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SUMMARY

While computational advances have enabled sequencing of genomes at a rapid
rate, annotation of functional elements in genomic sequences is lagging far behind. Of
particular importance is the identification of sequences that regulate gene expression.
This research contributes to the computational modeling and detection of three very
important regulatory elements in eukaryotic genomes, viz. transcription factor binding
motifs, gene promoters and cis-regulatory modules (enhancers or repressors). Position
specificity of transcription factor binding sites is the main insight used to enhance the
modeling and detection performance in all three applications.

The first application concerns in-silico discovery of transcription factor binding
motifs in a set of regulatory sequences which are bound by the same transcription factor.
The problem of motif discovery in higher eukaryotes is much more complex than in
lower organisms for several reasons, one of which is increasing length of the regulatory
region. In many cases it is not possible to narrow down the exact location of the motif, so
a region of length ~1kb or more needs to be analyzed. In such long sequences, the motif
appears ‘“subtle” or weak in comparison with random patterns and thus becomes
inaccessible to any motif finding algorithm. Subdividing the sequences into shorter
fragments poses difficulties such as choice of fragment location and length, locally over-
represented spurious motifs, and problems associated with compilation and ranking of the
results. A novel tool, LocalMotif, is developed in this research to detect biological motifs
in long regulatory sequences aligned relative to an anchoring point such as the
transcription start site or the center of the ChlIP sequences. A new scoring measure called
spatial confinement score is developed to accurately demarcate the interval of
localization of a motif. Existing scoring measures including over-representation score
and relative entropy score are reformulated within the framework of information theory
and combined with spatial confinement score to give an overall measure of the goodness
of a motif. A fast algorithm finds the best localized motifs using the scoring function.
The approach is found useful in detecting biologically relevant motifs in long regulatory
sequences. This is illustrated with various examples.

Computational prediction of eukaryotic promoters is another tough problem, with
the current best methods reporting less than 35% sensitivity and 60% ppv'. A novel
statistical modeling and detection framework is developed in this dissertation for

! Transcription start site prediction accuracy on ENCODE regions of the human genome within +250 bp
error [Bajic et al. (2006)].
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promoter sequences. A number of exisiting techniques analyze the occurrence
frequencies of oligonucleotides in promoter sequences as compared to other genomic
regions. In contrast, the present approach studies the positional densities of
oligonucleotides in promoter sequences. A statistical promoter model is developed based
on the oligonucleotide positional densities. When trained on a dataset of known promoter
sequences, the model automatically recognizes a number of transcription factor binding
sites simultaneously with their occurrence positions relative to the transcription start site
(TSS). The analysis does not require any non-promoter sequence dataset or modeling of
background oligonucleotide content of the genome. Based on this model, a continuous
naive Bayes classifier is developed for the detection of human promoters and
transcription start sites in genomic sequences. Promoter sequence features learnt by the
model correlate well with known biological facts. Results of human TSS prediction
compare favorably with existing 2™ generation promoter prediction tools.

Computational prediction of cis-regulatory modules (CRM) in genomic sequences
has received considerable attention recently. CRMs are enhancers or repressors that
control the expression of genes in a particular tissue at a particular development stage.
CRMs are more difficult to study than promoters as they may be located anywhere up to
several kilo bases upstream or downstream of the gene’s TSS and lack anchoring features
such as the TATA box. The current method of CRM prediction relies on discovering
clusters of binding sites for a set of cooperating transcription factors (TFs). The set of
cooperating TFs is called the regulatory code. So far very few (precisely three)
regulatory codes are known which have been determined based on tedious wet lab
experiments. This has restricted the scope of CRM prediction to the few known module
types. The present research develops the first computational approach to learn regulatory
codes de-novo from a repository of CRMs. A probabilistic graphical model is used to
derive the regulatory codes. The model is also used to predict novel CRMs. Using a
training data of 356 non-redundant CRMs, 813 novel CRMs have been recovered from
the Drosophila melanogaster genome regulating gene expression in different tissues at
various stages of development. Specific regulatory codes are derived conferring gene
expression in the drosophila embryonic mesoderm, the ventral nerve cord, the eye-
antennal disc and the larval wing imaginal disc. Furthermore, 31 novel genes are
implicated in the development of these tissues.
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Figure VI-6.

Figure VI-7.

Figure VI-8.

Figure VI-9

Figure VI-10

Potentials Pr(Di‘Mi,liMi,z) factorized using the hidden nodes

Bl

The TFBSs in Drosophila CRMs appear as repeated or
redundant sites. Modulexplorer locates these redundant sites as
potential TFBSs. The receiver-operating characteristic of
predicting TFBSs using redundant sites in 19 fully annotated
CRMs is shown in (a). Here sensitivity (y-axis) refers to the %
of nucleotides in TFBSs that are overlapped by some redundant
site, while false positive rate (x-axis) refers to the % of
nucleotides in a redundant site that do not match any TFBS.
The maximum effectiveness of TFBS characterization in each
of the 19 CRMs is shown in (b), which is the point in the ROC
curve where Matthew’s correlation coefficient is maximized.
At this maximum effectiveness, the visual overlap between the
TFBS sites (blue boxes) and the redundant sites (red boxes) in

each CRM iS ShOWN iN (C)...veevviiiiiiec e

Performance of the Modulexplorer in discriminating between
CRM and Dbackground sequences. Modulexplorer’s
performance is compared with two other methods: a Markov
model (orders 2 to 6) and the HexDiff algorithm [Chan and
Kibler (2005)]. The original Hexdiff algorithmuses (6,0) motifs,
but it was extended in this comparison to try several different
(1,d) motifs. Discrimination achieved between training CRMs
and exon sequences in 10-fold cross-validation is shown in (a).
The ROC shows that all three methods could easily discriminate
CRMs from exons. Discrimination between CRMs and non-
coding sequences (intron+intergenic) is shown in (b). Here
Markov model shows no discrimination, HexDiff has marginal
discrimination, while Modulexplorer achieves maximum
discrimination. Modulexplorer was further evaluated on a
separate testing set of 58 CRMs. The number of CRMs of
different types in the test set according to their stage and tissue
of expression is shown in (c). The performance of
Modulexplorer on this test set, shown in (d), is similar to the

training PErforManCe. ........cooviiiieieiee e

Dyad motifs in Modulexplorer most closely resembling the

binding Sites OF KNOWN TFS......ooiiiiiiiece s

Pairwise interactions between 61 different TFs learnt de-novo
by the Modulexplorer probability model. Based on the
interaction matrix, the TFs were hierarchically clustered. Six
functionally related groups of TFs were formed: (1) cofactors of
twist in mesoderm and nervous system development, (2) TFs
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Figure VI-11.

Figure VI-12.

Figure VI-13.

Figure VI-14.

Figure VI-15.

Figure VI-16.

involved in imaginal disc development, (3) the antennapedia
complex, (4) TFs expressed in the blastoderm, (5) TFs for eye
development and (6) a miscellaneous set of TFs. Five distinct
clusters are seen in the interaction matrix. Three of the clusters
contain mixed set of TFs from groups 1-4, while two other

clusters correspond to the TF groups 5 and 6. ........c.cccevvevivieerieennenn,

Summary of Modulexplorer’s whole genome CRM predictions:
(@ A stringent score threshold was used for shortlisting
predicted CRM windows such that the false positive rate is
about 0.1%. (b) A total of 1298 windows were predicted above
the chosen threshold, out of which 813 are novel predictions. (c)
The predicted CRMs are significantly over-represented in the
promoter and upstream intergenic regions. (d) This is the list of
level 3 gene ontology (GO) categories statistically over-
represented in the target genes of the predicted CRMs. They
show enrichment in development and regulatory functions
(Bonferroni corrected P-values of the GO associations are

SNOWN @lONGSIAR). ..eeveeeiiciie e

The 619 known REDfly CRMs, the 813 CRM windows
predicted by Modulexplorer and a set of 813 randomly
distributed segments were analyzed for their clustering around
genes. A 50 kb long sliding window was scanned over the
genome. The number of windows which contained one or more
CRMs or random segments is shown below. The histogram
shows the number of CRMs or random segments in the window
on x-axis and the number of such windows on y-axis. The
known and predicted CRMs come across in clusters of 3 to 4
CRMs in a window, whereas the randomly distributed segments

are not usually CIUSEEred..........coovevvee i

The GC content of the predicted CRMs is similar to that of the
known CRMs and higher in general compared to intron and

INTEIQJENIC SEQUENCES. ...ovvieveeiieeteeete st e ste et e et e et ste e eneenas

Cluster of CRMs controlling target gene expression in the

embryonic mesoderm, and their regulatory code..............cccccovveveenen.

BDGP in-situ expression images for the target genes of novel

CRMSs in the Mesoderm CIUSEEN. .........oooveeeeeee

Matches of the mesoderm regulatory code motifs within the dpp
813 bp enhancer are shown by underlines. For comparison the
known TFBS in this enhancer, available only for the first 600
bp, are shown in red color text. Out of 32 matches of the
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regulatory code motifs in first 600 bp, 26 overlapped known

TEBS.
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Binding sites for 10 blastoderm TFs were searched in the region
-5000 to +5000 around the 98 predicted blastoderm CRMs. The
CRMs are in the location 0 to 1000. In the CRM region the
binding sites were over-represented by a factor of around 2. The
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CHAPTER - |

INTRODUCTION

-1 Background

Over the last few years, computational biology research has contributed
significantly to the advancement of molecular biology. High throughput genome
sequencing has provided us with the complete genomes of several multicellular species
from microbes to human beings. The current significant challenge is to annotate
functional elements in these genomes and to understand how the vast amount of
information contained in the genome is processed in living systems. One of the ultimate
aims is to understand the process of development, i.e. how a living organism grows from
a single cell to an adult, and how cells which are identical in the beginning differentiate
into different tissues. This dissertation addresses some of these problems. First a brief
description of some basic concepts of molecular biology is provided in this section to

establish a ground for introducing the present research problem.

I-1.1 The Genetic Code

Every living organism's body is made up of microscopic units called cells.
Majority of cellular structures are manufactured from proteins, which are complex
macromolecules of amino acids. Most of the activities within a cell are also carried out
by specific proteins. Each cell contains within its nucleus all the instructions needed to
manufacture (or express) all of these proteins in the form of genetic code. In addition, the
mechanism to express a protein at the exact time and location (e.g. during development)

or whenever needed by the cell is also programmed within the genetic code.



The genetic code exists in the form of very long macromolecular chains called
DNA (deoxyribonucleic acid). DNA is composed of four nitrogenous bases viz. Adenine,
Cytosine, Guanine, and Thymine (in short A, C, G and T), which are covalently bonded
to a backbone of deoxyribose-phosphate to form a DNA strand. Two complementary
strands pair up to form a double helical structure where Gs pair with Cs and As with Ts.
The two strands are held together by hydrogen bonding between the bases, forming base
pairs (bp). The specific ordering of the four bases is responsible for the information
content of the DNA. An organism's complete set of DNA is called its genome. Genomes
vary widely in size. The human genome is approximaltely 3 billion bp long.

A gene is a portion of the genome which encodes the amino acid sequence of a
protein product. Only a small fraction of the genome is covered by genes. The human
genome is estimated to contain 30,000 to 40,000 genes. The gene DNA sequence maps
to the protein amino acid sequence through the genetic code. In the genetic code each
triplet of nucleotides (called ‘codon’) maps to a particular single amino acid. A protein
encoding segment is a sequence of codons called coding sequence (CDS) or exon. An
example of a gene region within the human genome is shown in Figure 1-1. The coding
sequence is marked in blue color with the encoded amino acids shown below it. Figure
I-1 also shows a number of other features in the gene apart from the coding sequences.
These include introns, untranslated region (UTR), promoter, etc., which are described in
the following section. A block-diagram of the gene region shown in Figure I-1 is

provided in Figure I-2 in order to illustrate the functional divisions of the gene region.

I-1.2 Gene Expression
The process of manufacturing proteins from the genetic code in DNA is called
gene expression. This process is described by the central dogma of molecular biology,

which states that the genetic code is utilized to manufacture the encoded protein within
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5’ untranslated region (UTR) in the first exon
Coding sequence (CDS) in the exon

Intron sequence

Some specific feature - marked with a comment

ACGTacgt
ACGTacgt

—_—— — — —

Promoter Region

5 UTR

Intron

Exon

Annotated DNA sequence of the 5° region of the human PAX3 gene

[Macina et al. (1995), Okladnova et al. (1999), Barber et al. (1999)].
Notable features shown include (i) promoter region, (ii) transcription start
site, (iii) transcription factor binding sites such as TATA box, CAAT box,
AP-1, AP-2, SP1, (iv) repressor element, (v) nucleotide repeats, (vi) 5’
untranslated region (UTR), (vii) coding sequence with its amino acid

translations, (viii) exon, (ix) intron, and (x) splice site.



Regulatory region MRNA
TSS 5 UTR Intron1 Intron 2
l CDS 1 l CDS 2 l CDS 3
5° direction | | | | | | 3’ direction
Enhancer Promoter Exon 1 Exon 2 Exon 3

Figure 1-2.  The locations of gene coding and noncoding regions and the promoter in a
DNA strand. The promoter region is present surrounding the start of (and
mostly upstream of) the transcript region. Other elements such as
enhancer may be present far distant from the transcription start site.

the cell in two steps — (i) transcription, or creating a copy of the gene in the form of a
RNA molecule, and (ii) translation, or decoding the RNA to amino acid sequence
through the genetic code. The transcription step is required because the genetic material
is physically separated from the site of protein synthesis in the cytoplasm in the cell. The
DNA is not directly translated into protein, but an intermediary molecule called RNA is
made, which is an exact copy of the DNA. The RNA moves out of the nucleus into the
cytoplasm, where it is translated by ribosomes to manufacture the protein.

In eukaryotes, the protein coding genes are transcribed by the RNA-polymerase 11
enzyme. Transcription initiates at a specific base pair location, called the transcription
start site (TSS), as shown in Figure I-1 and Figure I-2. The portion of the gene
downstream of the TSS (i.e., in the 3’ direction) is transcribed to form the messenger
RNA (mMRNA). As shown in Figure I-2, in the transcribed sequence (both DNA and
MRNA), the coding sequence (CDS) does not exist as a single continuous sequence but is
interspersed with gaps called introns. Introns are removed or spliced from the mRNA
before the translation step. This is called RNA splicing. The first codon is also often

preceded by an untranslated region (5° UTR), whose function is to lend stability to the



MRNA. The base positions on the gene are indexed relative to the TSS, which is
referred to as position +1. Positions downstream (in 3’ direction) of the TSS have a
positive index while those upstream (in 5° direction) have a negative index. Figure I-1

shows the -1200 to +700 bp region of the human paired-box gene 3 (PAX3).

I-1.3 Regulation of Gene Expression

The control or regulation of gene expression dictates when, where (in what
tissue(s)) and how much quantity of a particular protein is produced. This decides the
development of cells and their responses to external stimuli. The detailed working of this
control mechanism is still unknown to us. The most important mechanism of control is
through regulating the transcription process, i.e. whether or not the transcription of a gene
is initiated. In eukaryotic cells, the RNA-polymerase Il is incapable of initiating
transcription on its own. It does so with the assistance of a number of proteins called
transcription factors (TFs). TFs bind to the DNA sequence and interact to form a pre-
initiation complex (PIC) as shown in Figure 1-3. The RNA-polymerase 1l is recruited in
the PIC, and thus transcription begins. Thus the crucial point of the regulation
mechanism is binding of TFs to DNA. Disruptions in gene regulation are often linked to
a failure of the TF binding, either due to mutation of the DNA binding site, or due to

mutation of the TF itself.



RNA-polymerase Il

Figure I-3.  Formation of pre-initiation complex through the binding of transcription
factors to DNA nearby the transcription start site [Pederson et al. (1999)].

I-1.4 Nature of Protein-DNA Binding

TFs have the affinity of binding to a specific DNA sequence. The binding
sequence is usually between 5-20 bp long and is identified experimentally. Interestingly
not all bases are found to be equally important for effective binding. While some base
positions can be substituted without affecting the affinity of the binding, in other
positions a base substitution can completely obliterate the binding. A consensus
sequence or motif represents the common features of the effective binding site sequence.
The TF has high affinity for sequences that match this consensus pattern, and relatively
low affinity for sequences different from it. A numerical way of characterizing the
binding preferences of a TF is the positional weight matrix (PWM) (see section 111-2.2),
which shows the degree of ambiguity in the nucleotide at each binding site position.

The ambiguity of TF binding appears to be intentional in nature as a way of
controlling gene expression. Variable affinity of the TF to different DNA sites causes a

kinetic equilibrium exists between TF concentration and occupancy (i.e. which binding



sites are actually occupied with the TF in-vivo). This provides a mechanism of

controlling the transcription of the genes.

I-1.5 Cis-Regulatory Sequences

The DNA sequences where TFs bind in order to regulate gene expression are
known as cis-regulatory sequences. The DNA region immediately upstream of the TSS
(i.e., in the 5” direction with negative position index) is usually is the center of such
activity and is known as the promoter (Figure 1-2). For example in Figure I-1, the -2000
to -1 sequence marked in black color is the promoter. The binding sites for various TFs
within the promoter have been marked with yellow outlines. The promoter contains
binding sites for TFs that directly interact with RNA polymerase Il to promote
transcriptional initiation. The structure and functioning of eukaryotic promoters has been
discussed by several reviewers [Werner (1999), Pederson et al. (1999), Zhang (2002)].
The main functional elements within the promoter are the transcription factor binding
sites, while the rest of the sequence is nonfunctional and meant to separate the binding
sites at an appropriate distance.

There are other cis-regulatory sequences apart from the promoter which enhance
or repress the transcription activity. The cis-regulatory module (CRM, enhancer or
repressor) is a short sequence that stimulates transcriptional initiation while located at a
considerable distance from the TSS. CRMs are often involved in inducing tissue-specific
or temporal expression of genes. A CRM may be 100-1000 bp in length and contains
several closely arranged TFBS. Thus a CRM resembles the promoter in its composition
and the mechanism by which it functions. However a CRM typically contains higher

density of TFBS than the promoter, has repetitive TFBS, and involves greater level of



cooperative or composite interactions among the TFs. The activity of a CRM s
interesting as it can control gene expression from any location or strand orientation. The
present understanding of its mechanism is that TFs bound at the CRM interact directly

with TFs bound to the promoter sites through the coiling or looping of DNA.

I-1.6  Transcriptional Regulation of Development

One of the most intriguing applications of the study of gene regulation is in
understanding the process of development. Development refers to the process of growth
of a multicellular organism from a single cell to adult. This dissertation focuses on
Drosophila melanogaster (fruit fly) which is a model organism for studying development.
Drosophila development occurs in a series of stages including embryo, three larval stages,
a pupal stage, and finally the adult stage. The embryo development is further divided
into 16 stages (Bownes stages). The single celled zygote first undergoes multiple
divisions of the nucleus (stages 1-3). The early Drosophila embryo exists as a single cell
with multiple nuclei, called syncytial blastoderm (stage 4). The cytoplasm then gradually
divides to form multiple mononucleate cells, forming the cellular blastoderm (stage 5-6).
The next stage is gastrulation (stage 7) where separation of different tissues begins to
manifest and the rough body plan of the larval structures is established. In subsequent
stages (stage 8-16) the cells divide and differentiate further till morphologically distinct
organs are formed.

The process by which cells which were similar in the beginning start specializing
into specific types or tissues is called differentiation, which is at the heart of development.
Differentiation is the result of a complex network of gene expression accomplished

largely through transcriptional control. A number of genes expressed in the



developmental phase encode transcription factors (TFs). The TFs operate in a
hierarchical fashion so that TFs released at one stage lead to the expression of genes that
release TFs for the next stage. At each stage the complexity of expression pattern
increases. A crucial mechanism behind differentiation is the non-uniform distribution of
TFs in the embryo cells. The early syncytial blastoderm embryo contains several TFs
derived from the mother, which are non-uniformally distributed through the embryo
along both anterior-posterior and dorsal-ventral axes. At any given location, various TFs
are present in different concentrations. Depending on the TF concentrations, specific
CRMs are activated to express or repress their target genes. This results in differential
expression of the zygotic genes in different locations. The network of differential gene
expression continues, ultimately leading to tissue differentiation. The interaction

between TFs and CRMs is thus a fundamental mechanism that controls development.

I-2 Motivation for Present Research
I-2.1 Scope of the present research

As the complete DNA sequences of genomes for many organisms including
microbes, plants, animals and human beings have become available, the first task is to
annotate these genomic sequences [Stein (2001)]. Annotation refers to locating important
functional elements such as genes (introns and exons), transcription start sites, translation
start sites, splice sites, polyadenylation sites, gene promoters, etc. on the genomic
sequence. For processing the voluminous genomic data, laborious and time consuming
experimental techniques alone are insufficient. Computational methods are playing an

important role in the ongoing task of detecting and annotating functional signals in
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genomic sequences. For instance computationally annotated features in the ENCODE
project [Encode (2004)] are shown in Figure I-4.

This research work aims at improving the computational modeling and detection
of three very important signals — transcription factor binding motif, promoter
(transcription start site) and cis-regulatory module (CRM or enhancer). The significance
of this problem in current bioinformatics research is highlighted by the fact that the
computational investigation of DNA motifs, promoters and CRMs is listed as one of the
important computational biology research goal for the next few years in the “Genomes to

Life” program (Figure 1-5) of the U.S. Department of Energy [Frazier et al. (2003)].

Genomic Features Annotated Computationallyinthe ENCODE Project

CpGislands Genome Conservation

Gene Predictions SNP

R Regi
SpliceSites epeatRegions

. X Pseudogenes
Transcription Start Sites

Microsatellites
Transcription Factor Binding Sites

Transcript Levels
Enhancers

Chromatin
miRNA sites
Histone Modifications

Focus of research in this dissertation

Figure I-4.  Several genomic features are currently being computationally annotated in
the human genome in the ENCODE project. The present research focuses
on three features in the regulatory sequence track: transcription start sites,
transcription factor binding sites (motifs) and enhancers (cis-regulatory
modules).
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Figure I-5.  The “Genomes to Life” program of the U.S. Department of Energy
[Frazier et al. (2003)] plans for the next 10 years to use DNA sequences
from microbes and higher organisms, including humans, as starting points
for systematically tackling questions about the essential processes of living
systems. Advanced technological and computational resources will help to
identify and understand the underlying mechanisms that enable organisms
to develop, survive, carry out their normal functions, and reproduce under
myriad environmental conditions.

I-2.2 Relevance of the present research

Computational prediction of promoters (transcription start site) transcription
factor binding motifs, and cis-regulatory modules (CRMs or enhancers) has specific
relevance in the current bioinformatics research. Reliable computational prediction of
promoters and transcription start sites (TSS) is currently required in automated gene

discovery. Gene annotation is currently incomplete in a number of sequenced genomes.



12

Current Applications

|

Promoter Prediction Motif Discovery CRM Prediction
Computational Characterization of Predicting spatio-temporal
gene finding transcription factor specific gene expression,

bindingsites understanding development,
and functionalannotation of
genes

Figure I-6.  Applications of the present research in current bioinformatics context.

Though genes can usually be mapped using cDNA and homology with existing
annotations, genes with no cDNA transcripts or close homolog must be mapped by
computational gene-finding. In fact, a majority of genes are currently annotated using
computational gene prediction. While gene finding algorithms can predict introns and
exons with about 80% accuracy [Guigo et al. (2006)], the locations of TSS and splice
sites are still difficult to predict, with none of the existing methods reporting more than
45% accuracy [Guigo et al. (2006)]. The accuracy of TSS prediction is particularly low
at around 35% sensitivity [Bajic et al. (2006)] and a large number of false positives
[Fickett and Hatzigeorgiu (1997), Werner (2003)]. This causes the gene-finding
algorithm to produce wrong partitioning of exons in obtaining the overall gene structure.
Accurate TSS prediction to locate the 5’ end of genes and first exons will be clearly
helpful.

The identification of transcription factor binding motifs is one of the most basic
requirements for understanding gene regulatory mechanisms. Although many TFs are

known, specific binding motifs have been fully characterized for only few of them in
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databases such as TRANSFAC [Matys et al. (2003)] or JASPAR [Sandelin et al. (2004)].
The motifs in these databases are derived from their experimentally determined DNA
binding sequences using DNAse footprinting [Brenowitz et al. (1986)]. However DNAse
footprinting is costly, laborious and time consuming, and therefore it can be performed
only for a few binding sequences. In-silico methods have long been used to supplement
the experimental approach. The in-silico approach analyzes a set of several sequences
that possibly contain binding sites for the same protein factor. A large amount of such
sequence data is now available through high throughput ChIP technologies (ChIP-Chip,
ChIP-PET, ChIP-Seq, etc.), promoters of co-regulated genes identified by microarray,
and upstream regions of orthologous genes from closely related species. Still the binding
site is difficult to distinguish from the surrounding DNA as it is short in length (5-20 bp)
and contains various mutations. Thus reliable computational algorithms are required to
search for the common conserved motif. Characterization and detection of biologically
meaningful motifs is a long standing research problem in computational biology.

A recent paradigm in the modeling and detection of regulatory regions, especially
in higher eukaryotes, is the study of clusters of binding sites for multiple TFs that act in
concert [Crowley (1997), Wasserman and Fickett (1998), Frech et al. (1998), etc.].
Though potential TFBS occur with high frequency in the genome, a significant
proportion of them are nonfunctional [Euskirchen and Snyder (2004)]. The reason is that
TFs function collectively and not individually. Cis-regulatory modules (CRMs) [Arnone
and Davidson (1997)] are one such type of autonomous units to which a set of TFs bind
cooperatively. Their annotation is especially important for understanding spatio-temporal

specific gene expression in the developmental genes in higher eukaryotes. Detection of
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CRMs has received particular attention in Drosophila melanogaster and human genomes
[Gallo et al. (2006), Sharan et al. (2004)]. CRM prediction also has potential application
in determining the functional annotation of uncharacterized genes. Many newly
sequenced genes in various species have no functional annotation and the sequence
analysis of their protein product also gives no clue on their function. As CRMs are often
responsible for context-specific gene expression, in-silico functional annotation may be
possible by identifying specific CRMs controlling these genes. For instance, novel mucle
specific genes could be identified through computational identification of muscle specific

CRMs near those genes [Frech et al. (1998)].

1-2.3 Position information in the modeling of regulatory elements

The tasks of modeling and detection are closely related. Accurate modeling is
necessary for producing a robust computational detection method, which requires taking
into account the underlying biological mechanism. The present research improves upon
the previous studies by incorporating a crucial biological aspect, namely position and
order of the functional elements, into the computational model.

It is interesting to note that the computational modeling of transcription factor
binding motifs, promoters and CRMs are all associated with a notion of position
specificity (Figure 1-7). Functional binding sites are often found proximal to and at a
specific distance from genomic features such as TSS, splice site or a related binding site.
In fact, TFBS in the promoter are positioned carefully with respect to each other and the
TSS [Werner (1999)]. In ChIP experiments, the binding sites for the immunoprecipitated
TF are concentrated around the center of the ChIP sequence. Additionally cofactor

binding sites may be located at specific positions around the main TF binding sites.
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The Role of Positional Specificity
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Figure I-7.  Transcription factor binding motifs, promoters and CRMs are all
associated with a notion of position specificity.

Similarly in CRMs, the TFBS occur in a preferred order and distance with respect to each
other [Bailey et al. (2003), Sinha et al. (2003)]. These characteristics have not been
adequately exploited in the modeling and detection of these features. The present
research develops computational approaches / models that effectively integrate the

positional information associated with these features.

I-2.4 Bayesian network modeling
With respect to the modeling framework, the present research relies upon
probabilistic modeling using Bayesian networks [Jensen (2001)]. Although the genomic

sequence is a fixed deterministic sequence, on the functional level its composition and the
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mechanism of its expression are stochastic in nature. DNA sequences are tolerant to
mutations and displacement of functional elements. Therefore uncertainty based
modeling is possible.

Within the framework of probability models, Bayesian networks appear attractive
for the modeling of genomic data due to several inherent advantages. Bayesian networks
can easily and intuitively incorporate knowledge of the biological mechanism into the
model, where causal relationships among the variables of interest can be defined both
qualitatively and quantitatively. The Bayesian network model is transparent in contrast
to neural networks or SVM, for example inspection of the model parameters directly
reveals the probabilisitic relationships among the variables.  This helps gain
understanding about the problem domain and reveals new knowledge.

Bayesian networks have also shown superior performance as a computational
machine learning tool. Bayesian networks can easily integrate prior expert knowledge
into the model, which is an inheritance from the Bayesian statistical framework. Thus
reliable inference can be made using a Bayesian network even using small training
datasets, and overfitting of data to the model can be avoided, ensuring that the learnt
model is more representative of the true population. Both continuous and discrete
variables can coexist in a Bayesian network. The present research benefits from the the

above advantages offered by Bayesian networks.

-3 Nature of the Problem

The present research involves three related problems, viz. (1) detection of DNA

motifs, (2) general promoter modeling and transcription start site prediction, and (3)
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modeling and detection of cis-regulatory modules. The computational nature of each of

these problems and the challenges therein are discussed below.

I-3.1 Detection of DNA Motifs

In-silico detection of protein-DNA binding motifs involves analyzing a set of
several sequences that possibly contain binding sites for the same protein factor. The
binding sites are unknown in each of the input sequences, but they are conspicuous in the
sequence set as similar repeating patterns. The problem is however nontrivial as the
binding sites are short in length (5-20 bp) and contain various mutations. The
computational algorithm searches for a common conserved pattern called the motif.

Though multiple alignment tools such as CLUSTALW [Thompson et al. (1994)],

ITERALIGN [Brocchieri et al. (1998)] or PROBE [Neuwald et al. (1997)] could be used

to detect a conserved pattern or block within the given set of sequences, detection of

motifs is more difficult since they are short, lesser conserved and randomly distributed
patterns. A specialized computational algorithm for motif detection has three aspects

[Friberg et al. (2005)]:

(i) The motif model: The motif is represented by a computational model which
represents the nature of protein-DNA binding and the similarities and variabilities
among the individual binding sites. Common examples are (I,d) motif model
[Pevzner and Sze (2000)] and positional weight matrix (PWM) [Stormo (2000)].

(i) The scoring function: It is a numerical score to measure the prominence or
conservation of a motif in the given set of sequences, usually against a background
model. For example the Z-score [Tompa (1999)] and relative entropy score [Stormo

(2000)].
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(iii) The algorithm: In accordance with the motif model and the scoring function, the
computational algorithm searches for the best candidate motif within the given set of
sequences by a strategy such as exhaustive search [Staden (1989)], heuristic search
[Pevzner and Sze (2000)], greedy search [Hertz and Stormo (1999)], multiple
sequence alignment [Tharakaraman et al. (2005)], Gibbs sampling [Lawrence et al.
(1993)], etc. The best scoring candidate is reported as the desired motif.

Each of the above aspects contributes to the performance of the motif finding
algorithm. Furthermore a motif finding algorithm must address the challenges of time
and memory complexity, noisy input in the form of spurious sequences which do not
contain a binding site, conservation of the motif against random patterns [Keich and
Pevzner (2002a,b)], accuracy of the background model, and competition among multiple

motifs in the input sequences.

1-3.2 General Promoter Modeling and Transcription Start Site Prediction
Computational promoter prediction involves differentiating promoter versus non-
promoter regions in a given genomic sequence, and predicting the locations of
transcription start sites (TSS). The main conserved functional elements within a
promoter sequence are short length TFBS, while the rest of the sequence follows the
random genomic background. A promoter sequence is therefore hard to distinguish from
the rest of the genome. Also, promoter sequences hardly show any sequence similarity
among themselves even for closely related genes, thus sequence similarity searching
(such as BLAST) is ineffective in detecting promoter sequences. Specialized

computational promoter prediction algorithms are thus required.
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A computational promoter prediction algorithm must rely on two aspects: (i)
recognition of TFBS (motifs), and (ii) modeling the combinations and context of these
TFBS within promoter sequences. While a lot is known about various TFBS (motifs)
that play an active role in eukaryotic poly-Il promoters [Latchman (2003)], yet detection
of individual TFBS is insufficient for detecting the promoter. For instance, about 30% of
the human promoters contain a conserved binding site known as TATA box upstream of
the TSS. However binding sites for TATA box occur on an average once every 1000 bp,
and thus it is insufficient in itself to characterize the promoter. The crucial aspect is to
model the context of several TFBS within the promoter. This is where the difficulty in
constructing a general computational model arises. A great amount of diversity and
complexity is observed in the organization of TFBS in promoters. There is no general
universal concept known to be applicable to all promoters. There are thousands of
transcription factors and their corresponding binding sites, with highly variable contexts

observed among different promoter sequences, making the modeling very difficult.

1-3.3 Modeling and Detection of Cis-Regulatory Modules

Computational modeling and prediction of CRMs poses greater challenge than
promoters as (i) available data and biological information on CRMs is far less as
compared to promoters [Gallo et al. (2006)], (ii) different CRMs are extremely varied in
composition and their organization is even lesser understood than promoters [Arnone and
Davidson (1997)], (iii) CRMs are intrinsically more difficult to model and predict than
promoters since they may be located at any distance from the TSS and lack conserved

anchoring features such as TATA box, CAAT box etc. which are found in promoters.
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CRMs have been most widely studied in the genome of Drosophila melanogaster
(fruit fly). Two kinds of CRMs have generally been observed in Drosophila — homotypic
CRMs which are composed of multiple binding sites for a single TF, and heterotypic
CRMs which have binding sites for more than one TF. It is currently understood that the
gene expression pattern (i.e. the region/tissue and the stage of gene expression) directed
by a CRM depends upon the specific set of TFs that bind to the CRM. A set of TFs that
cooperatively bind to a CRM is called a “regulatory code”. The regulatory codes are
specific as only certain TFs can cooperate in the same regulatory event. For example the
TFs bicoid, caudal, hunchback, knirps, Kruppel, giant, tailless, etc are known to regulate
gene expression in the blastoderm embryo [Berman et al. (2002); Schroeder et al. (2004)].
Whereas the set of TFs dorsal, twist, su(H), etc. governs gene expression in the
embrynoic neuroectoderm [Markstein et al. (2004)]. CRMs are defined to be of different
“types” according to their specific regulatory codes. CRMs of the same type will express
in the same tissue and developmental stage.

The current computational techniques model CRMs of a specific type as a
sequence of fixed length (such as 700bp) in which the number of TFBS of the regulatory
code TFs exceeds a certain threshold [Markstein et al. (2002), Berman et al. (2002),
Rajewsky et al. (2002), Lifanov et al. (2003), Schroeder et al. (2004)]. The regulatory
code is obtained from biological knowledge. Currently only three specific regulatory
codes are known for gene expression in the embryonic blastoderm, mesoderm and
neuroectoderm. Thus the computational studies are limited to only few specific types of
CRMs. Moreover, currently the binding motifs (PWMs) are accurately known only for a

few TFs. Thus the scope of computational CRM prediction is presently very limited.
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-4 Research Objectives

The objective of the present research is to utilize the information of order and
distance preferences of protein-DNA binding sites in each of the three problem domains,
viz. DNA motif detection, general promoter and TSS prediction, and modeling and
detection of CRMs, and create pragmatic computational models/strategies which improve
the prediction performance. This section briefly summarizes the specific research

problems that have been addressed in this research.

I-4.1 Detection of Localized Motifs

The present research especially addresses localized motif discovery in long
regulatory sequences. Currently there is a need for analyzing motifs in long sequences in
ChIP experiments, vertebrate promoters, etc. Recent studies [Keich and Pevzner
(2002a,b), Buhler and Tompa (2002), Chin et al. (2004)] have shown that in long
sequences random patterns become at least as prominent as the real motif, therefore any
motif finding algorithm will report a number of spurious motifs that overshadow the real
motif. In addition, for most motif finding algorithms the time and memory requirements
increase greatly for an increase in sequence length. This forms the motivation for
pursuing a specialized approach for motif detection in long regulatory sequences.

It is recognized in the literature that binding sites usually occur within the
regulatory sequences in a position-specific manner relative to a biological landmark. For
example many TFBS are appropriately located relative to the TSS to allow TFs to anchor
at specific positions with respect to each other and the TSS [Smale and Kadonaga (2003),
Roepcke et al. (2006)]. Several other examples are reported in this dissertation. In such

situations, it is possible to detect the motif by searching for it in an appropriate local
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sequence interval after aligning the sequences relative to an anchor point. Localization
removes the sequence regions that do not contain the motif, thus increasing the strength
of the motif relative to noisy random patterns. For instance, in Figure 1-8(a) a random
pattern appears as most repeated and conserved within the complete sequence length,
whereas in Figure 1-8(b), if only a short local interval relative to an anchor point is
analyzed, the real biologically relevant motif is discovered. [Ohler et al. (2002)]
analyzed motifs in 1941 Drosophila regulatory sequences of length 300bp each aligned (-
250,+50) relative to the TSS. The analysis of complete 300bp sequence did not reveal
many of the core promoter motifs. However, in a separate analysis of the local region (-
60,+40), most core promoter motifs were discovered. Similarly [Molina and Grotewold
(2005)] analyzed the (-50,-1) and (+1,+50) regions of Arabidopsis Thaliana promoters
separately in order to discover the core promoter motifs.

An apparent solution is to subdivide the long sequences (aligned relative to an
anchor point) into short overlapping intervals of equal length and analyze each interval
with a motif finding algorithm. However there are inherent problems in this approach.
Firstly, apart from specific situations such as the analysis of core promoters, the region of
localization of the motifs is not known a priori. When a general motif finding tool is
used to search for motifs in an arbitrary sequence interval, it reports a number of random
motifs that are locally over-represented but not globally conserved. The difference
between a locally over-represented random motif and a globally conserved “localized
motif” is illustrated in Figure 1-9. The localized motif has a specific confinement within
a sequence interval when observed at a global level, while a random motif has no such

confinement. The scoring function of a general motif finding algorithm assigns high
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scores to the random motifs, making it difficult to differentiate them from localized
motifs. Moreover, among a large number of motifs reported over all intervals, it is not
easy to identify motifs that are most relevant over the entire sequence length. Secondly,
the interval length must be chosen carefully as if it is too short compared to the
localization region then the motif may not appear prominently in any of the intervals, and
if it is too long then the motif may again remain obscured. This is illustrated by an
example in Figure 1-10, where the detection of multiple motifs spread over regions of
different length requires selection of different interval lengths. In practice, even a 100 bp
difference in the interval length yields entirely different results. Thirdly, the manual task
of fragmenting the sequences and combining together the results for different intervals is
laborious, time consuming and prone to error. It would be useful to have an automated,
efficient algorithm which can accurately demarcate the region of localization of the
motifs and detect them.

[Tharakaraman et al. (2005)] incorporated positional preference in their motif

finding algorithm GLAM by performing gapless local alignment over windowed

Short interval: Long interval:
. Motifs may be missed Motifs become weak

Motif A Motif B Motif C

Figure 1-10.  An illustration of the difficulties in analyzing sub-intervals of long
regulatory sequences — for short intervals, motifs A and C are missed, and
for long intervals the motifs may become weak.
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subsequences of the original sequence set (aligned relative to the TSS) instead of the
complete length. However the algorithm, being slow and computationally expensive, is
practical only for the analysis of short sequences. This dissertation introduces the
concept of localized motif finding and presents an algorithm called LocalMotif [Narang et

al. (2006)] for detecting localized motifs in long regulatory sequences.

1-4.2 Bayesian Network Model for General Promoter Prediction

Computational algorithms for general promoter prediction currently have a
sensitivity of about 35% and produce a large number of false positives. Different
algorithms make different simplifying assumptions about the context of TFBS in a
promoter. The accuracy achievable by a promoter model greatly depends upon how well
it emulates the real biological context. For example, a simple model of promoter as a
region with a high TFBS density [Prestridge (1995)] had only 13% sensitivity and two
false predictions per true prediction [Fickett and Hatzigeorgiu (1997)], while a more
refined model considering positions of the TFBS relative to the TSS [Down and Hubbard
(2002)] improved the accuracy to 29% sensitivity and 0.5 false predictions per true
prediction. Further modeling refinements have been proposed in the literature [Werner
(2003)], such accounting for synergistic or antagonistic coordination among binding sites,
modeling the positions and order of binding sites relative to each other, modeling
physical properties of sequences around the TSS such as DNA bendability, stability,
curvature, chromatin structure etc. These aspects have not yet been implemented.

A parallel approach in computational promoter prediction is using artificial
intelligence (Al) based systems. These algorithms do not directly search for known motif

signals, but rather perform unsupervised learning of string features (motifs) that are
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unique to promoter sequences. The features may be identified through discrimination
between a set of training examples of promoter and non-promoter sequences using
machine learning and statistical techniques [Hutchinson (1996), Chen et al. (1997),
Scherf et al. (2000), Bajic et al. (2003)]. The context of these features within the
promoter is also learnt from training examples in an unsupervised manner using Al
modeling techniques such as artificial neural networks. Increasing the modeling
complexity and carefully tuning the training process allows high accuracy to be achieved
with the unsupervised learning approach [Scherf et al. (2000), Bajic et al. (2003)]. The
advantage of this approach lies in the ability to recognize using machine intelligence
compositional aspects of promoter sequences that are not so far physically understood.
The present research combines known biological concept of modeling positions
and order of TFBS relative to the TSS, with the Al approach of performing de-novo
learning of promoter features from sequence, in a computational promoter prediction

model of improved performance called BayesProm [Narang et al. (2005)].

1-4.3 Cis-Regulatory Module Prediction in the Drosophila Genome

The current computational approach for CRM prediction characterizes the CRMs
as short (~1 kb) genomic segments containing high density of binding sites for a set of
co-acting TFs [Frech et al. (1998); Wasserman and Fickett (1998); Frith et al. (2001);
Berman et al. (2002); Markstein et al. (2002); Rajewsky et al. (2002); Bailey and Noble
(2003); Sinha et al. (2003); Berman et al. (2004); Markstein et al. (2004); Schroeder et al.
(2004)]. The set of cooperating TFs is called the regulatory code. The binding sites of
the TFs are recognized with the help of positional weight matrices (PWMs) for the TFs

[Stormo (2000)].
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The main challenge for this approach is that the compositions of different CRMs
regulating gene expression in different developmental stages and tissues are exceedingly
varied. Each specific expression profile is governed by a specific regulatory code.
Presently the regulatory codes are extracted based on tedious wet-lab experiments and
biological knowledge. Only three such codes are currently known to our best knowledge.
Thus the applicability of the approach is quite limited. Another limitation is that good
quality PWMs, which are required to predict the TFBS clusters, are available only for a
few TFs. Currently the PWMs have been computed from a small number of
experimental TFBS sequences determined by DNAse footprinting. Most of these PWMs
lack sufficient sensitivity and specificity [Narang et al. (2006)].

On the other hand, available experimental data on CRMs has expanded in the
recent years, but has not been utilized so far towards computational modeling and
prediction of CRMs. Sequence based modeling of CRMs such as using oligonucleotide
frequencies has been recently attempted and has shown some degree of success in
modeling blastoderm CRMs [Chan and Kibler (2005)]. However, the performance
diminishes considerably on various other CRM types [Li et al. (2007)]. The main reason,
as shown in the present research, is that oligonucleotide motifs produce a large number of
false matches in the non-TFBS segments of a CRM. These non-TFBS segments are not
conserved across CRMs. Therefore the model is inaccurate.

The present research develops a computational CRM modeling and prediction
approach called Modulexplorer [Narang et al. (2008)] to perform de-novo learning of
regulatory codes for Drosophila CRMs from CRMs of unknown types. Modulexplorer

inputs a database of known CRMs and a set of non-CRM background sequences and
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characterizes the TFBSs within the CRMs de-novo. It then uses a probabilistic Bayesian
network model to learn the TFBS interactions in CRMs. These interactions describe the

regulatory codes. The trained model is used to discover novel CRMs.

[-5 Organization of the Thesis

Three specific research problems which form the subject of this thesis were
briefly introduced in Section I-4. Each of these is presented in a separate chapter — the
localized motif finding problem is addressed in Chapter 4, followed by the general
promoter prediction problem in Chapter 5 and finally cis-regulatory module prediction in
Chapter 6. Each chapter is self-contained with the problem statement, methods and
results. A review of the current literature within the scope of this research is given in
Chapter 2. Some common mathematical preliminaries are provided in Chapter 3. The

main conclusions of this research and future work are finally discussed in Chapter 7.
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CHAPTER - 1l

LITERATURE REVIEW

Several computational approaches have appeared in the literature addressing each
of the three problems subject of the present research. An exhaustive review of these
would make this dissertation voluminous. Thus only a summary of the relevant existing
approaches is presented below, highlighting their similarities and differences with the

present research.

[I-1 Detection of DNA Motifs

Numerous computational methods and tools have been reported over the past
fifteen years or so for discovering motifs in regulatory regions of genes. Recent reviews
on the subject can be found in [Tompa et al. (2005), D’haeseleer (2006a,b), Wasserman
and Krivan (2003)]. The different approaches differ in terms of the motif model, scoring
function and algorithm.

A number of different representations of a motif are available in the literature.
Most algorithms model the motif as either consensus sequence, or consensus sequence
with possible gaps, or as positional weight matrix (PWM) (refer Chapter 3). Other
probabilistic model based representations of a motif such as hidden Markov model
[Durbin et al. (1998), Xing et al. (2004)], Bayesian network model [Barash et al. (2003)],
variable order Bayesian network [Ben-Gal et al. (2005)], etc. are also found in the
literature. The present research uses a particular consensus based representation called
(1,d) motif [Waterman et al. (1984), and Pevzner and Sze (2000)], where the motif is a
nucleotide pattern of fixed length | such that any observed binding site has a maximum of

d point mutations from this pattern. Though the PWM representation is preferred for
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modeling motifs with experimentally known binding preferences, the consensus or (I,d)
motif representation is found equally or more effective in ab-initio motif detection
[Pavesi et al. (2001), Tompa et al. (2005)].

A recent review of the various scoring functions used for motif detection can be
obtained in [Li and Tompa (2006)], while an assessment of various scoring functions was
performed in [Friberg et al. (2005)]. The simplest scoring functions for consensus based
motif representation are the total distance score and sum of pairs score [Pevzner and Sze
(2000)], which measure the degree of conservation of a (I,d) candidate motif within the
set of input sequences. However, these scoring measures do not capture the complexity
of DNA sequences in terms of their non-uniform oligonucleotide content. Thus several
motif finding tools score the statistical over-representation of a motif in the given set of
sequences, for example oligo-analysis [van-Helden et al. (1998)], MobyDick
[Bussemaker et al. (2000)], YMF [Sinha and Tompa (2000)], Projection [Buhler and
Tompa (2002)], etc. The over-representation is measured relative to the general
nucleotide content of the given set of sequences, known as genomic background. The
background is usually modeled as a stationary stochastic process with a Markov model
(see Section 111-1). While earlier tools used a zero order Markov model to represent the
genomic background, it has been realized recently that higher order Markov models
produce better efficiency of motif detection [Thijs et al. (2001), Marchal et al. (2003),
Pavesi et al. (2001)]. In addition to over-representation, there are other important
measures of goodness of a motif such as relative entropy [Stormo (2000)] which

measures the amount of surprise in observing the motif pattern under the background
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model, sequence specific score [Pavesi et al. (2001)] which measures whether the motif
appears in a sufficiently large percentage of the input sequences, etc.

The algorithms used to search for the best candidate motif usually belong to one
of the two categories: word enumeration and probabilistic optimization. The choice of
the algorithm partially depends upon the chosen motif representation. Word enumeration
based algorithms employ a consensus sequence representation of the motif with or
without gaps. An exhaustive enumeration approach [Waterman et al. (1984)] involves
considering all possible 4' candidate (I,d) motifs and scoring them. Though an exact
algorithm, it has high time complexity. Thus Pevzner and Sze (2000), and Eskin and
Pevzner (2002) introduced three heuristic search algorithms, SP-STAR, WINNOWER
and MITRA. SP-STAR first considers candidate patterns that have an exact match in any
of the sequences, and then heuristically extends the search to include more candidate
patterns which are similar to the best scoring patterns. WINNOWER and MITRA
translate the motif finding problem to an equivalent problem of finding cliques in a graph,
and find a quick heuristic solution by pruning inessential edges in the graph. A faster
implementation of exhaustive enumeration is possible using suffix tree [Ukkonen (1995)],
which can enumerate all valid occurrences of a candidate pattern in all the sequences in
O(1) time. Taking advantage of this approach, fast algorithms such as SMILE [Marsan
and Sagot (2000)] and Weeder [Pavesi et al. (2001)] have appeared. Recently the motif
finding problem has also been formulated as a search for the maximum density subgraph
of a graph whose nodes are the words in the input sequences, and whose edges connect
similar words [Fratkin et al. (2006)]. The resulting optimization can be performed in

polynomial time. Some word enumeration algorithms consider only the exact matches of
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a length | pattern in the sequences in order to detect the motif [Staden (1989), van Halden
et al. (1998), Tompa (1999)]. AIll word enumeration algorithms algorithms may be
extended to detect gapped motifs by considering only the significant positions in the
alignment.

Probabilistic motif finding algorithms represent a motif as a positional weight
matrix (PWM). The PWM which has the lowest probability of occurring by chance (or
highest score) describes the most novel pattern, which is presumably the motif being

sought. Considering that one binding site for the motif is present in each of the N
sequences of length L, (L—I +1)N different PWMs can be possibly formed, making an

exhaustive search algorithm impractical. Therefore different algorithms have been
devised to efficiently search for the optimal PWM. An approximate heuristic method
was used in CONSENSUS [Hertz et al. (1990)]. A systematic optimization approach
later appeared as the MEME algorithm [Bailey and Elkan (1994)]. MEME fits a
statistical model to the given set of sequences, consisting of the motif model (i.e., the
PWM), the background model described as a zero order Markov model, and a weight
parameter representing the mixing frequency of the motif and the background models.
The accuracy of the overall statistical model is measured by a likelihood function, which
is optimized iteratively using the expectation maximization (EM) algorithm to find the
best motif and background models. Being an EM based solution, MEME finds the local
rather than the global optimum. A related optimization approach called Gibbs sampling,
which is a stochastic equivalent of the EM, has been implemented in several other tools

such as GibbsDNA [Lawrence et al. (1993)], AlignACE [Roth et al. (1998)],
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MotifSampler [Thijs et al. (2002)], BioProspector [Liu et al. (2002)], ANN-spec
[Workman and Stormo (2000)] etc.

Latest advances in motif detection try to make use of information other than just
the regulatory sequence to improve the prospects of detecting the motif. For instance, in
regulatory sequences that have been identified using ChlIP-chip analysis, ChIP
enrichment information may be used to enhance motif detection [Liu et al. (2002),
Ettwiller et al. (2007)]. From the knowledge of the nature of interaction between
nucleotides and amino acids in DNA-binding domains of a set of transcription factors,
binding sites for other related transcription factors may be possible to derive [Mandel-
Gutfreund et al. (2001), Kaplan et al. (2005)]. Specialized algorithms are being
developed to discover composite motifs, which are spaced dyads or ordered sets of motifs
with strong distance constraints [van Helden et al. (2000), Eskin and Pevzner (2002),
Wijaya et al. (2007)].

The literature in the area of motif finding is indeed vast, and to maintain the
brevity of this review, aspects and references of lesser relevance to the present context

have been intentionally left out.

lI-2 General Promoter Modeling and Transcription Start Site Prediction

A number of tools for the detection of general promoters and TSS are reported in
the literature. There are two categories of modeling approaches or tools for promoter
prediction. The first category of tools [Kondrakhin et al. (1995), Prestridge (1995),
Down and Hubbard (2002)] utilize positional weight matrices (PWM) derived from
experimental data [Bucher (1990)] for detecting putative TFBS and identify sequence

regions with a high density of binding sites as possible promoters. The state of the art in
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this category, Eponine [Down and Hubbard (2002)], improves the model quality and
prediction accuracy by associating with each PWM the probability distribution of its
position relative to the TSS. The second category of tools [Hutchinson (1996), Chen et al.
(1997), Scherf et al. (2000), Bajic et al. (2003)] recognize promoters based on their
sequence composition.  Characteristic features of promoter sequences are learnt
automatically from a set of training examples using machine learning or statistical
techniques. An unknown sequence is then classified as promoter or non-promoter based
on its feature content. Most tools use oligonucleotides of fixed length as features
[Hutchinson (1996), Chen et al. (1997), Bajic et al. (2003)] and select the best features
based on occurrence frequencies of oligonucleotides in promoter versus non-promoter
training datasets. PromoterInspector [Scherf et al. (2000)] uses IUPAC groups, which are
oligonucleotides permuted with wildcards, as features.

About 6-10 years ago, the first generation of tools could predict less than 30% of
the actual TSS, while reporting one false positive every 1000 bp [Fickett and
Hatzigeorgiou (1997)]. Recent research has focused on achieving improved TSS
prediction performance through better tuning and increased modeling complexity. The
resultant 2" generation tools [Werner (2003)], such as Promoterinspector, Eponine,
Dragon Promoter Finder, etc. have accuracy which is suitable for whole genome scale
prediction. However, the increase in sensitivity has been much less compared to the
improvement in the specificity of these tools. More recently, biologically motivated
approaches such as CpG+ [Hannenhalli and Levy (2001)] and gene start finding tools
such as First Exon Finder [Davuluri et al. (2001)] and Dragon Gene Start Finder [Bajic

and Seah (2003)] have exploited features such as CpG islands and first splice donor sites
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to improve the accuracy of TSS prediction. Approaches utilizing physico-chemical
properties [Uren et al. (2006)] and structural properties [Abeel et al. (2008)] of DNA
have been proposed recently, however they have lower accuracy than the sequence based

methods.

[I-3 Modeling and Detection of Cis-Regulatory Modules

The literature on the computational modeling and detection of cis-regulatory
modules is fairly recent and limited. Modeling and prediction techniques have developed
independently in two different areas viz. vertebrate CRMs and CRMs in Drosophila
melanogaster. Few vertebrate CRM models have appeared in the literature such as
FASTM [Klingenhoff et al. (1999)], logistic regression analysis [Wasserman and Fickett
(1998)] and Modulesearcher [Aerts et al. (2003)]. These models study specific CRMs
present close to the TSS, which are involved in tissue specific gene expression such as in
muscle tissues. They are not discussed in detail here since the focus of this dissertation is
on Drosophila CRMs, and models for Drosophila CRMs are characteristically different
from vertebrate CRM models.

The simplest computational model for Drosophila CRMs was as a cluster of
TFBS. Markstein et al. (2002) modeled a homotypic CRM in Drosophila (Figure 11-1a)
as a cluster of TFBS for a single TF. They considered a cluster of three or more binding
sites of the TF named Dorsal in a 400 bp window as a CRM. Similarly [Berman et al.
(2002)] modeled a heterotypic CRM as a cluster of TFBS for multiple TFs (Figure 11-1b).
A minimum of fifteen TFBS for a set of five TFs — two maternal TFs (bicoid and caudal)
and three gap TFs (hunchback, Kruppel and knirps) — were requisite in a 700 bp window

to classify it as a CRM. Prediction quality was improved by [Rajewsky et al. (2002)] and
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[Schroeder et al. (2004)] by allowing overlapping and weak binding sites into the
computational model, considering a statistically optimal combination of TFBS over a
sequence window rather than single matches. The cluster model is specified based on
biological knowledge of mutually interacting TFs in a CRM, and it requires high quality
PWMs as input. Thus it has limited application.

Another way of modeling a CRM as a cluster of TFBS is using hidden Markov
models (HMM) [Frith et al. (2001)]. PWMs for a set of related TFs are supplied by the
user based on prior biological knowledge, and the HMM uses these to discover clusters
of TFBS (CRMs) in a given genomic sequence. The HMM (Figure I1-1c) has three types
of states: inter-cluster background, intra-cluster (i.e. between the TFBS) background, and
motif states. There is a separate motif state for each TF, with its emission probabilities
defined using the PWM. The model scans the regulatory sequence base by base to

compute the probability that the query sequence contains a cluster of TFBS.
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Figure 11-1.  Computational models for cis-regulatory modules: (a) homotypic cluster of

TFBS [Markstein et al. (2002)], (b) heterotypic cluster of TFBS [Berman
et al. (2002)], (c) hidden Markov model [Frith et al. (2001)], (d) statistical
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model of Gupta and Liu (2005), (e) discriminatory Bayesian network
model of Segal and Sharan (2005).

The HMM approach was further developed by Sinha et al. (2003) to include the
information of order in which TFBS are organized in a CRM (i.e. when one TFBS
consistently follows another). The modified model produced superior results compared
to the basic model where binding sites are expected to occur in any random order. In
another study, Bailey and Noble (2003) incorporated a penalty for inter-cluster and intra-
cluster distances within the HMM, and again observed an improvement in the quality of
predictions. These studies point out two important factors in CRM modeling, i.e., the
information of gap and order among the TFBS.

Two algorithms have appeared recently for learning a new CRM model de-novo
from sequence data of co-regulated genes. Given as input a set of sequences putatively
containing CRM of the same type, they attempt to discover multiple coexisting motifs
and learn their PWMs. However the requirement is that all given sequences contain the
same CRM type restricts their applicability to very specific datasets. Gupta and Liu
(2005) propose a statistical model (Figure I1-1d) with the following unknown parameters:
(i) the number of TFs, (ii) PWMs for the TFs, (iii) neighbor preferences of each TFBS in
the form of a transition matrix, (iv) distance preferences between neighboring TFBS
modeled as a truncated geometric distribution, (v) inter-TFBS background modeled by a
Markov chain. The model parameters are learnt from sequence data using Bayesian
inference with Markov chain Monte Carlo and Gibbs sampling algorithms. Segal and
Sharan (2005) use a discriminative Bayesian network (Figure 1l-1e) to learn a fixed
number of PWMs that best discriminate between two given sequence sets — sequences

that contain an unknown CRM, and background sequences. The model defines a CRM as
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a cluster of binding sites for the PWMs in a fixed length sequence window, with the
discriminative Bayesian network model measuring odds that (i) a particular sequence
contains a CRM window, (ii) a window is a CRM , and (iii) a window contains binding
site for a given PWM. Maximum likelihood estimation of the model parameters using
the expectation maximization (EM) algorithm can thus obtain the unknown PWMs. In
both studies, initialization of parameters is the most crucial aspect. Ab-initio motif
finding with human intervention is used to produce intelligent initial guesses for the
PWMs in both studies.

The present research concerns development of a CRM model which learns
regulatory codes de-novo. None of the computational studies (including in vertebrates)

have so far addressed this problem. The present research is unique in this aspect.
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CHAPTER - 1lI

PRELIMINARIES

This chapter discusses the fundamental computational modeling concepts used
throughout this dissertation, including Markov modeling of genomic background (Section
I11-1), consensus sequence and PWM based representations of DNA motifs (Section Il1-
2), fundamentals of Bayesian network modeling (Section 111-3), and measures of
prediction accuracy (Section Il11-4). Each section is self-contained and is referred to in
the later chapters wherever required. A reader familiar with the problem domain may

skip this chapter and refer back to the relevant sections if required.

llI-1 Stochastic Model of the Genome
I11-1.1The Background Model

In the human genome, which contains approximately 3 billion bases, only 1% of
the sequence is exons that code for proteins, 24% is introns, 22% is intergenic DNA and
the rest 53% is repetitive DNA. Apart from the existence of short regulatory signals such
as transcription factor binding sites proximal or distal to the TSS, no specific function is
known for most DNA. Mathematical model for this ‘background” DNA is required in
order to be able to distinguish it from functional elements. Simple frequencies of
individual bases have been used in several computational studies [Lawrence et al. (1993),
Bailey and Elkan (1994), van Halden et al. (1998), Tompa (1999)]. However, the
genomic background is not as simple. For instance, a dinucleotide feature such as CpG
island cannot be identified using individual base frequencies. As mentioned in Chapter 2,
a more complex representation of the background in the form of a higher order Markov

model has been found useful in improving the efficiency of the computational method.
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The Markov model (or Markov chain) is a stochastic process which has the
Markov property that the current state of the process depends only on the recent past. Let

X, be a discrete time stochastic process observed at t=1,2,3,..., and let the state space
of X, be also discrete. The Markov property for a Markov model of order q states that at
any time instant i, the distribution of the observation X, is conditionally dependent only

on the previous q observations, i.e.,
Pr(X;| X Xi oo X ) = Pr( X Xy X0 X)) (3.1)

In the Markov model representation of the genome background, a sequence of
nucleotides S;S,...S,, where S, € {A,C,G, T}, is treated as an instance or realization of
the Markov process X, with the random variable X; having discrete states {A,C,G,T}.
This physically implies that the nucleotide S; at any position i depends only on the
previous g-mer of nucleotides S, ;...S; ,S, ;.

A simple way of visualising a Markov chain is through a finite state machine.
Consider a Markov model of order 1, i.e., Pr(X;| X, X;_,...., X, ) =Pr(X;| X, ), which

implies that the next observed nucleotide in the sequence depends only on current

nucleotide. The finite state representation of this model is shown in Figure Il1l-1. The

probability distribution Pr(Xi|XH) is characterized by the set of probabilities pgg ,

where Bl,Bze{A,C,G,T} , and Pes, is the probability of observing the base B,

following the base B; in the sequence. These probabilities are independent of the

position index i of the base in the sequence. The 4x4 matrix of these probabilities,
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P= [ P, }BIBZE{A]C]G]T} , Is called the transition matrix. Let the probability distribution for

the first base, Pr(X,), be the vector I=[p, p. Ps P;]. The probability
distribution for the second base is given as Pr(XZ) =1.P, and similarly for the i base as

Pr(X;)=1.P"". Thus the complete Markov chain, in this first order case, can be

characterized by the initial vector I and the transition matrix P.

Figure IlI-1. Finite state machine visualization of a first order Markov model for
sequence background.

The above concepts may be generalized to an order g Markov model. The state

transition in this case is from a g-mer to a single nucleotide. The transition probabilities

are thus the probabilities Pr(BlBZ... B, = Bqﬂ), and the transition matrix P is a 4" x4

matrix. The initial state is again a g-mer, and thus the initial probability vector, I,
contains 49 entries.

The background model parameters P and | are usually estimated from a set of
given background genomic sequences. Such sequences are collected at random from

intergenic regions which are not suspected to contain any functional elements. Let
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f(B,B,...B,) denote the number of occurrences of the I-mer BB,...B, in these

sequences. Then the initial and transition probabilities are estimated as

Pr(BB,...B,)=1/f(BB,...B,), (3.2)
_ f(BB,...B,,,)

and Pr(BB,...B,>B,)= (85,8 (3.3)
.B,...B,

[1I-2 Computational Modeling of Protein-DNA Binding Sites (Motifs)

Due to their degenerate nature, the binding sites are not fixed strings but are
represented as a model called motif. Two frequently used ways of representing a motif

viz. consensus sequence and positional weight matrix are described below.

111-2.1Consensus sequence

The consensus sequence is a string or regular expression that matches all the
binding site examples closely, but not necessarily exactly. For instance, the consensus
CONSL in Figure 111-2 is determined by choosing the base with the highest occurrence
frequency at each position of the binding site. The consensus CONS2 uses IUPAC
nomenclature (Figure 111-3) of single letter codes to represent ambiguity in the base at
any particular position. A base is considered significant at a position if occurring in more
than 25% of the binding sites.

There is a tradeoff between sensitivity and specificity in choosing the consensus
representation and the number of allowed mismatches with the consensus. Sensitivity
refers to the percentage of binding sites that can be identified using the chosen consensus
and the maximum mismatch value. For example, the consensus CONS1 above has a

sensitivity of 40% with 2 allowed mismatches and 90% with 3 mismatches. Specificity



43

refers to how frequently a match with the consensus would be found. The probability of
a random match with consensus CONS1 is 1 in 1.1 million for up to 2 mismatches and 1
in 81,000 for up to 3 mismatches. The CONS2 consensus has a sensitivity of 50% with 1
mismatch and 90% with 2 mismatches, and specificity of 1 in 1.6 million with 1

mismatch and 1 in 41,000 with 2 mismatches.

osition —
7 8

o
=
[y
N
w
[~y
(6}

Seq
Seq
Seq
Seq
Seq
Seq
Seq
Seq
Seq
Seq 10
CONS1
CONS2

O ~Jo U Wb

NeJ

[} [P NONONINONONINAONAONORES,|

P
6
C
C
C
C
C
C
C
C
C
C
C

il = ) B - I AR I )
il =i i

bl P i i A S e R ]
QA OO0 0000
Flarz =

o] [PNONONONNONNNONONN
Qo> oo @ Pk

Qajlacar a0 aoHd a3 QR
<A O30 049604338
<QaoaoooHsda o003 w
Qa0 000

HHAHH 9933493433/
Qaaa-draoand o @R

)
)]

C

pd
pd
Q
pd
()
=

Figure 111-2. A small sample of binding sites for the transcription factor NF-Y.

Symbol A C G T R Y M K
Meaning | A C G T AlG CIT A/C GIT
Symbol S | W H B \% D N
Meaning | G/C | AIT | AIC/T | GICIT | AICIG | AIGIT | AICIGIT

Figure 111-3.  Single-letter IUPAC codes for representing degeneracy of nucleotides.

The consensus representation is thus not unique and the optimal consensus
depends upon the application in question [Day and McMorris (1992)]. For representing
protein-DNA binding sites, the CONSL1 type of representation, which is basically the (1,d)

motif, is most often used.
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I11-2.2Positional Weight Matrix
A more informative representation for the binding site of a protein is in the form
of a positional weight matrix (PWM) [Stormo et al. (1982), Stormo (2000)]. The PWM

records the base conservation at each binding site position. First an alignment matrix is

formed whose entries are the frequencies, f, ;, of the nucleotides, b e {A,C,G,T}, in the

positions, je{l, 2,...,I}, among known binding site sequences. For example Figure

[11-4 shows the alignment matrix for the binding site data shown in Figure 111-2. The

f .
base conservation is measured by a weight W(b,j)=ln[ﬂj, where p, is the
Py

background frequency of the base b. The weight w(b, j) is positive when the proportion
of base b at the position j in the alignment is greater than its proportion in general
(according to background). It measures the amount of surprise in the observed

conservation of the base. The 4xI| matrix of the weights w(b, j) is called the positional

weight matrix as shown in Figure 111-4.

Alignment matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A [ 01 0 0 0.6 0 0 0 1 1 0 0 0.8 0 0.3 ] 0.2
C | 06| 03] 0.6 0 0 1 1 0 0 0 0.8 0 0 0.7 0
G | 01] 0.1 0 0.4 1 0 0 0 0 0 0.2 ] 0.2 1 0 0.6
T 02 ] 06 ] 04 0 0 0 0 0 0 1 0 0 0 0 0.2
Positional Weight Matrix
1 2 3 4 5 6 7 8 9] 10f 11f 12| 13} 14 15
A [-0.92 0 0| 0.88 0 0 0] 1.39( 1.39 0 0] 1.16 0| 0.18[-0.22
C | 0.88] 0.18| 0.88 0 0] 1.39 1.39 0 0 0| 1.16 0 0| 1.03 0
G |-0.92|-0.92 0| 0.47( 1.39 0 0 0 0 0] -0.22| -0.22| 1.39 0| 0.88
T |-0.22] 0.88] 0.47 0 0 0 0 0 0] 1.39 0 0 0 0] -0.22

Figure 111-4. Positional weight matrix developed from the collection of NF-Y TFBS in
Figure 111-2.
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Another interpretation of the weight is that it represents the information content,
which is a measure of discrimination between the binding of a functional DNA sequence
and an arbitrary DNA sequence. The information is measured by the formula

: fo | :
| oo =le with 1= > }fbyj In[%}i {Z f, w(b, j), (3.4)
b =

|
j=1 b={AC,G,T AC/GT)

where 1, is the information in the base conservation at position j. Note that Z fo; =1
b

| . 1S @lso known as the relative entropy or the Kullback-Liebler distance between the

background and the motif.
A strong correlation has been observed between the information represented by

the PWM and the affinity of the protein’s binding with a sequence [Stormo (2000)].
Consider a sequence S=SS,...S, with S, e{A,C,G,T}. The binding energy of the

protein’s interaction with the sequence S has been observed as directly correlated with the

|
measure AG(S)=> w(S;,j). This is the sum of the values that each base of the

i1
sequence S has in the weight matrix. The implication of this formula is that each weight
estimates the binding energy at that position in the binding site and each position
contributes independently to the total binding energy.

The PWM can thus be used to search for potential binding sites in an

uncharacterized sequence S =S,S,...S . At each position, p e{1,2,..., L-I +1}, of the

uncharacterized sequence S, a window §p =S,5,.---S,,, of length | is selected. Using

the PWM, the “matrix score” for this window is calculated by the formula [Bucher

(1990)]:
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> [W(S,.;.01)-w(min, )
Matrix score for S| =12 , (3.5)
|:W(man, j)—w(min,, j)]

=

where max; and min; represent the rows for which W(b, j) is maximum and minimum
respectively in the column j. The matrix score is a real number within the range [0, 1]. If
the matrix score for the window §p exceeds a chosen threshold value, it is marked as a

potential binding site. Typically the score threshold is selected based on the scores of
known binding sites. Unfortunately, however, PWM based binding site detection is not

fully reliable and can produce a large numbers of false positives [Stormo (2000)].

[1I-3 Bayesian networks

Bayesian networks offer several advantages as a modeling tool within the context
of bioinformatics applications. This section briefly discusses the most fundamental
Bayesian network modeling concepts.

A Bayesian network is a formalism to represent and reason about probabilistic
cause-and-effect relationships among a set of entities or events in an intuitive manner. It
has two components — (i) a graphical map of the cause-and-effect relationships among the
entities or events in the domain, and (ii) a numerical measurement of the extent of this
dependence.

In the graph, each entity or event is represented as a node, and the cause-effect
relationships among the nodes are shown by directed edges linking causes to effects.
This is technically called a directed acyclic graph (DAG). For example, consider a

Bayesian network model of the causes of heart disease as shown in Figure I11-5. The
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different events or causes associated with heart disease such as diet, obesity, blood
pressure, smoking etc. are shown in oval shaped nodes. The causal relationships are
shown as edges, e.g. since exercise directly affects obesity, blood pressure and

arteriosclerosis, it is the parent of these three nodes.

Fatty
Non-fatty

High
Medium
Low

Figure I11-5. A Bayesian network for modeling the causes of heart disease.

In the numerical representation, each entity or event (from now onwards referred
to as a node in the Bayesian network) is represented by a variable which can take a set of
possible values or states for the event. For example, the set of possible states of each
node are shown alongside the nodes in Figure 111-5 in rectangular captions. A conditional
probability table (CPT) is associated with each variable to quantify the extent to which
the variable is likely to be affected by other variables. For example the CPT of obesity is
illustrated in Figure 6, showing the probabilistic dependence of an individual’s obesity on
his diet and exercise habits. Each row of the CPT shows how obesity is affected by a
particular combination of its parents, diet and exercise. E.g. a fatty diet with low exercise
is likely to produce obesity in 35% of the cases (row 3 of the CPT). Note that the sum of

probabilities in each row of the CPT is always 1.
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Diet Exercise | Obesity=High | Obesity=Medium| Obesity=Low
Fatty High 0.2 0.4 0.4
Fatty Medium 0.25 0.5 0.25
Fatty Low 0.35 0.5 0.15
Non-fatty High 0.1 0.2 0.7
Non-fatty | Medium 0.15 0.25 0.6
Non-fatty Low 0.2 0.3 0.5

Figure 111-6. Conditional probability table (CPT) for the node “obesity” in the Bayesian
network of Figure I11-5.

In the Bayesian network structure as shown in Figure I11-5, a node from which
there is an edge to another node is called a parent of that child node, e.g. the node “diet”
is a parent of the node “obesity”. Similarly there is an ancestor-dependent relationship
between nodes that are linked in a chain, e.g. “diet” is an ancestor of “blood pressure”.
These relationships describe how one variable influences the state of another variable.
The parent nodes directly influence the child node, while the ancestor nodes have an
indirect influence upon their descendants. There exists a conditional independence
relationship in the network, which is stated as follows: a node is independent of its
ancestors given its parents. E.g. since diet affects blood pressure not directly but through
obesity, once the information of a person’s obesity is available, knowledge of his diet
does not give any additional information about his blood pressure.

Defining a Bayesian network model for a given problem involves specifying (a)
the variables or nodes in the graph, (b) the set of possible states for each node, (c) the
edges connecting the nodes in the graph, (d) the probability distributions or CPTs
associated with each node. The former three, i.e. the nodes, states and the edges,
comprise the Bayesian network structure, and the latter comprises the parameters. The

structure represents modeler’s understanding or beliefs about the problem domain, and

there is a fair bit of flexibility possible in choosing the structure.



49

In mathematical terms, the concept of conditional independence is explained as
follows. Each node in the Bayesian network is a random variable. The complete joint

distribution of this set of N random variables X, X,,..., X, is given by the chain rule as

Pr( Xy, X, XN):lﬁ[Pr(XJXH, Xi e Xy). (3.6)

i=1
Note that the variable X, is conditioned on the variables X, ;, X, ,,..., X, which precede
it in the topological ordering. The conditional independence between the variables

allows this joint distribution to be simplified. Instead of being conditioned on all its

predecessors, the node X, is conditioned only on its parents. Thus in the simplified

expression,
N
Pr(X,, X,..... X ) =] [Pr(X;|Pa(X,)), (3.7)
i=1

where Pa(X;) denotes the set of parents of the node X; in the Bayesian network. If

each variable X, has m possible states, the full joint distribution would require O(m")

parameters. Whereas the factored form of the Bayesian network would require only
O(Nm") parameters, where k is the maximum number of parents for any node. Thus the
Bayesian network formalism makes mathematical modeling much simpler.

The purpose of a Bayesian network is to estimate certainties of events that are not
directly observable. For example, whether or not a patient has heart disease cannot be
directly known, however a doctor can infer about it using knowledge of associated
symptoms. As information regarding the symptoms accumulates, the doctor’s belief

about the existence of heart disease changes accordingly. For example, if the doctor
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comes to know that the patient smokes, his belief about the patient’s chances of having
heart disease increases. The Bayesian network can be used to make intelligent inferences
similar to the medical expert. After representing the problem domain in terms of a
Bayesian network, one can use it to reason how information about states of certain nodes
in the network changes the belief about states of other nodes. This is called inference
using a Bayesian network.

An interesting aspect of Bayesian network modeling is that both the network’s
structure and parameters (CPTs) can be determined from a known set of data
automatically using algorithms such as Expectation-Maximization (EM). Estimation of
the parameters is called parameter learning and estimation of the structure is called
structure learning, and the complete process of learning from given data is called
training of the Bayesian network. How parameter learning and inference are performed
in a Bayesian network is explained below.

As a machine learning tool, a Bayesian network can learn from examples to
simulate the real world phenomenon. Learning, in this context, refers to the procedure of
updating the parameter values (CPTs) of the Bayesian network model to make it
representative of the known examples. The known examples are referred to as training
data. The measure of how well the model fits the training data is provided by the
likelihood function, which indicates how likely the Bayesian network is to produce this

data, i.e.
Likelihood function = Pr( Data | Model ). (3.8)

The learning algorithm updates the model parameters so as to maximize the value

of the likelihood function, and the parameter values thus obtained are known as
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maximum likelihood estimates. The basic idea therefore is to find a model configuration
which is more likely than any other to produce the given data.

The expectation-maximization (EM) algorithm is a general method which can be
used to obtain maximum likelihood estimates of the parameters of a Bayesian network
for a given training dataset. The EM algorithm works even when the dataset is
incomplete or has missing values. Missing values are encountered not only in problems
where there are limitations in the data gathering process, but rather they occur more
frequently in situations where there are hidden or unobserved variables in the system.

The EM is an iterative algorithm with two steps — Expectation step (E-step) and
Maximization step (M-step). In the E-step, the current parameters are used to estimate
the missing data using the inference procedure as was described above. In the M-step,
the filled-in data is used to perform maximum likelihood estimation of the parameters.
The updated parameter values obtained in the M-step are again used in the next E-step to
make a new (improved) estimate of the missing data. An M-step again follows to update
the parameter values. In this way the EM steps are repeated iteratively until convergence.

Bayesian networks are a powerful formalism for mathematical modeling of real
world phenomena. The above short description gave an overview of the essential
concepts including model building, inference and parameter estimation. For detailed
mathematical treatment, the reader may refer to [Jensen (2001)] and [Narang et al.

(2006)].

[lI-4 Measures of Accuracy

Since a major theme of the present work is detection of functional elements in the

genome, evaluation of prediction accuracy is frequently required. As functional elements
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are specific discrete signals on the genome, the result of a prediction is binary, i.e., either

the prediction is true, or the

prediction is false. The comparison between the set of

predictions and the set of existing functional elements can be summarized in terms of

four cases, viz. true positive, false positive, true negative, and false negative:

The algorithm reported
a prediction

The algorithm did not
report a prediction

A functional element exists

True Positive (TP)

False Negative (FN)

No functional element exists

False Positive (FP)

True Negative (TN)

Any measure of prediction performance is derived fundamentally in terms of the

number of TP, TN, FP and FN. Important measures are as follows:

Performance Definition Physical interpretation
measure
Sensitivity (Se) Se = TP probability that a prediction is
€= TP + EN reported given the functional
element is present
Specificity (Sp) Sp - TN probability that a prediction is not
= TN + FP reported given the functional
element is absent
Positive POV = TP probability that a functional element
Predictive Value V= TP + EP exists given that a prediction is
(Ppv) reported
Negative NDY = TN probability that a functional element
Predictive Value V= TN + EN does exist given that no
(Npv) prediction is reported
Correlation cc—_ TPxTN—FPxFN strength of the relationship between
coefficient (CC) (TP+FN)x(TN + FP)x | predictions and actual occurrences
(TP +FP)x (TN + FN)

All of the above measures range between 0 to 1 and their high values are desirable.
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Apart from the above quantitative measures, an important measure of accuracy of
a prediction algorithm is graphically represented in terms of the Receiver Operating
Characteristics Curve (ROC Curve). While the above quantitative measures reflect only
the current prediction accuracy of the predictor, the ROC curve shows a complete
rigorous picture of the goodness of the prediction model. Although both high sensitivity
and specificity are desirable, unless the predictor is perfect there is always a tradeoff
between them. This is because the predictor may be either too liberal or too conservative
in reporting positive predictions depending upon the threshold value it uses. The ROC
curve shows this tradeoff under varying threshold values. It is the plot of sensitivity vs.
(1-specificity) as the predictor threshold varies.

As shown in Figure 111-7, the perfect predictor yields a point in the upper left
corner (coordinate (0,1)) of the ROC space. Whereas the ROC curve of a completely
random predictor is the 45° diagonal line. For a mundane predictor, the ROC curve lies
somewhere above the 45° diagonal, and the further away this curve is from the diagonal

the better the predictor’s performance.

ROC curve

1
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1

0

T~

Perfect Predictor

Sensitivity

0 01 02 03 04 05 06 07 08 09 1
1-Specificity

Figure I11-7.  The Receiver Operating Characteristics (ROC) curve.
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CHAPTER - IV

DETECTION OF LOCALIZED MOTIFS

This chapter discusses the problem of detecting localized DNA motifs. The use
of positional information yields significant advantage in this application. Motivation for
the problem was given in Chapter 1. The problem is relevant towards motif discovery in
long regulatory sequences that have been aligned relative to an anchor point, especially
for genomes of higher eukaryotes (metazoans). The localized motif finding problem is
defined in Section IV-1. A new scoring measure called spatial confinement score is
introduced in Section IV-2, which allows assessment of whether or not a motif has
localized occurrence within the sequences and an accurate demarcation of the interval of
localization. The spatial confinement score is combined with existing scoring measures
including motif over-representation and relative entropy in Section IV-3 to give an
overall account of the goodness of a motif. The existing scoring measures have been
reformulated in a form that the different scores can be easily combined into a single score
and compared across motifs of different lengths and mutations. This allows selection of
the most relevant motifs among candidates of different lengths, mutations and in different
sequence intervals, and removal of redundant motifs. A time and memory efficient
algorithm is developed in Section V-4 to utilize the scoring function to detect motifs in
long regulatory sequences. Experiments on simulated and real datasets reported in
Section IV-6 show that LocalMotif can automatically detect localized motifs and
accurately identify their position interval of localization in long sequence datasets. Such
motifs can be detected by other motif finding algorithms only when the search is

restricted to the relevant interval. The localization interval information provided by
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LocalMotif is useful for the biological identification of motifs and for studying the

composition of gene regulatory sequences.

IV-1 Problem Definition

The motif finding problem is well-defined in the literature. In the definition by

Pevzner and Sze (2000), a set of N DNA sequences S ={S,,S,,..., S, } is given in which

instances of an unknown pattern M of length | appear at different unknown positions.
The instances of M in the sequences are not exact but mutated, with up to a maximum of
d point substitutions. The problem is to discover the pattern M given | and d . The
pattern M is called the motif and each of its instances in the sequences is called a
binding site.

Note that the above definition uses consensus (l,d) representation of a motif.
Though the PWM representation is usually preferred for motifs with known binding
preferences, for ab-initio motif finding the consensus representation is found effective in
detecting motifs, especially ones that do not have an exact occurrence in the sequence
[Keich and Pevzner (2002a), Pevzner and Sze (2000)]. Recent benchmark assessment of
different motif finding algorithms [Tompa et al. (2005)] confirms competent performance
of consensus based algorithms such as Weeder [Pavesi et al. (2001)] and YMF [Sinha
and Tompa (2003)].

The above definition considers that instances of the motif may be present
anywhere across the complete sequences length, which is true for most short sequence
datasets. Localized motif finding however considers that in long sequences, a significant

proportion of the motif instances are found confined within a local sequence interval
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relative to an anchor point. The localized motif finding problem is thus stated as a
variation of the above definition:

Given is a set of N input DNA sequences S={S,,S,,...,S,} of length L each,
aligned relative to an anchor point A as shown in Figure 1V-1. The instances of an
unknown pattern M of length |, mutated up to a maximum of d point substitutions,

occur confined within an unknown interval (pl, pz) of the sequences. The aim now is to

discover both M and (p,, p,) given S, | and d .

The following sections present an algorithm called LocalMotif as a solution to the
localized motif finding problem. Sections IV-2 and IV-3 describe the LocalMotif scoring

function, while Section 1VV-4 describes the algorithm.

. Length = L .

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA
CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG
ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA
GTTTACGGTTECTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA
CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG
Sy-1 CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG
S TTTTAACACCFTGACATCTGATATCA?ACATGCGTTCTCTACAATCCGTA

0 0 hh h in
w

N

Position 1 Position p, Position p, L Anchor Point (A) Position L

Figure IV-1. Discovering (6,1) motifs within a set of N sequences S,,S,,...,S,, each of

length L. The random pattern TTTAAA is seen to eclipse the real motif
TTGACA.

IV-2 Scoring Function

The LocalMotif scoring function includes three different independent measures of
the goodness of a motif, viz. relative entropy score (RES), over-representation score

(ORS) and spatial confinement score (SCS). While the former two scoring measures
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exist in the literature, spatial confinement score has been introduced in LocalMotif to aid
the detection of localized motifs. All scoring measures are brought to a consistent and

normalized form as entropy measured relative to a suitable basis, so that they may be

combined together and are comparable across motifs with different (I,d). Detailed

derivations of the formulae are provided in the Appendices.

IV-2.1 Relative entropy score

The general nucleotide composition of the regulatory sequences is called
background. The TFBS are expected to be distinct from the background since the TF can
distinguish them from surrounding nucleotide patterns. Relative entropy score (RES)
[Hertz and Stormo (1999), Stormo (2000), Thijs et al. (2002)] measures the difference
between the motif model M and background model B. Let all observed TFBS of the

motif be aligned vertically, and the average frequency of occurrence of each nucleotide

b e{A,C,G,T} at each position i=1,2,...,1 be f ;. The entropy of the motif M relative

to the background model B is usually measured as the Kullback-Leibler divergence

D(M || B):
L
Relative entropy score (RES) =D (M || B =ZZfb,In[ J (4.1)
i=1 b pb

where p, are the a priori frequencies of the nucleotides according to the background

model. The background model in LocalMotif is a Markov model of user-defined order g
[Thijs et al. (2002)]. The expression for RES is normalized as described in the Appendix

B. The normalized score is given by
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1 ¢ 1
Dyorm (M |1 B) _—422 f,., |n( )——42 (4.2)

_ |
where fb=|}2fb’i . The normalized RES usually lies in the range (0,1) and is
i=1
independent of the motif length I.

IV-2.2 Over-representation score

Since the motif is enriched in the input sequences, its number of instances in the
sequences must be significantly greater than that expected by chance (according to the
background). The over-representation score is a statistical measure of the deviation
between number of observed and chance occurrences. In random sequences that have
been sampled from a Markov background model, the number of chance occurrences of a
motif approximately follows the Gaussian distribution. The Z-score can thus be used to
measure the statistical difference between the observed and expected number of instances

of a motif [Tompa (1999)]. It is given by the formula:

Z —score = M’ (43)
(o2

where n is the number of observed instances, N is the total number of input sequences,
L is the average length of an input sequence, e is the probability of generating an

instance of the motif according to the background model, and & is the standard deviation
for the sampling distribution of e given as o =./e(1—e)/(NL) . However the Z-score is
not comparable across motifs with different (I,d). An entropy measure for over-

representation is thus derived here. The Gaussian distribution is a large sample
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approximation of the original binomial distribution according to the central limit theorem.
The normalized entropy measure is derived beginning with the binomial distribution.
Consider the experiment of finding all the instances (TFBS) of a (I,d) motif M in
a set of DNA sequences. Among all nucleotide patterns of length I, let the proportion of
TFBS patterns be e, while the proportion of non-TFBS patterns be (1—e). Among n

observed patterns, the probability of observing k TFBS is given by the binomial
distribution P(k,n|e)="C, (e) (1—e)"™. Now let the estimated proportion of TFBS of
a motif according to the background be e,, and let the actual observed proportion be e, .
The over-representation is measured as the Kullback-Leibler divergence between the
binomial distributions P(k,nle,) and P(k,n|e,). The expression is explained in detail in

Appendix B.

Over-representation score(ORS) = D(E, || E;)=N(l.d ){e0 In [%Oj +(1-¢&,)In G_ & ﬂ . (4.4)
where N(I,d) is a normalization factor described in Appendix B.

IV-2.3 Spatial confinement score
In computational motif finding algorithms, usually the TFBS are considered as
randomly distributed across the entire sequence length. LocalMotif however considers

that the distribution of TFBS may be non-uniform and localized in a certain interval

(pl, pz) of the sequences which have been aligned relative to an anchor point. Let ¢
denote the proportion of TFBS that fall within a sequence interval (pl, pz), i.e., if nis the

total number of TFBS across entire sequence length L, and n, is the number of TFBS in
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the interval (p,, p,), then c=n,/n. If the TFBS are uniformly distributed across the

entire sequence length L, then it is expected that the proportion of TFBS falling within

any interval (p,, p,) will be c=c, =|p, - p,|/L. For example, in any interval of length

L/2 one would expect to find 50% of the TFBS. However if the TFBS distribution is
non-uniform, the proportion would be higher in some intervals and lower in others.
LocalMotif intends to discover the shortest interval that encompasses the maximum
proportion of TFBS. It thus compares the proportion of TFBS that lies within the interval
and the proportion that lies outside it. The interval which maximally separates the two

has the highest spatial confinement score. Let ¢ be the observed proportion of TFBS

that lie within an interval (p,, p,) and (1—¢) that lie outside it. Let the corresponding

proportions according to uniform distribution be ¢, and (1—00) . The spatial

confinement score for the interval is given by the entropy difference (KL-divergence)
between the observed and uniform proportions. Its mathematical definition and

derivation is presented in Appendices A and B.

Spatial confinement score (SCS) = D(€||¢c,) = éln[ij +(1—é)|n£11_c j . (4.5)

Co — Y

Note that a short interval with high density of TFBS may not have a spatial
confinement score as high as a longer interval with slightly lesser density of TFBS if the
longer interval encompasses a large proportion of the TFBS compared to its surroundings.

For example, in Figure V-2, the score for interval B is higher than for interval A.
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0.035 1 Interval A: c,=0.1, €=0.25 (Relative density=2.5)

S 0.3 1 Spatial confinement score = 0.092
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Figure IV-2. lllustration of how spatial confinement score finds the shortest interval
encompassing the maximum proportion of TFBS — though interval A has
higher density of TFBS, its score is lower since a large proportion of TFBS
still lie outside it.

IV-3 Combined score

The three scoring measures mentioned above, viz. relative entropy score (RES),
over-representation score (ORS) and the spatial confinement score (SCS) measure three
completely independent characteristics of a motif. All of them have been expressed in
the form of an entropy measure based on KL divergence between an observed and a
reference probability distribution. The score of a motif is thus independent of situational

parameters such as motif length I, number of allowed substitutions d, sequence length L,

interval length (p,, p,), and so forth. Being in a normalized form, the scores usually

range between (0,1) and have consistent values barring extreme situations such as
erroneous measurement of the background distribution. The combined score may be
computed by the Hamming measure, which is simply a sum of the three different scores,
or Euclidean measure, which is the root mean square of the three scores. In addition the

individual scores give a meaningful description of what characteristic of a particular



63

motif makes it more favored. An example in this relation is presented in Section 1V-6.1

below.
Combined score:
Hamming measure = RES + ORS + SCS (4.6)
Euclidean measure = vVRES2 + ORS? + SCS?

IV-4 Algorithm

The LocalMotif algorithm must score candidate motifs in different sequence

intervals and report the best scoring ones. An exhaustive enumeration strategy would
require scoring all possible 4' candidate patterns in all possible sequence intervals,

leading to a complexity of O(4'.I2). One of the objectives of LocalMotif is fast

processing of long sequence datasets. The algorithm therefore includes several
optimizations which are briefly explained below. The algorithm pseudocode is presented

in.

IV-4.1 Creating a positional dictionary

Positional dictionary optimizes computation of the number of instances of a
candidate pattern in a given sequence interval. All unique length | sub-strings (I-mers)
found in the input sequences form the different entries of the dictionary. The position of
every single occurrence of each I-mer is recorded in this dictionary. Occurrences of
overlapping identical patterns are excluded, e.qg., if the string “TATATATA” occurs in an
input sequence, and 4-mer patterns are of interest, then the dictionary entry “TATA” will
record only two occurrences instead of three. The dictionary is cross-referenced so that

entries whose |-mer patterns have a Hamming distance of d or less from each other are
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interlinked. Interlinking facilitates quick enumeration of all binding site occurrences for

every I-mer candidate.

INITIALIZATION
Build a dictionary of all I-mers found within the sequences and their occurrence
positions, and link I-mers having a Hamming distance < d from each other.

FIRST PASS
FOR M=all I-mers in the dictionary:
FOR p1 =0to L with step s:
Compute the number of binding sites of M in the interval (p1, p1+s).

SECOND PASS
FOR M=all I-mers in the dictionary:
FOR p1 =0to (L —s) with step s:
FOR p2 = (pl+minsize) to (p1+maxsize) with step s:
Using the values in intervals (p1,p2-s ) and (p2-s, p2 ), compute for the
interval (p1,p2 ) the variables ny, ny, €, &, ¢y, €. Thus compute score for the
interval (p1,p2).
DISCARD SIMILAR PATTERNS
FOR all stored motifs M in the list:
IF M is similar to M> AND (p1,p2) overlaps (p1°,p2°) :
IF score of M < score of M’ THEN discard M and retain M’ ELSE
retain M and discard M’

EXTEND MOTIF SEARCH
Perform clustering and majority pattern generation.
Add majority pattern to the dictionary and score it in all intervals as per above

steps.
Repeat the extension till the average score stops increasing.

OUTPUT THE TOP SCORING MOTIFS AND THEIR POSITION INTERVALS.

Figure IV-3. The LocalMotif algorithm.

IV-4.2 Speed-up for score computation

Scoring each candidate I-mer in all possible position intervals
(p.p,):0<p,<p,<L , would be formidable. Only the intervals
(pl, pz): P, <P PP, e{O,s,Zs,Bs,..., L} are considered, where s, called step size, is

a small integer value set to 5 in the current implementation. Interestingly the scoring

function need not be determined individually for each position interval. The score for a
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longer interval can be computed directly from the scores for shorter constituent intervals.
The relations are derived in Appendix C. Computations are thus performed over two
passes — scores for all length s intervals are computed in the first pass, and scores for
longer intervals are calculated directly from the scores for shorter constituent intervals in
the second pass. The bottleneck in score computation is the first pass, so direct

computation in second pass reduces the time complexity in sequence length.

IV-4.3 Early discarding of similar patterns

While the candidate I-mers are being scored over various intervals, a list of scores
is maintained sorted in a descending order. Lower scoring I-mers having similar pattern
and overlapping position intervals with higher scoring I-mers are deleted from the list of
possible motifs to maintain only the top » motifs, where 7 is a user-defined percentage
of the total number of candidate motifs. This limits the memory requirements of the
algorithm. Similarity between two I-mers is evaluated using the Needleman-Wunsch

global alignment algorithm (with possible gaps). The alignment score threshold, Ay,

for measuring the similarity is a function of I.

IV-4.4 Extending the motif search

The LocalMotif algorithm does not perform an exhaustive search over all possible
4" I-mer patterns to seek the best motifs. Initially only the |-mers occurring directly
within the input sequences are considered as candidate motifs. It is possible that I-mers
not occurring directly within the input sequences may be the best motifs. A heuristic
algorithm similar to SP-STAR [Pevzner and Sze (2000)] extends the search over other

probable patterns. The 7 best scoring I-mers are clustered according to the goodness of
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their alignment, so that each cluster M, ={M,,M,,...,M_ } contains similar patterns of

clus
length I. A majority pattern is computed for each cluster, whose i letter is the most

frequent i™ letter in M with ties broken arbitrarily [Pevzner and Sze (2000)]. The

clus ?
majority pattern of each cluster is a new candidate motif. The new generation of
candidate motifs is added to the cross-referenced positional dictionary and scored in all
sequence intervals. Best scoring 7 candidate motifs are again selected and the clustering
and majority pattern procedure is repeated until scores of a new generation do not show

any improvement over previous generations.

IV-4.5 Combining motif candidates with different (l,d) combinations:
In each run, the LocalMotif algorithm finds motifs for a fixed value of  and d. To

combine the results of separate runs of LocalMotif with varying (I,d), a post-processing

algorithm has been written. Since the LocalMotif scoring function does not depend upon
| and d, motifs with different | and d can be directly compared in their scores. Motifs
with similar pattern are again identified by alignment using the Needleman-Wunsch
algorithm and among a pair of motifs with greater than 65% similarity (measured relative
to the shorter motif), the one with lower score is discarded. If two motifs have high
(>90%) similarity and overlapping intervals of localization, they are combined into a

single motif taking union of their intervals. The automated algorithm performs runs for
the (I,d) combinations (6,1), (7,1), (8,1), (9,2), (10,2), (11,2) and (12,3), and combines
their results. The particular (I,d) combinations have chosen in accordance with the

recommendation of [Buhler and Tompa (2002)], with maximum possible d for a given |

that avoids random motifs.
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IV-5 Implementation

The basic LocalMotif algorithm has been implemented in C++, and is
supplemented by a user-friendly interface and post-processor written in Python. The
complete source code and compiled binaries for both Unix and Windows platforms are

available freely at the website http://www.comp.nus.edu.sg/~bioinfo/LocalMotif.

Following parameters can be controlled by the user to suit the requirements of the

particular dataset and the available computing resources:

e Specification of the background model: the user can choose both the order of the
background Markov model and the way of specifying its parameters. The
background model parameters can either be directly specified or the user can provide
a set of sequences from which the program automatically learns the parameters.

e Number of motifs to be retained in memory: this is the parameter » described in
Section IV-4.3. Larger value of 7 is better for extension of the motif search, but the
tradeoff is RAM requirements,

e Maximum interval length: in the analysis of long sequence datasets, setting a
maximum interval length (such as 1000 bp) makes the analysis not only faster but
also more accurate since the motifs will become subtle for longer interval lengths,

e Number of best motifs to output, and

e Choice of single or double strand analysis.

The program outputs the discovered motifs, the interval of localization of each
motif, the three individual scores (RES, ORS and SCS), and combined score of each
motif. The individual scores reveal the prominent characteristics of a motif and may be

used to reject outliers (e.g. a motif reported with large RES and SCS but small ORS is


http://www.comp.nus.edu.sg/~bioinfo/LocalMotif
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probably a noisy pattern). In addition, details of the intermediate processing such as
scores of patterns similar to each selected motif (Section 1V-4.3) and motif extensions

(Section 1V-4.4) are written to a separate file for reference of the specialist.

IV-6 Results

The scoring function of LocalMotif is demonstrated first in Section IV-6.1. Then
the performance of LocalMotif is reported over sequences of different lengths in both
synthetic datasets (Section 1V-6.2) and real datasets (Section 1V-6.3). Comparison is
made with two other freely available motif finding tools: MEME [Bailey and Elkan
(1994)] and Weeder [Pavesi et al. (2001)]. MEME is one of the most commonly used
motif finding tools due to its robustness and simplicity, while Weeder has been reported
as one of the best motif finding tools by [Tompa et al. (2005)]. Also, while Weeder uses
the (1,d) motif model, MEME is based on the positional weight matrix (PWM) model

[Stormo (2000)].

IV-6.1 Analysis of the scoring function
The LocalMotif scoring function is illustrated through a planted (I,d) motif

problem. A dataset consisting of 50 sequences, each of length 3000 bp, was generated
using a zero-order uniform Markov background model. Instances of a length 7 pattern,
ATGCATG, mutated with two base substitutions each were randomly implanted in 75%
the sequences as a (7,1) motif. The sequences were analyzed with LocalMotif for (7,1)
motifs. The motif instances were confined to lie within the position interval (2000, 2500).
Note that as per the analysis of [Buhler and Tompa (2002), Keich and Pevzner (2002a)],

the (7,1) motif is a subtle motif impossible to detect within the 3000 bp length sequence
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as there are at least 6600 competing random motifs. However it is possible to discover in
the localized 500 bp region as within this region it is not subtle with no competing
random motifs. Five top scoring motifs reported by LocalMotif and their scores are
shown in Table IV-1. The planted (7,1) pattern was correctly identified as the top motif
and its interval of localization was accurately determined. Although the localized motif
has a low ORS compared to several competing random patterns, it has a substantially
higher spatial confinement score (SCS) of 0.485 as compared to the spurious motifs
whose SCS is less than 0.3. LocalMotif assigned a higher total total score to the localized
motif due to its high spatial confinement. Over-represented random motifs are not

expected to be spatially confined.

Table IV-1.  Results of using LocalMotif to analyze simulated sequences of length 3000
bp containing a planted (7,1) motif ATGCATG - five top scoring motifs
and their predicted localization intervals are reported.

Motif pattern | Motif interval | Motif score Score components
RES ORS SCS
ATGCATG (2060,2445) 1.308 0.497 | 0.326 | 0.485
GGACGCT (15,115) 1.216 0.481 | 0.500 | 0.235
AGCGCCG (455,575) 1.209 0.481|0.439 | 0.289
GTCCGAT (85,200) 1.173 0.482 | 0.408 | 0.282
TCCCTGC (2340,2450) 1.167 0.481 | 0.411 | 0.275

A contour plot of the over-representation score (ORS), localization score (SCS)
and the total score (SCO) for the (7,1) motif in various position intervals is shown in .
Note that the relative entropy score of the motif does not depend upon the interval being
analyzed and is therefore not shown. The ORS contours show that this score is large
wherever there is a local concentration of the binding sites. Thus several short sub-

intervals within the region (2000,2500) have a large ORS. Whereas the SCS contrours
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show that SCS is large only in the actual interval of localization of the motif. The
variation in ORS values is lower compared to the variation in SCS values. Thus the total
score (SCO) contours, which is a sum of ORS, SCS and RES, is biased towards SCS
variations and is thus maximum at the actual interval of localization, i.e., (2000,2500).

The spatial confinement score thus plays an important role in the detection of localized

motifs and their accurate intervals of localization.
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IV-6.2 Performance on Simulated datasets
IV.6.2.1 Short sequence datasets

The test on simulated short sequence datasets evaluates the accuracy and
robustness of motif detection as well as the accuracy of localization interval predictions
made by Localmotif. Each dataset consists of N nucleotide sequences, each of length
L <1000, generated from a background Markov model of order q . Some of the
sequences are implanted with an instance of a (I,d) motif M within a local position
interval, 1 =(p, p,) -

A total of 100 such datasets were generated while randomly varying the following
parameters: (i) sequences length L, (ii) percentage of sequences, k, that contain an
instance the motif (iii) distinctness of the motif from sequence background (i.e. relative
entropy) (iv) ratio of interval length (in which the motif is confined) to sequence length,

p=[1|/L. Note that | I | denotes length of the interval I, which equals (p,—p,). All

these parameters, together with I, d, motif pattern M, and the background model, were
varied randomly to simulate a fair variety of test conditions. The ranges of parameter

values studied is given in Table IV-2.

Table IV-2.  Ranges of parameters studied in simulated short sequence datasets.

ol

Parameter N L q k (1,d)

Range 50-100 | 200-1000 | 0-2 | 20-100 | (6,1)-(10,3) | 10-100

Figure 1V-5 shows the performance of motif detection with (a) varying sequence

length, L, and (b) varying percentage, k, of sequences that contain a motif instance. The
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motif becomes increasingly subtle with increasing L or decreasing k since the number of
competing random patterns increases. Figure IV-5 indeed shows a diminishing
performance of motif detection with increasing L or decreasing k for all the tested motif
finding tools. However the accuracy is observed to be consistently higher for LocalMotif
as compared with MEME and Weeder. This is because LocalMotif's performance is
dependent on the localization interval length rather than the total sequence length. The
localized search reduces the number of competing random patterns and increases the
comparative motif signal strength. Thus LocalMotif has greater accuracy for long
sequences that contain a localized motif. However for datasets where motifs are not
localized, the comparatively higher accuracy of LocalMotif may not hold.

The length and position of the interval within which the motif is localized has
been varied randomly in the simulated datasets to test whether LocalMotif can correctly
ascertain this interval. The accuracy of predictions has been measured in terms of the

percentage of overlap between the actual interval, I, , and predicted interval, I

a ! p

Precisely,
Ll

overlap percentage = . 4.7)
max(| 1, [, 1)

The mismatch in predicted and actual interval lengths is also penalized in this
formula by taking the ratio with respect to the larger interval. As seen in Figure 1V-6,
LocalMotif determined the position interval very accurately (overlap >0.8) in more than
60% of the cases. This shows the effectiveness of the spatial confinement scoring

function used to in LocalMotif to determine the localization interval.
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IVV.6.2.2 Long sequence datasets

Each long sequence synthetic dataset consisted of 50 sequences of length 1000-
5000 bp each, implanted with instances of one to five (I,d) motifs in position intervals of
width 200-600 bp. Ten such datasets were generated with randomly chosen number of
motifs, motif patterns, sequence length, localization interval and background model.

For prediction of localized motifs using MEME and Weeder, each dataset was
split into smaller fragments. The fragments were of the same length and overlapped each
other by 50% to ensure that the interval of localization is not missed due to improper
positioning of the fragment boundaries. Also three different fragment lengths, 200, 400
and 600, were tried. Each fragment was individually analyzed using MEME and Weeder.
Results obtained on the individual fragments were pooled together and sorted according
to the score value in case of Weeder and expect value (E-value) in case of MEME.

LocalMotif, on the other hand, was run directly on the long sequence datasets
with a maximum interval length prescribed as 1000. Sequences fragmentation was not
required since LocalMotif automatically determines the motif's interval of localization.
For each program, the top ten reported motifs were retrieved for each dataset. The
accuracy of motif detection was measured as sensitivity (Se), i.e., percentage of actual
motifs successfully detected. Specificity or positive predictive value could not be
measured since each program only reported ten best candidates and thus it is hard to give
a definition of false positive. Table V-3 shows that MEME, Weeder and LocalMotif
could determine 56%, 50% and 81% of the localized motifs respectively in intervals with

non-zero overlap percentages, and thus LocalMotif was found to be most accurate.
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Table IV-3.  Accuracy of motif detection in synthetic long sequence datasets.

Program | Planted motifs | Correct predictions | Sensitivity

MEME 32 18 56%
Weeder 32 16 50%
LocalMotif 32 26 81%

IV-6.3 Performance on Real datasets
IV.6.3.1 Short promoter sequences surrounding the TSS

Metazoan promoter sequences immediately surrounding the TSS usually contain a
few highly conserved core promoter motifs. An example of computational motif
discovery in such sequences is in the set of 1941 Drosophila promoter sequences of
length 300 bp each (aligned -250 to +50 relative to the TSS) compiled by [Ohler et al.
(2002)]. Ohler et al. (2002) had used MEME to determine the core promoter motif
content of these sequences. They performed two separate runs of MEME, one over full
length (300bp) sequences, and the other over a sub-interval -60 to +40 relative to the TSS.

The full length (300bp) sequences have been examined with LocalMotif.
Background Markov model of order 2 was learnt from a set of 361 Drosophila intron
sequences. Weeder could not process this dataset due to its large size. Results compiled
in Figure 1V-7 show that MEME discovered prominent core promoter motifs only when
analyzing the -60 to +40 sub-region, whereas LocalMotif could detect them given the full
300 bp region. LocalMotif additionally reported accurate localization intervals of the
motifs, which is useful in their identification, e.g. the downstream promoter element
(DPE) is confirmed as it is found in the +25 to +45 interval. Moreover, it is observed in

Figure 1\VV-7 that all biologically meaningful motifs reported by LocalMotif have a higher
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SCS of 0.14 or more as compared to the two spurious motifs (at positions 8 and 9) whose

SCS is less than 0.06. Thus spatial confinement score additionally allows discarding of

spurious motifs.

LocalMotif Results (-250 to +50)

Rank Motif Score RES Scs ORS Position

1 TCAGTC 1.920 | 0.420 | 0.500 | 1.000 [-5,+15] — Initiator

2 GTCACACT 1.382 0.430 0.233 0.719 [-10,+20] — new motif

3 CTATAAAA | 1.275 | 0.350 | 0.153 | 0.772 [-35,-15] — TATA box

4 CAGTTG 1.266 | 0.423 | 0.172 | 0.671 [-5,+15] — Initiator

5 CGGACGTG 1.121 0.444 0.374 0.303 [+25,+45] — DPE

6 CTATCGAT | 1.119 | 0.402 | 0.145 | 0.572 [-75,+0] — DRE

7 TCCGTT 0.934 | 0.411 | 0.146 | 0.377 [-5,+15] — Initiator

8 ATATATAT | 0.895 | 0.324 | 0.026 | 0.544 [-205,-90]

9 CTCTCTCT | 0.869 | 0.392 | 0.054 | 0.424 [-120,-70]

10 GCGTTCGG | 0.866 | 0.424 | 0.153 | 0.289 [+10,+40] — DPE

MEME Results (-250 to +50) MEME Results (-60 to +40)

Rank Motif Score Rank Motif Score
1 GGTCACACT | 5.0e-369 —» new motif | 1 GGTCACACT 5.1e-415 —> new motif
2 CTCTCTC 1.7e-203 2 TATCGATA 1.7e-183 —> DRE
3 CGCCGCC 1.1le-151 3 TATAAA 2.1e-138 — TATA box
4 TTTTTTT 1.5e-155 4 TCAGTT 3.4e-117 — Initiator
5 TATCGATA | 4.4e-78 — DRE 5 CAGCTG 2.9e-93
6 CAGCCTG 1.5e-80 6 GTATTTT 1.9%9e-62
7 GGCAACGC 1.4e-55 7 CATCTCT 1.9e-63
8 GTGTGTGT 6.4e-96 8 GGCAACGC 5.1e-29
9 TGCTTTTG 1.2e-39 9 GCGTGCGG 1.9e-12 — DPE
10 GCGCTTTAC | 9.5e-24 1 CGAACGGAACG | 8.3e-9

Figure IV-7. Motifs discovered by MEME and LocalMotif in Drosophila promoters.

IV.6.3.2 Short regulatory regions upstream of the TSS

LocalMotif was further tested for the detection of conserved motifs in sets of

orthologous regulatory sequences upstream of the TSS for a single gene in several

species.

Motif detection in such datasets is known as phylogenetic footprinting.

Standard methods for phylogenetic footprinting include (i) identification of conserved

regions in a global multiple alignment of the sequences using a tool such as CLUSTALW

[Thompson et al. (1994)], (ii) using existing motif finding programs such as MEME to
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detect conserved patterns, or (iii) using algorithms tailor-made for phylogenetic
footprinting such as Footprinter [Blanchette and Tompa (2002)]. Using LocalMotif over
such datasets is in one sense similar to using a motif finding program such as MEME
since LocalMotif does not exploit the phylogenetic relationships between the sequence.
However an important difference is that LocalMotif searches for conserved patterns in an
aligned sub-interval of the sequences, which is meaningful due to the structural similarity
among the orthologous sequences.

The test datasets in this study were derived from [Blanchette and Tompa (2002)]
as both experimentally verified and computationally predicted conserved regulatory
elements are available for reliable comparison of the results. There are 7 datasets, each
containing 400-1000 bp long orthologous upstream regions (5’ of the translation start site)
of a single gene in the genomes of 5-20 different metazoan species. LocalMotif was used
to analyze these datsets considering uniform Markov nucleotide background. The
detailed results are shown in Supplementary Figure 1 at the end of this dissertation. In
summary, LocalMotif discovered 46 out of the 49 motifs listed by [Blanchette and
Tompa (2002)] accurately with their respective intervals of localization.

IVV.6.3.3 Long regulatory segments upstream of the TSS

Datasets of experimentally characterized long regulatory sequences are scarce in
the literature. However TFBS annotations in segments of ~1 kb length upstream of the
TSS are available in the literature for several vertebrate genes. Some TFBS are
experimentally validated while the rest are predicted in-silico using tools such as
TRANSFAC [Matys et al. (2003)]. The annotations can be considered as high quality

due to manual curation by field experts. Six datasets are compiled in the present study,
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each containing 3000 bp upstream sequences of a single gene in different vertebrate
genomes, where either the human or mouse ortholog is characterized in the literature.
The sequences are aligned relative to either the TSS or the translation initiation site,
whichever is more reliably known. Comparison of motifs discovered by LocalMotif with
the published TFBS annotations is summarized in Figure 1V-8 and the details are
provided in Supplementary Figure 2 at the end of this dissertation. Figure 1V-8 shows
how the sensitivity and false positive rate of TFBS detection varies as the number of top
motifs reported by LocalMotif is increased. Here sensitivity is defined as the fraction of
total known TFBS that could be predicted (i.e. True Positives / Total Positives), and false
positive rate is defined as the fraction of reported motifs that are incorrect, i.e. which do
not overlap any known TFBS. A sensitivity of 50% with a false positive rate of 44% is
reached within the first 40 predictions, after which the sensitivity does not improve
significantly. Among 122 annotated TFBS in the literature within the six datasets, one or
more predicted motifs occurred within 87 (71%) TFBS. The localization intervals of the
motifs as predicted by LocalMotif matched very well with the annotated TFBS.
Considering the long length of the sequences being analyzed, the localization information
was very useful for accurately locating the binding sites and led to a significant reduction
in the number of false positives. Thus LocalMotif is promising for the identification of
conserved motifs in long upstream regulatory regions of genes.
IV.6.3.4 Sequences flanking a known TFBS

The ERE dataset is an example of vertebrate sequences with wide spacing among
regulatory elements and high degree of mutation in the binding sites. It contains 57

estrogen receptor (ER) target sequences from human chromosomes 21 and 22 discovered
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Sensitivity of Motif Detection Fraction of False Positives in Motif Detection
in Long Regulatory Sequences in Long Regulatory Sequences
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Figure IV-8. Variation of sensitivity and false positive rate of Localmotif’s predictions

in long regulatory sequences upstream of the TSS as the number of
predicted motifs is increased.

by ChIP analysis of in-vivo ER-chromatin complexes [Carroll et al. (2005)]. Almost all
sequences lie distal from the TSS beyond the promoter region and have lengths ranging
from 0.2 to 2.5kbp. About 34 ER full binding sites (length 15 bp, consensus
AGGTCACCNTGACCT) have been mapped in this sequence set. Experimental studies
have revealed binding sites for an associated factor called Forkhead (consensus
TTGTTTNCTT) proximal to the ER binding sites [Carroll et al. (2005)].

To verify whether Forkhead binding adjacent to ER sites can be discovered in-

silico, a new set of 34 sequences was prepared with one known ER full site in each
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sequence. The ER site acts as the anchor point. The positions of Forkhead binding sites
relative to ER binding sites are shown in Figure 1V-9. Results of motif finding
(processing both strands) with MEME, Weeder and LocalMotif on this dataset are
reported in Figure 1VV-10. Weeder was used with its default human background model,
whereas human chromosome 21 and 22 intergenic sequences were used to prepare a zero
order background for LocalMotif. LocalMotif reliably discovered the Forkhead motif
with consensus TTTTTTTCTT, with about 60% of the true Forkhead sites found within
the list of reported binding sites (refer Supplementary Figure 3 at the end of the
dissertation). Thus, LocalMotif was found useful for discovering correlated motifs in

vertebrate regulatory sequences.
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Figure IVV-9. Distribution of forkhead binding sites relative to ER binding sites.

Software Motifs Predicted
MEME TCAAGGTCAG/CTGACCTTGA —ER
AGAGGGAAGA/TCTTCCCTCT —new
Weeder GTTGACTTTG/CAAAGTCAAC —ER
| GEBTCACCCTG/CAGGGTGACC [-20,+30] —ER
Locall\/lot|f AAGAAAAAAA/TTTTTTTCTT [-100,+300]—>FH
GGGAGGGAAG/CTTCCCTCCC [-190,+190] >new

Figure IV-10. Motifs discovered by MEME, Weeder and LocalMotif in ERE dataset.
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IV-7 Conclusions

This chapter introduced a new algorithm called LocalMotif to detect motifs in
localized intervals of long sequences (such as vertebrate regulatory sequences) aligned
relative to a common anchor point. The algorithm uses a novel statistical scoring function
to determine the interval of localization of the motif. It is optimized for fast processing of
long sequence datasets. Test results on simulated and real datasets show that LocalMotif
offers advantage over existing motif finding algorithms in accurately detecting localized

motifs in long sequences.
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CHAPTER -V

GENERAL PROMOTER PREDICTION

This chapter develops a novel statistical model for promoters and a technique for
detecting promoter regions (TSS) in genomic sequences. A number of existing
techniques analyze the occurrence frequencies of oligonucleotides in promoter sequences
as compared to other genomic regions. In contrast, the present work studies the
positional densities of oligonucleotides in promoter sequences. Modeling based on
positional densities eliminates the need of any non-promoter sequence dataset or any
model of the background oligonucleotide content of the genome. Instead, using only the
positive dataset of promoter sequences, the statistical model automatically recognizes a
number of TFBS along with their occurrence positions relative to the TSS.

The concept of positional density is introduced in Section V-3. Based on this
model, a continuous naive Bayes classifier is developed in Sections V-4 and V-5 for the
detection of promoters and TSS in genomic sequences. The model is trained specifically
on the dataset of human promoter sequences, and therefore a brief overview of the
composition of human promoters has been presented in Section V-2. Results of promoter
prediction on a number of datasets derived from the human genome and performance
comparison with existing 2" generation promoter prediction tools are described in

Section V-7.

V-1 Introduction

The advantages of an unsupervised feature extraction and Al modeling approach
in the computational modeling and detection of promoter sequences were described in

Chapter 1, while the development of 2" generation promoter prediction tools was
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described in Chapter 2. Among the 2™ generation tools, an important but relatively less
explored approach is using probability models. An early attempt in this direction by
Audic and Claverie (1997) used simple Markov chains of order four to six to model
promoter sequences. However, the authors reported low performance of the model due to
its simplicity and its overfitting of training promoter sequences. Ohler et al. (1999) used
interpolated Markov chains, which is a generalization that combines several simple
Markov chains of different orders. It takes into account statistics of higher orders without
overfitting the model to training data. Ohler et al. (1999) initially reported performance
equivalent to first generation promoter prediction tools. However, improved results have
been reported recently upon retraining the model on a larger dataset of Drosophila core
promoters [Ohler et al. (2002)].

In a slightly different context of locating regulatory regions in genomic sequences
with promoters as a subset, a hidden Markov model was developed by Crowley et al.
(1997). The model assumed DNA sequences as a hidden Markov process and detected
change-points between non-regulatory and regulatory segments based on the appearance
of clusters of binding sites in a local region. Although regulatory features such as
enhancer, locus control regions and promoters could thus be identified, no attempt was
made to accurately predict the promoter region and TSS. No other significant research in
this direction has been published to the best knowledge of the author.

The present research extends the application of a purely probability model based
approach in eukaryotic promoter prediction. Specifically, it attempts a Bayesian network
model of general eukaryotic promoters [Narang et al. (2005)]. The promoter sequence is

modeled in probabilistic framework (using a continuous naive Bayes representation) as a
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set of TFBS occurring with varying probabilities in different regions of the sequence.
This is commensurate with the current biological understanding of promoters as a
combination of different regions, viz. core promoter, proximal promoter and distal
promoter, with the TFBS in different regions having different degrees of mobility. The
position of each TFBS is expressed probabilistically in the form of a statistical
distribution. The nature of the positional distribution defines the location relative to the
TSS as well as the degree of mobility of the binding site. For instance, the positional
distribution of TATA box and CAAT box are shown in Figure V-1. The close location
relative to the TSS as well as the low mobility of the TATA box is clearly described by
the peak of the positional distribution in the —30 to —40 region. Similarly the location of
the CAAT box in the proximal promoter region as well as its higher mobility as
compared to the TATA box is observed in its positional distribution curve which has a
greater spread in the —140 to —80 region. Thus in sharp contrast to previous works, the
present research models the positional densities of oligonucleotides instead of their

occurrence frequencies. This has several advantages as described later in Section V-3.

V-2 Structure of Human Promoters

The structure and functioning of eukaryotic promoters has been discussed in
several reviews, e.g., [Werner (1999), Pederson et al. (1999), Zhang (2002)]. In general,
the promoter is understood as a combination of different regions with different functions.
The sub portion of the promoter surrounding the TSS is called core promoter. It interacts
with RNA polymerase Il and basal transcription factors, and is the minimal sequence that

is required for initiating transcription. Gene-specific regulatory elements present up to
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few hundred base pairs upstream of the core promoter are commonly referred to as the
proximal promoter region. These are recognized by TFs called activators and determine
the efficiency and specificity of promoter activity. Further, there are enhancers and distal
promoter elements which may be located far distant from the TSS, but can considerably
affect the rate of transcription. Although well-organized, eukaryotic promoters are very
varied in their structure. Therefore only human promoters have been used in this work to
simplify the study.

Multiple studies have been reported recently on the composition of core
promoters of human genes [Bajic et al. (2004), Smale and Kadonaga (2003)]. Well
defined transcription factor binding motifs exist within the core promoter region, which
determine the location of the start site and the direction of transcription. It is indicated
that roughly 30% or less of human core promoters have a TATA box at -25 to -30
position with consensus TATAAA [Suzuki et al. (2001)]. The TATA box tends to be
surrounded by GC rich sequences, including the TFIIB recognition element, BRE, lying
as an upstream extension (consensus SSRCGCC). Upto 80% human promoters (both
TATA and TATA-less) have an initiator element (Inr) located at the transcription start
site [Suzuki et al. (2001)]. It has a consensus sequence YCAYYYYY, with the base ‘A’
lying at the position of TSS. In promoters that are TATA-less but have an Inr, a
downstream promoter element (DPE) is usually found at +28 to +32 positions [Smale and
Kadonaga (2003)]. About half of the human promoters are associated with CpG islands
[Suzuki et al. (2001)], and the functional regulatory elements in these sequences have
been difficult to identify [Smale and Kadonaga (2003)]. Some of these promoters contain

none of the common core promoter elements discussed above. Exact compositional



88

characterization of known human core promoter sequences is found in [Bajic et al.
(2004)].

A larger variation is observed in the composition of the proximal promoter region.
Also, the location and orientation with respect to the TSS of transcription factor binding
motifs in proximal promoter region is more flexible than that in the core promoter.
CAAT box, GC box, E box, GATA box, octamer etc. are some of the frequently
encountered proximal promoter elements. Some of these elements (such as GC and
CAAT boxes) can be present in either orientation.

The context in which a binding site is present within a promoter sequence plays
an important role. For example, two interacting transcription factors bound to closely
situated sites may lead to non-additively high or low levels of transcriptional activity.
Such effects have been compiled in the COMPEL database [Kel-Margoulis et al. (2002)].

There are several other factors involved in transcriptional regulation, such as
enhancers/silencers, insulators, chromatin structure, locus control regions and so forth.
However these are beyond the scope of this research. The present work utilizes only core
promoter and proximal promoter regions for the detection of promoter regions. This

invariably limits to some degree the performance of the computational model.

V-3 Oligonucleotide Positional Density

Transcription factor binding motifs in promoter sequences are frequently
identified by analyzing the occurrence frequencies of oligonucleotides [Hutchinson
(1996), Chen et al. (1997), Scherf et al. (2000), Bajic et al. (2003), van Helden et al.
(1998), Bajic et al. (2004)]. Oligonucleotides that are statistically over-represented in

promoter sequences as compared to non-promoter sequences usually correspond to the
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consensus sequences of transcription factor binding motifs. The comparative analysis of

oligonucleotide occurrence frequencies in promoter versus non-promoter sequence

datasets is, however, difficult in practice due to several reasons, such as [Bajic et al.

(2004)]:

(i) Oligonucleotide frequency distribution varies significantly across different samples
of promoter and non-promoter sequence data. Thus the quality of results is
significantly affected by the quality of both promoter and non-promoter sequence
data.

(i) Results also depend to a great degree upon the statistical measure and threshold
settings used in the analysis.

(iii) When the training set of promoters is biased, it is difficult to identify important but
less represented motifs.

In the present research, the positional densities of oligonucleotides are studied.
Positional density of an oligonucleotide measures the probability of its occurrence at
various positions relative to the TSS within promoter sequences (Figure V-2). The
density function only represents the preference of the oligonucleotide to occur at various
positions around the TSS, and is independent of its total frequency of occurrence in the
promoter sequences. The density is expected to be non-uniform for an oligonucleotide
that corresponds to the consensus sequence of a motif. This is because several motifs in
core promoter and proximal promoter regions occur within a preferred range of positions
relative to the TSS. For example, the TATA box usually lies in the position window -30

to -25 within vertebrate promoter sequences. Consequently, the hexamer TATAAA
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occurs with much higher probability in this range of positions within promoter sequences.

Indeed, its positional density is heavily skewed as observed in Figure V-2.

0.018

006 Ppositional density
0.014L of the oligonucleotide |
TATAAA in human

0.012 EPD sequences 1
0,01}

0.008 -

Probability

0.006 -

0.004 -

0.002 -

O 1 1 1 1 1
-600 -500 -400 -300 -200 -100 0 100 200

Position (w.r.t. TSS)

Figure V-2.  An illustration of the positional density of the oligonucleotide TATAAA,
obtained using 1796 human promoter sequences in EPD. The TSS is
located at position 0. The curve indicates the probability of observing the
oligonucleotide TATAAA at various positions upstream and downstream
of the TSS.

Thus, the information of transcription factor binding motifs and their preferred
position in promoters is encoded in the shapes of oligonucleotide positional density
curves. The positional density analysis presented in this paper exploits this information.
The technique is robust since it does not involve extraneous factors such as tuning of
various parameters or determination of background frequencies of oligonucleotides from
non-promoter data. Furthermore, it can identify some less frequent but important motifs,
since the skew in the positional density is independent of the actual occurrence frequency
of the oligonucleotide. The efficiency of this method is demonstrated in Section V-7.1 by

its ability to learn most well-known motifs from a set of example promoter sequences.
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V-4 Bayesian Network Model for General Promoter Prediction

This section describes the concept and implementation of the novel Bayesian
network based statistical technique for general promoter prediction. The method pivots

around the positional densities of oligonucleotides of a fixed length, k, within the

promoter sequences. In general, there are 4% possible oligonucleotides of length k since
there are only four DNA nucleotides, A, C, G and T. The oligonucleotides are

represented by the symbol, K;, and indexed in alphabetical order, where the index, i,

spans over the range 1,2,...,4%. In a set of training promoter sequences, the occurrence

positions of each oligonucleotide are observed relative to the TSS; taken as negative
upstream (i.e., towards 5°) of the TSS, positive downstream (i.e., towards 3’) of the TSS,

and +1 at the TSS.

V-4.1 The Promoter Model
The promoter prediction technique defines two different statistical models — a

promoter model, 7z, and a non-promoter model, 7. The statistical promoter model

measures for each oligonucleotide, K, , its positional density, fi(p|7z), in promoter

sequences. The positional density gives the preference of K, to occur at various

positions around the TSS in the promoter sequences. It is a probability density function

such that

Pr(p <P <pil7)= | f(pl)cp, 2

P
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where P, is the random variable representing the position of occurrence of K, relative to

the TSS. The support [a,b] of the density functions f;( p|) depends upon the length of

the training promoter sequences available as shown in Figure V-3a. Thus, in equation

(5.1), p,p, e[a,b]. The total frequency of occurrence of K. within the promoter

sequences is irrelevant, and hence the total area under the positional density curve is

unity for any K,. As an example, the positional density function for the hexamer

TATAAA in human promoters is shown in Figure V-2. The positional density of
TATAAA has a sharp peak in the position range -30 to -25, indicating its high preference

to occur in these positions in the promoter sequences.

Training Sequences S (a new genomic sequence)

| AGTC...AGGACTTCAGCAATCG | L
<< |

CAT&AAAAC&TCAGTACTACG. .ATTA
A

|GTAC...GGAATCCCATCATTGC |

|caTe...AGcCCCTCAGTTTAGT | TSS (assumed)
t +
TSS l<—1 |
a +1 b

; > TSS (+1) is at position 5in S
KS =CATCAA=K,,, pf =—4

f.(p|7) KS =ATCAAA=K,,,, p =-3
/\J\ R KS = AAAACG =K, pd =+1

(a) (b)

Figure V-3. (a) Relationship between positional density definition and training
promoter sequences, (b) modeling a nucleotide sequence, S, for promoter
inference (Equation 5.4).
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The non-promoter model, on the other hand, is defined simply as a uniform
density function for all K., i.e., forall iel2,...,4",

fi(plﬁ)EU(p)={]/|b_a| forp <[a.0] 52)

0 otherwise

This is due to the assumption that oligonucleotides do not show any particular positional
preference around any position anchor in the case of non-promoter sequences. This
assumption can be easily verified on any non-promoter dataset.

The statistical promoter prediction technique considers any nucleotide sequence, S,

of length, L, as a combination of (L—k+1) length-k oligonucleotides, K, K3,...,K?,;,

occurring at various positions, p;, ps,..., p;_,,, around the assumed TSS position, T as

shown in Figure 2(b). The superscript S is introduced in the notation to avoid confusing
with the symbols K, and P, used above for defining the positional densities of

oligonucleotides in the promoter model. The observed sequence S is likened to an

experiment of drawing one ball each independently from (L—k+1) different urns, K2,

where the probability of drawing the ball of type p; from the urn K} is given as

Pr( P K> ) Thus, the probability of observing the sequence S is given as
L—k+1
Pr(s)=[] Pr(ps|K:)Pr(K?) (5.3)
x=1
Now, if the sequence S is hypothesized as a promoter sequence, the probabilities
Pr(pf Kf) are the positional densities fi(pxS 7[) in the promoter model, where the

oligonucleotide K found at position x in the sequence S is actually the oligonucleotide
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K;. Substituting the corresponding fi(pxS

7[) in equation (5.1) would then yield the
probability Pr(S|7z). However, when S is not a promoter sequence, the probability,

Pr(S|77), of observing the sequence S is found in a similar fashion, but using the non-

7).

Finally, the probability that the observed sequence S is actually a promoter

promoter model, f, ( p>

sequence is obtained using the Bayesian formula,

Pr(S|z)Pr(x)

Pr(S|z)Pr(x)+Pr(S|z)Pr(7) (5.4)

Pr(ﬂ|S):

V-4.2 Naive Bayes Classifier Representation

It is interesting to note that the promoter prediction technique described in section
V-4.1 can be neatly expressed in terms of a continuous naive Bayes model. The naive
Bayes model is the simplest case of a Bayesian network and is frequently used for
classification [Jensen (2001), Friedman et al. (1997)]. Although independence is
generally a poor assumption, in practice naive Bayes often competes well with more
sophisticated classifiers [Domingos and Pazzani (1996)]. A generative classifier for the
present problem is shown in Figure V-4. The oligonucleotide position random variables,

P. (refer equation (5.1)), and a class variable, C, are the nodes in the graph. C is a binary

variable representing promoter () and non-promoter (7 ) classes. Thus, the variables

P form continuous nodes, while C forms a discrete node. The naive Bayes graph

implies that the position random variables, P,, are assumed to be independent of each

other given the class C. The probability model is described by the distributions Pr(PR|x)
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and Pr(P|7). These are nothing but the positional densities, f,(p|z) and f,(p|7)

respectively.

Figure V-4.  The naive Bayes classifier for promoter prediction.

V-4.3 Modeling and Estimation of Positional Densities

Now the mathematical modeling and the estimation of the positional densities
fi(p|;z) from a training dataset of promoter sequences is described. Although the
position variable, p, is discrete, for the purpose of convenience of modeling and
estimation, it is treated as a continuous variable over the range [a, b]. The positional
density is approximated as a finite mixture of Gaussians,

G;

f(PIG.6,7)=2 a,d(plu, 0l), (5.5)

5=1

with o, >0 and ) a, =1,

where G, is the number of components in the mixture; ¢(p|,usi,0'2

Si

) is a Gaussian

distribution ~ with  parameters mean, x4, , and variance, o’ , ie,

i Si
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¢(p|ﬂsi1052i)=(277)Uzexp(_(p_ﬂsi )2/255); a, are the mixing proportions; and

6, ={azSi M0 |S =1, 2,...,Gi} is the set of all model parameters.

The model is learnt from a training dataset of n promoter sequences,

{S.,S,.....S,}, aligned with respect to the TSS and spanning over the position range

[a,b] : For each oligonucleotide, K. , the set of all observations,

P, :[pil p? ... piNi}, is obtained where p/ is the position of the j occurrence of

the oligonucleotide K. with respect to the TSS in training promoter sequences, and N. is
the total number of occurrences of K; in all these sequences.

The maximum likelihood estimate of the model parameters, &, is obtained from
observations pi- Given that these are all statistically independent observations from the

mixture density, the log-likelihood function is written as
N; )
L(616,) = log(f,(p/[G,.6.7)). (5.6)
j=1

The maximum likelihood estimate of & , denoted by & , is defined as
6 =argmax(L;(4)).
Obtaining the maximum likelihood estimate, &, requires taking the derivative of

the likelihood function in equation (5.6) and equating it to zero. The resulting equations,
however, are nonlinear and there is no closed form solution. Therefore the well known
expectation maximization (EM) algorithm is used to obtain the parameter estimates. The

EM algorithm assumes initial arbitrary values of the parameters and then iteratively
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updates them to converge at a local maximum of the log likelihood function. Detailed

EM equations used iteratively for updating the estimates of Gaussian mixture model

parameters 6 = {O‘si Mg O

si:1,2,...,Gi} with  respect to the  dataset

P = [ pi p’ piNi} are written as follows [Carlin and Louis (2000)]:
for each observation p/ with j=12,...,N,,
j 2
Pr(s,| p/)= Gias‘¢( i l_ﬂs‘ ) , (.7)
asi¢( p/ |,Usi ’O-s,zi)
s=1
N, _
asr:ew :(]/Ni)zpr(si | pij)’ (5.8)
=1
N; _ _
1 =(Ya N ) D Pr(s | pl)p! (5.9)
j=1
and ol ™ =(Ya N, )ipr(si | p2) (P! - )2 . (5.10)
=1

Equations (5.7)-(5.10) are applied iteratively over the complete dataset p, for all the

mixture components, s, =12,...,G, , until convergence is obtained. A suitable

convergence criterion is that the maximum change in the updated value of any of the
parameters between two successive iterations is less than some value &, where & can be
setat 107,

Since the EM algorithm converges to some local maxima (or sometimes saddle
points) of the likelihood function, usually the results are highly dependent upon the initial

parameter values chosen. Thus it requires several re-runs with different random
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initializations of the parameters to arrive at a satisfactory solution. To overcome such
problems, the current implementation is based on the greedy learning algorithm described
in [Verbeek et al. (2003)]. In this implementation, instead of starting with a random
initialization of all components and improving upon these components with EM, the
mixture is built component-wise. In the beginning, there is only one component, i.e.,

G, =1. For this mixture, the parameters are computed trivially as the sample mean and

variance. Then a new component is inserted, i.e., G, =G, +1 and

f(pIG™.60,7)=(1-B) i (p|G.6,7)+ Bp(P| tg 1 TG, 1) (5.12)

As discussed in [Verbeek et al. (2003)], the newly inserted component with parameters

(y;ﬂ,aéi:l,ﬁ*) is optimal in the sense that its insertion maximizes the likelihood

function over the set of all possible insertions. The complete set of parameters for this
new mixture are then updated using EM (equations (5.7)-(5.10)) until convergence.

The optimum number of components, G in the mixture density is obtained

i,opt !

using Akaike Information Criterion (AIC). AIC is expressed as
AIC(G,)=-2L(&)+2n(6)), (5.12)

where n(@,) is the number of free parameters in the set ¢,, which in this case is 3G; —1.

The optimum number of components, G is the value of G, that minimizes AIC.

iopt !

V-5 Inference Over Long Genomic Sequences

In sections V-4.1 and V-4.2, the method of classifying a given nucleotide

sequence S of length, L :|b—a| , as promoter or non-promoter was discussed. Now the
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technique is extended to detect the transcription start sites in a given long genomic
sequence.

If the classifier has been trained using example promoter sequences of length

L:|b—a| and with TSS location defined as the origin, the same configuration is used

during inference. A window of size L is selected from the given genomic sequence. The
naive Bayes classifier infers the probability that this sequence window belongs to the
promoter class. The window is moved across the whole sequence as shown in Figure V-5,
and all regions with high probability of being a promoter are identified. This sliding
window approach has been used earlier in [Scherf et al. (2000)]. The predicted TSS
location is obtained from the window that has maximum probability of being a promoter
in a local region.
Sliding window (length 600)

Long test sequence

Naive Bayes
Classifier

3
A

Probability of the
sliding window 1

being a promoter

Detect peaks above
specified threshold
i |
Predicted promoter
regions and TSS

Figure V-5.  Using naive Bayes classifier to detect promoter region and TSS in long
genomic sequences.
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V-6 Implementation

The continuous naive Bayes classifier has been implemented as a software called
BayesProm in Microsoft Visual C++®, and the binary executable is available freely at the

website http://www.comp.nus.edu.sg/~bioinfo/BayesProm. It was trained using a set of

1796 human promoter sequences obtained from the Eukaryotic Promoter Database
Version 74 [Schmid et al. (2004)]. These sequences were of length 600; -499 to +100
relative to the TSS. Thus, the window size for the classifier was fixed as
a=-499, b=+100.

Classifier parameters that require tuning included (i) the length of
oligonucleotides, k, and (ii) the probability threshold, ¢, above which a sequence region
can be classified as promoter. Testing was performed by varying oligonucleotide lengths
from 4<k <10. The value k=6 yielded much superior results as compared to any

other length. Hence, BayesProm uses only hexamers. The threshold value, ¢, is left free

for being set by the users (within reasonable limits) depending upon their requirements of
sensitivity vs. specificity of the predictions [Bajic et al. (2003)].

For training the BayesProm model, 80% of the 1796 EPD sequences were used as
training set, while the rest were used as validation set. Partitioning of the sequences into
training and validation sets was performed randomly. Five such uncorrelated cross-
validation sets were generated. The training and cross-validation results are reported in
Table V-1. Accuracy was tested on both training and validation sets, and simultaneously
on a negative set of sequences consisting of human exon and 3’ UTR sequences derived

from Genbank. Note that the negative sequence set was in no way used for training.


http://www.comp.nus.edu.sg/~bioinfo/BayesProm
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Sensitivity on the positive set was consistently between 75% to 85%, while false positive

rate on the negative set was less than 1%.

Table V-1.  Results of cross-validation studies in the training of BayesProm. The
complete dataset of 1796 human promoter sequences was randomly
divided into 1436 training sequences (80%) and 360 validation sequences
(20%). Five such uncorrelated cross-validation sets were generated. A
negative set of 5000 human exon and 3’ UTR sequences obtained from
Genbank was used simultaneously for testing.

Set no. # TP in training # TP in validation  #FP over the negative set

(out of 1436) (out of 360) (out of 5000)

1 1221 (85%) 306 (85%) 32 (0.7%)

2 1188 (82%) 279 (78%) 55 (1.1%)

3 1197 (83%) 267 (74%) 46 (0.9%

4 1067 (74%) 285 (79%) 42 (0.9%)

5 1203 (84%) 294 (82%) 37 (0.8%)

V-7 Results

The performance of the novel statistical approach has been evaluated in two
aspects — (i) the performance of TSS predictions, and (ii) the ability of the model to
accurately learn various transcription factor binding motifs and their locations around the
TSS from training promoter sequences.

V-7.1 Prominent Features Correspond to Well-Known Transcription Factor

Binding Motifs

An advantage of statistical models as in the present work is that the physical
features learnt by the model can be directly evaluated. The significant features learnt by

the promoter model in the form of oligonucleotide positional densities are reported here.
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As described above, the training data from which these features were learnt is the set of
human promoters obtained from EPD over the range -499 to +100 relative to the TSS.

It is implied by equation (5.1) that the probability of an oligonucleotide, K, ,

occuring within a position window (pl, p2) relative to the TSS is given by the area under
its positional density curve within this position window, i.e., T fi(p)dp. Using this
Py

formula, occurrence probabilities of all oligonucleotides within several narrow position
windows were computed. Subsequently, oligonucleotides having a high occurrence
probability within the same position window were grouped together. In each such group,
similar oligonucleotides were clustered and used to construct a consensus sequence. It
was found that several such consensus sequences correspond to those of well-known
transcription factor binding sites, such as the TATA box, initiator and so on. Figure V-6
illustrates some of the results of this analysis.

The results indicate that the features learnt by the statistical model corresponds to
actual biological information contained within promoter sequences. It is plausible that
the modeling technique presented in this work may be useful in computationally deriving
new biological conclusions out of a dataset of promoter sequences. Work is in progress

in this direction.

V-7.2 Results of TSS Prediction

The transcription start site prediction accuracy of continuous naive Bayes model
BayesProm is tested on three real human promoter datasets — a relatively short sequence
dataset of Genbank sequences, a long genomic contig and human chromosome 22. A

thorough performance analysis is reported in this section in terms of complete ROC
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Consensus Preferred Corresponding Window Position | Probability
position oligonucleotides
TATAAA _35 to _25 TATAAA -40 to -20 0.564
TATAAC -40 to -20 0.25
(TATA box) TATAAG -40 to -20 0.473
TATATA -40 to -20 0.365
TAARAG -40 to -20 0.364
TARAAGG -40 to -20 0.299
TAAATA -40 to -20 0.275
TGTATA -40 to -20 0.307
ATAAAA -40 to -20 0.299
ATAAAG -40 to -20 0.348
ATAAAT -40 to -20 0.285
ATATAA -40 to -20 0.394
CCTATA -40 to -20 0.437
CTATAA -40 to -20 0.597
CTATAT -40 to -20 0.413
GCTATA -40 to -20 0.543
GTATAA -40 to -20 0.568
GTATAT -40 to -20 0.331
CCAAT -165 to -40 ACCAAT -140 to -80 0.259
CAATGG -140 to -80 0.201
(CCAAT (-90 mean CCAATC -140 to -80 0.201
box) position) CCAATG -140 to -80 0.279
GACCAA -140 to -80 0.209
GCCAAT -140 to -80 0.232
GGGCGG -164 to +1 GGCGGG -140 to -80 0.203
b GGGCGG -140 to -80 0.208
(GC box) GGGGCG -140 to -80 0.218
CGGCGG -80 to -20 0.201
CGGGGC -80 to -20 0.256
GCGCCG -80 to -20 0.203
GCGGCG -80 to -20 0.201
GCGGGC -80 to -20 0.211
GCGGGG -80 to -20 0.253
GGCGGG -80 to -20 0.275
GGGGCG -80 to -20 0.266
CGGCGG -20 to +40 0.249
GCGGCG -20 to +40 0.251
GGCGGC -20 to +40 0.254
YCAYYYY Aat +1 TCAGTC -20 to +20 0.221
CAGTCG -20 to +20 0.269
(Yfp/T) AGTCGT -20 to +20 0.254
(Initiator) GTCGTT -20 to +20 0.273
TCATAC -20 to +20 0.211
TCATTC -20 to +20 0.248
CAGTTC -20 to +20 0.211
CATTCT -20 to +20 0.222
CTCATT -20 to +20 0.227
ATCATC -20 to +20 0.203
CATACT -20 to +20 0.200
GATCAC -20 to +20 0.209
TAGCCG -20 to +20 0.214
... and others

Figure V-6.

Important consensus sequences recognized by the naive Bayes model.
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characteristics, showing the sensitivity versus positive predictive value (ppv) of

predictions.  As described in Section Il11-4, sensitivity is defined as the ratio,

Se=TP/(TP+FN), where true positives (TP) is the number of TSS that could be

correctly predicted, while false negative (FN) is the number of TSS that could not be

predicted. Thus it is the percentage of actual TSS that could be successfully predicted.

On the other hand, ppv is defined as, ppv:TP/(TP+ FP), where false positives (FP) is

the number of incorrect predictions reported by the software. Thus, ppv is a measure of
the credibility of predictions. Although both high ppv and high sensitivity are desirable,
in practice as ppv is increased, the sensitivity of the software goes down.

Another measure of performance concerns the distance of predicted TSS locations
from the annotated TSS. Fickett and Hatzigeorgiou (1997) assumed a TSS prediction as
correct if it lies 200 bp upstream or 100 bp downstream of the annotated TSS. However,
for TSS prediction on the genomic scale such as the full chromosome 22 sequence, a less
strict criterion of 2000 bp upstream and 500 bp downstream was chosen by Scherf. et al.
(2001). In this paper, the former criterion is used for short sequence Genbank dataset,
while the latter is used in the case of chromosome 22 sequence. In addition, a
comprehensive picture of the prediction accuracy is reported in the form of a histogram
showing the number of accurate predictions that lie within a given distance from the

annotated TSS.

V.7.2.1 Results on Genbank Dataset
The dataset was prepared from all Genbank (Release 142.0) [Benson et al. (2002)]
flat files having a “promoter” feature key annotation. Among these, sequences of length

less than 1000 were discarded as these were too short for evaluation. The remaining
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sequences were compared with the EPD promoter sequences using BLAST [Altschul et
al. (1990)]. Sequences that had similarity with any of the EPD sequences with an expect
(E) value of less than 1.0E-10 (i.e., greater than 80% similarity) were discarded. Finally
a set of 646 human genomic sequences containing a total of 1100 annotated TSS was
obtained. TSS prediction accuracy of the present software, BayesProm, on this dataset is
compared with a well known 2" generation promoter prediction tool, Eponine [Down
and Hubbard (2002)]. Other programs could not be compared due to unavailability of a
batch processing interface.

The predicted TSS locations were compared with annotated TSS, and a ROC
curve showing the sensitivity versus positive prediction rate is shown in Figure V-7. In
one analysis (Case B), a prediction is considered correct if the predicted TSS lies within
+1000 base pairs of the annotated TSS. In a stricter evaluation (Case A), the allowed
deviation is limited to +200 base pairs. In both analyses, BayesProm reports high
sensitivity, while Eponine reports high specificity.

A graphical evaluation of the prediction accuracy of BayesProm is illustrated in ,
where a histogram of the prediction error is plotted for all true predictions. For most of
the predictions, the prediction error is almost zero, as shown by the high peaks around
distance zero. The number of predictions with high error is relatively less, as is indicated
by the trailing of the histogram with increasing distance. Comparison with Eponine in
Figure V-8 reveals that Eponine is highly specific, with very few predictions at distances
larger than 200. However, BayesProm has good sensitivity as is indicated by the large

number of total predictions within any given distance range.
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Figure V-7.  ROC curve showing the TSS prediction performance of BayesProm and
Eponine on Genbank dataset. In case A, TSS predictions within +200 bp
of the annotated TSS were considered correct, while in case B, this range
was extended to +1000 bp. Eponine is seen to be highly specific, while
BayesProm has high sensitivity.
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Figure V-8. Density of true predictions relative to the annotated TSS on Genbank
dataset. Both Eponine and BayesProm report a histogram peak at zero
distance, indicating the accuracy of these softwares. Eponine is seen to be
highly specific but less sensitive, while BayesProm is moderately specific
but highly sensitive.
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V.7.2.2 Comparison with other statistical promoter prediction tools

The accuracy of BayesProm has been compared with two other statistical
promoter prediction tools — (i) a hidden Markov model by Crowley et al. (1997), and (ii)
interpolated Markov chain model (McPromoter) by Ohler et al. (1999). Since the
software developed by Crowley et al. is not readily available, results of BayesProm and
McPromoter were compared with their published results. The experiment involved
prediction of the regulatory regions in the human B globin locus on chromosome 11
(GenBank accession no. U01317). The sequence contains four locus control regions, viz.
HS1, HS2, HS3 and HS4; and six transcription start sites, viz. beta, delta, epsilon, ps-
betal, A-gamma and G-gamma. The probability of the presence of a regulatory region at
various positions within the sequence as predicted by each of the assessed tools is shown
in Figure V-9. The peaks of the probability curves indicate predicted regulatory regions.
As observed in Figure V-9(a), the HMM model of Crowley et al. predicted accurately
three out of four locus control regions. BayesProm (Figure V-9(b)), on the other hand,
could predict five out of six transcription start sites accurately with very low false

positive rate, thus affirming its TSS prediction capability.

V.7.2.3 Results on Human Chromosome 22

Chromosome 22 is a relatively short and better annotated portion of the complete
human genome. The annotation of this 33.6Mb sequence, provided by Collins et al.
(2003), gives TSS locations of 393 protein coding genes based on experimentally
determined full length cDNA transcripts. The availability of a large number of

experimentally annotated TSS makes chromosome 22 a good benchmark test dataset.
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Figure V-9.
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Therefore several promoter prediction tools including Promoterinspector, Eponine,
Dragon Promoter Finder, First Exon Finder, Dragon Gene Start Finder, etc. have been
tested on the chromosome 22 dataset.

Figure V-10 shows the ROC curve of chromosome 22 prediction results obtained
from BayesProm over several different sensitivity settings. The performance of some of
the best 2" generation promoter prediction tools available today is also shown. The
evaluation of Eponine was carried out first hand, whereas the results of other software
were referenced from published literature, including [Scherf et al. (2001)] for
Promoterinspector, [Bajic et al. (2003a)] for Dragon Promoter Finder, and [Bajic et al.

(2003Db)] for First Exon Finder and Dragon Gene Start Finder.
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Figure V-10. ROC curve showing the evaluation of BayesProm and several 2nd
generation promoter prediction tools on chromosome 22 dataset. The test
criterion was same as that used by Scherf et al. (2001).
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The ROC curve for BayesProm shows its ability to achieve a ppv of up to 25% for
a moderate sensitivity of 30%. This is superior to any of the 1% generation promoter
prediction tools, which usually have a ppv less than 10% over all sensitivity ranges
[Fickett and Hatzigeorgiou (1997)]. Also note that most of the 2" generation tools
shown in Figure V-10 are fine-tuned for superior performance by carefully selection of
model parameters and training dataset. Dragon Gene Start Finder and First Exon Finder
are further optimized using additional biological knowledge. Thus the performance of
BayesProm as a purely statistical model trained on raw dataset of all EPD human
sequences is encouraging. Especially at low ppv values, BayesProm exhibits greater

sensitivity than even the best 2" generation tools.

V-8 Conclusions

The present work extends the scope of statistical models in computational
promoter prediction. In contrast to other computational tools that use PWM or
oligonucleotide occurrence frequencies, the present work utilized oligonucleotide
positional distributions. The technique is free from the practical difficulties that are
usually encountered in the analysis of oligonucleotide occurrence frequencies. The
purely statistical model has a sound biological basis, and upon training with a dataset of
known human promoter sequences, it could automatically learn the transcription factor
binding motifs and their occurrence positions relative to the TSS. It could predict human
TSS with accuracy competent with some of the 2" generation promoter prediction tools.

The present work introduced a new modeling framework. However, there are
several possible directions in which the present promoter prediction tool can be improved

and fine tuned for superior performance. These include careful selection of the training
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sequence data, feature selection to remove unprofitable oligonucleotides from the model,
separate modeling of CpG island and non-CpG island related promoters and
incorporating biological knowledge as in [Hannenhalli and Levy (2001)]. Introducing
dependencies among the nodes in the Bayesian network model could also improve the
model. In addition, the ideas presented in the paper can easily be extended to various
other problems in bioinformatics that require analysis of DNA sequence content,
especially motif finding.

The present study extends the scope of statistical models in general promoter
modeling and prediction. Promoter sequence features learnt by the model correlate well
with known biological facts. Results of human transcription start site prediction compare

favorably with existing 2" generation promoter prediction tools.
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CHAPTER - VI

CIS-REGULATORY MODULE PREDICTION

This chapter describes computational modeling of cis-regulatory modules (CRMs)
in the genome of Drosophila melanogaster. A CRM is a short DNA sequence that
activates or represses the expression of a gene in a particular tissue at a particular
development stage. A CRM is usually described to contain a cluster (or module) of
motifs for the binding of co-acting transcription factors. CRMs with similar motif
module are hypothesized to control the same gene expression pattern. A motif module
which governs a specific gene expression pattern is called a regulatory code. So far few
regulatory codes are known which have been determined based on wet lab experiments.
The research described in this chapter presents the first computational approach to learn
regulatory codes de-novo from a repository of CRMs.

A probabilistic graphical model called Modulexplorer [Narang et al. (2008)] is
developed in this chapter to derive the regulatory codes and to predict novel CRMs. An
overview of the Modulexplorer model is given in Section VI-1. The data and methods
used to train the Modulexplorer model are described in Sections VI-2 and VI-3
respectively. Training and test performance of the model is evaluated in Section VI-4.
Validation of the model is described in Section VI-5. Using the model, 813 novel CRMs
were recovered from the Drosophila melanogaster genome regulating gene expression in
different tissues at various stages of development. These novel CRMs are described in
Section VI-6. Then the recovery of specific regulatory codes for CRMs controlling gene
expression in the drosophila embryonic mesoderm, the ventral nerve cord, the eye-

antennal disc and the larval wing imaginal disc is described in Section VI-7. The target
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genes of CRMs following a specific regulatory code have been validated to express in the
corresponding tissue at the corresponding development stage. Also 31 genes have been
newly implicated in the development of these tissues. The implications of the study are

discussed in Section VI-8.

VI-1 Modulexplorer CRM Model
The Modulexplorer pipeline is shown in Figure VI-1. The input to Modulexplorer

is a database of known CRMs and a set of non-CRM background sequences.

Modulexplorer first characterizes the TFBSs within the CRMs de-novo. It represents

The data used to learn the
Modulexplorer model is a
set of training CRMs and
background sequences

TFBS are characterized in
the CRMs by extracting the
redundant sites or motifs.
The TFBS annotation has
81% sensitivity and 22%
false positive rate

The extracted motifs are
used to construct a Bayesian
network model. The model
learns the mutual interactions
among the motifs in CRMs.
It can discriminate between
CRMs and background.

The Bayesian network
model is used to predict
novel CRMs in the genome

The Modulexplorer Pipeline

De-novo TFBS
characterization

I

Characterized CRMs ™\

—

l TFBS ™ TFBS | TEBS | TFBS]

Validations

The TFBS characterization is
validated by comparing with
experimental TFBS annotation in
155 partially annotated CRMs
[Bergman et al. (2005)]

CRM Model

ceesses
® ®

The CRM model is validated by
comparing pairwise interactions
among motifs learnt by the model
with TF-TF interactions cited in the
literature

~ ~

Hypothesis: CRMs with
similar motif module direct
gene expression in the
same tissue and stage

Cluster together known and
predicted CRMs which contain a
common motif module

v

Check if the known CRMs in a
cluster control expression of their
target genes in the same tissue
and developmental stage

)

Whole genome

Some of the predicted CRMs are
validated by comparison with newly
discovered in-vivo validated CRMs

reported in recent studies

scan to predict

CRMs

Other predicted CRMs are
validated based on their similarity
with known CRMs

Validate if the target genes of the
predicted CRMs in this cluster
also have the same expression
pattern in that tissue and
developmental stage

(using in-situ gene expression
patterns in BDGP database
[Tomancak et al. (2007)]

Figure VI-1. The Modulexplorer pipeline to learn a CRM model from a repository of

uncharacterized CRMs and background sequences, and to use the model
for predicting novel CRMs is shown in (a). Also shown are the validations
that have been conducted in this study to verify the model and the novel
CRMs predicted by the model.
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these TFBSs with dyad motifs [van Helden et al. (2000); Eskin and Pevzner (2002);
Rombauts et al. (2003); Favorov et al. (2005)] in degenerate IUPAC alphabet to achieve
high specificity. Then using a probabilistic Bayesian network model, it learns the TFBS
interactions which are over-represented in CRMs while under-represented in non-CRMs.
The TFBS interactions describe the regulatory codes. The trained model is then used to
discover novel CRMs.

The Modulexplorer Bayesian network model for a CRM is shown in Figure VI-2.

In the Bayesian network model, the TFBSs are the causal elements or parent nodes while

©) () (o
Pr(CRM|D,, D,,D,) @

Figure VI-2. The Modulexplorer Bayesian network model. The model describes a
CRM as a cluster of multiple interacting TFBS with distance and order

constraints. The nodes D, are the dyad motifs representing the TFBSs.

They have states 0 or 1 according to whether the motif is absent or present
in the CRM. The CRM is their common effect or hypothesis, represented

as the child node. Each dyad motif D, has two monad components
(Mil, Miz) with a spacer of 0 to 15 bp. These monads are represented by
individual nodes M,;, M,, having states 0 or 1, i.e. present or absent, and

are related to the dyad node D, by a noisy-AND relationship. The spacer
length (or distance), discretized as low or high, is modeled by the node d;.
Furthermore each D, is associated with an order either left or right
according to whether M., appears to the left or to the right of M,, in the
CRM.
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the CRM is their common effect or child node. The basic idea is to consider a CRM as a
cluster of TFBSs for cooperating TFs with certain distance and order constraints. The
TFBS interactions are encoded in the probabilities at the edges of the Bayesian network.

The interaction probabilities are learnt de-novo by the Bayesian network from training
CRM and non-CRM sequences with unsupervised learning. Distance and order
constraints are considered between pairs of closely interacting motifs. After training, the

Bayesian network model functions as a classifier to discriminate between CRM and non-
CRM sequences. During inference, the Bayesian network assigns high probability of

CRM to a sequence which contains a combination of closely interacting TFBSs.

VI-2 Data

Experimentally validated CRMs for this study were derived from version 1 of the
REDfly database (September 2006 release). The database contained a total of 619 CRMs,
among which some were redundant or overlapping. Pairwise sequence similarity was
computed using ClustalW [Pavesi et al. (2001)] and CRM sequences with more than 40%
similarity were treated as redundant. After removing the redundant sequences, 414 non-
overlapping sequences were obtained. Out of these, 58 sequences were too long (>3.5 kb)
to be useful in the Modulexplorer pipeline. These were taken as the test dataset. The
remaining 356 CRM sequences were selected as the training dataset for Modulexplorer.

The training CRMSs represent a diverse mix regulating gene expression in a
variety of tissues and stages. Out of 356 training CRMs, 302 control gene expression in
the embryo, 193 in the larva and 41 in the adult fly respectively. Of 302 CRMs active in
the embryo, 87 are expressed in the blastoderm and 215 in the post-blastoderm stages.

The 215 post-blastoderm CRMs are expressed in one or more of the tissues
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integumentary system, imaginal precursor, nervous system, digestive system, muscle
system, circulatory system, tracheal system, reproductive system, excretory system,
edipose system and endocrine system as shown in Figure VI-3.

Also for the training of Modulexplorer three different background sequence sets
were created from coding, intron and intergenic sequences selected randomly from the
whole Drosophila genome. Each of the three background sets consisted of 356 sequences
size-matched with the 356 training CRMs.

Experimental annotation of 1066 TFBSs for 83 known TFs in the vicinity of 85
genes was obtained from the Drosophila DNase | Footprint Database v2.0 (FlyReg
database) [Bergman et al. (2005)]. This is a subset of the FlyReg database, leaving out
entries with unknown transcription factor or gene information. The FlyReg and REDfly
databases had 52 genes in common, so that the experimentally annotated TFBSs and
CRMs could be related for these 52 genes. Interestingly, the annotated TFBSs
overlapped the annotated CRM regions for all genes except one. There were thus 778
known TFBS falling within 155 known CRMs across 51 genes [Narang et al. (2006)].
Based on the survey of literature from which FlyReg annotations were compiled, 19 out
of these 155 CRMs are fully annotated with TFBSs while 136 CRMs are partially
annotated with TFBSs. This TFBS annotation has been used in this study to validate the
de novo TFBS annotations generated by Modulexplorer in the first step of the pipeline.

The BDGP release 5 genome assembly (2007) was used for the whole genome
prediction and for all other analyses.

All the datasets and the whole genome prediction results are available for free

access at our website http://www.comp.nus.edu.sg/~bioinfo/Drosophila.
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VI-3 Methods
VI-3.1 TFBS Characterization and Motif Extraction

To construct the Modulexplorer model, we first developed a method to robustly
identify TFBSs within CRMs. Drosophila CRMs show homotypic clustering of TFBSs,
I.e. they contain multiple binding sites for the same transcription factor [Davidson et al.
(2002); Markstein et al. (2002); Lifanov et al. (2003); Ochoa-Espinosa et al. (2005)].
Therefore TFBSs often appear as redundant subsequences within the CRM. We studied
the correlation between the redundant sites and TFBSs in 155 Drosophila CRMs for
which TFBSs have been previously characterized by DNAse footprinting experiments as
described in the Data section. Each of these CRMs contains 3-6 binding sites per TF in
general (Figure VI-4(a)). The fluffy tail test statistic [Abnizova et al. (2005)] of these
CRMs also indicated a high level of sequence redundancy in the CRMs (Figure VI-4(b)).
Based on the observation of sequence redundancy in CRMs, we developed a novel
algorithm to recover the TFBSs as redundant sites in a CRM with high accuracy.

The experimentally annotated TFBSs in Drosophila CRMs are 6 to 140 bp long
and contain multiple short conserved segments of length 6-10 bp with variable gaps or
spacers. We found the dyad motif representation [van Helden et al. (2000), Eskin and
Pevzner (2002), Rombauts et al. (2003), Favorov et al. (2005)], similar to the one
proposed by Sinha and Tompa (2000) to model spaced motifs in yeast, suitable to
represent these TFBSs. A dyad motif is a pair of monad motifs separated by at most D bp.
Each monad is written in degenerate IUPAC alphabet {A,C,G,T,R,Y,S,W,N} [Sinha and
Tompa (2000)]. A dyad motif is associated with an order. If A and B are two monads in a

dyad motif (A,B), the dyad is said to appear in the left (L) (or right (R)) order if A appears
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to the left (or right) of B. We characterized the TFBSs with dyad motifs individually in
each CRM. The procedure has the following steps, which are illustrated by an example
in Figure VI-5:

(1) We first find all oligonucleotides of length 6 over the alphabet {A,C,G, T} which are
over-represented in the CRM as compared to the background. The over-representation of

an oligonucleotide is measured by the Z-score formula:

Z: pl_pZ
1 1
5(1— ) =+ =
el

where nl1 and n2 are its number of occurrences in the CRM and background respectively

(allowing one mismatch), N, is the CRM length, N, is the total length of background

. n . n L n+n,
sequences, p,=—, p,=—=,and p=——-—=-.
' 2 N N, +N
1 2 1+ 2

(2) From the selected oligonucleotides, we find pairs occurring at short distance (0 to 15
bp gap) from each other. Over-represented oligonucleotide pairs are selected again by Z-
score. The selected pairs are then clustered according to their similarity. For clustering,
the highest scoring unclustered pair is chosen as a new cluster center, and any other pair
with at most two mismatches with it is added to the new cluster. This procedure is
repeated until all pairs are clustered. Clusters of size less than 5 are dropped.

(3) Using the clusters of oligonucleotide pairs, we identify redundant site in the CRM. A
redundant site will usually give rise to several similar over-represented oligonucleotides
in a CRM. Thus we mark sites where more than 90% of the oligonucleotide pairs in the

same cluster simultaneously match as redundant sites.
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Figure VI-5. Over the next three pages, the figure illustrates the novel procedure used in

Modulexplorer for characterizing TFBSs de-novo in a CRM.
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(4) We represent each cluster of oligonucleotide pairs by a single consensus dyad motif
derived by aligning together all oligonucleotide pairs in the cluster. The consensus dyad

motif represents the redundant sites or the TFBSs in the CRM.

V1-3.2 Bayesian network model

The Modulexplorer Bayesian network model as shown in Figure VI-2 describes a
CRM as a combination of dyad motifs with mutual order and distance constraints. The
dyad motifs D,, ie{1,2,...,K}, with the states 0 (absent) or 1 (present), are the parent
nodes while their common child node is the CRM node Y with states True (CRM) or
False (non-CRM). Each dyad motif node D, itself has two parent monad motif nodes
(Mi1,M;,), where the nodes M, :i=12,...,K;j=12 take the states 0 or 1 depending

upon whether the motif M, ; is absent or present in the sequence respectively. The node

D, has a noisy-AND relationship with its parent monad motif nodes. The noisy-AND
relationship is implemented as described in [Vomlel (2006)]. The intermediate dummy

variables M’

M/, are inserted between the node D, and its parents M, ,,M,,. The

dummy variables also take the states 0 and 1. The relationship between D, and the

dummy variables M/,,M/, is a deterministic AND. However, the dummy variables
depend stochastically upon the actual variables M;,, M, , as Pr(Miﬁj =]4Mi'j =O)=afj and
Pr(M.’. =M, ;=1)=ca; . Thus D, depends stochastically upon the motif nodes as
Pr(D, =1M;; =a,M,, =b)=af,a’,, where a,be{0,1}.

Additionally the nodes O; and d; impose distance and order constraints upon the

monad motifs in the dyad D;. The order constraint O, defines a bias in the relative
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positions (left or right) of the monad motifs M,, and M,, whenever they both occur in a
CRM, whereas the distance node d, models the distance between the adjacent
occurrences of the pair of motifs M,, and M,,. The order node has states ‘left’ or
‘right’, while the distance is discretized into two levels — ‘low’ and ‘high’ — with distance
up to 6 bp considered ‘low’ and above that as ‘high’. The order and distance nodes are
have the conditional probabilities Pr(O, =Ieft|D,=0)=05 , Pr(O =leftD =1)=a ,
Pr(d; =low|D, =0)=05, Pr(d, =low|D, =1)=4.
The Bayesian network encodes the joint probability:

Pr(Y,Dp.... D, My, My My My My M My M 5,00, 0, dy )

=Pr(Y|D,...., DK)ﬁPr(DJMi’J, Mi’,z)Pr(Mi’,1|Miyl)Pr(Mi’Y2|Miv2)Pr(Mivl)Pr(Mivz)ﬁPr(OJDi )Pr(d,|D))

i=1

which contains the parameters o'}, ;,@;, 5, and Pr(Y|D,,...,Dy)
In the training of the Bayesian network model, first we learn the parameters ,, s,

of order and distance nodes directly from the training CRMs. For each occurrence of the
dyad motif D; in the training CRMs, the order of occurrence of its monad motif parents
and their distance is identified. The frequencies of these occurrences are used to compute

the probabilities w and §,. These parameters are henceforth kept fixed.

0 1

Thereafter the noisy AND parameters ¢ .,o;; and the parameters

L] 1]
Pr(Y|D1,D2,...,DK) are estimated. The order and distance nodes are temporarily
removed. The reduced model is shown as an undirected graph in Figure VI-6. Each

training sequence, S,|n=12,...,N, is represented as an ordered pair (m(”’,y‘”)), where

m® =(m{ mf ... m mf,)isabinary vector representing the presence or absence
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of each of the monad motifs in the sequence, and y™ is a label 1 or 0 depending upon

whether the sequence is a CRM or non-CRM respectively. We use factorization of the

probability potentials to achieve efficiency in training [Vomlel (2006)]. The hidden

¢5BkM_, Bi=0 | Bx=1

' =0 +1 0

M/ = +1 +1

¢Bka Bx=0 | B =1

D=0 | +1 0

Dy =1 -1 +1

Figure VI-6. Potentials Pr(Di ‘Miyl, Mi,z) factorized using the hidden nodes B, .

nodes By, ...,Bk in the undirected graph serve to factorize the probability potentials. The

expectation maximization (EM) algorithm is used to learn the model parameters from the

data (m(”),y("’). The EM equations are written as [Vomlel (2002), Vomlel (2006)]:
M step:

n(D=d,Y =b)
n(D=d)

o - WM = .1 =2) (Y —blD=d) =
¥ oM, —a) Pr(Y =bD=d)

v, [Pr(D=d|m™) ify, =b
0 otherwise’
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S
where Pr(D=d|m")=] &7 a |
i=1

=1 m™) ifm® =
n(Mi',,:l,MH=a):Z{Pr(Mi_1|m ) if mp; —a1

0 otherwise

¢BkDK (Bk’Dk)¢BKM,’_J (BkvMi,.j>Pr(Mi',j | Mi,J’ = ml(r}))

K
- _ 0
Pr(M; 1)« [ ]| SPr(v =y ID)gkl {zmﬂx(Bk,Mifx)Pr(M;x|Mi,x=m§,”x>>}
My«

where M, , is the pair of M, ;, and the potentials ¢ are shown in Figure VI-6.

ijo
After training, the Bayesian network CRM model can infer whether or not a given
sequence is a CRM based on its motif content. The sequence is scanned to ascertain

which of the 2K motifs M.

1=12,...,K, j=12 occur in the sequence, as well as the order
and distance between the adjacent motifs. This evidence is provided to the Bayesian
network and a standard inference algorithm is used to assign a value between 0 and 1 at
the “CRM” node, which is the estimated probability of the given sequence being a CRM.

To predict CRMs in a long uncharacterized sequence, a sliding window approach is used.

VI1-3.3 Feature Based Clustering of CRMs

The aim of feature based clustering is to find clusters of CRMs having a common
set of motifs. The dyad motifs are called “items” and the set of all dyad motifs that match
a given CRM is called the “itemset” for that CRM. The Closet algorithm [Wang et al.
(2003)] is used to determine the closed maximal subset of items that are common to at
least T itemsets. This translates to finding the maximal set of motifs that are common to

at least T CRMs. The number T is called support. In a single run, the Closet algorithm
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outputs all possible clusters of at least T itemsets (CRMs) along with their maximal
common set of items (motifs). The fitness of a cluster is defined as the inverse of the
probability of obtaining the cluster by chance. Let S be the total number of itemsets (or

CRMs) and M be the total number of distinct items (motifs). Then,

Pr(at least T itemsets contain all items 1 ) = i(?J[P(l )]t [1— P(l )]S_t :

where | ={i,,i,,...,iy} are the N items in the cluster and P (1) is the probability that all

these items are selected. If py is the frequency of the item iy in all itemsets, then

N

P(I):H p, - Fitness is taken as negative log of this probability. We run Closet for

k=1
different values of support T. The fitness is a convex function of T. We select the cluster
with the highest fitness across all T.
After obtaining a CRM cluster, we remove all these CRMs from the list and run
the Closet algorithm again on the reduced set. Thus we get the next most conserved

cluster. This iterative procedure finds several conserved clusters of CRMs.

V1-3.4 Derivation of Regulatory Code

By the abovementioned feature based clustering, CRMs having a common set of
motifs are obtained. This common set of motifs is used to derive the regulatory code. The
regulatory code is obtained as a minimal subset of the common motifs that can effectively
discriminate between the CRMs in the cluster and the background sequences or other
CRMs. We first translate each consensus motif to a PWM using all its occurrences within
the CRMs in the cluster. Then we analyze the PWMs of all the common motifs with

STAMP tool [Mahony and Benos (2007)], which computes the similarities among the
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motifs and hierarchically clusters them. The hierarchical cluster is shown as a
phylogenetic tree. With a certain similarity cutoff, we separate the motifs into distinct
clusters. From each cluster, we select one representative motif that is most over-
represented in the CRMs in the cluster as compared to background sequences or other
CRMs. The selected motifs comprise the minimal regulatory code. The regulatory code
motifs can be used to discriminate CRMs in the cluster from other CRMs and background.
The discrimination is based on the total count of matches of the motifs in a 1 kb window.
The thresholds for the PWMs [Stormo (2000)] are fixed according to the number of
random matches produced in a set of background sequences. The value chosen in this

study is 5x10 probability of random match, i.e. 1 random match per 2 kb of sequence.

VI-4 Training of Modulexplorer

As the first step in the training of Modulexplorer we annotated TFBSs de novo in
all 619 CRMs using the method described in Section VI-3.1. Within 19 CRMs which are
fully experimentally annotated with TFBSs (Section VI-2, Figure VI-4), the predicted
TFBSs overlapped 81% of the experimental TFBSs. In classifying each base in the
sequence as TFBS or non-TFBS, the ROCs for the 19 fully annotated CRMs are shown in
Figure VI-7. The overall sensitivity and false positive rate are 81.5% and 22%
respectively. The p-value for this correlation is 9x10* compared with random sites of
the same length. Thus the method robustly identified the TFBSs in the CRMs de novo.

To learn the Modulexplorer Bayesian network model, we obtained a non-
redundant and non-overlapping set of 356 training CRMs and 58 test CRMs from the
REDfly database as described in the Data section above. The CRMs were of several

different types as described in Figure VI-3. In addition, three different background sets
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from exon, intron and intergenic sequences respectively were prepared as discussed in the
Data section.

Ten-fold cross-validation training of the Bayesian network was performed with
this training data. The discrimination achieved between CRM and background sequences
in cross-validation training is shown in Figure VI-8. The result is compared with the
current best performing algorithm HexDiff [Chan and Kibler (2005)] and with a Markov
model. Other CRM prediction algorithms (such as [Rajewsky et al. (2002); Bailey and
Noble (2003); Sharan et al. (2004)]) could not be included for comparison since they
require prior biological knowledge of the CRM model (such as the PWMs of the TFs)
and are specific to a subset of CRMs of the same type. As shown in Figure VI-8(a), all
three models showed high discrimination between CRM and coding (exon) sequences.
However for non-coding (intron and intergenic) sequences (Figure VI-8(b)), the Markov
model showed no discrimination (area under ROC=0.37), HexDiff showed marginal
discrimination (area under ROC=0.58), while Modulexplorer had the highest
discrimination (area under ROC=0.75).

Modulexplorer’s prediction performance was then evaluated on a test dataset of
58 CRMs and 1000 random background sequences different from the training set. The
test set is unbiased as it contains CRMs expressed in a variety of tissues and stages and is
distinct from the training sequences (Figure VI1-8(c)). The ROC, shown in Figure VI-8(d),

resembles the performance on the training set (area under ROC=0.72).

VI-5 Pairwise TF-TF Interactions Learnt De-novo by the Modulexplorer

We investigated the conditional probabilities associated with the edges of the

Modulexplorer Bayesian network model to obtain insight into the pairwise TFBS
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interactions represented in the model. We took from the model the representative motifs
for 61 known TFs which best matched their known binding sites (listed in Figure VI-9).

The strength of interaction between any two motifs Mj, M, was measured as the ratio of
the marginal probabilities Pr(CRM|M,,M,)/Pr(non—CRM|M;,M,). The pairwise
interaction matrix is shown in Figure VI-10. Based on the interaction matrix, the TFs

were hierarchically clustered using UPGMA algorithm [Sokal and Michener (1958)].

According to their known biological functions, the 61 TFs may be grouped into

ABD-A MAATTG-AATGGG DSX-F  AATCA-GACTACA KNI TAAAAA-AWWWTG | TIN GATCCA-GCAGMC
ABD-A  AAATTG-AATGGG DSX-F  TRATCA-CACAAAT KNI AAAAAT-ATTAAA TIN TGSSMA-GAGAAA
ABD-B RTAAAA-AAWWTG DSX-M AATCA-GACTACA KR CAAWTC-AAATGG TLL  CAAAAA-TCAAAA
ABD-B  TCAAAA-AAYSRTA DSX-M TRATCA-CACAAAT KR AAAWAG-CVAAAA TLL  TAAAAA-TCAAAA
ADF1  TKCGMA-AGCSGCTC | EMS TCAAAA-ARTGWCA MAD CCGWCGC-SKCGMM | TOY SGWWWC-GGRGAA
ADF1  CTGCG-CYGWWCA EMS TCAAAA-AAYSRTA MAD MGCGACM-SKCGMM | TOY  TSSSAA-AAGTCA
AEF1 CTACTA-AATCBG EN AATAAA-AAATGT MED MASTKA-ATMCAT TRL  AWWWTG-AATAAA
AEF1 AATCAG-GTACAA EN AMAWKKA-ATCAAA MED TCGAGAC-GKCGMA | TRL  ASATAA-AAAAGW
ANTP  AAATAT-AWWWTG | ESPL AGTAAAA-ACMAAT NUB  GCCAAA-AATCAR TTK  GCAAAA-CCYGCG
ANTP  TAAAAA-ATWWAT ESPL AAAAATM-AGCAAA NUB CATMGA-GCCAAA TTK  GAAGGA-CGAASG
AP AAATAA-AATKAT EVE AATAAA-TRWTAA OVO TTAAAAA-ACAAKA | TWI  TCAAAA-AAGGCC
AP AATAA-AATTGC EVE AATAAA-AAATGT OVO TAGAAA-AAWGGA TWI  TATGGA-ATGCAA
ARA ATWWAA-ATCAAA EXD MAATTG-AATGGG PAN  TSAAAA-AWSAAA UBX AATAAA-TRWTAA
ARA GAAATA-AASTTR EXD AATTAG-TCCWAA PAN  ACAAAT-TSAAAA UBX AATAAA-AAAAAT
BAP MTTSAA-AATCGCA | EY TSSSAA-AAGTCA PHO  ATAAAA-GAAATAC | VND TTSAAA-AAGAKA
BCD ATTAAA-AWWWTS EY TSSSAA-AAATGA PHO  ACATAA-AAAATGA | VWL GMATKC-TCSTCA
BCD AWWWTS-AAAATYY | FTZ ATAAAA-AAYTAT PRD AWWWTR-CCATGA VVL AGKATG-ATCSTCA
BIN AATCAA-AAATAG FTZ ATAAAA-TRTAAA PRD  CRATTA-YGTCAAA z AAAASRA-ATRAAT
BIN TAACAA-GCAGACG | FTZ-F1 CAATTA-ATTGTC SD ATTTAA-AAAAAT z TTAAAAA-AAATTA
BRK GAAAMC-GACAGCT | FTZ-F1 AMYTARG-ATKGTC SD AAAAAT-AATGAA ZEN  AATAAA-TRWTAA
BRK CGCKAG-ATTTSC GL ATTSTG-GRAGAA SLBO TGATMA-AYCWGV ZEN  AATAAA-AAATGT
BYN WTAAAA-AGTTGA GL AGGAAT-ACABAT SLBO AATCA-GACTACA ZFH1 GCTTCCC-AAYTGC
BYN TDYAAA-CTGCTA GRH ATAAAA-GAATAA SLP1 CWWHGA-AACACT ZFH1 CAKAAAT-CAMKTRA
CAD TAAAAA-ATAAMA GRH AATGA-CTTTCC SLP1  MTBWSA-SGAGGAC

CAD TAAAAA-AAYTAT GT AAAASA-AAAGGY SNA  GCGAAA-ACGYRCG

CF2-  RTWWWA-CCAGAC | GT TAAAAA-CCGCGA SNA  CGGGAA-ACGYRCG

CF2-l  CATWTA-ACGCTAA | HB AAAAAA-CTAAAA SNA  TGGAAA-GCCAYA

DEAF1 GCAAAA-AATCGM HB AAAAAA-ATAMAA SO ARGATG-TSAYMWC

DEAF1 RTYWAA-RAGTCA HIS2B  CCTAAG-ACGCTG SRP AGCCAA-GCGAAA

DFD AAATTA-ATWWWA | HIS2B  AGGTA-AGCTGGA SRP AAWWWT-AGCCAA

DFD ATWAAT-AAAYTA HKB GGAHWWAKC-CCACGC | SUH  TCGTAA-CAGAAA

DL AAAATA-CARAAA HKB ACAAWT-KGCAAA SUH CAGAAA-CATCGA

DL ATWWWA-CKAAAA

Figure VI-9  Dyad motifs in Modulexplorer most closely resembling the binding sites of
known TFs.



Figure VI-10 Pairwise interactions between 61 different TFs learnt de-novo by the
Modulexplorer probability model. Based on the interaction matrix, the
TFs were hierarchically clustered. Six functionally related groups of TFs
were formed: (1) cofactors of twist in mesoderm and nervous system
development, (2) TFs involved in imaginal disc development, (3) the
antennapedia complex, (4) TFs expressed in the blastoderm, (5) TFs for
eye development and (6) a miscellaneous set of TFs. Five distinct clusters
are seen in the interaction matrix. Three of the clusters contain mixed set
of TFs from groups 1-4, while two other clusters correspond to the TF
groups 5 and 6.

five broad categories. The TF Twist (twi) and its cofactors dl, sna, byn, slbo, prd, bin,
su(H), su(Hw) in mesoderm and nervous system development [Kusch and Reuter (1999);
Furlong et al. (2001); Markstein et al. (2004); Borghese et al. (2006)] are placed in the
first group. The TFs sd, pan, nub, ap, grh and ara which are involved in the development

of imaginal discs such as the wing disc were placed in the second group. The third and
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fourth groups were formed by the TFs of the antennapedia complex (Antp, abd-A, abd-B,
ubx, dfd) and the blastoderm (bcd, hb, cad, kni, Kr, tll, gt) respectively. The fifth group
consists of the TFs ey and toy involved in eye development.

In the TF-TF interaction matrix, the first four TF groups showed high mutual
interaction values in general. The overlap is expected as these TFs are known to function
cooperatively [Mann and Morata (2000); Morata (2001)]. However, closer analysis of
the interaction matrix by hierarchical clustering indicated that the TFs of these four
groups form three distinct clusters in the TF-TF interaction matrix. The first cluster
included all TFs from the first group and the TFs sd, nub, grh and pan from the second
group. The second cluster contained the remaining TFs from the second group and all
TFs of the antennapedia complex. In addition, the TFs ems, vvl, en, exd, cf2-11, gl, Dref,
zen and eve also came together with this cluster according to the hierarchical clustering.
There are some supports that these TFs may be related to the known factors in the second
cluster. exd, en, ems, zen and eve are known regulators in the development of
appendages including the legs and wings [Mann and Morata (2000)]. Vvl also has known
function in wing development [de Celis et al. (1995)], while little information is available
on the TFs gl and cf2-11. The primary function of Dref, is DNA replication. Though there
IS no support presently of its association with antennapedia complex, recent studies have
shown its various diverse roles [Hirose et al. (2001)] and hence it might be related to the
antennapeida complex.

The third cluster contains all the blastoderm TFs. Moreover the antennapedia
pair-rule TF ftz was also found in this cluster. This association is not surprising as ftz

cooperates with blastoderm TFs in known CRMs [Zhang et al. (1991)].
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The TFs ey and toy of the fifth group appeared as a distinct cluster by the
UPGMA clustering. The TF deafl was also found in this cluster. Little is known in the
existing literature about deafl. Surprisingly we found from a survey of recent literature
that deafl seems to have a role in eye development [Veraksa et al. (2002)].

We found another separate cluster formed by a miscellaneous set of TFs med,
mad, brk, adfl, espl, tin, hkb, vnd and ftz-f1. Some of these TFs have known interactions,
e.g. mad and brk are co-regulators of zen [Rushlow et al. (2001)], while mad and med
cooperate in the regulation of bam gene [Song et al. (2004)]. However the clustering of
these TFs is a subject for further study.

In summary, TFs with high interaction probability in Modulexplorer were found
to have close interaction with each other in the same biological process and

developmental stages.

VI-6 Genome Wide Scan for Novel CRMs

The Modulexplorer model was used to search for novel CRMs within BDGP
Release 5 assembly of the Drosophila genome. In a sliding window like approach, the
complete 120 Mb genomic sequence was divided into 24,000 windows of length 1000 bp
each with the adjacent windows overlapping by 500 bp. The Modulexplorer model
assigns to each window a probability that it may contain a CRM. A small set of high
confidence windows that were assigned high probability value by the model were
shortlisted for analysis as shown in Figure VI-11(a). We chose a probability threshold so
that the model has a small false positive rate of 1% in cross-validation. At this threshold
the expected sensitivity is about 20%. Thus 240 false positive windows are expected in

the predicted set. A total of 1298 windows were found above the threshold, which is
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more than 5-fold the number of expected false positives. The P-value for this recovery
(Bonferroni corrected) is 4.0x10%°.  Out of 1298 windows, 472 windows were
overlapping the training CRMs and 13 windows overlapped the 58 test sequences (Figure
VI-11(b)). The remaining 813 windows are novel predictions. These novel predictions
are listed in Supplementary Figure 4 at the end of this dissertation.

As an initial validation, the novel predictions were compared with computational
CRM predictions reported by other authors [Berman et al. (2002); Markstein et al. (2002);
Berman et al. (2004); Schroeder et al. (2004)] and with new CRMs added to the REDfly
database in version 2. Mild overlap with these predictions was found as shown in Table
VI-1. Out of 28 predicted CRMs reported by Berman et al. [Berman et al. (2002)], 6
were also reported by Modulexplorer. In a subsequent in-vivo validation by Berman et al.
[Berman et al. (2004)], 9 of the 28 predicted CRMs were validated as active enhancers
while the remaining 19’s were not. Five of the six common predictions between
Modulexplorer and Berman et al. corresponding to the genes gt, odd, sqz and CG9650
(two overlapping Modulexplorer windows) were among the validated modules, while one
prediction corresponding to the gene antp was inactive. Similarly 7 CRMs were common
between Modulexplorer and the predictions of Markstein et al. [Markstein et al. (2002)]
corresponding to the genes run, zen, brk, sog, CG12444, osm-6 and ady43a. Of these, the
zen, brk, sog and ady43a enhancers have been validated as active in-vivo. Nine other
CRMs reported by Modulexplorer corresponding to the genes fkh, sim, wg, mir-309, grh,
phyl, and cluster_at 55C are confirmed by the updated REDfly database (version 2),

while four CRMs for the genes gt, kni and pdm2 are validated by Schroeder et al. (2004).
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Table VI-1.  Overlap of novel CRMs predicted by Modulexplorer with CRMs predicted
in previous computational studies.
Reference No. of No. of | No. of No. of No. of No. of
CRMs CRMs | CRMs | overlapping | Modulexplorer | Modulexplorer
predicted | validated | found | Modulexplorer CRMs CRMs found
active | predictions validated active
Berman et al. 28 28 9 6 6 5
(2002, 2004)
Markstein et 15 15 5 7 7 4
al. (2002)
Schroeder et 32 20 15 16 5 4
al. (2004)
REDfly - - 34 9 9 9
version 2
(new)

The Modulexplorer predictions were over-represented in upstream regulatory
regions of genes (Figure VI-11(d)) indicating a strong bias towards transcriptional control.
Of the 813 predicted CRM windows, 391 (48.1%) fell in the upstream intergenic and
promoter region, which is significantly higher (p-value = 1.1x107%%) compared to
randomly distributed size-matched segments (mean 26%, stdev 4.4% over 100 trials).
Known CRMs show a similar bias, with 49.6% CRMs overlapping upstream intergenic
and promoter regions (p-value = 1.1x10°%°). The known and predicted CRMs also show
significant under-representation in the exon regions as compared to random segments.

In many cases, multiple predicted CRMs were found clustered around a gene.
The trend is similar to that for known CRMs, where out of 619 known Drosophila CRMs,
398 occur as a cluster of 4 or more CRMs around 51 genes. Monte carlo simulations

were performed to assess the statistical significance of the clustering of CRMs in

intergenic gaps. The number of clusters of different sizes in 50kb windows formed by
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randomly distributing 813 segments of 1000 bp length across the Drosophila genome is
shown in Figure VI-12 (averaged over 100 simulations). In comparison, the
corresponding distributions for the predicted and known CRMs show significant
clustering around their target genes.

Putative target genes were assigned to the predicted CRM windows based on
proximity. Though a CRM can regulate distant genes, it is an uncommon occurrence, for
instance, 81% of the known CRMs target their most proximal gene. In this study, CRMs
lying within the intron of a gene were assigned the same gene as their target, whereas
CRMs lying in the intergenic region were assigned both the closest upstream and
downstream genes as their possible targets. Gene ontology classification of the target
genes obtained using the online tool GOToolBox [Martin et al. (2004)] is shown in
Figure VI-11(d) with the GO terms sorted according to their significance (Bonferroni
corrected P-value). The terms show highly significant enrichment in the GO categories
related to development and gene regulation (morphogen activity) [Martin et al. (2004)].
This distribution is consistent with the GO categories of the target genes of the training
CRMs.

The G+C content of the predicted CRM windows is shown in Figure VI-13. The
known and the predicted CRMs have similar GC content, which is higher than those in
intron and intergenic sequences but lower than that in exons. The same trend has been

previously reported in [Li et al. (2007)].
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VI-7 Feature Based Clustering of CRMs

To characterize the CRMs predicted by Modulexplorer into functional categories,
the 813 predicted CRMs and 356 training CRMs were together clustered based on their
motif content. The clustering was performed by an iterative frequent itemset mining
clustering procedure as described in Section VI-3.3. It was observed that the CRMs of
every CRM cluster consistently regulate target genes expressed in the same tissue and
development stage. This supports the hypothesis that CRMs with similar motifs regulate
target genes within the same tissue and developmental stage.

The major CRM clusters are described below. For each CRM cluster discovered,
first we validated from the REDfly database if the known CRMs in the cluster are
functional within the same tissue and developmental stage. This check also deduced the
type of the CRM cluster. Then for the novel CRMs, we validated if their target genes are
expressed in the same tissue and developmental stage using in-situ gene expression
profiles from BDGP [Tomancak et al. (2007)] or Flybase [Wilson et al. (2008)]
annotation. Finally, the common motifs for the cluster were used to derive a concise
regulatory code (see Methods section). We show that the regulatory code specifically
distinguishes CRMs that confer the common gene expression pattern from other CRMs
and background sequences.

Table VI-2 summarizes the clusters. The first three iterations of the clustering
procedure produced a mixed set of CRMs rich in AT motifs. These CRMs represented
two major categories with target gene expression in the blastoderm embryo and in the
wing imaginal disc of 3rd instar larva. Subsequent iterations produced clusters with
predominant target gene expression in the embryonic mesoderm, ventral nerve cord and

eye-antennal tissues. The clusters are individually described below.
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VI1-7.1 Early mesoderm development

The mesoderm cluster consisted of 11 training CRMs for 9 genes and 34 novel
CRMs for 27 genes as shown in Figure VI-14. All 11 training CRMs express their target
genes in the developing mesoderm during stages 8-12 (nine in the visceral mesoderm and
two in somatic mesoderm). Recovering all 11 mesoderm CRMs from the 356 training
CRMs by random is highly unlikely (Bonferroni corrected p-value=1.1x10).

For the novel CRMs, in-situ expression profiles of 19 out of 27 target genes were
available in the BDGP database as shown in Figure VI-15, including CG2493, sob, trafl,
ush, eya, pvf2, wg, fus, rib, egfr, cprd49ac, sens, SP1173, emc, pxb, fer2ich, rst, dm and
gnfl. All of these showed expression in the mesoderm during stages 8-12. Of these, the
genes trafl, ush, eya, pvf2, wg, rib, egfr, emc, fer2Ich, and rst have known involvement in
mesoderm development (confirmed with the Interactive Fly website) while the genes
CG2493, sob, fus, cprd9ac, sens, SP1173, pxb, dm and gnfl are novel. Of the remaining 8
target genes, four genes sna, knrl, htl and ferlhch were confirmed by Flybase annotations
for their involvement in mesoderm development, while the other four are unknown to
function in the mesoderm. The recovery of at least 23 out of 27 genes as functional in the
mesoderm is again highly unlikely by chance (Bonferroni corrected p-value<7x107).

The regulatory code derived for the CRMs in this cluster contained 12 motifs
(Figure VI-14). The occurrence of all these motifs within a 1 kb fragment at a PWM
match threshold of 5.0x10 (see Section V1-3.4) was sufficient to classify a sequence as a
mesoderm enhancer. The code is specific, reporting zero false positive against other
REDfly CRMs and two false positives against 1000 random sequences. The dpp 813 bp

enhancer was the lone available CRM in this cluster that has experimental TFBS
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001

051

101

151

201

251

301

351

401

451

501

551

601

651

701

751

801

M7 (+) M6 (+)
GGGATCCGAAATAGTTAGTGTAAACAAGGAGGCACTCTTGAGAACGCGAG
M10(+) MB(+) M7(-)
GGGCAACTGTTGTGGAAATGCCCGAGATTGAATCGCTGGTTAAATATTTA
M5 (+) M7 (+)

TGAAATCATAAAATTTGATGTCTCCCTTCCGTTGGCCACTTGACAGTAAT

M3a(-)
GCGACCATTACGGCAATGTGTCGAAGAAGAACCCCTGGTCCTGAATCCCG
M11(+) M9a(-)
ACACAACCCAACTCCAGAGCGCCGGTGCTAATGATGATTTTGATGTGCAG

TCAACGGATTGGCTGCAGACCCACGAAGACCCGGCGATTACGTGGAGTAC
M3b (-) M3b (+) M3b (-) M12(+) M3b(-)M3b(+)

TACCCATTTGGCTTCCCATTTCGATTTCCCCATGCCCATTTGGCCGTGCA
MOb (+) M6 (+) M5 (=) M6 (+) M10(+) M2 (4)
ATGTTTGITTTATGCACGATCCGTTGTTTTACAATCGCTGTAAATAAATA

= M3a(-) M3b (-)
GGAGCCGCAGATCAAAGGCCTATCAATTAGCACCCATTTCGATTATGCTG

M1 (+) M4 (-) M3ib(-)
CATGCTGCATATGCAGCACTTGCACTGCCTGCAATTCACACCCAATTAGT
M2 (+) M10(+) M3a(-)

AATAAATTTGAATGCGCGCTGCAATTTGCCGCCATTCGGCTCAACAGTTA

M3a(-) M5 (-)
TGGTGGCCATTAAGTTTTATCGATGGCGCTACAGCTCCCGATCCCCTACC

CCCGATCTTTCCTTGCCCCATGCCCAGATTTCAATTCGATTCCCGGATCT
M3a(-) M7 (-)
GGGAGCCAATTTGATTTGTGGCCCACTCGAGAGGGCTTCGAGCCATCCAC
M7 (+)M7 (+)
CTTTGATATTCTCGCACATAGGCCCACAAAAAGATACGTGCATGCTTAAC
M10 (+)

CGAACTTAATTGCAATTGACTTTTAATGCTTATGCGGGCTGCCCGCTGTG

TTAATTCGAATTC

Figure VI-16. Matches of the mesoderm regulatory code motifs within the dpp 813 bp

enhancer are shown by underlines. For comparison the known TFBS in
this enhancer, available only for the first 600 bp, are shown in red color
text. Out of 32 matches of the regulatory code motifs in first 600 bp, 26
overlapped known TFBS.
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annotation. The sites of regulatory code motifs in this CRM matched closely with the
known TFBS annotation as shown in Figure VI-16.

The motifs in the regulatory code showed similarity to the known motifs for the
TFs dl, twi, sna, tin, bin, abd-B, exd, eve, ftz, prd and ems. The TFs dI, twi and sna are
known to establish the identity of mesoderm cells [Ganguly et al. (2005)]. The TFs eve,
tin and bin promote the differentiation of mesoderm cells post-gastrulation (stages 8-12)
to form different muscle progenitor types (somatic, visceral, tracheal, etc.). These TFs act
together with pair-rule and segment polarity TFs including dpp, wg, en, exd, eve, prd, ftz,
abd-B, ems which form gradients along anterior-posterior (AP) and dorso-ventral (DV)
axes. The AP and DV gradients allow formation of different muscle progenitors in
different parasegments along these axes [Borkowski et al. (1995)]. Though it has been
suggested that the independent influences of the above TFs could be integrated together
via CRMs [Furlong (2004)], so far no specific regulatory code is known for these CRMs.
The current regulatory code is thus novel to characterize CRMs in mesoderm

development during stages 8-12 when muscle progenitors differentiate.

VI1-7.2 Ventral nerve cord

The ventral nerve cord (VNC) cluster consisted of 15 known CRMs for 14 genes
and 44 novel CRMs for 44 genes as shown in Figure VI-17. 11 out of 15 known CRMs
have known involvement in ventral nerve cord development during stages 11-16 (p-value
6x10°°).

Among the 44 targets genes of the 44 novel CRMs, 23 genes had in-situ
confirmation of expression in the VNC during stages 11-16 as shown in Figure VI-18,

while another 7 genes were annotated in Flybase as functional in the VNC. Thus 30 out
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of 44 genes were validated in VNC development. Out of these, 12 genes pdm2, tsh, trafl,
wg, phyl, klu, mirr, D, Ap-2, B-hl, run, and rst have known function in VNC
development while 18 genes cengla, slp2, ush, rx, pk, sens, comm2, CG6897, fz2,
CG11347, Klar, ets65a, pxb, ptx1, hth, corto, Ca-alphalT, and CG9650 are novel. For
the rest 14 genes, 10 have no information available while 4 show no expression in the
VNC.

The regulatory code for the VNC cluster consists of 15 motifs. The regulatory
code could separate the known neuronal enhancers in the VNC cluster from other known
REDfly CRMs and 1000 random sequences with 100% specificity.

The motifs in the regulatory code closely matched the known consensus for the
TFs dl, twi, grh, trl, ftz, pros and the bithorax complex TFs which have known
involvement in VNC regulation. The TF twi specifies the neuroectoderm cells. About a
quarter of the neuroectodermal cells eventually differentiate as neuroblasts while the rest
form the ectoderm. During gastrulation (stage 7), the neuroectodermal cells migrate to
the ventral region. The fate of neuroectodermal cells as neuroblasts or epidermal cells is
decided during stages 8-12 by lateral inhibition. Neuroblast formation is promoted by the
proneural genes (ac, sc, Isc, ase) and inhibited by neurogenic genes (notch, delta, su(H)
etc.). The neuroblasts in different parasegments along the AP and DV axes develop
subtypes by expressing different sets of genes under the control of various TFs. The
regulatory inputs of these TFs are combined by CRMs. The TFs pros, grh, ftz, bithorax
complex TFs are known to function together in neuroblast differentiation, such as the
formation of ganglion mother cells [Prokop et al. (1998); Skeath and Thor (2003)]. The

different neurblasts proliferate in the interior of the embryo during stages 13-16 to form
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the VNC. Thus from the identities of motifs in the current regulatory code, it again

appears that the CRMs in this cluster regulate neuroblast differentiation.

VI1-7.3 Eye-antennal disc

The eye-antennal expression cluster consisted of 18 known CRMs for 17 genes
and 21 novel CRMs for 21 genes as shown in Figure VI-19. 12 of the 18 known CRMs
confer expression in the eye-antennal disc during stages 12-16 (p-value 8.3x10°).

Among the novel CRMs, the 9 target genes cengla, lola, D, fz, spn, cas, fer2lch,
opa, skpd were confirmed as expressed in the eye-antennal disc (Figure VI-20). This has
a p-value of 1.0x10°. For 9 other target genes, no expression or functional annotation
information was available. Three genes showed no expression in the embryonic eye-
antennal disc. Out of the 9 validated genes, lola, D, fz, spn and cas have known
involvement in eye-antennal development while the genes cengla, fer2lch, opa and skpd
represent novel targets.

The eye-antennal regulatory code had 10 motifs. The regulatory code gave 100%
specificity over other known CRMs and 1000 random sequences. Motifs in the
regulatory code were recognized as closely resembling the known binding sites for the
TFs Antp/zen, Exd, tll and ey/toy. The TFs ey and toy specify the optic primordium cells.
The eye-antennal imaginal disc is formed during stage 12 by the invagination of optic
primordium cells to produce a monolayer epithelium. Commitment of the imaginal disc
cells towards eye or antenna fates occurs in a series of steps from stage 12 embryo until
the second instar larva. Several eye or antennal determinant genes such as eyg, ey, toy,
dac, optix, salm, exd, dll, etc. are expressed from embryonic stage 12 onwards in the

imaginal disc. The TFs dpp, zen, tll, otd, wg etc. are active in this process. From the
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regulatory code, it therefore appears that the CRMs in this cluster regulate genes in the
embryonic stage of eye-antennal specification.

The appearance of deafl motif in the regulatory code is surprising. Deafl was
also observed in the previous section to interact with ey and toy in the TF-TF interaction

matrix. Its role in eye development is therefore a subject for further study.

V1-7.4 Blastoderm embryo

The CRMs containing AT-rich motifs obtained in the first three iterations of the
clustering procedure consisted of two major CRM types controlling target gene
expression in the blastoderm embryo and the wing imaginal disc. The blastoderm CRMs
were separated manually on the basis of their enrichment in binding sites for the known
blastoderm TFs hb, bcd, cad, Kr, kni, dl and tll. The binding sites were annotated using
the PWMs for these TFs reported in previous studies [Berman et al. (2002); Rajewsky et
al. (2002)]. A total of 33 known CRMs for 29 genes and 98 novel CRMs for 79 genes
were recovered as shown in Figure VI-21.

The novel blastoderm CRMs showed a 2-fold enrichment of TF-binding as
compared to their flanking -5 kb to +5 kb regions as shown in Figure VI-23. The target
genes of these CRMs were studied for zygotic expression in stage 4-6 developing
embryos. Out of 79 genes, zygotic expression could be confirmed for at least 50 genes.
37 of these were validated from in-situ images in BDGP in-situ [Tomancak et al. (2007)]
and Fly-FISH [Lecuyer et al. (2007)] databases as shown in Figure VI-22. 13 other genes
were confirmed from microarray expression data [Arbeitman et al. (2002); Pilot et al.

(2006)]. Since microarray data does not clearly identify tissue localized zygotic gene
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Figure VI1-23. Binding sites for 10 blastoderm TFs were searched in the region -5000 to
+5000 around the 98 predicted blastoderm CRMs. The CRMs are in the
location 0 to 1000. In the CRM region the binding sites were over-
represented by a factor of around 2. The y-axis shows the total number of
binding sites found in the window in all 98 CRMs.

expression, a general rule was used to separate the genes into three classes — genes down-
expressed in stages 1-3 but up-expressed in stages 4-6 were classified as zygotic genes,
genes down-expressed throughout stages 1-6 were classified as not expressed and the rest
were classified as ambiguous.

Considering 15% of all 14,000 Drosophila genes to be zygotically expressed in
the blastoderm embryo, which is a generous estimate [Lecuyer et al. (2007)], the
confirmation of at least 50 genes out of 79 for zygotic expression in blasatoderm is
statistically significant with a P-value of 1.8x10-18 (hypergeometric probability with

Bonferroni correction of factor 14,000).
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VI1-7.5Wing imaginal disc

The wing imaginal disc specific CRMs were again manually separated from the
AT-rich clusters. Since there is no known regulatory code for wing imaginal disc
specification, we derived a regulatory code from known CRMs of the genes ct, dpp, kn,
kni, salm, ser, vg, pfe and chn. All these CRMs confer gene expression in the wing disc
in 3 instar larva. The regulatory code was derived from the common motifs among
these CRMs. 33 novel CRMs for 31 genes were separated from the AT-rich clusters
using this regulatory code. In these novel CRMs, 15 target genes including pdm2, drm,
cg25c, acts7b, dve, inv, rho, emc, c15, hh, CG12063, grn, CG8483, B-h1 and bi were
validated by their enrichment in the wing imaginal disc in the 3rd instar larva using
microarray analysis [Butler et al. (2003)]. For the rest 16 genes, no means of validation
was available. All the above validated genes have known function in wing development.

The regulatory code included 11 distinct motifs with 7 motifs resembling TFs ubx,
ap, ara, sd, mad, pan, su(H) and nub which are known to regulate wing imaginal disc
development in the larval stage. The wing imaginal disc is formed from the embryonic
ectoderm by an invagination at the compartment where DV stripe of wg intersects with
AP stripe of dpp. The primordium of the wing disc is established in late stages 13-16 of
the developing embryo when TFs such as hth, exd, vg, sna, esg become transcriptionally
active in the wing imaginal cells. Growth and pre-patterning of the imaginal disc takes
place in the larva with a number of genes expressed presaging the development of adult
structures. The TFs en, hh, dpp, wg, antp, ubx, exd, hth, dll etc. have been implicated in

pre-patterning of the imaginal disc into compartments, while the TFs ap, pan, su(H), nub,
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mad, sd, ara, e(spl), ubx are known to occur in CRMs mediating spatio-temporal specific

expression of genes in the wing imaginal disc.

VI-8 Implications of Modulexplorer

The Modulexplorer Bayesian network model describes a CRM as a cluster of
TFBSs for TFs that co-regulate gene expression in a particular tissue and development
stage. The TFBS combination defines a regulatory code. The regulatory codes were learnt
de-novo in this study from a repository of CRMs of unknown types. CRMs sharing a
common set of motifs were found to regulate the same spatio-temporal specific gene
expression. In previous studies [Li et al. (2007)], low sequence similarity has been
reported among CRMs. This is true as the 414 CRMs comprising the training and test
data in this study had at most 40% sequence similarity, while in average lower than 20%.
However in this study we observed similarity of CRMs in terms of their shared TFBS or
motif content. Therefore a new notion of similarity among CRMs emerges.

Though we used the common motifs among “similar” CRMs to specify a
regulatory code, the Modulexplorer model originally learns regulatory codes in the form
of probabilistic interaction among the TFBSs or motifs. We studied such interactions at
the most basic level in the pairwise TF-TF interaction matrix. The observed pairwise
interactions could be corroborated with known biology. The Modulexplorer model thus
suggests that regulatory codes exist as rules of probabilistic TF-TF interactions.

Modulexplorer also gives clues for the improvement of sequence-based modeling
of regulatory sequences such as using oligonucleotide motifs. It was observed during this
study that oligonucleotide motifs produce large number of matches in non-TFBS

segments of the CRMs (e.g. Figure VI-5), which reduces the effectiveness of modeling
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based on motifs. The performance of the model improved when the TFBSs were
accurately annotated and used to train the model, e.g. Modulexplorer showed better
discrimination between CRMs and background. Similar enhancements may be possible in
other applications of sequence-based modeling.

Modulexplorer contributes new biological information of regulatory codes for
CRMs associated with the development of mesoderm, ventral nerve cord, eye-antennal
disc and the wing imaginal disc. It also provides functional annotation of genes, for
instance 31 new genes have been classified in the above developmental functions. The
roles of some TFs in these regulatory mechanisms were also suggested, such as the novel
role of deafl in eye-antennal disc development.

The regulatory codes currently discovered are few in number as the application of
Modulexplorer model is restricted to CRMs that have been previously characterized. Also
the current method of CRM clustering using frequent itemset mining is not robust enough
as it can only discover clusters where a sufficient number of CRMs share a large number
of common motifs. Also the model currently relies on homotypic clustering to accurately
discover the TFBS. This may not be possible in other species or in CRMs where
homotypic clustering is absent. In such scenarios, one of the possibilities could be to
characterize TFBS by motif discovery in a set of known CRMs having the same motif

module [Gupta and Liu (2005)].



163

CHAPTER - VI

CONCLUSIONS AND FUTURE WORK

This research utilized position localization of TFBSs in regulatory sequences to
enhance their computational modeling and prediction. Three different applications were
addressed in particular — DNA motif detection, general promoter prediction, and cis-
regulatory module prediction. Although positional bias of TFBSs in regulatory element
has been known, it has not been adequately studied and exploited. The present research
focused on this aspect and contributed three new tools to the bioinformatics community —
LocalMotif and BayesProm, Modulexplorer. The salient research conclusions are

summarized below with some directions for future work.

VII-1 Role of Positional Localization of TFBSs

Positional localization of TFBSs has been observed in a number of situations in
gene regulatory sequences. In this dissertation, the following specific scenarios were
considered:

(1) The positional localization of TFBSs with respect to the gene promoter in the
mechanism of transcriptional initiation.

(2) The positional localization of TFBSs of co-regulating transcription factors with
respect to the binding sites of the main transcription factor.

(3) The positional localization of closely packed TFBSs with respect to each other in an
enhancer sequence (CRM).

There are other scenarios where positional localization of TFBSs may occur not because

of biological reasons but due to the nature of the experiment itself. For instance in the

emerging ChIP sequencing technology, the main TFBS and the binding sites of the co-
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regulating TFs are found localized with respect to the “peaks” or the positions of
maximal overlap of the sequenced ChIP fragments.

In this dissertation, it was shown in all of the above scenarios that positional
localization can be utilized to improve the quality of bioinformatics analysis. In addition
the results of this study also enhanced our understanding of the nature of positional
localization of TFBSs that exists in these scenarios. The contributions of each chapter in
these aspects are summarized below.

In the localized motif detection problem of Chapter 3, the positional localization
of the TFBSs relative to the TSS or a related TFBS was used to improve the performance
of motif finding. In the formulation of this problem, localized motifs were distinguished
from randomly locally over-represented patterns by their spatial confinement within a
certain position interval of the sequences when compared to the full sequence. The
Spatial confinement score (SCS) was derived as a statistical measure of the significance
of the observed localization. The SCS was found very useful to discover biologically
meaningful patterns. In cases where the biological motif becomes subtle for a usual
motif detection algorithm, its high SCS still makes it conspicuous to a localized motif
detection algorithm. Based on this concept, the software tool LocalMotif consistently
showed higher accuracy compared to general motif finders in detecting localized motifs.
Spatial confinement score also reduces the chances of detecting false positive patterns.
Thus motif finding tools can improve their accuracy near the TSS or other such biological
contexts where a specific biological landmark exists, such as splice site, ribosome

binding site, etc. by considering positional localization information.



165

On datasets where binding sites of a known TF are available, the co-regulatory
motifs could be detected by LocalMotif by the virtue of their positional localization
though these were invisible to other motif finders. This was shown by the example of the
dataset containing estrogen response elements (ERE), where the forkhead binding sites
are often present near the ERE. In this scenario the use of localization information is
promising and the same concept can be applied to datasets derived from ChIP sequencing.
In ChlP-seq, the main motif is highly localized at the center of the peak and thus the co-
regulatory motifs can also be found localized around the peak center. This is an
emerging area of research and a localization scoring function similar to that in
LocalMotif could be used to detect co-regulatory factors with high accuracy.

In the analysis of real genomic sequences in this chapter, motifs in the core,
proximal and distal promoter regions were detected by LocalMotif automatically by the
virtue of their localization around the TSS. This was observed with the set of 1941
promoters of Drosophila Melanogaster as well as with promoters of orthologous genes in
vertebrate genomes. The results showed that real motifs near the TSS are positionally
localized. This confirms that TFBSs are positionally distributed around the TSS, a fact
which is used in Chapter 4 of this dissertation for promoter prediction.

The computational modeling and prediction of eukaryotic promoters in Chapter 4
was performed using oligonucleotide positional densities instead of oligonucleotide over-
occurrence as the basis of the computational model. The use of preferred positions of
various TFBSs in the promoter relative to TSS in this case could easily give good
differentiation between promoter and non-promoter sequences. The program BayesProm

did not require any background model to do the predictions and performed comparable to
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second generation promoter prediction tools which are based on extensive tuning of
parameters and often use other biological information as well. BayesProm was in fact
more sensitive than any other program. This not only confirms the observation of
positional localization of TFBSs around the TSS, but also suggests that positional
information of TFBSs is in itself a distinguishing feature of functional regulatory
sequences and is very relevant in bioinformatics analysis of gene regulation. The
positional localization of different features in different types of regulatory sequences is an
important aspect to be researched further towards understanding the control circuitry
embedded in these sequences.

In the case of cis-regulatory modules, which are distal elements and so far not
much understood, researchers have generally emphasized high density of binding sites for
co-operating TFBSs as their main feature. In the computational model Modulexplorer,
firstly the TFBSs were discovered de-novo in a CRM with high accuracy when the motifs
were considered in pairs rather than as single patterns. Secondly the motifs were found to
occur in specific combinations and with specific mutual gap and order in the CRMs.
Incorporating this information into the modeling improved the specificity of the CRM
model (i.e. reduction in false positives). This indicates that positional information is also
important in CRMs, or in general distal regulatory elements. In this case the positional
localization of TFBSs is not with respect to a certain fixed biological landmark but
mutually with respect to each other. The TFBSs were observed to be closer to each other
in a CRM as compared to random patterns. The possible reason for this could be to allow
interaction among the TFs. This subject needs to be explored in greater depth and could

improve our understanding of the features of functional regulatory sequences distal to the
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TSS. While in this study only pairwise order and distances of TFBSs were modeled, the
actual situation could in fact involve interactions of greater complexity among the TFs.
Thus in summary this dissertation not only shows the advantage of using
positional information in the bioinformatics analyses of regulatory sequences, but also
throws light on the different natures of TFBS localization in gene regulatory sequences

proximal and distal to the TSS.

VII-2 Nature of Regulatory Sequences

As described in the previous section, analyses performed using LocalMotif and
BayesProm in this research confirm the current view about the nature of gene promoters.
Both analyses showed that transcription factors bind to the promoter at specific positions
relative to the TSS. Analysis of Drosophila core promoters with LocalMotif showed the
localization of binding sites such as TATA box, initiator, DRE, DPE etc. Similarly in
human core and proximal promoters BayesProm showed the localization of TATA box,
CAAT box, GC box and initiator. Furthermore, the localization intervals of binding sites
near to the TSS were shorter than the intervals of binding sites distal of the TSS, which
supports the current understanding of proximal and distal promoter regions.

Modulexplorer analysis, on the other hand, provides novel information about the
nature of gene enhancers or cis-regulatory modules. As in previous studies, the model
confirms that a CRM is a cluster of TFBSs for TFs that co-regulate gene expression in a
particular tissue and development stage. It also confirms that the TFBSs are positionally
localized with respect to each other in a CRM. However, while previous studies report
low sequence similarity among CRMs, Modulexplorer shows good similarity of CRMs in

terms of their shared TFBS or motif content. Therefore it gives a new notion of similarity
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among CRMs. This conclusion could be extended in general towards assessing the
similarity of regulatory sequences. According to this view, regulatory sequences can be
considered as a combination of the functional (TF binding) and the non-functional
(background) parts. While the non-functional part is usually dissimilar, the functional
part could be quite similar or conserved across sequences. Measuring similarity over the
functional part only could be a better idea.

The Modulexplorer model furthermore shows that there is organization within the
functional (TF binding) part of the CRM. The occurrences of various TFBSs in a CRM
are not random. There are probabilistic rules governing which TFBSs occur together and
which do not. Such rules can further be used to characterize true regulatory sequences
and to assess their similarity / dissimilarity.

Furthermore, the homotypic clustering of TFBSs in a CRM, i.e. occurrences of
multiple binding sites for the same TF in a CRM, is confirmed in this study. This

property was utilized to discover the TFBSs in the CRMs.

VII-3 Modeling Techniques

Statistical information theory and probabilistic graphical models were used in this
dissertation for modeling. The conclusions drawn from the application of these
techniques to the present research problems are described below.

In Chapter 3, information theory framework was found very useful for
formulating the motif scores (over-representation score, spatial confinement score and
relative entropy score). When formulated in the context of information theory, these
scores measure the amount of surprise associated with the motif in the particular aspect.

For example the over-representation score measures the amount of surprise in the
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observed number of instances of the motif as compared to its expected number of
instances. In mathematical terms, the score represents the Kullback-Leibler distance
between the observed and the reference distribution. The scores are normalized with
respect to suitable bases so that they usually lie in the range 0 to 1. A score close to zero
indicates little surprise while a score close to 1 indicates high surprise. Information
theoretic definition of the scores is thus helpful in obtaining a clear quantitative picture of
the goodness of the motif in the three different aspects. It also allows combining the
three scores into a single score easily and logically. Since the three scores measure three
independent characteristics of the motif, the score can be considered as a vector in a three
dimensional space which each score measured along an orthogonal axis. The combined
score can then be stated as the Euclidean distance or Hamming distance of the motif from
the origin. Motifs distant from the origin are more interesting than those closer to the
origin. The information theoretic scoring measure is also comparable for motifs of
different lengths and mutations. Thus it allows pooling together the results of different
(1,d) runs and then selecting the best motifs among all the runs. Future motif finding
algorithms and other bioinformatics tools as well can take advantage of this information
theoretic framework for computing and combining scores.

In Chapter 4, a mixture of Gaussians was used to represent the oligonucleotide
positional density. The parameters of the Gaussian mixture were estimated using the EM
algorithm.  Instead of learning all the components of the Gaussian mixture
simultaneously, the mixture was built component-wise. Initially the mixture has one
component which is learnt by EM, then a new component is added and the EM is

repeated to learn the two-component mixture, and similarly one component is added per
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step until the optimal solution is reached by AIC. Such component-wise building of the
Gaussian mixture was found highly effective. Future applications using Gaussian
mixture models can benefit from this idea.

In both Chapters 4 and 5, Bayesian networks were used for the modeling. In
Chapter 4, a continuous naive Bayes network was used, whereas in Chapter 5 a discrete
Bayesian network was used. In both applications, Bayesian networks provided
considerable advantages as compared to other Al modeling techniques. These
advantages are described below.

The first advantage of Bayesian networks is in meaningfully representing physical
entities or phenomena in the network structure. In Chapter 4, the nodes of the
BayesProm model represent TFBSs. The parameters of the model encode the occurrence
distributions of the TFBSs relative to the TSS. Thus upon learning the model from a set
of human promoters, the Bayesian network automatically identified important TFBSs in
these promoters and their occurrence positions relative to the TSS. The model gathered
physical domain knowledge from the data into the network structure during training.
Blind classifiers such as neural network, SVM etc. do not allow such a meaningful
physical representation. In the Modulexplorer model of Chapter 5, the nodes of the
network represented monad and dyad motifs and the CRM. The model structure
represented biological knowledge of how the monad motifs form dyads and how these
dyads combine together to form a CRM. Thus the Bayesian network model could
meaningfully incorporate known biology knowledge into the model. This is again not

possible in neural networks and SVM.
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The second advantage of using Bayesian networks is in allowing validation of the
model based on known biology. Since the nodes and parameters of the Bayesian network
have physical interpretation, they can also be validated with existing biology knowledge.
The parameters of the BayesProm model, which represent occurrence distributions of the
TFBSs relative to the TSS, were verified after training the model. The parameters
showed that the prominent features in BayesProm corresponded to known TFBSs, and
the TFBS positions were also correctly determined. In the Modulexplorer model, the
parameters of the Bayesian network represent interaction probabilities among the dyad
motifs in a CRM. Since the dyad motifs correspond to binding sites of known TFs, in
effect the model parameters represent TF-TF interactions. The pairwise TF-TF
interactions were verified after training the Modulexplorer model. The TF-TF
interactions in the model compared well with known TF-TF interactions, confirming the
validity of the model. Such validations are not possible in other Al modeling tools.

A related advantage is that the Bayesian network can even provide new
knowledge in its parameters after training. The TF-TF interactions in the Modulexplorer
model not only confirmed with existing knowledge but also showed a novel interaction of
the TF Deafl with the TFs ey and toy which are involved in eye-antennal development in
Drosophila melanogaster. Thus they implicated Deafl in eye-antennal development.

Another crucial advantage of Bayesian network modeling in Modulexplorer is
that the model could be trained with very less data. The training data of CRM sequences
was few in number, with only 356 training sequences. However robust learning was
possible since domain knowledge was incorporated into the modeling. Parameterization

in the EM algorithm was reduced by (i) establishing a noisy-AND relationship between
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the motifs in a dyad, (ii) having preset values of gap and order CPTs by learning them
directly from the data, and (iii) by intelligently choosing the dependencies in the network
structure.

Thus in summary Bayesian networks are highly effective modeling tools in
bioinformatics.

The Modulexplorer model also shows that sequence-based modeling of regulatory
sequences can be considerably improved by considering only the functional part of the
regulatory sequences (i.e. the TFBSs). Previous modeling techniques look for matches of
motifs in the whole sequence. The motifs produce large number of matches in non-
functional (non-TFBS) segments of the sequence, which reduces the accuracy of
modeling. A better way of modeling is to accurately annotate the TFBSs and use only
the motif matches in the TFBS segments. Based on this approach, Modulexplorer
showed better discrimination between CRMs and background as compared to previous

tools.

VIl-4 Research Contributions

The main novel contributions of the present study towards bioinformatics research
are summarized as follows.

This study introduced a new formulation of the motif finding problem as localized
motif finding. The difference between locally over-represented and localized motifs was
clearly defined, and based on this a clear definition of the localized motif finding problem
was given. To solve this problem, a novel scoring function called the spatial confinement
score was introduced. This score is computed in the form of an information criterion.

The existing scoring functions of over-representation and relative entropy were also
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reformulated in an information theoretic form and normalized with suitable bases so that
they usually lie within the range 0 to 1. The work has contributed a novel motif finding
algorithm called LocalMotif to the bioinformatics community. The algorithm is
published and available to the research community for free use. It has good potential of
application for the analysis of co-regulatory motifs in ChlP-Seq datasets.

For modeling promoter sequences, this study introduced the idea of using
positional localization of motifs relative to the TSS. In the current work the idea was
implemented in the form of oligonucleotide positional densities and a continuous naive
Bayes model. However, other better representations may be possible. This study shows
that positional information of TFBSs in itself gives high accuracy of promoter prediction,
and thus when combined with biological knowledge as in other available tools, can
further improve the accuracy. The work has also resulted in a new published tool called
BayesProm which can be used by the research community to analyze TSSs in the human
genome.

The work on Modulexplorer makes some major contributions to the research on
CRMs. Existing research has focused on CRMs of a single type which express their
target genes in same tissue and developmental stage. This is the first work to attempt the
study of multiple types of CRMs that express their genes in several different tissues and
developmental stages.

The first contribution of Modulexplorer study is the compilation of a
comprehensive database of Drosophila CRMs with full TFBS annotation. Prior to this
study the experimental TFBS annotation was available only for 19 CRMs fully and 136

CRM s partially. This study introduced a novel method for de-novo discovery of TFBSs,
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which has more than 80% sensitivity and about 20% false positive rate. Using this
method, full TFBS annotation of all 619 Drosophila CRMs has been produced.

The second contribution is in highlighting a clear definition of regulatory codes
and finding novel regulatory codes govening Drosophila CRMs. Though the term
regulatory code and its concept are available in the published literature in different places,
a comprehensive description and application of the concept are not available in any single
publication. This study introduces the concept clearly and presents a model that can learn
regulatory codes de novo from training data of CRMs. The study has contributed new
regulatory codes for Drosophila CRMs associated with the development of mesoderm,
ventral nerve cord, eye-antennal disc and the wing imaginal disc.

A related novel contribution is the use of a database of in-situ expression profile
images of genes in Drosophila embryos to validate the functions of the CRMs. It was
hypothesized that CRMs sharing the same regulatory code, i.e. the same motif modules,
must show the same expression profiles of their target genes in a certain developmental
stage and tissue. This was indeed confirmed with the help of in-situ expression images of
these genes.

The third contribution is the prediction of 813 novel CRMs in Drosophila. A
majority of these CRMs are also classified with their possible roles in development, i.e.
the tissue and development stage in which they express their target genes. With this
discovery, a related contribution is the novel functional annotation 31 Drosophila genes
in development of mesoderm, ventral nerve cord, eye-antennal disc and wing imaginal

disc.
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Another biological contribution made by the Modulexplorer study is to suggest
the roles and interactions of different TFs in regulatory mechanisms, such as the novel
role of deafl in eye-antennal disc development.

Finally the study contributes the tool Modulexplorer to the research community,
which can be used to model and discover CRMs in Drosophila. The pipeline of
Modulexplorer gives a systematic description of how enhancer modeling and prediction
can be performed with suitable validations at every step. The ideas presented in this
dissertation have the potential to stimulate future works in the modeling and prediction of

enhancers.

VII-5 Recommendations for Further Study

The research problems addressed in this thesis are currently of active interest in
bioinformatics. Some specific research directions motivated by the present research and
some ideas for extending the present work are described below.

1. LocalMotif is presently based on the (I,d) motif model. There are emerging opinions
about improving the motif representation to reduce false positives or to give a more
accurate description of the motif. While it is still not clear which representation is the
best, it has been suggested that (i) motifs with possible gaps, (ii) motifs with
mismatches restricted to specific binding site positions, or (iii) motifs based on
IUPAC characters, might lead to a more accurate model. The motif model of
LocalMotif may be revised to study this effect while retaining the same scoring
function.

2. The LocalMotif algorithm is currently derived as a modification of the SP-STAR

algorithm of Pevzner and Sze (2000). It would be more efficient to use a faster
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algorithm with a broader search space such as the suffix tree algorithm of Weeder
[Pavesi et al. (2001)].

The BayesProm program was trained on 1796 human promoters from EPD version 74.
Much more extensive public repositories of human promoters such as DBTSS have
become available. The model may be retrained on the extended dataset for improved
performance. In addition, a whole genome search could be performed to output a list
of predicted genome wide binding sites.

Feature selection can be attempted on the BayesProm naive Bayes model to remove
unprofitable oligonucleotides from the model. Introducing dependencies among the
attribute nodes in the Bayesian network model (such as a TAN Bayesian model)
could also be tried.

Specific biological knowledge could be added to the BayesProm software to further
improve its performance. For example (i) separately training two different models for
CpG island and non-CpG island related promoters, (ii) coupling a gene prediction
algorithm with BayesProm as has been done in FirstEF [Davuluri et al. (2001)] and
Dragon gene start finder [Bajic and Seah (2003)].

A major research problem could be to apply the Modulexplorer concept to vertebrate
CRMs. This would firstly require developing a procedure to annotate TFBSs in
vertebrate CRMs. Vertebrate CRMs are different from insect CRMs in that they
contain binding sites for a larger variety of TFs and have fewer instances of
homotypic clustering of TFBSs. Thus they would require a different approach for
TFBS annotation. The Bayesian network model would also have to be modified

accordingly.
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In Modulexplorer, feature based clustering of CRMs has currently been performed
using frequent itemset mining. However the Bayesian network model originally
models probabilisitic interactions among the motifs in CRMs. Thus better ways to
perform clustering could be explored, which may allow separation of CRM clusters
of smaller sizes with common function. This will lead to the discovery of more
regulatory codes and refinement of the existing ones.

The novel enhancers discovered by Modulexplorer can be validated in the wet lab by
generating P-element constructs fused to eve basal promoter and a lacZ reporter gene
and examining the expression of these constructs by in-situ RNA hybridization to the
lacZ transcript in the embryo in the desired tissue and stage of embryogenesis.

The new motifs reported by Modulexplorer in the development of mesoderm, ventral
nerve cord, eye-antennal disc and the wing imaginal disc could be studied to see if
they give any new biological information about transcription factors in Drosophila.

Deletion studies could be carried out to validate these motifs.
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APPENDIX

APPENDIX A. Spatial Confinement Score in LocalMotif

A.1 Spatial confinement

Consider a (I,d) motif M with its instances (relative to the anchor point)

observed in a large set of sequences, S, of length L each, aligned relative to an anchor
point A. Spatial confinement of M within a position interval (pl, pz) is defined as the
difference between the fraction of binding sites actually observed within the interval

(P, p,) and the fraction that would be expected to lie in it if binding sites were
uniformly distributed across the entire sequence length. For instance a length L/2
interval (p, p+ L/2) is expected to contain 50% of the observed binding sites if they

were uniformly distributed. But if this interval contains 65% of the total binding sites,
then it has +0.15 spatial confinement of M.

Spatial confinement always lies in the range (—1,1). Its positive value in an
interval signifies higher than expected binding site concentration in that interval. Figure
A-1 shows the spatial confinement of the motif TTGACA in E. coli promoter sequences

for various intervals. The interval length (p,—p,) is shown on the x-axis and the

interval beginning position p, is shown on the y-axis. Spatial confinement is shown as a

surface in the z-axis. Maximum spatial confinement is observed for the interval (30,50)
indicating that the motif is confined within this interval. The interval is indeed

biologically accurate [Harley and Reynolds (1987)].
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Figure A-1  Spatial confinement of the motif TTGACA in different intervals (pl, pz)

in a set of 471 E. coli promoter sequences of length 101 each. The x-axis
denotes position p; and the y-axis denotes the interval width (p2 — pl).

Maximum is observed at p, =30 and width=20, indicating that the motif

is confined within the interval (30,50), which agrees with the literature
[Harley and Reynolds (1987)].

Thus spatial confinement gives a picture of the relative concentration of binding
sites for a motif in different position intervals, and can be used to identify the position
interval where the motif is maximally confined. However in practice it is difficult to
accurately compute it because the number of input sequences provided to the algorithm is
mostly limited. The limited information can be utilized most effectively using statistical
procedures. A statistical measure for spatial confinement is therefore derived as the

spatial confinement score.

A.2 Spatial confinement score

Instead of the large sequences set S, let only a subset S— S be available as input
to the algorithm. Thus S is a sample data from the population S. Let ¢ be the

concentration of binding sites for the motif M in position interval (p,, p,) within the

population S. An estimate ¢ of ¢ may be obtained from the sample S. Let n denote the
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total number of binding sites for M in the sequence set S, of which n; lie within the
interval (p,,p,) and n,=n-n, lie outside this interval. The maximum likelihood
estimate is givenas ¢=n,/(n,+n,).

The spatial confinement of M in the interval (p,, p,) is measured as the
difference c—c,, where c, is the concentration of binding sites expected in (pl, pz)
according to uniform density, given by ¢, =|p, - p,|/L. Since the exact value of c is
unknown, the problem is to assess from the sample estimate ¢ whether or not ¢ >c, in
the interval (p,, p,) and to what degree c exceeds c,. This would be a statistical
measure of the spatial confinement of M in (p,, p,).

A statistical hypothesis test is defined to assess whether ¢ > ¢, with the following
elements: the null hypothesis, the alternate hypothesis, the test statistic and the rejection

region. The two hypotheses are:

H,:c=¢,
H,:c>c, (one tailed)

The test statistic is derived via likelihood ratio procedure. The complete derivation is
described in the Appendix B.2. In essence, it is stated as the Kullback-Leibler distance
between € and c, in equation B.10, which is thus used as the statistical measure for

spatial confinement, called as the spatial confinement score. The rejection region for the

hypothesis test is also described in the Appendix B.2.
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APPENDIX B. Normalization of Scoring Functions in LocalMotif

B.1 Normalization of the relative entropy score (RES)
The relative entropy of the motif is the Kullback-Leibler divergence between the

motif M and the background B:

D(M | B):i?fui |n£%b] (B.1)

i=1

which can be decomposed as

D(M|B) Zl_llzb: fb,iln(fb,i)—izb: foi N (), (B.2)

i=1

ie., D(M ||B) =Z§ fo In( fb,i)—zb:(i fb,jln (p,) (B.3)

i=1 i=1

If X, +X,+...+ X, =1 then the maximum of the entropy function —Z x; In(x;) occurs for
i=1

X =X, =...=X, =1/n and the maximum value is In(n). Therefore the first term can be

normalized by the factor (]/I In 4). Normalizing the second term by the same factor
: 1 - = (14 :
(1/1In4) , it appears as _nsz In(p,), where f, = [szi . For a uniform
n b i=1 ’
background, where p,=0.25, this term reduces to 1 since z f_b =1. Another special case
b

is when Vb, f, = p,. Then after normalization the term becomes <1. As the difference

between f, and p, increases, the term can become >1.
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B.2 Derivation and normalization of the spatial confinement score (SCS)
The spatial confinement score is derived as follows. According to uniform

density, the proportion of binding sites of a motif that lie within the interval of interest

(P, p,) Will be ¢, =|p, - p,|/L, where L is the sequence length. Considering that the
population distribution is uniform (hypothesis H,), in a randomly chosen sample, the
likelihood of observing n, binding sites within the interval (p,, p,) and n, outside this

interval is given by the binomial formula:
Pr(n, sites in (P, p,)|C ) = L(Co| N, ) = "C, (G)™ (1-¢,)" (B.4)

Considering that the population distribution is non-uniform (hypothesis H,), let
the concentration of binding sites in the interval (p,, p,) be c. The binding site

observations are outcomes of a binomial experiment where a binding site lies within the

interval (p,, p,) with probability c and outside it with probability (1-c). If the total
number of observed binding sites is n, of which n, lie within (p,, p,) and ny=n-n, lie
outside, then the likelihood of observing n, binding sites within the interval (p,, p,) and

n, outside this interval is again given by

Pr(n1 sites in (p,, pz)‘c) =L(c|ny,n,)="C, (c)" (1-¢)" (B.5)

The maximum likelihood estimate ¢ of c is thus obtained as

(B.6)
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The likelihood ratio test statistic A, for the hypothesis test defined in Section 1V-2.3 is

then obtained as

/11 — L(CO) _ 0 0)“0 (B.?)

and the rejection region is determined by
RR: 4 <k (B.8)

where k is chosen according to the desired level of significance « of the test. According
to the Wilks' theorem [Rice (1995)], —2In 4, is approximately y* distributed with one

degree of freedom. This information can be used to derive the value of k given a fixed

level of significance « . If A, lies in the rejection region then there is sufficient evidence
to conclude that the concentration of binding sites for the motif M in the interval (p,, p,)
is greater than what would be expected from uniform density. As the value of A
approaches zero, the hypothesis H, is favoured increasingly over H,. The likelihood

ratio test statistic 4, is related to the Kullback-Leibler distance between ¢ and c, as
. 1
D(c||c0):—ﬁln21 (B.9)

which can be shown to be equal to

—%Inﬂﬂ:éln(gjﬂl—é)ln[l_éj (B.10)

0 1_Co

The above equations are used as the statistical measure for the spatial confinement

score. Itis already in a normalized form being independent of motif length etc.
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B.3 Derivation and normalization of the over-representation score (ORS)
Searching for motif instances (TFBS) in a set of sequences can be considered as a

binomial experiment where patterns of length | are drawn from the sequences and each

pattern is classified as either a motif instance or a non-instance. The probability of

observing k instances of the motif among a total of n samples is given by:
P(k,n)=Pr(k "true" inn)="C,p“(1- p)”_k, (B.11)

where p is the proportion of TFBS in the sequences. For example, under the (I,d) motif

representation, the chance proportion p, of the TFBS of a motif according to uniform

background is computed theoretically as follows:

n=4' k=2 'C (3)',and p, =k,/n,. (B.12)

d
i=0
The background probability distribution of the TFBS is then
Py (ko:Np) = "C, Pl (1P, )" . (B.13)

If the background distribution is not uniform, the expression will be modified in a

suitable manner to incorporate the individual probabilities of each of the k, patterns that
match the (1,d) motif.

As n grows to be large, specifically if both np >5 and n(l— p) >5, the binomial

distribution may be approximated by the Gaussian distribution N(np,np(l— p)) Thus,

Py (KoM ) = "C,, i (1= o)™ = Py (X) ~ N (Mo Po,MoPo (1= 1,)),  (B.14)
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If in n, actual trials (i.e., upon searching the set of sequences consisting of n,
oligonucleotides of length 1) the observed number of matching patterns be k,. This
represents an observed proportion p,=k;/n, . Hence the observed probability

distribution of the TFBS is:

Pl(kl’nl) = nlel plkl (1_ pl)nlik1 ~ pl(X) - N(nlpl’nlpl(l_ pl))' (B-15)

The Z-score for computing the over-representation is based on the Gaussian

approximation:

7= PPy (B.16)

\/nlpo(l_ po) |

The Z-score is not a normalized measure as it depends upon the number of samples n, .

An entropy measure for over-representation derived directly (without Gaussian
approximation) from the binomial distribution in a normalized form is used in LocalMotif.

It is obtained as the Kullback-Leibler divergence between the two binomial distributions:

=}

D(F})||F;)=k_oa(k,n)|n£%J (B.17)

Upon expanding the above expression for KL divergence and normalizing, it turns out
that the expression may be simplified as:

D(RIIP)=p, ln(%}(l— po)ln[i_—p‘)} (B.18)

1 M

which is independent of the number of samples n. This is used as the measure for over-

representation in LocalMotif.
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For a Gaussian approximation of the binomial distribution, the KL divergence

between two Gaussians is given by

1 o? (o—t) o
D(N, |l Nl)=5 ?+T—l—ln = (B.19)
1 1 1

and thus

D<p0”pl>:z[po<1—po>+<po—pl>2_1_.n(wjj 20

2 p1(1_ p1) pl(l_ pl) p1(1_ p1)

which is approximately identical with the previous expression for most cases, except

when p, or p, have extreme values that are close to 1 or 0, in which case the Gaussian

approximation has significant error.

APPENDIX C. Fast Computation of Scores in LocalMotif

The equations for fast computation of score for a longer interval from scores for

shorter constituent intervals are derived as follows. Let p, < p, < p,, and let quantities

for the interval (px, py) be denoted with superscript xy. Then,

B = n2 102 — C13 _ C12 I C23
l13 l12 123 13 12 23 (C'l)
Ny =Ny +n, = C;y =C; +C;

13 12 23
Po =By + B

13 12 23 (C.2)
P =P + P
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. Results of running LocalMotif on the dataset of [Blanchette
and Tompa (2002)]. Predicted binding sites reported by [Blanchette and Tompa (2002)]
are shown in the left column, while the corresponding motifs predicted by LocalMotif are
shown alongside to the right. Binding sites having experimental evidence are marked
with an asterisk.

Gene Motifs reported by LocalMotif Predictions
Blanchette and Tompa
Motif Posi Motif Pos Peos Total RES sCs ORS Rank
tion Start End Score

c-fos CAGGTGCGAATGTTC -615 | CRAGGTGC -E50 -600 0.826 0.5 0.277 0.05 7
GTGCGARR -615 -565 0.707 0.474 0.183 0.05 21
1 TGTTCTCT -605 -505 0.692 0.349 0.295 0.048 33
TRATGTT -T05 -585 0.685 0.424 0.223 0.038 34
GTTCGC -630 -580 0.679 0.42 0.134 0.125 E1S
ATGTTC -610 -5&0 0.669 0.445 0.153 0.071 41
CGRAAGT -645 -595 0.825 0.444 0.131 0.05 54
GTAATGTT -625 -575 0.548 0.332 0.173 0.043 6l
2 TTCCCGCCTCCCCTCCCCH -E83 | Ccoocc -575 -525 1.442 0.352 0.09 1.00 1
ccgoocccoe . -580 -530 1.403 0.292 0.111 1.00 2

ccoecce -580 -530 1.38 0.318 0.072  1.00
TCCCCG -575 -525 0.783 0.375 0.0&64 0.343 11
CCOGGC -5590 -540 0.744 0.382 0.04 0.323 17
GCCGCC -550 -540 0.734 0.361 0.05 0.323 19
CTCGCCT -595 -540 0.732 0.4 0.123  0.21 20
CTTCCC -585 -535 0.717 0.375 0.06 0.281 23
CTTCTCCC -580 -530 0.711 0.321 0.l46 0.235 25
CCTCCT -5590 -540 0.697 0.392 0.104 0.201 21
TCGCCTTS -800 -550 0.676 0.414 0.188 0.074 37
TCGCCT -5590 -540 0.665 0.424 0.117 0.125 43
TCCCGGOC -595 -545 0.623 0.319 0.081 0.223 55
CCCTCCTT -&00 -530 0.536 0.35 0.097 0.089 62
ccooTeoe -575 -525 0.509 0.316 0.064 0.129 64
3 GAGTTGGCTGeagee -527 | TTGEGECCG -€25 -480 0.78 0.444 0.308 0.028 12
GTTGTC -565 -460 0.744 0.413 0.274 0.057 18
GTTGTCT -530 -455 0.683 0.423 0.202 0.058 a5
GTTGGCTG -530 -480 0.592 0.376 0.173 0.043 58
4 GTTCCCGTCAATCoct* -504 | GTCRAAT -505 -455 0.838 0.475 0.275 0.088 &
CCGTCRA -505 -455 0.789 0.427 0.253 0.10 10
GTCCATC -505 -455 0.758 0.401 0.204 0.153 16
TCGTCR -500 -435 0.702 0.442 0.203 0.0587 30
TCCCGTT -505 -455 0.675 0.391 0.131 0.153 18
CCOGTT -515 -450 0.67 0.405 0.14 0.125 40
CGACAR -530 -480 0.662 0.457 0.167 0.038 44
GGTCCTGT  -525 -475 0.647 0.389 0.215 0.043 49
CROGTC -530 -420 0.646 0.426 0.175 0.046 50
ATCCCGTT -510 -460 0.566 0.345 0.165 0.053 59
CCGGCRAG  -515 -4&5 0.517 0.322 0.142 0.053 63
TTCCCCCC -510 -460 0.497 0.329 0.029 0.129 65
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S CACAGGATGTco* -479 | CRGGATGT -465 -415 0.817 0.409 0.346 0.063 2
ARGGAT -480 -415 0.771 0.461 0.266 0.044 13
CRGGAG -485 -435 0.721 0.379 0.18 0.162 21
CATAGG -480 -425 0.713 0.5 0.181 0.032 24
GATGTA -475 -415 0.71 0.472 0.186 0.052 26
GGATGG -480 -430 0.661 0.427 0.18 0.054 45
CRGGCT -480 -430 0.658 0.389 0.144 0.125 46
TCACAG -480 -430 0.652 0.41 0.17 0.071 47
CACAGGA ] -425 0.648 0.443 0.131 ©0.075 48
6 AGGACATCTG* -462 | GGATATCT -475 -415 0.967 0.45 0.478 0.038 4
GATATC -500 -445 0.81 0.442 0.292 0.076 9
GACRACT -495 -445 0.707 0.474 0.183 0.05 27
CARTCTT -495 -435 0.672 0.435 0.173 0.0&5 19
AGCACGTC -510 -430 0.605 0.32 0.219 0.087 56
7 GTCAGCAGGTTTCCACG* -439 | ATGTATCC -475 -415 0.84 0.438 0.37 0.031 5
CRGGATGT -465 =415 0.817 0.409 0.346 0.063 8
TTTCCA -475 -425 0.764 0.407 0.175 0.182 14
GTATCC -445 -380 0.76 0.442 0.258 0.06 15
CRGGAG -485 -435 0.721 0.379 0.18 0.162 21
GCAGGTT -480 -430 0.707 0.474 0.183 0.05 28
TCGTCA -500 -435 0.702 0.442 0.203 0.057 30
CRGGCT -480 -430 0.658 0.382 0.144 0.125 46
CACGTC -520 -420 0.646 0.426 0.175 0.046 50
GGTTTCCA  -480 -430 0.633 0.358 0.212 0.0&3 52
AGCACGTC -510 -430 0.605 0.32 0.219 0.087 56
TCATCAGC  -485 -435 0.599 0.357 0.179 0.063 57
8 TACTCCAACCGC -159 | ATACTCC -185 -135 0.717 0.42 0.222 0.075 22
ACTGCR -165 -115 0.692 0.41s¢ 0.123 0.142 a2
CTRALCC -160 -70 0.669 0.438 0.201 0.03 42
CTCCAARC -185 -135 0.637 0.3098 0.113 0.126 51
ACTTCGAC -160 -105 0.628 0.366 0.225 0.036 53
GCTCCTAC  -200 -150 0.566 0.36 0.132 0.074 60
c-myc aGTTTATTC -611 | GTTTAC -650 -580 0.643 0.455 0.131 0.058 23
10 TTGCTGGG -570 | ATTTTGCT -575 -520 0.798 0.4326 0.241 0.121 9
TTGTTG -585 -520 0.605 0.4 0.14 0.086 28
11 GGCGCGCAGT -359 | CGCGTAGT -385 -335 0.936 0.444 0.373 0.118 5,
TAGGCGC -405 -355 0.746 0.423 0.181 0.132 16
TRAGGCG -405 -355 0.612 0.413 0.129 0.071 27
12 CAGCTGTTCCgce -325 | ARCTGTAC  -3&0 -310 0.787 0.455 0.253 0.079 11
CRACTGT -365 -315 0.689 0.418 0.167 0.104 21
13 TGTTTACATCc* -173 | GTTTACA -185 -145 0.686 0.471 0.13% 0.076 22
GTTAAC -200 -145 0.621 0.427 0.121 0.073 25
TTACTT -200 -145 0.602 0.41%2 0.082 0.101 29
14 ccaCCCTCCCC* -105 | ACCcccce -125 -75 1.602 0.364 0.2865 0.973 1
cceecc -125 -75 1.511 0.366 0.145 1.00 2
Cccoccce -125 -75 1.429 0.334 0.085 1.00 E)
CCTCCCTA  -130 -80 1.043  0.432 0.244 0.366 4
TCCCCTEC -150 -70 0.862 0.401 0.255 0.208 7
CCTTCC -130 -80 0.834 0.444 0.136 0.254 8
GGCTCCCC  -130 -75 0.793 0.3862 0.128 0.302 10
CTCCAC -145 -95 0.778 0.411 0.113 0.254 12
CCCCAR -125 -70 0.745 0.407 0.13 0.207 17
TTCCCCA -130 -70 0.696 0.393 0.104 0.198 20
TCCCCT -135 -85 0.625 0.376 0.066 0.184 24
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15 AGCAGAGGGCG* -69 AGARARGE -75 -25 0.904 0.397 0.187 0.319 &
AGRAGR -80 -30 0.75 0.387 0.127 0.236 14
ACGGCGT -110 -60 0.748 0.493 0.23 0.026 15
AACAGATG -80 -30 0.721 0.414 0.187 0.119 19
16 GGCGTGGG* -62 GGGGGEGEE -105 -55 0.776 0.351 0.011 0.414 1z
ACGGCGT -110 -60 0.748 0.493 0.23 0.026 15
17 ATCTCCGCCCAcc -26 AGATCCGC -175 -25 0.731 0.3%6 0.237 0.099 18
CCGACC -60 =L 0.615 0.443 0.071 0.101 26
ghl GGGAGGAGH -198 | GGRGGT -205 -135 0.905 0.422 0.255 0.228 17
GGGRAGGGE  -270 -205 0.855 0.381 0.107 0.367 20
18 AGAGGAG -235 -185 0.7% 0.37 0.043 0.376 25
GACGAG -245 -195 0.727 0.416 0.144 0.1s87 43
GGGACG -265 -195 0.703 0.43 0.149 0.124 51
GTAGGA -215 -180 0.685 0.438 0.142 0.104 54
19 ATTATCCAT* -183 | ATTAGC -1390 -140 0.826 0.459 0.26 0.107 24
CAATTA -210 -160 0.786 0.415 0.182 0.188 26
ATACAT -190 -140 0.738 0.432 0.052 0.253 38
TTATCCC -250 -170 0.726 0.455 0.181 0.09 44
ATTATT -235 -155 0.723 0.389 0.17 0.154 45
TGTCCAT -220 -170 0.52 0.387 0.018 0.115 S
20 TTAGCACAL -174 | GTAGCARC -200 -135 1.023 0.458 0.435 0.12 10
TAAACACA  -205 -1556 0.892 0.397 0.062 0.422 18
ATTAGC -190 -140 0.826 0.459 0.26 0.107 24
AALCACA -200 -150 0.747 0.41%2 0.031 0.298 36
TAGCAC -185 -125 0.742 0.481 0.191 0.071 37
CACRAA -185 -135 0.717 0.388 0.072 0.257 46
21 GTCAGTGG* -1l62 | TGAGTG -230 -180 0.83 0.431 0.147 0.253 23
ATGAGTGG -230 -180 0.785 0.401 0.133 0.251 27
GGCAGTG -170 -120 0.735 0.422 0.115 0.197 40
CGGTGG -170 -120 0.706 0.457 0.082 0.187 50
CCGTCAG -1%0 -130 0.64 0.401 0.124 0.115 57
22 gcATAAATGTA* -146 | CATGTAT -165 -95 1.153 0.364 0.192 0.597 7
TATRAAT -190 -140 0.584 0.378 0.042 0.583 11
ATACATGT -155 -105 0.983 0.394 0.129 0.45%9 12
ACATGT -155 -105 0.98 0.414 0.175 0.391 1z
ATGTAT -165 -95 0.974 0.436 0.246 0.292 14
GTARAT -120 -140 0.845 0.436 0.156 0.253 21
AALTCTA -145 -95 0.833 0.417 0.228 0.188 22
AAGGTA -160 -90 0.774 0.412 0.18 0.182 29
TATRAL -190 -140 0.771 0.444 0.029 0.298 30
TTARCGTA  -220 -135 0.785 0.455 0.208 0.102 33
ATATARAAT -190 -140 0.765 0.383 0.029 0.353 32
TAGATGT -175 -125 0.764 0.411 0.112  0.241 34
TTARTG -230 -135 0.7¢& 0.411 0.154 0.185 35
ATACAT -190 -140 0.738 0.432 0.052 0.253 38
ATGTATTT -155 -105 0.737 0.3291 0.07 0.276 39
GRARGGTA  -165 -105 0.691 0.39 0.089 0.202 53
TRATTTTA -155 -100 0.617 0.27 0.034 0.2123 58
23 GAAACAGGT -131 | ARARAGGG -115 -65 1,559 0.366 0.1%4 1.00 1
ARACAGG -130 -80 1.185 0.3%2 0.087 0.707 &
ATACATGT -155 -105 0.983 0.354 0.129 0.459 12
ACATGT -155 -105 0.98 0.414 0.175 0.351 13
ARACAT -120 -65 0.863 0.422 0.06 0.381 19
AGGTTT -150 -100 0.734 0.459 0.087 0.188 41




192

GRGARA -150 =LE 0.729 0.41 0.084 0.235 42
CACAGGTG -180 -120 0.707 0.398% 0.106 0.202 49
TGAARCAG -135 -85 0.676 0.434 0.04 0.202 55
24 cagggTATAARAAGggC* -87 ARRRAGGG  -115 -65 1.559 0.386 0.154 1.00 1
ATATARR -100 -50 1.491 0.372 0.119 1.00 2
ARARAR -115 -65 1.467 0.38 0.087 1.00 3
TTARARLAR -120 -70 1.439 0.356 0.083 1.00 4
ATATARLAC -120 -70 1.228 0.394 0.124 0.709 5
TRCARL -100 -50 1.096 0.454 0.179 0.463 2
ATATAR -125 -75 1.082  0.428 0.166 0.488 9
ATAGAGAG -150 -100 0.924 0.386 0.107 0.432 15
TTTAARL -130 -80 0.92 0.416 0.0&5 0.439 1e
25 TCATGTTTt -138 | CATGTAT -165 =LE 1.152 0.3&64 0.182 0.597 7
ACATGT SNEE -105 0.98 D414 e a5 el 13
ATGTAT -165 -85 0.974 0.436 0.246 0.282 14
CTCCTGT -155 -100 0.777 0.382 0.135 0.249 28
TGTTTA =15 -120 0.766 0.406 0.085 0.275 31
AGGTTT —1 -100 0.734 0.459 0.087 0.18e8 41
TCCTGT -165 -115 0.717 0.441 0.13 0.147 47
CTCCTGTT -165 NI 0.711 0.406 0.104 0.202 48
TCATGA ki -90 0.7 D43 0.082 0.18e8 52
CATGTTGG -165 -115 0.668 0.403 0.086 0.178 56
histonehl CAATCACCAC* -107 | ATCACCA -135 -85 1.23 0.487 0.5 0.263 2
ACCACGCR  -135 -85 1.177  0.32 0.253 0.594 3
26 CCACGC -105 -40 1.048 0.451 0.287 0.3 4
CCAATCA -140 -90 1.027  0.432 0.214 0.38e1 5
ATCAARCCC -110 -55 0.888 0.3863 0.208 0.317 7
ATCRAC -110 -55 0.884 0.418 0.2 0.265 2
CTATCA -120 -70 0.861 0.424 0.185 0.242 9
ARATGACCG  -150 -85 0.837 0.5 0.243 0.094 10
ARCCRATC -140 -90 0.72 0.403 0.0%96 0.22 12
27 gAAACRARAGTEL -427 | RAGRARR -435 -350 1.395 0.363 0.203 0.829 1
ARGGRAAR  -465 -415 1 0.34 0.0&6 0.554 3
ARARAR -485 cr b 0.735 0.356 0.012 361 1Ll
GRACARACRE  -430 -350 al Ly 0.398 0.082 0.22 13
insulin gttAAGACTCTAAtgacc* -223 | ACTCTRA -245 -195 0.965 0.432 0.163 0.37 5
GRCTCG -250 -185 0.887 0.457 0.331 0.08 11
28 ACTCTA -235 -185 0.857 0.45 0.203 0.204 12
TRAGACTC -240 -1920 0.828 0.448 0.247 0.132 18
ARGACT -240 -150 0.812 0.456 0.203 0.153 21
GTCTAL -225 -175 0.766 0.388 0.12 0.257 27
CCCTRA -235 -185 0.723 0.383 0.072 0.257 32
ARCCCTAAR  -235 -185 0.627 0.335 0.121 0.171 40
29 tecagcccccaGCCATCTGC -122 | CCATCTG -120 -70 1.161 0.382 0.141 0.627 2
c*
GCCACC -120 -70 0.823 ©0.394 0.076 0.453
CRAGCAGCC  -155 -105 0.923 0.31 0.069 0.544 (3
TCGGCC -125 -75 0.907 0.396 0.142 0.368
TGCCGA -150 -90 0.881 0.428 0.349 0.104 10
CRACTGCA -135 -65 0.856 0.343 0.231 0.282 13
CATCAG -155 -85 0.836 0.386 0.073 £.377 14
CCTCGGCC  -130 -80 0.835 ©0.3189 0.122 0.394 15
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ATCTTC =12l -80 0.827 0.42 0.203 0.204 gl
ATCTTCC -130 -80 0.816 0.432 0.163 0.221 20
CCTCTG -130 -80 0.792 0.369 0.055 0.368 24
GCCCTCAG -125 -75 0.781 0.305 0.071 0.415 25
TCTACC S125 =15 0.756 0.426 0.177 0. 153 28
GCATCT -130 -80 0.744 0.406 0.134 0.204 30
CTTCTACC -130 -75 0.707 0.414 0.178 0.115 i3
ARCTGC -145 -85 0.704 0.387 0.058 0.257 34
GACATTTG -130 -80 0.672 0.466 0.127 0.08 a7
ATCTGCCG -170 -85 0.645 0.35 0.155 0.14 39
CCCRGCTG -120 -70 0.622 0.323 0.029 0.27 42
GGCCATCT -130 -80 0.583 0.346 0.0&5 0.171 45
30 CTATAAAGecc* -32 TATRACG -70 -20 1.173  0.482 0.3271 0.32 1
TATARC -70 -20 0.833 0.486 0.243 0.104 16
CCTATA -75 -25 0.805 0.458 0.243 0.104 23
GGGCTATA  -820 -25 0.748 0.375 0.225 0.149 29
TATRARGC -70 -20 0.72 0.447 0.203 0.08 21
TRARGG -85 -20 0.698 0.386 0.12 0.192 i6
ACTCTAA -70 -20 0.645 0.432 0.044 0.172 5
CCAGAARMG -&0 -10 0.647 0.332 0.144 0.171 28
CTATCAAT -75 -25 0.608 0.418 0.111 0.08 43
CTTTGARG -75 -25 0.604 0.37 0.101 0.1332 44
2l GGGARATG* -145 | CCGGARA -155 -105 1.13 0.409 0.5 0.221 5
GRAATTG -155 -105 1.022 0.399 0.203 0.421 4
GGGAAGT -165 LG 0.909 0.397 0.142 0. 37 8
AGGAAR -175 -125 0.828 ©0.359 0.073 0.396 17
CGGRAATT -155 -105 O.811 D.386 0.224 0.1 22
GARARAT -155 -105 0.766 0.378 0.103 0.285 26
GGGAAT -165 LG 0.658 0.4 0.093 0.204 =5
GRARATGC  -155 -105 0.626 0.372 0.102 0.152 41
interleuk TTGAGTACTagaaagt -228 | TTGRATA -230 -165 1.319 0.416 0.268 0.635 2
= GRGTAAT -230 -180 1.155 0.414 0.2585 0.447 &
32 TAAGTART -230 -180 0.912 0.352 0.258 0.304 13
TTGRAT -230 -165 0.866 0.426 0.268 0.172 17
TRAGTA -260 -160 0.798 0.385 0.29 0.143 25
TTTTGA -235 -185 0.752 0.4 0.242 0.11 i3
TTTTGAGT -270 -220 0.727 0.401 0.202 0.124 29
GAGTAR -230 -170 0.704 0.295 0.135 0.174 42
GRATAC -225 -170 0.647 0.381 0.111 0.176 51
TGAGTC -230 -165 0.627 0.41 0.131 0.087 57
2z GATGAATAATE* -208 | TTGRATA -230 ~-165 1.21%3 0.416 0.268 0.635 2
GAGTAAT -230 -180 1.155 0.414 0.295 0. 447 &
TAAGTAAT -230 -180 0.913 ©0.352 0.258 0.304 13
TTGRAT -230 -165 0.866 0.426 0.268 0.173 17
ATARAT -210 -160 0.777 0.365 0.138 0L 274 28
TCGATG -210 =G 0.757 0.397 0.235 0.125 =,
ATGGAT -215 -150 0.733 0.402 0.176 0.155 EL:]
TCGATGRA -215 -165 0.718 0.343 0.202 0.173 41
GAGTAA -230 -170 0.704 0.395 0.135 0L 174 42
GRATAC -225 -170 0.647 0.361 0.111 0.176 51
34 GTCTGTGGTTTtCTATGGA  -195 | TTCTATG -185 -135 1.475 0.413 0.342 0.72 1
GGTTCCATGTCAGATAAAG
*
GGTTTTC -200 -150 1.281 0.487 0.5 0.314 4
TAARGAT -175 -125 1.262 0.448 0.5 0.314 5
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GRACCAL -55 -5 0.613 0.371 0.11 0.132 63
metalloth GCTATAANC* -103 | TAARAR -120 -170 1.1e8 0.427 0.145 0.5596 [
ionein

GCTATAA -135 -85 1.128 0.451 0.352 0.325 7
37 TATARAG -130 -80 1.033 0.467 0.313 0.253 15

CTARAAAC -120 -70 0.979 0.429 0.231 0.319 21

ATARARG -130 -80 0.9867 0.412 0.169 0.386 22

CGCTATAA -120 -170 0.927 0.484 0.318 0.125 26

GGTATA -120 -70 0.811 0.452 0.26 0.098 33

GCGCTA -100 -50 0.785 0.459 0.202 0.134 42

TTTARA -120 -70 0.783 0.437 0.072 0.274 43

GATARAA -130 -80 0.756 0.445 0.089 0.211 46

CTCTAA =1 =L 0. 749 0.44 0.187 0.122 48

CTTTRARG -115 -65 0.741 0.438 0.162 0.14 50
2z CATGCGCAGg -143 | TGTGCA -175 -125 1.224 0.475 0.152  0.596 4

GTGCGC -245 -105 1.1487 0.46 0.352 0.375 5

CGTGCGCA  -245 -135 1.113 0.493 0.331 0.288 8

GCGCAG -175 -125 1.043 0.451 0.138 0.453 13

CRACGCG -175 -125 0.86 0.435 0.108 0.317 32

CACGCGGA -175 -120 0.718 0.44 0.122  0.155 55
39 cCGTGTGCAg* -239 | GTGCGC -245 -105 1.187 0.46 0.352 0£.375 3

CGTGCGCA  -245 -125 1.113 0.493 0.331 0.288 8

GTGCGCA -245 -190 1.108 0.408 0.105 0.596 9

GRAGTGC -225 -145 1.032 0.455 0.285 0.282 16

CGCGTGCT -230 -145 0.959 D45 0.269 0.239 23

TGTGCA -250 -200 0.871 0.475 0.057 0.339 30

GGTCGTG -305 -140 0.871 0.447 0.233 0.191 29

TGTGCACC -245 -125 0.82 0.456 0.15 0.214 36

GTGCGCAG -300 ~-195 0.819 0.439 0.11 0.27 28

CGTATG -225 -165 0.819 .5 0.261 0.059 37

GTGTAC -250 -180 0.798 0.455 0.136 0.208 41

CGTATGC -250 -200 0.736 0.492 0.095 0.15 52

AGGGTGCA  -250 -200 0.714 0.46 0.052 0.202 57

GGCGTGTG -2855 -210 0.684 0.449 0.0882 0.146 61
40 CGTGTGCAgge* -156 | CGCGTG -185 -145 1.447 0.446 0.332  0.87 1

CGCETGC -195 -145 1.283 0.422 0.19 0.672 2

TGTGCAR -175 -125 1.224 0.475 0.152 0.59%¢ 30

GTGCGC -245 -105 1.187 0.46 0.352 0.375 5

CGTGCGCA  -245 -135 1.113 0.493 0.331 0.288 8

GRAGTGC -225 -145 1.032 0.455 0.285 0.282 1e

GGGTGCAG  -175 -125 1.013 0.456 0.112  0.443 18

CECGTECT  -220 -145 0.959 0.45 0.269 0.239 23

GGTGTG -305 -140 0.871 0.447 0.232 0.191 29

TGTGCACC -245 -125 0.82 0.456 0.15 0.214 36

CGTATG -225 -165 0.819 0.5 0.261 0.059 37

GTTTGCAT -205 -120 0.768 0.45 0.162 0.155 45

CGAGTACA -185 -145 0.743 0.472 0.146 0.125 49
41 TTTGCACACG* -142 | TGCGCGCG -215 -120 1.236 0.45 0.326 0.46

TGTGCA -175 -125 1.224 0.475 0.153 0.596 4

TTTGCGC -155 -105 1.077 0.429 0.2 0.449 11

GCACCC Sk G al e D451 0.127 0.477 12

TTTTGCGC  -145 -95 1.024 0.471 0.285 0.268 14

TGCACG -175 -125 1.023 0.458 0.135 0.43 17

GCACCCG -155 -105 0.987 0.393 0.082 0.512 20

TTTGCG -155 -105 0.948 0.463 0.233 0.253 25
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Supplementary Figure 2. Comparison of LocalMotif’s predictions with published
TFBS annotations in long upstream regulatory sequences. The species whose sequence
annotations are derived from the literature is highlighted in boldface and the reference is
provided alongside. Each published TFBS is shown with its matching LocalMotif
prediction, and the matching subsequence within the TFBS is highlighted in red color.
Only the top 25 predictions made by LocalMotif were considered. “NP” indicates that

none of the top 25 LocalMotif predictions match the TFBS.

Gene From literature LocalMotif Predictions
Poz Binding s=ite Transcription Predicted Pozsition Rank
Factor Motif interval
CRHR1 -44 ACGACCCGGGC SPL GACCaE [-55,-35] 2
56 TGGGATGTCC NF-KADPA GATGTCE [-70,-50] g
homo sapiens -282 | GGGGAGGTG Sp1 GOGEEEE [-290,-270] 21
[Parham et -305 | CGCGAGGAGCAGC Sp1 CCAGGR [-325,-300] 5
al. (2004)] ~320 GGGGCGGGGA ECR-1/ECR-2 [Eleeleleele] [-325,-305] c
-355 | GAGGGGGAGGAAG Sp1 GOAGGEE [-270, -345] 7
mus musculus -374 GGGGAGCGGAGGEE = GGAGGGE [-270,-345] 7
“301 | GGGGCGAGGCGCGGAGE Spl GGCGAG [-410,-360] 18
rattus ~217 | GCTGGGAGGG Sp1 GGAGCE [-475,-335] 12
norvegicus ~345 | GGGGAGGGRA SP1L TE] N N
C458 | CGGGCCGGRRE Sp1 GACCaE [-475,-425] 20
gallus gallus
~277 | GGCGGCGEGACA Sp1 GCGECE [-480,-445] 15
CE60 | CTCCCCGRECTGCEECEE LD2 GCEECC [-555, -505] 11
~720 | GGRCCGCCCTETTCC SP1/NF-KB/EBP-1 | TCGCCCTA [-705,-685] 17
-923 | ATGAATARGG PIT-1A TGARTGE [-950,-920] 1
-962 | CAGTTTGTRRE DR NP N N
-8997 | CCRGCCTCTTR Sp1 NP - -
~1027 | CGGGCTCCCAGE AP-2/8P1 ND - -
_1052 | GGGCACCGCCE Sp1 GCGCAC [-1105,-1040] | 22
-1158 | CCTCCCCACGCCCTGCCCGCGEEC | SPL/ETF/AP-2A CECCET [-1180,-1095] | 14
“1177 | CCOGCACGEEECAT SP1/ETF/KROX-20 | ND B -
-1295 | TCIGTTCATCT GATAL TTATCT [-1335,-1285] | 19
-1484 | BGGGCAGETE RXR NP - -
-1497 | GGGCACRGGE RXR NP - -
“1532 | AGAGGGCAGGAGGGAGGAG SP1 NP - -
-1702 | CTGTGAGCTGE ER NP - -
-1720 | GGCCCAGCCCTC = NP - -
~1735 | CCCAGGCCCCTTT Sp1 ND B -
-1754 | CCCCTCCCCAR Sp1 NP - -
-1841 | TTTTGCRAGACT SP1/NF-1 NP - -
"1931 | GCTTAGCATGT 0CT1 TAGTATC [-1930,-1845] | 24
_2050 | AGTTTATACAGCTTGTARG GR AAGTTTAT [-2070,-2050] | 16
-2089 | RTRGATGAGA GATA3 ATTAGA [-2100,-2080] | 10
-2290 | AGGGTGGEACC SP1 NP - -
~2368 | CTCTCCTCT Sp1 NP N N
~2412 | CTTIGGCTGGE NF-1 NP - -
-2430 | CCRGGGRGGGA YY1 NP - -
HHEX _ca CARATAAAT TATA BOX LACATEART [-85,-65] 4
~110 | GCCCCACCCCGCGE SP1/AP-2 CCACACC [-125,-105] 12
homo sapiens ~148 | GGCCGCRAGGGT LD-2 GEECCE [-150,-125] 8
“172 | GGCGAATCT CCBAT BOX GCGRATC [-175,-150] 2
mus mugculus C185 | AGTGGGGGGCGGA MZFL/SP1 GGGEGE [-200,-180] 1
[Myint et al. |—75¢ | goaceeeed LP-2 [leeTelele] [-200,-180] 7
(1999)] 314 | GCCGGTCGGGECRRATC ED-2,/MZFL1/5P1 GaTCGE [-215,-185] 11
) “228 | GGGGCGGGAG Sp1 [Eeelele]s [-230,-185] 19
;Z;E:;icus ~297 | CTGEGEEGCECT SP1L GGCECC [-205,-225] 10
-370 | TCCGCGCCCCRCEECa SP1/AP-2 TCGECE [-265,-345] 9
gallus gallus |[™ 45g GCCGECEEET AD-2 caccas [-465, -445] 3
sus scrofa ~530 | TCCCCCGIT MZFL CCACCG [-575,-500] 17
“574 | GCCAACGGCT BD-2 GCCRACG [-575,-500] 18
HK2 _e8 GGGCGGCC 5Pl TGEECE [-75,-55] 13
_81 ACGTCACTG CREB CGTCAAT [-90,-40] 2
homo sapiens “98 AGCCAATGAG CAAT AGCCAAT [-140,-85] 7
_140 | CCGCGRECEE EP-2/SPL cccace [-125,-105] 1
mug musculus -154 TGATTEGCT RP-1/NF-1 GATCGG [-175,-145] 18
[Heikkinen et |™973 [ Gooececcoa ap1 cocaca [-235, 185] G
al. (2000)] 205 | cooeeoece SPL cccace [-235,-185] 10
) _233 | CTCCGCCCCT SPL TCCECT [-240,-220] 3
;ZEE:;MUB 323 GCGCCCCCCACCT SP1,DUF cacece [-265,-195] 20
-370 | TTTCCAGIC C/EBP NP - -
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~329 | CTCACATG USF CTCTCAT [-480, -420] 19
gallus gallus | 439 | GCGCAGTGQ 2Pl NP B -
~525 | ACTTTTGTAAT C/EBP NP - N
danic rerio -592 TCCCCAAT AP-2 NP - -
“£31 | TGACCTTGGE DEER NP N N
LTF 106 GGCGGGAGGT SP1 GCGCGAG [85,105] 3
homo sapiens 32 LGATARAGGGE TATA LATARAG [-80,-30] 7
e musculus 73 CCGCAATAGCD CART GOCRATAC [-110, -55] 2
[Liu, ¥. H. “102 | GGGCAATGGG CRAT GGCRATAG [-110,-55] 2
and Teng -157 | TTCCTCCTTC putative NP - -
(1951)1 -339 | GGTCAAGGTAAC ERE LAGGTAAC [-350,-330] 10
—381 | GAGGAAGGGGE putative GCARGE [-495,0] 12
rattus. 514 | TGGACCCCAC Lp-2 GRCCGCA [-540,-515] 17
norvegious 533 | GGCGGGTIT Sp1 GGCEEETT [-550,-5301] 16
gallus gallus -617 TTCCTCGCT putative NP - -
canis —651 | AARAGGAGC putative ARAGGA [-695, -670] 1
familiaris 667 | GAGGAAGGRR putative AGGERA [-715,-650] 19
_690 | GAGGAACAGGRE putative AGGRERR [-715,-650] 19
“907 | CCGCCCGRE SP1 ACCECCCE [-925,-905] 21
PCMT1 54 GCTCCGAGTGT MED- 1 GCTCCGA [20,40] 3
28 GGGCGETGAC gp1 GCGGTGA [-85,-25] 9
homeo zapiens -111 GCCGCGGGGEGA AP-2 [elalelele’s) [-145,-100] 14
[DeVry et al. |"733 | GCGGCGTCACA LRE GCGECE [-135,-55] 11
(1996)1 _172 | CCCCGCCCTCGGCCC ETF cCoocc [-175,-150] 1
205 | GCCACAGGGGCGGECEE RDP-2/5P1 Gaccoaa [-225,-170] 2
mus musculus -249 CTGACTCAGCC AP-1 CGCTGACT [-270,-250] 14
~270 | CACGCAGCAGC XRE CGCAGGA [-290,-270] 7
rattus 313 | GCCGoAGaae b2 GCCGGA [-325,-290] 12
norveglous “361 | TGACCGGAGR ERE GRCCGC [-400, -300] 17
gallus gallus | —387 | CCCCGCCATCCCGCC ETF/SP1 cCacca [-415,-395] 3
~435 | TGACCCAGCGA ERE GRCCCE [-455, -405] 5
~615 | GCCAGAGGCCG LP-2 NP - -
~633 | TGACGTGCTT CREB GACGTAEC [-650, -630] 21
~719 | CCCCAACCCCCRCCCC ETF NP = N
~1235 | GGTCAGGAGR ERE GATCAG [-1255,-1220] | 8
~1248 | GGGCGEATC 2pl NP - N
-1457 | GGTCACATA ERE NP - -
~1645 | TGCGTGCCTG XRE TGCGTG [-1645,-1595] | 15
~1706 | GGTCAACAT ERE AGGTCA [-1755,-1705] | 19
~1729 | GGTCAGGAGT ERE BGGTCA [-1755,-1705] | 19
SLC25A1 “99 TGGCAGGGCT SP1 TCAGGEC [-100,-80] 11
_18¢ | GGGTGCAGAGG GATA-1 GEGECA [-240,-190] 25
homo sapiens _213 | GGTCAAGTTGAGT ERE GTCRAGTT [-230,-210] 4
[Abdulla and 263 GGCAGGGGEE SDP1 GGCACGA [-290, -270] 2
Coe (2007)] ~303 CTGECAGCGEC Pl GCAGCC [-205,-255] 9
_325 | CGGCTGCIGE SP1 CGGTEGC [-225,-305] 5
mus musculus -340 GCTTATARACT TATA BOX TTATARAAC [-240,-320] 1
_35¢ | ACCCTCCTGTT SP1 CTCCTC [-280,-350] 19
rattus 2373 | CTTCCCTCOTGE 55 TTCCCT [-400, -280] 15
norveglicus ~
_401 | TCCCTCCCTCCCATC putative TTCCCT [-400,-380] 15
gallus gallus | -419 | GCCTTCTITGA SP1 TTTCTT [-425,-405] 10
_44¢ | TCCCTGACCCC SRF TCCCTC [-510, -445] 7
canis ~470 | TCCCTCCTTCCC SP1 TCCCTC [-510, -445] 7
Familiaris -548 | GCRGCTGCTG MYOD NP - -
“592 | CCTGGGGAGC LD-2 TGGGGC [-605, -585] 17
—635 | GGOTCCCCAG LP-2 NP - -
~743 | BGCCCCTRGE 2p1 NP - -
-883 | GGGAAGCGGA 2Pl GRARCGG [-900,-880] 3
~924 | TCCACCCCTOC Pl NP - N
~998 | TGCCAGGRGE 2Pl NP = N
~1048 | TCIGCCTGGCT MYOGENIN NP = N
~1096 | AGGCCTGRGRC 2pl NP - N
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Validation of Forkhead motif consensus identified by

LocalMotif. All Forkhead binding sites present within 200 bp distance of a known ER
full or half binding site are listed with their locations in the original dataset of Caroll et al.
(2005). Binding sites that contribute to Forkhead consensus reported by LocalMotif are

marked.

Sequence

no.

LD e

R =E

S S S S S )
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h B3

48
52
55
55

Forkhead
site
TTGTTTTCTT
ALGTALATRRL
GTGTTTGCTT
TTGTTTACTT
ALAGRLACRR
TTGTTTCTTT
TTGTTTTTTT
ALAGRAAGRL
ALGGRALACRR
ALGGARATRRL
TTGTTTACAT
ALGRARATRL
TTGTTTATTT
TTGTTTCCCT
ARACRRAACRR
TTATTTGCTT
ALGGRALACRT
CTGTTTGCTT
ARGCRAATRR
ALGCRLACRR
TTGTTTGCTT
TTGTTTTCTT
ATGTTTGCTT
TTATTTCCTT
TTCTTTCTTT
TTGCTTGCTT

Location in
sequence

30
247
209
521
1437
580
1383
428
413
422

193
1096
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247
1062
769
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770

Strand

+
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Distance
from ER site

5
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153
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Recognized by

LocalMotif ?
Yes
No
No
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
Yes
No
Yes
Yes
Yes

The Forkhead motif consensus derived from all 45 Forkhead binding sites reported in the original dataset of Caroll

etal. (2005) is as follows:
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Supplementary Figure 4. Complete list of 813 CRMs predicted by Modulexplorer.
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