
ANALYSIS, DESIGN AND MANAGEMENT OF

MULTIMEDIA MULTI-PROCESSOR SYSTEMS

AKASH KUMAR

NATIONAL UNIVERSITY OF SINGAPORE

2009

ANALYSIS, DESIGN AND MANAGEMENT OF

MULTIMEDIA MULTI-PROCESSOR SYSTEMS

AKASH KUMAR

(Master of Technological Design (Embedded Systems),

National University of Singapore and Eindhoven University of Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2009

Acknowledgments

I have always regarded the journey as being more important than the destination itself.

While for PhD the destination is surely desired, the importance of the journey can not

be underestimated. At the end of this long road, I would like to express my sincere

gratitude to all those who supported me all through the last four years and made this

journey enjoyable. Without their help and support, this thesis would not have reached

its current form.

First of all I would like to thank Henk Corporaal, my promoter and supervisor all

through the last four years. All through my research he has been very motivating. He

constantly made me think of how I can improve my ideas and apply them in a more

practical way. His eye for details helped me maintain a high quality of my research.

Despite being a very busy person, he always ensured that we had enough time for regular

discussions. Whenever I needed something done urgently, whether it was feedback on a

draft or filling some form, he always gave it utmost priority. He often worked in holidays

and weekends to give me feedback on my work in time.

I would especially like to thank Bart Mesman, in whom I have found both a mentor

and a friend over the last four years. I think the most valuable ideas during the course

of my Phd were generated during detailed discussions with him. In the beginning phase

of my Phd, when I was still trying to understand the domain of my research, we would

often meet daily and go on talking for 2-3 hours at a go pondering on the topic. He has

been very supportive of my ideas and always pushed me to do better.

i

Further, I would like to thank Yajun Ha for supervising me not only during my stay in

the National University of Singapore, but also during my stay at TUe. He gave me useful

insight into research methodology, and critical comments on my publications throughout

my PhD project. He also helped me a lot to arrange the administrative things at the

NUS side, especially during the last phase of my PhD. I was very fortunate to have three

supervisors who were all very hard working and motivating.

My thanks also extend to Jef van Meerbergen who offered me this PhD position as

part of the PreMaDoNA project. I would like to thank all members of the PreMaDoNA

project for the nice discussions and constructive feedback that I got from them.

The last few years I had the pleasure to work in the Electronic Systems group at

TUe. I would like to thank all my group members, especially our group leader Ralph

Otten, for making my stay memorable. I really enjoyed the friendly atmosphere and

discussions that we had over the coffee breaks and lunches. In particular, I would like

to thank Sander for providing all kinds of help from filling Dutch tax forms to installing

printers in Ubuntu. I would also like to thank our secretaries Rian and Marja, who were

always optimistic and maintained a friendly smile on their face.

I would like to thank my family and friends for their interest in my project and the

much needed relaxation. I would especially like to thank my parents and sister without

whom I would not have been able to achieve this result. My special thanks goes to Arijit

who was a great friend and cooking companion during the first two years of my PhD.

Last but not least, I would like to thank Maartje who I met during my PhD, and who is

now my companion for this journey of life.

Akash Kumar

ii

Contents

Acknowledgments i

Summary vii

List of Tables ix

List of Figures xi

1 Trends and Challenges in Multimedia Systems 1

1.1 Trends in Multimedia Systems Applications 3

1.2 Trends in Multimedia Systems Design . 5

1.3 Key Challenges in Multimedia Systems Design 12

1.3.1 Analysis . 13

1.3.2 Design . 15

1.3.3 Management . 17

1.4 Design Flow . 19

1.5 Key Contributions and Thesis Overview 21

2 Application Modeling and Scheduling 23

2.1 Application Model and Specification . 24

2.2 Introduction to SDF Graphs . 27

2.2.1 Modeling Auto-concurrency . 28

iii

2.2.2 Modeling Buffer Sizes . 30

2.3 Comparison of Dataflow Models . 30

2.4 Performance Modeling . 34

2.4.1 Steady-state vs Transient . 35

2.4.2 Throughput Analysis of (H)SDF Graphs 37

2.5 Scheduling Techniques for Dataflow Graphs 38

2.6 Analyzing Application Performance on Hardware 41

2.6.1 Static Order Analysis . 41

2.6.2 Dynamic Order Analysis . 46

2.7 Composability . 48

2.7.1 Performance Estimation . 50

2.8 Static vs Dynamic Ordering . 53

2.9 Conclusions . 55

3 Probabilistic Performance Prediction 56

3.1 Basic Probabilistic Analysis . 59

3.1.1 Generalizing the Analysis . 60

3.1.2 Extending to N Actors . 63

3.1.3 Reducing Complexity . 67

3.2 Iterative Analysis . 70

3.2.1 Terminating Condition . 74

3.2.2 Conservative Iterative Analysis . 75

3.2.3 Parametric Throughput Analysis 76

3.2.4 Handling Other Arbiters . 77

3.3 Experiments . 77

3.3.1 Setup . 78

3.3.2 Results and Discussion – Basic Analysis 78

3.3.3 Results and Discussion – Iterative Analysis 80

3.3.4 Varying Execution Times . 88

3.3.5 Mapping Multiple Actors . 89

3.3.6 Mobile Phone Case Study . 90

3.3.7 Implementation Results on an Embedded Processor 92

iv

3.4 Related Work . 94

3.5 Conclusions . 95

4 Resource Management 97

4.1 Off-line Derivation of Properties . 98

4.2 On-line Resource Manager . 102

4.2.1 Admission Control . 103

4.2.2 Resource Budget Enforcement . 106

4.3 Achieving Predictability through Suspension 112

4.3.1 Reducing Complexity . 113

4.3.2 Dynamism vs Predictability . 114

4.4 Experiments . 115

4.4.1 DSE Case Study . 115

4.4.2 Predictability through Suspension 119

4.5 Related Work . 122

4.6 Conclusions . 124

5 Multiprocessor System Design and Synthesis 125

5.1 Performance Evaluation Framework . 127

5.2 MAMPS Flow Overview . 129

5.2.1 Application Specification . 130

5.2.2 Functional Specification . 131

5.2.3 Platform Generation . 132

5.3 Tool Implementation . 133

5.4 Experiments and Results . 134

5.4.1 Reducing the Implementation Gap 135

5.4.2 DSE Case Study . 138

5.5 Related Work . 141

5.6 Conclusions . 142

6 Multiple Use-cases System Design 143

6.1 Merging Multiple Use-cases . 145

6.1.1 Generating Hardware for Multiple Use-cases 145

v

6.1.2 Generating Software for Multiple Use-cases 147

6.1.3 Combining the Two Flows . 148

6.2 Use-case Partitioning . 149

6.2.1 Hitting the Complexity Wall . 151

6.2.2 Reducing the Execution time . 151

6.2.3 Reducing Complexity . 152

6.3 Estimating Area: Does it Fit? . 153

6.4 Experiments and Results . 157

6.4.1 Use-case Partitioning . 157

6.4.2 Mobile-phone Case Study . 158

6.5 Related Work . 160

6.6 Conclusions . 160

7 Conclusions and Future Work 162

7.1 Conclusions . 162

7.2 Future Work . 165

Bibliography 168

Glossary 181

Curriculum Vitae 185

List of Publications 186

vi

Summary

Modern multimedia systems need to support a large number of applications or functions

in a single device. To achieve high performance in such systems, more and more proces-

sors are being integrated into a single chip to build Multi-Processor Systems-on-Chip.

The heterogeneity of such systems is also increasing with the use of specialized digital

hardware, application domain processors and other IP blocks on a single chip, since vari-

ous standards and algorithms are to be supported. These embedded systems also need to

meet performance and other non-functional constraints like low power and design area.

The concurrent execution of these applications causes interference and unpredictability

in the performance of these systems.

In this thesis, a run-time performance prediction methodology is presented that can

accurately and quickly predict the performance of concurrently executing multiple appli-

cations before they execute in the system. Synchronous data flow (SDF) graphs are used

to model applications, since they fit well with characteristics of multimedia applications,

and at the same time allow analysis of application performance. While a lot of techniques

are available to analyze performance of single applications, this task is a lot harder for

multiple applications and little work has been done in this direction. This thesis presents

one of the first attempts to analyze performance of multiple applications executing on

heterogeneous non-preemptive multiprocessor platforms. A run-time iterative probabilis-

tic analysis is used to estimate the time spent by tasks during the contention phase, and

thereby predict the performance of applications. An admission controller is presented

using this analysis technique.

Further, a design-flow is presented for designing systems with multiple applications.

vii

A hybrid approach is presented where the time-consuming application-specific computa-

tions are done at design-time, and in isolation with other applications, and the use-case-

specific computations are performed at run-time. This allows easy addition of applica-

tions at run-time. A run-time mechanism is presented to manage resources in a system.

This mechanism enforces budgets and suspends applications if they achieve a higher

performance than desired. A resource manager is presented to manage computation

and communication resources, and to achieve the above goals of performance prediction,

admission control and budget enforcement.

With high consumer demand the time-to-market has become significantly lower. To

cope with the complexity in designing such systems, a largely automated design-flow is

needed that can generate systems from a high-level architectural description such that

they are not error-prone and consume less time. This thesis presents a highly auto-

mated flow – MAMPS (Multi-Application Multi-Processor Synthesis), that synthesizes

multiprocessor platforms for multiple use-cases. Techniques are presented to merge mul-

tiple use-cases into one hardware design to minimize cost and design time, making it

well-suited for fast design space exploration of MPSoC systems. The above tools are

made available on-line for use by the research community. The tools allow anyone to

upload their application descriptions and generate the FPGA multiprocessor platform in

seconds.

viii

List of Tables

2.1 Comparison of static vs dynamic schedulers 40

2.2 Table showing the deadlock condition . 48

2.3 Estimating performance: iteration-count for each application 53

2.4 Properties of Scheduling Strategies . 54

3.1 Probabilities of different queues with a . 65

3.2 Comparison of predicted vs actual time in different states 83

3.3 Measured inaccuracy for period in percentage 88

3.4 Analysis techniques executing on an embedded processor 93

4.1 Achieving predictability using budget enforcement 111

4.2 Load on processing nodes due to each application 116

4.3 Performance of JPEG and H263 decoders and processor utilization 118

4.4 Time weights computed statically for predictable performance 119

4.5 Summary of related work for resource management 122

5.1 Comparison of various methods to achieve performance estimates 128

5.2 Comparison of throughput obtained on FPGA with simulation 138

5.3 Effect of varying initial tokens on throughput of H263 and JPEG 140

5.4 Time spent on DSE of JPEG-H263 combination 140

5.5 Comparison of various approaches for providing performance estimates . . 142

ix

6.1 Resource utilization for different components in the design 156

6.2 Evaluation of heuristics used for use-case reduction and partitioning . . . 159

x

List of Figures

1.1 Growth in Multimedia Systems: Odyssey vs Sony PlayStation3 2

1.2 Increasing processor speed and reducing memory cost 6

1.3 Comparison of speedup in homogeneous vs heterogeneous systems 8

1.4 The intrinsic computational efficiency of silicon and microprocessors . . . 9

1.5 Platform-based design approach – system platform stack. 11

1.6 Application performance with full virtualization vs simulation result . . . 15

1.7 System design flow: specification to implementation 20

2.1 Example of an SDF Graph . 27

2.2 SDF Graph after modeling auto-concurrency 29

2.3 SDF Graph after modeling buffer-size . 30

2.4 Comparison of different models of computation 31

2.5 SDF Graph and the multi-processor architecture 36

2.6 Steady-state is achieved after two executions of a0 and one of a1 36

2.7 A 3-application system mapped on a 3-processor platform 42

2.8 Graph with clockwise schedule (static) gives MCM of 11 cycles 43

2.9 Graph with anti-clockwise schedule (static) gives MCM of 10 cycles 44

2.10 Deadlock situation when a new job arrives in the system 46

2.11 Modeling worst case waiting time for an application 48

2.12 SDF graphs of H263 encoder and decoder. 50

xi

2.13 Two applications running on same platform and sharing resources. 51

2.14 Static-order schedule of applications executing concurrently 52

2.15 Schedule of applications executing concurrently when B has priority . . . 53

3.1 Two application SDFGs A and B . 59

3.2 Probability distribution of waiting time due to contention 62

3.3 SDFGs A and B with response times . 62

3.4 Probability distribution of waiting time in iterative analysis 72

3.5 SDF application graphs A and B updated after iterative analysis 73

3.6 Iterative probability method . 73

3.7 Probability distribution of waiting time in conservative iterative analysis . 75

3.8 Comparison of periods using different analysis techniques 79

3.9 Comparison of inaccuracy in application periods 80

3.10 Validating the probability distribution – actor a2 of application F 81

3.11 Validating the probability distribution – actor a5 of application G 81

3.12 Waiting time of actors mapped on a over-loaded processor 84

3.13 Waiting time of actors mapped on an under-utilized processor 84

3.14 Comparison of iterative analysis results with simulation 85

3.15 Change in application A period with number of iterations 87

3.16 Change in application C period with number of iterations 87

3.17 Comparison of periods with variable execution times 89

3.18 Comparison of periods with multiple actors mapped 90

3.19 Mobile phone case study results . 91

4.1 Application(s) partitioning, and computation of their properties 99

4.2 The properties of H263 decoder application computed off-line 101

4.3 Boundary specification for non-buffer critical applications. 101

4.4 Boundary specification for buffer-critical applications 102

4.5 On-line predictor for multiple application(s) performance 104

4.6 Two applications running on same platform and sharing resources. 107

4.7 Schedule of two concurrently executing applications 107

4.8 Interaction diagram between various components in a system 109

4.9 Benefit of using a resource manager . 110

xii

4.10 SDF graph of JPEG decoder . 115

4.11 Performance of H263 and JPEG decoders 116

4.12 Effect of using resource manager – coarse grain 117

4.13 Effect of using resource manager – fine grain 118

4.14 The time wheel showing the ratio of time spent in different states. 120

4.15 Performance with static weights when extra time is used for C0 121

4.16 Performance with time-wheel of 10 million time units. 122

5.1 Ideal design flow for multiprocessor systems 126

5.2 MAMPS design flow . 129

5.3 Snippet of H263 application specification. 130

5.4 SDF graph for H263 decoder application 130

5.5 The interface for specifying functional description of SDF-actors 131

5.6 Example of specifying functional behaviour in C 132

5.7 Hardware topology of the generated design for H263 133

5.8 Architecture with Resource Manager . 134

5.9 Design flow to analyze an application and map it on hardware 135

5.10 XUP Virtex-II Pro development system board photo 136

5.11 Layout of the Virtex-II Pro FPGA with 12 Microblazes 137

5.12 Effect of varying initial tokens on JPEG throughput 139

6.1 Merging hardware for multiple use-cases 146

6.2 The overall flow for analyzing multiple use-cases 148

6.3 Putting applications, use-cases and feasible partitions in perspective. . . . 150

6.4 Variation in LUTs and slices with increasing number of FSLs 155

6.5 Variation in LUTs and slices with increasing number of processors 155

xiii

CHAPTER 1

Trends and Challenges in Multimedia Systems

Odyssey, released by Magnavox in 1972, was the world’s first video game console [Ody72].

This supported a variety of games from tennis to baseball. Removable circuit cards

consisting of a series of jumpers were used to interconnect different logic and signal

generators to produce the desired game logic and screen output components respectively.

It did not support sound, but it did come with translucent plastic overlays that one

could put on the TV screen to generate colour images. This was what is called as the

first generation video game console. Figure 1.1(a) shows a picture of this console, that

sold about 330,000 units. Let us now forward to the present day, where the video game

consoles have moved into the seventh generation. An example of one such console is the

PlayStation3 from Sony [PS309] shown in Figure 1.1(b), that sold over 21 million units in

the first two years of its launch. It not only supports sounds and colours, but is a complete

media centre which can play photographs, video games, movies in high definitions in the

most advanced formats, and has a large hard-disk to store games and movies. Further,

it can connect to one’s home network, and the entire world, both wireless and wired.

Surely, we have come a long way in the development of multimedia systems.

A lot of progress has been made from both applications and system-design perspective.

The designers have a lot more resources at their disposal – more transistors to play with,

better and almost completely automated tools to place and route these transistors, and

1

(a) Odyssey, released in 1972 – an example from
first generation video game console [Ody72].

(b) Sony PlayStation3 released in 2006 – an
example from the seventh generation video
game console [PS309]

Figure 1.1: Comparison of world’s first video console with on e of the most modern consoles.

much more memory in the system. However, a number of key challenges remains. With

increasing number of transistors has come increased power to worry about. While the

tools for the back-end (synthesizing a chip from the detailed system description) are

almost completely automated, the front-end (developing a detailed specification of the

system) of the design-process is still largely manual, leading to increased design time

and error. While the cost of memory in the system has decreased a lot, its speed has

little. Further, the demands from the application have increased even further. While the

cost of transistors has declined, increased competition is forcing companies to cut cost,

in turn forcing designers to use as few resources as necessary. Systems have evolving

standards often requiring a complete re-design often late in the design-process. At the

same time, the time-to-market is decreasing, making it even harder for the designer to

meet the strict deadlines.

In this thesis, we present analysis, design and management techniques for multimedia

multi-processor platforms. To cope with the complexity in designing such systems, a

largely automated design-flow is needed that can generate systems from a high-level

system description such that they are not error-prone and consume less time. This

thesis presents a highly automated flow – MAMPS (Multi-Application Multi-Processor

2

Synthesis), that synthesizes multi-processor platforms for not just multiple applications,

but multiple use-cases. (A use-case is defined as a combination of applications that

may be active concurrently.) One of the key design automation challenges that remain

is fast exploration of software and hardware implementation alternatives with accurate

performance evaluation. Techniques are presented to merge multiple use-cases into one

hardware design to minimize cost and design time, making it well-suited for fast design

space exploration in MPSoC systems.

In order to contain the design-cost it is important to have a system that is neither

hugely over-dimensioned, nor too limited to support the modern applications. While

there are techniques to estimate application performance, they often end-up providing

a high-upper bound such that the hardware is grossly over-dimensioned. We present a

performance prediction methodology that can accurately and quickly predict the perfor-

mance of multiple applications before they execute in the system. The technique is fast

enough to be used at run-time as well. This allows run-time addition of applications

in the system. An admission controller is presented using the analysis technique that

admits incoming applications only if their performance is expected to meet their desired

requirements. Further, a mechanism is presented to manage resources in a system. This

ensures that once an application is admitted in the system, it can meet its performance

constraints. The entire set-up is integrated in the MAMPS flow and available on-line for

the benefit of research community.

This chapter is organized as follows. In Section 1.1 we take a closer look at the trends

in multimedia systems from the applications perspective. In Section 1.2 we look at the

trends in multimedia system design. Section 1.3 summarizes the key challenges that

remain to be solved as seen from the two trends. Section 1.4 explains the overall design

flow that is used in this thesis. Section 1.5 lists the key contributions that have led to

this thesis, and their organization in this thesis.

1.1 Trends in Multimedia Systems Applications

Multimedia systems are systems that use a combination of content forms like text, audio,

video, pictures and animation to provide information or entertainment to the user. The

video game console is just one example of the many multimedia systems that abound

3

around us. Televisions, mobile phones, home theatre systems, mp3 players, laptops,

personal digital assistants, are all examples of multimedia systems. Modern multimedia

systems have changed the way in which users receive information and expect to be enter-

tained. Users now expect information to be available instantly whether they are traveling

in the airplane, or sitting in the comfort of their houses. In line with users’ demand, a

large number of multimedia products are available. To satisfy this huge demand, the

semiconductor companies are busy releasing newer embedded, and multimedia systems

in particular, every few months.

The number of features in a multimedia system is constantly increasing. For ex-

ample, a mobile phone that was traditionally meant to support voice calls, now pro-

vides video-conferencing features and streaming of television programs using 3G net-

works [HM03]. An mp3 player, traditionally meant for simply playing music, now stores

contacts and appointments, plays photos and video clips, and also doubles up as a video

game. Some people refer to it as the convergence of information, communication and

entertainment [BMS96]. Devices that were traditionally meant for only one of the three

things, now support all of them. The devices have also shrunk, and they are often seen

as fashion accessories. A mobile phone that was not very mobile until about 15 years

ago, is now barely thick enough to support its own structure, and small enough to hide

in the smallest of ladies-purses.

Further, many of these applications execute concurrently on the platform in different

combinations. We define each such combination of simultaneously active applications

as a use-case. (It is also known as scenario in literature [PTB06].) For example, a

mobile phone in one instant may be used to talk on the phone while surfing the web

and downloading some Java application in the background. In another instant it may

be used to listen to MP3 music while browsing JPEG pictures stored in the phone, and

at the same time allow a remote device to access the files in the phone over a bluetooth

connection. Modern devices are built to support different use-cases, making it possible

for users to choose and use the desired functions concurrently.

Another trend we see is increasing and evolving standards. A number of standards for

radio communication, audio and video encoding/decoding and interfaces are available.

The multimedia systems often support a number of these. While a high-end TV supports

a variety of video interfaces like HDMI, DVI, VGA, coaxial cable; a mobile phone supports

4

multiple bands like GSM 850, GSM 900, GSM 180 and GSM 1900, besides other wireless

protocols like Infrared and Bluetooth [MMZ+02, KB97, Blu04]. As standards evolve,

allowing faster and more efficient communication, newer devices are released in the market

to match those specifications. The time to market is also reducing since a number of

companies are in the market [JW04], and the consumers expect quick releases. A late

launch in the market directly hurts the revenue of the company.

Power consumption has become a major design issue since many multimedia systems

are hand-held. According to a survey by TNS research, two-thirds of mobile phone and

PDA users rate two-days of battery life during active use as the most important feature

of the ideal converged device of the future [TNS06]. While the battery life of portable

devices has generally been increasing, the active use is still limited to a few hours, and

in some extreme cases to a day. Even for other plugged multimedia systems, power has

become a global concern with rising oil prices, and a growing awareness in people to

reduce energy consumption.

To summarize, we see the following trends and requirements in the application of

multimedia devices.

• An increasing number of multimedia devices are being brought to market.

• The number of applications in multimedia systems is increasing.

• The diversity of applications is increasing with convergence and multiple standards.

• The applications execute concurrently in varied combinations known as use-cases,

and the number of these use-cases is increasing.

• The time-to-market is reducing due to increased competition, and evolving stan-

dards and interfaces.

• Power consumption is becoming an increasingly important concern for future mul-

timedia devices.

1.2 Trends in Multimedia Systems Design

A number of factors are involved in bringing the progress outlined above in multimedia

systems. Most of them can be directly or indirectly attributed to the famous Moore’s

5

1971 1975 200520001995199019851980 2008

500 MHz

1.0 GHz

1.5 GHz

2.0 GHz

2.5 GHz

3.0 GHz

3.5 GHz

4.0 GHz

100

200

300

400

DRAM (cost of 1MB in US$)
Dual Core

Quad
Core

Single Processor

P
ro

ce
ss

or
 S

pe
ed

20
06

 U
.S

. d
ol

la
rs

Proc speed in 1971 400kHz
Cost of 1MB DRAM in 2006 $0.0009

Figure 1.2: Increasing processor speed and reducing memory cost [Ade08].

law [Moo65], that predicted the exponential increase in transistor density as early as

1965. Since then, almost every measure of the capabilities of digital electronic devices

– processing speed, transistor count per chip, memory capacity, even the number and

size of pixels in digital cameras – are improving at roughly exponential rates. This has

had two-fold impact. While on one hand, the hardware designers have been able to

provide bigger, better and faster means of processing, on the other hand, the application

developers have been working hard to utilize this processing power to its maximum. This

has led them to deliver better and increasingly complex applications in all dimensions of

life – be it medical care systems, airplanes, or multimedia systems.

When the first Intel processor was released in 1971, it had 2,300 transistors and

operated at a speed of 400 kHz. In contrast, a modern chip has more than a billion

transistors operating at more than 3 GHz [Int09]. Figure 1.2 shows the trend in processor

speed and the cost of memory [Ade08]. The cost of memory has come down from close

to 400 U.S. dollars in 1971, to less than a cent for 1 MB of dynamic memory (RAM).

The processor speed has risen to over 3.5 GHz. Another interesting observation from

this figure is the introduction of dual and quad core chips since 2005 onwards. This

indicates the beginning of multi-processor era. As the transistor size shrinks, they can

be clocked faster. However, this also leads to an increase in power consumption, in

turn making chips hotter. Heat dissipation has become a serious problem forcing chip

6

manufacturers to limit the maximum frequency of the processor. Chip manufacturers are

therefore, shifting towards designing multiprocessor chips operating at a lower frequency.

Intel reports that under-clocking a single core by 20 percent saves half the power while

sacrificing just 13 percent of the performance [Ros08]. This implies that if the work is

divided between two processors running at 80 percent clock rate, we get 74 percent better

performance for the same power. Further, the heat is dissipated at two points rather than

one.

Further, sources like Berkeley and Intel are already predicting hundreds and thou-

sands of cores on the same chip [ABC+06, Bor07] in the near future. All computing

vendors have announced chips with multiple processor cores. Moreover, vendor road-

maps promise to repeatedly double the number of cores per chip. These future chips

are variously called chip multiprocessors, multi-core chips, and many-core chips, and the

complete system as multi-processor systems-on-chip (MPSoC).

Following are the key benefits of using multi-processor systems.

• They consume less power and energy, provided sufficient task-level parallelism is

present in the application(s). If there is insufficient parallelism, then some proces-

sors can be switched off.

• Multiple applications can be easily shared among processors.

• Streaming applications (typical multimedia applications) can be more easily pipelined.

• More robust against failure – a Cell processor is designed with 8 cores (also known

as SPE), but not all are always working.

• Heterogeneity can be supported, allowing better performance.

• It is more scalable, since higher performance can be obtained by adding more

processors.

In order to evaluate the true benefits of multi-core processing, Amdahl’s law [Amd67]

has been augmented to deal with multi-core chips [HM08]. Amdahl’s law is used to find

the maximum expected improvement to an overall system when only a part of the system

is improved. It states that if you enhance a fraction f of a computation by a speedup S,

7

(a) Homogeneous systems (b) Heterogeneous systems

Figure 1.3: Comparison of speedup obtained by combining r smaller cores into a bigger core in

homogeneous and heterogeneous systems [HM08].

the overall speedup is:

Speedupenhanced(f, S) =
1

(1 − f) + f
S

However, if the sequential part can be made to execute in less time by using a processor

that has better sequential performance, the speedup can be increased. Suppose we can

use the resources of r base-cores (BCs) to build one bigger core, which gives a performance

of perf(r). If perf(r) > r i.e. super linear speedup, it is always advisable to use the bigger

core, since doing so speeds up both sequential and parallel execution. However, usually

perf(r) < r. When perf(r) < r, trade-off starts. Increasing core performance helps in

sequential execution, but hurts parallel execution. If resources for n BCs are available

on a chip, and all BCs are replaced with n/r bigger cores, the overall speedup is:

Speeduphomogeneous(f, n, r) =
1

1−f
perf(r) + f.r

perf(r).n

When heterogeneous multiprocessors are considered, there are more possibilities to

redistribute the resources on a chip. If only r BCs are replaced with 1 bigger core, the

overall speedup is:

Speedupheterogeneous(f, n, r) =
1

1−f
perf(r) + f

perf(r)+n−r

8

intrinsic computational
efficiency of silicon

0.070.130.250.52 1

co
m

pu
ta

tio
na

l e
ffi

ci
en

cy
, M

O
P

S
/W

microprocessors

1

10

10

10

10

10

10

2

3

4

5

6

200620021998199419901986 2010

0.045
feature size (um)

year

Figure 1.4: The intrinsic computational efficiency of silic on as compared to the efficiency of micro-

processors.

Figure 1.3 shows the speedup obtained for both homogeneous and heterogeneous

systems, for different fractions of parallelizable software. The x-axis shows the number

of base processors that are combined into one larger core. In total there are resources

for 16 BCs. The origin shows the point when we have a homogeneous system with only

base-cores. As we move along the x-axis, the number of base-core resources used to make

a bigger core are increased. In a homogeneous system, all the cores are replaced by a

bigger core, while for heterogeneous, only one bigger core is built. The end-point for the

x-axis is when all available resources are replaced with one big core. For this figure, it

is assumed that perf(r) =
√

r. As can be seen, the corresponding speedup when using

a heterogeneous system is much greater than homogeneous system. While these graphs

are shown for only 16 base-cores, similar performance speedups are obtained for other

bigger chips as well. This shows that using a heterogeneous system with several large

cores on a chip can offer better speedup than a homogeneous system.

In terms of power as well, heterogeneous systems are better. Figure 1.4 shows the in-

trinsic computational efficiency of silicon as compared to that of microprocessors [Roz01].

The graph shows that the flexibility of general purpose microprocessors comes at the

cost of increased power. The upper staircase-like line of the figure shows Intrinsic Com-

putational Efficiency (ICE) of silicon according to an analytical model from [Roz01]

(MOPS/W ≈ α/λV 2
DD , α is constant, λ is feature size, and VDD is the supply volt-

9

age). The intrinsic efficiency is in theory bounded on the number of 32-bit mega (adder)

operations that can be achieved per second per Watt. The performance discontinuities

in the upper staircase-like line are caused by changes in the supply voltage from 5V to

3.3V, 3.3V to 1.5V, 1.5V to 1.2V and 1.2 to 1.0V. We observe that there is a gap of

2-to-3 orders of magnitude between the intrinsic efficiency of silicon and general purpose

microprocessors. The accelerators – custom hardware modules designed for a specific

task – come close to the maximum efficiency. Clearly, it may not always be desirable

to actually design a hypothetically maximum efficiency processor. A full match between

the application and architecture can bring the efficiency close to the hypothetical maxi-

mum. A heterogeneous platform may combine the flexibility of using a general purpose

microprocessor and custom accelerators for compute intensive tasks, thereby minimizing

the power consumed in the system.

Most modern multiprocessor systems are heterogeneous, and contain one or more

application-specific processing elements (PEs). The CELL processor [KDH+05], jointly

developed by Sony, Toshiba and IBM, contains up to nine-PEs – one general purpose

PowerPC [WS94] and eight Synergistic Processor Elements (SPEs). The PowerPC runs

the operating system and the control tasks, while the SPEs perform the compute-intensive

tasks. This Cell processor is used in PlayStation3 described above. STMicroelectronics

Nomadik contains an ARM processor and several Very Long Instruction Word (VLIW)

DSP cores [AAC+03]. Texas Instruments OMAP processor [Cum03] and Philips Nex-

peria [OA03] are other examples. Recently, many companies have begun providing

configurable cores that are targeted towards an application domain. These are known

as Application Specific Instruction-set Processors (ASIPs). These provide a good com-

promise between general-purpose cores and ASICs. Tensilica [Ten09, Gon00] and Silicon

Hive [Hiv09, Hal05] are two such examples, which provide the complete toolset to gener-

ate multiprocessor systems where each processor can be customized towards a particular

task or domain, and the corresponding software programming toolset is automatically

generated for them. This also allows the re-use of IP (Intellectual Property) modules

designed for a particular domain or task.

Another trend that we see in multimedia systems design is the use of Platform-

Based Design paradigm [SVCBS04, KMN+00]. This is becoming increasingly popular

due to three main factors: (1) the dramatic increase in non-recurring engineering cost

10

Mapping
Platform

Design
Platform

Exploration

Architectural Space

Platform
System

Application instance

Platform instance

Application Space

Figure 1.5: Platform-based design approach – system platfo rm stack.

due to mask making at the circuit implementation level, (2) the reducing time to market,

and (3) streamlining of industry – chip fabrication and system design, for example, are

done in different companies and places. This paradigm is based on segregation between

the system design process, and the system implementation process. The basic tenets of

platform-based design are identification of design as meeting-in-the-middle process, where

successive refinements of specifications meet with abstractions of potential implementa-

tions, and the identification of precisely defined abstraction layers where the refinement

to the subsequent layer and abstraction processes take place [SVCBS04]. Each layer sup-

ports a design stage providing an opaque abstraction of lower layers that allows accurate

performance estimations. This information is incorporated in appropriate parameters

that annotate design choices at the present layer of abstraction. These layers of abstrac-

tion are called platforms. For MPSoC system design, this translates into abstraction

between the application space and architectural space that is provided by the system-

platform. Figure 1.5 captures this system-platform that provides an abstraction between

the application and architecture space. This decouples the application development pro-

cess from the architecture implementation process.

We further observe that for high-performance multimedia systems (like cell-processing

engine and graphics processor), non-preemptive systems are preferred over preemptive

ones for a number of reasons [JSM91]. In many practical systems, properties of device

hardware and software either make the preemption impossible or prohibitively expensive

due to extra hardware and (potential) execution time needed. Further, non-preemptive

11

scheduling algorithms are easier to implement than preemptive algorithms and have dra-

matically lower overhead at run-time [JSM91]. Further, even in multi-processor systems

with preemptive processors, some processors (or co-processors/ accelerators) are usu-

ally non-preemptive; for such processors non-preemptive analysis is still needed. It is

therefore important to investigate non-preemptive multi-processor systems.

To summarize, the following trends can be seen in the design of multimedia systems.

• Increase in system resources: The resources available for disposal in terms of pro-

cessing and memory are increasing exponentially.

• Use of multiprocessor systems: Multi-processor systems are being developed for

reasons of power, efficiency, robustness, and scalability.

• Increasing heterogeneity: With the re-use of IP modules and design of custom (co-)

processors (ASIPs), heterogeneity in MPSoCs is increasing.

• Platform-based design: Platform-based design methodology is being employed to

improve the re-use of components and shorten the development cycle.

• Non-preemptive processors: Non-preemptive processors are preferred over preemp-

tive to reduce cost.

1.3 Key Challenges in Multimedia Systems Design

The trends outlined in the previous two sections indicate the increasing complexity of

modern multimedia systems. They have to support a number of concurrently executing

applications with diverse resource and performance requirements. The designers face the

challenge of designing such systems at low cost and in short time. In order to keep the

costs low, a number of design options have to be explored to find the optimal or near-

optimal solution. The performance of applications executing on the system have to be

carefully evaluated to satisfy user-experience. Run-time mechanisms are needed to deal

with run-time addition of applications. In short, following are the major challenges that

remain in the design of modern multimedia systems, and are addressed in this thesis.

• Multiple use-cases: Analyzing performance of multiple applications executing con-

currently on heterogeneous multi-processor platforms. Further, this number of use-

12

cases and their combinations is exponential in the number of applications present

in the system. (Analysis and Design)

• Design and Program: Systematic way to design and program multi-processor plat-

forms. (Design)

• Design space exploration: Fast design space exploration technique. (Analysis and

Design)

• Run-time addition of applications: Deal with run-time addition of applications –

keep the analysis fast and composable, adapt the design (-process), manage the

resources at run-time (e.g. admission controller). (Analysis, Design and Manage-

ment)

• Meeting performance constraints: A good mechanism for keeping performance of

all applications executing above the desired level. (Design and Management)

1.3.1 Analysis

We present a novel probabilistic performance prediction (P 3) algorithm for predicting

performance of multiple applications executing on multi-processor platforms. The algo-

rithm predicts the time that tasks have to spend during contention phase for a resource.

The computation of accurate waiting time is the key to performance analysis. When

applications are modeled as synchronous dataflow (SDF) graphs, their performance on

a (multi-processor) system can be easily computed when they are executing in isola-

tion (provided we have a good model). When they execute concurrently, depending on

whether the used scheduler is static or dynamic, the arbitration on a resource is either

fixed at design-time or chosen at run-time respectively (explained in more detail in Chap-

ter 2). In the former case, the execution order can be modeled in the graph, and the

performance of the entire application can be determined. The contention is therefore

modeled as dependency edges in the SDF graph. However, this is more suited for static

applications. For dynamic applications such as multimedia, dynamic scheduler is more

suitable. For dynamic scheduling approaches, the contention has to be modeled as wait-

ing time for a task, which is added to the execution time to give the total response time.

The performance can be determined by computing the performance (throughput) of this

resulting SDF graph. With lack of good techniques for accurately predicting the time

13

spent in contention, designers have to resort to worst-case waiting time estimates, that

lead to over-designing the system and loss of performance. Further, those approaches are

not scalable and the over-estimate increases with the number of applications.

In this thesis, we present a solution to performance prediction, with easy analysis. We

highlight the issue of composability i.e. mapping and analysis of performance of multiple

applications on a multiprocessor platform in isolation, as far as possible. This limits

computational complexity and allows high dynamism in the system. While in this thesis,

we only show examples with processor contention, memory and network contention can

also be easily modeled in SDF graph as shown in [Stu07]. The technique presented

here can therefore be easily extended to other system components as well. The analysis

technique can be used both at design-time and run-time.

We would ideally want to analyze each application in isolation, thereby reducing the

analysis time to a linear function, and still reason about the overall behaviour of the

system. One of the ways to achieve this, would be complete virtualization. This es-

sentially implies dividing the available resources by the total number of applications in

the system. The application would then have exclusive access to its share of resources.

For example, if we have 100 MHz processors and a total of 10 applications in the sys-

tem, each application would get 10 MHz of processing resource. The same can be done

for communication bandwidth and memory requirements. However this gives two main

problems. When fewer than 10 tasks are active, the tasks will not be able to exploit

the extra available processing power, leading to wastage. Secondly, the system would

be grossly over-dimensioned when the peak requirements of each application are taken

into account, even though these peak requirements of applications may rarely occur and

never be at the same time.

Figure 1.6 shows this disparity in more detail. The graph shows the period of ten

streaming multimedia applications (inverse of throughput) when they are run concur-

rently. The period is the time taken for one iteration of the application. The period has

been normalized to the original period that is achieved when each application is running

in isolation. If full virtualization is used, the period of applications increases to about ten

times on average. However, without virtualization, it increases only about five times. A

system which is built with full-virtualization in mind, would therefore, utilize only 50%

of the resources. Thus, throughput decreases with complete virtualization.

14

 0

 2

 4

 6

 8

 10

 12

 14

 A B C D E F G H I J

P
er

io
d

of
 A

pp
lic

at
io

ns
 (

N
or

m
al

iz
ed

)

Applications

Comparison of Period: Virtualization vs Simulation

Estimated Full Virtualization
Average Case in Simulation

Worst Case in Simulation
Original (Individual)

Figure 1.6: Application performance as obtained with full v irtualization in comparison to simulation.

Therefore, a good analysis methodology for a modern multimedia system

• provides accurate performance results, such that the system is not over-dimensioned,

• is fast in order to make it usable for run-time analysis, and to explore a large

number of design-points quickly, and

• easily handles a large number of applications, and is composable to allow run-time

addition of new applications.

It should be mentioned that often in applications, we are concerned with the long-

term throughput and not the individual deadlines. For example, in the case of JPEG

application, we are not concerned with decoding of each macro-block, but the whole im-

age. When browsing the web, individual JPEG images are not as important as the entire

page being ready. Thus, for the scope of this thesis, we consider long-term throughput

i.e. cumulative deadline for a large number of iterations, and not just one. However,

having said that it is possible to adapt the analysis to individual deadlines as well. It

should be noted that in such cases, the estimates for individual iteration may be very

pessimistic as compared to long-term throughput estimates.

1.3.2 Design

As is motivated earlier, modern systems need to support many different combinations of

applications – each combination is defined as a use-case – on the same hardware. With

15

reducing time-to-market, designers are faced with the challenge of designing and testing

systems for multiple use-cases quickly. Rapid prototyping has become very important

to easily evaluate design alternatives, and to explore hardware and software alternatives

quickly. Unfortunately, lack of automated techniques and tools implies that most work

is done by hand, making the design-process error-prone and time-consuming. This also

limits the number of design-points that can be explored. While some efforts have been

made to automate the flow and raise the abstraction level, these are still limited to

single-application designs.

Modern multimedia systems support not just multiple applications, but also mul-

tiple use-cases. The number of such potential use-cases is exponential in the number

of applications that are present in the system. The high demand of functionalities in

such devices is leading to an increasing shift towards developing systems in software and

programmable hardware in order to increase design flexibility. However, a single config-

uration of this programmable hardware may not be able to support this large number

of use-cases with low cost and power. We envision that future complex embedded sys-

tems will be partitioned into several configurations and the appropriate configuration will

be loaded into the reconfigurable platform (defined as a piece of hardware that can be

configured at run-time to achieve the desired functionality) on the fly as and when the

use-cases are requested. This requires two major developments at the research front: (1)

a systematic design methodology for allowing multiple use-cases to be merged on a single

hardware configuration, and (2) a mechanism to keep the number of hardware configu-

rations as small as possible. More hardware configurations imply a higher cost since the

configurations have to be stored in the memory, and also lead to increased switching in

the system.

In this thesis, we present MAMPS (Multi-Application Multi-Processor Synthesis) – a

design-flow that generates the entire MPSoC for multiple use-cases from application(s)

specifications, together with corresponding software projects for automated synthesis.

This allows the designers to quickly traverse the design-space and evaluate the perfor-

mance on real hardware. Multiple use-cases of applications are supported by merging

such that minimal hardware is generated. This further reduces the time spent in system-

synthesis. When not all use-cases can be supported with one configuration, due to the

hardware constraints, multiple configurations of hardware are automatically generated,

16

while keeping the number of partitions low. Further, an area estimation technique is

provided that can accurately predict the area of a design and decide whether a given

system-design is feasible within the hardware constraints or not. This helps in quick

evaluation of designs, thereby making the DSE faster.

Thus, the design-flow presented in this thesis is unique in a number of ways: (1) it

supports multiple use-cases on one hardware platform, (2) estimates the area of design

before the actual synthesis, allowing the designer to choose the right device, (3) merges

and partitions the use-cases to minimize the number of hardware configurations, and (4)

it allows fast DSE by automating the design generation and exploration process.

The work in this thesis is targeted towards heterogeneous multi-processor systems. In

such systems, the mapping is largely determined by the capabilities of processors and the

requirements of different tasks. Thus, the freedom in terms of mapping is rather limited.

For homogeneous systems, task mapping and scheduling are coupled by performance

requirements of applications. If for a particular scheduling policy, the performance of

a given application is not met, mapping may need to be altered to ensure that the

performance improves. As for the scheduling policy, it is not always possible to steer

them at run-time. For example, if a system uses first-come-first-serve scheduling policy,

it is infeasible to change it to a fixed priority schedule for a short time, since it requires

extra hardware and software. Further, identifying the ideal mapping given a particular

scheduling policy already takes exponential time in the total number of tasks. When

the scheduling policy is also allowed to vary independently on processors, the time taken

increases even more.

1.3.3 Management

Resource management, i.e. managing all the resources present in the multiprocessor

system, is similar to the task of an operating system on a general purpose computer.

This includes starting up of applications, and allocating resources to them appropriately.

In the case of a multimedia system (or embedded systems, in general), a key difference

from a general purpose computer is that the applications (or application domain) is

generally known, and the system can be optimized for them. Further, most decisions can

be already taken at design-time to save the cost at run-time. Still, a complete design-

time analysis is becoming increasingly harder due to three major reasons: 1) little may

17

be known at design-time about the applications that need to be used in future, e.g. a

navigation application like Tom-Tom may be installed on the phone after-wards, 2) the

precise platform may also not be known at design time, e.g. some cores may fail at

run-time, and 3) the number of design-points that need to be evaluated is prohibitively

large. A run-time approach can benefit from the fact that the exact application mix is

known, but the analysis has to be fast enough to make it feasible.

In this thesis, we present a hybrid approach for designing systems with multiple

applications. This splits the management tasks into off-line and on-line. The time-

consuming application specific computations are done at design-time and for each ap-

plication independent from other applications, and the use-case specific computations

are performed at run-time. The off-line computation includes tasks like application-

partitioning, application-modeling, determining the task execution times, determining

their maximum throughput, etc. Further, parametric equations are derived that allow

throughput computation of tasks with varying execution times. All this analysis is time-

consuming and best carried out at design-time. Further, in this part no information is

needed from the other applications and it can be performed in isolation. This information

is sufficient enough to let a run-time manager determine the performance of an applica-

tion when executing concurrently on the platform with other applications. This allows

easy addition of applications at run-time. As long as all the properties needed by

the run-time resource manager are derived for the new application, the application can

be treated as all the other applications that are present in the system.

At run-time, when the resource manager needs to decide, for example, which resources

to allocate to an incoming application, it can evaluate the performance of applications

with different allocations and determine the best option. In some cases, multiple quality

levels of an application may be specified, and at run-time the resource manager can

choose from one of those levels. This functionality of the resource manager is referred

to as admission control. The manager also needs to ensure that applications that are

admitted do not take more resources than allocated, and starve the other applications

executing in the system. This functionality is referred to as budget enforcement. The

manager periodically checks the performance of all applications, and when an application

does better than the required level, it is suspended to ensure that it does not take more

resources than needed. For the scope of this thesis, the effect of task migration is not

18

considered since it is orthogonal to our approach.

1.4 Design Flow

Figure 1.7 shows the design-flow that is used in this thesis. Specifications of applications

are provided to the designer in the form of Synchronous Dataflow (SDF) graphs [SB00,

LM87]. These are often used for modeling multimedia applications. This is further ex-

plained in Chapter 2. As motivated earlier in the chapter, modern multimedia systems

support a number of applications in varied combinations defined as use-case. Figure 1.7

shows three example applications – A, B and C, and three use-cases with their combi-

nations. For example, in Use-case 2 applications A and B execute concurrently. For

each of these use-cases, the performance of all active applications is analyzed. When a

suitable mapping to hardware is to be explored, this step is often repeated with differ-

ent mappings, until the desired performance is obtained. A probabilistic mechanism is

used to estimate the average performance of applications. This performance analysis

technique is presented in Chapter 3.

When a satisfactory mapping is obtained, the system can be designed and synthesized

automatically using the system-design approach presented in Chapter 5. Multiple

use-cases need to be merged on to one hardware design such that a new hardware

configuration is not needed for every use-case. This is explained in Chapter 6. When it

is not possible to merge all use-cases due to resource constraints (slices in an FPGA, for

example), use-cases need to be partitioned such that the number of hardware partitions

are kept to a minimum. Further, a fast area estimation method is needed that can quickly

identify whether a set of use-cases can be merged due to hardware constraints. Trying

synthesis for every use-case combination is too time-consuming. A novel area-estimation

technique is needed that can save precious time during design space exploration. This is

explained in Chapter 6.

Once the system is designed, a run-time mechanism is needed to ensure that all

applications can meet their performance requirements. This is accomplished by using a

resource manager (RM). Whenever a new application is to be started, the manager checks

whether sufficient resources are available. This is defined as admission-control. The

probabilistic analysis is used to predict the performance of applications when the new

19

Figure 1.7: Complete design flow starting from applications specifications and ending with a work-

ing hardware prototype on an FPGA.

20

application is admitted in the system. If the expected performance of all applications

is above the minimum desired performance then the application is started, else a lower

quality of incoming application is tried. The resource manager also takes care of budget-

enforcement i.e. ensuring applications use only as much resources as assigned. If

an application uses more resources than needed and starves other applications, it is

suspended. Figure 1.7 shows an example where application A is suspended. Chapter 4

provides details of two main tasks of the RM – admission control and budget-enforcement.

The above flow also allows for run-time addition of applications. Since the perfor-

mance analysis presented is fast, it is done at run-time. Therefore, any application whose

properties have been derived off-line can be used, if there are enough resources present

in the system. This is explained in more detail in Chapter 4.

1.5 Key Contributions and Thesis Overview

Following are some of the major contributions that have been achieved during the course

of this research and have led to this thesis.

• A detailed analysis of why estimating performance of multiple applications ex-

ecuting on a heterogeneous platform is so difficult. This work was published

in [KMC+06], and an extended version is published in a special issue of the Journal

of Systems Architecture containing the best papers of the Digital System Design

conference [KMT+08].

• A probabilistic performance prediction (P 3) mechanism for multiple applications.

The prediction is within 2% of real performance for experiments done. The basic

version of the P 3 mechanism was first published in [KMC+07], and later improved

and published in [KMCH08].

• An admission controller based on P 3 mechanism to admit applications only if

they are expected to meet their performance requirements. This work is published

in [KMCH08].

• A budget enforcement mechanism to ensure that applications can all meet their

desired performance if they are admitted. This work is published in [KMT+06].

21

• A Resource Manager (RM) to manage computation and communication resources,

and achieve the above goals. This work is published in [KMCH08].

• A design flow for multiple applications, such that composability is maintained and

applications can be added at run-time with ease.

• A platform synthesis design technique that generates multiprocessors platforms

with ease automatically and also programs them with relevant program codes, for

multiple applications. This work is published in [KFH+07].

• A design flow explaining how systems that support multiple use-cases should be

designed. This work is published in [KFH+08].

A tool-flow based on the above for Xilinx FPGAs that is also made available for

use on-line for the benefit of research community. This tool is available on-line at

www.es.ele.tue.nl/mamps/ [MAM09].

This thesis is organized as follows. Chapter 2 explains the concepts involved in model-

ing and scheduling of applications. It explores the problems encountered when analyzing

multiple applications executing on a multi-processor platform. The challenge of Com-

posability, i.e. being able to analyze applications in isolation with other applications,

is presented in this chapter. Chapter 3 presents a performance prediction methodology

that can accurately predict the performance of applications at run-time before they ex-

ecute in the system. A run-time iterative probabilistic analysis is used to estimate the

time spent by tasks during contention phase, and thereby predict the performance of

applications. Chapter 4 explains the concepts of resource management and enforcing

budgets to meet the performance requirements. The performance prediction is used for

admission control – one of the main functions of the resource manager. Chapter 5 pro-

poses an automated design methodology to generate program MPSoC hardware designs

in a systematic and automated way for multiple applications named MAMPS. Chapter 6

explains how systems should be designed when multiple use-cases have to be supported.

Algorithms for merging and partitioning use-cases are presented in this chapter as well.

Finally, Chapter 7 concludes this thesis and gives directions for future work.

22

CHAPTER 2

Application Modeling and Scheduling

Multimedia applications are becoming increasingly more complex and computation hun-

gry to match consumer demands. If we take video, for example, televisions from leading

companies are already available with high-definition (HD) video resolution of 1080x1920

i.e. more than 2 million pixels [Son09, Sam09, Phi09] for consumers and even higher

resolutions are showcased in electronic shows [CES09]. Producing images for such a

high resolution is already taxing for even high-end MPSoC platforms. The problem is

compounded by the extra dimension of multiple applications sharing the same resources.

Good modeling is essential for two main reasons: 1) to predict the behaviour of applica-

tions on a given hardware without actually synthesizing the system, and 2) to synthesize

the system after a feasible solution has been identified from the analysis. In this chapter

we will see in detail the model requirements we have for designing and analyzing multi-

media systems. We see the various models of computation, and choose one that meets

our design-requirements.

Another factor that plays an important role in multi-application analysis is determin-

ing when and where a part of application is to be executed, also known as scheduling.

Heuristics and algorithms for scheduling are called schedulers. Studying schedulers is es-

sential for good system design and analysis. In this chapter, we discuss the various types

of schedulers for dataflow models. When considering multiple applications executing on

23

multi-processor platforms, three main things need to be taken care of: 1) assignment

– deciding which task of application has to be executed on which processor, 2) order-

ing – determining the order of task-execution, and 3) timing – determining the precise

time of task-execution1. Each of these three tasks can be done at either compile-time or

run-time. In this chapter, we classify the schedulers on this criteria and highlight two

of them most suited for use in multiprocessor multimedia platforms. We highlight the

issue of composability i.e. mapping and analysis of performance of multiple applications

on a multiprocessor platform in isolation, as far as possible. This limits computational

complexity and allows high dynamism in the system.

This chapter is organized as follows. The next section motivates the need of modeling

applications and the requirements for such a model. Section 2.2 gives an introduction to

the synchronous dataflow (SDF) graphs that we use in our analysis. Some properties that

are relevant for this thesis are also explained in the same section. Section 2.3 discusses

the models of computation (MoCs) that are available, and motivates the choice of SDF

graphs as the MoC for our applications. Section 2.4 gives state-of-the-art techniques used

for estimating performance of applications modeled as SDF graphs. Section 2.5 provides

background on the scheduling techniques used for dataflow graphs in general. Section 2.6

extends the performance analysis techniques to include hardware constraints as well.

Section 2.8 provides a comparison between static and dynamic ordering schedulers, and

Section 2.9 concludes the chapter.

2.1 Application Model and Specification

Multimedia applications are often also referred to as streaming applications owing to

their repetitive nature of execution. Most applications execute for a very long time in

a fixed execution pattern. When watching television for example, the video decoding

process potentially goes on decoding for hours – an hour is equivalent to 180,000 video

frames at a modest rate of 50 frames per second (fps). High-end televisions often provide

a refresh rate of even 100 fps, and the trend indicates further increase in this rate. The

same goes for an audio stream that usually accompanies the video. The platform has to

work continuously to get this output to the user.

In order to ensure that this high performance can be met by the platform, the designer

1Some people also define only ordering and timing as scheduling, and assignment as binding or mapping.

24

has to be able to model the application requirements. In the absence of a good model, it

is very difficult to know in advance whether the application performance can be met at

all times, and extensive simulation and testing is needed. Even now, companies report a

large effort being spent on verifying the timing requirements of the applications. With

multiple applications executing on multiple processors, the potential number of use-cases

increases rapidly, and so does the cost of verification.

We start by defining a use-case.

Definition 1 (Use-case:) Given a set of n applications A0, A1, . . . An−1, a use-case

U is defined as a vector of n elements (x0, x1, . . . xn−1) where xi ∈ {0, 1} ∀ i =

0, 1, . . . n − 1, such that xi = 1 implies application Ai is active.

In other words, a use-case represents a collection of multiple applications that are

active simultaneously. It is impossible to test a system with all potential input cases

in advance. Modern multimedia platforms (high-end mobile phones, for example) allow

users to download applications at run-time. Testing for those applications at design-time

is simply not possible. A good model of an application can allow for such analysis at

run-time.

One of the major challenges that arise when mapping an application to an MPSoC

platform is dividing the application load over multiple processors. Two ways are avail-

able to parallelize the application and divide the load over more than one processor,

namely task-level parallelism (also known as pipe-lining) and data-level parallelism. In

the former, each processor gets a different part of an application to process, while in the

latter, processors operate on the same functionality of application, but different data. For

example, in case of JPEG image decoding, inverse discrete cosine transform (IDCT) and

colour conversion (CC), among other tasks, need to be performed for all parts (macro-

blocks) of an image. Splitting the task of IDCT and CC on different processors is an

example of task-level parallelism. Splitting the data, in this case macro-blocks, to dif-

ferent processors is an example of data-level parallelism. To an extent, these approaches

are orthogonal and can be applied in isolation or in combination. In this thesis, we shall

focus primarily on task-level parallelism.

Parallelizing an application to make it suitable for execution on a multi-processor

25

platform can be a very difficult task. Whether an application is written from start in a

manner that is suitable for SDF model, or whether an SDF model is extracted from the

existing (sequential) application, in either case we need to know how long the execution

of each program segment will take; how much data and program memory will be needed

for it; and when communication program segments are mapped on different processors,

how much communication buffer capacity do we need. Further, we also want to know

what is the maximum performance that the application can achieve on a given platform,

especially when sharing the platform with other applications. For this, we have to also

be able to model and analyze scheduling decisions.

To summarize, following are our requirements from an application model that allow

mapping and analysis on a multiprocessor platform:

• Analyze computational requirements: When designing an application for MPSoC

platform, it is important to know how much computational resource an application

needs. This allows the designers to dimension the hardware appropriately. Further,

this is also needed to compute the performance estimates of the application as a

whole. While sometimes, average case analysis of requirements may suffice, often

we also need the worst case estimates, for example in case of real-time embedded

systems.

• Analyze memory requirements: This constraint becomes increasingly more impor-

tant as the memory cost on a chip goes high. A model that allows accurate analysis

of memory needed for the program execution can allow a designer to distribute the

memory across processors appropriately and also determine proper mapping on the

hardware.

• Analyze communication requirements: The buffer capacity between the communi-

cating tasks (potentially) affects the overall application performance. A model that

allows computing these buffer-throughput trade-offs can let the designer allocate

appropriate memory for the channel and predict throughput.

• Model and analyze scheduling: When we have multiple applications sharing proces-

sors, scheduling becomes one of the major challenges. A model that allows us to

analyze the effect of scheduling on applications performance is needed.

26

• Design the system: Once the performance of system is considered satisfactory, the

system has to be synthesized such that the properties analyzed are still valid.

Dataflow models of computation fit rather well with the above requirements. They

provide a model for describing signal processing systems where infinite streams of data are

incrementally transformed by processes executing in sequence or parallel. In a dataflow

model, processes communicate via unbounded FIFO channels. Processes read and write

atomic data elements or tokens from and to channels. Writing to a channel is non-

blocking, i.e. it always succeeds and does not stall the process, while reading from

a channel is blocking, i.e. a process that reads from an empty channel will stall and

can only continue when the channel contains sufficient tokens. In this thesis, we use

synchronous dataflow (SDF) graph to model applications and the next section explains

them in more detail.

2.2 Introduction to SDF Graphs

1 1

1

1

2
2

100

50

100

A

a0

a1

a2

Figure 2.1: Example of an SDF Graph

Synchronous Data Flow Graphs (SDFGs, see [LM87]) are often used for modeling

modern DSP applications [SB00] and for designing concurrent multimedia applications

implemented on multi-processor systems-on-chip. Both pipelined streaming and cyclic

dependencies between tasks can be easily modeled in SDFGs. Tasks are modeled by

the vertices of an SDFG, which are called actors. The communication between actors

is represented by edges through which it is connected to other actors. Edges represent

channels for communication in a real system.

The time that the actor takes to execute on a processor is indicated by the number

inside the actor. It should be noted that the time an actor takes to execute may vary with

the processor. For sake of simplicity, we shall omit the detail as to which processor it is

27

mapped, and just define the time (or clock cycles) needed on a RISC processor [PD80],

unless otherwise mentioned. This is also sometimes referred to as Timed SDF in liter-

ature [Stu07]. Further, when we refer to the time needed to execute a particular actor,

we refer to the worst-case execution-time (WCET). The average execution time may be

lower.

Figure 2.1 shows an example of an SDF graph. There are three actors in this graph.

As in a typical data flow graph, a directed edge represents the dependency between

actors. Actors need some input data (or control information) before they can start, and

usually also produce some output data; such information is referred to as tokens. The

number of tokens produced or consumed in one execution of actor is called rate. In the

example, a0 has an input rate of 1 and output rate of 2. Further, its execution time

is 100 clock cycles. Actor execution is also called firing. An actor is called ready when

it has sufficient input tokens on all its input edges and sufficient buffer space on all its

output channels; an actor can only fire when it is ready.

The edges may also contain initial tokens, indicated by bullets on the edges, as seen

on the edge from actor a2 to a0 in Figure 2.1. In the above example, only a0 can start

execution from the initial state, since the required number of tokens are present on its

only incoming edge. Once a0 has finished execution, it will produce 2 tokens on the edge

to a1. a1 can then proceed, as it has enough tokens, and upon completion produce 1 token

on the edge to a2. However, a2 has to wait before two executions of a1 are completed,

since it needs two input tokens.

A number of properties of an application can be analyzed from its SDF model. We can

calculate the maximum performance possible of an application. We can identify whether

the application or a particular schedule will result in a deadlock. We can also analyze

other performance properties, e.g. latency of an application, buffer requirements. Below

we give some properties of SDF graphs that allow modeling of hardware constraints that

are relevant to this thesis.

2.2.1 Modeling Auto-concurrency

The example in Figure 2.1 brings a very interesting fact to notice. According to the

model, since a1 requires only one token on the edge from a0 to fire, as soon as a0 has

finished executing and produced two tokens, two executions of a1 can start simultane-

28

ously. However, this is only possible if a1 is mapped and allowed to execute on multiple

processors simultaneously. In a typical system, a1 will be mapped on a processor. Once

the processor starts executing, it will not be available to start the second execution of a1

until it has at least finished the first execution of a1. If there are other actors mapped

on it, the second execution of a1 may even be delayed further.

1 1

1

1

2
2

100

50

100

A

1
1

a0

a1

a2

Figure 2.2: SDF Graph after modeling auto-concurrency of 1 f or the actor a1

Fortunately, there is a way to model this particular resource conflict in SDF. Figure 2.2

shows the same example, now updated with the constraint that only one execution of a1

can be active at any one point in time. In this figure, a self-edge has been added to the

actor a1 with one initial token. (In a self-edge, the source and destination actor is the

same.) This initial token is consumed in the first firing of a1 and produced after a1 has

finished the first execution. Interestingly enough, by varying the number of initial tokens

on this self-edge, we can regulate the number of simultaneous executions of a particular

actor. This property is called auto-concurrency.

Definition 2 (Auto-concurrency) The auto-concurrency of an actor is defined

as the maximum number of simultaneous executions of that actor.

In Figure 2.2, the auto-concurrency of a1 is 1, while for a0 and a2 it is infinite. In

other words, the resource conflict for actors a0 and a2 is not modeled. In fact, the single

initial token on the edge from a2 to a0 limits the auto-concurrency of these two actors

to one; a self-edge in this case would be superfluous.

29

2.2.2 Modeling Buffer Sizes

One of the very useful properties of SDF graphs is its ability to model available buffers

easily. Buffer-sizes may be modeled as a back-edge with initial tokens. In such cases, the

number of tokens on that edge indicates the buffer-size available. When an actor writes

data on a channel, the available size reduces; when the receiving actor consumes this

data, the available buffer increases, modeled by an increase in the number of tokens.

1 1

1

1

2
2

100

50

100

A

2

1

a0

a1

a2

Figure 2.3: SDF Graph after modeling buffer-size of 2 on the e dge from actor a2 to a1

Figure 2.3 shows such an example, where the buffer size of the channel from a1 to

a2 is shown as two. Before a1 can be executed, it has to check if enough buffer space is

available. This is modeled by requiring tokens from the back-edge to be consumed. Since

it produces one token per firing, one token from the back-edge is consumed, indicating

reservation of one buffer space on the output edge. On the consumption side, when a2 is

executed, it frees two buffer spaces, indicated by a release of two tokens on the back-edge.

In the model, the output buffer space is claimed at the start of execution, and the input

token space is released only at the end of firing. This ensures atomic execution of the

actor.

2.3 Comparison of Dataflow Models

While SDF graphs allow analysis of many properties and are well-suited for multime-

dia applications, they do have some restrictions. For example, conditional and data-

dependent behaviour cannot be expressed in these models. In this section, we provide

an overview of the other models of computation (MoC). In [Stu07], Stuijk has summa-

rized and compared many models on the basis of their expressiveness and succinctness,

efficiency of implementation, and analyzability. Expressiveness determines to what ex-

tent real-applications can be represented in a particular model. Models that are static

30

in nature (e.g. SDF) cannot capture behaviour of highly dynamic applications (e.g. ob-

ject segmentation from an input sequence) accurately. Succinctness (or compactness)

determines how compact that representation is. Efficiency of implementation determines

how easily the application model can be implemented in terms of its schedule length.

Analyzability determines to what extent the model can be analyzed and performance

properties of applications determined. As mentioned in the earlier section, this is one of

the most important considerations for us. In general, a model that can be easily analyzed

at design-time is also more efficient for implementation, since most scheduling and re-

source assignment decisions can be made at design-time. Figure 2.4 shows how different

models are placed on these three axes.

Expressiveness and Succinctness

Analyzability Implementation efficiency

KPN
SADF
BDF

CSDF

Computation graphs
SDF / Weighted marked graphs
HSDF / Marked graphs

Figure 2.4: Comparison of different models of computation [Stu07].

Kahn Process Network

Kahn process network (KPN) was proposed by Kahn in 1974 [Kah74]. The amount of

data read from an edge may be data-dependent. This allows modeling of any continuous

function from the inputs of the KPN to the outputs of the KPN with an arbitrarily

small number of processes. KPN is sufficiently expressive to capture precisely all data

dependent dataflow transformations. However, this also implies that in order to analyze

properties like the throughput or buffer requirements of a KPN all possible inputs have

to be considered.

31

Scenario Aware Dataflow

Scenario aware dataflow (SADF) was first introduced by Theelen in 2006 [TGB+06].

This is also a model for design-time analysis of dynamic streaming and signal processing

applications.This model also allows for data-dependent behaviour in processes. Each

different execution pattern is defined as a scenario. Such scenarios denote different

modes of operations in which resource requirements can differ considerably. The scenario

concept enables to coherently capture the variations in behaviour of different processes

in a streaming application. A key novelty of SADF is the use of a stochastic approach

to capture the scenario occurrences as well as the occurrence of different execution times

within a scenario in an abstract way. While some properties of these graphs like deadlock

and throughput are possible to analyze at design time, in practice this analysis can be

quite slow. This model is less compact than KPN, since all scenarios have to be explicitly

specified in the model, and known at design time. This also makes it less expressive since

not all kinds of systems can be expressed accurately in SADF.

Boolean Dataflow

The last model of computation that we discuss having data-dependent behaviour is

boolean dataflow (BDF) model [Lee91, BL93]. In this model, each process has a number

of inputs and outputs to choose from. Depending on the value of control tokens data is

read from one of the input channels, and written to one of the output channels. This

model is less expressive than the earlier two models discussed, since the control freedom

in modeling processes is limited to either true or false. Similar to the earlier two models

discussed, the analyzability is limited.

Cyclo Static Dataflow

Now we move on to the class of more deterministic data flow models of computation. In a

cyclo-static dataflow (CSDF) model [LWAP94, BELP96], the rates of data consumed and

produced may change between subsequent firings. However, the pattern of this change is

pre-determined and that makes it more analyzable at design time. These graphs may be

converted to SDF graphs, and are therefore as expressive as SDF graphs. However, the

freedom to change the rates of data makes them more compact than SDF in representing

some applications. They are also as analyzable, but slower if we consider the same

32

number of actors, since the resulting schedule is generally a little more complex.

Recently, special channels have been introduced for CSDF graphs [DBC+07]. Often

applications share buffers between multiple consumers. This cannot be directly described

in CSDF. The authors show how such implementation specific aspects can be modeled in

CSDF without the need of extensions. Thus, the analyzability of the graph is maintained,

and appropriate buffer-sizes can be computed from the application model.

Computation Graphs

Computation graphs were first introduced by Karp and Miller in 1966 [KM66]. In these

graphs there is a threshold set for each edge specifying the minimum number of tokens

that should be present on that edge before an actor can fire. However, the number

of tokens produced and consumed for each edge is still fixed. These models are less

expressive than CSDF, but more analyzable. A synchronous data flow graph is a subset

of these computation graphs.

Synchronous Dataflow

Synchronous dataflow (SDF) graphs were first proposed by Lee and Messerschmitt in

1987 [LM87]. However, as has been earlier claimed [Stu07], these correspond to subclass

weighted marked graph [TCWCS92] of Petri nets, which is a general purpose model of

computation with a number of applications [Pet62, Mur89]. SDF graphs have a constant

input and output rate that does not change with input or across different firings. They

also don’t support execution in different scenarios as may be specified by data. Therefore,

their expressivity is rather limited. However, this also makes them a lot easier to analyze.

Many performance parameters can be analyzed as explained in Section 2.4.

Homogeneous Synchronous Data Flow

Homogeneous Synchronous Data Flow (HSDF) graphs are a subset of SDF graphs. In

HSDF graph model, the rates of all input and output edges is one. This implies that only

one token is read and written in any firing of an actor. This limits the expressiveness

even more, but makes the analysis somewhat easier. HSDF graphs can be converted into

SDF and vice-versa. However, in practice the size of an HSDF for an equivalent SDFG

may be very large as shown by examples in [Stu07]. Lately, analysis techniques have been

33

developed that work almost as fast directly on an SDF graph as on an HSDF graph (for

the same number of nodes) [Gha08]. Therefore, the added advantage of using an HSDF

graph is lost.

After considering all the alternatives, we decided in favour of SDF graphs since

their ability to analyze applications in terms of other performance requirements, such

as throughput and buffer, was one of our key requirements. Further, a number of anal-

ysis tools for SDF graph were available (and more in development) when this research

was started [SDF09]. However, since SDF graphs are not able to express some real ap-

plications accurately, we do have to pay a little overhead in estimating performance. For

example, the execution time is assumed to be the worst-case execution-time. Thus, in

some cases, the performance estimates may be pessimistic.

2.4 Performance Modeling

In this section, we define the major terminology that is relevant for this thesis.

Definition 3 (Actor Execution Time) Actor execution time, τ(a) is defined as the

time needed to complete execution of actor a on a specified node. In cases where the

required time is not constant but varying, this indicates the maximum time for actor

execution.

τ(a0) = 100, for example, in Figure 2.3.

Definition 4 (Iteration) An iteration of a graph is defined as the minimum non-

zero execution (i.e. at least one actor has executed) such that the initial state of the

graph is obtained.

In Figure 2.3, one iteration of graph A is completed when a0, a1 and a2 have completed

one, two and one execution(s) each respectively.

Definition 5 (Repetition Vector) Repetition Vector q of an SDF graph A is defined

as the vector specifying the number of times an actor in A is executed for one iteration

of A.

34

For example, in Figure 2.3, q[a0 a1 a2] = [1 2 1]. It should be mentioned that any

integer multiple of repetition vector defined above is also a repetition vector. The above

definition gives a minimal repetition vector in which all entries are integers.

Definition 6 (Application Period) Application Period Per(A) is defined as the

time SDFG A takes to complete one iteration on average.

Per(A) = 300 in Figure 2.3, assuming it has sufficient resources and no contention,

and all the actors fire as soon as they are ready. (Note that actor a1 has to execute

twice.)

Definition 7 (Application Throughput) Application Throughput, ThrA is defined

as the number of iterations of an SDF graph A in one second.

This is simply the inverse of period, Per(A), when period is defined in seconds.

For example, an application with a throughput of 50 Hz takes 20 ms to complete one

iteration. When the graph in Figure 2.3 is executing on a single processor of 300 MHz,

the throughput of A is 1 MHz since the period is 1 micro-second.

Throughput is one of the most interesting properties of SDF graphs relevant to the

design of any multimedia system. Designers and consumers both want to know the

sustained throughput the system can deliver. This parameter often directly relates to

the consumer. For example, throughput of an H.264 decoder may define how many

frames can be decoded per second. A higher throughput in this case directly improves

the consumer experience.

2.4.1 Steady-state vs Transient

Often, in an application, it takes a few iterations of the application before it starts its

periodic behaviour. For example, consider the application graph as shown earlier in

Figure 2.1, but now with three initial tokens on the edge from a2 to a0. Consider further,

that each of the three actors is mapped on a multi-processor system with three processors,

P0, P1 and P2, such that actor ai is mapped on Pi for i = 0, 1, 2. Let us assume that

the processors are connected to each other with a point-to-point connection with infinite

35

bandwidth with directions similar to channels in the application graph. Figure 2.5 shows

the updated graph and the three processor system with the appropriate mapping.

1 1

1

1

2
2

100

50

100

A

a0

a1

a2

P0 P1 P2

Figure 2.5: SDF Graph and the multi-processor architecture on which it is mapped

1 1

1

1

2
2

100

50

100

A

a0

a1

a2

P0 P1 P2

Figure 2.6: Steady-state is achieved after two executions o f a0 and one of a1

In this example, if we look at the time taken for one single iteration, we get a period

of 300 cycles. However, since each actor has its own dedicated processor, soon we get the

token distribution as shown in Figure 2.6. From this point onwards, all the actors can

continue firing indefinitely since all actors have sufficient tokens and dedicated resources.

Thus, every 100 cycles, an iteration of application A is completed. (Note that the first

iteration still takes 300 cycles to be completed.) This final state is called steady-state.

The initial execution of the graph leading to this state is called transient phase.

For the graph as shown in Figure 2.5, the maximal throughput for 300 MHz processors

is 3 MHz or three million iterations per second. In this thesis when we refer to the

throughput of a graph, we generally refer to the maximal achievable throughput of a

graph, unless otherwise mentioned. This only refers to the steady-state throughput.

When we use the term achieved throughput of a graph, we shall refer to the long-term

average throughput achieved for a given application. This also includes the transient

phase of an application. Please note that for infinitely long execution, the long-term

average throughput is the same as the steady-state throughput.

36

Another way to define throughput is the rate of execution of an output actor divided

by its repetition vector entry. If we consider actor a2 as the output actor of application

A, we see that the throughput of the application is the same as the execution rate of a2,

since its repetition vector entry is 1.

2.4.2 Throughput Analysis of (H)SDF Graphs

A number of analysis techniques are available to compute the throughput of SDF graphs [Gha08,

Stu07, SB00, Das04, BKKB02]. Most of these techniques first convert an SDF graph into

a homogeneous SDF (HSDF) graph. HSDF is a special class of SDF in which the number

of tokens consumed and produced is always equal to one. Techniques are available to

convert an SDF into HSDF and the other way around [SB00]. After conversion to HSDF,

throughput is computed as the inverse of the maximal cycle mean (MCM) of the HSDF

graph [Das04, KM66]. MCM in turn is the maximum of all cycle-means. A cycle-mean

is computed as the weighted average of total delay in a cycle divided by the number of

tokens in it.

The conversion to HSDF from an SDF graph may result in an explosion in the number

of nodes [PL95]. The number of nodes in the corresponding HSDF graph for an SDF

graph is determined by its repetition vector. There are examples of real-applications

(H.263 in this case), where an SDF model requires only 4 nodes and an HSDF model

of the same application has 4754 nodes [Stu07]. This makes the above approach very

infeasible for many multimedia applications. Lately, techniques have been presented that

operate on SDF graphs directly [GGS+06, Gha08]. These techniques essentially simulate

the SDF execution and identify when a steady-state is reached by comparing previous

states with current state. Even though the theoretical bound is high, the experimental

results show that these techniques can compute the throughput of many multimedia

applications within milliseconds.

A tool called SDF 3 has been written and is available on-line for use by the research

community [SGB06a, SDF09]. Beside being able to generate random SDF graphs with

specified properties, it can also compute throughput of SDF graphs easily. It allows to

visualize these graphs as well, and compute other performance properties. The same

tool was used for throughput computation and graph generation in many experiments

conducted in this thesis.

37

However, the above techniques only work on a particular execution time of actors. If

there is any change in the actor execution time, the entire analysis has to be repeated.

Recently, a technique has been proposed in [GGBS08] that allows variable execution

time. This technique computes equations that limit the application period, for a given

range of actor execution times. When the exact actor execution time is known, these

equations can be evaluated to compute the actual period of the application. This idea is

used in Chapter 3 to compute throughput of applications.

It should be mentioned that the techniques mentioned here do not take into account

resource contention and essentially assume that infinite resources are available, except

SDF 3. SDF 3 also takes resource contention into account but is limited to preemptive

systems. Before we see how throughput can be computed when considering limited com-

putation resources, we review the basic techniques used for scheduling dataflow graphs.

2.5 Scheduling Techniques for Dataflow Graphs

One of the key aspects in designing multiprocessor systems from any MoC is scheduling.

Compile-time scheduling promises near-optimal performance at low cost for final system,

but is only suitable for static applications. Run-time scheduling can address a wider

variety of applications, at greater system cost. Scheduling techniques can be classified in

a number of categories based on which decisions are made at compile time (also known

as design-time) and which decisions are made at run-time. [LH89, SB00]. There are

three main decisions when scheduling tasks (or actors) on a processor:2 1) which tasks

to assign to a given processor, 2) what is the order of these tasks on it and 3) what is

the timing of these tasks. We consider four different types of schedulers.

1. The first one is fully static where everything is decided at compile time and the

processor has to simply execute the tasks. This approach has traditionally been

used extensively for DSP applications due to their repetitive and constant resource

requirement. This is also good for systems where guarantees are more important

and (potential) speed-up from earlier execution is not desired. Further, the run-

time scheduler becomes very simple since it does not need to check for availability

of data and simply executes the scheduled actors at respective times. However, this

2When considering mapping of channels on the network, there are many more categories.

38

mechanism is completely static, and cannot handle any dynamism in the system

like run-time addition of applications, or any unexpectedly higher execution time

for a particular iteration.

2. The second type is self-timed, where the assignment and ordering is already

done at compile time. However, the exact time for firing of actors is determined

at run-time, depending on the availability of data. Self-timed scheduling is more

suitable for cases when the execution time of tasks may be data-dependent, but

the variation is not very large. This can often result in speed-up of applications

as compared to analysis at design-time, provided the worst-case execution time

estimates are used for analyzing the application performance. Since earlier arrival

of data cannot result in later production of data, the performance bounds computed

at compile-time are preserved. However, this also implies that the schedule may

become non-work-conserving, i.e. that a task may be waiting on a processor, while

the processor is sitting idle waiting for the task in order.

3. The third type is static assignment, where the mapping is already fixed at com-

pile time, but the ordering and timing is done at run-time by the scheduler. This

allows the schedule to become work-conserving and perhaps achieve a higher overall

throughput in the system. However, it might also result in a lower overall through-

put since the bounds cannot be computed at compile-time (or are not preserved in

this scheduler). This scheduling is most applicable for systems where applications

have a large variation in execution time. While for a single application, the order

is still imposed by the data-dependency among tasks and makes self-timed more

suitable, for multiple applications the high variation in execution time, makes it

infeasible to enforce the static-order.

4. The last one is called fully dynamic where mapping, ordering and timing are

all done at run-time. This gives full freedom to the scheduler, and the tasks are

assigned to an idle processor as soon as they are ready. This scheduler also allows

for task migration. This may result in a yet higher throughput, since this tries to

maximize the resource utilization and minimize the idle time, albeit at the cost of

performance guarantee. It should be noted that run-time assignment also involves

a (potentially) higher overhead in data movement. When the assignment is fixed at

39

Table 2.1: The time which the scheduling activities "assign ment", "ordering", and "timing" are

performed is shown for four classes of schedulers. The sched uling activities are listed on top and

the strategies on the left [LH89].

Scheduler Assignment Ordering Timing Work-conserving

Fully static compile compile compile no
Self timed compile compile run no
Static assignment compile run run processor-level
Fully dynamic run run run yes

compile time, the task knows the processor to which the receiving actor is mapped

apriori.

These four scheduling mechanisms are summarized in Table 2.1. As we move from

fully-static to fully-dynamic scheduler, the run-time scheduling activity (and correspond-

ingly overhead) increases. However, this also makes it more robust for handling dynamism

in the system. The last column shows the work-conserving nature of the schedulers. A

fully-static scheduler is non-conserving since the exact time and order of firing (task

execution) is fixed. The self-timed schedule is work-conserving only when at most one

task is mapped on one processor, while the static-assignment is also work-conserving for

multiple applications. However, in static assignment if we consider the whole system

(i.e. multiple processors), it may not be work-conserving, since tasks may be waiting to

execute on a particular processor, while other processors may be idle.

In a homogeneous system, there is naturally more freedom to choose which task

to assign to a particular processor instance, since all processors are identical. On the

contrary, in a heterogeneous system this freedom is limited by which processors can be

used for executing a particular task. When only one processor is available for a particular

task, the mapping is inherently dictated by this limitation. For a complete heterogeneous

platform, a scheduler is generally not fully dynamic, unless a task is allowed to be mapped

on different types of processors. However, even in those cases, assignment is usually fixed

(or chosen) at compile time. Further, the execution time for multimedia applications

is generally highly variant making a fully-static scheduler often infeasible. Designers

therefore have to make a choice between a self-timed or a static-assignment schedule.

The only choice left is essentially regarding the ordering of tasks on a processor.

In the next section, we shall see how to analyze performance of multiple applica-

tions executing on a multiprocessor platform for both self-timed and static-assignment

40

scheduler. Since the only difference in these two schedulers is the time at which or-

dering of actors is done, we shall refer to self-timed and static-assignment scheduler as

static-ordering and dynamic-ordering scheduler respectively for easy differentiation.

2.6 Analyzing Application Performance on Hardware

In Section 2.4, we assumed we have infinite computing and communication resources.

Clearly, this is not a valid assumption. Often processors are shared, not just among

tasks of one application, but also with other applications. We first see how we can model

this resource contention for a single application, and later for multiple applications.

We start with considering an HSDF graph with constant execution times to illustrate

that even for HSDF graphs it is already complicated. In [BKKB02], the authors propose

to analyze performance of a single application modeled as an HSDF graph mapped on a

multi-processor system by modeling dependencies of resources by adding extra edges to

the graph. Adding these extra edges enforces a strict order among the actors mapped on

the same processor. Since the processor dependency is now modeled in the graph itself, we

can simply compute the maximum throughput possible of the graph, and that corresponds

to the maximum performance the application can achieve on the multiprocessor platform.

Unfortunately, this approach does not scale when we move on to the SDF model

of an application. Converting an SDF model to an HSDF model can potentially result

in a large number of actors in the corresponding HSDF graph. Further, adding such

resource dependency edges essentially enforces a static-order among actors mapped on

a particular processor. While in some cases, only one order is possible (due to natural

data dependency among those actors), in some cases the number of different orders is

also very high. Further, different orders may result in different overall throughput of the

application. This becomes even worse when we consider multiple applications. This is

shown by means of an example in the following sub-section.

2.6.1 Static Order Analysis

In this sub-section, we look at how application performance can be computed using static-

order scheduler, where both processor assignment and ordering is done at compile-time.

We show that when multiple applications are mapped on multiple processors sharing

41

C

A B

3

3

3

1

5

3 1

5

3

a1 a2

a3

b1 b2

b3

c1 c2

c3 P1 P2 P3

Figure 2.7: Example of a system with 3 different application s mapped on a 3-processor platform.

them, it is 1) difficult to make a static schedule, 2) time-consuming to analyze application

performance given a schedule, and 3) infeasible to explore the entire scheduling space to

find one that gives the best performance for all applications.

Three application graphs – A, B and C, are shown in Figure 2.7. Each is an HSDF

with three actors. Let us assume actors Ti are mapped on processing node Pi where

Ti refers to ai, bi and ci for i = 1, 2, 3. This contention for resources is shown by the

dotted arrows in Figure 2.8. Clearly, by putting these dotted arrows, we have fixed the

actor-order for each processor node. Figure 2.8 shows just one such possibility when

the dotted arrows are used to combine the three task graphs. Extra tokens have been

inserted in these dotted edges to indicate the initial state of arbiters on each processor.

The tokens indicating processor contention are shown in gray, while the regular data

tokens are shown in black. Clearly, this is only possible if each task is required to be

run an equal number of times. If the rates of each task are not the same, we need

to introduce multiple copies of actors to achieve the required ratio, thereby increasing

analysis complexity.

When throughput analysis is done for this complete graph, we obtain a mean cycle

count of 11. The bold arrows represent the edges that limit the throughput. The corre-

sponding schedule is also shown. One actor of each application is ready to fire at instant

t0. However, only a1 can execute since it is the only one with a token on all its incoming

42

A B

C

3

3 3 3 1

5

53

1

a1 a2

a3

b1 b2

b3

c1 c2

c3

0 5 10 15 20 25

A B C

Steady−statet0 t1 t2

P1

P2

P3

Figure 2.8: Graph with clockwise schedule (static) gives MC M of 11 cycles. The critical cycle is

shown in bold.

edges. We find that the graph soon settles into the periodic schedule of 11 clock cycles.

This period is denoted in the schedule diagram of Figure 2.8 between the time instant t1

and t2.

Figure 2.9 shows just another of the many possibilities for ordering the actors of the

complete HSDF. Interestingly, the mean cycle count for this graph is 10, as indicated

by the bold arrows. In this case, the schedule starts repeating after time t1, and the

steady state length is 20 clock cycles, as indicated by difference in time instants t1 and

t2. However, since two iterations for each application are completed, the average period

is only 10 clock cycles.

From arbitration point of view, if application graphs are analyzed in isolation, there

seems to be no reason to prefer actor b1 or c1 after a1 has finished executing on P1.

There is at least a delay of 6 clock cycles before a1 needs P1 again. Also, since b1 and c1

take only 3 clock cycles each, 6 clock cycles are enough to finish their execution. Further

both are ready to be fired, and will not cause any delay. Thus, the local information

about an application and the actors that need a processor resource does not easily dictate

43

A B

C

3

3 3 3 1

5

53

1

a1 a2

a3

b1 b2

b3

c1 c2

c3

0 5 10 15 20 25

A B C

Steady−statet0 t1 t2

P1

P2

P3

Figure 2.9: Graph with anti-clockwise schedule (static) gi ves MCM of 10 cycles. The critical cycle is

shown in bold. Here two iterations are carried out in one stea dy-state iteration.

preference of one task over another. However, as we see in this example, executing c1 is

indeed better for the overall performance. Computing a static order relies on the global

information and produces the optimal performance. This becomes a serious problem

when considering MPSoC platforms, since constructing the overall HSDF graph and

then computing its throughput is very compute intensive. Further, this is not suitable

for dynamic applications. A small change in execution time may change the optimal

schedule.

The number of possibilities for constructing the HSDF from individual graphs is

very large. In fact, if one tries to combine g graphs of say a actors, scheduled in total

on a processors, there are ((g − 1)!)a unique combinations, each with a different actor

ordering, for only single occurrence of each application actor. (Each processor has g

actors to schedule, and therefore (g − 1)! unique orderings on a single processor. This

leads to ((g− 1)!)a unique combinations, since ordering on each processor is independent

of ordering on another.) To get an idea of vastness of this number, if there are 5 graphs

with 10 actors each we get 2410 or close to 6.34 · 1013 possible combinations. If each

44

computation would take only 1ms to compute, 2009 years are needed to evaluate all

possibilities. This is only considering the cases with equal rates for each application, and

only for HSDF graphs. A typical SDF graph with different execution rates would only

make the problem even more infeasible, since the transformation to HSDF may yield

many actor copies. An exhaustive search through all the graphs to compute optimal

static order is simply not feasible.

Deadlock Analysis

Deadlock avoidance and detection is an important concern when applications may be

activated dynamically. Applications modeled as (H)SDF graphs can be analyzed for

deadlock occurrence within an application. However, deadlock detection and avoidance

between multiple applications is not so easy. When static order is being used, every new

use-case requires a new schedule to be loaded into the kernel. A naive reconfiguration

strategy can easily send the system into deadlock. This is demonstrated with an example

in Figure 2.10.

Say actors a2 and b3 are running in the system on P2 and P3 respectively. Further

assume that static order for each processor currently is A → B when only these two

applications are active, and with a third application C, A → B → C for each node.

When application C is activated, it gets P1 since it is idle. Let us see what happens to

P2: a2 is executing on it and it is then assigned to b2. P3 is assigned to c3 after b3 is

done. Thus, after each actor is finished executing on its currently assigned processor, we

get a3 waiting for P3 that is assigned to task c3, b1 waiting for P1 which is assigned to

a1, and c2 waiting for P2, which is assigned to b2.

Looking at Figure 2.10, it is easy to understand why the system goes into a deadlock.

The figure shows the state when each actor is waiting for a resource and not able to

execute. The tokens in the individual sub-graph show which actor is ready to fire, and

the token on the dotted edge represents which resource is available to the application. In

order for an actor to fire, the token should be present on all its incoming edges – in this

case both on the incoming dotted edge and the solid edge. It can be further noted that

a cycle is formed without any token in it. This is clearly a situation of deadlock [KM66]

since the actors on this cycle will never be enabled. This cycle is shown in Figure 2.10 in

bold edges. It is possible to take special measure to check and prevent the system from

45

A B

C

3

3 3 3

5

3

1

5

1

a1 a2

a3

b1 b2

b3

c1 c2

c3

Figure 2.10: Deadlock situation when a new job, C arrives in t he system. A cycle

a1, b1, b2, c2, c3, a3, a1 is created without any token in it.

going into such deadlock. This, however, implies extra overhead at both compile-time

and run-time. The application may also have to be delayed before it can be admitted

into the system.

We can therefore conclude that computing a static order for multiple applications is

very compute intensive and infeasible. Further, the performance we obtain may not be

optimal. However, the advantage of this approach is that we are guaranteed to achieve the

performance that is analyzed for any static order at design-time provided the worst-case

execution time estimates are correct.

2.6.2 Dynamic Order Analysis

In this sub-section, we look at static-assignment scheduler, where only processor assign-

ment is done at compile-time and the ordering is done at run-time. First-come-first-serve

(FCFS) falls under this category. Another arbiter that we propose here in this category

is round-robin-with-skipping (RRWS). In RRWS, a recommended order is specified, but

the actors can be skipped over if they are not ready when the processor becomes idle.

This is similar to the fairness arbiter proposed by Gao in 1983 [Gao83]. However, in that

scheduler, all actors have equal weight. In RRWS, multiple instances of an actor can be

scheduled in one cycle to provide an easy rate control mechanism.

The price a system-designer has to pay when using dynamic scheduling is the difficulty

in determining application performance. Analyzing application performance when multi-

46

ple applications are sharing multiprocessor platform is not easy. An approach that mod-

els resource contention by computing worst-case-response-time for TDMA scheduling

(requires preemption) has been analyzed in [BHM+05]. This analysis also requires lim-

ited information from the other SDFGs, but gives a very conservative bound that may

be too pessimistic. As the number of applications increases, the minimum performance

bound decreases much more than the average case performance. Further, this approach

assumes a preemptive system. A similar worst-case analysis approach for round-robin is

presented in [Hoe04], which also works on non-preemptive systems, but suffers from the

same problem of lack of scalability.

Let us revisit the example in Figure 2.7. Since 3 actors are mapped on each processor,

an actor may need to wait when it is ready to be executed at a processor. The maximum

waiting time for a particular actor can be computed by considering the critical instant

as defined by Liu and Layland [LL73]. The critical instant for an actor is defined as an

instant at which a request for that actor has the largest response time. The response

time is defined as the sum of an actor’s waiting time and its execution time. If we

take worst case execution time, this can be translated as the instant at which we have

the largest waiting time. For dynamic scheduling mechanisms, it occurs when an actor

becomes ready just after all the other actors, and therefore has to wait for all the other

actors. Thus, the total waiting time is equal to the sum of processing times of all the

other actors on that particular node and given by the following equation.

twait(Tij) =
m

∑

k=1,k 6=i

texec(Tkj) (2.1)

Here texec(Tij) denotes the execution time of actor Tij , i.e. actor of task Ti mapped

on processor j. This leads to a waiting time of 6 time units as shown in Figure 2.11. An

extra node has been added for each ‘real’ node to depict the waiting time (WT ai). This

suggests that each application will take 27 time units in the worst case to finish execution.

This is the maximum period that can be obtained for applications in the system, and is

therefore guaranteed. However, as we have seen in the earlier analysis, the applications

will probably settle for a period of 10 or 11 cycles depending on the arbitration decisions

made by the scheduler. Thus, the bound provided by this analysis is about two to three

times higher than real performance.

47

3 6

336 6

A

a1 a2

a3

WT a1 WT a2

WT a3

Figure 2.11: Modeling worst case waiting time for applicati on A in Figure 2.7.

The deadlock situation shown in Figure 2.10 can be avoided quite easily by using

dynamic-order scheduling. Clearly, for FCFS, it is not an issue since resources are never

blocked for non-ready actors. For RRWS, when the system enters into a deadlock, the

arbiter would simply skip to the actor that is ready to execute. Thus, processors 1, 2 and

3 are reassigned to B, C and A as shown in Table 2.2. Further, an application can be

activated at any point in time without worrying about deadlock. In dynamic scheduling,

there can never be a deadlock due to dependency on processing resources for atomic

non-preemptive systems.

Table 2.2: Table showing the deadlock condition in Figure 2. 10.

Node Assigned to Task waiting Reassigned in RRWS
P1 A B B
P2 B C C
P3 C A A

2.7 Composability

As highlighted in Chapter 1, one of the key challenges when designing multimedia systems

is dealing with multiple applications. For example, a mobile phone supports various

applications that can be active at the same time, such as listening to mp3 music, typing

an sms and downloading some java application in the background. Evaluating resource

requirements for each of these cases can be quite a challenge even at design time, let alone

at run time. When designing a system, it is quite useful to be able to estimate resource

requirements early in the design phase. Design managers often have to negotiate with

the product divisions for the overall resources needed for the system. These estimates are

mostly on a higher level, and the managers usually like to adopt a spread-sheet approach

for computing it. As we see in this section, it is often not possible to use this view.

We define composability as mapping and analysis of performance of multiple appli-

48

cations on a multiprocessor platform in isolation, as far as possible. Note that this is

different from what has been defined in literature by Kopetz [KO02, KS03]. Composabil-

ity as defined by Kopetz is integration of a whole system from well-specified and pre-tested

sub-systems without unintended side-effects. The key difference in this definition and our

definition is that composability as defined by Kopetz is a property of a system such that

the performance of applications in isolation and running concurrently with other appli-

cations is the same. For example, say we have a system with 10 applications, each with

only one task and all mapped on the same processor. Let us further assume that all tasks

take 100 time units to execute in isolation. According to the definition of Kopetz, it will

also take 100 time units when running with the other tasks. This can only be achieved

in two ways.

1. We can assume complete virtualization of resources, and that each application gets

one-tenth of processor resources. This implies that we only use one-tenth of the

resources when only one application is active. Further, to achieve complete virtual-

ization, the processor has to be preempted and its context has to be switched every

single cycle3.

2. We consider a worst-case schedule in which all applications are scheduled, and the

total execution time of all applications is 100 time units. Thus, if a particular

application is not active, the processor simply waits for that many time units as it

is scheduled for. This again leads to under-utilization of the processor resources.

Besides, if any application takes more time, then the system may collapse.

Clearly, this implies that we cannot harness the full processing capability. In a typical

system, we would want to use this compute power to deliver a better quality-of-service for

an application when possible. We want to let the system execute as many applications

as possible with the current resource availability, and let applications achieve their best

behaviour possible in the given use-case. Thus, in the example with 10 applications,

if each application can run in 10 time units in isolation, it might take 100 time units

when running concurrently with all the other applications. We would like to predict the

application properties given the application mix of the system, with as little information

from other applications as possible.

3This could be relaxed a bit, depending on the observability of the system.

49

Some of the things we would like to analyze are for example, deadlock occurrence, and

application performance. Clearly, since there is more than one application mapped on a

multi-processor system, there will be contention for the resources. Due to this contention,

the throughput analyzed for an application in isolation is not always achievable when

the application runs together with other applications. We see how different levels of

information from other applications affect analysis results in the next sub-section.

2.7.1 Performance Estimation

Motion
Est

Motion
Comp

IDCT

DCT Quant VLC

IQ

1

99 99

99

1 1 1 1

1

1
11 1

1

1

1
1

2

(a) SDF model of H263 encoder

Motion
Comp

IDCT IQ VLD
594 11 1 1

1 1
594

2

(b) SDF model of H263 decoder

Figure 2.12: SDF graphs of H263 encoder and decoder.

Let us consider a scenario of video-conferencing in a hand-held device. Figure 2.12

shows SDF graphs for both H263 encoding and decoding applications. The encoder

model is based on the SDF graph presented in [OH04], and the decoder model is based

on [Stu07]4. The video-stream assumed for the example is of QCIF resolution that

has 99 macro-blocks to process, as indicated by the rates on the edges. Both encoding

and decoding have an actor that works on variable length (VLC and VLD respectively),

quantization (Quant and IQ respectively), and discrete cosine transform (DCT and IDCT

respectively). Since we are considering a heterogeneous system, the processor responsible

for an actor in encoding process is usually responsible for the corresponding decoding

actor. When the encoding and decoding are done concurrently, the DCT and IDCT are

4The self-edges are removed for simplicity.

50

100

100

100

A

100

100

100

B

a1 a2

a3

b1 b2

b3
P1 P2 P3

Figure 2.13: Two applications running on same platform and s haring resources.

likely to be executed on the same processor, since that processor is probably more suited

for cosine transforms. This resource dependency in the encoder and decoder models

is shown by shading in Figure 2.12. Thus, the resource dependency in encoding and

decoding is exactly reversed. A similar situation happens during decoding and encoding

of an audio stream as well.

A simple example is shown in Figure 2.13 to illustrate the same behaviour as presented

above. The figure shows an example of two application graphs A and B with three actors

each, mapped on a 3-processor system. Actors a1 and b1 are mapped on p1, a2 and b2

are mapped on p2, and a3 and b3 are mapped on p3. Each actor takes 100 clock cycles

to execute. While both applications A and B might look similar, the dependency in A

is anti-clockwise and in B clockwise to highlight the situation in the above example of

simultaneous H263 encoding and decoding.

Let us try to add the resource requirement of actors and applications, and try to

reason about their behaviour when they are executing concurrently. Each processor has

two actors mapped; each actor requires 100 time units. If we limit the information to only

actor-level, we can conclude that one iteration of each a1 and b1 can be done in a total of

200 time units on processor P1, and the same holds for processors P2 and P3. Thus, if we

consider a total of 3 million time units, each application should finish 15,000 iterations,

leading to 30,000 iterations in total. If we now consider the graph-level local information

only, then we quickly realize that since there is only one initial token, the minimum

period of the applications is 300. Thus, each application can finish 10,000 iterations in 3

million time units. As it turns out, none of these two estimates are achievable.

Let us now increase the information we use to analyze the application performance.

We consider the worst-case response time as defined in Equation 2.1 for each actor. This

gives us an upper bound of 200 time units for each actor. If we now use this to compute

51

A B

0 Steady−state 600200

P1

P2

P3

Figure 2.14: Static-order schedule of applications in Figu re 2.13 executing concurrently.

our application period, we obtain 600 time units for each application. This translates

to 5,000 iterations per application in 3 million time units. This is the guaranteed lower

bound of performance. If we go one stage further, and try to analyze the full schedule

of this two-application system by making a static schedule, we obtain a schedule with

a steady-state of 400 time units in which each application completes one iteration. The

corresponding schedule is shown in Figure 2.14. Unlike the earlier predictions, this per-

formance is indeed what the applications achieve. They will both complete one iteration

every 400 time units. If we consider dynamic ordering and let the applications run on

their own, we might obtain the same order as in Figure 2.14, or we might get the order

as shown in Figure 2.15. When the exact execution order is not specified, depending on

the scheduling policy the performance may vary. If we consider a first-come-first-serve

approach, it is hard to predict the exact performance since the actors have equal execu-

tion time and they arrive at the exact time. If we assume for some reason, application

A is checked first, then application A will execute twice as often as B, and vice-versa.

The schedule in Figure 2.15 assumes application B has preference when both are ready

at the exact same time. The same behaviour is obtained if we consider round-robin ap-

proach with skipping. Interestingly, the number of combined application iterations are

still 15,000 – the same as when static order is used.

Table 2.3 shows how different estimating strategies can lead to different results. Some

of the methods give a false indication of processing power, and are not achievable. For

example, in the second column only the actor execution time is considered. This is a very

naive approach and would be the easiest to estimate. It assumes that all the processing

power that is available for each node is shared between the two actors equally. As we

vary the information that is used to make the prediction, the performance prediction

also varies. This example shows why composability needs to be examined. Individually

52

Steady−state

A B

0 200 800

P1

P2

P3

Figure 2.15: Schedule of applications in Figure 2.13 execut ing concurrently when B has priority.

Table 2.3: Estimating performance: iteration-count for ea ch application in 3,000,000 time units

Appl. Only Only WC Analysis Static RRWS/FCFS
actors graph (both graphs) A pref B pref

A 15,000 10,000 5,000 7,500 10,000 5,000
B 15,000 10,000 5,000 7,500 5,000 10,000
Total 30,000 20,000 10,000 15,000 15,000 15,000
Proc Util 1.00 0.67 0.33 0.50 0.50 0.50

each application takes 300 time units to complete an iteration and requires only a third

of processor resources. However, when another application enters in the system, it is not

possible to schedule both of them with their lowest period of 300 time units, even though

the total request for a node is only two-third. Even when preemption is considered, only

one application can achieve the period of 300 time units while the other of 600. The

performance of the two applications in this case corresponds to the last two columns in

Table 2.3. Thus, predicting application performance when executing concurrently with

other applications is not very easy.

2.8 Static vs Dynamic Ordering

Table 2.4 shows a summary of various performance parameters that we have considered,

and how static-order and dynamic-order scheduling strategy performs considering these

performance parameters. The static-order scheduling clearly has a higher design-time

overhead of computing the static order for each use-case. The run-time scheduler needed

for both static-order and dynamic-order schedulers is quite simple, since only a simple

check is needed to see when the actor is active and ready to fire. The memory require-

ment for static scheduling is however, higher than that for a dynamic mechanism. As

the number of applications increases, the total number of potential use-cases rises expo-

53

Table 2.4: Properties of Scheduling Strategies

Static Dynamic
Property

Order Order

Design time overhead Calculating Schedules - - ++
Memory requirement - ++

Run-time overhead
Scheduling overhead ++ +
Throughput ++ - -

Predictability
Resource Utilization + -
Admission criteria ++ - -
Deadlock-free guarantee - ++New job admission
Reconfiguration overhead - +
Variable Execution time - +

Dynamism
Handling new use-case - - ++

nentially. For a system with 10 applications in which up to 4 can be active at the same

time, there are approximately 400 possible combinations – and it grows exponentially as

we increase the number of concurrently active applications. If static ordering is used,

besides computing the schedule for all the use-cases at compile-time, one also has to be

aware that they need to be stored at run-time. The scalability of using static scheduling

for multiple applications is therefore limited.

Dynamic ordering is more scalable in this context. Clearly in FCFS, there is no such

overhead as no schedule is computed beforehand. In RRWS, the easiest approach would

be to store all actors for a processor in a schedule; when an application is not active, its

actors are simply skipped, without causing any trouble for the scheduler. It should also

be mentioned here that if an actor is required to be executed multiple number of times,

one can simply add more copies of that actor in this list. In this way, RRWS can provide

easy rate-control mechanism.

The static order approach certainly scores better than a dynamic one when it comes

to predictability of throughput and resource utilization. Static-order approach is also

better when it comes to admitting a new application in the system since the resource

requirements prior and after admitting the application are known at design time. There-

fore, a decision whether to accept it or not is easier to make. However, extra measures are

needed to reconfigure the system properly so that the system does not go into deadlock

as mentioned earlier.

A dynamic approach is able to handle dynamism better than static order since orders

are computed based on the worst-case execution time. When the execution-time varies

54

significantly, a static order is not able to benefit from early termination of a process. The

biggest disadvantage of static order, however, lies in the fact that any change in the design,

e.g. adding a use-case to the system or a new application, cannot be accommodated at

run-time. The dynamic ordering is, therefore, more suitable for designing multimedia

systems. In the following chapter, we show techniques to predict performance of multiple

applications executing concurrently.

2.9 Conclusions

In this chapter, we began with motivating the need of having an application model. We

discussed several models of computation that are available and generally used. Given

our application requirements and strengths of the models, we chose the synchronous

dataflow (SDF) graphs to model application. We provided a short introduction to SDF

graphs and explained some important concepts relevant for this thesis, namely modeling

auto-concurrency and modeling buffer-sizes on channels. We explained how performance

characteristics of an SDF graph can be studied without considering hardware constraints.

The scheduling techniques used for dataflow analysis were discussed and classified

depending on which of the three things – assignment, ordering, and timing – is done at

compile-time and which at run-time. We highlighted two arbiters – static and dynamic

ordering, which are more commonly used, and discussed how application performance

can be analyzed considering hardware constraints for each of these arbiters.

We then highlighted the issue of composability – mapping and analysis of performance

of multiple applications on a multiprocessor platform in isolation, as far as possible.

We demonstrated with a small, but realistic example, how predicting performance can

be difficult when even small applications are considered. We also saw how arbitration

plays a significant role in determining the application performance. We summarized the

properties that are important for an arbiter in a multimedia system, and decided that

considering the high dynamism in multimedia applications, the dynamic-ordering is more

suitable.

55

CHAPTER 3

Probabilistic Performance Prediction

As mentioned earlier in Chapter 1, in modern multimedia systems, multiple applications

are executing concurrently. While traditionally a mobile phone had to support only a

handful of applications like communicating with the base station, sending and receiving

short messages, and encoding and decoding voice; modern high-end mobile devices also

act as a music and video player, camera, gps, mobile TV and a complete personal digital

assistant. Due to a huge number of possible combinations of these multiple applications,

it becomes a challenge to predict their performance in advance. One of the key design

automation challenges are designing systems for these use-cases and fast exploration of

software and hardware implementation alternatives with accurate performance evaluation

of these use-cases. The number of use-cases are already exponential. When we consider

the possibilities of mapping application actors on processors and other resources, the

total number of design points that need to be evaluated becomes even larger. A quick

but accurate performance analysis technique is therefore very important.

This becomes even more important when applications may be dynamically started

and stopped in the system. Mis-prediction may result in reduced quality of applications

and lower the user-experience. To further complicate matters, the user also expects to be

able to download applications at run-time that may be completely unknown to the system

designer, for example, a security application running in the background to protect the

56

mobile phone against theft. While some of these applications may not be so critical for

the user-experience (e.g. browsing a web), others like playing video and audio are some

functions where a reduced performance is easily noticed. Accurate performance predic-

tion is therefore essential to be performed at run-time before starting a new application,

and not always feasible at design-time.

While this analysis is well understood (and relatively easier) for preemptive sys-

tems [LL73][DD86][BCPV96], non-preemptive scheduling has received considerably less

attention. However, for high-performance embedded systems (like cell-processing en-

gine (SPE) [KDH+05] and graphics processors), non-preemptive systems are preferred

over preemptive scheduling for a number of reasons [JSM91]. In many practical sys-

tems, properties of device hardware and software either make the preemption impossible

or prohibitively expensive. Further, non-preemptive scheduling algorithms are easier

to implement than preemptive algorithms and have dramatically lower overhead at run-

time [JSM91]. Further, even in multi-processor systems with preemptive processors, some

processors (or coprocessors/ accelerators) are usually non-preemptive; for such proces-

sors, non-preemptive analysis is still needed. It is therefore important to investigate

non-preemptive multi-processor systems.

When applications are modeled as synchronous dataflow (SDF) graphs, their perfor-

mance on a (multi-processor) system can be easily computed when they are executing in

isolation (provided we have a good model). When they execute concurrently, depending

on whether the used scheduler is static or dynamic, the arbitration on a resource is either

fixed at design-time or chosen at run-time respectively (as we have seen in Chapter 2). In

the former case, the execution order can be modeled in the graph, and the performance

of the entire use-case can be determined. The contention is therefore modeled as depen-

dency edges in the SDF graph. An example of such model is presented in Figure 2.8.

However, this is more suited for static applications. For dynamic applications such as

multimedia, a dynamic scheduler is more suitable, as has already been motivated in the

previous chapter. A static scheduler is not able to deal with varying execution times

and actor execution rates; something that is quite typical of dynamic applications. For

dynamic scheduling approaches, the contention can be modeled as waiting time for a

task, which is added to the execution time to give the total response time. The perfor-

mance can be determined by computing the performance (throughput) of this resulting

57

SDF graph. With lack of good techniques for accurately predicting the time spent in

contention, designers have to resort to worst-case waiting time estimates, that lead to

over-designing the system. An example of this is shown in Figure 2.11, where the waiting

time of each actor is equal to the sum of worst-case execution time of other actors. Fur-

ther, those approaches are not scalable and the over-estimate increases with the number

of applications.

In this chapter, a novel probabilistic performance prediction (P 3) algorithm is pre-

sented for predicting performance of multiple applications executing concurrently on

multi-processor platforms. The algorithm predicts the time that tasks have to spend

during the contention phase for a resource. Each application contains a number of tasks

that have a worst-case execution time. Two approaches are presented – basic and iterative

probabilistic techniques. The basic P 3 approach looks at all the possible combinations

of actors blocking a particular actor. Since the number of combinations is exponential

in the number of actors mapped on a resource, the analysis has a high complexity. The

iterative P 3 approach computes how much a particular actor contributes to the waiting

time of the other actors. This is therefore linear in the number of actors, but needs

to be iterated to improve the waiting time estimate. Both techniques compute the ex-

pected waiting time when multiple tasks share a processing resource (The approach can

be adapted for other types of resource like communication and memory as well). These

waiting time estimates, together with the execution time are used to estimate the per-

formance of applications. The approach is very fast and can be used both at design-time

and run-time owing to its low implementation complexity.

Following are the key features of the proposed P 3 algorithm.

• Accurate: The performance values predicted vary from the measured values by 2%

on average and 3% at maximum, as observed.

• Fast: The algorithm has the complexity of O(n), where n is the number of actors

on each processor.

• Scalable: The algorithm is scalable in the number of actors per application, the

number of processing nodes, and the number of applications in the system. This

implies that when the number of actors or processing nodes are doubled, the exe-

cution time for the algorithm is also doubled.

58

• Composable: The above algorithm uses limited information from the other appli-

cations, thereby keeping the entire analysis composable.

The above features make the algorithm very suitable for implementation in embedded

multimedia systems.

The remainder of the chapter is organized as follows. Section 3.1 explains the proba-

bilistic approach that is used to predict performance of multiple applications accurately.

Section 3.2 explains the iterative probabilistic technique that builds upon the probability

technique to improve the accuracy of the technique further. Section 3.3 describes the

experimental setup and results obtained. Section 3.4 discusses related work about how

performance analysis is done using SDF graphs traditionally – for single and multiple

applications. Section 3.5 presents major conclusions and gives directions for future work.

3.1 Basic Probabilistic Analysis

1 1

1

1

1

1

1

1

2
2

2

2
100

50

100

A

100

100

50

B

a0

a1

a2 b0

b1

b2

Figure 3.1: Two application SDFGs A and B

When multiple applications execute in parallel, they often cause contention for the

shared resources. The probabilistic mechanism predicts this contention. The time spent

by an actor in contention is added to its execution time, and the total gives its response

time. The equation below puts it more clearly.

tresp = texec + twait (3.1)

The twait is the time that is spent in contention when waiting for a processor resource

to become free. The response time, tresp indicates how long it takes to process an actor

after it arrives on a node. When there is no contention, the response time is simply

equal to the execution time. Using only the execution time gives us the maximum

59

throughput that can be achieved with the given mapping. At design-time, since the

run-time application-mix is not always known, it is not possible to accurately predict the

waiting-time, and hence the performance. In this section, we explain how this estimate is

obtained using probability. (Some of the definitions used here are explained in Section 2.4,

and the reader is advised to refer to them, if needed.)

We now refer to SDFGs A and B in Figure 3.1. Say a0 and b0 are mapped on a

processor Proc0 and others have dedicated resources. a0 is active for time τ(a0) every

Per(A) time units (since its repetition entry is 1). τ(a0) = 100 time units and Per(A) =

300 time units.

The probability that Proc0 is used by a0 at any given time is 100
300 = 1

3 , since a0 is

active for 100 cycles out of every 300 cycles. Since arrival of a0 and b0 are independent,

this is also the probability of Proc0 being occupied when b0 arrives. Further, since b0

can arrive at any arbitrary point during execution of a0, the time a0 takes to finish after

b0 arrives on the node is uniformly distributed from [0, 100]. (This is verified in the

experiments section later in this chapter.) Therefore, b0 has to wait for 50 time units on

average when Proc0 is found blocked. Since the probability that the resource is occupied

is 1
3 , the average time actor b0 has to wait is given by 50

3 ≈ 16.7 time units. The expected

response time of b0 will therefore be approximately 66.7 time units.

3.1.1 Generalizing the Analysis

This sub-section generalizes the analysis presented above. As we can see in the above

analysis, each actor has two attributes associated with it: 1) the probability that it blocks

the resource and 2) the average time it takes before freeing up the resource it is blocking.

In view of this, we define the following terms:

Definition 8 (Blocking Probability) Blocking Probability, P (a) is defined as the

probability that actor a of application A blocks the resource it is mapped on. P (a)

= τ(a).q(a)/Per(A). P (a) is also represented as Pa interchangeably. τ(a), q(a) and

Per(A) are defined in Chapter 2 as Definitions 3 on page 34, 5 on page 34 and 6 on

page 35 respectively.

P (a0) = 1
3 in Figure 3.1.

60

Definition 9 (Average Blocking Time) Average Blocking Time, µ(a) is defined as

the average time before the resource blocked by actor a is freed given the resource is

found to be blocked. µ(a) is also represented as µa interchangeably. µ(a) = τ(a)/2 for

constant execution time, and uniform distribution, i.e. there is no correlation between

a and other actors mapped on the same processor.

µ(a0) = 50 in Figure 3.1.

Suppose actor b is mapped on processor Proc0, which is also shared by a. If X denotes

how long actor b has to wait when Proc0 is being blocked by actor a, the probability

density function, w(x) of X can be defined as follows.

w(x) =



























0, x ≤ 0

1
τ(a) , 0 < x ≤ τ(a)

0, x > τ(a)

(3.2)

The average time b has to wait when the resource is blocked, or µa is therefore,

µa = E(X) =

∫ ∞

−∞

xw(x) dx

=

∫ τ(a)

0

x
1

τ(a)
dx

=
1

τ(a)

[

x2

2

]τ(a)

0

=
τ(a)

2

(3.3)

Figure 3.2 shows the overall probability distribution of another actor b waiting for a

resource that is shared with a. Here, Y denotes the time actor b has to wait for resource

Proc0 after it is ready regardless of whether Proc0 is blocked or not. This includes a

δ−function of value 1 − P (a) at the origin since that is the probability of Proc0 being

available (not being occupied by a) when b wants to execute. Clearly, the total area

under the curve is 1, and the expected value of the distribution gives the overall average

expected waiting time of b per execution of b and can be computed as

twait(b) = E(Y) =
τ(a)

2
.P (a) = µa.Pa (3.4)

Let us revisit our example in Figure 3.1. Let us now assume actors ai and bi are

61

0

1
τ(a)

.P (a)

yτ(a)

P (a)

1-P (a)

P (y)

Figure 3.2: Probability distribution of the time another ac tor has to wait when actor a is mapped on

the resource.

1 1

1

1

1

1

1

1

2
2

2

2

A B

108.3

66.7

116.7 66.7 116.7

108.3

a0

a1

a2 b0

b1

b2

Figure 3.3: SDFGs A and B with response times

mapped on Proci for i = 0, 1, 2. The blocking probabilities for actors ai and bi for i =

0, 1, 2 are

P (ai) =
τ(ai).q(ai)

Per(A)
=

1

3
for i = 0, 1, 2.

P (bi) =
τ(bi).q(bi)

Per(B)
=

1

3
for i = 0, 1, 2.

The average blocking time of actors (if they are blocked) in Figure 3.1 is

[µa0
µa1

µa2
] = [50 25 50] and [µb0 µb1 µb2] = [25 50 50]

In this case, since only one other actor is mapped on every node, the waiting time for

each actor is easily derived.

twait(bi) = µ(ai).P (ai) and twait(ai) = µ(bi).P (bi)

twait[b0 b1 b2] = [
50

3

25

3

50

3
] and twait[a0 a1 a2] = [

25

3

50

3

50

3
]

Figure 3.3 shows the response time of all actors taking waiting times into account.

The new period of SDFG A and B is computed as 358.4 time units for both. In prac-

62

tice, the period that these application graphs would achieve is actually 300 time units.

However, it must be noted that in our entire analysis we have ignored the intra-graph

actor dependency. For example, if the cyclic dependency of SDFG B was changed to

clockwise, all the values computed above would remain the same while the period of the

graphs would change. The period then becomes 400 time units (see Figure 2.14). The

probabilistic estimate we have now obtained in this simple graph is roughly equal to the

mean of the periods obtained in either of the cases.

Further, in this analysis we have assumed that arrivals of actors on a node are in-

dependent. In practice, this assumption is not always valid. Resource contention will

inevitably make the independent actors dependent on each other. Even so, the approach

works very well, as we shall see in Section 3.3. A rough sketch of the algorithm used in

our approach is outlined in Algorithm 1.

Algorithm 1 UpdatePeriod: Computing the new period for each application using
blocking probabilities

Input: τ(aij), q(aij), Per(Ai) // Execution time, repetition entry, and original period.
Output: Per(Ai) // Updated Period
1: // aij is actor j of application Ai

2: for all actors aij do

3: P (aij) = BlockingProb(τ(aij), q(aij), Per(Ai))
4: end for

5: //Now use this to compute waiting time.
6: for all Applications Ai do

7: for all Actors aij of Ai do

8: twait(aij) = WaitingTime(τ , P)
9: τ(aij) = τ(aij) + twait(aij)

10: end for

11: Per(Ai) = NewPeriod(Ai)
12: end for

3.1.2 Extending to N Actors

Let us assume actors a, b and c are mapped on the same node, and that we need to

compute the average waiting time for c. c may be blocked by either a or b or both.

Analyzing the case of c being blocked by both a and b is slightly more complicated.

There are two sub-cases – one in which a is being served and b is queued, and another in

which b is being served and a is queued. We therefore have four possible cases outlined

below, including the waiting time for each case.

63

Blocking only by a

twait(c1) = µa.Pa.(1 − Pb)

Blocking only by b

twait(c2) = µb.Pb.(1 − Pa)

a being served, b queued

The average time spent by b in each execution of b waiting behind a is given by µa.Pa.

Therefore, the total probability of b behind a is,

Pwait(c3) = µa.Pa.
q[b]

Per(b)
= Pa.Pb.

µa

2.µb

, (3.5)

and the corresponding waiting time is,

twait(c3) = Pa.Pb.
µa

2.µb

.(µa + 2µb)

b being served, a queued

This can be derived similar to above as follows:

twait(c4) = Pb.Pa.
µb

2.µa

.(µb + 2µa)

The time that c needs to wait when two actors are in the queue varies depending on

which actor is being served. For example, when a is ahead in the queue, c has to wait

for µa due to a, since a is being served. However, since the whole actor b remains to be

served after a is finished, c needs to wait 2.µb for b. One can also observe that the waiting

time due to actor a is µa.Pa when it is in front, and 2.µa.Pa when behind. Adding the

contributions from each of the four cases above to the waiting time, we get

64

twait(c) = µab.Pab =
1

2
.Pa.Pb.(

µ2
a

µb

+
µ2

b

µa

) + µa.Pa + µb.Pb

= µa.Pa.(1 +
µa

2µb

Pb) + µb.Pb.(1 +
µb

2µa

Pa)

We observe that the probability terms (that are often < 1) are multiplied. To make

the analysis easier, we therefore assume that the probability of a behind b, and b behind

a are nearly equal (which becomes even more true when tasks are of equal granularity,

since then µa ≈ µb. This assumption is not needed for the iterative analysis). Therefore,

the above equation can be approximated as,

twait(c) =
1

2
.Pa.Pb.(µa + µb) + µa.Pa + µb.Pb

= µa.Pa.(1 +
1

2
Pb) + µb.Pb.(1 +

1

2
Pa)

The above can be also computed by observing that whenever an actor a is in the

queue, the waiting time is simply µa.Pa, i.e. the product of the probability of a being

in the queue (regardless of other actors) and the waiting time due to it. However, when

it is behind some other actor, there is an extra waiting time µa, since the whole actor a

has to be executed. The probability of a being behind b is 1
2 .Pa.Pb (from Equation 3.5)

and hence the total waiting time due to a is µa.Pa.(1 + 1
2Pb). The same follows for the

contribution due to b.

Table 3.1: Probabilities of different queues with a

Queue Probability Extra waiting probability

a Pa(1 − Pb)(1 − Pc)
ab Pa.Pb(1 − Pc)/2
ba Pa.Pb(1 − Pc)/2 PaPb(1 − Pc)/2
ac Pa.Pc(1 − Pb)/2
ca Pa.Pc(1 − Pb)/2 PaPc(1 − Pb)/2
abc-acb Pa.Pb.Pc/3
bca-cba 2

3Pa.Pb.Pc
2
3Pa.Pb.Pcbac-cab

Total 1
2Pa(Pb + Pc) − 1

3PaPb.Pc

For three actors waiting in the queue, it is best explained using a table. Table 3.1

shows all the possible states of the queue with a in it. The first column contains the

65

ordering of actors in the queue, where the leftmost actor is the first one in the queue.

All the possibilities are shown together with their probabilities. There are six queues

with three actors, and the probability for each of them is approximated as a sixth. For

the cases when a is not in front, the waiting time is increased by µa.Pa since the waiting

time contributed by a is 2µa, and therefore, those probability terms are added again.

The same can be easily derived for other actors too. We therefore obtain the following

equation.

µabc.Pabc =µa.Pa.
(

1 +
1

2
(Pb + Pc) −

1

3
Pb.Pc

)

+ µb.Pb.
(

1 +
1

2
(Pa + Pc) −

1

3
Pa.Pc

)

+ µc.Pc.
(

1 +
1

2
(Pa + Pb) −

1

3
Pa.Pb

)

(3.6)

We can also understand intuitively, to some extent, how the terms in the equation

derived above contribute to the delay (extra waiting time) in the analysis. The first term

of each of the three lines (for instance µa.Pa in first line) denotes the delay due to the

respective actors. The terms that follow are the probabilities of the actor being in front

of the queue; being there with at least one more actor but behind; and then with at least

two more actors and so on and so forth. Since the third probability term (≥ 2 actors) is

included in the second probability term (≥ 1 actor), the last term is subtracted. Similar

analysis and reasoning gives us the following equation for waiting time when n actors

a1, a2, . . . an are mapped on a particular resource

µa1...an
Pa1...an

=

n
∑

i=1

µai
Pai

(

1 +

n−1
∑

j=1

(−1)j+1

j + 1

∏

j
(Pa1

. . . Pai−1
Pai+1

. . . Pan
)
)

(3.7)

where
∏

j
(x1, ..., xn) =

∑

1≤k1<k2...<kj≤n

(xk1
xk2

...xkj
)

∏

j
(x1, ..., xn) is an elementary symmetric polynomial defined in [TW08]. In simple

terms, it is the summation of all the products of j unique terms in the set (x1, ..., xn).

The number of terms clearly increases exponentially with increasing n. The total number

66

of terms in Equation 3.7 in the symmetric polynomial is given by
(

n−1
j

)

i.e. (n−1)!
j!(n−1−j)! .

As the number of actors mapped on a node increases, the complexity of analysis also

becomes high. To be exact, the complexity of the above formula is O(nn+1), where n is

the number of actors mapped on a node. Since this is done for each actor, the overall

complexity becomes O(nn+2). In the next sub-section we see how this complexity can be

reduced.

3.1.3 Reducing Complexity

The complexity of the analysis plays an important role when putting an idea to practice.

In this section we shall look at how the complexity can be reduced. First we shall see

how the formula can be rewritten in order to improve the complexity without changing

the accuracy. Later we observe that higher order probability products start appearing

in the equation as the number of actors mapped on a processor is increased. Thus, we

provide two approximations to second and fourth-order respectively. One of the main

advantages of the probabilistic approach is the run-time implementation as is explained

in Chapter 4. The composability-based approach can make the approach even more usable

for run-time when applications enter and leave the system.

The total analysis complexity in Equation 3.7 is O(nn+2). Using some clever tech-

niques for implementation the complexity can be reduced to O(n2 +nn) i.e. O(nn). This

can be achieved by modifying the equation such that we first compute
∏

j
(Pa1

, Pa2
. . . Pan

)

including Pai
. The extra component is then subtracted from the total for each ai sepa-

rately.

However, this is still infeasible and not scalable. An important observation that can

be made is that higher order terms start to appear in our analysis. The number of these

terms in Πj in Equation 3.7 increases exponentially. Since these terms are products of

probabilities (being smaller than one), higher order terms can likely be neglected. To

limit the computational complexity, we provide a second order approximation of the

formula.

µa1...an
Pa1...an

≈
n

∑

i=1

µai
Pai

(

1 +
1

2

n
∑

j=1,j 6=i

(Paj
)
)

67

The complexity of the above formula is O(n3), since we have to do it for n actors.

For the above equation, we can modify the summation inside the loop such that the

complexity is reduced. The new formula is re-written as

µa1...an
Pa1...an

≈
n

∑

i=1

µai
Pai

(

1 +
1

2
(Tot Summ− Pai

)
)

(3.8)

where

Tot Summ =
n

∑

j=1

Paj

This makes the overall complexity O(n2). In general, the complexity can be reduced

to O(nm) for m ≥ 2 by using m-th order approximation. In Section 3.3 we present results

of second and fourth order approximations.

Composability-based Approach

In a system often applications are added at run-time. In the earlier approach if we already

have a prediction for a particular combination of applications executing, and another

application wants to start, the entire analysis has to be repeated. Here we present an

alternative approach, in which when the prediction of a particular combination is already

known, the effect of the new application can be simply added to the overall effect of the

previous combination. This approach is defined as composability-based approach. In this

approach the effect of multiple actors together is treated as if it were one actor. If there

are two actors, they are composed into one actor such that the properties of this new

actor can be approximated by the sum of their individual properties. In particular, if

we have two actors a and b, we would like to know their combined blocking probability

Pab, and combined waiting time due to them, µab.Pab. Thus, when new applications are

started, the analysis can be incremental instead of repeating the whole analysis. We

further define this composability operation for probability by ⊕ and for waiting time by

⊗. We therefore get,

Pab = Pa ⊕ Pb = Pa + Pb − Pa.Pb (3.9)

68

µab.Pab = µa.Pa ⊗ µb.Pb = µa.Pa.(1 +
Pb

2
) + µb.Pb.(1 +

Pa

2
) (3.10)

(Strictly speaking ⊗ operation also requires individual probabilities of the actors as

inputs, but this has been omitted in the notation for simplicity.) Associativity of ⊕ is

easily proven by showing Pabc = Pab ⊕ Pc = Pa ⊕ Pbc. Operation ⊗ is associative only

to the second order approximation. This can be proven in a similar way by showing

µabcPabc = µabPab ⊗ µcPc = µaPa ⊗ µbcPbc.

The associative property of these operations reduces the complexity even further.

Complexity of Equation 3.9 and 3.10 is clearly O(1). If the waiting time of a particular

actor is to be computed, all the other actors have to be combined giving a total complex-

ity of O(n2), which is equivalent to the complexity of the second-order approximation

approach. However, in this approach the effect of actors is incrementally added. There-

fore, when a new application has to be added to the analysis and new actors are added

to the nodes, the complexity of the computation is O(n) as compared to O(n2) in the

case of the second-order approximation, for which the entire analysis has to be repeated.

Computing inverse of Formulae

The complexity of this composability-based approach can be further reduced when we

can compute the inverse of the formulae in Equation 3.9 and Equation 3.10. When the

inverse function is known, all the actors can be composed into one actor by deriving their

total blocking probability and total average blocking time. To compute the individual

waiting time, only the inverse operation with their own parameters has to be performed.

The total complexity of this approach is O(n) + n.O(1) = O(n). The inverse is also

useful when applications enter and leave the analysis, since only an incremental add or

subtract has to be done to update the waiting time instead of computing all the values.

For example, if 10 applications are concurrently executing in the system, and one of them

leaves. Normally, we would need to recompute the effect of the remaining 9 applications

all over again. However, with the inverse, this can be directly computed. In Equation 3.9,

a then refers to the nine applications and b to the leaving application. Since Pab and

Pb i.e. the equivalent probability of all 10 applications and of the leaving application is

known, Pa can be computed with the inverse of ⊕ operation.

69

The inverse for both operations is given below. (Note that the inverse formula can

only be applied when Pb 6= 1.)

Pa1...anb = Pa1...an
⊕ Pb

⇒ Pa1...an
= Pa1...anb ⊕−1 Pb =

Pa1...anb − Pb

1 − Pb

(Pb 6= 1)

µa1...anbPa1...anb = µa1...an
Pa1...an

⊗ µbPb

⇒ µa1...an
Pa1...an

= µa1...anbPa1...anb ⊗−1 µbPb

⇒ µa1...an
Pa1...an

=
µa1...anbPa1...anb − µb.Pb(1 +

Pa1...an

2)

1 + Pb

2

3.2 Iterative Analysis

So far we have seen the basic analysis. While the basic analysis gives good results (as

we see in the experiments section), we present a technique that can improve them even

further. The iterative analysis takes advantage of two facts observed in the previous

section.

• An actor contributes to the waiting time of another actor in two ways – while it is

being executed, and while it is waiting for the resource to become free.

• The application behaviour itself changes when executing concurrently with other

applications. In particular the period of the application changes (increases as com-

pared to the original period) when executing concurrently with interfering applica-

tions.

The increase in application period implies that the actors request the resource less

frequently than analyzed in the earlier analysis. The application period as defined in

Definition 6 is modified due to the difference in actor response times leading to a change

in the actor blocking probability. Further, an actor can block another actor in two ways.

Therefore, we define two different blocking probabilities.

70

Definition 10 (Execution Blocking Probability) Execution Blocking Probabil-

ity, Pe(a), is defined as the probability that actor a of application A blocks the resource

it is mapped on, and is being executed. Pe(a) = τ(a).q(a)/PerNew(A).

Pe(a0) = 100
358 in Figure 3.3, since PerNew(A) = 358.

Definition 11 (Waiting Blocking Probability) Waiting Blocking Probability,

Pw(a), is defined as the probability that actor a of application A blocks the resource it is

mapped on while waiting for it to become available. Pw(a) = twait(a).q(a)/PerNew(A).

Pw(a0) = 8
358 in Figure 3.3.

When an actor arrives at a particular processor, it can either find a particular other

actor being served, waiting in the queue, or not in the queue at all. If an actor arrives

when the other actor is waiting, then it has to wait for the entire execution time of that

actor (since it is queued at the end). On the other hand when the other actor is being

served, the average waiting time due to that actor is half of the total execution time as

shown in Equation 3.3.

There is a fundamental difference with the analysis presented in Section 3.1. In the

earlier analysis, an actor had two states – requesting a resource and not requesting a

resource. In this analysis, there are three states – waiting in queue on the resource,

executing on the resource and not requesting it at all. This explicit state of waiting

for the resource, combined with the updated period, represents the blocking effect on

another actor more accurately, and also makes understanding the analysis easier.

Figure 3.4 shows the updated probability distribution of the waiting time contributed

by an actor with three explicit states. There is now an extra δ−function at τ(a) due to the

waiting state of a as compared to the earlier distribution in Figure 3.2. The δ−function

at τ(a) is for the cases when another actor arrives at the time when a is in the queue.

The other actor has to then wait for the entire execution of a independent of where a is in

the queue. The δ−function at origin is for the same reason as in the original probabilistic

analysis, i.e. another actor arriving when a is neither in the queue nor being served. The

71

0

1
τ(a)

.Pe(a)

yτ(a)

Pe(a)

Pw(a)1-Pe(a)-Pw(a)

P (y)

Figure 3.4: Probability distribution of the waiting time ad ded by actor a to other actor when actor a
is mapped on the resource with explicit waiting time probabi lity.

new E(Y) (average waiting time due to actor a) can now be computed as follows.

E(Y) =

∫ ∞

−∞

y P (y) dy

= 0.(1 − Pe(a) − Pw(a)) +

∫ τ(a)

0

y
1

τ(a)
.Pe(a) dy + τ(a).Pw(a)

=
1

τ(a)
Pe(a)

[

y2

2

]τ(a)

0

+ τ(a).Pw(a)

=
τ(a)

2
Pe(a) + τ(a).Pw(a)

(3.11)

Taking the example above as shown in Figure 3.3, the new periods as computed from

the probabilistic analysis in earlier section are 358.4 time units for both A and B. Thus,

the new blocking probabilities are obtained as follows:

Pe[a0 a1 a2] = [
100

358

100

358

100

358
], Pe[b0 b1 b2] = [

100

358

100

358

100

358
]

Pw[a0 a1 a2] = [
8

358

34

358

17

358
], Pw[b0 b1 b2] = [

34

358

8

358

17

358
]

This gives the following waiting time estimates.

twait[a0 a1 a2] =[11.7 16.2 18.6] and

twait[b0 b1 b2] =[16.2 11.7 18.6]

The period for both A and B evaluates to 362.7 time units. Repeating this analysis for

another iteration gives the period as 364.3 time units. Repeating the analysis iteratively

gives 364.14, 364.21, 364.19, 364.20, and 364.20 thereby converging at 364.20. Figure 3.5

shows the updated application graphs after the iterative technique is applied.

For a system in which 3 actors – a, b, and c, are mapped to the same node, when

waiting time of an actor c has to be computed like above, the following formula can be

72

1 1

1

1

1

1

1

1

2
2

2

2

A B

111.5 118.9

66.9 111.5

66.9 118.9

a0

a1

a2 b0

b1

b2

Figure 3.5: SDF application graphs A and B updated after appl ying iterative analysis technique

derived from Figure 3.4. (Note that τ(a) = 2.µa.)

twait(c) = µa.Pe(a) + 2.µa.Pw(a) + µb.Pe(b) + 2.µb.Pw(b)

The above equation shows the beauty of this approach. Unlike the basic approach

where the equation becomes complicated with increasing number of actors, this remains

a simple addition regardless of how many actors are mapped. For the total waiting time

due to n actors, we get the following equation.

twait =

n
∑

i=1

(

µai
Pe(ai) + 2µai

Pw(ai)
)

(3.12)

Yes

No

Actor:
*Exec Time
*Exec Prob
*Wait Prob

Processor
level prob
analysis

Time

Updated
Waiting

Actor:
*Exec Time
*Mapping

Application:
*Throughput
 Equations

Continue
iterating?

Results
ready

throughput
and blocking
probabilities

Compute

Figure 3.6: Iterative probability method. Waiting times an d throughput are updated until needed.

The change in period as mentioned earlier leads to a change in the execution and

waiting probabilities of actors. This in turn, changes the response times of actors, which

73

in turn may change the period. This very nature of this technique defines its name

iterative probability. The cycle is therefore repeated until the periods of all applications

stabilise. Figure 3.6 shows the flow for the iterative probability approach. The inputs to

this flow are the application throughput expressions, and the execution time and mapping

of each actor in all the applications. These, like in the approach mentioned earlier, are first

used to compute the base period (i.e. the minimum period without any contention) and

the blocking probability of the actor. Using the mapping information, a list of actors is

compiled from all the applications and grouped according to their resource mapping. For

each processor, the probability analysis is done according to Equation 3.12. The waiting

times thus computed are used again to compute the throughput of the application and

the blocking probabilities. The analysis can be run for a fixed number of iterations or

terminate using some heuristic as explained below.

3.2.1 Terminating Condition

While the analysis can be repeated for a fixed number of iterations, it can also be based

on the convergence of some parameters. Some candidates for testing convergence are

provided below

• Application Period: When the application period for all the applications does not

change more than a pre-defined percentage, the analysis can said to have been con-

verged. In our experiments we observed, that just after 6 iterations all applications

had a change of less than 1% even when starting from original period. With in-

creasing number of iterations, the variation only became lower. This is the easiest

measure since the application period is computed each iteration. The only addition

is storing the result of previous iteration, and computing the change.

• Processor Utilization: The analysis termination can also be based on the change in

processor utilization. The utilization of processors varies with the load predicted

by the algorithm. The load on a processor is defined as the sum of the probabilities

of execution, Pe(a), of all actors mapped on it. When the algorithm has converged,

the load on the processor does not change. Further, the load on the processor

determines the waiting time significantly. When the total load on a processor is

more than 1, clearly the actors mapped on the processor will have to wait longer. To

74

0 yτ(a)

Pw(a)1-Pe(a)-Pw(a)

P (y)

Pe(a)

Figure 3.7: Probability distribution of waiting time anoth er actor has to wait when actor a is mapped

on the resource with explicit waiting time probability for t he conservative iterative analysis.

allow faster convergence, in fact, we scale the waiting time predicted for a particular

actor by the total load on the processor it is mapped on.

3.2.2 Conservative Iterative Analysis

For some applications, the user might be interested in having a more conservative bound

on the period i.e. it is better to have a less accurate pessimistic estimate than an accurate

optimistic estimate; a much better quality than predicted is more acceptable as compared

to even a little worse quality than predicted. In such cases, we provide here a conservative

analysis using our iterative technique.

In earlier analysis, when an actor b arrives at a particular resource and finds it occu-

pied by say actor a, we assume that a can be anywhere in the middle of its execution,

and therefore, b has to wait on average half of execution time of a. In the conservative

approach, we assume that b has to always wait for full execution of a. In the probability

distribution as presented in Figure 3.4, the rectangular uniform distribution of Pe(a) is

replaced by another delta function at τ(a) of value Pe(a). This is shown in Figure 3.7.

The waiting time equation is therefore updated to the following.

twait =

n
∑

i=1

2µai

(

Pe(ai) + Pw(ai)
)

(3.13)

Applying this analysis to the example in Figure 3.1 starting from the original graph,

we obtain the period as 416.7, 408, 410.3, 409.7 and 409.8. Starting from probabilistic

analysis values it also stabilises at 409.8 in 5 iterations. Note that in our example, the

actual period will be 300 in the best case and 400 in the worst case. The conservative

iterative analysis correctly finds the bound of about 410, which is only 2.5% more than

the actual worst case. If we apply real worst-case analysis in this approach, then we get

a period of 600 time units, which is 50% over-estimated.

75

This analysis can be either applied from the original period directly, or only after

the basic iterative analysis is already converged and terminated. The latter has the

benefit of using a realistic period, instead of a conservative period. Since a conservative

period is generally higher than the corresponding realistic period, the execution and

waiting probability is correspondingly lower when using the conservative period. Thus,

using a realistic period with a conservative analysis for the last iteration gives the most

conservative results. In experiments below, we present results of both approaches.

3.2.3 Parametric Throughput Analysis

Throughput computation of an SDF graph is generally very time consuming as explained

in Chapter 2. Lately, techniques have been presented in [GGS+06] that can compute

throughput of many multimedia applications within milliseconds. However, those results

have been taken on a high-end computer while assuming fixed actor execution times.

Therefore, throughput computation of an SDF graph is generally done off-line or at

design-time for a particular graph. However, if the execution time of an actor changes,

the entire analysis has to be repeated. Recently, a technique has been proposed to derive

throughput equations for a range of execution times (defined as parameters) at design-

time and these equations can be easily evaluated at run-time to compute the critical

cycle, and hence the period [GGBS08]. This technique greatly enhances the usability of

the iterative analysis. With this the iterative analysis can be applied at both design-time

and run-time.

For example, for application A shown in Figure 3.1, there is only one critical cycle.

If the execution times of all actors of A are variable, the following parametric equation

is obtained (assuming auto-concurrency of 1):

Per(A) = τ(a0) + 2 × τ(a1) + τ(a2) (3.14)

Thus, whenever the period of application A is needed, the above equation can be com-

puted with the updated response times of actors a0, a1 and a2. While in this case there is

only one equation for application A, in general the number of equations depends on the

graph structure and the range of execution times. When there are multiple equations,

all of them need to be evaluated to find the limiting period. This technique makes the

76

iterative analysis suitable for run-time implementation.

3.2.4 Handling Other Arbiters

The above analysis has been presented for first-come-first-serve (FCFS) arbitration.

For static-order schedulers like round-robin or another arbitrary order derived from

SDF 3 [SDF09], the schedule can be directly modeled in the graph itself. Other dynamic-

order schedulers like a priority-based scheduler can be easily modeled in the probability

approach. One key difference in a priority-based scheduler as compared to FCFS is that

in FCFS once the actor arrives, it has to always wait for actors ahead of it in the queue.

In a priority-based system, if it is preemptive, a higher priority actor can immediately

preempt a lower priority actor, and if it is non-preemptive, it has only to wait for lower

priority actors if they are executing. Let us define the priority of an actor a by Pr(a), such

that a higher value of Pr(a) implies a higher priority. Equation 3.12 that is presented for

FCFS, can be rewritten as Equation 3.15. It shows the waiting time for an actor a when

sharing a resource with actors a1 to an. Note that the waiting time contributed by the

arrival of actor a during the queuing phase of an actor with a priority lower than that

of a, is not added in the equation. Similarly, Equation 3.16 shows the adapted version

of Equation 3.13 for handling priority-based schedulers. It can be seen that these equa-

tions are a generalized form of earlier versions, since in FCFS the priorities of all actors

are equal, i.e. Pr(a) = Pr(ai)∀i = 1, 2, ...n. It should be further noted, that since the

priorities are only considered for local analysis on a processor (or any resource), different

processors (or resources) can have different arbiters.

twait =
n

∑

i=1

(τai

2
Pe(ai)

)

+
n

∑

i=1,Pr(ai)≥Pr(a)

(

τai
Pw(ai)

)

(3.15)

twait =
n

∑

i=1

(

τai
Pe(ai)

)

+
n

∑

i=1,Pr(ai)≥Pr(a)

(

τai
Pw(ai)

)

(3.16)

3.3 Experiments

In this section, we describe our experimental setup and some results obtained for the basic

probability, explained in Section 3.1. The iterative technique as explained in Section 3.2

77

improves upon this. First, we only show results of the basic probability analysis since

iterative analysis results are very close to the measured results. Superimposing iterative

analysis results on the same scale makes the graph difficult to understand. In the basic

analysis results, the graph is scaled to the original period, while in the iterative analysis

it is scaled to the measured period. The results of the software implementation of the

probability approaches on an embedded processor, Microblaze are also provided.

3.3.1 Setup

In this section we present the results of above analysis obtained as compared to sim-

ulation results for a number of use-cases. For this purpose, ten random SDFGs were

generated with eight to ten actors each using the SDF 3 tool [SGB06a], mimicking DSP

and multimedia applications. Each graph is a strongly connected component i.e. every

actor in the graph can be reached from every actor. The execution time and the rates

of actors were also set randomly. The SDF 3 tool was also used to analytically compute

the periods of the graphs. Using these ten SDFGs, over a thousand use-cases (210) were

generated. Simulations were performed using POOSL [TFG+07] to measure the actual

performance for each use-case. Two different probabilistic approaches were used – the

second order and the fourth order approximations of Equation 3.7. Results of worst-

case-response-time analysis [Hoe04] for non-preemptive systems are also presented for

comparison. The worst-case estimate indicates the maximum time an actor may have to

wait in a non-preemptive system with the first-come-first-serve mechanism. This estimate

is computing using Equation 2.1.

The simulation of all possible use-cases, each for 500,000 cycles took a total of 23

hours on a Pentium 4 3.4 GHz with 3 GB of RAM. In reality simulation is often done

for a lot more cycles. In contrast, analysis for all the approaches was completed in about

10 minutes only.

3.3.2 Results and Discussion – Basic Analysis

Figure 3.8 shows a comparison between periods computed analytically using different

approaches as described in this chapter (without the iterative analysis), and the simula-

tion result. The use-case for this figure is the one in which all applications are executing

concurrently. This is the case with maximum contention. The period shown in the figure

78

 0

 2

 4

 6

 8

 10

 12

 14

 A B C D E F G H I J

P
er

io
d

of
 A

pp
lic

at
io

ns
 (

N
or

m
al

iz
ed

 to
 o

rig
in

al
 p

er
io

d)

Applications

Comparison of Period: Computed and Simulated

Original
Simulation

Worst Case in Simulation
Second Order
Fourth Order
Worst Case

Figure 3.8: Comparison of periods computed using different analysis techniques as compared to

the simulation result (all 10 applications running concurr ently). All periods are normalized to the

original period.

is normalized to the original period of each application that is achieved in isolation. The

worst case period observed during simulation is also shown.

A number of observations can be made from this figure. We see that the period is

much higher when multiple applications are run. For application C, the period is six times

the original period, while for application H, it is only three-fold (simulation results). This

difference comes from different graph structures and repetition vector entries of actors in

different graphs. The analytical estimates computed using different approaches are also

shown in the same graph. The estimates using the worst-case-response-time [BHM+05]

are much higher than those achieved in practice and therefore, overly pessimistic. The

estimates of the two probabilistic approaches are very close to the observed performance.

We further notice that the second order estimate is always more conservative than the

fourth order estimate, which is expected, since it overestimates the resource contention.

The fourth order estimates of probability are the closest to the simulation results except

in applications C and H.

Figure 3.9 shows the variation in period that is estimated and observed as the number

of applications executing concurrently in the system increases. The metric displayed in

the figure is the mean of absolute differences between estimated and observed periods.

This inaccuracy is defined as 1
m

∑m
i=1 |tpred(ai)− tmeas(ai)|, where m is the total number

of actors in the system. When there is only one application active in the system, the

79

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

In
ac

cu
ra

cy
 o

f P
er

io
d

(in
 p

er
ce

nt
)

Number of Applications concurrently executing

Inaccuracy (mean abs diff) in Analyzed Estimates and Simulated Period

Analyzed Worst Case
Composability-based

Probabilistic Fourth Order
Probabilistic Second Order

Figure 3.9: Inaccuracy in application periods obtained thr ough simulation and different analysis

techniques

inaccuracy is zero for all the approaches, since there is no contention. As the number

of applications increases, the worst-case-response-time estimate deviates a lot from the

simulation result. This indicates why this approach is not scalable with the number

of applications in the system. For the other three approaches, we observe that the

variation is usually within 20% of the simulation result. We also notice that the second

order estimate is very close to the composability-based approach – both of which are

more conservative than the fourth-order approximation. The maximum deviation in the

fourth order approximation is about 14% as compared to about 160% in the worst-case

approach – a ten-fold improvement.

3.3.3 Results and Discussion – Iterative Analysis

Validating the probabilistic distribution

In order to check the accuracy of the probabilistic distribution of waiting times presented

in Figure 3.4, we measured exactly when actors arrive when sharing a processor (or

another resource) with another actor. For every execution of an actor a, three events

are recorded in the processor log file – queuing time (tq), execution start-time (ts), and

execution end-time (te). When other actors arrive between tq and ts, they have to wait

for the entire execution of a. When they arrive between ts and te, the waiting time

depends on where a is in its execution. When the actors arrive between te and the next

tq, a does not have any effect on their waiting time. This was measured and summarized

80

 0

 0.005

 0 5 10 15 20 25 30 35

P
ro

ba
bi

lit
y

Waiting Time

0.287 (Meas)
0.30 (Pred)

0.582 (Meas)

0.505 (Pred)

Measured
Predicted

Figure 3.10: Probability distribution of the time other act ors have to wait for actor a2 of application

F. a2 is mapped on processor 2 with a utilization of 0.988. The over all waiting time measured is

12.13, while the predicted time is 13.92. The conservative p rediction for the same case is 17.94.

 0

 0.005

 0 5 10 15 20 25

P
ro

ba
bi

lit
y

Waiting Time

0.109 (Meas)

0.08 (Pred)

0.785 (Meas)

0.793 (Pred)

Measured
Predicted

Figure 3.11: Probability distribution of the time other act ors have to wait for actor a5 of application

G. a5 is mapped on processor 5 with a utilization of 0.672. The over all waiting time measured is

4.49, while the predicted time is 3.88. The conservative pre diction for the same case is 6.84.

81

for the entire simulation for all the actors. Here we present results of two actors – one

randomly chosen from a processor with high utilization, and another with low utilization.

This is done in order to check if the model still holds as the utilization of the processor

approaches 1. Figure 3.10 shows the distribution of this waiting time for actor a2 of

application F mapped on processor 2. Processor 2 has a high utilization of almost 1. The

distribution is obtained from about three thousand arrivals. This actor takes 35 time

units to execute. The distribution of actor arrival times assumed in the model is also

shown in the same figure for comparison. A couple of observations can be made from

this figure. The distribution between 0 and 35 is more or less uniform. The mean of

this uniform distribution observed in the experiment is a bit less than the model. The

arrival times of other actors when a2 is not in the queue are somewhat higher than that

assumed in the model, and the arrivals in the queuing time of a2 are rather accurate. If

we look at the total waiting time contributed by a2, the prediction using the assumed

arrival model is 13.92, whereas the measured mean delay contributed by a2 is 12.13 –

about 15% lower. The conservative assumption predicts the waiting time to be 17.94 due

to a2.

Figure 3.11 shows the similar distribution for actor a5 of application G mapped on

processor 5. This processor has comparatively low utilization of 0.672. Similar to the

earlier graph, the probability distribution of the waiting time is uniform between 0 and

27, the execution time of this actor. In this case, while the delta function at 0 is almost

equal to the assumed model, the delta function at 27 is almost 35% higher than what

we assume in the model. This is quite contrary to the expectation since this processor

has lower utilization. This probably happens because of the inter-dependencies that are

created by resource arbitration between concurrently executing multiple applications.

The overall waiting time assumed in the analysis is 3.88, while we measured 4.49 – 15%

higher this time. However, the conservative estimate of 6.84 is still higher than 4.49.

Thus, we see that our assumption of the probability distribution in Figure 3.4 con-

sisting of two delta functions and a uniform distribution in the middle. This is the

contribution of one actor to the other actors. The total waiting time of an actor is the

combined effect of all the other actors mapped on a resource. We see the variation of the

predicted waiting time with the measured waiting time in the following sub-section.

It should be mentioned that above figures show the arrival of the other actors when

82

Table 3.2: Comparison of the time actors actually spend in di fferent stages assumed in the model

vs the time predicted.

Actor No Request Time Executing Queuing
Pred Meas Pred Meas Pred Meas

F, a2 0.505 0.556 0.195 0.189 0.300 0.255
G, a5 0.793 0.770 0.127 0.127 0.080 0.102

a particular actor is queued. The distribution of the actor itself in the three stages –

queuing, executing, and not requesting at all – is not captured. This behaviour is captured

by observing the entire simulation time and the results are summarized in Table 3.2.

Looking at this table, it is easy to explain the small discrepancies in the probabilistic

distribution in Figure 3.10 and Figure 3.11. Actor a2 of application F does not request

the resource for a longer time than predicted – 0.556 instead of 0.505. Therefore, there

are more arrivals than predicted in the period that it is not requesting the resource at

all. The same goes for actor a5 of application G. The proportion of time a5 spends in the

no-request phase of 0.770 is a little lower than the prediction of 0.793 and the proportion

of arrivals follows. Another observation we can make is that the number of arrivals in

the queuing phase is somewhat higher than the actual time spent by the actor in it –

for a2, 0.287 instead of 0.255 and for a5, 0.109 instead of 0.102 (from Figure 3.10 and

Figure 3.11 respectively). This behaviour is explained when we consider the execution

behaviour of the actors. On a processor with high utilization (processor 2), as soon as an

actor finishes execution, it is often immediately queued again since there are generally

sufficient input tokens available for it. Thus, whenever the actor a2 starts executing (by

virtue of the processor becoming idle), the actor that just finished executing is queued

immediately after. This leads to more arrivals that have to wait for the entire execution

of a2, i.e. 35, and the effect is an increased queuing probability in the queuing phase.

On the processor with lower utilization (processor 5), the effect is somewhat reduced.

So far we have seen the contribution of waiting times from individual actors. The

whole idea of this model is to compute the total waiting time for a particular actor

correctly. Let us now look at the waiting time predictions of the actors as compared

to their measured waiting time. Figure 3.12 shows the total waiting time for actors

of different applications mapped on Processor 2. The results of the basic probability

analysis (fourth order), iterative analysis, and the measured waiting time are presented.

The worst case waiting time computed using Equation 2.1 is shown for comparison. As

83

 0

 50

 100

 150

 200

 250

 300

A B C D E F G H I J

W
ai

tin
g

tim
e

(c
yc

le
s)

Applications

Waiting time of actors mapped on an over-loaded processor

Basic Probability
Worst Case

Measured
Iterative

Figure 3.12: Waiting time of actors of different applicatio ns mapped on Processor 2. The utilization

of this processor 0.988.

 0

 50

 100

 150

 200

 250

A B C D E F G H I J

W
ai

tin
g

tim
e

(c
yc

le
s)

Applications

Waiting time of actors mapped on an under-utilized processor

Basic Probability
Worst Case

Measured
Iterative

Figure 3.13: Waiting time of actors of different applicatio ns mapped on Processor 5. The utilization

of this processor 0.672.

84

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 A B C D E F G H I J

P
er

io
d

of
 A

pp
lic

at
io

ns
 (

N
or

m
al

iz
ed

 to
 s

im
ul

at
io

n
pe

rio
d)

Applications

Comparison of Period: Computed and Simulated

Simulation
Fourth Order Probability

Iterative - 1 iteration
Iterative - 5 iterations

Iterative - 10 iterations
Conservative - 10 iterations

Figure 3.14: Comparison of periods computed using iterativ e analysis techniques as compared to

simulation results (all 10 applications running concurren tly)

can be seen, the worst case waiting time computed is much more than that measured on

the processor for all applications. The basic analysis brings this waiting time much closer

to the measured value, and iterative analysis makes it almost equal to the measured value.

This processor has a utilization close to 1. We see that for application E, the iterative

analysis predicts a value that is about 40% more than the measured value. However, this

is only for one actor of the application (the actor mapped on Processor 2). When the

throughput of the whole application is computed, we observe that it is almost equal to

the measured value. Figure 3.13 shows a similar graph for processor 5. This processor

has a lower utilization of 0.672, and the waiting times are also much lower than that

guaranteed by the worst case estimate. Also in this case, the basic probability approach

gives a slightly higher estimate of waiting time than that measured. Similar trends are

observed for other processors as well.

Application Throughput

Figure 3.14 shows the strength of the iterative analysis. The results are now shown with

respect to the results achieved in simulation as opposed to the original period. The fourth-

order probability results are also shown on the same graph to put things in perspective

since that is the closest to the simulation result. As can be seen, while the maximum

deviation in fourth-order is about 30%, the average error is very low. The results of

applying iterative analysis starting from fourth order, after 1, 5 and 10 iterations are also

85

shown. The estimates get closer to the actual performance after every iteration. After 5

iterations, the maximum error that can be seen in Application H is about 3%, and the

average error is to the tune of 2%.

Results of the conservative version of the iterative technique are also shown on the

same graph. These are obtained after ten iterations of the conservative technique. The

estimate provided by this technique is always above the simulation result. On average,

in this figure the conservative approach over-estimates the period by about 8% – a small

price to pay when compared to the worst-case bound that is 162% over-estimated.

Figure 3.15 shows the results of iterative analysis with an increasing number of itera-

tions for application A. Five different techniques are compared with the simulation result

– the iterative technique starting from the original graph, the second order probabilis-

tic estimate, the fourth order probabilistic estimate, and the worst case initial estimate,

including the conservative analysis of the iterative technique starting from the original

graph. While most of the curves converge almost exactly on the simulation result, the

conservative estimate converges on a value slightly higher, as expected. A similar graph

is shown for another application C in Figure 3.16. In this application it takes somewhat

longer before the estimate converges.

A couple of observations can be made from this graph. First, the iterative analysis

approach is converging. Regardless of how far and at which side the initial estimate of

the application behaviour is, it converges within a few iterations close to the actual value.

Second, the final value estimate is independent of the starting estimate. The graph shows

that the iterative technique can be applied from any initial estimate (even the original

graph directly) and still achieve accurate results. This is a very important observation

since this implies that if we have constraints on program memory, we can manage with

only the iterative analysis technique. If there is no such constraint, one can always start

with the fourth-order estimate in order to get faster convergence. This is probably only

suitable for cases when applications have a large number of throughput equations, and

when throughput computation takes more cycles than fourth order estimate.

The error in the iterative analysis (defined as mean absolute difference) is presented in

Table 3.3. Both the average and the maximum error are shown. Different starting points

for the iterative analysis are taken. A couple of observations can be made from the table.

Regardless of the starting estimate, the iterative analysis always converges. In general,

86

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10

P
er

io
d

of
 A

pp
lic

at
io

ns

Number of iterations

Application period as computed after the number of iterations (A)

Actual Period Observed
Iterative - Original

Iterative - 2nd Order
Iterative - 4rth Order

Iterative - Worst Case
Iterative Conservative

Figure 3.15: Change in period computed using iterative anal ysis with increase in the number of

iterations for application A.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 2 4 6 8 10

P
er

io
d

of
 A

pp
lic

at
io

ns

Number of iterations

Application period as computed after the number of iterations (C)

Actual Period Observed
Iterative - Original

Iterative - 2nd Order
Iterative - 4rth Order

Iterative - Worst Case
Iterative Conservative

Figure 3.16: Change in period computed using iterative anal ysis with increase in the number of

iterations for application C .

87

Table 3.3: Measured inaccuracy for period in % as compared wi th simulation results for iterative

analysis. Both the average and maximum are shown.

Iterations 2nd Order 4rth Order Worst Case Original Conservative

0 22.3/44.5 9.9/28.9 72.6/83.1 163/325 72.6/83.1
1 6.2/19 6.7/17.6 88.4/144 12.6/36 252/352
2 3.7/13.3 3.5/11.9 6.3/17.6 6.7/23.2 7.9/23.2
3 3/7.7 2.9/6.2 4.5/11.9 4.3/13.3 8.8/24.7
4 2.2/6.2 2/4.8 2.5/7.7 3.1/9.1 8.4/23.2
5 2.2/4.8 1.9/3.9 2.2/4.8 2.5/6.2 8.3/23.2
6 1.7/3.6 1.6/3.6 1.7/3.4 2/4.8 8.1/21.8
7 1.8/4 1.9/4 1.8/3.4 1.7/3.9 8/21.8
8 1.7/3.6 1.7/3.6 1.7/3.4 1.8/3.6 8/21.8
9 1.8/3.4 1.9/3.4 1.7/3.6 1.7/3.4 8/21.8
10 1.6/3.3 1.7/3.4 1.3/3.1 1.9/3.4 8.1/21.8
20 1.7/3 1.4/2.9 1.4/2.9 1.5/3 8.1/21.8
30 1.4/3 1.6/3 1.6/3 1.4/3 8.1/21.8

as the number of iterations increases, the error decreases. As can be seen, the fourth

order initial estimate converges the fastest among all approaches. If we define 2% error

margin as acceptable, we find that the fourth order estimate requires only 4 iterations

to converge while others require 6 iterations. However, obtaining the estimate of the

fourth-order analysis is computationally intensive. Using the worst-case or the original

period itself as the starting point for the iterative analysis saves the initial computation

time, but takes a little longer to converge. When the conservative approach is applied

after the base iterative analysis, the average variation is 10% and the maximum error

is 16%. Another observation we can make is that in general, there is not much change

after 5 iterations. Thus, 5 iterations present a good compromise between the accuracy

and the execution time.

3.3.4 Varying Execution Times

Many applications are dynamic in nature [TGB+06]. When there is a variation in the

execution time of the application tasks, the SDF graph is not able to capture their ex-

act behaviour. The techniques that are conventionally used to analyze the application

behaviour give an even more pessimistic bound. To evaluate the performance of our tech-

nique, we re-ran the simulation of the ten-application use-case by varying the execution

time of the application tasks. Two sets of experiments were done – one by allowing the

execution time to vary within 10 time units, and another within 20. The average of all

88

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

A B C D E F G H I J

P
er

io
d

of
 A

pp
lic

at
io

ns
 (

N
or

m
al

iz
ed

 to
 s

im
ul

at
io

n
pe

rio
d)

Applications

Dynamic Execution Time Case Study

Simulation (No variation)
Iterative - 10 iterations

Conservative - 10 iterations
40% variation

Iterative + Conservative
80% variation

Figure 3.17: Comparison of periods with variable execution time for all applications. A new con-

servative technique is applied; the conservation mechanis m is used only for the last iteration after

applying the base iterative analysis for 10 iterations.

task execution times was about 25. Therefore, this implied a variation of up to 40% in the

first case and up to 80% in the other. Figure 3.17 shows the results of experiments when

the execution time was allowed to vary in a uniform interval. A couple of observations

can be made. First, the period of applications when execution time is allowed to vary

does not change too much. In our experiments it varied by at most 2%. Clearly, it may

be possible to construct examples in which it does vary significantly, but this behaviour

was not observed in our applications. Second, the conservative analysis still gives results

that are more than the period of applications with variable execution times. In this

figure, we also see the difference in applying conservative analysis throughout the ten

iterations, and in applying this analysis for only the last iteration. While in the former

case, the prediction is sometimes very close to the measured results (application C) and

sometimes very far (application H), in the latter, the results make a nice envelope that

is on average 10% more than the measured results.

3.3.5 Mapping Multiple Actors

So far in the above experiments we have only considered cases when one actor per appli-

cation is mapped on one processor. Since each application in the experiment had up to

ten actors, we needed ten processors. Clearly, this is not realistic. Therefore, we mapped

multiple actors of an application on a single processor and checked whether the iterative

89

 0.9

 0.95

 1

 1.05

 1.1

 1.15

A B C D E F G H I J

P
er

io
d

of
 A

pp
lic

at
io

ns
 (

N
or

m
al

iz
ed

 to
 s

im
ul

at
io

n
pe

rio
d)

Applications

Mapping Multiple Actors Case Study

Simulation
Iterative - 5 iterations

Iterative - 10 iterations
Iterative - 20 iterations

Conservative - 10 iterations

Figure 3.18: Comparison of application periods when multip le actors of one application are mapped

on one processor.

approach still works in that case. Since we do not consider intra-task dependency, the

analysis remains the same, except that there are potentially more actors on any processor

causing contention. For this experiment, we assumed that we had only four processors

available and the mapping is already specified at design-time. Figure 3.18 shows the

comparison of the predicted results with the measured performance. The average error

(mean absolute deviation) in this experiment is just 1%, while the maximum deviation

is 3%. This shows that the approach is effective even when multiple actors of the same

application are mapped on a resource. Further, in this experiment some processors had

up to 30 actors mapped. This shows that the approach scales well with the number of

actors mapped on a processor.

3.3.6 Mobile Phone Case Study

In this section, we present results of a case-study with real-life applications. We did

not do any optimization to the application specifications and granularity obtained from

the literature, in order to put our analysis to an extreme test. We consider 5 applica-

tions – video encoding (H263) [Hoe04], video decoding [Stu07], JPEG decoding [dK02],

modem [BML99], and a voice call scenario. These applications represent a set of typi-

cal applications – often executing concurrently – on a modern mobile phone. Sufficient

buffer-space is assumed to be present among all channels in the applications, such that

applications do not deadlock due to lack of buffer-space. This buffer-space on each chan-

90

 0

 5

 10

 15

 20

 25

 30

 35

155

160

H263
Decoder

H263
Encoder

JPEG
Decoder

Modem Voice
CallP

er
io

d
of

 A
pp

lic
at

io
ns

 (
N

or
m

al
iz

ed
 to

 o
rig

in
al

 p
er

io
d)

Applications

Mobile Phone Case Study

Simulation
Iterative Analysis

Conservative Analysis
Worst Case

Exponential − Fourth Order

Figure 3.19: Comparison of performance observed in simulat ion as compared to the prediction

made using iterative analysis for real applications in a mob ile phone.

nel (just enough to avoid deadlock) and auto-concurrency of one was modeled in the

application graphs to compute throughput using the SDF 3 tool.

This set of applications poses a major challenge for performance prediction since they

consist of tasks with varying granularity of execution times, e.g. anti-aliasing module

of MP3 decoder takes 40 time-units while the sub-inversion module of the same appli-

cation requires 186,500 time units. Thus the assumption of the basic method that the

execution times are roughly equal does not hold. Further, the repetition vectors of these

applications vary significantly. While the sum of repetition vector entries of JPEG is 26

i.e. actors of JPEG have to compete for processor resources to become available 26 times

for one iteration, the sum of repetition vector entries of H263 decoder is 1190. Further,

the number of tasks in each application vary significantly. While H263 decoder has only

four tasks, the modem application has a total of 14 tasks. For this case study, one task

was mapped to one processor for each application, since multiple actor mapping options

would have resulted in a huge number of potential mappings. This implied that while

some processors had up to five actors, some processors only had one actor mapped. Thus,

this case-study presents a big challenge for any performance prediction mechanism, and

our iterative probabilistic technique was used to predict performance of these applications

executing concurrently.

Figure 3.19 shows the comparison between the prediction of the iterative analysis and

the simulation result. For these results, a bar chart is used instead of lines to make the

91

graph more readable. Using a line would squeeze all the points of the modem, for exam-

ple, to a single point. Further, it is difficult to make the gap in y-axis (needed for voice

call) meaningful using lines. The simulation was carried out for 100 million time units.

The results are normalized with the original period of each application. The results of

the bound provided by the worst-case estimate are also shown for comparison. A couple

of observations can be made from the graph. First of all, the period of applications

increases in different proportions. While the period of modem application increases by

only 1.1 times, the period of H263 decoder increases by almost 12 times, and that of a

voice call by almost 18 times. This depends on the granularity of tasks, the number of

tasks a particular application is divided into, and the mapping of tasks on the multipro-

cessor platform. The modem application consists of about 14 tasks, but only 6 of them

experience contention. The remaining 8 tasks have a dedicated processor, and therefore

have no waiting time. Further, the 6 tasks that do share a processor, are only executed

once per application iteration. In contrast the inverse-quantization module of the H263

decoder executes 594 times per iteration of the decoder, and has to wait for the processor

to become available each time. This causes significant degradation in its performance.

The second observation we can make is that the iterative analysis is still very accurate.

The average deviation in throughput estimate is about 15%, and the maximum deviation

is in the voice call application of 29%. The basic approach to fourth-order approximation

also performs quite well for this case-study, and the average deviation is the same as the

iterative approach, but the maximum deviation is 47%. The worst-case estimate in con-

trast is almost 18 times overly pessimistic. The prediction in the voice call application

is actually 158 times of the original period. Another interesting observation is that the

worst-case bound of the modem application is only 15% pessimistic. This is because most

actors of this application do not have any contention. It should be mentioned that in this

experiment first-come-first-serve arbitration was used. A different arbitration mechanism

and a better mapping can distribute the resources more evenly.

3.3.7 Implementation Results on an Embedded Processor

The proposed algorithms were ported to an embedded processor – Microblaze; this re-

quired some rewriting to optimize the implementation for timing and reduced memory

use. The default time taken for second and fourth order, for example, was 72M and 11M

92

Table 3.4: The number of clock cycles consumed on a Microblaz e processor during various stages,

and the percentage of error (both average and maximum) and th e complexity.

Algorithm/Stage Clock cycles Error (%) Complexity
avg/max

Load from CF Card 1,903,500 – O(N.n.k)
Throughput Computation 12,688 – O(N.n.k)
Worst Case 2,090 72.6/83.1 O(m.M)
Second Order 45,697 22.3/44.5 O(m2.M)
Fourth Order 1,740,232 9.9/28.9 O(m4.M)
Iterative – 1 Iteration 15,258 12.6/36 O(m.M)
Iterative – 1 Iteration* 27,946 12.6/36 O(m.M + N.n.k)
Iterative – 5 Iterations* 139,730 2.2/3.4 O(m.M + N.n.k)
Iterative – 10 Iterations* 279,460 1.9/3.0 O(m.M + N.n.k)

*Including throughput computation time

N-number of applications

n-number of actors in an application

k-number of throughput equations for an application

m-number of actors mapped on a processor

M-number of processors

cycles respectively. Table 3.4 shows the time taken during various stages and algorithms

after rewriting. The algorithmic complexity of each stage and the error as compared to

the simulation result is also shown.

The error in various techniques as compared to the performance achieved is also shown

in Table 3.4. As can be seen, the basic probability analysis with fourth order gives an

average error of about 10% and a maximum error of 29%. The iterative technique after

just five iterations predicts a performance that is within 2% of the measured performance

on average and has only 3% maximum deviation in the entire set of applications.

This system consists of the same 10 applications as used in the previous sub-section.

The loading of application properties from the CF card took the most amount of time.

However, this is only done once at the start of the system, and hence does not cause

any bottleneck. On our system operating at 50 MHz, it takes about 40ms to load the

applications-specification. Parametric throughput computation is quite fast, and takes

about 12K cycles for all 10 applications. (It should be mentioned that here we merely need

to evaluate the throughput expressions that are computed for each application. Deriva-

tion of expressions is still time consuming and not done at run-time.) The probabilistic

analysis itself for all the applications is quite fast, except the fourth-order analysis.

For the iterative analysis, each iteration takes only 15K cycles i.e. 300 micro-seconds.

If 5 iterations are carried out, it takes a total of 140K cycles for all 10 applications

93

including the time spent in computing throughput. This translates to a time of about

3 ms on 50MHz processor when the performance of all ten applications is computed.

Since starting a new application is likely to be done only once in every few seconds or

minutes, this is a small overhead. Further, the processor speed of a typical processor in an

embedded device is around 400-500 MHz. Thus, it will take only about 300 microseconds.

3.4 Related Work

In [BKKB02], the authors propose to analyze the performance of a single application

modeled as an SDF graph by decomposing it into a homogeneous SDF graph (HS-

DFG) [SB00]. The throughput is calculated based on analysis of each cycle in the

resulting HSDFG [Das04]. However, this can result in an exponential number of ver-

tices [PL95]. Thus, algorithms that have a polynomial complexity for HSDFGs therefore

have an exponential complexity for SDFGs. Algorithms have been proposed to reduce

average case execution time [GGS+06], but it still takes O(n2) in practice where n is

the number of vertices in the graph. When mapping needs to be considered, extra edges

can be added to model resource dependencies such that a complete analysis taking re-

source dependencies into account is possible. However, the number of ways this can be

done even for a single application is exponential in the number of vertices [KMC+06];

for multiple applications the number of possibilities is infinite. Further, only static order

arbitration can be modeled using this technique.

For multiple applications, an approach that models resource contention by computing

worst-case-response-time (WCRT) for TDMA scheduling (requires preemption) has been

analyzed in [BHM+05]. This analysis gives a very conservative bound. Further, this

approach requires preemption for analysis. A similar worst-case analysis approach for

round-robin is presented in [Hoe04], which also considers non-preemptive systems, but

suffers from the same problem of lack of scalability. WCRT is computed by adding the

execution times of all the actors mapped on a resource. Thus, the response time of an

actor aj is given by:

tresp(aj) =

N
∑

i=1

texec(ai)∀j = 1, 2, . . . N. (3.17)

However, as the number of applications increases, the bound increases much more than

the average case performance. Real-time calculus has also been used to provide worst-

94

case bounds for multiple applications [RJE03][TCN00][KPBT06]. Besides providing a

very pessimistic bound, the analysis is also very intensive and requires a very large

design-time effort. On the other hand our approach is very simple. However, we should

note that above approaches give a worst-case bound that is targeted at hard-real-time

(RT) systems.

A common way to use probabilities for modeling dynamism in application is using

stochastic task execution times [AB99][MEP04][HQB07]. In our case, however, we use

probabilities to model the resource contention and provide estimates for the throughput

of applications. This approach is orthogonal to the approach of using stochastic task

execution times. In our approach we assume fixed execution time, though it is easy to

extend this to varying task execution times as well, as shown by the results. To the best

of our knowledge, there is no efficient approach of analyzing multiple applications on a

non-preemptive heterogeneous multi-processor platform.

Queuing theory also allows computing the waiting times when several processes are

being served by a resource [Tak62] and has been applied for networks [Rob00] and

processor-sharing [EGCMT70]. However, this is not applicable in our scenario for a

number of reasons. First, since we have circular dependencies in the SDF graphs, feed-

back loops are created that cannot be handled by the queuing theory. Secondly, the

execution time of tasks on a processor does not follow a common distribution. Each task

may have an independent execution time distribution. Therefore, a general expression

for the service time for tasks mapped on a processor cannot be determined.

3.5 Conclusions

In this chapter, we saw a probabilistic technique to estimate the performance of appli-

cations when sharing resources. An iterative analysis is presented that can predict the

performance of applications very accurately. Besides, a conservative flavour of the iter-

ative analysis is presented that can also provide conservative prediction for applications

for which the mis-prediction penalty may be high.

The basic probability analysis gives results with an average error of 10%, and a maxi-

mum error is 29%. In contrast, the average error in prediction using iterative probability

is only 2% and the maximum error of 3%. Further, it takes about four to six iterations

95

for the prediction to converge. The complexity and execution time of the algorithm is

very low – it takes only 3ms to evaluate the performance of ten applications on a 50MHz

embedded processor.

Further, we presented results of a case-study of applications commonly used in a mo-

bile phone. The models of these applications vary in the number of tasks, granularity

of tasks, and also the repetition vectors of the applications. The simulation result of

executing all applications concurrently is compared with the iterative analysis. Even in

this particular use-case, the prediction by iterative analysis is close to the simulation

result. This proves the robustness of the technique. We also see that applications with

coarser task granularity perform better in the first-come-first-serve arbitration as com-

pared to applications that have a finer granularity. This occurs since the tasks with finer

granularity have to compete for resources more often. Different arbitration mechanisms

can potentially alleviate this problem, and more research should be done into that.

96

CHAPTER 4

Resource Management

Modern multimedia systems consist of a number of resources. This includes not just

computational resources, but also others, for example, memory, communication band-

width, energy. Resources have to be allocated to applications executing on the system

such that all applications can produce the expected result. When dealing with multi-

media embedded systems, ensuring that all applications can meet their non-functional

requirements, e.g. throughput, also becomes important. As has been emphasized in

the earlier chapters, this poses a significant challenge when multiple applications are ex-

ecuting. Further, when run-time admission and addition of applications is supported,

e.g. in modern mobile phones, this challenge takes yet another dimension. A complete

analysis is infeasible at design-time due to two major reasons: 1) little may be known at

design-time about the applications that need to be used in future, and 2) the number of

design-points that need to be evaluated is prohibitively large. A run-time approach can

benefit from the fact that the exact application mix is known, but the analysis has to be

fast enough to make it feasible. Resource management – simply said – is managing the

resources available on the multiprocessor platform.

In this chapter, we present a design-flow for designing systems with multiple appli-

cations. We present a hybrid approach where the time-consuming application-specific

computations are done at design-time, and isolated from other applications – to main-

97

tain composability, and the use-case-specific computations are performed at run-time.

Further, we present a resource manager (RM) for the run-time aspects of resource man-

agement. The need for a middle-ware or OS-like component for the MPSoC has already

been highlighted in literature [Wol04]. We highlight two main uses of the RM – admis-

sion control and budget enforcement, that are essential to ensure that the performance

requirements of all applications are met.

The remainder of this chapter is organized as follows. Section 4.1 explains the prop-

erties that are extracted from individual applications off-line. Section 4.2 explains how

these properties are used by the resource manager at run-time to perform admission con-

trol and enforcing budgets. Section 4.3 provides an approach for achieving predictability

through suspension. The results of a case study done with an H263 and a JPEG decoder

are discussed in Section 4.4. Section 4.5 discusses the relevant related research that has

been done, and Section 4.6 ends the chapter with some conclusions and directions for

future work.

4.1 Off-line Derivation of Properties

As has been explained earlier, it is often not feasible to know the complete set of applica-

tions that the system will execute. Even in cases, when the set of applications is known at

design-time, the number of potential use-cases (or scenarios) may be large. The combina-

tion of off-line and on-line (same as run-time) processing keeps the design-effort limited.

Note that off-line is different from design-time; while system design-time is limited to the

time until the system is rolled-out, off-line can also overlap with using the system. In a

mobile phone for example, even after a consumer has already bought the mobile phone,

he/she can download the applications whose properties may be derived after the phone

was already designed. In our methodology, some applications may be unknown even at

design-time. In those cases, the properties of the applications are derived off-line, and

the run-time manager checks whether the given application-mix is feasible.

Figure 4.1 shows the properties that are derived from the application(s) off-line.

Individual applications are partitioned into tasks with respective program code tagged

to each task and communication between them explicitly specified. The program code

can be profiled (or statically analyzed) to obtain execution time estimates for the actors.

98

...

...

...
}

−Execution Times
−Actor Mappings (if any)
−Buffer Requirements
−Throughput Equations
−Performance Constraints

task a0(){

a0

a1

a2

Figure 4.1: Off-line application(s) partitioning, and com putation of application(s) properties. Three

applications – photo taking, bluetooth and music playing, a re shown above. The partitioning and

property derivation is done for all of them, as shown for phot o taking application, for example.

For this chapter, we assume that the application is already split into tasks with worst-

case execution-time estimates. A complete survey of the methods and tools available for

computing worst-case execution-times is provided in [WEE+08].

The following information is extracted from the application off-line as shown in Fig-

ure 4.1.

• Partitioned program code into tasks.

• SDF model of the application.

• Worst-case execution time estimates of each task.

• Minimum performance (throughput) needed for satisfactory user-experience.

• Mapping of these tasks on to the heterogeneous platform.

• Buffer-sizes needed for the edges in the graph.

• Throughput equations of the SDF model.

Note that there may be multiple Pareto-points with different mappings, buffer-sizes

and throughput equations. Figure 4.2, for example, shows how the application parti-

tioning and analysis is done for H263 decoder application. The SDF model presented in

this figure has been taken from [Stu07]. Note that the strong connectedness in the graph

comes from the back-edges corresponding to the buffer between the actors. These are

omitted in the graph for clarity. The sequential application code is split into task-level

descriptions, and an SDF model is derived for these communicating tasks. The corre-

sponding production and consumption rates are also mentioned along the edges. The

99

table alongside the figure shows the mapping and worst case execution times of each

task1. The buffer-size needed between each actor is also mentioned in the table. There

are two throughput expressions that correspond to this buffer-size [GGBS08], where ta

shows the response time of the actor a. These expressions limit the maximum through-

put for this particular model of H263 (under these buffer-size constraints). In order to

compute the actual period, both T1 and T2 are evaluated for the particular response-time

combination of these actors. The larger of the two gives the period of H263 decoder. For

these initial execution time estimates, the first expression forms the bottleneck and limits

the period to 646,262 cycles. This implies that if each of these tasks is executed on a

processor of 50 MHz, the maximum throughput of the application is 77 iterations per

second2. Clearly, when this application is executing concurrently with other applications,

it may not achieve the desired throughput. For this example, we have assumed that the

minimum performance associated with this application is 25 frames per second. This is

the constraint that should be respected when the application is executed.

Performance Specification

An application can often be associated with multiple quality levels as has been explained

in existing literature [Nol08, LWM+02]. In that case, each quality of the application

can be depicted with a different task graph with (potentially) different requirements of

resources and different performance constraints. For example, a bluetooth application

may be able to run at a higher or lower data rate depending on the availability of the

resources. If a bluetooth device wants to connect to a mobile phone which is already

running a lot of jobs in parallel, it may not be able to start at 3.0 Mbps (Bluetooth

2.0 specification [Blu04]) due to degraded performance of existing applications, but only

at 1.0 Mbps (Bluetooth 1.2 specification [Blu04]). Figure 4.3 shows an example of how

performance bounds are specified in the form of Pareto-points. The figure shows three

quality levels – A, B and C. Each quality level has different throughput constraints and

require a different amount of resources. Note that along x-axis, the amount of resources

decreases as we move to the right. In the figure, the middle point Tdes indicates the desired

throughput, and Tmax and Tmin indicate the maximum and minimum throughput that

1The original model of [Stu07] is based on ARM7 implementation; the actual cycle-counts on other
processors may vary.

2In practice, the frequency of different processors may be different. In that case, we should add the
time taken for each task in throughput expressions, instead of cycles.

100

594

594

1

1

1

1

Original Program

Partitioned into actors SDF Model

Overall Constraint: 25 fps

task H263(){
...
...
...

}

IQ

IDCT

MC

task VLD(){
...

}

task IQ(){
...

}

task MC(){
...

}

task IDCT(){
...

}

VLD

T1 = 0 × tvld + 593 × tiq + 594 × tidct + 1 × tmc

T2 = 1 × tvld + 594 × tiq + 593 × tidct + 0 × tmc

Task Mapping Execution cycles Min outgoing buffer
VLD ARM7 26018 594 tokens
IQ ARM9 559 1 tokens
IDCT TIC67 486 594 tokens
MC TIC64 10958 –

Figure 4.2: The properties of H263 decoder application comp uted off-line

1/Resources

T
hr

ou
gh

pu
t

A

B

CTmin

Tmax

Tdes

Figure 4.3: Boundary specification for non-buffer critical applications.

101

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

time

N
um

be
r

of
 It

er
at

io
ns

Desired Perf.
Max perf.
Min perf.

tearly tlate

Bout

Bin

Figure 4.4: Boundary specification for buffer-critical app lications or constrained by input/output

rate.

an application may tolerate respectively.

However, this only applies to applications that do not have an input or output

throughput constraint. For applications where jitter is more critical than the average

throughput, for each Pareto point in Figure 4.3, the performance bound should be as

specified in Figure 4.4. The deviation from the desired throughput in the vertical direc-

tion indicates that extra buffer space is needed. The same is indicated in Figure 4.4 by

Bout and Bin to indicate the maximum output and input buffer present for the applica-

tion respectively. If an application is running two iterations ahead of the desired rate,

the output of those two iterations needs to be buffered somewhere. The same applies

to the input buffer as well when an application is lagging behind. The deviation in the

horizontal direction signifies how early or late the application completes its execution as

compared to the desired time. It should be noted that the long-term average throughput

i.e. the number of iterations per second, is the same for all the three lines.

4.2 On-line Resource Manager

Since the entire analysis cannot be performed at design-time, we also need a resource man-

ager (RM) on-line. It controls the access to resources – both critical and non-critical, and

enforces their usage. Typically it takes care of resource assignment, budget assignment

and enforcement, and admission control. For example, when an actor can be mapped on

multiple processors, or when multiple instances of one processor are available, it chooses

102

which one to assign to the actor. It also assigns and enforces budgets, for example, on

shared communication resources like a bus or on-chip network e.g. Æthereal [GDR05].

All the tasks of RM can be categorized in two functions – admission control and budget

enforcement. When a new job arrives in the system and needs resources, the resource

manager checks the current state of the system and decides whether it has enough re-

sources to accommodate it, and at which quality and resource-binding. It also enforces

a specified resource budget for a task to ensure it only uses what was requested. These

two functions are explained below in more detail.

4.2.1 Admission Control

One of the main uses of a resource manager is admitting new applications. In a typi-

cal high-end multimedia system, applications are started at run-time, and determining

whether there are enough resources in the system to admit new applications is non-trivial.

When the RM receives a request for a new application to be started (through the user

interface, or through another application already running in the system), it fetches the

description of the incoming application from the memory. The description contains the

following information:

• Performance specification: specification of the desired throughput together with

the bounds.

• Actor array: A list of actors along with their execution times, repetition vector and

a list of nodes to which they can be mapped to.

• Throughput equations: The equations that provide the limiting expressions to eval-

uate throughput during contention.

It should be mentioned that when network and memory resources are also consid-

ered, the structure of the application graph, memory and communication requirements

of the graph also need to be provided. The above information can also be in form of a

Pareto-curve where each point in the curve corresponds to a desired quality of the appli-

cation and specification as above. With this information, the admission controller checks

whether there are enough resources available for all the applications to achieve their de-

sired performance using a predictor (or in the case of a Pareto-curve, at which point the

application can be run). The predictor estimates the performance of applications for the

desired quality level and mapping, as explained below.

103

Original Quality

Reduced Quality

Performance Predictor

Accepted camera application at reduced quality

10.2 kbps 64 kbps 1.6 Mbps 2.6 MPixel

10.2 kbps 64 kbps 1.6 Mbps 2.6 MPixel 10.2 kbps 64 kbps 2.0 Mbps 2.0 MPixel

Performance Predictor

10.2 kbps 64 kbps 2 Mbps

Existing Applications

3.0 MPixel
Incoming Application Current Approach

−Properties and
Constraints

Performance known beforehand

a0

a1

a2

Figure 4.5: On-line predictor for multiple application(s) performance

Performance Predictor

The performance predictor runs as part of admission-controller and uses the off-line

information of the applications to predict their performance at run-time. For example,

imagine a scenario where you are in the middle of a phone call with your friend and you

are streaming some mp3 music via the 3G connection to your friend, and at the same

time synchronizing your calendar with the PC using bluetooth. If you also wish to now

take a picture of your surrounding, traditional systems will simply start the application

without considering whether there are enough resources to meet the requirements or not.

As shown in Figure 4.5, with so many applications in the system executing concurrently,

it is very likely that the performance of the camera and the bluetooth application may

not be able to match their requirements.

The predictor uses the iterative probabilistic mechanism, as explained in Chapter 3.

With this mechanism, using the properties of applications computed off-line, we can

compute the expected performance before admitting the application. It can then be

decided to either drop the incoming application, or perhaps try the incoming application

(or one of the existing applications, if allowed) at a lower quality level or with a different

mapping. As shown in Figure 4.5, if the camera application is tested at 2.0 MPixel

requirements, all the applications can meet their requirements. It is much better to

104

know in advance and take some corrective measure, or simply warn the user that the

system will not be able to cope up with these set of applications.

Resource Assignment

When an actor can be mapped on multiple resources (either because it can be mapped

on different types of processors, or because there are multiple instances of the type of

processors it can be mapped on, or both), the admission controller iterates over all

options until a suitable option is found. Heuristics to explore mapping options efficiently

are orthogonal to our approach. One example to make this exploration more efficient is

to look at processor utilization results from the iterative probability mechanism and shift

tasks from processors with high utilization to those with low utilization. Such heuristics

can be used in combination with our approach.

Task migration

If task migration is considered, there are a lot more design-points to explore. However,

since we have a fast analysis mechanism, with a fast embedded processor it may be

feasible. It should be mentioned that supporting task migration at the architectural level

is also difficult. It has to be ensured that the program code of the affected actor can

be seamlessly transferred to the new processor. Further, the network connections whose

sink or source is the affected actor, have to be torn down and set-up again. During this

transition, care has to be taken that no data is lost in the affected buffers. However,

having said that, there is already quite some work done in this area. A technique to

achieve low-cost task migration in heterogeneous MPSoC is proposed in [NAMV05]. Yet

another approach is presented in [BABP06]. In our design flow, we do not support

task-migration, though the design-flow and the analysis techniques allow for it.

It can be seen how this flow allows addition of applications at run-time without sacri-

ficing predictability. The user can download new applications as long as the application

is analyzed off-line and the properties mentioned earlier are derived. Since the particu-

lar use-case performance analysis is done at run-time, no extensive testing is needed at

design-time to verify which applications will meet their performance requirements and

which not. When the performance of all applications is found to be satisfactory, then the

resource manager boots the application. This translates to loading the application code

105

from memory (possibly external) into local memories of respective processors and en-

abling/adding the application in the processor arbiters. Once the application is started,

it sends a signal to the RM at the end of every iteration to keep it updated.

4.2.2 Resource Budget Enforcement

This is another important function for the resource manager. When multiple applications

are executing in a system (often with dynamically changing execution times), it is quite a

challenge to schedule all of them such that they meet their throughput constraints. Using

a static scheduling approach is neither scalable, nor adaptive to dynamism present in a

system [KMC+06]. A resource manager, on the other hand, can monitor the progress of

applications running in the system and enforce the budgets requested at run-time.

Clearly, the monitoring and enforcement also has an overhead associated with it.

Granularity of control is therefore a very important consideration when designing the

system, and determines how often the RM inspects the system. We would like to have as

little control as possible while achieving close to desired performance. In our approach,

the budgets are enforced at the application-level to limit the overhead.

Motivating Example

Two SDF graphs (similar to the ones in Figure 2.13) are shown in Figure 4.6. Each

graph has three actors scheduled to run on three processors as indicated by the shading.

The flows of applications A and B are reversed with respect to each other to create

more resource contention. The execution time of each actor of B is reduced to 99 clock

cycles to create a situation where A experiences a worst-case waiting time. This can

also correspond to a situation in which all actors of both A and B have an execution

time of 100 clock cycles, but actors of B finish just before actors of A, or that actors of

B are checked first. Let us further assume that the desired maximum period for both

applications is 450 clock cycles.

If each application is running in isolation, the achieved period would be 300 and 297

time units for A and B respectively. Clearly, when the two are running together on the

system, due to contention they may not achieve this performance. In fact, since every

actor of B always finishes just before A, they always get the desired resource and A is not

able to achieve the required performance; while B on the other hand achieves a better

106

100

100

100

A

99

99

99

B

a1 a2

a3

b1 b2

b3
P1 P2 P3

Figure 4.6: Two applications running on same platform and sh aring resources.

Steady−state

A B

0 198 792

P1

P2

P3

Figure 4.7: Schedule of applications in Figure 4.6 running t ogether. The desired throughput is 450

cycles per iteration.

performance than necessary. The corresponding schedule is shown in Figure 4.7.

If the applications are allowed to run without intervention from the RM, we observe

that it is not possible to meet the performance requirements; the resulting schedule for

executing A and B, which is highly unpredictable at compile time, yields a throughput

of B that is twice the throughput of A. However, if B could be temporarily suspended, A

will be able to achieve the required throughput. A resource manager can easily provide

such a control and ensure that desired throughput for both A and B is obtained.

We also see in the example that even though each application only uses a third of

each processing node, thereby placing a total demand of two-third on each processing

node, the applications are not able to achieve their required performance. A compile-time

analysis of all possible use-cases can alleviate this problem by deriving how applications

would affect each other at run-time. However, the potentially large number of use-cases

in a real system makes such analysis infeasible. A resource manager can shift the burden

of compile-time analysis to run-time monitoring and intervention when necessary.

Suspending Applications

We now discuss how this suspension is implemented. Each application sends a signal

to the RM upon completion of each iteration. This is achieved by appending a small

107

message at the end of the output actor of the application graph3, i.e. the last task in

the execution of an application after whose execution an iteration of the application can

be said to have been completed. This allows the RM to monitor the progress of each

application at little cost. After every sample period – defined as sample points, the RM

checks whether all applications are progressing at their desired level. If any application

is found to be running below the desired throughput, the application which has the

most slack (i.e. the highest ratio of achieved to desired throughput) is suspended. The

suspended application is re-activated when all applications are running above the desired

throughput. Suspension and re-activation occur only at sample points.

Each arbiter maintains two lists – an actor ready queue, and an application enable

list. Once the processor is available, the arbiter checks the actor at the head of the

queue, and if its corresponding application is enabled, it is executed. Otherwise, the

next available actor (with enabled application) is executed. Suspension of an application

is achieved by sending a temporary disable signal to the arbiters running the application.

Say, for example, if application A has actors mapped on 3 processors P1, P2 and P3, then

the three processor-arbiters will be signalled to disable application A. Thus, even when

actors of application A are ready, they will not be executed.

Suspension of an application is not to be confused with preemption. In our approach,

we do not allow actors to be preempted in the middle of their execution; actors execute

atomically. However, an application can be suspended after completing the execution of

any actor. This limits the context that needs to be saved when an actor is in the middle

of its execution.

Suspension Example

Figure 4.8 shows an example interaction diagram between various modules in the design.

The user-interface module sends a request to start application X (1). The resource

manager checks if there are enough resources for it, and then admits it in the system

(2). Applications Y and Z are also started respectively soon after as indicated on the

figure (3-6). However, when Z is admitted, Y starts to deteriorate in performance. The

resource manager then sends a signal to suspend X (7) to the platform because it has

slack and Y is then able to meet its desired performance. When X resumes (10), it is not

3In the event of multiple output actors, any output actor may be chosen for this.

108

X suffers when it
is restarted

Y starts to suffer
when Z starts

Applications
Z Y X

1. Start Appl X

3. Start Appl Y

5. Start Appl Z

2. Queue/Enable X

4. Queue/Enable Y

6. Queue/Enable Z

7. Suspend X
8. Start Appl A

11. Z Done

13. Suspend Y

15. X Done

17. Y Done

T
im

e

10. Resume X

14. Resume Y

I/O
 In

te
rf

ac
e

R
es

ou
rc

e
m

an
ag

er

9. Appl A Reject

12. Z Finished

16. X Finished

18. Y Finished

Figure 4.8: Interaction diagram between user interface, re source manager, and applications in the

system-setup.

able to meet its performance and Y is suspended (13) because now Y has slack. When

the applications are finished, the result is transmitted back to the user-interface (12, 16

and 18). We also see an example of application A being rejected (9) since the system is

possibly too busy, and A is of lower priority than applications X, Y and Z.

Communication Overhead

The overhead of monitoring and suspension is easy to compute. Consider ten applications

running concurrently on a ten-processor system. Each application signals the RM every

time it completes an iteration. Let us assume the period of each application is 100,000

clock cycles. Therefore, on average only one message is sent to the resource manager

every 10,000 cycles. Let us consider the case with sampling period being 500,000 cycles.

The RM sends messages at most every processing node every sampling interval. This

is on average, one message every 50,000 cycles, giving in total 6 messages every 50,000

cycles – 5 from the application to the resource manager and 1 from the resource manager

to the processor. If the length of each message is around 10 bytes, we get a bandwidth

requirement of 60 bytes every 50,000 cycles. For a system operating at 100 MHz, this

translates to about 120 kilo bytes per second. In general, for N applications A0 . . . AN−1

each with throughput TAi
mapped on M processing nodes, with the RM sampling at

fsamp frequency, if each message is b bytes, the total communication bandwidth is given

109

Manager
Resource

Actor level
micro seconds

Reconfigure to meet
prescribed quality

Application level
few seconds

Application
QoS

Managers

mili seconds

Core

BA

Quality

time

Arbiter
Local

Processor
Local

Arbiters

Figure 4.9: Resource manager achieves the specified quality without interfering at the actor level

by following equation

BWreqd = b ×
(

fsamp.M +
N−1
∑

i=0

TAi

)

(4.1)

This is only the worst-case estimate. In practice, messages from the RM will not be

sent to every processing node every sampling interval, but only when some application

is suspended or resumed.

The communication can be further reduced by sending the suspension and enabling

message to only one of the nodes (perhaps output or input actor) of the application.

Suspending any actor of an application that is strongly connected will eventually suspend

the whole application, since there are buffer dependencies in any system. For example,

if the output actor is disabled, the data which this actor would consume will not be used

and the producing actor for that data will not be able to execute any more. This is also

known as back-pressure, and will eventually stall the entire application. Similarly, when

the output actor is enabled, it will empty the buffers and gradually all the actors will start

executing. However, this implies that it will take more time for the entire application to be

suspended and enabled, unlike in the case when all actors are suspended simultaneously.

Arbiter vs Resource Manager

We have seen in the earlier sections how a resource manager helps all applications achieve

their desired performance by suspending some applications. In some sense, it is similar

to the processor arbiter. However, there are two key differences between the resource

manager and the processor arbiter: 1) the level of control is very different, and 2) the

granularity of their operation differs significantly. Figure 4.9 shows how the resource

110

Table 4.1: Table showing how predictability can be achieved using budget enforcement. Note how

the throughput changes by varying the ratio of time in differ ent combinations

Combination C0 C1 C2 C3 Total

A0 throughput [Iterations/sec] 0 8 0 6
A1 throughput [Iterations/sec] 0 0 6 4

Time distribution 1 0 0.25 0.25 0.5 1.0
A0 effective [Iterations/sec] 0 2 0 3 5
A1 effective [Iterations/sec] 0 1.5 2 3.5

Time distribution 2 0 0 0.25 0.75 1.0
A0 effective [Iterations/sec] 0 0 0 4.5 4.5
A1 effective [Iterations/sec] 0 1.5 3 4.5

manager differs from the application QoS manager and from the processor arbiter. An

application quality-of-service (QoS) manager defines the quality at which the application

should be run. In multimedia applications, the quality of applications may need to be

changed during execution, and this QoS manager might dictate varying desired levels of

application quality at different points in time. For example, if an application goes into

background, its quality level might change. Such change is unlikely to happen more than

once every few seconds. On the other end of the control spectrum we have a processor

arbiter, which determines the order of actors to execute on a processor. This is generally

in the order of micro-seconds, but depends on the granularity of actors. The resource

manager operates in between the two extremes and tries to achieve the quality specified

by QoS manager by reconfiguring the arbiter once in a while.

An example an arbiter is a rate-controlled-static-priority (RCSP) mechanism that

may be applied at each local arbiter to achieve desired rate of actor execution at individual

processors [ZF93]. However, the RCSP mechanism is not capable of handling dynamic

applications. Further, an application consists of multiple actors, which can often operate

at different rates in different iterations. When the rate-control is achieved via local

arbiters at cores, each arbiter has to be aware of the global state of the application. This

is much harder to achieve in practice, and also expensive in terms of communication.

In our approach, the arbiter at each processor is very simple, and the desired rate is

obtained by suspension through the resource manager.

111

4.3 Achieving Predictability through Suspension

The previous section explains how performance of applications can be regulated by a

simple suspension mechanism. However, it is not possible to provide guarantees for ap-

plication performance. In this section, we show how predictability can be achieved when

applications are suspended. Suspension of applications leads to different combinations

of active applications, and thus affects the throughput of applications. Using techniques

presented in Chapter 3, we can predict the performance in any combination of appli-

cations very accurately. The overall performance of applications can be obtained by

using the weighted average of performance in individual combinations. The accuracy

of the prediction depends on the accuracy of the performance prediction in individual

combination.

With two applications in the system, say A0 and A1, there are four possibilities –

none of the applications, only A0, only A1, and both A0 and A1 executing. (In general,

for N applications, there are 2N possibilities.) Let us denote them by Cj for j = 0, 1, 2, 3

respectively. Let us further denote the performance of application Ai in combination Cj ,

by Perfij, where performance is determined by number of iterations per cycle. Clearly

Perf02 = 0, since A0 is not active in C2. Let us also define the ratio of time spent in

combination Cj, by tj. Clearly,
∑3

j=0 tj = 1. The overall performance of the application

Ai is then given by Perfi =
∑3

j=0 Perfij.tj .

Table 4.1 shows an example with two applications, A0 and A1. Respective perfor-

mances are shown for each combination of applications. We can also see how the overall

performance of each application can be controlled by different time distributions. While

in the first distribution, the overall throughput of A0 and A1 is 5 and 3.5 iterations per

second respectively, in the other it is 4.5 iterations per second for both applications.

Let us say, the required overall performance of applications is denoted by PerfReqdi

for Application Ai. The problem then is to determine the time-weights tj in such a

way that the required performance of all applications are met. For two applications, for

example, the following equations hold:

t0 + t1 + t2 + t3 = 1 (4.2)

112

t1.P erf01 + t3.P erf03 ≥ PerfReqd0 (4.3)

t2.P erf12 + t3.P erf13 ≥ PerfReqd1 (4.4)

(Note that strict equality may be required for some applications. For many applica-

tions, it may be sufficient to specify a minimum performance required.)

The above can be formulated as a linear programming problem, where the objective

function is to minimize the total time spent in active states; or in other words, maximize

the time in state C0, i.e. t0. We propose the following linear programming formulation

Objective function: Minimize
∑3

j=1 tj, subject to the constraints

3
∑

j=1

Perfij.tj ≥ PerfReqdi ∀ i (4.5)

tj ≥ 0, ∀ j. (4.6)

The feasibility can be determined by checking if
∑3

j=1 tj ≤ 1 holds.

4.3.1 Reducing Complexity

As the number of applications increases the number of potential states also increases.

For 10 applications, there are 1024 potential states. In those situations, solving the

above linear programming problem is slowed down significantly, since its complexity

is polynomial in the number of combinations [CLRS01, Wik08]. This problem can be

tackled by limiting the number of applications that are allowed to be suspended at any

point in time. This reduces the number of states dramatically. For example, in the

scenario with 10 concurrently active applications, if only 1 application is allowed to be

suspended, we get a total of 11 combinations – 1 with all applications executing and 10

with one application suspended in each.

Limiting the number of combinations has also other advantages. At run-time the

resource manager has to make a switch between all the states as and when needed.

Having more states requires more memory and more switches (suspensions) to be made

at run-time. This also leads to more communication traffic. In view of the run-time

113

problems, another objective function to optimize is to minimize the total number of

states. Its formulation as an optimization problem is provided below.

Objective function: Minimize
∑3

j=1 xj, where xj = 1 denotes that state Cj will be used

at run-time, and xj = 0 denotes that Cj is not used at run-time. Following constraints

apply:

3
∑

j=0

Perfij.tj .xj ≥ PerfReqdi ∀ i (4.7)

tj ≥ 0, ∀ j. (4.8)

3
∑

j=0

tj ≤ 1 (4.9)

xj ∈ {0, 1} ∀ j. (4.10)

Unfortunately it is not possible to formulate the above as a linear programming

problem; the relation between xi and ti is not linear. The above is an example of a

mathematical programming problem. Dynamic programming can be used to solve the

above problem but since it cannot be solved in linear polynomial time, if the number of

states is large, it takes a long time to find a solution.

4.3.2 Dynamism vs Predictability

So far we have explained two different approaches for ensuring that applications can

achieve their performance at run-time. The run-time approach of checking the perfor-

mance of all applications and disabling applications if needed, at each sample point, is

clearly more capable of handling dynamism in the system, while the static approach

of determining the time that should be spent in different states at design-time is more

predictable. With static approach one can know at design time what the run-time perfor-

mance will be. However, this comes at a high memory and design-time cost. The analysis

has to be done for each use-case to compute the fractions of time the system should spend

in different states at run-time, and for each use-case this distribution has to be stored. As

has already been mentioned earlier, as the number of applications increases in a system,

114

28,800

2,400 2,400

2,400

7,200

VLD

IQ

reorder

6

1 1 1 1

1

1

111

1

5

IZZ

IDCT

6

color−conv

36,000

Figure 4.10: SDF graph of JPEG decoder modeled from descript ion in [Hoe04].

so does the number of use-cases. Therefore, the static approach may lead to an explosion

in the data that needs to be stored. Needless to say that when an application is added

in the system at run-time, the entire linear programming analysis needs to be repeated.

The dynamic approach is more adaptable since there is no design-time analysis needed,

and run-time addition of applications can be easily handled.

4.4 Experiments

A three-phase prototype tool-flow was developed to automate the analysis of application

graphs. The first phase concerns specifying different applications (as SDF graphs), the

processors of the MPSoC platform (including their scheduler type), and the mapping of

actors to nodes. For each application, desired throughput is specified together with the

starting time of the application. After organizing the information in an XML specifica-

tion for all three parts, a POOSL model [TFG+07] of the complete MPSoC system is

generated automatically. The second phase relies on the POOSL simulator, which ob-

tains performance estimates, like the application throughput and processor utilization.

It also allows generation of trace files that are used in the final phase to generate schedule

diagrams and graphs like those presented in this section.

4.4.1 DSE Case Study

This section presents results of a case study regarding the mapping of H263 and JPEG

decoder SDF models (described in [Hoe04] and [Stu07] respectively) on a three-node

MPSoC. The SDF graph for the H263 decoder has been presented earlier in this chapter.

The SDF graph for the JPEG decoder is shown in Figure 4.10. An FCFS scheduling

policy was used in all the cases presented below. Table 4.2 shows the expected load on

each processing node due to each application, if both applications achieve their required

throughput.

115

Table 4.2: Load (in proportion to total available cycles) on processing nodes due to each application

H263 JPEG Total

Processor 1 0.164 0.360 0.524
Processor 2 0.4 0.144 0.544
Processor 3 0.192 0.252 0.444

Total 0.756 0.756 1.512
Throughput Required 3.33e-6 5.00e-6

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Performance with both H263 and JPEG without Resource Manager

H263 Alone

H263 Together

JPEG Alone

JPEG Together

H263 Desired

JPEG Desired

Figure 4.11: Progress of H263 and JPEG when they run on the sam e platform – in isolation and

concurrently.

116

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+07 4e+07 6e+07 8e+07 1e+08

T
hr

ou
gh

pu
t

Time

Performance with both H263 and JPEG with sample time of 5,000,000

H263 Desired

JPEG Desired

H263 Achieved
JPEG Achieved

Figure 4.12: With a resource manager, the progress of applic ations is closer to desired performance.

The results were obtained after running the simulation for 100 million cycles. Fig-

ure 4.11 shows the performance of the two applications when they are run in isolation on

the platform and also when they are run concurrently. In this figure, the resource man-

ager does not interfere at all, and the applications compete with each other for resources.

As can be seen, while the performance of H263 drops only marginally (depicted by the

small arrow in the graph), a huge drop is observed in JPEG performance (big arrow in

the graph). In fact, we see that even though the total load on each processing node is

close to 50%, JPEG throughput is much lower than desired.

Figure 4.12 shows how a resource manager interferes and ensures that both applica-

tions are able to meet their minimum specified throughput. In this figure, the resource

manager checks every 5 million cycles whether applications are performing as desired.

Every time it finds that either JPEG or H263 is performing below the desired throughput,

it suspends the other application. Once the desired throughput is reached, the suspended

application is re-activated. We observe that the RM effectively interleaves three infeasi-

ble schedules (JPEG alone, H263 alone, and H263/JPEG together in Figure 4.11) that

yields a feasible overall throughput for each application. (In alone, only one application

is active and therefore, those schedules are infeasible for the other application.)

Figure 4.13 shows the performance of applications when the sample period of re-

source manager is reduced to 500,000 cycles. We observe that progress of applications is

smoother as compared to Figure 4.12. The transient phase of the system is also shorter,

and the applications soon settle into a long-term average throughput, and do not vary

117

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+07 4e+07 6e+07 8e+07 1e+08

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Performance with both H263 and JPEG with sample time of 500,000

H263 Desired

JPEG Desired

H263 Achieved
JPEG Achieved

Figure 4.13: Increasing granularity of control makes the pr ogress of applications smoother.

Table 4.3: Iteration count of applications and utilization of processors for different sampling periods

for 100M cycles.

RM sampling period
Specified Without RM

5,000k 2,500k 500k

H263 [# Iterations] 333 800 554 574 620
JPEG [# Iterations] 500 133 541 520 504

Processor 1 Util. 0.524 1.00 0.83 0.85 0.90
Processor 2 Util. 0.544 0.56 0.71 0.71 0.72
Processor 3 Util. 0.444 0.46 0.55 0.55 0.56

Total Utilization 1.512 2.02 2.09 2.11 2.18

significantly from this average. This can be concluded from the almost horizontal curve

of the achieved throughput. It should be mentioned that this benefit comes at the cost of

increased monitoring from the resource manager, and extra overhead in reconfiguration

(suspension and re-activation).

Table 4.3 shows the number of iterations that would be completed for each application

in the simulation time, if both applications would achieve the desired throughput. The

table also shows the number of iterations that are measured with and without intervention

from the RM. The third column clearly indicates that JPEG executes only about one-

fourth of the required number of iterations, whereas H263 executes about twice as often

as needed. The last three columns demonstrate the use of the RM to satisfy the required

throughput for both the applications. The last row indicates that the utilization of

resources increases with finer grain of control from the RM.

118

Table 4.4: Time weights statically computed using linear pr ogramming to achieve desired perfor-

mance.

C0 C1 C2 C3 Total

JPEG 0 1388 0 134
H263 0 0 833 801
Time Weight 0 0.3 0 0.62 0.92

JPEG Effective 0 416.35 0 83.65 500

H263 Effective 0 0 0 500 500

4.4.2 Predictability through Suspension

In this section we shall look at some results of statically computing the ratio of time

to be spent in different states in order to achieve the desired throughput for all the

applications. We take the same two application models – JPEG and H263 decoders as in

the earlier experiments. Table 4.4 shows the time weights needed to achieve the desired

performance. The minimum throughput needed for both applications is fixed at 500

iterations in 100 million cycles. The estimates of performance of the two applications

in individual states – C0 to C3 is the same as obtained earlier using simulation. The

linear programming analysis gives the time distribution as shown in Table 4.4. As can

be seen in the table, the total time fraction is 0.92. Thus, only 92% of the total time

is sufficient to achieve the desired throughput. For the remaining time, a number of

options are available: 1) the empty state C0 can be used i.e. no application is active

for the remaining time, 2) the time weights of the active states can be scaled such that

the total is 1, and 3) the time spent in C3 can be increased such that both applications

are active in the remaining time. Clearly the performance in second and third option is

likely to be higher than the first option. However, when power is of concern then the first

option is likely to be the best. In this section, we will see some results of all the options.

Another design parameter is the duration of the time wheel. This duration deter-

mines the precise time of switching from one combination to another. A smaller time

wheel implies more switching, but with the potential gain of more uniform application

behaviour. However, a bigger time wheel implies that the performance predicted by the

linear programming solution is more accurate. However, with a smaller time wheel, the

exact time spent in different combinations may vary from the desired time significantly.

This comes from the fact that we have a non-preemptive system. This is explained using

Figure 4.14. The figure shows a time-wheel showing the ratio of time that is desired to

119

0.30

None

Disable H263

Enable JPEG

Enable H263

Time direction

t2: H263_a0 finishes

0.08

Both JPEG and H263
0.62

Disable JPEG

Only JPEG

H263_a0 starts: t1

Figure 4.14: The time wheel showing the ratio of time spent in different states.

be spent in different combinations. From Table 4.4 we know that only JPEG should be

enabled for 0.30 fraction of time, and both JPEG and H263 for 0.62. This is realized

using disable and enable commands sent from the resource manager to the processors.

However, a disable command indicates that no more actors of that application may be

executed. It does not immediately interrupt the ongoing execution of the actor. In Fig-

ure 4.14, for example, if the actor H263 a0 starts executing just before the application

H263 is disabled, it may still continue well into the phase when H263 is disabled. t1

denotes the time that this actor starts and t2 when it stops. As can be seen, most of

the execution of H263 a0 is in the phase when H263 is disabled. This creates a problem

in achieving the performance exactly as predicted. In fact, if there is not sufficient time

between disabling and enabling the application, the suspension may not have an effect

at all.

Figure 4.15(a) shows the performance of applications with time when the extra time

is used for the combination C0 i.e. no application executing, when the time wheel is

set to 10 thousand time units. We see that the performance is the same as without any

suspension at all (see Figure 4.11). Figure 4.15 shows that as the time wheel is increased,

the performance of both applications improve and in most cases are above the desired

level. The only anomaly is with the time wheel of 10 million time units (Figure 4.15(e))

when the performance of H263 is just a little bit below the desired level. This again comes

from the fact that when when application H263 is enabled, it may not immediately start

executing since actors of JPEG may still be queued on the processors. Figure 4.16 shows

the performance when the time wheel is set to 10 million time units, for the cases when

the extra time is used for the combination in which both applications are active, and for

120

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with exact enforcement (10k cycles)

H263
JPEG

H263 Desired
JPEG Desired

(a) Time wheel of 10 thousand time units

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 4e-06

 4.5e-06

 5e-06

 5.5e-06

 6e-06

 6.5e-06

 7e-06

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with exact enforcement (100k cycles)

H263
JPEG

H263 Desired
JPEG Desired

(b) Time wheel of 100 thousand time units

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with exact enforcement (500k cycles)

H263
JPEG

H263 Desired
JPEG Desired

(c) Time wheel of 500 thousand time units

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with exact enforcement (1m cycles)

H263
JPEG

H263 Desired
JPEG Desired

(d) Time wheel of 1 million time units

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with exact enforcement (10m cycles)

H263
JPEG

H263 Desired
JPEG Desired

(e) Time wheel of 10 million time units

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with exact enforcement (100m cycles)

H263
JPEG

H263 Desired
JPEG Desired

(f) Time wheel of 100 million time units

Figure 4.15: Performance of applications H263 and JPEG with static weights for different time

wheels. Both applications are disabled in the spare time, i. e. combination C0 is being used

121

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with extra time used for C3 (10m cycles)

H263
JPEG

H263 Desired
JPEG Desired

(a) Extra time for C3

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 0 2e+08 4e+08 6e+08 8e+08 1e+09

T
hr

ou
gh

pu
t (

ite
ra

tio
ns

 p
er

 u
ni

t t
im

e)

Time (cycles)

Static Budgets with uniform increment (10m cycles)

H263
JPEG

H263 Desired
JPEG Desired

(b) Weights uniformly incremented

Figure 4.16: Performance of applications H263 and JPEG with time wheel of 10 million time units

with the other two approaches

Table 4.5: Summary of related work (Heterogeneous property is not applicable for uniprocessor

schedulers)

Properties [LL73] [JSM91] [Bar06] [RJE03] [Hoe04] Our method
Multiprocessor No No Yes Yes Yes Yes
Heterogeneous N. A. N. A. No Yes Yes Yes
Non-preemptive No Yes Yes Yes Yes Yes
Non-Periodic support No Yes No Yes Yes Yes
Utilization High High Low Low Low High
Guarantee Yes Yes Yes Yes Yes No

the case when the time weights are uniformly scaled up so as to not leave any spare time.

As can be seen, the performance of both the applications is now above the desired level

in both the cases.

4.5 Related Work

For traditional systems, with a single general-purpose processor supporting preemption,

the analysis of schedulability of task deadlines is well known [LL73] and widely used.

Non-preemptive scheduling has received considerably less attention. It was shown by

Jeffay et al. [JSM91] and further strengthened by Cai and Kong [CK96] that the problem

of determining whether a given periodic task system is non-preemptively feasible even

upon a single processor is already intractable. Also, research on multiprocessor real-time

scheduling has mainly focused on preemptive systems [DD86, BCPV96].

Recently, more work has been done on non-preemptive scheduling for multiprocessor

systems [Bar06]. Alternative methods have been proposed for analyzing task performance

122

and resource sharing. A formal approach to verification of MPSoC performance has been

proposed in [RJE03]. Use of real-time calculus for schedulability analysis was proposed

in [TCN00]. Computing worst-case waiting time, taking resource contention into account,

for round-robin and TDMA scheduling (requires preemption) has also been analyzed

[Hoe04]. However, potential disadvantages of these approaches are that the analysis can

be very pessimistic as has been explained in Chapter 2.

A lot of work has been done in the context of resource management for multi-processor

systems [MMB07, NAE+08, KMT+06]. The work in [MMB07] only considers preemptive

systems, while our work is targeted at non-preemptive systems. Non-preemptive systems

are harder to analyze since the interference of other applications has to be taken into

account. The work in [NAE+08] presents a run-time manager for MPSoC platforms, but

they only consider one task mapped on one processor in the system; they do not allow

sharing of processors. In [KMT+06] the authors deal with non-preemptive heterogeneous

platforms where processors are shared, but only discuss the issue of budget enforcement

and not of admission control.

The authors in [PTB06] motivate the use of a scenario-oriented (or use-case in this

thesis) design flow for heterogeneous MPSoC platforms. They propose to analyze the

scenarios at design-time. However, with the need to add applications at run-time, a

design-flow is needed that can accommodate this dynamic addition of applications. We

presented such a flow in this chapter.

A number of techniques are present in literature to do the partitioning of program code

into tasks. Compaan is one such example that converts sequential description of an appli-

cation into concurrent tasks by doing static code analysis and transformation [SZT+04].

Sprint also allows code partitioning by allowing the users to tag the functions that need

to be split across different actors [CDVS07]. Yet another technique has been presented

that is based on execution profile [RVB07].

Table 4.5 shows a comparison of various analysis techniques that have been presented

so far in literature, and where our approach is different. As can be seen, all of the research

done in multiprocessor domain provides low utilization guarantees. Our approach on the

other hand aims at achieving high utilization by sacrificing hard guarantees.

123

4.6 Conclusions

In this chapter, we presented a novel flow for designing systems with multiple applications,

such that the entire analysis remains composable. This allows easy and quick analysis

of an application-mix while properties of individual applications are derived in isolation.

Our flow also allows addition of applications at run-time, even when they are not known

at design-time. We present a hybrid approach where the time-consuming application-

specific computations are done at design-time, and in isolation to other applications –

to maintain composability, and the use-case-specific computations are performed at run-

time. Further, we present a resource manager (RM) for run-time aspects of resource

management.

We propose a resource manager (RM) for non-preemptive heterogeneous MPSoCs.

Although the scheduling of these systems has been considered in the literature, the ac-

tual resource management in the context of concurrently executing applications is still

unexplored area. Theoretically, design-time analysis of all possible use-cases can provide

performance guarantees, but the potentially large number of use-cases in a real system

and dynamic properties of applications make such analysis infeasible. Our resource man-

ager shifts the burden of design-time analysis to run-time monitoring and intervention

when necessary.

A high-level simulation model of the resource manger has been developed using

POOSL methodology. A case study with an H263 and a JPEG decoder demonstrates

that RM intervention is essential to ensure that both applications are able to meet their

throughput requirements. Further, a finer grain of control increases the utilization of

processor resources, and leads to a more stable system. Results of statically computing

the time weights for suspension are also presented, although more research needs to be

done to evaluate the size of time-wheel.

124

CHAPTER 5

Multiprocessor System Design and Synthesis

In the earlier chapters, we saw how to analyze performance of multiple applications

executing concurrently on a multiprocessor platform. We saw how we can manage the

resources available on a multiprocessor platform by splitting the management into design-

time and run-time. We also saw how to use the performance analysis technique for run-

time admission control of applications, and the budget enforcement technique to ensure

all applications can achieve their desired performance. While analysis and management

of a multiprocessor system is important, designing and programming the system is no

easy task either. With reducing time-to-market, designers are faced with the challenge

of designing and testing systems quickly. Rapid prototyping has become very important

to easily evaluate design alternatives, and to explore hardware and software alternatives

quickly. Unfortunately, lack of automated techniques and tools implies that most work

is done by hand, making the design-process error-prone and time-consuming. This also

limits the number of design-points that can be explored. While some efforts have been

made to automate the flow and raise the abstraction level, these are still limited to

single-application designs.

Figure 5.1 shows the ideal design flow to overcome this challenge. It is every designer’s

dream to directly input the application specification in the form of C-code (or whichever

language it is given in) – be it sequential or parallel, and generate and synthesize the

125

Multiprocessor System

Application Analysis and Profiling

Appl_0.c Appl_1.c Appl_2.c

Appl_2.xmlAppl_1.xmlAppl_0.xml

MPSoC Synthesis Flow

Figure 5.1: Ideal design flow for multiprocessor systems

best multiprocessor system that meets all the constraints of applications performance,

and at the same time achieve the design-objectives of low silicon area and power. Current

state-of-the-art tools only allow for single application designs, as shown by the shaded

area in Figure 5.1.

In this chapter, we present MAMPS Multi-Application Multi-Processor Synthesis – a

design-flow that takes in application(s) specifications and generates the entire MPSoC,

specific to the input application(s) together with corresponding software projects for

automated synthesis as indicated by the dashed box in Figure 5.1. This allows the design

to be directly implemented on the target architecture. For this flow, we assume that the

applications are already partitioned and analyzed, and their SDF models are available.

In this chapter we limit ourselves to a single use-case. The next chapter explains how

multiple use-cases can be merged and partitioned for system-design.

The flow presented here is unique in two aspects: (1) it allows fast DSE by automat-

ing the design generation and exploration, and (2) it supports multiple applications. To

the best of our knowledge, there is no other existing flow to automatically map multiple

applications to an MPSoC platform. The design space increases exponentially with in-

creasing number of applications running concurrently; our flow provides a quick solution

to that. To ensure multiple applications are able to execute concurrently, (1) we use

non-blocking reads from and writes to the buffer that do not cause deadlock even with

multiple applications, (2) we have an arbiter that skips actors that are non-ready, and

(3) we map channels to individual FIFOs to avoid head-of-line blocking.

The flow is used to develop a tool to generate designs targeting Xilinx platform

126

FPGAs. FPGAs were selected as the target architecture as they allow rapid prototyping

and testing. This MAMPS tool is made available online for use by the research community

at [MAM09]. In addition to a website, an easy to use GUI tool is also available for

both Windows and Linux. The tool is used to generate several multiple-application

designs that have been tested on Xilinx University Virtex II Pro Board (XUPV2P) [Xil09].

However, the results obtained are equally valid on other FPGA architectures, and the tool

can be easily extended to support other FPGA boards and architectures. We present a

case study on how our methodology can be used for design space exploration using JPEG

and H263 decoders. We were able to explore 24 design points that trade-off memory

requirements and performance achieved with both applications running concurrently on

an FPGA in a total of 45 minutes, including synthesis time.

This chapter is organized as follows. Section 5.2 gives an overview of our flow,

MAMPS, while Section 5.3 describes the tool implementation. Section 5.4 presents results

of experiments done to evaluate our methodology. Section 5.5 reviews the related work

for architecture-generation and synthesis flows for multiprocessor systems. Section 5.6

concludes this chapter and gives directions for future work.

5.1 Performance Evaluation Framework

Performance evaluation forms an integral part of system design. In MPSoC designs, the

design space exploration and the parameter optimization can quickly become intractable

[JB06]. Performance evaluation approaches can broadly be divided in two main categories

– statistical and deterministic. Statistical approaches rely on developing a high-level

system-performance model, calibrating the model parameters, and using them to predict

the behaviour of new applications. The exact application is not taken into account.

Deterministic approaches on the other hand, take the application into account. System

simulation is one of the most common ways for deterministic performance evaluation. It

relies on the execution of the complete system using input use-cases. Accuracy of this

approach depends on the parameters covered in the simulation model. Unfortunately,

the accuracy is generally inversely proportional to the speed. The greater the number of

parameters modeled, the slower it is.

Analytical approach, also deterministic, is often used to investigate system capabili-

127

Table 5.1: Comparison of various methods to achieve perform ance estimates

Time Accuracy Ease of use

Simulation – + +
Analysis + – +
H/w acceleration + + –
Hardware Emulation + + +

ties. The sub-system is abstracted away using algebraic equations. Mathematical theories

allow full analysis of the system performance at an early design stage. The probabilistic

analysis provided in Chapter 3 is an example of such an approach. Another deterministic

approach is measurement on the actual platform, but this is generally harder since the

actual system is available much later in the design. This is exactly where our approach

helps.

Our method allows mapping of applications on real hardware and measuring their

performance accurately. This can be done for either individual or multiple applications,

as desired. Application(s)-specific architecture is generated, and real performance can be

measured way before the actual system is available without losing accuracy. The design

runs on an FPGA platform and the interaction between multiple applications can be

observed.

Table 5.1 shows a comparison of using different techniques for deterministic evalua-

tion. Analytical approaches are fast but generally lack accuracy. Simulation can improve

on the accuracy part with enough parameters being modeled, but takes a long time before

giving meaningful results. In order to speed up the simulation, some compute-intensive

parts of simulation are often off-loaded to real hardware – a term known as hardware-

acceleration. This approach is traditionally rather difficult to integrate in the simulation

platform. However, it does provide high accuracy and is fast.

Our approach generates an MPSoC design for FPGA where actual performance can

be measured. It is an example of hardware emulation, defined as the process of imitat-

ing the behaviour of one or more pieces of hardware, with another piece of hardware.

While generally the goal is debugging, in our case it is performance evaluation. FPGA

multiprocessor design can quickly provide an estimate of performance of multiple appli-

cations which are sharing resources. While most of the approaches focus only on a single

application, we develop designs for multiple applications.

128

5.2 MAMPS Flow Overview

Software Project
for Processors

Design
Project

Hardware
Topology

Proc 0 Proc 1

Proc 2Proc 3 Appl0 FIFO
Appl1 FIFO

MPSoC Platform

SDF
1

1
2

1 21
1

11

2

2

2

22

2

2

Application Specification

Platform Description

Appl1Appl0

a0

b0

c0

d0

d0

a1

b1c1

a0, a1 b0, b1

c0, c1

Figure 5.2: MAMPS design flow

In this section, we present an overview of Multi-Application Multi-Processor Synthesis

(MAMPS). Figure 5.2 shows an overview of our design flow. The application-descriptions

are specified in the form of SDF graphs, which are used to generate the hardware topology.

The software project for each core is produced to model the application(s) behaviour.

The project files specific to the target architecture are also produced to link the software

and hardware topology. The desired MPSoC platform is then generated.

For example, in Figure 5.2, two example applications Appl0 and Appl1 are shown with

4 and 3 actors respectively. From these graphs, MAMPS generates the desired software

and hardware components. The generated design in this example, has four processors

with actors a0 and a1 sharing Proc0, while d0 being the only actor executing on Proc3.

The corresponding edges in the graphs are mapped to FIFO (first-in-first-out) channels

as shown.

The flow can be easily used to design multiprocessor systems that support multiple

applications. The target platform can be either FPGA or even an ASIC design. The

current tool implemented uses Xilinx tool-chain (explained more in Section 5.3). The

129

target architecture in this tool is Xilinx Virtex II Pro FPGAs. Even for designs that

target ASIC platforms, our tool is useful for doing rapid prototyping and performance

evaluation, since it can take a very long time before the final ASIC chip is available.

5.2.1 Application Specification

<application id="H263">
<actor name="VLD">
<port name="MotionComp" type="in" rate="1"/>
<port name="IQ" type="out" rate="594"/>

</actor>
<actor name="IQ">
<port name="VLD" type="in" rate="1"/>
<port name="IDCT" type="out" rate="1"/>

</actor>
...
<channel name="VLD_IQ" srcActor="VLD" srcPort="IQ" dstActor="IQ"

dstPort="VLD" initialTokens="0"/>
...

Figure 5.3: Snippet of H263 application specification.

594
1

1 1 1 1 594
1

2

Motion
Comp

IDCT IQ VLD

Figure 5.4: SDF graph for H263 decoder application

Application specification forms an important part of the flow. The SDF graphs of the

applications have to be specified in xml format. A snippet of the application specification

file for H263 decoder is shown in Figure 5.3. The corresponding SDF graph is shown in

Figure 5.4. The application here has been modeled from the data presented in [Hoe04].

The figures illustrate how easy it is to write the application-specification.

While the specification above is obtained through application profiling, it is also

possible to use tools to obtain the SDF description for an application from its code

directly. Compaan [SZT+04] is one such example that converts sequential description

of an application into concurrent tasks1. These can then be converted into SDF graphs

easily.

The specification file contains details about how many actors are present in the ap-

1It actually converts a sequential application into a limited set of KPN graph, namely cyclo-static
data flow graphs (CDFG).

130

plication, and how they are connected to each other. The execution time of the actors

and their memory usage on the processing core is also specified. For each channel present

in the graph, the file describes whether there are any initial tokens present on it. The

buffer capacity of a particular channel is specified as well.

When multiple applications are to be mapped to a common architecture, our flow al-

lows use-case depiction. Very often in a given system, the system might support multiple

applications, but only a few of them might be active at a given point in time. The use-

case information may be supplied at design time together with application specification.

This is explained in more detail in Chapter 6.

5.2.2 Functional Specification

When an application specification also includes high-level language code corresponding

to actors in the application, this source code can be automatically added to the desired

processor2. An interface is defined such that SDF behaviour is maintained during exe-

cution. The number of input parameters of an actor function is equal to the number of

incoming edges and the number of output parameters is equal to the number of output

edges. The interface is shown in Figure 5.5. Token ∗ ini indicates an array of input

tokens consumed from i−th incoming edge, where the array length is equal to the con-

sumption rate on that edge. Similarly, Token ∗ outi is an array of output tokens that are

written during one execution of an actor. The application xml file indicates the function

name that corresponds to the application actor. Figure 5.6 shows an example for the

VLD actor of H263 application shown earlier. The function has an input channel from

the MotionEstimation module and the data produced during execution is written to the

output channel to InverseQuantization module. Therefore, the function definition of this

actor only has one input and one output token pointer.

/*Functional definition of any function*/
void <functionName>(Token *in1, Token *in2, ..., Token *inN,

Token *out1, Token *out2, ..., Token *outM){
...
...

}

Figure 5.5: The interface for specifying functional descri ption of SDF-actors

2This functionality was implemented by Thom Gielen under my supervision.

131

<actorProperties actor="VLD">
<processor type="p1">
<executionTime time="120000"/>
<functionName funcname="vld_c"/>
<memory>

<statesize max="100"/>
</memory>

</actorProperties>

/*File vld_c.c: Functional description of vld_c */
void vld_c(Token *in_motion, Token *out_iq){

...

...
}

Figure 5.6: Example of specifying functional behaviour in C

5.2.3 Platform Generation

From the xml descriptions, the platform description is generated. In case the architec-

ture description and the mapping of actors to different processors is already provided,

mapping is done according to the specification. In other cases, the architecture is au-

tomatically inferred from the application specification(s). For a single application, each

actor is mapped on a separate processor node, while for multiple applications, nodes are

shared among actors of different applications. The total number of processors in the

final architecture corresponds to the maximum number of actors in any application. For

example, in Figure 5.2, a total of 4 processors are used in the design. For processors that

have multiple actors mapped onto them, an arbitration scheme is also generated.

All the edges in an application are mapped to a unique FIFO channel. This creates an

architecture that mimics the applications directly. Unlike processor sharing for multiple

applications, the FIFO links are dedicated as can be seen in Figure 5.2. Since we have

multiple applications running concurrently, there is often more than one link between

some processors. Even in such cases, multiple FIFO channels are created. This avoids

head-of-line blocking that can occur if one FIFO is shared for multiple channels [HOL09].

Further, multiple channels reduce the sources of contention in the system.

As mentioned in Chapter 2, firing of an actor requires sufficient input tokens to be

present on all its incoming edges. This implies that an actor might not be able to execute

if any of the incoming buffers does not have sufficient tokens. The same holds when the

output buffers of an actor are full. While this does not cause any problem when only one

actor is mapped on a node, in the case of multiple actors, the other possibly ready actors

might not be able to execute while the processor sits idle. To avoid this, non-blocking

132

reads and writes are carried out, and if any read or write is unsuccessful, the processor

is not blocked, but simply executes the other actor for which there are sufficient input

tokens and buffer-space on all its output edges.

5.3 Tool Implementation

In this section, we describe the tool we developed based on our flow to target Xilinx

FPGA architecture. The actors in the MPSoC flow are mapped to Microblaze proces-

sors [Xil09]. The FIFO links are mapped on to Fast Simplex Links (FSLs). These are

uni-directional point-to-point communication channels used to perform fast communi-

cation3. The FSL depth is set according to the buffer-size specified in the application.

PowerPC [WS94] processors are also supported in the flow. Customized communication

blocks are generated to allow seamless communication between Microblaze and PowerPC

as is published in [SKMC08, SKMC09].

MB 1

Timer UART DDR
RAM

SysACE
CF Card

OPB

FSL Links

Recon
MB 0
VLD IDCT

MB 2 MB 3
IQ

Figure 5.7: Hardware topology of the generated design for H2 63

An example architecture for H263 application is shown in Figure 5.7. It consists of

several Microblazes (MBs) with each actor mapped to a unique processor and additional

peripherals such as Timer, UART, SysACE and DDR RAM. While the UART is use-

ful for debugging the system, SysACE Compact Flash (CF) card allows for convenient

performance evaluation by running continuously without external user interaction. The

performance results are written to the CF card and they can be later retrieved using a

card reader. Timer Module and DDR RAM are used for profiling the application and for

external memory access respectively.

In this tool, in addition to the hardware topology, the corresponding software for

each processing core is also generated automatically. For each processor, appropriate

3Current version of Microblaze from Xilinx supports up to 16 FSL links

133

Proc 0 Proc 1

RM

Proc 2

Proc 3

Communication Network

I/O

a0 b0

b2

Figure 5.8: Architecture with Resource Manager

functions are inserted that model the behaviour of the tasks mapped on the processor.

This can be a simple delay function if the behaviour is not specified. If the actual source

code for the function is provided, it is added to the software description, as explained in

Section 5.2.2. This also allows functional verification of applications on a real hardware

platform. Routines for measuring performance, and sending results to the serial-port and

to the on-board CF card are also generated.

Further, our software generation ensures that the tokens are read from (and written

to) the appropriate FSL link in order to maintain progress, and to ensure correct func-

tionality. In this way we avoid writing data to the wrong link which could easily throw

the system in deadlock. Xilinx project files are automatically generated to provide the

necessary interface between hardware and software components.

Resource Manager

The design is extended to allocate one processor for the resource manager (RM). Fig-

ure 5.8 shows the modified architecture when a resource manager is used in the system.

The FIFO links in Figure 5.7 are abstracted away with a communication fabric. The

application description and properties computed off-line like the actor execution times,

mapping and throughput expressions (as explained in Chapter 4) are stored in the CF

card.

5.4 Experiments and Results

In this section, we present some of the results that were obtained by implementing several

real and randomly-generated application SDF graphs using our design flow. Figure 5.9

shows the flow that is used to do the experiments. For each application, the buffer-

sizes needed for the required performance are computed using SDF 3. These sizes are

annotated in the graph description and used for the hardware flow described above.

134

These buffer-sizes are modeled in the graph using a back-edge with the number of initial

tokens on that edge equal to the buffer-size needed on the forward edge as is explained in

Section 2.2. Further, we limit the auto-concurrency of actors to 1 since at any point in

time, only one execution of an actor can be active. These constraints are modeled in the

graph before the parametric throughput expressions are derived. Note that the graph

used for computing the parametric expressions is not the same as the one that is mapped

to architecture, but it leads to the same application behaviour since the constraints

modeled in the graph come from the architecture itself.

graph
Original

Buffer−modeled
graphgraph

Buffer−annotated Model buffer
and auto−

concurrency

Find required
buffer−sizes

Model buffer
and auto−

concurrency

Derive
parametric
equations

Figure 5.9: An overview of the design flow to analyze the appli cation graph and map it on the

hardware.

5.4.1 Reducing the Implementation Gap

The main objective of this experiment is to show that our flow reduces the implementa-

tion gap between system level and RTL level design. We show that our flow allows for

more accurate performance evaluation using an emulation platform, compared to sim-

ulation [TFG+07] and analysis. In addition, we present a case study using JPEG and

H263 applications to show how our tool can be used for efficient design space exploration

for multiple applications. Our implementation platform is the Xilinx XUP Virtex II Pro

Development Board with an xc2vp30 FPGA on-board that is shown in Figure 5.10. As

can be seen, a number of input/output options are available such that multiple devices

can interact with the board, and interesting applications can be designed. Xilinx EDK

8.2i and ISE 8.2i were used for synthesis and implementation. The newer versions of

the corresponding tools can also use the generated designs by automatically upgrading

them. All tools run on a Pentium Core at 3GHz with 1GB of RAM. Figure 5.11 shows

135

Figure 5.10: XUP Virtex-II Pro development system board pho to [Xil09]

the layout of the Virtex-II Pro FPGA for a design containing 12 Microblazes including

the controller for DDR RAM and OPB. Chip-area occupied by each Microblaze is high-

lighted for visibility. The biggest design we could synthesize contained 14 Microblazes

before the FPGA was completely full.

In order to verify our design flow, we generated 10 random application graphs using

the SDF 3 tool [SGB06a], and generated designs with 2 applications executing concur-

rently. Results of 10 such random combinations are summarized in Table 5.2. The results

are compared with those obtained through simulation. We observe that in general, the

application throughput measured on FPGA is about 8% lower than simulation. This is

because the simulation model did not take into account the communication overhead.

However, in some cases we observe that performance of some applications improved

(shown in bold in Table 5.2). This is rather unexpected, but easily explained when going

into a bit of detail.

Communication overhead leads to the actor execution taking somewhat longer than

136

Figure 5.11: Layout of the Virtex-II Pro FPGA with 12 Microbl azes including the controller for DDR-

RAM and OPB.

137

Table 5.2: Comparison of throughput for different applicat ions obtained on FPGA with simulation

Appl 0 Appl 1
Use-case Sim FPGA Var % Sim FPGA Var %

A 3.96 3.30 -20.05 1.99 2.15 7.49

B 3.59 3.31 -8.63 1.80 1.61 -11.90
C 2.64 2.74 3.67 1.88 1.60 -17.37
D 3.82 3.59 -6.32 0.85 0.77 -10.51
E 4.31 4.04 -6.82 1.44 1.35 -6.80
F 5.10 4.73 -7.75 0.51 0.48 -5.79
G 4.45 4.25 -4.55 1.11 0.97 -14.66
H 4.63 4.18 -10.65 1.16 1.05 -10.29
I 4.54 4.03 -12.48 2.27 2.13 -6.51
J 4.33 3.97 -8.92 1.08 1.00 -8.41

Average - - -8.44 - - -8.29

expected, thereby delaying the start of the successive actor. This causes the performance

of that application to drop. However, since we are dealing with multiple applications,

this late arrival of one actor might cause the other application to execute earlier than

that in simulation. This is exactly what we see in the results. For the two use-cases

in which this happens – namely A and C, the throughput of the other applications is

significantly lower: 20 and 17 percent respectively. This also shows that the use-cases

of multiple applications concurrently executing are more complex to analyze and reason

about than a single application case.

5.4.2 DSE Case Study

Here we present a case study of doing a design space exploration and computing the opti-

mal buffer requirement. Minimizing buffer-size is an important objective when designing

embedded systems. We explore the trade-off between buffer-size used and the throughput

obtained for multiple applications. For single applications, the analysis is easier and has

been presented earlier [SGB06b]. For multiple applications, it is non-trivial to predict

resource usage and performance, because multiple applications cause interference when

they compete for resources. This is already shown in Table 5.2 above.

The case study is performed for JPEG4 and H263 decoder applications. The SDF

models of the two applications are the same that were used in the previous chapter. In

this case study, the buffer size has been modeled by the initial tokens present on the

incoming edge of the first actor. The higher this initial-token count, the higher the buffer

4For this study, we decode multiple images – Motion JPEG.

138

needed to store the output data. In the case of H263, each token corresponds to an entire

decoded frame, while in the case of JPEG, it is the complete image.

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

T
hr

ou
gh

pu
t o

f J
P

E
G

 (
e-

6)

Number of initial tokens in JPEG

H263: not active

H263: 1 token

H263: 2, 3 tokens

Figure 5.12: Effect of varying initial tokens on JPEG throug hput

Figure 5.12 shows how the throughput of JPEG decoder varies with increasing number

of tokens in the graph. A couple of observations can be made from this figure. When the

number of tokens (i.e. buffer-size in real application) is increased, the throughput also

increases until a certain point, after which it saturates. When JPEG decoder is the only

application running (obtained by setting the initial tokens in H263 to zero), we observe

that its throughput increases almost linearly till 3. We further observe that increasing

the initial tokens of H263 worsens the performance of JPEG, but only until a certain

point.

The actual throughput measured for both applications is summarized in Table 5.3.

Increasing initial tokens for H263 beyond 2 causes no change, while for JPEG the perfor-

mance almost saturates at 4 initial tokens. This analysis allows the designer to choose

the desired performance-buffer trade-off for the combined execution of JPEG and H263.

Design Time

The time spent on the exploration is an important aspect when estimating the perfor-

mance of big designs. The JPEG-H263 system was also designed by hand to estimate

the time gained by using our tool. The hardware and software development took about

5 days in total to obtain an operational system starting from the application models

139

Table 5.3: Number of iterations of the two applications obta ined by varying initial number of tokens

i.e. buffer-size, in 100 million cycles

H263 0 1 2 3
JPEG H263 JPEG H263 JPEG H263 JPEG H263 JPEG

0 - - 458 - 830 - 830 -
1 - 849 453 453 741 371 741 371
2 - 1697 453 906 669 669 669 669
3 - 2226 454 1358 669 669 669 669
4 - 2228 422 1682 669 669 669 669
5 - 2230 422 1682 669 669 669 669

Table 5.4: Time spent on DSE of JPEG-H263 combination

Manual Generating Complete
Design Single Design DSE

Hardware Generation ∼ 2 days 40ms 40ms
Software Generation ∼ 3 days 60ms 60ms
Hardware Synthesis 35:40 min 35:40 min 35:40 min
Software Synthesis 0:25 min 0:25 min 10:00 min
Total Time ∼ 5 days 36:05 min 45:40 min
Iterations 1 1 24
Time per iteration ∼ 5 days 36:05 min 1:54 min
Speedup – 1 19

using EDK. In contrast, our tool takes a mere 100 milli-seconds to generate the complete

design. Table 5.4 shows the time spent on various parts of the flow. The Xilinx tools

take about 36 minutes to generate the bit file together with the appropriate instruction

and data memories for each core in the design.

Our approach is very fast and is further optimized by modifying only the relevant

software and keeping the same hardware design for different use-cases. Since the software

synthesis step takes only about 25 seconds in our case study, the entire DSE for 24 design

points was carried out in about 45 minutes. This hardware-software co-design approach

results in a speed-up of about 19 when compared to generating a new hardware for each

iteration. As the number of design points are increased, the cost of generating the hard-

ware becomes negligible and each iteration takes only 25 seconds. The design occupies

about 40% of logic resources on FPGA and close to 50% of available memory. This

study is only an illustration of the usefulness of our approach for DSE for multiprocessor

systems.

140

5.5 Related Work

The problem of mapping an application to architecture has been widely studied in liter-

ature. One of the recent works that is most related to our research is ESPAM [NSD06,

NSD08]. This uses Kahn Process Networks (KPN) [Kah74] for application specification.

In our approach, we use SDF [LM87] for application specification instead. Further, our

approach supports mapping of multiple applications, while ESPAM is limited for single

applications. Supporting multiple applications is imperative for developing modern em-

bedded systems which support more than tens of applications on a single MPSoC. The

same difference can be seen between our approach and the one proposed in [JSRK05]

where an exploration framework to build efficient FPGA multiprocessors is proposed.

The Compaan/Laura design-flow presented in [SZT+04] also uses KPN specification

for mapping applications to FPGAs. However, their approach is limited to a proces-

sor with a co-processor. Our approach aims at synthesizing complete MPSoC designs.

Another approach for generating application-specific MPSoC architectures is presented

in [LYBJ01]. However, most of the steps in their approach are done manually. Explor-

ing multiple design iterations is therefore not feasible. In our flow, the entire flow is

automated, including the generation of the final bit file that runs directly on an FPGA.

Yet another flow for generating MPSoC for FPGA has been presented in [KHHC07].

However, this flow focuses on generic MPSoC and not on application-specific architec-

tures. Further, the work in [KHHC07] uses networks-on-chip for communication fabric,

while in our approach dedicated links are used for communication to remove resource con-

tention. Another key difference is that processor sharing is not allowed across multiple

applications.

Xilinx provides a tool-chain as well to generate designs with multiple processors and

peripherals [Xil09]. However, most of the features are limited to designs with only a bus-

based processor-coprocessor pair with shared-memory. It is very time-consuming and

error-prone to generate an MPSoC architecture and the corresponding software projects

to run on the system. In our approach, MPSoC architecture is automatically generated

together with the respective software projects for each core.

Table 5.5 shows various design approaches that provide estimates of application per-

formance. The first method uses SDF models and computes the throughput of the

141

Table 5.5: Comparison of various approaches for providing p erformance estimates

SDF 3 [SGB06a] POOSL [KMT+06] ESPAM [NSD06] MAMPS
Approach Used Analysis Simulation FPGA FPGA
Model Used SDF SDF KPN SDF
Single Appl Yes Yes Yes Yes
Multiple Appl No Yes No Yes
Speed Fastest Slow Fast Fast
Accuracy Less High Highest Highest
Hard RT Guarantee Yes No No No
Dedicated FIFO N. A. No No Yes
Arbiter Support N. A. Yes N. A. Yes
C-support No No Yes Yes

application by analyzing the application graph. However, it is only able to predict the

performance of single applications. The simulation approach presented in [KMT+06]

uses POOSL [TFG+07] for providing application performance estimates. This is more

accurate than high level formal analysis since more details can be modeled and their

effects are measured using simulations. ESPAM is closest to our approach as it also uses

FPGA and supports functional description(s) of application(s) in C. However, it does

not support multiple applications. MAMPS supports multiple applications, and provides

fast and accurate results.

5.6 Conclusions

In this chapter, a design-flow is presented to generate multiprocessor designs for mul-

tiple applications. The approach takes application(s) description(s) and produces the

corresponding MPSoC system. This is the first flow that allows mapping of multiple

applications on a single platform. The tool developed using this flow is made available

online [MAM09]. The flow allows the designers to traverse the design space quickly, thus

making DSE of even concurrently executing applications feasible. A case study is pre-

sented to find the trade-offs between the buffer-size and performance when JPEG and

H263 execute concurrently on a platform.

However, the number of applications that can be concurrently mapped on the FPGA

is limited by the hardware resources present. When synthesizing designs with applications

of 8-10 actors and 12-15 channels, we found that it was difficult to map more than four

applications simultaneously due to resource constraints, namely block RAMs. A bigger

FPGA would certainly allow bigger designs to be tested.

142

CHAPTER 6

Multiple Use-cases System Design

In the previous chapter, we have seen how to design and synthesize multiprocessor sys-

tems for multiple applications. As has been motivated in the earlier chapters, not all

applications are always active at the same time. Each combination of simultaneously

active applications is defined as a use-case. For example, a mobile phone in one instant

may be used to talk on the phone while surfing the web and downloading some Java

application in the background, and in another instant be used to listen to MP3 music

while browsing JPEG pictures stored in the phone, and at the same time allow a remote

device to access the files in the phone over a bluetooth connection.

The number of such potential use-cases is exponential in the number of applications

that are present in the system. The high demand of functionalities in such devices is

leading to an increasing shift towards developing systems in software and programmable

hardware in order to increase design flexibility. However, a single configuration of this

programmable hardware may not be able to support this large number of use-cases with

low cost and power. We envision that future complex embedded systems will be parti-

tioned into several configurations and the appropriate configuration will be loaded into

the reconfigurable platform on the fly as and when the use-cases are requested. This

requires two major developments at the research front: (1) a systematic design method-

ology for allowing multiple use-cases to be merged on a single hardware configuration,

143

and (2) a mechanism to keep the number of hardware configurations as small as possible.

More hardware configurations imply a higher cost since the configurations have to be

stored in the memory, and also lead to increased switching in the system.

In this chapter, we present a solution to the above-mentioned objectives. Following

are the key contributions of this chapter:

• Support for Multiple Use-cases: An algorithm for merging use-cases onto a single

(FPGA) hardware configuration such that multiple use-cases may be supported in

a single configuration, while minimizing hardware resources.

• Partitioning Use-cases: When (FPGA) area constraints do not allow mapping of

all use-cases on one configuration, a methodology to partition use-cases in a way

that the number of partitions (or configurations of FPGA) is minimized.

• Reducing Complexity: Use-case partitioning is an instance of the set-covering prob-

lem [CLRS01], which is known to be NP-hard. We propose efficient heuristics to

solve this problem and compare their performance and complexity.

• Area Estimation: A technique that accurately predicts the resource requirements

on the target FPGA without going through the entire synthesis process, thereby

saving DSE time.

• MPSoC Design Tool for FPGA: All of the above methods and algorithms are imple-

mented, such that the entire multi-processor system can be generated for the given

application and use-case descriptions in a fully automated way for Xilinx FPGAs.

Besides the hardware, the required software for each processor is also generated.

The tool is available at www.es.ele.tue.nl/mamps/.

The above contributions are essential to further research in design automation com-

munity since the embedded devices are increasingly becoming multi-featured. Our flow

allows designers to generate MPSoC designs quickly for multiple use-cases and keep the

number of hardware configurations to a minimum. Though the flow is aimed at minimiz-

ing the number of partitions, it also generates all the partitions and allows the designer

to study the performance of all use-cases in an automated way. The designer can then

tailor the partitions (e.g. change processor-arbiters) to achieve better performance of all

applications in a use-case.

144

While the flow is suitable for both design and evaluation, in this thesis we focus

on the suitability of our flow for evaluating whether all the applications can meet their

functional requirements in all the use-cases on FPGA. We present a number of techniques

to minimize the time spent in evaluation and design space exploration of the system. As

before, we assume that applications are specified in the form of Synchronous Data Flow

(SDF) graphs [LM87, SB00].

This chapter is organized as follows. Section 6.1 describes our approach of merging

use-cases in a single hardware description, while Section 6.2 explains how our partitioning

approach splits the use-cases when not all of them can fit in one design. Section 6.3

explains how resource utilization is estimated without synthesis. Section 6.4 presents

results of experiments done to evaluate our methodology. Section 6.5 reviews the related

work for architecture-generation and synthesis flows for multiple use-cases. Section 6.6

concludes the chapter and gives directions for future work.

6.1 Merging Multiple Use-cases

In this section, we describe how multiple use-cases are merged into one design to save

precious synthesis time and minimize hardware cost. When multiple use-cases are to

be catered for during performance evaluation, time spent on hardware synthesis forms

a bottle-neck and limits the number of designs that can be explored. When designing

systems, this is even more important as it often reduces the hardware resources needed

in the final platform. Further, the switching time between different use-cases is reduced

substantially.

Each application in the system requires hardware to be generated for simulation.

Therefore, each use-case in turn has a certain hardware topology to be generated. In

addition to that, software is generated for each hardware processor in the design that

models the set of actors mapped on it. The following two sub-sections provide details of

how the hardware and software are generated.

6.1.1 Generating Hardware for Multiple Use-cases

With different use-cases, since the hardware design is usually different, an entire

new design has to be synthesized. Here we describe how we can merge the hardware

145

0 2 0
0 0 1

0 1 2

0
1
2 1 0 0

0 1 2 3

0 2 0 0

2 0 0 0
1 0 0 0
0 0 1 1

0
1
2
3

S
o
u
r
c
e

S
o
u
r
c
e

S
o
u
r
c
e

0 1 2 3

0 1 0 0

2 0 0 0
0 0 0 0
0 0 1 1

0
1
2
3

Proc 0 Proc 1

Proc 2Proc 3

Proc 0 Proc 1

Proc 2

Proc 0 Proc 1

Proc 2Proc 3

Use−case BUse−case A

Merged Design

Destination

Destination
Destination

Figure 6.1: An example showing how the combined hardware for different use-cases is computed.

The corresponding communication matrix is also shown for ea ch hardware design.

required for different use-cases. Figure 6.1 shows two use-cases A and B, with different

hardware requirements that are merged to generate the design with minimal hardware

requirements to support both. The combined hardware design is a super-set of all the

required resources such that all use-cases can be supported. The key motivation for the

idea comes from the fact that while multiple applications are active concurrently in a

given use-case, different use-cases are active exclusively.

The complete algorithm to obtain the minimal hardware to support all the use-cases

is described in Algorithm 2. The algorithm iterates over all use-cases to compute their

individual resource requirements. This is in turn computed by using the estimates from

the application requirements. While the number of processors needed is updated with a

max operation – line 13 in Algorithm 2, the number of FIFO (first-in-first-out) buffers

is added for each application – indicated by line 16. The total FIFO requirement of

each application is computed by iterating over all the channels and adding a unique edge

in the communication matrix for them. The communication matrix for the respective

use-cases is also shown in Figure 6.1.

To compute minimal hardware requirements for the overall hardware for all the use-

cases, both the number of processors and the number of FIFO channels are updated by

max operation (line 19 and 22 respectively in Algorithm 2). This is important because

this generates only as many FIFO channels between any two processors as is maximally

146

Algorithm 2 GenerateCommunicationMatrix: determining minimal hardware design
that supports multiple use-cases

Input: Ui // Description of which applications are in use-case Ui.
Input: Ai // SDF description of application Ai.
Output: Nproc // The total number of processors needed.
Output: Xij // The total number of FIFO channels needed.
1: // Let Xij denote the number of FIFO channels needed from processor Pi to Pj

2: X = 0 // Initialize the communication matrix to 0
3: Nproc = 0 // Initialize the number of processors to 0
4: for all Use-cases Uk do

5: Y = 0 // Yij stores the number of FIFO channels needed for Uk

6: Nproc,Uk
= 0 // Initialize processor count for use-case Uk to 0

7: for all Applications Al do

8: // Update processor count for Uk

9: Nproc,Uk
= max(Nproc,Uk

, Nproc,Al
)

10: for all Channels c in Al do

11: // Increment FIFO channel count
12: YgetProc(csrc)getProc(cdest) = YgetProc(csrc)getProc(cdest) + 1
13: end for

14: end for

15: Nproc = max(Nproc, Nproc,Uk
) // Update overall processor count

16: for all i and j do

17: Xij = max(Xij , Yij)
18: end for

19: end for

needed for any use-case. Thus, the generated hardware stays minimal. Therefore, in

Figure 6.1 while there are in total 3 FIFO channels between Proc 0 and Proc 1, at most

two are used at the same time. Therefore, in the final design only 2 channels are produced

between them.

6.1.2 Generating Software for Multiple Use-cases

Software compilation is a lot faster as compared to hardware synthesis in the MAMPS

approach. The flow is similar to the one for generating software for single use-cases.

However, we need to ensure that the numbering for FIFO channels is correct. This

is very important in order to ensure that the system does not go into deadlock. For

example, in Figure 6.1, Proc 0 in the merged hardware design has three incoming links.

If we simply assign the link-ids by looking at the individual use-case, in Use-case B in

the figure, the first link-id will be assigned to the channel from Proc 3. This will block

the system since the actor on Proc 3 will keep waiting for data from a link which never

receives anything.

To avoid the above situation, the communication matrix is first constructed, even

147

Is (i==n)?

configure FPGA
Merge files and

Increment i
(Go to next
use−case)

Generate

Use−case i
Software for

Software
Compile

Get
results

System
bit file

Synthesize
Hardware

Generate
Hardware

Generate
Communication

Matrix

Analyze all
Use−cases

Print
Memory

Use−case n

No

Yes

Use−case 1 Use−case 2

Set i=1

Terminate

Figure 6.2: The overall flow for analyzing multiple use-case s. Notice how the hardware flow executes

only once while the software flow is repeated for all the use-c ases.

when only the software needs to be generated. The link-ids are then computed by check-

ing the number of links before the element in the communication matrix. For the output

link-id, the numbers in the row are added, while for incoming links, the column is summed

up. For example, in Figure 6.1 the communication matrix of Use-case B suggests that

the incoming links to Proc 0 are only from Proc 3, but the actual hardware design syn-

thesized has one extra link from Proc 2. The incoming link-id should therefore take that

into account in software.

6.1.3 Combining the Two Flows

Figure 6.2 shows how the hardware and software flow come together to get results for

multiple use-cases quickly. The input to the whole flow is the description of all use-

cases. From these descriptions, the communication matrix is constructed. This is used

to generate the entire hardware. The same matrix is also used when software has to be

generated for individual use-cases. The boxes that are shown in gray are repeated for

each use-case. The flow terminates when all the use-cases are explored. The results of

each use-case are fed from the FPGA board to the host computer via the serial port and

are also written out on to the Compact Flash card. As can be seen, the hardware part

is executed only once while the software part is iterated until results for all the use-cases

148

are obtained. This flow makes execution of multiple use-cases a lot faster since hardware

synthesis is no more a bottleneck in system design and exploration. It should be noted

that in this flow, the FPGA is completely reconfigured after each use-case, even though

the hardware used is identical. This constraint can be alleviated in one of the three ways:

1) by only reconfiguring the BRAMs for each software, 2) by having enough memory to

accommodate software for all the use-cases, and 3) by having a loader in each processor

that can load the required software for each use-case. Any of these above methods can be

used to reduce the reconfiguration time. Our approach is orthogonal to such techniques.

The use-case analysis (Analyze All Use-cases) is done to find the maximum number

of use-cases that can fit in one hardware design. (This is done by our ideas of area

estimation that are explained in Section 6.3.) Formally, given a set S of m use-cases

S = {U0, U1, . . . Um−1}, we wish to determine the biggest possible sub-set of S that is

feasible, where feasibility implies that all the elements of the set can be merged into one

hardware design that can fit in the given FPGA device. The next section explains what

happens when not all use-cases can be merged in one hardware design.

6.2 Use-case Partitioning

Resources are always a constraint, and FPGA devices do not escape from this rule. As

the number of use-cases to be supported increases, the minimal hardware design increases

as well, and it often becomes difficult to fit all use-cases in a single hardware design. Here

we propose a methodology to divide the use-cases in such a way that all use-cases can be

tested, assuming that all use-cases can at least fit in the hardware resources when they

are mapped in isolation1. Further, we wish to have as small number of such hardware

partitions as possible since each extra partition implies extra hardware synthesis time,

and worse, switching time. This is an NP-hard problem as described below.

Problem 1 We are given S = {U0, U1, . . . Um−1}, where each use-case Ui is feasible in

itself. Further, let us define set F of all feasible subsets of S. Use-case partitioning

is finding the minimum subset C ⊆ F whose members cover all of S.

1If an individual use-case does not fit, a bigger FPGA device is needed.

149

Applications Set of Use-cases S Feasible subsets F Potential Partitions

A0: H263 Enc

A1: H263 Dec

A2: JPEG Dec

A3: MP3 Dec

A4: Modem

A5: Voice Call

U0 = {A0, A1, A4}
U1 = {A0, A1, A5}
U2 = {A2, A3, A4}
U3 = {A0, A4}
U4 = {A2, A4, A5}

f0 = {U0, U1}
f1 = {U0, U2}
f2 = {U1, U2}
f3 = {U1, U3, U4}
f4 = {U2, U3}
f5 = {U2, U4}

{f0, f1, f4, f5}
{f0, f3, f4}
{f1, f2, f3}
{f1, f3}

Figure 6.3: Putting applications, use-cases and feasible p artitions in perspective.

Solution 1 This is clearly an instance of set-covering problem where the universe is

depicted by S, and the subsets are denoted by F . The set C we are looking for is the

solution of the minimum set-covering problem, and corresponds to that of the use-case

partitioning problem. Each set in C corresponds to a feasible hardware partition. Set-

covering problem is known to be NP-hard [GJ79, CLRS01]. Use-case partitioning is

therefore also an NP-hard problem.

The cost in both verification and design synthesis is directly proportional to the

number of sets in C. During verification, it is the time spent in synthesis which increases

with partition count, while for system design more partitions imply a higher memory

and switching cost. Since this is an NP-hard problem, in our tool we have used an

approximation algorithm to solve it, called the greedy algorithm. The largest feasible

subset of use-cases is first selected and a hardware partition is created for it. This is

repeated with the remaining use-cases until all the use-cases are covered. As mentioned

in [CLRS01], the maximum approximation error in using this technique over the minimal

cover is ln|X| + 1, where X is the number of elements in the largest feasible set.

Figure 6.3 helps in understanding the partitioning problem better and provides a

good perspective of the hierarchy of sets. The first box shows the applications that need

to run on the platform. These are some of the applications that run on a mobile phone.

The next box shows some of the use-cases that are typical, e.g. U1 represents a video-

call that requires video encoding, video decoding and regular voice call. As mentioned

earlier, a use-case is a set of applications that run concurrently. The next box shows the

family of sets F , each of which is feasible. For simplicity only a part of F is shown in the

figure. Clearly, the subsets of elements of F are also feasible e.g. when f3 is feasible, so

150

is {U3, U4}. Therefore, we should only include maximal subsets; F − i is maximal if we

cannot add any other use-case. As often the case, no feasible-set exists which contains all

the use-cases. Therefore, a subset C ⊆ F needs to be chosen such that all the use-cases

are covered in this subset. A few of such possible subsets are shown in the last box. The

last option is preferred over the rest since it provides only two partitions.

6.2.1 Hitting the Complexity Wall

In order to be able to implement the greedy algorithm, we still need to be able to

determine the largest feasible set. This poses a big problem in terms of implementation.

The total number of possible sets grows exponentially with the number of use-cases.

Suppose, we have 8 applications in the system, and every combination of them is possible,

we have 255 use-cases overall. Since each use-case can either be in the set or not, we

obtain a total of 2255 sets. Each set then needs to be examined whether it is feasible or

not – this takes linear time in size of the set, which can in the worst case be the number

of applications in the system. Thus, a system with N applications and M possible use-

cases, has a complexity of O(N.2M) to find the largest feasible set. In the worst-case, the

number of use-cases is also exponential, i.e. M = 2N − 1. We see how the design-space

becomes infeasible to explore. In Section 6.4 we see some results of actual execution

times.

6.2.2 Reducing the Execution time

Here we present some measures to reduce the execution time. The following approaches

do not reduce the complexity of the algorithm, but may provide significant reduction in

execution time.

1. Identify infeasible use-cases: Our intention is to be able to analyze all the use-

cases that we can with our given hardware resources. Identifying the infeasible

use-cases reduces the potential set of use-cases.

2. Reduce feasible use-cases: This method identifies all the use-cases that are proper

subsets of feasible use-cases – such use-cases are defined as trivial, while the ones

that are not included in any other feasible use-case are defined as non-trivial. When

a use-case is feasible, all its sub-sets are also feasible. Formally, if a use-case Ui is

151

a subset of Uj , the minimal hardware needed for Uj is sufficient for Ui. (A proper

subset here implies that all the applications executing concurrently in Ui are also

executing in Uj, though the inverse is not true.) In other words, any partition

that supports use-case Uj will also support Ui. It should be noted however that

the performance of applications in these two use-cases may not be the same due to

different set of applications active, and therefore it might be required to evaluate

performance of both use-cases.

These approaches are very effective and may significantly reduce the number of fea-

sible use-cases left for analysis. With a scenario of 10 randomly generated applications

and 1023 use-cases (considering all the possibilities), we found that only 853 were fea-

sible2. The reduction technique further reduced the number of non-trivial use-cases to

178. The above approaches reduce the execution time but do not help in dealing with

complexity. However, the optimality of the solution (in generation of feasible sets, not in

the set-cover) is maintained.

6.2.3 Reducing Complexity

In this section, we propose a simple heuristic to compute the partitions. This heuristic

reduces the complexity significantly albeit at the cost of optimality. As mentioned earlier,

the greedy approach of partitioning requires to compute the largest feasible set. Since

computing the largest set has a high complexity, we have an alternative implementation

which simply gives the first partition that includes the first non-included use-case, and

scans the whole list to check which use-cases can be added such that the set remains

feasible. The algorithm is shown in Algorithm 3. An array is maintained to check which

use-cases are not yet included in any partition (UseCaseDone). Infeasible use-cases are

indicated in line 6 in the algorithm. Use-cases are then reduced by considering only the

non-trivial use-cases. Trivial use-cases are assigned the identifier of its super-set (line

8). Note that in some cases there are multiple supersets. In such cases, the first one is

chosen. This reduces the number of use-cases that need to be considered.

Partitions are then created on a first-come-first-serve basis. The order of use-cases

in the input may therefore affect partitioning. As can be seen, once a use-case fits in a

partition, it is not checked whether that is the optimal partition. In the worst-case, each

2This depends on the available hardware resources. On our FPGA platform only 853 were feasible.

152

Algorithm 3 FirstFitSetUseCasePartitioning: Partitioning use-cases using first fit al-
gorithm – polynomial-complexity algorithm.

Input: Ui // Description of which applications are in use-case Ui.
Output: Partition[] // Stores details of all the partitions
Output: k // The number of partitions created
1: // Let tmp[][] and final[][] be communication matrices, initialized to zero
2: // final[][] stores the matrix with all the use-cases that fit in the current partition
3: // Initialize all use-cases as not done
4: UseCaseDone[] = 0
5: // Ignore the infeasible use-cases
6: UseCaseDone[i] = −1 ∀ i when Ui is infeasible
7: // Reduction step
8: UseCaseDone[i] = j + 2 ∀ i when Ui is a sub-set of Uj

9: // Partition[k] stores the use-cases that are assigned to the k-th partition
10: k = 0
11: while Use-cases left (Translates to UseCaseDone[i]=0 for at least one i) do

12: tmpmn = 0 and finalmn = 0
13: for all UseCases Ui with UseCaseDone[i] = 0 do

14: tmpmn = finalmn

15: Update tmpmn by merging UseCase Ui

16: if tmpmn fits in device then

17: UseCaseDone[i] = 1
18: Add i to Partition[k]
19: finalmn = tmpmn

20: end if

21: end for

22: // Advance partition
23: k = k + 1
24: end while

use-case might result in its own partition, and the algorithm would then require O(M)

iterations of the while loop, each requiring M passes in the for loop. Therefore, the total

complexity of this approach is O(M2) as compared to O(2M) in the original approach.

Section 6.4 compares the execution times of the two approaches. Feasibility of a partition

can be checked by conducting synthesis and checking whether the resources are sufficient.

However, this is very time consuming. Therefore, in order to identify infeasible partitions

(line 6 and 16 in Algorithm 3), we use a quick area estimation technique that is explained

in the next section.

6.3 Estimating Area: Does it Fit?

Whenever one talks about FPGA design, resource limitations are a major issue, and it is

always important to know whether the desired design fits in the limited FPGA resources.

Especially because hardware synthesis takes so much time, if the design finally does not

153

fit on the target architecture, a lot of precious time is wasted which makes exploration

considerably slower. In this section, we therefore provide the necessary area estimation

formulae. Our experiments were done on Xilinx University Board containing a Virtex II

Pro XC2VP30, and the same methodology can be applied to compute similar formulae

for other target architectures as well. ISE 8.2i and EDK 8.2i were used for synthesis.

An FSL can be implemented either using block RAMs or using LUTs (lookup ta-

bles) in the FPGA. Each LUT in the Virtex II Pro series has 4 inputs. In the LUT

implementation, the FIFO is synthesized using logic, while in BRAM implementation

embedded dual-port block RAMs are used to synthesize these channels. Since both are

crucial resources, we did the whole experiment with both these options. Following four

sets of experiments were done.

• Vary FSL, with BRAM: Base design of one Microblaze and one FSL, incrementing

FSL count to eight, with FSLs implemented using BRAMs.

• Vary FSL, with logic: Base design of one Microblaze and one FSL, incrementing

FSL count to eight, with FSLs implemented using logic.

• Vary Microblaze, with BRAM FSL: Base design of one Microblaze and 8 FSLs

in total, incrementing Microblaze count to eight, with FSLs implemented using

BRAMs.

• Vary Microblaze, with logic FSL: Base design of one Microblaze and 8 FSLs in total,

incrementing Microblaze count to eight, with FSLs implemented using logic.

Each FSL was set to a depth of 128 elements3. For a 32-bit element this translates to

512-byte memory. A BRAM in this device can hold 2kB of data, translating to 512

elements per BRAM. The number of slices, LUTs and BRAMs utilized was measured

for all experiments. Results of the first two sets are shown in Figure 6.4 and of the next

two are shown in Figure 6.5. The increase in the total logic utilized is fairly linear as

expected. In Virtex II Pro family each FPGA slice contains 2 LUTs, but often not both

are used. Thus, we need to take slice utilization also into account. LUT utilization is

shown as the measure of logic utilized in the design.

3It is also possible to set the FIFO depth in the specification, but we used a constant number for this
study to minimize the number of variables.

154

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5 6 7 8

R
es

ou
rc

es
 u

se
d

Number of FSLs in the design

Logic FSL: Total LUTs
Logic FSL: Slices

BRAM FSL: Total LUTs
BRAM FSL: Slices

Figure 6.4: Increase in the number of LUTs and FPGA Slices use d with changes in the number of

FSLs in design.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8

R
es

ou
rc

es
 u

se
d

Number of Microblazes in the design

Logic FSL: Total LUTs
Logic FSL: Slices

BRAM FSL: Total LUTs
BRAM FSL: Slices

Figure 6.5: Increase in the number of LUTs and FPGA Slices use d as the number of Microblaze

processors is increased.

155

Table 6.1: Resource utilization for different components i n the design

Total Base Design Each Fast Simplex Link Each Microblaze
BRAM Impl Logic Impl

BRAM 136 0 1 0 4 (32)
LUTs 27392 1646 60 622 1099
Slices 13696 1360 32 322 636

Table 6.1 shows the resource utilization for different components in the design ob-

tained by applying linear regression on the results of experiments. The second column

shows the total resources present in XC2VP30. The next column shows the utiliza-

tion for a basic design containing OPB (on-chip peripheral bus), the CF card controller,

timer and serial I/O. The next two columns show the resources used for each dedicated

point-to-point channel in the design.

The last column in Table 6.1 shows the same for Microblaze in the design. In our

design one Microblaze is assigned the task of communicating with the host and writing

the results to the CF card. This core was designed with a much bigger memory for

instruction and data. It uses 32 BRAMs in total, translating to 32 kB memory each for

data and instructions. The other cores have a much smaller memory at only 4kB each

for data and instructions.

It is easy to obtain the total resource count that will be utilized upon synthesis. In

our tool we also output the same and use it as a means to estimate whether the design

would fit in the given resources. In all our experiments so far, our estimates have been

very accurate and differ by hardly one or two percent when compared to actual resource

utilization. For BRAM, the estimate is always exact.

Packing the most

In our tool, we first try to assign as many FSL channels to BRAM as possible. After all

the BRAMs on the device are used, we assign them to LUT. BRAM implementation is

faster to synthesize since only the access logic to the memory has to be synthesized, while

in LUT implementation the whole FIFO is constructed using logic. It should be noted,

however, that since BRAM implementation assigns the whole memory block in discrete

amounts, it might be a waste of resources to assign the whole block when a FIFO of small

depth is needed. Currently, this trade-off is not taken into account in our tool. Further,

it might also be interesting to allow sharing of BRAM for multiple FIFOs. However, this

156

requires extra control logic and arbitration to ensure fairness.

6.4 Experiments and Results

In this section, we present some of the results that were obtained by implementing sev-

eral real and randomly-generated application SDF graphs. Here we show that our flow

reduces the implementation gap between system level and RTL level design, and allows

for more accurate performance evaluation using an emulation platform compared to sim-

ulation [TFG+07] and analysis. Further, we see how our use-case partitioning approach

minimizes the number of hardware designs by studying an example of applications run-

ning in a high-end mobile phone.

Our implementation platform is the Xilinx XUP Virtex II Pro Development Board

with an xc2vp30 FPGA on-board. Xilinx EDK 8.2i and ISE 8.2i were used for synthesis

and implementation. All tools run on a Pentium 4 Core at 3GHz with 1GB of RAM.

6.4.1 Use-case Partitioning

In this section, we show the effectiveness of our approach to partition use-cases, and

the heuristics to optimize on the execution time. This is demonstrated first using some

random test cases and then with a case study involving applications in a mobile phone.

Using 10 random application SDF models, we generated all possible combinations

giving a total of 1023 use-cases. We found that only 853 of these were feasible; the rest

required more resources than were present on our FPGA device. In general, most use-

cases of up to 6 applications could fit on the FPGA, while only a couple of use-cases with

7 applications were feasible.

When trying to compute partitions using the greedy method directly on these 853 use-

cases, the algorithm terminated after 30 minutes without any result since there were too

many sets to consider. When using the first-fit heuristic on these use-cases we obtained

a total of 145 partitions in 500 milli-seconds. However, since this approach is dependent

on the order of use-cases, another order gave us a partition count of 126 in about 400

milli-seconds. After applying our reduction technique on feasible use-cases, 178 non-

trivial use-cases were obtained. The greedy approach on these use-cases terminated in

3.3 seconds and resulted in 112 partitions. The first-fit heuristic on the non-trivial cases

157

took 300 milli-seconds and gave 125 partitions, while another order of use-cases gave 116

partitions in about the same time.

A couple of observations can be made from this. Our techniques of use-case reduction

are very effective in pruning the search space. Up to 80% of the use-cases are pruned

away as trivial. This is essential in this case for example, when otherwise no results are

obtained for greedy. We observe that while the first-fit heuristic is a lot faster, the results

depend heavily on the order of input use-cases. However, if the search space is large,

first-fit may be the only heuristic for obtaining results.

6.4.2 Mobile-phone Case Study

Here we consider 6 applications – video encoding (H263) [Hoe04], video decoding [Stu07],

JPEG decoding [dK02], mp3 decoding, modem [BML99], and a voice call. We first

constructed all possible use-cases giving 63 use-cases in total. Some of these use-cases

are not realistic, for example, JPEG decoding is unlikely to run together with video

encoding or decoding, because when a person is recording or watching video, he/she will

not be browsing the pictures. Similarly, listening to mp3 while talking on the phone is

unrealistic. After pruning away such unrealistic use-cases we were left with 23 use-cases.

After reduction to non-trivial use-cases, only 3 use-cases remained.

A greedy approach only works on the set after reduction. We observe that 23 use-

cases is too much to handle if there are a lot of possible sub-sets. (In the previous example

with 10 applications, we obtained 178 use-cases after reduction but since no partition was

able to fit more than 4 use-cases, the total number of possible sets was limited.) After

reduction, however, the greedy algorithm gives two partitions in 180 milli-seconds. The

same results are obtained with the first-fit heuristic. However, the first-fit heuristic also

solves the problem without pruning away the use-cases. Here the order only affects which

trivial use-cases are attached to the non-trivial use-cases. In total, since we have only 2

partitions, performance of all the 23 use-cases is determined in about 2 hours. Without

this reduction it would have taken close to 23 hours. Use-case merging and partitioning

approach leads to a 11-fold reduction. The results are fed to the computer and stored on

the CF card for later retrieval.

Table 6.2 shows how well our use-case reduction and partitioning heuristics perform.

The time spent in corresponding steps is also shown. Reduction to non-trivial use-cases

158

Table 6.2: Performance evaluation of heuristics used for us e-case reduction and partitioning

Random Graphs Mobile Phone
Partitions Time (ms) # Partitions Time (ms)

Without Merging 853 - 23 -
Without

Greedy Out of Memory - Out of Memory -
Reduction

First-Fit 126 400 2 200
Without Merging 178 100 3 40

With
Greedy 112 3300 2 180

Reduction
First-Fit 116 300 2 180

Optimal Partitions ≥ 110 - 2 -
Reduction Factor 7 - 11 -

for mobile-phone case study takes 40 milli-seconds, for example, and leaves us with only 3

use-cases. As mentioned earlier, the greedy heuristic for partitioning does not terminate

with the available memory resources, when applied without reducing the use-cases. The

design-space is too large to evaluate the largest feasible set. After reducing to non-feasible

use-cases for random-graphs, we obtain 178 use-cases and at most 4 use-cases fit in any

partition. Since the maximum error in using the greedy approach is given by ln|X| + 1,

where X is the number of elements in the largest partition, we get a maximum error of

ln|4| + 1 i.e. 2.38. We can therefore be sure that the minimum number of partitions is

at least 110. We see a 7-fold reduction in the number of hardware configurations in the

random-graphs use-case and about 11-fold in the mobile phone case study. Therefore,

we can conclude that our heuristics of use-case reduction and partition are very effective

in reducing the design time and in reducing the number of partitions.

Reconfiguration Time

The time to reconfigure an FPGA varies with the size of configuration file and the mode of

reconfiguration. For Virtex II Pro 30, the configuration file is about 11 Mbits. The used

CF card controller provides configuration bandwidth of 30 Mbit/s, translating to about

370 milli-seconds for reconfiguration. Configuring through the on-board programmable

memory is a lot faster since it provides bandwidth of up to 800 Mbit/s. Thus, for the

above FPGA device it takes only about 13 milli-seconds. The USB connection is a lot

slower, and often takes about 8 seconds. However, for the end-design, we expect the

configurations to be stored in a programmable memory on board that are retrieved as

and when use-cases are enabled. A typical mobile-phone user is unlikely to start a new

use-case more than once every few minutes. Therefore, the reconfiguration overhead of 13

159

milli-seconds is not significantly large, and is amortized over the duration of the use-case.

6.5 Related Work

The multiple use-case concept is relatively new to the MPSoC, and one of the related

research done is presented in [MCR+06]. However, this focuses on supporting multiple

use-cases for the communication infrastructure, in particular network-on-chip. Our flow

is mainly targeted towards supporting multiple use-cases from computation perspective.

In addition, we generate dedicated point-to-point connections for all the use-cases that

are to be supported. It should be mentioned that links are shared across use-cases but

not within the use-case.

Our definition of a use-case is similar to what is defined as a scenario in [PTB06].

The authors in [PTB06] motivate the use of a scenario-oriented (or use-case in our paper)

design flow for heterogeneous MPSoC platforms. Our approach provides one such design

flow where designers can study the performance of all use-cases in an automated way and

tune the architecture to achieve better performance of all applications in a use-case. The

biggest advantage of our approach is that we provide a real synthesized MPSoC platform

for designers to play with and measure performance. Further, in [PTB06] the architecture

is provided as an input and is static, while we generate platforms given the application

and use-case descriptions and the architecture is changed (reconfigured) dynamically for

the different use-cases.

6.6 Conclusions

In this chapter, we propose a design-flow to generate architecture designs for multiple

use-cases. Our approach takes the description of multiple use-cases and produces the

corresponding MPSoC platform. A use-case is defined as a set of applications active

concurrently. This is the first flow that allows mapping of multiple use-cases on a single

platform. We propose techniques to merge and partition use-cases in order to minimize

hardware requirements. The tool developed using this flow is made available online,

and a stand-alone GUI tool is developed for both Windows and Linux. The flow allows

the designers to traverse the design space quickly, thus making DSE of even concurrently

executing applications feasible. The heuristics used for use-case merging and partitioning

160

reduce the design-exploration time 11-fold in a case study with mobile phone applications.

Further, we provide techniques to estimate resource utilization in an FPGA without

carrying out the actual synthesis. This saves precious time during DSE and is very

accurate as verified by the results. Our approach is also capable of minimizing the number

of reconfigurations in the system. The use-case partitioning algorithm can be adapted

to consider the relative frequency of the use of each use-case. The use-cases should be

first sorted in the decreasing order of their use, and then the first-fit algorithm proposed

in an earlier section should be applied. The algorithm will therefore first pack all the

most frequently used use-cases together in one hardware partition, thereby reducing the

reconfiguration from one frequently used use-case into another. However, for an optimal

solution of the partition problem, many other parameters need to be taken into account,

for example, reconfiguration time and average duration for each use-case. We would like

to extend the use-case partitioning algorithm to take the exact reconfiguration overhead

into account.

We would also like to develop and automate more ways of design space exploration,

for example trying different mappings of applications. We would also like to try different

kinds of arbiters in the design to improve fairness and allow for load-balancing between

multiple applications.

161

CHAPTER 7

Conclusions and Future Work

In this chapter, the major conclusions from this thesis are presented, together with several

issues that remain to be solved.

7.1 Conclusions

The design of multimedia platforms is becoming increasingly more complex. Modern

multimedia systems need to support a large number of applications or functions in a

single device. To achieve high performance in such systems, more and more processors are

being integrated into a single chip to build Multi-Processor Systems-on-Chip (MPSoCs).

The heterogeneity of such systems is also increasing with the use of specialized digital

hardware, application domain processors and other IP (intellectual property) blocks on a

single chip, since various standards and algorithms are to be supported. These embedded

systems also need to meet timing and other non-functional constraints like low power

and design area. Further, processors designed for multimedia applications (also known

as streaming processors) often do not support preemption to keep costs low, making

traditional analysis techniques unusable.

To achieve high performance in such systems, the limited computational resources

must be shared. The concurrent execution of dynamic applications on shared resources

162

causes interference. The fact that these applications do not always run concurrently

only adds a new dimension to the design problem. We defined each such combination

of applications executing concurrently as a use-case. Currently, companies often spend

60-70% of the product development cost in verifying all feasible use-cases. Having an

efficient, but accurate analysis technique can significantly reduce this development cost.

Since applications are often added to the system at run-time (for example, a mobile-phone

user may download a Java application at run-time), a complete analysis at design-time is

also not feasible. Existing techniques are unable to handle this dynamism, and the only

solution left to the designer is to over-dimension the hardware by a large factor leading

to increased area, cost and power.

In Chapter 3 of this thesis, a run-time performance prediction methodology is pre-

sented that can accurately and quickly predict the performance of multiple applications

before they execute in the system. Synchronous data flow (SDF) graphs are used to model

applications, since they fit well with characteristics of multimedia applications, and at

the same time allow analysis of application performance. Further, their atomic execution

requirement matches well with the non-preemptive nature of many streaming processors.

While a lot of techniques are available to analyze performance of single applications, for

multiple applications this task is a lot harder and little work has been done in this direc-

tion. This thesis presents one of the first attempts to analyze performance of multiple

applications executing on heterogeneous non-preemptive multiprocessor platforms.

Our technique uses performance expressions computed off-line from the application

specifications. A run-time iterative probabilistic analysis is used to estimate the time

spent by tasks during the contention phase, and thereby predict the performance of

applications. The average error in prediction using iterative probability is only 2% and the

maximum error is 3%. Further, it takes about four to six iterations for the prediction to

converge. The complexity and execution time of the algorithm is very low – it takes only

3ms to evaluate the performance of ten applications on a 50MHz embedded processor.

This also proves the suitability of the technique for design space exploration on a regular

desktop running at about 3GHz where the same analysis takes just 50 microseconds.

Further, we presented a design-flow for designing systems with multiple applications

in Chapter 4. A hybrid approach is presented where the time-consuming application-

specific computations are done at design-time, and in isolation from other applications,

163

and the use-case-specific computations are performed at run-time. This allows easy

addition of applications at run-time. Further, a run-time mechanism is presented to

manage resources in a system. This ensures that no application starves due to another

application. This mechanism enforces budgets and suspends applications if they achieve

a higher performance than desired. This allows other applications to also achieve their

desired performance. A resource manager (RM) is presented to manage computation

and communication resources, and to achieve the above goals of performance prediction,

admission control and budget enforcement. A case-study done with two application

models – H263 and JPEG, shows the effectiveness of budget enforcement in achieving

the desired performance of both applications.

With high consumer demands the time-to-market has become significantly lower. To

cope with the complexity in designing such systems, a largely automated design-flow is

needed that can generate systems from a high-level architectural description such that

they are not error-prone and their design consumes less time. A highly automated flow –

MAMPS (Multi-Application Multi-Processor Synthesis) is presented in Chapter 5, that

synthesizes multi-processor platforms for multiple applications specified in the form of

SDF graph models. The flow has been used to implement a tool that directly gener-

ates multi-processor designs for Xilinx FPGAs, complete with hardware and software

descriptions. A case study done with the tool shows the effectiveness of the tool in which

24 design points were explored to compute the optimal buffer requirements of multiple

applications in about 45 minutes including FPGA synthesis time.

One of the key design automation challenges that remain is fast exploration of soft-

ware and hardware implementation alternatives with accurate performance evaluation,

also known as design space exploration (DSE). A design methodology is presented in

Chapter 6 to generate multiprocessor systems in a systematic and fully automated way

for multiple use-cases. Techniques are presented to merge multiple use-cases into one

hardware design to minimize cost and design time, making it well-suited for fast DSE

of MPSoC systems. Heuristics to partition use-cases are also presented such that each

partition can fit in an FPGA, and all use-cases can be catered for. A case study with

mobile-phone applications shows an 11-fold reduction in DSE time.

164

7.2 Future Work

While this thesis presents solutions to various problems in analysis, design and man-

agement of multimedia multiprocessor systems, a number of issues remain to be solved.

Some of these are listed below.

1. Hard-real time support: While the analysis techniques presented in this thesis

are aimed towards multimedia systems that do not require a hard-bound on perfor-

mance, they can easily be extended to support hard-real time applications as well.

However, as has been mentioned earlier, that generally translates to a poor resource

utilization. Techniques that can achieve high utilization and provide hard-bounds

on performance still need to be developed. One option is to consider joining mul-

tiple application graphs with very few edges – only the minimum number needed

to achieve rate-control – and then derive a static-order for that graph. This would

achieve high-utilization and provide hard-bounds on performance. However, a po-

tential drawback of this scheme is that for every possible use-case, a static order has

to be stored, and care has to be taken that the system does not go into deadlock

while switching between use-cases.

2. Soft-real time guarantee: The analysis technique presented in Chapter 3 is

very accurate and fast. However, it does not provide any guarantee on the accuracy

of the results. Even for soft-real time applications like video and audio processing,

some sort of measure of accuracy of results is desirable. Extending the probabilistic

analysis to support this would increase the potential of this analysis technique.

The designer wants to know how the applications would perform with the given

resources, and accordingly increase or decrease the resources needed for system

design.

3. Model network and memory: In this thesis, we have often ignored the con-

tention for memory and network resources. Even though, in theory, this contention

can be naturally modeled in SDF graph as well, it remains to be seen how well

the technique applies, and how does it affect the performance of multiple appli-

cations. With a complete design-flow where the memory and network contention

are also modeled, a designer will be able to make choices about the distribution of

165

memory and network resources in the system, and about the allocation to different

applications.

4. SDF derivation: Throughout this thesis, we have assumed that an SDF model

of application has already been derived. In practice, this task can be very time

consuming, and mostly manual. Automated extraction of parallel models from a

sequential specification of an application is still an open problem. While a lot of

tools are available to help in this derivation, most of them require extensive human

interaction. This makes the design space exploration very time-consuming. The

extraction of worst-case execution-times needed for each task is also very difficult.

While static code analysis can provide very high estimates for task execution-time,

profiling is only as accurate as the input sequence. This makes the compromise

between an accurate and reasonable model rather difficult.

5. Other models: In this thesis, we have used synchronous dataflow for modeling

applications. While these models are very good in expressing streaming behaviour,

they are not always the best for expressing the dynamism in the applications. A

number of other models are available that allow for dynamic behaviour in the model,

e.g. CSDF, SADF and KPN. While CSDF is still static, it allows for different chan-

nel rates during different iterations of the actors. Developing analysis techniques

for those models would help provide predictability to dynamic applications as well,

and satisfy both the designers and the consumers.

6. Achieving predictability in suspension: In Section 4.3, a technique has been

suggested to achieve predictability by using suspension. This technique is very

powerful as it allows the designer to specify the desired application performance. By

varying the time the system spends in each state, the performance of applications

can be changed. While the basic idea has been outlined, the size of the time-

wheel affects the performance significantly. The technique can also be adapted to

support hard-real time tasks by using a conservative analysis, such as worst-case

waiting-time analysis.

7. Design space exploration heuristics: In this thesis, we have concentrated

on enabling design space exploration. Various techniques are provided for perfor-

mance analysis of multiple applications to give feedback to the designer. Further,

166

hardware design flow for rapid prototyping and performance evaluation is provided.

However, we have not focused on heuristics to explore mapping options for opti-

mizing performance and generating designs that satisfy the constraints of area and

power.

8. Optimizing the use-case partitions: The use-case partitioning algorithm can

be adapted to consider the relative frequency of the use of each use-case. The

use-cases can first be sorted in the decreasing order of their use, and then the

first-fit algorithm can be applied. The algorithm can therefore first pack all the

most frequently used use-cases together in one hardware partition, thereby reducing

the reconfiguration from one frequently used use-case into another. However, for

an optimal solution of the partition problem, many other parameters need to be

taken into account, for example reconfiguration time and average duration for each

use-case. More research needs to be done in this to verify the suitability and

effectiveness of this approach.

The above are some of the issues that need to be solved to take the analysis, design

and management of multimedia multiprocessor systems into the next era.

167

Bibliography

[AAC+03] A. Artieri, VD Alto, R. Chesson, M. Hopkins, and M.C. Rossi. Nomadik

Open Multimedia Platform for Next-generation Mobile Devices. Technical

Article TA305, ST Microelectronics, 2003.

[AB99] L. Abeni and G. Buttazzo. QoS guarantee using probabilistic deadlines.

In Proceedings of the 11th Euromicro Conference on Real-Time Systems,

1999., pages 242–249, York, UK, 1999. IEEE.

[ABC+06] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands,

K. Keutzer, D.A. Patterson, W.L. Plishker, J. Shalf, S.W. Williams, et al.

The Landscape of Parallel Computing Research: A View from Berkeley.

Technical Report 2006-183, Electrical Engineering and Computer Sciences,

University of California Berkeley, December 2006.

[Ade08] S. Adee. the data: 37 years of moore’s law. Spectrum, IEEE, 45(5):56–56,

May 2008.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In AFIPS ’67 (Spring): Proceedings of

the April 18-20, 1967, spring joint computer conference, pages 483–485,

New York, NY, USA, 1967. ACM.

168

[BABP06] Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi, and Antonio Pog-

giali. Supporting task migration in multi-processor systems-on-chip: a fea-

sibility study. In DATE ’06: Proceedings of the conference on Design, au-

tomation and test in Europe, pages 15–20, 3001 Leuven, Belgium, Belgium,

2006. European Design and Automation Association.

[Bar06] S. Baruah. The non-preemptive scheduling of periodic tasks upon multi-

processors. Real-Time Systems, 32(1):9–20, 2006.

[BCPV96] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate

progress: A notion of fairness in resource allocation. Algorithmica, 15:600–

625, 1996.

[BELP96] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static

dataflow. Signal Processing, IEEE Transactions on, 44(2):397–408, Feb

1996.

[BHM+05] Marco Bekooij, Rob Hoes, Orlando Moreira, Peter Poplavko, Milan Pas-

trnak, Bart Mesman, Jan David Mol, Sander Stuijk, Valentin Gheorghita,

and Jef van Meerbergen. Dataflow analysis for real-time embedded multi-

processor system design. In Dynamic and Robust Streaming in and between

Connected Consumer-Electronic Devices, pages 81–108. Springer, 2005.

[BKKB02] Neal Bambha, Vida Kianzad, Mukul Khandelia, and Shuvra S. Bhat-

tacharyya. Intermediate representations for design automation of multipro-

cessor DSP systems. Design Automation for Embedded Systems, 7(4):307–

323, 2002.

[BL93] J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs with bounded

memory using the token flow model. Acoustics, Speech, and Signal Process-

ing, 1993. ICASSP-93., 1993 IEEE International Conference on, 1:429–432

vol.1, Apr 1993.

[Blu04] SIG Bluetooth. Bluetooth Specification Version 2.0+ EDR. Bluetooth SIG

Standard, 2004.

169

[BML99] S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee. Synthesis of Embedded

Software from Synchronous Dataflow Specifications. The Journal of VLSI

Signal Processing, 21(2):151–166, 1999.

[BMS96] T.F. Baldwin, D.S. McVoy, and C. Steinfield. Convergence: Integrating

Media, Information & Communication. Sage Publications, 1996.

[Bor07] Shekhar Borkar. Thousand core chips: a technology perspective. In DAC

’07: Proceedings of the 44th annual conference on Design automation, pages

746–749, New York, NY, USA, 2007. ACM.

[CDVS07] Johan Cockx, Kristof Denolf, Bart Vanhoof, and Richard Stahl. Sprint: a

tool to generate concurrent transaction-level models from sequential code.

EURASIP Journal on Applied Signal Processing, 2007(1):213–213, 2007.

[CES09] CES. Consumer electronics show. Available from: http://www.cesweb.org/,

2009.

[CK96] Y. Cai and M. C. Kong. Nonpreemptive scheduling of periodic tasks in uni-

and multiprocessor systems. Algorithmica, 15(6):572–599, 1996.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to

Algorithms, Second Edition. MIT Press, Cambridge, MA, USA, 2001.

[Cum03] Peter Cumming. Winning the SoC Revolution, chapter THE TI OMAP

PLATFORM APPROACH TO SOC. Kluwer Academic Publishers, 2003.

[Das04] Ali Dasdan. Experimental analysis of the fastest optimum cycle ratio and

mean algorithms. ACM Trans. Des. Autom. Electron. Syst., 9(4):385–418,

2004.

[DBC+07] Kristof Denolf, Marco Bekooij, Johan Cockx, Diederik Verkest, , and Henk

Corporaal. Exploiting the expressiveness of cyclo-static dataflow to model

multimedia implementations. EURASIP Journal on Advances in Signal

Processing, 2007, 2007.

[DD86] S. Davari and S. K. Dhall. An on line algorithm for real-time tasks alloca-

tion. IEEE Real-time Systems Symposium, pages 194–200, 1986.

170

[dK02] E.A. de Kock. Multiprocessor mapping of process networks: a JPEG de-

coding case study. In Proceedings of 15th ISSS, pages 68–73, Los Alamitos,

CA, USA, 2002. IEEE Computer Society.

[EGCMT70] Jr. E. G. Coffman, R. R. Muntz, and H. Trotter. Waiting time distributions

for processor-sharing systems. J. ACM, 17(1):123–130, 1970.

[Gao83] G.R. Gao. A pipelined code mapping scheme for static data flow computers.

PhD thesis, Massachusetts Institute of Technology, 1983.

[GDR05] K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip:

concepts, architectures, and implementations. IEEE Design and Test of

Computers, 22(5):414–421, 2005.

[GGBS08] A.H. Ghamarian, M.C.W. Geilen, T. Basten, and S. Stuijk. Parametric

throughput analysis of synchronous data flow graphs. In Design Automation

and Test in Europe, pages 116–121, Los Alamitos, CA, USA, 10-14 March

2008. IEEE Computer Society.

[GGS+06] A.H. Ghamarian, M.C.W. Geilen, S. Stuijk, T. Basten, B.D. Theelen, M.R.

Mousavi, A.J.M. Moonen, and M.J.G. Bekooij. Throughput Analysis of

Synchronous Data Flow Graphs. In Sixth International Conference on

Application of Concurrency to System Design, (ACSD), pages 25–36, Los

Alamitos, CA, USA, 2006. IEEE Computer Society.

[Gha08] A.H. Ghamarian. Timing Analysis of Synchronous Data Flow Graphs. PhD

thesis, Eindhoven University of Technology, 2008.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. WH Freeman & Co., New York, NY, USA,

1979.

[Gon00] R.E. Gonzalez. Xtensa: a configurable and extensible processor. Micro,

IEEE, 20(2):60–70, Mar/Apr 2000.

[Hal05] TR Halfhill. Busy Bees at Silicon Hive. Microprocessor Report, June 2005.

[Hiv09] Silicon Hive. Silicon hive. Available from: http://www.siliconhive.com,

2009.

171

[HM03] T. Halonen and J. Melero. GSM, GPRS and EDGE Performance: Evolu-

tion Towards 3G/UMTS. Wiley, 2003.

[HM08] M.D. Hill and M.R. Marty. Amdahl’s law in the multicore era. Computer,

41(7):33–38, July 2008.

[Hoe04] R. Hoes. Predictable Dynamic Behavior in NoC-based MPSoC. Available

from: www.es.ele.tue.nl/epicurus/, 2004.

[HOL09] HOL. Head-of-line blocking [Online].

Available from: http://en.wikipedia.org/wiki/Head-of-line_

blocking, 2009.

[HQB07] Shaoxiong Hua, Gang Qu, and Shuvra S. Bhattacharyya. Probabilistic

design of multimedia embedded systems. Trans. on Embedded Computing

Sys., 6(3):15, 2007.

[Int09] Intel. Intel press kit. Available from:

http://www.intel.com/pressroom/kits/45nm/index.htm, 2009.

[JB06] Ahmed Jerraya and Iuliana Bacivarov. Performance Evaluation Methods

for Multiprocessor System-on-Chip Design. In EDA for IC System Design,

Verification and Testing, pages 6.1–6.14. Taylor and Francis, 2006.

[JSM91] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling

of periodic and sporadic tasks. In Proceedings of 12th IEEE Real-Time

Systems Symposium, pages 129–139, 1991.

[JSRK05] Yujia Jin, Nadathur Satish, Kaushik Ravindran, and Kurt Keutzer. An

automated exploration framework for FPGA-based soft multiprocessor sys-

tems. In 3rd CODES+ISSS, pages 273–278, Los Alamitos, CA, USA, 2005.

IEEE Computer Society.

[JW04] Ahmed Jerraya and Wayne Wolf. Multiprocessor Systems-on-Chips. Morgan

Kaufmann, San Francisco, CA, 2004.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.

Information Processing, 74:471–475, 1974.

172

http://en.wikipedia.org/wiki/Head-of-line_blocking
http://en.wikipedia.org/wiki/Head-of-line_blocking

[KB97] JM Kahn and JR Barry. Wireless infrared communications. Proceedings of

the IEEE, 85(2):265–298, 1997.

[KDH+05] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and

D. Shippy. Introduction to the Cell multiprocessor, 2005.

[KFH+07] Akash Kumar, Shakith Fernando, Yajun Ha, Bart Mesman, and Henk Cor-

poraal. Multi-processor System-level Synthesis for Multiple Applications

on Platform FPGA. In Proceedings of 17th International Conference on

Field Programmable Logic and Applications, pages 92–97, New York, NY,

USA, 2007. IEEE Circuits and Systems Society.

[KFH+08] Akash Kumar, Shakith Fernando, Yajun Ha, Bart Mesman, and Henk Cor-

poraal. Multiprocessor systems synthesis for multiple use-cases of multiple

applications on fpga. ACM Trans. Des. Autom. Electron. Syst., 13(3):1–27,

2008.

[KHHC07] Akash Kumar, Andreas Hansson, Jos Huisken, and Henk Corporaal. An

FPGA Design Flow For Reconfigurable Network-Based Multi-Processor

Systems On Chip. In Design, Automation and Test in Europe, pages 117–

122, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

[KM66] Richard M Karp and Raymond E Miller. Properties of a model for parallel

computations: Determinancy, termination, queueing. SIAM Journal on

Applied Mathematics, 14(6):1390–1411, nov 1966.

[KMC+06] Akash Kumar, Bart Mesman, Henk Corporaal, Jef van Meerbergen, and

Ha Yajun. Global Analysis of Resource Arbitration for MPSoC. In DSD

’06: Proceedings of the 9th EUROMICRO Conference on Digital System

Design, pages 71–78, Washington, DC, USA, 2006. IEEE Computer Society.

[KMC+07] Akash Kumar, Bart Mesman, Henk Corporaal, Bart Theelen, and Yajun

Ha. A probabilistic approach to model resource contention for performance

estimation of multi-featured media devices. In Design Automation Confer-

ence, pages 726–731, New York, NY, USA, 2007. ACM.

173

[KMCH08] Akash Kumar, Bart Mesma, Henk Corporaal, and Yajun Ha. Accurate Run-

Time Performance Prediction for Multi-Application Multi-Processor Sys-

tems. Technical report, Tech. Univ. Eindhoven, http://www.es.ele.

tue.nl/esreports/, 2008.

[KMN+00] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-

Vincentelli. System-level design: Orthogonalization of concerns and

platform-based design. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 19(12):1523–1543, December 2000.

[KMT+06] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and H. Yajun. Resource

manager for non-preemptive heterogeneous multiprocessor system-on-chip.

In ESTMED ’06: Proceedings of the 2006 IEEE/ACM/IFIP Workshop on

Embedded Systems for Real Time Multimedia, pages 33–38, Washington,

DC, USA, 2006. IEEE Computer Society.

[KMT+08] Akash Kumar, Bart Mesman, Bart Theelen, Henk Corporaal, and Yajun

Ha. Analyzing composability of applications on mpsoc platforms. J. Syst.

Archit., 54(3-4):369–383, 2008.

[KO02] H. Kopetz and R. Obermaisser. Temporal composability [real-time embed-

ded systems]. Computing & Control Engineering Journal, 13(4):156–162,

Aug 2002.

[KPBT06] S. Kunzli, F. Poletti, L. Benini, and L. Thiele. Combining Simulation

and Formal Methods for System-level Performance Analysis. In Design,

Automation and Test in Europe, volume 1, pages 1–6. IEEE, 2006.

[KS03] Hermann Kopetz and Neeraj Suri. Compositional design of rt systems:

A conceptual basis for specification of linking interfaces. In ISORC ’03:

Proceedings of the Sixth IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing (ISORC’03), page 51, Washington, DC,

USA, 2003. IEEE Computer Society.

[Lee91] E.A. Lee. Consistency in dataflow graphs. Parallel and Distributed Systems,

IEEE Transactions on, 2(2):223–235, Apr 1991.

174

http://www.es.ele.tue.nl/esreports/
http://www.es.ele.tue.nl/esreports/

[LH89] E.A. Lee and S. Ha. Scheduling strategies for multiprocessor real-time dsp.

In Global Telecommunications Conference, 1989, and Exhibition. Commu-

nications Technology for the 1990s and Beyond. GLOBECOM ’89., IEEE,

volume 2, pages 1279–1283, 1989.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[LM87] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous

dataflow programs for digital signal processing. IEEE Transactions on

Computers, 36(1):24–35, Feb 1987.

[LWAP94] R. Lauwereins, P. Wauters, M. Ade, and J.A. Peperstraete. Geometric

parallelism and cyclo-static data flow in grape-ii. Rapid System Prototyping,

1994. Shortening the Path from Specification to Prototype. Proceedings.,

Fifth International Workshop on, pages 90–107, Jun 1994.

[LWM+02] Rudy Lauwereins, Chun Wong, Paul Marchal, Johan Vounckx, Patrick

David, Stefaan Himpe, Francky Catthoor, and Peng Yang. Managing dy-

namic concurrent tasks in embedded real-time multimedia systems. In Pro-

ceedings of the 15th international symposium on System Synthesis, pages

112–119, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[LYBJ01] D. Lyonnard, S. Yoo, A. Baghdadi, and A.A. Jerraya. Automatic gener-

ation of application-specific architectures for heterogeneous multiprocessor

system-on-chip. In Design Automation Conference, pages 518–523, New

York, NY, USA, 2001. ACM Press.

[MAM09] MAMPS. Multi-Application Multi-Processor Synthesis [On-

line]. Username: todaes, Password: guest. Available at:

http://www.es.ele.tue.nl/mamps/, 2009.

[MCR+06] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli.

A methodology for mapping multiple use-cases onto networks on chips. In

Design, Automation and Test in Europe, pages 118–123, Los Alamitos, CA,

USA, 2006. IEEE Computer Society.

175

[MEP04] Sorin Manolache, Petru Eles, and Zebo Peng. Schedulability analysis of

applications with stochastic task execution times. Trans. on Embedded

Computing Sys., 3(4):706–735, 2004.

[MMB07] Orlando Moreira, Jacob Jan-David Mol, and Marco Bekooij. Online re-

source management in a multiprocessor with a network-on-chip. In SAC

’07: Proceedings of the 2007 ACM symposium on Applied computing, pages

1557–1564, New York, NY, USA, 2007. ACM.

[MMZ+02] R. Magoon, A. Molnar, J. Zachan, G. Hatcher, W. Rhee, S.S. Inc, and

N. Beach. A single-chip quad-band (850/900/1800/1900 MHz) direct con-

version GSM/GPRS RF transceiver with integrated VCOs and fractional-n

synthesizer. Solid-State Circuits, IEEE Journal of, 37(12):1710–1720, 2002.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.

Electronics Magazine, 38(8):114–117, 1965.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541–580, Apr 1989.

[NAE+08] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal. Run-

time management of a mpsoc containing fpga fabric tiles. Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, 16(1):24–33, jan 2008.

[NAMV05] V. Nollet, P. Avasare, J-Y. Mignolet, and D. Verkest. Low cost task migra-

tion initiation in a heterogeneous mp-soc. In Design, Automation and Test

in Europe, pages 252–253, Los Alamitos, CA, USA, 2005. IEEE Computer

Society.

[Nol08] Vincent Nollet. Run-time management for Future MPSoC Platforms. PhD

thesis, Eindhoven University of Technology, 2008.

[NSD06] H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor system design

with ESPAM. In Proceedings of the 4th CODES+ISSS, pages 211–216, New

York, NY, USA, 2006. ACM Press.

[NSD08] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and automated mul-

tiprocessor system design, programming, and implementation. Computer-

176

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

27(3):542–555, March 2008.

[OA03] J.A. De Oliveira and H. Van Antwerpen. Winning the SoC Revolution,

chapter The Philips Nexperia digial video platforms. Kluwer Academic

Publishers, 2003.

[Ody72] Magnavox Odyssey. World’s first video game console. Available from:

http://en.wikipedia.org/wiki/Magnavox Odyssey, 1972.

[OH04] H. Oh and S. Ha. Fractional rate dataflow model for efficient code synthesis.

Journal of VLSI Signal Processing, 37(1):41–51, May 2004.

[PD80] David A. Patterson and David R. Ditzel. The case for the reduced instruc-

tion set computer. SIGARCH Comput. Archit. News, 8(6):25–33, 1980.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-

Westfälisches Institut f. instrumentelle Mathematik an d. Univ., 1962.

[Phi09] Philips. Royal philips. Available from: www.philips.com, 2009.

[PL95] J.L. Pino and E.A. Lee. Hierarchical static scheduling of dataflow graphs

onto multipleprocessors. In Acoustics, Speech, and Signal Processing, 1995.

ICASSP-95., 1995 International Conference on, volume 4, pages 2643–

2646, Detroit, MI, USA, 1995. IEEE.

[PS309] PS3. Sony playstation 3. Available from: http://www.playstation.com/,

2009.

[PTB06] J. M. Paul, D. E. Thomas, and A. Bobrek. Scenario-oriented design for

single-chip heterogeneous multiprocessors. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 14(8):868–880, August 2006.

[RJE03] K. Richter, M. Jersak, and R. Ernst. A formal approach to MPSoC perfor-

mance verification. Computer, 36(4):60–67, 2003.

[Rob00] T.G. Robertazzi. Computer Networks and Systems: Queueing Theory and

Performance Evaluation. Springer, 2000.

177

[Ros08] P.E. Ross. Why cpu frequency stalled. Spectrum, IEEE, 45(4):72–72, April

2008.

[Roz01] E. Roza. Systems-on-chip: what are the limits? ELECTRONICS AND

COMMUNICATION ENGINEERING JOURNAL, 13(6):249–255, 2001.

[RVB07] Sean Rul, Hans Vandierendonck, and Koen De Bosschere. Function level

parallelism driven by data dependencies. ACM SIGARCH Computer Ar-

chitecture News, 35(1):55–62, 2007.

[Sam09] Samsung. Samsung. Available from: http://www.samsung.com, 2009.

[SB00] S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors; Scheduling

and Synchronization. Marcel Dekker, New York, NY, USA, 2000.

[SDF09] SDF3. SDF3: SDF For Free [Online]. Available at:

http://www.es.ele.tue.nl/sdf3/, 2009.

[SGB06a] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free. In Sixth

International Conference on Application of Concurrency to System Design

(ACSD)., pages 276–278, Los Alamitos, CA, USA, 2006. IEEE Computer

Society.

[SGB06b] S. Stuijk, M.C.W. Geilen, and T. Basten. Exploring trade-offs in buffer

requirements and throughput constraints for synchronous dataflow graphs.

In Design Automation Conference, pages 899–904, New York, NY, USA,

2006. ACM Press.

[SKMC08] Ahsan Shabbir, Akash Kumar, Bart Mesman, and Henk Corporaal. En-

abling mpsoc design space exploration on fpgas. In Proceedings of Inter-

national Multi Topic Conference (IMTIC), New York, NY, USA, 2008.

Springer.

[SKMC09] Ahsan Shabbir, Akash Kumar, Bart Mesman, and Henk Corporaal. En-

abling MPSoC Design Space Exploration on FPGAs, volume 20 of Commu-

nications in Computer and Information Science, chapter 44, pages 412–421.

Springer Berlin Heidelberg, 2009.

178

[Son09] Sony. World of sony. Available from: http://www.sony.com, 2009.

[Stu07] S. Stuijk. Predictable mapping of streaming applications on multiprocessors.

PhD thesis, Eindhoven University of Technology, 2007.

[SVCBS04] Alberto Sangiovanni-Vincentelli, Luca Carloni, Fernando De Bernardinis,

and Marco Sgroi. Benefits and challenges for platform-based design. In

DAC ’04: Proceedings of the 41st annual conference on Design automation,

pages 409–414, New York, NY, USA, 2004. ACM.

[SZT+04] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette. System

design using Kahn process networks: the Compaan/Laura approach. In

Design, Automation and Test in Europe, pages 340–345, Los Alamitos, CA,

USA, 2004. IEEE Computer Society.

[Tak62] L. Takacs. Introduction to the Theory of Queues. Greenwood Press, 1962.

[TCN00] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for schedul-

ing hard real-time systems. In Proceedings of ISCAS 2000 Geneva., vol-

ume 4, pages 101–104, Geneva, Switzerland, 2000. IEEE.

[TCWCS92] E. Teruel, P. Chrzastowski-Wachtel, J. Colom, and M. Silva. On weighted

t-systems. Application and Theory of Petri Nets 1992, pages 348–367, 1992.

[Ten09] Tensilica. Tensilica - the dataplane processor company. Available from:

http://www.tensilica.com, 2009.

[TFG+07] B.D. Theelen, O. Florescu, M.C.W. Geilen, J. Huang, P.H.A. van der Put-

ten, and J.P.M. Voeten. Software/Hardware Engineering with the Par-

allel Object-Oriented Specification Langauge. In Proceedings of the Fifth

ACM-IEEE International Conference on Formal Methods and Models for

Codesign, pages 139–148, Los Alamitos, CA, USA, 2007. IEEE Computer

Society.

[TGB+06] B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita,

and S. Stuijk. A Scenario-Aware Data Flow Model for Combined Long-

Run Average and Worst-Case Performance Analysis. In Proceedings of the

179

International Conference on Formal Methods and Models for Co-Design.

IEEE Computer Society Press, 2006.

[TNS06] TNS. Tns research [Online].

Available from: http://www.tns.lv/?lang=en&

fullarticle=true&category=showuid&id=2288, 2006.

[TW08] David Terr and Eric W. Weisstein. Symmetric polynomial. Available from:

mathworld.wolfram.com/SymmetricPolynomial.html, 2008.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,

Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,

Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter

Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-

time problem—overview of methods and survey of tools. Trans. on Embed-

ded Computing Sys., 7(3):1–53, 2008.

[Wik08] Wikipedia. Linear programming [Online].

Available from: http://en.wikipedia.org/wiki/Linear_

programming, 2008.

[Wol04] W. Wolf. The future of multiprocessor systems-on-chips. In Proceedings of

the 41st DAC ’04, pages 681–685, 2004.

[WS94] Shlomo Weiss and James E. Smith. IBM Power and PowerPC. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.

[Xil09] Xilinx. Xilinx Resource page [Online]. Available from: http://www.

xilinx.com, 2009.

[ZF93] H. Zhang and D. Ferrari. Rate-controlled static-priority queueing. In IN-

FOCOM ’93. Proceedings.Twelfth Annual Joint Conference of the IEEE

Computer and Communications Societies. Networking: Foundation for the

Future. IEEE, pages 227–236, San Francisco, CA, USA, 1993.

180

http://www.tns.lv/?lang=en&fullarticle=true&category=showuid&id=2288
http://www.tns.lv/?lang=en&fullarticle=true&category=showuid&id=2288
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Linear_programming
http://www.xilinx.com
http://www.xilinx.com

Glossary

Acronyms and abbreviations

ASIC Application specific integrated circuit

ASIP Application specific instruction-set processor

BDF Boolean dataflow

CF Compact flash

CSDF Cyclo static dataflow

DCT Discrete cosine transform

DSE Design space exploration

DSP Digital signal processing

FCFS First-come-first-serve

FIFO First-in-first-out

FPGA Field-programmable gate array

FSL Fast simplex link

HSDFG Homogeneous synchronous dataflow graph

IDCT Inverse discrete cosine transform

IP Intellectual property

JPEG Joint Photographers Expert Group

KPN Kahn process network

LUT Lookup table

181

MAMPS Multi-Application Multi-Processor Synthesis.

MB Microblaze

MoC Models of Computation

MCM Maximum cycle mean

MPSoC Multi-processor system-on-chip

POOSL Parallel object oriented specification language

QoS Quality-of-service

RAM Random access memory

RCSP Rate controlled static priority

RISC Reduced instruction set computing

RM Resource manager

RR Round-robin

RRWS Round-robin with skipping

RTL Register transfer level

SADF Scenario aware dataflow

SDF Synchronous dataflow

SDFG Synchronous dataflow graph

SMS short messaging service

TDMA Time-division multiple access

VLC Variable length coding

VLD Variable length decoding

VLIW Very long instruction word

WCET Worst case execution time

WCRT Worst case response time

XML Extensible markup language

Terminology and definitions

Actor A program segment of an application modeled as a vertex of a

graph that should be executed atomically.

Composability Mapping and analysis of performance of multiple applications on

a multiprocessor platform in isolation, as far as possible.

182

Control token Some information that controls the behaviour of actor. It can

determine the rate of different ports in some MoC (say SADF and

BDF), and the execution time in some other MoC (say SADF and

KPN).

Critical Instant The critical instant for an actor is defined as an instant at which

a request for that actor has the largest response time.

Multimedia sys-

tems

Systems that use a combination of content forms like text, audio,

video, pictures and animation to provide information or entertain-

ment to the user.

Output actor The last task in the execution of an application after whose exe-

cution one iteration of the application can be said to have been

completed.

Rate The number of tokens that need to be consumed (for input rate)

or produced (for output rate) during an execution of an actor.

Reconfigurable

platform

A piece of hardware that can be programmed or reconfigured at

run-time to achieve the desired functionality.

Response time The time an actor takes to respond once it is ready i.e. the sum

of its waiting and its execution time.

Scenario A mode of operation of a particular application. For example, an

MPEG video stream may be decoding an I-frame or a B-frame or

a P-frame. The resource requirement in each scenario may be very

different.

Scheduling Process of determining when and where a part of application is to

be executed.

Task A program segment of an application that is executed atomically.

Token A data element that is consumed or produced during an actor-

execution.

Use-case This refers to a combination of applications that may be active

concurrently. Each such combination is a new use-case.

183

Work-

conserving

schedule

This implies if there is work to be done (or task to be executed)

on a processor, it will execute it and not wait for some other work

(or task). A schedule is work-conserving when the processor is

not idle as long as there is any task waiting to execute on the

processor.

184

Curriculum Vitae

Akash Kumar was born in Bijnor, India on November 13, 1980. After finishing the middle

high-school at the Dayawati Modi Academy in Rampur, India in 1996, he proceeded to

Raffles Junior College, Singapore for his pre-university education. In 2002, he completed

Bachelors in Computer Engineering (First Class Honours) from the National University

of Singapore (NUS), and in 2004 he completed joint Masters in Technological Design

(Embedded Systems) from Eindhoven University of Technology (TUe) and NUS.

In 2005, he began working towards his joint Ph.D. degree from TUe and NUS in the

Electronic Systems group and Electical and Computer Engineering department respec-

tively. His research was funded by STW within the PreMaDoNA project. It has led,

among others, to several publications and this thesis.

185

List of Publications

Journals and Book Chapters

• Ahsan Shabbir, Akash Kumar, Bart Mesman and Henk Corporaal Enabling MPSoC

Design Space Exploration on FPGAs. In Wireless Networks, Information Process-

ing and Systems, Communications in Computer and Information Science, Vol. 20,

pp. 412-421, ISSN: 1865-0929. Springer, 2009. doi:10.1007/978-3-540-89853-5 44.

• Akash Kumar, Shakith Fernando, Yajun Ha, Bart Mesman and Henk Corporaal.

Multi-processor Systems Synthesis for Multiple Use-Cases of Multiple Applica-

tions on FPGA. In: ACM Transactions on Design Automation of Electronic

Systems. Vol 13, Issue 3, July 2008, pp. 1-27, ISSN: 1084-4309. ACM, 2008.

doi:10.1145/1367045.1367049.

• Akash Kumar, Bart Mesman, Bart Theelen, Henk Corporaal and Yajun Ha. Ana-

lyzing Composability of Applications on MPSoC Platforms. In Journal of Systems

Architecture. Vol 54, Issues 3-4, March-April 2008, pp. 369-383. ISSN: 1383-7621.

Elsevier B.V., 2007. doi:10.1016/j.sysarc.2007.10.002.

• Akash Kumar and Sergei Sawitzki. High-Throughput and Low-Power Reed Solomon

Decoded for Ultra Wide Band. In Intelligent Algorithms, Philips Research Book

Series, Vol 7, pp. 299-316, ISBN: 1-4020-4953-6. Springer, 2006. doi:10.1007/1-

4020-4995-1 17.

186

• G. Mohan, K. Akash and M. Ashish. Efficient techniques for improved QoS perfor-

mance in WDM optical burst switched networks. In Computer Communications,

Vol. 28, Issue 7, 2 May 2005, pp. 754-764. ISSN: 0140-3664. Science Direct, 2005.

doi:10.1016/j.comcom.2004.10.007.

• G. Ciobanu, R. Desai, A. Kumar. Membrane systems and distributed computing.

In Membrane Computing, Lecture Notes in Computer Science, Vol. 2597, pp. 187-

202, ISSN: 0302-9743. Springer, 2003. doi:10.1007/3-540-36490-0.

Conference Papers

• Ahsan Shabbir, Akash Kumar, Bart Mesman and Henk Corporaal. Enabling

MPSoC Design Space Exploration on FPGAs. In Proceedings of International

Multi Topic Conference (IMTIC), Apr 2008. Pakistan 2008. Springer.

• Akash Kumar and Kees van Berkel. Vectorization of Reed Solomon Decoding and

Mapping on the EVP. In Proceedings of Design Automation and Test in Europe

(DATE), Mar 2008, pp.450-455. ISBN:978-3-9810801-3-1. Munich, Germany, 2008.

IEEE Computer Society.

• Akash Kumar, Shakith Fernando, Yajun Ha, Bart Mesman, and Henk Corpo-

raal. Multi-processor System-level Synthesis for Multiple Applications on Plat-

form FPGA. In Proceedings of Field Programmable Logic (FPL) Conference, Aug

2007, pp. 92-97. ISBN: 1-4244-1060-6. Amsterdam, The Netherlands, 2007. IEEE

Circuit and Systems Society.

• Akash Kumar, Bart Mesman, Bart Theelen, Henk Corporaal and Yajun Ha. A

Probabilistic Approach to Model Resource Contention for Performance Estimation

of Multi-featured Media Devices. In Proceedings of Design Automation Conference

(DAC), Jun 2007, pp. 726-731. ISBN: 978-1-59593-627-1. San Diego, USA, 2007.

IEEE Computer Society.

• Akash Kumar, Andreas Hansson, Jos Huisken and Henk Corporaal An FPGA

Design Flow for Reconfigurable Network-Based Multi-Processor Systems-on-Chip.

In Proceedings of Design Automation and Test in Europe (DATE), Apr 2007, pp.

117-122. ISBN: 978-3-9810801-2-4. Nice, France, 2007. IEEE Computer Society.

187

• Akash Kumar, Bart Mesman, Bart Theelen, Henk Corporaal and Yajun Ha. Re-

source Manager for Non-preemptive Heterogeneous Multiprocessor System-on-chip.

In Proceedings of the 4th Workshop on Embedded Systems for Real-Time Multime-

dia (Estimedia), Oct 2006, pp. 33-38. ISBN: 0-7803-9783-5. Seoul, Korea, 2006.

IEEE Computer Society.

• Akash Kumar, Bart Mesman, Henk Corporaal, Jef van Meerbergen and Yajun Ha.

Global Analysis of Resource Arbitration for MPSoC. In Proceedings of the 9th

Euromicro Conference on Digital Systems Design (DSD), Aug 2006. pp. 71-78.

ISBN: 0-7695-2609-8. Dubrovnik, Croatia, 2006. IEEE Computer Society.

• Akash Kumar, Bart Theelen, Bart Mesman and Henk Corporaal. On Composabil-

ity of MPSoC Applications. In Advanced Computer Architecture and Compilation

for Embedded Systems (ACACES), Jul 2006, pp. 149-152, ISBN: 90-382-0981-9.

L’Aquila, Italy, 2006.

• Akash Kumar, Ido Ovadia, Jos Huisken, Henk Corporaal, Jef van Meerbergen and

Yajun Ha. Reconfigurable Multi-Processor Network-on-Chip on FPGA. In Pro-

ceedings of 12th Conference of the Advanced School for Computing and Imaging

(ASCI). Jun 2006, pp. 313-317, ISBN: 90-810-8491-7. Lommel, Belgium, 2006.

• Akash Kumar and Sergei Sawitzki. High-Throughput and Low-Power Architectures

for Reed Solomon Decoder. In Proceedings of the 39th Asilomar Conference on

Signals, Systems, and Computers, Oct 2005. pp. 990-994. ISBN: 1-4244-0132-1.

Pacific Grove, U.S.A., 2005. IEEE Circuit and Systems Society.

• Akash Kumar and Sergei Sawitzki. High-Throughput and Low-Power Reed Solomon

Decoded for Ultra Wide Band. In Proceedings of Philips Symposium on Intelligent

Algorithms, Dec 2004. Philips High Tech Campus, Eindhoven, 2004.

• G. Mohan, M. Ashish, and K. Akash. Burst Scheduling Based on Time-slotting

and Fragmentation in WDM Optical Burst Switched Networks. In Proceedings of

IASTED International Conference on Wireless and Optical Communications WOC,

July 2002, pp. 351-355. Banff, Canada.

188

Technical Reports

• Akash Kumar, Bart Mesman, Henk Corporaal and Yajun Ha. Accurate Run-time

Performance Prediction for Multi-Application Multi-Processor Systems. ES Report

ESR-2008-07. Jun 16, 2008. Eindhoven University of Technology.

• Akash Kumar, Bart Mesman, Henk Corporaal, Bart Theelen and Yajun Ha. A

Probabilistic Approach to Model Resource Contention for Performance Estimation

of Multi-featured Media Devices. ES Report ESR-2007-02. Mar 25, 2007. Eind-

hoven University of Technology.

• Akash Kumar. High-Throughput Reed Solomon Decoded for Ultra Wide Band.

Masters Thesis, Dec 2004. National University of Singapore and Eindhoven Uni-

versity of Technology.

• Akash Kumar. Wavelength Channel Scheduling Using Fragmentation Approach

in Optical Burst Switching Networks. Bachelors Thesis, June 2002. National

University of Singapore.

189

	Acknowledgments
	Summary
	List of Tables
	List of Figures
	Trends and Challenges in Multimedia Systems
	Trends in Multimedia Systems Applications
	Trends in Multimedia Systems Design
	Key Challenges in Multimedia Systems Design
	Analysis
	Design
	Management

	Design Flow
	Key Contributions and Thesis Overview

	Application Modeling and Scheduling
	Application Model and Specification
	Introduction to SDF Graphs
	Modeling Auto-concurrency
	Modeling Buffer Sizes

	Comparison of Dataflow Models
	Performance Modeling
	Steady-state vs Transient
	Throughput Analysis of (H)SDF Graphs

	Scheduling Techniques for Dataflow Graphs
	Analyzing Application Performance on Hardware
	Static Order Analysis
	Dynamic Order Analysis

	Composability
	Performance Estimation

	Static vs Dynamic Ordering
	Conclusions

	Probabilistic Performance Prediction
	Basic Probabilistic Analysis
	Generalizing the Analysis
	Extending to N Actors
	Reducing Complexity

	Iterative Analysis
	Terminating Condition
	Conservative Iterative Analysis
	Parametric Throughput Analysis
	Handling Other Arbiters

	Experiments
	Setup
	Results and Discussion -- Basic Analysis
	Results and Discussion -- Iterative Analysis
	Varying Execution Times
	Mapping Multiple Actors
	Mobile Phone Case Study
	Implementation Results on an Embedded Processor

	Related Work
	Conclusions

	Resource Management
	Off-line Derivation of Properties
	On-line Resource Manager
	Admission Control
	Resource Budget Enforcement

	Achieving Predictability through Suspension
	Reducing Complexity
	Dynamism vs Predictability

	Experiments
	DSE Case Study
	Predictability through Suspension

	Related Work
	Conclusions

	Multiprocessor System Design and Synthesis
	Performance Evaluation Framework
	MAMPS Flow Overview
	Application Specification
	Functional Specification
	Platform Generation

	Tool Implementation
	Experiments and Results
	Reducing the Implementation Gap
	DSE Case Study

	Related Work
	Conclusions

	Multiple Use-cases System Design
	Merging Multiple Use-cases
	Generating Hardware for Multiple Use-cases
	Generating Software for Multiple Use-cases
	Combining the Two Flows

	Use-case Partitioning
	Hitting the Complexity Wall
	Reducing the Execution time
	Reducing Complexity

	Estimating Area: Does it Fit?
	Experiments and Results
	Use-case Partitioning
	Mobile-phone Case Study

	Related Work
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Glossary
	Curriculum Vitae
	List of Publications

