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Summary 

 
Gloshedobin, a kind of thrombin-like enzyme (TLE), is recently isolated from the 

snake venom of Gloydius shedaoensis. The formation of inclusion body (IB) and 

truncated expression product however significantly complicated its production in 

Escherichia coli. This research aims to develop an efficient method to recover intact 

gloshedobin with biological activity via chemical extraction and molecular 

chaperone-mediated column refolding. 

 

A novel folding-like-refolding strategy harnessing a bichaperone-based refolding 

cocktail comprising unpurified E. coli heat-shock proteins ClpB and 

DnaK/DnaJ/GrpE (DnaKJE) was first developed. Its efficacy was clearly 

demonstrated with efficient renaturation of a model protein, heat-denatured malate 

dehydrogenase (MDH), and further enhanced in the presence of polyethylene glycol 

(PEG). Prior to confirming the applicability of the proposed folding-like-refolding 

strategy to gloshedobin IBs, it was first shown that co-expression of ClpB rendered 

almost complete elimination of gloshedobin truncation products, allowing for the 

expression of intact gloshedobin (mostly in IB form though) without compromising 

the expression level. The following purification and refolding of gloshedobin IBs 

from the cell disruptates was performed based on bichaperone-mediated column 

refolding scheme using immobilized metal affinity chromatography (IMAC). The new 

refolding strategy taking advantage of ClpB/DnaKJE was shown to be superior to the 
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conventional refolding methods in either batch dilution or column refolding mode 

especially when refolding reaction was attempted at a higher protein concentration. 

The recovery process for gloshedobin IBs was further integrated through coupling of 

IMAC protein purification with chemical extraction to overcome the inefficiencies 

associated with traditional IB recovery method (e.g. requirement of additional unit 

operations such as mechanical cell disruptions and repeated centrifugations). 

Polyethyleneimine (PEI) as a new DNA precipitant during chemical extraction was 

studied. Compared to spermine-induced precipitation reported elsewhere (Choe and 

Middelberg, 2001b), PEI-mediated chemical extraction provided not only a higher 

DNA precipitation efficiency at a significantly lower cost but also the obviation of 

EDTA, which was reported to be essential for chemical extraction (Falconer et al., 

1997; 1998). Since the residual PEI was effectively counteracted by addition of Mg2+, 

the streamlined application of the extraction broth to IMAC protein purification was 

achieved. This offers the potential for further process intensification. 

 

This study establishes new concepts for IB processing which include i) a 

folding-like-refolding strategy employing unpurified molecular chaperones to allow 

direct application of ClpB/DnaKJE bichaperone system, ii) reduction of truncation 

product through co-expression of molecular chaperone to provide a simple strategy to 

significantly improve the quality of protein expression, iii) bichaperone-mediated 

column refolding as an effective tool for refolding-recalcitrant proteins, and iv) 

PEI-mediated chemical extraction to achieve a more economically viable processing 
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route for the production of recombinant proteins whose expression is hampered by IB 

formation. 
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Figure 7.7 Total protein recovery following PEI-mediated chemical 
extraction with the use of 3 mM EDTA and 6 M urea. 
Extraction was conducted at a cell suspension of OD600 = 60. 
Total protein release following the high pressure cell 
disruption at the same OD was set as 1.  
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Figure 7.8 Recovery of gloshedobin after direct chemical extraction of 
recombinant E. coli BL21(DE3) expressing gloshedobin 
(mostly as IBs). Extraction was conducted at a cell 
suspension equivalent to OD600 = 60. The concentration of 
gloshedobin was estimated from the corresponding bands 
from SDS-PAGE gels by densitometric analysis. The release 
of gloshedobin following the high pressure cell disruption at 
the same OD was set as 1.  
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Figure 7.9 Solubility profiles of DNA following PEI-mediated chemical 
extraction of recombinant E. coli BL21(DE3) expressing 
gloshedobin (mostly as IBs). Extraction was conducted at a 
cell suspension of OD600 = 60. The concentration of DNA 
from the extraction condition lacking PEI was set as 1. 
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Figure 7.10 Recovery of total protein and solubility profile of DNA 
following PEI-mediated chemical extraction of recombinant 
E. coli BL21(DE3) expressing gloshedobin at various cell 
densities. The PEI concentration at each OD was 10 mg/mL. 
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Figure 7.11 (A) Purified gloshedobin (A) and IbpA (B) by IMAC 
following their extraction from the expression hosts using 
PEI-mediated extraction method. The bound proteins were 
eluted by a liner gradient of imidazole (0-0.5 M). Fractions 
containing proteins (gloshedobin or IbpA) were collected and 
analyzed with SDS-PAGE. (Lane 1, molecular weight 
marker; Lanes 2-7, selected elution fractions collected during 
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IMAC purification).  
 

Figure 8.1 A more efficient and simplified IB scheme as proposed in 
this study. 
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Chapter 1 

Chapter 1 

Introduction                            
 

1.1 Background 

Proteins are fundamental components of all living cells and include many substances, 

such as enzymes, hormones and antibodies, which have wide applications in the 

medical, industrial and agricultural fields. The proteins which were previously 

available only in minute amounts from natural sources can now be produced in huge 

quantities in the host cells such as Escherichia coli. However, the over-expression of 

recombinant proteins in E. coli often leads to their intracellular accumulation as solid 

aggregates known as inclusion bodies (IBs) which show little (Garcia-Fruitos et al., 

2005; 2007; Gonzalez-Montalban et al., 2006; Ventura and Villaverde, 2006) or none 

(Singh and Panda, 2005; Qoronfleh et al., 2007) biological activity. Nevertheless, the 

production of recombinant protein in IBs can also be advantageous, since i) a large 

amount of highly enriched target protein in IB form can be easily separated from other 

soluble proteins, ii) expressed protein trapped in IBs shows lower degree of 

degradation, and iii) the IB protein does not have toxic or lethal effects on the host 

cell (Vinogradov et al., 2003). Therefore, recombinant proteins expressed as IBs in E. 

coli have been most widely used for the commercial production of proteins (Singh 

and Panda, 2005), although a series of subsequent IB isolation and refolding strategies 

need to be incorporated in order to produce the soluble and correctly folded products.   
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The isolation of IB proteins is traditionally carried out by mechanical disruption 

techniques employing high-pressure homogenization and repeated centrifugation 

which are laborious and time-consuming (Falconer et al., 1997). A more efficient 

chemical extraction-based IB recovery method (Falconer direct extraction (FDE)) was 

developed (Falconer et al., 1997; 1998; 1999) which has the advantage to improve the 

economic of IB processing by integrating several primary extraction and recovery 

steps. A DNA precipitant, spermine, was further used to selectively precipitate DNA 

during FDE (Choe and Middelberg, 2001b) to reduce the high viscosity resulted from 

the concomitantly released DNA, enabling the direct coupling of following protein 

purification and refolding. The challenge is thus to convert these inactive, misfolded 

proteins into soluble and bioactive products (De Bernardez Clark, 2001; Middelberg, 

2002). 

 

Protein refolding involves intramolecular interaction which follows first order kinetics 

and protein aggregation, however, involves intermolecular interaction which is a 

kinetic process of second or higher order (Qoronfleh et al., 2007). Therefore, protein 

concentration during refolding must be carefully controlled at relatively low level in 

order to favor the productive refolding instead of the unproductive aggregation (Singh 

and Panda, 2005). Many novel high-throughput protein refolding methods have been 

developed so far for renaturation of IB proteins (Middelberg, 2002; Tsumoto et al., 

2003a; Vallejo and Rinas, 2004a; Choe et al., 2006). The simplest refolding procedure 

is to dilute the concentrated protein-denaturant solution into refolding buffer that 
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allows the formation of native structure spontaneously. Other techniques for 

denaturant removal include transfer of the solubilized and unfolded protein to 

conditions allowing the recovery of enzymatic activity by dialysis or diafiltration 

systems (Maeda et al., 1995; Varnerin et al., 1998; West et al., 1998; Yoshii et al., 

2000). Moreover, many different dilution or dialysis methods along with the use of 

refolding additives have been reported to further improve the protein refolding yield 

(Tsumoto et al., 2003a). Buffer exchange for denaturant removal can also be achieved 

by using chromatographic methods, such as protein refolding based on size exclusion 

chromatography (SEC) (Batas and Chaudhuri, 1999; Müller and Rinas, 1999), and 

matrix-assisted protein refolding (Zouhar et al., 1999; Li et al., 2002; Ueda et al., 

2003). These processes essentially involve physical separation of the partially folded 

protein molecules during the buffer exchange, which helps in reducing the 

protein-protein interaction between these refolding intermediates thereby lowering 

aggregation and improving recovery of the bioactive product (Gu et al., 2001; Schlegl 

et al., 2003; Singh and Panda, 2005).  

 

Besides those refolding techniques developed as above, molecular chaperones are 

extensively studied and have also been applied successfully to refold various proteins 

both in vivo and in vitro, marking the beginning of a new era in protein refolding. 

Molecular chaperones are a group of proteins conserved in all kingdoms, which play 

an essential role in preventing protein aggregation from various kinds of 

environmental stress, assisting folding/refolding and mediating degradation of 
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misfolded proteins (Hartl, 1996; Goloubinoff et al., 1999; Mogk et al., 2002). Among 

these chaperone systems, the ring-forming AAA+ chaperone Hsp100/ClpB which 

cooperates with an Hsp70 chaperone system (e.g. the bacterial DnaK/DnaJ/GrpE 

(DnaKJE) system) was demonstrated to efficiently solubilize and refold aggregated 

proteins (Mogk et al., 1999; Zolkiewski, 1999; Ziętkiewicz et al., 2004; 2006). The 

mechanism of the bichaperone system may rely on the extraction of individual 

polypeptide from the protein aggregate surface by translocation through the ClpB 

pore (possibly facilitated by DnaKJE), which initiates the unfolding of aggregated 

proteins. The extracted proteins are then captured and refolded by DnaKJE system to 

their native structure (Weibezahn et al., 2004b; Shorter and Lindquist, 2005; 

Haslberger et al., 2007). 

 

1.2 Aims and scope of this project 

This PhD work aims to develop an efficient recovery scheme for bacterial IB protein 

of gloshedobin, a recently isolated thrombin-like enzyme (TLE) from snake venom 

(Yang et al., 2002), whose expression in E. coli was impeded by the occurrence of 

truncated expression products besides the IB formation. The detailed characteristics of 

gloshedobin are discussed in the following section. The scope of this work includes: 

studying the feasibility of unpurified ClpB/DnaKJE-mediated protein refolding on a 

model protein, heat-denatured malate dehydrogenase (MDH); studying the synergistic 

coordination of refolding additives and ClpB/DnaKJE bichaperone system on 

heat-denatured MDH refolding; studying the possibility to reduce the truncated 
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expression products associated with the full-length gloshedobin; application of the 

molecular bichaperone system in the column-based refolding of gloshedobin IB 

proteins; and developing more efficient IB protein recovery strategy based on 

chemical extraction. The specific objectives of this thesis include: 

 

1. To develop a refolding cocktail comprising unpurified ClpB/DnaKJE bichaperone 

system for IB protein renaturation. A systematic study on various components in 

the cocktail which may affect the refolding efficiency is first conducted on 

heat-denatured model protein, MDH. The synergistic coordination of commonly 

used refolding additives and ClpB/DnaKJE bichaperone system is investigated. 

 

2. To develop efficient ways for the reduction of truncated expression products, 

which may complicate the purification and refolding of full-length gloshedobin.  

 

3. To apply the developed refolding cocktail (unpurified ClpB/DnaKJE bichaperone 

system) to a column-based (IMAC) refolding strategy for the recovery of 

full-length gloshedobin IBs. Comparisons between the new column refolding 

strategy and traditionally used refolding methods (such as dilution refolding) are 

performed.  

 

4. To further intensify the gloshedobin IB recovery strategy through coupling IMAC 

protein purification with chemical extraction. A more efficient DNA precipitant, 
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polyethyleneimine (PEI) is studied to reduce the high viscosity of the cell extracts 

by selectively precipitating the co-released high molecular weight DNA. This may 

further facilitate the direct coupling of chemical extraction with the subsequent 

protein purification and refolding steps in a more economically viable way, 

especially for large-scale protein production. 

 

1.3 Model proteins used in this study 

Two model proteins are used in this study, porcine heart MDH and recombinant 

gloshedobin expressed as IBs in E. coli. 

 

1.3.1 MDH 

Porcine heart MDH is commercially available from Sigma and commonly utilized 

elsewhere (Goloubinoff et al., 1999; Watanabe et al., 2002) in the testing of 

chaperoning activity of molecular chaperones. MDH is a homodimeric protein 

(molecular weight 35×2 kDa), containing 333 amino acids and an equivalent cofactor 

(NAD+/NADH) binding site for each subunit (Sanyal et al., 2002). The subunits are 

associated in dimer by noncovalent bonds and dissociation of the subunits results in 

the loss of its activity (Birktoft et al., 1989).  

 

1.3.2 Gloshedobin 

Gloshedobin is a kind of TLE recently isolated from the snake venom of Gloydius 

shedaoensis (Yang et al., 2002). Snake venom TLEs are serine proteases affecting 
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hemostasis and thrombosis (Castro, 2004). More than 40 of them have been isolated 

and characterized since the coagulation studies on reptilase in 1957 (Blomback et al., 

1957; Matsui et al., 2000; Castro, 2004). Unlike thrombins capable of converting 

fibrinogen into fibrin by splitting off Aα and Bβ chains of fibrinogen to finally release 

fibrinopeptide A and B, TLEs only cleave Aα chain and release fibrinopeptide A. As 

TLEs do not activate fibrin-stabilizing factor XIII (in contrast to thrombins), the 

TLE-induced uncross-linked clot is more susceptible to degradation by plasmin 

(Markland, 1998; Yuan et al., 2004). These enzymes can be potentially useful for the 

treatment of blood clotting disorders through their anti-coagulant action (Matsui et al., 

2000). However, due to the difficulties faced in their separation and purification along 

with the limited supply of the natural snake venom, it is often difficult to obtain large 

quantity for studies and clinical applications (Yang et al., 2002). The production of 

these enzymes by genetic engineering is therefore the best alternative. 

 

Due to the ease of handling and relatively high expression level, E. coli was initially 

selected for the expression of gloshedobin. The expression of unmodified gloshedobin 

(without fusion tag) was however unsuccessful (Yang et al., 2002), presumably due to 

the formation of stable secondary structure at the translation initiation region of its 

mRNA (Maeda et al., 1991; Yuan et al., 2004). The first successful expression of 

gloshedobin was reported in methylotrophic yeast Pichia pastoris and 10 mg/L of 

target protein was expressed in soluble form, exhibiting amidolytic activity of 31.2 

U/mg (Yang et al., 2002). The low expression level associated with the yeast system, 
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however, requires further optimization for efficient gloshedobin expression. The 

plasmid pET-32a(+), designed for cloning and high-level expression of peptide 

sequences fused with the 109aa Trx•Tag™ thioredoxin protein and a 6×His-tags 

(LaVallie et al., 1993), was thus next used for gloshedobin expression in E. coli (Yang 

et al., 2003a). With this fusion construct (i.e. thioredoxin-6×His-tag-gloshedobin), 

gloshedobin was successfully overexpressed in E. coli BL21(DE3), but mostly as IBs 

largely contaminated with a major truncation product (Yang et al., 2003a; 2003b) 

probably arising from proteolytic degradation or secondary site translation initiation 

(Halling and Smith, 1985; Preibisch et al., 1988; Govind et al., 2001). Despite the 

presence of some proteins whose truncated forms were found to exhibit biological 

activities, truncated gloshedobin was inactive. Furthermore, the purification of intact 

gloshedobin by IMAC was hampered by the presence of significant amount of an 

unwanted product associated with the truncation (i.e. thioredoxin-6×His-tag 

containing N-terminal fraction of intact gloshedobin). Efficient strategies thus need to 

be developed for i) reduction of truncated expression product associated with the 

full-length gloshedobin expression, and ii) gloshedobin IB protein refolding.   

 

Provided in the next chapter is the review of frequently used IB processing schemes. 

These techniques as well as the operating principles inspired our current research 

work. 
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Literature review                           
 

Proteins are polymeric molecules composed of amino acid monomers joined together 

by peptide bonds. Examples of proteins include whole classes of important molecules, 

such as enzymes, hormones and antibodies, that are necessary for the proper 

functioning of an organism and have numerous applications in medical, industrial and 

agricultural fields. Escherichia coli have been most widely used for the production of 

recombinant proteins for commercial purposes (Baneyx, 1999; Swartz, 2001). 

However, high-level expression of recombinant proteins in E. coli often results in 

them accumulating in vivo as insoluble aggregates known as inclusion bodies (IBs) 

(Fahnert et al., 2004), thus requiring further solubilization, refolding and purification 

procedures to achieve functionally active products (Singh and Panda, 2005). In this 

chapter, several common IB recovery processes are reviewed. 

 

2.1 Recombinant DNA and gene cloning 

Recombinant DNA is DNA that has been created artificially through the combination 

or insertion of one or more DNA strands, allowing the creation of DNA sequences 

which would not normally occur (Berg et al., 2002). In 1973, two scientists, Herbert 

Boyer and Stanley Cohen, came together and laid the groundwork for recombinant 

DNA technology (Cohen et al., 1973), which initiated what is now the 

multibillion-dollar biotechnology industry. A circular piece of DNA called a plasmid 
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is first removed from a bacterial cell and then special proteins (restriction 

endonuclease or restriction enzyme) are used to cut the plasmid ring at specific sites. 

The host DNA that produces the wanted protein is inserted into the opened plasmid 

DNA ring and DNA ligase helps to connect the two fragments into a closed plasmid. 

The circular plasmid DNA that contains the host gene is inserted back into a bacteria 

cell in which it can multiply to make several copies of the wanted gene. Finally, the 

gene can be turned on in the cell to produce target proteins. Some of the basic 

techniques used such as Restriction Enzymes [Nobel Prize 1978], DNA Sequencing 

[Nobel Prize 1980], and Polymerase Chain Reaction (PCR) [Nobel Prize 1993] are 

milestones in the history of molecular biology.   

 

2.2 Overview of IB processing schemes 

2.2.1 IB formation 

Transcription and translation are tightly coupled in the crowded milieu of the E. coli 

cytoplasm and it is reported that one protein chain is released from the ribosome every 

35 seconds (Lorimer, 1996), resulting in an environment where macromolecule 

concentrations even reach up to 300-400 mg/mL. Correct protein folding and rapid 

production of recombinant proteins is thus an extraordinary challenge. The failure to 

rapidly reach a native conformation for a heterologous protein can lead to its partial or 

complete deposition into insoluble aggregates known as IBs (Betts and King, 1999). 

IBs are characterized as large, spherical particles which are clearly separated from the 

cytoplasm. The target protein typically accounts for 80-95% of the IB material and is 
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usually contaminated with several impurities such as host proteins (RNA polymerase, 

outer membrane proteins), ribosomal components and circular and nicked forms of 

plasmid DNA. In addition, IBs might contain the small heat-shock proteins (sHsps) 

IbpA and IbpB (Valax and Georgiou, 1993). Proteins trapped in IBs generally show 

little (Garcia-Fruitos et al., 2005; 2007; Gonzalez-Montalban et al., 2006; Ventura and 

Villaverde, 2006) or no (Singh and Panda, 2005; Qoronfleh et al., 2007) biological 

activity. Nevertheless, the production of recombinant protein in IBs can also be 

advantageous, since i) a large amount of highly enriched target protein in IB form can 

be easily separated from other soluble proteins, ii) expressed protein trapped in IBs 

shows lower degree of degradation, and iii) the IB protein does not have toxic or 

lethal effects on the host cell (Vinogradov et al., 2003). Therefore, recombinant 

proteins expressed as IBs in E. coli have been most widely used for the commercial 

production of proteins (Singh and Panda, 2005), although a series of IB isolation and 

refolding strategies need to be included to generate the biologically active products. 

 

2.2.2 Traditional methods for IB recovery 

The general strategy used to recover active protein from IBs involves four steps: Cell 

disruption and IB isolation; washing of IB proteins; solubilization of the aggregated 

proteins; and refolding of the solubilized proteins (De Bernardez Clark, 2001; Choe et 

al., 2006). Traditionally, cells containing IBs are disrupted by ultrasonication for small, 

French press for medium and high-pressure homogenization for large-scale protein 

production (Vallejo and Rinas, 2004a). The resulting suspension is treated by either 
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low-speed centrifugation or filtration to remove soluble proteins from the particulate 

containing the IBs. Methods used to solubilize prokaryotic membrane proteins can be 

adapted to wash IBs, especially to remove membrane-associated proteins released 

from cell envelope upon cell breakage, which is known to be the most difficult 

contaminants to eliminate in IB preparations (Rinas and Bailey, 1992). The commonly 

employed washing steps may utilize EDTA and low concentrations of denaturants 

with or without weak detergents, such as Triton X-100, deoxycholate and 

octylglucoside (Lilie et al., 1998; Middelberg, 2002). 

  

After isolation, IB proteins are normally solubilized using high concentration of 

chaotropic agents such as guanidine hydrochloride (GdnHCl) and urea, renaturation is 

then accomplished by the removal of excess denaturants by either dilution or a 

buffer-exchange step, such as dialysis or diafiltration. Because of its simplicity, 

dilution of the solubilized proteins directly into renaturation buffer is the most 

commonly used method in small-scale refolding studies. Protein refolding involves 

intramolecular interaction which follows first order kinetics and protein aggregation, 

however, involves intermolecular interaction which is a kinetic process of second or 

higher order (Qoronfleh et al., 2007). Therefore, protein concentration during dilution 

refolding must be carefully controlled at relatively low level (usually 10-100 µg/mL 

in final concentration) in order to favor the productive refolding instead of the 

unproductive aggregation (Singh and Panda, 2005). This results in dilution refolding 

being time and cost inefficient due to the need for large refolding vessels and 
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additional concentration steps after protein renaturation (De Bernardez Clark, 2001). 

Dilution refolding can also be accomplished in multiple steps, known as 'pulse 

renaturation', in which aliquots of denatured protein are added to renaturation buffer 

at successive time intervals, or semi-continuously via fed-batch addition (Katoh and 

Katoh, 2000; Vallejo and Rinas, 2004a). By choosing the suitable protein 

concentration and time of successive additions of solubilzed proteins, relatively large 

quantities of proteins can be refolded in the same buffer tank, helping reduce the 

volume of buffer needed and improve the overall performance of the refolding 

process (Singh and Panda, 2005). In addition, buffer exchange to remove high 

concentration of denaturant can be utilized for protein refolding through diafiltration 

or dialysis with ultrafiltration membranes. However, renaturation yields using these 

membrane-based methods can be significantly affected by protein binding to the 

membranes (Maeda et al., 1995; Varnerin et al., 1998). Significant losses of unfolded 

proteins may occur via their transmission through the membrane fabricated with 

typical hydrophobic membrane material, such as polyether sulfone (West et al., 1998; 

Yoshii et al., 2000). 

 

The composition of the refolding buffer is strongly protein-dependent and the choice 

of pH and redox reagents has the largest impact for a refolding process (Qoronfleh et 

al., 2007). Usually, the pH of a solution ranging from 4-9 is selected for refolding 

screens, which should also be more than 1-2 pH units away from the isoelectric point 

of target protein in order to minimize the aggregation formation. For proteins 
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containing disulfide bonds derived from the coupling of thiol groups, it is 

recommended that alkaline conditions (pH 7.5-10) are used for initial refolding, since 

the thiol reactivity will be lowered at pH below 7 (Gilbert et al., 1990). For 

non-disulfide or thiol-containing proteins, addition of reducing agents like 

dithiothreitol (DTT), β-mercaptoethanol or cysteine at a concentration of 1-5 mM in 

the refolding buffer helps to maintain cysteine residues in a reduced state and thus 

prevents non-native intra- or inter-disulfide bond formation during the refolding 

process (Fischer et al., 1993). For disulfide-containing proteins, a more elaborate 

refolding environment for the correct formation of disulfide bonds is required. A 

mixture of low molecular weight thiol and disulfide agents, such as reduced and 

oxidized glutathione (GSH/GSSG), cysteamine/cystamine, or cysteine/cystine are 

usually added to the refolding buffer to allow the correct disulfide bonds shuffling and 

formation (De Bernardez Clark, 2001; Vallejo and Rinas, 2004a). A total 

concentration of 5-15 mM with a molar ratio of reduced to oxidized compounds of 1:1 

to 5:1 are usually tested for the initial protein refolding screens (Rudolph and Lilie, 

1996; Vallejo and Rinas, 2004a).  

 

During the process of protein refolding, the formation of incorrectly folded species, in 

particular aggregates, is usually the cause of decreased renaturation yield (De 

Bernardez Clark, 2001). The use of refolding additives to suppress aggregation is 

proved to be a very efficient strategy to inhibit the intermolecular interactions leading 

to aggregation and help in improving the yield of bioactive proteins (De Bernardez 
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Clark, 1998; 2001). Numerous kinds of additives, such as detergents, amino acids, 

salts, divalent cations, surfactants, polymers, polyols and sugars (Yasuda et al., 1998; 

De Bernardez Clark et al., 1999; Singh and Panda, 2005) have been tested and shown 

to be effective in the prevention of aggregation. These additives may influence both 

the solubility and stability of the unfolded protein, folding intermediate and the fully 

folded protein (De Bernardez Clark, 2001; Singh and Panda, 2005). Among them, 

L-arginine (usually 0.4-1 M) is the most commonly used additives and the positive 

effects have been demonstrated for the refolding of many kinds of proteins (Arora and 

Khanna, 1996; Arakawa and Tsumoto, 2003; Umetsu et al., 2003). Presumably by 

shielding hydrophobic regions of partially folded protein in the presence of L-arginine, 

the solubility of these refolding intermediates is enhanced and thus the formation of 

aggregates is impeded (De Bernardez Clark et al., 1999; Umetsu et al., 2003).  

 

2.3 Principles of chemical extraction 

As introduced in section 2.2, the recovery of recombinant IBs is traditionally achieved 

using mechanical cell disruption techniques (Falconer et al., 1997; De Bernardez 

Clark, 2001). The process is inefficient mainly due to the nature of the flowsheet, 

which is characterized by multiple unit operations operated repeatedly, and by the 

need to separate similarly sized cell debris and IBs by centrifugation (Choe et al., 

2002). Falconer direct extraction (FDE) (Falconer et al., 1997; 1998; 1999), a 

chemical extraction method based on a combination of urea and EDTA, is a very 

attractive alternative way to the traditional IB recovery strategy. Additional chemicals 
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are not required in this extraction method and only the chemicals normally used for IB 

dissolution and protein refolding are present (Choe and Middelberg, 2001a).  

 

The release of IB proteins (cytoplasmic Long-R3-IGF-I) by chemical extraction was 

first shown to be at an equivalent level to mechanical disruption at a lab scale 

(Falconer et al., 1998). Moreover, the extraction efficiency was not compromised by 

high density cell suspension of E. coli (up to OD600 = 160) and proved highly efficient 

(>90%) in extracting and solubilizing of His-tagged recombinant viral coat IB protein 

(Choe and Middelberg, 2001a). However, concomitant release of high molecular 

weight DNA during the extraction produced a highly viscous non-Newtonian 

post-extraction mixture (Choe and Middelberg, 2001b), posing a significant challenge 

to downstream operations (Fernández-Lahore et al., 1999). According to Choe and 

Middelberg (2001b), spermine was successfully used as a DNA precipitant to 

selectively precipitate the contaminant DNA associated with chemical extraction, 

allowing the direct coupling of chemical extraction with following primary capture 

methods. A new strategy for IB recovery which contains only 3 steps: chemical 

extraction, low-speed centrifugation and immobilized metal affinity chromatography 

(IMAC)-based expanded bed adsorption (EBA) was thus developed (Choe et al., 

2002), leading to a very promising foreground for simple, efficient and cost-effective 

recovery of IB proteins. 
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2.4 Protein refolding by chromatographic methods  

In recent years, many novel and high-throughput protein refolding methods based on 

chromatography have been developed for recovery of IB proteins. Among them, size 

exclusion chromatography (SEC) and matrix-assisted chromatography are the most 

widely studied tools for better protein recovery from solubilized IBs (Batas and 

Chaudhuri, 1996; Li et al., 2004). Since these processes essentially involve physical 

separation of partially folded protein molecules, the interactions between the refolding 

intermediates are prevented or at least minimized during the buffer exchange step. 

The refolding yield can thus be significantly increased especially when refolding was 

conducted at high protein concentration compared with traditionally used refolding 

procedures, such as dilution as mentioned above (Li et al., 2002; Lanckriet and 

Middelberg, 2003; Langenhof et al., 2005).   

 

2.4.1 Size exclusion chromatography 

SEC is a chromatographic method in which particles (e.g. proteins) of different sizes 

or hydrodynamic volumes elute through a stationary phase at different rates to realize 

the separation of each component. For a typical SEC refolding, solubilized IBs (in 

high concentration of denaturant) are first loaded into the SEC column which is 

pre-equilibrated with refolding buffer. Protein refolding and elution are then achieved 

by passing the column with the same buffer (Batas and Chaudhuri, 1996; 1999; 

Müller and Rinas, 1999; Fahey and Chaudhuri, 2000). During this refolding process, 

the formation of aggregates is greatly prevented since SEC restricts the available pore 
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volume for various protein forms in the gel matrix, thus facilitating the separation of 

correctly folded and aggregated species (Righetti and Verzola, 2001; Li et al., 2004). 

In addition, the delayed running front of the denaturant may re-solubilize the formed 

aggregates, giving the solubilized aggregates another opportunity to fold correctly (De 

Bernardez Clark et al., 1999). Therefore, the refolded protein in the eluate fraction has 

a significant higher concentration compared with normal dilution refolding process 

(Müller and Rinas, 1999). A SEC offers multiple advantages of buffer exchange, 

protein refolding and separation of monomer from aggregates, thus it will be an ideal 

method for the process intensification (De Bernardez Clark, 1999; Choe et al., 2006).  

 

SEC refolding of bovine carbonic anhydrase B (CAB) was performed with special 

emphasis on media selection, sample application and residence time of the protein in 

column, showing that gels with higher resolution, using low protein concentrations in 

a larger application volume and high residence time are key factors to facilitate the 

refolding process to achieve highest activity recovery (Gu et al., 2003). The effects of 

column dimension on refolding yield, which is important for scaling up a process, 

were studied for b-lactamase refolding and the results demonstrated that refolding 

process was not very sensitive to changes in the column diameter, but a reduction in 

the column length gave rise to a poorer refolding performance (Harrowing and 

Chaudhuri, 2003). Besides the parameters that are mentioned above, it is also 

suspected that aggregation could occur immediately after injecting denatured protein 

sample to the refolding buffer (mobile phase). That is, during the passage of the 
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sample from injector to the column, aggregates could be possibly already formed 

irreversibly and could not properly refold later after entering the SEC column. 

Therefore, a 'chaperone solvent plug' strategy was developed by Liu and Chang (2003) 

to inhibit the formation of aggregate before the sample entered the column. This 

chaperone solvent plug was designed to escort the denatured protein (injected sample) 

from the injector into column under 'aggregation inhibition condition', thus providing 

the possibility to enhance protein refolding yield.  

 

Improvement of the SEC protein refolding has also been achieved by harnessing a 

decreasing urea gradient with an increasing pH gradient on a Superdex 30 column for 

the refolding of recombinant single-chain antibody Fv fragments (scFvs) (Gu et al., 

2002). One major advantage of using SEC for refolding, in this particular mode, is 

that the rate of denaturant removal and the change in pH can be carefully controlled 

by adjusting the gradient slope and the elution flow rate of the column. During the 

course of elution, the zone of denatured protein moved down the column at a speed 

approximately threefold higher than that of the denaturant. This means that the protein 

sample will gradually pass through areas of increasingly lower denaturant 

concentrations and higher pH, which promote the refolding of denatured protein into 

its native conformation (Gu et al., 2002).  

 

As the batch-mode chromatography would be the limiting step in a column-based 

refolding downstream process, the application of SEC refolding in continuous 

 19



Chapter 2 

refolding system using pressurized continuous annular chromatography (P-CAC) was 

thus developed (Schlegl et al., 2003) for the refolding of bovine α-lactalbumin as well 

as a recombinant therapeutic protein (Schlegl et al., 2005a; 2005b). Another detailed 

study comparing batch dilution and SEC refolding of lysozyme using P-CAC placed 

special emphasis on the transferability of processes from batch columns to P-CAC 

and showed that the P-CAC elution profile was similar to that of a stationary column, 

making the scale-up and translation to P-CAC relatively simple (Lanckriet and 

Middelberg, 2004). More recently, simulated moving bed (SMB) chromatography 

using four SEC columns was also successfully developed for the renaturation of 

lysozyme as a model compound (Park et al., 2005; 2006), further broadening the 

application of SEC protein refolding in continuous mode.  

 

2.4.2 Matrix-assisted chromatography 

Adsorbing the solubilized and unfolded IB molecules of interest to a solid matrix 

prior to the changing from denaturing to native buffer conditions is another approach 

to avoid unwanted intermolecular interactions between these aggregation-prone 

folding intermediates (Singh and Panda, 2005). Simultaneous buffer exchange, 

refolding and purification of solubilized IB proteins are achieved by harnessing this 

kind of adsorption chromatography. Several combinations of the binding motives and 

matrices have been developed thus far for the binding of unfolded protein molecules 

to the solid support.  
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2.4.2.1 Ion exchange chromatography 

Ion exchange chromatography (IEC) separates molecules on the basis of differences 

in their net surface charge. IEC takes advantage of the fact that the relationship 

between net surface charge and pH is unique for a specific protein (Creighton, 1986; 

Suttnar et al., 1994; Li et al., 2002; 2003). In an IEC separation, reversible 

interactions between charged molecules and oppositely charged IEC media are 

controlled in order to favor binding or elution of specific molecules and achieve 

separation. Since the first introduction of this adsorptive process through attaching the 

unfolded protein onto an ion exchange resin by Creighton (1986), many progresses 

have been achieved to improve the overall efficiency for protein refolding.  

 

A two-buffer system used to improve activity yield and mass recovery was 

demonstrated by Li et al. (2002), in which a descending urea concentration gradient 

was introduced in parallel with an increasing ionic strength gradient. This allowed 

simultaneous structural rearrangement and elution of denatured target protein during 

its migration along the column. Refolding recovery at high protein concentration was 

further improved by another dual gradient IEC process wherein denatured hen 

egg-white lysozyme (a kind of disulfide-containing protein) bound to the IEC matrix 

was gently eluted with refolding buffer employing decreasing urea (from 6 to 1 M) 

and increasing pH (from 6.2 to 10) gradients (Gu et al., 2002). This is in line with the 

finding that pH of the refolding buffer exhibited critical effects on the formation of 

disulfide bonds (Gilbert et al., 1990). By avoiding high salt concentrations for elution, 
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and thus avoiding stronger hydrophobic interactions that might lead to aggregation of 

the folding intermediates, refolding yield was significantly improved.  

 

Another important improvement to IEC refolding is the application of EBA 

technology, which is suitable for dealing with crude samples (Cho et al., 2001; Jin et 

al., 2005). An ion exchange matrix is used to adsorb a recombinant protein directly 

from cell homogenates, the following washing of cell debris and unbound components 

and exchanging the buffer to initiate refolding were all performed in expanded bed 

mode. Using this approach for the processing of non-clarified solutions, the target 

protein can be both purified and refolded on the same column, resulting in a 

substantial shortcut to the downstream steps of IB processing. 

 

2.4.2.2 Immobilized metal affinity chromatography 

IMAC has opened up new prospects for efficient simultaneous purification and 

refolding of recombinant proteins equipped with engineered N- or C-terminal 

polyhistidine tag (Poly-His-tag) (Ueda et al., 2003). The technique is based on the 

one-point immobilization of proteins onto a solid support through selective interaction 

between the electron donors groups on the proteins and on the transition-metal ions 

(Cu2+, Ni2+, Zn2+ or Co2+) which are loaded on chelating ligands coupled to a solid 

support. Poly-His-tag form high-affinity complexes with immobilized divalent metal 

ions even in the presence of high concentration of chaotropic agents, thereby allowing 

the simultaneous isolation and refolding of tagged target proteins. A stepwise or 
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gradient decrease of denaturant concentration will induce the protein refolding and 

elution is often achieved by increasing the imidazole concentration or by using a 

decreasing pH-gradient (Ueda et al., 2003). The performance of IMAC to capture and 

release of proteins is a complex function of a large number of variables. The effects of 

the binding mechanisms can be evaluated by varying the pH and salt concentration of 

the adsorption solution and are also governed by a number of variables such as the 

nature of the chelating ligand, metal-ion, and surface amino acid composition 

(Sulkowski, 1985; Wong et al., 1991; Porath, 1992; Ueda et al., 2003). 

 

IMAC-driven affinity capture followed by successful on-column refolding was 

reported for various kinds of proteins (Rogl et al., 1998; Glynou et al., 2003; 

Lemercier et al., 2003; Schauer et al., 2003; Jungbauer et al., 2004; Vincent et al., 

2004). The aggregation of exopolyphosphatase during IMAC refolding was limited by 

including a suitable amount of detergent in the refolding buffer (Lemercier et al., 

2003). Batch adsorption onto the solid support was performed for aequorin to avoid 

protein crowding at the top of the column, thus preventing aggregation due to 

molecule interactions (Glynou et al., 2003). A novel iterative column-based refolding 

process was recently developed for high concentration protein refolding (Hutchinson 

and Chase 2006a). Some reports suggested that only correctly folded protein 

molecules can be eluted after the adsorptive refolding, and these misfolded and 

aggregated species were still retained on the resin, accounting for the low refolding 

yield obtained (Hutchinson and Chase, 2006a; 2006b). In this iterative mode of 
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refolding strategy, the retained protein aggregates after elution of correctly folded 

proteins were first re-denatured in high concentration denaturant and then the 

refolding step was allowed to repeat. The final refolding yield was demonstrated to be 

greatly increased (Hutchinson and Chase 2006a).  

 

IMAC coupled with EBA (Clemmitt and Chase, 2000) has further broadened the 

application of IMAC strategy in the area of protein purification and refolding. IBs 

obtained following cell disruption are dissolved by a denaturant and then directly fed 

to an EBA column to capture denatured protein on the solid-phase. The bound 

proteins are refolded following the gradual removal of denaturant and then eluted. In 

this way, several sequential steps of IB dissolution, cell debris removal, denaturant 

removal, oxidative refolding, and monomer fractionation could be integrated.  

 

Although IMAC-based refolding has distinct advantages over standard refolding 

techniques (Ueda, 2003), it is necessary to take into account some disadvantages 

(Gutiérrez et al., 2007). i) IMAC refolding is mostly limited to proteins in which the 

inclusion of Poly-His-tag does not interfere with the formation of their native 

configuration (Jungbauer et al., 2004). Nevertheless, an octa-repeat sequence in the 

bovine prion protein refolding was successfully demonstrated to be a natural tag onto 

Ni-NTA using its metal-binding properties (Yin et al., 2003), achieving a production 

process of tag-less native protein, ii) If redox systems are required for proper 

refolding, they have to be adjusted very carefully in IMAC to avoid the reduction of 
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metal ions. If reducing agents are necessary for solubilization of IBs, a buffer 

exchange to remove the reducing agents has to be performed before adsorption onto 

the IMAC column (Hutchinson and Chase, 2006b; Gutiérrez et al., 2007). Alternative 

IMAC resins which may be more resistant to metal ion reduction would expand the 

range of operating conditions, and iii) There are unspecific bindings through ionic 

interactions. Higher salt concentration leads to an increase in hydrophobic forces 

favoring the aggregation of folding intermediates; therefore, binding, washing, and 

refolding conditions require distinct optimization. 

 

2.4.2.3 Hydrophobic interaction chromatography 

Hydrophobic interaction chromatography (HIC) has also been successfully used for 

protein refolding with concomitant removal of contaminating proteins during the 

renaturation process (Geng and Quan, 2002; Bai et al., 2003; Gong et al., 2004; Wang 

et al., 2004). HIC is a kind of chromatography technique in which reversed-phase 

packings are used to separate molecules by virtue of the interactions between their 

hydrophobic moieties and the hydrophobic sites on the solid support. High salt 

concentrations are used in the mobile phase and separations are effected by changing 

the salt concentration. The refolding of lysozyme, bovine serum albumin, α-amylase 

and recombinant γ-interferon were described by Geng and Chang (1992) by using a 

silica-based material crafted with polyethylene glycol (PEG) with a hydrophobic end 

group. A dual-gradient HIC strategy was further developed by Wang et al. (2006), 

consisting of decreasing GdnHCl concentration and increasing PEG concentration. 
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The refolding yield of denatured consensus interferon (C-IFN) was demonstrated to 

be greatly increased in the gradient HIC process with the presence of PEG. Mobile 

phase composition, gradient mode, and flow rate were found to be key factors in the 

mass and bioactivity recovery (Xiao et al., 2006; Wu et al., 2007). 

 

Different from the other above-mentioned chromatographic methods, there is usually 

no requirement for the presence of typical refolding additives such as L-arginine 

during the HIC refolding (Bai et al., 2003). Moreover, refolding of the 

disulfide-containing protein proinsulin was even successfully conducted in the 

absence of a redox system in the mobile phase (Bai et al., 2003). It has been proposed 

that hydrophobic regions of the protein that adsorb to the HIC matrix form 

microdomains around which native structure elements can develop. During migration 

through the column, the protein will also pass through several steps of adsorption and 

desorption, controlled by the salt concentration and hydrophobicity of the 

intermediates, resulting finally in the formation of the native structure and better 

protein refolding yield (Geng and Quan, 2002; Vallejo and Rinas, 2004a). 

 

2.5 Protein refolding by hydrostatic pressure 

The use of pressurized tanks (150-200 MPa) as refolding reactors is suggested to 

facilitate protein refolding through promoting the folding mechanism while 

disfavoring aggregation (Gorovits and Horowitz, 1998; Foguel et al., 1999; Jungbauer 

and Kaar, 2007). For a typical hydrophobic pressure-mediated protein refolding 
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process, aggregates evolving from agitation, chaotrope-induced aggregates or 

bacterial IBs were first subjected to high-pressure treatment at non-denaturing 

GdnHCl concentration to unfold the protein aggregates (St. John et al., 1999; 2002). 

The gradually decreased pressure then prompted the unfolded proteins to recover their 

native structures. As high pressure disfavors interactions that lead to aggregation 

during protein refolding, aggregated proteins can be disaggregated and refolded at 

relatively high concentrations (up to 8.7 mg/mL) (St. John et al., 1999; 2001). 

Additional pressure treatment of IBs for a longer period of time led to significantly 

increased amount of active proteins. For disulfide-containing proteins, it is suggested 

that even though the use of high hydrostatic pressure by itself does not provide 

enough energy to break a covalent bond, correct formation of the protein's disulfide 

bonds can still occur because the high pressure process is compatible with standard 

redox reagents that allow shuffling of disulfide bonds (St. John et al., 2002; Seefeldt 

et al., 2004). Therefore, combining pressure-induced disaggregation and refolding 

with manipulation of GdnHCl concentrations and glutathione redox ratios would be a 

very efficient way for the refolding of protein from disulfide-linked aggregates. Other 

variables which may affect the refolding efficiency include: pH, ionic strength and 

temperature. By systematically changing formulation variables, optimal solution 

conditions for protein refolding can be determined (Phelps and Hesterberg, 2007). 

This method permits refolding reactions at higher concentration therefore reduces 

processing volumes and diminishes the need of chaotropes significantly. 
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2.6 Protein refolding by molecular chaperones 

2.6.1 What are molecular chaperones?   

Excessive protein misfolding and aggregation can be fatal. It may result from 

premature termination of translation, failure of a newly synthesized chain to reach a 

correct conformation or from loss of structure triggered by environmental stress. To 

deal with this situation, both prokaryotes and eukaryotes have evolved similar 

conserved molecular chaperone systems which can help in the proper de novo folding, 

refolding of partially folded proteins, dissolving aggregates and disposing 

irretrievably damaged proteins (Baneyx and Mujacic, 2004). Although these 

molecular chaperones are constitutively expressed under balanced growth conditions, 

many of them are upregulated upon heat-shock or other insults that increase cellular 

protein misfolding (including heterologous protein expression) and are therefore 

classified as stress or heat-shock proteins (Hsps), e.g. Hsp100 (ClpB, ClpA, ClpX), 

Hsp90 (HtpG), Hsp70 (DnaK), Hsp60 (GroEL), and small heat-shock proteins or 

sHsps (IbpA, IbpB) (E. coli chaperones in parenthesis) (Goloubinoff et al., 1999). 

 

The investigation of chaperones has a long history (Ellis, 1996). The term 'molecular 

chaperone' was invented and appeared in 1978 from the discovering of the ability of 

nuclear protein called nucleoplasmin to prevent aggregation of folded histone proteins 

with DNA during the assembly of Nucleosomes (Laskey et al., 1978). With the 

finding of proteins that mediated the post-translational assembly of protein complex 

in 1987 (Ellis, 1987), the term was extended. In 1988, it was realized that similar 
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proteins mediated this process in both prokaryotes and eukaryotes (Hemmingsen et al., 

1988).  The details of this process were determined in 1989, when the 

ATP-dependent protein folding was demonstrated in vitro (Goloubinoff et al., 1989). 

With the continuous progresses, various kinds of molecular chaperones were 

discovered. Based on their different actions to aid protein folding, molecular 

chaperones can be divided into three functional subclasses (Figure 2.1) (Baneyx and 

Mujacic, 2004). 'Folding' chaperones (e.g. Trigger factor (TF), DnaK and GroEL) rely 

on ATP-driven conformational changes to mediate the net refolding/unfolding of their 

substrates (Hartl and Hayer-Hartl, 2002). 'Holding' chaperones (e.g. IbpB) maintain 

partially folded proteins on their surface to await availability of folding chaperones 

upon stress abatement (Veinger et al., 1998; Shearstone and Baneyx, 1999; 

Narberhaus, 2002). Finally, the 'disaggregating' chaperone of ClpB promotes the 

solubilization of proteins that have become aggregates as a result of stress 

(Zolkiewski, 1999; Diamant et al., 2000; Lee et al., 2003; Mogk et al., 2003; 

Schlieker et al., 2004).  

 

As shown in Figure 2.1, TF, DnaK/DnaJ/GrpE (DnaKJE) and GroEL/GroES are three 

chaperone systems involved in the de novo folding in E. coli cytoplasm (Hartl, 1996). 

TF and DnaKJE have the overlapped substrate pool (Deuerling et al., 2003), except 

that TF is supposed to interact with short nascent chains or newly synthesized proteins 

while longer nascent chains may be captured by DnaK. DnaK is targeted to 

high-affinity sites by its co-chaperone DnaJ, which increases the ATP consumption or 

 29



Chapter 2 

hydrolysis and activates tight binding of DnaK to substrate. The release of substrate is 

controlled by GrpE who catalyzes ADP/ATP exchange. Once released, a newly 

synthesized protein may reach native conformation, undergo additional cycles of 

interactions with DnaK (and possibly TF) until it folds, or be transferred to the 

downstream GroEL/GroES system which handles about 10% of newly synthesized 

host proteins (Ewalt et al., 1997).  

 

  
Figure 2.1 Chaperone-assisted protein folding in the cytoplasm of E. coli (Baneyx and 
Mujacic, 2004).  

 

The bacterial IbpA and IbpB, which belong to sHsp family, are the most characterized 

holding chaperones (holdases). The increased expression of sHsp within cells may aid 
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mammalian and bacterial cells to resist heat, cold, and oxidant stresses (Mehlen et al., 

1993; Van den Ijssel et al., 1994; Yei et al., 1997; Sato et al., 1999). Furthermore, it is 

demonstrated that the large oligomers formed by IbpB rely on temperature-driven 

exposure of structured hydrophobic domains to capture unfolded intermediates 

produced under heat-shock conditions, thereby leading to accumulation of misfolded 

intermediates which are protected from irreversible aggregation (Chang et al., 1996; 

Lee et al., 1997). This reservoir effect permits the misfolded proteins to stay in a 

folding-competent state for an extended period of time, and after the restoration of 

physiological condition, IbpB-bound species are engaged by DnaK system, and if 

necessary transferred to GroEL, for refolding (Ehrnsperger et al., 1997; Veinger et al., 

1998).  

    

When folding and holding chaperones fail to abrogate protein aggregation under 

severe or prolonged stress conditions, E. coli possesses a third line of defense to 

manage the deleterious effects associated with misfolding: active aggregate 

solubilization. Disaggregation is performed by ClpB, which belongs to the AAA+ 

(ATPase associated with various cellular activities) superfamily of proteins. AAA+ 

proteins self-assemble into barrel-shaped hexamer structures and use the energy 

derived from ATP hydrolysis to restructure their target substrates (Vale, 2000). Each 

ClpB protomer is composed of an N-terminal domain and two AAA+ domains 

separated by a coiled-coil middle domain (M-domain) which is essential for ClpB to 

realize hexamerization and chaperone function (Kedzierska et al., 2003; Lee et al., 
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2003). Recent structural data of Thermus thermophilus ClpB (TClpB) showed that the 

hexamer of this protein forms a two tier-ring structure with a 16-Å hole in the top ring 

and six smaller openings on the lateral surface of the molecules (Lee et al., 2003). 

ClpB-mediated disaggregation is facilitated by intercalation of sHsps within the 

aggregates (Mogk et al., 2003) but renaturation requires the transfer of partially folded 

substrate from ClpB to DnaKJE chaperone system (Goloubinoff et al., 1999; 

Zolkiewski, 1999). 

 

2.6.2  ClpB/DnaKJE, the most efficient bichaperone machine in  

protein disaggregation and renaturation 

Protein aggregates formed under severe heat-shock conditions were not eliminated in 

the presence of ClpB within the cells (Laskowska et al., 1996; Mogk et al., 1999). 

Other in vitro studies showed that ClpB alone was not sufficient for disaggregation of 

proteins following their subjection to thermal stress. Instead, ClpB was reported to 

participate in multi-chaperone system which could efficiently inhibit and reverse 

protein aggregation (Glover and Lindquist, 1998; Goloubinoff et al., 1999; 

Zolkiewski, 1999). For instance, ClpB cooperates with DnaKJE chaperone system to 

efficiently solubilize protein aggregates and refold them into active proteins 

(Goloubinoff et al., 1999; Mogk et al., 1999; Zolkiewski, 1999; Ziętkiewicz et al., 

2004; 2006). So far, the ClpB/DnaKJE is suggested to be the most efficient and 

promising bichaperone machine in protein disaggregation and renaturation.  
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The mechanism of ClpB/DnaKJE-mediated protein refolding is not fully understood 

yet and two models have been proposed (Figure 2.2) (Weibezahn et al., 2004a; 

Shorter and Lindquist, 2005). Firstly, ClpB possibly remodels the aggregated protein 

surface via crowbar activity to facilitate DnaKJE binding, which will in turn allow 

liberation of polypeptide by ClpB crowbar activity. The extracted polypeptide would 

then be refolded by DnaKJE. An alternative hypothesis is that aggregated proteins 

would be progressively fragmented into smaller pieces by ClpB via crowbar activity 

till individual polypeptides are released. The polypeptides are then refolded either 

spontaneously or with the aid of DnaKJE (Glover et al., 1998). The second model is 

proposed based on the translocation activity of ClpB, in which DnaKJE helps the 

extraction of individual polypeptides from the aggregate surface by translocation 

through the ClpB central pore. The extracted protein is then refolded and prevented 

from reaggregating by DnaKJE (Schlieker et al., 2004; Weibezahn et al., 2004b; 2005; 

Haslberger et al., 2007). It is also suggested that these two models need not be 

mutually exclusive since they may work sequentially or simultaneously in a 

protein-dependent manner (Shorter and Lindquist, 2005).  
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Figure 2.2 Potential mechanisms of protein disaggregation by ClpB/DnaKJE 
bichaperone system (Weibezahn et al., 2004a). 

 

2.6.3 Application of artificial chaperones 

Although natural chaperones have been applied successfully to refold various proteins 

in vitro, their routine application is still limited by their cost, the relatively high 

chaperone concentration required and the need for their removal after the refolding 

procedure (Buchner et al., 1992; Thomas et al., 1997). Therefore, a detergent-based 

micellar system mimicking the two-step mechanism of chaperone-assisted protein 

refolding is developed which may overcome these problems.  

 

Rozema and Gellman (1996a) utilized a two-step method for the refolding of carbonic 

anhydrase B (CAB). In the first capturing step, chemically denatured CAB (by 

GdnHCl) was diluted in refolding buffer with a detergent which may form a complex 

with these non-native proteins, thereby preventing aggregation. The release of the 
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folding-component was induced by introducing cyclodextrin which strips the 

detergent away from the protein by forming tighter detergent-cyclodextrin complex.  

Cyclodextrin polymers of high molecular weight as stripping agent were reported to 

result in higher protein refolding yield compared with monomeric cyclodextrin 

(Machida et al., 2000). In addition, rapid application of cyclodextrin was found to be 

more favorable for the recovery of protein activity than slow addition (Rozema and 

Gellman, 1996a; 1996b). An important improvement was demonstrated by 

introducing a solid phase (polymeric β-cyclodextrin beads) as a detergent binding 

agent compared with previous method in which soluble phase was applied (Mannen et 

al., 2001). The utilization of these cyclodextrin polymer beads allows simple removal 

of the cyclodextrin-detergent complex by centrifugation and, moreover, these beads 

can be used in semicontinuous refolding processes using EBA (Mannen et al., 2001).  

 

Aqueous solutions of hydrogel nanoparticles (nanogels) have also been used for the 

capturing step and a novel artificial chaperone system using cholesterol-bearing 

pullulan (CHP) nanogels as a host for a guest protein was developed (Figure 2.3) 

(Nomura et al., 2003). Hydrophobized polysaccharides such as CHP spontaneously 

form nanogels in water by inter-macromolecular self-association, which were able to 

form stronger protein-CHP complexes during refolding of GdnHCl denatured proteins. 

The complexed proteins were effectively released in their refolded native form upon 

dissociation of the nanogels in the presence of cyclodextrin (Figure 2.3). Furthermore, 

it is possible to design various functional nanogels such as surface-modified (cationic 
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as well as ionic) and stimulus-sensitive (heat, light) nanogels. Nanogels can also be 

immobilized on various surfaces including chromatographic matrices, which could be 

useful in column refolding or batch-wise renaturation. This may significantly simplify 

the protein recovery process and the nanogel system is thus considered to be 

promising as an efficient and versatile technique for protein refolding in the 

post-genome era. 

 

 

Figure 2.3 Schematic representations of artificial molecular chaperones (Nomura et al., 
2003). 

 36



Chapter 3 

Chapter 3 

Folding-like-refolding of heat-denatured 

MDH using unpurified ClpB and DnaKJE    

  
Summary  

The Escherichia coli heat-shock protein ClpB can efficiently solubilize protein 

aggregates and refold them into active form in cooperation with the DnaK/DnaJ/GrpE 

(DnaKJE) chaperone system. However, the application of this bichaperone system at a 

large-scale was restricted because of the difficulties and high cost to express and 

purify each of these molecular chaperones. The research in this chapter attempts to 

design an efficient alternative way for protein refolding through harnessing the 

unpurified molecular chaperones. We first constructed a plasmid encoding ClpB with 

a 6×His-tag at its C-terminus (His-ClpB) to facilitate its purification through 

immobilized metal affinity chromatography (IMAC). A different plasmid capable of 

expressing the DnaKJE was used to obtain a cell extract containing unpurified 

DnaKJE. The effect of purified His-ClpB and unpurified DnaKJE on the refolding of 

heat-denatured malate dehydrogenase (MDH) was investigated, and proved to be 

highly efficient for MDH refolding. Furthermore, the use of both unpurified His-ClpB 

and DnaKJE available in the cell extract enabled highly successful refolding of the 

heat-denatured MDH with efficacy comparable to the case where the purified 

His-ClpB was used. To the best of our knowledge, this is the first attempt to apply a 

refolding cocktail comprising unpurified bichaperone system to the refolding of a 
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heat-denatured protein, providing a practical and economically viable way to apply 

this bichaperone system in more protein refolding operations, especially for 

implementing a large-scale folding-like-refolding strategy. 

 

3.1 Introduction 

The E. coli chaperone ClpB, a heat-shock protein with a molecular weight of 100 kDa, 

belongs to the AAA+ (ATPase associated with various cellular activities) superfamily 

of proteins, which self-assemble into barrel-shaped hexamer structures and use the 

energy derived from ATP hydrolysis to restructure their target substrates (Vale, 2000). 

Each ClpB protomer is composed of an N-terminal domain and two AAA+ domains 

separated by a coiled-coil middle domain which is essential for ClpB to realize 

hexamerization and chaperone function (Kedzierska et al., 2003; Lee et al., 2003). 

Recent structural data of Thermus thermophilus ClpB (TClpB) showed that the 

hexamer of this protein forms a two tier-ring structure with a 16-Å hole in the top ring 

and six smaller openings on the lateral surface of the molecules (Lee et al., 2003). It 

has been suggested that large protein aggregates bind between the linker domains of 

adjacent ClpB molecules and ATP-induced conformational change of ClpB causes 

dissociation of the aggregates into smaller size aggregates. However, ClpB alone was 

not sufficient for disaggregation and renaturation of proteins following their 

subjection to thermal stress. Instead, ClpB was reported to participate in 

multi-chaperone system which could efficiently inhibit and reverse protein 

aggregation (Glover and Lindquist, 1998; Goloubinoff et al., 1999; Zolkiewski, 1999). 
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For instance, ClpB cooperated with DnaKJE chaperone system to efficiently 

solubilize protein aggregates and refold them into active proteins (Goloubinoff et al., 

1999; Mogk et al., 1999; Ziętkiewicz et al., 2004; 2006).  

 

However, the difficulties and the associated high cost in the purification of each 

molecular chaperone restrict the application of these molecular chaperones to in vitro 

refolding attempts, especially at a large-scale. In this chapter, we investigated the 

feasibility of using unpurified DnaKJE and ClpB for disaggregation of heat-denatured 

malate dehydrogenase (MDH) aggregates. First, we purified E. coli ClpB with a 

6×His-tag in fusion (His-ClpB) and investigated the efficiency of the purified 

His-ClpB and unpurified DnaKJE system on the disaggregation and refolding of the 

MDH in the absence/presence of ATP regeneration system. Secondly, we assessed the 

efficacy of using a refolding cocktail comprising unpurified His-ClpB and DnaKJE on 

the refolding of the same model protein. 

 

3.2 Materials and methods 

3.2.1 Plasmids 

The plasmid encoding ClpB (pClpB) was kindly provided by Dr Catherine Squires 

(Tufts University, Boston, MA, U.S.A.). This plasmid was used as a polymerase chain 

reaction (PCR) template and the DNA fragment encoding ClpB residues 1-857 (full 

length ClpB) was amplified, using two sets of oligonucleotides primers, 

5’-GGAATTCCATATGCGTCTGGATCGTCTTAC-3’ and 
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5’-CCGCTCGAGTTACTGGACGGCGACAATCCGG-3’, including NdeI and XhoI 

restriction sites. The amplified fragment was then digested by NdeI and XhoI and 

cloned into pET-32a(+) (Novagen) treated with the same restriction enzymes. The 

resultant plasmid was named as pET-ClpB which would produce ClpB fused with a 

6×His-tag at its C-terminus (His-ClpB).  

 

Chaperone Plasmid Set (3340, Takara Biotechnology) was used to express molecular 

chaperones. This set contains five types of plasmids (pG-KJE8, pGro7, pKJE7, 

pG-Tf2, pTF16) which were developed by HSP Research Institute, Inc. (Japan), each 

of which was designed to enable efficient expression of multiple molecular 

chaperones. pKJE7 was used in this study to express DnaKJE. 

 

3.2.2 Proteins expression and purification 

E. coli BL21(DE3) cells (69450-4, Novagen) were transformed with pET-ClpB to 

overexpress the His-ClpB. The transformed cells were grown at 37°C to A600 nm ~ 0.6 

in LB broth containing 0.1 mg/mL ampicillin. Protein expression was induced with 1 

mM isopropyl β-D-thiogalactopyranoside (IPTG) for 4 h. The cell suspension, 

harvested at its stationary growth phase, was centrifuged at 5000g and 4°C for 20 min 

and resuspended in 50 mM Tris buffer (pH 7.5) containing 150 mM KCl and 20 mM 

MgCl2. One Shot Cell Disrupter (Constant Cell Disruption System, UK) was used to 

disrupt the cells at 21.0 Kpsi. Following cell disruption, the cell lysates were 

centrifuged at 8000g and 4°C for 30 min and the supernatant was applied to a 2.5 cm 

 40



Chapter 3 

i.d.×15 cm column (Econo-Column Chromatography Column, 737-1517, Bio-Rad) 

packed with 20 mL of Ni2+-charged iminodiacetic acid (IDA) resin following 

equilibration with a binding buffer containing 50 mM Tris, 150 mM KCl, 20 mM 

MgCl2, 10mM imidazole, pH 7.5. The resin was washed with 10 column volume 

(CV) of washing buffer (50 mM Tris, 150 mM KCl, 20 mM MgCl2, 20 mM imidazole, 

pH 7.5) to eliminate weakly bound proteins. To elute His-ClpB, the resin was passed 

with 5 CV of elution buffer (50 mM Tris, 150 mM KCl, 20 mM MgCl2, 500 mM 

imidazole, pH 7.5).  

 

Molecular chaperones, DnaKJE were expressed according to the standard protocol 

(Nishihara et al., 1998). Briefly, E. coli BL21(DE3) cells harboring plasmid pKJE7 

(expressing multiple molecular chaperones of DnaK, DnaJ and GrpE) were grown to 

log phase in the presence of 34 µg/mL chloramphenicol at 37°C. To induce expression 

of chaperones, L-arabinose was added to the culture medium to give a final 

concentration of 2.5 mg/mL. The cells were centrifuged at 5000g and 4°C for 20 min 

and the collected cell pellets were resuspended in buffer (50 mM Tris, 150 mM KCl, 

20 mM MgCl2, pH 7.5) and disrupted using the One Shot Cell Disruptor described as 

above. The soluble fractions following the centrifugal removal of cell debris (8000g 

and 4°C for 25 min) were kept at -20°C for further use as a DnaKJE stock solution 

(unpurified DnaKJE system). 

 

MDH was from porcine heart muscle (M1567, Sigma). 2 µM of MDH was denatured 
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at 47°C for 40 min in 50 mM Tris, 150 mM KCl, 20 mM MgCl2, 5 mM 

DL-Dithiothreitol (DTT), pH 7.5 (refolding buffer) as developed by Goloubinoff and 

coworkers (Goloubinoff et al., 1997). Protein refolding was initiated by diluting 

denatured MDH with 1.5 volumes of a refolding buffer containing chaperones and/or 

ATP at 25°C with or without ATP regeneration system (4 mM phosphoenol pyruvate 

(860077, Aldrich) and 20 ng/mL pyruvate kinase (P-9136, Sigma)) to give 

predetermined concentrations of chaperones and ATP in the refolding cocktail. MDH 

reactivation was measured according to published protocols (Schröder et al., 1993; 

Goloubinoff et al., 1999) in 3 mL reaction mixture. The final concentrations were 100 

mM potassium phosphate buffer, pH 7.5, 0.13 mM ß-nicotinamide adenine 

dinucleotide in reduced form (NADH) (N8129, Sigma), 0.25 mM oxalacetic acid 

(OAA) (O4126, Sigma). The time-dependent oxidation of NADH catalyzed by MDH 

was monitored at 340 nm. 

 

3.2.3 Analytical methods 

Protein detection and quantification: Total protein concentration was measured using 

Coomassie Plus Protein Assay Kit (23236T, Pierce) based on the Bradford assay with 

bovine serum albumin (BSA) as the standard. Protein samples after expression and 

purification were analyzed by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). Protein samples were diluted tenfold in sample loading 

buffer (4% (w/v) SDS, 5% (v/v) DTT, 50% (w/v) glycerol, 0.125 M Tris at pH 6.8, 

0.002% (w/v) bromophenol blue) and boiled for 5 min. Following centrifugation at 
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16000g for 5 min, a 15 µL volume of sample was loaded into each well of a 12% 

polyacrylamide gel and electrophoresis was conducted using a Bio-Rad 

Mini-PROTEAN® 3 Cell system (165-3301 and 165-3302, Bio-Rad) with molecular 

weight marker (LC5925, Invitrogen). Protein bands were detected by Coomassie 

G-250 staining using GelCode® Blue Stain reagent (24590, Pierce). A Bio Imaging 

system (Gene Genius, Syngene, UK), equipped with a gel analysis software 

(GeneTools, Syngene, UK), was used to image and analyze the gels. 

 

Circular dichroism (CD) spectroscopy: Far UV CD spectra of His-ClpB were 

measured with a Jasco J-720 (Jasco Corp., Japan) spectrometer using a 0.01-cm 

cylindrical cell. Purified His-ClpB was first dialyzed against 10 mM sodium 

phosphate, pH 7.5 and then the concentration of the dialyzed protein sample was 

adjusted to 0.1 mg/mL for CD measurement. Spectra were corrected by subtracting 

the buffer baseline and averaged 10 times. Mean residue ellipticity (θ), expressed in 

deg cm2 dmol-1, was calculated from the formula: θ = (MW Θ)/(10 cnl), where Θ is 

the ellipticity observed (mdeg), MW the molecular mass, c the protein concentration 

(mg/mL), l the path length of cuvette (cm) and n the number of amino acid residues. 

All experiments were conducted at room temperature.  

 

His-ClpB ATPase activity determination: His-ClpB ATPase activity was determined 

according to Barnett and co-workers (Barnett et al., 2000). His-ClpB samples were 

incubated at 37°C in the reaction buffer (50 mM Tris, 20 mM MgCl2 and 150 mM 
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KCl, 5 mM ATP, 1 mM EDTA, 1 mM DTT, pH 7.5). After incubation for 15 min, the 

inorganic phosphate concentration was determined using the Malachite Green 

Phosphate Assay Kit (POMG-05K, i-DNA Biotechnology Pte Ltd, Singapore). All 

ATPase assays were conducted at least in duplicate.  

 

Tryptophan fluorescence spectra: Measurement of the intrinsic tryptophan 

fluorescence of His-ClpB was conducted with a PerkinElmer Life Science LS50B 

Luminescence spectrometer. Samples were measured in rectangular four sided quartz 

cuvettes at a pathlength of 1 cm. The emission spectra of tryptophan fluorescence of 

ClpB (0.5 µM) in the absence or the presence of 2 mM ATP/ADP were recorded in 

buffer A (50 mM Tris, 20 mM MgCl2 and various concentrations of KCl, pH 7.5) 

between 300-400 nm at a fixed excitation wavelength of 290 nm. All experiments 

were conducted at room temperature. 

 

3.3 Results and discussion 

3.3.1 Purification and characterization of His-ClpB 

In order to facilitate the production of purified ClpB, we constructed plasmid 

encoding ClpB with C-terminal extension containing a 6×His-tag (His-ClpB). The 

purity of His-ClpB following IMAC purification was over 98% as determined by 

densitometric quantification of proteins bands from Coomassie Blue stained 

SDS-PAGE gels (Figure 3.1A). The physical properties of His-ClpB were studied 

using MALDI TOF MS and circular dichroism (CD). The molecular weight of the 
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purified His-ClpB as measured by MALDI TOF MS was around 95 kDa (data not 

shown), which was consistent to those predicted from the amino acid sequence. CD 

study to determine the physical structure of His-ClpB revealed that the secondary 

structure of His-ClpB was predominantly α-helix as evidenced by the CD spectra 

showing a characteristic negative double band at 205-222 nm and a positive band at 

<200 nm (Figure 3.1B). This is in good agreement with the secondary structure of 

wild type ClpB (Barnett et al., 2000), indicating that the C-terminal fusion of a 

6×His-tag did not affect the secondary structure of ClpB.  
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Figure 3.1 (A) SDS-PAGE for the analysis of His-ClpB protein expressed in E. coli 
BL21(DE3) harboring pET-ClpB. Molecular weight marker was loaded in lane 1. 
His-ClpB was purified by IMAC under native conditions. Lanes 2-7 represents series 
dilution of His-ClpB after purification. The purity of His-ClpB was quantified by gel 
analysis software, GeneTools from Syngene. (B) Secondary structure of His-ClpB. 
Far-UV circular dichroism spectra expressed as mean molar residue ellipticity (θ) [103 
deg cm2dmol-1]. 

 

The ability of His-ClpB to hydrolyze ATP was also investigated and found to be 

similar to those of wild type ClpB reported previously (Zolkiewski, 1999; Barnett et 

al., 2000), i.e. dependent on the presence of active proteins and salt concentration. The 

ATPase activity increased approximately by 11 fold in the presence of α-casein, which 

confirmed that His-ClpB is a protein-activated ATPase. With the urea-denatured 

α-casein, His-ClpB showed only ~ 3 fold increase in the ATPase activity (Figure 

3.2A). In addition, the salt concentration in the reaction buffer was found to 

significantly affect ATPase activity of His-ClpB as was evidenced by sharp decrease 

in its ATPase activity with the increment of the ionic strength in the buffer (Figure 
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3.2B). This phenomenon was also reported by Schirmer et al. (Schirmer et al., 1998) 

where high salt concentrations were found to inhibit the ATPase activity of Hsp104 (a 

homolog of ClpB in E. coli). 

 

 

 

Figure 3.2 ATP hydrolysis by His-ClpB. (A) ATPase activity was measured by 
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incubating 0.5 µM of His-ClpB in reaction buffer (50 mM Tris, 20 mM MgCl2 and 
150 mM KCl, 5 mM ATP, 1 mM EDTA, 1 mM DTT, pH 7.5) at 37°C. The activity in 
the absence of any added proteins was expressed as 1 (column 1). ATPase activity in 
the presence of α-casein (column 2) and denatured α-casein (column 3) at 0.1 mg/mL 
were shown in the figure. (B) Effects of salts on His-ClpB ATPase activity. His-ClpB 
was incubated in buffer same as above except the concentration of KCl.  

 

The changes in the ATPase activity in different concentration of salts may have arisen 

from the structural change in the protein. Hence, this possibility was further 

investigated by measuring intrinsic fluorescence of His-ClpB in solutions of different 

ionic strength (Figure 3.3). The fluorescence spectrum of His-ClpB exhibited a single 

emission maximum at 350 nm in the absence of nucleotide at a low ionic strength 

(Figure 3.3A). The addition of ATP rendered the fluorescence maximum shift to 347 

nm, indicating structural change of His-ClpB with ATP binding. The ATP-dependent 

shift of fluorescence maximum was reverted at an increased ionic strength with the 

addition of 500 mM of KCl (Figure 3.3B), indicating that ATP binding to His-ClpB 

was hindered in a high salt condition. This provided direct explanation for the 

decreased ATPase activity of His-ClpB at a high ionic strength, and suggested that its 

ATPase activity is closely related to ATP-induced changes in His-ClpB structure, 

which in turn to be governed by ionic strength of a solution. 
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Figure 3.3 Intrinsic tryptophan fluorescence of His-ClpB was measured by incubating 
His-ClpB (0.5 µM) in reaction buffer (50 mM Tris, 20 mM MgCl2 and different 
concentration of KCl, pH 7.5). (A) His-ClpB was incubated in reaction buffer at a 
moderate concentration of KCl (150 mM) in the presence (solid line) and absence 
(dashed line) of ATP. (B) His-ClpB was incubated in reaction buffer at a high KCl 
concentration (500 mM) in the presence (solid line) and absence (dashed line) of 
ATP. 
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3.3.2 Chaperoning activities of purified His-ClpB and 

unpurified DnaK/DnaJ/GrpE 

Following the purification and characterization of His-ClpB, we investigated the 

chaperoning activity of purified His-ClpB with or without the assist of unpurified 

DnaKJE system (Figure 3.4A). DnaKJE, expressed from plasmid pKJE7 in E. coli 

strain of BL21(DE3), was analyzed by SDS-PAGE and the expression level of each 

chaperone estimated by densitometric quantification. The molar expression ratio of 

DnaK, DnaJ and GrpE was found to be approximately 3:4.2:5.7, respectively and the 

total concentration of DnaKJE accounted for more than 50% of the total proteins in 

the cell extracts (Figure 3.4B). 

 

 

 50



Chapter 3 

 
Figure 3.4 (A) SDS-PAGE for the analysis of DnaKJE expressed in E. coli BL21(DE3) 
harboring pKJE7. Molecular weight marker was loaded in lane 1. Lanes 2-4 are from 
the uninduced cells, representing the whole cell extracts after high-pressure cell 
disruption, the insoluble and soluble fraction in the cell extracts respectively. Lanes 
5-7 are from the induced cells, representing the whole cell extracts after high-pressure 
cell disruption, the insoluble and soluble fraction in the cell extracts respectively (B) 
The expression level of DnaK, DnaJ and GrpE in the cell extracts. DnaKJE accounted 
for more than 50% of the total proteins in the cell extracts. 

 

As a model protein, heat-denatured MDH, which was reported elsewhere 

(Goloubinoff et al., 1999; Watanabe et al., 2002) to test the chaperoning activity of 

ClpB, was used. In our study, it was confirmed that more than 99% of MDH activity 

was lost after heat treatment at 47°C with DTT for 40 min. The disaggregation and 

refolding of heat-denatured MDH was initiated by diluting 1 volume of denatured 

MDH solution with 1.5 volumes of a refolding buffer containing chaperones and ATP 

at 25°C with or without ATP regeneration system (4 mM phosphoenol pyruvate and 

20 ng/mL pyruvate kinase in final concentration) to give predetermined 

concentrations of chaperones (final concentrations of 0.8 µM MDH, 5 µM His-ClpB, 
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0.2 mg/mL DnaKJE) and ATP (5 mM initial concentration) in the refolding cocktail. 

The refolding reaction was conducted for 3 h (after 3 h, no further increase in activity 

recovery was observed).  
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Figure 3.5 Refolding of heat-denatured MDH. (A) Investigation of individual or 
combinatorial chaperoning activity of purified His-ClpB and unpurified DnaKJE. 
Given yields correspond to recovered MDH activity after 3-hour incubation at 25°C. 
The concentrations of molecular chaperones supplemented to 0.8 µM of 
heat-denatured MDH were 5 µM of His-ClpB (expressed in protomers) and 0.2 
mg/mL of DnaKJE mixture. For control experiments, a) 1 mg/mL of BSA was added 
instead of molecular chaperones; b) E. coli cell lysates from uninduced cells 
harboring plasmid encoding His-ClpB or DnaKJE or the combination of these two 
were added to the refolding cocktail to give a total protein concentration of 1 mg/mL. 
The initial ATP concentration was 5 mM and 4 mM of phosphoenol pyruvate and 20 
ng/mL of pyruvate kinase were used for ATP regeneration system. (B) Effects of ATP 
concentration on the refolding yields in the presence of ATP regeneration system. The 
refolding condition remained the same except for the variation in ATP concentration. 

 

Figure 3.5A shows the reactivation of MDH with or without the assist of purified 

ClpB and/or unpurified DnaKJE. The recovery of MDH activity was negligible (less 

than 1%) when the refolding reaction proceeded without any chaperone added, well 

conforming to the previous study (Goloubinoff et al., 1999) where less than 3% 

recovery of MDH activity was reported in the absence of chaperones following 24 h 

of refolding reaction. It was found that the recovery of MDH activity strictly required 
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the presence of both His-ClpB and DnaKJE. With chaperoning of either purified 

His-ClpB and unpurified DnaKJE alone, the activity recovery from heat-denatured 

MDH was virtually absent (Figure 3.5A, columns 1 and 2). On the other hand, the 

denatured MDH regained 36% (without ATP regeneration system) and 74% (with ATP 

regeneration system) of its original activity when both His-ClpB and DnaKJE were 

present together in the refolding cocktail. Bovine serum albumin (BSA), added to the 

refolding cocktail as a control at an equivalent concentration of molecular chaperones 

(1 mg/mL), showed little effect on the refolding of denatured MDH. Furthermore, in 

order to investigate any potential contribution of endogenous chaperones in E. coli to 

MDH refolding, another control experiment was conducted using cell lysates 

containing neither DnaKJE nor His-ClpB (i.e. cell lysates from uninduced cells) at a 

final total protein concentration of 1 mg/mL. As shown in Figure 3.5A, MDH 

refolding in the cocktail lacking DnaKJE and/or His-ClpB was negligible (columns 

5-7). This clearly demonstrates that His-ClpB and DnaKJE require each other for the 

collaborative and synergistic refolding of heat-denatured MDH and that the presence 

of other endogenous chaperones has little effect on the MDH refolding. Since the 

availability of ATP was found to exert a huge impact on the efficiency of refolding of 

denatured MDH (Figure 3.5A, columns 5 and 6), further investigation was made to 

determine the optimum ATP requirement in the presence of ATP regeneration system. 

As shown in Figure 3.5B, ATP concentration is crucial to the refolding yield and at 

least 5 mM of ATP was required to realize the optimum refolding yield in a given 

refolding cocktail comprising 0.8 µM MDH, 0.2 mg/mL DnaKJE and 5 µM 
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His-ClpB.  

 

Next, the optimum concentration of His-ClpB or DnaKJE required to achieve a high 

efficiency refolding of MDH (0.8 µM) was explored in the presence of ATP 

regeneration system with an initial ATP concentration of 5 mM (Figure 3.6). It was 

found that the chaperoning efficiency of both His-ClpB and DnaKJE for MDH 

refolding was significantly affected by the concentration of each chaperone. For 

His-ClpB, refolding yield increased sharply with the increase of purified His-ClpB 

from 1 to 3 µM and then reached a plateau (Figure 3.6A). Under our experimental 

condition, the optimal concentration of His-ClpB was 4 µM, which corresponds to 

approximately 0.66 µM of ClpB6 (expressed in hexamer). Unlike the His-ClpB, 

DnaKJE showed an optimum chaperoning activity around 0.15-0.25 mg/mL (with an 

optimal refolding yield of 0.73 at 0.15 mg/mL DnaKJE), and any further increase of 

DnaKJE in the refolding cocktail decreased the refolding yield (Figure 3.6B). It was 

however suspected that the presumable presence of increasing amount of various 

ATPases in the refolding cocktail due to the use of excess DnaKJE extracts above its 

optimum concentration (0.15-0.25 mg/mL) might possibly have caused the 

degradation of ATP (i.e. deprivation of available ATP required for chaperoning 

activity of His-ClpB), hence the lower refolding yields at increased DnaKJE 

concentrations. This led us to examine the effect of different starting concentrations of 

ATP on MDH refolding at excess DnaKJE concentrations (0.4-0.6 mg/mL). It was 

apparent from Figure 3.6C that the reduced MDH refolding yield at high DnaKJE 
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concentrations was not affected by the ATPase-driven hydrolysis of ATP, since MDH 

refolding yield remained virtually constant above 5 mM ATP (despite the increased 

initial supply of ATP) while exhibiting the same DnaKJE dependency (i.e. decreasing 

refolding yield with increasing DnaKJE). Hence, the MDH refolding yield appeared 

to be DnaKJE-dependent. This is in good agreement with the previous study where 

disaggregation and refolding activities of DnaK was found to depend on the 

chaperone to substrate ratio (Ben-Zvi et al., 2004).  
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Figure 3.6 Refolding of MDH at varying purified His-ClpB and unpurified DnaKJE 
concentrations. (A) Effect of increasing concentrations of His-ClpB in the presence of 
constant amount of DnaKJE (0.2 mg/mL) and MDH (0.8 µM) on the refolding yield 
of MDH. (B) Effect of increasing concentrations of DnaKJE in the presence of 
constant amounts of His-ClpB (5 µM) and MDH (0.8 µM) on the refolding yield of 
MDH. (C) Effect of increasing initial concentrations of ATP on the refolding yield of 
MDH at varying DnaKJE concentrations (■, 0.6 mg/mL; ▲, 0.5 mg/mL; ●, 0.4 
mg/mL) in the presence His-ClpB (5 µM) and MDH (0.8 µM). 

 

 57



Chapter 3 

In addition, the importance of DnaJ to DnaK ratio in determining the refolding yield 

was demonstrated (Ben-Zvi et al., 2004) in that the chaperoning activity of DnaK 

would decrease at a high DnaJ/DnaK ratio (larger than 0.175/1) probably by retarded 

release of DnaK. In our study, the molar expression ratio of DnaKJE mixture 

estimated by densitometry was about 3:4.2:5.7, which corresponded to the 

concentrations of 0.5 µM DnaK, 0.7 µM DnaJ and 0.95 µM GrpE. Since DnaK, DnaJ 

and GrpE were co-translated from a single plasmid (pKJE7), the ratio of these three 

chaperones were kept unchanged and the individual contribution of each chaperone 

for the refolding of heat-denatured MDH could be not be quantitatively assessed in 

the present study (an individual contribution of DnaKJE to the MDH refolding is 

currently under investigation). 

 

Since the reaction rates and substrate conversion for biochemical reaction are strongly 

temperature dependent, MDH refolding in the optimum refolding cocktail 

composition was compared at different temperatures. As shown in Figure 3.7, MDH 

refolding was found to be optimum at 25°C and the refolding reaction was almost 

inhibited at 4°C where many previous refolding reactions have been attempted on the 

assumption that proteins should be most stable at this low temperature (Levine et al., 

1998). Considering that most E. coli cells are cultured at 37°C, it is also interesting to 

note that the efficiency of MDH refolding at 37°C was lower than that at 25°C. This 

indicates that optimum temperature condition for cell growth may not necessarily be 

conducive to the folding of expressed proteins or in vitro refolding. 
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Figure 3.7 Time course of MDH refolding in the presence of His-ClpB (5 µM), 
DnaKJE (0.2 mg/mL) and ATP regeneration system with an initial ATP concentration 
of 5 mM at different temperatures. 
 
 

3.3.3 Chaperoning activity of unpurified His-ClpB and DnaKJE 

To further broaden the application scope of bichaperone system comprising ClpB and 

DnaKJE, we tested the feasibility of harnessing refolding cocktail employing 

unpurified His-ClpB (Figure 3.8) and unpurified DnaKJE for the disaggregation and 

subsequent refolding of heat-denatured MDH. His-ClpB was expressed and the cell 

extracts containing unpurified His-ClpB obtained (His-ClpB extracts) as described in 

Materials and methods. In the cell extracts as shown in Figure 3.8, His-ClpB was 

found to account for approximately 40% of the total host cell proteins (15 mg/mL) 

according to densitometric quantification using GeneTools (data not shown). Separate 

cell extracts containing unpurified DnaKJE was prepared as stated in the previous 

section (DnaKJE extracts). His-ClpB/DnaKJE-mediated MDH refolding was initiated 

by diluting 1 volume of 2 µM heat-denatured MDH solution with 1.5 volumes of 

 59



Chapter 3 

refolding cocktail comprising His-ClpB extracts (0.2 volume), DnaKJE (0.1 volume), 

ATP stock solution (125 mM, 0.1 volume) with ATP regeneration system (0.1 volume) 

and refolding buffer (1 volume) to give a final concentration of a refolding cocktail at 

0.8 µM MDH, 5 µM ClpB, 0.2 mg/mL DnaKJE with initial concentration of 5 mM 

ATP. The efficiency of MDH refolding by unpurified bichaperone system was almost 

indistinguishable from that achieved with the purified His-ClpB and unpurified 

DnaKJE (Figure 3.9), providing a significant potential to realize 

folding-like-refolding strategy in a simple, cost-effective way.  

 

 
Figure 3.8 SDS-PAGE for the analysis of His-ClpB expressed in E. coli BL21(DE3) 
harboring pET-ClpB. Molecular weight marker was loaded in lane 1. Lanes 2-4 are 
from the uninduced cells, representing the whole cell extracts after high-pressure cell 
disruption, the insoluble and soluble fraction in the cell extracts respectively. Lanes 
5-7 are from the induced cells, representing the whole cell extracts after high-pressure 
cell disruption, the insoluble and soluble fraction in the cell extracts respectively.  
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Figure 3.9 Time course of MDH refolding when unpurified His-ClpB or purified 
His-ClpB was added to the refolding cocktail containing 0.8 µM of heat-denatured 
MDH and 0.2 mg/mL of unpurified DnaKJE. 

 

Our refolding strategy mimics in vivo folding mechanism which is typically assisted 

by protein quality control network harnessing chaperones and ATP (Baneyx and 

Mujacic, 2004). Most of the conventional refolding strategies relied on dilution-based 

refolding or column refolding with or without the use of purified and/or immobilized 

chaperones. The folding-like-refolding strategy employed in the present study 

departed from the traditional approaches and proved that refolding could be realized 

at a high efficiency in the crowded cell lysates by mimicking the folding mechanism. 

In a typical industrial-scale dilution refolding process, large volume of fluid handling 

is required. By using folding-like-refolding approach, it is envisioned that the process 

volume would be decreased, thus reducing cost while improving efficiency. The 

possible increase in viscosity as the process volume decreases, mainly due to the 

presence of high-molecular weight DNA, might lead to difficulties in fluid handling. 
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This however could be easily counteracted by the addition of DNA precipitants.  

 

Overall, the demonstrated results herein indicate a potential to design a new refolding 

strategy of harnessing a refolding cocktail comprising overexpressed but unpurified 

molecular chaperones for the refolding of denatured protein aggregates typically 

encountered in the production of recombinant proteins in E. coli. Although the 

refolding efficiency of ClpB/DnaKJE chaperone system was illustrated using a model 

protein (MDH) herein, the refolding reaction was conducted in the presence of all the 

host contaminating proteins which were co-introduced with the addition of unpurified 

His-ClpB and/or DnaKJE to the refolding cocktail. Hence, the demonstrated refolding 

strategy has been proven to work at high efficiency in the complex milieu containing 

many undefined impurities, ensuring its applicability to the purification of actual 

target proteins. Moreover, in this study, the unpurified His-ClpB was demonstrated to 

be comparable to purified His-ClpB in terms of refolding efficiency. Hence, after the 

replacement of His-ClpB with ClpB (without His-tag) in the actual refolding process, 

IMAC can be easily incorporated to facilitate the isolation of his-tagged target 

proteins. The purification following the refolding reaction would not incur any extra 

difficulty compared to the conventional recombinant protein expression using E. coli. 

Lastly, the concept of refolding cocktail would be useful in the context of not only 

providing an economically viable platform technology for the refolding of IB route 

proteins at a large-scale but also in terms of decoupling maximum protein production 

stage and the subsequent refolding stage. 
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The further application of this bichaperone system is addressed in the following 

chapters (Chapters 4-6). Refolding additives which was reported to facilitate the 

protein refolding process is incorporated to this bichaperone system and the 

synergistic effect is evaluated first in the next chapter (Chapter 4). The refolding of a 

real bacterial IB protein (gloshedobin, a thrombin-like enzyme from snake venom) 

enhanced by the molecular bichaperone is then investigated in Chapters 5 and 6.  

 

3.4 Conclusion 

A refolding cocktail comprising unpurified His-ClpB and DnaKJE system was 

demonstrated to achieve high efficiency refolding of heat-denatured MDH in the 

presence of ATP regeneration system by mimicking the exquisite folding mechanism 

afforded by protein quality control network reported elsewhere (Schlieker et al., 2002; 

Baneyx and Mujacic, 2004). To our best knowledge, this is the first study to apply the 

unpurified bichaperone system to the folding-like-refolding of heat-denatured protein, 

providing a considerable scope to extend the application of ClpB/DnaKJE mediated 

protein refolding to large-scale refolding processes in an economically viable way.         



Chapter 4 

Chapter 4 

Synergistic coordination of polyethylene 

glycol with ClpB/DnaKJE bichaperone for 

refolding of heat-denatured MDH          

 
Summary 

In last chapter, the feasibility of using a refolding cocktail comprising the molecular 

bichaperone ClpB and DnaKJE was demonstrated to efficiently renature the 

heat-denatured malate dehydrogenase (MDH). In this chapter, the use of polyethylene 

glycol (PEG) as a refolding additive to the ClpB/DnaKJE bichaperone system was 

found to significantly enhance chaperone-mediated refolding of heat-denatured MDH. 

The critical factor affecting the refolding yield is the time point of introducing PEG to 

the refolding cocktail. The refolding efficiency reached approximately 90% only 

when PEG was added at the beginning of refolding reaction. The synergistic 

coordination of an inexpensive refolding additive PEG with the ClpB/DnaKJE 

bichaperone system may provide an economical route to further enhance the efficacy 

of ClpB/DnaKJE refolding cocktail approach, facilitating its implementation in 

large-scale refolding processes. 

 

4.1 Introduction 

During the process of protein refolding, the formation of incorrectly folded species (in 

particular protein aggregates) is the usual cause for decreased renaturation yield (De 
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Bernardez Clark, 2001). The use of refolding additives proved to be a very efficient 

strategy to inhibit the intermolecular interactions leading to aggregation and thus 

improves the yield of bioactive proteins (De Bernardez Clark, 1998; 2001). Numerous 

kinds of additives, such as detergents, amino acids, salts, divalent cations, surfactants, 

polymers, polyols and sugars, were shown to be effective in the prevention of protein 

aggregation (Yasuda et al., 1998; De Bernardez Clark et al., 1999; Singh and Panda, 

2005) via alteration of both the solubility and stability of the unfolded, intermediate 

and native protein (De Bernardez Clark, 2001; Singh and Panda, 2005).  

 

In last chapter (Chapter 3), a refolding cocktail comprising His-ClpB (ClpB with a 

6×His-tag at its C-terminus) and unpurified DnaKJE system was developed and 

demonstrated to be efficient in the renaturation of heat-denatured malate 

dehydrogenase (MDH). This may broaden the application of this bichaperone system 

by providing a more practical and economically viable protein refolding strategy 

especially at large-scale basis. In this chapter, we further investigate the effects of 

various kinds of refolding additives, in particular PEG, on the ClpB/DnaKJE-mediated 

refolding of heat-denatured MDH. 

 

4.2 Materials and methods 

4.2.1 Plasmids 

Plasmid pKJE7, designed to enable efficient expression of multiple molecular 

chaperones (DnaKJE), was bought from Takara Biotechnology, Japan (3340). Plasmid 
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pET-ClpB, capable of overexpressing ClpB with a 6×His-tag at its C-terminus, was 

constructed as described in Chapter 3.  

 

4.2.2 Proteins 

E. coli BL21(DE3) cells (69450-4, Novagen) were transformed with pET-ClpB to 

overexpress His-ClpB. Immobilized metal affinity chromatography (IMAC) 

purification of His-ClpB was conducted as in Chapter 3. DnaKJE were expressed 

according to the standard protocol (Nishihara et al., 1998) and the unpurified DnaKJE 

stock solution was prepared according to Chapter 3. MDH from porcine heart muscle 

is commercially available (M1567, Sigma). Total protein concentration was measured 

using Coomassie Plus Protein Assay Kit (23236T, Pierce) based on the Bradford assay 

with bovine serum albumin (BSA) as the standard. 

 

4.2.3 MDH refolding 

Heat-denatured MDH refolding was conducted as described in Chapter 3. 2 µM of 

MDH was heat-denatured at 47°C for 40 min in 50 mM Tris, 150 mM KCl, 20 mM 

MgCl2, 5 mM DL-Dithiothreitol (DTT), pH 7.5 (refolding buffer) as developed by 

Goloubinoff and coworkers (1997). Protein refolding was initiated by diluting 1 

volume of heat-denatured MDH with 1 volume of refolding buffer and another 0.5 

volume of refolding buffer containing purified His-ClpB, unpurified DnaKJE and 

ATP (A2383, Sigma) with ATP regeneration system to give predetermined 

concentrations of chaperones and ATP in the refolding cocktail (0.8 µM 
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heat-denatured MDH, 5 µM His-ClpB, 0.2 mg/mL DnaKJE, 5 mM ATP, and ATP 

regeneration system (4 mM phosphoenol pyruvate (860077, Aldrich) and 20 ng/mL 

pyruvate kinase (P-9136, Sigma), given in final concentration unless stated otherwise). 

For the study of the effect of various additives on the refolding process, 1 volume of 

refolding buffer containing different kinds of refolding additives was added instead 

while maintaining the concentrations of all the other components in the refolding 

cocktail unchanged. Each additive was applied at the recommended final 

concentration as follows: 0.4 M glucose or sucrose (Lee and Timasheff, 1981), 0.5 M 

L-arginine hydrochloride (Tsumoto et al., 2004), 0.5 M glycine (Tsumoto et al., 2004), 

20% (v/v) glycerol (Michaelis et al., 1995), 10 mM Triton X-100 (Wetlaufer and Xie, 

1995), 10 mM Tween 20 (Yasuda et al., 1998), 20 mg/mL PEG (Mr = 8000) (Cleland 

et al., 1992a), 0.5 M KOAc or NaOAc, 0.5 M Na2SO4 (Michaelis et al., 1995), 0.5 M 

MgCl2 or MgSO4 (Singh and Panda, 2005), and 0.5 M (NH4)2SO4. For all further 

studies to investigate the effect of PEG additive on MDH refolding, 20 mg/mL PEG 

was used unless otherwise stated. 

 

MDH reactivation was measured according to published protocols (Schröder et al., 

1993; Goloubinoff et al., 1999) in 3 mL reaction mixture. The final concentrations 

were 100 mM potassium phosphate buffer, pH 7.5, 0.13 mM ß-nicotinamide adenine 

dinucleotide in reduced form (NADH) (N8129, Sigma), 0.25 mM oxalacetic acid 

(OAA) (O4126, Sigma) and 0.8 µM MDH. The time-dependent oxidation of NADH 

catalyzed by MDH was monitored at 340 nm. Turbidity of protein aggregates was 
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measured in rectangular four sided quartz cuvettes at a pathlength of 1 cm and an 

excitation and emission wavelength of 550 nm (PerkinElmer Life Science LS50B 

Luminescence spectrometer) (Goloubinoff et al., 1999).   

 

4.3 Results and discussion 

As a model protein, MDH was previously used for the study of ClpB chaperoning 

activity (Goloubinoff et al., 1999; Watanabe et al., 2002). Herein, the potential effects 

of several refolding additives on ClpB/DnaKJE-mediated disaggregation and 

renaturation of heat-denatured MDH were studied. The refolding reaction was 

allowed to proceed for 3 h, afterwhich, no further recovery in activity was observed. 

 

4.3.1 Effect of additives on the relative refolding yield of 

heat-denatured MDH 

The synergistic effects of ClpB/DnaKJE bichaperone system and different kinds of 

refolding additives (without ATP regeneration system) were investigated (Figure 4.1). 

Among the 14 additives studied, only glycine, glycerol and PEG resulted in positive 

increment of the final refolding yield. The presence of Triton X-100, MgCl2, MgSO4, 

or (NH4)2SO4 significantly inhibited the refolding. This inhibitive effect was lowered 

when glucose, L-arginine/HCl, or Tween 20 was used. Arginine, the most commonly 

used refolding additive, showed no improvement in the final refolding yield as MDH 

has no tryptophan residues (Scheich et al., 2004) to interact with the guanidino group 

of arginine to reduce protein aggregation (Arakawa and Tsumoto, 2003). Sucrose, 
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KOAc, NaOAc and Na2SO4 had little effect on the final refolding yield.  

 

 
Figure 4.1 The effects of various additives on ClpB/DnaKJE-mediated refolding of 
heat-denatured MDH in the absence of ATP regeneration system. 

 

Among the three additives which significantly increase the refolding yield, glycine 

possibly stabilizes individual protein structure through reducing attractive 

hydrophobic forces between refolding intermediates and thus facilitates protein 

refolding (Valente et al., 2005). Similarly, the stabilization of protein intermediate is 

likely to be the cause for improved refolding efficiency with glycerol (Gorovits et al., 

1998). The efficiency of PEG (in the absence of molecular chaperones) on protein 
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refolding was extensively studied and proved to be highly protein-dependent. 

Although PEG showed no effect on the refolding of lysozyme (Goldberg et al., 1991; 

Yasuda et al., 1998), it was found that the addition of PEG was effective for 

improving the refolding yield of carbonic anhydrase B (Cleland et al., 1992a and 

1992b; Cleland and Wang, 1992; Cleland and Randolph, 1992) and recombinant 

human tissue transglutaminase (Ambrus and Fésüs, 2001). According to Figure 4.1, 

PEG (column 13) gives the highest final refolding yield of 54% which is 

approximately 1.5-fold increment compared to the control experiment lacking PEG 

with a refolding yield of 35% (column 15). However, there are no reports thus far 

regarding the combinatorial effects of PEG and ClpB/DnaKJE bichaperone on protein 

refolding, necessitating further investigations in this aspect.  

 

4.3.2 Effect of molecular chaperones on MDH refolding in the 

presence of PEG 

Figure 4.2 shows the reactivation of MDH with purified ClpB, unpurified DnaKJE 

and/or PEG in the absence of ATP regeneration system. The recovery of MDH activity 

was previously shown in Chapter 3 to be negligible (less than 1%) without chaperone 

addition. Also, the presence of PEG alone exhibited low efficiency in the refolding of 

heat-denatured MDH (Figure 4.2, column 2). The recovery of MDH activity strictly 

required the presence of both ClpB and DnaKJE as demonstrated in Chapter 3. When 

either purified His-ClpB or unpurified DnaKJE was individually applied, the 

efficiency of MDH activity recovery was only 1.7% and 8.3%, respectively (Figure 
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4.2, columns 3 and 5). The addition of PEG with His-ClpB or DnaKJE alone showed 

no improvement on the refolding yield (Figure 4.2, columns 4 and 6). On the other 

hand, the denatured MDH regained 33% (without PEG) and 51% (with PEG) of its 

original activity when His-ClpB and DnaKJE co-existed in the refolding cocktail 

(Figure 4.2, columns 1 and 12). Bovine serum albumin (BSA), which was added to 

the refolding buffer (with or without PEG) as a control at a concentration equivalent 

to molecular chaperones used (1 mg/mL, as described in Chapter 3), showed 

negligible effect on the refolding of MDH (Figure 4.2, columns 7 and 8). This 

indicates that MDH refolding is specifically mediated by molecular chaperones and 

not just by the presence of other unspecific proteins (e.g. BSA). In addition, a second 

control experiment to investigate the potential contribution of endogenous chaperones 

in E. coli extract to MDH refolding was performed. The cell lysates containing neither 

His-ClpB nor DnaKJE (i.e. cell lysates from uninduced cells, Figure 4.2, columns 

9-11) at a final total protein concentration of 1 mg/mL showed negligible effect on the 

refolding of heat-denatured MDH, indicating that endogenous chaperones in the cell 

lysates did not contribute to the refolding of MDH. The availability of ATP was 

however crucial for the ClpB/DnaKJE-mediated MDH refolding. The absence of 

which greatly reduced the activity recovery of MDH (Figure 4.2, columns 13-15) as 

ClpB and DnaKJE are ATP-dependent proteins (Baneyx and Mujacic, 2004).  
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Figure 4.2 The individual or combinatorial chaperoning activity of purified His-ClpB 
and unpurified DnaKJE with or without the assistance of PEG (in the absence of ATP 
regeneration system). ATP was included in all experiments except for those to account 
for columns 13-15. For control experiments, a: 1 mg/mL of BSA with or without PEG 
was added instead of molecular chaperones (columns 7 and 8); b: E. coli cell lysates 
from uninduced cells harboring plasmid encoding His-ClpB or DnaKJE or the 
combination of these two lysates (columns 9-11) were added to the refolding cocktail 
at a total protein concentration of 1 mg/mL as a replacement for molecular 
chaperones.  

 

Since the presence of PEG was found to exert a significant impact on the efficiency of 

denatured MDH refolding, further investigation was made to determine the optimum 

PEG requirement. As shown in Figure 4.3A, regardless of whether ATP regeneration 
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system is available, at least 15-20 mg/mL PEG in the refolding cocktail is required to 

achieve an optimal final refolding yield. At the optimum concentration of PEG and 

ATP regeneration system, the denatured MDH regained more than 90% of its native 

activity, highlighting the importance of balanced coordination of PEG with 

ATP-driven chaperoning of the ClpB/DnaKJE for MDH refolding. In contrast, the 

efficiency of MDH refolding for the equivalent condition except lacking ATP 

regeneration system was significantly lower, giving only 55% of activity recovery.  
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Figure 4.3 The effect of varying concentrations of PEG or ATP on 
ClpB/DnaKJE-mediated disaggregation and renaturation of heat-denatured MDH. (A) 
The effect of PEG concentration on the refolding yield of MDH with or without ATP 
regeneration system. (B) The effect of ATP concentration on the refolding yield of 
MDH (in the presence of ATP regeneration system) with or without the assistance of 
PEG.  

 

The concentration of ATP (in the presence of ATP regeneration system) also 

significantly affected the final refolding yield. According to Figure 4.3B, 5 mM ATP 

is essential to obtain the maximum refolding yield with more than 90% of the MDH 

activity recovered in the presence of 20 mg/mL PEG while only 70% of its activity 

was regained without PEG. As described in Chapter 3, the chaperoning efficiencies of 

both His-ClpB and DnaKJE for MDH refolding were in addition affected by the 

concentration of each chaperone. Hence, in the presence of PEG, the effects of 

varying concentration of His-ClpB and/or DnaKJE were studied. With His-ClpB, the 

refolding yield increased with elevated concentration and an optimum refolding yield 
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was reached at concentrations above 5 µM (around 74% without PEG and 95% with 

PEG) (Figure 4.4A). Unlike His-ClpB, DnaKJE showed an optimum chaperoning 

activity around 0.15-0.25 mg/mL (with an optimal refolding yield of around 72% 

without PEG and 94% with PEG at 0.15 mg/mL DnaKJE), and further increase of 

DnaKJE in the refolding cocktail reduced the refolding yield (Figure 4.4B). It is 

suspected that the use of excess unpurified DnaKJE extracts may facilitate ATP 

hydrolysis in the refolding cocktail due to the concomitant introduction of increasing 

amount of various ATPases residing in the extracts. The resultant deprivation of 

available ATP required for chaperoning activity of His-ClpB could then account for 

the decreased refolding efficiency. However, the reduced MDH refolding yield at high 

DnaKJE concentrations is probably not due to ATPase-driven hydrolysis of ATP as 

even with additional supplement of ATP (at concentration higher than 5 mM), the 

MDH refolding yield remained virtually constant as stated in Chapter 3, showing that 

MDH refolding yield is DnaKJE-dependent.  
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Figure 4.4 (A) Effect of increasing concentration of His-ClpB on the refolding yield 
of MDH. (B) Effect of increasing concentration of DnaKJE on the refolding yield of 
MDH. ATP regeneration system was included in all operations. 

 

The time-dependent recovery of MDH activity was next investigated (Figure 4.5). 

ClpB/DnaKJE refolding cocktail containing both PEG and ATP regeneration system 
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gave the highest final refolding yield (condition a) when compared to condition b or c 

in which either PEG or ATP regeneration system was absent and condition d in which 

no PEG and ATP regeneration system were included. Figure 4.5B shows the apparent 

rates of MDH refolding corresponding to each condition in Figure 4.5A. Since the 

refolding yield displayed a non-linear increment, we divided the refolding process 

into two phases: Phase I is from 0 to 60 min and Phase II from 60 to 180 min. In the 

presence of ATP regeneration system (conditions a and b), PEG addition greatly 

increased the apparent refolding rates in Phase I (from 0.53 %/min in condition b to 

0.92 %/min in condition a) as compared to Phase II, in which the apparent refolding 

rates become indifferent to the presence of PEG (around 0.33 %/min in both 

conditions a and b) (Figure 4.5B). A similar trend is also observed for MDH refolding 

devoid of ATP regeneration system (conditions c and d). Therefore, the efficacy of 

PEG on the ClpB/DnaKJE-mediated MDH refolding mainly occurred in the first 1 h 

(Phase I), during which the denatured MDH recovered around 60% of its enzymatic 

activity in the presence of PEG while the process lacking PEG only resulted in 

recovery of 35% of its activity.  
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Figure 4.5 (A) Time-dependent MDH refolding in the presence or absence of PEG 
and ATP regeneration system. a, ClpB/DnaKJE refolding cocktail containing both 
PEG and ATP regeneration system; b, ClpB/DnaKJE refolding cocktail containing 
only ATP regeneration system; c, ClpB/DnaKJE refolding cocktail containing only 
PEG; d, ClpB/DnaKJE refolding cocktail without PEG and ATP regeneration system. 
(B) Apparent rates of MDH refolding under the various conditions in (A). The rates 
were expressed as percentage of reactivated MDH per minute. 
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4.3.3 Effect of PEG addition at different times 

It was suggested that disaggregation and reactivation of heat-denatured MDH are two 

sequential reactions, in which the disaggregation starts immediately after the addition 

of molecular chaperones and completes around 45 min later while the refolding of 

solubilized MDH species only commences thereafter (Goloubinoff et al., 1999; 

Weibezahn et al., 2004). In our study, the turbidity of MDH solution rapidly decreased 

at the initiation of the disaggregation reaction and completed after around 1 h (Figure 

4.6). In the presence of PEG, the decrease in the turbidity of MDH solution initiated 

by ClpB/DnaKJE addition was similar to that without PEG (Figure 4.6), suggesting 

that PEG may not stimulate the disaggregation of heat-denatured MDH. We further 

investigated the effect of PEG addition on the protein refolding by introducing PEG at 

various determined time points following the application of molecular chaperones to 

denatured MDH. Depending on the time point of PEG addition, the MDH substrates 

might exist primarily in the aggregated, intermediate or native state according to the 

extent of chaperone-mediated refolding reaction, consequently modulating the 

efficacy of PEG on MDH refolding. Figure 4.7A shows time course of MDH 

refolding upon addition of PEG at differential time points (i.e. 0, 15, 30 or 60 min) to 

the refolding cocktail containing denatured MDH and ClpB/DnaKJE chaperones. As a 

control experiment, equal volume of refolding buffer (without PEG) was also added at 

the various time points (Figure 4.7B). 
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Figure 4.6 Time-dependent disaggregation of heat-denatured MDH by ClpB/DnaKJE 
bichaperone system (in the presence of ATP regeneration system). 
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Figure 4.7 (A) Effects of PEG addition time on the MDH refolding. PEG was applied 
at various determined time (0, 15, 30 or 60 min) after the application of ClpB/DnaKJE 
molecular chaperones (with ATP regeneration system). (B) Equal volume of refolding 
buffer (without PEG) was added instead at 0, 15, 30 or 60 min as control experiments. 

 

In the control experiment (Figure 4.7B), the final efficiencies of MDH activity 

recovery were all around 70% regardless of the pre-incubation period with molecular 

chaperones. In contrast, the time point of adding PEG to the refolding cocktail clearly 

affected final MDH activity recovery (Figure 4.7A). When PEG was added together 

with ClpB/DnaKJE bichaperone system without pre-incubation, the final refolding 

yield was around 95%. The MDH activity recovery gradually decreased (from 95% to 

80%) along with the delay in PEG introduction (from 0 to 60 min). Moreover, the 

pre-incubation of PEG with heat-denatured MDH for different time periods showed 

no effect on the time-dependent MDH refolding compared to the condition when PEG 

was added together with ClpB/DnaKJE bichaperone system (data not shown). These 
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clearly demonstrated that the key point to realize the enhancement of 

ClpB/DnaKJE-mediated reactivation relied on the co-existence of PEG with 

molecular chaperones at the start of the disaggregation process of heat-denatured 

MDH.  

 

The study of equilibrium unfolding and refolding of MDH showed that the transition 

processes are reversible and two equilibrium intermediate states are present (Sanyal et 

al., 2002). The first is a compact monomer formed immediately after subunit 

dissociation and the second an expanded monomer (less compact than the native 

monomer) exhibiting most of the characteristic features of a 'molten globule' state 

(Sanyal et al., 2002). Molten globule, a kind of collapsed intermediate state, has some 

native-like secondary structure, but generally lacking tertiary structure (Christensen 

and Pain, 1991; Dolgikh et al., 1984). PEG was reported to bind onto the molten 

globule intermediate of the bovine carbonic anhydrase B (CAB). Upon dilution of 

chemically denatured CAB (by guanidine hydrochloride) to non-denaturing chaotrope 

concentration, the unfolded protein rapidly forms 'molten globule' state intermediate. 

This intermediate subsequently either enters refolding/aggregation pathways or binds 

to PEG to form a non-associating complex (Cleland et al., 1992a; 1992b). The 

formation of this non-associating PEG-molten globule complex significantly inhibited 

aggregation, resulting in a reduction of self-association of this compact hydrophobic 

structure and hence the enhanced final refolding yields (Cleland and Randolph, 1992; 

Cleland et al., 1992a and 1992b; Cleland and Wang, 1992). In this 'dilution additive' 
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strategy, the transient interactions between the small molecule (e.g. PEG) and protein 

intermediate need to be sufficient to deter protein aggregation but not so strong as to 

prevent proper protein folding (Daugherty et al., 1998). The PEG enhanced protein 

refolding showed some analogies to GroEL/GroES chaperone system. It was observed 

that the naturally occurring chaperone, GroEL reversibly binds 'molten globule' 

folding intermediates of many proteins. However, this binding prevents both 

aggregation and refolding of the substrate protein, departing from the effect of PEG 

effect exhibited in CAB refolding. Release of the substrate and concomitant refolding 

are triggered by GroEL binding to GroES with ATP hydrolysis (Hartl, 1996; Rye et al., 

1999; Houry, 2001). The two-step mechanism of GroEL/GroES system inspired an 

'artificial chaperone' technique employing small molecules (artificial chaperones) to 

promote protein refolding from the chemically denatured state. A synthetic detergent 

(TOPPA) included in the refolding buffer was used first to capture non-native protein 

upon dilution of the denaturant to non-denaturing concentrations (Daugherty et al., 

1998). Protein aggregation is greatly suppressed by the formation of protein-detergent 

complexes where the role of detergent is suggested to shield the hydrophobic regions 

of non-native protein molecules (Rozema and Gellman, 1995; 1996a; 1996b). 

Cyclodextrin is next added to initiate refolding reaction by stripping detergent from 

the protein-detergent complex (Daugherty et al., 1998). The stable interaction between 

non-native protein and the detergent in the artificial chaperone protocol is thus 

mechanistically distinct from their transient interaction in the 'dilution additive' 

strategy.  
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For heat-denatured MDH, the aggregates are unable to spontaneously transform to 

'molten globule' state intermediate to invite PEG binding, accounting for the low 

efficiency of heat-denatured MDH refolding when PEG alone (without molecular 

chaperones) was present. ClpB/DnaKJE bichaperone system was reported to trigger 

protein refolding by shearing protein aggregates to release individual polypeptides 

(Schlieker et al., 2004; Weibezahn et al., 2004). Upon solubilization, the unfolded 

polypeptides can either enter the chaperone network (Shorter and Lindquist, 2005; 

Weibezahn et al., 2005) or reach a 'molten globule' state to become substrate for PEG 

binding. We thus propose synergistic roles of PEG and ClpB/DnaKJE bichaperone 

system on the refolding of heat-denatured MDH where PEG may further stabilize 

'molten globule' state intermediates triggered by bichaperoning activity of 

ClpB/DnaKJE during the initial stage of refolding process. The formation of 

PEG-intermediate complex possibly inhibits the reaggregation of molten globule 

intermediate and thus improves the final refolding yield. 

 

4.4 Conclusion 

PEG enhances the efficiency of ClpB/DnaKJE-mediated refolding of heat-denatured 

MDH only when PEG co-existed with ClpB/DnaKJE at the start of the refolding 

process. The binding of PEG onto the refolding intermediates initiated by chaperoning 

activity of ClpB/DnaKJE might inhibit the reaggregation of these intermediates. Since 

PEG does not display any disaggregation properties by itself, it is postulated that the 

presence of PEG at the start of the refolding process is necessary such that PEG can 
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bind onto the refolding intermediates before reaggregation occurs. The addition of this 

inexpensive refolding additive may further broaden the application of refolding 

cocktail approach using unpurified ClpB/DnaKJE bichaperone system, especially in 

large-scale refolding processes for commercial production of proteins. 
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Chapter 5 

Effective reduction of truncated expression 

of gloshedobin in Escherichia coli using 

molecular chaperone ClpB                  

  
Summary 

Snake venom thrombin-like enzymes (TLEs) have been widely studied for potential 

therapeutic applications as anti-coagulants in the treatment of blood clotting disorders. 

However, due to the cysteine-rich nature of these proteins, their expressions in 

Escherichia coli were often impeded by inclusion body (IB) formation. Moreover, the 

formation of a truncated expression product significantly complicated the production 

of gloshedobin, a recently isolated TLE from the snake venom of Gloydius 

shedaoensis (Yang et al., 2003a; 2003b). Therefore, prior to confirming the 

applicability of the proposed folding-like-refolding strategy developed in Chapter 3 to 

gloshedobin IBs refolding, we first investigated the possibilities to reduce the 

truncated expression product so as to facilitate the following purification and 

refolding work. In this chapter, it was first found that the expression of gloshedobin 

was strongly dependent on the expression host. The truncated expression was reduced 

by 25% when the protein was expressed in E. coli BL21(DE3)pLysS instead of 

BL21(DE3). It was also demonstrated that co-expression of ClpB (a molecular 

chaperone) in BL21(DE3) enabled the expression of gloshedobin mostly in intact 

form without compromising expression level, while almost completely eliminating its 
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truncation products. This suggests a new simple strategy to significantly improve the 

quality of protein expression in TLE production and may find its useful application 

for many other recombinant proteins whose expressions and/or purifications are 

hindered by the formation of truncation products. 

 

5.1 Introduction 

In general, E. coli offers a route for the rapid and economical production of 

recombinant proteins (Swartz, 2001), although the over-expression of recombinant 

proteins in E. coli often leads to their intracellular accumulation as solid aggregates 

known as inclusion bodies or IBs. These particles are classically perceived to contain 

misfolded proteins which lack biological activity (Carrió et al., 2000). However, this 

has been contested as some recent reports showed the presence of enzymatic activity 

associated with IBs, and thus reflecting that a significant fraction of embedded 

proteins occurs in a properly folded native-like form (Gonzalez-Montalban et al., 

2005; Ventura and Villaverde, 2006; Garcia-Fruitos et al., 2007). However, 

gloshedobin expression (without the introduction of fusion tags or protein 

modification) in E. coli in either soluble or insoluble form has been largely 

unsuccessful. This difficulty of expression was also reported with several other 

thrombin-like enzymes (TLEs) (e.g. acutin and batroxobin) when their expressions 

were attempted in E. coli (Maeda et al., 1991). 

 

It has been suspected that the formation of stable secondary structure at the translation 
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initiation region of mRNA might have prevented the protein expression (Maeda et al., 

1991; Yuan et al., 2004). Hence, a gene encoding gloshedobin was cloned into 

pET-32a(+) to be positioned at the downstream of trxA (capable of encoding 

thioredoxin) (Yang et al., 2003a). With this fusion construct (i.e. 

thioredoxin-6×His-tag-gloshedobin), gloshedobin was overexpressed in E. coli 

BL21(DE3), but mostly as IBs largely contaminated with a major truncation product 

probably arising from proteolytic degradation or secondary site translation initiation 

(Halling and Smith, 1985; Preibisch et al., 1988; Govind et al., 2001). Despite the 

presence of some proteins whose truncated forms were found to exhibit biological 

activities, truncated gloshedobin was inactive. Furthermore, the purification of intact 

gloshedobin by immobilized metal affinity chromatography (IMAC) was hampered 

by the presence of significant amount of an unwanted product associated with the 

truncation (i.e. thioredoxin-6×His-tag containing N-terminal fraction of intact 

gloshedobin). 

 

In this chapter, the focus is therefore to reduce the truncated expression of 

gloshedobin. By transforming the plasmid encoding gloshedobin into E. coli strain 

BL21(DE3)pLysS instead of BL21(DE3), the truncation product was reduced by 25%. 

We further constructed a plasmid containing genes encoding ClpB and gloshedobin 

(with Trx•Tag) which are separated by a stem loop and RBS to allow the separate 

expression of these two proteins. With ClpB co-expression, gloshedobin expression 

profile showed a huge transition: almost all expression products were in full-length 

form with no apparent truncation product. Following cell disruption and solubilization 
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of IBs, a single step metal affinity chromatographic purification was sufficient to 

recover full-length gloshedobin at a high purity (>99%). 

 

5.2 Materials and methods 

5.2.1 Plasmids  

pET-32a(+)+TLE was kindly provided by Dr Qing Yang from Dalian University of 

Technology, Dalian, Liaoning, China. The plasmid encoding ClpB (pClpB) was 

kindly provided by Dr Catherine Squires (Tufts University, Boston, MA, U.S.A.). 

Plasmid encoding ClpB and gloshedobin was constructed as follows. Each of the 

following three sets of primers: F1, 5’-GGA ATT CCA TAT GCG TCT GGA TCG 

TCT TAC-3’, R1: 5’-GCG CCA CGT TGT CGC AAA GAT TAA-3’; F2, 5’-TTT 

GCG ACA ACG TGG CGC AAA AAC GTG G-3’, R2, 5’-GTC GGC CAC GGT 

GCC GCG AGA CTC AAG T-3’; F3, 5’-TCG CGG CAC CGT GGC CGA CAT CCT 

GAA AGC-3’, R3, 5’-TCC TTC TTA AAG TTA ACT TTG TTA GCA GCC GGA 

TCC AAT TAC TGG ACG GCG ACA ATC CGG-3’ was applied in a separate 

polymerase chain reaction (PCR) by using pClpB as template to give 300 bp, 100 bp 

and 2.3 kb DNA respectively, which together encoded full-length ClpB. 

pET-32a(+)+TLE was used in another PCR and a 400 bp DNA fragment encoding 

N-terminal of thioredoxin-6×His-tag-gloshedobin was obtained by using primers of F, 

5’-TTA ACT TTA AGA AGG AGA TAT ATA TAT GAG CGA TAA AAT TAT TC-3’, 

R, 5’-GAT GAT GAT GGT GCA TAT GGC CAG AA-3’. By using these four DNA 

fragments as templates and primers of F1 and R, a 3 kb DNA fragment encoding 
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full-length ClpB and part of gloshedobin was obtained. The amplified fragment was 

then digested by NdeI and cloned into plasmid of pET-32a(+)+TLE pre-treated with 

the same restriction enzyme. The resultant plasmid (pET-32a(+)+TLE+ClpB) was 

used to express ClpB and thioredoxin-6×His-tag-gloshedobin separately. 

 

5.2.2 Protein expression 

E. coli BL21(DE3) cells (Novagen) were transformed with pET-32a(+)+TLE+ClpB to 

enable the over-expression of thioredoxin-fused gloshedobin and ClpB separately. 

The transformed cells were grown at 37°C to OD600 ~ 0.8 in LB broth containing 0.1 

mg/mL ampicillin. Protein expression was induced with 1 mM IPTG for 4 h during 

the exponential growth phase. The cell suspension, harvested at its stationary growth 

phase, was centrifuged at 5000g and 4°C for 20 min and resuspended in 50 mM Tris 

buffer (pH 7.4) containing 150 mM KCl and 20 mM MgCl2. One Shot Cell Disrupter 

(Constant Cell Disruption System, UK) was used to disrupt the cells at 21.0 Kpsi. 

Following cell disruption, the cell lysates were centrifuged at 15000g and 4°C for 30 

min, and the soluble and insoluble fractions (IBs of gloshedobin) were kept at -20°C 

for further use. Protein expression for E. coli strain BL21(DE3) or BL21(DE3)pLysS 

containing plasmid pET-32a(+)+TLE was conducted using the same protocol as 

above. 

 

5.2.3 Protein purification 

IBs (mainly gloshedobin with or without the truncated expression product) collected 
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as above were solubilized in Buffer A (50 mM Tris, 8 M urea, 150 mM KCl, 20 mM 

MgCl2 and 20 mM imidazole, pH 7.4) by vigorous overnight stirring at room 

temperature. After centrifugation at 15000g and room temperature for 40 min, 

remaining insoluble particles were removed by filtration using 0.45 µm filter (704006, 

Munktell Filter). The filtrate was then applied at a flow rate of 1 mL/min to a 2.5 cm 

i.d.×15 cm column (Econo-Column Chromatography Column, 737-1517, Bio-Rad) 

packed with 5 mL of Ni2+-charged iminodiacetic acid (IDA) resin after equilibration 

of the column with Buffer A. The resin was next washed with 20 column volume 

(CV) of Buffer B (50 mM Tris, 8 M urea, 150 mM KCl, 20 mM MgCl2 and 40 mM 

imidazole, pH 7.4) to completely eliminate weakly bound proteins. The bound 

proteins were eluted by gradually replacing Buffer B with Buffer C (50 mM Tris, 8 M 

urea, 150 mM KCl, 20 mM MgCl2, 500 mM imidazole, pH 7.4) over 60 min. The 

eluted fractions were analyzed by SDS-PAGE. The chromatography system used was 

BioLogic LP from Bio-Rad (731-8300 and 731-8301) and the obtained data was 

processed with LP Data View V1.03 software. 

 

5.2.4 Analytical methods 

Protein detection and quantification: Total protein concentration determination and 

SDS-PAGE were conducted as described in Chapter 3. 

 

Western blotting: Protein bands on the SDS-PAGE gel were transferred to the 

Immun-BlotTM PVDF membrane (162-0177, Bio-Rad) using Mini Trans-Blot® 
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Electrophoretic Transfer Cell from Bio-Rad (170-3930 and 170-3935) at 100 V for 1 h. 

Following the transfer, the membrane was blocked overnight in a blocking solution 

(3% gelatin in TBS) with gentle agitation on an orbital shaker. After washing with 

TTBS buffer (350 µL Tween-20 in 700 mL TBS), 25 mL of primary antibody solution 

(1% gelatin in TTBS with 1:5000 dilution of primary antibody) was added. The 

primary antibody used was monoclonal anti-polyhistidine clone His-1 (H1029, 

Sigma). Subsequently, 30 mL of secondary antibody solution (1% gelatin in TTBS 

with 1:3000 dilution of secondary antibody) was added. The secondary antibody used 

was Goat Anti-mouse IgG (H+L) AP Conjugate from Bio-Rad (170-6520). The bound 

antibody was detected by adding color development reagent (Alkaline Phosphate 

Conjugate Substrate Kit, 170-6432, Bio-Rad). 

 

5.3 Results and discussion 

5.3.1 Expression and purification of gloshedobin produced from 

pET-32a(+)+TLE in E. coli strain BL21(DE3) or 

BL21(DE3)pLysS 

Both BL21(DE3) and BL21(DE3)pLysS are lon and ompT protease-deficient host 

strains. They were selected as the host strains for gloshedobin expression on the 

presumption that the lack of ompT outer membrane protease might enhance the 

stability of recombinant proteins during the expression and/or purification (Grodberg 

and Dunn, 1988; Gupta et al., 1997). Since all the previous gloshedobin expressions 

were attempted using BL21(DE3), it was employed in the present study as a control. 
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The plasmid, pLysS, has been known to stabilize the target genes and thus reduces the 

basal expression of target proteins (Moffatt and Studier, 1987; Studier, 1991). Hence, 

we would like to investigate whether the truncated expression can be reduced by 

firstly preventing protein degradation (using protease-deficient host strains) and 

secondly reducing the unspecific basal-level expression with the use of pLysS. 

 

E. coli cells (BL21(DE3) or BL21(DE3)pLysS) transformed with pET-32a(+)+TLE 

were induced with 1 mM IPTG at 37°C and the protein expression patterns were 

analyzed by Coomassie Blue staining of SDS-PAGE gels (Figure 5.1A). The presence 

of truncated gloshedobin (i.e. C-terminal region of gloshedobin with N-terminal 

truncation) was indirectly confirmed by detecting another truncation product (i.e. 

thioredoxin containing 6×His-tag and N-terminal region of gloshedobin) with 

anti-polyhistidine antibody in western blotting (Figure 5.1B). In Figure 5.1B, two 

protein bands which correspond to full-length gloshedobin (with an apparent 

molecular weight of approximately 50 kDa) and a truncation product containing a 

6×His-tag (with an apparent molecular weight of approximately 28 kDa) were 

observed. The heterologous protein expression has often resulted in the generation of 

multiple gene products (Chapman et al., 1998; Tsubamoto et al., 1999). In particular, 

truncation products have lower molecular weight than full-length protein possibly due 

to 1) multiple initiation sites in mRNA, 2) premature translation termination and/or 3) 

specific or nonspecific proteolysis of the full-length polypeptides (Halling and Smith, 

1985; Preibisch et al., 1988; Govind et al., 2001). 
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Figure 5.1 (A) SDS-PAGE for the analysis of gloshedobin expressed in E. coli 
BL21(DE3) or BL21(DE3)pLysS harboring pET-32a(+)+TLE. Molecular weight 
marker was loaded in lane 1. Lanes 2-4 are from E. coli BL21(DE3): the whole cell 
extracts (lane 2), the insoluble fraction (lane 3) and the soluble fraction (lane 4) in the 
cell extracts after high pressure cell disruption. Lanes 5-7 are from E. coli 
BL21(DE3)pLysS: the lane description is the same as in lanes 2-4. (B) Western 
blotting assay for gloshedobin expressed from E. coli BL21(DE3) harboring 
pET-32a(+)+TLE (corresponding to lane 3 in (A)). The lower molecular weight band 
(with apparent molecular weight of 27.5 kDa) represents thioredoxin containing 
6×His-tag and N-terminal region of gloshedobin. 

 

The presence of pLysS did not interfere with the transformation of pET-32a(+)+TLE 

and also showed negligible influence on the extent of growth of host cells. In contrast 

to our initial expectation, the basal level expression of gloshedobin was insignificant, 

hence the role of pLysS in this regard was not apparent (data not shown). It is noted, 

however, that the truncated expression in the presence of pLysS was significantly 
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reduced (Figure 5.1, lanes 3 and 6). However, this did not lead to the increase in intact 

gloshedobin since the expression of full-length gloshedobin was also reduced in the 

presence of pLysS. The effect of pLysS on the truncated expression was more clearly 

seen following the purification of gloshedobin using metal affinity chromatography: 

the purity of full-length gloshedobin from BL21(DE3), estimated by densitometry, 

was approximately 60% (Figure 5.2, lane 8) while that from BL21(DE3)pLysS was 

significantly higher (>85%) (Figure 5.3, lane 8). Although the exact role of pLysS in 

decreasing the truncated expression of gloshedobin requires further study, to the best 

of our knowledge, this is the first report on such efficacy and no previous study has 

reported reduced truncated expression of proteins including TLEs in the presence of 

pLysS. Despite the similar total protein production from both host strains (Table 5.1), 

the target protein (i.e. full-length gloshedobin) expression level in BL21(DE3)pLysS 

(ca 10%) was lower than that in BL21(DE3) (ca 13%), possibly due to the 

pLysS-modulated tighter regulation of protein expression (Studier, 1991). The 

lysozyme encoded by pLysS was reported to bind to T7 RNA polymerase, thereby 

inhibiting transcription and thus reducing the maximum expression level of target 

genes upon induction of T7 RNA polymerase (Zhang and Studier, 1997; Huang et al., 

1999). 

 

 

 

 

 95



Chapter 5 

Table 5.1 Protein concentration in cell culture of E. coli BL21(DE3) or 
BL21(DE3)pLysS containing plasmid pET-32a(+)+TLE. The final OD of cell 
suspensions were adjusted to 80 before cell disruption. 
 

OD=80 
Soluble protein 
concentration 
(mg/mL) 

Insoluble protein 
concentration 
(mg/mL) 

Total protein 
concentration 
(mg/mL) 

Protein 
expression in 
BL21(DE3) 

8.9 ± 0.4 3.8 ± 0.2 12.7 ± 0.6 

Protein 
expression in 
BL21(DE3)pLysS

10.8 ± 0.5 3.1 ± 0.1 13.9 ± 0.7 

 

 
Figure 5.2 SDS-PAGE for the analysis of fractions collected during the purification of 
gloshedobin following its expression in E. coli BL21(DE3) harboring 
pET32-a(+)+TLE. Molecular weight marker was loaded in lane 1. Lanes 2-4 are from 
the BL21(DE3): the whole cell extracts (lane 2), the soluble fraction (lane 3) and the 
insoluble fraction (lane 4) in the cell extracts after high pressure cell disruption. Lane 
5 is flow-through. Lanes 6 and 7 are wash fractions. Lanes 8-10 are selected fractions 
collected during the elution step.  
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Figure 5.3 SDS-PAGE for the analysis of fractions collected during the purification of 
gloshedobin following its expression in E. coli BL21(DE3)pLysS harboring 
pET32-a(+)+TLE. The detailed lane descriptions are the same as in Figure 5.2. 

 

5.3.2 Expression and purification of gloshedobin from E. coli 

strain BL21(DE3) harboring pET-32a(+)+TLE+ClpB 

With the enhanced purity of intact gloshedobin, it is tempting to see improved 

solubility of the target protein. It was thus decided to co-express a molecular 

chaperone, ClpB (a homolog of Hsp100 in E. coli) whose function in disaggregating 

protein aggregates such as IBs has been extensively studied (Glover and Lindquist, 

1998; Goloubinoff et al., 1999; Mogk et al., 1999; Zolkiewski, 1999) in the last 

decade. The major purpose of ClpB expression was to investigate if ClpB alone would 

be effective in diminishing the IB formation prior to its coordination with another 

versatile chaperone system known as DnaKJE (a homolog of Hsp70 in E. coli) for 
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subsequent refolding of disaggregated but misfolded polypeptides (De Marco et al., 

2007). The transformation of E. coli BL21(DE3) with pET-32a(+)+TLE+ClpB, 

comprising gloshedobin coding region and clpB with an intervening stem loop (TTE, 

transcription termination element) and RBS, led to co-expression of 95 kDa ClpB in 

soluble form and 44 kDa gloshedobin (mostly in insoluble form) upon IPTG induction 

(Figure 5.4A). Note that the apparent molecular weight of gloshedobin as appeared on 

the SDS-PAGE gel was approximately 50 kDa, deviating by 13% from its molecular 

weight (44 kDa) determined by peptide sequence data or MALDI-TOF mass 

spectroscopy (data not shown). The size discrepancy of proteins often occurs when 

comparing molecular weight of proteins determined by SDS-PAGE gel versus peptide 

sequence data or MALDI-TOF (Squires et al., 1991). The cause for protein size 

deviation herein is probably insufficient amount of bound SDS per g protein and thus 

reduction in the negative charge of protein (Hjelmeland and Chrambach, 1981). 

However, in our experiment since the molecular weight of gloshedobin was 

reproducible as 50 kDa on the SDS-PAGE gels, the deviation from true molecular 

weight of the protein would not affect the use of SDS-PAGE in gloshedobin detection. 

 

The expression level of full-length gloshedobin was about 11% which is slightly 

lower than the expression level (13%) obtained from BL21(DE3) harboring 

pET-32a(+)+TLE. However, the co-expression of ClpB did not compromise the 

volumetric productivity of gloshedobin since total protein concentration was around 

1.3 times higher in the presence of ClpB compared to the condition lacking ClpB. It 
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was also found that ClpB alone is necessary but not sufficient for the disaggregation 

of IBs since no solubility increase in the expressed gloshedobin was seen (Figure 

5.4A, lane 4). This is consistent with previous studies where reactivation of 

aggregated proteins following thermal stress required coordinated chaperoning of 

ClpB with E. coli Hsp70 (DnaK) and its co-chaperones (DnaJ, GrpE) (Mogk et al., 

1999; Ziętkiewicz et al., 2004; 2006). Interestingly, co-expression of ClpB was very 

effective in reducing the truncation of gloshedobin at the N-terminus. Hence, no 

truncation product was detected in the insoluble fraction of cell disruptate by 

SDS-PAGE analysis (Figure 5.4A, lane 3). As discussed earlier, truncation product 

may arise from proteolysis of the full-length polypeptides or the presence of internal 

pseudo RBS sequence in mRNA or premature translation termination (Halling and 

Smith, 1985; Preibisch et al., 1988; Govind et al., 2001). 

 

It is hard to envisage that clpB fusion to the downstream of gloshedobin encoding 

gene would affect the internal translation initiation or premature translation 

termination. Thus it is postulated that the truncation product is more likely to arise 

from the proteolytic degradation of full-length gloshedobin by various proteases 

populated in the cell. The Clp family comprises several closely related 

protein-activated ATPases that associate with peptidase subunits to form 

ATP-dependent protease complexes (Zolkiewski, 1999). Among the Clp family 

members, ClpP peptidase requires interactions with ClpA and ClpX for its stimulation, 

whereas ClpQ (a different peptidase) is activated via interactions with ClpY 
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(Gottesman et al., 1997). ClpB, despite a 42% sequence identity and 64% sequence 

similarity with ClpA (Gottesman et al., 1997), does not support protein degradation by 

Clp peptidases (Woo et al., 1992). Thus, the co-expression of ClpB itself is unlikely to 

affect proteolytic digestion of gloshedobin as evidenced by the presence of no other 

smaller His-tagged truncation products following purification with metal affinity 

chromatography. Taken together, the reduced truncated expression of gloshedobin 

seemed to be associated with an unknown function of ClpB: a possible protection of 

full-length gloshedobin against proteolysis. ClpB was reported to form hexamers in 

the presence of ATP and the hexamers were able to then bind onto large protein 

aggregates (Lee et al., 2003; Kedzierska et al., 2003). It was thus postulated that the 

formation of a large hexameric structure of co-expressed ClpB (molecular weight of 

hexamers >600 kDa) and its subsequent binding onto the protein aggregates might 

restrict the access of other proteases, thereby protecting protein aggregates against 

proteolytic degradation. As a result, this protease inhibitor-like effect of ClpB may 

have minimized the formation of truncation products. 

 

A logical next expectation should be to see the synergistic effect of pLysS and ClpB 

co-expression on the reduction of truncation products. Hence, BL21(DE3)pLysS was 

transformed with pET-32a(+)+TLE+ClpB. However, gloshedobin expression (in 

either full-length or truncated form) was significantly hampered (expression level of 

full-length gloshedobin was only about 1.5%) and it was impossible to see the 

expected synergistic effect (Figure 5.4B). 
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Figure 5.4 (A) SDS-PAGE for the analysis of gloshedobin following its expression in 
E. coli BL21(DE3) harboring pET-32a(+)+TLE+ClpB. Molecular weight marker was 
loaded in lane 1. Lanes 2-4 represent the whole cell extracts (lane 2), the insoluble 
fraction (lane 3) and the soluble fraction (lane 4) in the cell extracts after high 
pressure cell disruption. (B) SDS-PAGE for the analysis of gloshedobin expressed in 
E. coli BL21(DE3)pLysS harboring pET-32a(+)+TLE+ClpB. Lanes 1-3 represent the 
whole cell extracts (lane 1), the insoluble fraction (lane 2) and the soluble fraction 
(lane 3) in the cell extracts after high pressure cell disruption. Molecular weight 
marker was loaded in lane 4. 

 

Following the enhanced expression of intact gloshedobin in BL21(DE3) harboring 

pET-32a(+)+TLE+ClpB, the cell pellets were disrupted and IB fraction was collected 

as described in Materials and methods section. Solubilized IBs (mainly containing 

full-length gloshedobin) were purified with metal affinity chromatography using 

Ni2+-IDA. With the presence of negligible truncation product, the purification was 
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greatly facilitated. Highly purified full-length gloshedobin (>99%) shown in Figure 

5.5 emphasized the benefits of reduced truncated expression in terms of both 

increased recovery yield and purity of functional target product. After obtaining the 

purified full-length gloshedobin, the challenge now is to convert the denatured 

proteins to native form with biological activity. A column-based refolding strategy 

with the assist of unpurified ClpB/DnaKJE bichaperone system developed in Chapter 

3 is investigated in the following chapter. Dilution refolding, the commonly used 

refolding technique, is also conducted as a comparison.  

 

 

Figure 5.5 Purified gloshedobin by IMAC under denaturing condition following its 
expression in E. coli BL21(DE3) harboring pET-32a(+)+TLE+ClpB. The apparent 
molecular weight of purified gloshedobin as appeared on the SDS-PAGE gel was 
around 50 kDa. 
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5.4 Conclusion 

Heterologous protein expression in E. coli occasionally leads to both full-length target 

protein and truncation products. The presence of truncated expression products is 

likely to affect the purification efficiency severely, thus compromising final target 

protein purity and recovery yield. The present study demonstrated that the truncated 

expression of gloshedobin (one of the promising TLEs) could be effectively reduced 

by simply switching the expression host from BL21(DE3) to BL21(DE3)pLysS. 

Furthermore, co-expression of a molecular chaperone, ClpB, in BL21(DE3) almost 

completely eliminated truncated expression of gloshedobin, facilitating the high purity 

(>99%) purification of the target protein by metal affinity chromatography. 
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Chapter 6 
Chaperone-assisted column refolding of 
gloshedobin with the use of refolding 
cocktail                                
  
Summary 
Gloshedobin, a recently isolated thrombin-like enzyme (TLE) from the snake venom 

of Gloydius shedaoensis, is expressed mainly in the form of inclusion bodies (IBs) in 

Escherichia coli due to its cysteine-rich nature. Moreover, truncated expression 

products significantly contaminated the purification of full-length gloshedobin 

through immobilized metal affinity chromatography (IMAC). In Chapter 5, it was 

shown that co-expression of ClpB rendered almost complete elimination of 

gloshedobin truncation products, allowing for the expression of intact gloshedobin 

(mostly in IB form though) without compromising the expression level. Following 

extraction and solubilization of the IBs, one-step immobilized metal affinity 

chromatography purification produces highly purified (>99%) denatured-solubilized 

gloshedobin ready to enter the subsequent refolding process. However, the traditional 

dilution or column refolding strategy, based on gradual denaturant removal, was 

found to be inefficient for the recovery of protein activity. In this chapter, a new 

refolding strategy harnessing the ClpB and DnaK/DnaJ/GrpE bichaperone system 

developed in Chapter 3 is demonstrated to be superior to the conventional refolding 

methods in either batch dilution or column refolding mode. It is noted that the 
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efficacy of bichaperone-mediated column refolding strategy is further highlighted 

especially when refolding reaction is attempted at a higher protein concentration with 

the recirculation of the refolding cocktail containing the bichaperone system. This is 

evidenced by an uncompromised refolding efficiency (c.a. 21.4%) achieved at 2000 

µg/mL of initial protein concentration, which is comparable to the refolding efficiency 

(c.a. 22.5%) obtained at 20 times lower protein concentration (i.e. 100 µg/mL) in the 

conventional batch dilution refolding technique. The demonstrated chaperone-assisted 

column refolding strategy thus provides an effective tool for refolding-recalcitrant 

proteins whose reactivation is otherwise difficult to achieve. 

 

6.1 Introduction 
It was shown in Chapter 5 that with the co-expression of a molecular chaperone ClpB, 

the truncated expression associated with the full-length gloshedobin expression was 

almost completely eliminated, facilitating the subsequent purification by immobilized 

metal affinity chromatography (IMAC). The current challenge is thus to convert these 

inactive, misfolded protein aggregates into soluble and bioactive products (De 

Bernardez Clark, 2001; Middelberg, 2002). The various IB processing technologies 

developed for this purpose are well reviewed elsewhere (Choe et al., 2006).  

 

The immobilization of protein onto an adsorbent matrix during column refolding 

significantly limits intermolecular interactions between partially folded proteins, 

hence aggregate formation can be minimized (Li et al., 2004; Langenhof et al., 2005). 
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The use of affinity tags (e.g. His-tag) engineered on the proteins to facilitate their 

binding to IMAC column provides an additional advantage to refolding processes by 

eliminating host-derived contaminating proteins while allowing a large section of 

protein to refold unconstrained (Stempfer et al., 1996 ; Langenhof et al., 2005). In this 

Chapter, the focus was to assess refolding efficiency of IMAC-purified denatured 

gloshedobin in either batch dilution or column refolding mode in the presence or 

absence of the molecular bichaperone system comprising ClpB and DnaK/DnaJ/GrpE 

(ClpB/DnaKJE) as developed in Chapter 3 in the refolding milieu. 

 
6.2 Materials and methods 

6.2.1 Plasmids 

Plasmid pET-32a(+)+TLE for the expression of 6×His-tagged recombinant 

gloshedobin was kindly provided by Dr Qing Yang at Dalian University of 

Technology (Dalian, Liaoning, China). Plasmid pET-32a(+)+TLE+ClpB capable of 

co-expressing ClpB and gloshedobin separately was constructed as described in 

Chapter 5. Plasmid encoding ClpB (pClpB) was kindly provided by Dr Catherine 

Squires at Tufts University (Boston, MA, USA). Plasmid pKJE7 (3340) designed to 

express DnaKJE was purchased from Takara Biotechnology, Japan.  

 

6.2.2 Protein expression 

Protein expression was achieved in antibiotics-supplemented LB broth using E. coli 

BL21(DE3) (Novagen) as an expression host. Cells harboring pET-32a(+)+TLE or 
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pET-32a(+)+TLE+ClpB alone or together with pKJE7 were grown to log phase 

(OD600 nm ~ 0.8) in the presence of 100 µg/mL of ampicillin (additional 34 µg/mL 

chloramphenicol was added when pKJE7 was present) at 37°C. Gloshedobin 

expression was induced with 1 mM IPTG for 4 h. For cells co-transformed with 

pKJE7, L-arabinose (10845, Fluka) was first added to a final concentration of 2.5 

mg/mL to induce the expression of DnaKJE for 30 min. Gloshedobin expression was 

then initiated as described above. The cell suspension was centrifuged at 5000g, 4°C 

for 20 min and the cell pellets resuspended in binding buffer (50 mM Tris, 300 mM 

KCl, 20 mM MgCl2 and 40 mM imidazole at pH 8). One Shot Cell Disrupter 

(Constant Cell Disruption System, UK) was used to disrupt the cells at 21.0 Kpsi. The 

cell disruptates were then centrifuged at 15000g, 4°C for 30 min. The soluble and 

insoluble fractions were immediately used in the following purification and refolding 

experiments.  

 

Molecular chaperone ClpB was expressed according to Woo et al. (1992). DnaKJE 

were expressed according to Nishihara et al. (1998). Following expression, the culture 

broth was centrifuged at 5000g, 4°C for 20 min, and the cell pellets collected and 

resuspended in Buffer A (50 mM Tris, 150 mM KCl and 20 mM MgCl2 at pH 8) and 

disrupted as above. The supernatant containing unpurified ClpB or DnaKJE was 

stored at -20°C as a stock solution until further use as described in Chapter 3. 
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6.2.3 Protein purification and refolding 

6.2.3.1 Protein purification under native condition 

The soluble fraction recovered following the co-expression of gloshedobin with 

DnaKJE was filtered using a 0.45 µm filter (704006, Munktell Filter) and loaded at 

0.5 mL/min to a 2.5 cm i.d.×15 cm column (Econo-Column Chromatography Column, 

737-1517, Bio-Rad) packed with 15 mL of Ni2+-charged iminodiacetic acid (IDA) 

resin (Chelating Sepharose™ Fast Flow, 17-0575-02, GE Healthcare) following 

pre-equilibration with binding buffer. The resin was next washed at 1 mL/min with 10 

column volume of washing buffer (50 mM Tris, 300 mM KCl, 20 mM MgCl2, 60 mM 

imidazole, pH 8). The target protein was then eluted at 1 mL/min using a linear 

gradient from the washing buffer to elution buffer (50 mM Tris, 300 mM KCl, 20 mM 

MgCl2, 500 mM imidazole, pH 8) over 30 min. The eluates were collected in 1 mL 

fractions and the purity of gloshedobin was analyzed by SDS-PAGE. The 

chromatography system used was BioLogic LP (731-8300 and 731-8301, Bio-Rad). 

The fractions containing gloshedobin were pooled and filtered through a 0.22 µm 

filter (SLGP033RS, Millipore) and then subjected to gel filtration chromatography at 

4°C using a HiLoadTM 16/60 SuperdexTM 200 pg column (17-1069-01, GE Healthcare) 

on ÄKTA purifier from Amersham Biosciences. 1 mL sample was loaded each time at 

0.2 mL/min. Buffer A was used for column equilibration and protein elution. The 

eluents were collected in 1 mL fractions and the purity of target protein was analyzed 

by SDS-PAGE. The enzymatic activity of the purified gloshedobin was analyzed 

immediately as described in the analytical methods section.  
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6.2.3.2 Protein purification under denaturing condition 

The insoluble IBs containing gloshedobin were solubilized in denaturing binding 

buffer (50 mM Tris, 8 M urea, 300 mM KCl, 20 mM MgCl2, 40 mM imidazole, pH 8) 

by vigorous magnetic stirring for 6 h. After centrifugation at 15000g for 30 min, the 

insoluble particles were removed with a 0.45 µm filter. The purification was 

conducted as in the native condition except that 8 M urea was added to all the buffers 

used. The fractions containing gloshedobin were pooled and desalted against buffer 

(50 mM Tris, 8 M urea, 300 mM KCl and 20 mM MgCl2 at pH 8) to remove 

imidazole using a HiPrepTM 26/10 Desalting column (17-5087-01, GE Healthcare) on 

ÄKTA purifier. The urea-denatured gloshedobin was further concentrated by 

ultrafiltration using Vivaspin Sample Concentrators (28-9322-47, GE Healthcare) 

with a molecular weight cut-off (MWCO) of 10 kDa. To counteract any potential 

air-oxidation of denatured gloshedobin during the purification process, DTT (D0632, 

Sigma) was added to the urea-denatured gloshedobin (after desalting) to a final 

concentration of 50 mM, and incubated for 3 h in order to ensure complete reduction 

of intra- or inter-molecular disulfide bonds. Removal of DTT was effected by an 

additional buffer exchange step immediately prior to refolding experiments (Lanckriet 

and Middelberg, 2003; Hutchinson and Chase, 2006b; Leong and Middelberg, 2006).  

 

6.2.3.3 Protein refolding by dilution 

Following DTT removal, the protein concentration was adjusted to fall between 1 to 

40 mg/mL using the desalting buffer (Hutchinson and Chase, 2006b). A 1 mL aliquot 



Chapter 6 

 110

of the purified and denatured gloshedobin was rapidly diluted 20-fold under vigorous 

mixing with refolding buffer (50 mM Tris, 45 mM KCl, 20 mM MgCl2, 3 mM 

glutathione (GSH), 3 mM glutathione disulphide (GSSG), pH 8) to a final 

concentration ranging from 100 to 2000 µg/mL at an urea concentration of 0.4 M. The 

refolding mixture was incubated for 20 h and 500 µL aliquots of samples were 

collected at regular time intervals for enzymatic activity analysis.  

 

For chaperone-assisted dilution refolding, 1 mL protein sample was diluted 20-fold 

into the refolding buffer supplemented with a bichaperone refolding cocktail as 

developed in Chapter 3 with some modifications. Wild type ClpB, instead of 

His-tagged ClpB, was used to avoid chaperone binding to IMAC matrix during the 

refolding process. ClpB extracts, DnaKJE extracts, ATP stock solution and ATP 

regeneration system were mixed with the refolding buffer to give a final concentration 

of 5 µM ClpB, 0.2 mg/mL DnaKJE, 5 mM ATP and an ATP regeneration system 

comprising 4 mM phosphoenol pyruvate and 20 ng/mL pyruvate kinase.  

 

6.2.3.4 Protein refolding by IMAC 

Column refolding was conducted on a 2.5 cm i.d.×15 cm column (the same as that 

used in the protein purification step) which was packed with 2.3 mL of Ni2+-charged 

IDA resin. Following equilibration of the resin with denaturing binding buffer, a 

denatured gloshedobin sample prepared at varying concentrations (100-2000 µg/mL) 

was loaded at 0.25 mL/min. The refolding was initiated by applying a decreasing 



Chapter 6 

 111

linear urea gradient (from 8.0 M to 0.4 M) to the bound proteins over 120 min at a 

flow rate of 1 mL/min, starting with the binding buffer and ending with refolding 

buffer (50 mM Tris, 0.4 M urea, 300 mM KCl, 20 mM MgCl2, 3 mM GSH, 3 mM 

GSSG, pH 8). The column was then further washed with the same refolding buffer for 

30 min.  

 

For chaperone-assisted column refolding, a refolding cocktail containing ClpB and 

DnaKJE was prepared as described in the dilution refolding. Following the 

completion of downhill urea-gradient induced refolding reaction as above, the column 

was continuously washed by recycling 20 ml of refolding cocktail (50 mM Tris, 0.4 M 

urea, 150 mM KCl, 20 mM MgCl2, 3 mM GSH, 3 mM GSSG, 5 µM ClpB, 0.2 mg/mL 

DnaKJE and 5 mM ATP with ATP regeneration system, pH 8) for 0.5-4 h at 0.25 

mL/min. The column was next extensively washed with the refolding buffer 

containing no molecular chaperone and the elution was effected by applying an 

increasing linear imidazole gradient (0 to 500 mM imidazole in refolding buffer) at 1 

mL/min over 30 min. The eluates were collected in 1 mL fractions and analyzed for 

protein concentration and enzymatic activity. 

 

Chaperone-assisted column refolding was next conducted using an alternative strategy. 

Instead of applying the refolding cocktail after the gradual removal of urea, refolding 

reaction was directly initiated by applying a linear gradient from denaturing washing 

buffer to refolding cocktail over 120 min at a flow rate of 1 mL/min. An additional 20 
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mL of refolding cocktail was continuously recycled for different time periods (0.5-3 h) 

at a flow rate of 0.25 mL/min to obtain the optimized refolding yield. The column was 

then washed, and the target protein eluted and characterized.  

 

6.2.3.5 Purification of refolded gloshedobin using gel filtration 

chromatography 

Refolded gloshedobin from chaperone-assisted column refolding (with the optimum 

refolding yield) was further purified by gel filtration chromatography at 4°C on 

ÄKTA purifier. 3.5 mL of protein sample (concentrated to around 1.5 mg/mL) was 

loaded to the column at 0.2 mL/min. Buffer A was used for column equilibration and 

protein elution. The eluents were collected in 2 mL fractions. The protein standard 

(Bio-Rad, 151-1901) was used to estimate the molecular weight of the eluted proteins.  

 

6.2.4 Analytical methods 

Protein detection and quantification: Total protein concentration determination and 

SDS-PAGE were conducted as described in Chapter 3. 

 

Fibrinogenolytic activity determination: Fibrinogenolytic activity was analyzed 

according to Shimokawa and Takahashi (1995). Bovine fibrinogen (46312, Fluka) 

was dissolved in buffer containing 50 mM Tris, 6 mM CaCl2 at pH 8 to give a final 

concentration of 0.4 mg/mL. 800 µL of fibrinogen solution was incubated with 200 

µL gloshedobin solution (0.5 mg/mL). The mixture was incubated at 37°C for 12 h 
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and then assayed by SDS-PAGE.  

 

Amidolytic activity assay: Amidolytic activity was measured according to published 

protocols (Lottenberg et al., 1981; Cho et al., 2001; Yang et al., 2002) using 

chromogenic protease N-(p-Tosyl)-Gly-Pro-Arg p-nitroanilide (T1637, Sigma) as the 

substrate. Activity was assessed by mixing 100 µL of gloshedobin solution with 900 

µL of the 0.5 mM substrate in 50 mM Tris at pH 8. The amount of p-nitroanilide 

released was determined by recording the increase in absorbance at 405 nm for 10 

min. One unit of amidolytic activity was defined as the amount of enzyme necessary 

to hydrolyze 1 µM substrate per min. Ancrod (A5042, Sigma), a kind of TLE from 

Calloselasma rhodostoma, was used as the standard (Yang et al., 2002).  

 

RP-HPLC analysis: RP-HPLC was performed using Zorbax 300 SB-C18 column (5 

µm, 4.6×250 mm, 880995-902, Agilent Technologies) on Shimadzu LC-10AVP 

HPLC system. All the HPLC-grade buffers used were supplemented with 0.1% v/v 

formic acid. 100 µL of protein sample was injected for each analysis and then eluted 

from the column using an acetonitrile-water gradient (10-90% v/v acetonitrile, over 

60 min) at a flow rate of 0.75 mL/min. Between each run, the column was 

re-equilibrated with 10% v/v acetonitrile for 20 min. The protein absorbance was 

measured at 280 nm. All samples were centrifuged for 5 min at 8000g, 4oC and then 

filtered using a 0.22 µm filter prior to RP-HPLC analysis. Data acquisition and 

processing were conducted using the Class-VP 7.2.1 software (Shimadzu, Australia). 
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Circular dichroism (CD) spectroscopy: Far UV CD spectra for denatured, native, and 

refolded gloshedobin were obtained with a Jasco J-720 (Jasco Corp., Japan) 

spectrometer using a 0.01-cm cylindrical cell. Native and refolded gloshedobin 

(purified after gel filtration) was first dialyzed against 10 mM sodium phosphate at 

pH 8 to remove salt interferences in CD analysis. Denatured gloshedobin was 

prepared as stated in section 6.2.3.2 Protein purification under denaturing condition. 

DTT was removed before CD measurement as DTT absorbs far UV in the analytical 

region. Protein concentration was adjusted to 0.2 mg/mL for all CD measurements. 

Spectra, corrected by subtracting the buffer baseline, were averaged over 10 readings. 

Mean residue ellipticity (θ), expressed in deg cm2 dmol-1, was calculated as described 

in Chapter 3. 

 
6.3 Results and discussion 
His-tagged recombinant gloshedobin was expressed and purified using IMAC under 

either native or denaturing condition (Figure 6.1). The refolding of denatured 

gloshedobin was achieved by dilution or on-column approach (with/without 

molecular chaperones) (Figure 6.1). As demonstrated by Yang et al. (2005), the 

presence of thioredoxin did not inhibit the enzymatic activity of gloshedobin, hence 

the removal of this fusion partner was not conducted. The enzymatic activity of the 

refolded gloshedobin was compared to that of native purified gloshedobin (Table 6.1). 
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Figure 6.1 A schematic summarizing the purification and refolding procedures of 
6×His-tagged recombinant gloshedobin. 

 

Table 6.1 Summary of the relative enzymatic activity of gloshedobin obtained from 
various refolding processes at different protein concentrations.  
 

Relative Enzymatic activity (%)*
Refolding process 100 

µg/mL 
500 

µg/mL 
2000 

µg/mL 

without molecular chaperones 22.5±1.1 4.3±0.2 0.1±0.1 Dilution 

 with molecular chaperones 46.4±1.6 17.6±0.8 2.0±0.1 

without molecular chaperones 21.6±1.1 19.4±1.0 11.4±0.5 Column 

with molecular chaperones 43.8±1.3 42.5±1.2 21.4±0.6 

 
*Relative enzymatic activity is defined as a percentage recovery of specific enzymatic 
activity of refolded gloshedobin as compared to the specific enzymatic activity (98.3 
U/mg) exhibited by purified native gloshedobin. 

 



Chapter 6 

 116

6.3.1 Purification and characterization of soluble (native) 

gloshedobin 

Gloshedobin expressed from pET-32a(+)+TLE is highly prone to IB formation. 

Although a variety of efforts have been made to improve the solubility of 

heterologous protein expressed in E. coli (Yang et al., 2003a; 2003b), over-expression 

of several molecular chaperones to modulate in vivo solubility and folding of 

recombinant protein have become more popular during the last decade. For example, 

co-expression of DnaKJE chaperones proved very effective to enable marked 

accumulation of soluble target proteins which would otherwise have a high propensity 

to accumulate into IBs (Nishihara et al., 1998; De Marco et al., 2007). 

 

As shown in Figure 6.2A, the aggregation of gloshedobin is almost completely 

prevented in the presence of DnaKJE and the target protein is produced mainly in the 

soluble form. The expression level of soluble gloshedobin from pET-32a(+)+TLE is 

estimated to be around 8.5%. With two-step chromatographic separation (IMAC 

followed by SEC (size exclusion chromatography)), the purity of gloshedobin reaches 

> 95% (Figure 6.2B, lanes 3 and 4).     
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Figure 6.2 The effect of DnaKJE chaperone system co-expression on disaggregation 
of gloshedobin. (A) Cells harboring pET-32a(+)+TLE (expressing gloshedobin) and 
pKJE7 (expressing DnaKJE). Lane 1 is the molecular weight marker. Lanes 2-4 
represent the whole cell extracts after high-pressure cell disruption, the insoluble and 
soluble fractions in the cell extracts respectively. (B) Purification of soluble 
gloshedobin (from cells harboring pET-32a(+)+TLE and pKJE7) under native 
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condition. Lane 1 is the molecular weight marker. Lane 2 is gloshedobin purified 
through IMAC. Lanes 3-4 are gloshedobin collected after gel filtration.  

 

The biological activity of purified gloshedobin was determined by assessing its ability 

to cleave Aα chain of bovine fibrinogen (Shimokawa and Takahashi, 1995). The 

reduced bovine fibrinogen was separated into three main chains (Aα, Bβ and γ) with 

several minor polypeptide chains (Figure 6.3, lane 2). When purified gloshedobin 

(Figure 6.2B, lanes 3-4) was mixed with fibrinogen at a ratio of 1:3 (w/w), the Aα 

chain was completely degraded after 12 h incubation (Figure 6.3, lane 3). TLEs are 

also characterized by their strong amidolytic activity towards chromogenic substrates, 

such as N-(p-Tosyl)-Gly-Pro-Arg p-nitroanilide. A high enzymatic activity of 98.3 

U/mg was obtained for the purified gloshedobin. This specific activity wais used as a 

reference to assess the efficiency of gloshedobin refolding.  
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Figure 6.3 SDS-PAGE analysis of bovine fibrinogen degradation by purified 
gloshedobin. Lane 1 is the molecular weight marker. Lane 2 is bovine fibrinogen as a 
control. Lane 3 is bovine fibrinogen incubated for 12 h with 0.1 mg/mL purified 
gloshedobin (Figure 6.2B, lanes 3-4).  

 

6.3.2 Purification of gloshedobin from IBs under denaturing 

condition 

As described in Chapter 5, co-expression of ClpB with gloshedobin proved highly 

effective in significantly reducing its truncation product, rendering the expression of 

gloshedobin mostly in intact IB form (Figure 6.4A) without compromising the 

expression level (c.a. 11%). The extraction and solubilization of the intact 

gloshedobin from IBs was conducted as described in the Experimental section. 

Following one-step IMAC purification with the use of Ni2+-IDA, the purity of 

denatured-solubilized gloshedobin reached approximately 99% (Figure 6.4B). The 

urea-denatured gloshedobin in the eluate was desalted and further incubated with 50 

mM DTT to fully reduce all the disulfide bonds. However, it was reported that the 

presence of residual DTT hinders the correct refolding of protein, making it necessary 

to remove DTT prior to protein refolding (Lanckriet and Middelberg, 2003).  
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Figure 6.4 (A) SDS-PAGE analysis of gloshedobin and ClpB expressed in E. coli 
BL21(DE3). The lane description is the same as in Figure 6.2A. (B) Gloshedobin after 
IMAC purification under denaturing condition. 

 

To investigate the adverse effect of DTT on the disulfide-containing TLE, we first 

incubated commercially available ancrod (a kind of TLE) in the standard refolding 

buffer (50 mM Tris, 50 mM KCl, 20 mM MgCl2, pH 8) at a concentration of 10 U/mL 

with various concentrations of DTT. As shown in Figure 6.5A, the native ancrod loses 

more than 30% of its enzymatic activity in the presence of 0.5 mM DTT, indicating 

that the activity of this cysteine-rich protein is impeded by the presence of DTT.   
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Figure 6.5 (A) Relative amidolytic activity of ancrod (a kind of TLE) in the standard 
refolding buffer with various concentrations of DTT. (B) The effect of GSH/GSSG 
and DTT/GSSG ratios on the relative amidolytic activity of ancrod. The total 
concentration of the thiol reagents was kept at 6 mM. 

 

For the cysteine-rich proteins, the correct pairing of disulfide bonds is essential 

(Vallejo and Rinas, 2004a). The inclusion of a redox group (mixture of reduced and 
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oxidized thiol reagents), such as GSH and GSSG, in the refolding buffer facilitates 

this required oxido-shuffling process and thus increases the refolding efficiency 

(Fischer and Sumner, 1993; Vallejo and Rinas, 2004a). The effect of the redox group 

on the enzymatic activity of native ancrod was also determined. The total 

concentration of the thiol reagents was kept at 6 mM and the ratio of GSH or DTT to 

GSSG was varied. Native ancrod loses about 60% of its enzymatic activity in the 

presence of 6 mM GSH. With the introduction of oxidizing agent (GSSG) at the ratios 

studied, the enzymatic activity of ancrod is constant at around 100% (Figure 6.5B), 

showing that the presence of GSSG can efficiently balance the reducing effect of GSH. 

The enzymatic activity of native ancrod is significantly decreased by the replacement 

of GSH with DTT which is a stronger reducing agent (Figure 6.5B), indicating that 

the presence of GSSG at the tested condition was insufficient to efficiently neutralize 

the reducing effect of DTT.  

 

When the purified soluble gloshedobin was mixed with DTT, it was also found that 

more than 30% of its enzymatic activity was lost even in the presence of 0.5 mM DTT, 

necessitating the removal of DTT prior to protein refolding. However, it should be 

noted that this DTT-deficient condition may trigger a spontaneous partial re-oxidation 

of protein before the initiation of protein refolding (Lanckriet and Middelberg, 2003; 

Leong and Middelberg, 2006). 
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6.3.3 Dilution refolding of gloshedobin 

The dilution refolding of denatured-reduced gloshedobin was first conducted in order 

to provide a basis to assess the refolding efficiency of the target protein in various 

refolding strategies tested in the present study. The refolding yield was monitored by 

measuring the enzymatic activity of gloshedobin over time following dilution. It was 

first found that in the absence of a redox group, the refolding yield of gloshedobin at 

100 µg/mL was only around 3%. Various ratios of GSH to GSSG ranging from 1:1 to 

5:1 with a total thiol concentration of 6 mM were thus investigated. A GSH to GSSG 

ratio of 1:1 was found to be most efficient in facilitating the oxido-shuffling of the 

gloshedobin molecules during refolding (Figure 6.6A). With the increase in 

concentration of reducing agent, the refolding yield was gradually decreased, 

indicating the inhibition of correct disulfide bond formation by the over-reducing 

environment (Konishi et al., 1982). Under the optimized redox environment, the 

denatured gloshedobin recovered approximately 23% of its enzymatic activity after 10 

h incubation (Figure 6.6A and 6.6B). There was no additional enzymatic activity 

recovery when refolding reaction proceeded for longer period of time. An increase in 

total concentration of thiol reagents (9 mM GSH and 9 mM GSSG) showed no 

improvement in the final refolding yield (around 22% when dilution refolding was 

performed at a protein concentration of 100 µg/mL), confirming a previous report that 

the ratio of reduced to oxidized thiol reagents affects the redox potential more 

significantly than the total concentration of thiol present in the refolding buffer 

(Qoronfleh et al., 2007).  
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Figure 6.6 (A) The effect of different ratios of GSH to GSSG, added in the dilution 
refolding buffer, on the refolding yield of denatured gloshedobin at a concentration of 
100 µg/mL. The refolding yields were quantified by measuring the specific amidolytic 
activity. The total concentration of the thiol reagents was kept at 6 mM. (B) The 
dilution refolding yield of gloshedobin (100 µg/mL) in the presence of GSH to GSSG 
ratio of 1:1 as a function of time. (C) The refolding yield of gloshedobin with or 
without ClpB/DnaKJE bichaperone system as a function of protein concentrations.    

 

During the dilution refolding, the denatured protein is injected into a larger volume of 

refolding buffer under vigorous mixing in order to effect rapid dispersion of the 

denaturant molecules (Li et al., 2004). The unfolded protein molecules will thus 

collapse to more compact intermediate states and finally develop to correctly folded, 

misfolded or aggregated species. The aggregation of the protein intermediates during 

refolding will greatly decrease the final refolding yield. This becomes more 

significant at high protein concentrations where the higher-order aggregation reactions 

dominate over first-order refolding reactions (Kiefhaber et al., 1991). The protein 

concentration has to be carefully controlled at a relatively low level (usually 5-100 

µg/mL) to minimize aggregation (Hevehan and Clark, 1997). To understand the effect 
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of protein concentration at the time of refolding reaction, dilution refolding of 

gloshedobin was conducted at various protein concentrations between 100 and 2000 

µg/mL. The recovery of enzymatic activity showed clear dependence on the protein 

concentration, decreasing from 22.5% to 0.1% as the initial protein concentration 

increases (Figure 6.6C, Table 6.1).  

 

Molecular chaperones have been widely studied to facilitate protein folding both in 

vivo and in vitro. ClpB/DnaKJE bichaperone system was found to be efficient in the 

disaggregation and renaturation of protein aggregates into active forms (Mogk et al., 

1999; Zolkiewski, 1999; Ziętkiewicz et al., 2004; 2006). The mechanism of this 

system possibly relies on the extraction of individual polypeptide from the protein 

aggregate surface by translocation through the ClpB pore, thus initiating the unfolding 

of aggregated proteins. The extracted proteins are then captured and refolded by 

DnaKJE (Weibezahn et al., 2004b; Shorter and Lindquist, 2005; Haslberger et al., 

2007). As described in Chapter 5, a refolding cocktail comprising unpurified ClpB 

and DnaKJE proved to be effective in rendering high efficiency refolding of 

heat-denatured MDH by mimicking a de novo protein folding scheme. As proposed in 

Chapter 3, the obviation of the need of purification of key molecular chaperones prior 

to refolding step would facilitate a large scale implementation of the developed 

refolding method. Based on this concept, the dilution refolding of denatured 

gloshedobin in the presence of ClpB/DnaKJE was investigated in this chapter. The 

refolding was initiated by rapid dilution of various concentrations of gloshedobin into 
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the optimal refolding buffer supplemented with 5 µM ClpB, 0.2 mg/mL DnaKJE and 

5 mM ATP with ATP regeneration system. The reaction was allowed to proceed for 10 

h. As shown in Figure 6.6C, the final refolding yield is increased to 46.4% when 

dilution is performed at a protein concentration of 100 µg/mL, giving a 2-fold 

increment compared with the condition lacking molecular chaperones. This clearly 

demonstrates that the presence of ClpB/DnaKJE bichaperone system is conducive to 

suppressing the protein aggregation and thus increases the protein refolding efficiency. 

As the protein concentration increases, the recovered enzymatic activity decreases 

gradually. When the dilution refolding is conducted at 400 µg/mL, the final refolding 

yield decreases to around 23%, which is however still equivalent to the efficiency of 

dilution refolding at 100 µg/mL without the assistance of chaperones. The benefit of 

using molecular chaperones in dilution refolding is clear as refolding reaction can 

occur at 4 times higher protein concentration without compromising the recovery of 

enzymatic activity.  

 

Despite the improvement in the refolding yield, the increased complexity of refolding 

buffer composition and the subsequent need for further purification steps to remove 

added molecular chaperones may not fully justify the marginal increase in operational 

protein concentration at the time of refolding. It is expected that selective adsorption 

of the target protein with affinity tag onto the column may limit the interactions 

between refolding intermediates, reduce aggregation and improve refolding efficiency 

at high protein concentration. In addition, the specific binding between target protein 
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and the solid support also mitigates the demand of purification steps to remove other 

components present together with the target protein in the refolding buffer. It is 

therefore envisaged that a coupling of the refolding cocktail approach with column 

refolding strategy may overcome the inefficiencies encountered in the 

chaperone-assisted dilution refolding scheme.   

 

6.3.4 Column refolding of gloshedobin 

Column refolding was performed by adsorbing denatured and reduced gloshedobin 

onto an IMAC column at a different protein mass per unit volume of adsorbent (100 

to 2000 µg/mL). The optimized refolding buffer which gave the highest yield in 

dilution refolding (without molecular chaperones) was used for the column refolding 

study. It should be noted first that the reduction of nickel metal ions was not observed 

despite the presence of a redox group comprising 3 mM GSH and 3 mM GSSG. This 

is consistent with the information from the manufacturer (GE Healthcare) that Ni 

Sepharose Fast Flow is compatible with up to 10 mM GSH (Hutchinson and Chase, 

2006b). In addition, no protein was detected by UV in the flow-through during 

column loading, in line with the binding capacity (~ 40 mg/mL of His-tagged 

proteins) of Ni2+-charged IDA resin as reported by the manufacturer. The bound 

gloshedobin was renatured by a linear decreasing urea gradient (8.0-0.4 M). The final 

urea concentration was fixed on par with that from dilution refolding. For the 

chaperone-assisted column refolding, refolding cocktail containing ClpB/DnaKJE 

bichaperone system was circulated continuously through the column in a recycling 
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mode for different time periods immediately after the urea gradient. The elution was 

conducted with a linear 0-500 mM imidazole gradient and the fractions containing 

proteins were pooled prior to concentration and enzymatic activity analysis.  

 

Total protein recovery decreased from 91.6% to 73.1% (Figure 6.7A) with the 

increase in protein loading from 100 to 2000 µg/mL. This is probably due to the 

retained aggregated proteins as higher protein loading affects the spatial isolation of 

protein molecules on the matrix and consequently promotes aggregation of 

incompletely refolded proteins (Langenhof et al., 2005). For the chaperone-assisted 

IMAC refolding, slight increase in the total protein recovery (92.5 and 76.7% for 

protein loading of 100 and 2000 µg/mL respectively (Figure 6.7A)) was observed, 

suggesting that the ClpB/DnaKJE chaperone system possibly acts on the aggregated 

species and partially re-solubilizes them.  
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Figure 6.7 (A) Comparison of total protein recovery achieved using column refolding 
with or without molecular chaperones. Gloshedobin concentration is stated as the total 
amount of denatured and reduced gloshedobin loaded on the column per mL of 
adsorbent. (B) Comparison of refolding yield achieved using column refolding with or 
without molecular chaperones.  

 

One of the greatest advantages of column refolding is that the refolding could be 

efficiently conducted at higher protein concentrations (Geng and Chang, 1992; 

Berdichevsky et al., 1999; Yin et al., 2003; Kweon et al., 2004). As shown in Table 

6.1, similar refolding efficiency was achieved with a bichaperone-assisted column 

refolding process (21.4% at 2000 µg/mL) despite the 20-fold increase in protein 

concentration as compared to the conventional dilution refolding scheme (22.5% at 

100 µg/mL). However, the total amount of buffer used for column refolding was only 

about 10-fold higher than in dilution refolding (Tables 6.2 and 6.3), giving an 

advantage of lower buffer requirement when processing an equivalent quantity of 

protein using column refolding. Even in the absence of molecular chaperones, the 

column refolding yield of 11.4% achieved at a protein concentration of 2000 µg/mL 
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(Figure 6.7B) was incomparably higher than that from dilution refolding (0.1%, 

Figure 6.6C), highlighting the superiority of column refolding approach. However, the 

decrease in enzymatic activity recovery along with the increased protein loading 

(Figure 6.7B) reconfirms that column refolding efficiency is also protein 

concentration dependent since the matrix-adsorbed protein molecules are more likely 

to be in closer proximity to one another at a higher protein loading condition. This 

renders the extent of aggregation reactions becoming more dominant with the increase 

in the loaded proteins despite the immobilization strategy, resulting in the decreased 

refolding efficiency. It is interesting to note that the decrease in the observed refolding 

yield is not significant up to average protein loading of 750 µg of denatured protein 

per unit volume of the resin (Figure 6.7B). This is probably because the upper part of 

the packed resin becomes saturated by protein molecules at a concentration of 750 

µg/mL and it takes time for the protein to diffuse to the lower unoccupied region of 

the resin. This renders the effective concentration (i.e. the actual mass of protein 

molecules per unit volume of the resin) higher than the calculated one based on the 

averaged amount of the loaded protein for the entire resin volume, thus affecting 

refolding efficiencies thereafter. An alternative two-step strategy comprising 1) 

pre-incubation of protein molecules with the resin slurry in a batch mode; 2) 

subsequent column packing with the protein-loaded resin, is expected to maximize the 

efficacy of matrix-assisted spatial segregation of protein molecules at the time of 

refolding, thereby further enhancing column refolding efficiency. 
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 Table 6.2 Summary of buffer usages in dilution refolding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample preparation before dilution

Dilution 
refolding 

40 
mg/mL 
protein 
sample 
(mL) 

Desalting 
buffer 
(mL) 

Protein 
concentration

(mg/mL) 

Refolding 
buffer 
(mL) 

Refolding 
buffer with 
molecular 

chaperones
(mL) 

Final protein 
concentration 

(mg/mL) 

Total 
buffer 
used 
(mL)

 

0.05 0.95 2 0.1 
0.075 0.925 3 0.15 
0.1 0.9 4 0.2 
0.15 0.85 6 0.3 
0.2 0.8 8 0.4 
0.25 0.75 10 0.5 

Without 
molecular 

chaperones 

1 0 40 

19 N.A. 

2 
0.05 0.95 2 0.1 

0.075 0.925 3 0.15 
0.1 0.9 4 0.2 
0.15 0.85 6 0.3 
0.2 0.8 8 0.4 
0.25 0.75 10 0.5 

With 
molecular 

chaperones 
 

1 0 40 

N.A. 19 

2 

20 
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Table 6.3 Summary of buffer usages in column refolding. Final protein concentration 
(mg/mL) is defined as the amount of protein (mg) per unit volume of resin used where 
the volume of resin used was 2.3 mL. 
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In order to investigate whether the presence of added molecular chaperones exhibit 

any synergistic effect when coupled with the column refolding strategy, the column 

refolding experiment was repeated with the supply of refolding cocktail containing 

DnaKJE/ClpB bichaperone and ATP regeneration systems. It is clear from Figure 

6.7B that the presence of molecular chaperones is conducive to the target protein 

refolding. At a protein concentration of 2000 µg/mL, the final refolding yield, 

following 2 h recirculation of refolding cocktail at the end of urea gradient, reached 

21.4% (1.9-fold increment compared to the case lacking molecular chaperones). 

Furthermore, this yield was comparable to that from the traditional dilution refolding 

(without molecular chaperones) conducted at 100 µg/mL of protein concentration (i.e. 

the same enzymatic activity was recovered by chaperone-assisted column refolding at 

a 20 times higher protein concentration). 

 

Chaperone-assisted column refolding of which the outcome is presented in Figure 6.7 

has two drivers to modulate refolding reaction: decrease of a chaotrope (i.e. urea) 

followed by chaperoning effect of the added bichaperone system during the recycling 

stage (Method 1). A noticeable feature in Method 1 is that the two drivers for 

refolding reaction were applied in a sequential manner. An alternative 

chaperone-assisted column refolding strategy harnessing a direct linear gradient from 

the denaturing washing buffer to refolding cocktail (Method 2) was investigated in 

order to see the effect of simultaneous application of two refolding drivers to the 

target protein refolding. From Method 2, the refolding yield of 35% was achieved 



Chapter 6 

 135

immediately after the gradient period (Figure 6.8), and a shorter refolding cocktail 

circulation time of 1 h (as compared to 2 h for Method 1) was sufficient to achieve the 

optimum refolding yield (Figure 6.8). Although the final refolding efficiency from 

either method remains unchanged, this indicates possibly that the refolding of protein 

through synchronized synergistic effect of two refolding drivers (i.e. chaotrope 

removal and chaperoning effect) is conducive to reducing process time required to 

reach maximum refolding yield. Another reason for the shorter recirculation time in 

Method 2 might be the use of more refolding cocktail from the earlier stage of 

refolding process. In Method 1, 20 mL of refolding cocktail was used in the recycling 

mode after urea removal while in Method 2, 80 mL of refolding cocktail was used (60 

mL for the refolding buffer gradient and 20 mL for the flow in recirculation mode) 

(Table 6.3). 

 

 
Figure 6.8 Refolding yield of gloshedobin as a function of time (after recycling flow 
started) allowed for the contact of the protein (500 µg/mL adsorbent) with 
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ClpB/DnaKJE bichaperone system. ●， recycling refolding cocktail containing 
molecular chaperones after the gradual removal of urea; ▲, column refolding 
conducted directly with a linear gradient from the denaturing washing buffer to the 
refolding cocktail containing molecular chaperones, followed by the recycling of 
refolding cocktail.  

 

From Figure 6.7B, the refolding yield of 42.5% was obtained from chaperone-assisted 

column refolding conducted at a protein concentration of 500 µg/mL following 

Method 1, suggesting that the eluted soluble protein in the recovered fractions not 

only contains the correctly folded species, but also various misfolded or partially 

folded species lacking enzymatic activity. It was reported that for fusion proteins, 

solubility does not always correlate with proper folding of the passenger protein 

(Louis et al., 1991; Saavedra-Alanis et al., 1994; Lorenzo et al., 1997; Sachdev and 

Chirgwin, 1998; Nominé et al., 2001a; 2001b). The collected fractions from the 

chaperone-assisted column refolding were thus analyzed by RP-HPLC to analyze the 

profile of existing protein conformers (i.e. native, misfolded intermediate and 

denatured proteins) during the refolding process. For ease of tracking the individual 

peaks representing different refolding intermediates, the refolding experiment 

conducted according to Method 1 (in Figure 6.8) was chosen for the profile analysis 

since it showed a relatively larger time-dependent change in refolding efficiency. 

Figure 6.9 shows the time course of gloshedobin refolding process presented in Figure 

6.8 (Method 1) immediately before the start of refolding cocktail recirculation. The 

HPLC chromatograms for native and denatured-reduced gloshedobin are provided for 

comparison. For a sample taken at 0 min, the RP-HPLC chromatogram shows a small 

peak at a retention time (RT) of 23 min representing the native protein and an 
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additional broad peak (RT = 32 min) presumably corresponding to the refolding 

intermediates containing misfolded or partially folded proteins (Nominé et al., 2001a; 

Schauer et al., 2003). At this instance, the refolding yield reached about 21.6% 

(Figure 6.8), indicating that only a small fraction of the denatured protein molecules 

recovered enzymatic activity following the completion of urea gradient while a 

majority still remained in the status of refolding intermediates.  

 

 
Figure 6.9 RP-HPLC chromatogram of the various components in gloshedobin 
protein mixture during the refolding process (where refolding cocktail containing 
molecular chaperones was applied after the removal of urea, Figure 6.8) from the 
denatured-reduced state.  
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Following prolonged incubation with molecular chaperones for 2 h, a noticeable shift 

in the peak profile was observed (compare the profile at 120 min in Figure 6.8 to the 

profile at 0 min), indicating that interaction of the immobilized gloshedobin with the 

recirculated chaperones rendered more of the denatured gloshedobin to recover its 

native structure. The area under the peak representing the correctly refolded 

gloshedobin accounts for 49% of the total peak area, suggesting that 49% of the 

soluble gloshedobin eluted from IMAC has its native structure. Considering that the 

total protein recovery was around 88.7% (Figure 6.7A) for the refolding experiment 

conducted at 500 µg/mL using Method 1, the refolding yield (i.e. the mass ratio of 

final refolded to initial denatured gloshedobin) as quantified by RP-HPLC analysis is 

thus around 43.5%, quite close to the refolding yield (i.e. 42.5% as presented in 

Figure 6.8 or Table 6.1) estimated from enzymatic activity analysis. 

 

The increase in the formation of correctly folded protein was negligible with longer 

contact time after 120 min, which is also consistent with the enzymatic activity assay 

(Figure 6.8). Despite only 2% increase in the total protein recovery for the 

chaperone-assisted column refolding reaction as compared with the equivalent 

experiment without chaperones (Figure 6.7A), the 22% increase in refolding yield 

(Figure 6.7B) shows that this increase mainly results from the facilitated renaturation 

of refolding intermediates by ClpB/DnaKJE bichaperone system present in the 

refolding cocktail.  
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Figure 6.10 A chromatogram for gel filtration purification of refolded gloshedobin. 
 

The refolded gloshedobin, obtained via bichaperone-assisted column refolding, was 

next loaded onto a gel filtration column to fractionate correctly folded protein from 

misfolded species and other soluble aggregates. Figure 6.10 shows that a good 

separation of correctly folded protein from higher molecular weight aggregates was 

achieved. Figure 6.9 compares RP-HPLC of refolded gloshedobin before and after gel 

filtration, further confirming that native protein was successfully isolated. The 

physical characteristics of refolded and native gloshedobin were also analyzed by CD 

(Figure 6.11). The secondary structure of refolded gloshedobin was determined by 

measuring its spectrum in the far UV region (190-250 nm). The far-UV spectrum of 

refolded gloshedobin was observed to overlay very closely with that of native 

gloshedobin, suggesting that the refolded gloshedobin has a very similar secondary 
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structure as the soluble native gloshedobin. The denatured gloshedobin in 8 M urea, 

which has an unfolded conformation, had a distinctly different CD spectrum (Figure 

6.11).  

 

 
Figure 6.11 Far UV CD spectra of native, refolded and denatured gloshedobin (each 
analyzed at a concentration of 0.2 mg/mL). 

 

The concurrence of both native and misfolded proteins greatly affects the biological 

activity of the target protein and further studies to increase the refolding efficiency 

should be conducted. In addition, the additional necessity to express molecular 

chaperones may result in the method being economically unfavorable especially for 

industrial-scale protein production. Therefore, it is also important to investigate the 

possibility of reusing the refolding cocktail for repeated column refolding processes 

since the reuse of the cost-prohibitive refolding buffer would significantly reduce the 

processing costs. Nevertheless, the advantages of molecular chaperone-assisted 
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column refolding with the use of refolding cocktail recirculation was clearly 

demonstrated to increase the enzymatic activity of refolded products at relatively high 

protein concentrations. The system can be potentially applied to column refolding of 

other chemically denatured proteins whose reactivation has been difficult to achieve 

through the traditional refolding strategies.  

 

In this chapter, the new column-based refolding strategy taking advantage of 

ClpB/DnaKJE bichaperone system was shown to be superior to the conventional 

refolding methods in either batch dilution or column refolding mode especially when 

refolding reaction was attempted at a higher protein concentration. However, the 

strategy used to isolate gloshedobin IBs followed the traditionally described methods 

which are time-consuming and inefficient, including cell disruption by high pressure, 

repeated centrifugation to precipitate IBs and dissolution of IBs in high concentration 

of denaturant. The recovery process for gloshedobin IBs was therefore further 

integrated through coupling of IMAC protein purification with chemical extraction 

which was suggested to be an efficient way to overcome the inefficiencies associated 

with traditional IB recovery method. This is addressed in the following chapter 

(Chapter 7). 

 

6.4 Conclusion 
The refolding efficiencies of gloshedobin by dilution or column refolding strategy 

(with or without molecular chaperones) were studied. For column refolding without 
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molecular chaperones, RP-HPLC analysis shows that a large amount of protein exists 

in the misfolded state lacking enzymatic activity. The application of ClpB/DnaKJE 

bichaperone system was shown to be effective in reactivating these misfolded species 

to further increase the refolding yield. At a protein concentration of 2000 µg/mL, the 

final refolding yield, following 2 h recirculation of refolding cocktail at the end of 

urea gradient, reached 21.4% (1.9-fold increment compared to the case lacking 

molecular chaperones). The refolded protein successfully regained their native 

structure as ascertained by RP-HPLC and CD spectrum analysis. Furthermore, 

compared with traditional dilution refolding, the same enzymatic activity was 

recovered by the chaperone-assisted column refolding at a much higher protein 

concentration with lower buffer requirement. This is shown by an uncompromised 

refolding efficiency (c.a. 21.4%) achieved at 2000 µg/mL of initial protein 

concentration, which is comparable to the refolding efficiency (c.a. 22.5%) obtained 

at 20 times lower protein concentration (i.e. 100 µg/mL) in the conventional batch 

dilution refolding technique. These clearly demonstrated that the superiority of the 

molecular chaperone assisted column refolding developed in this study over either 

traditional column or dilution refolding especially when the refolding was conducted 

at a higher protein concentration. 
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Chapter 7 

Polyethyleneimine-mediated chemical 

extraction of cytoplasmic His-tagged 

inclusion body proteins from Escherichia 

coli                                    

 
Summary 

The selectivity of polyethyleneimine (PEI) in DNA precipitation during chemical 

extraction was investigated. Chemical extraction was used to recover two His-tagged 

model proteins: gloshedobin, a thrombin-like enzyme from snake venom, and IbpA, a 

molecular chaperone, which were expressed mainly in the form of inclusion bodies 

(IBs). High DNA removal efficiency (more than 90%) was achieved at various cell 

densities (with OD600 ranging from 30 to 150) without affecting the solubility of host 

cell proteins. Compared to spermine-induced precipitation method reported elsewhere 

(Choe and Middelberg, 2001b), PEI provided a higher DNA precipitation efficiency at 

a significantly lower cost. Moreover, PEI obviated the use of EDTA, which has been 

reported to be essential for the chemical extraction methods, hence exhibiting dual 

roles in replacing cost-prohibitive spermine and EDTA. The residual PEI in the 

post-extraction mixture was efficiently counteracted by addition of Mg2+, allowing the 

streamlined application of the extraction broth to immobilized metal affinity 

chromatography. Taken together, the PEI-mediated chemical extraction method 

provides a simpler and more economically viable processing route for the production 
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of recombinant proteins whose expression is hampered by IB formation. 

 

7.1 Introduction 

Traditional isolation and refolding methods for inclusion body (IB) proteins, such as 

cell disruption by high pressure or ultrasonic waves, differential centrifugation to 

remove cell debris and precipitate IBs followed by dilution or dialysis refolding, are 

time consuming and inefficient (Middelberg, 1995; Wong et al., 1997). To overcome 

the inefficiencies in traditional IB processing routes, Falconer and coworkers 

developed a direct chemical extraction method (Falconer Direct Extraction (FDE)) 

where a combination of 6 M urea and 3 mM EDTA was shown to achieve 

high-efficiency extraction and solubilization of cytoplasmic IB protein from E. coli 

(Falconer et al., 1997; 1998; 1999). The release of IB proteins (cytoplasmic 

Long-R3-IGF-I) by chemical extraction was shown to be at an equivalent level to 

mechanical disruption at a lab scale (Falconer et al., 1998). Moreover, the extraction 

efficiency was not compromised by high density cell suspension of E. coli (up to 

OD600 = 160) and proved highly efficient (>90%) in extracting and solubilizing 

His-tagged recombinant viral coat IB protein (Choe and Middelberg, 2001a). 

However, concomitant release of high molecular weight DNA during the extraction 

produced a highly viscous non-Newtonian post-extraction mixture (Choe and 

Middelberg, 2001b), posing a significant challenge to downstream operations 

(Fernández-Lahore et al., 1999).  
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Addition of nucleases or DNA precipitants has often been necessary, when 

downstream processes are complicated by the presence of host cell derived nucleic 

acids (DeWalt et al., 2003). Enzymatic degradation of coextracted DNA by Benzonase 

was employed to reduce viscosity, facilitating otherwise inefficient tangential flow 

filtration operation (Lee et al., 2004). However, the presence of high concentration of 

urea in the chemical extraction mixture prevented enzymatic approaches in FDE 

(Choe et al., 2006). Instead, a DNA precipitant, spermine, was used to selectively 

precipitate DNA during FDE (Choe and Middelberg, 2001b) where selective DNA 

precipitation was achieved at a ratio of 10 mg-spermine/mg-DNA (>85% DNA 

removal efficiency) without affecting the target protein recovery. However, due to the 

relatively high cost of spermine, its application at a large scale is hampered (Choe et 

al., 2006; Lee et al., 2006). 

 

In order to avoid operational limitations (in terms of viscosity) and cost drawbacks, in 

this chapter, we focused on redesigning the FDE by replacing spermine with another 

polycationic agent, polyethyleneimine (PEI) which has been widely used in various 

bioprocesses to flocculate cellular contaminants such as nucleic acids and lipids from 

cell homogenates because of its ability to bind and precipitate DNA (Helander et al., 

1997). The new extraction method, termed PEI-mediated chemical extraction, was 

investigated for two recombinant His-tagged proteins prone to IB formation: 

gloshedobin (Yang et al., 2002) and IbpA, a molecular chaperone (Kitagawa et al., 

2002).  
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IbpA belongs to a small heat-shock protein (sHsp) family (Kitagawa et al., 2002) 

whose increased expression was shown to aid mammalian and bacterial cells to resist 

heat, cold, and oxidant stresses (Van den Ijssel et al., 1994; Yei et al., 1997; Sato et al., 

1999). Furthermore, sHsps were demonstrated to exhibit their chaperoning activity in 

vitro by binding non-native polypeptides produced under heat-shock conditions, 

thereby leading to accumulation of misfolded intermediates which are protected from 

irreversible aggregation (Chang et al., 1996; Ehrnsperger et al., 1997; Lee et al., 1997). 

This reservoir effect permits the misfolded proteins to stay in a folding-competent 

state for an extended period of time, and allows refolding process to take place after 

the restoration of physiological condition in cooperation with other molecular 

chaperones (Ehrnsperger et al., 1997). Recently, expression of IbpA fused with a 

10×His-tag was reported, but mainly in IB form (Kitagawa et al., 2002).  

 

Following the assessment of PEI-mediated chemical extraction of gloshedobin and 

IbpA, we further demonstrated that the denatured-solubilized proteins in the 

extraction suspension were efficiently processed by immobilized metal affinity 

chromatography (IMAC) under denaturing condition, hence providing a new IB 

processing strategy coupling PEI-mediated chemical extraction and IMAC.  

 

7.2 Materials and methods 

7.2.1 Plasmids 

pET-32a(+)+TLE, a plasmid encoding His-tagged gloshedobin-thioredoxin, was 
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kindly provided by Dr Qing Yang from Dalian University of Technology, Dalian, 

Liaoning, China. The plasmid encoding His-tagged IbpA (pET-19b+IbpA) was kindly 

provided by Dr Tetsuaki Tsuchido (Kansai University, Osaka, Japan).  

 

7.2.2 Protein expression 

E. coli BL21(DE3) cells were transformed with pET-32a(+)+TLE to enable the 

expression of His-tagged gloshedobin with thioredoxin partner. The transformed cells 

were grown at 37°C to OD600 ~ 0.8 in LB broth containing 0.1 mg/mL ampicillin. 

Protein expression was induced with 1 mM IPTG for 4 h during the exponential 

growth phase. The cell suspension, harvested at its stationary growth phase, was 

centrifuged at 5000g and 4°C for 20 min. The cell pellet was immediately subjected to 

chemical extraction or high pressure cell disruption.  

 

The expression of His-tagged IbpA was achieved according to Kitagawa et al. (2002). 

E. coli BL21(DE3) cells (Novagen) transformed with pET-19b+IbpA were grown at 

28°C to OD600 ~ 0.8 in LB medium containing 0.1 mg/mL ampicillin. Protein 

expression was induced with 0.3 mM IPTG for 4 h during the exponential growth 

phase. The cell pellets were collected and processed as described above. 

 

7.2.3 Protein extraction by high pressure cell disruption 

The cell pellets were resuspended in Tris-NaCl buffer (0.1 M Tris, 50 mM NaCl, pH 

8.0) to give OD600 = 60. One Shot Cell Disrupter (Constant Cell Disruption System, 
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UK) was used to disrupt the cells at 21.0 Kpsi. Following the disruption, the cell 

disruptates were centrifuged at 10000g and 4°C for 30 min. The soluble and insoluble 

fractions and the whole cell disruptates were separately stored at -20°C for further 

analysis.  

 

7.2.4 The effect of PEI on selective DNA precipitation 

Solutions containing 0.1 M Tris and 640 mg/L Calf thymus DNA (D1501, Sigma) at 

various pH (7, 8, 9, 10, 11 and 12) were prepared. PEI solution (40,872-7, Aldrich), 

with high molecular weight of 25000 at a density of 1.03 g/mL, was next diluted in 

Tris solution to give a final PEI concentration of 100 mg/mL in 0.1 M Tris. 750 µL of 

prepared DNA solution was mixed with different amount of PEI solution according to 

Table 7.1 to give a final DNA concentration of 480 mg/L and the desired PEI/DNA 

ratio (mg/mg). The mixture was then vortexed and incubated for 0.5 h. After 

centrifugation at 15000g for 25 min, the supernatant was immediately analyzed for 

residual DNA concentration as described in the Analytical methods section.  
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Table 7.1 Experimental design for DNA precipitation by PEI. 

DNA 
volume 

(µL) 
 

750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 
750 

PEI 
volume 

(µL) 
 
0 

0.5 
1 
2 
3 
4 
5 

10 
20 
30 
40 
50 

100 
110 
120 
130 
140 
150 
200 
250 

0.1 M 
Tris 

volume 
(µL) 
250 

249.5 
249 
248 
247 
246 
245 
240 
230 
220 
210 
200 
150 
140 
130 
120 
110 
100 
50 
0 

Total 
volume 

(µL) 
 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

DNA 
concentration

(mg/L) 
 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 
480 

PEI 
concentration. 

(mg/L) 
 

0 
50 

100 
200 
300 
400 
500 

1000 
2000 
3000 
4000 
5000 

10000 
11000 
12000 
13000 
14000 
15000 
20000 
25000 

PEI/DNA
ratio 

(mg/mg)
 

0 
0.1 
0.2 
0.4 
0.6 
0.8 
1.1 
2.1 
4.2 
6.3 
8.3 

10.4 
20.8 
22.7 
25.0 
27.0 
29.4 
31.3 
41.7 
52.6 

 

Next, PEI-induced DNA precipitation was studied in the presence of urea in order to 

determine the effect of urea, if any, on the precipitation of DNA. DNA solutions were 

prepared as above in 0.1 M Tris solution containing 8 M urea at the same pH 

conditions as above. Different amounts of PEI solution were added to 750 µL of DNA 

solution according to Table 7.1 to give a final DNA concentration of 480 mg/L and 

urea concentration of 6 M. The mixture was then processed as above.  

 

In order to mimic the actual chemical extraction process, BSA was selected as a 

representative protein to investigate the effect of PEI-induced DNA precipitation on 

protein recovery. The DNA solution was prepared in the presence of urea and BSA to 
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give a final concentration of 0.1 M Tris, 8 M urea, 640 mg/L DNA and 20 g/L BSA at 

different pH ranging from 7 to 12. 750 µL of this solution containing urea, DNA and 

BSA was mixed with PEI solution according to Table 7.1 to give a final urea 

concentration of 6 M, DNA concentration of 480 mg/L and BSA concentration of 15 

g/L. After incubation and centrifugation at the same conditions as above, the DNA 

and BSA content in the supernatant was analyzed (see Analytical methods section). 

 

7.2.5 Chemical extraction of IB proteins and precipitation of 

coextracted DNA by PEI 

The cell suspension, harvested at its stationary growth phase, was centrifuged at 

5000g and 4°C for 25 min. The collected cell pellets were washed with PBS buffer 

and recentrifuged as above. To investigate the effect of PEI on DNA precipitation 

during the chemical extraction, the washed cell pellets were resuspended in 

Tris-NaCl-urea buffer (0.1 M Tris, 50 mM NaCl, 8 M urea, pH 8.0) to give a 

suspension of OD600 = 80. Chemical extraction was conducted at a final cell density of 

OD600 = 60 using the following two conditions. In the first condition, 0.1 mL of 

solution of varying PEI concentrations (0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 

mg/mL) in Tris buffer (0.1 M Tris, pH 8.0) was added to 0.75 mL of cell suspension 

in order to give final PEI concentrations in the range of 0 to 10 mg/mL. In the second 

condition, 0.1 mL of PEI solution prepared as above and 0.1 mL of 30 mM EDTA 

solution were added to the 0.75 mL of cell suspension (OD600 ~ 80) in order to give 

final PEI concentrations in the range of 0 to 10 mg/mL and fixed EDTA concentration 
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of 3 mM. For both conditions, the total volume was maintained at 1 mL with the 

addition of Tris-NaCl buffer. After incubation for 6 h, the extraction mixture was 

centrifuged at 15000g for 25 min. The supernatant was analyzed by SDS-PAGE and 

residual DNA concentration was measured as described in the Analytical methods 

section. The aforementioned procedure was repeated for cell suspensions of varying 

cell densities in Tris-NaCl-urea buffer.  

 

7.2.6 IMAC purification of His-tagged proteins 

Following the extraction, MgCl2 was added to the extraction mixture at a final 

concentration of 100 mM in order to counteract residual PEI, which was essential for 

extraction but detrimental to IMAC operation. The mixture was incubated for 0.5 h 

and centrifuged at 15000g for 0.5 h. The supernatant collected was applied at a flow 

rate of 1 mL/min to a 2.5 cm i.d.×15 cm column (Econo-Column Chromatography 

Column, 737-1517, Bio-Rad) packed with 5 mL of Ni2+-charged iminodiacetic acid 

(IDA) resin following equilibration with a binding buffer (50 mM Tris, 150 mM NaCl, 

6 M urea, 20 mM imidazole, pH 8.0). The resin was then washed with 10 column 

volume (CV) of washing buffer (50 mM Tris, 150 mM NaCl, 6 M urea, 40 mM 

imidazole, pH 8.0) to eliminate weakly or nonspecifically bound proteins. The bound 

proteins were eluted by gradually replacing the washing buffer with elution buffer (50 

mM Tris, 150 mM NaCl, 6 M urea, 500 mM imidazole, pH 8.0) over 60 min. The 

protein content in the eluent was analyzed by SDS-PAGE. All the chromatographic 

purifications were conducted using BioLogic LP from Bio-Rad (731-8300, 731-8301). 
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7.2.7 Analytical methods 

Protein detection and quantification: Total protein concentration determination and 

SDS-PAGE were conducted as described in Chapter 3. 

 

DNA measurement: Residual DNA in the supernatant was measured using Quant-iTTM 

Oligreen® ssDNA Quantitation Kit (O-7582, Molecular ProbesTM). All samples were 

assayed in a final volume of 200 µL (100 µL of sample and 100 µL of the diluted 

Quant-iTTM Oligreen® Reagent in 96-well microplate). Samples were excited at 485 

nm and fluorescence intensity was measured at 535 nm with a fluorescence 

microplate reader (Genios Multi-Detection Microplate Reader, Tecan).  

 

When urea was not used, the dsDNA should be first converted to ssDNA for Oligreen 

assay (Choe and Middelberg, 2001b). The collected supernatants were autoclaved at 

121°C for 15 min to convert dsDNA to ssDNA before dilution of the sample. 

Autoclaved samples and standard calf thymus DNA samples were removed from the 

autoclave at 95°C and were cooled rapidly on ice to minimize DNA annealing. When 

urea was present in the samples, the samples were directly assayed using 6 M urea 

treated calf thymus DNA as a standard.  

 

Cellular components in the crude protein mixture after chemical extraction might 

exert an adverse effect on the DNA analytical assay, and thus relative solubility of 

DNA was reported in the Results and discussion instead of absolute concentration of 
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DNA. By taking the ratio of two DNA concentrations, relative solubility of DNA 

would allow the normalization of assay error (if any). For consistency, recovery of 

proteins was also presented in relative form. 

 

7.3 Results and discussion 

7.3.1 Expression of recombinant gloshedobin and IbpA 

pET-32a(+)+TLE and pET-19b+IbpA were separately transformed into E. coli 

BL21(DE3). The expression of recombinant gloshedobin and IbpA relied on IPTG 

induction. As shown in Figure 7.1, both proteins were expressed mainly in the form of 

IBs (lane 6 in panel A or lane 6 in panel B). The expression levels estimated by 

densitometry are around 13% and 10% for gloshedobin and IbpA, respectively.  

 

 
Figure 7.1 Expression profiles of recombinant gloshedobin and IbpA. (A) SDS-PAGE 
for the analysis of gloshedobin expressed in E. coli BL21(DE3) harboring 
pET-32a(+)+TLE. Molecular weight marker was loaded in lane 1. Lanes 2-4 are from 
the uninduced cells: the whole cell extracts (lane 2), the insoluble fraction (lane 3) and 
the soluble fraction (lane 4) in the cell extracts after high pressure cell disruption. 
Lanes 5-7 are from the induced cell: the whole cell extracts (lane 5) the insoluble 
fraction (lane 6) and the soluble fraction (lane 7) in the cell extracts. (B) SDS-PAGE 
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for the analysis of IbpA expressed in E. coli BL21(DE3) harboring pET-19b+IbpA. 
The lane description is the same as in (A). 

 

Processes with a long downstream cascade generally result in a lower product 

recovery, while incurring more time, labor and cost due to the increased process steps 

and also to process incompatibility between each step (Choe et al., 2006). These 

inefficiencies are inherent in the conventional IB processing route which is 

characterized by multiple unit operations including cell disruption, the initial 

fractionation of IB proteins often entailing repeated washing steps, solubilization of 

IBs and subsequent various chromatographic procedures to purify the solubilized 

proteins prior to refolding. Although the development of alternative IB protein 

extraction methods (Falconer et al., 1997; 1998; 1999) obviated the need to separate 

micronized cell debris and has thus addressed some inefficiencies residing in the 

mechanical cell disruption based IB extraction methods, an excessive viscosity 

increase in the resulting extraction suspension due to the co-released non-sheared 

DNA necessitated further study to provide a more economically viable milieu to 

harness the advantages of chemical extraction route for IB processing. Thus the 

present study investigated the possibility of selectively precipitating DNA (thereby 

reducing the viscosity) by incorporating a widely known polycationic DNA 

precipitant PEI during the extraction of two model proteins (gloshedobin and IbpA) 

expressed primarily as IBs. 
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7.3.2 Effect of PEI on selective DNA precipitation 

The effect of pH on PEI precipitation of DNA was first investigated at a fixed DNA 

concentration (480 mg/L). The PEI concentration at each pH was varied to give 

predetermined PEI to DNA ratio (mg/mg) (Table 7.1). As shown in Figure 7.2, 

PEI-induced DNA precipitation was more effective at lower pH conditions (pH 7-10). 

This is in good agreement with previous findings where the amine groups within PEI 

gradually lost their positive charges due to deprotonation with increasing pH and thus 

became less efficient in DNA precipitation (Cordes et al., 1990). 

 

 

Figure 7.2 Solubility profiles of calf thymus DNA in 0.1 M Tris at various pH 
conditions ranging from pH 7 to 12. Initial DNA concentration was 480 mg/L. 

 

When pH was 10 or lower, PEI-induced precipitation of DNA appeared to be highly 

efficient, as a fast transition from soluble to insoluble DNA was observed at a 

PEI/DNA ratio of approximately 0.1 mg/mg. Precipitation of DNA by PEI was almost 
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complete and fast, as no detectable residual DNA was found in the solution for a wide 

range of PEI/DNA ratios. It was reported that FDE efficiency was strongly 

pH-dependent and increased with pH (Falconer et al., 1997). However, a typical pH 

for chemical extraction has often been fixed around 9.0, since this condition enabled 

almost complete release of cytoplasmic proteins including IBs from E. coli while 

minimizing the danger of protein modification at alkaline condition (Falconer et al., 

1997). In this context, the optimum pH range (7-10) for PEI-induced DNA 

precipitation would not compromise the extraction efficiency. Furthermore, compared 

to the previously reported spermine-induced DNA precipitation (Choe and 

Middelberg, 2001b) where a spermine to DNA ratio of 0.5 was required to precipitate 

DNA, five times less PEI was sufficient to achieve an equivalent extent of DNA 

precipitation in the same condition. In addition, the cost of spermine is approximately 

48 times more than PEI, suggesting that PEI is a more economically viable DNA 

precipitant than spermine. 

 

Besides the pH factor, the presence of chemicals commonly present in chemical 

extraction condition might also affect the PEI-induced DNA precipitation. EDTA and 

urea are the two major chemicals in FDE (Falconer et al., 1997; 1998; 1999). EDTA 

was reported to play an important role for the effective extraction of intracellular 

proteins by chelating the divalent cations that maintain the integrity of the E. coli 

outer membrane (OM) (Brown, 1963; Leive, 1965; Asbell and Eagon, 1966; Leive, 

1973). It was found that the presence of EDTA (3 mM) did not affect PEI-induced 
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DNA precipitation (data not shown), and this is in good agreement with the previous 

study where spermine was used as a DNA precipitant (Choe and Middelberg, 2001b).  

 

The use of urea in FDE was also reported to be essential for the effective 

permeabilization of E. coli inner membrane (IM) by solubilizing membrane proteins 

(Falconer et al., 1997; 1998; 1999). Since urea increases the dielectric constant of the 

solution, the reduction of DNA precipitation efficiency is expected in the presence of 

urea. Urea interference with DNA precipitation was confirmed by a noticeable shift in 

the spermine/DNA ratio required for DNA precipitation from 0.5 (in the absence of 

urea) to 5.0 (in the presence of urea) (Choe and Middelberg, 2001b). The interference 

of urea was also observed in PEI-induced DNA precipitation and the PEI/DNA ratio 

required for almost complete removal of DNA increased to approximately 0.5, 

suggesting that more than 5 times of PEI was required to achieve complete removal of 

DNA in the presence of urea compared with the conditions lacking urea (Figure 7.3). 

The pH effect on DNA precipitation was independent of the urea interference since 

the same pH-dependency in DNA precipitation efficiency was found: DNA 

precipitation was negligible at high pH conditions (>10), but almost complete DNA 

precipitation was achieved at PEI/DNA ratio higher than 5 at low pH conditions (<10) 

and the precipitation efficiency was indistinguishable from that achieved in the 

absence of urea (Figure 7.3). At pH 10, resolubilization of DNA occurred at a 

PEI/DNA ratio of around 11. A similar phenomenon was also observed in the 

spermine-induced DNA precipitation (Choe and Middelberg, 2001b) where the 
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specific spermine concentration for DNA precipitation is 5-10, while resolubilization 

of DNA was found at a spermine/DNA ratio of around 100. Raspaud et al. (1998) also 

reported that the required spermine concentration for DNA precipitation increased 

with the DNA concentration, while a redissolution of DNA in excess of spermine is 

nearly independent of DNA concentration.  

 

 
Figure 7.3 Solubility profiles of calf thymus DNA in the presence of 6 M urea at 
various pH conditions ranging from pH 7 to 12. Initial DNA concentration was 480 
mg/L. 

 

To mimic the actual chemical extraction environment and also to investigate the 

selectivity of PEI-induced DNA precipitation, BSA was chosen as a model protein 

and urea (commonly present in chemical extraction medium) was added separately or 

in combination with BSA and was incubated with PEI and DNA. As the presence of 

PEI would interfere with the commonly employed protein assays (Gupta et al., 2000), 

the recovered BSA was measured by densitometric method using GeneTools after 
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running SDS-PAGE. PEI was found to interact selectively with DNA, and negligible 

protein precipitation was found. Complete recovery of BSA was achieved for a wide 

range of PEI concentrations (Figure 7.4), indicating that PEI interacted selectively 

with DNA without affecting BSA solubility (DNA precipitation efficiencies were 

similar to those in Figure 7.2). This high-selectivity interaction of PEI with DNA 

would be promising for minimizing the loss in protein recovery during the extraction 

process. The pH-dependent DNA precipitation by PEI was confirmed again in the 

presence of BSA and urea since high-efficiency DNA precipitation occurred only in 

the pH range from 7 to 10 (Figure 7.5). 

 

 
Figure 7.4 BSA recovered in the supernatant at various pH conditions. Initial DNA 
concentration was 480 mg/L. Initial BSA concentration was 15 g/L. 
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Figure 7.5 Solubility profiles of calf thymus DNA in the presence of 6 M urea and 15 
g/L BSA at various pH conditions. Initial DNA concentration was 480 mg/L. 

 

The concentrations of DNA and protein tested in the present study are those typically 

employed for the chemical extraction of E. coli cell suspension of OD600 = 60-80. The 

demonstrated high selectivity of PEI to DNA is very promising for achieving selective 

removal of DNA from the extraction broth without affecting the target protein 

recovery. The optimum pH conditions for PEI-induced DNA precipitation (i.e., pH 

range of 7-10) are also conducive to maximizing the pH-dependent extraction 

efficiency reported previously (Falconer et al., 1997; 1998; 1999; Choe and 

Middelberg, 2001b). 

 

7.3.3 Extraction of gloshedobin and precipitation of coextracted 

DNA using PEI 

Although PEI proved effective in selectively precipitating DNA without affecting the 
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protein solubility, its effect on the chemical extraction efficiency should be assessed in 

order to justify the use of PEI as a low-cost DNA precipitant during the extraction. 

Therefore, we introduced PEI in the extraction processes at various pH conditions 

ranging from 7 to 10. Traditionally used 3 mM EDTA in FDE was also included to see 

whether the presence of EDTA will affect the efficiency of extraction or DNA 

precipitation during PEI-mediated chemical extraction. As shown in Figure 7.6, the 

cytoplasmic proteins were almost completely released and recovered in the 

supernatant in a wide range of PEI concentrations and the efficiency of chemical 

extraction estimated by total protein release showed no significant difference for all 

the pH conditions tested. 

 

 
Figure 7.6 Total protein recovery following PEI-mediated chemical extraction of 
recombinant E. coli BL21(DE3) expressing gloshedobin (mostly as IBs) without the 
use of EDTA. Extraction was conducted at a cell suspension of OD600 = 60. Total 
protein release following the high pressure cell disruption at the same OD was set as 
1.  
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Interestingly, compared to traditional FDE, the employment of EDTA was not 

necessary for the extraction of gloshedobin from the recombinant E. coli strain 

BL21(DE3) since the addition of 3 mM EDTA showed no further improvement in the 

extraction efficiency (Figure 7.7). It is well-known that the presence of an OM in all 

Gram-negative bacteria forms a permeability barrier against hydrophobic substances 

and macromolecules (Nikaido, 1989). For this reason, Gram-negative bacteria exhibit 

higher resistance to detergents and hydrophobic antibiotics than Gram-positive 

bacteria (Nikaido, 1989). Therefore, our experimental data implied that PEI (a good 

metal chelating agent) mimicked the role of well-known permeabilizer EDTA in terms 

of chelating divalent cations essential for the stabilization of the OM of 

Gram-negative bacteria including E. coli in addition to working as a selective DNA 

precipitant. 

 

 
Figure 7.7 Total protein recovery following PEI-mediated chemical extraction with 
the use of 3 mM EDTA and 6 M urea. Extraction was conducted at a cell suspension 
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of OD600 = 60. Total protein release following the high pressure cell disruption at the 
same OD was set as 1.  

 

The chelation of metal ions by PEI at alkaline pH is due to the interaction of lone-pair 

electrons of nitrogen atoms on PEI with the electron-deficient, positively charged 

metal ions (Geckeler and Volchek, 1996; Molinari et al., 2004). At low solution pH, 

nitrogen atoms on PEI are protonated (positively charged), and hence no lone-pair 

electrons are available to interact with the metal ions. As the solution pH increases, 

the extent of protonation for the nitrogen atoms on PEI decreases, rendering more 

lone-pair electrons available. Although PEI (MW 6×105-1×106) has a net positive 

charge up to pH 11 (Erim et al., 1995), the presence of lone-pair electrons on the 

nitrogen enables PEI to interact with the transition metal ions. In contrast, EDTA has 

two nitrogen atoms and the four carboxylic acid groups and the degree of their 

protonation is inversely proportional to pH value. Hence, EDTA is positively charged 

at low pH, whereas at high pH it is negatively charged due to the presence of 

deprotonated carboxylate group (COO-). At alkaline pH, EDTA chelates metal ions 

through both the nitrogen lone pair and carboxylate group. The presence of a 

carboxylate group in EDTA but not in PEI probably allows alkali and alkaline earth 

metals to bind to EDTA but not to PEI at alkaline pH.  

 

The OM binds various metal ions such as alkali metal (Na, K), alkaline earth metal 

(Mg, Ca), and transition metal (Hoyle and Beveridge, 1983). It is known that 

chemical extraction requires EDTA to disintegrate the OM by chelating the metal ions 
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(Brown, 1963; Leive, 1965; Asbell and Eagon, 1966; Leive, 1973). In the present 

study, the chemical extraction proceeded successfully despite the replacement of 

EDTA with PEI, indicating that efficient chelation of transition metal ions present in 

the OM is sufficient for OM disintegration. However, it was reported that the 

efficiencies of FDE methods were strongly pH-dependent and increased with pH 

(Falconer et al., 1997) due to the proportionally increasing chelating efficacy of 

EDTA. On the contrary, PEI-mediated extraction efficiency was not pH-dependent for 

the pH range tested (from 7 to 10), exhibiting a highly efficient protein release 

regardless of the extraction pH (Figures 7.6 and 7.7). The use of PEI during the 

extraction also proved very effective in extracting IB protein (i.e., gloshedobin). As 

shown in Figure 7.8, the efficiencies of target protein release in PEI-mediated 

chemical extraction (without EDTA) at various pH conditions were equivalent to the 

mechanical cell disruption efficiency. 
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Figure 7.8 Recovery of gloshedobin after direct chemical extraction of recombinant E. 
coli BL21(DE3) expressing gloshedobin (mostly as IBs). Extraction was conducted at 
a cell suspension equivalent to OD600 = 60. The concentration of gloshedobin was 
estimated from the corresponding bands from SDS-PAGE gels by densitometric 
analysis. The release of gloshedobin following the high pressure cell disruption at the 
same OD was set as 1.  

 

This broad optimum pH range would be an additional advantage of PEI-mediated 

extraction, in addition to replacing EDTA and cost-prohibitive spermine. Moreover, 

besides the chelating effect, PEI was reported to render Gram-negative bacteria 

permeable to detergents and to hydrophobic antibiotics at acidic and neutral pH 

conditions (Helander et al., 1997; 1998). The potential role of PEI for this enhanced 

permeability of PEI-treated Gram-negative bacteria was suggested to arise from its 

binding to anionic lipopolysaccharide (LPS) on the OM surface, thereby causing 

impairment in the protective function of the OM (Helander et al., 1998). Various 

divalent cations and LPS are abundant in the OM and known to be essential for OM 

integrity. It was therefore postulated that the putative function of PEI in the 

PEI-mediated extraction could be to weaken the OM, the first permeability barrier in 

E. coli, by scavenging divalent cations (via chelation) and/or extracting LPS (via 

electrostatic or affinity binding). This proposed individual or synergistic action of PEI 

could lead to the disruption of the OM and thus make the chemical extraction work in 

a wider pH range compared to the traditional FDE.  

 

From Figure 7.9, it is clear that PEI-mediated precipitation of coextracted DNA was 

efficient in the pH range of 7-9 in the chemical extraction condition using PEI without 
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the use of EDTA. Compared with Choe and Middelberg's work (2001b) in which a 

spermine/DNA ratio of 10 mg/mg was needed to precipitate 85% of DNA, only 7.5 

mg/mg of PEI/DNA was required to achieve more than 90% precipitation of DNA 

from the extraction mixture. It is noted that the pH 10 condition, which enabled 

almost complete precipitation of calf thymus DNA while achieving high-efficiency 

protein extraction, gave rise to significantly compromised DNA precipitation, 

probably due to the decreased PEI-DNA electrostatic interaction via increased 

screening effect as expected from a highly complex solution such as cell extracts. 

Even for pH 7-9 conditions, the complete precipitation of DNA was not realized since 

approximately 10% DNA was still soluble, indicating that other cellular components 

might exert an adverse effect on PEI-mediated DNA precipitation. Alternatively, as 

reported by Choe and Middelberg (2001b), this might be caused by a certain fraction 

of short DNA fragments in the extraction medium that were difficult to condense 

using PEI. Widom and Baldwin (1980) also found that the condensation of shorter 

DNA fragments by hexamine cobalt (III) required longer incubation time. In addition, 

Hoopes and McClure (1981) reported a threshold of DNA fragment length (~200 bp) 

for effective precipitation and found that this effect was important primarily under 

moderate salt conditions. It is thus likely that the reduced efficiency of DNA 

precipitation is mainly due to the population of short DNA fragments (in the chemical 

extraction mixture) that are not present in calf thymus DNA solution. 
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Figure 7.9 Solubility profiles of DNA following PEI-mediated chemical extraction of 
recombinant E. coli BL21(DE3) expressing gloshedobin (mostly as IBs). Extraction 
was conducted at a cell suspension of OD600 = 60. The concentration of DNA from the 
extraction condition lacking PEI was set as 1. 

 

7.3.4 PEI-mediated chemical extraction and selective 

precipitation of DNA at high cell densities 

Mechanical disruptions at various cell densities were conducted as control 

experiments to demonstrate the efficiency of chemical extraction. As shown in Figure 

7.10, the efficiency of PEI-mediated chemical extraction was comparable to that of 

mechanical disruption even at OD600 = 150. At each OD, more than 90% of DNA was 

removed when PEI was applied at a final concentration of 10 mg/mL. The selected 

PEI concentration was equivalent to approximately 20 mg/mg of PEI/DNA at OD600 = 

60 (Figure 7.9) and about 2.7 times higher than the optimal ratio determined at OD600 

= 60 (7.5 mg/mg). The excess use of PEI was to account for the proportionally 

increasing DNA concentration at high cell densities (note that DNA release at OD600 = 
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150 is 2.5 times that at OD600 = 60). The data summarized in Figures 7.7-7.10 

demonstrated that PEI is highly efficient for selective precipitation of DNA from the 

chemical extraction mixture while exhibiting its function in a wide range of cell 

densities (OD600 = 30-150) as an effective extraction chemical capable of replacing 

EDTA. 

 

 
Figure 7.10 Recovery of total protein and solubility profile of DNA following 
PEI-mediated chemical extraction of recombinant E. coli BL21(DE3) expressing 
gloshedobin at various cell densities. The PEI concentration at each OD was 10 
mg/mL. 

 

7.3.5 Chemical extraction of IbpA and precipitation of 

coextracted DNA by PEI 

We further tested the efficacies of PEI-mediated chemical extraction and DNA 

precipitation of another recombinant protein IbpA which was also expressed mainly 

as IBs (Figure 7.1B) to verify that the PEI effect on the chemical extraction and 
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selective DNA precipitation is not protein-specific. For the case of IbpA, the 

extraction was conducted for a cell suspension of OD600 = 80. Despite the change of 

model protein, the efficiency of total or target protein extraction and the efficacy of 

selective DNA precipitation remained almost the same as those observed for 

gloshedobin extraction (data not shown). 

 

7.3.6 IMAC purification of His-tagged gloshedobin and IbpA 

As our target proteins (both gloshedobin and IbpA) were expressed as fusion proteins 

with a 6×His-tag at their N-terminal, i.e., thioredoxin-6×His-tag-gloshedobin and 

10×His-tag-IbpA, IMAC provides a convenient post extraction purification and 

potential refolding step. The supernatant after chemical extraction was loaded onto a 

Ni2+-charged IMAC column. The trace amount of PEI left in the supernatant, after 

screening PEI-metal ion interaction by Mg2+ addition (Juang and Chiou, 2000), had 

no significant effect on the Ni2+-charged resin or the binding of target protein to the 

resin. This simple strategy of Mg2+ addition was effective to counteract PEI, which is 

essential at the time of extraction but detrimental to the subsequent IMAC process, 

thereby facilitating direct coupling of PEI-mediated extraction with IMAC 

purification. Following the adsorption of target protein and extensive washing, the 

bound protein was eluted using a linear gradient spanning from washing buffer to 

elution buffer containing 0.5 M imidazole. The fractions containing the His-tagged 

gloshedobin or His-tagged IbpA were analyzed by SDS-PAGE, followed by 

Coomassie blue-staining (Figure 7.11). The purity of IbpA following IMAC 
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purification was over 95% as determined by densitometric quantification. The 

purified gloshedobin, however, was significantly contaminated by an expression 

product (bands with molecular weight of 27.5 kDa in Figure 7.11A) and the purity of 

full-length gloshedobin was approximately 60%. Comparing the insoluble fraction 

from uninduced cells (Figure 7.1A, lane 3) to the insoluble fraction from induced cells 

(Figure 7.1A, lane 6), we observe that the lower band for gloshedobin only appears in 

the insoluble fraction from induced cells. Moreover, this lower band contains the 

6×His-tag as it could be purified by IMAC (Figure 11A). These show that the lower 

band is a truncated product, which might be the thioredoxin-6×His-tag containing 

N-terminal fraction of intact gloshedobin, and therefore it could be co-purified by 

IMAC together with the full-length target protein. 

 

 
Figure 7.11 (A) Purified gloshedobin (A) and IbpA (B) by IMAC following their 
extraction from the expression hosts using PEI-mediated extraction method. The 
bound proteins were eluted by a liner gradient of imidazole (0-0.5 M). Fractions 
containing proteins (gloshedobin or IbpA) were collected and analyzed with 
SDS-PAGE. (Lane 1, molecular weight marker; Lanes 2-7, selected elution fractions 
collected during IMAC purification).  
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In this chapter, we demonstrated that direct single-step PEI-mediated extraction was 

more efficient for the extraction of cytoplasmic IB proteins compared to mechanical 

disruption or other chemical extraction methods reported previously. High molecular 

weight DNA was efficiently precipitated by simple addition of PEI without affecting 

the target protein recovery. In addition, PEI obviated the need of using EDTA or 

cost-prohibitive spermine at the time of extraction, and hence PEI proved to serve at 

least a dual purpose in the new chemical extraction protocol presented. This facilitates 

direct coupling of chemical extraction step with IMAC or other subsequent processing 

step, simplifying protein purification process. 

 

7.4 Conclusion 

The present study demonstrated that PEI is a very efficient agent to precipitate DNA 

from the extraction broth without affecting the solubility of target protein. Compared 

to spermine-induced precipitation of DNA reported elsewhere (Choe et al., 2001b), 

PEI-induced DNA precipitation not only showed higher efficiency, but also involved 

lower cost. The traditionally used EDTA was not necessary for the PEI-mediated 

chemical extraction and the use of only urea and PEI in Tris buffer was sufficient to 

obtain almost complete recovery of IBs from the cytoplasm of E. coli. This selective 

removal of DNA by PEI is fully compatible with the extraction method, and is simple 

to implement. The PEI-mediated chemical extraction therefore allows direct coupling 

of chemical extraction at a high cell density with IMAC and thus greatly simplifies 

the IB purification process in an economically viable way. 



Chapter 8 

Chapter 8 

Conclusions and future work                  
 

Summary 

Throughout the research work presented in Chapters 3-7, gloshedobin, a kind of 

thrombin-like enzyme (TLE), expressed mainly as inclusion bodies (IBs) in E. coli, 

was successfully produced as intact form with significant amount of recovered 

activity. The contamination of truncated expression products associated with the 

full-length gloshedobin expression was eliminated by co-expression of a molecular 

chaperone, ClpB. A folding-like-refolding strategy harnessing unpurified ClpB and 

DnaK/DnaJ/GrpE (DnaKJE) bichaperone system was developed using a model 

protein (heat-denatured malate dehydrogenase (MDH)) and successfully applied to 

enhance the column-based (with the use of immobilized metal affinity 

chromatography (IMAC)) refolding of full-length gloshedobin from cell disruptates. 

The new refolding method showed significant improvement on the protein refolding 

compared with the traditional protein refolding strategies in either dilution or 

on-column mode. Further process intensification for recovery of gloshedobin IBs was 

achieved by incorporation of PEI-mediated chemical extraction with IMAC protein 

purification to overcome the inefficiencies associated with the traditionally used IB 

recovery strategy, such as mechanical cell disruption. This novel process 

intensification method, together with the approach to reduce the truncated expression 

products and the folding-like-refolding strategy are thus expected to lead to a more 
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efficient and economically viable processing route for the large-scale production of 

refolding-recalcitrant IB proteins.  

 

To maximize the benefits of the novel process developed in this work, some points 

requiring further investigation are addressed. In this study, although the unpurified 

ClpB/DnaKJE bichaperone system was demonstrated to efficiently refold 

heat-denatured protein (MDH), the application of this system is still constricted 

considering the highly complex refolding cocktail used in the refolding process. To 

overcome this problem, addition of affinity tags (e.g. 6×His-tag) to each molecular 

chaperone may facilitate the subsequent purification of target proteins after the 

refolding reaction. An alternative refolding strategy harnessing chaperone-tagged 

beads can also be investigated in order to facilitate the downstream protein processing 

with ease separation of target proteins from molecular chaperones. In addition, the 

mechanism of ClpB in the reduction of truncated expression need to be further 

investigated. Strategies relying on the mutation of different domains on ClpB may be 

conducted to understand its detailed function. Finally, the folding-like-refolding 

strategy developed in this study can be further extended to other refolding techniques, 

such as expanded bed adsorption (EBA), high gradient magnetic separation (HGMS) 

or high-pressure fostered protein refolding. To prove the general applicability of the 

demonstrated strategy to IB processing, more IB proteins with different characteristics 

should be tested.  
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8.1 Main conclusions 

In general, Escherichia coli is one of the most extensively used prokaryotic organisms 

for genetic manipulations and industrial production of proteins (Swartz, 2001). 

However, many recombinant proteins exist in insoluble protein aggregates called 

inclusion bodies (IBs) when overexpressed in E. coli. Traditional isolation and 

refolding methods for IBs, such as cell disruption by high pressure or ultrasonic 

waves and differential centrifugation to remove cell debris and precipitate IBs 

followed by dilution or dialysis refolding, are time-consuming and inefficient 

(Middelberg, 1995; Falconer et al., 1997; Wong et al., 1997). Moreover, the large 

amount of truncated expression products significantly complicated the following 

purification and refolding of full-length target protein, gloshedobin (a thrombin-like 

enzyme (TLE) recently isolated from snake venom) (Yang et al., 2002).  

 

This research aims to design an efficient protein recovery scheme so as to produce 

intact gloshedobin with biological activity. The selection of strategies and unit 

operations for this purpose were done following a review of recent advances in 

downstream protein purification and refolding detailed in Chapter 2. The molecular 

chaperones mediated protein refolding (Weibezahn et al., 2004b), column-based 

protein purification/refolding (Ueda et al., 2003), and the direct chemical extraction 

(Falconer et al., 1997; 1998; Choe and Middelberg, 2001a; 2001b) were selected as 

promising processing steps for simplified and more efficient IB recovery strategy. 

Multitasking of a single unit operation, some industrial heuristics and feasibility of 
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large-scale implementation were emphasized during the study. 

 

In Chapter 3, a novel folding-like-refolding strategy harnessing a bichaperone-based 

refolding cocktail comprising unpurified E. coli heat-shock proteins ClpB and 

DnaK/DnaJ/GrpE (DnaKJE), was first developed to mimic the exquisite folding 

mechanism afforded by protein quality control network reported elsewhere (Schlieker 

et al., 2002; Baneyx and Mujacic, 2004). The concept of using unpurified proteins 

obviated the demand of main cost-inhibitive steps to express and purify each of these 

molecular chaperones. A plasmid encoding ClpB with a 6×His-tag at its C-terminus 

(His-ClpB) was first constructed to facilitate its purification through IMAC. A 

different plasmid capable of expressing the DnaKJE was used to obtain a cell extract 

containing unpurified DnaKJE. The effect of purified His-ClpB and unpurified 

DnaKJE on the refolding of a model protein (heat-denatured malate dehydrogenase 

(MDH)) was investigated, and proved to be highly efficient. Furthermore, the use of 

both unpurified His-ClpB and DnaKJE available in the cell extract enabled highly 

successful refolding of the heat-denatured MDH with efficacy comparable to the case 

where the purified His-ClpB was used, thus providing a practical and economically 

viable way of implementing a large-scale folding-like-refolding strategy.  

 

In Chapter 4, we further found that the use of polyethylene glycol (PEG) as a 

refolding additive to the refolding cocktail comprising ClpB/DnaKJE bichaperone 

system significantly enhanced the chaperone-mediated refolding of heat-denatured 
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MDH. The binding of PEG onto the refolding intermediates initiated by chaperoning 

activity of ClpB/DnaKJE might inhibit the reaggregation of these intermediates. The 

critical factor to affect the refolding yield is the time point of introducing PEG and the 

refolding efficiency reached approximately 90% only when PEG was added at the 

beginning of refolding reaction. The synergistic coordination of an inexpensive 

refolding additive PEG with the ClpB/DnaKJE bichaperone system may provide an 

economical route to further enhance the efficacy of ClpB/DnaKJE refolding cocktail 

approach, facilitating its implementation in large-scale refolding processes. 

 

Prior to confirming the applicability of the proposed folding-like-refolding strategy to 

the refolding of gloshedobin IBs, in Chapter 5, it was observed that the expression of 

gloshedobin was strongly dependent on the expression host. The truncated expression 

was reduced by 25% when the protein was expressed in E. coli BL21(DE3)pLysS 

instead of BL21(DE3). It was also demonstrated that co-expression of ClpB in 

BL21(DE3) enabled the expression of gloshedobin mostly in intact form without 

compromising expression level, while almost completely eliminating its truncation 

products. Following extraction and solubilization of the IBs from the cell disruptates, 

one-step IMAC purification produced highly purified (>99%) denatured-solubilized 

full-length gloshedobin ready to enter the subsequent refolding process. However, the 

traditional dilution or column refolding strategy, based on gradual denaturant removal, 

was found to be inefficient for the recovery of protein activity.  
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In Chapter 6, a novel column-based (IMAC) refolding strategy employing unpurified 

ClpB/DnaKJE bichaperone system as developed in Chapter 3 was demonstrated to be 

superior to the conventional refolding methods in either batch dilution or column 

refolding mode. The application of the bichaperone system was shown to be effective 

in reactivating these misfolded species to further increase the refolding yield and the 

refolded protein successfully regained their native structure as ascertained by 

RP-HPLC and CD spectrum analysis. Furthermore, compared with traditional dilution 

refolding, the same enzymatic activity was recovered by the chaperone-assisted 

column refolding at a much higher protein concentration with lower buffer 

requirement. However, the strategy used in this chapter to isolate gloshedobin IBs 

followed the traditionally utilized methods which are time-consuming and inefficient, 

including cell disruption by high pressure, repeated centrifugation to precipitate IBs 

and dissolution of IBs in high concentration of denaturant.  

 

With the limitations realized, the recovery process for gloshedobin IBs was therefore 

further integrated through coupling of IMAC protein purification with chemical 

extraction (Falconer et al., 1997; 1998; 1999; Choe and Middelberg, 2001a) which 

was suggested to be an efficient way to overcome the inefficiencies associated with 

traditional IB recovery method. In Chapter 7, a more efficient PEI-mediated chemical 

extraction was developed. The selectivity of PEI in DNA precipitation during 

chemical extraction was investigated in order to reduce the high viscosity of the cell 

extracts resulted from the presence of high molecular weight DNA. High DNA 

 177



Chapter 8 

removal efficiency (more than 90%) was achieved at various cell densities (with 

OD600 up to 150) without affecting the solubility of host cell proteins. Compared to 

spermine-induced precipitation method reported elsewhere (Choe and Middelberg, 

2001b), PEI provided a higher DNA precipitation efficiency at a significantly lower 

cost. Moreover, PEI obviated the use of EDTA, which has been reported to be 

essential for the chemical extraction methods, hence exhibiting dual roles in replacing 

cost-prohibitive spermine and EDTA. The residual PEI in the post-extraction mixture 

was efficiently counteracted by addition of Mg2+, allowing the streamlined application 

of the extraction broth to IMAC protein purification.  

 

Overall the research presented in this thesis established new concepts for IB 

processing. A novel folding-like-refolding strategy harnessing unpurified 

ClpB/DnaKJE molecular bichaperone system provided a straightforward way to apply 

this system in more operations, especially for large-scale protein production. Through 

the initial reduction of truncated expression products by co-expression of ClpB, the 

quality of protein expression can be significantly improved, which may greatly 

facilitate the following protein purification and refolding. The subsequent 

bichaperone-mediated column refolding strategy provided an effective tool for 

refolding-recalcitrant proteins whose expression is otherwise difficult to achieve. 

Finally the PEI-mediated chemical extraction coupled with IMAC protein purification 

provided a more economically viable way for production of recombinant proteins 

whose expression is hampered by IB formation. This offers the potential for further 
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process intensification. Therefore, a totally new IB processing scheme which may 

enable the more efficient recovery of IB proteins especially for those contaminated 

with truncated expression products was proposed as shown in Figure 8.1.  

 

 

Figure 8.1 A more efficient and simplified IB scheme as proposed in this study. 

 

8.2 Suggestions for future work 

In this study, we demonstrated the refolding of heat-denatured protein (MDH) by 

unpurified ClpB/DnaKJE bichaperone system. However, application of this system in 

this way is still constricted considering the highly complex refolding cocktail used in 

the refolding process. Additional purification steps must be incorporated in order to 

recover the refolded target protein. To overcome this problem, we can either add 

fusion tags (e.g. 6×His-tag) to the target protein or to the molecular chaperones (e.g. 

His-DnaK, His-DnaJ and His-GrpE) to facilitate the IMAC purification of target 

protein after complete or partial refolding. Chromatographic separation using size 

exclusion chromatography (SEC) can be used subsequently to fractionate the correctly 
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folded target protein from other refolding intermediates. Those molecular chaperones 

captured by the metal affinity resin may be eluted and the potential of recycling the 

recovered molecular chaperones for the next batch refolding process need to be 

further investigated. 

 

An alternative refolding strategy harnessing chaperone-tagged beads can also be 

explored to facilitate downstream native protein isolation. In this refolding scheme, 

stoichiometric amounts of different kinds of His-tagged molecular chaperones are first 

immobilized on the metal chelating beads (or magnetic beads functionalized to 

capture His-tagged chaperones) and the refolding process is then initiated by 

introducing the target protein into the bead suspension. The purification of refolded 

target protein in the bulk solution is achieved by a low-speed centrifugation or 

filtration followed by SEC fractionation to separate the chaperone-tagged beads from 

the soluble, refolded target protein. The separated chaperone-tagged beads are ready 

to be re-used for the next batch of refolding reaction.  

 

The additional benefit through harnessing His-tagged chaperones is that by using the 

purified His-DnaK, His-DnaJ and His-GrpE described as above, the investigation on 

the effects of each individual molecular chaperone on the protein refolding can be 

achieved. The yield of heat-denatured MDH refolding was demonstrated to be 

dependent on the combined concentration of DnaKJE system in Chapter 3. Since 

DnaK, DnaJ and GrpE were co-translated from a single plasmid (pKJE7), the ratio of 
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these three chaperones kept unchanged and the individual contribution of each 

chaperone for the refolding of target protein could not be quantitatively assessed in 

the present study.  

 

Moreover, the inhibition mechanism through co-expression of ClpB on the formation 

of truncated expression products in Chapter 5 needs to be further studied. Some 

plausible scenarios which may be conducive to understand the roles of ClpB include: i) 

Co-expression ClpB with other kind of proteins whose expression was also impeded 

by the formation of truncation products. To achieve this, the gene encoding ClpB can 

be cloned and inserted to the plasmid expressing the target protein to realize the 

co-expression. An alternative way is to construct a different plasmid encoding ClpB 

but with other kind of compatible promoters. Both plasmids encoding ClpB and target 

protein can then be easily co-transformed to E. coli cells to achieve the co-expression, 

ii) Mutations on different domains of ClpB can be performed and co-expression with 

target protein is then conducted to investigate the effect of different domains on the 

reduction of truncation products, and iii) The protein sequence of the truncation 

products can be compared with the full-length protein to identify the proteases which 

cause the truncation. Then in vitro experiments may be conducted to see the interplay 

between ClpB and those specific proteases.  

 

Finally, the developed folding-like-refolding strategy may be further coupled with 

other refolding techniques, such as expanded bed adsorption (EBA), high gradient 
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magnetic separation (HGMS) or high-pressure fostered protein refolding. 

High-pressure protein refolding was demonstrated to be efficient in protein refolding. 

IB proteins dissociate under high pressure to unfolded form and with the decrease of 

pressure, the proteins gradually regain their native state. Considering the DnaKJE 

system in the protein refolding step assists the proper folding of unfolded polypeptide, 

the incorporation of DnaKJE system in high-pressure protein refolding may further 

improve the refolding efficiency.  



References 

References 
 
Ambrus A, and Fésüs L. Polyethylene glycol enhanced refolding of the recombinant 
human tissue transglutaminase. Prep. Biochem. Biotechnol. 2001, 31, 59-70.  
 
Arakawa T, and Tsumoto K. The effects of arginine on refolding of aggregated 
proteins: not facilitate refolding, but suppress aggregation. Biochem. Biophys. Res. 
Commun. 2003, 304, 148-152.  
 
Arora D, and Khanna N. Method for increasing the yield of properly folded 
recombinant human gamma interferon from inclusion bodies. J. Biotechnol. 1996, 52, 
127-133. 
 
Asbell MA, and Eagon RG. The role of multivalent cations in the organization and 
structure of bacterial cell walls. Biochem. Biophys. Res. Commun. 1966, 22, 664-671. 
 
Bai Q, Kong Y, and Geng X. Studies on renaturation with simultaneous purification of 
recombinant human proinsulin from E. coli with high performance hydrophobic 
interaction chromatography. J. Liq. Chromatogr. R. T. 2003, 26, 683-695. 
 
Baneyx F. Recombinant protein expression in Escherichia coli. Curr. Opin. 
Biotechnol. 1999, 10, 411-421. 
 
Baneyx F, and Mujacic M. Recombinant protein folding and misfolding in 
Escherichia coli. Nat. Biotechnol. 2004, 22, 1399-1408. 
 
Barnett ME, Zolkiewska A, and Zolkiewski M. Structure and activity of ClpB from 
Escherichia coli. J. Biol. Chem. 2000, 275, 37565-37571. 
 
Batas B, and Chaudhuri JB. Protein folding at high concentration using size exclusion 
chromatography. Biotechnol. Bioeng. 1996, 50, 16-23. 
 
Batas B, and Chaudhuri JB. Considerations of sample application and elution during 
size-exclusion chromatography-based protein refolding. J. Chromatogr. A 1999, 864, 
229-236.  
 
Ben-Zvi A, De Los Rios P, Dietler G, and Goloubinoff P. Active solubilization and 
refolding of stable protein aggregates by cooperative unfolding action of individual 
Hsp70 chaperones. J. Biol. Chem. 2004, 279, 37298-37303. 
 
Berdichevsky Y, Lamed R, Frenkel D, Gophna U, Bayer EA, Yaron S, Shoham Y, and 
Benhar I. Matrix-assisted refolding of single-chain Fv-cellulose binding domain 
fusion proteins. Protein Expr. Purif. 1999, 17, 249-259. 

 183



References 

Berg JM, Tymoczko JL, and Stryer L. Biochemistry, 5th Edition. W. H. Freeman & Co. 
Ltd. 2002. 
 
Betts S, and King J. There’s a right way and a wrong way: In vivo and in vitro folding, 
misfolding and subunit assembly of the P22 tailspike. Structure 1999, 7, R131-R139. 
 
Birktoft JJ, Rhodes G, and Banaszak LJ. Refined crystal structure of cytoplasmic 
malate dehydrogenase at 2.5-Å resolution. Biochemistry 1989, 28, 6065-6081. 
 
Blomback B, Blomback M, and Nilsson IM. Coagulation studies on ‘Reptilase’, an 
extract of the venom from Bothrops jararaca. Thromb. Diath. Haemorrh. 1957, 1, 
76-86. 
 
Brown AD. The peripheral structures of gram-negative bacteria IV. The cation 
sensitive dissolution of the cell membrane of the halophilic bacterium, Halobacterium 
halobium. Biochim. Biophys. Acta 1963, 75, 425-435. 
 
Buchner J, Brinkmann U, and Pastan I. Renaturation of a single-chain immunotoxin 
facilitated by chaperones and protein disulfide isomerase. Bio/Technology 1992, 10, 
682-685. 
 
Carrió MM, Cubarsi R, and Villaverde A. Fine architecture of bacterial inclusion 
bodies. FEBS Lett. 2000, 471, 7-11. 
 
Castro HC. Snake venom thrombin-like enzymes: from reptilase to now. Cell Mol. 
Life. Sci. 2004, 61, 843-856. 
 
Chang Z, Primm TP, Jakana J, Lee IH, Seryaheva I, Chiu W, Gilbert HF, and Quiocho 
FA. Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an 
oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 1996, 
271, 7218-7223. 
 
Chapman NR, Kessopoulou E, Andrews PD, Hornby DP, and Barratt CLR. The 
polypeptide backbone of recombinant human zona pellucida glycoprotein-3 initiates 
acrosomal exocytosis in human spermatozoa in vitro. Biochem. J. 1998, 330, 839-845. 
 
Cho TH, Ahn SJ, and Lee EK. Refolding of protein inclusion bodies directly from E. 
coli homogenate using expanded bed adsorption chromatography. Bioseparation 2001, 
10, 189-196. 
 
Choe WS, Clemmitt RH, Chase HA, and Middelberg APJ. Coupling of chemical 
extraction and expanded-bed adsorption for simplified inclusion-body processing: 
optimization using surface plasmon resonance. Biotechnol. Bioeng. 2002, 81, 
221-232. 

 184



References 

Choe WS, and Middelberg APJ. Direct chemical extraction of a recombinant viral 
coat protein from Escherichia coli at high cell density. Biotechnol. Bioeng. 2001a, 75, 
451-455. 
 
Choe WS, and Middelberg APJ. Selective precipitation of DNA by spermine during 
the chemical extraction of insoluble cytoplasmic protein. Biotechnol. Prog. 2001b, 17, 
1107-1113. 
 
Choe WS, Nian R, and Lai WB. Recent advances in biomolecular process 
intensification. Chem. Eng. Sci. 2006, 61, 886-906. 
 
Christensen H, and Pain SR. Molten globule intermediates and protein folding. Eur. 
Biophys. J. 1991, 19, 221-229. 
 
Cleland JL, Builder SE, Swartz JR, Winkler M, Chang JY, and Wang DIC. 
Polyethylene glycol enhanced protein refolding. Bio/Technology 1992a, 10, 
1013-1019. 
 
Cleland JL, Hedgepeth C, and Wang DIC. Polyethylene glycol enhanced refolding of 
bovine carbonic anhydrase B. J. Biol. Chem. 1992b, 267, 13327-13334. 
 
Cleland JL, and Randolph TW. Mechanism of polyethylene glycol interaction with the 
molten globule folding intermediate of bovine carbonic anhydrase B. J. Biol. Chem. 
1992, 267, 3147-3153. 
 
Cleland JL, and Wang DIC. Transient association of the first intermediate during the 
refolding of bovine carbonic anhydrase B. Biotechnol. Prog. 1992, 8, 97-103. 
 
Clemmitt RH, and Chase HA. Immobilized metal affinity chromatography of 
β-galactosidase from unclarified Escherichia coli homogenates using expanded bed 
adsorption. J. Chromatogr. A 2000, 874, 27-43. 
 
Cohen SN, Chang AC, Boyer HW, and Helling RB. Construction of biologically 
functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 
3240-3244. 
 
Cordes RM, Sims WB, and Glatz CE. Precipitation of nucleic acids with 
poly(ethyleneimine). Biotechnol. Prog. 1990, 6, 283-285. 
 
Creighton TE. Folding of proteins adsorbed reversibly to ion-exchange resins. UCLA 
Symp. Mol. Cell Biol. 1986, 39, 249-257. 
 
Daugherty DL, Rozema D, Hanson PE, and Gellman SH. Artificial chaperone-assisted 
refolding of citrate synthase. J. Biol. Chem. 1998, 273, 33961-33971. 

 185



References 

De Bernardez Clark E. Refolding of recombinant proteins. Curr. Opin. Biotechnol. 
1998, 9, 157-163. 
 
De Bernardez Clark E. Protein refolding for industrial processes. Curr. Opin. 
Biotechnol. 2001, 12, 202-207. 
 
De Bernardez Clark E, Schwarz E, and Rudolph R. Inhibition of aggregation side 
reactions during in vitro protein folding. Meth. Enzymol. 1999, 309, 217-236. 
 
De Marco A, Deuerling E, Mogk A, Tomoyasu T, and Bukau B. Chaperone-based 
procedure to increase yields of soluble recombinant proteins produced in E. coli. 
BMC Biotechnol. 2007, 7, 32-41. 
 
Deuerling E, Patzelt H, Vorderwülbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, 
Schulze-Specking A, Langen H, and Bukau B. Trigger factor and DnaK possess 
overlapping substrate pools and binding specificities. Mol. Microbiol. 2003, 47, 
1317-1328. 
 
DeWalt BW, Murphy JC, Fox GE, and Willson RC. Compaction agent clarification of 
microbial lysates. Protein Expr. Purif. 2003, 28, 220-223. 
 
Diamant S, Ben-Zvi AP, Bukau B, and Goloubinoff P. Size-dependent disaggregation 
of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 2000, 
275, 21107-21113. 
 
Dobson CM. Protein folding and misfolding. Nature 2003, 426, 884-890. 
 
Dolgikh DA, Kolomiets AP, Bolotina IA, and Ptitsyn OB. ‘Molten globule’ state 
accumulates in carbonic anhydrase folding. FEBS Lett. 1984, 165, 88-92. 
 
Ehrnsperger M, Graber S, Gaestel M, and Buchner J. Binding of non-native protein to 
Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. 
EMBO J. 1997, 16, 221-229. 
 
Ellis J. Proteins as molecular chaperones. Nature 1987, 328, 378-379. 
 
Ellis RJ. Discovery of molecular chaperones. Cell Stress Chaperon. 1996, 1, 155-160. 
 
Erim FB, Cifuentes A, Poppe H, and Kraak JC. Performance of a physically adsorbed 
high-molecular-mass polyethyleneimine layer as coating for the separation of basic 
proteins and peptides by capillary electrophoresis. J. Chromatogr. A 1995, 708, 
356-361. 
 
Ewalt KL, Hendrick JP, Houry WA, and Hartl FU. In vivo observation of polypeptide 

 186



References 

flux through the bacterial chaperonin system. Cell 1997, 90, 491-500. 
 
Fahey EM, and Chaudhuri JB. Refolding of low molecular weight urokinase 
plasminogen activator by dilution and size exclusion chromatography-a comparative 
study. Sep. Sci. Technol. 2000, 35, 1743-1760. 
 
Fahnert B, Lile H, and Neubauer P. Inclusion bodies: formation and utilization. Adv. 
Biochem. Eng./Biotechnol. 2004, 89, 93-142. 
  
Falconer RJ, O’Neill BK, and Middelberg APJ. Chemical treatment of Escherichia 
coli: 1. Extraction of intracellular protein from uninduced cells. Biotechnol. Bioeng. 
1997, 53, 453-458. 
 
Falconer RJ, O’Neill BK, and Middelberg APJ. Chemical treatment of Escherichia 
coli. II. Direct extraction of recombinant protein from cytoplasmic inclusion bodies in 
intact cells. Biotechnol. Bioeng. 1998, 57, 381-386. 
 
Falconer RJ, O’Neill BK, and Middelberg APJ. Chemical treatment of Escherichia 
coli: 3. Selective extraction of a recombinant protein from cytoplasmic inclusion 
bodies in intact cells. Biotechnol. Bioeng. 1999, 62, 455-460. 
 
Fan CY, Qian YC, Yang SL, and Gong Y. Cloning, sequence analysis and expression 
in E. coli of the cDNA of the thrombin-like enzyme (Pallabin) from the venom of 
Agkistrodon halyspallas. Biochem. Mol. Biol. Int. 1999, 47, 217-225. 
 
Fernández-Lahore HM, Kleef R, Kula M, and Thommes J. The influence of complex 
biological feedstock on the fluidization and bed stability in expanded bed adsorption. 
Biotechnol. Bioeng. 1999, 64, 484-496. 
 
Fischer B, Sumner I, and Goodenough P. Isolation, renaturation and formation of 
disulfide bonds of eukaryotic proteins expressed in E. coli as inclusion bodies.  
Biotechnol. Bioeng. 1993, 41, 3-13.  
 
Foguel D, Robinson CR, De Sousa Jr PC, Silva JL, and Robinson AS. Hydrostatic 
pressure rescues native protein from aggregates. Biotechnol. Bioeng. 1999, 63, 
552-558. 
 
Foguel D, Silva JL, and Prat-Gay G. Characterization of a partially folded monomer 
of the DNA-binding domain of human Papillomavirus E2 obtained at high pressure. J. 
Biol. Chem. 1998, 273, 9050-9057. 
 
Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, 
Ventura S, and Villaverde A. Aggregation as bacterial inclusion bodies does not imply 
inactivation of enzymes and fluorescent proteins. Microb. Cell Fact. 2005, 4, 27-32. 

 187



References 

Garcia-Fruitos E, Aris A, and Villaverde A. Localization of functional polypeptides in 
bacterial inclusion bodies. Appl. Environ. Microbiol. 2007, 7, 289-294.  
 
Geckeler KE, and Volchek K. Removal of hazardous substances from water using 
ultrafiltration in conjuction with soluble polymers. Environ. Sci. Technol. 1996, 30, 
725-734. 
 
Geng X, and Chang X. High-performance hydrophobic interaction chromatography as 
a tool for protein refolding. J. Chromatogr. A 1992, 599, 185-194. 
 
Geng X, and Quan B. Mechanism of simultaneously refolding and purification of 
proteins by hydrophobic interaction chromatographic unit and applications. Sci. China 
B 2002, 45, 655-669. 
 
Gilbert HF. Molecular and cellular aspects of thiol disulfide exchange. Adv. Enzymol. 
Relat. Areas Mol. Biol. 1990, 63, 69-172. 
 
Glover JR, and Lindquist S. Hsp104, Hsp70, and Hsp40: A novel chaperone system 
that rescues previously aggregated proteins, Cell 1998, 94, 73-82. 
 
Glover JR, and Tkach JM. Crowbars and ratchets: Hsp100 chaperones as tools in 
reversing protein aggregation. Biochem. Cell Biol. 2001, 79, 557-568. 
 
Glynou K, Ioannou PC, and Christopoulos TK. One-step purification and refolding of 
recombinant photoprotein aequorin by immobilized metal-ion affinity 
chromatography. Protein Expr. Purif. 2003, 27, 384-390.  
 
Goldberg ME, Rudolph R, and Jaenicke R. A kinetic study of the competition between 
renaturation and aggregation during the refolding of denatured-reduced egg lysozyme. 
Biochemistry 1991, 30, 2790-2797. 
 
Goloubinoff P, Christeller JT, Gatenby AA, and Lorimer GH. Reconstitution of active 
dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two 
chaperonin proteins and Mg-ATP. Nature 1989, 342, 884-889. 
 
Goloubinoff P, Diamant S, Weiss C, and Azem A. GroES binding regulates GroEL 
chaperonin activity under heat shock. FEBS Lett. 1997, 407, 215-219. 
 
Goloubinoff P, Mogk A, Ben-Zvi AP, Tomoyasu T, and Bukau B. Sequential 
mechanism of solubilization and refolding of stable protein aggregates by a 
bichaperone network. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13732-13737. 
 
Gong B, Wang L, Wang C, and Geng X. Preparation of hydrophobic interaction 
poly(glycidylmethacrylate-co-ethylenedimethacrylate) beads and their application. J. 

 188



References 

Chromatogr. A 2004, 1022, 33-39.  
 
Gonzalez-Montalban N, Garcia-Fruitos E, Ventura S, Aris A, and Villaverde A. The 
chaperone DnaK controls the fractioning of functional protein between soluble and 
insoluble cell fractions in inclusion body-forming cells. Microb. Cell Fact. 2006, 5, 
26-34. 
 
Gorovits BM, and Horowitz PM. High hydrostatic pressure can reverse aggregation of 
protein folding intermediates and facilitate acquisition of native structure. 
Biochemistry 1998, 37, 6132-6135. 
 
Gorovits BM, McGee WA, and Horowitz PM. Rhodanese folding is controlled by the 
portioning of its folding intermediates. Biochim. Biophys. Acta 1998, 1382, 120-128. 
 
Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, 
Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark WP, Ross B, Squires CL, and 
Maurizi MR. Conservation of the regulatory subunit for the Clp ATP-dependent 
protease in prokaryotes and eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 
3513-3517. 
 
Govind CK, Gahlay GK, Choudhury S, and Gupta SK. Purified and refolded 
recombinant bonnet monkey (Macaca radiate) zona pellucida glycoprotein-B 
expressed in Escherichia coli binds to spermatozoa. Biol. Reprod. 2001, 64, 
1147-1152. 
 
Goward CR, and Nicholls DJ. Malate dehydrogenase: a model for structure, evolution, 
and catalysis. Protein Sci. 1994, 3, 1883-1888. 
 
Grodberg J, and Dunn JJ. ompT encodes the Escherichia coli outer membrane 
protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 1988, 170, 
1245-1253. 
 
Gu Z, Su ZG, and Janson JC. Urea gradient size exclusion chromatography enhance 
the yield of lysozyme refolding. J. Chromatogr. A 2001, 918, 311-318.  
 
Gu Z, Weidenhaupt M, Ivanova N, Pavlov M, Xu B, Su ZG, and Janson JC. 
Chromatographic methods for the isolation of, and refolding of proteins from, 
Escherichia coli inclusion bodies. Protein Expr. Purif. 2002, 25, 174-179. 
 
Gu ZY, Zhu XN, Ni SW, Zhou HM, and Su ZG. Inhibition of aggregation by media 
selection, sample loading and elution in size exclusion chromatographic refolding of 
denatured bovine carbonic anhydrase B. J. Biochem. Biophys. Methods. 2003, 56, 
165-175. 
 

 189



References 

Gupta V, Nath S, and Chand S. Estimation of proteins in the presence of 
polyethyleneimine. Biotechnol. Lett. 2000, 22, 927-929. 
 
Gupta SK, Sharma M, Behera AK, Bisht R, and Kaul R. Sequence of complementary 
deoxyribonucleic acid encoding bonnet monkey (Macaca radiate) zona pellucida 
glycoprotein-ZP1 and its high-level expression in Escherichia coli. Biol. Reprod. 
1997, 57, 532-538. 
 
Gutiérrez R, Martín del Valle EM, and Galán MA. Immobilized metal-Ion affinity 
chromatography: status and trends. Sep. Purif. Rev. 2007, 36, 71 -111. 
 
Halling SM, and Smith S. Production and characterization of growth hormone 
releasing factor analogs through recombinant DNA and chemical techniques. 
Bio/Technology 1985, 3, 715-720. 
 
Harrowing SR, and Chaudhuri JB. Effect of column dimensions and flow rates on 
size-exclusion refolding of b-lactamase. J. Biochem. Biophys. Methods 2003, 56, 
177-188. 
 
Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996, 381 
571-580. 
 
Hartl FU, and Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent 
chain to folded protein. Science 2002, 295, 1852-1858. 
 
Hartl RA, Lester PM, Reifsnyder DH, Ogez JR, and Builder SE. Large scale, in situ 
isolation of periplasmic IGF-I from E. coli. Bio/Technology 1994, 12, 1113-1116.  
 
Haslberger T, Weibezahn J, Zahn R, Lee S, Tsai FTF, Bukau B, and Mogk A. M 
domains couple the ClpB threading motor with the DnaK chaperone activity. Mol. 
Cell 2007, 25, 247-260. 
 
Heeboll-Nielsen A, Choe WS, Middelberg APJ, and Thomas ORT. Efficient inclusion 
body processing using chemical extraction and high gradient magnetic fishing. 
Biotechnol. Prog. 2003, 19, 887-898. 
 
Helander IM, Alakomi HL, Latva-Kala K, and Koski P. Polyethyleneimine is an 
effective permeabilizer of gram-negative bacteria. Microbiology 1997, 143, 
3193-3199. 
 
Helander IM, Latva-Kala K, and Lounatmaa K, Permeabilizing action of 
polyethyleneimine on Salmonella typhimurium involves disruption of the outer 
membrane and interactions with lipopolysaccharide. Microbiology 1998, 144, 
385-390. 

 190



References 

Heloisa SSA, Eduardo LDS, Leila MB, Charlotte LO, and Dulce HFS. Expression, 
refolding and activity of a recombinant non-hemorrhagic snake venom 
metalloprotease. Protein Expr. Purif. 2000, 19, 41-47. 
 
Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos 
CG, Hendrix RW, and Ellis RJ. Homologous plant and bacterial proteins chaperone 
oligomeric protein assembly. Nature 1988, 333, 330-334. 
 
Hevehan DL, and Clark EB. Oxidative renaturation of lysozyme at high 
concentrations. Biotechnol. Bioeng. 1997, 54, 221-230. 
 
Hjelmeland LM, and Chrambach A. Electrophoresis and electrofocusing in 
detergent-containing media: a discussion of basic concepts. Electrophoresis 1981, 2, 
1-11. 
 
Hoffmann F, Posten C, and Rinas U. Kinetic model of in vivo folding and inclusion 
body formation in recombinant Escherichia coli. Biotechnol. Bioeng. 2001, 72, 
315-322. 
 
Hoopes BC, and McClure WR. Studies on the selectivity of DNA precipitation by 
spermine. Nucleic Acids Res. 1981, 9, 5493-5504. 
 
Houry WA. Chaperone-assisted protein folding in the cell cytoplasm. Curr. Protein 
Pept. Sci. 2001, 2, 227-244. 
 
Hoyle B, and Beveridge TJ. Binding of metallic ions to the outer membrane of 
Escherichia coli. Appl. Environ. Microbiol. 1983, 46, 749-752. 
 
Huang J, Villemain J, Padilla R, and Sousa R. Mechanism by which T7 lysozyme 
specifically regulates T7 RNA polymerase during different phases of transcription. J. 
Mol. Biol. 1999, 293, 457-475. 
 
Hutchinson MH, and Chase HA. Refolding strategies for ketosteroid isomerase 
following insoluble expression in Escherichia coli. Biotechnol. Bioeng. 2006a, 94, 
1089-1098. 
 
Hutchinson MH, and Chase HA. Adsorptive refolding of histidine-tagged glutathione 
S-transferase using metal affinity chromatography. J. Chromatogr. A 2006b, 1128, 
125-132. 
 
Jin T, Guan Y-X, Yao S-J, Lin D-Q, and Cho M-G. On-column refolding of 
recombinant human interferon-γ inclusion bodies by expanded bed adsorption 
chromatography. Biotechnol. Bioeng. 2005, 93, 755-760. 
 

 191



References 

Juang RS, and Chiou CH. Ultrafiltration rejection of dissolved ions using various 
weakly basic water-soluble polymers. J. Membr. Sci. 2000, 177, 207-214. 
 
Jungbauer A, and Kaar W. Current status of technical protein refolding. J. Biotechnol. 
2007, 128, 587-596.  
 
Jungbauer A, Kaar W, and Schlegl R. Folding and refolding of proteins in 
chromatographic beds. Curr. Opin. Biotechnol. 2004, 15, 487-494. 
 
Karas M, and Hillenkamp F. Laser desorption ionization of proteins with molecular 
masses exceeding 10,000 daltons. Anal. Chem. 1998, 60, 2299-2301. 
 
Katoh S, and Katoh Y. Continuous refolding of lysozyme with fed-batch addition of 
denatured protein solution. Process Biochem. 2000, 35, 1119-1124. 
 
Kedzierska S, Akoev V, Barnett ME, and Zolkiewski M. Structure and function of the 
middle domain of ClpB from Escherichia coli. Biochemistry 2003, 42, 14242-14248. 
 
Kiefhaber T, Rudolph R, Kohler HH, and Buchner J. Protein aggregation in vitro and 
in vivo: A quantitative model of the kinetic competition between folding and 
aggregation. Bio/Technology 1991, 9, 825-829. 
 
Kim SY, Hwang KY, Kim SH, Sung HC, Han YS, and Cho Y. Structural basis for cold 
adaptation. Sequence, biochemical properties, and crystal structure of malate 
dehydrogenase from a psychrophile aquaspirillium arcticum. J. Biol. Chem. 1999, 
274, 11761-11767. 
 
Kitagawa M, Miyakawa M, Matsumura Y, and Tsuchido T. Escherichia coli small 
heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and 
oxidants. Eur. J. Biochem. 2002, 269, 2907-2917. 
 
Konishi Y, Ooi T, and Scheraga HA. Regeneration of ribonuclease A from the reduced 
protein: rate limiting steps. Biochemistry 1982, 21, 4734-4740. 
 
Krzewska J, Langer T, and Liberek K. Mitochondrial Hsp78, a member of the 
Clp/Hsp100 family in Saccharomyces cerevisiae, cooperate with Hsp70 in protein 
refolding. FEBS Lett. 2001, 489, 92-96. 
 
Kweon DH, Lee DH, Han NS, and Seo JH. Solid-phase refolding of cyclodextrin 
glycosyltransferase adsorbed on cationexchange resin. Biotechnol. Prog. 2004, 20, 
277-283. 
 
Lanckriet H, and Middelberg APJ. Continuous chromatographic protein refolding. J. 
Chromatogr. A. 2003, 1022, 103-113. 

 192



References 

Langenhof M, Leong SSJ, Pattenden LK, and Middelberg APJ. Controlled oxidative 
protein refolding using an ion-exchange column. J. Chromatogr. A. 2005, 1069, 
195-201. 
 
Laskey RA, Honda BM, Mills AD, and Finch JT. Nucleosomes are assembled by an 
acidic protein which binds histones and transfers them to DNA. Nature 1978, 275, 
416-420. 
 
Laskowska E, Kuczynska-Wisnik D, Skorko-Glonek J, and Taylor A. IbpA and IbpB, 
the new heat-shock proteins, bind to endogenous Escherichia coli protein aggregated 
intracellularly by heat shock. Mol. Microbiol. 1996, 22, 555-571. 
 
LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, and McCoy JM. A 
thioredoxin gene fusion expression system that circumvents inclusion body formation 
in the E. coli cytoplasm. Bio/Technology 1993, 11, 187-193. 
 
Lee CT, Morreale G, and Middelberg APJ. Combined in-fermenter extraction and 
cross-flow microfiltration for improved inclusion body processing. Biotechnol. 
Bioeng. 2004, 85, 103-113. 
 
Lee GJ, Roseman AM, Saibil HR, and Vierling E. A small heat shock protein stably 
binds heat-denatured model substrates and can maintain a substrate in a 
folding-competent state. EMBO J. 1997, 16, 659-671. 
 
Lee JC, and Timasheff SN. The stabilization of proteins by sucrose. J. Biol. Chem. 
1981, 256, 7193-7201. 
 
Lee S, Sowa ME, Watanabe Y-H, Sigler PB, Chiu W, Yoshida M, and Tsai FTF. The 
structure of ClpB. A molecular chaperone that rescues proteins from an aggregated 
state. Cell 2003, 115, 229-240. 
 
Lee S, and Tsai FTF. Molecular chaperones in protein quality control. J. Biochem. 
Mol. Biol. 2005, 38, 259-265. 
 
Lee S-H, Carpenter JF, Chang BS, Randolph TW, and Kim Y-S. Effects of solutes on 
solubilization and refolding of proteins from inclusion bodies with high hydrostatic 
pressure. Protein Sci. 2006, 15, 304-313. 
 
Lefebvre BG, Gage MJ, and Robinson AS. Maximizing recovery of native protein 
from aggregates by optimizing pressure treatment. Biotechnol. Prog. 2004, 20, 
623-629. 
 
Leive L. Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem. 
Biophys. Res. Commun. 1965, 21, 290-296. 

 193



References 

Leive L. The barrier function of the gram negative envelope. Ann. N. Y. Acad. Sci. 
1973, 235, 109-129. 
 
Lemercier G, Bakalara N, and Santarelli X. On-column refolding of an insoluble 
histidine tag recombinant exopolyphosphatase from Trypanosoma brucei 
overexpressed in Escherichia coli. J. Chromatogr. B Analyt. Technol. Biomed. Life 
Sci. 2003, 786, 305-309. 
 
Leong SSJ, and Middelberg APJ. Dilution versus dialysis: A quantitative study of the 
oxidative refolding of recombinant human alpha-fetoprotein. Food Bioprod. Process. 
2006, 84, 9-17. 
 
Levine AD, Rangwala SH, Horn NA, Peel MA, Matthews BK, Leimgruber RM, 
Manning JA, Bishop BF, and Olins PO. High level expression and refolding of mouse 
interleukin 4 synthesized in Escherichia coli. J. Biol. Chem. 1998, 270, 7445-7452. 
 
Li M, Poliakov A, Danielson UH, Su ZG, and Janson JC. Refolding of a recombinant 
full-length non-structural (NS3) protein from hepatitis C virus by chromatographic 
procedures. Biotechnol. Lett. 2003, 25, 1729-1734. 
 
Li M, and Su ZG. Refolding of superoxide dismutase by ion-exchange 
chromatography. Biotechnol. Lett. 2002, 24, 919-923. 
 
Li M, Su ZG, and Janson JC. In vitro refolding by chromatographic procedures. 
Protein Expr. Purif. 2004, 33, 1-10. 
 
Li M, Zhang G, and Su ZG. Dual gradient ion-exchange chromatography improved 
refolding yield of lysozyme. J. Chromatogr. A 2002, 959, 113-120. 
 
Lilie H, Schwarz E, and Rudolph. Advances in refolding of proteins produced in E. 
coli. Curr. Opin. Biotechnol. 1998, 9, 497-501. 
 
Liu H-S, and Chang C-K. Chaperon solvent plug to enhance protein refolding in size 
exclusion chromatography. Enzyme Microb. Technol. 2003, 33, 424-429. 
 
Lorenzo HK, Farber D, Germain V, Acuto O, and Alzari PM. The MBP-fusion protein 
restores the activity of the first phosphatase domain of CD45. FEBS Lett. 1997, 411, 
231-235. 
 
Lorimer GH. A quantitative assessment of the role of the chaperonin proteins in 
protein folding in vivo. FASEB J. 1996, 10, 5-9. 
 
Lottenberg R, Christensen U, Hackson CM, and Coleman PL. Assay of coagulation 
protease using peptide chromogenic and fluorogenic substrates. Meth. Enzymol. 1981, 

 194



References 

80, 341-361. 
 
Louis JM, McDonald RA, Nashed NT, Wondrak EM, Jerina DM, Oroszlan S, and 
Mora PT. Autoprocessing of the HIV-1 protease using purified wild-type and mutated 
fusion proteins expressed at high levels in Escherichia coli. Eur. J. Biochem. 1991, 
199, 361-369. 
 
Machida S, Ogawa S, Xiaohua S, Takaha T, Fujii K, and Hayashi K. Cycloamylose as 
an efficient artificial chaperone for protein refolding. FEBS Lett. 2000, 486, 131-135. 
 
Machold C, Schlegl R, Buchinger W, and Jungbauer A. Continuous matrix assisted 
refolding of α-lactalbumin by ion exchange chromatography with recycling of 
aggregates combined with ultradiafiltration. J. Chromatogr. A 2005, 1080, 29-42. 
 
Maeda M, Satoh S, Suzuki S, Niwa M, Itoh N, and Yamashina I. Expression of cDNA 
for batroxobin, a thrombin-like enzyme. J. Biochem. (Tokyo) 1991, 109, 632-637. 
 
Maeda Y, Koga H, Yamada H, Ueda T, and Imoto T. Effective renaturation of reduced 
lysozyme by gentle removal of urea. Protein Eng. 1995, 8, 201-205. 
 
Markland FS. Snake venoms and the hemostatic system. Toxicon 1998, 36, 
1749-1800. 
 
Mannen T, Yamaguchi S, and Honda J. Expanded-bed protein refolding using a 
solid-phase artificial chaperone. J. Biosci. Bioeng. 2001, 91, 403-408 
 
Matsui T, Fujimura Y, and Titani K. Snake venom protease affecting hemostasis and 
thrombosis. Biochim. Biophys. Acta 2000, 1477, 146-156. 
 
Mehlen P, Briolay J, Smith L, Diaz-Iatoud C, Fabre N, Pauli D, and Arrigo AP. 
Analysis of the resistance to heat and hydrogen peroxide stresses in COS cells 
transiently expressing wild type or deletion mutants of the Drosophila 27-kDa 
heat-shock protein. Eur. J. Biochem. 1993, 215, 277-284. 
 
Michaelis U, Rudolph R, Jarsch M, Kopetzki E, Burtscher H, and Schumacher G. 
Process for the production and renaturation of recombinant, biologically active, 
eukaryotic alkaline phosphatase. U.S. Patent 5, 434,067 1995. 
 
Middelberg APJ. Process-scale disruption of microorganisms. Biotechnol. Adv. 1995, 
13, 491-551. 
 
Middelberg APJ. Preparative protein refolding. Trends Biotechnol. 2002, 20, 433-437. 
 
Moffatt BA, and Studier FW. T7 lysozyme inhibits transcription by T7 RNA 

 195



References 

polymerase. Cell 1987, 49, 221-227. 
 
Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, and Bukau B. Small heat shock 
proteins, ClpB and the DnaK system form a functional triade in reversing protein 
aggregation. Mol. Microbiol. 2003, 50, 585-595. 
 
Mogk A, Mayer MP, and Deuerling E. Mechanisms of protein folding: Molecular 
chaperones and their application in biotechnology. ChemBioChem. 2002, 3, 807-814. 
 
Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, and Bukau B. 
Identification of thermolabile Escherichia coli proteins: prevention and reversion of 
aggregation by DnaK and ClpB. EMBO J. 1999, 18, 6934-6949. 
 
Molinari R, Gallo S, and Argurio P. Metal ions removal from wastewater or washing 
water from contaminated soil by ultrafiltration-complexation. Water Res. 2004, 38, 
593-600. 
 
Motohashi K, Watanabe Y, Yohda M, and Yoshida M. Heat-inactivated proteins are 
rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. U.S.A. 
1999, 96, 7184-7189. 
 
Müller C, and Rinas U. Renaturation of heterodimeric platelet-derived growth factor 
from inclusion bodies of recombinant Escherichia coli using size-exclusion 
chromatography. J. Chromatogr. A 1999, 855, 203-213. 
 
Narberhaus F. Alpha-crystallin-type heat shock proteins: socializing minichaperones 
in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 2002, 66, 
64-93. 
 
Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. 
Antimicrob. Agents Chemother. 1989, 33, 1831-1836. 
 
Nishihara K, Kanemori M, Kitagawa M, Yanagi H, and Yura T. Chaperone 
coexpression plasmids: Differential and synergistic roles of DnaK-DnaJ-GrpE and 
GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in 
Escherichia coli. Appl. Environ. Microb. 1998, 64, 1694-1699. 
 
Nominé Y, Ristriani T, Laurent C, Lefèvre JF, Weiss É, and Travé G. A strategy for 
optimizing the monodispersity of fusion proteins: application to purification of 
recombinant HPV E6 oncoprotein. Protein Eng. 2001a, 14, 297-305.  
 
Nominé Y, Ristriani T, Laurent C, Lefèvre JF, Weiss É, and Travé G. Formation of 
soluble inclusion bodies by HPV E6 oncoprotein fused to maltose-binding protein. 
Protein Expr. . Purif. 2001b, 23, 22-32. 

 196



References 

Nomura Y, Ikeda M, Yamaguchi N, Aoyama Y, and Akiyoshi K. Protein refolding 
assisted by self-assembled nanogels as novel artificial molecular chaperone. FEBS 
Lett. 2003, 553, 271-276. 
 
Oyama E, and Takahashi H. Amino acid sequence of a thrombin-like enzyme, 
Elegaxobin, from the venom of Trimeresurus elegans (Sakishima-habu). Toxicon 
2002, 40, 959-970. 
 
Pan H, Du XY, Yang GZ, Zhou YC, and Wu XF. cDNA cloning and expression of 
acutin, a thrombin-like enzyme from Agkistrondon acutus. Biochem. Biophys. Res. 
Commun. 1999, 255, 412-415. 
 
Park B-J, Lee C-H, Mun S, and Koo Y-M. Novel application of simulated moving bed 
chromatography to protein refolding. Process Biochem. 2006, 41, 1072-1082. 
 
Park B-J, Koo Y-M, and Lee C-H. Development of novel protein refolding using 
simulated moving bed chromatography. Korean J. Chem. Eng. 2005, 22, 425-432. 
 
Phelps DJ, and Hesterberg LK. Protein disaggregation and refolding using high 
hydrostatic pressure. J. Chem. Tech. Biotechnol. 2007, 82, 610-613. 
 
Porath, J. Immobilized metal ion affinity chromatography. Protein Expr. Purif. 1992, 3, 
263-281. 
 
Preibisch G, Ishihara H, Tripier D, and Leineweber M. Unexpected translation 
initiation within the coding region of eukaryotic gene expressed in Escherichia coli. 
Gene 1988, 72, 179-186. 
 
Przybycien TM, Dunn JP, Georgiou G, and Valax P. Secondary structure 
characterization of lactamase inclusion bodies. Protein Eng. 1994, 7, 131-136. 
 
Ptitsyn OB. Stages in the mechanism of self organisation of protein molecules. Dokl. 
Akad. Nauk. SSSR 1973, 210, 1213-1215. 
 
Qoronfleh MW, Hesterberg LK, and Seefeldt MB. Confronting high-throughput 
protein refolding using high pressure and solution screens. Protein Expr. Purif. 2007, 
55, 209-224. 
 
Raspaud E, de la Cruz MO, Sikorav JL, and Livolant F. Precipitation of DNA by 
polyamines: apolyelectrolyte behavior. Biophys. J. 1998, 74, 381-393. 
 
Righetti PG, and Verzola B. Folding/unfolding/refolding of proteins: present 
methodologies in comparison with capillary zone electrophoresis. 2001, 22, 
2359-2374. 

 197



References 

Rinas U, and Bailey JE. Protein compositional analysis of inclusion bodies produced 
in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 1992, 37, 609-614. 
 
Robinson CR, and Sligar SG. Hydrostatic and osmotic pressure as tools to study 
macromolecular recognition. Meth. Enzymol. 1995, 259, 395-427. 
 
Rogl H, Kosemund K, Kuhlbrandt W, and Collinsona I. Refolding of Escherichia coli 
produced membrane protein inclusion bodies immobilised by nickel chelating 
chromatography. FEBS Lett. 1998, 432, 21-26. 
 
Rozema D, and Gellman SH. Protein refolding via sequential use of detergent and 
cyclodextrin. J. Am. Chem. Soc. 1995, 117, 2373-2374. 
 
Rozema D, and Gellman SH. Artificial chaperone-assisted refolding of 
denatured-reduced lysozyme: Modulation of the competition between renaturation 
and aggregation. Biochem. 1996a, 35, 15760-15771.   
 
Rozema D, and Gellman SH. Artificial chaperone-assisted refolding of carbonic 
anhydrase B. J. Biol. Chem. 1996b, 271, 3478-3487. 
 
Rudolph R, and Lilie H. In vitro folding of inclusion body proteins. FASEB J. 1996, 
10, 49-56. 
 
Rye HS, Roseman AM, Chen S, Furtak K, Fenton WA, Saibil HR, and Horwich AL. 
GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of 
folding-active rings. Cell 1999, 97, 325-338. 
 
Saavedra-Alanis VM, Rysavy P, Rosenberg LE, and Kalousek F. Rat liver 
mitochondrial processing peptidase. Both alpha- and beta- subunits are required for 
activity. J. Biol. Chem. 1994, 269, 9284-9288. 
 
Sachdev D, and Chirgwin JM. Order of fusions between bacterial and mammalian 
protein can determine solubility in Escherichia coli. Biochem. Biophys. Res. 
Commun. 1998, 244, 933-937.  
 
Sanchez Y, and Lindquist S. Hsp104 required for induced thermotolerance. Science 
1990, 248, 1112-1115. 
 
Sanyal SC, Bhattacharyya D, and Das Gupta1 C. The folding of dimeric cytoplasmic 
malate dehydrogenase. Equilibrium and kinetic studies. Eur. J. Biochem. 2002, 269, 
3856-3866. 
 
Sato A, Allona I, Collada A, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragocillo 
C, and Gomez L. Heterologous expression of a plant small heat shock protein 

 198



References 

enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 1999, 
120, 521-528. 
 
Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi 
SA, Kenniston JA, Levchenko I, Neher SB, Oakes ES, Siddiqui SM, Wah DA, and 
Baker TA. Sculpting the proteome with AAA(+) proteases and disassembly machines. 
Cell 2004, 119, 9-18. 
 
Schauer S, Luer C, and Moser J. Large scale production of biologically active 
Escherichia coli glutamyl-tRNA reductase from inclusion bodies. Protein Expr. Purif. 
2003, 31, 271-275. 
 
Scheich C, Niesen FH, Seckler R, and Bussow K. An automated in vitro protein 
folding screen applied to a human dynactin subunit. Protein Sci. 2004, 13, 370-380. 
 
Schirmer EC, Glover JR, Singer MA, and Lindquist S. Hsp100/Clp proteins: a 
common mechanism explains diverse functions. Trends Biochem. Sci. 1996, 21, 
289-296. 
 
Schirmer EC, Queitsch C, Kowali AS, Parselli DA, and Lindquist S. The ATPase 
activity of Hsp104, effects of environmental conditions and mutations. J. Biol. Chem. 
1998, 273, 15546-15552. 
 
Schlegl R, Iberer G, Machold C, Necina R, and Jungbauer A. Continuous matrix 
assisted refolding of protein. J. Chromatogr. A 2003, 1099, 119-132. 
 
Schlegl R, Necina R, and Jungbauer A. Continuous matrix assisted refolding of 
inclusion-body proteins: effect of recycling. Chem. Eng. Technol. 2005a, 28, 
1375-1386. 
 
Schlegl R, Tscheliessnig A, Necina R, Wandl R, and Jungbauer A. Refolding of 
proteins in a CSTR. Chem. Eng. Sci. 2005b, 60, 5770-5780. 
 
Schlieker C, Bukau B, and Mogk A. Prevention and reversion of protein aggregation 
by molecular chaperones in the E. coli cytosol: implications for their applicability in 
biotechnology. J. Biotechnol. 2002, 96, 13-21. 
 
Schlieker C, Tews I, Bukau B, and Mogk A. Solubilization of aggregated proteins by 
ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Lett. 
2004a, 578, 351-356. 
 
Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, 
Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, and Mogk A. Substrate 
recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 2004b, 11, 

 199



References 

607-615. 
 
Schoner BE, Bramlett KS, Guo H, and Burris TP. Reconstitution of functional nuclear 
receptor proteins using high pressure refolding. Mol. Genet. Metab. 2005, 85, 
318-322. 
 
Schröder H, Langer T, Hartl FU, and Bukau B. DnaK, DnaJ, GrpE form a cellular 
machine capable of repairing heat-induced protein damage. EMBO J. 1993, 12 
4137-4144. 
 
Schumann W, and Ferreira LCS. Production of recombinant proteins in Escherichia 
coli. Genet. Mol. Biol. 2004, 27, 442-453. 
 
Seefeldt MB, Ouyang J, Froland WA, Carpenter JF, and Randolph TW. High-pressure 
refolding of bikunin: efficacy and thermodynamics. Protein Sci. 2004, 13, 2639-2650. 
 
Shearstone JR, and Baneyx F. Biochemical characterization of the small heat shock 
protein IbpB from Escherichia coli. J. Biol. Chem. 1999, 274, 9937-9945. 
 
Shimokawa KI, and Takahashi H. Comparative study of fibrinogen degradation by 
four arginine ester hydrolases from the venom of Agkistrodon caliginosus 
(Kankoku-mamushi). Toxicon 1995, 33, 179-186. 
 
Shorter J, and Lindquist S. Navigating the ClpB channel to solution. Nat. Struct. Mol. 
Biol. 2005, 12, 4-6. 
 
Silva JL, Foguel D, Da Poian AT, and Prevelige PE. The use of hydrostatic pressure as 
a tool to study viruses and other macromolecular assemblages. Curr. Opin. Struc. Biol. 
1996, 6, 166-175. 
 
Silva JL, Silveria CF, Correa A, and Pontes L. Dissociation of a native dimmer to a 
molten globule monomer: Effects of pressure and dilution on the association 
equilibrium constant of Arc repressor. J. Mol. Biol. 1992, 223, 545-555 
 
Silva JL, and Weber G. Pressure stability of proteins. Annu. Rev. Phys. Chem. 1993, 
44, 89-113. 
 
Singh SM, and Panda AK. Solubilization and refolding of bacterial inclusion body 
proteins. J. Biosci. Bioeng. 2005, 99, 303-310. 
 
Squires CL, Pedersen S, Ross BM, and Squires C. ClpB is the Escherichia coli heat 
shock protein F84.1. J. Bacteriol. 1991, 173, 4254-4262. 
 
Squires C, and Squires CL. The Clp proteins: proteolysis regulators of molecular 

 200



References 

chaperones? J. Bacteriol. 1992, 174, 1081-1085. 
 
St. John RJ, Carpenter JF, and Randolph TW. High pressure fosters protein refolding 
from aggregates at high concentrations. Appl. Biol. Sci. 1999, 96, 13029-13033. 
 
St. John RJ, Carpenter JF, Balny C, and Randolph TW, High pressure refolding of 
recombinant human growth hormone from insoluble aggregates. J. Biol. Chem. 2001, 
276, 46856-46863. 
 
St. John RJ, Carpenter JF, and Randolph TW. High-pressure refolding of 
disulfide-cross linked lysozyme aggregates: thermodynamics and optimization. 
Biotechnol. Prog. 2002, 18, 565-571. 
 
Stempfer G, Holl-Neugebauer B, and Rudolph R. Improved refolding of an 
immobilized fusion protein. Nature Biotechnol. 1996, 14, 329-334. 
 
Studier FW. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression 
system. J. Mol. Biol. 1991, 219, 37-44. 
 
Sulkowski E. Purification of proteins by IMAC. Trends Biotechnol. 1985, 3, 1-7. 
 
Suttnar J, Dyr JE, Hamšíková E, Novák J, and Vonka V. Procedure for refolding and 
purification of recombinant proteins from Escherichia coli inclusion bodies using a 
strong anion exchanger. J. Chromatogr. B 1994, 656, 123-126. 
 
Swartz JR. Advances in Escherichia coli production of therapeutic proteins. Curr. 
Opin. Biotechnol. 2001, 12, 195-201. 
 
Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yohida T, and Matsuo T. Protein and 
polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass 
spectrometry. Rapid. Commun. Mass Spectrom. 1988, 2, 151-153. 
 
Thomas JG, Ayling A, and Baneyx F. Molecular chaperones, folding catalysts, and the 
recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 
1997, 66, 197-238. 
 
Tsubamoto H, Hasegawa A, Nakata Y, Naito S, Yamasaki N, and Koyama K. 
Expression of recombinant human zona pellucida protein 2 and its binding capacity to 
spermatozoa. Biol. Reprod. 1999, 61, 1649-1654. 
 
Tsumoto K, Ejima D, Kumagai I, and Arakawa T. Practical considerations in refolding 
proteins from inclusion bodies. Protein Expr. Purif. 2003a, 28, 1-8. 
 
Tsumoto K, Ejima D, Nagase K, and Arakawa T. Arginine improves protein elution in 

 201



References 

hydrophobic interaction chromatography The cases of human interleukin-6 and 
activin-A. J. Chromatogr. A 2007, 1154, 81-86. 
 
Tsumoto K, Umetsu M, Kumagai I, Ejima D, and Arakawa T. Solubilization of active 
green fluorescent protein from insoluble particles by guanidine and arginine. Biochem. 
Biophys. Res. Commun. 2003b, 312, 1383-1386. 
 
Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, and Arakawa T. Role of 
arginine in protein refolding, solubilization, and purification. Biotechnol. Prog. 2004, 
20, 1301-1308. 
 
Ueda EKM, Gout PW, and Morganti L. Current and prospective applications of metal 
ion-protein binding. J. Chromatogr. A. 2003, 988, 1-23. 
 
Umetsu M, Tsumoto K, Hara M, Ashish K, Goda S, Adschiri T, and Kumagai I. How 
additives influence the refolding of immunoglobulin-folded proteins in a stepwise 
dialysis system. Spectroscopic evidence for highly efficient refolding of a 
single-chain FV fragment. J. Biol. Chem. 2003, 278, 8979-8987. 
 
Umetsu M, Tsumoto K, Nitta S, Adschiri T, Ejima D, Arakawa T, and Kumagai I. 
Nondenaturing solubilization of b 2 microglobulin from inclusion bodies by 
L-arginine. Biochem. Biophys. Res. Commun. 2005, 328, 189-197. 
 
Valax P, and Georgiou G. Molecular characterization of β-lactamase inclusion bodies 
produced in Escherichia coli. 1. Composition. Biotechnol. Prog. 1993, 9, 539-547. 
 
Vale RD. AAA proteins: Lords of the ring. J. Cell Biol. 2000, 150, 13-19. 
 
Valente JJ, Verma KS, Manning MC, Wilson WW, and Henry CS. Second virial 
coefficient studies of cosolvent-induced protein self-Interaction. Biophys. J. 2005, 89, 
4211-4218. 
 
Vallejo LF, and Rinas U. Strategy for recovery of active protein through refolding of 
bacterial inclusion body proteins. Microb. Cell Fact. 2004a, 3, 2-12. 
 
Vallejo LF, and Rinas U. Optimized procedures for renaturation of recombinant 
human bone morphogenic protein-2 at high protein concentration. Biotechnol. Bioeng. 
2004b, 85, 601-609. 
 
Van den Ijssel PR, Overkamp P, Knauf U, Gaestel M, and de Jong WW. αA-crystallin 
confer cellular thermoresistance. FEBS Lett. 1994, 355, 54-56. 
 
Varnerin JP, Smith T, Rosenblum CI, Vongs A, Murphy BA, Nunes C, Mellin TN, 
King JJ, Burgess BW, Junker B, Chou M, Hey P, Frazier E, Maclntyre DE, van der 

 202



References 

Ploeg LHT, and Tota MR. Production of leptin in Escherichia coli: A comparison of 
methods. Protein Expr. Purif. 1998, 14, 335-342. 
 
Veinger L, Diamant S, Buchner J, and Goloubinoff P. The small heat-shock protein 
IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent 
refolding by a multichaperone network. J. Biol. Chem. 1998, 273, 11032-11037. 
 
Ventura S, and Villaverde A. Protein quality in bacterial inclusion bodies. Trends 
Biotechnol. 2006, 24, 179-185. 
 
Vincent P, Dieryck W, Maneta-Peyret L, Moreau P, Cassagne C, and Santarelli X. 
Chromatographic purification of an insoluble histidine tag recombinant Ykt6p 
SNARE from Arabidopsis thaliana over-expressed in E. coli. J. Chromatogr. B Analyt. 
Technol. Biomed. Life Sci. 2004, 808, 83-89. 
 
Vinogradov AA, Kudryashova EV, Levashov AV, and van Dongen WMAM. 
Solubilization and refolding of inclusion body proteins in reverse micelles. Anal. 
Biochem. 2003, 230, 234-238. 
 
Wang C, Geng X, Wang D, and Tian B. Purification of recombinant bovine normal 
prion protein PrP(104-242) by HPHIC. J. Chromatogr. B Analyt. Technol. Biomed. 
Life Sci. 2004, 806, 185-190. 
 
Wang F, Liu Y, Li J, Ma G, and Su ZG. On-column refolding of consensus interferon 
at high concentration with guanidine-hydrochloride and polyethylene glycol gradients. 
J. Chromatogr. A 2006, 1115, 72-80. 
 
Watanabe YH, Motohashi K, and Yoshida M. Roles of the two ATP binding sites of 
ClpB from Thermus thermophilus. J. Biol. Chem. 2002, 277, 5804-5809. 
 
Weibezahn J, Bukau B, and Mogk A. Unscrambling an egg: protein disaggregation by 
AAA+ proteins. Microb. Cell Fact. 2004a, 3, 1-12. 
 
Weibezahn J, Schlieker C, Tessarz P, Mogk A, and Bukau B. Novel insights into the 
mechanism of chaperone-assisted protein disaggregation. Biol. Chem. 2005, 386, 
739-744. 
 
Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, 
Weber-Ban EU, Dougan DA, Tsai FTF, Mogk A, and Bukau B. Thermotolerance 
requires refolding of aggregated proteins by substrate translocation through the central 
pore of ClpB. Cell 2004b, 119, 653-665. 
 
West SM, Chaudhuri JB, and Howell JA. Improved protein refolding using 
hollow-fibre membrane dialysis. Biotechnol. Bioeng. 1998, 57, 590-599. 

 203



References 

Wetlaufer DB, and Xie Y. Control of aggregation in protein refolding: A variety of 
surfactants promote renaturation of carbonic anhydrase II. Protein Sci. 1995, 4, 
1535-1543. 
 
Widom J, and Baldwin RL. Cation-induced toroidal condensation of DNA studies 
with Co3+(NH3)6. J. Mol. Biol. 1980, 144, 431-453. 
 
Wong HH, O'Neill BK, and Middelberg APJ. A mathematical model for Escherichia 
coli debris size reduction during high pressure homogenisation based on grinding 
theory. Chem. Eng. Sci. 1997, 52, 2883-2890. 
 
Wong JW, Albright RL, and Wang NH. Immobilized metal-ion affinity 
chromatography (IMAC) chemistry and bioseparation applications. Sep. Purif. 
Method 1991, 20, 49–106. 
 
Woo KM, Kim KI, Goldberg AL, Ha DB, and Chung CH.  The heat-shock protein 
ClpB in Escherichia coli is a protein-activated ATPase. J. Biol. Chem. 1992, 261, 
20429-20434. 
 
Wu D, Wang C, and Geng X. Effect of mobile phase on the mass recovery of rhIFN-γ 
in protein folding liquid chromatography. Chinese J. Chromatogr. 2007, 25, 197-202.   
 
Xiao Y, Freed AS, Jones TT, Makrodimitris K, O'Connell JP, and Fernandez EJ. 
Protein instability during HIC: Describing the effects of mobile phase conditions on 
instability and chromatographic retention. Biotechnol. Bioeng. 2006, 93, 1177-1189. 
 
Yang Q, Lei XY, Xu JQ, and An LJ. Purification of a recombinant thrombin-like 
enzyme, gloshedobin by egg yolk antibody-coupled adsorbents. Am. J. Biochem. 
Biotech. 2005, 1, 17-21.  
 
Yang Q, Li M, Xu JQ, Bao YM, Lei XY, and An LJ. Expression of gloshedobin, a 
thrombin-like enzyme from the venom of Gloydius shedaoensis, in Escherichia coli. 
Biotechnol. Lett. 2003a, 25, 101-104. 
 
Yang Q, Xu JQ, Li M, Lei XY, and An LJ. High-level expression of a soluble snake 
venom enzyme, gloshedobin, in E. coli in the presence of metal ions. Biotechnol. Lett. 
2003b, 25, 607-610. 
 
Yang Q, Xu XM, Li M, Yuan XD, Su ZG., Janson JC, and An LJ. Cloning and 
expression of gloshedobin cDNA from the venom of Gloydius shedaoensis. 
Biotechnol. Lett. 2002, 24, 135-138. 
 
Yasuda M, Murakami Y, Sowa A, Ogino H, and Ishikawa H. Effect of additives on 
refolding of a denatured protein. Biotechnol. Prog. 1998, 14, 601-606. 

 204



References 

 205

Yei CH, Chang PFL, Yeh KW, Lin WC, Chen YM, and Lin CY. Expression of the 
gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli 
enhances thermotolerance. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 10967-10972. 
 
Yin SM, Zheng Y, and Tien P. On-column purification and refolding of recombinant 
bovine prion protein: Using its octarepeat sequences as a natural affinity tag. Protein 
Expr. Purif. 2003, 32, 104-109. 
 
Yoshii H, Furuta T, Yonehara T, Ito D, Linko Y-Y, and Linko P. Refolding of 
denatured/reduced lysozyme at high concentration with diafiltration. Biosci. 
Biotechnol. Biochem. 2000, 64, 1159-1165. 
 
Yuan S, Duan HQ, Liu CJ, Liu XL, Liu TT, Tao HX, and Zhang ZS. The role of 
thioredoxin and disulfide isomerase in the expression of the snake venom 
thrombin-like enzyme calobin in Escherichia coli BL21(DE3). Protein Expr. Purif. 
2004, 38, 51-60. 
 
Zhang X, and Studier FW. Mechanism of inhibition of bacteriophage T7 RNA 
polymerase by T7 lysozyme. J. Mol. Biol. 1997, 269, 10-27. 
 
Ziętkiewicz S, Krzewska J, and Liberek K. Successive and synergistic action of the 
Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 2004, 279, 
44376-44383. 
 
Ziętkiewicz S, Lewandowska A, Stocki P, and Liberek K. Hsp70 chaperone machine 
remodels protein aggregations at the initial step of Hsp70-Hsp100-dependent 
disaggregation. J. Biol. Chem. 2006, 281, 7022-7029. 
 
Zolkiewski M. ClpB cooperate with DnaK, DnaJ, and GrpE in suppressing protein 
aggregation. J. Biol. Chem. 1999, 274, 28083-28086. 
 
Zouhar J, Nanak E, and Brzobohatý B. Expression, single-step purification, and 
matrix-assisted refolding of a maize cytokinin glucoside-specific β-glucosidase. 
Protein Expr. Purif. 1999, 17, 153-162. 
 



Appendix I 

Appendix I 

List of publications 

 
Journal publication: 
- Nian R, Tan L, and Choe WS. Polyethylene glycol (PEG) facilitates 

ClpB/DnaKJE-mediated disaggregation of MDH. Biotechnol. Prog. (In press) 
 
- Nian R, Tan L, Yoo Ik-Keun and Choe WS. Molecular chaperones enhanced 

IMAC refolding of gloshedobin, a thrombin-like enzyme from snake venom. J. 
Chromatogr. A. 2008, 1214, 47-58. 

 
- Nian R, Tan L, and Choe WS. Folding-like-refolding of heat-denatured MDH 

using unpurified ClpB and DnaKJE. Biochem. Eng. J. 2008, 40, 35-43. 
 
- Nian R, Tan L, and Choe WS. Effective reduction of truncated expression of 

gloshedobin in Escherichia coli using molecular chaperone ClpB. Chem. Eng. Sci. 
2008, 63, 2875-2880. 

 
- Nian R, Tan L, and Choe WS. Polyethyleneimine-mediated chemical extraction of 

cytoplasmic His-tagged inclusion body proteins from E. coli. Biotechnol. Prog. 
2008, 24, 417-425. 

 
- Choe WS, Nian R, and Lai WB. Recent advances in biomolecular process 

intensification. Chem. Eng. Sci. 2006, 61, 886-906. 

 

 206


	Cover Page
	0a-Title Page
	0b-Acknowledgement etc
	1_Chapter 1 Introduction_V3_(Choe)
	2_Chapter 2 Literature_review_V3_(Choe)
	3_Chapter 3 MDH refolding with bichaperone system V3
	4_Chapter 4 PEG facilitated MDH refolding V3
	5_Chapter 5 ClpB reduced truncated expression V3
	6_Chapter 6 Chaperone enhanced on-column refolding V3
	7_Chapter 7 PEI-mediated chemical extraction V3
	8_Chapter 8 Conclusion_and_future_work_V3_(Choe)
	9_References V3
	10_Appendix I List of Publications



