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SUMMARY 

 
As complementary metal-oxide semiconductor (CMOS) transistors scale beyond 

45 nm technology node, several key innovations become more and more attractive in 

different aspects, including: high-k gate dielectric and metal gate to provide the 

possibility that equivalent oxide thickness scales to less than 1 nm, high mobility channel 

materials for increment of carrier saturation velocity, and Schottky barrier source/drain 

structure for shallow and sharp junction with low resistance. This project explores the 

feasibility of integration of germanide Schottky source/drain Ge channel MOSFET with 

high-k gate dielectric and metal gate for sub-tenth nm technology application. 

The comprehensive knowledge on metal germanide properties is essential for the 

successful replacement of doped source/drain with metal germanide Schottky 

source/drain. Therefore systematic studies on Ni- and Pt- germanide for Ge p-MOSFET 

application have been carried out. Both the germanides offer promising merits: low 

effective hole barrier height, morphological stability, low resistance and abrupt junction 

with germanium. Ge p-MOSFETs with Ni- or Pt- germanide Schottky source/drain are 

also successfully fabricated on n-Ge-substrate with chemical vapor deposition (CVD)-

HfO2/TaN gate stack. Improved junction forward and reverse current were obtained from 

Ni- and Pt- germanide source/drain junction compared to conventional B-doped p+/n 

junction. In addition, the higher drive-on current and lower drive-off current were also 

obtained from Pt-germanide MOS field effect transistor (MOSFET) than conventional 

Ge-pMOSFET.  

 V



Exploration of metal germanide for Ge n-MOSFET application has been focused 

in two material groups: i) rare earth metal germanide, such as Er- and Yb- germanide,  

which has a low metal work function, and ii) NiGe with modified electron barrier height. 

By introducing an interfacial Sb layer, NiGe was found to show low resistivity and low 

electron barrier height simultaneously, which make NiGe with such modification a good 

ohmic contact material to n+ source/drain regions as well as a promising Schottky 

source/drain candidate for Ge n-MOSFETs.  

Laser annealing was introduced as an alternative germanide source/drain 

formation technique to conventional rapid thermal annealing, providing the advantages of 

local selective heating of specific regions and reduced thermal budget. A smooth and 

uniform Pt-germanide film has been obtained through laser annealing, with effective hole 

barrier height as low as 0.12~0.14 eV. A Ge p-MOSFET with Pt-germanide Schottky 

source/drain formed by laser annealing was successfully demonstrated with well-behaved 

output and transfer characteristics. 
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Chapter 1: Introduction 

Chapter 1 

Introduction 
 

As the beginning of this thesis, in this chapter I will start with a brief introduction 

to metal-oxide-semiconductor field effect transistor (MOSFET) and its scaling trend. The 

challenges associated with MOSFET scaling down will be discussed. Subsequently, to 

overcome the challenges, high-k gate dielectric, metal gate and Schottky source/drain 

structure will be introduced respectively. Finally the objectives to be achieved in this 

project and organization of this thesis will be given.  

 

1.1 Introduction to MOSFET 

Since the invention of the integrated circuit (IC) some forty years ago, engineers 

and researchers around the world have been continuously working on realization of better 

circuit performance with a smaller chip size and lower manufacturing cost. Actually, the 

semiconductor industry has been very successful in providing continuous achievements 

on system performance improvement year after year. In 1992, the Semiconductor 

Industry Association (SIA) published the international technology roadmap for 

semiconductors (ITRS) which basically affirms the development to follow closely with 

Moore’s law [1.1], i.e. the number of transistors per unit area on IC doubles 

approximately every 18 months.  It was also pointed out by Moore that reduction of cost 

per function is the driving force behind the exponential increase in transistor density. This 

exponential reduction in cost per function, which driving improvement of microprocessor 

 1
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performance and growth of the information technology and semiconductor industry, 

however, leads to the shrinking of the transistor feature size approaching its fundamental 

limits in the traditional silicon-based IC technology today. The dramatic decrease in 

transistor feature size and cost per transistor during the last three decades are shown in 

Fig 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Technology and transistor feature size and transistor cost versus year (after 

[1.2]). 
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Among various semiconductor devices, the most important device used in modern 

circuits is the MOSFET. A schematic illustration of a complementary metal-oxide-

semiconductor (CMOS) consists of an n-MOSFET and a p-MOSFET is shown in Fig. 1.2. 

One of the most important parameter to evaluate the performance of an IC is the 

dynamic response (i.e. charging and discharging) of load capacitance, associated with a 

specific circuit element and the supply voltage provide to the element at a representative 

(clock) frequency. A common element employed to examine such switching time effects 

is a CMOS inverter where the input signal is attached to the gates and the output signal is 

connected to both an NMOS and a PMOS transistor as shown in Fig. 1.3. The switching 

time is limited by both the fall time required to discharge the load capacitance by the 

NMOS drive current and the rise time required to charge the load capacitance by the 

PMOS drive current. The average switching response time ( ) of an inverter is given by 

[1.3] 

_

τ

Figure 1.2 Schematic illustration of a complementary MOSFET (CMOSFET). 
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_ 1

n
d d

pI I
τ   ∝

+
       (1.1) 

where n
dI  and p

dI  are the drive current of n- and p-MOSFETs, respectively. The 

performance of an IC then can be characterized through this switching response time. It is 

easily seen that to achieve a decrease in (higher switching speed, better IC 

performance), increase in the drive current 

_

τ

dI  of the n- and p-MOSFETs is required. 

Therefore, the improvement of IC performance can be taken as linked to the enhancement 

of drive current dI  associated with the MOSFETs.  

 

Figure 1.3 Schematics of a CMOS inverter where  and serve as the source and 
drain voltages, respectively. 

sV ddV

 
 

Vdd
PMOS 

in out 

NMOS 

Vs
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Gate 
dielectric 

G 

 

Figure 1.4 Sketch of a typical MOSFET structure on a bulk (B) substrate, in which L and 
W represent the channel length and width, respectively. When the channel is inverted 
with a voltage applied on the gate (G), carriers can flow from the source (S) to drain (D) 
forming the drive current of the MOSFET. 
 

Figure 1.4 shows a sketch of a typical MOSFET structure on a bulk substrate. 

When a voltage is applied on the gate to invert the channel and a potential drops between 

source and drain, carriers flow from the source to drain and form the drive current of the 

transistor. The saturation drive current ,d satI  is given by [1.4] 

 
2

,

( )
2

g th
d sat inv

V VWI C
L

µ
−

=                 (1.2) 

where  

W : the width of the transistor channel 

L  : the length of transistor channel 

µ : the channel carrier mobility  

invC : the capacitance density associated with the gate dielectric when the 

underlying channel is in the inverted state  

gV : the voltage applied to the transistor gate  

B 

D S 
W 

L 
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thV : the threshold voltage of transistor.  

According to Eq. (1.2), to achieve an increase of drive current ,d satI  for a given power 

supply voltage can be taken as to modify the values of the parameters in the right side of 

the equation. However, increase of the term ( )g thV V−  is limited in range due to reliability 

considerations and room temperature operation constraints. Increase of the channel width 

 is contrary to the scaling of device dimension. The channel length  has been 

continually reduced and is approaching its fundamental limits today. Therefore, the 

remaining approaches to enhance the drive current 

W L

,d satI  and eventually improve 

MOSFET performance are increases of either the gate dielectric capacitance density  

or the channel carrier mobility

invC

µ , or both of them. 

 

1.2 High-k gate dielectrics and metal gate 

The MOS gate structure in a transistor (see Fig. 1.4) can be simplified as a 

parallel plate capacitor. The gate capacitance  can be given by [1.5] invC

inv
inv t

Ak
C

⋅⋅
= 0ε                          (1.3) 

where  

k : the relative permittivity (i.e. dielectric constant) of dielectric (  for 

SiO

3.9κ =

2 ) 

0ε  : the permittivity of free space ( 38.85 10 /fF mµ−× )  

A  :  the area of the capacitor 
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invt :  the capacitive equivalent thickness (CET) of the gate dielectric. 

With a traditional ploy-Si gate,  consists of the following three CET components: invt

inv poly ox QMt t t t= + +                                                       (1.4) 

where 

polyt : contribution from poly depletion effect from the poly-Si gate 

QMt : contribution from quantum mechanical effect from the carriers channel. 

oxt : the main part of attributes to the gate dielectric, also known as 

equivalent oxide thickness (EOT). 

invt

Therefore, an increase of  requires the decrease in . Among the three CET 

components of ,   is attributed to intrinsic mechanism which cannot be eliminated; 

 comes from the poly-Si gate, thus can be eliminated by replacing poly-Si gate with 

metal gate. One of the most widely studied metal gate materials, Tantalum Nitride (TaN), 

was used as metal gate in this project. The down scaling of , the main component of 

, has been continuous during the past several decades with the thinning of the physical 

thickness of SiO

invC invt

invt QMt

polyt

oxt

invt

2 gate dielectric. However, it is known that a minimum thickness of 7 Å 

for SiO2 is required to maintain its bulk properties, such as its band gap.  Furthermore, 

when gate leakage current is taken into consideration, the practical limit for SiO2 

thickness scaling becomes 10-12 Å [1.6], which makes industry face a great challenge on 

high performance device scaling after 2007 as shown in Table 1.1. 
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Table 1.1. Near-term high-performance logic technology requirements in ITRS 2005 
[1.7]. 
 

Year of Production 2006 2007 2008 2009 2010 2011 2012

DRAM 1 2  Pitch (nm) 
(contacted) 70 65 57 50 45 40 36 

MPU/ASIC Metal1 1 2  
Pitch (nm) (contacted) 

78 68 59 52 45 40 36 

MPU Physical Gate 
Length (nm) 28 25 23 20 18 16 14 

EOT for extended planar 
bulk (Ǻ) 11 11 9 7.5 6.5 5 5 

Effective NMOS 
, (d sat )I A mµ µ  (extended 

planar bulk) ( ,d satI  of 
PMOS is ~ 40-50% ) 

1130 1200 1570 1810 2050 2490 2300

Mobility Enhancement 
Factor for ,d satI  (extended 
planar bulk)  

1.09 1.08 1.09 1.10 1.10 1.12 1.11

 Manufacturable solutions exist, and are being optimized 
 Manufacturable solutions are known 
 Manufacturable solutions are NOT known 

 

Fortunately, the application of high-k gate dielectrics in recent decade allows 

people to use physically thicker dielectric film therefore reduce the gate direct tunneling 

current while maintains the same EOT of a thin SiO2 gate dielectric. The physical 

thickness of an alternative high-k dielectric to achieve the equivalent capacitance density 

with  of a SiOoxt 2 can be obtained from the expression 

khigh
ox

khigh k
EOTt

t −− ⋅=
9.3

)(                                                         (1.5) 

where 

QMt : contribution from quantum mechanical effect from the carriers channel. 
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khight − : the physical thickness of the high-k gate dielectric 

khighk − : the relative permittivity of the high-k gate dielectric 

In the past few years, a number of studies has been carried out on high-k metal 

oxides and several promising high-k gate dielectric candidates have been identified, such 

as La2O3, HfO2 and Hf-based pseudo-binary alloys (HfSiO, HfSiON, HfTaO, and 

HfLaO). In this project, HfO2 was used as gate dielectric for its higher k value, relatively 

simple formation techniques and good interface with Ge after substrate passivation. 

1.3 High mobility channel materials 

As stated in Section 1.1, another way to enhance the drive current ,d satI  and 

eventually improve MOSFET performance is to increases the channel carrier mobility µ . 

Novel channel materials such as germanium and III-V semiconductors provide potential 

solution for mobility enhancement by replacing conventional silicon channel. Table 1.2 

lists the properties of common semiconductor materials. 

Table 1.2 Properties of common semiconductor materials (Si, Ge, GaAs, InAs, and InSb). 
electronµ  and holeµ  represent electron mobility and hole mobility respectively. 

 Si Ge GaAs InAs InSb 

electronµ (cm2/Vs) 1400 3900 8000 33000 77000

holeµ  (cm2/Vs) 470 1600 340 460 1000 

Bandgap (eV) 1.12 0.66 1.42 0.36 0.17 

Melting point (K) 1685 1231 1510 1215 798 
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From Table 1.2, it is noted that germanium is the only material that offers 

mobility enhancement for both electron and hole with appropriate bandgap and melting 

points compared to other semiconductor materials, making it an attractive channel 

material for both NMOS and PMOS devices application. However, although the first 

MOSFET and IC were fabricated on Ge half century ago [1.8], the poor properties of 

germanium oxides and lack of good quality gate dielectric greatly hindered the 

development of Ge MOS device. Until recent years, Ge MOS devices with various high-k 

gate dielectrics were reported with the progress in high-k deposition and surface 

passivation techniques [1.9]-[1.12]. Ge pMOSFET with an EOT of 6-10 Ǻ has also been 

demonstrated [1.13]. 

 

1.4 Schottky barrier source/drain MOSFET 

1.4.1 Motivation 

The idea of completely replacing doped source/drain with metal was first 

proposed by Nishi in 1966 in a Japanese patent which was issued four years later [1.14]. 

The first paper on the topic, however, was published in 1968 by Lepselter and Sze [1.15], 

focusing on a PMOS bulk device employing PtSi for the source/drain regions. Although a 

variety of Schottky barrier MOS devices were studied in the 1980s [1.16]-[1.20], the poor 

performance due to device architecture and process technology issues, hindered the 

progress of Schottky barrier MOSFET until the advantages of Schottky barrier MOSFET 

for device scaling were realized by Tucker [1.21] and Snyder [1.22] in 1994. In recent 

years, Schottky barrier MOSFET have received tremendous attention due to its numerous 
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benefits in making CMOS technology scalable to sub-10-nm gate length dimensions 

[1.23], which will be briefly introduced as following. 

Table 1.3 Introduction of roadmap challenges addressed by Schottky barrier MOSFET 
(SBMOS). Most of the categories have multiple line items in the detailed roadmap tables. 
The box color for a given year and category above reflects the worst case, considering all 
of the roadmap line items within each category. d) = manufacturable solution not 
known;  (yellow) = manufacturable solutions are known;  = manufacturable 
solutions exist and being optimized (after [1.24]). 

(re

 

Figure 1.5 shows an XTEM (cross-sectional transmission electron microscope) 

image of a 27 nm channel length PtSi source/drain device with 19 Å gate oxide. It is 

obvious that in a Schottky barrier MOSFET, the metallic source/drain replace doped 

source/drain and form a Schottky barrier with the semiconductor substrate and channel 

region. Table 1.3 summarized the impact of Schottky barrier MOSFET in a variety of 

general ITRS roadmap categories, including “Process Integration, Devices and 

Structures”, “Front End Processes” and “Design.”. ITRS roadmap indicates predicts that 

there is no known solution to meet the requirements for the source/drain parasitic 
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resistance, shallow implant and lateral abruptness within the next two years. By replacing 

doped source/drain with metal silicide source/drain, challenge for the source/drain 

resistance can be easily solved since the metal silicide has low sheet resistance and the 

contact resistance is very low in metal-to-metal contacts. Without the difficulties in 

achieving shallow implant, the junction depth in metal silicide source/drain can be easily 

controlled from metal-Si reaction with atomically sharp interface (see Fig. 1.5). Since 

Schottky barrier source/drains require no impurity doping, the carrier concentration is no 

longer limited by the dopant solid solubility in the substrate material, which has been a 

bottleneck for some high mobility substrate material such as germanium and GaAs. On 

the other hand, the implantless Schottky barrier MOSFET process also eliminates the 

high-temperature 1000ºC spike or flash anneals to activate the source/drain dopants. 

Instead, the formation temperature of metallic source/drain is usually less than 600ºC, 

which enables the integration of other new critical materials into CMOS process flows, 

such as high-k gate dielectrics, metal gate, strained silicon and germanium. The 

properties of these new materials tend to degrade upon high-temperature anneal in doped 

source/drain technology, but are more stable when the process thermal budget is less than 

600ºC [1.25]-[1.30]. With the elimination of implantation, the manufacturing process 

becomes simpler and cost is also reduced especially for short channel devices. 
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PtSi 
source/drain 

Gate 

Channel 

 

Figure 1.5 XTEM of a PtSi source/drain device with 27 nm channel length, 19 Å gate 
oxide, and n+ poly gate (after [1.31]). 
 
 

Another advantage of Schottky barrier MOS device is the latchup immunity. In 

the1980s, Sugino and Swirhun first realized that Schottky barrier MOSFET can naturally 

eliminate parasitic bipolar gain [1.19] [1.32]-[1.34], due to the reduction in theoretical 

emitter efficiency at the source by eight orders of magnitude from 104 for a conventional 

MOS device to 10-4 for a Schottky barrier MOS device. Therefore a Schottky barrier 

MOS device is inherently radiation tolerant. Consequently, circuits manufactured with 

Schottky barrier MOSFET technology will benefit from unconditional latchup immunity 

and substantially reduced soft error rates, thereby improving field level product reliability 

for both memory and logic applications, especially as device dimensions scale into the 

sub-50 nm regime [1.35]. 
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1.4.2 Operation principles 

The operation principles are fundamentally different between Schottky barrier 

source/drain MOSFET and doped source/drain MOSFET although technically these two 

kinds of devices have many similarities in the fabrication process. The main difference is 

the nature of the junction between the source/drain regions to the semiconductor substrate: 

the junction is a metal/semiconductor Schottky diode in Schottky barrier MOSFET, while 

it is a PN junction in doped source/drain MOSFET. 
(a) (b) 

 

 

 

 

 

 

 

 

 

 

 

c

S

Figure 1.6 Band diagrams of (a) Schottky barrier PMOS device and (b) conventional 
impurity-doped source/drain MOS device.  
 
 Band diagrams of germanide Schottky barrier source/drain p-MOSFET and 

onventional impurity-doped source/drain Ge p-MOSFET are shown in Figure 1.6. In the 

chottky barrier PMOS device in Fig. 1.6 (a), the Fermi level of the source and drain 
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germanide are attached to the Ge band gap close to the valence band in the “off” and 

“on” state respectively. The band diagrams for Schottky barrier PMOS and conventional 

MOS are quite similar except at the source and drain region, where the metal germanide 

Fermi level is replaced by the germanium bands in conventional PMOS, and the Schottky 

barrier PMOS bands have a built in Schottky barrier at the source and drain interface with 

the channel. In the off-state, the built-in Schottky barrier and substrate doping combine to 

limit electron and hole thermal emission into the channel. Compared to a Schottky barrier 

MOS device, a conventional MOS device requires a much higher channel doping 

concentration to achieve the same effective barrier to thermal emission in the off-state. 

Therefore to achieve a given off-state leakage current, channel doping in Schottky barrier 

MOSFET can be reduced compared to conventional MOS. As the gate voltage become 

more negative and the Schottky barrier MOS device is turned on, a gate induce electric 

field renders the source barrier virtually transparent and carriers are injected into the 

channel region. The net field emission current through the source Schottky barrier is 

exponentially sensitive to the electric field intensity at the source.  

The band diagrams for a Schottky barrier NMOS device are the mirror image of 

those of PMOS as shown in Fig. 1.6. Similar discussion on device operation principles 

can also be applied. 

1.4.3 Literature review 

During the past ten years, the development of Schottky barrier MOSFET 

technology has advanced significantly in the aspects of device architectures, Schottky 

barrier height engineering and integration of new silicide materials such as ErSix and 

YbSix into device-fabrication process flows [1.36]-[1.38]. Table 1.4 summarized the 
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Schottky barrier NMOS and PMOS in the literature with gate length less than 250 nm. As 

one can see, high-performance Schottky barrier NMOS using thin dopant-segregation 

junctions and PMOS with a PtSi source/drain have been demonstrated. However, the on-

current of these devices does not yet meet the ITRS requirements. Naturally, integration 

of Schottky barrier source/drain with other unconventional approaches (see Eq. 1.2) 

needs to be considered for further enhancement of the device on-current.   

Among these unconventional approaches, Schottky barrier MOSFET fabricated 

on high mobility channel materials has received more and more attentions since past a 

few years. Germanium is one of the most promising channel materials as it offers 

mobility enhancement for both electron and hole with appropriate bandgap and melting 

points as shown previously. However, on the road to Schottky source/drain transistors, 

the metal Fermi level pinning is always a big challenge in work function and Schottky 

barrier tuning, especially at metal/germanium interface. This is the reason why low 

Schottky barrier is difficult to achieve, and extremely low work function metals such as 

Yb, Er have to be used for NMOS. A simulation work shows that for typical Schottky 

source and drain transistor, it is the carrier tunneling through the metal-semiconductor 

barrier height that limits the on-current. Thus only a negative metal-semiconductor 

barrier height could deliver the on-current of a ballistic MOSFET [1.40]. However, this 

simulation ignored the Schottky barrier lowering, phonon- and defect-assisted tunneling, 

band structure effects, etc, which could increase the transmission of the barrier. Recently, 

simulation studies suggest a finite positive barrier of 0.06-0.1 eV is needed for Schottky 

barrier PMOS and NMOS to make Schottky barrier CMOS technology speed 

performance competitive with doped source/drain technology [1.41] [1.42].  
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Table 1.4 Summary of sub-250-nm-gate length Schottky barrier NMOS and PMOS 
literature. The column labeled “Technology” has a comma-separated list for each row 
with the format “Type, device structure, source/drain silicide type, source/drain 
engineering type”. (N=NMOS, P=PMOS; B= bulk, S= SOI, F= FinFET; 1= standard, 2= 
interfacial layer) [1.23]. 
 

 

Heine, in 1965, pointed out that any intrinsic electron states which may be present 

on a free semiconductor surface will be replaced by metal-induced gap states (MIGS) 

when a metal is deposited on that surface [1.43] [1.44]. Besides MIGS, for a surface 

which is imperfect, defects such as steps or vacancies may lead to additional localized 

states. The energy levels associated with these defects may lie in the band gap of the 

semiconductor. Both of them may present at metal-semiconductor interface in densities 
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sufficient to cause strong pinning of the metal Fermi level. 

Table 1.5 summarized measured barrier height values of the metal germanide/Ge 

contacts and pure metal/Ge contacts in the literature. The dependence of the barrier 

height on the metal work function is reflected by the equation 

                CS mb +⋅= φφ                                                              (1.6) 

where  

S : slope parameter 

bφ : the barrier height of the metal/Ge contacts 

mφ : the metal work function 

C : a constant 

The value of  is a direct reflection of interface states density  given by  S sD

)/()(1
1

0
2 εεσsDq

S
+

=                                                   (1.7) 

where  

q : the electronic charge 

σ : the thickness of interfacial layer 

ε : the absolute permittivity of interfacial layer 

0ε : the permittivity of free space 

In an ideal metal/semiconductor system, according to the Schottky-Mott theory, Schottky 

barrier height can be controlled by the metal work function. However, the low values of 

 in Table 1.5 indicate a high density of interface states at the metal/Ge interface and the 

Fermi level is pinned at between 0.54 and 0.61 eV below the conduction-band edge, 

independent of the contacting metallization [1.45].  

S
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The lowest values of bhφ  and beφ  in Schottky source/drain Si MOSFET 

technology are achieved both ~ 0.27 eV by using PtSi [1.23] [1.37] and YbSi2-x [1.46] for 

PMOS and NMOS device respectively. The strong Fermi level pinning near valence band 

of germanium in metal/Ge contacts makes it much easier to achieve lower bhφ ( 1.0<bhφ  

eV) compared to in metal/Si case, implying Schottky source/drain Ge PMOS device is 

promising to be realized with improved performance than Schottky source/drain Si 

PMOS device.  However, the Fermi level pinning at metal/Ge interface also provides 

high beφ  for NMOS device, which is a great challenge to the realization of NMOS device.   

Various attempts have been carried out to alleviate the Fermi level pinning 

phenomenon. M. Tao [1.47]-[1.49] and D. Udeshi [1.50] demonstrated that, by 

terminating dangling bonds and relaxing strained bonds on the silicon (001) surface with 

a monolayer of selenium, low Schottky barriers can be obtained. Dan Grupp et al. [1.51] 

has proposed x-junction structure by inserting thin insulator between metal and 

semiconductor to reduce pinning while still maintaining high conductance. Another way 

to modify barrier height is to introduce a thin, highly doped interfacial region at 

metal/semiconductor interface by shallow ion implantation, epitaxial growth or diffusion 

form a doped layer [1.45]. However, the low  beφ  in metal/Ge contacts has not yet been 

reported so far in the literature.  
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Table 1.5 Summary of barrier heights of various metal germanide/Ge contacts and pure 
metal/Ge contacts in the literature. mφ  is the metal work function, beφ  is barrier height for 
electron, bhφ  is barrier height for hole, and  is slope parameter.  S
 
Metal mφ  (eV) Contact beφ   (eV) bhφ  (eV) S  Ref. 

Pt/Ge 0.62 0.04 
Pt2Ge/Ge 0.61 0.05 
PtGe/Ge 0.62 0.04 

Pt 5.65 

PtGe2/Ge 0.62 0.04 
Ni/Ge 0.57 0.09 
Ni2Ge/Ge 0.58 0.08 

Ni 5.15 

NiGe/Ge 0.59 0.07 
Pd/Ge 0.61 0.05 
Pd2Ge/Ge 0.61 0.05 

Pd 5.12 

PdGe/Ge 0.61 0.05 
Er/Ge 0.54 0.12 Er 3.12 
ErGe2/Ge 0.52 0.14 

 

 

 

 

 
0.02 

 
 
 
 
 
 
[1.39] 

Ni 5.15 Ni/Ge 0.44 0.22 

Pb 4.20 Pb/Ge 0.38 0.28 
Au 4.70 Au/Ge 0.54 0.12 

0.40 [1.53] 

Pd 5.12 Pd/Ge ―   ―   
Ni 5.15 Ni/Ge ―   ―   

0.16 [1.55] 

Ag/Ge 0.54 0.12 Ag 4.26 
Ge/Ag 0.48 0.18 
Ni/Ge 0.49 0.17 Ni 5.15 
Ge/Ni 0.49 0.17 

0.11 [1.56] 

 

 

1.5 Thesis organization  

As discussed in Section 1.2 to Section 1.4, high-k gate dielectric, metal gate, high 

mobility germanium channel and Schottky barrier source/drain structure are all attractive 

elements for future CMOS technology in different aspects. Therefore the main objective 

of this project is to explore the feasibility of integration of germanide Schottky 
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source/drain MOSFET with high-k gate dielectric (HfO2) and metal gate (TaN) for sub-

tenth nm technology. 

Following this introduction chapter, Chapter 2 describes the typical fabrication 

process of a metal-germanide Schottky source/drain MOSFET integrated with HfO2 high-

k dielectric and TaN metal gate, as well as that of a metal-germanide/Ge Schottky diode 

in this project. Some techniques for characterization of physical and electrical properties 

of MOSFET are also briefly introduced at the later part of this chapter. 

Chapter 3 and 4 focus on the studies of material and electrical properties of 

several novel germanides, including Ni-, Pt-, Er- and Yb- germanides, and the successful 

demonstration of metal-germanide Schottky source/drain n- and p-MOSFETs. A 

simulation work on the impact of spacer thickness on MOSFET drive current and a 

robust self-aligned Pt-germanide process are also shown. Chapter 5 describes the second 

part of this PhD project which focuses on demonstration of Ge pMOSFET with Pt-

germanide Schottky source/drain formed by laser annealing. 

Finally, Chapter 6 summarizes the results drawn from this project and suggests 

recommendations for the future work. 
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Device fabrication and characterization 
 

For decades, conventional technology has been developed on Si-based CMOS 

process flow where SiO2 was successfully integrated due to the high-quality Si-SiO2 

interface, thermodynamic and electrical stability as well as superior electrical isolation 

properties. However, the thermodynamically unstable and water-soluble properties of Ge 

oxides (GeO and GeO2) [2.1] and the low melting temperature of Ge (937ºC) present 

significant challenges in the process integration and greatly hinder the processing and 

application of Ge MOS devices, in particular Schottky source/drain MOSFETs. 

The use of Schottky contact in electronic devices can be traced back by almost 

four decennia when Pt [2.2], Cu [2.2], Mo [2.2] and W [2.3] silicides were used for 

manufacturing planar Schottky diodes with enhanced rectifying characteristics. Today, 

metal silicides have become an inseparable part of an electronic device because they meet 

the basic requirements: low specific resistivity, low contact resistance to both type of Si, 

high thermal stability, good processibility, and excellent process compatibility with 

standard Si technology [2.4] [2.5]. Since Nishi first proposed the idea of completely 

replacing doped source/drain with metal in 1966 [2.6], silicide source/drain Schottky 

barrier MOSFET structure has draw more and more attention throughout decades as one 

solution for the source/drain shallow implant, junction resistivity and lateral abruptness 

requirements forecasted by ITRS [2.7]-[2.10]. However, the development of germanide 

Schottky source/drain MOSFET is relatively lagged, partly due to the incompatibility 
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with Si technology and until 2005, Ni [2.11] and Pt [2.12] germanide Schottky 

source/drain Ge p-MOSFETs were first demonstrated with the process-induced hole 

between gate and source/drain for isolation by lateral encroachment of the gate electrode 

[2.11] and back gate structure [2.12], respectively. 

In this chapter, fabrication of a typical top-gate self-aligned metal-germanide 

Schottky source/drain MOSFET integrated with HfO2 high-k dielectric and TaN metal 

gate will be shown first, followed by descriptions of some critical process steps in detail. 

Some techniques for characterization of physical and electrical properties of MOSFET 

will be briefly introduced at the final part of this chapter. 

 

2.1 Device fabrication process 

2.1.1 Fabrication process for metal-germanide Schottky source/drain Ge MOSFETs 

integrated with TaN/HfO2 gate stack 

Our MOSFETs fabrication is a self-aligned single-mask process, patterned in 

ring-shaped patterns, as shown in Figure 2.1. The fabrication of ring-shaped MOSFETs is 

usually on one mask level so it provides a rapid and simple way for MOSFETs 

fabrication, while most electrical characteristics of MOSFETs, such as the output and 

transfer characteristics, junction and gate properties, mobilities, and so on, can be easily 

measured, making it a preferred choice for novel material studies. Additionally, in 

principle, material properties of source/drain regions and impact of germanide 

source/drain on device performances should be the same regardless the channel length of 

a device is in micrometer scale or nanometer scale. The gate length is 5 ~ 20 µm and the 

 30



Chapter 2: Device fabrication and characterization 

 

width is 400 µm in our experiments, with an additional square area of 100 ×100 µm2 for 

probing. The sketch of a single mask ring-shaped MOSFET from top view is shown in 

Figure 2.1. 

 

 

Figure 2.1 A sketch of single mask ring-shaped MOSFET where G, S and D presenting 
gate, source and drain regions, respectively. 
 
 

The typical Schottky source/drain MOSFET fabrication process used in this 

project includes following steps: 

1) Substrate pre-gate cleaning (see Fig. 2.2 (a)): The standard Si substrate cleaning 

process is known to consist of SC-1 (NH4OH : H2O2 : H2O=1:1:5), SPM (sulfuric-

peroxide mixture with H2SO4 : H2O2 = 4:1) and DHF (diluted HF with HF : 

H2O=1:100) cleaning, rinsed by de-ionize (DI) water. However, because 

germanium can be rapidly etched by both SC-1 and SPM, for Ge substrate pre-

gate cleaning, only DHF cleaning (5 min) and DI water rinsing were adopted, 

with N2 gun blowing to dry. 
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2) Substrate surface treatment before high-k gate dielectric deposition (see Fig. 2.2 

(b)): Besides the hygroscopic and water-soluble properties of Ge oxides, distorted 

C-V characteristics from Ge MOS capacitor with GeO2 as the gate dielectric also 

indicate the high density of interface states and interface traps [2.13] [2.14]. 

Degradation of device performance has been reported due to the presence of Ge 

oxides which usually form during high-k dielectric deposition and post process 

[2.15]-[2.18]. As a result, Ge substrate surface treatment before high-k gate 

dielectric deposition becomes a critical step to passivate interface states and traps 

and suppress Ge oxidation. Among various attempts on passivation technique 

exploration, plasma-PH3 and thin AlN turned out to be the most promising for 

both Ge p- & n-MOS devices [2.19] [2.20]. In this project, plasma-PH3 was 

generally used due to the in-situ process with high-k gate dielectric deposition in 

MOCVD (metal organic chemical vapor deposition). This process was carried out 

at 430ºC for 60 sec, with a flow of mixed gas PH3:N2 = 1:100 of 300 sccm, 

working pressure of 323 mTorr and RF (radio frequency) power of 200 W. 

3) High-k gate dielectric deposition and PDA (Post-Deposition Anneal) (see Fig. 2.2 

(c)): The high-k gate dielectric used for this project is HfO2 due to its high k value 

(~25) and acceptable conduction band offset. After the surface plasma-PH3 

treatment, the deposition of HfO2 is carried out in MOCVD by reaction between 

Hf(OC(CH3)3)4 and O2. The PDA procedure is in-situ performed in N2 ambient 

with working pressure of 200 Torr at 400ºC for 1 min.  

4) Metal gate electrode deposition (see Fig. 2.2 (d)): the metal gate electrode of TaN 

is deposited at a rate of 9 nm/min by reactive sputtering of Ta in N2 and Ar 
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ambient (N2: 5 sccm, Ar: 25 sccm) at a working pressure of 3 mTorr with DC and 

RF power of 450 W and 12 W, respectively. 

5) Photolithography process (see Fig. 2.2 (e)): the process in this project used only 

one mask to pattern gate and source/drain region at the same time. During 

lithography process, a layer of PR (photo-resist) is spun-on the wafer surface with 

a highest spin rate at 5000 r/sec. After soft baked at 95ºC for one min, wafer was 

loaded into mask aligner where UV light exposure with the mask shown in Fig. 

2.1 was carried out, followed by post exposure baking at 95ºC for one min. 

Finally after a develop procedure and hard baking (115ºC for 10 min), the wafer 

is patterned with gate region covered with PR and source/drain region open.  

6) Gate RIE (Reactive Ion Etch) and PR removal (see Fig. 2.2 (f)): the gate stack is 

defined and patterned by Cl2 plasma dry etching procedure in Lam Etcher. The 

etching removes all TaN in source/drain region and stops on HfO2 dielectric layer 

with Ge substrate untouched. The un-crystallized HfO2 layer can be removed by 

DHF in later step. The residual PR is removed by a combustion procedure in 

Asher at 170ºC for 10 min with O2 gas flow of 10 sccm, RF power of 250 W and 

working pressure of 300 mTorr. 

7) Spacer material deposition and spacer etching (see Fig. 2.2 (g)): Spacer formation 

is one of the most important steps in Schottky source/drain MOSFET fabrication, 

which makes metal gate and metal source/drain electrically isolated. A thin 

sidewall spacer helps minimize source/drain-to-gate underlap so that the Schottky 

source/drain to the channel region is in close proximity to the gate electrode and 

the source/drain junction parasitic resistance induced by underlap can be reduced. 
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The optimized thickness of the spacer should be about 10 nm [2.21]. In the 

literature study, the thin sidewall spacer is mostly formed by RTO (rapid thermal 

oxidation) of poly-Si gate electrode with thickness of 10 – 15 nm [2.22] [2.23] 

[2.25] [2.26] or Si oxide/nitride by LPCVD (Low-pressure chemical vapor 

deposition) [2.27] followed by an anisotropic sidewall spacer etch. However, 

neither of these two approaches is applicable in this project due to the TaN metal 

gate used and the thermal stability consideration of HfO2/Ge. Instead, Si nitride 

by PECVD (Plasma Enhanced Chemical Vapor Deposition) is mostly used as 

spacer material in this project [2.28] [2.29] considering its efficiency and simpler 

process. Considering the DHF cleaning before the deposition of source/drain 

metal, during which PECVD Si nitride will be isotropically etched at a rate of ~ 

15 nm/min, a relatively thick Si nitride (~30 nm) is deposited. The spacer etching 

is carried out first in Lam Etcher where 20~25 nm Si nitride is dry etched in Cl2 

plasma, followed by dipping into DHF to remove the residue 10~5 nm Si nitride 

(Fig. 2.2 (g) – I).          

Besides the Si nitride, HfN sidewall hole and AlNx/SiO2 stacked spacer 

were also tried in experiments for this project.  To form HfN sidewall hole, the 

gate electrode should be deposited a layer of HfN prior to TaN deposition. During 

source/drain pre-metal deposition cleaning, the HfN interlayer is laterally etched 

by DHF at a rate of ~30 nm /min and a hole is created in gate edge at HfN 

interlayer, which will act as spacer (shown in Figure 2.2 (g) – II). This approach 

simplifies the Schottky source/drain MOSFET fabrication further, and well-

behaved silicide and germanide Schottky MOSFETs have been demonstrated in 
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this way [2.30] [2.31]. However, the difficulty in the control of lateral 

encroachment of HfN makes this process unpredictable. On the other hand, 

AlNx/SiO2 stacked spacer shown in Fig. 2.2 (g) – III is formed by deposition of ~ 

6 nm SiO2 by e-beam evaporation and ~ 4 nm AlN by reactive sputtering in 

consequence, followed by anisotropic dry etching, where AlN protects spacer 

from being etched during DHF etch in the next step due to its low etching rate in 

DHF and SiO2 plays a role of dry etching stop layer to prevent over etching of Ge 

substrate. This stacked spacer turned out to be successful and PtGe p-MOSFET 

was demonstrated in this way [2.32].  

8) Source/drain pre-metal deposition cleaning and metal deposition (see Fig. 2.2 (h)): 

to remove Si nitride etch residue and native oxides in the source/drain region, 

wafer is dipped into DHF (HF: H2O=1: 50) for 40 seconds. Metal is deposited by 

sputter or e-beam evaporator with the base pressure is kept around 5×10-7 mTorr.  

9) Germanidation process (see Figure 2.2 (i)): metal germanides are formed by RTA 

(rapid thermal annealing) carried out in RTP (rapid thermal process) chamber in 

N2 ambient at various temperature. In this project, laser annealing was also 

applied for germanidation process, and will be elaborated in Chapter 5. 

10) Removal of unreacted metal (see Figure 2.2 (j)): the aim for this step is to 

selectively remove unreacted metal, especially metal on spacer that can cause 

electrical short between the gate and source/drain, while leaving formed 

germanide intact, known as selective etching. The most important factor is the 

high etching selectivity of the chemical solution, i.e., selectivity = etching rate of 

metal: etching rate of metal germanide. Due to the fast etching rate of germanium 
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and germanide in SC-1 and SPM, such solutions widely used in Si technology 

however should be avoid in this project. It is found diluted HNO3 (HNO3: H2O= 1: 

20 by volume) has a high selectivity for metal such as Ni, Er, Yb to corresponding 

germanides with a metal etching rate of 10 ~ 12 nm/min. On the other hand, Pt is 

known to be the most difficult metal to etch and usually is etched by heated aqua 

regia (HCl: HNO3 = 3: 1) [2.32]. However, during experiments in this project, the 

following relationship was found: 

ER (etching rate) of Pt-germanide > ER of Pt > ER of Pt silicide 

 As a result, although aqua regia is widely used in Pt-silicide Schottky 

MOSFETs fabrication process [2.22] [2.23], it is not compatible for a Pt-

germanide MOSFETs process. Instead, dry etching by Cl2 is applied to remove Pt 

(deposited by e-beam evaporation) during which Pt-germanide and Pt are etched 

at a comparable rate. Since the thickness of Pt-germanide formed is double of the 

thickness of Pt deposited, source/drain region can still have remaining Pt-

germanide after Pt dry etching. However, sputtered Pt film turns out to be more 

difficult to etch by RIE compared to evaporated Pt film, and can only be removed 

by wet chemical etching.  

11) Backside ohmic contact (see Figure 2.2 (k)): as the last step, 100 nm Al is 

deposited by e-beam evaporator at the wafer backside to form ohmic contact at a 

deposition rate of 1 angstrom/sec with a base pressure of 5×10-7 mTorr.  
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Figure 2.2 A typical fabrication process flow of a Schottky source/drain MOSFET in 
this project. 
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2.1.2 Fabrication process for metal germanide/Ge Schottky diodes  

The fabrication of germanide/Ge Schottky diodes contains fewer steps compared 

o the fabrication of Schottky MOSFETs. It includes the following steps: 

) Substrate cleaning and field isolation material deposition (see Fig. 2.3 (a)):  after 

dipped into DHF for 1 min to remove native oxides, Ge wafer is loaded into 

PECVD chamber and ~ 100 nm Si3N4 is deposited at 250ºC. The deposition rate 

of Si3N4 is kept at 1 nm/sec.  

) Photolithography (see Fig. 2.3 (b)): the same procedure as MOSFET 

photolithography which is elaborated earlier in this chapter is applied for diode 

fabrication using the same single mask.  

) Diode etching and PR removal (see Fig. 2.3 (c)): the diode pattern is etched by 

RIE. 80~90 nm Si3N4 is removed in Cl2 plasma ambient and the remaining Si3N4 
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is removed by DHF at a etching rate of 15 nm/min. PR is removed in Asher at 170

ºC for 10 minutes with O2 gas flow of 10 sccm, RF power of 250 W and working 

pressure of 300 mTorr. 

4) Pre-metal-deposition-cleaning and metal deposition (see Fig. 2.3 (d)) 

5) Germanidation and selective etch (see Fig. 2.3 (e)) 

6) Backside ohmic contact (see Fig. 2.3 (f)) 

Steps 4 – 6 follow the same procedure as MOSFETs fabrication steps 8 – 11.  

(a)  

 

PECVD Si3N4 

Ge substrate 

(b)  

Ge substrate 

PR PR 

Si3N4 
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 Figure 2.3 A typical fabrication process flow of a metal germanide/Ge Schottky diode 
in this project. 

 

2.2 Device characterization 

The physical and electrical properties of a device during process and after full 

fabrication are characterized by various techniques. This part will categorize and 

introduce briefly the techniques that are most frequently used in this project. 

2.2.1    Chemical and physical properties 

1) Spectroscopic ellipsometer 

Ellipsometer is a true contactless, noninvasive technique measuring changes in 

the polarization state of light reflected from a surface. It is used predominantly to 

determine the thickness of thin films on highly absorbing substrates in industry. In this 

project, we are using a commercially available spectroscopic ellipsometer (SE800 from 

SENTECH Instruments GmbH), with a resolution of ~ 0.1 nm applicable to material that 
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is able to be penetrated by the light with wavelength roughly from 250 nm to 650 nm. A 

schematic sketch is shown in Figure 2.4. The physical thickness of dielectrics, such as 

HfO2, SiO2, Si3N4 etc, and thin metal film (thickness less than 30 nm) is measured by this 

technique. 

 

Figure 2.4 A schematic sketch of spectroscopic ellipsometer. 

 

2) SEM (Scanning Electron Microscopy) 

In SEM, an electron beam incident on the sample with electron energy of 

typically 10-30 KeV, produces a magnified image of the sample [2.34]. Compared to 

optical microscopes, SEM provides much larger magnifications and much higher depth of 

analyzer 

incident 
reflected 

transmitted 

sample 

laser 

polarizor & 
compensator 

 detector
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field, making it widely used to view the surface of the device or to determine device 

dimensions. In this project SEM is mainly used for a direct evaluation of film 

morphology. 

3) TEM (Transmission Electron Microscopy) & HRTEM (High resolution TEM) 

In spite of the complicated sample preparation procedure, TEM provides the 

extremely high resolution; especially HRTEM gives structural information on the atomic 

size level and has become very important for interface analysis. In this project, TEM and 

HRTEM were used in studies of germanide film texture and properties of germanide/Ge 

and HfO2 dielectric/Ge interfaces. 

4) XRD (X-Ray Diffraction) 

XRD is a nondestructive technique that requires little sample preparation and 

gives structural crystal information over entire semiconductor wafers. In this project, 

Bruker D8 GADDS X-ray diffraction is used for germanide crystallization study and 

phase identification. 

5) XPS (X-Ray Photoelectron Spectroscopy) 

XPS is primarily used for identifying chemical species at the sample surface (the 

emitted photoelectrons originate from the upper 0.5-5 nm of the samples), allowing all 

elements except hydrogen and helium to be detected. We are using a JEOL XPS (JPS-

9010MX) in this project. 

6) SIMS (Secondary Ion Mass Spectrometry) 

SIMS is one of the most powerful and versatile analytical techniques for 

semiconductor characterization. It is element specific and is capable of detecting all 

elements. Dynamic SIMS is used for a depth profile which is obtained by record of the 

 46



Chapter 2: Device fabrication and characterization 

 

intensity of one peak for one particular mass as a function of sputter time when the 

sample is sputtered at a higher sputter rate (~ 10 µm per hour). 

2.2.2    Electrical properties 

1) Sheet resistivity measurement 

The four-point probe technique is the most common method for resistivity 

measurement which was originally proposed by Wenner in 1916 [2.34] and adopted for 

semiconductor wafer resistivity measurement by Valdes in 1954 [2.35]. The four probes 

are generally collinear, i.e., arranged in-line with equal probe spacing, as illustrated in 

Figure 2.5, where two probes carry current and the other two carry voltage. After 

considering the correction factors, the sheet resistivity can be derived from  

 

I
Vt

I
Vt ⋅⋅=⋅⋅= 352.4

)2ln(
πρ                                                (2.1) 

where ρ  is the sheet resistivity (µΩ•cm),  is the film thickness, V  and t I  are voltage 

applied between two probes and current flowing through the other probes, respectively. 

 

 

I 
V 

I

probes 

s s s Figure 2.5, A typical collinear 
four-point probe set up. sample 
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However, resistivity measured by this method is geometry-dependent and quite 

sensitive to boundary conditions, especially in the case of small size samples with 

irregular area. Van der Pauw method has been demonstrated to be more effective in 

resistivity measurement for this case [2.36], where four probes contact with sample at 

arbitrary places along the circumference as shown in Figure 2.6. The sheet resistivity is 

determined as [2.37] 

t
R
R

f
RR

⋅⋅
+

⋅= )(
22ln 2

121πρ                                          (2.2) 

where )(
2

1

R
R

f  is Van der Pauw correction factor as a function of the ratio of 
2

1

R
R  

( ) with 21 RR >
AB

CD

I
V

R =1  and 
BC

DA

I
V

R =2 . In our project, the size of germanide samples is 

within 5×5 mm2 – 8×8 mm2 with irregular shape, so the resistivtiy and sheet resistance 

of germanide films are measured using this method. 

 

 

 

 
 

B

D 

A 

C 

Figure 2.6 Sample of irregular shape with four contacts at arbitrary places along the 
circumference.  
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2) Metal/Ge Schottky barrier height measurement  

The Schottky barrier height is one of the key parameters in a metal/semiconductor 

contact. Numerous techniques have been developed to extract barrier heights accurately 

such as the current-voltage ( ), current-temperature (VI − TI − ), capacitance-voltage 

( ) and photocurrent (PC) techniques. In this project, the Schottky barrier heights of 

germanide/Ge contacts were extracted by  and 

VC −

VI − TI −  method, which will be briefly 

introduced below. 

 

qФbe0

Figure 2.7 Schottky barrier energy band diagram on an n-type substrate. 
 

The band diagram of a Schottky barrier diode on an n-type substrate is shown in 

Figure 2.7, where EC, EV and EF represent the conduction band, valence band and 

semiconductor Fermi level, respectively. Due to image force barrier lowering and other 

factors, the actual electron barrier height beqφ  is less than the ideal barrier height 0beqφ . 

The thermionic current-voltage relationship of the Schottky barrier diode is given by 

[2.38] 

)1)(exp( −=
nkT
qVII s                                                        (2.3) 

 

EF

ECqФbe

qФbh

EV
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or 

exp( )[1 exp( )]s
qV qVI I
nkT kT

−= −                                            (2.4) 

where  is the saturation current given by sI

 

)exp(2*

kT
q

TAAI be
s

φ−
=                                                     (2.5) 

A  is the diode area, *A  is the Richardson’s constant, T is the measurement temperature, 

 is the Boltzmann constant,  is the electron charge, k q beφ  is the effective electron barrier 

height and n  is the ideality factor. In ideal case, the value of n  should be unity. But in 

real case n  is larger than unity due to mostly unknown effects making the device 

nonideal such as the presence of a thick interfacial layer, the recombination of electrons 

and holes in the depletion region or the nonuniformity over entire Schottky diode. 

Recombination current is most important at low forward voltages and leads  approach 2. n

The  method is most commonly used in barrier height measurement, in 

which barrier height 

VI −

bφ  is calculated from the saturation current . According to Eq. 

(2.4), the following equation can be derived: 

sI

 

)exp(
))exp(1(

)(
nkT
qVI

kT
qV

IVf s=
−−

=                                 (2.6) 

Further we can get 

 

nkT
qVIf s += log)log(                                                      (2.7) 
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So  can be determined by an extrapolation of the  versus curve to  

while  can be determined from the slope. According to Eq. (2.5) the barrier height 

sI )log( f V 0=V

n beφ  

can be calculated from  

 

)ln(
2*

s
be I

TAA
q

kT=φ                                                      (2.8) 

The TI −  method utilizes Richardson plot, i.e., a plot of )ln( 2T
I  versus 

T
1  at a 

constant forward bias voltage . According to Eq. (2.3) and Eq. (2.5), for 0VV =
q

kTV >>  

 

kT
nVq

AA
T
I Be )/(

)ln()ln( *
2

−
−=

φ                                 (2.9) 

The Richardson plot has a slope of 
k

nVq be )/( −
−

φ  and an intercept on the 

vertical axis. So the barrier height is given by  

)ln( *AA

 

)/1(
)]/[ln( 2

0

Td
TId

q
k

n
V

be ⋅−=φ                                         (2.10) 

where  is determined by the  method. n VI −
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f

f

h

g

 Table 2.1 A comparison between Schottky barrier height measurements by  and VI −
TI −  methods. 
 

Method Advantage Disadvantage 
Fitting forward 
current 

Widely used, simple  Uncertain *A  
 Contact resistance 

 

VI −  
Fitting reverse 
current 

Less affected by contact 
resistance 

 Uncertain *A  
 Image effect should be 

considered 
 

TI −  
*A  is not used 

 

 Assumption: Bφ  is 
temperature 
independent. 

 

 

A comparison between Schottky barrier height measurements via the two methods 

is summarized in Table 2.1. The uncertain value of Richardson constant *A  that is 

requently observed varying greatly with processing conditions is the main disadvantage 

or  method. On the other hand, usingVI − TI −  method to determine barrier height 

does not involve *A  value, however, it is accurate based on the assumption that barrier 

eight is temperature independent. Both of the two methods are used to analysis the 

ermanide/Ge diodes in our project, and the results will be discussed in Chapter 3.
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Chapter 3 

Metal germanide Schottky source/drain Ge 
channel p-MOSFETs integrated with 

TaN/HfO2 gate stack 
 

Germanium-channel MOSFETs have recently attracted tremendous attentions for 

future high performance CMOS devices due to its higher carrier mobility. Successful 

demonstration of high-k dielectric deposition on Ge substrate using surface passivation 

techniques [3.1]-[3.3] enhances the feasibility of Ge-MOSFETs. However, it is also 

pointed out that the limited thermal stability of Ge/high-k/metal gate stack and difficulties 

in achieving highly doped source/drain due to the poor activation and solid solubility 

limits of dopants may deteriorate the performance improvement of Ge MOSFET [3.4]-

[3.6]. Schottky source/drain structure is an attractive alternative to conventional doped 

source/drain to overcome these challenges. In addition to providing advantages of low 

resistivity, atomically sharp junction, and a simpler implantless fabrication process, the 

successful integration with low-temperature Schottky source/drain structure is critical for 

the full potential of Ge/high-k/metal gate stack to be realized. However, most of previous 

researches on Schottky source/drain transistor have been performed on Si-based devices 

using metal-silicides [3.7]-[3.9], and some reports on metal-germanides were performed 

with impractical device structures [3.10][3.11]. In this chapter, comprehensive studies on 

material and electrical properties of Ni- and Pt- germanide contacts on n-type Ge are 
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carried out, and the low temperature self-aligned Schottky source/drain p-MOSFETs 

integrated with HfO2/TaN gate stack are also demonstrated. 

3.1 Ni- and Pt-germanides investigation for Ge channel p-SSDT 

application 

3.1.1 Experiment introduction 

N-type (Sb-doped) (100) Ge wafers with a resistivity of 2.0~3.2 Ω·cm were used 

in this study. Wafers were dipped in diluted HF for 5 min to remove native oxide, and 

loaded into sputter system where Ni and Pt films with thickness of 10 and 30 nm were 

deposited, respectively. A shadow mask was used to form the Schottky contact with 

diodes diameter of ~1 mm. After metal deposition, samples were loaded into RTP and 

annealed at 300~500°C in N2 ambient. Samples with diode structure were loaded into 

sputter system again and ~100 nm Al was deposited at wafer backside to form ohmic 

contact. The as-deposited and final contact structure as well as contact top view are 

illustrated in Fig. 3.1. SEM, HRTEM and XRD were applied to examine surface 

morphology, interface quality and crystallinity of Ni- & Pt-Ge after annealing, 

respectively, and the Schottky contacts were characterized by a Hewlett-Packard 4156A 

semiconductor parameter analyzer.  
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Figure 3.1 Schottky contact structure 
cross section view (a) as metal 
deposited (b) after RTA and 
germanide formation, and (c) top 
view of contacts.  

 

3.1.2 Results and discussion 

Figure 3.2 shows XRD scans of Ni- & Pt-germanide as a function of RTA 

germanidation temperature. Results show that at the annealing temperature ranging from 

300 to 500°C, only single phase of NiGe was observed for Ni-germanide formed from 10 

nm and 30 nm as-deposited Ni on Ge. Ge peak is detected from 10 nm Ni sample when 

temperature increases to 500°C. On the other hand, the formation of three different 

phases (PtGe, Pt2Ge3, and PtGe2) and their transition of phases with increasing 

temperature are observed for Pt-germanides. The transition from the metal-rich phase 

PtGe to Ge-rich phase PtGe2 with increased temperature shows that the Pt-Ge phase 

growth obeys the ordered Cu3Au rule, which was proposed by d’Heurle in 1986 [3.12], 

and the reaction between Pt and Ge is diffusion controlled. It is also found that the 

transition to the PtGe2, which shows the lowest resistivity of ~ 25 µΩ⋅cm (confirmed in 

Fig. 3.4), occurs at lower temperature for thinner Pt film (10 nm) and on patterned diode 

samples rather than on blanket Ge substrate.  
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The morphological stability of Ni- & Pt-germanides was investigated by SEM 

selectively shown in Fig. 3.3. For germanides formed by Ni and Pt with 30 nm thickness, 

no significant agglomeration is observed as shown in Fig. 3.3 (a) and (b). However, an 

apparent agglomeration after 450°C (Fig. 3.3 (c)) and increased agglomeration after 

500°C (Fig. 3.3 (d)) were observed for Ni-germanide from 10 nm Ni sample. Pt-

germanide from 10nm Pt exhibited no agglomeration up to 500°C (Fig. 3.3 (e) and (f)), 

suggesting better morphology than Ni-germanide. 

 

Figure 3.2 XRD results of Ni- and Pt-germanides formed from (a) 30 nm Ni, (b) 10 
nm Ni, (c) 30 nm Pt, and (d) 10 nm Pt on Ge and annealed at 300~500°C for one 
minute. 
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s

N

Figure 3.3 SEM images of Ni- and Pt-germanides formed by (a) 30 nm Ni at 500°C, 
(b) 30 nm Pt at 500°C, (c) 10 nm Ni at 450°C, (d) 10 nm Ni at 500°C, (e) 10 nm Pt at 
450°C and (f) 10 nm Pt at 500°C.  
 

 

The sheet resistance of Ni- & Pt-germanides formed at different temperatures is 

hown in Fig. 3.4. Constant sheet resistance of 3.4 ohm/sq was measured for NiGe (30nm 

i) formed at 300~500°C, which corresponds to resistivity of ~16 µΩ⋅cm. A dramatic 
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increase at 450°C for NiGe (10 nm Ni sample) is attributed to the significant 

agglomeration of NiGe as shown in Figure 3.3 (c). Recent research [3.13] has pointed out 

that by additional Ti incorporation, the agglomeration of NiGe can be significantly 

alleviated for thin Ni film (<10 nm) so that the process window of NiGe in Ge 

technology can be widened.  On the other hand, the Pt-germanide film formed from 10 

nm and 30 nm Pt respectively, both show a rapid decrease in sheet resistance above 

350°C. This can be explained by the phase transition of Pt-germanide from PtGe phase to 

PtGe2 phase as RTA temperature increases, as can be seen in Fig. 3.2 (c) and (d). No 

significant increase in sheet resistance was observed for Pt-germanide film with both 

thicknesses up to 500°C, indicating better thermal stability of PtGe2 compared to NiGe 

with comparable germanide film thickness. 

 

Figure 3.4 Sheet resistance of Ni- and Pt-germanides formed from 10 and 30 nm Ni 
and Pt at 300~500°C, respectively. 
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NiGe 

Ge 

(a) 

PtGe2 

Ge

(b) 
 

Figure 3.5 HRTEM pictures of (a) NiGe and (b) PtGe2 formed at 400ºC. 

HRTEM analysis was also used to study the Ni- & Pt-germanides after RTA at 

400°C, as shown in Figure 3.5. Results show that uniform, epitaxial growth of NiGe and 

PtGe2 germanide films are formed with smooth and sharp interfaces on Ge.  
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Figure 3.6 Richardson plots of forward current of (a) NiGe/n-Ge (100) and (b) 
PtGe2/n-Ge (100) contacts with inset temperature dependent  curves. VI −
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Figure 3.6 shows the Richardson plots of forward current of the Ni- & Pt-germanide 

Schottky diodes formed at 400°C with the temperature dependent  curves as inset 

figure. From the 

VI −

TI −  method mentioned in Chapter 2, calculated effective beqφ  of Ni 

and Pt-germanides are 0.74 eV and 0.76 eV, respectively, even larger than Ge bandgap of 

0.66 eV. Pt-germanides formed at 300~500°C exhibited similar beqφ  with ideality factor 

of , in spite of their different phases.  1.1~0.1=n

On the other hand, according to Eq. (2.8) in the  method of barrier height 

measurement in Chapter 2, where Richardson constant

VI −

*A = 50 A cm-2K-2 for n-Ge (100) 

[3.14] [3.15], the beqφ  of NiGe/n-Ge and PtGe2/n-Ge diodes extracted from the room 

temperature  curves are 0.58 eV and 0.62 eV, respectively. A higher VI − beqφ  therefore 

a lower bhqφ  obtained for PtGe suggests that PtGe could be more promising for Ge p-

MOSFETs application than NiGe. A further discussion will be carried out in Chapter 3.3 

and Chapter 4.2. The much higher barrier heights obtained from the TI −  method is most 

likely due to the presence of temperature dependent barrier height, i.e., 

TKTqq bebe βφφ −=≈ )0( , which means that beqφ  values of 0.74 and 0.76 eV 

determined from Richardson plots more or less reflect beqφ  values at  , rather 

than the value at measured temperatures [3.15]. The band gap of Ge decreases with 

increasing temperature is given by [3.16] 

KT 0=

T
TTEg +

×−=
235

0004774.07437.0)(
2

(eV)                               (3.1) 

So the assumption of TI −  method that the barrier height is temperature independent is 

not satisfied, leading to an inaccurate value of beqφ .
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3.2 Metal germanide Schottky source/drain Ge pMOSFETs 

integrated with TaN/HfO  gate stack2

3.2.1 Experiment introduction 

The fabrication of Schottky source/drain Ge MOSFETs follows the procedure 

described in previous chapter. After dipped in diluted HF to remove native oxide, n-type 

(Sb-doped) (100) germanium wafers were loaded into multi-cluster CVD system, where 

Ge substrate received plasma PH3 treatment at 400ºC to improve the interface quality 

[3.4], followed by in-situ MOCVD HfO2 deposition and post anneal at 400ºC. ~100 nm 

TaN was deposited as gate electrode by reactive sputtering. After gate patterning, ~30 nm 

Si3N4 spacer was deposited by PECVD at 250ºC. Before source/drain metal deposition, 

wafer received DHF clean again to remove native oxide and Si3N4 residue at source/drain 

region. ~30 nm Ni and Pt were respectively deposited by sputter, followed by rapid 

thermal anneal in N2 ambient at 400ºC to form germanide at source/drain. Unreacted Ni 

and Pt were removed with diluted HNO3 and diluted aqua regia solution respectively. 

Finally, ohmic contacts were formed on the backside of the substrates by deposition of Al 

film. 

 

3.2.2 Results and discussion  

The HRTEM image of TaN/HfO2/n-Ge (100) gate stack of the p-MOSFETs 

fabricated with conventional self-aligned process is shown in Fig. 3.7. Owing to the low-

temperature process (highest temperature is 400°C), the conformal MOCVD HfO2 film 

remained amorphous maintaining ultra thin interfacial layer which is mainly formed 
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during HfO2 deposition [3.4]. The  curve measured at 1 MHz and gate leakage 

current of the TaN/HfO

VC −

2/Ge gate stack are shown in Fig. 3.8. By using a software 

developed by the UC Berkeley Device Group, and taking into account of quantum 

confinement effects, the EOT can be extracted. The extracted EOT is ~ 2.9 nm and the 

leakage current at 1 V is about 2 ×10-6 A/cm2, which is consistent with the HfO2 

physical thickness of ~ 8 nm.  

HfO2

Ge 

TaN
 

 

 

 

 

 

 

 

 
Figure 3.7 HRTEM image of the TaN/HfO2/n-Ge (100) gate stack of a fully processed 
Schottky source/drain Ge p-MOSFET. 
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Figure 3.8 (a) capacitance-voltage and (b) current-voltage characteristics of TaN/HfO2/n-
Ge (100) gate stack. 

Figure 3.9 Forward and reverse current at junctions of Ni- & Pt-germanide source/drain 
and B-doped p+/n junction. 
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cm-2, 35 KeV, forming gas anneal at 400ºC, 10 min) are shown in Fig. 3.9. Since limited 

dopant solid solubility in Ge and un-efficient activation, compared to p+/n junction, Ni- & 

Pt germanide/n-Ge Schottky diodes have comparable reverse current, but much higher 

forward current, which can be attribute to the higher density of available electrons in 

metal-germanide than in doped source/drain. PtGe2/n-Ge junction exhibits lower reverse 

current compared to NiGe/n-Ge due to higher electron barrier height between PtGe2/n-Ge 

(0.51 eV for NiGe/n-Ge and 0.60 eV for PtGe2/n-Ge extracted from Fig. 3.9 using 

method in Chapter 2). It is noted that rectification character of the NiGe/n-Ge and 

/n-Ge Schottky contacts degraded after transistor fabrication compared to diodes 

 by shadow mask (0.56 eV for NiGe/n-Ge and 0.63 eV for PtGe2/n-Ge), w ich will 

) and transfer characteristics 

( ) of NiGe and PtGe2 Schottky source/drain Ge p-MOSFET with channel 

width/length = 400/8 µm. The drain current at V is ~ - 2.3 and - 3.5 

µA/µm, and the ratio obtained at V is ~ 103 and 104 for NiGe and 

PtGe2 Schottky source/drain MOSFETs, resp y. The main reason for the 

increase and  reduction in PtGe2 SSDT than that of NiGe SSDT, is believed to be ~ 

0.1 eV higher 

VI −

PtGe2

made h

be discussed later. 

Figure 3.10 shows the output characteristics ( dd VI −

gd VI −

1−=−= thgd VVV  

offon II /  1.0−=dV  

ectivel onI  

 offI

beφ of PtGe2/n-Ge contact than that of NiGe/n-Ge contact by using the same 

 method extractVI − to beφ . Moreover, compared to the conventional Ge p-MOSFET 

2

omparable 

with boron-doped source/drain [3.4], PtGe  source/drain p-MOSFET provides a 

c on  but 80% decrease in offI  with similar effective hole mobility, suggesting 

no degradation induced by Schottky contact at the source/drain. Further reduction of offI  

I
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can be achieved by using ultrathin Ge/SiGe on insulator substrates where the contact 

areas can be dramatically reduced.  
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e p-

Ge p-MOSFETs. 

Figure 3.10 Output characteristics of (a) NiGe and (b) PtGe2 Schottky source/drain G
MOSFETs; and transfer characteristics of (c) NiGe and (d) PtGe2 Schottky source/drain 
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3.3 Process integration issues in Schottky source/drain Ge p-

MOSFETs integrated with TaN/HfO2 gate stack 

3.2.1 Simulation of NiGe Schottky source/drain Ge p-MOSFET with different 

spacer thickness  

Since spacer is one of the most important parts in a Schottky source/drain 

transistor, which physically and electrically isolated metal source/drain and metal gate, 

simulation was carried out to investigate the suitable spacer thickness based on the 

assumptions: (1) no pinning at metal/Ge interface; (2) metal work function equals to 

metal germanide work function; (3) no contact resistance, all the resistance come from 

channel and under spacer region; and (4) no degradation of carrier mobility. The work 

function of NiGe source/drain used in this simulation is 5.15 eV, Ge substrate doping 

concentration is 1×1016cm-3 and gate lengths are 8µm and 50nm, respectively, with SiO2 

of 5 nm as gate dielectric. The simulation is programmed by Argarwal Naveen (Silicon 

Nano Device Laboratory, National University of Singapore) with Synopsys Medici.  

Simulated output characteristics dd VI − curves of NiGe Schottky p-MOSFETs 

with gate length of 8 µm and 50 nm are shown in Fig. 3.11 (a) and (b), respectively. As 

can be seen, the channel conductance in linear region of dd VI −  curve increases with 

spacer thickness decreases in both cases. Especially, the dependence becomes more 

significant when channel length is comparable to spacer thickness in dimension, such as 

in short channel transistor.  

However, simulation results also show that long channel (gate length of 8 µm, Fig. 

3.12 (a)) transistor with spacer thickness less than 10nm experiences high off current at 
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high . As such, a spacer with thickness of 10~20 nm seems to be appropriate for long 

channel device and has been applied in this study. For short channel transistor, generally 

acer helps to reduce punch through effect which results in high off current, 

 

Figure 3.11 Sim

dV

a thicker sp

however, with a trade-off of dI as shown in Fig. 3.11 (b). 
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3.2.2 A robust, self-aligned Pt germanide process 

It is well known that one of the most critical process steps for the formation of Pt 

germanide Schottky source/drain Ge MOSFETs is the selective removal of unreacted Pt 

after germanide formation. In literature Pt germanide process usually integrated with 

unconventional back gate configuration structure where a buried oxide and the substrate 

work as gate dielectric and gate electrode of the transistor by lift-off process [3.10]. 

Reactive ion etching (dry etching) process is also used which removes both uncreative Pt 

and Pt germanide without selectivity [3.17] [3.18]. However, there is no report available 

on conventional self-aligned wet etching process for the formation of Pt germanide 

Schottky source/drain. This is mainly due to the fact that the Pt etching solution, aqua 

regia, aggressively etches Pt germanide at an even faster rate than Pt, leading to non-

uniformity and low yield of well-behaved PtGe2 Schottky source/drain transistors shown 

earlier in this chapter. Later, enlightened by the studies [3.19] on formation of a 

protective SiOx surface hard mask on Pt silicide by surface oxidation of Pt silicide, a 

study on surface nitridation treatment, i.e. plasma nitridation of Pt germanide, was carried 

out and found that the formed GeNx can effectively protect Pt germanide from being 

etched during aqua regia wet etching process, which is believed to be a promising method 

to realize the robust self-aligned selective wet etching process for Pt germanide Schottky 

source/drain Ge MOSFETs formation.  

The Ge wafers used in this experiment were also n-type Sb doped (100) wafers 

with a resistivity of 2.0 ~ 3.2 Ω • cm. After DHF cleaning, ~30 nm pure Pt was deposited 

on the wafers by sputter and received a RTA process in N2 ambient at 400 C for 1 º

minute to form PtGe2. Some Pt germanide samples were subjected to plasma nitridation 
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process with a power supply of 400 W, a fluence of N2 at 120 sccm and a chamber 

pressur

at 400ºC for 1 minute [curve (a)], and the substrate with RTA and nitridation without 

 

1224 1220 1216 1212

10

e at 4 mTorr with a temperature of ~150ºC in an inductively coupled plasma (ICP) 

chamber for one min, without or with substrate bias at 100 W. XPS with a standard Al X-

ray source was used to analyze the chemical states of the samples. All of the XPS spectra 

were collected at a take-off angle of 30º, with beam energy of the X-ray source at 10 

KeV, and the path energy of the photoelectron analyzer at 30 KeV with a step size of 0.1 

eV. After being dipped in diluted aqua regia (HCl:HNO3:H2O=3:1:7) at 80ºC, the surface 

morphology and sheet resistance (Rs) of the samples were characterized by SEM and a 

four-point probe using the van der Pauw method with a correction factor [3.20] as 

discussed in Chapter 2, respectively. 
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Figure 3.12 XPS data of (A) Ge 2p3/2 and (B) N 1s spectra for Pt/Ge substrate with RTA 

[curve (b)] or with [curve (c)] substrate bias. 
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To understand both the effects of RTA and nitridation treatment on Pt/Ge samples, 

the Ge 2p3/2 [Fig. 3.12 (A)] and N 1s XPS [Fig. 3.12 (B)] spectra were obtained for a 

~30 nm Pt/n-Ge (100) substrate with RTA at 400°C for 1 minute [curve (a)], and the 

Pt/Ge substrates with the same RTA treatment followed by a ICP plasma nitridation 

treatment for 1 minute without [curve (b)] or with [curve (c)] substrate bias at 100 W. 

Previously, we have shown [3.21] that after being anneal in N2 ambient at 400°C for 1 

minute, the ~30 nm Pt has fully reacted with the Ge substrate to form a layer of ~60 nm 

single phase PtGe2 with a sharp PtGe2/Ge interface on the Ge substrate. Therefore, the 

peaks located at ~1217 eV and ~1220 eV in curve (a) are attributed to the Ge-Pt bond and 

Ge-O bond [3.22] on the sample su rface, respectively. The oxygen is believed to be 

d by the residual O2 in the RTA chamber, which reacts with Ge substrate to 

form GeOx on sample surface during RTA. 

or the sample with the RTA followed by nitridation treatment for one min 

without substrate bias, the Ge 2p3/2 spectrum [Fig. 3.12 (A) curve (b)] is dominated by 

Ge-Pt peak with a significant enhancement on its intensity while the intensity of Ge-O 

peak becomes negligible as compared to the counter parts in curve (a) for the sample with 

RTA only. Also, there is absence of indications of any N-N bond (~399 eV) [3.22] and 

Ge-N bond (~397.4 eV) [3.22] in curve (b) of Fig. 3.12 (B), as the same of the RTA 

sample. These may be attributed to the decomposition of Ge-O bonds while unsuccessful 

formation of Ge and Pt nitridation products during the plasma nitridation treatment, 

which leaves the sample surface to be mainly covered by Ge-Pt bonds and Ge dangling 

introduce

F

bonds.  
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However, when the sample is subjected to the RTA followed by nitridation 

treatment for one min with substrate bias at 100 W, curves fitting of the Ge 2p3/2 

spectrum reveal two peaks: one at ~1219 eV with a relatively strong intensity, another at 

~1217 eV with a weak intensity which is attributed to Ge-Pt bond as also observed in 

spectra for the samples with RTA only [curves (a)] and RTA followed by nitridation 

without substrate bias [curves (b)]. The peak at ~1219 eV that dominates the Ge 2p3/2 

spectrum is attributed [3.22] to Ge-N bond corresponding to the occurrence of GeNx on 

sample surface. In ICP etching process, it is well known that a substrate bias greatly 

enhances the extraction of ions from the plasma above the substrate surface. Therefore, it 

is believed that additional supply of 100 W substrate bias helps sample to extract much 

more nitrogen ions in the plasma to bombard the PtGe2 surface in comparison with the 

situation in the nitridation process without substrate bias, which results in the formation 

of a v

before and after being etched up to 5 min. It is believed that the GeNx layer 

formed during nitridation treatment prevents the PtGe2 underneath from being etched, 

ery thin layer of GeNx covering the substrate. The existence of GeNx is also 

confirmed by the observation of N-Ge peak (~397.4 eV) [3.22] in the N 1s spectrum as 

shown in curve (c) of Fig. 3.12 (B). 

Figure 3.13 shows the surface morphology of Pt/Ge samples with the RTA and 

nitridation treatment before and after wet etch by a diluted aqua regia for 1 or 5 minutes. 

For the sample with nitridation without substrate bias, it is clear that the substrate surface 

has been aggressively attacked after being etched for one minute, leaving a high density 

of large-area pits as shown in Fig.3.13 (c). In contrast, as Fig. 3.13 (d) indicates, for the 

sample treated by nitridation with substrate bias, the substrate surface keeps smooth and 

uniform 
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similar to the function of SiO2 layer formed by surface oxidation of Pt silicide in Pt/Si 

system [3.19], which acts as a protective surface hard mask for Pt silicide during aqua 

regia etching. In addition, it is observed that the etching rate for PtGe2 and Pt in the 

diluted aqua regia at 80ºC is 30~40 nm/min and 6~7 nm/min, respectively. Therefore, a 

5-minute etching is able to remove a Pt layer of ~30 nm which is corresponding to a 

PtGe2 source/drain with depth of 60 nm. 

(a) (b) 

(c) (d) 

 

Figure 3.13 Surface morphology (by SEM) of Pt/Ge substrates with RTA and (a) one min 
nitridation without bias, (b) one min nitridation with bias, (c) one min nitridation without 
bias and wet etch for one min, and (d) one min nitridation with bias and wet etch for 5 
minutes. 
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Furthermore, measurement of Rs was taken before and after a sample was etched. 

As Table 3.1 indicates, for Pt/Ge sample with RTA only or with both RTA and 

nitridation without substrate bias, the Rs dramatically increases after being etched for one 

min from 5.5 to 89.0 Ω/ , and 6.6 to 86.8 Ω/ , respectively. However, for the sample 

with RTA and nitridation with substrate bias the Rs value remains consistently low as 6.9, 

6.9 and 6.7 Ω/  for the sample before etching, after etching for one and 5 minutes, 

respectively. This further implies that the GeNx layer effectively protects PtGe2 from 

being attacked during wet etching.  

 

Table 3.1. Summary of Rs values for samples with different treatments before and after 
diluted aqua regia etching. 

Sheet resistance (Ω/ ) 

Pt/Ge treatment 
RTA 

RTA and plasma 

nitridation 

for 1 min 

without 

substrate bias 

RTA and plasma 

nitridation for 1 

min with 100 W 

substrate bias 

Before wet etch 5.5  6.6  6.9  

1 min 89.0  86.8  6.9  
After wet etch 

5 min     6.7  

 

 

3.4 Conclusion 

es on n-Ge show that both materials provide promising merits for p-MOSFETs. 

hile only single phase of NiGe was observed by XRD analysis after Ni-Ge anneal from 

In this chapter, comprehensive studies on Schottky contact properties of Ni- & Pt- 

germanid

W
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300 to 

al growth of germanide films with smooth and sharp 

interfaces on Ge are observed for both materials. 

500°C for Ni thickness of both 10 and 30 nm, Pt-Ge system shows the formation 

and transition of 3 different phases (PtGe, Pt2Ge3, PtGe2) after anneal and the germanium 

concentration in Pt germanide increase with increasing anneal temperature. The PtGe2 

phase also shows the lowest resistivity of ~ 25 µΩ⋅cm, which is higher than that of NiGe 

phase (~ 16 µΩ⋅cm). PtGe2 film has a better thermal stability compared to NiGe. SEM 

analysis revealed that agglomeration happens in NiGe film when annealed at 500ºC, 

especially for thinner NiGe film, while smooth morphology for PtGe2 annealed at the 

same temperature. Uniform, epitaxi

beqφ  extracted from curves 

h 

means 

 VI −

PtGe2/n-Ge and NiGe/n-Ge Schottky contacts are 0.62 and 0.58 eV, respectively, whic

bhqφ  as low as 0.04 and 0.08 eV can

ain transistors using Ni and Pt germanide are also fabricated on 

n-Ge-substrate with CVD-HfO2/TaN gate h erature 

at 400 anide Schottky junction at source/drain show improved forward 

a  c en -doped Ge T. In addition, the 

higher  and lower are obtained from Pt-germanide MOSFET than those of Ni-

ermanide MOSFET and convention Ge-pMOSFET.  

s optimization is also included. Simulation on spacer 

thickness shows that for long channel transistors, the suitable spacer thickness seems to 

be 10~

 be achieved. 

Schottky source/dr

 stack which has a ighest process temp

ºC. Ni and Pt germ

nd reverse current, ompared to conv tional B MOSFE

I offIon

g

Some work on proces

20 nm, while for short channel transistor, thicker spacer can help to reduce short 

channel effect but at the cost of reduced onI . 
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At last, we proposed a robust self-aligned Pt germanide process by demonstration 

a surface plasma nitridation treatment on Pt germanide that is able to effectively protect 

Pt germanide from being attacked during aqua regia wet etching process. XPS analysis 

suggests that a very thin protective GeNx layer exists on the sample surface after plasma 

nitridation for one min with substrate bias at 100 W. A smooth and uniform surface 

morphology and consistent low Rs of the samples are also obtained after wet etching by 

SEM and four-point probe method, respectively. This nitridation treatm s to be a 

promising method to realize robust self-aligned selective wet etching process for Pt 

germanide Schottky source/drain MOSFETs formation. 

ent seem
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Chapter 4  

on barrierMetal germanides with low electr  

 

As mentioned in Chapter 1, the potential use of Ge as channel material and 

Schottky source/drain structure in future MOSFETs have triggered the active search for 

suitable germanides, which can be formed in a self-aligned manner through solid-state 

reactions of Ge and metals. In Chapter 3, studies on Ni- and Pt- germanides have shown 

that they are among the most promising candidates for Schottky source/drain Ge p-

MOSFETs application [4.1] [4.2] and Ni- & Pt- germanide Schottky source/drain p-

MOSFETs have been demonstrated with improved performance compared to 

conventional-doped source/drain Ge p-MOSFETs [4.3]-[4.5]. However, for n-MOSFETs, 

there has been no serious attempt to identify suitable germanide materials for the same 

application, i.e., germanides with low barriers to n-type Ge. In this chapter, two tempts 

were carried out to explore potential germanide candidates for n-MOSFETs application. 

One is to investigate metal germanide properties formed by reaction between Ge and rare 

earth metal (REM) which has a low metal work function. The other is to reduce NiGe 

barrier height to n-Ge by using a valence mending adsorbate, Sb, segregation during Ni 

germanidation. 
 

 

height for Ge n-MOSFET application 
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4.1 REM metal (Er, Yb) germanide/p-Ge (100) contacts and Er- 

germanide Schottky S/D G

4.

Earlier works on electrical contact formation on n-Si have shown that REM 

licides (e.g., ErSi2 and YbSi2) yield low Schottky barriers (~0.28 eV) on n-type Si and 

can be 

Germanide/p-Ge contacts were fabricated using Ga doped p-Ge (100) wafers 

(5.10-3.90 Ω•cm). After dipping in diluted HF (HF: H2O=1:100) for 5 min to remove 

native oxides from the surfaces, wafers were loaded into PECVD chamber where ~100 

nm Si3N4 was deposited as field isolation material. The active region was defined by 

lithography and RIE, followed by DHF clean for one min to remove residue Si3N4 and 

germanium native oxide. After loading the wafers into the chamber of a dc magnetron 

sputtering system, ~30 nm thick Er and Yb were sputter-deposited onto the wafers, 

e n-MOSFETs 

1.1 Introduction 

si

grown with high-quality epitaxy on Si (111) and (100). Ge has the same face-

centered cubic structure as Si and REM germanides typically have a hexagonal AlB2 

structure as their silicide analogues. It is thus expected that REM germanides also exhibit 

low Schottky barrier heights to n-Ge (100) and therefore suitable for electrical contact 

formation in Ge n-MOSFETs either as ohmic contacts to n+ source/drain or as Schottky 

source/drain. In this part, Er and Yb germanides are investigated in the view of material 

and electrical properties, and Ge n-MOSFET with Er germanide Schottky source/drain is 

also demonstrated. 

4.1.2 Experiment 

 88



Chapter 4: Metal germanides with low electron barrier height for Ge n-MOSFET application 

followed by a reactive sputtering deposition of W with a thickness of 50 nm as capping 

layer to prevent REM from oxidation in consequent RTA process. After germanidation in 

RTA chamber, W capping layer was removed by RIE and unreacted REM was 

3 (HNO3:H2O=1:20) for 3 min. Finally ~100 nm Al 

was de

) shows the XRD results of as deposited 50 nm W/30 nm Er film and  

Er-germanide formed after anneal from 250ºC to 400ºC. No Er-germanide peak was 

detected up to 250ºC though Er peak was weaker compared to that observed in as 

deposit

2

400ºC, weak Er3Ge4 peaks were detected too. It is also noted that, no erbium oxide peak 

was detected and the intensity of W peak was strong and constant from the as-deposited 

selectively removed by diluted HNO

posited at wafer backside to form backside ohmic contact. 

The Er-germanide Schottky source/drain n-MOSFET fabrication follows the 

similar procedure with Ni and Pt p-MOSFETs fabrication discussed in Chapter 2. After 

DHF cleaning and surface passivation, CVD HfO2 and PVD TaN were deposited 

consequently to form the gate electrode. 30 nm Er and 50 nm W were deposited after 

spacer formation, followed by RTA germanidation, RIE to remove W and selective etch 

process to remove unreacted erbium. 

4.1.3 Results and discussion 

Figure 4.1 (a

ed sample, showing that at 250ºC, Er and Ge interdiffusion happens, may be 

accompanied with slightly amorphous germanide formation. Obvious Er2Ge3 peak was 

observed when the anneal temperature increased to 300ºC, indicating a highly textured 

Er Ge3 film was formed. The absence of Er peak implies the full reaction of as-deposited 

Er with Ge substrate after anneal at 300ºC 1min. With anneal temperature increased to 
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sample to the sample after anneal at different temperature, proving that W film which 

acted as oxygen barrier that can prevent erbium from oxidation and still remained intact 

after anneal, is promising as capping layer for REM process. 
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Figure 4.1 XRD results of (a) Er-germanide formed by 50nm W/30 nm Er/p-Ge (100) 

removal by RIE. 
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The XRD results of Er-germanide after W capping layer removed by RIE are also 

shown in Fig. 4.1 (b). It is observed that although RIE does not alter the Er-germanide 

phases, crystallized germ  

information on Y esults of Yb 

germ

he sheet resistance value of Er-Ge and Yb-Ge phases formed at different RTA 

temperatures were obtained using four-point probe measurement, shown in Figure 4.2. It 

is clear at the Er2Ge3 formation is correlated well to the variation of the sheet resistance. 

A minimum sheet resistance of 6.8 and 5.95 Ω/ , corresponding to a resistivity value of 

27.2 and 26.8 µΩ•cm are obtained for Er and Yb germanide respectively, which is 

significantly lower than the resistivity values of ~30-40 µΩ•cm reported for REM 

silicides such as YbSi2-x and ErSi2-x [4.7] [4.8].  

anide film tends to be amorphous. Due to the lack of

b-Ge in the respective powder diffraction file [4.6], XRD r

anide are not included here. 
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Figure 4.2 Sheet resistance of 30 nm Er/p-Ge (100) after annealing at temperature from 
250ºC to 500ºC. 
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Figure 4.3 Current-voltage ( ) characteristics at room temperature for (a) 50 nm W/ 

pectively. 

VI −
30 nm Er/p-Ge (100) and (b) 50 nm W/ 30 nm Yb/p-Ge (100) contacts after anneal at 350
ºC and 400ºC, res
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Current-voltage characteristics measured at room temperature for Er-

germanide/p-Ge (100) and Yb-germanide/p-Ge (100) contacts after RTA 350ºC and 400

ºC respectively, are shown in Figure 4.3. Well rectifying characteristics were observed in 

all the contacts, while higher annealing temperature led to higher reverse current. Ideality 

factor  and hole barrier height n bhqφ  extracted from the linear part of the forward 

current are summarized in Table 4.1, where beqφ  was calculated according to the 

assumption that the sum of beqφ  and bhqφ  equals to germanium band gap (0.6634 eV). 

Although beqφ  

tly la

ined by the the

ed during germ

less than 0.2 eV was obtained for all the diodes, it is noted that n value is 

significan rger than unit. It implies the REM germanide/p-Ge (100) diodes are far 

from ideal and the current flows over REM germanide/p-Ge (100) interface is not fully 

determ rmionic emission theory. This probably due to the defects which 

form anidation process and act as recombination centers or as intermediate 

states for trap-assisted tunnel currents, leading to a rising n  value. Photocurrent 

measurements mentioned in Chapter 2 could be used to extract more accurate barrier 

height values. 
 

Table 4.1 Ideality factor ( ), n bhφ  and beφ  for Er-Ge/p-Ge (100) and Yb-Ge/p-Ge (100) 
contacts after RTA at 350ºC and 400ºC, respectively. 
 

Er-Ge Yb-Ge  

n  bhφ (eV) beφ  (eV) n  bhφ (eV) beφ  (eV)

350ºC 1.29 0.52 0.14 1.57 0.49 0.17 

400ºC 1.55 0.51 0.15 1.71 0.48 0.18 
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Er-germanide Schottky source/drain Ge n-MOSFET with gate length of 20 µm 

and EOT of 3.1 nm was also demonstrated. Well-behaved Id-Vd and Id-Vg curves are 

shown in Figure 4.4. The relatively low drive current in Figure 4.4 (a) Id-Vd curves 

exhibits high channel to source/drain resistance, which may come from limited Er-

germanide source/drain extension towards the channel, and high ΦBe due to Fermi level 

pinning between Er-germanide/p-Ge interfaces. 
 

4.1.4 Conclusion 

In conclusion, studies on Er- and Yb- germanides show that, although a resistivity 

alue as low as of 27.2 and 26.8 µΩ•cm are obtained for Er- and Yb- germanides 

respectively, and well rectifying characteristics were also observed in Er- and Yb- 

germanide/p-Ge (100) contacts, the ideality factor values larger than unit implied high 

density of defects were formed during germanidation leading to higher  value. Er-

germanide Schottky source/drain Ge n-MOSFET was also demonstrated with well-

behaved output and transfer characteristics but a relatively low drive current. 

 

 

v

n
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4.2 N

4.2.1 Introduction 

ain Ge p-MOSFETs

pplication [4.1] [4.2] and recently Ni- and Pt- germanide Schottky source/drain p-

been demonstrated with improved performance compared to 

conventional-doped source/drain Ge p-MOSFETs [4.3]-[4.5]. In contrast, studies on 

work, by inserting an interfacial layer of Sb, we show that Ni-germanide is able to give 

both low resistivity and low electron barrier height, which make Ni-germanide with such 

odification a good ohmic contact material to n+ source/drain regions as well as a 

promising Schottky source/drain candidate for Ge n-MOSFETs. 

 

i-Ge barrier height modulation by Sb segregation 

Previous studies on nickel and platinum germanides have shown that they are 

among the most promising candidates for Schottky source/dr  

a

MOSFETs have 

germanides for Ge n-MOSFETs so far have been mainly focused on rare earth elements 

such as Er and Yb with low metal work function [4.9] [4.10]. Inspired by the studies on 

low resistance contacts to n-Si [4.11] [4.12], which have shown effective Schottky barrier 

height reduction at NiSi/n-Si interface by introducing valence-mending adsorbates, in this 

m
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4.2.2 Experiment 

wafer is Sb doped (doping concentration is 6×1014cm-3) n-type Ge 

(100) as substrate. ~100 nm PECVD Si3N4 was deposited at 250ºC for field isolation 

followed by lithography patterning and dry etching to define diode pattern. After dipping 

in diluted hydrofluoric acid (HF:H2O=1:100 by volume) for one minute to remove 

residue Si3N4 and native germanium oxide in opened diode region, Sb and Ni were 

deposited by e-beam evaporator in sequence with Sb thickness of 0, 5 nm, 10 nm and 15 

nm, respectively and Ni thickness of 30 nm for all samples. Then samples were rapid 

thermal annealed at 300ºC and 400ºC for one min respectively to form NiGe. Unreacted 

Ni was removed by diluted HNO3 (HNO3:H2O=1:20). Finally ~100 nm Al was deposited 

by e-beam evaporator at the wafer backside to form ohmic contact for diode electrical 

measurement. The process flow and schematic structure are shown in Fig. 4.5, where as-

deposited Sb is sandwiched at Ni and Ge interface. For the material study, Sb and Ni 

were deposited onto blank Ge wafer with the same thickness as diodes and also RTA 

annealed at 300ºC and 400ºC respectively. The germanide phases were identified with 

XRD, atoms profiles were examined with SIMS, the electrical sheet resistance was 

measured with the Van der Pauw method [4.13], and the contact electrical properties 

were characterized with an Agilent 4284A LCR semiconductor parameter analyzer. 

The starting 

 97



Chapter 4: Metal germanides with low electron barrier height for Ge n-MOSFET application 

 

Figure 4.5 Process flow for fabricating low Schottky barrier height diodes using Sb 
segregation and device final structure after fabrication. 

4.2.3 Result and discussion 

The XRD results of NiGe formation with and without Sb inter-layer after RTA 

are shown in Figure 4.6. For samples without Sb interlayer, at 300ºC and 400ºC, Ni 

monogermanide phase is identified with a high intensity NiGe (111) peak, indicating a 

 

highly textured nature of the formed NiGe film with a (111) NiGe||Ge (100) orientation 

relationship [4.1]. By adding a 15nm Sb inter-layer, NiSb peaks are detected for the 
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sample annealed at 300ºC however cannot be observed at 400ºC. In reference [4.14], it 

is reported the NiSi formation at the present of Sb and also found that no NiSb was 

formed after RTA at 500ºC and above, indicating Ni prefers reacting with Ge and Si 

compared to Sb at higher temperature. No degradation of NiGe structural properties 

induced by Sb interlayer are observed when anneal temperature increase to 400ºC. 
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Figure 4.6 XRD profiles of 30 nm Ni/n-Ge (100) and 30 nm Ni/15 nm Sb/n-Ge (100) 
C, respectively. 

 

Figure 4.7 shows the SIMS depth profiles of Ni, Ge and Sb for the device with Sb 

interlayer thickness of 15 nm and annealed at 300ºC and 400ºC, respectively. Figure 4.7 

annealed at 300ºC, and no peak of Sb concentration at NiGe/Ge interface is observed.  

According to the traditional Thermal Emission model [4.15], the electron barrier height 

after RTA at 300ºC and 400º

(a) shows that the peak of Sb concentration is located near NiGe surface for the diode 
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( beφ ) and ideality factor extracted from the room temperature  characteristics of 

1.04~1.14, respectively, regardless of the Sb thickness, indicating that after anneal at 300

be

VI −

NiGe/n-Ge diodes annealed at 300ºC (Fig. 4.8 (a)), are within 0.528~0.525 eV and 

ºC, Sb cannot effectively reduce φ  due to the failure of Sb segregation at NiGe/Ge 

interface. The formation of NiSb at 300ºC could be one of the reasons for the absence of 

Sb at NiGe/Ge interface.  

On the contrary, significant amount of Sb is detected to be located at NiGe/Ge 

interface region for the diode annealed at 400ºC (Fig. 4.7 (b)), showing that the Sb 

segregation occurred at NiGe/Ge interface after anneal at 400ºC. characteristics in 

Figure 4.8 (b) shows that, for diodes annealed at 400º rse current ( ) 

significantly increases as the Sb thickness increased from 0 to 15 nm, showing the 

successful modulation of 

VI −

C, the reve rI

beφ  

ectif

which is defined as the ratio of forward current 

by the segregation of Sb. Due to the difficulties to extract 

low barrier height, the r ication ratio Rc is used to evaluate Schottky barrier height 

at forward voltage of 0.5 V to 

reverse current at reverse voltage of -0.5 V applied to the diodes. It is known that 

 an 

eal ohmic contact [4.15]. In Fig. 4.8 (c), it is observed that the Rc value can be widely 

modula

fI   fV  

rI  rV  

higher effective Schottky barrier height leads to higher Rc value and Rc should be 1 for

id

ted for the diodes annealed at 400ºC. Rc of 1.14 was obtained for the diode with 

Sb thickness of 15nm, indicating that beφ  can be greatly reduced and an almost ideal 

ohmic contact of NiGe/n-type Ge can be achieved, although an additional Sb layer will 

increase complexity and cost of the device fabrication process. The Rc value achieved in  
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Figure 4.7 SIMS depth profile of Ni, Ge and Sb for the device with 30 nm Ni and 15 nm 
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Figure 4.8 Current-voltage ( ) characteristics at room temperature for NiGe/n-Ge 
(100) diodes with and without Sb interlayer annealed at (a) 300ºC and (b) 400ºC, 
respectively, and (c) rect c ( ) as a function of Sb interlayer thickness 
(Tsb). 

 

this work is significantly lower compared to the Rc value of ~ 100 in reference [4.16] 

where sulfur segregation is applied to lower 

VI −

ification ratio R rf II /

beφ  of NiGe/n-Ge contact. It is also noticed 

that, different from the case in NiSi/n-Si contact [4.14], the beφ  modulation of NiGe/n-Ge 

contact is more dependent on anneal temperature, less dependent on Sb interlayer 

thickness.  

Figure 4.9 shows the resistivity ρ  measured from samples annealed at 400ºC 

with different Sb inter-layer thickness. No obvious increase in Rs is observed for various 

Sb thickness, which means beφ  can be modified through Sb segregation while the low 

sheet resistivity properties of NiGe film (~ 17 µΩ•cm) still can be maintained, which is 
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slightly higher than the resistivity of NiSi (~ 15 µΩ•cm), the silicide material with the 

lowest resistivity reported [4.18] [4.19]. Although a resistivity value as low as ~19µΩ•

cm has been reported for ErGe1.5 [4.10], the REM germanides (silicides) have been 

known to form through a nucleation-controlled growth, usually leading to a rough 

germanide (silicide)/Ge (Si) interface, which makes REM germanides not suitable for n+ 

source/drain contacts in spite of their low metal work function [4.18] [4.19]. From this 

point of view, because of the diffusion-controlled growth mechanism, which would lead 

to a smooth germanide/Ge interface, NiGe could be a more promising candidate for 

contact material to n+ source/drain regions and Schottky source/drain material for Ge n-

MOSFETs. 
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Figure 4.9 Electrical resistivity of Ni/n-Ge (100) as a function of Sb interlayer thickness 
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4.2.4 Conclusion 

In conclusion, we demonstrated a novel method to effectively reduce beφ  of NiGe

on n-type Ge (100) by inserting a Sb interlayer at Ni/Ge interface prior to RTA process. 

Sb segregation is found to be highly dependent on anneal temperature, while less 

dependent on Sb thickness. After anneal at 400ºC, an almost ideal ohmic contact of 

NiGe/n-type Ge with R  and 

 

c ρ  as low as 1.14 and  ~ 17 µΩ•cm was obtained, indicating 

that through beφ  modulation by adding a Sb interlayer, NiGe could be a good ohmic 

contact material to n+ source/drain regions as well as a promising Schottky source/drain 

candidate for Ge n-MOSFETs. 
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Chapter 5 

formation as an alternative annealing method
 

5.1 Introduction 

device 

annealin

additional potential advantages, including control of tailored germanide profile with 

and red

diffusio ies, and better process flexibility with low process cost [5.1]-[5.3]. 

Owing to theses unique characteristics, in r

and more attention in g

[5.9]. However, the report of studies on metal germanide formation by laser anneal is still 

rare in literature. In this chapter, a preliminary study on investigation of Pt-germanide 

formation by laser annealing process was carried out to explore the feasibility of using 

ser annealing as an alternative method in germanide source/drain formation. A well-

behaved laser annealed Schottky source/drain Ge pMOSFET integrated with HfO2/TaN 

gate stack is also demonstrated. 

 

Laser application in metal germanide 
 

In previous chapters, all the studies were carried out by subjecting the whole 

wafer to an elevated temperature using RTA to form metal germanide. A laser 

g process, as an alternative, can be adapted to form metal germanide with 

suppressed metal/Ge diffusion due to possible local selective heating of specific regions 

uced thermal budget, enhanced germanide/Ge interface quality with suppressed 

n of impurit

ecent years laser irradiation has received more 

rowing thin films of silicides [5.4]-[5.6], germanosilicides [5.7]-

la
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5.2 Experiment 

5.2.1 Laser annealed Pt-germanide/n-type Ge (100) Schottky contacts 

resistivity of 2.0~3.2 Ω·cm. First, the substrates were dipped in diluted HF (H2O: 

F=100:1 by volume) for 5 min followed by de-ionized water to remove surface native 

oxide selectively from the substrate.  Then the wafers were loaded into an E-beam 

evaporator with a chamber base pressure at 10-6 mTorr where ~30 nm Pt was deposited to 

form P

5.2.2 Laser annealed Pt-germanide Schottky source/drain Ge p-MOSFET integrated 

with TaN/HfO2 gate stack 

plasma PH3 treatment to improve interface quality [5.10], 

llowed by in situ metal organic chemical vapor deposition of HfO2 as gate dielectric 

The Ge substrates used in this work were Sb-doped n-type (100) wafers with a 

H

t dots by a shadow mask with dots diameter of 1 mm. A KrF excimer laser with a 

wavelength of 248 nm was used to irradiate the samples to form germanide at a laser 

fluence from 0.10 to 0.22 J/cm2 with pulse number from 1 (1 p) to 10 pulses (10 p). The 

laser pulses were produced at a repetition frequency of 1 Hz and pulse duration of 23 ns. 

SEM, HRTEM and Bruker D8 GADDS XRD were applied to examine surface 

morphology, interface quality and crystallinity of Pt-Ge after the laser annealing, 

respectively, and the Schottky contacts were characterized by a Hewlett-Packard 4156A 

semiconductor parameter analyzer.  

The self-aligned fabrication of Pt-germanide Schottky source/drain p-MOSFETs 

also uses Sb-doped n-type (100) Ge wafers with a resistivity of 2.0~3.2 Ω·cm as starting 

substrates. After removal of surface native oxide by dipping the substrate into diluted HF 

for 5 min, Ge substrate received 

fo
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and post-deposition-annealing at 400 ºC.  100 nm TaN was deposited by reactive 

sputtering as gate electrode. After gate patterning, ~30 nm Si N  was deposited by 

plasma enhanced chemical vapor deposition at 250ºC and formed the spacer by the 

reactive ion etching. ~30 nm

a mirror and focused on the sample by a lens. The size of the light spot on sample is 

about 4×5 mm. The sample was placed on a stage that can move in vertical direction. By 

fixing the laser energy and only changing samples position in vertical direction, laser 

focused area on sample was also varying, resulting in different laser fluence.  

 

2

3 4

 Pt was deposited by ebeam evaporator and then samples 

were irradiated at a laser fluence of 0.14 J/cm2 and 1 pulse. A schematic sketch of the 

laser annealing experimental setup and transistor structure is illustrated in Fig. 5.1. In 

laser annealing process, the laser light generated by the KrF excimer laser is reflected by 

 

Figure 5.1. A schematic sketch of the laser annealing experimental setup and transistor 
structure. 

 

Unreacted Pt was removed by reactive ion etching process with Cl  gas. Finally, 

the backside ohmic contact was formed by 100nm Al deposited by the E-beam 
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evaporator. The MOSFET performance was characterized by a Hewlett-Packard 4156A 

and Agilent 4284A LCR semiconductor parameter analyzer.  

 

5.3 Results and discussion 

5.3.1 Electrical and material characterization of laser annealed Pt-germanide/n-type 

Ge (100) Schottky contacts 

In order to evaluate the impact of laser annealing condition on sample surface 

morphology, SEM was used to examine Pt-Ge samples irradiated with laser fluence from 

0.10 to 0.22 J/cm2 with different pulse, and results are shown in Fig. 5.2. It was observed 

that the Pt-germanide films remain smooth and uniform with laser fluence up to 0.18 

J/cm2 for 1 pulse and 10 pulses, as shown in Fig. 5.2 (a), (b) and (c), which are similar 

with the morphology of Pt-germanide formed by an optimized RTA at 400ºC (Fig. 5.2 (f)) 

[5.11]. However, an apparent agglomeration phenomenon was observed on sample 

surface at a laser fluence of 0.20 J/cm2 with even 1 pulse. Furthermore, it seems that a 

higher fluence of 0.22 J/cm2 with 1 pulse results in a more serious agglomeration (see Fig. 

5.2 (c) and (d)), which means the upper limit for Pt germanide by laser annealing should 

not exceed 0.20 J/cm2. 

The crystallinity of Pt-Ge films after laser annealing was analyzed by XRD as 

shown in Fig. 5.3. For the irradiation fluence of 0.10 J/cm2, there is no germanide peak 

 detected at 1 pulse. However, both Pt-rich germanide (such as Pt3Ge2) peaks 

and Pt peak can be observed as pulse number increases to 10, which means reaction  

but Pt peak
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Figure 5.2. SEM images of Pt/Ge by laser annealing at (a) 0.10 J/cm  for 1 pulse, (b) 0.18 
18 J/cm2 for 10 pulses, (d) 0.20 J/cm2 for 1 pulse, (e) 0.22 J/cm2 

for 1 pulse and by RTA at (f) 400ºC. 
 

2

2

hen 

the irradiation was increased to 10 pulses, relatively weakening of the Pt-rich germanide 

2

J/cm2 for 1 pulse, (c) 0.

between Pt and Ge can proceed at laser fluence as low as 0.10 J/cm  with sufficient 

pulses. For an irradiation with a higher fluence from 0.12 to 0.18 J/cm , besides the Pt 

peaks, there is co-existence of Pt-rich germanide and PtGe2 in the films at 1 pulse. W
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peaks as well as stronger PtGe2 peaks were observed which implies that a portion of Pt-

rich germanide has transformed into PtGe2 phase. The co-existence of germanide can be 

attributed to the rapid melting and re-solidification processes that happened in the film 

during pulse laser annealing. Different from RTA process, the inter-diffusion of metal 

and Ge and redistribution of metal atoms are greatly suppressed during pulse irradiation, 

which result in a film with varying Pt-Ge concentration starting with Ge rich at the Pt-Ge 

interface, to Pt rich at the film surface. For irradiation at fluence of 0.20 or 0.22 J/cm2 

with 1 pulse, there is no more Pt peak detected, and the PtGe2 peaks become even 

stronger while Pt-rich germanide peaks become weaker compared to the spectra at lower 

fluence in Fig. 5.3 (a). This observation implies that Pt film is completely consumed at 

fluence of 0.20 J/cm2, and higher irradiation fluence will cause more portion of Pt-rich 

germanide to be transformed. Therefore, it is believed that fluence of 0.20 J/cm2 is 

sufficient to cause the Pt film melted and fully reactive with Ge substrate, which also 

results in the serious  
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Figure 5.3. XRD results of Pt germanide formed by laser annealing at laser fluence of (a) 
0.10~0.22 J/cm2 for 1 pulse, (b) 0.10~0.18 J/cm2 for 10 pulses, and  (c) 0.12 J/cm2 for 10 
pulses, 0.14 J/cm2 for 10 pulses, 0.16 J/cm2 for 5 pulses and 0.20 J/cm2 for 1 pulse, 
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Figure 5.4. (a) TEM and (b) high resolution TEM pictures of Pt-germanide formed by 
laser annealing at 0.14 J/cm2 for 5 pulses. 
 

agglomeration surface morphology observed in Fig. 5.2 (d) and (e). Unlike the Pt 

germanide formed by RTA, by which germanide phase formation is determined by 

temperature [5.12]-[5.14], the same phase can be obtained at various laser fluence at 

specific pulse number, as shown in Fig. 5.3 (c). 

TEM and HRTEM analysis were also carried out to study the Pt-germanide and 

Ge interface after laser annealing. As shown in Fig. 5.4 (a), uniform Pt-germanide films 

are formed with sharp interface with the Ge substrates. Epitaxial growth of Pt-germanide 

on Ge substrate is also observed as shown in Fig. 5.4 (b).  

The Schottky contact characteristics for Pt-germanide/n-type Ge (100) are listed 

in Table 5.1. Barrier heights for electron ( beqφ ) were extracted according to the Eq. (2.8) 

where the Richardson constant for n-type Ge (100) [5.13] [5.16], and 2250 −−∗ = KAcmA  

sI  the forward saturation current fitting from diode forward current. As can be seen, 

almost identical beqφ  values of 0.52 ~ 0.54 eV, equivalent to hole barrier height of 0.12 ~ 

0.14 eV, were obtained for all the Pt-germanide/n-type Ge samples annealed at laser 

Ge 

Pt-germanide 

0.14J/cm2 5 pulses 

(a)

Pt-germanide 

Ge 

HRTEM  0.14J/cm2 5 pulses 

(b)
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fluence of 0.10 to 0.18 J/cm2

over a wide fluence range is sim a

[5.14]. 

 

Table 5.1. Calculated effective electron barrier height of Pt-germanide/n-type Ge (100) 
contacts annealed at different laser fluence and pulse numbers. 
 

 

 

 

 for 1 to 10 pulses. The behavior of constant barrier height 

ilar to Pt-germ nide/n-Ge contacts formed by RTA [5.13] 
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Figure 5.5. Ideality factor value of Pt-germanide/ n-type Ge (100) contacts annealed at 
laser fluence from 0.10 to 0.16 J/cm2 with different pulse number, as well as as-deposited 
Pt/n-type Ge (100) contact.  

 

Figure 5.5 shows the effect of laser fluence and pulse number on the ideality 

factor , which represents the dependence of barrier height on voltage applied on a 

is near unity for well-behaved Schottky diodes and can be obtained 

from current-voltage equation Eq. (2.7) when can be extracted from the 

slope of  vs. V. An  value larger than 1.2 was obtained for as-

deposited Pt/n-type Ge contacts, which can be attributed to the presence of germanium 

native oxide at Pt/Ge interface. For Pt/Ge structures annealed at fluence of 0.12~0.14 

J/cm2, the n  values decrease to ~1.1 which implies good Pt-germanide/n-Ge Schottky 
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contacts are formed. As expected, a uniform Pt-germanide film with sharp inte

the Ge substrate was observed for sample annealed at 0.14 J/cm2 for 1 pulse as show

Fig. 5.4. However, a further increase of laser fluence and pulse num

rface on 

n in 

ber leads to the 

value increases again, which is probably due to the increased recombination in th

depletion region induced by higher irradiation energy. 

 

5.3.2 Electrical characterization of laser annealed Pt-germanide Schottky S/D Ge p-

MOSFET 

condition of 0.14 J/cm2 for 1 pulse was applied for the 

stack. Figure 5.6 shows the excellent characteristics of Ge pMOSFET gate stack 

after laser annealing. The symbols represent the high-frequency  characteristics 

measured at 1MHz. An EOT of 3.8 nm considering quantum effect and a flat band 

voltage ( ) of –0.5 V were extracted. The gate leakage current as a function of gate 

voltage, as shown in the inset of Fig. 5.6, exhibits a low leakage current of 2×10-5 A/cm2 

at FBVV V.  

Furthermore, well-behaved output ( ) and transfer characteristics ( ), 

of laser annealed Pt-germanide Schottky source/drain Ge pMOSFET with channel 

width/length = 400/10 µm were obtained as shown in Fig. 5.7. A relatively low drive 

current was observed as compared to RTA samples in our previous study [5.11]. This can 

n  

e 

 The laser annealing 

formation of Pt-germanide Schottky source/drain of Ge pMOSFETs with TaN/HfO2 gate 

VC −  

VC −

FB

g

dd gd

V

1|| =−

VI − VI −
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be attributed to a higher source/drain to channel series resistance associated with the laser 

annealed samples, since the lateral diffusion of germanide from source/drain towards 

channel region during laser annealing (in nanoseconds) is far more limited than that 

during RTA (in minutes). A thinner spacer is expected to reduce the series resistance 

therefore improve the drive current. 
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.  

Figure 5.7. Output (a) and transfer (b) characteristics of Ge p-MOSFET with laser 
annealing Pt-germanide Schottky source/drain. 
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5.4 Conclusion 

We have studied the formation and characteristics of Pt-germanide films formed 

on n-Ge (100) through solid-state reaction between Pt and Ge via pulsed laser annealing. 

For laser fluence varied from 0.10 to 0.18 J/cm2 for 1 to 10 pulses, smooth and uniform 

Pt-germanide film surfaces and co-existence of Pt, PtGe2 and Pt-rich germanide in the 

films were observed; almost identical effective beqφ  of 0.52~0.54 eV for Pt-

germanide/Ge Schottky contacts were al anide Schottky 

source/drain p-MOSFET integrated with HfO2/TaN gate stack and source/drain formed at 

0.14 J/cm2 for 1 pulse gives a of – 0.5 V, a low leakage current of 2×10-5 A/cm2 at 

 V and a well-behaved output and transfer characteristics.  

so achieved. A Pt-germ

FBV  

1|| =− FBg VV
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Chapter 6 

 

As the closing chapter of the thesis, first, summary of this project discussed in 

suggested. 

 

6.1 Co

As CMOS t

Challenges” for the sem

solution,

industry ctures and integration of 

germanium

numerous and broad benefits, which are prom ap and 

channel arious material and process integration issues; 

and the relevant knowledge is ra

contacts in modern technology. This project has attempted to investigate the material and 

Conclusion 

previous chapters will be made. Then recommendations for future studies will be 

nclusion 

ransistors scale beyond 45 nm technology node, numerous “Grand 

iconductor manufacturing industry are becoming significant 

barriers. Many requirements forecasted by ITRS for the next 1-15 years have “no known 

” in some cases within the next two years [6.1]. This predicament is forcing the 

 to consider alternative non-conventional CMOS archite

new and novel performance enhancing materials. Metal Schottky source/drain 

 MOSFET integrated with high-k gate dielectric and metal gate provides 

ising solution to the industry’s roadm

technology challenges in both the near and long term. However, the replacement of 

 material from Si to Ge induces v

few studies have been done on the material and electrical properties of metal germanide 

ther exiguous compared to highly integration of silicide 
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electrical properties of metal germanide/Ge contacts as well as the feasibility of 

integration of germanide Schottky nel and high-k dielectric and 

metal gate. 

Studies on Schottky contact properties of Ni- & Pt- germanides on n-type Ge 

show that both materials provide promising merits for p-MOSFET; low effective hole 

barrier height (0.08 and 0.04 eV for Ni- and 

germanide film growth and abrupt junction with Ge. While agglomeration happens in 

NiGe film when annealed at 500ºC, especially for thinner NiGe film, PtGe2 film 

rphology and shows better thermal stability than NiGe.  

Ge Schottky source/drain p-MOSFETs using Ni- and Pt- germanide are 

demonstrated on n-Ge-substrate with CVD-HfO2/TaN gate stack. The highest processing 

temperature is only 400 ºC that eliminates the thermal stability concern of high-k 

doped source/drain Ge-pMOSFET.  

source/drain with Ge chan

Pt- germanide, respectively), low resistance 

(16 µΩ⋅cm and 25 µΩ⋅cm for Ni- and Pt- germanide, respectively), uniform epitaxial 

maintains smooth mo

dielectric/Ge stack [6.2] [6.3]. Ni- and Pt- germanide Schottky junction at source/drain 

show improved forward and reverse current, compared to conventional B-doped Ge-

MOSFET. Higher drive current and lower off-state current are obtained from Pt-

germanide Ge p-MOSFET than those of Ni-germanide Ge p-MOSFET and conventional 

The studies on germanide with low electron barrier height on Ge for Ge n-

MOSFET application were focused on two categories. One is rare-earth-metal (Er and Yb) 

germanide with low metal work function; the other is, engineering of NiGe barrier height 

to n-Ge by using a valence mending adsorbate, Sb, segregation during Ni germanidation. 

Studies show that, although resistivity value as low as of 27.2 and 26.8 µΩ•cm are 
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obtained for Er and Yb germanide respectively, and well rectifying characteristics were 

also observed in Er and Yb germanide/p-Ge (100) contacts, the high ideality factor values 

( 2.1>n ) implies high density of defects were formed during germanidation. Er-

germanide Schottky source/drain Ge n-MOSFET was also demonstrated with well-

behaved output and transfer characteristics but a relatively low drive current.  

On the other hand, we demonstrated a novel method to effectively reduce Beφ  of 

NiGe on n-type Ge (100) by inserting a Sb interlayer at Ni/Ge interface prior to 

germanidation process. Sb segregation is found to be highly dependent on anneal 

temperature, while less dependent on Sb thickness. An almost ideal ohmic contact of 

NiGe/n-type Ge with Rc and ρ  as low as 1.14 and  ~ 17 µΩ•cm was obtained, ind ng 

that th

icati

rough Beφ  modulation by adding a Sb interlayer, NiGe could be a good ohmic 

contact material to n+ source/drain regions as well as a promising Schottky source/drain 

candidate for Ge n-MOSFETs. 

As an alternative, the formation and characteristics of Pt-germanide films formed 

via pulsed laser annealing are also studied. Smooth and uniform Pt-germanide film was 

achieved. Pt-germanide/Ge Schottky contacts annealed at different laser fluence show 

almost identical effective electron barrier height of 0.52~0.54 eV, equivalent to hole 

barrier height as low as 0.12~0.14 eV. A Pt-germanide Schottky source/drain p-MOSFET 

integrated with HfO2/TaN gate stack and source/drain formed at 0.14 J/cm2 for 1 pulse 

gives a VFB of –0.5 V, a low leakage current of 2×10-5 A/cm2 at |Vg-VFB|= 1V and a 

well-behaved output and transfer characteristics.  
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6.2 Suggestions for future work 

This thesis explored the potential of germanide Schottky source/drain Ge 

MOSFET integrated with high-k dielectric and metal gate. Although many positive 

results have been published so far, some issues need to be further investigated and 

understood for device performance improvement and implementation in the future.  

1) Metal Schottky source/drain Ge p-MOSFET 

In despite of good thermal stability and low hole barrier height of Pt-germanide, 

one weak point of Pt-germanide to be integrated with CMOS process is the difficulty in 

Pt etching. In Chapter 2, we have proposed a robust self-aligned Pt-germanide process by 

demonstration a surface plasma nitridation treatment on Pt-germanide that is able to 

effectively protect Pt-germanide from being attacked during aqua regia wet etching 

ocess for Pt-germanide Schottky source/drain MOSFETs 

formati

Although REM germanides/p-Ge diodes exhibit rectifying Schottky properties, 

the performance of Ge n-MOSFET with REM germanide Schottky source/drain is still 

quite disappointing and requires further study in future. Dopant segregation provides a 

promising way to effectively reduce electron barrier height for Ge n-MOSFET 

application. Although dopant segregation has been proven successfully modifying 

silicide/Si barrier height and Schottky source/drain Si n-MOSFET has been demonstrated 

process. This nitridation treatment condition can be further optimized and a robust self-

aligned selective wet etching pr

on could be realized. 

2) Metal Schottky source/drain Ge n-MOSFET 
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in this way, little information related to dopant segregation in Ge is reported so far, which 

should be more intensively studied. 

3) Ge Schottky MOSFETs on GOI technology 

effects for the sub-tenth nm technology, Schottky MOSFET fabricated on GOI 

(germanium on insulator) substrate should be also investigated, which requires creative 

studies in many aspects including the substrate fabrication and process integration issues. 

 

Schottky source/drain integrated with high-k dielectric and metal gate on Ge 

substrate has been demonstrated to alleviate the challenges faced with channel length 

scale down with demonstrated MOSFETs. However, for better control of short channel 
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