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Summary

The purpose of this thesis is to create a framework for advanced discrete-time controller

analysis and design. We consider three different scenarios: 1) Regulation and Output tracking

of Sampled-Data MIMO Systems, 2) Discrete-Time Systems with Periodic Parameters, and

3) Sampled-Data SISO Systems with Iterative Tasks. Each controller design must achieve the

best possible performance in comparrison to conventional designs and ensure robustness and

ease of implementation.

In the first work we propose a new discrete-time integral sliding mode control (DISMC)

scheme for sampled-data systems. The new control scheme is characterized by a discrete-

time integral switching surface which inherits the desired properties of the continuous-time

integral switching surface, such as full order sliding manifold with eigenvalue assignment, and

elimination of the reaching phase. In particular, comparing with existing discrete-time sliding

mode control, the new scheme is able to achieve more precise tracking performance. It will be

shown in this work that, the new control scheme achieves O(T 2) steady-state error for state

regulation and reference tracking while preventing the generation of overlarge control actions.

In the second work a periodic adaptive control approach is proposed for a class of nonlinear

discrete-time systems with time-varying parametric uncertainties which are periodic, and the
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only prior knowledge is the periodicity. The new adaptive controller updates the parameters

and the control signal periodically in a pointwise manner over one entire period, in the sequel

achieves the asymptotic tracking convergence. The result is further extended to a scenario

with mixed time-varying and time-invariant parameters, and a hybrid classical and periodic

adaptation law is proposed to handle the scenario more appropriately. Extension of the

periodic adaptation to systems with unknown input gain, higher order dynamics, and tracking

problems are also discussed.

Finally the third work aims to present a framework for the stability analysis and design

of Iterative Learning Control (ILC) for SISO sampled-data systems. Analysis is presented in

both the time-domain and the frequency domain. The insufficient stability conditions in the

time-domain are analyzed and the large overshooting phenomenon is explored. Monotonic

convergence criteria are derived in both the time-domain and the frequency domain. Four

different cases of learning function L are considered namely the P-type, D-type, D2-type and

general filter. Criteria for the selection of each type are presented. In addition a relationship

is shown between the sampling time selection and the ILC convergence. Theoretical work

concludes with a guideline for the design of the ILC. Simulation results are shown to support

the theoretical analysis in the time-domain and the frequency-domain. Further, a successful

experimental implementation is shown that is based on the frequency-domain design tools.
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Chapter 1

Introduction

1.1 Background

In recent years there has been a rapid increase in the use of digital controllers in control

systems. Digital controls are used for achieving optimal performance, e.g., in the form of

maximum productivity, maximum profit, minimum cost, or minimum energy use, [1].

Most recently, the application of computer control has made possible ‘intelligent’ motion

in industrial robots, the optimization of fuel economy in automobiles, and the refinements in

the operation of household appliances and machines such as microwaves and sewing machines,

among others. Decision-making capability and flexibility in the control program are major

advantages of digital control systems, [2].

The current trend toward digital rather than analog control of dynamic systems is mainly

due to the availability of low-cost digital computers and the advantages found in working with

digital signals rather than continuous-time signals, [2].

It is well known that most, if not all, engineering systems are continuous in nature. Owing
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to the capacity of digital computers to process discrete data, the continuous-time systems

are controlled using sampled observations taken at discrete-time instants. Thus, the resulting

control systems are a hybrid, consisting of interacting discrete and continuous components as

depicted in Fig.1.1. These hybrid systems, in which the system to be controlled evolves in

continuous-time and the controller evolves in dicrete-time, are called sampled-data systems,

[3].

Figure 1.1: General sampled-data arrangement

The significant feature of sampled-data system design that distinguishes it from standard

techniques for control system design is that it must contend with plant models and control

laws lying in different domains. There are three major methodologies for design and analysis

of sampled-data systems which are pictorially represented in Fig.1.2 where G is a continuous-

time process and Kd is a discrete-time control law. All three methods begin with begin with

the principle continuous-time model G and aim to design the discrete-time controller Kd and

analyze its performance, [3].

The two well known approaches follow the paths around the perimeter of the diagram.
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Figure 1.2: Design approaches

The first is to conduct all analysis and design in continuous-time domain using a system

that is believed to be a close approximation to the sampled-data system. This is accom-

plished by associating every continuous-time controller K with a discrete-time approximation

Kd via discretization method; synthesis and analysis of the controller are then performed in

continuous-time, with the underlying assumption that the closed-loop system behavior ob-

tained controller K closely reflects that achieved with the sampled-data implementation Kd.

Thus, this method does not directly address the issue of implementation in the design stage.

The second approach starts instead by discretizing the continuous-time systen G, giving a

discrete-time approximation Gd, thus, ignoring intersample behavior. Then the controller Kd

is designed directly in discrete-time using Gd, with the belief that the performance of this

purely discrete-time system approximates that of the sampled-data system. The third ap-

proach has attracted conisderable research activity. In this approach the system G and the

controller Kd interconnection is treated directly and exaclty. In our work we will as much as

possible focus on this approach while in some cases use the second approach in order to more
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simply explain our proposed ideas, [3].

In our first work we focus on sliding mode control for sampled-data systems. Sliding mode

control is well known in continuous-time control where it is characterized by high frequency

switching which gives sliding mode control its very good robustness properties. This, how-

ever, is hard to achieve in sampled-data systems due to hardware limitations such as processor

speed, A/D and D/A conversion delays, etc. The use of discontinuous control under these

circumstances would lead to the well known chattering phenomenon around the sliding man-

ifold (Fig.1.3), leading to a boundary of order O(T ), [4]. In order to avoid this problem, in

[4] and [5] a discrete-time control equivalent in the prescribed boundary is proposed, whose

size is defined by the restriction to the control variables. This approaches results in motion

within an O(T 2) boundary around the sliding manifold. In our work we propose a modified

sliding manifold that achieves better tracking performance to that in [4] and [5].

Figure 1.3: Chattering phenomenon with switching sliding mode control

In our second work we propose a new method for discrete-time adaptive control. In [6] the

author asks the following question: ”Within the current framework of adaptive control, can we

deal with time-varying parametric uncertainties?” This is a challenging problem to the control

community. Adaptive algorithms have been reported for systems with slow time-varying
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parametric uncertainties [7]-[9], etc., with arbitrarily rapid time-varying parameters in a known

compact set [10], and with rapid time-varying parameters which converge asymptotically to

constants [11]. However, as indicated in [11], no adaptive control algorithms developed hitherto

can solve unknown parameters with arbitrarily fast and nonvanishing variations. Considering

the fact that, as a function of time, the classes of timevarying parameters are in essence

infinite, it would be extremely difficult to find a general solution to such a broad control

problem. A more realistic way is first to classify the time-varying parametric uncertainties

into subclasses, and then look for an appropriate adaptive control approach for each subclass.

Instead of classifying parameters into slow vs rapid time-varying, in this work we classify

parameters into periodic vs nonperiodic ones. When the periodicity of system parameters

is known a priori, a new adaptive controller with periodic updating can be constructed by

means of a pointwise integral mechanism. This method is proposed in [6] for continuous-time

systems. As a natural extension to this we propose a similar methodology for discrete-time

systems.

Finally in our third work we focus on iterative learning control for sampled-data systems.

Iterative learning control (ILC) is based on the idea that the performance of a system that

executes the same task multiple times can be improved by learning from previous executions

(trials, iterations, passes). When letting a machine do the same task repeatedly it is, at least

from an engineering point of view, very sound to use knowledge from previous iterations of

the same task to try to reduce the error next time the task is performed. The first academic

contribution to what today is called ILC appears to be a paper by Uchiyama [12]. Since it was
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published in Japanese only, the ideas did not become widely spread. What is a bit remarkable,

however, is that an application for a US patent on ‘Learning control of actuators in control

systems [13] was already done in 1967 and that it was accepted as a patent in 1971. The idea

in the patent is to store a ‘command signal in a computer memory and iteratively update

this command signal using the error between the actual response and the desired response of

the actuator. This is clearly an implementation of ILC, although the actual ILC updating

equation was not explicitly formulated in the patent. From an academic perspective it was

not until 1984 that ILC started to become an active research area. In this work we present a

framework for linear iterative control, which enables several results from linear control theory

to be applied.

One may ask the reason why these specific methods are discussed. While the scope of

this work is very wide, it was decided to select methods that as much as possible completed

a whole picture. For example, the SMC approach is selected for non-parametric systems

with known parameters and unknown disturbance while the adaptive control is suitable for

parametric systems with unknown parameters while the ILC is an add-on to any controller,

either classical or not, provided that the task is repetitive. Thus, all the topics discussed cover

as wide an area as possible giving a control engineer as much options as possible for different

control problems.
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1.2 Contributions

The contributions of this thesis can be summarized as follows:

(1). Discrete-Time Integral Sliding Mode Control

In this work we propose a new discrete-time integral sliding mode control (DISMC) scheme

for sampled-data systems. The new control scheme is characterized by a discrete-time integral

switching surface which inherits the desired properties of the continuous-time integral switch-

ing surface, such as full order sliding manifold with eigenvalue assignment, and elimination of

the reaching phase. In particular, comparing with existing discrete-time sliding mode control,

the new scheme is able to achieve more precise tracking performance. It will be shown in

this work that, the new control scheme achieves O(T 2) steady-state error for state regulation

and reference tracking with the widely adopted delay-based disturbance estimation. Another

desirable feature is, the proposed DISMC prevents the generation of overlarge control actions,

which are usually inevitable due to the deadbeat poles of a reduced order sliding manifold

designed for sampled-data systems. Both the theoretical analysis and illustrative example

demonstrate the validity of the proposed scheme.

(2). A Discrete-Time Periodic Adaptive Control Approach for Time-Varying Pa-

rameters with Known Periodicity

In this work a periodic adaptive control approach is proposed for a class of nonlinear discrete-

time systems with time-varying parametric uncertainties which are periodic, and the only

prior knowledge is the periodicity. The new adaptive controller updates the parameters and
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the control signal periodically in a pointwise manner over one entire period, in the sequel

achieves the asymptotic tracking convergence. The result is further extended to a scenario

with mixed time-varying and time-invariant parameters, and a hybrid classical and periodic

adaptation law is proposed to handle the scenario more appropriately. Extension of the pe-

riodic adaptation to systems with unknown input gain, higher order dynamics, and tracking

problems are also discussed.

(3). Iterative Learning Control for Sampled-Data Systems

In this work the convergence properties of iterative learning control (ILC) algorithms are

considered. The analysis is carried out in a framework using linear iterative systems, which

enables several results from the theory of linear systems to be applied. This makes it possible

to analyse both first-order and high-order ILC algorithms in both the time and frequency

domains. The time and frequency domain results can also be tied together in a clear way.

Illustrative examples are presented to support the analytical results.

1.3 Organization of the Thesis

The thesis is organized as follows.

In Chapter 2, we propose Discrete-Time Integral Sliding Mode Control for Sampled-Data

systems. Section 2.2 gives the problem formulation and revisits the existing SMC properties

in sampled-data systems. Section 2.3 presents the appropriate discrete-time integral sliding

manifold designs for state regulation and sections 2.4, 2.5 and 2.6 present appropriate designs
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for output tracking. Section 2.7 shows some illustrative examples and section 2.8 gives the

conclusions.

In Chapter 3, we present a Discrete-Time Periodic Adaptive Control Approach for Time-

Varying Parameters with Known Periodicity. In Section 3.2, we present the new periodic

adaptive control approach and give complete analysis. To clearly demonstrate the underlying

idea and method, we consided the simplest nonlinear dynamics with a single time-varying

parameter. In Section 3.3, we extend the new approach to more general cases. The first ex-

tension considers multiple time-varying parameters and time-varying gain of the system input.

The second extension consdiers a mixture of time-varying and time-invariant parameters, and

a new hybrid adaptive control scheme is developed. The third extension considers a general

tracking control problem. The fourth extension considers a higher order system in canonical

form. In Section 3.4, an illustrative example is provided.

In Chapter 4, we present Iterative Learning Control for Sampled-Data systems. In Section

4.3, we present the time domain analysis of different ILC. In Section 4.4, we analyze the same

ILC laws in the frequency domain and highlight the connection between the time domain

and frequency domain results. In sections 4.5 and 4.6, illustrative examples are provided to

support the results in each domain.

In Chapter 5, we present a practical application for the discussed control laws. The aim is to

design control laws that would achieve high-precision motion of a piezo-motor driven linear

stage. In section 5.2 we describe the model of the piezo-motor. In section 5.3 we present the
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ISM design and in section 5.4 we show the ILC design.

Finally, conclusions and recommendation for future work will be discussed in Chapter 5.

Throughout this report, ‖ · ‖ denotes the Euclidean Norm. For notational convenience, in

mathematical expressions fk represents f(k).
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Chapter 2

Sliding Mode Control for Linear

MIMO Sampled-Data Systems with

Disturbance

2.1 Introduction

Research in discrete-time control has been intensified in recent years. A primary reason is that

most control strategies nowadays are implemented in discrete-time. This also necessitated a

rework in the sliding mode control strategy for sampled-data systems, [4],[5]. In such systems,

the switching frequency in control variables is limited by T−1; where T is the sampling period.

This has led researchers to approach discrete-time sliding mode control from two directions.

The first is the emulation that focuses on how to map continuous-time sliding mode control

to discrete-time, and the switching term can be preserved, [15],[16]. The second is based on

the equivalent control design and disturbance observer, [4],[5]. In the former, although high-

frequency switching is theoretically desirable from the robustness point of view, it is usually

hard to achieve in practice because of physical constraints, such as processor computational
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speed, A/D and D/A conversion delays, actuator bandwidth, etc. The use of a discontinuous

control law in a sampled-data system will bring about chattering phenomenon in the vicinity

of the sliding manifold, hence lead to a boundary layer with thickness O(T ), [4].

The effort to eliminate the chattering has been paid over 30 years. In continuous-time

SMC, smoothing schemes such as boundary layer (saturator) are widely used, which in fact

results in a continuous nonlinear feedback instead of switching control. Nevertheless, it is

widely accepted by the community that this class of controllers can still be regarded as SMC.

Similarly, in discrete-time SMC, by introducing a continuous control law, chattering can be

eliminated. In such circumstance, the central issue is to guarantee the precision bound or the

smallness of the error.

In [5] a discrete-time equivalent control was proposed. This approach results in the motion

in O(T 2) vicinity of the sliding manifold. The main difficulty in the implementation of this

control law is that we need to know the disturbances for calculating the equivalent control.

Lack of such information leads to an O(T ) error boundary.

The control proposed in [4] drives the sliding mode to O(T 2) in one-step owing to the

incorporation of deadbeat poles in the closed-loop system. State regulation was not considered

in [4]. In fact, as far as the state regulation is concerned, the same SMC design will produce

an accuracy in O(T ) instead of O(T 2) boundary. Moreover, the SMC with deadbeat poles

requires large control efforts that might be undesirable in practice. Introducing saturation in

the control input endangers the global stability or accuracy of the closed-loop system.

In this Chapter, aiming at improving control performance for sampled-data systems, a
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discrete-time integral sliding manifold (ISM) is proposed. With the full control of the sys-

tem closed-loop poles and the elimination of the reaching phase, like the continuous-time

integral sliding mode control [17]-[19], the closed-loop system can achieve the desired control

performance while avoiding the generation of overly large control inputs. It is worth highlight-

ing that the discrete-time ISM control does not only drive the sliding mode into the O(T 2)

boundary, but also achieve the O(T 2) boundary for state regulation.

After focusing on state feedback based regulation, we consider the situation where output

tracking and output feedback is required. Based on output feedback two approaches arose

– design based on obervers to construct the missing states, [21, 22], or design based on the

output measurement only [23, 24]. Recently integral sliding-mode control has been developed

to improve controller design and consequently the control performance, [17]-[19], which use

full state information. The first objective of this work is to extend ISMC to output-tracking

problems. We present three ISMC design approaches associated with state feedback, output

feedback, and output feedback with state estimation, respectively.

In the presence of exo-disturbances, we introduce disturbance observers which can effec-

tively reduce the final tracking error by one digital scale. While an one-step delayed observer

can be directly constructed for state based ISMC, a dynamic observer is needed for output

based ISMC due to the absence of full state information. The second objective of this work

is to develop an integral sliding-mode observer (ISMO), which can quickly and effectively es-

timate the disturbance and avoid the undesirable deadbeat response inherent in conventional

sliding-mode based designs for sampled-data systems; in the sequel, avoid the generation of
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overly large esitmation signals in the controller.

Most of the existing works on SMC focused on regulation problems or set-point con-

trol problems instead of arbitrary reference tracking, [17]-[27]. Arbitrary reference tracking

remains a difficult issue in SMC, and becomes more challenging when only outputs are ac-

cessible. On the other hand, arbitrary trajectory-tracking problems are widely encountered

in control practice, for example servo in motion control systems, temperature profile tracking

in process control systems, target tracking in missile control, etc. The third objective of this

work is to disclose the relations among minimum-phase conditions, altenative reference mod-

els, ISMC approaches, and tracking error bounds. As a result, a guideline is provided to aid

in the selection of ISMC designs in terms of the control performance specifications and plant

model.

When the system states are accessible, the disturbance can be directly esitmated using

state and control signals delayed by one sampling period. The resulting output ISMC can

perform arbitrary trajectory tracking with O(T 2) accuracy. When only outputs are accessible,

the delayed disturbance estimation cannot be performed. in this Chapter we adopt a dynamic

disturbance observer designed with the integral sliding-mode for the second and third output

ISMC approaches. With the second ISMC approach that uses output feedback only, arbitrary

trajecory tracking is difficult to perform. Two reference models associated with the arbitrary

reference are introduced so as to provide the state information of reference models that is

required in the integal sliding-mode. We demonstrate that two reference models can be se-

lected according different minimum-phase conditions associated with the plant, in the sequel
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an extra degree of freedom in ISMC design is acquired. The second output ISMC approach

achieves O(T ) accuracy.

The third ISMC approach uses state observer, hence the integral sliding surface can be

constructed using estimated states in a way analogous to the state feedback based ISMC. As a

result, arbitrary trajectory tracking can be directly performed. This ISMC approach achieves

O(T ) accuracy in general, and O(T 2) when the original contiuous-time plant has a relative

degree above 1.

In this Chapter, eigenvalue assignment of the full-order sliding mode, as well as the closed-

loop dynamics in the sliding motion, will be discussed.

2.2 Problem Formulation

2.2.1 Sampled-Data System

Consider the following continuous-time system with a nominal linear time invariant model

and matched disturbance

ẋ(t) = Ax(t) + B(u(t) + f(t))

y(t) = Cx(t)
(2.1)

where the state x ∈ <n, the ouput y ∈ <m, the control u ∈ <m, and the disturbance f ∈ <m

is assumed smooth and bounded. The state matrix is A ∈ <n×n and the control matrix is

B ∈ <n×m and the output matrix is C ∈ <m×n. The discretized counterpart of (5.1) can be

given by

xk+1 = Φxk + Γuk + dk, x0 = x(0)

yk = Cxk

(2.2)
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where

Φ = eAT , Γ =
∫ T

0
eAτdτB

dk =
∫ T

0
eAτBf((k + 1)T − τ )dτ,

and T is the sampling period. Here the disturbance dk represents the influence accumulated

from kT to (k + 1)T , in the sequel it shall directly link to xk+1 = x((k + 1)T ). From the

definition of Γ it can be shown that

Γ = BT +
1

2!
ABT 2 + · · · = BT + MT 2 + O(T 3) ⇒ BT = Γ − MT 2 + O(T 3) (2.3)

where M is a constant matrix because T is fixed.

The control objective is to design a discrete-time integral sliding manifold and a discrete-

time SMC law for the sampled-data system (2.2), hence acheive as precisely as possible state

regulation. Meanwhile the closed-loop dynamics of the sampled-data system has all its closed-

loop poles assigned to desired locations.

Remark 1 The smoothness assumption made on the disturbance is to ensure that the distur-

bance bandwidth is sufficiently lower than the controller bandwidth, or the ignorance of high

frequency components does not significantly affect the control performance. Indeed, if a distur-

bance has frequencies nearby or higher than the Nyquist frequency, for instance a non-smooth

disturbance, a discrete-time SMC will not be able to handle it.

In order to proceed further, the following definition is necessary:

Definition: The magnitude of a variable v is said to be O(T r) if and only if
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There is a C > 0, such that for any sufficiently small T the following inequality holds

|v| ≤ CT r

where r is an integer. Denote O(T 0) = O(1).

Remark 2 Note that O(T r) can be a scalar function or a vector valued function.

Associated with the above definition if there exists two variables v1 and v2 such that v1 ∈ O(T r)

and v2 ∈ O(T r+1) then v1 � v2 and, therefore, the following relations hold

O(T r+1) + O(T r) = O(T r) ∀r ∈ Z

O(T r) · O(1) = O(T r) ∀r ∈ Z

O(T r) · O(T−s) = O(T r−s) ∀r, s ∈ Z

where Z is the set of integers.

Based on (2.3) and the Definition, the magnitude of Γ is O(T ).

Note that, as a consequence of sampling, the disturbance originally matched in continuous-

time will contain mismatched components in the sampled-data system. This is summarized

in the following lemma.

Lemma 1 If the disturbance f(t) in (5.1) is bounded and smooth, then

dk =
∫ T

0
eAτBf((k + 1)T − τ )dτ = Γfk +

1

2
ΓvkT + O(T 3) (2.4)

where vk = v(kT ), v(t) = d
dt
f(t), dk − dk−1 ∈ O(T 2), and dk − 2dk−1 + dk−2 ∈ O(T 3).

Proof: See appendix.
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Note that the magnitude of the mismatched part in the disturbance dk is of the order

O(T 3)

2.2.2 Discrete-Time Sliding Mode Control Revisited

Consider the well established discrete-time sliding-surface [4]-[5] shown below

σk = Dxk (2.5)

where σ ∈ <m and D is a constant matrix of rank m. The objective is to steer the states

towards and force them to stay on the sliding manifold σk = 0 at every sampling instant. The

control accuracy of this class of sampled-data SMC is given by the following lemma.

Lemma 2 With σk = Dxk and equivalent control based on a disturbance estimate

d̂k = xk − Φxk−1 − Γuk−1,

then there exists a matrix D such that the control accuracy of the closed-loop system is

lim
k→∞

‖xk‖ ≤ O(T ).

Proof: Discrete-time equivalent control is defined by solving σk+1 = 0, [4]. This leads

to

ueq
k = −(DΓ)−1D(Φxk + dk) (2.6)

with D selected such that the closed-loop system achieves desired performance and DΓ is

invertible, [20]. Under practical considerations, the control cannot be implemented in the same
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form as in (2.22) because of the lack of prior knowledge regarding the discretized disturbance

dk. However, with some continuity assumptions on the disturbance, dk can be estimated by

its previous value dk−1, [4]. The substitution of dk by dk−1 will at most result in an error of

O(T 2). With reasonably small sampling interval as in motion control or mechatronics, such a

substitution will be effective. Let

d̂k = dk−1 = xk −Φxk−1 − Γuk−1 (2.7)

where d̂k is the estimate of dk. Thus, analogous to the equivalent control law (2.22), the

practical control law is

uk = −(DΓ)−1D(Φxk + dk−1). (2.8)

Substituting the sampled-data dynamics (2.2), applying the above control law, and using the

conclusions in Lemma 1, yield

σk+1 = D(Φxk + Γuk + dk) = D(dk − dk−1) = O(T 2) (2.9)

which is the result shown in [4]. The closed-loop dynamics is

xk+1 =
(
Φ − Γ(DΓ)−1DΦ

)
xk +

(
I − Γ(DΓ)−1D

)
dk−1 + dk − dk−1 (2.10)

where the matrix (Φ − Γ(DΓ)−1DΦ) has m zero eigenvalues and n − m eigenvalues to be

assigned inside the unit disk in the complex z-plane. It is possible to simplify (2.10) further

to

xk+1 =
(
Φ − Γ(DΓ)−1DΦ

)
xk + δk (2.11)
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where δk = (I − Γ(DΓ)−1D) dk−1 + dk − dk−1. From Lemma 1,

δk = dk − dk−1 + (I − Γ(DΓ)−1D)
(
Γfk−1 +

1

2
Γvk−1T + O(T 3)

)

= O(T 2) + (I − Γ(DΓ)−1D)O(T 3) = O(T 2). (2.12)

In the above derivation, we use the relations (I − Γ(DΓ)−1D)Γ = 0, ‖I − Γ(DΓ)−1D‖ ≤ 1

and O(1) ·O(T 3) = O(T 3). Note that since m eigenvalues of (Φ−Γ(DΓ)−1DΦ) are deadbeat,

it can be written as

(Φ − Γ(DΓ)−1DΦ) = PJP−1 (2.13)

where P is a transformation matrix and J is the Jordan matrix of the eigenvalues of (Φ −

Γ(DΓ)−1DΦ). The matrix J can be written as

J =




J1 0

0 J2


 (2.14)

where J1 ∈ <m×m and J2 ∈ <(n−m)×(n−m) are given by

J1 =




0 Im−1

0 0


 , J2 =




λm+1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 λn




where λj are the eigenvalues of (Φ − Γ(DΓ)−1DΦ). For simplicity it is assumed that the

non-zero eigenvalues are designed to be distinct and that their continuous time counterparts

are of order O(1). Then the solution of (2.11) is

xk = PJkP−1x(0) + P

(
k−1∑

i=0

J iP−1δk−i−1

)
. (2.15)
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Rewritting (2.15) as

xk = PJkP−1x(0) + P




k−1∑

i=0




J i
1 0

0 0


P−1δk−i−1


 + P




k−1∑

i=0




0 0

0 J i
2


P−1δk−i−1


 , (2.16)

it is easy to verify that J i
1 = 0 for i ≥ m. Thus, (2.16) becomes (for k ≥ m)

xk = PJkP−1x(0) + P




m∑

i=0




J i
1 0

0 0


P−1δk−i−1


+ P




k−1∑

i=0




0 0

0 J i
2


P−1δk−i−1


 . (2.17)

Notice ‖J1‖ = 1 and ‖J2‖ = λmax = max{λm+1, · · · , λn} (‖ · ‖ indicates ‖ · ‖2). Hence, from

(2.17), we have

lim
k→∞

‖xk‖ ≤ ‖P‖




m∑

i=0

∥∥∥∥∥∥∥




J1 0

0 0




∥∥∥∥∥∥∥

i

‖P−1‖‖δk−i−1‖ +
k−1∑

i=0

∥∥∥∥∥∥∥




0 0

0 J2




∥∥∥∥∥∥∥

i

‖P−1‖‖δk−i−1‖


 .(2.18)

Since λmax < 1 for a stable system, we obtain

∞∑

i=0

‖J2‖i =
1

1 − λmax
,

m∑

i=0

‖J1‖i = m.

Using Tustin’s approximation

λmax =
2 + Tp

2 − Tp
⇒ 1

1 − λmax
=

1

1 − 2+Tp
2−Tp

=
2 − Tp

−2Tp
≤ O(T−1) (2.19)

where p ≥ O(1) is the corresponding pole in continuous-time. Assuming m ∈ O(1), and using

the fact ‖P−1‖ = ‖P‖−1, it can be derived from (2.18) that

lim
k→∞

‖xk‖ ≤ O(1) · O(T 2) + O(T−1) · O(T 2) = O(T ). (2.20)

Remark 3 Under practical considerations, it is generally advisable to select the pole p large

enough such that the system has a fast enough response. With the selection of a small sampling
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time T , a pole of order O(T ) would lead to an undesirably slow repsonse. Thus, it makes sense

to select a pole of order O(1) or larger.

Remark 4 The SMC in [4] guarantees that the sliding variable σ is of order O(T 2), but cannot

guarantee the same order of magnitude of steady-state errors for the system state variables.

In the next section, we show that an integral sliding mode design can achieve a more precise

state regulation.

2.2.3 Output Tracking

Consider the discrete-time sliding manifold given below [4]-[5]

σk = Do(rk − yk) (2.21)

where Do is a constant matrix of rank m and r ∈ <m. The objective is to force the output

y to track the reference r. The property for this class of sampled-data SMC is given by the

following lemma.

Lemma 3 For σk = Do(rk − yk) and control based on a disturbance estimate

d̂k = xk − Φxk−1 − Γuk−1,

the closed-loop system has the following properties

σk+1 ∈ O(T 2)

rk+1 − yk+1 ∈ O(T 2)
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Proof: Similar to the regulation problem the discrete-time equivalent control is defined

by solving σk+1 = 0, [4]. This leads to

ueq
k = (DoCΓ)−1Do(rk+1 − CΦxk − Cdk) (2.22)

with Do selected such that DoCΓ is invertible. As in the regulation case, the control cannot

be implemented in the same form as in (2.22) because of the lack of knowledge of dk which

requires a priori knowledge of the disturbance f(t). Thus, the delayed disturbance dk−1 will

be used

d̂k = dk−1 = xk −Φxk−1 − Γuk−1 (2.23)

Thus, the control becomes

uk = (DoCΓ)−1Do(rk+1 − CΦxk − Cdk−1) (2.24)

The closed-loop system under the control given by (2.24) is

xk+1 =
[
Φ − Γ (DoCΓ)−1 DoCΦ

]
xk + Γ(DoCΓ)−1Dork+1 + dk − Γ (DoCΓ)−1 DoCdk−1.(2.25)

Note that (DoCΓ)−1Do = (CΓ)−1. Simplifying (2.25) further gives

xk+1 =
[
Φ − Γ (CΓ)−1 CΦ

]
xk + Γ(CΓ)−1rk+1 + dk − Γ (CΓ)−1 Cdk−1. (2.26)

where the eigenvalues of the matrix [Φ−Γ(CΓ)−1CΦ] are the transmission zeros of the system,

[14]. Postmultiplication of (2.26) with C results in,

yk+1 = Cxk+1 = rk+1 + C(dk − dk−1) = rk+1 + O(T 2). (2.27)

23



Substitution of (2.27) into the forward expression of (2.21) results in

σk+1 = Do(rk+1 − yk+1) ∈ O(T 2). (2.28)

The above result shows that with the control given by (2.24) the output is stable and

that the tracking error converges to a bound of order O(T 2). However, the stability of the

whole system is gauranteed only if the transmission zeros are stable. Looking back at (2.26),

it is very simple to show that [Φ − Γ(CΓ)−1CΦ] has m eigenvalues in the origin. Note that

those m deadbeat eigenvalues correspond to the output deadbeat response. If the matrices

are partitioned as shown

Φ =




Φ11 Φ12

Φ21 Φ22




C =
[

C1 C2

]

Γ =




Γ1

Γ2




where (Φ11, C1,Γ1) ∈ <m×m, (Φ12, C2) ∈ <m×n−m, (Φ21,Γ2) ∈ <n−m×m and Φ22 ∈ <n−m×n−m .

The eigenvalues of [Φ− Γ(CΓ)−1CΦ] can be found from

det[λIn − (Φ − Γ(CΓ)−1CΦ)] =

det




λIm − Φ11 + Γ1(CΓ)−1C




Φ11

Φ21


 −Φ12 + Γ1(CΓ)−1C




Φ12

Φ22




−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m −Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0 (2.29)
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If the top row is premultiplied with C1 and the bottom row premultiplied by C2 and the results

summed and used as the new top row, the following is obtained

det




λC1 λC2

−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m − Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0 (2.30)

This can be further simplified to

λm det




C1 C2

−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m − Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0 (2.31)

The above result shows that there are m eigenvalues at the origin.

Remark 5 The conventional method guarantees that the sliding surface is of order O(T 2)

and deadbeat tracking error of order O(T 2). However, deadbeat response is not practical as it

requires large control effort and the addition of input saturation would sacrifice global stability.

2.3 State Regulation with ISM

Consider the new discrete-time integral sliding manifold defined below

σk = Dxk − Dx0 + εk

εk = εk−1 + Exk−1

(2.32)

where σ ∈ <m, ε ∈ <m, and matrices D and E are constant and of rank m. The term Dx0 is

used to eliminate the reaching phase. (2.32) is the discrete-time counterpart of the following

sliding manifold, [18]

σ(t) = Dx(t) − Dx(0) +
∫ t

0
Ex(τ )dτ = 0. (2.33)
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Theorem 1 Assume the pair (Φ,Γ) in (2.2) is controllable. There exists a matrix K such

that the eigenvalues of Φ−ΓK are distinct and within the unit circle. Choose the control law

uk = (DΓ)−1Dx(0) − (DΓ)−1
(
(DΦ + E)xk + Dd̂k + εk

)
(2.34)

where DΓ is invertible,

E = −D (Φ − I − ΓK) (2.35)

and d̂k is the disturbance compensation (2.57). Then the closed-loop dynamics is

xk+1 = (Φ − ΓK)xk + ζk (2.36)

with ζk ∈ <n is O(T 3), and

lim
k→∞

‖xk‖ ≤ O(T 2).

Proof: Consider a forward expression of (2.32)

σk+1 = Dxk+1 − Dx(0) + εk+1

εk+1 = εk + Exk

(2.37)

Substituting εk+1 and (2.2) into the expression of the sliding manifold in (2.37) leads to

σk+1 = (DΦ + E)xk + D (Γuk + dk) + εk − Dx(0). (2.38)

The equivalent control is found by solving for σk+1 = 0

ueq
k = (DΓ)−1Dx(0) − (DΓ)−1 ((DΦ + E)xk + Ddk + εk) . (2.39)

Similar to the classical case with control given by (2.22), implementation of (2.39) would

require a priori knowledge of the disturbance dk. By replacing the disturbance in (2.39) with
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its estimate d̂k, which is defined in (2.57), the practical control law is

uk = (DΓ)−1Dx(0) − (DΓ)−1
(
(DΦ + E)xk + Dd̂k + εk

)
(2.40)

Substitution of uk defined by (2.40) into (2.2) leads to the closed-loop equation in the sliding

mode

xk+1 = [Φ−Γ(DΓ)−1(DΦ+E)]xk −Γ(DΓ)−1εk +Γ(DΓ)−1Dx(0)+dk −Γ(DΓ)−1Dd̂k. (2.41)

Let us derive the sliding dynamics. Rewriting (2.37)

σk+1 = Dxk+1 + Exk − Dx(0) + εk. (2.42)

Substituting (2.41) into (2.42) leads to

σk+1 = Ddk −Dd̂k = Ddk −Ddk−1 ∈ O(T 2), (2.43)

that is, the introduction of ISMC leads to the same sliding dynamics as in [4].

Next, solving εk in (2.32) in terms of xk and σk

εk = σk − Dxk + Dx(0), (2.44)

and substituting it into (2.41), the closed-loop dynamics becomes

xk+1 =
[
Φ − Γ(DΓ)−1(D(Φ − I) + E)

]
xk − Γ(DΓ)−1σk + dk − Γ(DΓ)−1Dd̂k. (2.45)

In (2.45), σk can be substituted by σk = Ddk−1−Ddk−2 as can be inferred from (2.43). Also,

under (2.35), D(Φ−I)+E = DΓK. Therefore, Φ−Γ(DΓ)−1(D(Φ−I)+E) = Φ−ΓK. Since

the pair (Φ,Γ) is controllable, there exists a matrix K such that eigenvalues of Φ−ΓK can be
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placed anywhere inside the unit disk. Note that, the selection of matrix D is arbitrary as long

as it guarantees the invertibility of DΓ while matrix E, computed using (2.35), guarantees

the desired closed-loop performance. Thus, we have

xk+1 = (Φ − ΓK) xk + dk − Γ(DΓ)−1Ddk−1 − Γ(DΓ)−1D(dk−1 − dk−2). (2.46)

Note that in (2.46), the disturbance estimate d̂k has been replaced by dk−1. Further simplifi-

cation of (2.46) leads to

xk+1 = (Φ − ΓK)xk + ζk (2.47)

where

ζk = dk − 2Γ(DΓ)−1Ddk−1 + Γ(DΓ)−1Ddk−2. (2.48)

The magnitude of ζk can be evaluated as below. Adding and substracting 2dk−1 and dk−2

from the right hand side of (2.48) yield

ζk = (dk − 2dk−1 + dk−2) + (I − Γ(DΓ)−1D)(2dk−1 − dk−2). (2.49)

In Lemma 1, it has been shown that (dk − 2dk−1 + dk−2) ∈ O(T 3). On the other hand, from

(2.4) we have

(I − Γ(DΓ)−1D)(2dk−1 − dk−2)

= (I − Γ(DΓ)−1D)
(
Γ(2fk−1 − fk−2) +

T

2
Γ(2vk−1 − vk−2) + O(T 3)

)

Note that (I − Γ(DΓ)−1D)Γ = 0, thus

(I − Γ(DΓ)−1D)
(
Γ(2fk−1 − fk−2) +

T

2
Γ(2vk−1 − vk−2)

)
= 0.
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Furthermore, ‖(I − Γ(DΓ)−1D)‖ ≤ 1, thus (I − Γ(DΓ)−1D)O(T 3) remains O(T 3). This

concludes that

ζk ∈ O(T 3).

Comparing (2.47) with (2.11), the difference is that δk ∈ O(T 2) whereas ζk ∈ O(T 3).

Further, by doing a similarity decomposition for dynamics of (2.47), only the J2 matrix of

dimension n exists. Thus the derivation procedure shown in (2.11)-(2.20) holds for (2.47), and

the solution is

xk = (Φ − ΓK)kx(0) +
k−1∑

i=0

(Φ − ΓK)iζk−i−1. (2.50)

Assuming distinct eigenvalues of Φ− ΓK and following the procedure that resulted in (2.20),

it can be shown that

lim
k→∞

∥∥∥∥∥
k−1∑

i=0

(Φ − ΓK)iζk−i−1

∥∥∥∥∥ ∈ O(T 2). (2.51)

Finally, it is concluded that

lim
k→∞

‖xk‖ ≤ O(T 2). (2.52)

Remark 6 From the foregoing derivations, it can be seen that the state errors are always one

order higher than the disturbance term ζ in the worst case due to convolution as shown by

(2.51). After incorporating the intergral sliding manifold, the off-set from the disturbance can

be better compensated, in the sequel leading to a smaller steady state error boundary.
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Remark 7 It is evident from the above analysis that, for the class of systems considered in this

Chapter and in [1,2], the equivalent control based SMC with disturbance observer guartantees

the motion of the states within an O(T 2) bound, which is smaller than O(T ) for T sufficiently

small, and is lower than what can be achieved by SMC using switching control [3,4]. In

such circumstance, without the loss of precision we can relax the necessity of incorporating a

switching term, in the sequel avoid exciting chattering.

2.4 Output-Tracking ISMC: State Feedback Approach

In this section we discuss the state-feedback-based output ISMC. We first present the controller

design using an appropriate integral sliding-surface and a delay-based disturbance estimation.

Next the stability condition of the closed-loop system and the error dynnamics under output

ISMC are derived. The ultimate tracking error bound is analyzed.

2.4.1 Controller Design

Consider the discrete-time integral sliding surface defined below,

σk = ek − e0 + εk

εk = εk−1 + Eek−1

(2.53)

where ek = rk − yk is the tracking error, σk, εk ∈ <m are the sliding function and integral

vectors, and E ∈ <m×m is an integral gain matrix.

By virtue of the concept of equivalent control, a SMC law can be derived by letting

σk+1 = 0. From (2.53), −e0 + εk = σk − ek, we have

σk+1 = ek+1 − e0 + εk+1 = ek+1 − e0 + εk + Eek
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= ek+1 − (Im −E)ek + σk. (2.54)

From the system dynamics (2.2), the output error ek+1 is

ek+1 = rk+1 − [CΦxk + CΓuk + Cdk],

and

σk+1 = rk+1 − [CΦxk + CΓuk + Cdk]− (Im − E)e + σk.

= ak −CΓuk − Cdk (2.55)

where ak = rk+1 − Λek − CΦxk + σk, and Λ = Im − E. Assuming σk+1 = 0, we can derive

the equivalent control

ueq
k = (CΓ)−1(ak − Cdk). (2.56)

Note that the control (2.56) is based on the current value of the disturbance dk which is

unknown and therefore cannot be implemented in the current form. To overcome this, the

disturbance estimate will be used. When the system states are accessible, a delay based

disturbance estimate can be easily derived from the plant (2.2)

d̂k = dk−1 = xk − Φxk−1 − Γuk−1. (2.57)

Note that dk−1 is the exogenous disturbance and bounded, therefore d̂k is bounded for all k.

Using the disturbance estimation (2.57), the actual ISMC law is given by

uk = (CΓ)−1(ak − Cd̂k). (2.58)
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2.4.2 Stability Analysis

Since the integral switching surface (2.53) consists of outputs only, it is necessary to examine

the closed-loop stability in state space when the ISMC (2.58) and disturbance esitmation

(2.57) are used.

Expressing ek = rk − Cxk, the ISMC law (2.58) can be rewritten as

uk = (CΓ)−1(rk+1 − Λek − CΦxk + σk − Cd̂k)

= −(CΓ)−1(CΦ− ΛC)xk − (CΓ)−1Cd̂k + (CΓ)−1(rk+1 − Λrk) (2.59)

+(CΓ)−1σk.

Substituting the above control law (2.60) into the plant (2.2) yields the closed-loop state

dynamics

xk+1 = [Φ − Γ(CΓ)−1(CΦ − ΛC)]xk + dk − Γ(CΓ)−1Cd̂k

+Γ(CΓ)−1(rk+1 − Λrk) + Γ(CΓ)−1σk.
(2.60)

It can be seen from (2.60) that the stability of xk is determined by the matrix [Φ−Γ(CΓ)−1(CΦ−

ΛC)] and the boundedness of σk.

Lemma 4 The eignvalues of [Φ − Γ(CΓ)−1(CΦ − ΛC)] are the eigenvalues of Λ and the

non-zero eigenvalues of [Φ − Γ(CΓ)−1CΦ].

Proof See Appendix.

According to Lemma 1, the matrix [Φ− Γ(CΓ)−1(CΦ−ΛC)] has m poles to be placed at

desired locations while the remaining n−m poles are the open-loop zeros of the plant (Φ,Γ, C).

Since, the plant (2.2) is assumed to be minimum-phase, the n−m poles are stable. Therefore,
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stability of the closed-loop state dynamics is guaranteed. Note that if Λ is a zero matrix

then m poles are zero and the performance will be the same as the conventional deadbeat

sliding-mode controller design.

Since we use disturbance estimate, σk 6= 0. To show the boundedness and facilitate later

analysis on the tracking performance, we derive the relationship between the switching surface

and the distrubance estimate, as well as the relationship between the output tracking error

and the disturbance estimate.

Theorem 2 Assume that the system (2.2) is minimum-phase and the eigenvalues of the ma-

trix Λ are within the unit circle. Then by the control law (2.58) we have

σk+1 = C(d̂k − dk) (2.61)

and the error dynamics

ek+1 = Λek + δk (2.62)

where δk = C(d̂k − dk + dk−1 − d̂k−1).

Proof: In order to verify the first part of Theorem 2, rewrite (5.11) as

σk+1 = ak − CΓuk − Cdk = ak − CΓueq
k −Cdk + CΓ(ueq

k − uk)

= CΓ(ueq
k − uk),

where we use the property of equivalent control σk+1 = ak − CΓueq
k − Cdk = 0. Comparing

two control laws (2.56) and (2.58), we obtain

σk+1 = C(d̂k − dk).
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Note that the switching surface σk+1 is no longer zero as desired but a function of the difference

dk − d̂k. This, however, is acceptable since the difference is dk − d̂k = dk −dk−1 by the delay

based disturbance estimation; thus, according to property P1 the difference is O(T 2) which is

quite small in practical applications.

To derive the second part of Theorem 2 regarding the error dynamics, rewritting (2.54) as

ek+1 = Λek + σk+1 −σk,

and substituting the relationship (2.61), lead to

ek+1 = Λek + C(d̂k − dk) − C(d̂k−1 − dk−1)

= Λek + C(d̂k − dk + dk−1 − d̂k−1) = Λek + δk.

Since d̂k = dk−1, δk is bounded, from Property 2 we can conclude the boundedness of ek.

2.4.3 Tracking Error Bound

The tracking performance of the ISMC can be evaluated in terms of the error dynamics (2.62).

Theorem 3 Using the delay-based disturbance estimation (2.57), the ultimate tracking error

bound with ISM control is given by

‖ek‖ = O(T 2)

where ‖ · ‖ represents the Euclidean norm.

Proof: In order to calculate the tracking error bound we must find the bound of δk. From

Theorem 2

δk = C(d̂k − dk + dk−1 − d̂k−1).
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Substituting d̂k = dk−1 from (2.57)

δk = C(dk−1 − dk + dk−1 − dk−2)

which simplifies to

δk = −C(dk − 2dk−1 + dk−2). (2.63)

According to property P1, dk − 2dk−1 + dk−2 = O(T 3), therefore δk = O(T 3). According to

Property 2, the ultimate error bound on ‖ek‖ in the expression ek+1 = Λek + δk will be one

order higher than the bound on δk due to convolution. Since the bound on δk is O(T 3), the

ultimate bound on ‖ek‖ is O(T 2).

Remark 8 In practical control a disturbance could be piece-wise smooth. The delay based

estimation (2.57) can quickly capture the varying disturbance after one sampling interval.

Assume that the disturbance f undergoes an abrupt change at the time interval [(k− 1)T, kT ],

then Property 1 does not hold for the time instance k because v(t) becomes extremely big.

Novertheless, properties P1 and P2 will be achieved immediately after the time instance k if

the disturbance becomes smooth again. Analogously property P3 will be achieved after the time

instance k + 1 and P4 after k + 2. From this point of view, the delay-based estimation has a

very small time delay or equivalently a large bandwidth.

Remark 9 Although the state-feedback approach may seem to be not very practical for a

number of output tracking tasks, this section serves as a precursor to the output-feedback-

based and state-observer-based approaches to be explored in subsequent sections.
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2.5 Output Tracking ISM: Output Feedback Approach

In this section we derive ISMC that only uses the output tracking error. The new design will

require a reference model and a dynamic disturbance observer due to the lack of the state

information. The reference model will be constructed such that its output is the reference

trajectory rk.

2.5.1 Controller Design

In order to proceed we will first define a reference model

xr,k+1 = (Φ − K1)xr,k + K2rk

yr,k = Cxr,k

(2.64)

where xr,k ∈ <n is the state vector, yr,k ∈ <m is the output vector, and rk ∈ <m is a bounded

reference trajectory. K1 is selected such that (Φ−K1) is stable. The selection criteria for the

matrices K1 and K2 will be discussed in detail in §4.4.

Now consider a new sliding surface

σk = D(xr,k − xk) + εk

εk = εk−1 + ED(xr,k−1 − xk−1)
(2.65)

where D = CΦ−1, σk, εk ∈ <m are the switching function and integral vectors, E ∈ <m×m is an

integral gain matrix. Note that Dxk = CΦ−1(Φxk−1+Γuk−1+dk−1) = yk−1+D(Γuk−1+dk−1)

is independent of the states, such a simplification was first proposed in [25].

The equivalent control law can be derived from σk+1 = 0. From (2.65) εk = σk −D(xr,k −

xk), we have

σk+1 = D(xr,k+1 − xk+1) + εk+1
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= D(xr,k+1 − xk+1) + εk + ED(xr,k − xk)

= D(xr,k+1 − xk+1) + σk − D(xr,k − xk) + ED(xr,k − xk)

= Dxr,k+1 − Dxk+1 + σk − ΛD(xr,k − xk) (2.66)

where Λ = I − E. Substituting the system dynamics (2.2) into (2.66) yields

σk+1 = Dxr,k+1 − D(Φxk + Γuk + dk) + σk − ΛD(xr,k − xk)

= ak −DΓuk − Ddk (2.67)

where ak = −(DΦ − ΛD)xk + (Dxr,k+1 −ΛDxr,k) + σk.

Letting σk+1 = 0, solving for the equivalent control ueq
k , we have

ueq
k = (DΓ)−1(ak − Ddk)

= −(DΓ)−1(DΦ − ΛD)xk + (DΓ)−1(Dxr,k+1 − ΛDxr,k) − (DΓ)−1Ddk.

(2.68)

Controller (2.68) is not implementable as it requires a priori knowledge of the disturbance.

Thus, the estimation of the disturbance should be used

uk = (DΓ)−1(ak − Dd̂k) (2.69)

where d̂k is the disturbance estimation.

However, note that the disturbance estimate used in the state feedback controller desgined

in §3 requires full state information which is not available in this case. Therefore, an observer

that is based on output feedback is proposed and will be detailed in §4.2.
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2.5.2 Disturbance Observer Design

Note that according to Property 1, the disturbance can be written as

dk = Γfk +
1

2
ΓvkT + O(T 3) = Γηk + O(T 3) (2.70)

where ηk = fk + 1
2
vkT . If ηk can be estimated, then the estimation error of dk would be

O(T 3) which is acceptable in practical applications.

Define the observer

xd,k = Φxd,k−1 + Γuk−1 + Γη̂k−1

yd,k−1 = Cxd,k−1

(2.71)

where xd,k−1 ∈ <n is the observer state vector, yd,k−1 ∈ <m is the observer output vector,

η̂k−1 ∈ <m is the disturbance estimate and will act as the ‘control input’ to the observer,

therefore we can write d̂k−1 = Γη̂k−1. Since the disturbance estimate will be used in the final

control signal, it must not be overly large. Therefore, it is wise to avoid a deadbeat design.

For this reason we design the disturbance observer based on an integral sliding surface

σd,k = ed,k − ed,0 + εd,k

εd,k = εd,k−1 + Eded,k−1

(2.72)

where ed,k = yk − yd,k is the output estimation error, σd,k, εd,k ∈ <m are the sliding function

and integral vectors, and Ed is an integral gain matrix.

Note that the sliding surface (2.72) is analogous to (2.53), that is, the set (yk,xd,k,uk +

η̂k,yd,k,σd,k) has duality with the set (rk,xk,uk,yk,σk), except for an one-step delay in the

observer dynamics (2.71). Therefore, let σd,k = 0 we can derive the virtual equivalent control
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uk−1 + η̂k−1, thus, analogous to (2.60),

η̂k−1 = (CΓ)−1 [yk − Λded,k−1 − CΦxd,k−1 + σd,k−1]− uk−1 (2.73)

where Λd = Im − Ed.

In practice, the quantity yk+1 is not available at the time instance k when computing η̂k.

Therefore we can only compute η̂k−1, and in the control law (2.69) we use the delayed estimate

d̂k = Γη̂k−1.

The stability and convergence properties of the observer (2.71) and the disturbance esti-

mation (2.73) are analyzed in the following theorem.

Theorem 4 The observer output yd,k converges asymptotically to the true outputs yk, and

the disturbance estimate d̂k converges to the actual disturbance dk−1 with the precision order

O(T 2).

Proof: Substituting (2.73) into (2.71), and using the relation ed,k−1 = C(yk−1 − yd,k−1),

yield

xd,k =
[
Φ − Γ(CΓ)−1(CΦ − ΛdC)

]
xd,k−1 + Γ(CΓ)−1[yk − Λdyk−1]

+Γ(CΓ)−1σd,k−1. (2.74)

Since the control and estimate uk−1 + η̂k−1 are chosen such that σd,k = 0 for any k > 0, (2.74)

renders to

xd,k =
[
Φ − Γ(CΓ)−1(CΦ− ΛdC)

]
xd,k−1 + Γ(CΓ)−1[yk −Λdyk−1]. (2.75)
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The second term on the right hand side of (2.75) can be expressed as

Γ(CΓ)−1[yk − Λdyk−1] = Γ(CΓ)−1(CΦ − ΛdC)xk−1 + Γuk−1 + Γ(CΓ)−1Cdk−1

by using the relations yk = CΦxk−1 + CΓuk−1 + Cdk−1 and yk−1 = Cxk−1. Therefore (5.26)

can be rewritten as

xd,k = Φxd,k−1 + Γ(CΓ)−1(CΦ− ΛdC)∆xd,k−1 + Γuk + Γ(CΓ)−1Cdk−1

(2.76)

where ∆xd,k−1 = xk−1 − xd,k−1.

Further subtracting (2.76) from the system (2.2) we obtain

∆xd,k =
[
Φ − Γ(CΓ)−1(CΦ − ΛdC)

]
∆xd,k−1 + [I − Γ(CΓ)−1C]dk−1 (2.77)

where [I − Γ(CΓ)−1C]dk−1 is O(T 3) because

[I − Γ(CΓ)−1C][Γηk−1 + O(T 3)] = [I − Γ(CΓ)−1C]O(T 3) = O(T 3).

Applying the Property 2, ∆xd,k−1 = O(T 2).

From (2.77) we can see that the stability of the disturbance observer depends only on

the matrix [Φ − Γ(CΓ)−1(CΦ −ΛdC)] and is guaranteed by the selection of the matrix Λd

and the fact that system (Φ,Γ, C) is minimum phase. It should also be noted that the

residue term [I − Γ(CΓ)−1C]dk−1 in the state space is orthogonal to the output space, as

C[I − Γ(CΓ)−1C]dk−1 = 0. Therefore premultliplication of (2.77) with C yields the output

tracking error dynamics

ed,k = Λded,k−1 (2.78)
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which is asymptotically stable through choosing a stable matrix Λd.

Finally we discuss the convergence property of the estimate d̂k−1. Subtracting (2.71) from

(2.2) with one-step delay, we obtain

∆xd,k = Φ∆xd,k−1 + Γ(ηk−1 − η̂k−1) + O(T 3). (2.79)

Premultiplying (2.79) with C, and substituting (2.78) that describes C∆xd,k, yield

η̂k−1 = ηk−1 + (CΓ)−1(CΦ− ΛdC)∆xd,k−1 + (CΓ)−1O(T 3). (2.80)

The second term on the right hand side of (2.80) is O(T ) because ∆xd,k−1 = O(T 2) but

(CΓ)−1 = O(T−1). As a result, from (2.80) we can conclude that η̂k−1 approaches ηk−1 with

the precision O(T ). In terms of the relationship

dk−1 − d̂k = Γ(ηk−1 − η̂k−1) + O(T 3)

and Γ = O(T ), we conclude d̂k converges to dk−1 with the precision of O(T 2).

Remark 10 At the time k, we can guarantee the convergence of η̂k−1 to ηk−1 with the preci-

sion O(T ). In other words, we can guarantee the convergence of the disturbance estimate at

the time k, d̂k, to the actual disturbance at time k − 1, dk−1, with the precision O(T 2). This

result is consistent with the state-based estimation presented in §3 in which d̂k is made equal to

dk−1. Comparing differences between the state-based and output-based disturbance estimation,

the former has only one-step delay with perfect precision, whereas the latter is asymptotic with

O(T 2) precision.
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2.5.3 Stability Analysis

To analyze the stability of the closed-loop system, substitute uk in (2.69) into the plant (2.2)

leading to the closed-loop equation in the sliding mode

xk+1 =
[
Φ − Γ(DΓ)−1(DΦ − ΛD)

]
xk + dk − Γ(DΓ)−1Dd̂k

+Γ(DΓ)−1[Dxr,k+1 − ΛDxr,k + σk]. (2.81)

The stability of the above sliding equation is summarized in the following theorem.

Theorem 5 Using the control law (2.69) the sliding mode is

σk+1 = D(d̂k − dk).

Further, the state tracking error ∆xk = xr,k − xk is bounded if system (Φ,Γ,D) is minimum-

phase and the eigenvalues of the matrix Λ are within the unit circle.

Proof: In order to verify the first part of Theorem 5, rewrite the dynamics of the slidng

mode (2.67)

σk+1 = ak − DΓuk − Ddk = ak −DΓueq
k − Ddk + DΓ(ueq

k − uk)

= DΓ(ueq
k − uk),

where we use the property of equivalent control σk+1 = ak − DΓueq
k − Ddk = 0. Comparing

two control laws (2.68) and (2.69), we obtain

σk+1 = D(d̂k − dk).
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Note that if there is no disturbance or we have perfect estimation of the disturbance, then

σk+1 = 0 as desired. From the results of Theorem 3 and Property 1

d̂k − dk = d̂k − dk−1 − (dk − dk−1) = O(T 2)

as k → ∞. Thus σk+1 → O(T 2) which is acceptable in practice.

To prove the boundedness of the state tracking error ∆xk, first derive the state error

dynamics. Subtracting both sides of (2.81) from the refernece model (2.64), and substituting

σk = D(d̂k−1 − dk−1), yields

∆xk+1 =
[
Φ − Γ(DΓ)−1(DΦ − ΛD)

]
∆xk

+[I − Γ(DΓ)−1D](K2rk+1 − K1xr,k) − ζk (2.82)

where

ζk = dk − Γ(DΓ)−1D(d̂k − d̂k−1 + dk−1). (2.83)

The stability of (2.82) is dependent on [Φ − Γ(DΓ)−1(DΦ − ΛD)]. From Lemma 1 the closed-

loop poles of (2.82) are the eigenvalues of Λ and the open-loop zeros of the system (Φ,Γ,D).

Thus, m poles of the closed-loop system can be selected by the proper choice of the matrix Λ

while the remaining poles are stable only if the system (Φ,Γ,D) is minimum-phase. Note that

both rk+1 and xr,k are reference signals and are bounded. Therefore we need only to show the

boundedness of ζk which is

ζk =
(
I − Γ(DΓ)−1D

)
dk + Γ(DΓ)−1D(dk − d̂k)

−Γ(DΓ)−1D(dk−1 − d̂k−1). (2.84)
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From Theorem 3, the second and third terms on the right hand side of (2.84) are O(T 2). From

Property 1, the first term on the right hand side of (2.84) can be written as

(
I − Γ(DΓ)−1D

)
dk =

(
I − Γ(DΓ)−1D

) (
Γηk + O(T 3)

)
= O(T 3).

Therefore ζk = O(T 2) which is bounded.

2.5.4 Reference Model Selection and Tracking Error Bound

We have established the stability condition for the closed-loop system, but, have yet to es-

tablish the ultimate tracking error bound. From (2.82) it can be seen that the tracking error

bound is dependent on the disturbance estimate d̂k as well as the selection of K1 and K2.

Up to this point, not much was discussed in terms of the selection of the reference model

(2.64). As it can be seen from (2.82) the selection of the reference model can effect the overall

tracking error bound. Since we consider an arbitrary reference rk, the reference model must

be selected such that its output is the reference signal rk. To achieve this requirement, we

explore two possible selections of the reference model.

Reference model based on (Φ,Γ, C) being minimum-phase

For this reference model select the matrices K1 = Γ(CΓ)−1CΦ and K2 = Γ(CΓ)−1 and the

reference model (2.64) can be written as

xr,k+1 = [Φ − Γ(CΓ)−1CΦ]xr,k + Γ(CΓ)−1rk+1

yr,k = Cxr,k = rk.
(2.85)

It can be easily seen from (2.85) that it is stable only if the matrix [Φ − Γ(CΓ)−1CΦ] is stable,

i.e., the system (Φ,Γ, C) is minimum-phase. Substituting the selected matrices K1 and K2

44



into (2.82) and using the fact that [I − Γ(DΓ)−1D] Γ = 0, we obtain

∆xk+1 =
[
Φ − Γ(DΓ)−1(DΦ − ΛdD)

]
∆xk − ζk. (2.86)

where ζk = O(T 2) according to Theorem 4.

According to Property 2, the ultimate error bound on ‖∆xk‖ will be one order higher than

the bound on ζk. Thus, the ultimate bound on the output tracking error is

‖ek‖ ≤ ‖C‖‖∆xk‖ = O(T ). (2.87)

Reference model based on (Φ,Γ,D) being minimum-phase

In the case that it is only possible to satisfy (Φ,Γ,D) to be minimum-phase, a different

reference model needs to be selected. For this new reference model, select the matrices K1 =

Γ(DΓ)−1DΦ and K2 = Γ(DΓ)−1. Then the reference model (2.64) can be written as

xr,k+1 = [Φ − Γ(DΓ)−1DΦ] xr,k + Γ(DΓ)−1rk+1

yr,k = Dxr,k = rk.
(2.88)

The matrix [Φ − Γ(DΓ)−1CΦ] is stable only if (Φ,Γ,D) is minimum-phase. Substituting the

selected matrices K1 and K2 into (2.82), and using the property [I − Γ(DΓ)−1D]Γ = 0, we

have

∆xk+1 =
[
Φ − Γ(DΓ)−1(DΦ −ΛD)

]
∆xk − ζk. (2.89)

We can see from (2.89) that the tracking error bound is only dependent on the disturbance

estimtation ζk.

On the other hand, the disturbance observer requires (Φ,Γ, C) to be minimum-phase, hence

is not implementable in this case. Without the disturbance estimator, noticing Property 1,
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(2.83) becomes

ζk = dk − Γ(DΓ)−1dk−1

= dk − dk−1 + [I − Γ(DΓ)−1D](Γηk−1 + O(T 3))

= O(T 2) + O(T 3) = O(T 2). (2.90)

As the result, the closed-loop system is

∆xk+1 =
[
Φ − Γ(DΓ)−1(DΦ − ΛD)

]
∆xk + O(T 2). (2.91)

By Property 2, the ultimate bound on ‖∆xk‖ = O(T ), and therefore, the ultimate bound on

the tracking error is

‖ek‖ ≤ ‖D‖‖∆xk‖ = O(T ). (2.92)

While this approach gives a similar precision in output tracking performance, it only requires

(Φ,Γ,D) to be minimum-phase and can be used in the cases (Φ,Γ, C) is not minimum-phase.

2.6 Output Tracking ISM: State Observer Approach

In this section we explore the observer-based approach for the unknown states when only

output measurement is available. By virtue of state estimation, it is required that (Φ,Γ, C)

to be minimum-phase, thus, the observer based disturnance estimation approach in §2.5.2 is

applicable. From the derivation procedure in §2.5.2, we can see that the error dynamics (2.78)

of the disturbance observer (2.71) is independent of the control inputs uk. Therefore the

same disturbance observer (2.71) - (2.73) can be incorporated in the state-observer approach
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directly without any modification. In this section we focus on the design and analysis of the

controller and state observer.

2.6.1 Controller Structure and Closed-Loop System

With the state estimation, the ISMC can be constructed according to the preceding state-

feedback based ISMC design (2.60) by substituting CΦxk with CΦxk − CΦx̃k where x̃k =

xk − x̂k is the state estimation error,

uk = −(CΓ)−1(CΦ− ΛC)xk − (CΓ)−1Cd̂k + (CΓ)−1(rk+1 − Λrk)

+(CΓ)−1σk + (CΓ)−1CΦx̃k. (2.93)

Comparing the controller (2.60), the controller (2.93) has an extra term (CΓ)−1CΦx̃k due to

the state estimation error. Substituting uk (2.93) into (2.2) yields the closed-loop dynamics

xk+1 = [Φ − Γ(CΓ)−1(CΦ − ΛC)]xk + dk − Γ(CΓ)−1Cd̂k

+Γ(CΓ)−1(rk+1 −Λrk) + Γ(CΓ)−1σk + Γ(CΓ)−1CΦx̃k,
(2.94)

which, comapring with the state-feedback (2.60), is aolmost the same except for an extra

term Γ(CΓ)−1CΦx̃k. Hence, following the Theorem 1 proof, the properties of the closed-loop

system (2.94) can be derived.

Theorem 6 Assume that the system (2.2) is minimum-phase and the eigenvalues of the ma-

trix Λ are within the unit circle. Then by the control law (2.93) we have

σk+1 = C(d̂k − dk) − CΦx̃k (2.95)

and the error dynamics

ek+1 = Λek + δk (2.96)
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where δk = C(d̂k − dk + dk−1 − d̂k−1) − CΦ(x̃k − x̃k−1).

Proof: In order to prove (2.95), notice that (2.54) can be written as

σk+1 = rk+1 −Cxk+1 − Λrk + ΛCxk + σk. (2.97)

Substituting the closed-loop dynamics (2.94) into (2.97) and simplifying we obtain

σk+1 = C(d̂k − dk) − CΦx̃k

which proves the first part of the theorem.

In order to prove the second part, premultiply (2.94) with C and simplify to obtain the

following result

yk+1 = Λyk + Cdk −Cd̂k + rk+1 − Λrk + CΦx̃k + σk (2.98)

From the result (2.95) it can be obtained that σk = C(d̂k−1 − dk−1)− CΦx̃k−1. Substituting

in (2.98) and using the fact that ek = rk − yk we obtain

ek+1 = Λek + C(d̂k − dk + dk−1 − d̂k−1) − CΦ(x̃k − x̃k−1)

= Λek + δk (2.99)

where δk = C(d̂k − dk + dk−1 − d̂k−1) −CΦ(x̃k − x̃k−1).

As in the state-feedback approach, the output tracking error depends on the proper selection

of the eigenvalues of Λ, as well as the disturbance estimation and state estimation precision.

The influence of the disturbance estimation has been discussed in Theorem 4. The effect of x̃k

on the tracking error bound will be evaluated, we will discuss the state observer in the next

subsection.
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2.6.2 State Observer

State estimation will be accomplished with the following state-observer

x̂k+1 = Φx̂k + Γuk + L(yk − ŷk) + d̂k (2.100)

where x̂k, ŷk are the state and output estimates and L is a design matrix. Observer (5.33)

is well-known, however, the term d̂k has been added to compensate for the disturbance. It

is necessary to investigate the effect of the disturbance estimation on the state estimation.

Subtracting (2.100) from (2.2) we get

x̃k+1 = [Φ − LC]x̃k + dk − d̂k. (2.101)

It can be seen that the state estimation is indepdendent of the control inputs. Under the

assumption that (Φ,Γ, C) is controllable and observable, we can choose L such that Φ−LC is

asymptotically stable. From Theorem 4, dk − d̂k = O(T 2), thus, from Property 2 the ultimate

bound of x̃k is O(T ). Later we will show that, for systems of relative degree greater than 1,

by virtue of the integral action in the ISM control, the state estimation error will be reduced

to O(T 2) in the closed-loop system.

2.6.3 Tracking Error Bound

In order to calculate the tracking error bound we need first calculate the bound of ζk in

Theorem 5. From the error dynamics of the state estimation (2.101), the solution trajectory

is

x̃k = [Φ − LC]kx̃0 +
k−1∑

i=0

(
[Φ − LC]k−1−i(di − d̂i)

)
. (2.102)
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The difference x̃k − x̃k−1 can be calculated

x̃k − x̃k−1 = [(Φ − LC) − In](Φ− LC)k−1x̃0

+
k−1∑

i=0

(
[Φ − LC]k−1−i(di − d̂i)

)

−
k−2∑

i=0

(
[Φ − LC]k−1−i(di − d̂i)

)

which can be simplified to

x̃k − x̃k−1 = [(Φ − LC)− In](Φ − LC)k−1x̃0 + (dk − d̂k).

Since (Φ − LC) is asymptotically stable, the ultimate bound is

x̃k − x̃k−1 = dk − d̂k, (2.103)

and δk can be expressed ultimately as

δk = C(d̂k − dk + dk−1 − d̂k−1) −CΦ(x̃k − x̃k−1)

= C(d̂k − dk + dk−1 − d̂k−1) −CΦ(dk − d̂k). (2.104)

From Theorem 4, the disturbance estimation error dk − d̂k is O(T 2). Therefore we have

δk = C ·
(
O(T 2) + O(T 2)

)
− CΦ · O(T 2) = O(T 2).

The ultimate bound on σk is O(T 2) according to (2.95), and, from (2.99) the ultimate bound

on ‖ek‖ is O(T ).

Remark 11 Note that the guaranteed tracking precision is O(T ) because the control problem

becomes highly challenging in the presence of state estimation and disturbance estimation

errors, and meanwhile aiming at arbitrary reference tracking.
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In many motion control tasks the system relative degree is 2, for instance from the torque

or force to position tracking in motion control. Now we derive an interesting property by the

following corollary.

Corollary 1 For a continuous system of relative degree greater than 1, the ultimate bound of

‖ek‖ is O(T 2).

Proof: From Theorem 5 (2.62) and Property 2, ‖ek‖ is O(T 2) if δk = O(T 3). When the

system relative degree is 2, CB = 0, and

CΓ = C
(
BT +

1

2!
ABT 2 +

1

3!
A2BT 3 + · · ·

)

=
1

2!
CABT 2 +

1

3!
CA2BT 3 + · · · = O(T 2).

Similarly

CΦΓ = C(I + AT +
1

2!
A2T 2 + · · ·)Γ

= C (I + O(T )) Γ = CΓ + O(T 2) = O(T 2).

Now rewrite

δk = C(d̂k − dk + dk−1 − d̂k−1) − CΦ(dk − d̂k)

= CΓ(η̂k − ηk + ηk−1 − η̂k−1) −CΦΓ(ηk − η̂k) + O(T 3). (2.105)

Note that the ultimate bound of ηk − η̂k, derived in Theorem 3, is O(T ). Thus we conclude

from (2.105)

δk = O(T 2) · (O(T ) + O(T )) −O(T 2) · O(T ) + O(T 3) = O(T 3)
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and consequently ‖ek‖ is ultimately O(T 2).

Remark 12 From the result we see that even though the state estimation error is O(T ) we

can still obtain O(T 2) output tracking by virtue of the integral action in the controller design

for relative degree greater than 1.

2.6.4 Systems with a Piece-Wise Smooth Disturbance

In practice, the disturbance of a motion system, f , may become discontinuous at certain

circumstances. For example, due to the static friction force, a discontinuity occurs when the

motion speed drops to zero. It is thus vital to examine the system performance around the

time the dicontinuity occurs.

Suppose the the discontinuity of f occurs at the jth sampling instance. The immediate

consequence of the discontinuity in f is the loss of the property P2: dj −dj−1 = O(T ) instead

of O(T 2), and the loss of the property P3: dj − 2dj−1 + dj−2 = O(T ) instead of O(T 3).

Since we focus on tracking tasks in this Chapter, it can be reasonably assumed that the

discontinuity occurs only occasionally. As such, property P1 will be restored one step after the

occurence of the discontinuity, and property P2 will be restored two step after the occurence

of the discontinuity. The discontinuity presents an impulse-like impact to the system behavior

at the instance k = j. It is worth to investigate the Property 2. Write

ek = Λke0 +
k−1∑

i=0

Λiδk−i−1.

For simplicity assume Λke0 can be ignored and ek = O(T 2) at k = j. Then δj will give ek
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an offset with the magnitude O(T ), which can be viewed as a new initial error at the time

instance j and will disppear exponentially with the rate Λk.

Note that Λ is a design matrix, thus can be chosen to be sufficiently small such that the

impact from δj, which is O(T ), can be quickly attenuated. As a result, the analysis of the

preceding sections still holds for discontinuous disturbances.

In the worst case the non-smooth disturbance presents for a long interval, we can consider

a nonlinear switching control action. Denote uk the ISMC designed in preceding sections, a

new nonlinear controller is

un
k = uk + µ sat(σk) (2.106)

where sat(σk) is a vector with each of the elements given by

sat(x) =





1 x ≥ ε

x
ε

−ε < x < ε

−1 x ≤ −ε

and ε is the required bound on the sliding function σk.

Remark 13 Let ε → 0, it is known that sat(·) renders to a signum function and improves the

control system bandwidth, hence supress the discontiuous disturbance. In digital implementa-

tion, however, the actual bandwidth, being limited by the sampling frequency, is π/2T where

T is the sampling period.

53



2.7 Illustrative Example

2.7.1 State Regulation

Consider the system (2.1) with the following parameters

A =




1 −2 3

−4 5 −6

7 −8 9




, B =




1 −2

−3 4

5 6




,

C =




0 1 2

4 −1 2


 , and f(t) =




0.3 sin(4πt)

0.3 cos(4πt)




The initial states are x(0) = [1 1 −1]T . The system will be simulated for a sample interval

of 1ms. For the classical SMC, the D matrix is chosen such that the non-zero pole of the

sliding dynamics is p = −5 in continuous-time, or z = 0.9950 in discrete-time. Hence, the

poles of the system with SM are [0 0.9950 0]T respectively. Accordingly the D matrix is

D =




0.2621 −0.3108 −0.0385

3.4268 2.4432 1.1787


 .

Using the same D matrix given above, the system with ISM is designed such that the dominant

(non-zero) pole remains the same, but, the remaining poles are not deadbeat. The poles are

selected as z = [0.9048 0.9950 0.8958]T respectively.

Using the pole placement command of Matlab, the gain matrices can be obtained

K =




66.6705 9.4041 15.8872

18.2422 21.3569 8.5793


 .

According to (2.35)

E =




0.0297 −0.0313 −0.0034

0.3147 0.2366 0.1115


 .
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The delayed disturbance compensation is used. Fig.2.1a shows that the system state x1(t)

is asymptotically stable for both discrete-time SMC and ISMC, which show almost the same

behavior globally. On the other hand, the difference in the steady-state response between

discrete-time SMC and ISMC can be seen from Fig.2.1b. The control inputs are shown in

Fig.2.2. Note that the control inputs of the SMC has much larger values at the initial phase

in comparison with ISMC, due to the existence of deadbeat poles. Another reason for the

lower value of the control inputs in the ISMC is the elimination of the reaching phase by

compensating for the non-zero intial condition in (2.40).

To demonstrate the quality of both designs, the open-loop transfer function matrices, GOL
i,j ,

for the systems with SM and ISM are computed and Bode plots of some elements are shown

in Fig.2.3 In addition, the sensitivity function of state x1 with respect to the disturbance

components f1(t) and f2(t) is plotted in Fig.2.4. It can be seen from Fig.2.3 and Fig.2.4

that ISMC greatly reduces the effect of the disturbance as compared to SMC. Moreover ISM

presents a larger open-loop gain at the lower frequency band by virtue of the integral action in

the sliding manifold, which ensures a more accurate closed-loop response to possible reference

inputs.

2.7.2 State Feedback Approach

Consider the system (2.1) with the parameters

A =




10 1

−10 −10


 , B =




4

4.2


 , C =

[
1 0

]
.
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Figure 2.1: System state x1

0 0.02 0.04 0.06 0.08 0.1
−700

−600

−500

−400

−300

−200

−100

0

100

t (sec)

u
1

SM
ISM

(a)

0 0.02 0.04 0.06 0.08 0.1
−350

−300

−250

−200

−150

−100

−50

0

50

t (sec)

u
2

SM
ISM

(b)

Figure 2.2: System control inputs u1 and u2

The sampled-data system obtained with a sampling period T = 1ms is

Φ =




1.01 −0.001

−0.01 0.99


 , Γ =




0.0040

0.0042


 , C =

[
1 0

]
.

The zero of (Φ,Γ, C) is z = 0.989 and, therefore, the system is minimum-phase. Let the

desired pole, the remaining pole of the closed-loop system to be designed, be z = 0.75, then
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Figure 2.3: Bode plot of some of the elements of the open-loop transfer matrix
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Figure 2.4: Sensitivity function of x1 with respect to f1 and f2

the design parameter is given by E = 0.25. The system is simulated with an ouput reference

rk = 1 + sin(8πkT − π/2), shown in Fig.2.5. The disturbance acting on the system will be

non-smooth when speed crosses zero and given by

f =





10 if x2 < 0

0 if x2 = 0

−10 if x2 > 0.

(2.107)
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The system is simulated using controller (2.58). The controller performance is compared with

that of a PI controller having a proportional gain of kp = 240 and integral gain of ki = 8. In

Fig.2.6 the tracking error is 4 × 10−6 which corresponds to O(T 2) and is almost invisible as

compared with the PI controller performance. Note worthy is the fact that the control signal

for the PI control is much larger initially as compared to the ISMC control. A smaller control

signal is more desirable in practice as it would not create a heavy burden on actuators.
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Figure 2.5: The output reference trajectory

2.7.3 Output Feedback Approach

Consider the system (2.1) with the parameters

A =



−60 −10

10 −10


 , B =




4

4.2


 , C =

[
1 0

]
.

After sampling the system at T = 1ms, the discretized system is

Φ =




0.9417 −0.0097

0.0097 0.9900


 , Γ =




0.0039

0.0042


 , C =

[
1 0

]
.
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Figure 2.6: Tracking error of ISMC and PI controllers
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Figure 2.7: Control inputs of ISMC with state feedback and PI

For this system the zero of (Φ,Γ, C) is z = 1.001 whereas the zero of (Φ,Γ,D) is z = 0.998.

Therefore, the output-feedback approach with the reference model in §2.5.4 is the only option.

Using the same disturbance f and reference trajectory rk, the system is simulated. The

controller performance is compared with that of a PI controller having a proportional gain of

kp = 200 and integral gain of ki = 30. As it can be seen from Fig.2.8, the performance is
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Figure 2.8: Tracking error of ISMC and PI controllers
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Figure 2.9: Control inputs of ISMC and PI output feedback

quite good and better than that of a PI controller. The tracking error for the ISMC is about

17× 10−6 which corresponds to O(T 2) at steady state. Note that even though the worst case

scenario of O(T ) was predicted for this approach it was possible to achieve O(T 2) at steady

state. Also, similar to the state feedback approach the control signal of the ISMC controller

is much smaller than that of the PI controller at the onset of motion.
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2.7.4 State Observer Approach

For this approach we will go back to the system in §2.7.2, and estimate x2 using the observer

(2.100). The observer has a gain of L =
[

1.19 342.23

]
and is designed such that two

poles are at z = 0.4 allowing a fast enough convergence. From Fig.2.10 the estimation of

error x̃2 is plotted. As we can see the estimation is quite good and deviating only when

the discontinuities occur but attenuates very quickly. The disturbance estimation is seen in

Fig.2.11 and the estimation converges quickly to the actual disturbance. From Fig.2.12 we

can see the tracking error performance. The tracking error is about 6 × 10−6 which matches

the theoretical results of O(T 2) bound. Again like the previous two approaches, the control

signal of the ISMC is smaller than that of the PI controller at the initial phase. Finally
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Figure 2.10: Observer state estimation error x̃2

we need to show the effects of a more frequently occuring discontinuous disturbance and how

adding a nonlinear term, (2.106), would improve the performance. The disturbance is shown

in Fig.2.16. As it can be seen from Fig.2.14 the rapid disturbance degrades the performance of
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Figure 2.11: Disturbance η and estimate η̂
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Figure 2.12: Tracking error of ISMC and PI controllers

the ISMC and PI controllers, however, addition of a switching term with µ = 10 and ε = 0.01

improves the tracking performance. In Fig.2.15, we can see that the control inputs for both

the ISMC and the ISMC with switching is considerably less than the PI controller at the onset

of motion. Note also from Fig.2.16 that the disturbance estimate η̂ converges quickly to the

disturbance.
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Figure 2.13: Control inputs of ISMC with state observer and PI
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Figure 2.14: Tracking errors of ISMC, PI and ISMC with switching under a more frequent

discontinuous disturbance

2.8 Conclusion

This Chapter presents a new discrete-time integral sliding control design for sampled-date

systems under state regulation and output tracking. Using the new discrete-time integral

type sliding manifold, the SMC design retains the deadbeat structure of the discrete-time
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sliding mode, and at the same time allocates the closed-loop eigenvalues for the full-order

multi-input system. The discrete-time ISMC achieves accurate control performance for the

sliding mode, state regulation and output tracking, meanwhile eliminates the reaching phase

and avoids overlarge control efforts. The theoretical results were confirmed through both

theoretical analysis and a numerical example.
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Chapter 3

Discrete-Time Periodic Adaptive

Control Approach for Time-Varying

Parameters with Known Periodicity

3.1 Introduction

Adaptive control theory for continuous-time systems is one of the most well established control

theories, and numerous results have been reported, e.g., [32]-[36]. In the classical adaptive

control, the parametric adaptation mechanism essentially consists of a number of integrators,

thus the adaptive control system is able to achieve asymptotic tracking convergence in the

presence of constant parametric uncertainties. In [6], a method for dealing with a class of

time-varying periodic unknown paramters is introduced that is based on pointwise integration

relying on the a priori knowledge of the periodicity of the parameters.

Considering the fact that, as a function of time, the classes of time-varying parameters

are in essence infinite, it would be extremely difficult to find a general solution to such a

broad control problem. A more realistic way is first to classify the time-varying parametric
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uncertainties into subclasses, and then look for an appropriate adaptive control approach

for each subclass. Instead of classifying parameters into slow vs rapid time-varying, in this

Chapter we classify parameters into periodic vs nonperiodic ones. When the periodicity of

system parameters is known a priori, an adaptive controller with periodic updating can be

constructed by means of a pointwise update mechanism.

Periodic variations are encountered in many real systems. These variations can exist in the

system parameters, [37],[38], or as a disturbance to the system, [39]-[41]. This necessitates the

effort in formulating an adaptive control scheme that can handle a class of systems with time-

varying periodic unknown parameters or disturbances by taking into account the periodicity

of the variations.

In this Chapter, we apply the concept of periodic adaptation, originally proposed for

continuous-time systems, to discrete-time systems. In particular, we will show that the new

periodic adaptive controller can work effectively to nullify the influence from the time-varying

parametric uncertainties to the control error, in the sequel achieve the asymptotic convergence.

Comparing with the continuous-time adaptive control, the discrete-time periodic adaptation

is a more natural extension of the classical adaptive control: from the updating in two consec-

utive intances to the updating in the same instance of two consecutive periods. This is owing

to the fact that the value of a periodic parameter will be invariant if shifting the time by one

period. This feature necissitates the need to explore a new parametric estimation law and

a new convergence property analysis tool. In the periodic adaptive control, the parametric

values of the preceding period, instead of the preceding time instance, are used to update
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the current parameter estimate. Analogously, the boundedness of the parametric estimate

and convergence analysis are conducted by deriving the difference between two consecutive

periods, that is, the convergence is asymptotic with respect to the number of periods, in-

stead of the time instances. When there exist both time-invariant and time-varying periodic

parameters, the classical adaptation and the new periodic adaptation laws can be employed

simultaneously, whereas the convergence analysis will be based on the number of periods.

3.2 Discrete-Time Periodic Adaptive Control

In order to clearly demonstrate the idea, first consider a scalar discrete-time system with only

one unknown parameter

xk+1 = θkξk + uk, x0 = x(0) (3.1)

where θk is periodic, i.e. θ(k) = θ(k − N) with a known period N > 1, and ξk = ξ(xk) is a

known nonlinear function. For simplicity we will consider the regulation problem only and

leave the extension to tracking tasks to the next section.

3.2.1 Discrete-Time Adaptive Control Revisited

If θk is time invariant, i.e. θ(k) = θ(k − 1), then the standard approach would be to combine

a certainty equivalence controller with a least-squares estimator

uk = −θ̂kξk (3.2)

θ̂k = θ̂k−1 + Pkξk−1xk, (3.3)

Pk = Pk−1 −
P 2

k−1ξ
2
k−1

1 + Pk−1ξ2
k−1

, P0 > 0 (3.4)
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where Pk is a scalar for this case. Defining θ̃ = θ − θ̂, and substituting the adaptive law (3.2)

into the dynamical relation (3.1), the closed-loop system can be expressed as

xk+1 = θ̃kξk, (3.5)

θ̃k+1 = θ̃k − Pk+1ξkxk+1

Pk+1 = Pk −
P 2

k ξ2
k

1 + Pkξ2
k

.

The least-squares estimator has several desirable properties [43], for instance the boundedness

and positivity of Pk which can be found by rewritting (3.4) as

P−1
k+1 = P−1

k + ξ2
k , (3.6)

implying P−1
k ≥ P−1

0 > 0 or P0 ≥ Pk > 0 for all k ≥ 0. Now, consider a nonnegative function

Vk = P−1
k θ̃2

k, its difference over one step is

Vk+1 − Vk = P−1
k+1θ̃

2
k+1 − P−1

k θ̃2
k

= P−1
k+1

(
θ̃k − Pk+1ξkxk+1

)2
− P−1

k θ̃2
k

= − x2
k+1

1 + Pkξ2
k

≤ 0. (3.7)

From (3.7), the term xk+1/(1+Pkξ
2
k)

1/2 converges to zero as k → ∞. Further, if the nonlinear

function ξ(x) is sector-bounded

|ξ(x)| ≤ c1 + c2|x| (3.8)

with c1 and c2 arbitary positive constants, then it is possible to establish the condition, [42],

|ξ(xk)| ≤ c0
1 + c0

2 max
j∈[0,k]

|xj+1| (3.9)

where c0
1 and c0

2 are constants, then the Key Technical Lemma ensures that xk → 0 as k → ∞.
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3.2.2 Periodic Adaptation

Can the concept of adaptation control still be applied to periodic but arbitrarily time-varying

θ(k)? Note that, the dynamics θ̃k+1 in the closed-loop system (3.5) is derived by subtracting

the parameter adaptation law (3.3) from the time invariance relationship θk = θk−1, which

however does not hold for a time-varying θ(k). On the other hand, for the periodic parameter

we have θk = θk−N . Note that N = 1 renders a periodic θk to a constant. Hence a periodic

parameter, with the periodicity N > 1, can be viewed as a “constant” with respect to the

interval N . As such, we can modify the standard adaptation law (3.3), originally designed to

update the parameter estimate between two consecutive intstances, namely from k − 1 to k,

into a new periodic adaptation law that updates the parameter estimate after a fixed interval

N , namely from k −N to k. In the following we will verify and demonstrate this simple idea.

Revise the adaptive control mechanism (3.2-3.4) into the following periodic one

uk = −θ̂kξk (3.10)

θ̂k =





θ̂k−N + Pkξk−Nxk−N+1, k ∈ [N,∞)

θ̂0, k = [0, N)
(3.11)

Pk =





Pk−N − P 2
k−Nξ2

k−N

1 + Pk−N ξ2
k−N

, k ∈ [N,∞)

P0 > 0 k ∈ [0, N)

(3.12)

where k = k0 + nN and n is the total number of periods in the interval [0, k). From (3.12) we

can derive a result similar to (3.6)

P−1
k = P−1

k−N + ξ2
k−N (3.13)

which implies that P−1
k ≥ P−1

0 > 0 and P0 ≥ Pk > 0 for all k ≥ N .
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Remark 14 Note that the adaptation process starts only after the first cycle is completed or

k ≥ N . The estimate θ̂k for k < N is set to θ̂0, which can be chosen according to some prior

knowledge, or simply zero if no prior knowledge is available. Similarly, we can choose P0 to

be a sufficiently large constant over the interval [0, N).

3.2.3 Convergence Analysis

Define the parameter estimation error θ̃k = θk − θ̂k. Substituting the adaptive control (3.10)

into the dynamical relation (3.1), and subtracting the adaptive law (3.11) from θk = θk−N ,

the closed-loop system, for any k ≥ N , can be expressed as

xk+1 = θ̃kξk

θ̃k = θ̃k−N − Pkξk−Nxk−N+1

Pk = Pk−N − P 2
k−N ξ2

k−N

1 + Pk−N ξ2
k−N

. (3.14)

The convergence property of the periodic adaptive control system (3.14) is summarized in the

following theorem.

Theorem 7 For the closed-loop system (3.14), the parameter estimation error θ̃ is bounded

and the regulation error xk converges to zero asymptotically.

Proof: Similar to the time-invariant case, select a nonnegative function Vk = P−1
k θ̃2

k, its

difference with respect to the interval N for any k ≥ N is

∆Vk = Vk − Vk−N

= P−1
k θ̃2

k − P−1
k−N θ̃2

k−N
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= P−1
k

(
θ̃k−N − Pkξk−Nxk−N+1

)2
− P−1

k−N θ̃2
k−N

= (P−1
k − P−1

k−N )θ̃2
k−N − 2θ̃k−N ξk−Nxk−N+1 + Pkξ

2
k−N x2

k−N+1

= − x2
k−N+1

1 + Pk−Nξ2
k−N

≤ 0. (3.15)

Thus Vk is nonincreasing, implying that θ̃k is bounded. Applying (3.15) repeatedly for any

k ∈ [pN, (p + 1)N ], and noticing k0 = k − pN , we have

V (k) = V (k0) +
p∑

i=1

∆V (k0 + iN) (3.16)

Since k0 ∈ [0, N), and

p =
k − k0

N
→ ∞

when k → ∞, according to (3.15)

lim
p→∞

V (k) < max
k0∈[0,N)

V (k0) − lim
p→∞

p∑

i=1

x(k0 + (i − 1)N + 1)2

1 + P (k0 + (i − 1)N)ξ(k0 + (i − 1)N)2
. (3.17)

Consider that V (k) is nonnegative, V (k0) is finite in the interval [0, N), thus according to the

convergence theorem of the sum of series, we have

lim
k→∞

x2
k−N+1

1 + Pk−N ξ2
k−N

→ 0. (3.18)

Using (3.18) and the sector condition (3.9), the Key Technical Lemma guarantees that ξk is

bounded and consequently the regulation error xk → 0 as k → ∞.

Remark 15 Since difference equations do not have a finite escape time, the finiteness of

V (k0) is obvious. From the viewpoint of achieving asymptotic convergence, the initial phase

control performance in [0, N) is not as cruitial as that of the continuous-time periodic adaptive
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control. One can choose any controller, not necessarily the same as (3.10), for the initial phase

[0, N), so long as a better performance can be obtained.

3.3 Extension to More General Cases

In this section we consider four extensions to multiple periodic parameters, mixed periodic

and time-invariant parameters, the trajectory tracking problem, and the higher order systems,

respectively.

3.3.1 Extension to Multiple Parameters and Time-Varying Input

Gain

For simplicity, we will still consider a scalar system

xk+1 =
(
θ0

k

)T
ξ0

k + bkuk, x(0) = x0 (3.19)

where θ0 = [θ0
1, · · · , θ0

m]T are unknown periodic parameters, ξ0 = [ξ0
1, · · · , ξ0

m]T is a known

vector valued function. bk ∈ C[0,∞) is a time-varying and uncertain gain of the system

input. The prior information with regards to bk is that the control direction is known and

invariant, that is, bk is either positive or negative and nonsingular for all k. Without loss of

generality, assume that bk > 0. Note that each unknown parameter, θ0
i (k) or bk, may have its

own period Ni or Nb. The periodic adaptive control will still be applicable if there exists a

common period N , such that each Ni and Nb can divide N with an integer quotient. In such a

case, N can be used as the updating period. The presence of the uncertain system input gain

makes the controller design more complex. To derive the periodic adaptive control law, define
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b̂k to be the estimation of bk and b̃k = bk − b̂k, the system dynamics (3.19) can be rewritten as

xk+1 =
(
θ0

k

)T
ξ0

k + bkuk − b̂kuk + b̂kuk =
(
θ0

k

)T
ξ0

k + b̂kuk + b̃kuk. (3.20)

By observation, we can choose the control law

uk = −b̂−1
k

(
θ̂

0

k

)T

ξ0
k (3.21)

where θ̂ = [θ̂1, · · · , θ̂m]. Substituting (3.21) into (3.20) yields the closed-loop system

xk+1 = θ̃
T

k ξk (3.22)

where θ̃k =

[(
θ̃

0

k

)T

, b̃k

]T

, and ξk =

[(
ξ0

k

)T
,−b̂−1

k

(
θ̂

0

k

)T

ξ0
k

]T

. Based on (3.22), the adapta-

tion law is

θ̂k =





θ̂k−N − Pkξk−Nxk−N+1, k ∈ [N,∞)

θ̂0, k ∈ [0, N)
(3.23)

Pk =





Pk−N − Pk−N ξT
k−Nξk−NPk−N

1 + ξT
k−N Pk−Nξk−N

, k ∈ [N,∞)

P0 > 0 k ∈ [0, N)

(3.24)

where the covariance Pk is a positive definite matrix of dimension m+1 and derived from the

relationship P−1
k = P−1

k−N + ξk−NξT
k−N by means of the Matrix Inversion Lemma.

The validity of the above periodic adaption law is verified by the following theorem.

Theorem 8 Under the periodic adaptation law (3.23) and (3.24), the closed-loop dynamics

(3.22) is asymptotically stable.

Proof: The convergence analysis is analogous to the preceding case. Selecting a nonnegative

function Vk = θ̃
T

k P−1
k θ̃k, its difference with respect to the interval N is

∆Vk = Vk − Vk−N
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= θ̃
T

k P−1
k θ̃k − θ̃

T

k−NP−1
k−N θ̃k−N

=
(
θ̃k−N − Pkξk−Nxk−N+1

)T
P−1

k

(
θ̃k−N − Pkξk−Nxk−N+1

)
− θ̃

T

k−NP−1
k−N θ̃k−N

= θ̃
T

k−N (P−1
k − P−1

k−N )θ̃k−N − 2θ̃
T

k−N ξk−Nxk−N+1 + ξT
k−NPkξk−Nx2

k−N+1

= θ̃
T

k−N (ξk−NξT
k−N )θ̃k−N − 2θ̃

T

k−Nξk−Nxk−N+1 + ξT
k−N Pkξk−Nx2

k−N+1

= − x2
k−N+1

1 + ξT
k−NPk−N ξk−N

≤ 0. (3.25)

Following the same steps that lead to (3.18) in Theorem 1, we conclude that

lim
k→∞

x2
k−N+1

1 + ξT
k−NPk−N ξk−N

→ 0. (3.26)

The result (3.25) shows that θ̂
0

and b̂ are bounded because Vk is non-increasing and, thus

the control signal ‖uk‖ ≤ ‖b̂−1
k ‖‖θ̂

0

k‖‖ξ0
k‖ ≤ q‖ξ0

k‖ for some constant q. If the nonlinear

function is sector-bounded, i.e. ‖ξ0
k‖ ≤ c0

1 + c0
2|xk| for some positive constants c0

1 and c0
2, then

‖ξk‖ ≤ ‖ξ0
k‖+ |uk| ≤ c1 + c2|xk| for some positive constants c1 and c2. Thus, establishing the

condition for (3.9) required by the Key Technical Lemma guarantees xk → 0 as k → ∞.

3.3.2 Extension to Mixed Parameters

Often, we have some prior knowledge about the system parametric uncertainties, for instance

we may know that some unknown parameters are time invariant, whereas the rest are time-

varying. This is a nontrivial case, as the more we know, the better we should be able to improve

the control performance. It would be far-fetched if we still apply the periodic adaptation to

those constant parameters, and the traditional adaptation is more suitable.
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Consider the simplest scalar case

xk+1 = θ1(k)ξ1(k) + θ2ξ2(k) + u, x0 = x(0) (3.27)

where θ1(k) is a periodic unknown parameter with period N , θ2 is an unknown constant, ξ1

and ξ2 are known sector-bounded nonlinear functions. The control law is chosen to be

uk = −θ̂1(k)ξ1(k) − θ̂2(k)ξ2(k). (3.28)

The hybrid periodic adaptation law is chosen to be

θ̂1(k) =





θ̂1(k −N) + q1
ξ1(k − N)xk−N+1

1 + ξT
k−NQξk−N

, k ∈ [N,∞)

θ̂0
1, k ∈ [0, N)

θ̂2(k) = θ̂2(k − 1) + q2
ξ2(k − 1)xk

1 + ξT
k−1Qξk−1

where q1 and q2 are positive gains, Q = diag(q1, q2), ξk = [ξ1(k), ξ2(k)]T , and the value of

θ̂0
1 can be chosen to be zero for the initial period [0, N) if no prior information is available.

Substituting the control law (3.28) into (3.27), the closed-loop system is

xk+1 = θ̃1(k)ξ1(k) + θ̃2ξ2(k). (3.29)

Using the periodic property θ1(k) = θ1(k −N) and time invariant property θ2(k) = θ2(k − 1),

subtracting the hybrid adaption law for k ≥ N yields

θ̃1(k) = θ̃1(k − N) − q1
ξ1(k − N)xk−N+1

1 + ξT
k−NQξk−N

(3.30)

θ̃2(k) = θ̃2(k − 1) − q2
ξ2(k − 1)xk

1 + ξT
k−1Qξk−1

. (3.31)

Now let us show the asymptoitical stability of the closed-loop system with the hybrid

adaptive control.
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Theorem 9 For the closed-loop system defined by (3.29), (3.30) and (3.31), the parame-

ter estimation errors θ̃1 and θ̃2 are bounded, and the regulation error xk approaches to zero

aymptotically.

Proof: Choose a nonnegative function below

Vk =
k−1∑

i=k−N

(
1

q1

θ̃2
1(i)

)
+

1

q2

θ̃2
2(k − N), (3.32)

its difference with respect to the interval N is

∆Vk = Vk − Vk−N

=
k−1∑

i=k−N

1

q1

(
θ̃2
1(i) − θ̃2

1(i− N)
)

+
1

q2

(
θ̃2
2(k − N) − θ̃2

2(k − 2N)
)

. (3.33)

This can be rewritten as

∆Vk =
k−1∑

i=k−N

(
1

q1

(
θ̃2
1(i)− θ̃2

1(i − N)
)

+
1

q2

(
θ̃2
2(i− N + 1) − θ̃2

2(i− N)
))

=
k−1∑

i=k−N



[

θ̃1(i) θ̃2(i− N + 1)

]
Q−1




θ̃1(i)

θ̃2(i− N + 1)


− θ̃

T

i−NQ−1θ̃i−N


(3.34)

where θ̃k = [θ̃1(k), θ̃2(k)]T . Next shifting the parameter estimate (3.31) back N steps yields

θ̃2(k − N + 1) = θ̃2(k −N) − q2
ξ2(k − N)xk−N+1

1 + ξT
k−NQξk−N

. (3.35)

Combining the above expression (3.35) with that of θ̃1(k) in (3.30) results in the following




θ̃1(k)

θ̃2(k − N + 1)


 = θ̃k−N − Q

ξk−Nxk−N+1

1 + ξT
k−NQξk−N

. (3.36)

Substituting (3.36) into (3.34) with calculation leads to

∆Vk = −
k−1∑

i=k−N




2

1 + ξT
i−NQξi−N

−
ξT

i−NQξi−N(
1 + ξT

i−NQξi−N

)2


 x2

i−N+1 (3.37)

≤ −
k−1∑

i=k−N

(
x2

i−N+1

1 + ξT
i−NQξi−N

)
(3.38)
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which implies that Vk is nonincreasing (w.r.t. N) and, thus, θ̃1 and θ̃2 are bounded. Similar

to previous derivations, applying (3.38) repeatedly for any k ∈ [pN, (p + 1)N ], and denoting

k0 = k − pN , we have

V (k) = V (k0) +
p∑

i=1

∆V (k0 + iN) (3.39)

Since k0 ∈ [0, N), according to (3.38)

lim
p→∞

V (k) < max
k0∈[0,N)

V (k0) − lim
p→∞

p∑

j=1




k0+jN−1∑

i=k0(j−1)N

(
x2

i−N+1

1 + ξT
i−NQξi−N

)
 . (3.40)

Considering the positiveness of V (k) and the boundedness of V (k0) in the interval [0, N) then,

according to the convergence theorem of the sum of series, we have

lim
k→∞

k−1∑

i=k−N

(
x2

i−N+1

1 + ξT
i−NQξi−N

)
→ 0. (3.41)

Using (3.41) and the sector-bounded condition ‖ξk‖ ≤ c1 + c2|xk| for some constants c1 and

c2, then the Key Technical Lemma guarantees that xk → 0 as k → ∞.

3.3.3 Extension to Tracking Tasks

Consider the scalar system (3.19) with multiple unknown parameters and the unknown pe-

riodic input gain. It is required that the state, xk, follow a given reference trajectory r(k).

Specifying the tracking error as ek = xk − rk, we have

ek+1 = xk+1 − rk+1 =
(
θ0

k

)T
ξ0

k + bkuk − rk+1. (3.42)

Rewrite (3.42) in the form

ek+1 =
(
θ0

k

)T
ξ0

k + bkuk − rk+1 − b̂kuk + b̂kuk =
(
θ0

k

)T
ξ0

k + b̂kuk + b̃kuk − rk+1. (3.43)
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To accomodate the tracking task, the periodic adaptive control (3.21)-(3.24) can be revised

as below

uk = b̂−1
k

(
rk+1 −

(
θ̂

0

k

)T

ξ0
k

)
(3.44)

θ̂k =





θ̂k−N + Pkξk−N ek−N+1, k ∈ [N,∞)

θ̂0, k ∈ [0, N)
(3.45)

Pk =





Pk−N − Pk−Nξ
T

k−Nξk−N Pk−N

1+ξT

k−N Pk−Nξk−N

, k ∈ [N,∞)

P0 > 0 k ∈ [0, N)

(3.46)

where θ̂k =

[(
θ̂

0

k

)T

, b̃k

]T

, and ξk =

[(
ξ0

k

)T
, b̂−1

k

(
rk+1 −

(
θ̂

0

k

)T

ξ0
k

)]T

. The closed-loop

system for any k ≥ N is given by

ek+1 = θ̃
T

k ξk

θ̃k = θ̃k−N − Pkξk−Nek−N+1

Pk = Pk−N − Pk−N ξT
k−Nξk−NPk−N

1 + ξT
k−NPk−N ξk−N

. (3.47)

Note that the tracking error dynamics in (3.47) has the same form as (3.22), and the adaption

mechanism (3.45)-(3.46) also has the same form as (3.23)-(3.24) with the state xk replaced by

the tracking error ek. Thus, Theorem 2 is directly applicable to this case and the asymptotic

convergence of the tracking error ek can easily be verified.

3.3.4 Extension to Higher Order Systems

Finally consider the single input higher order system in canonical form

xk+1 =




0 In−1

0 0


xk +




0

1



(
θT

k ξk + uk

)
(3.48)
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where x ∈ <n, θ = [θ1, · · · , θm]T are unknown periodic parameters, ξ = ξ(x) = [ξ1, · · · , ξm]T

is a known vector valued function which is sector bounded, ‖ξ‖ ≤ c1 + c2‖x‖ (c1 and c2 being

arbitrary positive constants). Similar to the previous case, it is assumed that the unknown

parameters have a common period N .

Assuming that all the states are available, the following control is proposed

uk = −θ̂
T

k ξk (3.49)

with the following parameter adaptation law

θ̂k =





θ̂k−N + Pkξk−Nxn(k − N + 1), k ∈ [N,∞)

θ̂0, k ∈ [0, N)
(3.50)

Pk =





Pk−N − Pk−NξT

k−Nξk−N Pk−N

1+ξ
T

k−N Pk−Nξk−N

, k ∈ [N,∞)

P0 > 0 k ∈ [0, N)

(3.51)

where the covariance Pk is a positive definite matrix of dimension m and derived from the

relationship P−1
k = P−1

k−N +ξk−NξT
k−N by means of the Matrix Inversion Lemma. Note that the

perameter estimate (3.50) is dependent on xn(k) where the subscript n denotes the n-th state

variable. Substitute the control (3.49) into (3.48) and rewrite the result into two subsystems

xa(k + 1) =




0 In−2

0 0


xa(k) +




0

1


xn(k) (3.52)

xn(k + 1) = θ̃
T

k ξk (3.53)

where xa = [x1, · · · , xn−1]
T . Looking into (3.50), (3.51) and (3.53), it is clear that this problem

is transformed to the previous multiple parameter case. Thus the derivations and conclusions

in Theorem 2 hold, as far as the Key Technical Lemma is still valid under the sector condition.
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In order to establish the sector condition, note that the solution of (3.52) is given by

xa(k) =




0 In−2

0 0




k

xa(0) +
k−1∑

i=0




0 In−2

0 0




i 


0

1


xn(k − i − 1) (3.54)

and for k ≥ n − 1 it can be shown that the solution is reduced to

xa(k) =
n−2∑

i=0




0 In−2

0 0




i 


0

1


xn(k − i − 1). (3.55)

Applying the norm on both sides of (3.55) leads to

max
j∈[0,k]

‖xa(j + 1)‖ ≤ (n − 1) max
j∈[0,k]

‖xn(j)‖. (3.56)

The above result is then used to simplify the sector condition ‖ξ‖ ≤ c1 + c2‖x‖ as follows

‖ξk‖ ≤ c1 + c2‖xk‖ ≤ c1 + c2 (‖xa(k)‖ + ‖xn(k)‖)

≤ c1 + c2

(
(n − 1) max

j∈[0,k]
‖xn(j − 1)‖ + max

j∈[0,k]
‖xn(j)‖

)
.

Note that maxj∈[0,k] ‖xn(j − 1)‖ ≤ maxj∈[0,k] ‖xn(j)‖, thus,

‖ξk‖ ≤ c1 + nc2 max
j∈[0,k]

‖xn(j)‖ ≤ c1 + nc2

(
‖xn(0)‖ + max

j∈[0,k]
‖xn(j + 1)‖

)

≤ c0
1 + c0

2 max
j∈[0,k]

‖xn(j + 1)‖ (3.57)

where c0
1 = c1 + nc2‖xn(0)‖ and c0

2 = nc2.

Remark 16 Extension from the first order to higher order can also be applied to systems with

the unknown input gain, mixed parameters, or tracking problems, as discussed in preceding

subsections 3.3.1, 3.3.2, and 3.3.3.
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3.4 Illustrative Example

Consider a system

xk+1 = θk sin(xk + 1) + bkuk, x(0) = 1 (3.58)

where θk = sin(πk/25). We use |xi|sup to record the maximum absolute regulation error during

the i-th period.

First let bk = 3 + 0.5 sin(πk/50). The minimum common period is N = 100. A typical

adaptive controller is used with the Least Squares estimator. Fig.3.1 (a) shows the regulation

error over each period. By virtue of the rapid time-varying nature, the tracking error does not

converge. Applying the proposed periodic adaptation method, Fig.3.1 (b) shows the maximum

regulation error over each period. We can clearly see the effectiveness, as the regulation error

has been reduced to less than 1% after 50 periods.

Next, let bk = 3 be an unknown constant. Still using the periodic adaptation law, the

result is shown in Fig.3.2 (a). Now assume that it is known a priori that bk is an unknown

constant, the hybrid adaptation law is adopted and the result is shown in Fig.3.2 (b). The

performance improvement is immediately obvious.

Finally, let bk = 3+0.5 sin(πk/50) again, and it is required that xk track a given reference

rk = sin(πk/50). Fig.3.3 shows that the tracking error is asymptotically convergent.
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3.5 Conclusion

In this Chapter we propose an adaptive control approach characterized by periodic parameter

adaptation, which complements the existing adaptive control characterized by instantaneous

adaptation. By virtue of the periodic adaptation, the approach is applicable to system with

periodic parameters or periodic disturbances which can be rapidly time-varying. The only

prior knowledge needed in the periodic adaptation is the periodicity. A hybrid adaptation

scheme is also proposed when more of the parameter knowledge is available. Both regulation

and tracking problems were discussed. Extension to higher order processes was also exploited

The validity of the proposed approach is confirmed through theoretical analysis and numerical

simulations.
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Figure 3.1: Error convergence using (a) classical adaptation and (b) periodic adaptation
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Figure 3.2: Error convergence with mixed parameters using (a) periodic adaptation and (b)

hybrid periodic adaptation
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Figure 3.3: Tracking error convergence using periodic adaptation
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Chapter 4

Iterative Learning Control for SISO

Sampled-Data Systems

4.1 Introduction

The idea of using an iterative method to compensate for a repetitive error is not new. For

example, physical feats such as dance routines need to be repeated iteratively to be perfected.

During each repitition, a dancers observes how he/she correctly executes the required motions

correcting any errors each time. As the dancer continues to practice, the correct motion is

learned and becomes ingrained into the muscle memory so that the execution of the routine is

iteratively improved. The converged muscle motion profile is an open-loop control generated

through repetition and learning. This type of learned open-loop control strategy is the essence

of ILC.

We consider learning controllers for systems that perform the same operation repeatedly

and under the same operating conditions. For such systems, a nonlearning controller yields

the same tracking error on each pass. Although error signals from previous iterations are infor-
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mation rich, they are unused by a nonlearning controller. The objective of ILC is to improve

performance by incorporating error information into the control for subsequent iterations. In

doing so, high performance can be achieved with low transient tracking error despite large

model uncertainties and repeating disturbances.

ILC differs from other learning-type control strategies, such as adaptive control, neural

networks, and repetitive control (RC). Adaptive control strategies modify the controller, which

is a system, whereas ILC modifies the control input, which is a signal [44]. Additionally,

adaptive controllers typically do not take advantage of the information contained in repetitive

command signals. Similarly, neural network learning involves the modification of controller

parameters rather than a control signal; in this case, large networks of nonlinear neurons are

modified. These large networks require extensive training data, and fast convergence may be

difficult to guarantee [45], whereas ILC usually converges adequately in just a few iterations.

ILC is perhaps most similar to RC [46] except that RC is intended for continuous operation,

whereas ILC is intended for discontinuous operation. For example, an ILC application might

be to control a robot that performs a task, returns to its home position, and comes to a rest

before repeating the task. On the other hand, an RC application might be the control of a

conveyer system in a mass-production line moving items at periodic intervals where the next

iteration immediately follows the current iteration. The difference between RC and ILC is

the setting of the initial conditions for each trial [47]. In ILC, the initial conditions are set

to the same value on each trial. In RC, the initial conditions are set to the final conditions

of the previous trial. The difference in initial-condition resetting leads to different analysis
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techniques and results [47].

Traditionally, the focus of ILC has been on improving the performance of systems that

execute a single, repeated operation. This focus includes many practical industrial systems

in manufacturing, robotics, and chemical processing, where mass production on an assembly

line entails repetition. ILC has been successfully applied to industrial robots [48]-[52], com-

puter numerical control (CNC) machine tools [53], wafer stage motion systems [54], injection-

molding machines [55], [56], and many more.

The basic ideas of ILC can be found in a U.S. patent [13] filed in 1967 as well as the 1978

journal publication [12] written in Japanese. However, these ideas lay dormant until a series

of articles in 1984 [48], [57]-[59] sparked widespread interests in ILC. Since then, the number

of publications on ILC has been growing rapidly, including two special issues [60], [61], several

books [44], [62]-[64], and three surveys [65]-[67].

The aim of this Chapter is to present a summary of theoretical analysis and design of

ILC algorithms in the time and frequency domain. The analysis is based on the use of linear

iterative systems. By incorporating the ILC algorithm and the system to be controlled into

this class of systems many useful results from linear systems theory can be applied. As

a consequence both first-order and high-order ILC algorithms can be analysed. The work

concludes with a real-time application on a high-precision piezo-motor.
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4.2 Preliminaries

In this section we shall present the problem description as well as highlight the basic differences

between continuous-time ILC and sampled-data ILC.

4.2.1 Problem Description

Considering a tracking task that ends in a finite interval [0, N ] and repeats. Let the desired

trajectory be yr(k), k ∈ [0, N ]. Consider the ILC law

ui+1(k) = Q(q)[ui(k) + βL(q)ei(k + 1)]

ei(k) = yr(k) − yi(k)
(4.1)

where Q(q) is a filter function, L(q) is a learning function, β > 0 is a learning gain, i denotes

the iteration number, and yi(k) is the output of the sampled-data system

xi(k + 1) = Φxi(k) + Γui(k)

yi(k) = Cxi(k)
(4.2)

with the initial states xi(0). Define

xr(k + 1) = Φxr(k) + Γur(k)

yr(k) = Cxr(k)
(4.3)

where xr, yr are the desired state and output trajectories and ur is the required control input

to achieve those trajectories. Subtracting (4.2) from (4.3) leads to

∆xi(k + 1) = Φ∆xi(k) + Γ∆ui(k)

ei(k) = C∆xi(k).
(4.4)

In all the analysis it is assumed that the identical initial condition i.i.c, e(0) = 0, holds.

The control problem is to design the learning function L(q) and filter Q(q) such that the

maximum bound of the tracking error in an iteration converges to zero asymptotically with
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respect to iteration, i.e,

sup
k∈(0,N)

|ei(k)|i→∞ → 0. (4.5)

4.2.2 Difference with Continuous-Time Iterative Learning Control

In the derivation of the ILC, the question of the relative degree of the system is very important.

For example, consider the n-order SISO system with a relative degree of n

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t).
(4.6)

Since the system is of relative degree n, the term CAn−1B is non-zero which is inferred from

dn

dtn
y(t) = CAnx(t) + CAn−1Bu(t) (4.7)

while CB upto CAn−2B are 0.

Now, consider that (4.6) is sampled with time T resulting in the system

xk+1 = Φxk + Γuk

yk = Cxk.
(4.8)

The input gain for the sampled data system (4.8) is given by

Γ =
∫ T

0
eAτBdτ =

∫ T

0

(
B + ABτ

1

2!
A2Bτ 2 + · · · + 1

(n − 1)!
An−1Bτn−1 + O(T n)

)
dτ

(4.9)

which can be solved to give the expression

Γ = BT +
1

2!
ABT 2 + · · · + 1

n!
An−1BT n + O(T n+1) (4.10)

premultiplying (4.10) with C results in

CΓ =
1

n!
CAn−1BT n + O(T n+1). (4.11)
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This has an important implication, which is that the relative degree of the system has changed

from n to 1 upon sampling. This can be seen from

yk+1 = CΦxk + CΓuk. (4.12)

This result shows that in the continuous-time, the ILC would require the nth derivative of

the output signal while it is not so in the sampled-data ILC. This greatly simplifies the ILC

derivation for sampled-data systems irrespective of order and relative degree in continuous-

time. However, note that the size of the term CΓ depends on the sampling time and order of

the system. Based on this result we can proceed to the analysis of the discrete-time ILC.

Remark 17 The above discussion may also be extended to LTV systems provided that the

condition CΓ 6= 0 is satisfied.

4.3 General Iterative Learning Control: Time Domain

Considering (4.4) and define ∆x̄i = [∆xi(1), · · · ,∆xi(N)]T , ei = [ei(1), · · · , ei(N)]T , and

∆ui = [∆ui(0), · · · ,∆ui(N − 1)]T . Assuming that the i.i.c is satisfied, (4.4) can be written as

∆x̄i =




Γ 0 · · · 0

ΦΓ Γ · · · 0
...

...
. . .

...

ΦN−1Γ ΦN−2Γ · · · Γ




∆ui

ei =




CΓ 0 · · · 0

CΦΓ CΓ · · · 0
...

...
. . .

...

CΦN−1Γ CΦN−2Γ · · · CΓ




︸ ︷︷ ︸
P

∆ui. (4.13)
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If the rational functions Q(q) and L(q) are assumed causal and expanded as infinite series by

dividing the denominator into its numerator, yielding

Q(q) = q0 + q1q
−1 + q2q

−2 + · · ·

and

L(q) = l0 + l1q
−1 + l2q

−2 + · · ·

respectively. In the lifted form the matrices Q and L are lower-triangular Toeplitz matrices

as shown below

Q =




q0 0 · · · 0

q1
. . .

. . .
...

...
. . .

. . . 0

qN−1 · · · q1 q0




, L =




l0 0 · · · 0

l1
. . .

. . .
...

...
. . .

. . . 0

lN−1 · · · l1 l0




. (4.14)

Subtracting both sides of (4.1) from ur(k) and writing the result in lifted form

∆ui+1 = Q∆ui − βQLei + (I −Q)ur (4.15)

where ur = [ur(0), · · · , ur(N − 1)]T . Substituting (4.13) into (4.15) gives

∆ui+1 = Q(I − βLP)︸ ︷︷ ︸
F

∆ui + (I − Q)ur. (4.16)

It can easily be shown that F has q0(1 − βl0CΓ) as a repeated eigenvalue. Stability of (4.16)

is guaranteed if

|q0(1 − βl0CΓ)| < 1. (4.17)

Remark 18 Condition (4.17) is possible since CΓ 6= 0. This is true for sampled-data systems

as was shown previously. However, depending on the order and degree of the continuous

system, CΓ can be quite small requiring a large learning gain.
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Remark 19 Condition (4.17) is sufficient for BIBO stability, but, does not necessarily guar-

antee a montonically decreasing ‖ei‖, [68].

4.3.1 Convergence Properties

We can further investigate the convegence properties of the ILC system by looking at the

matrix F in (4.16). Now consider (4.1) with Q(q) = L(q) = I, (4.16) becomes

∆ui+1 = (I − βP)∆ui (4.18)

which can be expanded to the form

∆ui+1 =




(1 − βCΓ) 0 · · · 0

−βCΦΓ (1 − βCΓ)
. . .

...
...

...
. . . 0

−βCΦN−1Γ −βCΦN−2Γ · · · (1 − βCΓ)




︸ ︷︷ ︸
F

∆ui. (4.19)

The stability of (4.19) is now reduced to

|(1 − βCΓ)| < 1. (4.20)

Assume that

α = sup
1≤k≤N−1

|βCΦkΓ| (4.21)

and let γ = 1 − βCΓ. Thus, we approximate the worst case matrix F as follows

Fwc =




γ 0 · · · 0

−α
. . .

. . .
...

...
. . .

. . . 0

−α · · · −α γ




. (4.22)
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Note that a general solution of (4.19) is given by

∆ui+1 = Fi∆u0 (4.23)

where ∆u0 is the error in control at the zeroth iteration. If we use the approximation of F to

compute Fi we get

Fwc
i =




γ 0 · · · 0

−α
. . .

. . .
...

...
. . .

. . . 0

−α · · · −α γ




i

=




γi 0 · · · 0

S(1)
. . .

. . .
...

...
. . .

. . . 0

S(N − 1) · · · S(1) γi




(4.24)

where

S(m) =
min(i,m)∑

p=1

(−1)p
(

iCp

) (
m−1Cp−1

)
γi−pαp. (4.25)

The binomial coefficient mCp is plotted for a constant m as a function of p in Fig.4.1. It can

be seen that the coefficient attains a very large value before converging to unity and if the

convergence due to α and γ is slower than that of the initial divergence of mCp then S(m)

would also follow the characteristic of mCp. This overshooting phenomenon will be illustrated

in later examples. From the above results it is obvious that we need to guarantee monotonic

convergence. Two conditions exist that guarantee montonic convergence. The first one is

time domain based while the other is frequency domain based and will be investigated later

on. According to [65], if |1 − βCΓ| < 1 then the monotonic convergence is guaranteed if the

following condition is satisfied

|CΓ| >
∑N

j=2 |CΦj−1Γ|, ∀βCΓ ∈ (0, 1)

|CΓ| < 1
|β| −

∑N
j=2 |CΦj−1Γ|, ∀βCΓ ∈ (1, 2).

(4.26)
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Figure 4.1: Plot of mCi

Later it will be shown that with the proper selection of the learning function, L(q), likelihood

of satisfying the above condition is increased. Based on (4.25) and (4.26) it is worthwhile to

ponder the effect of sampling time on the ILC convergence. Note that the parameter N in

(4.24) and (4.26) represents the number of samples per iteration and that the lower the value

of N (larger the sampling time) the lower the peak of the function mCp as can be infered from

Fig.4.1. Similarly, a lower value of N makes (4.26) more likely to be satisfied. However, this

is true only for the ideal case of a stable LTI system with no disturbance. If the system is

subjected to a repeatable disturbance then the sampling-time must be selected such that as

much as possible of the disturbance bandwidth is covered. Thus, a trade-off will exist between

the selection of the sampling-time and how much of the disturbance bandwidth we will need

to cover.
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4.3.2 D-Type and D2-type ILC

In this section, two representative designs of the learning function, L(q) will be considered

and later on a detailed guideline will be presented from the frequency-domain perspective for

the selection of appropriate learning functions. Consider the ILC

ui+1(k) = ui(k) + βL(q)ei(k + 1). (4.27)

If we are to consider the D-type ILC then L(q) represents a first order difference and is given

by, L(q) = 1 − q−1. In the lifted form the learning function L(q) is given by

L =




1 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 −1 1




. (4.28)

Subtracting both sides of (4.27) from ur(k) and writing the result into the lifted form

∆ui+1 = ∆ui − β




1 0 · · · · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 −1 1




ei. (4.29)

Substituting (4.13) into (4.29) results in

∆ui+1 =




γ 0 · · · 0

−βCΦ0(Φ − I)Γ γ
. . .

...
...

. . .
. . . 0

−βCΦN−2(Φ − I)Γ · · · −βCΦ0(Φ − I)Γ γ




∆ui (4.30)

where γ = (1 − βCΓ). A closer look at the matrix in (4.30) will reveal that the eigenvalues

are similar to that of the matrix in (4.19). Thus, BIBO stability is guaranteed if

|(1 − βCΓ)| < 1. (4.31)
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Another point to note is that in (4.30) the term (Φ−I) ≈ AT for small T . This indicates that

in comparison to the matrix in (4.19) the non-diagonal elements in (4.30) are smaller with an

order O(T ). If we revisit condition (4.26), for the D-type it is modified to

|CΓ| >
∑N

j=2 |CΦj−2(I − Φ)Γ|, ∀βCΓ ∈ (0, 1)

|CΓ| < 1
|β| −

∑N
j=2 |CΦj−2(I − Φ)Γ|, ∀βCΓ ∈ (1, 2).

(4.32)

Since, (Φ − I) ≈ AT , the above conditions are more likely to be satisfied for the D-type as

opposed to the P-type. If we proceed further and introduce the D2-type where the learning

function L(q) represents a 2nd-order difference given by

L(q) = 1 − 2q−1 + q−2. (4.33)

In the lifted form the learning function L(q) is given by

L =




1 0 · · · · · · · · · 0

−2 1
. . .

. . .
. . .

...

1 −2 1
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 1 −2 1




. (4.34)

Following the same procedure as in the derivation of (4.30) we obtain

∆ui+1 =




γ 0 · · · · · · 0

−βCΦ0(2Φ − I)Γ γ
. . .

. . .
...

−βCΦ0(Φ − I)2Γ
.. .

. . .
. . .

...
...

. . .
. . .

. . . 0

−βCΦN−3(Φ − I)2Γ · · · −βCΦ0(Φ − I)2Γ −βCΦ0(2Φ − I)Γ γ




∆ui

(4.35)

where γ = 1 − βCΓ. Note that as in the case of the D-type ILC the eigenvalues are the

same as that of the P-type ILC. However, most of the non-diagonal elements contain the term
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(Φ−I)2 which is significant since (Φ−I)2 ≈ (AT )2 ≈ O(T 2). Condition (4.26) for the D2-type

is modified to

|CΓ| > |C(I − 2Φ)Γ| +∑N
j=3 |CΦj−3(I − Φ)2Γ|, ∀βCΓ ∈ (0, 1)

|CΓ| < 1
|β| − |C(I − 2Φ)Γ| −∑N

j=3 |CΦj−3(I − Φ)2Γ|, ∀βCΓ ∈ (1, 2).
(4.36)

Note that in condition (4.36) the term (Φ − I)2 is dominating. Since (Φ − I)2 ≈ O(T 2) it

increases the likelihood of (4.36) being satisfied, thus, guaranteeing asymptotic convergence.

4.3.3 Effect of Time-Delay

Consider the following LTI system with control input delay

ẋi(t) = Axi(t) + Bui(t − Td)

yi(t) = Cxi(t)
(4.37)

where Td is the time delay. If system (4.37) is sampled with a sampling time T then it is

possible to write

Td = mT + Tf

where m ∈ Z+, Z+ being the set of positive integers, and 0 ≤ Tf < T such that

xi(k + 1) = Φxi(k) + Γ1ui(k − m) + Γ2ui(k − m − 1)

yi(k) = Cxi(k). (4.38)

It can be easily shown that

Γ1 =
∫ T

Tf

eAτBdτ, Γ2 =
∫ Tf

0
eAτBdτ. (4.39)

Rewrite (4.38)

xi(k + m + 1) = Φxi(k + m) + Γ1ui(k) + Γ2ui(k − 1)

yi(k + m) = Cxi(k + m). (4.40)
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Define

xr(k + m + 1) = Φxr(k + m) + Γ1ur(k) + Γ2ur(k − 1)

yr(k + m) = Cxr(k + m) (4.41)

where xr, yr are the desired state and output trajectories, and ur is the control input required

to achieve those trajectories. Subtracting (4.40) from (4.41) gives the following error dynamics

∆xi(k + m + 1) = Φ∆xi(k + m) + Γ1∆ui(k) + Γ2∆ui(k − 1)

ei(k + m) = C∆xi(k + m). (4.42)

Defining ∆x̄i = [∆xi(m+1), · · · ,∆xi(N)]T , ei = [ei(m+1), · · · , ei(N)]T , and ∆ui = [∆ui(0), · · · ,

∆ui(N − m − 1)]T . Assuming that the i.i.c is satisfied (∆xi(m) = ei(m) = 0), (4.42) can be

written as

∆x̄i =




Γ1 0 · · · 0

ΦΓ1 + Γ2 Γ1 · · · 0
...

...
. . .

...

ΦN−m−2(ΦΓ1 + Γ2) ΦN−m−3(ΦΓ1 + Γ2) · · · Γ1




∆ui

ei =




CΓ1 0 · · · 0

CΦΓ1 + CΓ2 CΓ1 · · · 0
...

...
. . .

...

CΦN−m−2(ΦΓ1 + Γ2) CΦN−m−3(ΦΓ1 + Γ2) · · · CΓ1




∆ui. (4.43)

Consider the ILC law

ui+1(k) = ui(k) + βei(k + m + 1). (4.44)
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Note that (4.44) has been modified for the time-delay. If both sides of(4.44) are subtracted

from ur(k) and the result written in the lifted form similar to (4.13), then we get

∆ui+1 = ∆ui − βei. (4.45)

Substituting (4.43) into (4.45) leads to

∆ui+1 =




(1 − βCΓ1) 0 · · · 0

−β(CΦΓ1 + CΓ2) (1 − βCΓ1) · · · 0
...

...
. . .

...

−βCΦN−m−2(ΦΓ1 + Γ2) −βCΦN−m−3(ΦΓ1 + Γ2) · · · (1 − βCΓ1)




∆ui.

(4.46)

Note that the matrix in (4.46) has (1 − βCΓ1) as a repeated eigenvalue. BIBO stability of

(4.46) requires that

|(1 − βCΓ1)| < 1. (4.47)

Remark 20 From the above results it can be seen that for a special case of fractional time-

delay, i.e m = 0, (4.1) can still guarantee BIBO stability provided that condition (4.47) is

satisfied. Also note that as Tf approaches T then Γ1 will decrease and, therefore, the learning

gain β must increase to satisfy (4.47).

4.4 General Iterative Learning Control: Frequency Do-

main

We have seen that based on the time-domain analysis it is only possible to guarantee BIBO

stability. Based on this the system may not behave in a desirable manner. Thus, it is necessary

to explore the possibility of guaranteeing monotonic convergence.
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Consider the one-sided z-transformation of (4.4)

∆Xi(z) = (Iz − Φ)−1Γ∆Ui(z)

Ei(z) = C∆Xi(z) = C (Iz − Φ)−1 Γ︸ ︷︷ ︸
P (z)

∆Ui(z). (4.48)

Obtain the z-transform of (4.1) and after subtracting both sides from Ur(z) we get

∆Ui+1(z) = Q(z) [∆Ui(z) − zβL(z)Ei(z)] + [1 − Q(z)]Ur(z). (4.49)

Substitution of (4.48) into (4.49) leads to

∆Ui+1(z) = Q(z) [1 − zβL(z)P (z)]︸ ︷︷ ︸
F (z)

∆Ui(z) + [1 − Q(z)]Ur(z). (4.50)

An important point to note is that if F (z) is expanded as an infinite series

F (z) = f0 + f1z
−1 + f2z

−2 + f3z
−3 + · · ·

then the first N coefficients of the series represent the first column of the Toeplitz matrix F

in (4.16), in other words

F =




f0 0 · · · 0

f1
. . .

. . .
...

...
. . .

. . . 0

fN−1 · · · f1 f0




.

According to [68], if F (z) in (4.50) is stable and causal then the condition

sup
θ∈[−π,π]

∣∣∣F (ejθ)
∣∣∣ = sup

θ∈[−π,π]

∣∣∣Q(ejθ)
[
1 − ejθβL(ejθ)P (ejθ)

]∣∣∣ < 1 (4.51)

where θ = ωkT , implies that the matrix norm of F

‖F‖ < 1.
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Remark 21 Condition (4.51) is more conservative than (4.20) as it implies that the norm

‖ei‖ is monotonically decreasing and, thus, guarantees monotonic convergence.

Remark 22 Note that in many cases the plant P (z) may not be stable, however, a stable

P (z) is needed as a prerequisite to satisfying condition (4.51). This can be achieved using

current-cycle iterative learning control.

4.4.1 Current-Cycle Iterative Learning

It was seen in the previous sections that along with condition (4.51) the plant P (z) must be

stable in order to guarantee monotonic convergence of the ILC system. This can be achieved

by including an inner closed-loop feedback to stabalize the plant.

Consider once more the sampled-data system (4.2)

xi(k + 1) = Φxi(k) + Γui(k)

yi(k) = Cxi(k)

where it will be assumed that Φ has one or more unstable eigenvalues (or poles). The closed-

loop control approach can be based on state feedback or output feedback depending on the

availability of measured states. The state feedback approach is rather straight forward and

will not be covered in details. Consider the closed-loop state feedback combined ILC law

ui(k) = −Kxi(k) + vi(k) (4.52)

where vi can be any of the ILC laws that were discussed up to this point. Note that the
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substitution of (4.52) in (4.2) results in

xi(k + 1) = (Φ − ΓK)xi(k) + Γvi(k). (4.53)

Clearly the state feedback gain K can be desigend such that the system has stable eigenvlaues.

From here on, all the results shown earlier apply.

Now consider if only the output measurement is available. In this case we will use an

output feedback controller and the closed-loop output feedback combined ILC law is

ui(k) = G(q)ei(k) + vi(k) (4.54)

where G(q) represents the controller function. For this analysis we will consider a general

ILC. Thus, vi is

vi(k) = Q(q) [vi−1(k) + βL(q)ei−1(k + 1)] . (4.55)

The z-transformations of (4.54) and (4.55) are, [67],

Ui(z) = G(z)Ei(z) + Vi(z) (4.56)

and

Vi(z) = Q(z) [Vi−1(z) + βzL(z)Ei−1(z)] . (4.57)

The input-output relationship of the plant in z domain is given by

Yi(z) = C(Iz − Φ)−1Γ︸ ︷︷ ︸
P (z)

Ui(z). (4.58)

Note that the tracking error is ei(k) = yr(k) − yi(k). Thus,

Ei(z) = Yr(z) − Yi(z) = Yr(z) − P (z)Ui(z). (4.59)
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Substitution of (4.56) in (4.59) and simplifying the result we get

Ei(z) =
1

1 + G(z)P (z)
Yr(z) − P (z)

1 + G(z)P (z)
Vi(z) (4.60)

which can be rewritten as

− P (z)

1 + G(z)P (z)
Vi(z) = Ei(z) − 1

1 + G(z)P (z)
Yr(z). (4.61)

If both sides of (4.57) are multiplied by − P (z)
1+G(z)P (z)

we get

− P (z)

1 + G(z)P (z)
Vi(z) = − Q(z)P (z)

1 + G(z)P (z)
Vi−1(z) − β

zQ(z)L(z)P (z)

1 + G(z)P (z)
Ei−1(z). (4.62)

Substituting (4.61) and simplifying we get

Ei(z) = Q(z)

(
1 − β

zL(z)P (z)

1 + G(z)P (z)

)
Ei−1(z) +

1 −Q(z)

1 + G(z)P (z)
Yr(z). (4.63)

Define P ′(z) as the closed-loop transfer function

P ′(z) =
P (z)

1 + G(z)P (z)
, (4.64)

(4.63) becomes

Ei(z) = Q(z) (1 − zβL(z)P ′(z))Ei−1(z) +
1 − Q(z)

1 + G(z)P (z)
Yr(z). (4.65)

From (4.65) we see that monotonic convergence requires that P ′(z) be stable and the condition

sup
θ∈−π,π

∣∣∣Q(ejθ)
(
1 − ejθβL(ejθ)P ′(ejθ)

)∣∣∣ < 1 (4.66)

be satisfied. The poles of the transfer function P ′(z) can be properly selected by designing

G(z) while condition (4.66) can be satisified by the proper designs of Q(z), L(z) and β.
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However, note that the tracking error E(z) is effected by Yr(z) through 1−Q(z)
1+G(z)P (z)

. Thus, the

designs of G(z) and Q(z) must also take into account that

sup
θ∈−π,π

∣∣∣∣∣
1 − Q(ejθ)

1 + G(ejθ)P (ejθ)

∣∣∣∣∣� 1. (4.67)

4.4.2 Considerations for L(q) and Q(q) Selection

In this section we will discuss selection criteria for L(q) and Q(q) to achieve the desired

monotone convergence of the ILC system.

Consider the ILC system given by (4.65). Without loss of generality we will assume that

the P (z) is stable and G(z) ≡ 0. Thus, without a feedback loop (4.65) becomes

Ei(z) = Q(z) [1 − βzL(z)P (z)]Ei−1(z) + [1 −Q(z)]Yr(z). (4.68)

If it is assumed that Q(z) = 1 then, ideally, selecting L(z) = 1
zβP (z)

would lead to the fastest

possible convergence in the monotone sense. This, however, is impractical as it is not possible

to identify P (z) exactly for real systems. Consider the term [1 − βzL(z)P (z)]. The monotonic

convergence requires that [1 − βzL(z)P (z)] be within a unit circle centered at the origin of

the complex plane. This can be restated as a requirement that βzL(z)P (z) be within a unit

circle centered at (1, 0) on the complex plane as shown in Fig.4.2. From this condition we

observe that stability requires that

6 (ejθL(ejθ)P (ejθ)) = ϕ ∈ (−π/2, π/2), ∀θ ∈ [−π, π]

supθ∈[−π,π] |βejθ(ϕ)L(ejθ(ϕ))P (ejθ(ϕ))| < 2 cos(ϕ).
(4.69)

An important fact to note is that zL(z) should ensure that as | 6 (ejθL(ejθ)P (ejθ))| → π/2

then |βejθL(ejθ)P (ejθ)| → 0.
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Figure 4.2: Monotonic convergence region for βzL(z)P (z)

On the other hand, the selection of Q(z) must take into consideration that the term

[1−Q(z)] be minimized and be as close as possible to zero at steady-state thereby preventing

any steady state errors. Thus, Q(z) is generally selected as a low pass filter. An advantage

of using Q(z) is that the stability region for certain frequencies can be increased if Q(z) is a

filter with a gain that is less than one. This can be seen from the condition shown below, [69],

∣∣∣1 − βejθL(ejθ)P (ejθ)
∣∣∣ <

1

|Q(ejθ)| , θ ∈ [−π, π]. (4.70)

Later on, some examples will be presented to highlight the above points.

4.4.3 D-Type and D2-type ILC

Consider the ILC

ui+1(k) = Q(q) [ui(k) + βqL(q)ei(k)] (4.71)

substituting L(q) = 1 − q−1 and performing the z-transform of (4.71) after subtracting both

sides from ur we obtain

∆Ui+1(z) = Q(z) [∆Ui(z) − (z − 1)βEi(z)] + [1 −Q(z)]Ur(z). (4.72)
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Substitution of (4.48) into (4.72) leads to

∆Ui+1(z) = Q(z) [1 − (z − 1)βP (z)]∆Ui(z) + [1 − Q(z)]Ur(z). (4.73)

According to the results with the P-type ILC, monotonic convergence is guaranteed if

sup
θ∈[−π,π]

∣∣∣Q(ejθ)
[
1 − β(ejθ − 1)P (ejθ)

]∣∣∣ < 1. (4.74)

Similarly for L(q) = 1 − 2q−1 + q−2, the stability condition would be

sup
θ∈[−π,π]

∣∣∣Q(ejθ)
[
1 − β(ejθ − 2 + e−jθ)P (ejθ)

]∣∣∣ < 1. (4.75)

In Fig.4.3 the magnitude and phase diagrams of zL(z) are plotted w.r.t to the frequency

normalized by the sampling frequency ws = 2π
T

. The phase diagram indicates that at low

frequency the phase response is 90 degrees which would violate the stability condition (4.69)

if P (z) has a phase greater than or equal to 0 degrees at low frequencies. This learning

function would work well if it is applied to a second order system with a single integrator or a

third order system with a single integrator and a cut-off frequency near ws

2
. Similarly for the

D2-type, the learning function would work ideally for a double integrator system or a third

order system with a double integrator and cutoff frequency near ws

2
.

4.5 Numerical Example: Time Domain

4.5.1 P-type ILC

Consider the second order system

ẋi(t) = Axi(t) + Bui(t)

yi(t) = Cxi(t)
(4.76)
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Figure 4.3: Magnitude and Phase of zL(z) for L(z) = 1 − z−1
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Figure 4.4: Magnitude and Phase of zL(z) for L(z) = 1 − 2z−1 + z−2

where the system matrices are given by

A =




0 1

0 −144


 , B =




0

6
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C =
[

1 0

]
.

This is the nominal model of a piezo-motor stage that will be used in the experimental appli-

cation of the ILC laws. The sampled-data system representation of (4.76) is given by

xi(k + 1) = Φxi(t) + Γui(k)

yi(k) = Cxi(k)
(4.77)

where the system matrices are given by

Φ = eAT , Γ =
∫ T

0
eAτdτB (4.78)

and T is the sampling period. If the sampling time is set to 1ms, (4.78) becomes

Φ =




1 9.313 × 10−4

0 0.8659


 , Γ =




2.861 × 10−6

0.0056


 .

If the following ILC is used

ui+1(k) = ui(k) + βei(k + 1) (4.79)

ei(k) = yr(k) − yi(k)

where the desired output trajectory is selected as yr(k) = 0.030 + 0.030 sin(2πkT − π
2
) and

each iteration is 0.5s in duration. The learning gain, β, is selected as 2 × 105 such that

1 − βCΓ = 0.4278. The maximum error for each iteration is plotted in Fig.A.10.

4.5.2 D-Type and D2-type ILC

Now consider the D-type ILC

ui+1(k) = ui(k) + β(ei(k + 1) − ei(k)) (4.80)
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where the learning gain, β, is selected as 2 × 105 similar to the P-type ILC case. This is

because the eigenvalues of the system in the iteration domain are the same for both cases.

Thus, 1−βCΓ = 0.4278 for this example. The maximum error for each iteration is plotted in

Fig.4.7. In Fig.4.8 the time-domain repsonse is plotted. Note that the performance with the

D-type ILC is similar to the P-type ILC. However, in the frequency domain analysis it will

be shown that it is possible to select proper learning gain to achieve monotonic ‖ei‖. It will

also be shown that this is not possible for the P-type ILC.

Finally consider the D2-type ILC

ui+1(k) = ui(k) + β(ei(k + 1) − 2ei(k) + ei(k − 1)) (4.81)

where the learning gain, β, is selected as 2× 105 similar to the P-type and D-type ILC cases.

The maximum error for each iteration is plotted in Fig.4.10. Note that the performance with

the D2-type ILC is much better than the previous cases. Monotone convergence is achieved in

this case as opposed to the P-type and D-type with the same learning gain. This is because in

condition (4.36) the term (Φ − I)2 is rather small and, thus, the condition can be met easily.

4.6 Numerical Example: Frequency Domain

4.6.1 P-type ILC

In order to have more insight into the example considered in the Time domain analysis, again

consider the system (4.77), the input-output relationship is given by

Y (z) = P (z)U(z). (4.82)
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Figure 4.5: Tracking error profile of the system using P-type ILC
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Figure 4.6: Desired and actual ouput of the system using P-type ILC

Using the same parameters as in the time-domain example, the transfer function of the system,

P (z), is

P (z) = C(Iz − Φ)−1Γ =
2.861 × 10−6z + 2.727 × 10−6

z2 − 1.866z + 0.866
. (4.83)

The filter Q(z) and learning function L(z) are set to unity. Thus, the Nyquist diagram of

F (z) is constructed in Fig.4.10. From the figure we see that |F (ejθ)| does not lie inside the
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Figure 4.7: Tracking error profile of the system using D-type ILC
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Figure 4.8: Desired and actual ouput of the system using D-type ILC

unit circle for any frequencies and as θ → 0 then |F (ejθ)| → ∞. Thus, condition (4.51) is not

satisfied and monotonically decreasing ‖ei‖ is not guaranteed.

4.6.2 D-type and D2-type ILC

Consider now if the Nyquist diagram of Q(z) [1 − βzL(z)P (z)] is constructed using the same

parameters as the P-type ILC example while using L(z) = 1− z−1. From Fig.4.11 we see that
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Figure 4.9: Tracking error profile of the system using D2-type ILC
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Figure 4.10: Nyquist plot of F(z) for P-type ILC

the Nyquist diagram of Q(ejθ)
[
1 − β(ejθ − 1)P (ejθ)

]
lies outside the unit disk but there is a

possibility of selecting learning gains β that would allow it to stay inside the unit circle. For

example choosing the value of β at around 4.75 × 104 or below will lead to a Nyquist plot

inside the unit circle as shown in Fig.4.12. Now, if we go back to the time-domain analysis

and use β = 4.75 × 104 then the repeated eigenvlaue of (4.30) is 1 − βCΓ = 0.8641 < 1.
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The maximum tracking error for each iteration is plotted in Fig.4.13 which shoes a monotonic

convergence of the error in the iteration domain.

If instead the D2-type or L(z) = 1− 2z−1 + z−2 is used with the same initial learning gain

for the D-type, we see that from Fig.4.14 the Nyquist plot of Q(z) [1 − βzL(z)P (z)] is within

the unit disk but takes a value close to 1 at very low frequencies. This is because (z−1)2 → 0

as ω → 0. If the plant was a double integrator type then this problem would not exist.
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Figure 4.11: Nyquist plot for D-type ILC example with β = 2 × 105

4.6.3 Current-Cycle Iterative Learning Control

We had seen in the previous P-type ILC example that monotonic converegence was not possible

due to the presence of an integrator in P (z) which would lead to |zP (z)| → ∞ as ω → 0.

Thus, we will try to eliminate the undesired pole by employing closed-loop feedback. As a

start, we will check the possibility of achieving a stable closed-loop with simple proportional
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Figure 4.12: Nyquist plot for D-type ILC example with β = 4.75 × 104
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Figure 4.13: Tracking error profile of the system using D-type ILC and β = 4.75 × 104

feedback. Thus, G(z) is simply

G(z) = Kp

where Kp is the proportional gain. For this we plot the root locus of P (z) shown by Fig.4.15

and Fig.4.16. We select the proportional gain as, Kp = 834 (no overshoot and damping ratio
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Figure 4.14: Nyquist plot for D2-type ILC example with β = 2 × 105

equal to 1), and proceed to plot the Nyquist diagram of |1 − βzP ′(z)| shown by Fig.4.17. We

see that the Nyquist plot is so close to the edge of the unit-circle and escapes it for frequencies

larger than 77 rad/s. Thus, we decide to include filtering as well in the ILC and select the

learning function L(z) = 1 while the filter Q(z) is

Q(z) =
0.4337z2 + 0.8675z + 0.4337

z2 + 0.5159z + 0.219

which is a 2nd-order Butterworth with a cut-off frequency of 200 rad/s. The reason for this

selection is to have as simple as possible filter design while at the same time achieving a

minimum [1 − Q(z)] for as wide as possible range of frequencies. Now we plot the Nyquist

diagram for Q(z)[1− βzL(z)P ′(z)] shown in Fig.4.18. We see now that the Nyquist diagram

is within the unit-circle for all frequencies. The maximum tracking error for the system at

every iteration is shown in Fig.4.19. From Fig.4.19 it can be seen that monotonic convergence

of the tracking error is achieved. The time responses are shown in Fig.4.20 for the system
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at i = 0 and i = 500 respectively. The ILC achieves better performance than with simple

proportional control.
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Figure 4.15: Root locus plot for P (z)
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Figure 4.16: Root locus plot for P (z)(close-up)
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Figure 4.17: Nyquist plot for P-type ILC with closed-loop P-control
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Figure 4.18: Nyquist plot for P-type ILC with closed-loop P-control and Filtering

4.6.4 L(q) Selection

In the previous cases the learning function, L(q), was either selected as unity or the special

case of D-type and D2-type. In this example we will select the learning function, L(q), in

order to obtain the best possible performance of the ILC system. Consider the system (4.83)
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and filtering
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Figure 4.20: Desired and actual ouput of the system using P-type ILC with closed-loop P-

control and filtering

which is stable and has the magnitude and phase diagrams shown in Fig.4.21. We see that the

phase varies from 0 degrees to −270 degrees. We also note that roughly at 0.1 rad/s the phase
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changes to −90 degrees and at 200 rad/s it changes from −90 degrees to −270 degrees. So

in order to keep the overall phase between 90 degrees and −90 degrees, we select our learning

function as a combination of two lead compensators as follows

L(z) =
(

5001z + 5000

z

)(
14.17z − 12.5

z + 0.6667

)
. (4.84)

The inverse of L(z) has very similar phase characteristics as that of the system P (z) as seen

from Fig.4.22. Plotting zL(z)P (z) in Fig.4.23 we see that the combination zL(z)P (z) has

a phase within the stability range and magnitude also in the stability range. If we plot the

Nyquist plot in Fig.4.24 for [1 − zL(z)P (z)] we see that it is well within the unit disk and,

thus, the condition for monotone convergence is satisfied. Fig.4.25 shows the maximum error

at each iteration.
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Figure 4.21: Bode plot of P (z) in (4.83)
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Figure 4.22: Bode plot of L−1(z)
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Figure 4.23: Bode plot of zL(z)P (z)

4.6.5 Sampling Time selection

Consider the system P (z) defined by (4.83) at sampling time T = 1ms. From Fig.4.21 we

see that the phase response crosses −90o degrees at nearly 2π rad/s. If we also look at the
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Figure 4.24: Nyquist plot of 1 − zL(z)P (z)
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Figure 4.25: Tracking error profile of the system using P-type ILC with closed-loop P-control

and filtering
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phase diagram of z we see that it is linearly increasing from 0o to 180o degrees as a function of

frequency. From here it seems obvious that if we select a larger sampling time such that the

phase response of P (z) slightly crosses the (−90o, 90o) stability bound, then combined with

z the overall phase response, ϕ, would be within (−90o, 90o). Thus, we select sampling time

T = 10 ms and draw the maginitude and phase of zP (z) in Fig.4.27. We see from Fig.4.27

that the overall phase response of zP (z) still crosses the stability bound (−90o, 90o), hence, we

will increase the sampling time to T = 15ms and redraw the maginitude and phase of zP (z)

in Fig.4.28. We see from Fig.4.28 that with the new sampling time, the phase response of

zP (z) is now within the stability bound (−90o, 90o) and since for all the cases the magnitude

of zP (z) was within the stability bound, the system can now achieve monotone convergence

of the tracking error. To conclude we can tabulate all the results in the form of a guideline
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Figure 4.26: Phase diagram of z
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Figure 4.27: Bode plot of zP (z) at T = 10ms
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Figure 4.28: Bode plot of zP (z) at T = 15ms

to help with the ILC design. This can be seen in Table 4.1.
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Table 4.1: Guideline for ILC Design

Design Factor Design Considerations

Selection of a larger sampling-time increases the chances of

achieving monotone convergence, however, the trade-off would

Sampling Time T be that the system bandwidth does not cover the whole range

of disturbances and uncertainties that may exist and,

therefore, incur large tracking errors.

The filter Q(z) increases the stability bound, however,

Q(z) it would create steady state errors and, therefore, should

only be used if stability cannot be achieved by L(z) alone.

Q(z) is typically selected as a low-pass filter.

P-type P-type is suitable if P (z) has a phase within (−90o, 90o) degrees.

D-type D-type is suitable if P (z) is 2nd-order with a single integrator.

D2-type D2-type is suitable for either a 2nd-order or a 3rd-order P (z)

L(z) with atmost two integrators.

For cases where P (z) is of high order or does not satisfy the above

Filter conditions then L(z) can be designed as a combination of lead

compensators depending on the order of P (z).

4.7 Conclusion

this Chapter summarizes the theoretical results of ILC for sampled-data SISO systems in the

time and frequency domain. Stability and convergence criterias are shown as well as design

procedures with numerous examples. Finally, the discussed design procedure is applied to a

real system with promising results.
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Chapter 5

Controller Design for a Piezo-Motor

Driven Linear Stage

5.1 Introduction

In this work, the discrete-time integral sliding control is applied to a linear piezo-motor driven

stage which has many promising applications in industries. The piezo-motors are character-

ized by low speed and high torque, which are in contrast to the high speed and low torque

properties of the conventional electromagnetic motors. Moreover, piezo-motors are compact,

light, operates quietly, and robust to external magnetic or radioactive fields. Piezo-electric mo-

tors are mainly applied to high precision control problems as it can easily reach the precision

scale of micro-meters or even nano-meters. This gives rise to extra difficulty in establishing

an accurate mathematical model for piezo-motors: any tiny factors, nonlinear and unknown,

will severely affect their characteristics and control performance.

It is well known that sliding mode control (SMC) is a very popular robust control method

owing to its ease of design and robustness to “matched” disturbances, hence was widely
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adopted in various industiral applications [15]–[20]. Computer implementation of control

algorithms presents a great convenience and has, hence, caused the research in the area of

discrete-time control to intensify. This also necessitated a rework in the sliding mode control

strategy for sampled-data systems. Most of the discrete-time sliding mode approaches are

based on full state information [20]–[27].

On the other hand, this work considers the output tracking of the piezo-motor driven stage.

To accomplish the task of arbitrary output reference tracking in the presence of disturbances,

an output feedback controller with a state observer and a disturbance observer are designed.

The objective is to drive the output tracking error to a certain neighborhood of the origin.

For this purpose discrete-time integral sliding surfaces are proposed for the controller and

observers.

Delays in the state or disturbance estimation in sampled-data systems is an inevitable

phenomenon and must be studied carefully. In [27] it was shown that in the case of delayed

disturbance estimation a worst case accuracy of O(T ) can be guaranteed for deadbeat sliding

mode control design and a worst case accuracy of O(T 2) for integral sliding mode control.

While deadbeat control is a desired phenomenon, it is undesirable in practical implementation

due to the over large control action required. In [27] the integral sliding mode design avoided

the deadbeat response by eliminating the poles at zero. In this Chapter, we extend the integral

sliding mode design to output tracking.

The proposed discrete-time SMC can achieve the O(T 2) boundary for output tracking

error when the system is moving in a certain direction and a maximum of O(T ) tracking error
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while a change in direction occurs.

In output feedback based sliding mode control [20]–[24], there are mainly two design ap-

proaches: design using only the output measurement [20, 22], and design based on observers

to construct the missing states [16, 24]. The purely output based design imposed extra sta-

bility requirements that are not practical in most cases. Hence in this Chapter we adopt a

discrete-time state observer.

5.2 Model of the Piezo-Motor Driven Linear Motion

Stage

In this section we first discuss the continuous-time piezo-motor stage model, then the friction

model. Next the discretized model and disturbance properties are presented.

5.2.1 Overall Model in Continuous-Time

A major objective of this Chapter is to design a controller based on the simplest possible model

of the piezo-motor stage. Therefore, we consider the following second-order continuous-time

model of the piezo-motor stage

ẋ1(t) = x2(t)

ẋ2(t) = −kfv

m
x2(t) +

kf

m
u(t)− 1

m
(f(x, t) + g(t))

y(t) = x1(t)

(5.1)

where x1 is the linear displacement which is measurable, x2 is the linear velocity which is not

available, u is the voltage input, f(x, t) represents the friction, g(t) represents the effect of

process perturbations and is assumed smooth and bounded. The constants m, kfv, and kf are

the nominal mass, damping, and force constants respectively. This model closely represents
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Figure 5.1: Frequency responses of the piezo-motor stage

the dynamics of the system as shown in Fig.5.1. As can be seen for a wide spectrum of

frequencies the dyanimcs of the real system is indeed that of a second-order system.

5.2.2 Friction Models

Through experiments, it is found there exists a large friction in the piezo-motor stage, which

is discontinuous when the velocity acrosses zero. In this Chapter, we treat the friction as

an unknown disturbance and use a disturbance observer to estimate. In order to understand

the behavior of the piezo-motor stage under friction f(x, t), hence facilitate the performance

analysis on the controller and disturbance observer, we consider three widely accepted friction

models, in the sequel determine the most appropriate model.
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Static Friction Model

Here the friction is modelled as a bounded piece-wise continuous function and the discontinuity

occurs only when x2 changes sign. In details f(x, t) can be represented as follows, [30],

f(x, t) =





kfamax x2(t) > 0

kfSAT [a(t)] x2(t) = 0

kfamin x2(t) < 0

(5.2)

where SAT [a(t)] is a saturation function given by

SAT [a(t)] =





amax u(t) ≥ amax

a(t) amin < a(t) < amax

amin a(t) ≤ amin

(5.3)

where amin and amax are unknown constant coefficients of the static friction.

Gaussian Friction Model

This model [31] considers three kinds of frictions – the static friction, viscous friction, and

kinetic friction

f(x, t) = − 1

m

((
fc + (fs − fc)e

−(
x2
vs

)δ
)

sgn(x2) + fvx2

)
(5.4)

where fc is the minimum level of kinetic friction, fs is the level of static friction, fv is the level

of viscous friction, vs > 0 and δ > 0 are empirical parameters. The signum function from

static friction represents a discontinuity crossing the zero velocity.

Lugre Friction

One motivation behind the LuGre model is to offer a regularised static friction model with

stiction. The model captures several friction characteristics, such as increased friction force
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at lower velocities, [30]. It is a first order dynamic model and the most commonly used form

is

ż = x2 − ρ0
|x2|

g(x2)
z

g(x2) = α0 + α1e
−
(

x2
x2,s

)2

f = ρ0z + ρ1ż (5.5)

where α0, α1, x2,s, ρ0 and ρ1 are positive parameters. Since the state z cannot be measured,

it is necessary to use an observer to get an estimate of the friction based on this model.

The three models presented allow different degrees of accuracy. The first model is the

simplest, the second model is more generic while the third model is dynamic. However, it

is in general difficult to detemine the model parameters. A number of experimental tests

were conducted and the results of three trials were shown in Fig.5.2. In the experiment, a
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Figure 5.2: Experimentally obtained friction f w.r.t velocity x2

slow sinusoidal input was injected into the to generate a low speed motion with very low

acceleration. In this way the control input injected is solely to overcome the friction of the

129



piezo-motor stage. Thus the force-velocity relationship in Fig.5.2 can be obtained. It can be

seen that none of the three friction models can perfectly capture the behaviors of the piezo-

motor stage. Comparatively the static friction model can better fit the experimental results

by choosing kfamax = 5v and kfamin = −10v. Thus we can use the static friction model in

the performance analysis.

The modeling mismatching can be considered as some unknown disturbance, due to the

presence of many unknown factors such as unmodelled electrical dynamics, the hysterisis,

measurement errors, system and sensor noise, as well as other random purterbations which

cannot be modelled. We will introduce disturbance observer to estimate and compensate it

ultimately. Moreover, by virtue of the robustness in sliding mode control, we may not need a

perfect plant model.

5.2.3 Overall Model in Discrete-Time

The discretized counterpart of (5.1) can be given by

xk+1 = Φxk + γuk + dk

yk = cxk = x1,k, y0 = y(0)
(5.6)

where

Φ(T ) =




q11 q12

q21 q22


 = exp







0 1

0 −kfv

m


T


 ,

γ =




γ1

γ2


 =

∫ T

0
Φ(τ )dτ




0

kf

m


 ,

c =
[

c1 c2

]
=
[

1 0

]
.
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The equivalent disturbance term dk = [d1, d2]
T can be calculated for the three scenarios given

in (5.2)

dk = hk −





γamax x2,k > 0

γSAT [a(t)] x2,k = 0

γamin x2,k < 0

(5.7)

where hk is given by

hk = −
∫ T

0
Φ(τ )




0
kf

m


 g((k + 1)T − τ )dτ,

and T is the sampling period. Here the disturbance hk represents the influence accumulated

from kT to (k + 1)T .

The following useful properties apply for the disturbance dk when the motor speed is not

zero [27]

Property 1.

dk = γ(gk + am) +
1
2
γvkT + O(T 3).

dk = O(T ).

dk − dk−1 = O(T 2).

dk − 2dk−1 + dk−2 = O(T 3).

where am is either amin or amax, vk = v(kT ) and v(t) = d
dt

g(t). Note that the magnitude of

the mismatched part in the disturbance dk is of the order O(T 3).

Property 2. For stable dynamics xk+1 = λxk + δk, |λ| < 1 and δk = O(T n), then

|xk| = O(T n−1) when k → ∞.
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5.3 Discrete-Time Output ISM Control

In this section we will discuss the design of the output tracking controller for the piezo-

motor stage. The controller will be designed based on an appropriate integral sliding-surface.

Further, the stability conditions of the closed-loop system will be analyzed. Appropriate

observers for the disturbance and the unknown state x2 will be derived and this section will

conclude with a discussion on the tracking-error bound.

5.3.1 Controller Design and Stability Analysis

Consider the discrete-time integral sliding-surface below,

σk = ek − e0 + εk

εk = εk−1 + βek−1

(5.8)

where ek = rk − yk is the output tracking error, e0 is the initial tracking error, rk is an arbitrary

time-varying reference, σk, εk are the sliding function and integral of the tracking error, and

β is a design constant. The output tracking problem is to force yk → rk.

Let us first derive the discrete-time ISMC law by using to the concept of equivalent control.

Theorem 10 The new ISMC law porposed is

uk = γ−1
1 [rk+1 − λek − φ11x1,k − φ12x̂2,k + σk] − η̂k−1 (5.9)

where η̂k−1 and x̂2,k are estimates of the disturbance observer and state observer respectively

as will be shown later, λ = 1 − β.

Further, the controller (5.9) drives the sliding variable to

σk+1 = γ1η̂k−1 − d1,k − φ12x̃2,k
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and results in the output error dynamics

ek+1 = λek + δk,

where x̃2,k = x2,k − x̂2,k is state estimation error, and

δk = −(d1,k − γ1η̂k−1 − d1,k−1 + γ1η̂k−2) + φ12(x̃2,k − x̃2,k−1), (5.10)

which consists disturbance and state estimation errors.

Proof: The control law (5.9) can be derived using the design method based on equivalent

control. To proceed, consider a forward expression of (5.8)

σk+1 = ek+1 − e0 + εk+1

εk+1 = εk + βek.
(5.11)

The objective of a sliding mode controller is to achieve σk+1 = 0, therefore, we need to derive

an explicit expression in terms of the sliding surface and system dynamics. For this substitute

εk+1 and the expression εk − e0 = σk − ek into the expression of the sliding surface in (5.11) in

order to eliminate the term εk from the resulting expression. Equating the resulting expression

of σk+1 to zero we obtain

σk+1 = ek+1 + βek − e0 + εk = ek+1 − (1 − β)ek + σk = 0. (5.12)

Note that (5.6) can be rewritten as

x1,k+1 = φ11x1,k + φ12x2,k + γ1uk + d1,k

x2,k+1 = φ21x1,k + φ22x2,k + γ2uk + d2,k.
(5.13)

Using the relation ek+1 = rk+1−yk+1 = rk+1−x1,k+1, and substituting yk+1 or x1,k+1 dynamics

into (5.12) and solve for the equivalent control ueq
k , we have

ueq
k = γ−1

1 [rk+1 − λek − φ11x1,k − φ12x2,k − d1,k + σk.] (5.14)
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Note that the control (5.14) is based on the state x2,k as well as the current value of the

disturbance d1,k which are unknown and therefore cannot be implemented in this current form.

To overcome this, we will introduce the state estimate and disturbance estimate. Therefore,

the final controller structure is given by (5.9) which is to replace x2,k and d1,k in the equivalent

control (5.14) by the state estimate x̂2,k and disturbance estimate d̂1,k−1 = γ1η̂k−1.

In order to verify the second part of Theorem 13 with regard to the losed-loop stability,

first derive the closed-loop state dynamics. Substitute uk in (5.9) and x̂2,k into (5.6), we obtain

xk+1 =
[
Φ − γγ−1

1 ([φ11 φ12] − λc)
]
xk + dk − γ η̂k−1 + γγ−1

1 φ12x̃2,k

+γγ−1
1 (rk+1 − λrk) + γγ−1

1 σk (5.15)

where x̃2,k = x2,k − x̂2,k is state estimation error.

Now rewrite (5.12) as follows

σk+1 = rk+1 − cxk+1 − λ(rk − cxk) + σk = 0 (5.16)

and substitute (5.15) into (5.16), which yields the closed-loop sliding dynamics

σk+1 = γ1η̂k−1 − d1,k − φ12x̃2,k. (5.17)

As expected, due to the fact that the estimates x̂2 and d̂1 are used in the control law, the sliding

function σk no longer converges to the origin as desired but convergences to a region around

the origin. The size of this region depends on the performance of the state and disturbance

estimation, and will be shown to be of O(T 2).

Returning to the stability issue of (5.15). Since the system being studied is of 2nd order,

it is easy to compute the closed-poles z1 = λ and z2 =
kfvTe

−kfvT
+e

−kfvT−1

kfvT+e
−kfvT−1

. The first pole is a
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function of the integral constant β while the second pole is the open-loop zero and is stable

for T > 0. Thus, the system is stable as long as β is properly selected.

Finally, since it is desired to achieve proper performance characteristics for the output

tracking error, we will derive the tracking error dynamics in terms of the design parameter λ.

Substitution of (5.15) into yk+1 = cxk+1 yields the dynamics

yk+1 = −λek + rk+1 + d1,k − γ1η̂k−1 + φ12x̃2,k + σk. (5.18)

Substituting the result σk = γ1η̂k−2 − d1,k−1 − φ12x̃2,k−1 obtained from (5.17) into (5.18)

yk+1 = −λek + rk+1 + d1,k − γ1η̂k−1 − d1,k−1 + γ1η̂k−2 + φ12(x̃2,k − x̃2,k−1) (5.19)

which yields the tracking error dynamics

ek+1 = λek + δk (5.20)

where δk is given by (5.10) as a sum of state and disturbane estimation errors.

Remark 23 It will be shown in subsequenct subsections that under smoothness and bound-

edness conditions for the disturbance, the disturbance estimate η̂k and the state estimate x̂2,k

converge to their actual values.

5.3.2 Disturbance Observer Design

In order to design the observer we need to first note that according to Property 1 the

disturbance can be written as

dk = γηk + O(T 3) (5.21)
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where the magnitude of O(T 3) term is in proportion to T 3. Define the observer

xd,k = Φxd,k−1 + γuk−1 + γ η̂k−1

yd,k−1 = cxd,k−1

(5.22)

where xd is the observer state vector, yd is the observer output vector, η̂k is the disturbance

estimate and will act as the ‘control input’ to the observer, therefore the estimate d̂k−1 = γ η̂k−1

and d̂1,k−1 = γ1η̂k−1. Since the disturbance estimate will be used in the final control signal it

must not be overly large, therefore, it is wise to avoid a deadbeat design. For this reason we

will use an observer based on an integral sliding surface

σd,k = ed,k − ed,0 + εd,k

εd,k = εd,k−1 + βded,k−1

(5.23)

where ed,k = yk − yd,k is the output estimation error, ed,0 is the initial estimation error, σd,k,

εd,k are the sliding function and integral vectors, and βd is an integral gain matrix.

Since the sliding surface (5.23) is the same as (5.8), the set (yk,xd,k, uk + η̂k, yd,k, σd,k) has

duality with the set (rk,xk, uk, yk, σk), therefore, η̂k is given by

η̂k−1 = γ−1
1 (yk − λded,k−1 − [φ11 φ12]xd,k−1 + σd,k−1) − uk−1 (5.24)

where λd = 1 − βd. Expression (5.24) is the required disturbance estimate and is similar in

form to (5.14).

The stability and convergence property of the observer is summarized in the following

theorem.

Theorem 11 The state dynamics (5.22) is stable when closing the loop with the disturbance

estimate (5.24). The disturbance estimate η̂k−1 from (5.24) converges to an O(T ) bound

around the actual disturbance ηk−1 asymptotically.
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Proof: To analyze the stability of the observer, substitute (5.24) into (5.22) and follow the

same steps of the derivation of (5.15) to obtain

xd,k =
[
Φ − γγ−1

1 ([φ11 φ12]− λdc)
]
xd,k−1 + γγ−1

1 [yk − λdyk−1] + γγ−1
1 σd,k−1. (5.25)

By substituting (5.25) into σd,k+1, the sliding dynamcis becomes σd,k = 0. Therefore,

xd,k =
[
Φ − γγ−1

1 ([φ11 φ12]− λdc)
]
xd,k−1 + γγ−1

1 [yk − λdyk−1]. (5.26)

Subtracting (5.26) from a delayed form of the system (5.6) and substituting dk−1 = γηk−1 +

O(T 3) we obtain

∆xd,k =
[
Φ − γγ−1

1 ([φ11 φ12]− λdc)
]
∆xd,k−1 + O(T 3) (5.27)

where ∆xd,k = xk −xd,k. From (5.27) we see that the convergence of the disturbance observer

states, xd,k, to the actual system states xk, depends only on the matrix
[
Φ − γγ−1

1 ([φ11 φ12] − λdc)
]

whose stability is dependent on the selection of the constant λd. Also note that premultlipli-

cation of (5.27) with c yields the tracking error dynamics

ed,k = λded,k−1. (5.28)

To prove the second part of theorem, subtract (5.22) from a delayed (5.6) to obtain

∆xd,k = Φ∆xd,k−1 + γ(ηk−1 − η̂k−1) + O(T 3). (5.29)

To obtain the relationship between ηk and η̂k, premultiplying both sides of (5.29) with c and

substituting (5.28) yield

η̂k−1 = γ−1
1 ([φ11 φ12] − λdc)∆xd,k−1 + ηk−1. (5.30)
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Substituting (5.27) recursively we have

∆xd,k−1 =
[
Φ − γγ−1

1 ([φ11 φ12]− λdc)
]k−1

∆xd,0 + O(T 2). (5.31)

Substituting (5.31) into (5.30) we obtain

η̂k−1 = γ−1
1 ([φ11 φ12]− λdc)

[
Φ − γγ−1

1 ([φ11 φ12]− λdc)
]k−1

∆xd,0

+γ−1
1 ([φ11 φ12]− λdc)O(T 2) + ηk−1. (5.32)

For this particular system it can be shown that φ11 = 1, φ12 = 1−e
−kfvT

kfv
= O(T ), γ1 = O(T 2)

and that a reasonable choice of the controller pole is λ ≈ 1−O(T ). From these it can be found

that ([φ11 φ12] − λdc) = O(T ). Since,
[
Φ − γγ−1

1 ([φ11 φ12] − λdc)
]

is stable, when k → ∞

[
Φ − γγ−1

1 ([φ11 φ12] − λdc)
]k−1

→ 0

and the disturbance estimate will converge to a worste case of O(T ) around the actual distur-

bance.

Remark 24 It should be noted that the sliding dynamics (5.26), output error dynamics (5.28),

hence the disturbance estimation error, are independent of the control input uk and the state

estimation error. This decoupling property is highly desirable for any control system combined

with observers.

5.3.3 State Observer Design

State estimation is accomplished with the following state observer

x̂k+1 = Φx̂k + γuk + l(yk − ŷk) + d̂k−1 (5.33)
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where x̂k, ŷk are the state and output estimates and l is a vector valued observer gain. Notice

that in observer (5.33), the term d̂k−1 has been added to compensate for the disturbance.

Since only the delayed disturbance is available it is necessary to investigate the effect it may

have on the state estimation. Subtracting (5.33) from (5.6) yields

x̃k+1 = [Φ − lc]x̃k + dk − d̂k−1 (5.34)

where x̃k = xk − x̂k is the state estimation error. The solution of (5.34) is given by

x̃k = [Φ− lc]kx̃0 +
k−1∑

i=0

(
[Φ − lc]k−1−i(di − d̂i−1)

)
. (5.35)

The state estimation error x̃2,k = x2,k − x̂2,k is given by

x̃2,k = [0 1] [Φ − lc]k x̃0 +
k−1∑

i=0

[0 1]
(
[Φ − lc]k−1−i(di − d̂i−1)

)
. (5.36)

Using Property 1, dk − d̂k−1 = O(T 2) when no discontinuity occurs. From (5.34) and

Property 2 we know that the ultimate bound on x̃k, hence x̃2,k is O(T ).

5.3.4 Ultimate Tracking Error Bound

Now we are in a position to derive the ultimate tracking error bound of the piezo-motor stage

(5.1) when the proposed discrete-time ISMC is applied.

Theorem 12 Using the discrete-time ISMC law (5.9), the disturbance observer (5.24) and

(5.22), the state observer (5.33), the ultimate bound of output tracking error is O(T 2).

Proof: In order to calculate the output tracking error bound we must find the bound of δk

in (5.20). From (5.36) we can derive the difference x̃2,k − x̃2,k−1

x̃2,k − x̃2,k−1 = [0 1][I − (Φ − lc)](Φ− lc)k−1x̃0 −
k−1∑

i=0

[0 1]
(
[Φ − lc]k−1−i(di − d̂i−1)

)
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+
k−2∑

i=0

[0 1]
(
[Φ − lc]k−1−i(di − d̂i−1)

)
(5.37)

where I is a unity matrix. (5.37) can be simplified to

x̃2,k − x̃2,k−1 = [0 1][I − (Φ − lc)](Φ− lc)k−1x̃0 − (d2,k − γ2η̂k−1). (5.38)

Since (Φ − lc)k → 0 ultimately, we have

x̃2,k − x̃2,k−1 = −(d2,k − γ2η̂k−1) (5.39)

as k → ∞. Substituting (5.39) into (5.10) yields

δk = −(d1,k − γ1η̂k−1 − d1,k−1 + γ1η̂k−2) − φ12(d2,k − γ2η̂k−1). (5.40)

Next by substitution of the relations d1,k = γ1ηk +O(T 3), d2,k = γ2ηk +O(T 3), and into (5.40),

we obtain

δk = −γ1(ηk − η̂k−1 − ηk−1 + η̂k−2) − φ12γ2(ηk − η̂k−1) + O(T 3). (5.41)

Since we are trying to calculate the steady state error bound, using the fact that at steady

state η̂k = ηk + O(T ) and substituting it in (5.41)

δk = −γ1(ηk − 2ηk−1 + ηk−2 + O(T )) − φ12γ2(ηk−1 − ηk−2 + O(T )) + O(T 3). (5.42)

For sampled-data system (5.6), γ = O(T ) and φ12 = O(T ). If ηk is smooth and bounded,

then from Property 1

δk = O(T 2) · O(T ) + O(T ) · O(T ) · O(T ) + O(T 3) = O(T 3). (5.43)

140



In order to derive the output tracking error bound, look into output tracking error dynamics

derived in Theorem 1, ek+1 = λek + δk, whose solution is

ek = λke0 +
k−1∑

i=0

λiδk−i−1. (5.44)

According to Property 2, the ultimate error bound of ek will be one order higher than the

bound of δk, therefore, since the bound of δk is O(T 3) the ultimate bound of ek is O(T 2), i.e.,

|ek| = O(T 2). (5.45)

We have computed the tracking error in the case when the disturbance is smooth and bounded.

Now, we look at what happens to the tracking error when there is a discontinuity in the distur-

bance, i.e, when there is a change in the sign of x2. Consider the disturbance term associated

with the closed-loop system (5.40). It can be reasonably assumed that the discontinuity oc-

curs rarely, therefore, if we assume that the discontinuity occurs at the kth sampling point,

then δk = O(T 2) rather than O(T 3) as the difference d1,k − 2d1,k−1 + d1,k−2 will no longer be

O(T 3) but of the order of d1,k which is O(T ). If the discontinuity occurs at a time instance

k′, then δk = O(T ) at k = k′, k′ +1, k′ + 2, and return to δk = O(T 3) for subsequent sampling

instances. Therefore the solution of (5.44) would lead to the worst case error bound

|ek| = O(T ) (5.46)

for certain time interval but O(T 2) ultimately.

We have computed the tracking error in the case when the disturbance is smooth and bounded.

Now, we look at what happens to the tracking error when there is a discontinuity in the distur-

bance, i.e, when there is a change in the sign of x2. Consider the disturbance term associated
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with the closed-loop system (5.40). It can be reasonably assumed that the discontinuity oc-

curs rarely, therefore, if we assume that the discontinuity occurs at the kth sampling point,

then δk = O(T 2) rather than O(T 3) as the difference d1,k − 2d1,k−1 + d1,k−2 will no longer be

O(T 3) but of the order of d1,k which is O(T ). If the discontinuity occurs at a time instance

k′, then δk = O(T ) at k = k′, k′ +1, k′ + 2, and return to δk = O(T 3) for subsequent sampling

instances. Therefore the solution of (5.44) would lead to the worst case error bound

|ek| = O(T ) (5.47)

for certain time interval but O(T 2) ultimately.

5.3.5 Experimental Investigation

The configuration of the whole control system is outlined in Fig.5.4. The nominal parameters

of the system are m = 1kg, kfv = 144N and kf = 6N/V olt. This simple linear model does

Figure 5.3: The piezo motor driven linear motion stage

not contain any nonlinear and uncertain effects such as the frictional force in the mechanical

part, high-order electrical dynamics of the driver, loading condition, etc., which are hard to

model in practice. In general, producing a high precision model will require more efforts than
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Figure 5.4: The control system block diagram of the piezo-motor driven linear motion stage

performing a control task with the same level of precision.

Determination of Controller Parameters

In order to select an appropriate sampling period T , the open-loop zero of the system is

plotted in Fig.5.5 as a function of sampling period. We see from Fig.5.5 that a sampling
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Figure 5.5: Open-loop zero with respect to sampling period

period below 10−4 second would produce a less stable open-loop zero. On the other hand,

an over large sampling period will degrade the feedback effect. In the experimental tests we
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select two sampling periods of 1ms and 10ms respectively.

To proceed with the implementation, three parameters need to be designed: the state

observer gain l, the disturbance observer integral gain matrix βd, and the controller integral

gain β. The state observer gain is selected such that the observer poles are (0.4, 0.4). This

selection is arbitrary, but, the poles are selected to ensure quick convergence. Next, the

constant βd is designed. To ensure the quick convergence of the disturbance observer, βd is

selected such that the observer pole at 1ms sampling is λd = 0.9 and at 10ms sampling is

λd = 0.6. Since the remaining pole of the observer is the non-zero open-loop zero (−0.958 at

1ms and −0.683 at 10ms), it is the dominant pole. Finally, the controller pole is selected as

λ = 0.958 at 1ms sampling and λ = 0.683 at 10ms sampling which are found to be the best

possible after some trials. Thus, the design parameters are as follows

l =
[

0.4269 5.3260

]T
, T = 10ms,

l =
[

1.059 231.048

]T
, T = 1ms,

βd = 1 − λd = 0.4, T = 10ms,

βd = 1 − λd = 0.1, T = 1ms,

β = 1 − λ = 0.317, T = 10ms,

β = 1 − λ = 0.042, T = 1ms.

The reference trajectory rk is shown in Fig.5.6 and as it can be seen the initial conditions

e0 = 0 and ed,0 = 0. For comparison purpose, a PI control is also applied to piezo-motor and

PI gains were optimized through intensive tests. The PI gains are at kp = 1.5 and ki = 55
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Figure 5.6: The reference trajectory

at the sampling period of 1ms and kp = 0.6 and ki = 6 at the sampling period of 10 ms.

To verify that the PI gains used are optimally tuned, PI gains are made to vary from their

optimal values by ±20%. The optimally tuned PI gains can be determined when other PI

values either produce larger tracking errors or lead to oscillatory responses.

Experimental Results and Discussions

DOISMC is applied with both sampling period of 10ms and 1ms. For comparison the PI

control is also applied. The tracking errors of both controllers as shown in Fig.5.7. It can

be seen that at 10ms the performance of DOISMC and PI controller are comparable whereas

at 1ms the performance of the DOISMC is far better. Fig.5.8 shows the control signals of

DOISMC and PI. It can be seen that DOISMC control profile at 1ms is smoother comparing

with at 10ms. In Fig.5.9 the reference velocity and the estimated velocity under the state

observer is plotted. It is clearly seen that the smaller sampling period of 1ms produces a better

estimate, x̂2, in comparison with 10ms sampling period. Fig.5.10 demonstrates estimation
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Figure 5.7: Tracking error of DOISMC and PI control at (a) 10ms sampling period and (b)

1ms sampling period
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Figure 5.8: Comparison of the control inputs of DOISMC and PI controllers at (a) 10ms

sampling period and (b) 1ms sampling period

result of the disturbance observer. It can be observed that the sliding mode control will

produce some chattering due to the limited sampling frequency. It is well known that sliding

mode control requires a fast switching frequency in order to maintain the sliding motion. In
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Figure 5.9: Estimated state x̂2 and reference velocity ṙ at (a) 10ms sampling period and (b)

1ms sampling period
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Figure 5.10: Disturbance observer response at (a) 10ms sampling period (b) 1ms sampling

period

this Chapter, the output ISMC is designed in discrete-time, but the real plant is analog in

nature. Moreover, through analysis we have shown the tracking error bound is proportional to

the size of the sampling period T . Therefore, we can expect a smoother control response and
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lower tracking error when the sampling period is reduced to 1ms. Nonetheless, the magnitude

of the tracking error is at the scale of 5 × 10−4, confirming the theoretical error bound of

O(T 2) = O(0.012) = O(10−4). It is interesting to note that, when reducing the sampling

period by 10 times, the tracking error bound is about 100 times less. This result is consistent

the theoretical analysis, because the magnitude of the tracking error is at the scale of 5×10−6,

or equivalently O(T 2) = O(0.0012) = O(10−6).

Fig.5.11(a) shows the sliding function σ at 1ms sampling period. From Fig.5.10(b) we can
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Figure 5.11: Sliding function (a) σ and (b) σd at 1ms sampling period

see that the DOISMC can respond very fast when encountering a discontinuity generated by

the static friction at around 1 second. This fast control response is owing to the incorporation

of the disturbance observer which can effectively estimate unknown changes. Fig.5.11(b) shows

the sliding function σd which has a magnitude of 20 × 10−6 which is quite small.

Finally, to illustrae the robustness of DOISMC, an extra load of 2.5kg is added to the

piezo-motor driven linear motion stage, which is 250% of the original motor mass of 1kg,
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meanwhile the parameters of the controller and observers remain unchanged. Fig.5.12 shows

the responses with and without the extra load. It can be seen that the tracking error remains

at a low level despite the extra load.
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Figure 5.12: Tracking errors of DOISMC with and without the 2.5kg load at 1ms sampling

period

5.4 Sampled-Data ILC Design

In this section we shall show the ILC design for the piezo-motor stage. Unlike the DOISMC

controller design where the controller structure is designed from the model, the ILC controller

has a standard control structure and the design factors Q(z) and L(z) are determined from

the nominal model or from experimentally obtained frequency response data.

5.4.1 Controller Parameter Design and Experimental Results

The objective of the ILC design is to achieve as precisely as possible motion control after the

smallest number of iterations. Due to the existence of uncertainties and other unmodelled
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disturbances the most suitable selection would be the current-cycle iterative learning control

where the iterative controller would act as an add-on to the feedback controller. Experiments

conducted on the system have shown that PI control works quite well and, so, it shall be used

as the feedback control law. The optimum PI gains found for this system are Kp = 6 and

Ki = 10, [70]. The resulting closed-loop system is given by

P ′(z) =
2.826 × 10−6z2 − 5.124 × 10−8z − 2.771 × 10−6

z3 − 2.944z2 + 2.888z − 0.944
(5.48)

This system is stable and so it will be possible for us to use the frequency domain tools for

the design of the ILC controller.

Since, we want to achieve the best possible tracking performance we will not retune the

sampling-time according to Table 4.1, instead we will use the other design factors Q(z) and

L(z). Before we proceed with the design of the function Q(z) and L(z) we plot the phase and

magnitude diagram for zP ′(z) in order to decide on what type of functions Q(z) and L(z)

should be. According to Table 4.1, L(z) cannot be selected as P-type, D-type, or D2-type as

the order of P (z) is 3 and it has no integrators. Therefore, L(z) will be selected as a lead

compensator. From Fig.5.13 we see that the phase falls below −π
2

and so we need L(z) to

have a leading phase of no more than 90 degrees. We select the following simple function

L(s) = 0.1(s + 1) which would be L(z) = z−0.9996
0.0004

in discrete-time, we can also plot L(z) in

Fig.5.14. If we now combine L(z) and zP ′(z) we obtain the frequency response in Fig.5.15

which satisfies our requirements. We can also plot the Nyquist diagram for 1− zL(z)P ′(z) to

confirm if |1 − zL(z)P ′(z)| < 1. This can be seen from Fig.5.16. Since, stability is achieved
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Figure 5.13: Phase and Magnitude for zP ′(z)
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Figure 5.14: Phase and Magnitude for L(z)

the function Q(z) is selected as unity.

We are now ready to implement the ILC control law with the designed parameters. The
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Figure 5.15: Phase and Magnitude for zL(z)P ′(z)
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Figure 5.16: Nyquist diagram for 1 − zL(z)P ′(z)

reference trajectory of the system is shown in Fig.5.17. Fig.5.18 shows the output tracking

error of the system at the 0th and the 15th iterations. It is easily seen that the tracking error
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Figure 5.17: Desired and actual output of the system

is greatly reduced by the 15th iteration and is of a magnitude of 2 µm at the transient and 0.6

µm at steady state. Finally, Fig.5.19 shows the control effort at the 0th and the 15th iteration.

The above results show the exceptional performance of the ILC laws as add-ons to existed
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Figure 5.18: Ouput tracking error of the system at the 0th and the 15th iteration

feedback control. The rather straight forward design also shows that the method has a lot of
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Figure 5.19: Control input of the system at the 0th and the 15th iteration

promise for practical applications.

5.5 Conclusion

This chapter presents a few the various controller designs for sampled-data systems applied

to the tracking control of a piezo-motor driven linear motion stage.

For the DOISMC design, proper disturbance and state observers were presented, and in

particular the disturbance observer is designed using the idea and method of integral sliding

mode to achieve the desired performance. Experimental comparisons with a PI controller

evidence the effectiveness of the proposed control method. It is worth to point out that

the designs of controller and obervsers are separate, in other words, what we present in this

Chapter is a modular design approach. Two observers can be added or removed individually

according to practical applications. For instance, state observer can be removed if the ve-
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locity is accesssible. The disturbance observer can also be removed when the disturbance is

negligible. In either cases, the DOISMC design remain valid and the tracking error bound is

guaranted at least to be O(T 2).

For the ILC design, the parameter and filter selection has been shown. The design proce-

dure has been shown to be straight forward and intuitive. With some basic information about

the system it was possible to achieve high-precision motion for a repetitive task.
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Chapter 6

Conclusions

6.1 Summary of Results

In this Thesis, Chapter 2 deals with sliding mode control for sampled-data systems. The class

of system used is LTI with matched disturbance. We show that the introduction of integral

action in the sliding manifold improves the state regulation as well as the output tracking as

opposed to the classical sliding mode control. We also show that the integral action eliminates

the presence of deadbeat poles by allowing full poleplacement thereby eliminating the risk of

overlarge control action. Simulation results are shown for both state regulation and output

tracking to verify the analytical results. The proposed controllers are shown to outperform

classical SMC in the simulation trials confirming the theoretical results.

In Chapter 3 we deal with a class of nonlinear discrete-time systems with uncertainties. The

uncertainties assumed in an unknown compact set, periodic, nonvanishing, rapid timevarying,

and the only prior knowledge is the periodicity. The proposed method is shown to deal with

such uncertainties and in the sequel lead to asymptotic stability. Some more variations in the
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unknowns are presented and methods are proposed and shown to deal with them.

In Chapter 4 we show an analysis of ILC for sampled-data LTI systems. Problems in

stability, performance, learning transient behavior, and robustness were discussed along in

both the time domain and frequency domain. The work is done as means to provide a clearer

picture about the potential, and limitations of ILC. Indeed, the field of ILC is quickly maturing

and many ideas to deal with different classes of systems are possible. The major contribution

of this phd is to provide a design guideline for the control engineer allowing him/her the

oppurtunity to make sound controller designs for practical problems.

In Chapter 5 we provide an experimental implementation of the sliding mode control and

ILC approaches of chater 2 and Chapter 4. This is done to show the practical significance

of the work done in this thesis. The test bed shown is a simple yet important system that

can be encountered in the industry. The sliding mode control laws are shown to achieve

superior performance over the conventional PI control for arbitrary tracking tasks. In cases

where repetitive following of the the same trajectory is needed the ILC is shown to achieve

almost perfect tracking after few iterations and can prove to be useful in serial manufacturing

processes.

6.2 Suggestions for Future Work

Past research activities have laid a foundation for the future work. Based on the prior research,

the following questions deserve further consideration and investigation.

1. Implementation of equivalent control for state regulation and output tracking ISMC.
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2. In [6] the adaptive control law was designed based on the assumption that the known

nonlinearity is locally Lipschitz. However, the controller proposed in our work is based on a

globally sector bounded nonlinearity. In [42] the sector boundedness condition was relaxed for

constant unknown parameters case. Is it possible to achieve the same result for the periodic

unknown parameters case?

3. How to deal with non-parametric uncertainties with the periodic adaptive control as well

as unknown periodic with unknown periods?

4. The ILC work presented is for LTI systems. It would be more practical to study the

properties of ILC for more general nonlinear systems as well as MIMO rather than SISO

systems.

5. Can we extend the work of ILC to repetitive learning control (RC)?

6. It would be worthwhile to apply the ILC as well as the other control laws (DISMC and

AC) on more complex systems such as mdof manipulators, AC drives, AC-DC and DC-DC

converters, etc.
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Extension of Discrete-Time SMC to

Terminal Sliding Mode for Motion

Control
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Abstract

Terminal Sliding Mode (TSM) control is known for its high gain property nearby the vicinity

of the equilibrium while retaining reasonably low gain elsewhere. This is desirable in digital

implementation where the limited sampling frequency may incur chattering if the controller

gain is overly high. In this work we integrate a linear switching surface with a terminal

switching surface. The switching surface can be designed according to the precision require-

ment and for the first time, real-time implementation of TSM is carried out. The analysis and

experimental investigation show that the TSMC design outperforms the linear SMC.



A.1 Introduction

Recently, a new technique called terminal sliding mode control has been developed in [4] to

achieve finite time convergence of the system dynamics in the terminal sliding mode. In [19]-

[20], the first-order terminal sliding mode control technique is developed for the control of

a simple second-order nonlinear system and an 4th-order nonlinear rigid robotic manipulator

system with the result that the output tracking error can converge to zero in finite time.

Most of the terminal sliding mode approaches have been developed from the continuous-

time point of view, [4]-[?], however less work exists in the design from the discrete-time point

of view. In [16] a continuous-time terminal sliding mode controller is first discretized and then

applied to a sampled-data system. While it is possible to achieve acceptable result via this

approach it makes more sense if the design was tackled entirely from the discrete-time point

of view. This would allow us to gain more insight on the performance and stabilty issues

and, thereby, achieve the best possible performance. In this paper, a revised terminal sliding

mode control law is developed from the discrete-time point of view. It is shown that the

new method can achieve better performance than with the linear SM owing to the high gain

property of the terminal sliding mode in the vicinity of the origin. To validate the proposed

method experiments are conducted on a piezo motor system.
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A.2 Discrete-Time Terminal Sliding Mode Control

In this section we will discuss the design of the tracking controller for the system. The

controller will be designed based on an appropriate sliding-surface. Further, the stability

conditions of the closed-loop system will be analyzed. The relation between TSMC properties

and the closed-loop eigenvalue will be explored.

A.2.1 Controller Design and Stability Analysis

Consider the discrete-time sliding-surface below,

σk = sek + βep
k−1 (A.1)

where ek =
[

e1,k e2,k

]T
, e1,k = rk −x1,k is the position tracking error, e2,k = ṙk −x2,k is the

velocity tracking error, rk is an arbitrary time-varying reference, σk is the sliding function,

and s, β, p are positive design constants. The tracking problem is to force x1,k → rk. The

selection of p < 1 guarantees a steeper slope of the sliding surface as the states approach the

origin which is desirable as seen in Fig.A.1. Also note that p should be selected as a rational

number with odd numerator and denominator to gaurantee that the sign of the error remains

intact.

Let us first derive the discrete-time TSMC law by using the concept of equivalent control

and discuss the TSMC properties associated with stability.

Theorem 13 The new TSMC law porposed is

uk = (sγ)−1 (srk+1 − sΦrk + sΦek + βep
k) − (sγ)−1sd̂k (A.2)
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Figure A.1: Phase Portrait of the Sliding Surface

where r =
[

r ṙ

]T
and d̂ is the estimate of the disturbance.

The controller (A.2) drives the sliding variable to

σk+1 = s(d̂k − dk)

and results in the closed-loop error dynamics

ek+1 = [Φ− γ(sγ)−1sΦ]ek − β(sγ)−1ep
k + δk,

where δ = γ(sγ)−1sd̂k − dk is due to the disturbance estimation error and is of O(T 2).

Further, the stable range of closed-loop system is nonlinearly depending on the tracking

error ek.

Proof: The control law (A.2) can be derived using the design method based on equivalent

control. To proceed, consider a forward expression of (A.1)

σk+1 = sek+1 + βep
k. (A.3)
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The objective of a sliding mode controller is to achieve σk+1 = 0, therefore, we need to derive

an explicit expression in terms of the error dynamics. For this we rewrite the system dynamics

(5.6) in terms of the error dynamics. It can be shown that the error dynamics is of the form

ek+1 = Φek − γuk − dk + rk+1 − Φrk. (A.4)

Substitution of (A.4) into (A.3) and equating the resulting expression of σk+1 to zero we obtain

the expression for the equivalent control ueq
k ,

ueq
k = (sγ)−1 (srk+1 − sΦrk + sΦek + βep

k) − (sγ)−1sdk. (A.5)

Note that the control (A.5) is based the current value of the disturbance d1,k which is unknown

and therefore cannot be implemented in this current form. To overcome this, the disturbance

will be estimated with the so called delay estimate as follows,

d̂k = dk−1 = xk − Φxk−1 − γuk−1 (A.6)

therefore, the final controller structure is given by

uk = (sγ)−1 (srk+1 − sΦrk + sΦek + βep
k) − (sγ)−1sd̂k. (A.7)

In order to verify the second part of Theorem 13 with regard to the closed-loop stability, first

derive the closed-loop error dynamics. Substitute uk in (A.2) into (A.4), we obtain

ek+1 =
[
Φ − γ(sγ)−1sΦ

]
ek − β(sγ)−1ep

k − dk (A.8)

+γ(sγ)−1sd̂k + (I − γ(sγ)−1s)(rk+1 −Φrk).

Next, in order to eliminate the term (I−γ(sγ)−1s)(rk+1−Φrk) from the closed-loop dynamics

(14), we note that since the objective is to have xk → rk then there must exist a control input
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ur,k such that rk+1 = Φrk + γur,k. Thus,

(I − γ(sγ)−1s)(rk+1 − Φrk) = (I − γ(sγ)−1s)γur,k = 0. (A.9)

and the final closed-loop error dynamics is

ek+1 = [Φ − γ(sγ)−1sΦ]ek − β(sγ)−1ep
k + δk (A.10)

where δk = γ(sγ)−1sd̂k − dk and is of O(T 2), [?]. The sliding surface dynamics is obtained

by substituting (A.10) into (A.3) to get

σk+1 = s(d̂k − dk) = s(dk−1 − dk) = O(T 2). (A.11)

To evaluate the stable range of (A.10), rewrite (A.10) in the form

ek+1 = [Φ− γ(sγ)−1
(
sΦ + βep−1

k C
)
]ek + δk (A.12)

where C = diag(1, 0). Denote lk = [l1,k, l2,k] = (sγ)−1
(
sΦ + βep−1

k C
)

the control gain vector,

where l1,k is error-dependent. The error dynamics (A.13) can be rewritten as

ek+1 = [Φ − γlk]ek + δk. (A.13)

From (A.13) we see that there must exist certain range for the first element of the gain vector,

l1,k, such that the closed-loop system is stable. Let l1,min ≤ l1,k ≤ l1,max where l1,min and l1,max

denote the minimum and maximum allowable values for l1,k.

From the definition of lk we can obtain

βep−1
k + s1φ1,1 + s2φ2,1 = sγl1,k (A.14)
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and

s1φ1,2 + s2φ2,2 = sγl2,k (A.15)

where φi,j are elements of the matrix Φ. From (A.14) we can derive the following inequality

sγl1,min < βep−1
k + s1φ1,1 + s2φ2,1 < sγl1,max, (A.16)

from which we can obtain, when p < 1,

|ek| >

(
β

sγl1,max − s1φ1,1 − s2φ2,1

) 1
1−p

|ek| <

(
β

sγl1,min − s1φ1,1 − s2φ2,1

) 1
1−p

(A.17)

The first relation gives the minimum-bound of the error and the second relation gives the

stable operation range. Note, that by selecting a proper s1 and s2 such that the denominator

in the second relation is zero for a non-zero β then it is possible to guarantee global stabilty

outside of the minimum-error bound.

A.2.2 TSMC Tracking Properties

First derive the ultimate tracking error bound of (5.1) when the proposed discrete-time TSMC

is applied. Using the discrete-time TSMC law (A.2), in the following we show that the ultimate

bound of the tracking error is O(T 2). From the previous subsection we obtained a minimum

error bound based on the selection of β which if selected small enough would result in a small

error bound.

However, due to the existence of a disturbance term δk the ultimate error bound may be
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large. Note that the solution of the closed-loop system (A.13) is

ek =
(
Πk

i=0[Φ − γli]
)
e0 +

k−1∑

i=0

(
Πi

j=0[Φ− γlj]
)
δk−i−1. (A.18)

According to [27] the ultimate error bound would be an order higher than δk, which means

that the error bound will be O(T ). This property holds if the gain lk constant and the

term
(
Πi

j=0[Φ − γlj]
)
δk−i−1 is an infinite series. According to [27], the series will be of the

order O
(

1
1−λmax

)
· O (δ) where λmax is the dominant eigenvalue. Therefore, if the dominant

eigenvalue is designed close to the edge of the unit disc, then O
(

1
1−λmax

)
= O(T−1). This

implies a rather bad rejection of the exogenous disturbance. To enhance disturbance rejection,

it is desirable to choose the dominant eigenvalue closer to the origin during steady state motion,

then O
(

1
1−λmax

)
= O(1) and

O
(

1

1 − λmax

)
· O (δ) = O (δ) = O(T 2). (A.19)

However, in practical consideration of sampled-data processes during transient motion, an

eigenvalue closer to the origin will result in large initial control effort of the order O
(

1
1−λmax

)
=

O(T−1).

A very useful property that is acquired by using the terminal switching surface is that the

system gain l1,k will increase as the error approaches zero because of the nonlinear term e1−p
k

in lk. This means that it is possible to move the dominant eigenvule of the closed-loop system

from an initial position nearby the unity disc towards the origin, thus avoid the large initial

control effort during the transient period, obtain very stable operation at steady state, and

quickly attentuate exogenous disturbances. We will explore more about this property in the

7



next section.

Finally, we look at what happens to the tracking error when there is a discontinuity in the

disturbance. Consider the disturbance term associated with the closed-loop system (A.13). It

can be reasonably assumed that the discontinuity occurs rarely, therefore, if we assume that

the discontinuity occurs at the kth sampling point, then δk = O(T ) rather than O(T 2) as the

difference dk−1 − dk will no longer be O(T 2) but of the order of dk which is O(T ). If the

discontinuity occurs at a time instance k′, then δk = O(T ) at k = k′, k′ + 1, k′ + 2, and return

to δk = O(T 2) for subsequent sampling instances. Therefore the solution of (A.13) would lead

to the worst case error bound

|ek| = O(T ) (A.20)

for certain time interval but O(T 2) ultimately.

A.2.3 Determination of Controller Parameters

To proceed with the implementation, three control parameters need to be designed: the

vector s, the parameter β, and the power p. As was discussed earlier the parameters p and β

determine the dynamics of the eigenvalue and this can be seen from Fig.A.2 – Fig.A.5. We can

see from these figures, since e1 leads to high gain feedback, both closed-loop eigenvalues of the

discrete-time TSMC will eventually exceed unity and become unstable when e1 is sufficiently

small. This is consistent with the discussion made in previous section that there exists a

minimu-bound of tracking error specified by (A.17). From the eigenvalue figures it is clear

that the minimum error bound is determined by a critical value of e1 where at least one
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eigenvalue becomes marginal stable. The minimum error bound can be reduced by shifting

the curves of eigenvalues leftwards. As shown in Fig.A.2 – Fig.A.5, this can be achieved by

either reducing β or increasing p. However, a smaller β implies a smaller range of stability as

shown in (A.17). Therefore in TSMC design, a relatively larger p is preferred.

From Fig.A.2 and Fig.A.4, the first eigenvalue, λ1, is always near unity when the error e1

is large. Hence this eigenvalue does not generate large inital control efforts, but may generate

large steady state error in the presence of disturbance if the eigenvalue does not decrease with

respect to error. By incorporating TSM, λ1 will first drop when e1 decreases, then rise when

e1 further decreases. A smaller β and a larger p will speed up this variation pattern as e1

decreases.

The variation pattern of the second eigenvalue, λ2, is opposite to the first eigenvalue as

can be seen from Fig.A.3 and Fig.A.5.

For the system ek+1 = [Φ−γlk]ek the solution is ek = V diag(λk
1, 0)V

−1e0 where the matrix

V consists of the eigenvectors of [Φ − γlk]. This leads us to conclude that the control law

(A.7) is proportional to V −1 which is a function of λ1 and will take large values as λ1 moves

towards 0. Thus, it is desirable to have λ1 closer to the edge of the unit disk so that V −1

does not take large values. This is evident from Fig.A.8 and Fig.A.9 where the controller

gains, at the initial time step of k = 1, (sγ)−1sΦV diag(λ1, 0)V
−1 was plotted w.r.t λ1. Note,

that the nonlinear term βep
k has been disregarded as its contribution at the initial time step

is neglegible w.r.t the linear term.

Based on the above dicussions the design guideline for discrete TSMC is determined. The

9



controller gains lk can be determined according to the selection of closed-loop eigenvalues.

Note that th eigenvalue λ1 should take a larger value initially and drop when approaching

steady state. Thus we can choose λ1 varying from the initial value 0.995 to the final 0. The

other eigenvalue is λ2 = 0 when the closed-loop system is in sliding mode. A functions of

eigenvalues, the range of the feedback gain vectors can be calculated as [894, 155] ≤ lk ≤

[1.79,×105 240].

Next, from relations (17) and (19) we can obtain s, β, and p. The selected s should ensure

that the denominator of the second expression in (19) is close to zero so that the upper limit

of ek is maximized, and at the same time (17) should be satisfied for the given range of l2. It

is not necessary to select s to make the upper bound on e1 infinite, as the real system has a

maximum displacement limitation of 60 × 10−3m. Thus, we select the denominator to take a

value of 0.01 and select l2 = 200 from the specified range of l2. Solving the two simultaneous

equations (17) and the denominator of the second expression in (19) being zero for s1 and s2

gives s = [0.49, 0.100].

To determine the parameters β and p, firtst look into the relations between these two

parameters and the closed-loop eigenvalues. The behavior of the eigenvalues under these

parameters are shown in Fig.A.6 and Fig.A.7. It is possible to divide the plots into three

regions in which the system has different behaviors. The transient response region is the

region in which the error is large enough and the dominant eigenvalue, λ1, remains close to

the edge of the unit disc. As a result, the control effort can be kept at appropriate level despite

any large initial error. At this region, disturbance rejection is not a main concern as an O(T )

10



or O(T 2) disturbance would be much smaller than the state errors.

The disturbance rejection region is when the state errors become smaller, reaching O(T ) or

O(T 2) level. Now, since the eigenvalue also becomes smaller as the controller gain increases,

the robustness and disturbance rejection property of the system are enhanced. Finally, the

minimum error region is the region in which the eigenvalue goes beyond the unit disc. There-

fore, the error will stay around the boundary between the disturbance rejection region and

the minimum error region, and the boundary determines the minimum error bound.

Based on the above discussions, from Fig.A.2 and Fig.A.4 it can be see that a larger β = 1

would lead to a faster response because the dominant eigenvalue, λ1 , drops quickly in the

transient response region. However, it may also lead to a larger steady state error because

λ1 rises quickly and produces a rahter large minimum error region. When smaller β = 0.1 is

used, we can achieve a much smaller minimum error region, but λ1drops slowly in the transient

response region. In the real-time implemetation, we choose a mid value β = 0.5 as a tradeoff.

Looking into Fig.A.3 and Fig.A.5, we can obsever that the variation of p will produce the

similar trend as β. Namely, when p is close to 0, the transient response region is improved but

the minimum error regin is larger. When p is approaching 1, on the other hand, the transient

response is slower as the dominant eigenvalue λ1 drops slowly, but the minimum error regin

is getting smaller. In the real-time implemetation, we choose a mid value p = 5
9

as a tradeoff.

It should also be noted that, in the real-time implementation, the presence of the distur-

bance will limit the best possible tracking error e1 to O(T 2) or O(10−6) for a smapling perid of

1-ms. Therefore, any selection of larger p and smaller β which result in the minimum tracking

11



region below O(T 2) would lead to little or no improvements.
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Figure A.2: System eigenvalue λ1 w.r.t e1 for different choices of β and p = 5
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Figure A.3: System eigenvalue λ2 w.r.t e1 for different choices of β and p = 5
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The reference trajectory designed for the experiment, rk, is shown in Fig.A.10. For com-

parison purpose, a PI control is also applied to the piezo motor and PI gains were optimized

through intensive tests. The PI gains are at kp = 1.5 and ki = 55. To verify that the PI gains

used are optimally tuned, PI gains are made to vary from their optimal values by ±20%.
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Figure A.5: System eigenvalue λ2 w.r.t e1 for different choices of p and β = 0.5

The optimally tuned PI gains can be determined when other PI values either produce larger

tracking errors or lead to oscillatory responses.

A.2.4 Experimental Results and Discussions

In this work, the TSMC is designed in discrete-time, but the real plant is analog in nature.

TSMC is applied with the sampling period of 1ms. The tracking errors of both TSMC and PI
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Figure A.6: System eigenvalue λ1 w.r.t e1
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Figure A.7: System eigenvalue λ2 w.r.t e1

controllers are shown in Fig.A.11. It can be seen that the tracking performance of the TSMC

is far better. Fig.A.12 shows the control signals of TSMC and PI. In Fig.A.13 the reference

velocity and the state x2 are plotted. It is clearly seen that the velocity tracking is very good

with minimal chattering. It is well known that sliding mode control requires a fast switching

frequency in order to maintain the sliding motion. The proposed TSMC however does not

produce much chattering though with the limited sampling frequency.
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Figure A.9: Second element of the system gain (sγ)−1sΦV diag(λ1, 0)V
−1 w.r.t λ1

Finally, it is also interesting to check the tracking error bound according to the theoretical

analysis and experimental result. Through analysis we have shown the tracking error bound is

proportional to the size of the sampling period T . Therefore, we can expect a smooth control

response and low tracking error when the sampling period is 1ms. The magnitude of the

tracking error obtained in experiment, as shown in Fig.A.11, is at the scale of 8× 10−6, which
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is consistent with the theoretical error bound of O(T 2) = O(0.0012) = O(10−6).

A.3 Conclusion

This work presents a revised TSM controller based on a linear SM combined with a TSM

designed from the discrete-time point of view. Theoretical investigation shows that the revised

controller can achieve very good performace. For the first time in this particular area of
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TSMC, a real-time TSMC is implemented. Experimental results on a piezo motor verifies the

effectiveness of the proposed control method that achieves a precision level upto micrometers.
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Appendix B

Proof of Lemma 1

Consider the Taylor’s series expansion of f((k + 1)T − τ )

f(kT + T − τ ) = fk + vk(T − τ ) +
1

2!
wk(T − τ )2 + · · · = fk + vk(T − τ ) + ξ(T − τ )2 (B.1)

where v(t) = d
dt
f(t), w(t) = d2

dt2
f(t) and ξ = 1

2!
w(µ) and µ is a time value between kT and

(k + 1)T , [29]. Substituting (B.1) into the expression of dk

dk =
∫ T

0
eAτBfkdτ +

∫ T

0
eAτBvk(T − τ )dτ +

∫ T

0
eAτBξ(T − τ )2dτ. (B.2)

For clarity, each integral will be analyzed separately. Since fk is independent of τ it can be

taken out of the first integral

∫ T

0
eAτBfkdτ =

∫ T

0
eAτBdτ fk = Γfk. (B.3)

In order to solve the second integral term, it is necessary to expand eAτ into series form. Thus,

∫ T

0
eAτBvk(T − τ )dτ =

∫ T

0

[
eAτB −

(
B + ABτ +

1

2!
A2Bτ 2 + · · ·

)
τ
]
dτvk. (B.4)

Solving the integral leads to

∫ T

0
eAτBvk(T − τ )dτ =

[
Γ −

(
1

2!
BT +

1

3!
ABT 2 + · · ·

)]
Tvk. (B.5)
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Simplifying the result with the aid of (2.3)

∫ T

0
eAτBvk(T − τ )dτ =

[
Γ − 1

2
Γ +

1

2
MT 2 −

(
1

3!
ABT 2 +

1

4!
A2BT 2 + · · ·

)]
Tvk. (B.6)

Simplifying the above expression further

∫ T

0
eAτBvk(T − τ )dτ =

1

2
ΓvkT + M̂vkT

3 (B.7)

where M̂ is a constant matrix. Finally, note that in (B.2) the third integral is O(T 3), since,

the term inside the integral is already O(T 2), therefore

∫ T

0
eAτBξ(T − τ )2dτ = O(T 3). (B.8)

Thus, combining (B.3), (B.6) and (B.8) leads to

dk = Γfk +
1

2
ΓvkT + M̂T 3vk + O(T 3) = Γfk +

1

2
ΓvkT + O(T 3). (B.9)

Now evaluate

dk − dk−1 = Γ(fk − fk−1) +
1

2
Γ(vk − vk−1)T + O(T 3). (B.10)

From (B.1) and letting τ = 0, fk − fk−1 ∈ O(T ). From (2.3), Γ ∈ O(T ). In the sequel

dk − dk−1 ∈ O(T 2), if the assumptions on the boundedness and smoothness of f(t) hold.

Finally, we notice that (B.10) is the difference of the first order approximation, whereas

dk − 2dk−1 + dk−2 = Γ(fk − 2fk−1 + fk−2) +
1

2
Γ(vk − 2vk−1 + vk−2) + O(T 3)

is the difference of the second order approximation. Accordingly the magnitude of dk−2dk−1+

dk−2 is O(T 3), [29].
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Proof of Lemma 2 : If the matrices Φ, Γ and C are partitioned as shown

Φ =




Φ11 Φ12

Φ21 Φ22




C =
[

C1 C2

]

Γ =




Γ1

Γ2




where (Φ11, C1,Γ1) ∈ <m×m, (Φ12, C2) ∈ <m×n−m, (Φ21,Γ2) ∈ <n−m×m and Φ22 ∈ <n−m×n−m .

The eigenvalues of [Φ − Γ(CΓ)−1(CΦ −ΛC)] is found from

det
[
λIn − Φ + Γ(CΓ)−1(CΦ− ΛC)

]
= 0 (B.11)

det




λI − Φ11 + Γ1(CΓ)−1


C




Φ11

Φ21


− ΛC1


 −Φ12 + Γ1(CΓ)−1


C




Φ12

Φ22


− ΛC2




−Φ21 + Γ2(CΓ)−1


C




Φ11

Φ21


− ΛC1


 λI − Φ22 + Γ2(CΓ)−1


C




Φ12

Φ22


− ΛC2







= 0

(B.12)

If the top row is premultiplied with C1 and the bottom row is premultiplied with C2 and the

the results summed and used as the new top row, using the fact that C1Γ1 + C2Γ2 = CΓ the

following is obtained

det




(λIm − Λ)C1 (λIm − Λ)C2

−Φ21 + Γ2(CΓ)−1


C




Φ11

Φ21


− ΛC1


 λI − Φ22 + Γ2(CΓ)−1


C




Φ12

Φ22


− ΛC2







= 0

(B.13)

factoring the term (λIm − Λ) and premultipying the top row with Γ2(CΓ)−1Λ and adding to
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the bottom row leads to

det(λIm − Λ)det




C1 C2

−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m − Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0

(B.14)

Thus, we can conclude that m eigenvalues of [Φ − Γ(CΓ)−1(CΦ − ΛC)] are the eigenvlaues of

Λ. Now, consider

det




C1 C2

−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m − Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0 (B.15)

Using the following relations

C2Φ21 − C2Γ2(CΓ)−1C




Φ11

Φ21


 = −C1Φ11 + C1Γ1(CΓ)−1C




Φ11

Φ21


 (B.16)

−C2Φ22 + C2Γ2(CΓ)−1C




Φ12

Φ22


 = −C1Φ12 + C1Γ1(CΓ)−1C




Φ12

Φ22


 (B.17)

Multiplying (B.15) with λ−mλm we get

λ−m det




λC1 λC2

−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m −Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0 (B.18)

Premultiplying the bottom row with C2 and subtracting from the top row and using the result

as the new top row we get

λ−m det




λC1 + C2Φ21 − C2Γ2(CΓ)−1C




Φ11

Φ21


 C2Φ22 − C2Γ2(CΓ)−1C




Φ12

Φ22




−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m − Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0

(B.19)
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using relations (B.16) and (B.17) we finally get

λ−m det




λC1 − C1Φ11 + C1Γ1(CΓ)−1C




Φ11

Φ21


 −C1Φ12 + C1Γ1(CΓ)−1C




Φ12

Φ22




−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m − Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0

(B.20)

We can factor out the matrix C1 from the top row to get

λ−m det(C1) det




λIm − Φ11 + Γ1(CΓ)−1C




Φ11

Φ21


 −Φ12 + Γ1(CΓ)−1C




Φ12

Φ22




−Φ21 + Γ2(CΓ)−1C




Φ11

Φ21


 λIn−m − Φ22 + Γ2(CΓ)−1C




Φ12

Φ22







= 0

(B.21)

which finally simplifies to

λ−m det(C1) det [Φ − Γ(CΓ)CΦ] = 0 (B.22)

It is well known that [Φ − Γ(CΓ)CΦ] has atleast m zero eigenvlaues which would be cancelled

out by λ−m and, thus, we finally conclude that the eigenvalues of [Φ − Γ(CΓ)−1(CΦ − ΛC)]

are the eigenvalues of Λ and the non-zero eigenvlaues of [Φ − Γ(CΓ)CΦ].
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