Collection of witness Trees with Relationship types 

(CTR), which has also been defined in Chapter 4 (Definition 4.3). Intuitively, a 

collection of trees contains all instance trees of a given pattern tree. 

6.1.1 Inference rules of selection and projection 
Suppose we have a CTR, called U, conforming to a PTR: P = <T, F, R>, T is the tree 

structure that consists of nodes and edges. F is the set of simple conditions that are 

applicable to the nodes in T. R is the set of relationship types that are contained in the 

pattern tree P. 

6.1.1.1 Inference rules of selection 

First of all, we come to the inference rules of selection. Suppose we have a set of 

selection predicates {C1, C2, …, Cn}. After all these selection predicates are applied to 

U, we will get a new collection U’. The pattern tree of U’ is called P’, P’ = <T, F’, R>, 

where F’ = F ∪ {C1, C2, …, Cn}. There are two rules of the selection operation: the 

cascading rule and the commutative rule. 

Rule S1 (The cascading of selection) 

)))((()(
2121

LLL UU
nn CCCCCC σσσσ =∧∧∧ □ 

Rule S2 (The commutative rule) 

))(())((
1221

UU CCCC σσσσ = □ 

The cascading rule (S1) says that a selection with conditions that consist of 

several conjuncts can be replaced with a series of smaller selection operations. 

The commutative rule (S2) indicates that the selection predicates can be tested in 

any order. 
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6.1.1.2 Inference rules of projection 

Secondly, we move to the rules of projection. A projection operation is denoted 

as 

)(
11, URT ><Π  

and describes how to obtain a new collection of trees from U according to the tree 

structure defined by T1 and the relationship types in R1. Thus, the pattern tree of the 

projection result is P”, P”=<T1, F, R1>. Notice that, T1 is a sub-tree of the original T; 

and R1 is a set of relationship types that are derived from the original R. The 

projection operation does not contain any predicates or conditions. Therefore, the F 

set is not changed after the projection. Intuitively, a projection operation chops some 

branch and/or leaf nodes from the original tree structure and consequently changes 

some relationship types. When a node is chopped off, the particular conditions that 

are associated with the node, if any, can also be removed from the set FF

21. 

We have one rule of projection: the rule of cascading projection. 

Rule P1 (The cascading of projection) 

))))(((()( ,,,, 221111
LL UU

nn RTRTRTRT ><><><>< ΠΠΠ=Π  

where Ti is a sub-tree of Tj (1≤i<j≤n); and Ri is a set of relationship types that are 

derived from Rj (1≤i<j≤n). □ 

student

course

tutor

sid sname

code cname grade

tid tname

sc, 2

sct, 3

 
Figure 6.1 The ORA-SS schema diagram of “sct.xml” 

For example, suppose we have an XML document “sct.xml” of student, course and 

                                                 
21 The remove of conditions is applicable but not necessary. 
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tutor, the document can be regarded as a collection of trees. Then, the pattern tree is 

the ORA-SS schema diagram of “sct.xml”, as shown in Figure 6.1. 

Then, we have the following equation. 

)".("],,[ xmlsctcnamecodecourse >∅<Π  

=  ))".("( }2],,[{]],,[,,[],,[ xmlscttutorcoursescttnametidtutorcnamecodecoursecnamecodecourse ><>∅< ΠΠ

The left hand side of the equation directly projects course element with code and 

cname from “sct.xml”; the relationship type set is empty. 

On the right hand side of the equation, there are two projections. The first 

projection (the inner one) projects course and tutor with their sub-elements from 

“sct.xml”, the expression “sct[course, tutor], 2” means there is a binary relationship 

type between course and tutor derived from sct.22 Then, the second projection (the 

outer one) projects course with code and cname from the result of the first projection. 

The rule P1 indicates that a series of projections can be simplified to the final step if 

each step of the projection is to project something from the result of the previous step. 

The something here includes nodes and edges in the tree-structure and derived 

relationship types. 

6.1.1.3 Inference rules between selection and project 

Finally, we discuss the inference rule between selection and projection. Suppose 

we have a selection predicate C, we will have the following rule. 

Rule R1 (The commutativity between selection and projection) 

))(())((
1111 ,, UU RTCCRT ><>< Π=Π σσ  

if all the nodes and relationship types involved in C are included in the projection 

field T1 and R1 respectively. □ 

6.1.2 Inference rules of join and extended Cartesian product 
Traditionally, the join operation is a special case of Cartesian product in relational 

                                                 
22 Inside the relationship type set, each relationship type is separated by a semicolon “;”. 
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algebra. In G-algebra, when both operations are extended to tree-structured XML data, 

the relation between the two operations is changed a bit. The difference is that we 

may merge the common structure (i.e. common nodes and edges) in the join but we 

never do that for our extended Cartesian product. 

In Chapter 4, we have discussed our join in G-algebra. For all kinds of joins 

(equijoin, non-equijoin and outer-join), we merge the join field if the join field contains 

common nodes or edges of the structures of both join operands. Otherwise, if the join 

field is only concerned with values and no common nodes are included, the join is 

similar to an extended Cartesian product. The join in XML is different from relational 

algebra because of the dual nature of an XML element (or attribute), in that it consists 

of name and value. 

Because XML data can be order-sensitive, neither join nor extended Cartesian 

product is commutative. However, they still have the property of association. Suppose 

there are 3 collections of trees, U, V and W, their pattern trees are PU, PV and PW 

respectively. When we apply the extended Cartesian product of U and V, the pattern 

tree of U×V is shown in Figure 6.2. 

PU PV

root_Cartesian_product

 
Figure 6.2 The pattern tree of U×V 

For each tree member in the result collection, there is a system-given root, called 

root_Cartesian_product, and the left child tree is from the tree members of U and the 

right child tree is from V. Then, when we apply the extended Cartesian product 

between the result collection and W, i.e. (U×V)×W, the pattern tree of the new result 

will be like that shown in Figure 6.3. 
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PU PV

root_Cartesian_product

PW  
Figure 6.3 The pattern tree of (U×V)×W 

Notice that, we do not add another “root_Cartesian_product” to the new result. 

Therefore, (U×V)×W and U×(V×W) should have the same pattern tree. 

Rule ECP1 (The association of extended Cartesian product) 

(U×V)×W = U×(V×W)                                                  □ 

Similarly, we have the association rule of join (equijoin, non-equijoin, outerjoin). 

Rule J1 (The association of join) 

(U V) W = U  (V W)                                         □ 

The rule ECP1 and J1 indicate that we can do extended Cartesian product and join in 

either way. However, the order of the operands appearing from left to right should not 

be changed. The extended Cartesian product and join still have the property of 

association because the order of the tree members in the Cartesian production (or join) 

result is decided by the left hand side Cartesian product (or join) operand. 

The inference rules among selection, projection and join 

Now we come to the inference rules among selection, projection and join. There 

are two rules regarding the commutativity between selection (projection) and join. 

Suppose we have two collections of trees, called U and V, one selection predicate 

C, then we will have the following rule between selection and join. 

Rule R2: (The commutativity between selection and join) 

σC(U V)  = σC(U)  V 

or 

σC(U V)  = U σC(V) 

if C involves only one of the join operands (i.e. either in U or V). □ 
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The rule R2 indicates that if a selection predicate only involves nodes, edges or 

relationship types in one join operand, the selection can be pushed downward so that 

it can be done before the join. 

Suppose we have three projection fields: <T1, R1> on U, <T2, R2> on V, and <T’, 

R’> on U  D  V where T’ = T1∪T2, and R’ = R1∪R2, D is the join field, then we have 

the following rule between projection and join. 

Rule R3: (The commutativity between projection and join) 

URT (',' ><Π  )()
11, UV RTD ><Π=  )(

22, VRTD ><Π                        □ 

Notice that the join field D must be included in <T’, R’>, so that it will be included by 

either <T1, R1> or <T2, R2> or both of them. Otherwise, if neither projection fields 

contains D in the right hand side of the equation of R3, the join will become 

meaningless. 

The rule R3, which is similar to R2, says that projection can be pushed downward 

before join when the condition is satisfied. 

So far, we have discussed the inference rules of selection, projection, join and extended 

Cartesian product. We can easily find their counterparts in relational algebra and see the 

similarity between them. This is because the concepts of these operations are borrowed 

from relational algebra and the collection of trees is an extension of the traditional tuple. 

6.1.3 Inference rules of swap 
From this section, we come to the distinctive part of G-algebra operations in 

comparison with relational algebra. 

According to our definition, a swapping operation swaps two nodes in the 

hierarchical structure of XML. The two nodes can be parent-child, ancestor-

descendant or sibling nodes. The swapping operation will swap the nodes in both 

schema and data. Because the swap between sibling nodes is trivial, in the rest of this 

section, we concentrate on the swap between parent-child or ancestor-descendant 
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nodes only. 

A swapping operation consists of 3 stages: splitting, swapping and merging. The 

splitting stage is in fact a selection operation “σ*” which un-nests the nested data in the 

tree-structure. Then, the swapping stage swaps the specified nodes according to the 

swapping rules that: object attributes move with their parent object class and 

relationship attributes follow their relationship types. The full description of the 

swapping rules and examples are presented in Section 4.3.7, Chapter 4. Finally, the 

merging stage casts a cascading merging from the root to the leaves of the tree structure 

so that the swapping result is made compact. 

To make the three-stage swapping operation more intuitive, there is another 

explanation of the process as follows. 

6.1.3.1 Object table, relationship table and universal table 

XML data are modeled as object classes, relationship types and attributes in ORA-

SS. Among them, attributes are associated with either object classes or relationship 

types. Based on the method introduced in Section 3.6.1.1, an ORA-SS schema can be 

derived into an ORDB storage schema so that an XML document can be decomposed 

and stored into object tables and relationship tables. 

For example, in Figure 6.4, there is an ORA-SS schema diagram of the data for 

supplier, part and project. 

supplier

part

project

sid sname

pid pname price

jid jname qty

sp, 2, +, +

sp spj, 3, *, +

spj

?

 
Figure 6.4 The ORA-SS schema diagram of supplier, part and project 

The data can be stored in three object tables and two relationship tables as follows. 
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Object class relations:
    supplier (sid, sname)
    part (pid, pname)
    project (jid, jname)

supplier
sid sname

Relationship type relations
    sp (sid, pid, price)
    spj (sid, pid, jid, qty)

part
pid pname

project
jid jname

sp
sid pid price

spj
sid pid jid qty

 
Figure 6.5 The object tables and relationship tables 

However, the object-relational storage is not equivalent to the native XML document 

because the original tree structure has been decomposed into different tables. To 

restore the tree structure and document order, we should take another step forward 

and build a universal table. Intuitively, a universal table is the join among all five 

tables in Figure 6.5 where absence and/or duplicates are allowed. The absence are 

represented as “NULL” or empty values. For duplicate data, we may introduce a new 

column of system-given identifiers, or “sys_id”. 

supplier

part part

project project projectproject

sid:
S001

sname:
Adams

pid:
P001

pname:
screw

price:
5

jid:
J001

jname:
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qty:
150

jid:
J003

jname:
Punch

qty:
200

pid:
P002

pname:
nut

price:
3.5

jid:
J001

jname:
Sorter

qty:
100

jid:
J002

jname:
Collator

qty:
50

supplier

part

project

sid:
S002

sname:
Blake

pid:
P001

price:
3.65

jid:
J002

jname:
Collator

qty:
40

Document  Root

 
Figure 6.6 The instance diagram of the XML fragment 

For example, suppose we have a fragment of XML documents (Figure 6.6) 

conforming to the XML schema in Figure 6.4. The universal table is presented in 

Table 6.1. 

 



 
149 

Table 6.1 The universal table with nested structure 

sys_id
supplier part sp project spj

sid sname pid pname price jid jname qty

0001 S001 Adams
P001 screw 5

J001 Sorter 150
J003 Punch 200

P002 nut 3.5
J001 Sorter 100
J002 Collator 50

0002 S002 Blake P001 - 3.65 J002 Collator 40  

In Table 6.1, the tree-structured XML instances are stored in a nested table. The 

table head indicates two messages: the column name and where this column comes 

from. In comparison with the five relations defined in Figure 6.5, we can see that the 

columns of object IDs in relationship type relations are omitted because they have 

been included in their corresponding object class relations. The table head still does 

not reflect the tree structure of XML schema; but, we naturally require that (1) the 

child/descendant object classes are on the right hand side of their parent/ancestor 

object class; and (2) the relationship attribute columns are on the right hand side of all 

participating object classes of the relationship type. For example, part (i.e. all columns 

associated with part) is on the right hand side of supplier; and price is on the right 

hand side of both supplier and part. With the help of the original ORA-SS schema 

diagram, we can restore the original XML document from this universal table23. 

Now we can see what a swapping operation actually do in this universal table. The 

first stage is to un-nest the table where duplicates and absences are kept. This means we 

may need a new column of sys_id, which is different to the sys_id in Table 6.1. 

Table 6.2 The universal table with un-nested contents 

sys_id
supplier part sp project spj

sid sname pid pname price jid jname qty
0001 S001 Adams P001 screw 5 J001 Sorter 150
0002 S001 Adams P001 screw 5 J003 Punch 200
0003 S001 Adams P002 nut 3.5 J001 Sorter 100
0004 S001 Adams P002 nut 3.5 J002 Collator 50
0005 S002 Blake P001 - 3.65 J002 Collator 40  

After splitting, in the first stage of swapping, we can imagine a universal table 
                                                 
23 Notice that, the universal table here is just a tool for explanation. In practice, most new released ORDBMSs 
support XML data and XML schema. So, the tree structure can be found in the XML schema directly. 
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such as that in Table 6.2, which is totally un-nested. Notice that, the splitting does not 

change the schema or the table head. After the splitting, each record in Table 6.2 is a 

tree member in the collection. The original document order is kept by the new sys_id 

from the top to the bottom of the table. 

Then, the swapping between to object class nodes in the original schema is just 

swapping the corresponding columns inside the un-nested universal table. However, 

we still require that, with respect to the new schema after swapping, child/descendant 

object classes are on the right hand side of their parent/ancestor object class and 

relationship attribute columns are on the right hand side of all participating object 

classes. 

supplier

part

project

sid sname

pid pname price

jid jname qty

sp, 2, +, +

sp spj, 3, *, +

spj

project

part

supplier

jid jname

pid pname

pricesid sname qty

sp, 2, +, +

sp

jp, 2, *, +

jps

swap
jps, 2, +, +

 
Figure 6.7 The changes in schema diagram after the swapping 

For example, suppose we want to swap the supplier and project in the hierarchical 

structure. The changes in the schema diagram after the swapping are shown in Figure 

6.7. We can imagine that, after the swapping stage (the second stage of the swapping 

operation), the result is as shown in Table 6.3. 

Table 6.3 The un-nested universal table after the swapping between supplier and 
project 

sys_id
project part supplier sp spj

jid jname pid pname sid sname price qty
0001 J001 Sorter P001 screw S001 Adams 5 150
0002 J003 Punch P001 screw S001 Adams 5 200
0003 J001 Sorter P002 nut S001 Adams 3.5 100
0004 J002 Collator P002 nut S001 Adams 3.5 50
0005 J002 Collator P001 - S002 Blake 3.65 40  

The third stage is merging, which is in fact a grouping of object class instances 
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from the left to the right of the universal table. In our example, we group everything 

by project (i.e. by jid); then in each group of a distinctive jid, we group everything by 

part (i.e. by pid); and finally in each group of a distinctive combination of jid and pid, 

we group every by supplier (i.e. by sid). The result after merge is like Table 6.4 with a 

nested structure. 

Table 6.4 The result after merging the object instances in Table 6.3 

new_
sys_id

old_
sys_id

project part supplier sp spj
jid jname pid pname sid sname price qty

0001
0001

J001 Sorter
P001 screw S001 Adams 5 150

0003 P002 nut S001 Adams 3.5 100
0002 0002 J003 Punch P001 screw S001 Adams 5 200

0003
0004

J002 Collator
P002 nut S001 Adams 3.5 50

0005 P001 - S002 Blake 3.65 40  

In Table 6.4, we keep the old sys_id column (from Table 6,3). It is highlighted 

because the original document order is changed after merging. 

The universal table is just used as an explanation of our swapping operation. We 

can see that the three-stage swapping operation will change the document order. More 

importantly, this change is permanent because we can not restore the original 

document order by swapping supplier and part again. Considering XML data can be 

order-sensitive, we cannot use the symbol “=” which means two collections of tree are 

exactly the same. 

Definition 6.1 Content equivalence 

Given two collections of trees, namely U and V, CNT(u, U) is the number of 

occurrence of the tree member u in U, then U and V are content equivalent to 

each other iff: 

(i) for each tree member u∈U, there is a v∈V such that u = v and CNT(u, U) = 

CNT(v, V); and 

(ii) for each tree member v∈V, there is a u∈U such that v = u and CNT(v, V) = 

CNT(u, U). 

We denote the content equivalence as U⇔V. □ 
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Then, we have the following two inference rules for the swapping operation: the rule 

of content reversibility and commutativity. 

Rule W1. (Content reversibility) 

A double swapping is content reversible, that is, 

Swap (Swap (U)) ⇔ U ,1N 2N ,1N N2

where N1 and N2 are two nodes in the pattern (schema) of U. □ 

Rule W2. (The commutativity between two swapping operations) 

Swap (Swap (U)) ⇔ Swap ( Swap (U)) ,1N 2N ,3N 4N ,3N N4 ,1N N2

where N1, N2, N3, N4 are four nodes in the pattern (schema) of U. □ 

The rule W2 indicates that if the document order is not important the order in which 

two swapping operations is carried out is unimportant either. 

6.1.3.2 Fusion of swapping operations 

In practice, when a swapping operation is applied to an XML document, it 

implies that the original document order is not important to that user. The swapping 

operation changes the original hierarchical structure of both the schema and data. The 

document order has to be changed anyway but the problem is, if the swapping results 

in a merge, the original document order may not be able to be restored. Technically, 

this is serious; but in practice, this problem is not so important because we can refer to 

the original data if we need the original document order. Therefore, we can draw the 

following two conclusions about swapping. 

The first one is that, if the document order is NOT of concern, content 

equivalence is enough. 

The second one is the fusion of the swapping operation. In practice, swapping 

operations on the same collection can be fused together for better results. The 3-stage 

swapping is expensive because the splitting (the first) stage and the merging (the third) 

stage cost much space and time. Here “fused together” means that, if two swapping 
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operations are applied to the same collection, we can omit the merge stage of the first 

one and the split stage of the second. In other words, after we split the tree members 

in the collection for the first swapping operation, we can continue to apply the second 

stage of all swapping operations and do the merge stage only for the last swapping 

operation. We call this process the “fusion of swapping operation” or “fusion” in short. 

With the fusion method, we can draw the following two corollaries on the rule W1 

and W2 respectively. 

Corollary 6.1 (Complete reversibility of swapping) 

Swap (Swap (U)) = U                                           □ ,1N N2 ,1N N2

Corollary 6.2 (Complete commutativity of swapping) 

Swap (Swap (U)) = Swap ( Swap (U))                   □ ,1N N2 ,3N N4 ,3N N4 ,1N N2

The two corollaries hold when and only when the swapping operations on U are 

processed with the fusion method. 

6.1.3.3 The inference rules between selection, projection and swap 

There are two rules of commutativity between selection (projection) and swap. 

Suppose we have a collection of trees U, a selection predicate C, a projection field 

<T1, R1> and two nodes N1 and N2 in the pattern tree of U.  

Rule R4: (The commutativity between selection and swapping) 

σC(Swap (U)) = Swap (σC(U))                              □ ,1N N2 ,1N N2

Rule R5: (The commutativity between projection and swapping) 

(
11, ><Π RT Swap (U)) = Swap (,1N N2 ,1N N2 ><Π

11 ,RT (U))                     □ 

The rule R4 and R5 indicate that selection and projection operations can be pushed 

forward before swapping. 

6.1.4 Inference rules of merge 
In this section, we present the inference rules of merge. According to our definition in 
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Chapter 4, a merge is denoted as  

Merge<M>(U) 

where U is a collection of trees conforming to a pattern tree P = <T, F, R>; M is the 

merging field, a sub-tree in the tree structure T. 

If the merging field M does not include the root of T, it means merge the 

specified instance of M in each individual tree member in U. Therefore, the number of 

tree members in U will not changed. 

If the merging field M includes the root of T, it means merge the specified 

instance of M over all tree members in U, which decreases the number of tree 

members in U. 

The merge operation is common and very useful in XML data especially when 

constructing query results.  

Rule M1. (Idempotence of merge) 

Merge<M>(Merge<M>(U)) = Merge<M>(U)                           □ 

The rule M1 indicates that applying the merge operation on the same collection 

multiple times with the same merging field will lead to the same result. 

The other inference rules of merge are concerned with the concept of prefix. As 

we have mentioned, the merging field is a sub-tree from a pattern tree or schema. 

Thus, it can be either path-like or tree-like in structure. A path-like structure is an 

expression that consists of object classes and/or attributes that are on one path in the 

original schema or pattern tree. A tree-like structure is an expression that consists of 

object classes and/or attributes from different paths; but they have the common 

ancestor in the expression. For example, recall the ORA-SS schema diagram in Figure 

6.4, and the following two merge operations. 

(1) Merge<supplier/part/project>(“spj.xml”) 

(2) Merge<part[pname, project]>(“spj.xml”) 
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Expression (1) has a path-like merging field; and expression (2) has a tree-like 

merging field. 

If the merging field is path-like, the concept of prefix is similar to that in a string. 

For example, “supplier/part” is a prefix of the expression “supplier/part/project”. 

If the merging field is tree-like, the prefix is defined as follows: 

Definition 6.2 (Prefix in a tree) 

T1 and T2 are two trees, T1 is the prefix of T2 if  

(i) for each path p in T1, there is a path q in T2 such that p is the prefix of q; and 

(ii) p starts from the root of T1 and q starts from the root of T2. □ 

In our merge operation, if the tree is a tree-like merging field, the path will be a path-

like sub-expression of the merging field. For example, “part” and “part/pname” are 

two prefixes of the merging field “part[pname, project]” in expression (2). 

Rule M2. (The first commutativity rule of merge) 

If two merging fields M1 and M2 are from two different branches in the pattern 

tree or schema, and they are disjoint from each other, then the two merging 

operations are commutative. 

Merge (Merge (U)) = Merge (Merge (U))                 □ >< 2M >< 1M >< 1M >< 2M

The first commutativity rule (rule M2) requires that the two merging fields are located 

in different branches. Intuitively, it means in each individual tree member, we can 

merge common nodes in either way if these nodes are located in different branches. 

For example, consider the following schema of student, course and hobby. 

student

course

tutor

sid sname

cid cname grade

tid tname

sc, 2, +, +

sc sct, 3, *, +

hobby
*

 
Figure 6.8 The ORA-SS schema of student, course and hobby 
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For some reason, the document contains some redundant data of hobby and tutor for 

each student. Therefore, we apply the operation merge to eliminate duplicate hobbies 

below each student and duplicate tutors below each course of each student. In this 

example, we can do the merge in either order. Suppose the xml document name is 

“sct.xml”, we have the following equation. 

Merge<tutor>(Merge<hobby>(“sct.xml”)) = Merge<hobby>(Merge<tutor>(“sct.xml”)) 

Rule M3. (Absorption of prefix in merging field) 

Given two merge operations on the same collection of trees U, the merging fields 

are M1 and M2; if M1 is the prefix of M2, then we have the following equation, 

Merge (Merge (U)) = Merge (Merge (U)) >< 2M >< 1M >−< 12 MM >< 1M

where the M2-M1 is a new merging field by removing all object classes and 

attributes that are in M1 from M2. □ 

For example,  

M2 = part[pname, project] 

M1 = part/pname 

M2-M1 = project 

Intuitively, the rule M3 means the prefix of a merging field can be absorbed if the 

prefix merging field has been merged already. Notice that, this absorption is only 

applicable to the prefix. For example, in “sct.xml”, if we have already merged 

instances of student, the merge operation on student, course, tutor and hobby can be 

rewritten as follows. 

   Merge<student[course[tutor], hobby]>(Merge<student>(“sct.xml”)) 

= Merge<course[tutor]>(Merge<hobby>(Merge<student>(“sct.xml”))) 

Notice that, when the prefix is absorbed from a merging field, the rest may be split 

into pieces because the common ancestor nodes have been removed. In our example 
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above, when the prefix “student” is removed from the merging field, the original 

merging field is broken into two sub-merging fields: “course[tutor]” and “hobby”. If it 

splits, it means the pieces are in different branches and disjoint. Then, according to 

rule M2, they can be applied in any order. 

Rule M4 (The second commutativity rule of merge; prefix commutation) 

Given two merge operations on the same collection of trees U, the merging fields 

are M1 and M2; if M1 is the prefix of M2, then we have the following equation, 

Merge (Merge (U)) = Merge (Merge (U))             □ >< 2M >< 1M >< 1M >< 2M

The rule M4 indicates that the merge of prefix, if any, can be pushed forward. Then, 

according to rule M3, they can be absorbed from the merging field of those later 

merging operations. For example, if we have two merging operations on “sct.xml”, 

one merges student instances and the other merges student, course and tutor instances, 

we can apply them in either order. 

   Merge<student>(Merge<student/course/tutor>(“sct.xml”)) 

= Merge<student/course/tutor>(Merge<student>(“sct.xml”)) 

In the right hand side of the equation, the student in the outer merging operation can 

be absorbed. 

6.2 The generation of query plans 

A query plan, or query evaluation plan, is usually a tree of query algebra operators 

that indicate the method to access the data source and evaluate the query. The query 

plan we discuss in this section is a tree of G-algebra operators with additional 

annotations indicating the access methods for XML document and intermediate tree 

collections. Originally, our GLASS query plan is the G-algebra expressions translated 

from a corresponding GLASS query. 
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From the original GLASS query plan, or the translation result, we can do the two 

following things for optimization: 

1) Enumerate alternative plans for evaluation. The alternative plans we generate are a 

subset of all possible plans. We do not want to enumerate all plans because the 

number of possible plans is too large. 

2) Estimate the cost of each enumerated query plan and choose the one with the 

lowest estimated cost. 

In this section, we focus on the first aspect, which is the strategy of generating 

alternative query plans based on the original translation result. 

Since the ORA-SS data model captures the semantics of relationship types and 

relationship attributes in XML data, the generation of alternative query plans based on 

G-algebra can be compared to those methods that have been widely adopted in 

relational or object-relational database management systems. Because XML queries not 

only contain multiple documents but also multiple relationship types. The generation of 

alternative query plans should be similar to the strategy for optimizing multi-relation 

queries in relational database management systems. 

Generally, the number of all possible query plans is extremely large. Hence, we 

follow the traditional method that only enumerates left-deep plans. In G-algebra, the 

operands of algebra operators are described as collections. Most operators are 

concerned with only one collection, called unary operators, such as, selection, 

projection, merging, and swapping. Some operators are concerned with two 

collections, such as, join, extended Cartesian production (ECP) and set-operations. 

Similar to relational or object-relational query optimization, the generation of left-

deep plans is around the join (ECP) operation. 

The left-deep plan generation is suggested in two levels: document level and 

relationship type level. The document level is for the consideration of those queries 

concerning two or more XML documents.  
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If the query concerns only one document, the generation algorithm should 

contain the following steps. 

Stage 1 (Single document query) 

Step 1: We enumerate all single-relation plans. The single-relation here includes 

the relation of both the parent-child relationship type in the tree structure and the 

n-ary (n≥2) relationship types captured by ORA-SS among n different object 

classes. The single-relation plans correspond to the evaluation of Simple LHS 

graphs (and Simple RHS graphs) that are defined by Definition 5.3 in Chapter 5. 

Step 2: We enumerate all two-relation plans. The two-relation plans correspond 

are corresponding to the evaluation of the set of simple LHS graphs (simple RHS 

graphs) for the LHS graph (RHS graph respectively). The typical two-relation 

operation, which we use often in the evaluation, is the join to re-construct the 

XML structure along the paths specified by ORA-SS or the RHS graph (for 

output). We should emphasize the following points. 

(a) Selections that involve the attributes of only one relation can be applied 

before the join. However, projections, merging operations and swapping 

operations should obey the conditions of the inference rules with join. Generally, 

if they are included in the join field, they can be applied before the join. 

(b) Because the document order can be important in XML data, the left 

operand and the right operand of joins cannot be changed. This feature of XML 

data, in fact, makes the processing simpler than relational data because we do not 

need to decide which one is the outer relation. 

(c) The selection, projection, merging and swapping that involve attributes of 

the join result should be applied after the join. 

Step 3: We generate all three-relation plans. The process is similar to Step 2, 

except that the result of Step 2 should now be considered as the outer relation. 

Therefore, we suggest that the relation containing the root of the document 
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should be considered as the outer relation in Step 2. 

We continue the process with additional steps until we produce plans that contain all 

relations of the relationship types in the document. 

If the query contains grouping with aggregation functions, the grouping can be 

regarded as two operations: merging and selection. The merging part can be applied in 

Step 1. The construction of derived nodes for aggregation functions and the 

corresponding selection can be applied either before joins or after joins. In general, if 

the aggregation function node does not contribute to the result (i.e. the derived node 

does not appear in the final result), the selection should be applied before joins. 

Otherwise, if the aggregation function node appears in the result, the selection can be 

applied later. 

If the query concerns two or more XML documents, we should go to the second 

stage as follows. 

Stage 2 (Multi-document query) 

In Stage 2, we can draw an analogue between documents and relations. Similar to 

Step 2 and Step 3 in Stage 1, we generate the plan involving two-document, three-

document, and so on, until we generate plans including all documents in the query. 

However, there is one point of difference. When two documents are joined, they can 

be joined either in value or in structure or both. If the join of two documents concerns 

structure, the operand order of the join should not be changed. In contrast, if the join 

of two documents concerns value only, that is, only one document will contribute to 

the output, the document that contributes to the output should be the outer document 

(left operand) of join. 

6.3 Examples of query optimization 

We recall Example 5.1, Query 1, in Section 5.2 to illustrate how the algebraic query 

optimization of GLASS works. 
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(Query 1)  From “SPJ1.xml”, find the supplier whose sname is “Adams”; who 

supplies some parts with price>100 to some projects whose jname 

contains “punch”; such that the projects, if they are also contained in 

“JM.xml”, have some members with a position called “Quality 

Examiner”. In the result, display the supplier with all supplier attributes; 

display the part with price >100 and all part attributes; and display all 

projects that use the part supplied by all suppliers with their project id 

(jid) and jname. 

The query in GLASS is presented in Figure 6.9. 

supplier

part

project

project

member

supplier

part

project

sname:
='Adams'

price:
>100

       jname:
Contains('punch')

jid        position:
='Quality Examiner'

jid jname

SPJ1.xml

PM.xml

spj, 3

sp, 2

pj, 2

 

Figure 6.9 The GLASS query graph of Query 1 

The original query plan 

The original query plan is given by the algebraic translation process that is 

presented in Chapter 5. For our example, we recall the translation result of Query 1 

that was presented in Section 5.2. 

The LHS graph:  

(The original LHS graph is decomposed in to four simple LHS graphs: G1~G4.) 

Int(G1) = σposition = ‘Quality Examiner’ (П<project[jid, member[position]]>(“JM.xml”))                 (exp 1) 

Int(G2) = σsname = ‘Adams’ (П<supplier[sid, sname]>(“SPJ1.xml”))                                      (exp 2) 

Int(G3) = σprice > 100 (П<supplier[sid, part[pid, price]]>(“SPJ1.xml”))                                    (exp 3) 

Int(G4) = σContains(jname, ‘punch’) (П<supplier[sid, part[pid, project[jid, jname]]]>(“SPJ1.xml”))      (exp 4) 

WGC1 = П<project[jid]>(Int(G1))                                                                                   (exp 5) 
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WGC4 = П<project[jid]>(Int(G4))                                                                                   (exp 6) 

Eva(G1, G4) = {Int(G1)  project[jid] WGC4;                                                      

                         Int(G4)  project[jid] WGC1}                                                            (exp 7) 

Eva(G2, G3, G4) = {Int(G2)  supplier[sid] (Int(G3)  supplier[sid, part[pid]] Int(G4))}   (exp 8) 

WGC1 = П<project[jid]>(Int(G1))                                                                                  (exp 9) 

WE234 = П<project[jid]>(Eva(G2, G3, G4))                                                                  (exp 10) 

Eva(G1, G2, G3, G4) = {Int(G1)  project[jid] WE234;  

                                     Eva(G2, G3, G4)  project[jid] WGC1}                               (exp 11) 

The RHS graph: 

(The RHS graph is decomposed into 5 simple RHS graphs: G5~G9.) 

Map(G5) = П<supplier[sid]>(Eva(G1, G2, G3, G4))  supplier[sid] П<supplier[sid, sname]>(“SPJ1.xml”) 

Map(G6) = П<part[pid]>(Eva(G1, G2, G3, G4))  part[pid] П<part[pid, pname]>(“SPJ1.xml”) 

Map(G7) = П<supplier[sid, part[pid]], sp>(Eva(G1, G2, G3, G4))  

                                                     supplier[sid, part[pid]] П<supplier[sid, part[pid, price]]>(“SPJ1.xml”) 

Map(G8) = П<part[pid]>(Eva(G1, G2, G3, G4))  part[pid] П<part[pid, project[jid]]>(“SPJ1.xml”) 

Map(G9) = П<project[jid, jname]>(“SPJ1.xml”) 

The result is 

ResultQuery1 = Map(G5)  supplier[sid] ( 

                                 Map(G7)  part[pid] ( 

                                             Map(G6)  part[pid] ( 

                                                        Map(G8)  part[pid] Map(G9)))) 

The generation of query plans for Query 1 

The example query, Query 1, is a multi-document query referring to “SPJ1.xml” and 

“JM.xml”. For the first stage, we generate the one-document plan for “SPJ1.xml” initially. 

One-document plan of “SPJ1.xml” 

In Step 1, we consider the interpretation of the simple LHS graphs involving the 

document “SPJ1.xml”. There are three interpretations: Int(G2), Int(G3) and Int(G4) as 

the exp 2~4. Each interpretation of the simple LHS graph is a one-relation plan in the 
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document. Therefore, for each of them, we consider the access methods for the 

corresponding relation in the document “SPJ1.xml”. In practice, the document can be 

stored in relational databases, object-relational databases, object-oriented databases, 

or semi-structured databases. If the document is stored in an object-relational database, 

its relations of the corresponding relationship types or object classes specified in 

ORA-SS schema can be stored in different (nested) tables. If the document is stored in 

a relational or object-oriented database, the document can be parsed and decomposed 

into nodes where each node is stored in a table or as an object instance with the parsed 

information. If the document is stored in a semi-structured database, the document 

may be stored as native XML data. Therefore, the access method of the document and 

its relations are different from each other with the consideration of how the data is 

stored. Meanwhile, because there could be an index on those ORA-SS attributes in the 

selection/projection field of the interpretation expression, the index is also an 

important feature we should consider in estimating the cost of the query plan. 

For example, suppose the document “SPJ1.xml” is stored as a native XML 

document. The B+ tree index is built for the object ID attribute according to ORA-SS 

schema (sid, pid, and jid), the price attribute and the qty attribute. The document can 

be randomly accessed according to the index. Then, we may consider two access 

methods for “SPJ1.xml”: B+ tree and sequential scan. As a result, the Int(G2) and 

Int(G4) may use the sequential scan, and the Int(G3) shall access through the B+ tree 

index on price. 

If the data is assumed to be stored as native XML, we suggest that the projection 

be applied before selection. The reason, or the purpose, is to cut off those branches 

and nodes that are not used in the selection field. After they are cut-off, the tree 

(member) size in the project result will be much smaller than the original one. 

However, this may not always be true if only a small amount of nodes are cut off. The 

proportion of those cut-off nodes in comparison with the original tree can be 
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estimated according to the schema diagram or the pattern tree with relationship types. 

For the selection, if we have an index, a histogram or other tools, we can compute or 

estimate the selectivity of those attributes in selection fields. Therefore, we can 

compare the proportion and the selectivity value to decide whether a projection should 

be applied before or after a selection. Because the selection fields of Int(G2) and 

Int(G4) need a sequential scan, we choose to apply the projection first. Because the 

projection also requires a sequential scan, the selection can be done on-the-fly with 

the projection. With regard to Int(G3), if we know or estimate that only 1 percent of 

the records will be selected with the selection field “price > 100” which is smaller 

than the estimated proportion of the projection of “supplier[sid, part[pid, price]]”, we 

will apply the selection before the projection. Otherwise, the projection will be 

applied before the selection. 

The generated one-relation plans for document “SPJ1.xml” are chosen as follows. 

 
In Step 2, we consider two-relation plans. There are three relations: the relation of 

the object class supplier in Int(G2), the relation of the binary relationship type SP in 

Int(G3), and the relation of the ternary relationship type SPJ in Int(G4). Thus, we have 

 different combinations of two relations in this step. According to the linking 

set, we can tell that the object class supplier and part, and the relation of the 

relationship type SP and SPJ, contribute to the output. All three relations contain the 

root node “supplier”. Therefore, we choose the largest relation, i.e. the SPJ, as the 

outer relation of the join. 

32
3 =C
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In Step 3, we consider three-relation plans. This step corresponds to the 

evaluation Eva(G2, G3, G4) as the exp 8. 

 
Figure 6.10 The one-document plan of “SPJ1.xml” 

Step 3 is the final step of the document “SPJ1.xml”. 

One document plan of “JM.xml” 

 
Figure 6.11 The two-document plan of “SPJ1.xml” and “JM.xml” 

Then, we generate the one document plan of “JM.xml”. 

We need only one step since it is a one-relation query for the data in “JM.xml”. 

For the second stage, we generate the two-document plan. 

Because only the document “SPJ1.xml” contributes to the output result, the 

document “SPJ1.xml” will be generated as an outer document of the join. This join 
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corresponds to the evaluation of G1~G4 as exp 11. After this stage, the generated two-

document plan is shown in Figure 6.11. 

Adding the result construction into the query plan according RHS graphs 

 
Figure 6.12 Adding attributes in RHS that are not included in LHS 

After the plan of the LHS graph is generated, we consider the RHS graph. The RHS 

only concerns one document, “SPJ1.xml”. In our translation, we use maps to specify 

how those nodes in the output shall be derived. Some nodes come from the query 

result or the evaluation while the others are from the source document directly. In this 

example, when we translate the mapping part, we always project data from the source 

and join the project result with the evaluation result. However, we can detect whether 

an object class or a relation in the output is from the evaluation result or from the 

source if we check the mapping set carefully. For object classes, if we project an 

object class with its object class attributes and join the projection result with the 

evaluation, it means the object class instance is from the evaluation result (e.g. 

Map(G5) and Map(G6)). For relations, if we project several object classes along a path 

and join the projection result with the evaluation where all the projected object classes 

are included in the join field, it means those relations among the projected object 

classes are from the evaluation result too (e.g. Map(G7)). If an object class or a 
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relation is from the evaluation result, we add the projection into the query plan if the 

projection contains some attributes that are not included in the plan of the evaluation, 

e.g. the sname and pname. 

Otherwise, there are some data directly from the source. For example, Map(G9) 

means the project instances in the result are from the source. Map(G8) means there is 

a derived binary relationship type PJ from joining the result of Map(G9) with the 

evaluation result on the field of pid (part id). For the data from the source, we 

generate the corresponding plan and do the join according to the mapping set. 

The query plan may be different if the document storage and index are changed. 

Usually, before the final result is displayed, a merge would be applied to shrink 

the total size of the result. 

 
Figure 6.13 The generated query plan of Query 1 

6.4 Summary 

In this chapter, we have discussed properties of the operators in G-algebra. The 

properties are presented in the form of inference rules, which can be used to generate 

various query plans. 
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Because the concept of collection is an extension on the concept of tuple, the 

inference rules of selection and projection are similar to those in relational algebra. 

Meanwhile, because XML data can be order sensitive, the extended Cartesian product 

and join in G-algebra are different from those in relational database. In XML data, the 

join (and extended Cartesian production) is not commutative. After that, we have also 

presented the inference rules among selection, projection and join, most of which are 

similar to relational algebra. This means we can reuse the query optimization 

techniques and strategies in relational algebra. 

Beyond that, we have also presented the inference rules of swapping and merging, 

both of which are not found in relational algebra or other XML algebra.  

When we discussed the swapping operation, we have introduced the concept of 

content equivalence (Definition 6.1). Content equivalence means two collections have 

the same tree members but the order of these tree members may be different. In other 

words, if one collection contains duplicate tree members, the other collection should 

contain the same tree members with the same number of duplicates. For most cases, 

when a swapping operation is applied, the document order is not important. Therefore, 

content equivalence is enough to guarantee the correctness of the answer.  

A swapping operation, according to our definition in Section 4.3.7, consists of 

three stages: splitting stage, swapping stage and merging stage, which is very 

expensive. Therefore, we introduce the fusion of the swapping operation (Section 

6.1.3.2). Intuitively, it means when a series of swapping operations are applied, we 

can omit the splitting and merging stages of those intermediate swapping operations. 

With the fusion method, we only need to split once for the first swapping and merge 

at the last swapping. Because the merge stage is only applied once, we can extend our 

content equivalence to equality24. 

                                                 
24 This is because only the merging stage will change the original document order and the change is not reversible 
unless we recall the original data. 
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For the merge operation, we have defined the concept of prefix in trees 

(Definition 6.2) and we have found that most inference rules of merging operations 

are related with the prefix in merging fields25. 

The inference rules are used to generate query plans for GLASS query graphs. 

We have presented the method of query plan generation based on the algebraic 

translation result. Finally, an example is presented to illustrate how algebraic query 

optimization works for our graphical XML query language. 

                                                 
25 The merging field is a sub-tree of a GLASS query graph indicating the node(s) that should be merged. 
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7 Conclusion and Future Works 

In this chapter, we summarize the contribution of this thesis and discuss possible future 

directions of work on graphical XML query languages. 

7.1 Summary of the contribution 

Graphical XML query languages and user interfaces are proposed to help common 

users to pose XML queries more easily. However, due to lack of data semantics, 

current existing graphical XML query languages and user interfaces have many 

limitations in support querying data-centric XML data. When rich semantics is 

concerned, they can neither correctly represent queries nor construct answers. 

Therefore, in this thesis, we start from a rich semantic data model, ORA-SS, for 

XML data. ORA-SS explicitly captures the data semantics such as object classes, 

object IDs, n-ary (n≥2) relationship types, functional dependencies, multi-valued 

dependencies, semantic dependencies, and the differentiation of relationship attributes 

from object attributes that are implicitly contained in XML. With the help of the rich 

semantics in ORA-SS, the contribution of our work in this thesis can be categorized 

into four aspects. 

Chapter 7

Contribution 1: A graphical XML query languages 

We have proposed GLASS (Graphical query LAnguage for Semi-Structured data) 
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and its extension GLASSU for XML update. GLASS and its extension inherit the 

features from ORA-SS and they can correctly express complex user queries with 

constraints in relationship types. With regard to the three criteria of a good graphical 

XML query language presented in Chapter 1, we can see that: 

(1) GLASS is intuitive. To judge the intuitiveness is somehow subjective. However, 

if we consider the representation of complex query logics, mathematic 

expressions, conditional output construction and swapping operation, GLASS is 

more intuitive than other existing XML query languages.  

(2) GLASS can represent query correctly when it concerns rich data semantics. 

Rich data semantics can be explicitly (with ORA-SS schema) or implicitly 

contained in XML (i.e. known by the data designer/owner). In GLASS, we give 

users the option to specify data semantics such as (derived) relationship types in 

their queries. For common users who do not see the rich data semantics, the 

underlying ORA-SS schema can check their queries whether it is semantically 

well-formed26 and guarantee semantically meaningful query results.  

(3) GLASS is an expressive graphical XML query language. GLASS supports most 

common query operations (e.g. project, select and join) and the complex queries 

with aggregation, negation and quantifiers. GLASS can restructure an XML 

document by swapping the hierarchical position of two XML element types 

(with their sub-element types and attributes). GLASS supports XML updates in 

its extension GLASSU. Therefore, the expressive power of GLASS is higher 

than any existing graphical XML query languages. 

Besides the above three criteria, GLASS is flexible in use. The language design of 

GLASS combines both advantages of textual and graphical languages where we use 
                                                 
26 In case that an XML does not have rich data semantics, we just check whether a query is (structurally) well-
formed. In such a case, GLASS can do the same things that top graphical languages can do such as XML-
GL/XQBE.  
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graphs to express data structures intuitively and use text to pose complex query logics 

concisely. Based on the combination, if a user has a series of queries on the same data 

set with different query logics, he/she can change the condition expressions in CLW 

without change much in the query graph. 

Contribution 2: A logic algebra for our graphical XML query language 

We have presented the logic algebra of our graphical XML query language: G-

algebra. Using the rich data semantics in ORA-SS, G-algebra has advantages over 

other existing XML query languages in the following two aspects.  

G-algebra can interpret the query semantics drawn in GLASS correctly. Because 

we consider the rich data semantic issues in XML, G-algebra can check whether a 

GLASS query is semantically well-formed and guarantee a meaningful query result. 

G-algebra has a set of operators concerning both query conditions and result 

construction, some of which are purposely defined for graphical XML query (e.g. 

swap and merge). Based on the rich data semantics we captured by ORA-SS, we are 

able to perform swap, merge, group and quantifiers (with negation) on data-centric 

XML data. These features cannot be supported by other related works based on only 

DTD/XSD schema or OEM model. 

In this thesis, the G-algebra contributes to the formal semantics of GLASS and 

opens the gate for algebraic query optimization of GLASS. 

Contribute 3. Translation from GLASS to SQLX 

We presented the translation from GLASS to SQLX. SQLX is an XML extension 

of the SQL standard, which has been widely accepted in current ORDBMS. In our 

translation, we assume that our XML document is stored in an ORDBMS and the 

ORDB storage schema is derived from the ORA-SS schema of the data. Our 

translation not only verifies the expressive power of GLASS, but also proves that 
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GLASS can be implemented on an ORDBMS with XML support such as Oracle 10g. 

Contribute 4. Validating semantic constraints for XML update 

In the appendix of this thesis, we have presented our preliminary studies on the 

validation of semantic constraints for XML update with respect to the data semantics 

in an ORA-SS schema. We have derived a set of semantic constraints from the 

semantic information captured in ORA-SS schema, including relationship types, 

relationship attributes, object IDs and ID references, and semantic dependencies, 

which are not captured in DTD/XSD. These semantic constraints can neither be 

covered by existing works on semantic validation that consider only keys or 

functional dependencies27. We have also discussed the tactics that can be used in 

incremental validation of semantic constraints. The tactics including detecting 

duplicate instances and finding the first occurrence can only be achieved using the 

date semantics in ORA-SS. 

7.2 The discussion on future work 

The future research directions of the work in this thesis may include the following 

aspects. 

Algebraic optimization of graphical XML query languages 

In this thesis, we have presented some preliminary researches on algebraic XML 

query optimization, including the inference rules of G-algebra operators and the 

translation from GLASS to G-algebra expressions. The next step is to continue the 

research on how to generate and find better query plans. Meanwhile, in our future 

work, we shall consider how to compute G-algebra operators efficiently, especially 

the swap, merge and join. 

Semantic validation and its performance 
                                                 
27 For example, object IDs cannot be replaced by keys; and semantic dependencies cannot be expressed by 
functional dependencies. 
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The semantic validation discussed in this thesis only considers the semantics 

captured by ORA-SS; and we have noticed that there are some semantic constraints 

may not be able to be derived from the data semantics captured in ORA-SS. Such 

semantic constraints as business rules, logics between different paths and conditional 

dependencies [25] are also important for XML data in some cases. Therefore, the future 

works may include the extension of the semantic constraint set to cover these data 

semantics. 

Moreover, the performance of semantic validation in XML databases, i.e., how to 

do semantic validation more quickly, is also an interesting and promising research field. 

 



 
175 

 
 
 
 
 
 

Bibliography 

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. The Lorel query 

language for semistructured data. Journal on Digital Libraries, 1(1), 1996. 

2. Aguilera, V., Cluet, S., Veltri, P., Vodislav, D., and Wattez, F. Querying XML 

Documents in Xyleme. In Proc. of ACM SIGIR Workshop on XML and Information 

Retrieval, 2000. 

3. Apparao, V. and Byrne, S. Document object model (DOM) level 1 specification. 

W3C Recommendation, 1998. 

4. Balmin, A., Papakonstantinou, Y. and Vianu, V. Incremental Validation of XML 

Documents. ACM Transactions on Database Systems (TODS), Volume 29, Issue 4, 

P710-751, 2004. 

5. Barbosa, D., Mendelzon, A. O., Libkin, L., Mignet, L., and Arenas, M. Efficient 

Incremental Validation of XML Documents. In Proc. of ICDE 2004. 

6. Beyer, K., Cochrane, R. J., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G., Lyle, 

B., Özcan, F., Pirahesh, H., Seemann, N., Truong, T., Van der Linden, B., Vickery, B., 

and Zhang, C. System RX: One Part Relational, One Part XML. In Proc. of SIGMOD 

2005. 

7. Bouchou, B., Alves, M.H.F., Laurent, D., and Duarte, D. Extending tree automata to 

model XML validation under element and attribute constraints. In Proc. of ICEIS (1), 

2003 

8. Bouchou, B., Cheriat, A., Ferrari, M. H., and Savary, A. XML Document Correction: 

 



 
176 

Incremental Approach Activated by Schema Validation. In Proc. of IDEAS 2006. 

9. Braga, D., Campi, A., and Ceri, S. XQBE (XQuery By Example): A visual interface 

to the standard XML query language. ACM Trans. Database Syst. 30(2): 398-443, 

2005 

10. Buneman, P., Davidson, S., Fan, W. F., Hara, C., and Tan, W. C. Keys for XML. In 

Proc. of WWW10, 2001. 

11. Buneman, P., Fernandez, M., and Suciu, D.: UnQL: A Query Language and Algebra 

for Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000) 76--

110 

12. Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., and Tanca, L. XML-

GL: a graphical language of querying and restructuring XML documents. In Proc. of 

WWW8, 1999. 

13. Ceri, S., Comai, S., Damiani, E., Fraternali, P., and Tanca, L.. Complex Queries in 

XML-GL. SAC(2) 2000:888-893.  

14. Chen, Y. B., Ling, T. W., and Lee, M. L. Designing Valid XML Views. In Proc. of 

ER2002. 

15. Chitic, C. and Rosu, D. On validation of XML streams using finite state machines. In 

Proc. of WebDB 2004. 

16. Christophides, V., Cluet, S., and Simeon, J. On wrapping query languages and 

efficient XML integration. In Proc. ACM SIGMOD 2000. 

17. Cohen, S., Kanza, Y., Kimelfeld, B., and Sagiv, Y. Interconnection Semantics for 

Keyword Search in XML, In Proc. of CIKM 2005. 

18. Cohen, S., Kanza, Y., Kogan, Y., Nutt, W., Sagiv, Y., and Serebrenik, A. Equix – Easy 

Querying in XML Databases. In Proc. of Webdb’98 – The Web and Database 

Workshop, 1998. 

19. Cohen, S., Mamou, J., Kanza, Y., and Sagiv, Y. XSEarch: A Semantic Search Engine 

for XML, In Proc. of VLDB, 2003 

 

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Braga:Daniele.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Campi:Alessandro.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Ceri:Stefano.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Ceri:Stefano.html
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods30.html#BragaCC05
http://www.informatik.uni-trier.de/~ley/db/journals/tods/tods30.html#BragaCC05


 
177 

20. Comai, S., Damiani, E., and Fraternali, P. Computing Graphical Queries over XML 

Data. ACM Transactions on Information Systems, Vol. 19, No. 4, October 2001, 

Pages 371-430. 

21. Comai, S., Damiani, E., and Tanca, L. The WG-Log System: Data Model and 

Semantics. INTERDATA technical report, T2-R06, July 1998. 

22. Date, C. J. An Introduction to Database Systems. 3rd Edition, Addison-Wesley 

Publishing Company, 1981. 

23. Davidson, S., Fan, W., Hara, C. and Qin, J. Propagating XML Constraints to 

Relations The 19th International Conference on Data Engineering (ICDE), pp. 543-

554, 2003. 

24. Deutsh, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D. XML-QL: A Query 

Language for XML. WWW7 The Query Language Workshop (QL). 1998. 

25. Fan, W., Geerts, F., and Neven, F. Expressiveness and Complexity of XML 

Publishing Transducers ACM Symposium on Principles of Database Systems  

(PODS), 2007 

26. Fan, W. and Libkin, L. On XML Integrity Constraints in the Presence of DTDs 

Journal of the ACM (JACM), Volume 49 , Issue 3, pp 368 - 406, May 2002.  

27. Fan, W. and Siméon, J. Integrity Constraints for XML Journal of Computer and 

System Sciences (JCSS), 66(1):254-291, February 2003.  

28. Fankhauser, P., Fernandez, M., Malhotra, A., Rys, M., Simeon, J., and Wadler, P. The 

XML Query Algebra. W3C Working Draft. 15 Feb. 2001. 

29. Fernandez, M., Simeon, J., and Wadler, P. An algebra for XML query. In Proc. of 

FST TCS, Delhi, December 2000. 

30. Frasincar, F., Houben, G., and Pau, C. XAL: an Algebra for XML Query 

Optimization. In Proc. of 13th Australasian Database Conference (ADC2002). 2002. 

31. Fuhr, N., and Groβjohann, K. XIRQL: An XML Query Language Based on 

 



 
178 

Information Retrieval Concepts. ACM Transaction on Information Systems, Vol. 22, 

No. 2, Page 313-356, April, 2004. 

32. Goldman, R., and Widom, J. DataGuides: Enabling query formulation and 

optimization in semistructured databases. In Proc. of VLDB, 1997. 

33. Grust, T., Van Keulen, M., and Teubner, J. Accelerating XPath Evaluation in Any 

RDBMS. ACM Transactions on Database Systems, Vol. 29, No. 1, Page 91-131, 

March, 2004. 

34. Gupta, A. and Khan, Z. Graphical XML Query Language. Course paper. College of 

Computing, Georgia Institute of Technology, Sep 2000 

http://www.cc.gatech.edu/computing/Database/faculty/xml/xmlql.html 

35. Jagadish, H. V., Lakshmanan, L. V. S., Srivastava, D., and Thompson, K. TAX: A 

Tree Algebra for XML, In: Proc. of 8th International Workshop on Databases and 

Programming Languages, 2001. 

36. Jelliffe, R. The Schematron: An XML Validation Language using Patterns in 

Trees. www.ascc.net/xml/resource/schematron/ 

37. Kostoulas, M. G., Matsa, M., Mendelsohn, N., Perkins, E., Heifets, A., and Mercaldi, 

M. XML Screamer: An Integrated Approach to High Performance XML Parcing, 

Validation and Deserialization. In Proc. of WWW15, 2006. 

38. Krishnaprasad, M., Liu, Z. H., Manikutty, A., Warner, J. W., Arora, V., and 

Kotsovolos, S. Query Rewrite for XML in Oracle XML DB. In Proc. VLDB, 2004. 

39. Kwong, A. and Gertz, M. Structural Constraints for XML. University of California 

Technical Report CSE-2002-24, June, 2002 

40. Laux, A. and Martin, L. XUpdate - XML Update Language. W3C Working Draft, 

2000. http://xmldb-org.sourceforge.net/xupdate 

41. Li, C., Ling, T. W. QED: A Novel Quaternary Encoding to Completely Avoid Re-

labeling in XML Updates. In Proc. of CIKM 2005. 

42. Li, C., Ling, T. W., Hu, M. Efficient Processing of Updates in Dynamic XML Data. 

 

http://www.cc.gatech.edu/computing/Database/faculty/xml/xmlql.html
http://www.ascc.net/xml/resource/schematron/
http://xmldb-org.sourceforge.net/xupdate
http://www.comp.nus.edu.sg/%7Elingtw/papers/icde2006.lichangqing.pdf


 
179 

In Proc. of ICDE 2006 

43. Li, G., Feng, J., Wang, J., and Zhou, L. Effective Keyword Search for Valuable LCAs 

over XML Documents, In Proc. of CIKM 2007. 

44. Li, Y., Yu, C., and Jagadish, H. V. Schema-Free XQuery, In Proc. of VLDB, 2004 

45. Ling, T. W., Lee, M. L., and Dobbie, G. Semistructured Database Design. Springer 

Science+Business media, Inc. 2005 

46. Liu, Z., and Chen, Y. Identifying Meaningful Return Information for XML Keyword 

Search, In Proc. of SIGMOD 2007. 

47. Ludaescher, B., Papakonstantinou, Y., and Velikhov, P. Navigation-driven evaluation 

of virtual mediated views. In Proc. of EDBT, 2000. 

48. Mark, L., etc. XMLApe. College of Computing, Georgia Institue of 

Technology. http://www.cc.gatech.edu/projects/XMLApe/ 

49. McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J. Lore: A database 

management system for semi-structured data. SIGMOD Record, 26(3):54-66. 

50. Mendling, J. and Nüttgens, M. EPC markup language (EPML): an XML-based 

interchange format for event-driven process chains. Information Systems and E-

Business Management, 2006, Springer. 

51. Munroe, K. D., Ludaescher, B., and Papakonstantinou, Y. Blended Browsing and 

Querying of XML in Lazy Mediator System. In Proc. of EDBT, 2000. 

52. Nentwich, C. CLiX - A Validation Rule Language for XML. 

http://www.w3.org/2004/12/rules-ws/paper/24/ 

53. Ni, W., and Ling, T. W. GLASS: A Graphical Query Language for Semi-

Structured Data. In Proc. of DASFAA 2003, Kyoto, Japan, March 26-28, 2003. 

54. Ni, W., and Ling, T. W. Semantic Validation for XML Updates. In Proc. of the 

2nd International Conference on Ubiquitous Information Management and 

Communication (ICUIMC 2008), SKKU, Suwon, Korea, Jan 31– Feb 1, 2008. 

 

http://www.cc.gatech.edu/projects/XMLApe/
http://www.w3.org/2004/12/rules-ws/paper/24/


 
180 

55. Ni, W., and Ling, T. W. Translate Graphical XML Query Language to SQLX. In 

Proc. of DASFAA 2005, Beijing, China, April 17-20, 2005. 

56. Ni, W., and Ling, T. W. Update XML Data by Using Graphical Languages In Proc. 

of tutorials, posters, panels and industrial contributions at the 26th International 

Conference on Conceptual Modeling - ER 2007. CRPIT, Vol. 83, 209-214, 

Auckland, New Zealand, Nov 5-9, 2007. 

57. Pal, S., Cseri, I., Seeliger, O., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras, A., 

Berg, B., Churin, D., and Kogan, E. XQuery Implementation in a Relational Database 

System. In Proc. of VLDB, 2005. 

58. Papakonstaninou, Y., Borkar, V., Orgiyan, M., Stathatos, K., Suta, L., Vassalos, V., 

and Velikhov, P. XML queries and algebra in the Enosys integration platform. Data 

& Knowledge Engineering, Vol. 44, Issue 3 (March 2003), Page 299-322. 

59. Papakonstantinou, Y., Garcia-Molina, H., and Widom, J. Object exchange across 

heterogeneous information sources. In Proc. of ICDE, 1995. 

60. Papakonstantinou, Y., Petropoulos, M., and Vassalos, V. QURSED: Querying and 

Reporting Semistructured Data. In Proc. of ACM SIGMOD 2002. 

61. Paredaens, J., Peelman, P., and Tanca, L. G-Log: A Graph-Based Query Language. 

IEEE Transactions on Knowledge and Data Engineering, 7(3):436--453, June 1995. 

62. Petropoulos, M., Vassalos, V., and Papakonstantinou, Y. XML query forms 

(XQForms): declarative specification of XML query interfaces. In Proc. of WWW10, 

2001. 

63. Subramanian, B., Leung, T. W., Vandenberg, S. L., and Zdonik, S. B. The AQUA 

approach to querying lists and trees in object-oriented databases. In Proc. of ICDE 

1995. 

64. Sun, C., Chan, C. Y., and Goenka, Amit K. Multiway SLCA-based Keyword Search 

in XML Data, In Proc. of WWW16, 2007. 

65. Tatarinov, I., Ives, Z.G., Halevy, A.Y., and Weld, D.S. Updating XML. In Proc. of 

 



 
181 

SIGMOD, 2001. 

66. Xu, Y. and Papakonstantinou, Y. Efficient keyword search for smallest LCAs in 

XML databases, In Proc. of ACM SIGMOD 2005. 

67. Zhang, C., Naughton, J. F., DeWitt, D. J., Luo, Q., and Lohman, G. M. On supporting 

containment queries in relational database management systems. In Proc. of 

SIGMOD, 2001. 

68. Altova® XMLSpy® http://www.altova.com/ 

69. Extensible Markup Language (XML) http://www.w3.org/XML/ 

70. International Organization for Standardization (ISO): Information technology -- 

Database languages - SQL - Part 14: XML-Related Specifications (SQL/XML) 

ISO/IEC 9075-14:2006 

71. RELAX NG home page: http://relaxng.org/#introduction 

72. The document object model. W3C. http://www.w3c.org/DOM/ 

73. XML Query Algebra. W3C Working Draft 04 December 

2000 http://www.w3.org/TR/2000/WD-query-algebra-20001204 

74. XML Path Language (XPath) Version 1.0 http://www.w3.org/TR/xpath 

75. XML Query (XQuery) W3C. http://www.w3.org/XML/Query/ 

76. XML Schema http://www.w3.org/XML/Schema 

77. XQuery Update Facility W3C Working Draft 11 July 2006  

http://www.w3.org/TR/2006/WD-xqupdate-20060711/ 

 

http://relaxng.org/#introduction
http://www.w3.org/TR/2000/WD-query-algebra-20001204


 
182 

 
 
 
 
 
 

Appendix A: Semantic Validation for XML 
Updates based on ORA-SS 

In this appendix, we derive a set of important semantic constraints with respect to the 

data semantics in the ORA-SS including n-ary (n≥2) relationship types, relationship 

attributes, object IDs and ID references, and semantic dependencies, which are 

captured by DTD/XSD schemas. Then, we discuss how to validate these semantic 

constraints in XML updates with the help of ORA-SS. 

A.1 The semantic constraints derived from ORA-SS 

Consider the following example data schema on department, student and courses. 

<!ELEMENT department (name, student*)> 
   <!ATTLIST   department   did   ID #REQUIRED> 
   <!ELEMENT name (#PCDATA)> 
   <!ELEMENT student (name, hobby*,  joindate)> 
      <!ATTLIST   student  sid ID #REQUIRED> 
      <!ELEMENT hobby (#PCDATA)> 
      <!ELEMENT joindate (#PCDATA)> 
<!ELEMENT course (title, cstudent+)> 
   <!ATTLIST course code ID #REQUIRED> 
   <!ELEMENT title (#PCDATA)> 
   <!ELEMENT stu_in_course (grade?, tutor)> 
      <!ATTLIST stu_in_course sid IDREF #REQUIRED> 
      <!ELEMENT grade (#PCDATA)> 
         <!ELEMENT tutor (contact*, feedback?)> 
         <!ATTLIST tutor tid IDREF #REQUIRED> 
         <!ELEMENT contact (#PCDATA)> 
         <!ELEMENT feedback (#PCDATA)>

Figure A.1 The DTD schema of the example data set, “cst.dtd” 
Example A.1 (ORA-SS schema diagrams and DTD) Suppose we have a data set about 

university students. First of all, we list all departments and record the student information 

under each department. Then, we record the course information, students who have taken the 
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course (stu_in_course) and their corresponding grades of the course if any. For each course 

and its students, we also record the tutor information (tutors are also students) and his/her 

feedback from each student of each course. 

The DTD schema of our data set, “cst.dtd”, is shown in Figure A.1. 
course

stu_in_course

tutor

code

sid

cs, 2, 4:n, 3:8

cst, 3, 1:1, 1:n

tid

title

grade

feedback

?

cs

department

did name

hobby
cst

contact
* ?

student

name joindatesid

ds, 2, 0:n, 1:1

*

 

Figure A.2 The ORA-SS schema diagram of our data set 

From the ORA-SS schema, we can derive the following semantic constraints. 

(i) Object ID and ID reference 

(ii) n-ary relationship type (n≥2) and participation constraint 

(iii) Relationship attribute 

(iv) Functional dependency (FD) and multi-valued dependency (MVD) 

(v) Semantic dependency 

(vi) Identifier dependency relationship type 

Among the above semantic constraints, most of them are familiar to database people 

because they are similar to those in relational (object-relational) databases; and thus we just 

discuss the innovative one: semantic dependency. 

Definition A.1 (Semantic dependency) 

Given an XML document, with respect to its ORA-SS schema diagram, attr is an attribute, 

O is an object class, R is a relationship type. 

(i) The value of attr (or the set of values if attr is multi-valued) semantically depend on 

the object class O if attr is the attribute of O. 

(ii) The value of attr (or the set of values if attr is multi-valued) semantically depend 

on the participating object classes of R if attr is the attribute of R. □ 
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The semantic dependency is important because it will lead to different update behaviors. 

For example, consider the joindate in the DTD in Figure A.1 of Example A.1, it may have 

two different semantics: (a) the joindate is the date when the student joins the university 

(i.e., joindate is an attribute of the object class student); and (b) the joindate is the date when 

the student joins the department (i.e., joindate is an attribute of the binary relationship type 

“ds”). For the first case, when a student transfers to a new department, the joindate should 

NOT be changed. In contrast, for the second case, when a student transfers to a new 

department, the joindate should be changed also. The ORA-SS schema diagram in Figure 

A.2 shows the first case. If the joindate is of the second case, we should specify that joindate 

is an attribute of the binary relationship type “ds” and label “ds” onto the arrow pointing to 

joindate. 

However, if we consider the FD, we obtain the following result: 

(i) For the first case, we can directly get the FD: . joindatesid →

(ii) For the second case, we have two FDs:  and  and thus 

we can derive the FD: . 

joindatesiddid →},{ didsid →

joindatesid →

Therefore, FDs alone cannot tell the difference between the two semantics. But with the 

help of ORA-SS schema, the two different semantics above are denoted as  

and  respectively. 

joindatesid SEM⎯⎯→⎯

joindatesiddid SEM⎯⎯ →⎯},{

A.2 Road to semantic validation – the tactics  

Here we introduce two tactics: detect duplicates and find the first occurrence of 

object, relationship and attribute instances. 

Detect duplicates 

Due to the hierarchical structure, XML data often contains duplicates in values. 

This is concerned with data consistency (integrity constraints) during updates. On the 
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basis of ORA-SS schema diagram, we can find not only the duplicates of object 

instances but also the duplicates of relationship instances and attribute instances. Here 

are the rules we used to detect duplicate instances. 

Example A.2: (Project, supplier and part database) In this data set, the supplier and 

part determine part price; and project, supplier and part determine qty (quantity). 

project

supplier
jid

sid

jname

sname
part

pid pname

jsp, 3, 1:n, 1:m

sp

price qty

sp, 2, 1:n, 1:m

jsp

js, 2, 1:n, 1:m

?

Figure A.3 ORA-SS schema diagram of Example A.2 

(1) If an object class is not at the top level of the document tree, and the child 

participation constraint of the object class is not 1:1, there will be duplicates of 

the object instance. 

For example, in Figure A.3, the supplier instance has duplicates because it can 

belong to multiple projects. In contrast, the student instance in Figure A.2 does not have 

duplicates because each student can belong to only one department. Notice that, the part 

in Figure A.3 has duplicates because one part can be supplied by multiple suppliers to 

multiple projects.  

(2) If a relationship type does not start from an object class at the top level of the 

document tree, and the highest object class of the relationship type in the 

hierarchical structure has duplicates, then the relationship instance also has 

duplicates. 

For example, in Figure A.3, the supplier-part instance of the relationship type “sp” 

has duplicates because one supplier supplies one part to multiple projects. 

(3) If an object (or relationship) instance has duplicates, its object attributes (or 

relationship attributes respectively) have duplicates. 
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For example, in Figure A.3, the pname has duplicates because of part; and the price 

has duplicates because of the “sp” instance. However, the qty attribute does NOT have 

duplicates because the relationship instance of “jsp” does not have duplicates. 

The above rules indicate that the duplicate detection is NOT as trivial as the participation 

checking in DTD/XSD. We can see their differences from the following facts. 

− Multi-valued attributes may not have duplicates (e.g. hobby in Figure A.2); 

− Single valued attributes can have duplicates (e.g. price in Figure A.3); 

− The fact that a parent instance has duplicates does not mean all its child instances 

will have duplicates because object class attributes and relationship attributes are 

different. 

Find the first occurrence 

When an XML data is stored in a database, we check the ORA-SS schema (not 

scanning the document) to detect duplicates of object, relationship or attribute 

instances. After that, because we know which object (relationship, attribute) instances 

are of multiple occurrences (i.e. have duplicate instances), when we check the value 

of such instances, we just find the first instance with non-nil value.  

A.3 Semantic validation rules 

There are two essential differences between the semantic validation of XML and 

relational data: (1) the updated XML data can be a sub-tree; (2) XML data may 

contain absences or duplicates. Both are concerned with instance comparison. 

Explanatory Notes: In our discussion, object instances are represented as obj, object 

classes as the italic capital letter A, B, O; and relationship types as the italic capital letter R. 

A.3.1 Object ID constraints and ID reference constraints 
An object ID (OID) should be enforced to satisfy the following validation rules. 
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(R1) (Non-null) It cannot be optional and its value should not be null. 

(R2) (Unchangeable) An OID attribute can never be changed; and it can only be 

deleted when its object instance is deleted. 

(R3) (Uniqueness, FD, MVD) If two object instance obj1 and obj2 (i) are of the same 

object class and (ii) have the same ID attribute value, all non-optional object 

attributes (both single-valued28 and multi-valued) should be the same (deep-equal). 

The ID reference constraints should also satisfies the above rules of OID. Besides, the 

ID reference should also be enforced to satisfy the following validation rules. 

(R4) (Referential constraint) An ID reference must refer to an existing instance; and an 

ID reference should be deleted when the target instance of the reference is deleted; 

particularly, if the ID reference is the OID of object class O, the corresponding 

instance of O should also be deleted. 

(R5) (Consistency) The OID of object class O1 is an ID reference pointing to object class 

O2, when values of some non-ID attributes (except single-valued optional ones) of the 

instance of O2 are changed, the values of the duplicated non-ID attributes (if any) in 

the corresponding instances of O1 should also be changed accordingly. 

Notice that, the above rules about OID and ID references cannot be achieved by other 

works because the key (in DTD/XSD) cannot be used to constrain multi-valued attributes. 

A.3.2 Relationship type constraints 
The relationship instance should conform to the following rule: 

(R6) (Identifying relationship instances, FD and MVD) Given a n-ary relationship 

type R of n object classes O1, …, On, the relationship instance is denoted as 

<obj1, …, objn> where obji is the instance of Oi (1≤i≤n). If two relationship 

instances are the same with respect to the OID value of each participating object 

                                                 
28 If a single-value attribute is optional, we ignore the null value and compared the non-null values. 
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instance, their corresponding relationship attributes (both single-valued6 and 

multi-valued) should be the same (deep-equal).  

We should emphasize that each relationship instance is identified by a unique 

combination of the OIDs of the participating object classes. Particularly, when an object 

instance is deleted, the relationship instances which involve the deleted object instance 

should also be deleted. 

For example, in Figure A.2, if a student whose sid is “g0400023” is deleted, all 

stu_in_course instances with sid “g0400023” below with courses should also be 

deleted (R4); and all grade attributes and tutor instances associated with this 

stu_in_course instance with course should also be deleted (R6). 

The rule R6 is concerned with the data consistency of relationship instances. 

Current XML schemas and data models do not support this validation because they do 

not have the concept of relationship type and relationship instance. Keys are not enough 

because relationship instance may have duplicates. Functional dependencies are not 

enough either because the relationship attribute can be optional and/or multi-valued. So 

far, only ORA-SS can elegantly capture and validate such semantic constraints. 

The discussion in this sub-section is also applicable to identifier dependency 

relationship types. 

A.3.3 Functional dependency (FD) and multi-valued dependency 
(MVD) constraints 
FDs and MVDs in an XML document can be derived from its ORA-SS schema 

diagram. In a schema diagram, there are basically three kinds of FDs and MVDs. 

− “OID determines or multi-determines object attributes” from R3; 

− “OID set determines or multi-determines relationship attributes” from R6; 

− “OIDB determines OIDA” where A and B are object classes, (1) B is the child of A 
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and the child participation constraint of B is 1:1 or (2) B is the parent of A and the 

parent participation constraint of B is 1:1. 

All FDs (and MVDs) in ORA-SS are enforced to satisfy the following rules: 

(R7) (FD) If the left hand side instances of a FD are the same, the right hand side 

instances should also be the same. If the right hand side attribute is optional, those 

non-null values must be the same. 

(R8) (MVD) If the left hand side instances of a MVD are the same, the collections of 

values of the right hand side instance must be the same. 

A.3.4 Participation constraints 
An updated XML data instance can be a sub-tree. For example, an object instance may 

contain its object attribute instances; and a relationship instance often contains a 

combination of its participating object instances, which we denote as the sub-instances of 

the object or relationship instance respectively. 

(R9) (Participation constraints) When an object, relationship or attribute instance is 

inserted or deleted together with its sub-instances, all participation constraints 

should not be violated. We check three kinds of participation constraints: 

(PC1) the participation constraints between the inserted/deleted instance and its 

parent; 

(PC2) the participation constraints among all sub-instances within the 

inserted/deleted instance 

(PC3) the participation constraints among the inserted/deleted instance and other 

instances or instance combinations in all relationship types in which the 

inserted/deleted instance is involved. 

For example, in Figure A.3, when a part (with attributes) is inserted/deleted, we should check 

the participation constraint between part and supplier (PC1), the attributes of the part (PC2) 
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and the participation constraint between project-supplier instance combination and part in 

“jsp” (PC3). 

The participation constraint is also considered in structural validation work. 

However, structural validation based on DTD/XSD schemas can only check the 

parent participation between two instances but no child participation or relationship 

participation constraint is included. 

A.4 Summary 

In this appendix, we have discussed the semantic constraints and validation rules for 

XML updates. We have proposed a set of important semantic constraints with respect 

to the semantic information in ORA-SS schema, which are not mentioned or studied 

in other works. The semantic constraints include relationship types, relationship 

attributes, object IDs and ID references, and semantic dependencies, etc. It is worth to 

note that the semantic dependency indicates the attributes are semantically depend on 

either an object class or a set of object classes participating in a relationship type. We 

have shown that semantic dependencies are crucial to XML updates; and they cannot 

be replaced or represented by functional dependencies or multi-valued dependencies. 

Besides, we have also highlighted the key tactics in semantic validation processing 

such as detecting duplicate instances and finding the first occurrence. 
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Appendix B: Query Examples used in 
Chapter 3 

In this appendix, we list the query examples used in Chapter 3 where queries in 

English, XQuery and GLASS are presented in vis-à-vis. All XQuery expressions are 

written in XQuery 1.0 standard and have been tested on Altova XML Spy 2009™. 

 

Query 1: Extract all supplier elements with their object attributes from the ORA-SS 

schema. 

XQuery expression GLASS query graph 

FOR  $sx IN doc(…)//supplier 
RETURN 
<supplier> 
      {$sx/@sid, $sx/sname, $sx/location} 

supplier

 
</supplier> 

 

Query 2: Extract all supplier elements and all the nested contents below including all 

object classes and attributes. 

XQuery expression GLASS query graph 

FOR  $sx IN doc(…)//supplier 
RETURN 
<supplier> 
      {$sx/@*, $sx/*} 

supplier

*
 

</supplier> 
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Query 3: Extract all supplier elements with attributes that are originally defined as 

XML attribute types. 

XQuery expression GLASS query graph 

FOR  $sx IN doc(…)//supplier 
RETURN 
<supplier> 
      {$sx/@*} 

supplier

@
 

</supplier> 

 

Query 4: Extract all supplier elements with attributes that are originally defined as 

XML element types; if the attribute is a composite one, then extract all 

contents below including both sub-element types and XML attribute types. 

XQuery expression GLASS query graph 

FOR  $sx IN doc(…)//supplier 
RETURN 
<supplier> 
      {$sx/sname, $sx/location} 

supplier

E
 

</supplier> 

 

Query 5: Extract all supplier elements with sid and sname; in the result, reconstruct 

sid as element types and change sname into attribute types of supplier. 

XQuery expression GLASS query graph 

FOR  $sx IN doc(…)//supplier 
RETURN 
<supplier sname=”{$sx/sname}”> 
   <sid>{string($sx/@sid)}</sid> 

supplier

@ E
sname sid

 
</supplier> 
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Query 6 (Projection with predicates, Selection) 

To find all suppliers with a location in Briton (country = ‘Briton’); display 

their sid, sname and the locations in Briton only. 

XQuery expression GLASS query graph 

FOR  $sx IN doc(…)//supplier 
      $ly IN $sx/location 
WHERE  $ly/country = ‘Briton’ 
RETURN 
<supplier sid=”{$sx/@sid}”> 
      {$sx/sname} 
      {$ly} 

suppliersupplier

location

country
='Briton'

location

</supplier> 

 

Query 7. (Join in one document) 

Display the information about the suppliers in pairs (without duplicates) if 

the two suppliers supply the same parts to same projects. 

XQuery Expressions 
FOR  $sx IN doc(…)//supplier 
      $sy IN doc(…)//supplier 
      $px IN $sx/part 
      $py IN $sy/part 
      $jx IN $px/project 
      $jy IN $py/project 
WHERE $sx/@sid < $sy/@sid AND $px/pid = $py/pid AND $jx/jid = $jy/jid 
RETURN 
<supplier_pair> 
    <supplier> 
          {$sx/@sid, $sx/sname, $sx/location} 
    </supplier> 
    <supplier> 
          {$sy/@sid, $sy/sname, $sy/location} 

</supplier> 
</supplier_pair> 

GLASS query graph 

supplier

suppliersupplier

part

project

supplier

supplier_pair

<

SPJ, 3
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Query 8. (Join between two documents) 

Display the project information with its members from “project.xml” if the 

project uses part “P001” in “spj.xml” 

XQuery Expressions 
FOR  $jx IN doc(project.xml)//project 
      $py IN doc(spj.xml)//part 
      $jy IN $py/project 
WHERE $py/pid = ‘P001’ AND $jx/j_id = $jy/jid 
RETURN 
<project> 
      {$jx/@*, $jx/*} 
</project> 

GLASS query graph 

part

project

project

    pid
='P001'

project
"spj.xml" "project.xml"

jid j_id

*

 
 

Query 9. Group project instances under each supplier, display supplier information 

and the count of unique project instances. 

XQuery Expressions 
FOR $sidx IN distinct-values(doc("…")//supplier/@sid) 
LET $jidx := doc("…")//supplier[@sid=$sidx]//project/jid 
FOR $sx IN doc("…")//supplier[@sid=$sidx] 
RETURN 
<supplier> 

{$sx/@sid, $sx/sname, $sx/location} 
<num_of_project>{count(distinct-values($jidx))}</num_of_project> 

</supplier> 

GLASS query graph 

supplier

project

supplier

_group

num_of_project

   CNT
_UNIQUE
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Query 10: Display the part with its pid if the part is supplied by less than 4 different 

suppliers and supplied to more than 6 different projects in total by all 

suppliers. 

XQuery Expressions 
FOR $pidx IN distinct-values(doc("…")//part/pid) 
LET $sx := doc("…")//supplier[part[pid=$pidx]] 
LET $jx :=doc("…")//part[part=$pidx]/project 
WHERE count(distinct-values($sx/@sid)) < 4 AND count(distinct-values($jx/jid)) > 6 
RETURN 

<part>{$pidx}</part> 

GLASS query graph 
part

project

part

_group

CNT_UNIQUE > 6

pid
supplier

_group

CNT_UNIQUE < 4

 

Query 11: Display the part with its pid if the part is supplied by less than 4 different 

suppliers and supplied to more than 6 different projects by one of these 

suppliers. 

XQuery Expressions 
FOR $pidx IN distinct-values(doc("…")//part/pid) 
FOR $sidx IN distinct-values(doc(“…”)//supplier/@sid) 
LET $sx := doc("…")//supplier[part[pid=$pidx]] 
LET $jx :=doc("…")//supplier[@sid=$sidx]/part[part=$pidx]/project 
WHERE count(distinct-values($sx/@sid)) < 4 AND count(distinct-values($jx/jid)) > 6 
RETURN 

<part>{$pidx}</part>

GLASS query graph 

part

project

part

_group

CNT_UNIQUE > 6

pid
supplier

_group

CNT_UNIQUE < 4
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Query 12. Find the part whose pname begins with “b” and is either supplied by less 

than 4 different suppliers or supplied to more than 6 different projects by 

one supplier; display the part with pid and pname. 

XQuery Expressions 
FOR $pidx IN distinct-values(doc("…")//part/pid) 
FOR $pname IN doc(“…”)//part[pid=$pidx]/pname 
FOR $sidx IN distinct-values(doc(“…”)//supplier/@sid) 
LET $sx := doc("…")//supplier[part[pid=$pidx]] 
LET $jx :=doc("…")//supplier[@sid=$sidx]/part[part=$pidx]/project 
WHERE starts-with(string($pname), ‘b’) AND  

(count(distinct-values($sx/@sid)) < 4 OR count(distinct-values($jx/jid)) > 6) 
RETURN 

<part>{$pidx, $pname}</part>

GLASS query graph 

part

project

part

_group

CNT_UNIQUE > 6

supplier

_group

CNT_UNIQUE < 4pname
='b%'

:A: :B:

:C:

CLW

A AND (B OR C);  
 

Query 13: Find the parts that have never been supplied to project “J001” by any 

suppliers. 

XQuery Expressions 
FOR $px IN doc("…")//supplier/part 
LET $s := doc("…")//supplier[part[pid=$px/pid AND project[jid='J001']]] 
WHERE not(exists($s)) 
RETURN 

<part>{$px/pid, $px/pname}</part>

GLASS query graph 
part

project

part

    jid
='J001'

:A:

CLW
NOT EXIST A;
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Query 14: Display all suppliers, 

• if the supplier supplies part “P001”, then display its sid, sname and locations 

• otherwise, display its sid and sname only. 

XQuery Expressions 
FOR $sx IN doc("…")//supplier 
RETURN 

IF (exists($sx/part[pid='P001'])) 
THEN <supplier>{$sx/@sid, $sx/sname, $sx/location}</supplier> 
ELSE <supplier>{$sx/@sid, $sx/sname}</supplier>

GLASS query graph 
supplier

part

supplier

    pid
='P001'

:A:

sid sname location
:$loc:

CLW

IF (A) THEN EXTRACT $loc;

 

 


	Acknowledgement
	Table of Contents
	Summary
	List of Figures
	List of Tables
	1 Introduction
	1.1 The criteria of a good graphical XML query language
	1.2 Research objectives
	1.3 The contribution of this thesis
	1.4 The organization of this thesis

	2 Related Works
	2.1 Graphical languages and GUIs of XML query
	2.1.1 XML-GL and XQBE
	2.1.2 Form-based XML query interfaces
	2.1.3 QURSED and Tree Query Language (TQL)
	2.1.4 Summary of graphical XML query languages and GUIs

	2.2 XML query algebra
	2.2.1 XML Query Algebra
	2.2.2 Tree Algebra for XML (TAX)
	2.2.3 XML View Construction Operators
	2.2.4 Other XML Algebra Works
	2.2.5 Summary of XML query algebra works

	2.3 XML update validation
	2.3.1 Structural validation of XML
	2.3.2 Semantic validation of XML
	2.3.3 Summary of current XML update validation research work

	2.4 The data model: ORA-SS
	2.4.1 An overview of ORA-SS
	2.4.2 The semantics in ORA-SS
	2.4.3 ORA-SS vs. DTD/XSD
	2.4.4 Summary of ORA-SS


	3 GLASS: a Graphical Query Language for Semi-Structured Data
	3.1 GLASS in a nutshell
	3.2 Notations and concepts
	3.2.1 Basic notations and concepts
	3.2.2 Advanced notations and concepts

	3.3 Representing simple XML queries
	3.3.1 Output construction
	3.3.2 Projection and Selection
	3.3.3 Join

	3.4 Representing complex XML queries
	3.4.1 Grouping and aggregation functions
	3.4.2 Logics, quantifiers and negation
	3.4.3 Conditional construction

	3.5 GLASS vs. XML-GL
	3.5.1 The data models and the ideas of language design
	3.5.2 Bindings or links
	3.5.3 Semantics in representation and interpretation
	3.5.4 Graphs and texts

	3.6 The translation from GLASS to SQLX
	3.6.1 SQLX and ORDBMS storage
	3.6.2 Translation algorithm

	3.7 GLASS case tools
	3.8 GLASSU – GLASS with update extension
	3.8.1 Preliminary information about W3C XML update facilities
	3.8.2 The notations for XML updates
	3.8.3 Extension of the update part
	3.8.4 Our graphical XML update expressions

	3.9 Summary

	4 G-algebra: an Algebra of GLASS
	4.1 Motivation and Objectives of G-algebra
	4.2 The collection of trees with relationship types (CTR)
	4.3 G-algebra operators
	4.3.1 Traditional set operators
	4.3.2 Extended Cartesian product
	4.3.3 Merging
	4.3.4 Select
	4.3.5 Projection
	4.3.6 Join
	4.3.7 Swapping
	4.3.8 Grouping and aggregation functions
	4.3.9 Miscellaneous operators

	4.4 Summary

	5 The Formal Semantics of GLASS
	5.1 The translation from GLASS to G-algebra
	5.1.1 The LHS graph and logic expressions in CLW
	5.1.2 The RHS graph and result reconstruction statements in CLW

	5.2 Examples of translation
	5.3 Summary

	6 Toward Algebraic Optimization for GLASS
	6.1 Inference rules in G-algebra
	6.1.0 Preparation
	6.1.1 Inference rules of selection and projection
	6.1.2 Inference rules of join and extended Cartesian product
	6.1.3 Inference rules of swap
	6.1.4 Inference rules of merge

	6.2 The generation of query plans
	6.3 Examples of query optimization
	6.4 Summary

	7 Conclusion and Future Works
	7.1 Summary of the contribution
	7.2 The discussion on future work

	Bibliography
	Appendix A: Semantic Validation for XML Updates based on ORA-SS
	A.1 The semantic constraints derived from ORA-SS
	A.2 Road to semantic validation – the tactics 
	A.3 Semantic validation rules
	A.3.1 Object ID constraints and ID reference constraints
	A.3.2 Relationship type constraints
	A.3.3 Functional dependency (FD) and multi-valued dependency (MVD) constraints
	A.3.4 Participation constraints

	A.4 Summary

	Appendix B: Query Examples used in Chapter 3

