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SUMMARY 

 While computational advances have enabled sequencing of genomes at a rapid 

rate, annotation of functional elements in genomic sequences is lagging far behind.  Of 

particular importance is the identification of sequences that regulate gene expression.  

This research contributes to the computational modeling and detection of three very 

important regulatory elements in eukaryotic genomes, viz. transcription factor binding 

motifs, gene promoters and cis-regulatory modules (enhancers or repressors).  Position 

specificity of transcription factor binding sites is the main insight used to enhance the 

modeling and detection performance in all three applications. 

 

 The first application concerns in-silico discovery of transcription factor binding 

motifs in a set of regulatory sequences which are bound by the same transcription factor.  

The problem of motif discovery in higher eukaryotes is much more complex than in 

lower organisms for several reasons, one of which is increasing length of the regulatory 

region.  In many cases it is not possible to narrow down the exact location of the motif, so 

a region of length ~1kb or more needs to be analyzed.  In such long sequences, the motif 

appears “subtle” or weak in comparison with random patterns and thus becomes 

inaccessible to any motif finding algorithm.  Subdividing the sequences into shorter 

fragments poses difficulties such as choice of fragment location and length, locally over-

represented spurious motifs, and problems associated with compilation and ranking of the 

results.  A novel tool, LocalMotif, is developed in this research to detect biological motifs 

in long regulatory sequences aligned relative to an anchoring point such as the 

transcription start site or the center of the ChIP sequences.  A new scoring measure called 

spatial confinement score is developed to accurately demarcate the interval of 

localization of a motif.  Existing scoring measures including over-representation score 

and relative entropy score are reformulated within the framework of information theory 

and combined with spatial confinement score to give an overall measure of the goodness 

of a motif.  A fast algorithm finds the best localized motifs using the scoring function.  

The approach is found useful in detecting biologically relevant motifs in long regulatory 

sequences.  This is illustrated with various examples. 

 

 Computational prediction of eukaryotic promoters is another tough problem, with 

the current best methods reporting less than 35% sensitivity and 60% ppv
1
.  A novel 

statistical modeling and detection framework is developed in this dissertation for 

                                                 
1
 Transcription start site prediction accuracy on ENCODE regions of the human genome within ±250 bp 

error [Bajic et al. (2006)]. 
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promoter sequences.  A number of exisiting techniques analyze the occurrence 

frequencies of oligonucleotides in promoter sequences as compared to other genomic 

regions.  In contrast, the present approach studies the positional densities of 

oligonucleotides in promoter sequences.  A statistical promoter model is developed based 

on the oligonucleotide positional densities.  When trained on a dataset of known promoter 

sequences, the model automatically recognizes a number of transcription factor binding 

sites simultaneously with their occurrence positions relative to the transcription start site 

(TSS).  The analysis does not require any non-promoter sequence dataset or modeling of 

background oligonucleotide content of the genome.  Based on this model, a continuous 

naïve Bayes classifier is developed for the detection of human promoters and 

transcription start sites in genomic sequences.  Promoter sequence features learnt by the 

model correlate well with known biological facts.  Results of human TSS prediction 

compare favorably with existing 2
nd

 generation promoter prediction tools. 

 

 Computational prediction of cis-regulatory modules (CRM) in genomic sequences 

has received considerable attention recently.  CRMs are enhancers or repressors that 

control the expression of genes in a particular tissue at a particular development stage.  

CRMs are more difficult to study than promoters as they may be located anywhere up to 

several kilo bases upstream or downstream of the gene‟s TSS and lack anchoring features 

such as the TATA box.  The current method of CRM prediction relies on discovering 

clusters of binding sites for a set of cooperating transcription factors (TFs).  The set of 

cooperating TFs is called the regulatory code.  So far very few (precisely three) 

regulatory codes are known which have been determined based on tedious wet lab 

experiments.  This has restricted the scope of CRM prediction to the few known module 

types.  The present research develops the first computational approach to learn regulatory 

codes de-novo from a repository of CRMs. A probabilistic graphical model is used to 

derive the regulatory codes.  The model is also used to predict novel CRMs.  Using a 

training data of 356 non-redundant CRMs, 813 novel CRMs have been recovered from 

the Drosophila melanogaster genome regulating gene expression in different tissues at 

various stages of development.  Specific regulatory codes are derived conferring gene 

expression in the drosophila embryonic mesoderm, the ventral nerve cord, the eye-

antennal disc and the larval wing imaginal disc.  Furthermore, 31 novel genes are 

implicated in the development of these tissues. 
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CHAPTER - I 

INTRODUCTION 

I-1 Background 

 Over the last few years, computational biology research has contributed 

significantly to the advancement of molecular biology.  High throughput genome 

sequencing has provided us with the complete genomes of several multicellular species 

from microbes to human beings.  The current significant challenge is to annotate 

functional elements in these genomes and to understand how the vast amount of 

information contained in the genome is processed in living systems.  One of the ultimate 

aims is to understand the process of development, i.e. how a living organism grows from 

a single cell to an adult, and how cells which are identical in the beginning differentiate 

into different tissues.  This dissertation addresses some of these problems.  First a brief 

description of some basic concepts of molecular biology is provided in this section to 

establish a ground for introducing the present research problem. 

I-1.1 The Genetic Code 

 Every living organism's body is made up of microscopic units called cells.  

Majority of cellular structures are manufactured from proteins, which are complex 

macromolecules of amino acids.  Most of the activities within a cell are also carried out 

by specific proteins.  Each cell contains within its nucleus all the instructions needed to 

manufacture (or express) all of these proteins in the form of genetic code.  In addition, the 

mechanism to express a protein at the exact time and location (e.g. during development) 

or whenever needed by the cell is also programmed within the genetic code. 
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 The genetic code exists in the form of very long macromolecular chains called 

DNA (deoxyribonucleic acid).  DNA is composed of four nitrogenous bases viz. Adenine, 

Cytosine, Guanine, and Thymine (in short A, C, G and T), which are covalently bonded 

to a backbone of deoxyribose-phosphate to form a DNA strand.  Two complementary 

strands pair up to form a double helical structure where Gs pair with Cs and As with Ts.  

The two strands are held together by hydrogen bonding between the bases, forming base 

pairs (bp).  The specific ordering of the four bases is responsible for the information 

content of the DNA.  An organism's complete set of DNA is called its genome. Genomes 

vary widely in size.  The human genome is approximaltely 3 billion bp long. 

 A gene is a portion of the genome which encodes the amino acid sequence of a 

protein product.  Only a small fraction of the genome is covered by genes.  The human 

genome is estimated to contain 30,000 to 40,000 genes.  The gene DNA sequence maps 

to the protein amino acid sequence through the genetic code.  In the genetic code each 

triplet of nucleotides (called „codon‟) maps to a particular single amino acid.  A protein 

encoding segment is a sequence of codons called coding sequence (CDS) or exon.  An 

example of a gene region within the human genome is shown in Figure I-1.  The coding 

sequence is marked in blue color with the encoded amino acids shown below it.  Figure 

I-1 also shows a number of other features in the gene apart from the coding sequences.  

These include introns, untranslated region (UTR), promoter, etc., which are described in 

the following section.  A block-diagram of the gene region shown in Figure I-1 is 

provided in Figure I-2 in order to illustrate the functional divisions of the gene region. 

I-1.2 Gene Expression 

 The process of manufacturing proteins from the genetic code in DNA is called 

gene expression.  This process is described by the central dogma of molecular biology, 

which states that the genetic code is utilized to manufacture the encoded protein within 
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-1200 aggctcgagcgaataaagcgcagtgcagagcgcggggctggcactcgggggtgtaaaggaggcgagttcg 

                     Repressor element 
-1130 ctggcacttaccaagttataaataaaaggctatgcacaatggtaccttctctaaggacagacagtcttta 

                               AP-2 site 
-1060 caacactcctggcgtcatatcctgctggggacacttcagctcctagccaagacttcgttccttttatttt 

 

 -990 tccagcagtttagtctgaatgccataataaattcctgagaacaaacgctgaacccgggcaaaactttaac 

 

 -920 atacagacacatctctgtcgacgcatcggggatctatatgtagagatttagaaccgcagcttgccagagc 

 

 -850 ggtttttacaccaagaagaggagccaggtttttttctgcaccctcccccatacccccagccttcaactaa 

 

 -780 cgagtgcttgggcctagcgacggctgcctgtgcttcacattagccccgcttgcggacggagaagacaaaa 

 

 -710 gaacatcagcgcaccctggactcctcccaggaggagccccatcgggaggaccccttaacaagcctaggcc 

                AP-1 site 
 -640 aaggggcactgaccacaggaaggaaagctaaatatgtctggggccccagatgccttcttattggaattgt 

 

 -570 gccccctccagtggcagtaagccaagagaaatgagagcgagacctacaggtagaaaaaatgagacataga 

                                               AP-1 site 
 -500 gagagacacaggaaatcacaagaggaatagaggctgagcgagacacacacacagaggcacagaaagagac 

                                                         Repeat Region 
 -430 agagagggaaatagaaagtcaaggaaagagtgatcagagaaagacacacacacacacacacacacacaca 

            Repeat Region                      Repeat Region 
 -360 cacacacacacacacacacacacagagtgacacagacagagagacagagacagagagacaggaacttctc 

 

 -290 cgccctcagcaactgccatctccctggggctgtctctctcagtttccaccgggccaaccttctctcctgg 

 

 -220 gcaaggggcgcagcgcgggtccccctcggggccagcagaggcctcggcaccaccagagatgggaagagaa 

                     CAAT box          SP1                         CAAT box 
 -150 agtggtcgctgttgcccaatcagcgcgtgtctccgccacccgggacggtctacccgtcggccaatcgcag 

                                          TATA Box 
  -80 ctcagggctcctgaccaagctttgggtaaaagaactaataaatgctcccgagcccggatccccgcactcg 

                     Transcription start site 
  -10 gtgtcaccacaggaggagactcaggcaggccgcgctccagcctcaccaggctccccggctcgccgtggct 

 

  +60 ctctgagcccccttttcagggaccccagtcgctggaacatttgcccagactcgtaccaaacttttccgcc 

 

 +130 ctgggctcgggatcctggactccggggcctccccgtcctcccctttcccgggttccagctccggcctctg 

 

 +200 gactaggaaccgacagcccccctccccgcgtccctccctctctctccagccgttttggggaggggctctc 

 

 +270 cacgctccggatagttcccgagggtcatccgcgccgcactcgcctttccgtttcgccttcacctggatat 

                                start codon 
 +340 aatttccgagcgaagctgcccccaggATGACCACGCTGGCCGGCGCTGTGCCCAGGATGATGCGGCCGGG 

                                 M  T  T  L  A  G  A  V  P  R  M  M  R  P  G 

 +410 CCCGGGGCAGAACTACCCGCGTAGCGGGTTCCCGCTGGAAGgtaagggagggcctcagcgcgccgcctgg 

        P  G  Q  N  Y  P  R  S  G  F  P  L  E   donor splice site 

 +480 atcccagggcctgggaccggctgcctcaccccatccccaggctccgcaggctcctttggtgcttccagga 

 

 +550 agcccattccctgggcaccccacaccccaagaagcaccagtcgggggcgaggacctactcgatttccttt 

 

 +620 ctgcaaatggagcgcgctgctctctgcaaatcctggcggagctgggcggtcaggcctgcggcgagccggg 

 

 

The nucleotides are color coded as follows: 

 

Black  ( ACGTacgt ) : 5’ regulatory sequence 

Brown  ( ACGTacgt ) : 5’ untranslated region (UTR) in the first exon 

Blue   ( ACGTacgt ) : Coding sequence (CDS) in the exon 

Orange ( ACGTacgt ) : Intron sequence 

Red    ( ACGTacgt ) : Some specific feature - marked with a comment 
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Figure I-1. Annotated DNA sequence of the 5‟ region of the human PAX3 gene 

[Macina et al. (1995), Okladnova et al. (1999), Barber et al. (1999)].  

Notable features shown include (i) promoter region, (ii) transcription start 

site, (iii) transcription factor binding sites such as TATA box, CAAT box, 

AP-1, AP-2, SP1, (iv) repressor element, (v) nucleotide repeats, (vi) 5‟ 

untranslated region (UTR), (vii) coding sequence with its amino acid 

translations, (viii) exon, (ix) intron, and (x) splice site. 
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Enhancer Promoter

5’ UTR

Exon 1

CDS 1

Exon 2 Exon 3

Intron 1 Intron 2TSS

CDS 2 CDS 3

mRNARegulatory region

3’ direction5’ direction

 

Figure I-2. The locations of gene coding and noncoding regions and the promoter in a 

DNA strand.  The promoter region is present surrounding the start of (and 

mostly upstream of) the transcript region.  Other elements such as 

enhancer may be present far distant from the transcription start site. 

the cell in two steps – (i) transcription, or creating a copy of the gene in the form of a 

RNA molecule, and (ii) translation, or decoding the RNA to amino acid sequence 

through the genetic code.  The transcription step is required because the genetic material 

is physically separated from the site of protein synthesis in the cytoplasm in the cell. The 

DNA is not directly translated into protein, but an intermediary molecule called RNA is 

made, which is an exact copy of the DNA.  The RNA moves out of the nucleus into the 

cytoplasm, where it is translated by ribosomes to manufacture the protein.   

 In eukaryotes, the protein coding genes are transcribed by the RNA-polymerase II 

enzyme.  Transcription initiates at a specific base pair location, called the transcription 

start site (TSS), as shown in Figure I-1 and Figure I-2.  The portion of the gene 

downstream of the TSS (i.e., in the 3‟ direction) is transcribed to form the messenger 

RNA (mRNA).  As shown in Figure I-2, in the transcribed sequence (both DNA and 

mRNA), the coding sequence (CDS) does not exist as a single continuous sequence but is 

interspersed with gaps called introns.  Introns are removed or spliced from the mRNA 

before the translation step.  This is called RNA splicing.  The first codon is also often 

preceded by an untranslated region (5‟ UTR), whose function is to lend stability to the 
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mRNA.  The  base positions on the gene are indexed relative to the TSS, which is 

referred to as position +1.  Positions downstream (in 3‟ direction) of the TSS have a 

positive index while those upstream (in 5‟ direction) have a negative index.  Figure I-1 

shows the -1200 to +700 bp region of the human paired-box gene 3 (PAX3). 

I-1.3 Regulation of Gene Expression 

 The control or regulation of gene expression dictates when, where (in what 

tissue(s)) and how much quantity of a particular protein is produced.  This decides the 

development of cells and their responses to external stimuli.  The detailed working of this 

control mechanism is still unknown to us.  The most important mechanism of control is 

through regulating the transcription process, i.e. whether or not the transcription of a gene 

is initiated.  In eukaryotic cells, the RNA-polymerase II is incapable of initiating 

transcription on its own.  It does so with the assistance of a number of proteins called 

transcription factors (TFs).  TFs bind to the DNA sequence and interact to form a pre-

initiation complex (PIC) as shown in Figure I-3.  The RNA-polymerase II is recruited in 

the PIC, and thus transcription begins.  Thus the crucial point of the regulation 

mechanism is binding of TFs to DNA.  Disruptions in gene regulation are often linked to 

a failure of the TF binding, either due to mutation of the DNA binding site, or due to 

mutation of the TF itself. 



6 

 

 

Figure I-3. Formation of pre-initiation complex through the binding of transcription 

factors to DNA nearby the transcription start site [Pederson et al. (1999)]. 

I-1.4 Nature of Protein-DNA Binding 

 TFs have the affinity of binding to a specific DNA sequence.  The binding 

sequence is usually between 5-20 bp long and is identified experimentally.  Interestingly 

not all bases are found to be equally important for effective binding. While some base 

positions can be substituted without affecting the affinity of the binding, in other 

positions a base substitution can completely obliterate the binding.  A consensus 

sequence or motif represents the common features of the effective binding site sequence.  

The TF has high affinity for sequences that match this consensus pattern, and relatively 

low affinity for sequences different from it.  A numerical way of characterizing the 

binding preferences of a TF is the positional weight matrix (PWM) (see section III-2.2), 

which shows the degree of ambiguity in the nucleotide at each binding site position. 

 The ambiguity of TF binding appears to be intentional in nature as a way of 

controlling gene expression.  Variable affinity of the TF to different DNA sites causes a 

kinetic equilibrium exists between TF concentration and occupancy (i.e. which binding 
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sites are actually occupied with the TF in-vivo).  This provides a mechanism of 

controlling the transcription of the genes. 

I-1.5 Cis-Regulatory Sequences 

 The DNA sequences where TFs bind in order to regulate gene expression are 

known as cis-regulatory sequences.  The DNA region immediately upstream of the TSS 

(i.e., in the 5‟ direction with negative position index) is usually is the center of such 

activity and is known as the promoter (Figure I-2).  For example in Figure I-1, the -2000 

to -1 sequence marked in black color is the promoter.  The binding sites for various TFs 

within the promoter have been marked with yellow outlines.  The promoter contains 

binding sites for TFs that directly interact with RNA polymerase II to promote 

transcriptional initiation.  The structure and functioning of eukaryotic promoters has been 

discussed by several reviewers [Werner (1999), Pederson et al. (1999), Zhang (2002)].  

The main functional elements within the promoter are the transcription factor binding 

sites, while the rest of the sequence is nonfunctional and meant to separate the binding 

sites at an appropriate distance. 

 There are other cis-regulatory sequences apart from the promoter which enhance 

or repress the transcription activity.  The cis-regulatory module (CRM, enhancer or 

repressor) is a short sequence that stimulates transcriptional initiation while located at a 

considerable distance from the TSS.  CRMs are often involved in inducing tissue-specific 

or temporal expression of genes.  A CRM may be 100-1000 bp in length and contains 

several closely arranged TFBS.  Thus a CRM resembles the promoter in its composition 

and the mechanism by which it functions.  However a CRM typically contains higher 

density of TFBS than the promoter, has repetitive TFBS, and involves greater level of 



8 

 

cooperative or composite interactions among the TFs.  The activity of a CRM is 

interesting as it can control gene expression from any location or strand orientation.  The 

present understanding of its mechanism is that TFs bound at the CRM interact directly 

with TFs bound to the promoter sites through the coiling or looping of DNA. 

I-1.6   Transcriptional Regulation of Development 

 One of the most intriguing applications of the study of gene regulation is in 

understanding the process of development.  Development refers to the process of growth 

of a multicellular organism from a single cell to adult.  This dissertation focuses on 

Drosophila melanogaster (fruit fly) which is a model organism for studying development.  

Drosophila development occurs in a series of stages including embryo, three larval stages, 

a pupal stage, and finally the adult stage.  The embryo development is further divided 

into 16 stages (Bownes stages).  The single celled zygote first undergoes multiple 

divisions of the nucleus (stages 1-3).  The early Drosophila embryo exists as a single cell 

with multiple nuclei, called syncytial blastoderm (stage 4).  The cytoplasm then gradually 

divides to form multiple mononucleate cells, forming the cellular blastoderm (stage 5-6).  

The next stage is gastrulation (stage 7) where separation of different tissues begins to 

manifest and the rough body plan of the larval structures is established.  In subsequent 

stages (stage 8-16) the cells divide and differentiate further till morphologically distinct 

organs are formed. 

 The process by which cells which were similar in the beginning start specializing 

into specific types or tissues is called differentiation, which is at the heart of development.  

Differentiation is the result of a complex network of gene expression accomplished 

largely through transcriptional control.  A number of genes expressed in the 
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developmental phase encode transcription factors (TFs).  The TFs operate in a 

hierarchical fashion so that TFs released at one stage lead to the expression of genes that 

release TFs for the next stage.  At each stage the complexity of expression pattern 

increases.  A crucial mechanism behind differentiation is the non-uniform distribution of 

TFs in the embryo cells.  The early syncytial blastoderm embryo contains several TFs 

derived from the mother, which are non-uniformally distributed through the embryo 

along both anterior-posterior and dorsal-ventral axes.  At any given location, various TFs 

are present in different concentrations.  Depending on the TF concentrations, specific 

CRMs are activated to express or repress their target genes.  This results in differential 

expression of the zygotic genes in different locations.  The network of differential gene 

expression continues, ultimately leading to tissue differentiation.  The interaction 

between TFs and CRMs is thus a fundamental mechanism that controls development. 

I-2 Motivation for Present Research 

I-2.1 Scope of the present research 

 As the complete DNA sequences of genomes for many organisms including 

microbes, plants, animals and human beings have become available, the first task is to 

annotate these genomic sequences [Stein (2001)].  Annotation refers to locating important 

functional elements such as genes (introns and exons), transcription start sites, translation 

start sites, splice sites, polyadenylation sites, gene promoters, etc. on the genomic 

sequence.  For processing the voluminous genomic data, laborious and time consuming 

experimental techniques alone are insufficient.  Computational methods are playing an 

important role in the ongoing task of detecting and annotating functional signals in 
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genomic sequences.  For instance computationally annotated features in the ENCODE 

project [Encode (2004)] are shown in Figure I-4. 

 This research work aims at improving the computational modeling and detection 

of three very important signals – transcription factor binding motif, promoter 

(transcription start site) and cis-regulatory module (CRM or enhancer).  The significance 

of this problem in current bioinformatics research is highlighted by the fact that the 

computational investigation of DNA motifs, promoters and CRMs is listed as one of the 

important computational biology research goal for the next few years in the “Genomes to 

Life” program (Figure I-5) of the U.S. Department of Energy [Frazier et al. (2003)]. 

 

Genomic Features Annotated Computationally in the ENCODE Project 

CpG islands

Gene Predictions

Splice Sites

Transcription Start Sites

Transcription Factor Binding Sites

Enhancers

miRNA sites

Genome Conservation

SNP

Repeat Regions

Pseudogenes

Microsatellites

Transcript Levels

Histone Modifications

Chromatin

Focus of research in this dissertation
 

Figure I-4. Several genomic features are currently being computationally annotated in 

the human genome in the ENCODE project.  The present research focuses 

on three features in the regulatory sequence track:  transcription start sites, 

transcription factor binding sites (motifs) and enhancers (cis-regulatory 

modules). 
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Figure I-5. The “Genomes to Life” program of the U.S. Department of Energy 

[Frazier et al. (2003)] plans for the next 10 years to use DNA sequences 

from microbes and higher organisms, including humans, as starting points 

for systematically tackling questions about the essential processes of living 

systems. Advanced technological and computational resources will help to 

identify and understand the underlying mechanisms that enable organisms 

to develop, survive, carry out their normal functions, and reproduce under 

myriad environmental conditions. 

 

I-2.2 Relevance of the present research 

 Computational prediction of promoters (transcription start site) transcription 

factor binding motifs, and cis-regulatory modules (CRMs or enhancers) has specific 

relevance in the current bioinformatics research.  Reliable computational prediction of 

promoters and transcription start sites (TSS) is currently required in automated gene 

discovery.  Gene annotation is currently incomplete in a number of sequenced genomes.   
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Figure I-6. Applications of the present research in current bioinformatics context. 

Though genes can usually be mapped using cDNA and homology with existing 

annotations, genes with no cDNA transcripts or close homolog must be mapped by 

computational gene-finding.  In fact, a majority of genes are currently annotated using 

computational gene prediction.  While gene finding algorithms can predict introns and 

exons with about 80% accuracy [Guigo et al. (2006)], the locations of TSS and splice 

sites are still difficult to predict, with none of the existing methods reporting more than 

45% accuracy [Guigo et al. (2006)].  The accuracy of TSS prediction is particularly low 

at around 35% sensitivity [Bajic et al. (2006)] and a large number of false positives 

[Fickett and Hatzigeorgiu (1997), Werner (2003)].  This causes the gene-finding 

algorithm to produce wrong partitioning of exons in obtaining the overall gene structure.  

Accurate TSS prediction to locate the 5‟ end of genes and first exons will be clearly 

helpful. 

 The identification of transcription factor binding motifs is one of the most basic 

requirements for understanding gene regulatory mechanisms.  Although many TFs are 

known, specific binding motifs have been fully characterized for only few of them in 
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databases such as TRANSFAC [Matys et al. (2003)] or JASPAR [Sandelin et al. (2004)].  

The motifs in these databases are derived from their experimentally determined DNA 

binding sequences using DNAse footprinting [Brenowitz et al. (1986)].  However DNAse 

footprinting is costly, laborious and time consuming, and therefore it can be performed 

only for a few binding sequences.  In-silico methods have long been used to supplement 

the experimental approach.  The in-silico approach analyzes a set of several sequences 

that possibly contain binding sites for the same protein factor. A large amount of such 

sequence data is now available through high throughput ChIP technologies (ChIP-Chip, 

ChIP-PET, ChIP-Seq, etc.), promoters of co-regulated genes identified by microarray, 

and upstream regions of orthologous genes from closely related species.  Still the binding 

site is difficult to distinguish from the surrounding DNA as it is short in length (5-20 bp) 

and contains various mutations.  Thus reliable computational algorithms are required to 

search for the common conserved motif.  Characterization and detection of biologically 

meaningful motifs is a long standing research problem in computational biology. 

 A recent paradigm in the modeling and detection of regulatory regions, especially 

in higher eukaryotes, is the study of clusters of binding sites for multiple TFs that act in 

concert [Crowley (1997), Wasserman and Fickett (1998), Frech et al. (1998), etc.].  

Though potential TFBS occur with high frequency in the genome, a significant 

proportion of them are nonfunctional [Euskirchen and Snyder (2004)].  The reason is that 

TFs function collectively and not individually.  Cis-regulatory modules (CRMs) [Arnone 

and Davidson (1997)] are one such type of autonomous units to which a set of TFs bind 

cooperatively.  Their annotation is especially important for understanding spatio-temporal 

specific gene expression in the developmental genes in higher eukaryotes.  Detection of 



14 

 

CRMs has received particular attention in Drosophila melanogaster and human genomes 

[Gallo et al. (2006), Sharan et al. (2004)].  CRM prediction also has potential application 

in determining the functional annotation of uncharacterized genes.  Many newly 

sequenced genes in various species have no functional annotation and the sequence 

analysis of their protein product also gives no clue on their function.  As CRMs are often 

responsible for context-specific gene expression, in-silico functional annotation may be 

possible by identifying specific CRMs controlling these genes.  For instance, novel mucle 

specific genes could be identified through computational identification of muscle specific 

CRMs near those genes [Frech et al. (1998)].  

I-2.3 Position information in the modeling of regulatory elements 

 The tasks of modeling and detection are closely related.  Accurate modeling is 

necessary for producing a robust computational detection method, which requires taking 

into account the underlying biological mechanism.  The present research improves upon 

the previous studies by incorporating a crucial biological aspect, namely position and 

order of the functional elements, into the computational model. 

 It is interesting to note that the computational modeling of transcription factor 

binding motifs, promoters and CRMs are all associated with a notion of position 

specificity (Figure I-7).  Functional binding sites are often found proximal to and at a 

specific distance from genomic features such as TSS, splice site or a related binding site.  

In fact, TFBS in the promoter are positioned carefully with respect to each other and the 

TSS [Werner (1999)].  In ChIP experiments, the binding sites for the immunoprecipitated 

TF are concentrated around the center of the ChIP sequence.  Additionally cofactor 

binding sites may be located at specific positions around the main TF binding sites.   
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The Role of Positional Specificity
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Figure I-7. Transcription factor binding motifs, promoters and CRMs are all 

associated with a notion of position specificity. 

Similarly in CRMs, the TFBS occur in a preferred order and distance with respect to each 

other [Bailey et al. (2003), Sinha et al. (2003)].  These characteristics have not been 

adequately exploited in the modeling and detection of these features.  The present 

research develops computational approaches / models that effectively integrate the 

positional information associated with these features. 

I-2.4 Bayesian network modeling 

 With respect to the modeling framework, the present research relies upon 

probabilistic modeling using Bayesian networks [Jensen (2001)].  Although the genomic 

sequence is a fixed deterministic sequence, on the functional level its composition and the 
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mechanism of its expression are stochastic in nature.  DNA sequences are tolerant to 

mutations and displacement of functional elements.  Therefore uncertainty based 

modeling is possible. 

 Within the framework of probability models, Bayesian networks appear attractive 

for the modeling of genomic data due to several inherent advantages.  Bayesian networks 

can easily and intuitively incorporate knowledge of the biological mechanism into the 

model, where causal relationships among the variables of interest can be defined both 

qualitatively and quantitatively.  The Bayesian network model is transparent in contrast 

to neural networks or SVM, for example inspection of the model parameters directly 

reveals the probabilisitic relationships among the variables.  This helps gain 

understanding about the problem domain and reveals new knowledge.   

 Bayesian networks have also shown superior performance as a computational 

machine learning tool.  Bayesian networks can easily integrate prior expert knowledge 

into the model, which is an inheritance from the Bayesian statistical framework.  Thus 

reliable inference can be made using a Bayesian network even using small training 

datasets, and overfitting of data to the model can be avoided, ensuring that the learnt 

model is more representative of the true population.  Both continuous and discrete 

variables can coexist in a Bayesian network.  The present research benefits from the the 

above advantages offered by Bayesian networks. 

I-3 Nature of the Problem 

 The present research involves three related problems, viz. (1) detection of DNA 

motifs, (2) general promoter modeling and transcription start site prediction, and (3) 



 17 

modeling and detection of cis-regulatory modules.  The computational nature of each of 

these problems and the challenges therein are discussed below. 

I-3.1 Detection of DNA Motifs 

 In-silico detection of protein-DNA binding motifs involves analyzing a set of 

several sequences that possibly contain binding sites for the same protein factor.  The 

binding sites are unknown in each of the input sequences, but they are conspicuous in the 

sequence set as similar repeating patterns.  The problem is however nontrivial as the 

binding sites are short in length (5-20 bp) and contain various mutations.  The 

computational algorithm searches for a common conserved pattern called the motif. 

 Though multiple alignment tools such as CLUSTALW [Thompson et al. (1994)], 

ITERALIGN [Brocchieri et al. (1998)] or PROBE [Neuwald et al. (1997)] could be used 

to detect a conserved pattern or block within the given set of sequences, detection of 

motifs is more difficult since they are short, lesser conserved and randomly distributed 

patterns.  A specialized computational algorithm for motif detection has three aspects 

[Friberg et al. (2005)]: 

(i) The motif model:  The motif is represented by a computational model which 

represents the nature of protein-DNA binding and the similarities and variabilities 

among the individual binding sites.  Common examples are (l,d) motif model 

[Pevzner and Sze (2000)] and positional weight matrix (PWM) [Stormo (2000)]. 

(ii) The scoring function:  It is a numerical score to measure the prominence or 

conservation of a motif in the given set of sequences, usually against a background 

model.  For example the Z-score [Tompa (1999)] and relative entropy score [Stormo 

(2000)]. 
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(iii) The algorithm:  In accordance with the motif model and the scoring function, the 

computational algorithm searches for the best candidate motif within the given set of 

sequences by a strategy such as exhaustive search [Staden (1989)], heuristic search 

[Pevzner and Sze (2000)], greedy search [Hertz and Stormo (1999)], multiple 

sequence alignment [Tharakaraman et al. (2005)], Gibbs sampling [Lawrence et al. 

(1993)], etc.  The best scoring candidate is reported as the desired motif. 

 Each of the above aspects contributes to the performance of the motif finding 

algorithm.  Furthermore a motif finding algorithm must address the challenges of time 

and memory complexity, noisy input in the form of spurious sequences which do not 

contain a binding site, conservation of the motif against random patterns [Keich and 

Pevzner (2002a,b)], accuracy of the background model, and competition among multiple 

motifs in the input sequences. 

I-3.2 General Promoter Modeling and Transcription Start Site Prediction 

 Computational promoter prediction involves differentiating promoter versus non-

promoter regions in a given genomic sequence, and predicting the locations of 

transcription start sites (TSS).  The main conserved functional elements within a 

promoter sequence are short length TFBS, while the rest of the sequence follows the 

random genomic background.  A promoter sequence is therefore hard to distinguish from 

the rest of the genome.  Also, promoter sequences hardly show any sequence similarity 

among themselves even for closely related genes, thus sequence similarity searching 

(such as BLAST) is ineffective in detecting promoter sequences.  Specialized 

computational promoter prediction algorithms are thus required. 
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 A computational promoter prediction algorithm must rely on two aspects: (i) 

recognition of TFBS (motifs), and (ii) modeling the combinations and context of these 

TFBS within promoter sequences.  While a lot is known about various TFBS (motifs) 

that play an active role in eukaryotic poly-II promoters [Latchman (2003)], yet detection 

of individual TFBS is insufficient for detecting the promoter.  For instance, about 30% of 

the human promoters contain a conserved binding site known as TATA box upstream of 

the TSS.  However binding sites for TATA box occur on an average once every 1000 bp, 

and thus it is insufficient in itself to characterize the promoter.  The crucial aspect is to 

model the context of several TFBS within the promoter.  This is where the difficulty in 

constructing a general computational model arises.  A great amount of diversity and 

complexity is observed in the organization of TFBS in promoters.  There is no general 

universal concept known to be applicable to all promoters.  There are thousands of 

transcription factors and their corresponding binding sites, with highly variable contexts 

observed among different promoter sequences, making the modeling very difficult. 

I-3.3 Modeling and Detection of Cis-Regulatory Modules 

 Computational modeling and prediction of CRMs poses greater challenge than 

promoters as (i) available data and biological information on CRMs is far less as 

compared to promoters [Gallo et al. (2006)], (ii) different CRMs are extremely varied in 

composition and their organization is even lesser understood than promoters [Arnone and 

Davidson (1997)], (iii) CRMs are intrinsically more difficult to model and predict than 

promoters since they may be located at any distance from the TSS and lack conserved 

anchoring features such as TATA box, CAAT box etc. which are found in promoters. 
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 CRMs have been most widely studied in the genome of Drosophila melanogaster 

(fruit fly).  Two kinds of CRMs have generally been observed in Drosophila – homotypic 

CRMs which are composed of multiple binding sites for a single TF, and heterotypic 

CRMs which have binding sites for more than one TF.  It is currently understood that the 

gene expression pattern (i.e. the region/tissue and the stage of gene expression) directed 

by a CRM depends upon the specific set of TFs that bind to the CRM.  A set of TFs that 

cooperatively bind to a CRM is called a “regulatory code”.  The regulatory codes are 

specific as only certain TFs can cooperate in the same regulatory event.  For example the 

TFs bicoid, caudal, hunchback, knirps, Kruppel, giant, tailless, etc are known to regulate 

gene expression in the blastoderm embryo [Berman et al. (2002); Schroeder et al. (2004)].  

Whereas the set of TFs dorsal, twist, su(H), etc. governs gene expression in the 

embrynoic neuroectoderm [Markstein et al. (2004)].  CRMs are defined to be of different 

“types” according to their specific regulatory codes.  CRMs of the same type will express 

in the same tissue and developmental stage. 

 The current computational techniques model CRMs of a specific type as a 

sequence of fixed length (such as 700bp) in which the number of TFBS of the regulatory 

code TFs exceeds a certain threshold [Markstein et al. (2002), Berman et al. (2002), 

Rajewsky et al. (2002), Lifanov et al. (2003), Schroeder et al. (2004)].  The regulatory 

code is obtained from biological knowledge.  Currently only three specific regulatory 

codes are known for gene expression in the embryonic blastoderm, mesoderm and 

neuroectoderm.  Thus the computational studies are limited to only few specific types of 

CRMs.  Moreover, currently the binding motifs (PWMs) are accurately known only for a 

few TFs.  Thus the scope of computational CRM prediction is presently very limited. 
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I-4 Research Objectives 

 The objective of the present research is to utilize the information of order and 

distance preferences of protein-DNA binding sites in each of the three problem domains, 

viz. DNA motif detection, general promoter and TSS prediction, and modeling and 

detection of CRMs, and create pragmatic computational models/strategies which improve 

the prediction performance.  This section briefly summarizes the specific research 

problems that have been addressed in this research. 

I-4.1 Detection of Localized Motifs 

 The present research especially addresses localized motif discovery in long 

regulatory sequences.  Currently there is a need for analyzing motifs in long sequences in 

ChIP experiments, vertebrate promoters, etc.  Recent studies [Keich and Pevzner 

(2002a,b), Buhler and Tompa (2002), Chin et al. (2004)] have shown that in long 

sequences random patterns become at least as prominent as the real motif, therefore any 

motif finding algorithm will report a number of spurious motifs that overshadow the real 

motif.  In addition, for most motif finding algorithms the time and memory requirements 

increase greatly for an increase in sequence length.  This forms the motivation for 

pursuing a specialized approach for motif detection in long regulatory sequences. 

 It is recognized in the literature that binding sites usually occur within the 

regulatory sequences in a position-specific manner relative to a biological landmark.  For 

example many TFBS are appropriately located relative to the TSS to allow TFs to anchor 

at specific positions with respect to each other and the TSS [Smale and Kadonaga (2003), 

Roepcke et al. (2006)].  Several other examples are reported in this dissertation.  In such 

situations, it is possible to detect the motif by searching for it in an appropriate local 
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sequence interval after aligning the sequences relative to an anchor point.  Localization 

removes the sequence regions that do not contain the motif, thus increasing the strength 

of the motif relative to noisy random patterns.  For instance, in Figure I-8(a) a random 

pattern appears as most repeated and conserved within the complete sequence length, 

whereas in Figure I-8(b), if only a short local interval relative to an anchor point is 

analyzed, the real biologically relevant motif is discovered.  [Ohler et al. (2002)] 

analyzed motifs in 1941 Drosophila regulatory sequences of length 300bp each aligned (-

250,+50) relative to the TSS.  The analysis of complete 300bp sequence did not reveal 

many of the core promoter motifs.  However, in a separate analysis of the local region (-

60,+40), most core promoter motifs were discovered.  Similarly [Molina and Grotewold 

(2005)] analyzed the (-50,-1) and (+1,+50) regions of Arabidopsis Thaliana promoters 

separately in order to discover the core promoter motifs. 

 An apparent solution is to subdivide the long sequences (aligned relative to an 

anchor point) into short overlapping intervals of equal length and analyze each interval 

with a motif finding algorithm.  However there are inherent problems in this approach.  

Firstly, apart from specific situations such as the analysis of core promoters, the region of 

localization of the motifs is not known a priori.  When a general motif finding tool is 

used to search for motifs in an arbitrary sequence interval, it reports a number of random 

motifs that are locally over-represented but not globally conserved.  The difference 

between a locally over-represented random motif and a globally conserved “localized 

motif” is illustrated in Figure I-9.  The localized motif has a specific confinement within 

a sequence interval when observed at a global level, while a random motif has no such 

confinement.  The scoring function of a general motif finding algorithm assigns high  



 23 

 
S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
3

ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG

S
N

TTTTAACACCTTGACATCTGATATCATACATGCGTTCAAAACAATCCGTA

Length = L

Position 1 Position L

S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
3

ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG

S
N

TTTTAACACCTTGACATCTGATATCATACATGCGTTCAAAACAATCCGTA

Length = LLength = L

Position 1Position 1 Position LPosition L  

(a) 

 
S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
3

ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG

S
N

TTTTAACACCTTGACATCTGATATCATACATGCGTTCTCTACAATCCGTA

Anchor Point (A)

Length = L

Position 1 Position LPosition p1 Position p2

S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
3

ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG

S
N

TTTTAACACCTTGACATCTGATATCATACATGCGTTCTCTACAATCCGTA

Anchor Point (A)

Length = L

Position 1 Position LPosition p1 Position p2

S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
3

ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG

S
N

TTTTAACACCTTGACATCTGATATCATACATGCGTTCTCTACAATCCGTA

Anchor Point (A)

S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
3

ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG

S
N

TTTTAACACCTTGACATCTGATATCATACATGCGTTCTCTACAATCCGTA

S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
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ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG

S
N

TTTTAACACCTTGACATCTGATATCATACATGCGTTCTCTACAATCCGTA

Anchor Point (A)Anchor Point (A)

Length = LLength = L

Position 1Position 1 Position LPosition LPosition p1Position p1 Position p2Position p2  

(b) 

Figure I-8. Discovering (6,1) motifs within a set of N sequences 1 2, , , NS S S  of 

length L.  In (a) the random pattern TTTAAA is seen to eclipse the real 

motif TTGACA when the complete sequence is analyzed, but in (b) the 

real motif TTGACA becomes dominant when only the local interval (p1,p2) 

is considered. 
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Figure I-9. Difference between the distribution of binding sites of (a) a localized motif, 

and (b) a spurious motif.  While both may appear over-represented in a 

local sequence interval, localized motifs have a prominent region of 

confinement within the entire sequence length. 
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scores to the random motifs, making it difficult to differentiate them from localized 

motifs.  Moreover, among a large number of motifs reported over all intervals, it is not 

easy to identify motifs that are most relevant over the entire sequence length.  Secondly, 

the interval length must be chosen carefully as if it is too short compared to the 

localization region then the motif may not appear prominently in any of the intervals, and 

if it is too long then the motif may again remain obscured.  This is illustrated by an 

example in Figure I-10, where the detection of multiple motifs spread over regions of 

different length requires selection of different interval lengths.  In practice, even a 100 bp 

difference in the interval length yields entirely different results.  Thirdly, the manual task 

of fragmenting the sequences and combining together the results for different intervals is 

laborious, time consuming and prone to error.  It would be useful to have an automated, 

efficient algorithm which can accurately demarcate the region of localization of the 

motifs and detect them. 

 [Tharakaraman et al. (2005)] incorporated positional preference in their motif 

finding algorithm GLAM by performing gapless local alignment over windowed  

 

Long interval:

Motifs become weak

Short interval:

Motifs may be missed

Motif A Motif B Motif C  

Figure I-10. An illustration of the difficulties in analyzing sub-intervals of long 

regulatory sequences – for short intervals, motifs A and C are missed, and 

for long intervals the motifs may become weak. 
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subsequences of the original sequence set (aligned relative to the TSS) instead of the 

complete length.  However the algorithm, being slow and computationally expensive, is 

practical only for the analysis of short sequences.  This dissertation introduces the 

concept of localized motif finding and presents an algorithm called LocalMotif [Narang et 

al. (2006)] for detecting localized motifs in long regulatory sequences. 

I-4.2 Bayesian Network Model for General Promoter Prediction 

 Computational algorithms for general promoter prediction currently have a 

sensitivity of about 35% and produce a large number of false positives.  Different 

algorithms make different simplifying assumptions about the context of TFBS in a 

promoter.  The accuracy achievable by a promoter model greatly depends upon how well 

it emulates the real biological context.  For example, a simple model of promoter as a 

region with a high TFBS density [Prestridge (1995)] had only 13% sensitivity and two 

false predictions per true prediction [Fickett and Hatzigeorgiu (1997)], while a more 

refined model considering positions of the TFBS relative to the TSS [Down and Hubbard 

(2002)] improved the accuracy to 29% sensitivity and 0.5 false predictions per true 

prediction.  Further modeling refinements have been proposed in the literature [Werner 

(2003)], such accounting for synergistic or antagonistic coordination among binding sites, 

modeling the positions and order of binding sites relative to each other, modeling 

physical properties of sequences around the TSS such as DNA bendability, stability, 

curvature, chromatin structure etc.  These aspects have not yet been implemented. 

 A parallel approach in computational promoter prediction is using artificial 

intelligence (AI) based systems.  These algorithms do not directly search for known motif 

signals, but rather perform unsupervised learning of string features (motifs) that are 
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unique to promoter sequences.  The features may be identified through discrimination 

between a set of training examples of promoter and non-promoter sequences using 

machine learning and statistical techniques [Hutchinson (1996), Chen et al. (1997), 

Scherf et al. (2000), Bajic et al. (2003)].  The context of these features within the 

promoter is also learnt from training examples in an unsupervised manner using AI 

modeling techniques such as artificial neural networks.  Increasing the modeling 

complexity and carefully tuning the training process allows high accuracy to be achieved 

with the unsupervised learning approach [Scherf et al. (2000), Bajic et al. (2003)].  The 

advantage of this approach lies in the ability to recognize using machine intelligence 

compositional aspects of promoter sequences that are not so far physically understood.   

 The present research combines known biological concept of modeling positions 

and order of TFBS relative to the TSS, with the AI approach of performing de-novo 

learning of promoter features from sequence, in a computational promoter prediction 

model of improved performance called BayesProm [Narang et al. (2005)]. 

I-4.3 Cis-Regulatory Module Prediction in the Drosophila Genome 

 The current computational approach for CRM prediction characterizes the CRMs 

as short (~1 kb) genomic segments containing high density of binding sites for a set of 

co-acting TFs [Frech et al. (1998); Wasserman and Fickett (1998); Frith et al. (2001); 

Berman et al. (2002); Markstein et al. (2002); Rajewsky et al. (2002); Bailey and Noble 

(2003); Sinha et al. (2003); Berman et al. (2004); Markstein et al. (2004); Schroeder et al. 

(2004)].  The set of cooperating TFs is called the regulatory code.  The binding sites of 

the TFs are recognized with the help of positional weight matrices (PWMs) for the TFs 

[Stormo (2000)]. 
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 The main challenge for this approach is that the compositions of different CRMs 

regulating gene expression in different developmental stages and tissues are exceedingly 

varied.  Each specific expression profile is governed by a specific regulatory code.  

Presently the regulatory codes are extracted based on tedious wet-lab experiments and 

biological knowledge.  Only three such codes are currently known to our best knowledge.  

Thus the applicability of the approach is quite limited.  Another limitation is that good 

quality PWMs, which are required to predict the TFBS clusters, are available only for a 

few TFs.  Currently the PWMs have been computed from a small number of 

experimental TFBS sequences determined by DNAse footprinting.  Most of these PWMs 

lack sufficient sensitivity and specificity [Narang et al. (2006)]. 

 On the other hand, available experimental data on CRMs has expanded in the 

recent years, but has not been utilized so far towards computational modeling and 

prediction of CRMs.   Sequence based modeling of CRMs such as using oligonucleotide 

frequencies has been recently attempted and has shown some degree of success in 

modeling blastoderm CRMs [Chan and Kibler (2005)]. However, the performance 

diminishes considerably on various other CRM types [Li et al. (2007)].  The main reason, 

as shown in the present research, is that oligonucleotide motifs produce a large number of 

false matches in the non-TFBS segments of a CRM.  These non-TFBS segments are not 

conserved across CRMs.  Therefore the model is inaccurate. 

 The present research develops a computational CRM modeling and prediction 

approach called Modulexplorer [Narang et al. (2008)] to perform de-novo learning of 

regulatory codes for Drosophila CRMs from CRMs of unknown types.  Modulexplorer 

inputs a database of known CRMs and a set of non-CRM background sequences and 
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characterizes the TFBSs within the CRMs de-novo.  It then uses a probabilistic Bayesian 

network model to learn the TFBS interactions in CRMs.  These interactions describe the 

regulatory codes.  The trained model is used to discover novel CRMs. 

I-5 Organization of the Thesis 

 Three specific research problems which form the subject of this thesis were 

briefly introduced in Section I-4.  Each of these is presented in a separate chapter – the 

localized motif finding problem is addressed in Chapter 4, followed by the general 

promoter prediction problem in Chapter 5 and finally cis-regulatory module prediction in 

Chapter 6.  Each chapter is self-contained with the problem statement, methods and 

results.  A review of the current literature within the scope of this research is given in 

Chapter 2.  Some common mathematical preliminaries are provided in Chapter 3.  The 

main conclusions of this research and future work are finally discussed in Chapter 7. 
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CHAPTER - II 

LITERATURE REVIEW 

 Several computational approaches have appeared in the literature addressing each 

of the three problems subject of the present research.  An exhaustive review of these 

would make this dissertation voluminous.  Thus only a summary of the relevant existing 

approaches is presented below, highlighting their similarities and differences with the 

present research. 

II-1 Detection of DNA Motifs 

 Numerous computational methods and tools have been reported over the past 

fifteen years or so for discovering motifs in regulatory regions of genes.  Recent reviews 

on the subject can be found in [Tompa et al. (2005), D‟haeseleer (2006a,b), Wasserman 

and Krivan (2003)].  The different approaches differ in terms of the motif model, scoring 

function and algorithm. 

 A number of different representations of a motif are available in the literature.  

Most algorithms model the motif as either consensus sequence, or consensus sequence 

with possible gaps, or as positional weight matrix (PWM) (refer Chapter 3).  Other 

probabilistic model based representations of a motif such as hidden Markov model 

[Durbin et al. (1998), Xing et al. (2004)], Bayesian network model [Barash et al. (2003)], 

variable order Bayesian network [Ben-Gal et al. (2005)], etc. are also found in the 

literature.  The present research uses a particular consensus based representation called 

(l,d) motif [Waterman et al. (1984), and Pevzner and Sze (2000)], where the motif is a 

nucleotide pattern of fixed length l such that any observed binding site has a maximum of 

d point mutations from this pattern.  Though the PWM representation is preferred for 
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modeling motifs with experimentally known binding preferences, the consensus or (l,d) 

motif representation is found equally or more effective in ab-initio motif detection 

[Pavesi et al. (2001), Tompa et al. (2005)]. 

 A recent review of the various scoring functions used for motif detection can be 

obtained in [Li and Tompa (2006)], while an assessment of various scoring functions was 

performed in [Friberg et al. (2005)].  The simplest scoring functions for consensus based 

motif representation are the total distance score and sum of pairs score [Pevzner and Sze 

(2000)], which measure the degree of conservation of a (l,d) candidate motif within the 

set of input sequences.  However, these scoring measures do not capture the complexity 

of DNA sequences in terms of their non-uniform oligonucleotide content.  Thus several 

motif finding tools score the statistical over-representation of a motif in the given set of 

sequences, for example oligo-analysis [van-Helden et al. (1998)], MobyDick 

[Bussemaker et al. (2000)], YMF [Sinha and Tompa (2000)], Projection [Buhler and 

Tompa (2002)], etc.  The over-representation is measured relative to the general 

nucleotide content of the given set of sequences, known as genomic background.  The 

background is usually modeled as a stationary stochastic process with a Markov model 

(see Section III-1).  While earlier tools used a zero order Markov model to represent the 

genomic background, it has been realized recently that higher order Markov models 

produce better efficiency of motif detection [Thijs et al. (2001), Marchal et al. (2003), 

Pavesi et al. (2001)].  In addition to over-representation, there are other important 

measures of goodness of a motif such as relative entropy [Stormo (2000)] which 

measures the amount of surprise in observing the motif pattern under the background 
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model, sequence specific score [Pavesi et al. (2001)] which measures whether the motif 

appears in a sufficiently large percentage of the input sequences, etc. 

 The algorithms used to search for the best candidate motif usually belong to one 

of the two categories: word enumeration and probabilistic optimization.  The choice of 

the algorithm partially depends upon the chosen motif representation.  Word enumeration 

based algorithms employ a consensus sequence representation of the motif with or 

without gaps.  An exhaustive enumeration approach [Waterman et al. (1984)] involves 

considering all possible 4l  candidate (l,d) motifs and scoring them.  Though an exact 

algorithm, it has high time complexity.  Thus Pevzner and Sze (2000), and Eskin and 

Pevzner (2002) introduced three heuristic search algorithms, SP-STAR, WINNOWER 

and MITRA.  SP-STAR first considers candidate patterns that have an exact match in any 

of the sequences, and then heuristically extends the search to include more candidate 

patterns which are similar to the best scoring patterns.  WINNOWER and MITRA 

translate the motif finding problem to an equivalent problem of finding cliques in a graph, 

and find a quick heuristic solution by pruning inessential edges in the graph.  A faster 

implementation of exhaustive enumeration is possible using suffix tree [Ukkonen (1995)], 

which can enumerate all valid occurrences of a candidate pattern in all the sequences in 

O(1) time.  Taking advantage of this approach, fast algorithms such as SMILE [Marsan 

and Sagot (2000)] and Weeder [Pavesi et al. (2001)] have appeared.  Recently the motif 

finding problem has also been formulated as a search for the maximum density subgraph 

of a graph whose nodes are the words in the input sequences, and whose edges connect 

similar words [Fratkin et al. (2006)].  The resulting optimization can be performed in 

polynomial time.  Some word enumeration algorithms consider only the exact matches of 
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a length l pattern in the sequences in order to detect the motif [Staden (1989), van Halden 

et al. (1998), Tompa (1999)].  All word enumeration algorithms algorithms may be 

extended to detect gapped motifs by considering only the significant positions in the 

alignment. 

 Probabilistic motif finding algorithms represent a motif as a positional weight 

matrix (PWM).  The PWM which has the lowest probability of occurring by chance (or 

highest score) describes the most novel pattern, which is presumably the motif being 

sought.  Considering that one binding site for the motif is present in each of the N 

sequences of length L,  1
N

L l   different PWMs can be possibly formed, making an 

exhaustive search algorithm impractical.  Therefore different algorithms have been 

devised to efficiently search for the optimal PWM.  An approximate heuristic method 

was used in CONSENSUS [Hertz et al. (1990)].  A systematic optimization approach 

later appeared as the MEME algorithm [Bailey and Elkan (1994)].  MEME fits a 

statistical model to the given set of sequences, consisting of the motif model (i.e., the 

PWM), the background model described as a zero order Markov model, and a weight 

parameter representing the mixing frequency of the motif and the background models.  

The accuracy of the overall statistical model is measured by a likelihood function, which 

is optimized iteratively using the expectation maximization (EM) algorithm to find the 

best motif and background models.  Being an EM based solution, MEME finds the local 

rather than the global optimum.  A related optimization approach called Gibbs sampling, 

which is a stochastic equivalent of the EM, has been implemented in several other tools 

such as GibbsDNA [Lawrence et al. (1993)], AlignACE [Roth et al. (1998)], 
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MotifSampler [Thijs et al. (2002)], BioProspector [Liu et al. (2002)], ANN-spec 

[Workman and Stormo (2000)] etc. 

 Latest advances in motif detection try to make use of information other than just 

the regulatory sequence to improve the prospects of detecting the motif.  For instance, in 

regulatory sequences that have been identified using ChIP-chip analysis, ChIP 

enrichment information may be used to enhance motif detection [Liu et al. (2002), 

Ettwiller et al. (2007)].  From the knowledge of the nature of interaction between 

nucleotides and amino acids in DNA-binding domains of a set of transcription factors, 

binding sites for other related transcription factors may be possible to derive [Mandel-

Gutfreund et al. (2001), Kaplan et al. (2005)].  Specialized algorithms are being 

developed to discover composite motifs, which are spaced dyads or ordered sets of motifs 

with strong distance constraints [van Helden et al. (2000), Eskin and Pevzner (2002), 

Wijaya et al. (2007)]. 

 The literature in the area of motif finding is indeed vast, and to maintain the 

brevity of this review, aspects and references of lesser relevance to the present context 

have been intentionally left out. 

II-2 General Promoter Modeling and Transcription Start Site Prediction 

 A number of tools for the detection of general promoters and TSS are reported in 

the literature.  There are two categories of modeling approaches or tools for promoter 

prediction.  The first category of tools [Kondrakhin et al. (1995), Prestridge (1995), 

Down and Hubbard (2002)] utilize positional weight matrices (PWM) derived from 

experimental data [Bucher (1990)] for detecting putative TFBS and identify sequence 

regions with a high density of binding sites as possible promoters.  The state of the art in 
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this category, Eponine [Down and Hubbard (2002)], improves the model quality and 

prediction accuracy by associating with each PWM the probability distribution of its 

position relative to the TSS.  The second category of tools [Hutchinson (1996), Chen et al. 

(1997), Scherf et al. (2000), Bajic et al. (2003)] recognize promoters based on their 

sequence composition.  Characteristic features of promoter sequences are learnt 

automatically from a set of training examples using machine learning or statistical 

techniques.  An unknown sequence is then classified as promoter or non-promoter based 

on its feature content.  Most tools use oligonucleotides of fixed length as features 

[Hutchinson (1996), Chen et al. (1997), Bajic et al. (2003)] and select the best features 

based on occurrence frequencies of oligonucleotides in promoter versus non-promoter 

training datasets.  PromoterInspector [Scherf et al. (2000)] uses IUPAC groups, which are 

oligonucleotides permuted with wildcards, as features. 

 About 6-10 years ago, the first generation of tools could predict less than 30% of 

the actual TSS, while reporting one false positive every 1000 bp [Fickett and 

Hatzigeorgiou (1997)].  Recent research has focused on achieving improved TSS 

prediction performance through better tuning and increased modeling complexity.  The 

resultant 2
nd

 generation tools [Werner (2003)], such as PromoterInspector, Eponine, 

Dragon Promoter Finder, etc. have accuracy which is suitable for whole genome scale 

prediction.  However, the increase in sensitivity has been much less compared to the 

improvement in the specificity of these tools.  More recently, biologically motivated 

approaches such as CpG+ [Hannenhalli and Levy (2001)] and gene start finding tools 

such as First Exon Finder [Davuluri et al. (2001)] and Dragon Gene Start Finder [Bajic 

and Seah (2003)] have exploited features such as CpG islands and first splice donor sites 
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to improve the accuracy of TSS prediction.  Approaches utilizing physico-chemical 

properties [Uren et al. (2006)] and structural properties [Abeel et al. (2008)] of DNA 

have been proposed recently, however they have lower accuracy than the sequence based 

methods. 

II-3 Modeling and Detection of Cis-Regulatory Modules 

 The literature on the computational modeling and detection of cis-regulatory 

modules is fairly recent and limited.  Modeling and prediction techniques have developed 

independently in two different areas viz. vertebrate CRMs and CRMs in Drosophila 

melanogaster.  Few vertebrate CRM models have appeared in the literature such as 

FASTM [Klingenhoff et al. (1999)], logistic regression analysis [Wasserman and Fickett 

(1998)] and Modulesearcher [Aerts et al. (2003)].  These models study specific CRMs 

present close to the TSS, which are involved in tissue specific gene expression such as in 

muscle tissues.  They are not discussed in detail here since the focus of this dissertation is 

on Drosophila CRMs, and models for Drosophila CRMs are characteristically different 

from vertebrate CRM models. 

 The simplest computational model for Drosophila CRMs was as a cluster of 

TFBS.  Markstein et al. (2002) modeled a homotypic CRM in Drosophila (Figure II-1a) 

as a cluster of TFBS for a single TF.  They considered a cluster of three or more binding 

sites of the TF named Dorsal in a 400 bp window as a CRM.  Similarly [Berman et al. 

(2002)] modeled a heterotypic CRM as a cluster of TFBS for multiple TFs (Figure II-1b).  

A minimum of fifteen TFBS for a set of five TFs – two maternal TFs (bicoid and caudal) 

and three gap TFs (hunchback, Kruppel and knirps) – were requisite in a 700 bp window 

to classify it as a CRM.  Prediction quality was improved by [Rajewsky et al. (2002)] and 
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[Schroeder et al. (2004)] by allowing overlapping and weak binding sites into the 

computational model, considering a statistically optimal combination of TFBS over a 

sequence window rather than single matches.  The cluster model is specified based on 

biological knowledge of mutually interacting TFs in a CRM, and it requires high quality 

PWMs as input.  Thus it has limited application. 

 Another way of modeling a CRM as a cluster of TFBS is using hidden Markov 

models (HMM) [Frith et al. (2001)].  PWMs for a set of related TFs are supplied by the 

user based on prior biological knowledge, and the HMM uses these to discover clusters 

of TFBS (CRMs) in a given genomic sequence.  The HMM (Figure II-1c) has three types 

of states: inter-cluster background, intra-cluster (i.e. between the TFBS) background, and 

motif states.  There is a separate motif state for each TF, with its emission probabilities 

defined using the PWM.  The model scans the regulatory sequence base by base to 

compute the probability that the query sequence contains a cluster of TFBS. 
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Figure II-1. Computational models for cis-regulatory modules: (a) homotypic cluster of 

TFBS [Markstein et al. (2002)], (b) heterotypic cluster of TFBS [Berman 

et al. (2002)], (c) hidden Markov model [Frith et al. (2001)], (d)  statistical 
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model of Gupta and Liu (2005), (e) discriminatory Bayesian network 

model of Segal and Sharan (2005). 

 The HMM approach was further developed by Sinha et al. (2003) to include the 

information of order in which TFBS are organized in a CRM (i.e. when one TFBS 

consistently follows another).  The modified model produced superior results compared 

to the basic model where binding sites are expected to occur in any random order.  In 

another study, Bailey and Noble (2003) incorporated a penalty for inter-cluster and intra-

cluster distances within the HMM, and again observed an improvement in the quality of 

predictions.  These studies point out two important factors in CRM modeling, i.e., the 

information of gap and order among the TFBS. 

 Two algorithms have appeared recently for learning a new CRM model de-novo 

from sequence data of co-regulated genes.  Given as input a set of sequences putatively 

containing CRM of the same type, they attempt to discover multiple coexisting motifs 

and learn their PWMs.  However the requirement is that all given sequences contain the 

same CRM type restricts their applicability to very specific datasets.  Gupta and Liu 

(2005) propose a statistical model (Figure II-1d) with the following unknown parameters: 

(i) the number of TFs, (ii) PWMs for the TFs, (iii) neighbor preferences of each TFBS in 

the form of a transition matrix, (iv) distance preferences between neighboring TFBS 

modeled as a truncated geometric distribution, (v) inter-TFBS background modeled by a 

Markov chain.  The model parameters are learnt from sequence data using Bayesian 

inference with Markov chain Monte Carlo and Gibbs sampling algorithms.  Segal and 

Sharan (2005) use a discriminative Bayesian network (Figure II-1e) to learn a fixed 

number of PWMs that best discriminate between two given sequence sets – sequences 

that contain an unknown CRM, and background sequences.  The model defines a CRM as 
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a cluster of binding sites for the PWMs in a fixed length sequence window, with the 

discriminative Bayesian network model measuring odds that (i) a particular sequence 

contains a CRM window, (ii) a window is a CRM , and (iii) a window contains binding 

site for a given PWM.  Maximum likelihood estimation of the model parameters using 

the expectation maximization (EM) algorithm can thus obtain the unknown PWMs.  In 

both studies, initialization of parameters is the most crucial aspect.  Ab-initio motif 

finding with human intervention is used to produce intelligent initial guesses for the 

PWMs in both studies. 

 The present research concerns development of a CRM model which learns 

regulatory codes de-novo.  None of the computational studies (including in vertebrates) 

have so far addressed this problem.  The present research is unique in this aspect.  
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CHAPTER - III 

PRELIMINARIES 

This chapter discusses the fundamental computational modeling concepts used 

throughout this dissertation, including Markov modeling of genomic background (Section 

III-1), consensus sequence and PWM based representations of DNA motifs (Section III-

2), fundamentals of Bayesian network modeling (Section III-3), and measures of 

prediction accuracy (Section III-4).  Each section is self-contained and is referred to in 

the later chapters wherever required.  A reader familiar with the problem domain may 

skip this chapter and refer back to the relevant sections if required. 

III-1 Stochastic Model of the Genome 

III-1.1 The Background Model 

 In the human genome, which contains approximately 3 billion bases, only 1% of 

the sequence is exons that code for proteins, 24% is introns, 22% is intergenic DNA and 

the rest 53% is repetitive DNA.  Apart from the existence of short regulatory signals such 

as transcription factor binding sites proximal or distal to the TSS, no specific function is 

known for most DNA.  Mathematical model for this „background‟ DNA is required in 

order to be able to distinguish it from functional elements.  Simple frequencies of 

individual bases have been used in several computational studies [Lawrence et al. (1993), 

Bailey and Elkan (1994), van Halden et al. (1998), Tompa (1999)].  However, the 

genomic background is not as simple.  For instance, a dinucleotide feature such as CpG 

island cannot be identified using individual base frequencies.  As mentioned in Chapter 2, 

a more complex representation of the background in the form of a higher order Markov 

model has been found useful in improving the efficiency of the computational method. 
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 The Markov model (or Markov chain) is a stochastic process which has the 

Markov property that the current state of the process depends only on the recent past.  Let 

tX  be a discrete time stochastic process observed at 1,2,3,t   , and let the state space 

of tX  be also discrete.  The Markov property for a Markov model of order q states that at 

any time instant i, the distribution of the observation iX  is conditionally dependent only 

on the previous q observations, i.e., 

    1 2 0 1 2Pr , , , Pr , , ,i i i i i i i qX X X X X X X X       (3.1) 

 In the Markov model representation of the genome background, a sequence of 

nucleotides 1 2 NS S S , where  , , ,iS A C G T , is treated as an instance or realization of 

the Markov process tX  with the random variable iX  having discrete states  , , ,A C G T .  

This physically implies that the nucleotide iS  at any position i depends only on the 

previous q-mer of nucleotides 2 1i q i iS S S   . 

 A simple way of visualising a Markov chain is through a finite state machine. 

Consider a Markov model of order 1, i.e.,    1 2 0 1Pr , , , Pri i i i iX X X X X X   , which 

implies that the next observed nucleotide in the sequence depends only on current 

nucleotide.  The finite state representation of this model is shown in Figure III-1.  The 

probability distribution  1Pr i iX X   is characterized by the set of probabilities 
1 2B Bp , 

where  1 2, , , ,B B A C G T , and 
1 2B Bp  is the probability of observing the base B2 

following the base B1 in the sequence.  These probabilities are independent of the 

position index i of the base in the sequence.  The 4 4  matrix of these probabilities, 
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 1 2
1 2 , , ,

B B
B B A C G T

P p


    , is called the transition matrix.  Let the probability distribution for 

the first base,  1Pr X , be the vector  A C G TI p p p p .  The probability 

distribution for the second base is given as  2Pr .X I P , and similarly for the i
th

 base as 

  1Pr . i

iX I P  .  Thus the complete Markov chain, in this first order case, can be 

characterized by the initial vector I and the transition matrix P.  

A C

G T

pCA

pAC

pTCpAG

pGT

pTG

pCTpGA

pCG

pTApGC

pAT

 

Figure III-1. Finite state machine visualization of a first order Markov model for 

sequence background. 

 The above concepts may be generalized to an order q Markov model.  The state 

transition in this case is from a q-mer to a single nucleotide.  The transition probabilities 

are thus the probabilities  1 2 1Pr q qB B B B  , and the transition matrix P is a 4 4q   

matrix.  The initial state is again a q-mer, and thus the initial probability vector, I, 

contains 4q  entries. 

 The background model parameters P and I are usually estimated from a set of 

given background genomic sequences.  Such sequences are collected at random from 

intergenic regions which are not suspected to contain any functional elements.  Let 
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 1 2 lf B B B  denote the number of occurrences of the l-mer 1 2 lB B B  in these 

sequences.  Then the initial and transition probabilities are estimated as 

    1 2 1 2Pr 1q qB B B f B B B  , (3.2)  

and  
 
 

1 2 1

1 2 1

1 2

Pr
q

q q

q

f B B B
B B B B

f B B B



 





 (3.3)  

III-2 Computational Modeling of Protein-DNA Binding Sites (Motifs) 

 Due to their degenerate nature, the binding sites are not fixed strings but are 

represented as a model called motif.  Two frequently used ways of representing a motif 

viz. consensus sequence and positional weight matrix are described below. 

III-2.1 Consensus sequence 

 The consensus sequence is a string or regular expression that matches all the 

binding site examples closely, but not necessarily exactly.  For instance, the consensus 

CONS1 in Figure III-2 is determined by choosing the base with the highest occurrence 

frequency at each position of the binding site.  The consensus CONS2 uses IUPAC 

nomenclature (Figure III-3) of single letter codes to represent ambiguity in the base at 

any particular position.  A base is considered significant at a position if occurring in more 

than 25% of the binding sites. 

 There is a tradeoff between sensitivity and specificity in choosing the consensus 

representation and the number of allowed mismatches with the consensus.  Sensitivity 

refers to the percentage of binding sites that can be identified using the chosen consensus 

and the maximum mismatch value.  For example, the consensus CONS1 above has a 

sensitivity of 40% with 2 allowed mismatches and 90% with 3 mismatches.  Specificity 
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refers to how frequently a match with the consensus would be found.  The probability of 

a random match with consensus CONS1 is 1 in 1.1 million for up to 2 mismatches and 1 

in 81,000 for up to 3 mismatches.  The CONS2 consensus has a sensitivity of 50% with 1 

mismatch and 90% with 2 mismatches, and specificity of 1 in 1.6 million with 1 

mismatch and 1 in 41,000 with 2 mismatches. 

 
Position  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Seq 1 C T T G G C C A A T C A G A A 

Seq 2 T T C A G C C A A T C G G A G 

Seq 3 C G C G G C C A A T C A G C G 

Seq 4 T T T A G C C A A T C A G C T 

Seq 5 C C T G G C C A A T C A G C G 

Seq 6 C C C G G C C A A T C A G C G 

Seq 7 G T T A G C C A A T C A G C A 

Seq 8 A T C A G C C A A T G A G C T 

Seq 9 C C C A G C C A A T C A G A G 

Seq 10 C T C A G C C A A T G G G C G 

CONS1 C T C A G C C A A T C A G C G 

CONS2 C Y Y R G C C A A T C A G M G 

Figure III-2. A small sample of binding sites for the transcription factor NF-Y. 

Symbol A C G T R Y M K 

Meaning A C G T A/G C/T A/C G/T 

Symbol S W H B V D N  

Meaning G/C A/T A/C/T G/C/T A/C/G A/G/T A/C/G/T  

Figure III-3. Single-letter IUPAC codes for representing degeneracy of nucleotides. 

 The consensus representation is thus not unique and the optimal consensus 

depends upon the application in question [Day and McMorris (1992)].  For representing 

protein-DNA binding sites, the CONS1 type of representation, which is basically the (l,d) 

motif, is most often used. 
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III-2.2 Positional Weight Matrix 

 A more informative representation for the binding site of a protein is in the form 

of a positional weight matrix (PWM) [Stormo et al. (1982), Stormo (2000)].  The PWM 

records the base conservation at each binding site position.  First an alignment matrix is 

formed whose entries are the frequencies, ,b jf , of the nucleotides,  , , ,b A C G T , in the 

positions,  1,2, ,j l  , among known binding site sequences.  For example Figure 

III-4 shows the alignment matrix for the binding site data shown in Figure III-2.  The 

base conservation is measured by a weight   ,
, ln

b j

b

f
w b j

p

 
  

 
, where bp  is the 

background frequency of the base b.  The weight  ,w b j  is positive when the proportion 

of base b at the position j in the alignment is greater than its proportion in general 

(according to background).  It measures the amount of surprise in the observed 

conservation of the base.  The 4 l  matrix of the weights  ,w b j  is called the positional 

weight matrix as shown in Figure III-4. 

Alignment matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 0.1 0 0 0.6 0 0 0 1 1 0 0 0.8 0 0.3 0.2

C 0.6 0.3 0.6 0 0 1 1 0 0 0 0.8 0 0 0.7 0

G 0.1 0.1 0 0.4 1 0 0 0 0 0 0.2 0.2 1 0 0.6

T 0.2 0.6 0.4 0 0 0 0 0 0 1 0 0 0 0 0.2

Positional Weight Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A -0.92 0 0 0.88 0 0 0 1.39 1.39 0 0 1.16 0 0.18 -0.22

C 0.88 0.18 0.88 0 0 1.39 1.39 0 0 0 1.16 0 0 1.03 0

G -0.92 -0.92 0 0.47 1.39 0 0 0 0 0 -0.22 -0.22 1.39 0 0.88

T -0.22 0.88 0.47 0 0 0 0 0 0 1.39 0 0 0 0 -0.22  

Figure III-4. Positional weight matrix developed from the collection of NF-Y TFBS in 

Figure III-2. 
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 Another interpretation of the weight is that it represents the information content, 

which is a measure of discrimination between the binding of a functional DNA sequence 

and an arbitrary DNA sequence.  The information is measured by the formula 

 
 

 
 

,

, ,

1 , , , , , ,

   with    ln ,
l

b j

total j j b j b j

j b A C G T b A C G Tb

f
I I I f f w b j

p  

 
   

 
   , (3.4)  

where jI  is the information in the base conservation at position j.  Note that , 1b j

b

f  .  

totalI  is also known as the relative entropy or the Kullback-Liebler distance between the 

background and the motif. 

 A strong correlation has been observed between the information represented by 

the PWM and the affinity of the protein‟s binding with a sequence [Stormo (2000)].  

Consider a sequence 1 2 lS S S S   with  , , ,iS A C G T .  The binding energy of the 

protein‟s interaction with the sequence S has been observed as directly correlated with the 

measure    
1

,
l

i

j

G S w S j


  .  This is the sum of the values that each base of the 

sequence S has in the weight matrix.  The implication of this formula is that each weight 

estimates the binding energy at that position in the binding site and each position 

contributes independently to the total binding energy. 

 The PWM can thus be used to search for potential binding sites in an 

uncharacterized sequence 1 2 LS S S S  .  At each position,  1,2, , 1p L l   , of the 

uncharacterized sequence S, a window 1 1p p p p lS S S S     of length l is selected.  Using 

the PWM, the “matrix score” for this window is calculated by the formula [Bucher 

(1990)]: 
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   

   

1

1

1

, min ,

Matrix score for 

max , min ,

l

p j j

j

p l

j j

j

w S j w j

S

w j w j

 





 
 



 
 





 , (3.5)  

where max j  and min j  represent the rows for which  ,w b j  is maximum and minimum 

respectively in the column j.  The matrix score is a real number within the range [0, 1].  If 

the matrix score for the window pS  exceeds a chosen threshold value, it is marked as a 

potential binding site.  Typically the score threshold is selected based on the scores of 

known binding sites.  Unfortunately, however, PWM based binding site detection is not 

fully reliable and can produce a large numbers of false positives [Stormo (2000)]. 

III-3 Bayesian networks 

 Bayesian networks offer several advantages as a modeling tool within the context 

of bioinformatics applications.  This section briefly discusses the most fundamental 

Bayesian network modeling concepts. 

 A Bayesian network is a formalism to represent and reason about probabilistic 

cause-and-effect relationships among a set of entities or events in an intuitive manner.  It 

has two components – (i) a graphical map of the cause-and-effect relationships among the 

entities or events in the domain, and (ii) a numerical measurement of the extent of this 

dependence. 

 In the graph, each entity or event is represented as a node, and the cause-effect 

relationships among the nodes are shown by directed edges linking causes to effects.  

This is technically called a directed acyclic graph (DAG).  For example, consider a 

Bayesian network model of the causes of heart disease as shown in Figure III-5.  The 
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different events or causes associated with heart disease such as diet, obesity, blood 

pressure, smoking etc. are shown in oval shaped nodes.  The causal relationships are 

shown as edges, e.g. since exercise directly affects obesity, blood pressure and 

arteriosclerosis, it is the parent of these three nodes. 

Diet Exercise Family history

Obesity Cholesterol

Blood Pressure Arteriosclerosis

Heart Disease
Yes

No

High

Medium

Low

High

Medium

Low

High

Medium

Low

Yes

No

Yes

No

Fatty

Non-fatty

High

Medium

Low

Yes

No
SmokingDiet Exercise Family history

Obesity Cholesterol

Blood Pressure Arteriosclerosis

Heart Disease
Yes

No

High

Medium

Low

High

Medium

Low

High

Medium

Low

Yes

No

Yes

No

Fatty

Non-fatty

High

Medium

Low

Yes

No
Smoking

 

Figure III-5. A Bayesian network for modeling the causes of heart disease. 

 In the numerical representation, each entity or event (from now onwards referred 

to as a node in the Bayesian network) is represented by a variable which can take a set of 

possible values or states for the event.  For example, the set of possible states of each 

node are shown alongside the nodes in Figure III-5 in rectangular captions.  A conditional 

probability table (CPT) is associated with each variable to quantify the extent to which 

the variable is likely to be affected by other variables.  For example the CPT of obesity is 

illustrated in Figure 6, showing the probabilistic dependence of an individual‟s obesity on 

his diet and exercise habits.  Each row of the CPT shows how obesity is affected by a 

particular combination of its parents, diet and exercise.  E.g. a fatty diet with low exercise 

is likely to produce obesity in 35% of the cases (row 3 of the CPT).  Note that the sum of 

probabilities in each row of the CPT is always 1. 
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Diet Exercise Obesity=High Obesity=Medium Obesity=Low 

Fatty High 0.2 0.4 0.4 

Fatty Medium 0.25 0.5 0.25 

Fatty Low 0.35 0.5 0.15 

Non-fatty High 0.1 0.2 0.7 

Non-fatty Medium 0.15 0.25 0.6 

Non-fatty Low 0.2 0.3 0.5 

Figure III-6. Conditional probability table (CPT) for the node “obesity” in the Bayesian 

network of Figure III-5. 

 In the Bayesian network structure as shown in Figure III-5, a node from which 

there is an edge to another node is called a parent of that child node, e.g. the node “diet” 

is a parent of the node “obesity”.  Similarly there is an ancestor-dependent relationship 

between nodes that are linked in a chain, e.g. “diet” is an ancestor of “blood pressure”.  

These relationships describe how one variable influences the state of another variable.  

The parent nodes directly influence the child node, while the ancestor nodes have an 

indirect influence upon their descendants.  There exists a conditional independence 

relationship in the network, which is stated as follows: a node is independent of its 

ancestors given its parents.  E.g. since diet affects blood pressure not directly but through 

obesity, once the information of a person‟s obesity is available, knowledge of his diet 

does not give any additional information about his blood pressure. 

 Defining a Bayesian network model for a given problem involves specifying (a) 

the variables or nodes in the graph, (b) the set of possible states for each node, (c) the 

edges connecting the nodes in the graph, (d) the probability distributions or CPTs 

associated with each node.  The former three, i.e. the nodes, states and the edges, 

comprise the Bayesian network structure, and the latter comprises the parameters.  The 

structure represents modeler‟s understanding or beliefs about the problem domain, and 

there is a fair bit of flexibility possible in choosing the structure. 



 49 

 In mathematical terms, the concept of conditional independence is explained as 

follows.  Each node in the Bayesian network is a random variable. The complete joint 

distribution of this set of N random variables 1 2, , , NX X X  is given by the chain rule as 

    1 2 1 2 1

1

Pr , , , Pr , , ,
N

N i i i

i

X X X X X X X 



  . (3.6)  

Note that the variable iX  is conditioned on the variables 1 2 1, , ,i iX X X    which precede 

it in the topological ordering.  The conditional independence between the variables 

allows this joint distribution to be simplified.  Instead of being conditioned on all its 

predecessors, the node iX  is conditioned only on its parents.  Thus in the simplified 

expression, 

     1 2

1

Pr , , , Pr Pa
N

N i i

i

X X X X X


 , (3.7)  

where  Pa iX  denotes the set of parents of the node iX  in the Bayesian network.  If 

each variable iX  has m possible states, the full joint distribution would require O(m
N
) 

parameters.  Whereas the factored form of the Bayesian network would require only 

O(Nm
k
) parameters, where k is the maximum number of parents for any node.  Thus the 

Bayesian network formalism makes mathematical modeling much simpler. 

 The purpose of a Bayesian network is to estimate certainties of events that are not 

directly observable.  For example, whether or not a patient has heart disease cannot be 

directly known, however a doctor can infer about it using knowledge of associated 

symptoms.  As information regarding the symptoms accumulates, the doctor‟s belief 

about the existence of heart disease changes accordingly.  For example, if the doctor 
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comes to know that the patient smokes, his belief about the patient‟s chances of having 

heart disease increases.  The Bayesian network can be used to make intelligent inferences 

similar to the medical expert.  After representing the problem domain in terms of a 

Bayesian network, one can use it to reason how information about states of certain nodes 

in the network changes the belief about states of other nodes.  This is called inference 

using a Bayesian network. 

 An interesting aspect of Bayesian network modeling is that both the network‟s 

structure and parameters (CPTs) can be determined from a known set of data 

automatically using algorithms such as Expectation-Maximization (EM).  Estimation of 

the parameters is called parameter learning and estimation of the structure is called 

structure learning, and the complete process of learning from given data is called 

training of the Bayesian network.  How parameter learning and inference are performed 

in a Bayesian network is explained below. 

 As a machine learning tool, a Bayesian network can learn from examples to 

simulate the real world phenomenon.  Learning, in this context, refers to the procedure of 

updating the parameter values (CPTs) of the Bayesian network model to make it 

representative of the known examples.  The known examples are referred to as training 

data.  The measure of how well the model fits the training data is provided by the 

likelihood function, which indicates how likely the Bayesian network is to produce this 

data, i.e. 

 Likelihood function = Pr( Data | Model ). (3.8)  

 The learning algorithm updates the model parameters so as to maximize the value 

of the likelihood function, and the parameter values thus obtained are known as 
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maximum likelihood estimates.  The basic idea therefore is to find a model configuration 

which is more likely than any other to produce the given data. 

 The expectation-maximization (EM) algorithm is a general method which can be 

used to obtain maximum likelihood estimates of the parameters of a Bayesian network 

for a given training dataset.  The EM algorithm works even when the dataset is 

incomplete or has missing values.  Missing values are encountered not only in problems 

where there are limitations in the data gathering process, but rather they occur more 

frequently in situations where there are hidden or unobserved variables in the system.  

 The EM is an iterative algorithm with two steps – Expectation step (E-step) and 

Maximization step (M-step).  In the E-step, the current parameters are used to estimate 

the missing data using the inference procedure as was described above.  In the M-step, 

the filled-in data is used to perform maximum likelihood estimation of the parameters.  

The updated parameter values obtained in the M-step are again used in the next E-step to 

make a new (improved) estimate of the missing data.  An M-step again follows to update 

the parameter values.  In this way the EM steps are repeated iteratively until convergence. 

 Bayesian networks are a powerful formalism for mathematical modeling of real 

world phenomena.  The above short description gave an overview of the essential 

concepts including model building, inference and parameter estimation.  For detailed 

mathematical treatment, the reader may refer to [Jensen (2001)] and [Narang et al. 

(2006)]. 

III-4 Measures of Accuracy 

 Since a major theme of the present work is detection of functional elements in the 

genome, evaluation of prediction accuracy is frequently required.  As functional elements 
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are specific discrete signals on the genome, the result of a prediction is binary, i.e., either 

the prediction is true, or the prediction is false.  The comparison between the set of 

predictions and the set of existing functional elements can be summarized in terms of 

four cases, viz. true positive, false positive, true negative, and false negative: 

 The algorithm reported 

a prediction 

The algorithm did not 

report a prediction 

A functional element exists True Positive (TP) False Negative (FN) 

No functional element exists False Positive (FP) True Negative (TN) 

 

 Any measure of prediction performance is derived fundamentally in terms of the 

number of TP, TN, FP and FN.  Important measures are as follows: 

Performance 

measure 

Definition Physical interpretation 

Sensitivity (Se) TP
Se

TP FN



 

probability that a prediction is 

reported given the functional 

element is present 

Specificity (Sp) TN
Sp

TN FP



 

probability that a prediction is not 

reported given the functional 

element is absent 

Positive 

Predictive Value 

(Ppv) 

TP
Ppv

TP FP



 

probability that a functional element 

exists given that a prediction is 

reported 

Negative 

Predictive Value 

(Npv) 

TN
Npv

TN FN



 

probability that a functional element 

does not exist given that no 

prediction is reported 

Correlation 

coefficient (CC)    

   

TP TN FP FN
CC

TP FN TN FP

TP FP TN FN

  


   

  

 strength of the relationship between 

predictions and actual occurrences 

 

All of the above measures range between 0 to 1 and their high values are desirable. 
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 Apart from the above quantitative measures, an important measure of accuracy of 

a prediction algorithm is graphically represented in terms of the Receiver Operating 

Characteristics Curve (ROC Curve).  While the above quantitative measures reflect only 

the current prediction accuracy of the predictor, the ROC curve shows a complete 

rigorous picture of the goodness of the prediction model.  Although both high sensitivity 

and specificity are desirable, unless the predictor is perfect there is always a tradeoff 

between them.  This is because the predictor may be either too liberal or too conservative 

in reporting positive predictions depending upon the threshold value it uses.  The ROC 

curve shows this tradeoff under varying threshold values.  It is the plot of sensitivity vs. 

(1–specificity) as the predictor threshold varies. 

 As shown in Figure III-7, the perfect predictor yields a point in the upper left 

corner (coordinate (0,1)) of the ROC space.  Whereas the ROC curve of a completely 

random predictor is the 45º diagonal line.  For a mundane predictor, the ROC curve lies 

somewhere above the 45º diagonal, and the further away this curve is from the diagonal 

the better the predictor‟s performance. 
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Figure III-7. The Receiver Operating Characteristics (ROC) curve. 
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CHAPTER - IV 

DETECTION OF LOCALIZED MOTIFS 

 This chapter discusses the problem of detecting localized DNA motifs.  The use 

of positional information yields significant advantage in this application.  Motivation for 

the problem was given in Chapter 1.  The problem is relevant towards motif discovery in 

long regulatory sequences that have been aligned relative to an anchor point, especially 

for genomes of higher eukaryotes (metazoans).  The localized motif finding problem is 

defined in Section IV-1.  A new scoring measure called spatial confinement score is 

introduced in Section IV-2, which allows assessment of whether or not a motif has 

localized occurrence within the sequences and an accurate demarcation of the interval of 

localization.  The spatial confinement score is combined with existing scoring measures 

including motif over-representation and relative entropy in Section IV-3 to give an 

overall account of the goodness of a motif.  The existing scoring measures have been 

reformulated in a form that the different scores can be easily combined into a single score 

and compared across motifs of different lengths and mutations.  This allows selection of 

the most relevant motifs among candidates of different lengths, mutations and in different 

sequence intervals, and removal of redundant motifs.  A time and memory efficient 

algorithm is developed in Section IV-4 to utilize the scoring function to detect motifs in 

long regulatory sequences.  Experiments on simulated and real datasets reported in 

Section IV-6 show that LocalMotif can automatically detect localized motifs and 

accurately identify their position interval of localization in long sequence datasets.  Such 

motifs can be detected by other motif finding algorithms only when the search is 

restricted to the relevant interval.  The localization interval information provided by 
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LocalMotif is useful for the biological identification of motifs and for studying the 

composition of gene regulatory sequences. 

IV-1 Problem Definition 

 The motif finding problem is well-defined in the literature. In the definition by 

Pevzner and Sze (2000), a set of N  DNA sequences 1 2= { , ,..., }NS S SS  is given in which 

instances of an unknown pattern M  of length l  appear at different unknown positions. 

The instances of M  in the sequences are not exact but mutated, with up to a maximum of 

d  point substitutions. The problem is to discover the pattern M  given l  and d . The 

pattern M  is called the motif and each of its instances in the sequences is called a 

binding site. 

 Note that the above definition uses consensus (l,d) representation of a motif.  

Though the PWM representation is usually preferred for motifs with known binding 

preferences, for ab-initio motif finding the consensus representation is found effective in 

detecting motifs, especially ones that do not have an exact occurrence in the sequence 

[Keich and Pevzner (2002a), Pevzner and Sze (2000)].  Recent benchmark assessment of 

different motif finding algorithms [Tompa et al. (2005)] confirms competent performance 

of consensus based algorithms such as Weeder [Pavesi et al. (2001)] and YMF [Sinha 

and Tompa (2003)]. 

 The above definition considers that instances of the motif may be present 

anywhere across the complete sequences length, which is true for most short sequence 

datasets.  Localized motif finding however considers that in long sequences, a significant 

proportion of the motif instances are found confined within a local sequence interval 
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relative to an anchor point.  The localized motif finding problem is thus stated as a 

variation of the above definition: 

 Given is a set of N  input DNA sequences 1 2= { , ,..., }NS S SS  of length L  each, 

aligned relative to an anchor point A  as shown in Figure IV-1.  The instances of an 

unknown pattern M  of length l , mutated up to a maximum of d  point substitutions, 

occur confined within an unknown interval  1 2,p p  of the sequences. The aim now is to 

discover both M  and  1 2,p p  given S , l  and d . 

 The following sections present an algorithm called LocalMotif as a solution to the 

localized motif finding problem.  Sections IV-2 and IV-3 describe the LocalMotif scoring 

function, while Section IV-4 describes the algorithm.   

 
S
1

TCGCTGAGGGTTGACAGCGTTACGCGATTTAAAGACCTTAGGGGGTCCGA

S
2

CCTTAAACAGGCGAGTTGCCTTGAAAACACATCTAAAGAGGCAGATTCTG

S
3

ACTATTTAAACGTAAACGGTTGACAGAGCTGCTGCTCTGTGATACCCTAA

S
4

GTTTACGGTTTCTCTTTACAATTCCAATCGTTAAATTTTTTAACCCCAAA

S
5

CATGTCTCAGTAAAATTTGACATCAAATTGCCCTTCCATCTGGAATTTAG

..........

S
N-1

CATCGAGAGTGGTGGCGATTGACAAATGGTTTAGAAGCACTCGTGAGCCG
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Figure IV-1. Discovering (6,1) motifs within a set of N sequences 1 2, , , NS S S  each of 

length L.  The random pattern TTTAAA is seen to eclipse the real motif 

TTGACA. 

IV-2 Scoring Function 

 The LocalMotif scoring function includes three different independent measures of 

the goodness of a motif, viz. relative entropy score (RES), over-representation score 

(ORS) and spatial confinement score (SCS).  While the former two scoring measures 
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exist in the literature, spatial confinement score has been introduced in LocalMotif to aid 

the detection of localized motifs.  All scoring measures are brought to a consistent and 

normalized form as entropy measured relative to a suitable basis, so that they may be 

combined together and are comparable across motifs with different  ,l d .  Detailed 

derivations of the formulae are provided in the Appendices. 

IV-2.1   Relative entropy score 

 The general nucleotide composition of the regulatory sequences is called 

background.  The TFBS are expected to be distinct from the background since the TF can 

distinguish them from surrounding nucleotide patterns.  Relative entropy score (RES) 

[Hertz and Stormo (1999), Stormo (2000), Thijs et al. (2002)] measures the difference 

between the motif model M and background model B.  Let all observed TFBS of the 

motif be aligned vertically, and the average frequency of occurrence of each nucleotide 

 , , ,b A C G T  at each position 1,2, ,i l   be ,b if .  The entropy of the motif M relative 

to the background model B is usually measured as the Kullback-Leibler divergence 

 D M B : 

   ,

,

1

Relative entropy score (RES) ln
L

b i

b i

i b b

f
D M B f

p

 
   

 
  (4.1) 

where bp  are the a priori frequencies of the nucleotides according to the background 

model.  The background model in LocalMotif is a Markov model of user-defined order q 

[Thijs et al. (2002)].  The expression for RES is normalized as described in the Appendix 

B.  The normalized score is given by 
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      , ,

1

1 1
ln ln

ln 4 ln 4

l

norm b i b i b b

i b b

D M B f f f p
l 

   , (4.2) 

where ,

1

1 l

b b i

i

f f
l 

  .  The normalized RES usually lies in the range (0,1) and is 

independent of the motif length l. 

IV-2.2   Over-representation score 

 Since the motif is enriched in the input sequences, its number of instances in the 

sequences must be significantly greater than that expected by chance (according to the 

background).  The over-representation score is a statistical measure of the deviation 

between number of observed and chance occurrences.  In random sequences that have 

been sampled from a Markov background model, the number of chance occurrences of a 

motif approximately follows the Gaussian distribution.  The Z-score can thus be used to 

measure the statistical difference between the observed and expected number of instances 

of a motif [Tompa (1999)].  It is given by the formula: 

 
 /( )

=
n NL e

Z score



 , (4.3) 

 where n  is the number of observed instances, N  is the total number of input sequences, 

L  is the average length of an input sequence, e  is the probability of generating an 

instance of the motif according to the background model, and   is the standard deviation 

for the sampling distribution of e  given as = (1 )/( )e e NL  .  However the Z-score is 

not comparable across motifs with different  ,l d .  An entropy measure for over-

representation is thus derived here.  The Gaussian distribution is a large sample 
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approximation of the original binomial distribution according to the central limit theorem.  

The normalized entropy measure is derived beginning with the binomial distribution. 

 Consider the experiment of finding all the instances (TFBS) of a  ,l d  motif M in 

a set of DNA sequences.  Among all nucleotide patterns of length l, let the proportion of 

TFBS patterns be e, while the proportion of non-TFBS patterns be  1 e .  Among n 

observed patterns, the probability of observing k TFBS is given by the binomial 

distribution      , 1
k n kn

kP k n e C e e


  .  Now let the estimated proportion of TFBS of 

a motif according to the background be 0e , and let the actual observed proportion be 1e .  

The over-representation is measured as the Kullback-Leibler divergence between the 

binomial distributions  0,P k n e  and  1,P k n e .  The expression is explained in detail in 

Appendix B. 

       0 0
0 1 0 0

1 1

1
Over-representation score ORS , ln 1 ln

1

e e
D E E N l d e e

e e

    
       

     
 , (4.4) 

where  ,N l d  is a normalization factor described in Appendix B. 

IV-2.3   Spatial confinement score 

 In computational motif finding algorithms, usually the TFBS are considered as 

randomly distributed across the entire sequence length.  LocalMotif however considers 

that the distribution of TFBS may be non-uniform and localized in a certain interval 

 1 2,p p  of the sequences which have been aligned relative to an anchor point.  Let c 

denote the proportion of TFBS that fall within a sequence interval  1 2,p p , i.e., if n is the 

total number of TFBS across entire sequence length L, and 1n  is the number of TFBS in 
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the interval  1 2,p p , then 1c n n .  If the TFBS are uniformly distributed across the 

entire sequence length L, then it is expected that the proportion of TFBS falling within 

any interval  1 2,p p  will be 
0 2 1c c p p L   .  For example, in any interval of length 

2L  one would expect to find 50% of the TFBS.  However if the TFBS distribution is 

non-uniform, the proportion would be higher in some intervals and lower in others.  

LocalMotif intends to discover the shortest interval that encompasses the maximum 

proportion of TFBS.  It thus compares the proportion of TFBS that lies within the interval 

and the proportion that lies outside it.  The interval which maximally separates the two 

has the highest spatial confinement score.  Let ĉ  be the observed proportion of TFBS 

that lie within an interval  1 2,p p  and  ˆ1 c  that lie outside it.  Let the corresponding 

proportions according to uniform distribution be 0c  and  01 c .  The spatial 

confinement score for the interval is given by the entropy difference (KL-divergence) 

between the observed and uniform proportions.  Its mathematical definition and 

derivation is presented in Appendices A and B. 

    0

0 0

ˆ ˆ1
ˆ ˆ ˆSpatial confinement score (SCS) ln 1 ln

1

c c
D c c c c

c c

   
      

   
 . (4.5) 

 Note that a short interval with high density of TFBS may not have a spatial 

confinement score as high as a longer interval with slightly lesser density of TFBS if the 

longer interval encompasses a large proportion of the TFBS compared to its surroundings.  

For example, in Figure IV-2, the score for interval B is higher than for interval A. 
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Interval A: c0=0.1, ĉ=0.25  (Relative density=2.5)

Spatial confinement score = 0.092

Interval B: c0=0.2, ĉ=0.40  (Relative density=2.0)

Spatial confinement score = 0.104

 

Figure IV-2. Illustration of how spatial confinement score finds the shortest interval 

encompassing the maximum proportion of TFBS – though interval A has 

higher density of TFBS, its score is lower since a large proportion of TFBS 

still lie outside it. 

IV-3 Combined score 

 The three scoring measures mentioned above, viz. relative entropy score (RES), 

over-representation score (ORS) and the spatial confinement score (SCS) measure three 

completely independent characteristics of a motif.  All of them have been expressed in 

the form of an entropy measure based on KL divergence between an observed and a 

reference probability distribution.  The score of a motif is thus independent of situational 

parameters such as motif length l, number of allowed substitutions d, sequence length L, 

interval length  1 2,p p , and so forth.  Being in a normalized form, the scores usually 

range between (0,1) and have consistent values barring extreme situations such as 

erroneous measurement of the background distribution.  The combined score may be 

computed by the Hamming measure, which is simply a sum of the three different scores, 

or Euclidean measure, which is the root mean square of the three scores.  In addition the 

individual scores give a meaningful description of what characteristic of a particular 
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motif makes it more favored.  An example in this relation is presented in Section IV-6.1 

below. 

 

2 2 2

Combined score:

Hamming measure

Euclidean measure

RES ORS SCS

RES ORS SCS

  

  

 (4.6) 

IV-4 Algorithm 

 The LocalMotif algorithm must score candidate motifs in different sequence 

intervals and report the best scoring ones.  An exhaustive enumeration strategy would 

require scoring all possible 4l  candidate patterns in all possible sequence intervals, 

leading to a complexity of  24 .lO l .  One of the objectives of LocalMotif is fast 

processing  of long sequence datasets.  The algorithm therefore includes several 

optimizations which are briefly explained below.  The algorithm pseudocode is presented 

in . 

IV-4.1   Creating a positional dictionary 

 Positional dictionary optimizes computation of the number of instances of a 

candidate pattern in a given sequence interval.  All unique length l sub-strings (l-mers) 

found in the input sequences form the different entries of the dictionary.  The position of 

every single occurrence of each l-mer is recorded in this dictionary.  Occurrences of 

overlapping identical patterns are excluded, e.g., if the string “TATATATA” occurs in an 

input sequence, and 4-mer patterns are of interest, then the dictionary entry “TATA” will 

record only two occurrences instead of three.  The dictionary is cross-referenced so that 

entries whose l-mer patterns have a Hamming distance of d or less from each other are 
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interlinked.  Interlinking facilitates quick enumeration of all binding site occurrences for 

every l-mer candidate. 

 

 INITIALIZATION 

Build a dictionary of all l-mers found within the sequences and their occurrence 

positions, and link l-mers having a Hamming distance  d from each other. 

 

FIRST PASS 

FOR M=all l-mers in the dictionary: 

   FOR p1 = 0 to L with step s: 

      Compute the number of binding sites of M in the interval (p1, p1+s). 
 

SECOND PASS 

FOR M=all l-mers in the dictionary: 

   FOR p1 = 0 to (L – s) with step s: 

      FOR p2 = (p1+minsize) to (p1+maxsize) with step s: 

    Using the values in intervals (p1,p2–s ) and (p2–s , p2 ), compute for the 

interval (p1,p2 ) the variables n1, n0, e, , c0, ĉ .  Thus compute score for the 

interval (p1,p2). 

DISCARD SIMILAR PATTERNS 

FOR all stored motifs M’ in the list: 

IF M is similar to M’ AND (p1,p2) overlaps (p1’,p2’) : 

    IF score of M < score of M’ THEN discard M and retain M’ ELSE  

 retain M and discard M’ 

 

EXTEND MOTIF SEARCH 

Perform clustering and majority pattern generation. 

Add majority pattern to the dictionary and score it in all intervals as per above 

steps. 

Repeat the extension till the average score stops increasing. 

 

OUTPUT THE TOP SCORING MOTIFS AND THEIR POSITION INTERVALS.  

Figure IV-3. The LocalMotif algorithm. 

IV-4.2   Speed-up for score computation 

 Scoring each candidate l-mer in all possible position intervals 

 1 2 1 2, : 0p p p p L   , would be formidable.  Only the intervals 

   1 2 1 2 1 2, :   ;   , 0, ,2 ,3 , ,p p p p p p s s s L    are considered, where s, called step size, is 

a small integer value set to 5 in the current implementation.  Interestingly the scoring 

function need not be determined individually for each position interval.  The score for a 
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longer interval can be computed directly from the scores for shorter constituent intervals.  

The relations are derived in Appendix C.  Computations are thus performed over two 

passes – scores for all length s intervals are computed in the first pass, and scores for 

longer intervals are calculated directly from the scores for shorter constituent intervals in 

the second pass.  The bottleneck in score computation is the first pass, so direct 

computation in second pass reduces the time complexity in sequence length. 

IV-4.3   Early discarding of similar patterns 

 While the candidate l-mers are being scored over various intervals, a list of scores 

is maintained sorted in a descending order.  Lower scoring l-mers having similar pattern 

and overlapping position intervals with higher scoring l-mers are deleted from the list of 

possible motifs to maintain only the top   motifs, where   is a user-defined percentage 

of the total number of candidate motifs.  This limits the memory requirements of the 

algorithm.  Similarity between two l-mers is evaluated using the Needleman-Wunsch 

global alignment algorithm (with possible gaps).  The alignment score threshold, threshA , 

for measuring the similarity is a function of l. 

IV-4.4   Extending the motif search 

 The LocalMotif algorithm does not perform an exhaustive search over all possible 

4l  l-mer patterns to seek the best motifs.  Initially only the l-mers occurring directly 

within the input sequences are considered as candidate motifs.  It is possible that l-mers 

not occurring directly within the input sequences may be the best motifs.  A heuristic 

algorithm similar to SP-STAR [Pevzner and Sze (2000)] extends the search over other 

probable patterns.  The   best scoring l-mers are clustered according to the goodness of 
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their alignment, so that each cluster  1 2, , ,clus mM M M M   contains similar patterns of 

length l.  A majority pattern is computed for each cluster, whose i
th

 letter is the most 

frequent i
th

 letter in clusM , with ties broken arbitrarily [Pevzner and Sze (2000)].  The 

majority pattern of each cluster is a new candidate motif.  The new generation of 

candidate motifs is added to the cross-referenced positional dictionary and scored in all 

sequence intervals.  Best scoring   candidate motifs are again selected and the clustering 

and majority pattern procedure is repeated until scores of a new generation do not show 

any improvement over previous generations. 

IV-4.5   Combining motif candidates with different (l,d) combinations: 

 In each run, the LocalMotif algorithm finds motifs for a fixed value of l and d.  To 

combine the results of separate runs of LocalMotif with varying  ,l d , a post-processing 

algorithm has been written.  Since the LocalMotif scoring function does not depend upon 

l and d, motifs with different l and d can be directly compared in their scores.  Motifs 

with similar pattern are again identified by alignment using the Needleman-Wunsch 

algorithm and among a pair of motifs with greater than 65% similarity (measured relative 

to the shorter motif), the one with lower score is discarded.  If two motifs have high 

(>90%) similarity and overlapping intervals of localization, they are combined into a 

single motif taking union of their intervals.  The automated algorithm performs runs for 

the  ,l d  combinations (6,1), (7,1), (8,1), (9,2), (10,2), (11,2) and (12,3), and combines 

their results.  The particular  ,l d  combinations have chosen in accordance with the 

recommendation of [Buhler and Tompa (2002)], with maximum possible d for a given l 

that avoids random motifs. 
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IV-5 Implementation 

 The basic LocalMotif algorithm has been implemented in C++, and is 

supplemented by a user-friendly interface and post-processor written in Python.  The 

complete source code and compiled binaries for both Unix and Windows platforms are 

available freely at the website http://www.comp.nus.edu.sg/~bioinfo/LocalMotif.  

Following parameters can be controlled by the user to suit the requirements of the 

particular dataset and the available computing resources:  

 Specification of the background model: the user can choose both the order of the 

background Markov model and the way of specifying its parameters.  The 

background model parameters can either be directly specified or the user can provide 

a set of sequences from which the program automatically learns the parameters. 

 Number of motifs to be retained in memory: this is the parameter   described in 

Section IV-4.3.  Larger value of   is better for extension of the motif search, but the 

tradeoff is RAM requirements, 

 Maximum interval length: in the analysis of long sequence datasets, setting a 

maximum interval length (such as 1000 bp) makes the analysis not only faster but 

also more accurate since the motifs will become subtle for longer interval lengths, 

 Number of best motifs to output, and 

 Choice of single or double strand analysis. 

 The program outputs the discovered motifs, the interval of localization of each 

motif, the three individual scores (RES, ORS and SCS), and combined score of each 

motif.  The individual scores reveal the prominent characteristics of a motif and may be 

used to reject outliers (e.g. a motif reported with large RES and SCS but small ORS is 

http://www.comp.nus.edu.sg/~bioinfo/LocalMotif
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probably a noisy pattern).  In addition, details of the intermediate processing such as 

scores of patterns similar to each selected motif (Section IV-4.3) and motif extensions 

(Section IV-4.4) are written to a separate file for reference of the specialist. 

IV-6 Results 

 The scoring function of LocalMotif is demonstrated first in Section IV-6.1.  Then 

the performance of LocalMotif is reported over sequences of different lengths in both 

synthetic datasets (Section IV-6.2) and real datasets (Section IV-6.3).  Comparison is 

made with two other freely available motif finding tools: MEME [Bailey and Elkan 

(1994)] and Weeder [Pavesi et al. (2001)].  MEME is one of the most commonly used 

motif finding tools due to its robustness and simplicity, while Weeder has been reported 

as one of the best motif finding tools by [Tompa et al. (2005)].  Also, while Weeder uses 

the (l,d) motif model, MEME is based on the positional weight matrix (PWM) model 

[Stormo (2000)]. 

IV-6.1   Analysis of the scoring function 

 The LocalMotif scoring function is illustrated through a planted  ,l d  motif 

problem.  A dataset consisting of 50 sequences, each of length 3000 bp, was generated 

using a zero-order uniform Markov background model.  Instances of a length 7 pattern, 

ATGCATG, mutated with two base substitutions each were randomly implanted in 75% 

the sequences as a (7,1) motif.  The sequences were analyzed with LocalMotif for (7,1) 

motifs.  The motif instances were confined to lie within the position interval (2000, 2500).  

Note that as per the analysis of [Buhler and Tompa (2002), Keich and Pevzner (2002a)], 

the (7,1) motif is a subtle motif impossible to detect within the 3000 bp length sequence 
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as there are at least 6600 competing random motifs.  However it is possible to discover in 

the localized 500 bp region as within this region it is not subtle with no competing 

random motifs.  Five top scoring motifs reported by LocalMotif and their scores are 

shown in Table IV-1.  The planted (7,1) pattern was correctly identified as the top motif 

and its interval of localization was accurately determined.  Although the localized motif 

has a low ORS compared to several competing random patterns, it has a substantially 

higher spatial confinement score (SCS) of 0.485 as compared to the spurious motifs 

whose SCS is less than 0.3.  LocalMotif assigned a higher total total score to the localized 

motif due to its high spatial confinement.  Over-represented random motifs are not 

expected to be spatially confined.  

Table IV-1. Results of using LocalMotif to analyze simulated sequences of length 3000 

bp containing a planted (7,1) motif ATGCATG – five top scoring motifs 

and their predicted localization intervals are reported. 

Motif pattern Motif interval Motif score Score components 

RES ORS SCS 

ATGCATG (2060,2445) 1.308 0.497 0.326 0.485 

GGACGCT (15,115) 1.216 0.481 0.500 0.235 

AGCGCCG (455,575) 1.209 0.481 0.439 0.289 

GTCCGAT (85,200) 1.173 0.482 0.408 0.282 

TCCCTGC (2340,2450) 1.167 0.481 0.411 0.275 

 

 A contour plot of the over-representation score (ORS), localization score (SCS) 

and the total score (SCO) for the (7,1) motif in various position intervals is shown in .  

Note that the relative entropy score of the motif does not depend upon the interval being 

analyzed and is therefore not shown.  The ORS contours show that this score is large 

wherever there is a local concentration of the binding sites.  Thus several short sub-

intervals within the region (2000,2500) have a large ORS.  Whereas the SCS contrours 
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show that SCS is large only in the actual interval of localization of the motif.  The 

variation in ORS values is lower compared to the variation in SCS values.  Thus the total 

score (SCO) contours, which is a sum of ORS, SCS and RES, is biased towards SCS 

variations and is thus maximum at the actual interval of localization, i.e., (2000,2500).  

The spatial confinement score thus plays an important role in the detection of localized 

motifs and their accurate intervals of localization. 

 

 

 Figure IV-4. Contours showing (a) the total score, (b) over-representation score, and (c) 

spatial confinement score of the motif ATGCATG in different position 

intervals (p1,p2) of the planted motif sequences. 
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IV-6.2   Performance on Simulated datasets 

IV.6.2.1   Short sequence datasets 

 The test on simulated short sequence datasets evaluates the accuracy and 

robustness of motif detection as well as the accuracy of localization interval predictions 

made by Localmotif. Each dataset consists of N  nucleotide sequences, each of length 

<1000L , generated from a background Markov model of order q . Some of the 

sequences are implanted with an instance of a ( , )l d  motif M  within a local position 

interval, 1 2= ( , )I p p . 

 A total of 100 such datasets were generated while randomly varying the following 

parameters: (i) sequences length L, (ii) percentage of sequences, k, that contain an 

instance the motif (iii) distinctness of the motif from sequence background (i.e. relative 

entropy) (iv) ratio of interval length (in which the motif is confined) to sequence length, 

=| | /p I L . Note that | |I  denotes length of the interval I, which equals 2 1( )p p . All 

these parameters, together with l, d, motif pattern M, and the background model, were 

varied randomly to simulate a fair variety of test conditions. The ranges of parameter 

values studied is given in Table IV-2. 

Table IV-2. Ranges of parameters studied in simulated short sequence datasets. 

Parameter N L q k (l,d) p  

Range 50-100 200-1000 0-2 20-100 (6,1)-(10,3) 10-100 

  

 Figure IV-5 shows the performance of motif detection with (a) varying sequence 

length, L, and (b) varying percentage, k, of sequences that contain a motif instance. The 
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motif becomes increasingly subtle with increasing L or decreasing k since the number of 

competing random patterns increases.  Figure IV-5 indeed shows a diminishing 

performance of motif detection with increasing L or decreasing k for all the tested motif 

finding tools. However the accuracy is observed to be consistently higher for LocalMotif 

as compared with MEME and Weeder. This is because LocalMotif's performance is 

dependent on the localization interval length rather than the total sequence length. The 

localized search reduces the number of competing random patterns and increases the 

comparative motif signal strength. Thus LocalMotif has greater accuracy for long 

sequences that contain a localized motif. However for datasets where motifs are not 

localized, the comparatively higher accuracy of LocalMotif may not hold. 

 The length and position of the interval within which the motif is localized has 

been varied randomly in the simulated datasets to test whether LocalMotif can correctly 

ascertain this interval. The accuracy of predictions has been measured in terms of the 

percentage of overlap between the actual interval, aI , and predicted interval, pI . 

Precisely,  

 
| |

overlap percentage = .
(| |,| |)

a p

a p

I I

max I I


 (4.7) 

 The mismatch in predicted and actual interval lengths is also penalized in this 

formula by taking the ratio with respect to the larger interval. As seen in Figure IV-6, 

LocalMotif determined the position interval very accurately (overlap0.8) in more than 

60% of the cases. This shows the effectiveness of the spatial confinement scoring 

function used to in LocalMotif to determine the localization interval. 
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(a) 

 
(b) 

 

Figure IV-5. Performance of MEME, Weeder and Localmotif in simulated short 

sequence datasets with (a) varying sequence length, L , (b) varying 

percentage, k , of sequences containing motif instances. 

 

Figure IV-6. Accuracy of LocalMotif's interval predictions. 
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IV.6.2.2   Long sequence datasets 

 Each long sequence synthetic dataset consisted of 50 sequences of length 1000-

5000 bp each, implanted with instances of one to five (l,d) motifs in position intervals of 

width 200-600 bp. Ten such datasets were generated with randomly chosen number of 

motifs, motif patterns, sequence length, localization interval and background model. 

 For prediction of localized motifs using MEME and Weeder, each dataset was 

split into smaller fragments. The fragments were of the same length and overlapped each 

other by 50% to ensure that the interval of localization is not missed due to improper 

positioning of the fragment boundaries. Also three different fragment lengths, 200, 400 

and 600, were tried. Each fragment was individually analyzed using MEME and Weeder. 

Results obtained on the individual fragments were pooled together and sorted according 

to the score value in case of Weeder and expect value (E-value) in case of MEME. 

 LocalMotif, on the other hand, was run directly on the long sequence datasets 

with a maximum interval length prescribed as 1000. Sequences fragmentation was not 

required since LocalMotif automatically determines the motif's interval of localization. 

For each program, the top ten reported motifs were retrieved for each dataset. The 

accuracy of motif detection was measured as sensitivity (Se), i.e., percentage of actual 

motifs successfully detected. Specificity or positive predictive value could not be 

measured since each program only reported ten best candidates and thus it is hard to give 

a definition of false positive.  Table IV-3 shows that MEME, Weeder and LocalMotif 

could determine 56%, 50% and 81% of the localized motifs respectively in intervals with 

non-zero overlap percentages, and thus LocalMotif was found to be most accurate. 
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Table IV-3. Accuracy of motif detection in synthetic long sequence datasets. 

Program Planted motifs Correct predictions Sensitivity 

MEME 32 18 56% 

Weeder 32 16 50% 

LocalMotif 32 26 81% 

 

 

IV-6.3   Performance on Real datasets 

IV.6.3.1   Short promoter sequences surrounding the TSS 

 Metazoan promoter sequences immediately surrounding the TSS usually contain a 

few highly conserved core promoter motifs.  An example of computational motif 

discovery in such sequences is in the set of 1941 Drosophila promoter sequences of 

length 300 bp each (aligned -250 to +50 relative to the TSS) compiled by [Ohler et al. 

(2002)].  Ohler et al. (2002) had used MEME to determine the core promoter motif 

content of these sequences. They performed two separate runs of MEME, one over full 

length (300bp) sequences, and the other over a sub-interval -60 to +40 relative to the TSS. 

 The full length (300bp) sequences have been examined with LocalMotif.  

Background Markov model of order 2 was learnt from a set of 361 Drosophila intron 

sequences.  Weeder could not process this dataset due to its large size.  Results compiled 

in Figure IV-7 show that MEME discovered prominent core promoter motifs only when 

analyzing the -60 to +40 sub-region, whereas LocalMotif could detect them given the full 

300 bp region.  LocalMotif additionally reported accurate localization intervals of the 

motifs, which is useful in their identification, e.g. the downstream promoter element 

(DPE) is confirmed as it is found in the +25 to +45 interval.  Moreover, it is observed in 

Figure IV-7 that all biologically meaningful motifs reported by LocalMotif have a higher 
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SCS of 0.14 or more as compared to the two spurious motifs (at positions 8 and 9) whose 

SCS is less than 0.06.  Thus spatial confinement score additionally allows discarding of 

spurious motifs. 

 

LocalMotif Results (-250 to +50) 

Rank Motif Score RES SCS ORS Position 

1 TCAGTC 1.920 0.420 0.500 1.000 [-5,+15]   Initiator 

2 GTCACACT 1.382 0.430 0.233 0.719 [-10,+20]  new motif 

3 CTATAAAA 1.275 0.350 0.153 0.772 [-35,-15]  TATA box 

4 CAGTTG 1.266 0.423 0.172 0.671 [-5,+15]   Initiator 

5 CGGACGTG 1.121 0.444 0.374 0.303 [+25,+45]  DPE 

6 CTATCGAT 1.119 0.402 0.145 0.572 [-75,+0]   DRE 

7 TCCGTT 0.934 0.411 0.146 0.377 [-5,+15]   Initiator 

8 ATATATAT 0.895 0.324 0.026 0.544 [-205,-90] 

9 CTCTCTCT 0.869 0.392 0.054 0.424 [-120,-70] 

10 GCGTTCGG 0.866 0.424 0.153 0.289 [+10,+40]  DPE 

 
MEME Results (-250 to +50) MEME Results (-60 to +40) 

Rank Motif Score Rank Motif Score 

1 GGTCACACT 5.0e-369  new motif 1 GGTCACACT 5.1e-415  new motif 

2 CTCTCTC 1.7e-203 2 TATCGATA 1.7e-183  DRE 

3 CGCCGCC 1.1e-151 3 TATAAA 2.1e-138  TATA box 

4 TTTTTTT 1.5e-155 4 TCAGTT 3.4e-117  Initiator 

5 TATCGATA 4.4e-78  DRE 5 CAGCTG 2.9e-93 

6 CAGCCTG 1.5e-80 6 GTATTTT 1.9e-62 

7 GGCAACGC 1.4e-55 7 CATCTCT 1.9e-63 

8 GTGTGTGT 6.4e-96 8 GGCAACGC 5.1e-29 

9 TGCTTTTG 1.2e-39 9 GCGTGCGG 1.9e-12  DPE 

10 GCGCTTTAC 9.5e-24 10 CGAACGGAACG 8.3e-9 

Figure IV-7. Motifs discovered by MEME and LocalMotif in Drosophila promoters. 

IV.6.3.2   Short regulatory regions upstream of the TSS 

 LocalMotif was further tested for the detection of conserved motifs in sets of 

orthologous regulatory sequences upstream of the TSS for a single gene in several 

species.  Motif detection in such datasets is known as phylogenetic footprinting.  

Standard methods for phylogenetic footprinting include (i) identification of conserved 

regions in a global multiple alignment of the sequences using a tool such as CLUSTALW 

[Thompson et al. (1994)], (ii) using existing motif finding programs such as MEME to 
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detect conserved patterns, or (iii) using algorithms tailor-made for phylogenetic 

footprinting such as Footprinter [Blanchette and Tompa (2002)].  Using LocalMotif over 

such datasets is in one sense similar to using a motif finding program such as MEME 

since LocalMotif does not exploit the phylogenetic relationships between the sequence.  

However an important difference is that LocalMotif searches for conserved patterns in an 

aligned sub-interval of the sequences, which is meaningful due to the structural similarity 

among the orthologous sequences. 

 The test datasets in this study were derived from [Blanchette and Tompa (2002)] 

as both experimentally verified and computationally predicted conserved regulatory 

elements are available for reliable comparison of the results.  There are 7 datasets, each 

containing 400-1000 bp long orthologous upstream regions (5‟ of the translation start site) 

of a single gene in the genomes of 5-20 different metazoan species.  LocalMotif was used 

to analyze these datsets considering uniform Markov nucleotide background.  The 

detailed results are shown in Supplementary Figure 1 at the end of this dissertation.  In 

summary, LocalMotif discovered 46 out of the 49 motifs listed by [Blanchette and 

Tompa (2002)] accurately with their respective intervals of localization. 

IV.6.3.3   Long regulatory segments upstream of the TSS 

 Datasets of experimentally characterized long regulatory sequences are scarce in 

the literature.  However TFBS annotations in segments of ~1 kb length upstream of the 

TSS are available in the literature for several vertebrate genes.  Some TFBS are 

experimentally validated while the rest are predicted in-silico using tools such as 

TRANSFAC [Matys et al. (2003)].  The annotations can be considered as high quality 

due to manual curation by field experts.  Six datasets are compiled in the present study, 
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each containing 3000 bp upstream sequences of a single gene in different vertebrate 

genomes, where either the human or mouse ortholog is characterized in the literature.  

The sequences are aligned relative to either the TSS or the translation initiation site, 

whichever is more reliably known.  Comparison of motifs discovered by LocalMotif with 

the published TFBS annotations is summarized in Figure IV-8 and the details are 

provided in Supplementary Figure 2 at the end of this dissertation.  Figure IV-8 shows 

how the sensitivity and false positive rate of TFBS detection varies as the number of top 

motifs reported by LocalMotif is increased.  Here sensitivity is defined as the fraction of 

total known TFBS that could be predicted (i.e. True Positives / Total Positives), and false 

positive rate is defined as the fraction of reported motifs that are incorrect, i.e. which do 

not overlap any known TFBS.  A sensitivity of 50% with a false positive rate of 44% is 

reached within the first 40 predictions, after which the sensitivity does not improve 

significantly.  Among 122 annotated TFBS in the literature within the six datasets, one or 

more predicted motifs occurred within 87 (71%) TFBS.  The localization intervals of the 

motifs as predicted by LocalMotif matched very well with the annotated TFBS.  

Considering the long length of the sequences being analyzed, the localization information 

was very useful for accurately locating the binding sites and led to a significant reduction 

in the number of false positives. Thus LocalMotif is promising for the identification of 

conserved motifs in long upstream regulatory regions of genes. 

IV.6.3.4   Sequences flanking a known TFBS 

 The ERE dataset is an example of vertebrate sequences with wide spacing among 

regulatory elements and high degree of mutation in the binding sites.  It contains 57 

estrogen receptor (ER) target sequences from human chromosomes 21 and 22 discovered 
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Figure IV-8. Variation of sensitivity and false positive rate of Localmotif‟s predictions 

in long regulatory sequences upstream of the TSS as the number of 

predicted motifs is increased. 

by ChIP analysis of in-vivo ER-chromatin complexes [Carroll et al. (2005)]. Almost all 

sequences lie distal from the TSS beyond the promoter region and have lengths ranging 

from 0.2 to 2.5kbp. About 34 ER full binding sites (length 15 bp, consensus 

AGGTCACCNTGACCT) have been mapped in this sequence set. Experimental studies 

have revealed binding sites for an associated factor called Forkhead (consensus 

TTGTTTNCTT) proximal to the ER binding sites [Carroll et al. (2005)]. 

 To verify whether Forkhead binding adjacent to ER sites can be discovered in-

silico, a new set of 34 sequences was prepared with one known ER full site in each 
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sequence. The ER site acts as the anchor point. The positions of Forkhead binding sites 

relative to ER binding sites are shown in Figure IV-9. Results of motif finding 

(processing both strands) with MEME, Weeder and LocalMotif on this dataset are 

reported in Figure IV-10. Weeder was used with its default human background model, 

whereas human chromosome 21 and 22 intergenic sequences were used to prepare a zero 

order background for LocalMotif. LocalMotif reliably discovered the Forkhead motif 

with consensus TTTTTTTCTT, with about 60% of the true Forkhead sites found within 

the list of reported binding sites (refer Supplementary Figure 3 at the end of the 

dissertation). Thus, LocalMotif was found useful for discovering correlated motifs in 

vertebrate regulatory sequences. 

 

Figure IV-9. Distribution of forkhead binding sites relative to ER binding sites. 

Software Motifs Predicted 

MEME 
TCAAGGTCAG/CTGACCTTGA  ER 
AGAGGGAAGA/TCTTCCCTCT  new 

Weeder GTTGACTTTG/CAAAGTCAAC  ER 

LocalMotif 
GGTCACCCTG/CAGGGTGACC  [-20,+30]  ER 
AAGAAAAAAA/TTTTTTTCTT  [-100,+300]FH 
GGGAGGGAAG/CTTCCCTCCC  [-190,+190]new 

Figure IV-10. Motifs discovered by MEME, Weeder and LocalMotif in ERE dataset. 
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IV-7 Conclusions 

 This chapter introduced a new algorithm called LocalMotif to detect motifs in 

localized intervals of long sequences (such as vertebrate regulatory sequences) aligned 

relative to a common anchor point. The algorithm uses a novel statistical scoring function 

to determine the interval of localization of the motif. It is optimized for fast processing of 

long sequence datasets. Test results on simulated and real datasets show that LocalMotif 

offers advantage over existing motif finding algorithms in accurately detecting localized 

motifs in long sequences. 
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CHAPTER - V 

GENERAL PROMOTER PREDICTION 

 This chapter develops a novel statistical model for promoters and a technique for 

detecting promoter regions (TSS) in genomic sequences.  A number of existing 

techniques analyze the occurrence frequencies of oligonucleotides in promoter sequences 

as compared to other genomic regions.  In contrast, the present work studies the 

positional densities of oligonucleotides in promoter sequences.  Modeling based on 

positional densities eliminates the need of any non-promoter sequence dataset or any 

model of the background oligonucleotide content of the genome.  Instead, using only the 

positive dataset of promoter sequences, the statistical model automatically recognizes a 

number of TFBS along with their occurrence positions relative to the TSS. 

 The concept of positional density is introduced in Section V-3.  Based on this 

model, a continuous naïve Bayes classifier is developed in Sections V-4 and V-5 for the 

detection of promoters and TSS in genomic sequences.  The model is trained specifically 

on the dataset of human promoter sequences, and therefore a brief overview of the 

composition of human promoters has been presented in Section V-2.  Results of promoter 

prediction on a number of datasets derived from the human genome and performance 

comparison with existing 2
nd

 generation promoter prediction tools are described in 

Section V-7. 

V-1 Introduction 

 The advantages of an unsupervised feature extraction and AI modeling approach 

in the computational modeling and detection of promoter sequences were described in 

Chapter 1, while the development of 2
nd

 generation promoter prediction tools was 
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described in Chapter 2.  Among the 2
nd

 generation tools, an important but relatively less 

explored approach is using probability models.  An early attempt in this direction by 

Audic and Claverie (1997) used simple Markov chains of order four to six to model 

promoter sequences.  However, the authors reported low performance of the model due to 

its simplicity and its overfitting of training promoter sequences.  Ohler et al. (1999) used 

interpolated Markov chains, which is a generalization that combines several simple 

Markov chains of different orders.  It takes into account statistics of higher orders without 

overfitting the model to training data.  Ohler et al. (1999) initially reported performance 

equivalent to first generation promoter prediction tools.  However, improved results have 

been reported recently upon retraining the model on a larger dataset of Drosophila core 

promoters [Ohler et al. (2002)]. 

 In a slightly different context of locating regulatory regions in genomic sequences 

with promoters as a subset, a hidden Markov model was developed by Crowley et al. 

(1997).  The model assumed DNA sequences as a hidden Markov process and detected 

change-points between non-regulatory and regulatory segments based on the appearance 

of clusters of binding sites in a local region.  Although regulatory features such as 

enhancer, locus control regions and promoters could thus be identified, no attempt was 

made to accurately predict the promoter region and TSS.  No other significant research in 

this direction has been published to the best knowledge of the author. 

 The present research extends the application of a purely probability model based 

approach in eukaryotic promoter prediction.  Specifically, it attempts a Bayesian network 

model of general eukaryotic promoters [Narang et al. (2005)].  The promoter sequence is 

modeled in probabilistic framework (using a continuous naïve Bayes representation) as a 
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set of TFBS occurring with varying probabilities in different regions of the sequence.  

This is commensurate with the current biological understanding of promoters as a 

combination of different regions, viz. core promoter, proximal promoter and distal 

promoter, with the TFBS in different regions having different degrees of mobility.  The 

position of each TFBS is expressed probabilistically in the form of a statistical 

distribution.  The nature of the positional distribution defines the location relative to the 

TSS as well as the degree of mobility of the binding site.  For instance, the positional 

distribution of TATA box and CAAT box are shown in Figure V-1.  The close location 

relative to the TSS as well as the low mobility of the TATA box is clearly described by 

the peak of the positional distribution in the –30 to –40 region.  Similarly the location of 

the CAAT box in the proximal promoter region as well as its higher mobility as 

compared to the TATA box is observed in its positional distribution curve which has a 

greater spread in the –140 to –80 region.  Thus in sharp contrast to previous works, the 

present research models the positional densities of oligonucleotides instead of their 

occurrence frequencies.  This has several advantages as described later in Section V-3. 

V-2 Structure of Human Promoters 

 The structure and functioning of eukaryotic promoters has been discussed in 

several reviews, e.g., [Werner (1999), Pederson et al. (1999), Zhang (2002)].  In general, 

the promoter is understood as a combination of different regions with different functions.  

The sub portion of the promoter surrounding the TSS is called core promoter.  It interacts 

with RNA polymerase II and basal transcription factors, and is the minimal sequence that 

is required for initiating transcription.  Gene-specific regulatory elements present up to 
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few hundred base pairs upstream of the core promoter are commonly referred to as the 

proximal promoter region.  These are recognized by TFs called activators and determine 

the efficiency and specificity of promoter activity.  Further, there are enhancers and distal 

promoter elements which may be located far distant from the TSS, but can considerably 

affect the rate of transcription.  Although well-organized, eukaryotic promoters are very 

varied in their structure.  Therefore only human promoters have been used in this work to 

simplify the study. 

 Multiple studies have been reported recently on the composition of core 

promoters of human genes [Bajic et al. (2004), Smale and Kadonaga (2003)].  Well 

defined transcription factor binding motifs exist within the core promoter region, which 

determine the location of the start site and the direction of transcription.  It is indicated 

that roughly 30% or less of human core promoters have a TATA box at -25 to -30 

position with consensus TATAAA [Suzuki et al. (2001)].  The TATA box tends to be 

surrounded by GC rich sequences, including the TFIIB recognition element, BRE, lying 

as an upstream extension (consensus SSRCGCC).  Upto 80% human promoters (both 

TATA and TATA-less) have an initiator element (Inr) located at the transcription start 

site [Suzuki et al. (2001)].  It has a consensus sequence YCAYYYYY, with the base „A‟ 

lying at the position of TSS.  In promoters that are TATA-less but have an Inr, a 

downstream promoter element (DPE) is usually found at +28 to +32 positions [Smale and 

Kadonaga (2003)].  About half of the human promoters are associated with CpG islands 

[Suzuki et al. (2001)], and the functional regulatory elements in these sequences have 

been difficult to identify [Smale and Kadonaga (2003)].  Some of these promoters contain 

none of the common core promoter elements discussed above.  Exact compositional 
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characterization of known human core promoter sequences is found in [Bajic et al. 

(2004)]. 

 A larger variation is observed in the composition of the proximal promoter region.  

Also, the location and orientation with respect to the TSS of transcription factor binding 

motifs in proximal promoter region is more flexible than that in the core promoter.  

CAAT box, GC box, E box, GATA box, octamer etc. are some of the frequently 

encountered proximal promoter elements.  Some of these elements (such as GC and 

CAAT boxes) can be present in either orientation. 

 The context in which a binding site is present within a promoter sequence plays 

an important role.  For example, two interacting transcription factors bound to closely 

situated sites may lead to non-additively high or low levels of transcriptional activity.  

Such effects have been compiled in the COMPEL database [Kel-Margoulis et al. (2002)]. 

 There are several other factors involved in transcriptional regulation, such as 

enhancers/silencers, insulators, chromatin structure, locus control regions and so forth.  

However these are beyond the scope of this research.  The present work utilizes only core 

promoter and proximal promoter regions for the detection of promoter regions.  This 

invariably limits to some degree the performance of the computational model. 

V-3 Oligonucleotide Positional Density 

 Transcription factor binding motifs in promoter sequences are frequently 

identified by analyzing the occurrence frequencies of oligonucleotides [Hutchinson 

(1996), Chen et al. (1997), Scherf et al. (2000), Bajic et al. (2003), van Helden et al. 

(1998), Bajic et al. (2004)].  Oligonucleotides that are statistically over-represented in 

promoter sequences as compared to non-promoter sequences usually correspond to the 
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consensus sequences of transcription factor binding motifs.  The comparative analysis of 

oligonucleotide occurrence frequencies in promoter versus non-promoter sequence 

datasets is, however, difficult in practice due to several reasons, such as [Bajic et al. 

(2004)]: 

(i) Oligonucleotide frequency distribution varies significantly across different samples 

of promoter and non-promoter sequence data.  Thus the quality of results is 

significantly affected by the quality of both promoter and non-promoter sequence 

data. 

(ii) Results also depend to a great degree upon the statistical measure and threshold 

settings used in the analysis. 

(iii) When the training set of promoters is biased, it is difficult to identify important but 

less represented motifs. 

 In the present research, the positional densities of oligonucleotides are studied.  

Positional density of an oligonucleotide measures the probability of its occurrence at 

various positions relative to the TSS within promoter sequences (Figure V-2).  The 

density function only represents the preference of the oligonucleotide to occur at various 

positions around the TSS, and is independent of its total frequency of occurrence in the 

promoter sequences.  The density is expected to be non-uniform for an oligonucleotide 

that corresponds to the consensus sequence of a motif.  This is because several motifs in 

core promoter and proximal promoter regions occur within a preferred range of positions 

relative to the TSS.  For example, the TATA box usually lies in the position window -30 

to -25 within vertebrate promoter sequences.  Consequently, the hexamer TATAAA 
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occurs with much higher probability in this range of positions within promoter sequences.  

Indeed, its positional density is heavily skewed as observed in Figure V-2. 
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Figure V-2. An illustration of the positional density of the oligonucleotide TATAAA, 

obtained using 1796 human promoter sequences in EPD.  The TSS is 

located at position 0.  The curve indicates the probability of observing the 

oligonucleotide TATAAA at various positions upstream and downstream 

of the TSS. 

 Thus, the information of transcription factor binding motifs and their preferred 

position in promoters is encoded in the shapes of oligonucleotide positional density 

curves.  The positional density analysis presented in this paper exploits this information.  

The technique is robust since it does not involve extraneous factors such as tuning of 

various parameters or determination of background frequencies of oligonucleotides from 

non-promoter data.  Furthermore, it can identify some less frequent but important motifs, 

since the skew in the positional density is independent of the actual occurrence frequency 

of the oligonucleotide.  The efficiency of this method is demonstrated in Section V-7.1 by 

its ability to learn most well-known motifs from a set of example promoter sequences. 
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V-4 Bayesian Network Model for General Promoter Prediction 

 This section describes the concept and implementation of the novel Bayesian 

network based statistical technique for general promoter prediction.  The method pivots 

around the positional densities of oligonucleotides of a fixed length, k, within the 

promoter sequences.  In general, there are 4k  possible oligonucleotides of length k since 

there are only four DNA nucleotides, A, C, G and T.  The oligonucleotides are 

represented by the symbol, iK , and indexed in alphabetical order, where the index, i , 

spans over the range 1,2, ,4k .  In a set of training promoter sequences, the occurrence 

positions of each oligonucleotide are observed relative to the TSS; taken as negative 

upstream (i.e., towards 5‟) of the TSS, positive downstream (i.e., towards 3‟) of the TSS, 

and +1 at the TSS. 

V-4.1   The Promoter Model 

 The promoter prediction technique defines two different statistical models – a 

promoter model,  , and a non-promoter model,   .  The statistical promoter model 

measures for each oligonucleotide, iK , its positional density,  if p  , in promoter 

sequences.  The positional density gives the preference of iK  to occur at various 

positions around the TSS in the promoter sequences.  It is a probability density function 

such that 

    
2

1

1 2Pr

p

i i

p

p P p f p dp     , (5.1) 
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where iP  is the random variable representing the position of occurrence of iK  relative to 

the TSS.  The support  ,a b  of the density functions  if p   depends upon the length of 

the training promoter sequences available as shown in Figure V-3a.  Thus, in equation 

(5.1),  1 2, ,p p a b .  The total frequency of occurrence of iK  within the promoter 

sequences is irrelevant, and hence the total area under the positional density curve is 

unity for any iK .  As an example, the positional density function for the hexamer 

TATAAA in human promoters is shown in Figure V-2.  The positional density of 

TATAAA has a sharp peak in the position range -30 to -25, indicating its high preference 

to occur in these positions in the promoter sequences. 
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Figure V-3. (a) Relationship between positional density definition and training 

promoter sequences, (b) modeling a nucleotide sequence, S, for promoter 

inference (Equation 5.4). 
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 The non-promoter model, on the other hand, is defined simply as a uniform 

density function for all iK , i.e., for all 1,2, ,4ki  , 

    
 1   for ,

 
0     otherwise

i

b a p a b
f p u p

  
  


 (5.2) 

This is due to the assumption that oligonucleotides do not show any particular positional 

preference around any position anchor in the case of non-promoter sequences.  This 

assumption can be easily verified on any non-promoter dataset. 

 The statistical promoter prediction technique considers any nucleotide sequence, S, 

of length, L, as a combination of  1L k   length-k oligonucleotides, 1 2 1, , ,S S S

L kK K K   , 

occurring at various positions, 1 2 1, , ,S S S

L kp p p    around the assumed TSS position, T as 

shown in Figure 2(b).  The superscript S is introduced in the notation to avoid confusing 

with the symbols iK  and iP  used above for defining the positional densities of 

oligonucleotides in the promoter model.  The observed sequence S is likened to an 

experiment of drawing one ball each independently from  1L k   different urns, 
S

xK , 

where the probability of drawing the ball of type 
S

xp  from the urn 
S

xK  is given as 

 Pr S S

x xp K .  Thus, the probability of observing the sequence S is given as 

      
1

1

Pr Pr Pr
L k

S S S

x x x

x

S p K K
 



   (5.3) 

 Now, if the sequence S is hypothesized as a promoter sequence, the probabilities 

 Pr S S

x xp K  are the positional densities  S

i xf p   in the promoter model, where the 

oligonucleotide 
S

xK  found at position x in the sequence S is actually the oligonucleotide 
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iK .  Substituting the corresponding  S

i xf p   in equation (5.1) would then yield the 

probability  Pr S  .  However, when S is not a promoter sequence, the probability, 

 Pr S  , of observing the sequence S is found in a similar fashion, but using the non-

promoter model,  S

i xf p  . 

 Finally, the probability that the observed sequence S is actually a promoter 

sequence is obtained using the Bayesian formula, 

  
   

       

Pr Pr
Pr

Pr Pr Pr Pr

S
S

S S

 


   



 (5.4) 

V-4.2   Naïve Bayes Classifier Representation 

 It is interesting to note that the promoter prediction technique described in section 

V-4.1 can be neatly expressed in terms of a continuous naïve Bayes model.  The naïve 

Bayes model is the simplest case of a Bayesian network and is frequently used for 

classification [Jensen (2001), Friedman et al. (1997)].  Although independence is 

generally a poor assumption, in practice naive Bayes often competes well with more 

sophisticated classifiers [Domingos and Pazzani (1996)].  A generative classifier for the 

present problem is shown in Figure V-4.  The oligonucleotide position random variables, 

iP  (refer equation (5.1)), and a class variable, C, are the nodes in the graph.  C is a binary 

variable representing promoter ( ) and non-promoter ( ) classes.  Thus, the variables 

iP  form continuous nodes, while C forms a discrete node.  The naïve Bayes graph 

implies that the position random variables, iP , are assumed to be independent of each 

other given the class C.  The probability model is described by the distributions  Pr iP   
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and  Pr iP  .  These are nothing but the positional densities,  if p   and  if p   

respectively. 

1P

,C   

 1f p

2P 3P 4kP

 2f p  3f p  
4kf p

1P

,C   

 1f p

2P 3P 4kP

 2f p  3f p  
4kf p

 
 

Figure V-4. The naïve Bayes classifier for promoter prediction. 

V-4.3   Modeling and Estimation of Positional Densities 

 Now the mathematical modeling and the estimation of the positional densities 

 if p   from a training dataset of promoter sequences is described.  Although the 

position variable, p, is discrete, for the purpose of convenience of modeling and 

estimation, it is treated as a continuous variable over the range  ,a b .  The positional 

density is approximated as a finite mixture of Gaussians, 

    2

1

| , , | ,
i

i i i

i

G

i i i s s s

s

f p G p     


 , (5.5) 

   with 0
is   and 1

i

i

s

s

  , 

where iG  is the number of components in the mixture;  2| ,
i is sp    is a Gaussian 

distribution with parameters mean, 
is , and variance, 2

is , i.e., 



96 

 

      
21/ 22 2| , 2 exp 2

i i i is s s sp p     


   ; 
is  are the mixing proportions; and 

 , , 1,2, ,
i i ii s s s i is G       is the set of all model parameters. 

 The model is learnt from a training dataset of n promoter sequences, 

 1 2, , , nS S S , aligned with respect to the TSS and spanning over the position range 

 ,a b .  For each oligonucleotide, iK , the set of all observations, 

1 2 iN

i i i ip p p p   


, is obtained where j

ip  is the position of the j
th

 occurrence of 

the oligonucleotide iK  with respect to the TSS in training promoter sequences, and iN  is 

the total number of occurrences of iK  in all these sequences. 

 The maximum likelihood estimate of the model parameters, i , is obtained from 

observations 
ip


.  Given that these are all statistically independent observations from the 

mixture density, the log-likelihood function is written as 

     
1

| log , ,
iN

j

i i i i i i i

j

L G f p G  


 . (5.6) 

The maximum likelihood estimate of i , denoted by 
*

i , is defined as 

  * arg max
i

i i iL


  . 

 Obtaining the maximum likelihood estimate, 
*

i , requires taking the derivative of 

the likelihood function in equation (5.6) and equating it to zero.  The resulting equations, 

however, are nonlinear and there is no closed form solution.  Therefore the well known 

expectation maximization (EM) algorithm is used to obtain the parameter estimates.  The  

EM algorithm assumes initial arbitrary values of the parameters and then iteratively 
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updates them to converge at a local maximum of the log likelihood function.  Detailed 

EM equations used iteratively for updating the estimates of Gaussian mixture model 

parameters  , , 1,2, ,
i i ii s s s i is G       with respect to the dataset 

1 2 iN

i i i ip p p p   


 are written as follows [Carlin and Louis (2000)]: 

 for each observation j

ip  with 1,2, , ij N  , 

  
 

 

2

2

1

| ,
Pr |

| ,

i i i

i

i i i

i

j

s i s sj

i i G
j

s i s s

s

p
s p

p

   

   





, (5.7) 

    
1

1 Pr |
i

i

N
new j

s i i i

j

N s p


  , (5.8) 

    
1

1 Pr |
i

i i

N
new j j

s s i i i i

j

N s p p 


  , (5.9) 

and     
2

2

1

 1 Pr |
i

i i i

N
new j j

s s i i i i s

j

N s p p  


  . (5.10) 

Equations (5.7)-(5.10) are applied iteratively over the complete dataset 
ip


 for all the 

mixture components, 1,2, ,i is G  , until convergence is obtained.  A suitable 

convergence criterion is that the maximum change in the updated value of any of the 

parameters between two successive iterations is less than some value  , where   can be 

set at 
410
. 

 Since the EM algorithm converges to some local maxima (or sometimes saddle 

points) of the likelihood function, usually the results are highly dependent upon the initial 

parameter values chosen.  Thus it requires several re-runs with different random 
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initializations of the parameters to arrive at a satisfactory solution.  To overcome such 

problems, the current implementation is based on the greedy learning algorithm described 

in [Verbeek et al. (2003)].  In this implementation, instead of starting with a random 

initialization of all components and improving upon these components with EM, the 

mixture is built component-wise.  In the beginning, there is only one component, i.e., 

1iG  .  For this mixture, the parameters are computed trivially as the sample mean and 

variance.  Then a new component is inserted, i.e., : 1new

i iG G   and 

        2

1 1| , , 1 | , , | ,
i i

new

i i i i i i G Gf p G f p G p            (5.11) 

As discussed in [Verbeek et al. (2003)], the newly inserted component with parameters 

 * 2 * *

1 1, ,
i iG G     is optimal in the sense that its insertion maximizes the likelihood 

function over the set of all possible insertions.  The complete set of parameters for this 

new mixture are then updated using EM (equations (5.7)-(5.10)) until convergence. 

 The optimum number of components, ,i optG , in the mixture density is obtained 

using Akaike Information Criterion (AIC).  AIC is expressed as 

      *2 2i i iAIC G L n    , (5.12) 

where  in   is the number of free parameters in the set i , which in this case is 3 1iG  .  

The optimum number of components, ,i optG , is the value of iG  that minimizes AIC. 

V-5 Inference Over Long Genomic Sequences 

 In sections V-4.1 and V-4.2, the method of classifying a given nucleotide 

sequence S of length, L b a  , as promoter or non-promoter was discussed.  Now the 
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technique is extended to detect the transcription start sites in a given long genomic 

sequence. 

 If the classifier has been trained using example promoter sequences of length 

L b a   and with TSS location defined as the origin, the same configuration is used 

during inference.  A window of size L is selected from the given genomic sequence.  The 

naïve Bayes classifier infers the probability that this sequence window belongs to the 

promoter class.  The window is moved across the whole sequence as shown in Figure V-5, 

and all regions with high probability of being a promoter are identified.  This sliding 

window approach has been used earlier in [Scherf et al. (2000)].  The predicted TSS 

location is obtained from the window that has maximum probability of being a promoter 

in a local region. 

Long test sequence

Sliding window (length 600)

Naïve Bayes

Classifier

Probability of the

sliding window 

being a promoter

Detect peaks above 

specified threshold

Predicted promoter

regions and TSS

Long test sequence

Sliding window (length 600)

Naïve Bayes

Classifier

Probability of the

sliding window 

being a promoter

Detect peaks above 

specified threshold

Predicted promoter

regions and TSS  
 

Figure V-5. Using naïve Bayes classifier to detect promoter region and TSS in long 

genomic sequences. 
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V-6 Implementation 

 The continuous naïve Bayes classifier has been implemented as a software called 

BayesProm in Microsoft Visual C++


, and the binary executable is available freely at the 

website http://www.comp.nus.edu.sg/~bioinfo/BayesProm.  It was trained using a set of 

1796 human promoter sequences obtained from the Eukaryotic Promoter Database 

Version 74 [Schmid et al. (2004)].  These sequences were of length 600; -499 to +100 

relative to the TSS.  Thus, the window size for the classifier was fixed as 

499,  100a b    . 

 Classifier parameters that require tuning included (i) the length of 

oligonucleotides, k, and (ii) the probability threshold,  , above which a sequence region 

can be classified as promoter.  Testing was performed by varying oligonucleotide lengths 

from 4 10k  .  The value 6k   yielded much superior results as compared to any 

other length.  Hence, BayesProm uses only hexamers.  The threshold value,  , is left free 

for being set by the users (within reasonable limits) depending upon their requirements of 

sensitivity vs. specificity of the predictions [Bajic et al. (2003)]. 

 For training the BayesProm model, 80% of the 1796 EPD sequences were used as 

training set, while the rest were used as validation set.  Partitioning of the sequences into 

training and validation sets was performed randomly.  Five such uncorrelated cross-

validation sets were generated.  The training and cross-validation results are reported in 

Table V-1.  Accuracy was tested on both training and validation sets, and simultaneously 

on a negative set of sequences consisting of human exon and 3‟ UTR sequences derived 

from Genbank.  Note that the negative sequence set was in no way used for training.  

http://www.comp.nus.edu.sg/~bioinfo/BayesProm
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Sensitivity on the positive set was consistently between 75% to 85%, while false positive 

rate on the negative set was less than 1%. 

 

Table V-1. Results of cross-validation studies in the training of BayesProm.  The 

complete dataset of 1796 human promoter sequences was randomly 

divided into 1436 training sequences (80%) and 360 validation sequences 

(20%).  Five such uncorrelated cross-validation sets were generated.  A 

negative set of 5000 human exon and 3‟ UTR sequences obtained from 

Genbank was used simultaneously for testing. 

Set no. 
# TP in training 

(out of 1436) 

# TP in validation 

(out of 360) 

#FP over the negative set 

(out of 5000) 

1 1221  (85%) 306  (85%) 32  (0.7%) 

2 1188  (82%) 279  (78%) 55  (1.1%) 

3 1197  (83%) 267  (74%) 46  (0.9% 

4 1067  (74%) 285  (79%) 42  (0.9%) 

5 1203  (84%) 294  (82%) 37  (0.8%) 

 

V-7 Results 

 The performance of the novel statistical approach has been evaluated in two 

aspects – (i) the performance of TSS predictions, and (ii) the ability of the model to 

accurately learn various transcription factor binding motifs and their locations around the 

TSS from training promoter sequences. 

V-7.1   Prominent Features Correspond to Well-Known Transcription Factor 

Binding Motifs 
 

 An advantage of statistical models as in the present work is that the physical 

features learnt by the model can be directly evaluated.  The significant features learnt by 

the promoter model in the form of oligonucleotide positional densities are reported here.  
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As described above, the training data from which these features were learnt is the set of 

human promoters obtained from EPD over the range -499 to +100 relative to the TSS. 

 It is implied by equation (5.1) that the probability of an oligonucleotide, iK , 

occuring within a position window  1 2,p p  relative to the TSS is given by the area under 

its positional density curve within this position window, i.e.,  
2

1

p

i

p

f p dp .  Using this 

formula, occurrence probabilities of all oligonucleotides within several narrow position 

windows were computed.  Subsequently, oligonucleotides having a high occurrence 

probability within the same position window were grouped together.  In each such group, 

similar oligonucleotides were clustered and used to construct a consensus sequence.  It 

was found that several such consensus sequences correspond to those of well-known 

transcription factor binding sites, such as the TATA box, initiator and so on.  Figure V-6 

illustrates some of the results of this analysis. 

 The results indicate that the features learnt by the statistical model corresponds to 

actual biological information contained within promoter sequences.  It is plausible that 

the modeling technique presented in this work may be useful in computationally deriving 

new biological conclusions out of a dataset of promoter sequences.  Work is in progress 

in this direction. 

V-7.2  Results of TSS Prediction 

 The transcription start site prediction accuracy of continuous naïve Bayes model 

BayesProm is tested on three real human promoter datasets – a relatively short sequence 

dataset of Genbank sequences, a long genomic contig and human chromosome 22.  A 

thorough performance analysis is reported in this section in terms of complete ROC  
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Figure V-6. Important consensus sequences recognized by the naïve Bayes model. 
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characteristics, showing the sensitivity versus positive predictive value (ppv) of 

predictions.  As described in Section III-4, sensitivity is defined as the ratio, 

 Se TP TP FN  , where true positives (TP) is the number of TSS that could be 

correctly predicted, while false negative (FN) is the number of TSS that could not be 

predicted.  Thus it is the percentage of actual TSS that could be successfully predicted.  

On the other hand, ppv is defined as,  ppv TP TP FP  , where false positives (FP) is 

the number of incorrect predictions reported by the software.  Thus, ppv is a measure of 

the credibility of predictions.  Although both high ppv and high sensitivity are desirable, 

in practice as ppv is increased, the sensitivity of the software goes down. 

 Another measure of performance concerns the distance of predicted TSS locations 

from the annotated TSS.  Fickett and Hatzigeorgiou (1997) assumed a TSS prediction as 

correct if it lies 200 bp upstream or 100 bp downstream of the annotated TSS.  However, 

for TSS prediction on the genomic scale such as the full chromosome 22 sequence, a less 

strict criterion of 2000 bp upstream and 500 bp downstream was chosen by Scherf. et al. 

(2001).  In this paper, the former criterion is used for short sequence Genbank dataset, 

while the latter is used in the case of chromosome 22 sequence.  In addition, a 

comprehensive picture of the prediction accuracy is reported in the form of a histogram 

showing the number of accurate predictions that lie within a given distance from the 

annotated TSS. 

 

V.7.2.1 Results on Genbank Dataset 

 The dataset was prepared from all Genbank (Release 142.0) [Benson et al. (2002)] 

flat files having a “promoter” feature key annotation.  Among these, sequences of length 

less than 1000 were discarded as these were too short for evaluation.  The remaining 
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sequences were compared with the EPD promoter sequences using BLAST [Altschul et 

al. (1990)].  Sequences that had similarity with any of the EPD sequences with an expect 

(E) value of less than 1.0E–10 (i.e., greater than 80% similarity) were discarded.  Finally 

a set of 646 human genomic sequences containing a total of 1100 annotated TSS was 

obtained.  TSS prediction accuracy of the present software, BayesProm, on this dataset is 

compared with a well known 2
nd

 generation promoter prediction tool, Eponine [Down 

and Hubbard (2002)].  Other programs could not be compared due to unavailability of a 

batch processing interface. 

 The predicted TSS locations were compared with annotated TSS, and a ROC 

curve showing the sensitivity versus positive prediction rate is shown in Figure V-7.  In 

one analysis (Case B), a prediction is considered correct if the predicted TSS lies within 

1000 base pairs of the annotated TSS.  In a stricter evaluation (Case A), the allowed 

deviation is limited to 200 base pairs.  In both analyses, BayesProm reports high 

sensitivity, while Eponine reports high specificity. 

 A graphical evaluation of the prediction accuracy of BayesProm is illustrated in , 

where a histogram of the prediction error is plotted for all true predictions.  For most of 

the predictions, the prediction error is almost zero, as shown by the high peaks around 

distance zero.  The number of predictions with high error is relatively less, as is indicated 

by the trailing of the histogram with increasing distance.  Comparison with Eponine in 

Figure V-8 reveals that Eponine is highly specific, with very few predictions at distances 

larger than 200.  However, BayesProm has good sensitivity as is indicated by the large 

number of total predictions within any given distance range. 
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Figure V-7. ROC curve showing the TSS prediction performance of BayesProm and 

Eponine on Genbank dataset.  In case A, TSS predictions within 200 bp 

of the annotated TSS were considered correct, while in case B, this range 

was extended to 1000 bp.  Eponine is seen to be highly specific, while 

BayesProm has high sensitivity. 
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Figure V-8. Density of true predictions relative to the annotated TSS on Genbank 

dataset.  Both Eponine and BayesProm report a histogram peak at zero 

distance, indicating the accuracy of these softwares.   Eponine is seen to be 

highly specific but less sensitive, while BayesProm is moderately specific 

but highly sensitive. 
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V.7.2.2 Comparison with other statistical promoter prediction tools 

 The accuracy of BayesProm has been compared with two other statistical 

promoter prediction tools – (i) a hidden Markov model by Crowley et al. (1997), and (ii) 

interpolated Markov chain model (McPromoter) by Ohler et al. (1999).  Since the 

software developed by Crowley et al. is not readily available, results of BayesProm and 

McPromoter were compared with their published results.  The experiment involved 

prediction of the regulatory regions in the human  globin locus on chromosome 11 

(GenBank accession no. U01317).  The sequence contains four locus control regions, viz. 

HS1, HS2, HS3 and HS4; and six transcription start sites, viz. beta, delta, epsilon, ps-

beta1, A-gamma and G-gamma.  The probability of the presence of a regulatory region at 

various positions within the sequence as predicted by each of the assessed tools is shown 

in Figure V-9.  The peaks of the probability curves indicate predicted regulatory regions.  

As observed in Figure V-9(a), the HMM model of Crowley et al. predicted accurately 

three out of four locus control regions.  BayesProm (Figure V-9(b)), on the other hand, 

could predict five out of six transcription start sites accurately with very low false 

positive rate, thus affirming its TSS prediction capability. 

 

V.7.2.3 Results on Human Chromosome 22 

 Chromosome 22 is a relatively short and better annotated portion of the complete 

human genome.  The annotation of this 33.6Mb sequence, provided by Collins et al. 

(2003), gives TSS locations of 393 protein coding genes based on experimentally 

determined full length cDNA transcripts.  The availability of a large number of 

experimentally annotated TSS makes chromosome 22 a good benchmark test dataset.   
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Figure V-9. Predictions of regulatory regions in the human  globin locus on 

chromosome 11 (Genbank accession no. U01317) using (a) Hidden 

Markov Model by Crowley et al. (1997), (b) BayesProm, showing only 

predictions above threshold of –10, and (c) Interpolated Markov Chain 
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Therefore several promoter prediction tools including PromoterInspector, Eponine, 

Dragon Promoter Finder, First Exon Finder, Dragon Gene Start Finder, etc. have been 

tested on the chromosome 22 dataset. 

 Figure V-10 shows the ROC curve of chromosome 22 prediction results obtained 

from BayesProm over several different sensitivity settings.  The performance of some of 

the best 2
nd

 generation promoter prediction tools available today is also shown.  The 

evaluation of Eponine was carried out first hand, whereas the results of other software 

were referenced from published literature, including [Scherf et al. (2001)] for 

PromoterInspector, [Bajic et al. (2003a)] for Dragon Promoter Finder, and [Bajic et al. 

(2003b)] for First Exon Finder and Dragon Gene Start Finder. 
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Figure V-10. ROC curve showing the evaluation of BayesProm and several 2nd 

generation promoter prediction tools on chromosome 22 dataset.  The test 

criterion was same as that used by Scherf et al. (2001).  
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 The ROC curve for BayesProm shows its ability to achieve a ppv of up to 25% for 

a moderate sensitivity of 30%.  This is superior to any of the 1
st
 generation promoter 

prediction tools, which usually have a ppv less than 10% over all sensitivity ranges 

[Fickett and Hatzigeorgiou (1997)].  Also note that most of the 2
nd

 generation tools 

shown in Figure V-10 are fine-tuned for superior performance by carefully selection of 

model parameters and training dataset.  Dragon Gene Start Finder and First Exon Finder 

are further optimized using additional biological knowledge.  Thus the performance of 

BayesProm as a purely statistical model trained on raw dataset of all EPD human 

sequences is encouraging.  Especially at low ppv values, BayesProm exhibits greater 

sensitivity than even the best 2
nd

 generation tools. 

V-8  Conclusions 

 The present work extends the scope of statistical models in computational 

promoter prediction.  In contrast to other computational tools that use PWM or 

oligonucleotide occurrence frequencies, the present work utilized oligonucleotide 

positional distributions.  The technique is free from the practical difficulties that are 

usually encountered in the analysis of oligonucleotide occurrence frequencies.  The 

purely statistical model has a sound biological basis, and upon training with a dataset of 

known human promoter sequences, it could automatically learn the transcription factor 

binding motifs and their occurrence positions relative to the TSS.  It could predict human 

TSS with accuracy competent with some of the 2
nd

 generation promoter prediction tools. 

 The present work introduced a new modeling framework.  However, there are 

several possible directions in which the present promoter prediction tool can be improved 

and fine tuned for superior performance.  These include careful selection of the training 
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sequence data, feature selection to remove unprofitable oligonucleotides from the model, 

separate modeling of CpG island and non-CpG island related promoters and 

incorporating biological knowledge as in [Hannenhalli and Levy (2001)].  Introducing 

dependencies among the nodes in the Bayesian network model could also improve the 

model.  In addition, the ideas presented in the paper can easily be extended to various 

other problems in bioinformatics that require analysis of DNA sequence content, 

especially motif finding. 

 The present study extends the scope of statistical models in general promoter 

modeling and prediction.  Promoter sequence features learnt by the model correlate well 

with known biological facts.  Results of human transcription start site prediction compare 

favorably with existing 2
nd

 generation promoter prediction tools. 
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CHAPTER - VI 

CIS-REGULATORY MODULE PREDICTION 

 This chapter describes computational modeling of cis-regulatory modules (CRMs) 

in the genome of Drosophila melanogaster.  A CRM is a short DNA sequence that 

activates or represses the expression of a gene in a particular tissue at a particular 

development stage.  A CRM is usually described to contain a cluster (or module) of 

motifs for the binding of co-acting transcription factors.  CRMs with similar motif 

module are hypothesized to control the same gene expression pattern.  A motif module 

which governs a specific gene expression pattern is called a regulatory code.  So far few 

regulatory codes are known which have been determined based on wet lab experiments.  

The research described in this chapter presents the first computational approach to learn 

regulatory codes de-novo from a repository of CRMs. 

 A probabilistic graphical model called Modulexplorer [Narang et al. (2008)] is 

developed in this chapter to derive the regulatory codes and to predict novel CRMs.  An 

overview of the Modulexplorer model is given in Section VI-1.  The data and methods 

used to train the Modulexplorer model are described in Sections VI-2 and VI-3 

respectively.  Training and test performance of the model is evaluated in Section VI-4.  

Validation of the model is described in Section VI-5.  Using the model, 813 novel CRMs 

were recovered from the Drosophila melanogaster genome regulating gene expression in 

different tissues at various stages of development.  These novel CRMs are described in 

Section VI-6.  Then the recovery of specific regulatory codes for CRMs controlling gene 

expression in the drosophila embryonic mesoderm, the ventral nerve cord, the eye-

antennal disc and the larval wing imaginal disc is described in Section VI-7.  The target 
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genes of CRMs following a specific regulatory code have been validated to express in the 

corresponding tissue at the corresponding development stage.  Also 31 genes have been 

newly implicated in the development of these tissues.  The implications of the study are 

discussed in Section VI-8. 

VI-1 Modulexplorer CRM Model 

 The Modulexplorer pipeline is shown in Figure VI-1.  The input to Modulexplorer 

is a database of known CRMs and a set of non-CRM background sequences.  

Modulexplorer first characterizes the TFBSs within the CRMs de-novo.  It represents 

De-novo TFBS 
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Whole genome 
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set of training CRMs and 
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The TFBS annotation has 

81% sensitivity and 22% 

false positive rate

The extracted motifs are 
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among the motifs in CRMs.  

It can discriminate between 
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Figure VI-1. The Modulexplorer pipeline to learn a CRM model from a repository of 

uncharacterized CRMs and background sequences, and to use the model 

for predicting novel CRMs is shown in (a).  Also shown are the validations 

that have been conducted in this study to verify the model and the novel 

CRMs predicted by the model. 
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these TFBSs with dyad motifs [van Helden et al. (2000); Eskin and Pevzner (2002); 

Rombauts et al. (2003); Favorov et al. (2005)] in degenerate IUPAC alphabet to achieve 

high specificity.  Then using a probabilistic Bayesian network model, it learns the TFBS 

interactions which are over-represented in CRMs while under-represented in non-CRMs.  

The TFBS interactions describe the regulatory codes.  The trained model is then used to 

discover novel CRMs. 

 The Modulexplorer Bayesian network model for a CRM is shown in Figure VI-2.  

In the Bayesian network model, the TFBSs are the causal elements or parent nodes while  

D1

CRM

M11 M21 M22 M32M31O1 O2 d2d1
M12 O3 d3

D3D2

 1 2 3Pr CRM , ,D D D

 

Figure VI-2. The Modulexplorer Bayesian network model.  The model describes a 

CRM as a cluster of multiple interacting TFBS with distance and order 

constraints.  The nodes iD  are the dyad motifs representing the TFBSs.  

They have states 0 or 1 according to whether the motif is absent or present 

in the CRM.  The CRM is their common effect or hypothesis, represented 

as the child node.  Each dyad motif iD  has two monad components 

 1 2,i iM M  with a spacer of 0 to 15 bp.  These monads are represented by 

individual nodes 1 2,i iM M  having states 0 or 1, i.e. present or absent, and 

are related to the dyad node iD  by a noisy-AND relationship.  The spacer 

length (or distance), discretized as low or high, is modeled by the node di.  

Furthermore each iD  is associated with an order either left or right 

according to whether 1iM  appears to the left or to the right of 2iM  in the 

CRM. 
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the CRM is their common effect or child node.  The basic idea is to consider a CRM as a 

cluster of TFBSs for cooperating TFs with certain distance and order constraints.  The 

TFBS interactions are encoded in the probabilities at the edges of the Bayesian network.   

The interaction probabilities are learnt de-novo by the Bayesian network from training 

CRM and non-CRM sequences with unsupervised learning.  Distance and order 

constraints are considered between pairs of closely interacting motifs.  After training, the  

Bayesian network model functions as a classifier to discriminate between CRM and non-

CRM sequences.  During inference, the Bayesian network assigns high probability of 

CRM to a sequence which contains a combination of closely interacting TFBSs. 

VI-2 Data 

 Experimentally validated CRMs for this study were derived from version 1 of the 

REDfly database (September 2006 release).  The database contained a total of 619 CRMs, 

among which some were redundant or overlapping.  Pairwise sequence similarity was 

computed using ClustalW [Pavesi et al. (2001)] and CRM sequences with more than 40% 

similarity were treated as redundant.  After removing the redundant sequences, 414 non-

overlapping sequences were obtained.  Out of these, 58 sequences were too long (>3.5 kb) 

to be useful in the Modulexplorer pipeline.  These were taken as the test dataset.  The 

remaining 356 CRM sequences were selected as the training dataset for Modulexplorer. 

 The training CRMs represent a diverse mix regulating gene expression in a 

variety of tissues and stages.  Out of 356 training CRMs, 302 control gene expression in 

the embryo, 193 in the larva and 41 in the adult fly respectively.  Of 302 CRMs active in 

the embryo, 87 are expressed in the blastoderm and 215 in the post-blastoderm stages.  

The 215 post-blastoderm CRMs are expressed in one or more of the tissues 
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integumentary system, imaginal precursor, nervous system, digestive system, muscle 

system, circulatory system, tracheal system, reproductive system, excretory system, 

edipose system and endocrine system as shown in Figure VI-3. 

 Also for the training of Modulexplorer three different background sequence sets 

were created from coding, intron and intergenic sequences selected randomly from the 

whole Drosophila genome.  Each of the three background sets consisted of 356 sequences 

size-matched with the 356 training CRMs. 

 Experimental annotation of 1066 TFBSs for 83 known TFs in the vicinity of 85 

genes was obtained from the Drosophila DNase I Footprint Database v2.0 (FlyReg 

database) [Bergman et al. (2005)]. This is a subset of the FlyReg database, leaving out 

entries with unknown transcription factor or gene information. The FlyReg and REDfly 

databases had 52 genes in common, so that the experimentally annotated TFBSs and 

CRMs could be related for these 52 genes.  Interestingly, the annotated TFBSs 

overlapped the annotated CRM regions for all genes except one. There were thus 778 

known TFBS falling within 155 known CRMs across 51 genes [Narang et al. (2006)].  

Based on the survey of literature from which FlyReg annotations were compiled, 19 out 

of these 155 CRMs are fully annotated with TFBSs while 136 CRMs are partially 

annotated with TFBSs.  This TFBS annotation has been used in this study to validate the 

de novo TFBS annotations generated by Modulexplorer in the first step of the pipeline. 

 The BDGP release 5 genome assembly (2007) was used for the whole genome 

prediction and for all other analyses. 

 All the datasets and the whole genome prediction results are available for free 

access at our website http://www.comp.nus.edu.sg/~bioinfo/Drosophila. 

http://www.comp.nus.edu.sg/~bioinfo/Drosophila
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VI-3 Methods 

VI-3.1 TFBS Characterization and Motif Extraction 

 To construct the Modulexplorer model, we first developed a method to robustly 

identify TFBSs within CRMs.  Drosophila CRMs show homotypic clustering of TFBSs, 

i.e. they contain multiple binding sites for the same transcription factor [Davidson et al. 

(2002); Markstein et al. (2002); Lifanov et al. (2003); Ochoa-Espinosa et al. (2005)].  

Therefore TFBSs often appear as redundant subsequences within the CRM.  We studied 

the correlation between the redundant sites and TFBSs in 155 Drosophila CRMs for 

which TFBSs have been previously characterized by DNAse footprinting experiments as 

described in the Data section.  Each of these CRMs contains 3-6 binding sites per TF in 

general (Figure VI-4(a)).  The fluffy tail test statistic [Abnizova et al. (2005)] of these 

CRMs also indicated a high level of sequence redundancy in the CRMs (Figure VI-4(b)).  

Based on the observation of sequence redundancy in CRMs, we developed a novel 

algorithm to recover the TFBSs as redundant sites in a CRM with high accuracy. 

 The experimentally annotated TFBSs in Drosophila CRMs are 6 to 140 bp long 

and contain multiple short conserved segments of length 6-10 bp with variable gaps or 

spacers. We found the dyad motif representation [van Helden et al. (2000), Eskin and 

Pevzner (2002), Rombauts et al. (2003), Favorov et al. (2005)], similar to the one 

proposed by Sinha and Tompa (2000) to model spaced motifs in yeast, suitable to 

represent these TFBSs. A dyad motif is a pair of monad motifs separated by at most D bp. 

Each monad is written in degenerate IUPAC alphabet {A,C,G,T,R,Y,S,W,N} [Sinha and 

Tompa (2000)]. A dyad motif is associated with an order. If A and B are two monads in a 

dyad motif (A,B), the dyad is said to appear in the left (L) (or right (R)) order if A appears  
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to the left (or right) of B. We characterized the TFBSs with dyad motifs individually in 

each CRM.  The procedure has the following steps, which are illustrated by an example 

in Figure VI-5: 

(1) We first find all oligonucleotides of length 6 over the alphabet {A,C,G,T} which are 

over-represented in the CRM as compared to the background. The over-representation of 

an oligonucleotide is measured by the Z-score formula: 

    

 

1 2

1 2

ˆ ˆ

1 1
ˆ ˆ1

p p
Z

p p
N N




 
  

  , 

where n1 and n2 are its number of occurrences in the CRM and background respectively 

(allowing one mismatch), 1N  is the CRM length, 2N  is the total length of background 

sequences, 1
1

1

ˆ
n

p
N

 , 2
2

2

ˆ
n

p
N

 , and 1 2

1 2

ˆ
n n

p
N N





.  

(2) From the selected oligonucleotides, we find pairs occurring at short distance (0 to 15 

bp gap) from each other. Over-represented oligonucleotide pairs are selected again by Z-

score. The selected pairs are then clustered according to their similarity. For clustering, 

the highest scoring unclustered pair is chosen as a new cluster center, and any other pair 

with at most two mismatches with it is added to the new cluster. This procedure is 

repeated until all pairs are clustered. Clusters of size less than 5 are dropped. 

(3) Using the clusters of oligonucleotide pairs, we identify redundant site in the CRM. A 

redundant site will usually give rise to several similar over-represented oligonucleotides 

in a CRM. Thus we mark sites where more than 90% of the oligonucleotide pairs in the 

same cluster simultaneously match as redundant sites. 
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Figure VI-5. Over the next three pages, the figure illustrates the novel procedure used in 

Modulexplorer for characterizing TFBSs de-novo in a CRM. 
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(4) We represent each cluster of oligonucleotide pairs by a single consensus dyad motif 

derived by aligning together all oligonucleotide pairs in the cluster. The consensus dyad 

motif represents the redundant sites or the TFBSs in the CRM. 

VI-3.2 Bayesian network model 

 The Modulexplorer Bayesian network model as shown in Figure VI-2 describes a 

CRM as a combination of dyad motifs with mutual order and distance constraints.  The 

dyad motifs iD ,  1,2, ,i K  , with the states 0 (absent) or 1 (present), are the parent 

nodes while their common child node is the CRM node Y with states True (CRM) or 

False (non-CRM).  Each dyad motif node iD  itself has two parent monad motif nodes 

 ,1 ,2,i iM M , where the nodes , : 1,2, , ; 1,2i jM i K j   take the states 0 or 1 depending 

upon whether the motif ,i jM  is absent or present in the sequence respectively.  The node 

iD  has a noisy-AND relationship with its parent monad motif nodes.  The noisy-AND 

relationship is implemented as described in [Vomlel (2006)].  The intermediate dummy 

variables 
,1 ,2,i iM M   are inserted between the node iD  and its parents 

,1 ,2,i iM M .  The 

dummy variables also take the states 0 and 1.  The relationship between iD  and the 

dummy variables 
,1 ,2,i iM M   is a deterministic AND.  However, the dummy variables 

depend stochastically upon the actual variables 
,1 ,2,i iM M  as   0

, , ,Pr 1 0i j i j i jM M      and 

  1

, , ,Pr 1 1i j i j i jM M     .  Thus iD  depends stochastically upon the motif nodes as 

 ,1 ,2 ,1 ,2Pr 1 , a b

i i i i iD M a M b      , where  , 0,1a b . 

 Additionally the nodes Oi and di impose distance and order constraints upon the 

monad motifs in the dyad Di.  The order constraint iO  defines a bias in the relative 
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positions (left or right) of the monad motifs 
,1iM  and 

,2iM  whenever they both occur in a 

CRM, whereas the distance node id  models the distance between the adjacent 

occurrences of the pair of motifs 
,1iM  and 

,2iM .  The order node has states „left‟ or 

„right‟, while the distance is discretized into two levels – „low‟ and „high‟ – with distance 

up to 6 bp considered „low‟ and above that as „high‟.  The order and distance nodes are 

have the conditional probabilities  Pr 0 0.5i iO left D   ,  Pr 1i i iO left D    , 

 Pr 0 0.5i id low D   ,  Pr 1i i id low D    . 

 The Bayesian network encodes the joint probability: 

 

               

1 1,1 1,2 ,1 ,2 1,1 1,2 ,1 ,2 1 1

1 ,1 ,2 ,1 ,1 ,2 ,2 ,1 ,2

1 1

Pr , , , , , , , , , , , , , , , , , , ,

 Pr , , Pr , Pr Pr Pr Pr Pr Pr

K K K K K K K

K K

K i i i i i i i i i i i i i

i i

Y D D M M M M M M M M O O d d

Y D D D M M M M M M M M O D d D
 

   

     

    


 

which contains the parameters 0 1

, ,, , ,i j i j i i     and  1Pr , , KY D D  

 In the training of the Bayesian network model, first we learn the parameters ,i i   

of order and distance nodes directly from the training CRMs.  For each occurrence of the 

dyad motif Di in the training CRMs, the order of occurrence of its monad motif parents 

and their distance is identified.  The frequencies of these occurrences are used to compute 

the probabilities  and i i  .  These parameters are henceforth kept fixed. 

 Thereafter the noisy AND parameters 0 1

, ,,i j i j   and the parameters 

 1 2Pr , , , KY D D D  are estimated.  The order and distance nodes are temporarily 

removed.  The reduced model is shown as an undirected graph in Figure VI-6.  Each 

training sequence, | 1,2, ,nS n N  , is represented as an ordered pair  ( ) ( ),n nm y


, where 

          1,1 1,2 ,1 ,2

n n n n n

K Km m m m m


  is a binary vector representing the presence or absence 
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of each of the monad motifs in the sequence, and  n
y  is a label 1 or 0 depending upon 

whether the sequence is a CRM or non-CRM respectively.  We use factorization of the 

probability potentials to achieve efficiency in training [Vomlel (2006)].  The hidden  

B1

Y

M’1,1 M’2,1 M’2,2 M’3,2 M’3,1 M’1,2

B3B2

M1,1 M2,1 M2,2 M3,2 M3,1 M1,2

D1 D2 D3

 

Figure VI-6. Potentials  ,1 ,2Pr ,i i iD M M  factorized using the hidden nodes iB . 

nodes B1,…,BK  in the undirected graph serve to factorize the probability potentials.  The 

expectation maximization (EM) algorithm is used to learn the model parameters from the 

data  ( ) ( ),n nm y


.  The EM equations are written as [Vomlel (2002), Vomlel (2006)]: 

M step: 

 
 

 
, ,

,

,

1,i j i ja

i j

i j

n M M a

n M a


  



,   

 

 

,
Pr

n Y b
Y b

n

 
  



D d
D d

D d
, 

where  , 0,1a b , 1,2, ,i K  , j=1,2 and D is the vector of all Di 

 

E-step: 

  
  

1

Pr |   if 
,

0                       otherwise

nN
n

n

m y b
n Y b



  
   




D d
D d


, 

,k i jB M   Bk=0 Bk =1 

,i jM  =0 +1 0 

,i jM  =1 +1 +1 

k kB D  Bk =0 Bk =1 

Dk =0 +1 0 

Dk =1 –1 +1 
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where   
   
,2 ,2

,1 ,2

1

Pr |
n n

i i

K
m mn

i i

i

m  


 D d


, 

  
    

,

, ,

1

Pr 1|   if 
1,

0                       otherwise

n nN
j i j

i j i j

n

M m m a
n M M a



   
    





, 

 

     
      

    

,

,

,

, , , ,

,

1
, , , ,

, , Pr |

Pr | Pr |
, Pr |

k k k i j

k
k i x

i x

n

B D k k B M k i j i j i j i j
K

n n

i j
n

Bk
B M k i x i x i x i x

M

B D B M M M m

M m Y y
B M M M m

 










    
  
            
      

 
D

D


, 

where 
,i xM  is the pair of ,i jM , and the potentials   are shown in Figure VI-6. 

 After training, the Bayesian network CRM model can infer whether or not a given 

sequence is a CRM based on its motif content.  The sequence is scanned to ascertain 

which of the 2K motifs , , 1,2, , , 1,2i jM i K j   occur in the sequence, as well as the order 

and distance between the adjacent motifs.  This evidence is provided to the Bayesian 

network and a standard inference algorithm is used to assign a value between 0 and 1 at 

the “CRM” node, which is the estimated probability of the given sequence being a CRM.  

To predict CRMs in a long uncharacterized sequence, a sliding window approach is used. 

VI-3.3 Feature Based Clustering of CRMs 

 The aim of feature based clustering is to find clusters of CRMs having a common 

set of motifs. The dyad motifs are called “items” and the set of all dyad motifs that match 

a given CRM is called the “itemset” for that CRM. The Closet algorithm [Wang et al. 

(2003)] is used to determine the closed maximal subset of items that are common to at 

least T itemsets. This translates to finding the maximal set of motifs that are common to 

at least T CRMs. The number T is called support. In a single run, the Closet algorithm 
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outputs all possible clusters of at least T itemsets (CRMs) along with their maximal 

common set of items (motifs). The fitness of a cluster is defined as the inverse of the 

probability of obtaining the cluster by chance. Let S be the total number of itemsets (or 

CRMs) and M be the total number of distinct items (motifs). Then, 

      Pr at least  itemsets contain all items 1
S

t S t

t T

S
T I P I P I

T





 
         

 
 , 

where  1 2, , , NI i i i   are the N items in the cluster and  P I  is the probability that all 

these items are selected. If pk is the frequency of the item ik in all itemsets, then 

 
1

N

k

k

P I p


 . Fitness is taken as negative log of this probability. We run Closet for 

different values of support T. The fitness is a convex function of T. We select the cluster 

with the highest fitness across all T. 

 After obtaining a CRM cluster, we remove all these CRMs from the list and run 

the Closet algorithm again on the reduced set. Thus we get the next most conserved 

cluster. This iterative procedure finds several conserved clusters of CRMs. 

VI-3.4 Derivation of Regulatory Code 

 By the abovementioned feature based clustering, CRMs having a common set of 

motifs are obtained. This common set of motifs is used to derive the regulatory code. The 

regulatory code is obtained as a minimal subset of the common motifs that can effectively 

discriminate between the CRMs in the cluster and the background sequences or other 

CRMs. We first translate each consensus motif to a PWM using all its occurrences within 

the CRMs in the cluster. Then we analyze the PWMs of all the common motifs with 

STAMP tool [Mahony and Benos (2007)], which computes the similarities among the 
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motifs and hierarchically clusters them. The hierarchical cluster is shown as a 

phylogenetic tree. With a certain similarity cutoff, we separate the motifs into distinct 

clusters. From each cluster, we select one representative motif that is most over-

represented in the CRMs in the cluster as compared to background sequences or other 

CRMs. The selected motifs comprise the minimal regulatory code. The regulatory code 

motifs can be used to discriminate CRMs in the cluster from other CRMs and background. 

The discrimination is based on the total count of matches of the motifs in a 1 kb window. 

The thresholds for the PWMs [Stormo (2000)] are fixed according to the number of 

random matches produced in a set of background sequences. The value chosen in this 

study is 5×10
-4

 probability of random match, i.e. 1 random match per 2 kb of sequence. 

VI-4 Training of Modulexplorer 

 As the first step in the training of Modulexplorer we annotated TFBSs de novo in 

all 619 CRMs using the method described in Section VI-3.1.  Within 19 CRMs which are 

fully experimentally annotated with TFBSs (Section VI-2, Figure VI-4), the predicted 

TFBSs overlapped 81% of the experimental TFBSs.  In classifying each base in the 

sequence as TFBS or non-TFBS, the ROCs for the 19 fully annotated CRMs are shown in 

Figure VI-7.  The overall sensitivity and false positive rate are 81.5% and 22% 

respectively.  The p-value for this correlation is 9×10
-32

 compared with random sites of 

the same length.  Thus the method robustly identified the TFBSs in the CRMs de novo. 

 To learn the Modulexplorer Bayesian network model, we obtained a non-

redundant and non-overlapping set of 356 training CRMs and 58 test CRMs from the 

REDfly database as described in the Data section above.  The CRMs were of several 

different types as described in Figure VI-3.  In addition, three different background sets  
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from exon, intron and intergenic sequences respectively were prepared as discussed in the 

Data section. 

 Ten-fold cross-validation training of the Bayesian network was performed with 

this training data.  The discrimination achieved between CRM and background sequences 

in cross-validation training is shown in Figure VI-8.  The result is compared with the 

current best performing algorithm HexDiff [Chan and Kibler (2005)] and with a Markov 

model.  Other CRM prediction algorithms (such as [Rajewsky et al. (2002); Bailey and 

Noble (2003); Sharan et al. (2004)]) could not be included for comparison since they 

require prior biological knowledge of the CRM model (such as the PWMs of the TFs) 

and are specific to a subset of CRMs of the same type.  As shown in Figure VI-8(a), all 

three models showed high discrimination between CRM and coding (exon) sequences.  

However for non-coding (intron and intergenic) sequences (Figure VI-8(b)), the Markov 

model showed no discrimination (area under ROC=0.37), HexDiff showed marginal 

discrimination (area under ROC=0.58), while Modulexplorer had the highest 

discrimination (area under ROC=0.75). 

 Modulexplorer‟s prediction performance was then evaluated on a test dataset of 

58 CRMs and 1000 random background sequences different from the training set.  The 

test set is unbiased as it contains CRMs expressed in a variety of tissues and stages and is 

distinct from the training sequences (Figure VI-8(c)).  The ROC, shown in Figure VI-8(d), 

resembles the performance on the training set (area under ROC=0.72). 

VI-5 Pairwise TF-TF Interactions Learnt De-novo by the Modulexplorer 

 We investigated the conditional probabilities associated with the edges of the 

Modulexplorer Bayesian network model to obtain insight into the pairwise TFBS
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interactions represented in the model.  We took from the model the representative motifs 

for 61 known TFs which best matched their known binding sites (listed in Figure VI-9).  

The strength of interaction between any two motifs M1, M2 was measured as the ratio of 

the marginal probabilities     1 2 1 2Pr , Pr ,CRM M M non CRM M M .  The pairwise 

interaction matrix is shown in Figure VI-10.  Based on the interaction matrix, the TFs 

were hierarchically clustered using UPGMA algorithm [Sokal and Michener (1958)]. 

 According to their known biological functions, the 61 TFs may be grouped into  

 

ABD-A MAATTG-AATGGG DSX-F AATCA-GACTACA KNI TAAAAA-AWWWTG TIN GATCCA-GCAGMC 

ABD-A AAATTG-AATGGG DSX-F TRATCA-CACAAAT KNI AAAAAT-ATTAAA TIN TGSSMA-GAGAAA 

ABD-B RTAAAA-AAWWTG DSX-M AATCA-GACTACA KR CAAWTC-AAATGG TLL CAAAAA-TCAAAA 

ABD-B TCAAAA-AAYSRTA DSX-M TRATCA-CACAAAT KR AAAWAG-CVAAAA TLL TAAAAA-TCAAAA 

ADF1 TKCGMA-AGCSGCTC EMS TCAAAA-ARTGWCA MAD CCGWCGC-SKCGMM TOY SGWWWC-GGRGAA 

ADF1 CTGCG-CYGWWCA EMS TCAAAA-AAYSRTA MAD MGCGACM-SKCGMM TOY TSSSAA-AAGTCA 

AEF1 CTACTA-AATCBG EN AATAAA-AAATGT MED MASTKA-ATMCAT TRL AWWWTG-AATAAA 

AEF1 AATCAG-GTACAA EN AMAWKKA-ATCAAA MED TCGAGAC-GKCGMA TRL ASATAA-AAAAGW 

ANTP AAATAT-AWWWTG ESPL AGTAAAA-ACMAAT NUB GCCAAA-AATCAR TTK GCAAAA-CCYGCG 

ANTP TAAAAA-ATWWAT ESPL AAAAATM-AGCAAA NUB CATMGA-GCCAAA TTK GAAGGA-CGAASG 

AP AAATAA-AATKAT EVE AATAAA-TRWTAA OVO TTAAAAA-ACAAKA TWI TCAAAA-AAGGCC 

AP AATAA-AATTGC EVE AATAAA-AAATGT OVO TAGAAA-AAWGGA TWI TATGGA-ATGCAA 

ARA ATWWAA-ATCAAA EXD MAATTG-AATGGG PAN TSAAAA-AWSAAA UBX AATAAA-TRWTAA 

ARA GAAATA-AASTTR EXD AATTAG-TCCWAA PAN ACAAAT-TSAAAA UBX AATAAA-AAAAAT 

BAP MTTSAA-AATCGCA EY TSSSAA-AAGTCA PHO ATAAAA-GAAATAC VND TTSAAA-AAGAKA 

BCD ATTAAA-AWWWTS EY TSSSAA-AAATGA PHO ACATAA-AAAATGA VVL GMATKC-TCSTCA 

BCD AWWWTS-AAAATYY FTZ ATAAAA-AAYTAT PRD AWWWTR-CCATGA VVL AGKATG-ATCSTCA 

BIN AATCAA-AAATAG FTZ ATAAAA-TRTAAA PRD CRATTA-YGTCAAA Z AAAASRA-ATRAAT 

BIN TAACAA-GCAGACG FTZ-F1 CAATTA-ATTGTC SD ATTTAA-AAAAAT Z TTAAAAA-AAATTA 

BRK GAAAMC-GACAGCT FTZ-F1 AMYTARG-ATKGTC SD AAAAAT-AATGAA ZEN AATAAA-TRWTAA 

BRK CGCKAG-ATTTSC GL ATTSTG-GRAGAA SLBO TGATMA-AYCWGV ZEN AATAAA-AAATGT 

BYN WTAAAA-AGTTGA GL AGGAAT-ACABAT SLBO AATCA-GACTACA ZFH1 GCTTCCC-AAYTGC 

BYN TDYAAA-CTGCTA GRH ATAAAA-GAATAA SLP1 CWWHGA-AACACT ZFH1 CAKAAAT-CAMKTRA 

CAD TAAAAA-ATAAMA GRH AATGA-CTTTCC SLP1 MTBWSA-SGAGGAC   

CAD TAAAAA-AAYTAT GT AAAASA-AAAGGY SNA GCGAAA-ACGYRCG   

CF2-II RTWWWA-CCAGAC GT TAAAAA-CCGCGA SNA CGGGAA-ACGYRCG   

CF2-II CATWTA-ACGCTAA HB AAAAAA-CTAAAA SNA TGGAAA-GCCAYA   

DEAF1 GCAAAA-AATCGM HB AAAAAA-ATAMAA SO ARGATG-TSAYMWC   

DEAF1 RTYWAA-RAGTCA HIS2B CCTAAG-ACGCTG SRP AGCCAA-GCGAAA   

DFD AAATTA-ATWWWA HIS2B AGGTA-AGCTGGA SRP AAWWWT-AGCCAA   

DFD ATWAAT-AAAYTA HKB GGAHWWAKC-CCACGC SUH TCGTAA-CAGAAA   

DL AAAATA-CARAAA HKB ACAAWT-KGCAAA SUH CAGAAA-CATCGA   

DL ATWWWA-CKAAAA       

 

 

Figure VI-9 Dyad motifs in Modulexplorer most closely resembling the binding sites of 

known TFs. 
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SLBO 1.10 0.00 2.15 2.89 5.15 0.00 4.72 4.42 3.46 4.44 5.76 4.82 4.30 3.10 4.89 3.97 3.14 2.96 2.48 2.47 3.09 2.39 4.22 3.12 2.67 3.44 1.97 2.98 2.90 2.64 2.16 2.93 2.93 2.68 3.03 2.06 2.01 2.82 1.55 1.88 0.00 2.18 1.39 0.00 0.00 1.78 0.00 0.00 1.13 0.00 0.00 0.00 0.00 0.00 0.00 1.40 0.00 1.55 0.00

BYN 0.00 0.00 0.00 3.20 4.00 4.72 0.00 4.46 2.77 3.21 4.62 4.57 2.61 0.00 4.65 2.39 2.05 2.55 1.73 1.32 0.00 1.41 1.87 1.70 2.01 2.41 0.00 2.11 1.85 2.24 2.43 1.77 1.77 1.96 1.84 1.78 1.89 1.75 2.46 0.00 0.00 0.00 0.00 1.34 0.00 1.17 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37 0.00 1.18 1.07

PRD 0.00 0.00 0.00 0.00 3.24 4.42 4.46 0.00 3.70 2.79 4.51 3.20 2.62 1.79 3.92 4.10 3.40 2.91 3.87 1.29 2.91 1.90 2.98 3.07 3.09 3.01 1.83 3.23 2.39 2.86 1.42 2.10 2.10 3.16 1.80 1.55 1.92 1.12 2.13 2.02 0.00 1.59 1.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BIN 0.00 0.00 0.00 2.11 3.36 3.46 2.77 3.70 0.00 3.62 5.56 3.20 4.16 3.16 5.05 4.27 3.09 3.48 2.83 3.73 3.63 3.82 3.90 3.93 4.36 2.92 2.48 3.05 3.40 3.45 2.69 3.44 3.44 3.51 3.02 3.19 3.72 2.54 2.79 1.44 0.00 0.00 1.41 0.00 0.00 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SUH 0.00 0.00 0.00 0.00 3.05 4.44 3.21 2.79 3.62 0.00 4.35 5.41 3.80 2.84 5.75 2.91 2.96 2.62 1.63 2.46 3.19 3.32 3.17 2.69 2.88 2.56 1.69 2.84 1.61 2.27 1.28 3.44 3.44 2.72 1.53 2.34 2.80 1.26 1.72 1.76 0.00 0.00 1.95 1.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SUHW 0.00 0.00 0.00 0.00 3.91 5.76 4.62 4.51 5.56 4.35 0.00 7.04 4.79 4.85 6.57 4.21 3.79 3.40 3.54 3.83 3.70 4.05 4.55 4.49 4.01 3.97 2.17 4.46 2.89 3.23 3.91 3.15 3.15 2.99 2.80 3.44 2.78 3.58 2.13 1.51 0.00 0.00 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SD 0.00 0.00 4.07 0.00 3.01 4.82 4.57 3.20 3.20 5.41 7.04 0.00 4.04 4.57 5.49 3.94 3.40 3.78 3.14 3.27 4.30 4.18 4.25 3.65 3.44 3.45 1.72 3.57 3.14 3.29 2.32 3.60 3.60 3.44 2.79 3.67 3.54 1.60 1.86 1.70 1.54 1.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.05 0.00

NUB 0.00 0.00 0.00 0.00 2.57 4.30 2.61 2.62 4.16 3.80 4.79 4.04 0.00 5.13 3.96 3.61 2.08 2.13 3.16 3.85 3.09 2.30 3.28 3.59 2.45 2.84 1.75 3.12 2.67 3.55 2.81 2.96 2.96 2.97 3.22 2.27 3.09 2.04 1.58 0.00 0.00 1.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GRH 0.00 0.00 0.00 0.00 2.31 3.10 0.00 1.79 3.16 2.84 4.85 4.57 5.13 0.00 5.31 3.02 2.33 2.53 2.52 3.60 2.90 2.17 2.67 3.16 2.67 2.51 1.43 2.94 2.05 3.06 2.22 2.79 2.79 2.13 2.90 2.32 2.50 2.03 1.53 1.50 0.00 1.54 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 0.00 0.00 1.18 0.00

PAN 0.00 0.00 2.99 3.15 3.33 4.89 4.65 3.92 5.05 5.75 6.57 5.49 3.96 5.31 0.00 4.66 2.90 4.22 2.72 3.07 2.81 3.35 3.33 3.72 3.85 3.25 2.96 3.92 2.95 3.01 2.71 3.42 3.42 3.53 4.04 3.42 2.97 2.17 2.43 2.14 0.00 1.52 1.79 1.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.00

ARA 0.00 0.00 1.20 0.00 1.29 3.97 2.39 4.10 4.27 2.91 4.21 3.94 3.61 3.02 4.66 0.00 5.42 5.36 1.40 4.52 4.80 5.75 6.02 2.88 5.20 1.57 3.86 6.09 1.63 4.47 2.41 4.67 4.67 5.71 3.90 3.61 4.35 2.54 2.41 2.99 0.00 1.83 1.64 1.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.00

EMS 0.00 0.00 0.00 0.00 1.26 3.14 2.05 3.40 3.09 2.96 3.79 3.40 2.08 2.33 2.90 5.42 0.00 4.49 4.61 4.10 3.89 4.01 5.10 3.94 4.55 5.45 4.13 5.71 4.90 2.77 4.25 4.84 4.84 4.59 2.33 2.97 3.98 3.62 1.71 1.42 0.00 1.63 2.13 1.01 1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VVL 0.00 0.00 0.00 0.00 1.30 2.96 2.55 2.91 3.48 2.62 3.40 3.78 2.13 2.53 4.22 5.36 4.49 0.00 4.52 3.88 3.70 4.48 4.58 5.08 4.09 4.31 2.52 4.77 4.16 3.53 4.28 4.19 4.19 3.78 3.00 3.45 3.59 3.04 2.27 1.81 1.02 1.06 0.00 1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EN 0.00 0.00 1.12 0.00 0.00 2.48 1.73 3.87 2.83 1.63 3.54 3.14 3.16 2.52 2.72 1.40 4.61 4.52 0.00 4.09 4.56 4.06 5.78 1.68 3.56 1.43 3.71 5.72 1.73 3.89 1.80 3.90 3.90 5.09 3.33 2.78 3.10 2.44 1.74 2.35 0.00 1.77 1.45 1.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CF2-II 0.00 0.00 1.10 0.00 0.00 2.47 1.32 1.29 3.73 2.46 3.83 3.27 3.85 3.60 3.07 4.52 4.10 3.88 4.09 0.00 4.09 4.07 4.52 4.98 3.78 4.08 3.59 4.50 3.02 3.17 2.93 3.70 3.70 4.03 3.43 3.66 3.30 2.66 1.63 1.76 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EXD 1.55 0.00 1.09 0.00 1.77 3.09 0.00 2.91 3.63 3.19 3.70 4.30 3.09 2.90 2.81 4.80 3.89 3.70 4.56 4.09 0.00 5.25 5.28 4.96 4.53 4.56 3.38 4.08 4.49 3.77 3.62 3.77 3.77 5.16 3.29 4.74 3.57 3.33 2.23 2.22 0.00 1.45 2.49 1.15 1.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.14 0.00

GL 0.00 0.00 1.09 0.00 1.05 2.39 1.41 1.90 3.82 3.32 4.05 4.18 2.30 2.17 3.35 5.75 4.01 4.48 4.06 4.07 5.25 0.00 4.84 5.23 4.70 4.70 3.42 4.69 4.31 3.30 3.44 3.33 3.33 5.12 2.52 3.08 3.52 3.24 1.88 2.15 0.00 1.07 1.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.00

ZEN 0.00 0.00 0.00 0.00 1.37 4.22 1.87 2.98 3.90 3.17 4.55 4.25 3.28 2.67 3.33 6.02 5.10 4.58 5.78 4.52 5.28 4.84 0.00 6.15 5.26 5.58 4.03 5.01 4.98 4.94 4.54 4.06 4.06 5.58 3.32 4.17 3.89 4.53 2.22 2.89 0.00 1.28 1.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AP 0.00 0.00 1.06 0.00 0.00 3.12 1.70 3.07 3.93 2.69 4.49 3.65 3.59 3.16 3.72 2.88 3.94 5.08 1.68 4.98 4.96 5.23 6.15 0.00 5.90 2.19 4.72 2.58 3.87 3.11 5.09 4.22 4.22 3.95 3.23 3.75 4.15 4.13 1.93 2.40 0.00 1.71 1.68 1.24 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EVE 0.00 0.00 0.00 0.00 1.20 2.67 2.01 3.09 4.36 2.88 4.01 3.44 2.45 2.67 3.85 5.20 4.55 4.09 3.56 3.78 4.53 4.70 5.26 5.90 0.00 2.87 3.43 3.58 4.45 4.31 3.45 4.15 4.15 4.40 3.31 3.55 4.06 2.31 2.29 2.65 0.00 1.55 1.41 1.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DFD 0.00 0.00 0.00 0.00 1.12 3.44 2.41 3.01 2.92 2.56 3.97 3.45 2.84 2.51 3.25 1.57 5.45 4.31 1.43 4.08 4.56 4.70 5.58 2.19 2.87 0.00 4.44 3.66 2.57 3.84 2.63 4.55 4.55 4.62 3.36 3.02 2.94 2.56 1.74 1.84 0.00 1.81 1.55 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DREF 0.00 0.00 0.00 0.00 0.00 1.97 0.00 1.83 2.48 1.69 2.17 1.72 1.75 1.43 2.96 3.86 4.13 2.52 3.71 3.59 3.38 3.42 4.03 4.72 3.43 4.44 0.00 4.40 2.90 3.16 2.99 3.21 3.21 3.74 2.42 2.38 3.35 2.89 0.00 1.17 0.00 1.30 1.34 0.00 1.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ANTP 0.00 0.00 0.00 0.00 1.23 2.98 2.11 3.23 3.05 2.84 4.46 3.57 3.12 2.94 3.92 6.09 5.71 4.77 5.72 4.50 4.08 4.69 5.01 2.58 3.58 3.66 4.40 0.00 3.38 4.29 2.44 4.01 4.01 4.77 3.48 3.60 3.89 2.20 0.00 1.86 0.00 1.55 1.94 1.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ABD-A 0.00 0.00 0.00 0.00 0.00 2.90 1.85 2.39 3.40 1.61 2.89 3.14 2.67 2.05 2.95 1.63 4.90 4.16 1.73 3.02 4.49 4.31 4.98 3.87 4.45 2.57 2.90 3.38 0.00 3.61 1.71 3.44 3.44 4.99 3.00 2.30 3.16 1.89 2.23 2.74 0.00 1.99 1.10 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ABD-B 0.00 0.00 1.22 0.00 1.67 2.64 2.24 2.86 3.45 2.27 3.23 3.29 3.55 3.06 3.01 4.47 2.77 3.53 3.89 3.17 3.77 3.30 4.94 3.11 4.31 3.84 3.16 4.29 3.61 0.00 3.37 3.70 3.70 2.92 4.31 3.95 4.27 2.54 2.86 1.93 1.05 1.16 1.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

UBX 0.00 0.00 0.00 0.00 1.66 2.16 2.43 1.42 2.69 1.28 3.91 2.32 2.81 2.22 2.71 2.41 4.25 4.28 1.80 2.93 3.62 3.44 4.54 5.09 3.45 2.63 2.99 2.44 1.71 3.37 0.00 3.15 3.15 3.98 2.90 2.26 2.41 1.02 1.67 1.41 0.00 1.80 1.21 1.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DSX-M 0.00 0.00 0.00 0.00 0.00 2.93 1.77 2.10 3.44 3.44 3.15 3.60 2.96 2.79 3.42 4.67 4.84 4.19 3.90 3.70 3.77 3.33 4.06 4.22 4.15 4.55 3.21 4.01 3.44 3.70 3.15 0.00 0.00 4.46 2.75 3.03 4.12 3.09 1.79 2.33 1.36 1.21 2.22 0.00 0.00 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 0.00 0.00 0.00

DSX-F 0.00 0.00 0.00 0.00 0.00 2.93 1.77 2.10 3.44 3.44 3.15 3.60 2.96 2.79 3.42 4.67 4.84 4.19 3.90 3.70 3.77 3.33 4.06 4.22 4.15 4.55 3.21 4.01 3.44 3.70 3.15 0.00 0.00 4.46 2.75 3.03 4.12 3.09 1.79 2.33 1.36 1.21 2.22 0.00 0.00 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 0.00 0.00 0.00

GT 0.00 0.00 0.00 1.17 1.06 2.68 1.96 3.16 3.51 2.72 2.99 3.44 2.97 2.13 3.53 5.71 4.59 3.78 5.09 4.03 5.16 5.12 5.58 3.95 4.40 4.62 3.74 4.77 4.99 2.92 3.98 4.46 4.46 0.00 6.71 7.33 7.50 6.22 4.87 3.89 2.17 1.79 2.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TLL 0.00 0.00 1.66 0.00 1.61 3.03 1.84 1.80 3.02 1.53 2.80 2.79 3.22 2.90 4.04 3.90 2.33 3.00 3.33 3.43 3.29 2.52 3.32 3.23 3.31 3.36 2.42 3.48 3.00 4.31 2.90 2.75 2.75 6.71 0.00 6.58 7.31 4.91 4.72 2.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HB 0.00 0.00 1.11 0.00 2.35 2.06 1.78 1.55 3.19 2.34 3.44 3.67 2.27 2.32 3.42 3.61 2.97 3.45 2.78 3.66 4.74 3.08 4.17 3.75 3.55 3.02 2.38 3.60 2.30 3.95 2.26 3.03 3.03 7.33 6.58 0.00 5.78 3.89 3.19 2.80 2.30 0.00 1.54 0.00 1.11 0.00 0.00 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CAD 1.19 0.00 1.56 1.46 1.07 2.01 1.89 1.92 3.72 2.80 2.78 3.54 3.09 2.50 2.97 4.35 3.98 3.59 3.10 3.30 3.57 3.52 3.89 4.15 4.06 2.94 3.35 3.89 3.16 4.27 2.41 4.12 4.12 7.50 7.31 5.78 0.00 4.22 2.89 3.03 0.00 1.18 1.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FTZ 0.00 0.00 0.00 0.00 1.54 2.82 1.75 1.12 2.54 1.26 3.58 1.60 2.04 2.03 2.17 2.54 3.62 3.04 2.44 2.66 3.33 3.24 4.53 4.13 2.31 2.56 2.89 2.20 1.89 2.54 1.02 3.09 3.09 6.22 4.91 3.89 4.22 0.00 2.54 0.00 0.00 2.11 1.79 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KR 0.00 0.00 0.00 0.00 1.54 1.55 2.46 2.13 2.79 1.72 2.13 1.86 1.58 1.53 2.43 2.41 1.71 2.27 1.74 1.63 2.23 1.88 2.22 1.93 2.29 1.74 0.00 0.00 2.23 2.86 1.67 1.79 1.79 4.87 4.72 3.19 2.89 2.54 0.00 6.24 2.10 1.23 1.26 1.53 1.47 1.75 1.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.08

BCD 0.00 0.00 0.00 0.00 1.29 1.88 0.00 2.02 1.44 1.76 1.51 1.70 0.00 1.50 2.14 2.99 1.42 1.81 2.35 1.76 2.22 2.15 2.89 2.40 2.65 1.84 1.17 1.86 2.74 1.93 1.41 2.33 2.33 3.89 2.91 2.80 3.03 0.00 6.24 0.00 2.23 0.00 1.41 1.49 0.00 0.00 0.00 0.00 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.26 0.00

KNI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.54 0.00 0.00 0.00 0.00 0.00 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.05 0.00 1.36 1.36 2.17 0.00 2.30 0.00 0.00 2.10 2.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

OVO 0.00 0.00 0.00 0.00 0.00 2.18 0.00 1.59 0.00 0.00 0.00 1.25 1.42 1.54 1.52 1.83 1.63 1.06 1.77 0.00 1.45 1.07 1.28 1.71 1.55 1.81 1.30 1.55 1.99 1.16 1.80 1.21 1.21 1.79 0.00 0.00 1.18 2.11 1.23 0.00 0.00 0.00 1.73 1.10 0.00 0.00 0.00 0.00 0.00 1.01 0.00 1.38 2.76 0.00 2.28 1.45 0.00 1.66 0.00

SRP 0.00 0.00 0.00 0.00 0.00 1.39 0.00 1.37 1.41 1.95 1.16 0.00 0.00 0.00 1.79 1.64 2.13 0.00 1.45 2.00 2.49 1.05 1.78 1.68 1.41 1.55 1.34 1.94 1.10 1.96 1.21 2.22 2.22 2.18 0.00 1.54 1.75 1.79 1.26 1.41 0.00 1.73 0.00 1.66 2.35 1.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Z 0.00 0.00 0.00 0.00 0.00 0.00 1.34 0.00 0.00 1.66 0.00 0.00 0.00 2.00 1.60 1.76 1.01 1.34 1.73 0.00 1.15 0.00 0.00 1.24 1.63 1.40 0.00 1.21 1.07 0.00 1.37 0.00 0.00 0.00 0.00 0.00 0.00 1.07 1.53 1.49 0.00 1.10 1.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 1.13 0.00 1.84 0.00

HIS2B 0.00 0.00 0.00 1.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.00 0.00 0.00 1.16 0.00 0.00 1.01 0.00 0.00 1.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.11 0.00 0.00 1.47 0.00 0.00 0.00 2.35 0.00 0.00 0.00 1.28 0.00 0.00 0.00 0.00 0.00 1.56 1.32 0.00 0.00 0.00 0.00 0.00

PHO 0.00 0.00 0.00 0.00 0.00 1.78 1.17 0.00 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.40 1.40 0.00 0.00 0.00 0.00 0.00 1.75 0.00 0.00 0.00 1.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 0.00 0.00 0.00 0.00

TTK 0.00 0.00 0.00 0.00 1.22 0.00 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 0.00 1.28 0.00 0.00 0.00 0.00 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.23

DEAF1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.14 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.65 1.81 1.49 1.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EY 0.00 0.00 0.00 0.00 0.00 1.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.65 0.00 1.81 0.00 0.00 0.00 0.00 0.00 0.00 1.10 0.00 0.00

TOY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.01 0.00 0.00 0.00 0.00 1.40 1.81 1.81 0.00 2.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MED 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.49 0.00 2.09 0.00 1.86 1.34 0.00 0.00 1.71 0.00 0.00 0.00

BRK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.38 0.00 0.00 0.00 0.00 0.00 1.46 0.00 0.00 1.86 0.00 2.11 2.34 2.99 0.00 1.16 0.00 0.00

MAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.76 0.00 0.00 1.56 0.00 0.00 0.00 0.00 0.00 1.34 2.11 0.00 6.54 4.64 1.28 2.92 1.44 1.24

ADF1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32 0.00 0.00 0.00 0.00 0.00 0.00 2.34 6.54 0.00 2.77 0.00 2.88 0.00 1.03

ESPL 1.04 0.00 0.00 0.00 1.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.28 0.00 1.17 0.00 1.38 0.00 0.00 0.00 0.00 0.00 2.99 4.64 2.77 0.00 1.25 1.14 2.03 1.24

TIN 0.00 0.00 0.00 0.00 0.00 1.40 1.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.17 1.17 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.45 0.00 1.13 0.00 0.00 0.00 0.00 0.00 0.00 1.71 0.00 1.28 0.00 1.25 0.00 1.28 1.57 1.02

HKB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.10 0.00 0.00 1.16 2.92 2.88 1.14 1.28 0.00 2.02 0.00

VND 0.00 0.00 0.00 0.00 0.00 1.55 1.18 0.00 0.00 0.00 0.00 1.05 0.00 1.18 1.27 1.02 0.00 0.00 0.00 0.00 1.14 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.26 0.00 1.66 0.00 1.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.44 0.00 2.03 1.57 2.02 0.00 0.00

FTZ-F1 0.00 0.00 0.00 0.00 0.00 0.00 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.23 0.00 0.00 0.00 0.00 0.00 1.24 1.03 1.24 1.02 0.00 0.00 0.00

1
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Figure VI-10 Pairwise interactions between 61 different TFs learnt de-novo by the 

Modulexplorer probability model.  Based on the interaction matrix, the 

TFs were hierarchically clustered.  Six functionally related groups of TFs 

were formed: (1) cofactors of twist in mesoderm and nervous system 

development, (2) TFs involved in imaginal disc development, (3) the 

antennapedia complex, (4) TFs expressed in the blastoderm, (5) TFs for 

eye development and (6) a miscellaneous set of TFs.  Five distinct clusters 

are seen in the interaction matrix.  Three of the clusters contain mixed set 

of TFs from groups 1-4, while two other clusters correspond to the TF 

groups 5 and 6. 

five broad categories.  The TF Twist (twi) and its cofactors dl, sna, byn, slbo, prd, bin, 

su(H), su(Hw) in mesoderm and nervous system development [Kusch and Reuter (1999); 

Furlong et al. (2001); Markstein et al. (2004); Borghese et al. (2006)] are placed in the 

first group.  The TFs sd, pan, nub, ap, grh and ara which are involved in the development 

of imaginal discs such as the wing disc were placed in the second group.  The third and 
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fourth groups were formed by the TFs of the antennapedia complex (Antp, abd-A, abd-B, 

ubx, dfd) and the blastoderm (bcd, hb, cad, kni, Kr, tll, gt) respectively.  The fifth group 

consists of the TFs ey and toy involved in eye development. 

 In the TF-TF interaction matrix, the first four TF groups showed high mutual 

interaction values in general.  The overlap is expected as these TFs are known to function 

cooperatively [Mann and Morata (2000); Morata (2001)].  However, closer analysis of 

the interaction matrix by hierarchical clustering indicated that the TFs of these four 

groups form three distinct clusters in the TF-TF interaction matrix.  The first cluster 

included all TFs from the first group and the TFs sd, nub, grh and pan from the second 

group.  The second cluster contained the remaining TFs from the second group and all 

TFs of the antennapedia complex.  In addition, the TFs ems, vvl, en, exd, cf2-II, gl, Dref, 

zen and eve also came together with this cluster according to the hierarchical clustering.  

There are some supports that these TFs may be related to the known factors in the second 

cluster.  exd, en, ems, zen and eve are known regulators in the development of 

appendages including the legs and wings [Mann and Morata (2000)].  Vvl also has known 

function in wing development [de Celis et al. (1995)], while little information is available 

on the TFs gl and cf2-II.  The primary function of Dref, is DNA replication. Though there 

is no support presently of its association with antennapedia complex, recent studies have 

shown its various diverse roles [Hirose et al. (2001)] and hence it might be related to the 

antennapeida complex. 

 The third cluster contains all the blastoderm TFs.  Moreover the antennapedia 

pair-rule TF ftz was also found in this cluster.  This association is not surprising as ftz 

cooperates with blastoderm TFs in known CRMs [Zhang et al. (1991)]. 
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 The TFs ey and toy of the fifth group appeared as a distinct cluster by the 

UPGMA clustering.  The TF deaf1 was also found in this cluster.  Little is known in the 

existing literature about deaf1.  Surprisingly we found from a survey of recent literature 

that deaf1 seems to have a role in eye development [Veraksa et al. (2002)]. 

 We found another separate cluster formed by a miscellaneous set of TFs med, 

mad, brk, adf1, espl, tin, hkb, vnd and ftz-f1.  Some of these TFs have known interactions, 

e.g. mad and brk are co-regulators of zen [Rushlow et al. (2001)], while mad and med 

cooperate in the regulation of bam gene [Song et al. (2004)].  However the clustering of 

these TFs is a subject for further study. 

 In summary, TFs with high interaction probability in Modulexplorer were found 

to have close interaction with each other in the same biological process and 

developmental stages. 

VI-6 Genome Wide Scan for Novel CRMs 

 The Modulexplorer model was used to search for novel CRMs within BDGP 

Release 5 assembly of the Drosophila genome.  In a sliding window like approach, the 

complete 120 Mb genomic sequence was divided into 24,000 windows of length 1000 bp 

each with the adjacent windows overlapping by 500 bp.  The Modulexplorer model 

assigns to each window a probability that it may contain a CRM.  A small set of high 

confidence windows that were assigned high probability value by the model were 

shortlisted for analysis as shown in Figure VI-11(a).  We chose a probability threshold so 

that the model has a small false positive rate of 1% in cross-validation.  At this threshold 

the expected sensitivity is about 20%.  Thus 240 false positive windows are expected in 

the predicted set.  A total of 1298 windows were found above the threshold, which is 



138 

 

more than 5-fold the number of expected false positives.  The P-value for this recovery 

(Bonferroni corrected) is 4.0×10
-16

.  Out of 1298 windows, 472 windows were 

overlapping the training CRMs and 13 windows overlapped the 58 test sequences (Figure 

VI-11(b)).  The remaining 813 windows are novel predictions.  These novel predictions 

are listed in Supplementary Figure 4 at the end of this dissertation. 

 As an initial validation, the novel predictions were compared with computational 

CRM predictions reported by other authors [Berman et al. (2002); Markstein et al. (2002); 

Berman et al. (2004); Schroeder et al. (2004)] and with new CRMs added to the REDfly 

database in version 2.  Mild overlap with these predictions was found as shown in Table 

VI-1.  Out of 28 predicted CRMs reported by Berman et al. [Berman et al. (2002)], 6 

were also reported by Modulexplorer.  In a subsequent in-vivo validation by Berman et al. 

[Berman et al. (2004)], 9 of the 28 predicted CRMs were validated as active enhancers 

while the remaining 19‟s were not.  Five of the six common predictions between 

Modulexplorer and Berman et al. corresponding to the genes gt, odd, sqz and CG9650 

(two overlapping Modulexplorer windows) were among the validated modules, while one 

prediction corresponding to the gene antp was inactive.  Similarly 7 CRMs were common 

between Modulexplorer and the predictions of Markstein et al. [Markstein et al. (2002)] 

corresponding to the genes run, zen, brk, sog, CG12444, osm-6 and ady43a.  Of these, the 

zen, brk, sog and ady43a enhancers have been validated as active in-vivo.  Nine other 

CRMs reported by Modulexplorer corresponding to the genes fkh, sim, wg, mir-309, grh, 

phyl, and cluster_at_55C are confirmed by the updated REDfly database (version 2), 

while four CRMs for the genes gt, kni and pdm2 are validated by Schroeder et al. (2004). 
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Table VI-1. Overlap of novel CRMs predicted by Modulexplorer with CRMs predicted 

in previous computational studies. 

Reference No. of 

CRMs 

predicted  

No. of 

CRMs 

validated 

No. of 

CRMs 

found 

active 

No. of 

overlapping 

Modulexplorer 

predictions 

No. of 

Modulexplorer 

CRMs 

validated 

No. of 

Modulexplorer 

CRMs found 

active 

Berman et al. 

(2002, 2004) 

28 28 9 6 6 5 

Markstein et 

al. (2002) 

15 15 5 7 7 4 

Schroeder et 

al. (2004) 

32 20 15 16 5 4 

REDfly 

version 2 

(new) 

- - 34 9 9 9 

 

 The Modulexplorer predictions were over-represented in upstream regulatory 

regions of genes (Figure VI-11(d)) indicating a strong bias towards transcriptional control.  

Of the 813 predicted CRM windows, 391 (48.1%) fell in the upstream intergenic and 

promoter region, which is significantly higher (p-value = 1.1×10
-182

) compared to 

randomly distributed size-matched segments (mean 26%, stdev 4.4% over 100 trials).  

Known CRMs show a similar bias, with 49.6% CRMs overlapping upstream intergenic 

and promoter regions (p-value = 1.1×10
-226

).  The known and predicted CRMs also show 

significant under-representation in the exon regions as compared to random segments. 

 In many cases, multiple predicted CRMs were found clustered around a gene.  

The trend is similar to that for known CRMs, where out of 619 known Drosophila CRMs, 

398 occur as a cluster of 4 or more CRMs around 51 genes.  Monte carlo simulations 

were performed to assess the statistical significance of the clustering of CRMs in 

intergenic gaps.  The number of clusters of different sizes in 50kb windows formed by 
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randomly distributing 813 segments of 1000 bp length across the Drosophila genome is 

shown in Figure VI-12 (averaged over 100 simulations).  In comparison, the 

corresponding distributions for the predicted and known CRMs show significant 

clustering around their target genes. 

 Putative target genes were assigned to the predicted CRM windows based on 

proximity.  Though a CRM can regulate distant genes, it is an uncommon occurrence, for 

instance, 81% of the known CRMs target their most proximal gene.  In this study, CRMs 

lying within the intron of a gene were assigned the same gene as their target, whereas 

CRMs lying in the intergenic region were assigned both the closest upstream and 

downstream genes as their possible targets.  Gene ontology classification of the target 

genes obtained using the online tool GOToolBox [Martin et al. (2004)] is shown in 

Figure VI-11(d) with the GO terms sorted according to their significance (Bonferroni 

corrected P-value).  The terms show highly significant enrichment in the GO categories 

related to development and gene regulation (morphogen activity) [Martin et al. (2004)]. 

This distribution is consistent with the GO categories of the target genes of the training 

CRMs. 

 The G+C content of the predicted CRM windows is shown in Figure VI-13.  The 

known and the predicted CRMs have similar GC content, which is higher than those in 

intron and intergenic sequences but lower than that in exons.  The same trend has been 

previously reported in [Li et al. (2007)]. 

 



142 

 

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

Random segments

Known CRMs

Predicted CRMs

 
Number of CRMs / random segments 

N
u

m
b

er
 o

f 
w

in
d

o
w

s 

 

Figure VI-12. The 619 known REDfly CRMs, the 813 CRM windows predicted by 

Modulexplorer and a set of 813 randomly distributed segments were 

analyzed for their clustering around genes.  A 50 kb long sliding window 

was scanned over the genome.  The number of windows which contained 

one or more CRMs or random segments is shown below.  The histogram 

shows the number of CRMs or random segments in the window on x-axis 

and the number of such windows on y-axis.  The known and predicted 

CRMs come across in clusters of 3 to 4 CRMs in a window, whereas the 

randomly distributed segments are not usually clustered. 

 

Figure VI-13. The GC content of the predicted CRMs is similar to that of the known 

CRMs and higher in general compared to intron and intergenic sequences. 
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VI-7 Feature Based Clustering of CRMs 

 To characterize the CRMs predicted by Modulexplorer into functional categories, 

the 813 predicted CRMs and 356 training CRMs were together clustered based on their 

motif content.  The clustering was performed by an iterative frequent itemset mining 

clustering procedure as described in Section VI-3.3. It was observed that the CRMs of 

every CRM cluster consistently regulate target genes expressed in the same tissue and 

development stage.  This supports the hypothesis that CRMs with similar motifs regulate 

target genes within the same tissue and developmental stage.   

 The major CRM clusters are described below. For each CRM cluster discovered, 

first we validated from the REDfly database if the known CRMs in the cluster are 

functional within the same tissue and developmental stage. This check also deduced the 

type of the CRM cluster. Then for the novel CRMs, we validated if their target genes are 

expressed in the same tissue and developmental stage using in-situ gene expression 

profiles from BDGP [Tomancak et al. (2007)] or Flybase [Wilson et al. (2008)] 

annotation.  Finally, the common motifs for the cluster were used to derive a concise 

regulatory code (see Methods section).  We show that the regulatory code specifically 

distinguishes CRMs that confer the common gene expression pattern from other CRMs 

and background sequences. 

 Table VI-2 summarizes the clusters. The first three iterations of the clustering 

procedure produced a mixed set of CRMs rich in AT motifs.  These CRMs represented 

two major categories with target gene expression in the blastoderm embryo and in the 

wing imaginal disc of 3rd instar larva.  Subsequent iterations produced clusters with 

predominant target gene expression in the embryonic mesoderm, ventral nerve cord and 

eye-antennal tissues.  The clusters are individually described below. 
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VI-7.1 Early mesoderm development 

 The mesoderm cluster consisted of 11 training CRMs for 9 genes and 34 novel 

CRMs for 27 genes as shown in Figure VI-14.  All 11 training CRMs express their target 

genes in the developing mesoderm during stages 8-12 (nine in the visceral mesoderm and 

two in somatic mesoderm). Recovering all 11 mesoderm CRMs from the 356 training 

CRMs by random is highly unlikely (Bonferroni corrected p-value=1.1×10
-8

). 

 For the novel CRMs, in-situ expression profiles of 19 out of 27 target genes were 

available in the BDGP database as shown in Figure VI-15, including CG2493, sob, traf1, 

ush, eya, pvf2, wg, fus, rib, egfr, cpr49ac, sens, SP1173, emc, pxb, fer2lch, rst, dm and 

gnf1.  All of these showed expression in the mesoderm during stages 8-12. Of these, the 

genes traf1, ush, eya, pvf2, wg, rib, egfr, emc, fer2lch, and rst have known involvement in 

mesoderm development (confirmed with the Interactive Fly website) while the genes 

CG2493, sob, fus, cpr49ac, sens, SP1173, pxb, dm and gnf1 are novel. Of the remaining 8 

target genes, four genes sna, knrl, htl and fer1hch were confirmed by Flybase annotations 

for their involvement in mesoderm development, while the other four are unknown to 

function in the mesoderm.  The recovery of at least 23 out of 27 genes as functional in the 

mesoderm is again highly unlikely by chance (Bonferroni corrected p-value<7×10
-9

). 

 The regulatory code derived for the CRMs in this cluster contained 12 motifs 

(Figure VI-14). The occurrence of all these motifs within a 1 kb fragment at a PWM 

match threshold of 5.0×10
-4

 (see Section VI-3.4) was sufficient to classify a sequence as a 

mesoderm enhancer. The code is specific, reporting zero false positive against other 

REDfly CRMs and two false positives against 1000 random sequences. The dpp 813 bp 

enhancer was the lone available CRM in this cluster that has experimental TFBS  
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Figure VI-16. Matches of the mesoderm regulatory code motifs within the dpp 813 bp 

enhancer are shown by underlines. For comparison the known TFBS in 

this enhancer, available only for the first 600 bp, are shown in red color 

text. Out of 32 matches of the regulatory code motifs in first 600 bp, 26 

overlapped known TFBS. 
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annotation. The sites of regulatory code motifs in this CRM matched closely with the 

known TFBS annotation as shown in Figure VI-16. 

 The motifs in the regulatory code showed similarity to the known motifs for the 

TFs dl, twi, sna, tin, bin, abd-B, exd, eve, ftz, prd and ems. The TFs dl, twi and sna are 

known to establish the identity of mesoderm cells [Ganguly et al. (2005)]. The TFs eve, 

tin and bin promote the differentiation of mesoderm cells post-gastrulation (stages 8-12) 

to form different muscle progenitor types (somatic, visceral, tracheal, etc.). These TFs act 

together with pair-rule and segment polarity TFs including dpp, wg, en, exd, eve, prd, ftz, 

abd-B, ems which form gradients along anterior-posterior (AP) and dorso-ventral (DV) 

axes. The AP and DV gradients allow formation of different muscle progenitors in 

different parasegments along these axes [Borkowski et al. (1995)]. Though it has been 

suggested that the independent influences of the above TFs could be integrated together 

via CRMs [Furlong (2004)], so far no specific regulatory code is known for these CRMs. 

The current regulatory code is thus novel to characterize CRMs in mesoderm 

development during stages 8-12 when muscle progenitors differentiate. 

VI-7.2 Ventral nerve cord 

 The ventral nerve cord (VNC) cluster consisted of 15 known CRMs for 14 genes 

and 44 novel CRMs for 44 genes as shown in Figure VI-17. 11 out of 15 known CRMs 

have known involvement in ventral nerve cord development during stages 11-16 (p-value 

6×10
-6

). 

 Among the 44 targets genes of the 44 novel CRMs, 23 genes had in-situ 

confirmation of expression in the VNC during stages 11-16 as shown in Figure VI-18, 

while another 7 genes were annotated in Flybase as functional in the VNC.  Thus 30 out 
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of 44 genes were validated in VNC development.  Out of these, 12 genes pdm2, tsh, traf1, 

wg, phyl, klu, mirr, D, Ap-2, B-h1, run, and rst have known function in VNC 

development while 18 genes ceng1a, slp2, ush, rx, pk, sens, comm2, CG6897, fz2, 

CG11347, klar, ets65a, pxb, ptx1, hth, corto, Ca-alpha1T, and CG9650 are novel.  For 

the rest 14 genes, 10 have no information available while 4 show no expression in the 

VNC. 

 The regulatory code for the VNC cluster consists of 15 motifs.  The regulatory 

code could separate the known neuronal enhancers in the VNC cluster from other known 

REDfly CRMs and 1000 random sequences with 100% specificity. 

 The motifs in the regulatory code closely matched the known consensus for the 

TFs dl, twi, grh, trl, ftz, pros and the bithorax complex TFs which have known 

involvement in VNC regulation.  The TF twi specifies the neuroectoderm cells.  About a 

quarter of the neuroectodermal cells eventually differentiate as neuroblasts while the rest 

form the ectoderm.  During gastrulation (stage 7), the neuroectodermal cells migrate to 

the ventral region.  The fate of neuroectodermal cells as neuroblasts or epidermal cells is 

decided during stages 8-12 by lateral inhibition.  Neuroblast formation is promoted by the 

proneural genes (ac, sc, lsc, ase) and inhibited by neurogenic genes (notch, delta, su(H) 

etc.).  The neuroblasts in different parasegments along the AP and DV axes develop 

subtypes by expressing different sets of genes under the control of various TFs.  The 

regulatory inputs of these TFs are combined by CRMs.  The TFs pros, grh, ftz, bithorax 

complex TFs are known to function together in neuroblast differentiation, such as the 

formation of ganglion mother cells [Prokop et al. (1998); Skeath and Thor (2003)].  The 

different neurblasts proliferate in the interior of the embryo during stages 13-16 to form  
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the VNC.  Thus from the identities of motifs in the current regulatory code, it again 

appears that the CRMs in this cluster regulate neuroblast differentiation. 

VI-7.3 Eye-antennal disc 

 The eye-antennal expression cluster consisted of 18 known CRMs for 17 genes 

and 21 novel CRMs for 21 genes as shown in Figure VI-19.  12 of the 18 known CRMs 

confer expression in the eye-antennal disc during stages 12-16 (p-value 8.3×10
-6

). 

 Among the novel CRMs, the 9 target genes ceng1a, lola, D, fz, spn, cas, fer2lch, 

opa, skpd were confirmed as expressed in the eye-antennal disc (Figure VI-20).  This has 

a p-value of 1.0×10
-6

.  For 9 other target genes, no expression or functional annotation 

information was available.  Three genes showed no expression in the embryonic eye-

antennal disc.  Out of the 9 validated genes, lola, D, fz, spn and cas have known 

involvement in eye-antennal development while the genes ceng1a, fer2lch, opa and skpd 

represent novel targets. 

 The eye-antennal regulatory code had 10 motifs.  The regulatory code gave 100% 

specificity over other known CRMs and 1000 random sequences.  Motifs in the 

regulatory code were recognized as closely resembling the known binding sites for the 

TFs Antp/zen, Exd, tll and ey/toy.  The TFs ey and toy specify the optic primordium cells.  

The eye-antennal imaginal disc is formed during stage 12 by the invagination of optic 

primordium cells to produce a monolayer epithelium.  Commitment of the imaginal disc 

cells towards eye or antenna fates occurs in a series of steps from stage 12 embryo until 

the second instar larva.  Several eye or antennal determinant genes such as eyg, ey, toy, 

dac, optix, salm, exd, dll, etc. are expressed from embryonic stage 12 onwards in the 

imaginal disc.  The TFs dpp, zen, tll, otd, wg etc. are active in this process.  From the  
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regulatory code, it therefore appears that the CRMs in this cluster regulate genes in the 

embryonic stage of eye-antennal specification. 

 The appearance of deaf1 motif in the regulatory code is surprising.  Deaf1 was 

also observed in the previous section to interact with ey and toy in the TF-TF interaction 

matrix. Its role in eye development is therefore a subject for further study. 

VI-7.4 Blastoderm embryo 

 The CRMs containing AT-rich motifs obtained in the first three iterations of the 

clustering procedure consisted of two major CRM types controlling target gene 

expression in the blastoderm embryo and the wing imaginal disc.  The blastoderm CRMs 

were separated manually on the basis of their enrichment in binding sites for the known 

blastoderm TFs hb, bcd, cad, Kr, kni, dl and tll.  The binding sites were annotated using 

the PWMs for these TFs reported in previous studies [Berman et al. (2002); Rajewsky et 

al. (2002)].  A total of 33 known CRMs for 29 genes and 98 novel CRMs for 79 genes 

were recovered as shown in Figure VI-21.   

 The novel blastoderm CRMs showed a 2-fold enrichment of TF-binding as 

compared to their flanking -5 kb to +5 kb regions as shown in Figure VI-23.  The target 

genes of these CRMs were studied for zygotic expression in stage 4-6 developing 

embryos.  Out of 79 genes, zygotic expression could be confirmed for at least 50 genes.  

37 of these were validated from in-situ images in BDGP in-situ [Tomancak et al. (2007)] 

and Fly-FISH [Lecuyer et al. (2007)] databases as shown in Figure VI-22.  13 other genes 

were confirmed from microarray expression data [Arbeitman et al. (2002); Pilot et al. 

(2006)].  Since microarray data does not clearly identify tissue localized zygotic gene  
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Figure VI-23. Binding sites for 10 blastoderm TFs were searched in the region -5000 to 

+5000 around the 98 predicted blastoderm CRMs. The CRMs are in the 

location 0 to 1000. In the CRM region the binding sites were over-

represented by a factor of around 2. The y-axis shows the total number of 

binding sites found in the window in all 98 CRMs. 

expression, a general rule was used to separate the genes into three classes – genes down-

expressed in stages 1-3 but up-expressed in stages 4-6 were classified as zygotic genes, 

genes down-expressed throughout stages 1-6 were classified as not expressed and the rest 

were classified as ambiguous. 

 Considering 15% of all 14,000 Drosophila genes to be zygotically expressed in 

the blastoderm embryo, which is a generous estimate [Lecuyer et al. (2007)], the 

confirmation of at least 50 genes out of 79 for zygotic expression in blasatoderm is 

statistically significant with a P-value of 1.8×10-18 (hypergeometric probability with 

Bonferroni correction of factor 14,000).  
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VI-7.5 Wing imaginal disc 

 The wing imaginal disc specific CRMs were again manually separated from the 

AT-rich clusters.  Since there is no known regulatory code for wing imaginal disc 

specification, we derived a regulatory code from known CRMs of the genes ct, dpp, kn, 

kni, salm, ser, vg, pfe and chn.  All these CRMs confer gene expression in the wing disc 

in 3
rd

 instar larva.  The regulatory code was derived from the common motifs among 

these CRMs.  33 novel CRMs for 31 genes were separated from the AT-rich clusters 

using this regulatory code.  In these novel CRMs, 15 target genes including pdm2, drm, 

cg25c, act57b, dve, inv, rho, emc, c15, hh, CG12063, grn, CG8483, B-h1 and bi were 

validated by their enrichment in the wing imaginal disc in the 3rd instar larva using 

microarray analysis [Butler et al. (2003)].  For the rest 16 genes, no means of validation 

was available.  All the above validated genes have known function in wing development. 

 The regulatory code included 11 distinct motifs with 7 motifs resembling TFs ubx, 

ap, ara, sd, mad, pan, su(H) and nub which are known to regulate wing imaginal disc 

development in the larval stage. The wing imaginal disc is formed from the embryonic 

ectoderm by an invagination at the compartment where DV stripe of wg intersects with 

AP stripe of dpp.  The primordium of the wing disc is established in late stages 13-16 of 

the developing embryo when TFs such as hth, exd, vg, sna, esg become transcriptionally 

active in the wing imaginal cells.  Growth and pre-patterning of the imaginal disc takes 

place in the larva with a number of genes expressed presaging the development of adult 

structures.  The TFs en, hh, dpp, wg, antp, ubx, exd, hth, dll etc. have been implicated in 

pre-patterning of the imaginal disc into compartments, while the TFs ap, pan, su(H), nub, 
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mad, sd, ara, e(spl), ubx are known to occur in CRMs mediating spatio-temporal specific 

expression of genes in the wing imaginal disc. 

VI-8 Implications of Modulexplorer 

 The Modulexplorer Bayesian network model describes a CRM as a cluster of 

TFBSs for TFs that co-regulate gene expression in a particular tissue and development 

stage. The TFBS combination defines a regulatory code. The regulatory codes were learnt 

de-novo in this study from a repository of CRMs of unknown types. CRMs sharing a 

common set of motifs were found to regulate the same spatio-temporal specific gene 

expression. In previous studies [Li et al. (2007)], low sequence similarity has been 

reported among CRMs. This is true as the 414 CRMs comprising the training and test 

data in this study had at most 40% sequence similarity, while in average lower than 20%. 

However in this study we observed similarity of CRMs in terms of their shared TFBS or 

motif content. Therefore a new notion of similarity among CRMs emerges. 

 Though we used the common motifs among “similar” CRMs to specify a 

regulatory code, the Modulexplorer model originally learns regulatory codes in the form 

of probabilistic interaction among the TFBSs or motifs. We studied such interactions at 

the most basic level in the pairwise TF-TF interaction matrix. The observed pairwise 

interactions could be corroborated with known biology. The Modulexplorer model thus 

suggests that regulatory codes exist as rules of probabilistic TF-TF interactions. 

 Modulexplorer also gives clues for the improvement of sequence-based modeling 

of regulatory sequences such as using oligonucleotide motifs. It was observed during this 

study that oligonucleotide motifs produce large number of matches in non-TFBS 

segments of the CRMs (e.g. Figure VI-5), which reduces the effectiveness of modeling 
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based on motifs. The performance of the model improved when the TFBSs were 

accurately annotated and used to train the model, e.g. Modulexplorer showed better 

discrimination between CRMs and background. Similar enhancements may be possible in 

other applications of sequence-based modeling. 

 Modulexplorer contributes new biological information of regulatory codes for 

CRMs associated with the development of mesoderm, ventral nerve cord, eye-antennal 

disc and the wing imaginal disc. It also provides functional annotation of genes, for 

instance 31 new genes have been classified in the above developmental functions. The 

roles of some TFs in these regulatory mechanisms were also suggested, such as the novel 

role of deaf1 in eye-antennal disc development. 

 The regulatory codes currently discovered are few in number as the application of 

Modulexplorer model is restricted to CRMs that have been previously characterized. Also 

the current method of CRM clustering using frequent itemset mining is not robust enough 

as it can only discover clusters where a sufficient number of CRMs share a large number 

of common motifs.  Also the model currently relies on homotypic clustering to accurately 

discover the TFBS.  This may not be possible in other species or in CRMs where 

homotypic clustering is absent.  In such scenarios, one of the possibilities could be to 

characterize TFBS by motif discovery in a set of known CRMs having the same motif 

module [Gupta and Liu (2005)]. 
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CHAPTER - VII 

CONCLUSIONS AND FUTURE WORK 

 This research utilized position localization of TFBSs in regulatory sequences to 

enhance their computational modeling and prediction.  Three different applications were 

addressed in particular – DNA motif detection, general promoter prediction, and cis-

regulatory module prediction.  Although positional bias of TFBSs in regulatory element 

has been known, it has not been adequately studied and exploited.  The present research 

focused on this aspect and contributed three new tools to the bioinformatics community – 

LocalMotif and BayesProm, Modulexplorer.  The salient research conclusions are 

summarized below with some directions for future work. 

VII-1 Role of Positional Localization of TFBSs 

 Positional localization of TFBSs has been observed in a number of situations in 

gene regulatory sequences.  In this dissertation, the following specific scenarios were 

considered: 

(1) The positional localization of TFBSs with respect to the gene promoter in the 

mechanism of transcriptional initiation. 

(2) The positional localization of TFBSs of co-regulating transcription factors with 

respect to the binding sites of the main transcription factor. 

(3) The positional localization of closely packed TFBSs with respect to each other in an 

enhancer sequence (CRM). 

There are other scenarios where positional localization of TFBSs may occur not because 

of biological reasons but due to the nature of the experiment itself.  For instance in the 

emerging ChIP sequencing technology, the main TFBS and the binding sites of the co-
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regulating TFs are found localized with respect to the “peaks” or the positions of 

maximal overlap of the sequenced ChIP fragments. 

 In this dissertation, it was shown in all of the above scenarios that positional 

localization can be utilized to improve the quality of bioinformatics analysis.  In addition 

the results of this study also enhanced our understanding of the nature of positional 

localization of TFBSs that exists in these scenarios.  The contributions of each chapter in 

these aspects are summarized below. 

 In the localized motif detection problem of Chapter 3, the positional localization 

of the TFBSs relative to the TSS or a related TFBS was used to improve the performance 

of motif finding.  In the formulation of this problem, localized motifs were distinguished 

from randomly locally over-represented patterns by their spatial confinement within a 

certain position interval of the sequences when compared to the full sequence.  The 

Spatial confinement score (SCS) was derived as a statistical measure of the significance 

of the observed localization.  The SCS was found very useful to discover biologically 

meaningful patterns.  In cases where the biological motif becomes subtle for a usual 

motif detection algorithm, its high SCS still makes it conspicuous to a localized motif 

detection algorithm.  Based on this concept, the software tool LocalMotif consistently 

showed higher accuracy compared to general motif finders in detecting localized motifs.  

Spatial confinement score also reduces the chances of detecting false positive patterns.  

Thus motif finding tools can improve their accuracy near the TSS or other such biological 

contexts where a specific biological landmark exists, such as splice site, ribosome 

binding site, etc. by considering positional localization information. 
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 On datasets where binding sites of a known TF are available, the co-regulatory 

motifs could be detected by LocalMotif by the virtue of their positional localization 

though these were invisible to other motif finders.  This was shown by the example of the 

dataset containing estrogen response elements (ERE), where the forkhead binding sites 

are often present near the ERE.  In this scenario the use of localization information is 

promising and the same concept can be applied to datasets derived from ChIP sequencing.  

In ChIP-seq, the main motif is highly localized at the center of the peak and thus the co-

regulatory motifs can also be found localized around the peak center.  This is an 

emerging area of research and a localization scoring function similar to that in 

LocalMotif could be used to detect co-regulatory factors with high accuracy. 

 In the analysis of real genomic sequences in this chapter, motifs in the core, 

proximal and distal promoter regions were detected by LocalMotif automatically by the 

virtue of their localization around the TSS.  This was observed with the set of 1941 

promoters of Drosophila Melanogaster as well as with promoters of orthologous genes in 

vertebrate genomes.  The results showed that real motifs near the TSS are positionally 

localized.  This confirms that TFBSs are positionally distributed around the TSS, a fact 

which is used in Chapter 4 of this dissertation for promoter prediction. 

 The computational modeling and prediction of eukaryotic promoters in Chapter 4 

was performed using oligonucleotide positional densities instead of oligonucleotide over-

occurrence as the basis of the computational model.  The use of preferred positions of 

various TFBSs in the promoter relative to TSS in this case could easily give good 

differentiation between promoter and non-promoter sequences.  The program BayesProm 

did not require any background model to do the predictions and performed comparable to 
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second generation promoter prediction tools which are based on extensive tuning of 

parameters and often use other biological information as well.  BayesProm was in fact 

more sensitive than any other program.  This not only confirms the observation of 

positional localization of TFBSs around the TSS, but also suggests that positional 

information of TFBSs is in itself a distinguishing feature of functional regulatory 

sequences and is very relevant in bioinformatics analysis of gene regulation.  The 

positional localization of different features in different types of regulatory sequences is an 

important aspect to be researched further towards understanding the control circuitry 

embedded in these sequences. 

 In the case of cis-regulatory modules, which are distal elements and so far not 

much understood, researchers have generally emphasized high density of binding sites for 

co-operating TFBSs as their main feature.  In the computational model Modulexplorer, 

firstly the TFBSs were discovered de-novo in a CRM with high accuracy when the motifs 

were considered in pairs rather than as single patterns.  Secondly the motifs were found to 

occur in specific combinations and with specific mutual gap and order in the CRMs.  

Incorporating this information into the modeling improved the specificity of the CRM 

model (i.e. reduction in false positives).  This indicates that positional information is also 

important in CRMs, or in general distal regulatory elements.  In this case the positional 

localization of TFBSs is not with respect to a certain fixed biological landmark but 

mutually with respect to each other.  The TFBSs were observed to be closer to each other 

in a CRM as compared to random patterns.  The possible reason for this could be to allow 

interaction among the TFs.  This subject needs to be explored in greater depth and could 

improve our understanding of the features of functional regulatory sequences distal to the 
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TSS.  While in this study only pairwise order and distances of TFBSs were modeled, the 

actual situation could in fact involve interactions of greater complexity among the TFs. 

 Thus in summary this dissertation not only shows the advantage of using 

positional information in the bioinformatics analyses of regulatory sequences, but also 

throws light on the different natures of TFBS localization in gene regulatory sequences 

proximal and distal to the TSS. 

VII-2 Nature of Regulatory Sequences 

 As described in the previous section, analyses performed using LocalMotif and 

BayesProm in this research confirm the current view about the nature of gene promoters.  

Both analyses showed that transcription factors bind to the promoter at specific positions 

relative to the TSS.  Analysis of Drosophila core promoters with LocalMotif showed the 

localization of binding sites such as TATA box, initiator, DRE, DPE etc.  Similarly in 

human core and proximal promoters BayesProm showed the localization of TATA box, 

CAAT box, GC box and initiator.  Furthermore, the localization intervals of binding sites 

near to the TSS were shorter than the intervals of binding sites distal of the TSS, which 

supports the current understanding of proximal and distal promoter regions. 

 Modulexplorer analysis, on the other hand, provides novel information about the 

nature of gene enhancers or cis-regulatory modules.  As in previous studies, the model 

confirms that a CRM is a cluster of TFBSs for TFs that co-regulate gene expression in a 

particular tissue and development stage. It also confirms that the TFBSs are positionally 

localized with respect to each other in a CRM.  However, while previous studies report 

low sequence similarity among CRMs, Modulexplorer shows good similarity of CRMs in 

terms of their shared TFBS or motif content. Therefore it gives a new notion of similarity 
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among CRMs.  This conclusion could be extended in general towards assessing the 

similarity of regulatory sequences.  According to this view, regulatory sequences can be 

considered as a combination of the functional (TF binding) and the non-functional 

(background) parts.  While the non-functional part is usually dissimilar, the functional 

part could be quite similar or conserved across sequences.  Measuring similarity over the 

functional part only could be a better idea. 

 The Modulexplorer model furthermore shows that there is organization within the 

functional (TF binding) part of the CRM.  The occurrences of various TFBSs in a CRM 

are not random.  There are probabilistic rules governing which TFBSs occur together and 

which do not.  Such rules can further be used to characterize true regulatory sequences 

and to assess their similarity / dissimilarity. 

 Furthermore, the homotypic clustering of TFBSs in a CRM, i.e. occurrences of 

multiple binding sites for the same TF in a CRM, is confirmed in this study.  This 

property was utilized to discover the TFBSs in the CRMs. 

VII-3 Modeling Techniques 

 Statistical information theory and probabilistic graphical models were used in this 

dissertation for modeling.  The conclusions drawn from the application of these 

techniques to the present research problems are described below. 

 In Chapter 3, information theory framework was found very useful for 

formulating the motif scores (over-representation score, spatial confinement score and 

relative entropy score).  When formulated in the context of information theory, these 

scores measure the amount of surprise associated with the motif in the particular aspect.  

For example the over-representation score measures the amount of surprise in the 
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observed number of instances of the motif as compared to its expected number of 

instances.  In mathematical terms, the score represents the Kullback-Leibler distance 

between the observed and the reference distribution.  The scores are normalized with 

respect to suitable bases so that they usually lie in the range 0 to 1.  A score close to zero 

indicates little surprise while a score close to 1 indicates high surprise.  Information 

theoretic definition of the scores is thus helpful in obtaining a clear quantitative picture of 

the goodness of the motif in the three different aspects.  It also allows combining the 

three scores into a single score easily and logically.  Since the three scores measure three 

independent characteristics of the motif, the score can be considered as a vector in a three 

dimensional space which each score measured along an orthogonal axis.  The combined 

score can then be stated as the Euclidean distance or Hamming distance of the motif from 

the origin.  Motifs distant from the origin are more interesting than those closer to the 

origin.  The information theoretic scoring measure is also comparable for motifs of 

different lengths and mutations.  Thus it allows pooling together the results of different 

(l,d) runs and then selecting the best motifs among all the runs.  Future motif finding 

algorithms and other bioinformatics tools as well can take advantage of this information 

theoretic framework for computing and combining scores. 

 In Chapter 4, a mixture of Gaussians was used to represent the oligonucleotide 

positional density.  The parameters of the Gaussian mixture were estimated using the EM 

algorithm.  Instead of learning all the components of the Gaussian mixture 

simultaneously, the mixture was built component-wise.  Initially the mixture has one 

component which is learnt by EM, then a new component is added and the EM is 

repeated to learn the two-component mixture, and similarly one component is added per 
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step until the optimal solution is reached by AIC.  Such component-wise building of the 

Gaussian mixture was found highly effective.  Future applications using Gaussian 

mixture models can benefit from this idea. 

 In both Chapters 4 and 5, Bayesian networks were used for the modeling.  In 

Chapter 4, a continuous naïve Bayes network was used, whereas in Chapter 5 a discrete 

Bayesian network was used.  In both applications, Bayesian networks provided 

considerable advantages as compared to other AI modeling techniques.  These 

advantages are described below. 

 The first advantage of Bayesian networks is in meaningfully representing physical 

entities or phenomena in the network structure.  In Chapter 4, the nodes of the 

BayesProm model represent TFBSs.  The parameters of the model encode the occurrence 

distributions of the TFBSs relative to the TSS.  Thus upon learning the model from a set 

of human promoters, the Bayesian network automatically identified important TFBSs in 

these promoters and their occurrence positions relative to the TSS.  The model gathered 

physical domain knowledge from the data into the network structure during training.  

Blind classifiers such as neural network, SVM etc. do not allow such a meaningful 

physical representation.  In the Modulexplorer model of Chapter 5, the nodes of the 

network represented monad and dyad motifs and the CRM.  The model structure 

represented biological knowledge of how the monad motifs form dyads and how these 

dyads combine together to form a CRM.  Thus the Bayesian network model could 

meaningfully incorporate known biology knowledge into the model.  This is again not 

possible in neural networks and SVM. 
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 The second advantage of using Bayesian networks is in allowing validation of the 

model based on known biology.  Since the nodes and parameters of the Bayesian network 

have physical interpretation, they can also be validated with existing biology knowledge.  

The parameters of the BayesProm model, which represent occurrence distributions of the 

TFBSs relative to the TSS, were verified after training the model.  The parameters 

showed that the prominent features in BayesProm corresponded to known TFBSs, and 

the TFBS positions were also correctly determined.  In the Modulexplorer model, the 

parameters of the Bayesian network represent interaction probabilities among the dyad 

motifs in a CRM.  Since the dyad motifs correspond to binding sites of known TFs, in 

effect the model parameters represent TF-TF interactions.  The pairwise TF-TF 

interactions were verified after training the Modulexplorer model.  The TF-TF 

interactions in the model compared well with known TF-TF interactions, confirming the 

validity of the model.  Such validations are not possible in other AI modeling tools. 

 A related advantage is that the Bayesian network can even provide new 

knowledge in its parameters after training.  The TF-TF interactions in the Modulexplorer 

model not only confirmed with existing knowledge but also showed a novel interaction of 

the TF Deaf1 with the TFs ey and toy which are involved in eye-antennal development in 

Drosophila melanogaster.  Thus they implicated Deaf1 in eye-antennal development. 

 Another crucial advantage of Bayesian network modeling in Modulexplorer is 

that the model could be trained with very less data.  The training data of CRM sequences 

was few in number, with only 356 training sequences.  However robust learning was 

possible since domain knowledge was incorporated into the modeling.  Parameterization 

in the EM algorithm was reduced by (i) establishing a noisy-AND relationship between 
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the motifs in a dyad, (ii) having preset values of gap and order CPTs by learning them 

directly from the data, and (iii) by intelligently choosing the dependencies in the network 

structure.  

 Thus in summary Bayesian networks are highly effective modeling tools in 

bioinformatics. 

 The Modulexplorer model also shows that sequence-based modeling of regulatory 

sequences can be considerably improved by considering only the functional part of the 

regulatory sequences (i.e. the TFBSs).  Previous modeling techniques look for matches of 

motifs in the whole sequence.  The motifs produce large number of matches in non-

functional (non-TFBS) segments of the sequence, which reduces the accuracy of 

modeling.  A better way of modeling is to accurately annotate the TFBSs and use only 

the motif matches in the TFBS segments.  Based on this approach, Modulexplorer 

showed better discrimination between CRMs and background as compared to previous 

tools. 

VII-4 Research Contributions 

 The main novel contributions of the present study towards bioinformatics research 

are summarized as follows. 

 This study introduced a new formulation of the motif finding problem as localized 

motif finding.  The difference between locally over-represented and localized motifs was 

clearly defined, and based on this a clear definition of the localized motif finding problem 

was given.  To solve this problem, a novel scoring function called the spatial confinement 

score was introduced.  This score is computed in the form of an information criterion.  

The existing scoring functions of over-representation and relative entropy were also 
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reformulated in an information theoretic form and normalized with suitable bases so that 

they usually lie within the range 0 to 1.  The work has contributed a novel motif finding 

algorithm called LocalMotif to the bioinformatics community.  The algorithm is 

published and available to the research community for free use.  It has good potential of 

application for the analysis of co-regulatory motifs in ChIP-Seq datasets. 

 For modeling promoter sequences, this study introduced the idea of using 

positional localization of motifs relative to the TSS.  In the current work the idea was 

implemented in the form of oligonucleotide positional densities and a continuous naïve 

Bayes model.  However, other better representations may be possible.  This study shows 

that positional information of TFBSs in itself gives high accuracy of promoter prediction, 

and thus when combined with biological knowledge as in other available tools, can 

further improve the accuracy.  The work has also resulted in a new published tool called 

BayesProm which can be used by the research community to analyze TSSs in the human 

genome. 

 The work on Modulexplorer makes some major contributions to the research on 

CRMs.  Existing research has focused on CRMs of a single type which express their 

target genes in same tissue and developmental stage.  This is the first work to attempt the 

study of multiple types of CRMs that express their genes in several different tissues and 

developmental stages. 

 The first contribution of Modulexplorer study is the compilation of a 

comprehensive database of Drosophila CRMs with full TFBS annotation.  Prior to this 

study the experimental TFBS annotation was available only for 19 CRMs fully and 136 

CRMs partially.  This study introduced a novel method for de-novo discovery of TFBSs, 
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which has more than 80% sensitivity and about 20% false positive rate.  Using this 

method, full TFBS annotation of all 619 Drosophila CRMs has been produced. 

 The second contribution is in highlighting a clear definition of regulatory codes 

and finding novel regulatory codes govening Drosophila CRMs.  Though the term 

regulatory code and its concept are available in the published literature in different places, 

a comprehensive description and application of the concept are not available in any single 

publication.  This study introduces the concept clearly and presents a model that can learn 

regulatory codes de novo from training data of CRMs.  The study has contributed new 

regulatory codes for Drosophila CRMs associated with the development of mesoderm, 

ventral nerve cord, eye-antennal disc and the wing imaginal disc. 

 A related novel contribution is the use of a database of in-situ expression profile 

images of genes in Drosophila embryos to validate the functions of the CRMs.  It was 

hypothesized that CRMs sharing the same regulatory code, i.e. the same motif modules, 

must show the same expression profiles of their target genes in a certain developmental 

stage and tissue.  This was indeed confirmed with the help of in-situ expression images of 

these genes. 

 The third contribution is the prediction of 813 novel CRMs in Drosophila.  A 

majority of these CRMs are also classified with their possible roles in development, i.e. 

the tissue and development stage in which they express their target genes.  With this 

discovery, a related contribution is the novel functional annotation 31 Drosophila genes 

in development of mesoderm, ventral nerve cord, eye-antennal disc and wing imaginal 

disc. 
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 Another biological contribution made by the Modulexplorer study is to suggest 

the roles and interactions of different TFs in regulatory mechanisms, such as the novel 

role of deaf1 in eye-antennal disc development. 

 Finally the study contributes the tool Modulexplorer to the research community, 

which can be used to model and discover CRMs in Drosophila.  The pipeline of 

Modulexplorer gives a systematic description of how enhancer modeling and prediction 

can be performed with suitable validations at every step.  The ideas presented in this 

dissertation have the potential to stimulate future works in the modeling and prediction of 

enhancers. 

VII-5 Recommendations for Further Study 

 The research problems addressed in this thesis are currently of active interest in 

bioinformatics.  Some specific research directions motivated by the present research and 

some ideas for extending the present work are described below. 

1. LocalMotif is presently based on the (l,d) motif model.  There are emerging opinions 

about improving the motif representation to reduce false positives or to give a more 

accurate description of the motif.  While it is still not clear which representation is the 

best, it has been suggested that (i) motifs with possible gaps, (ii) motifs with 

mismatches restricted to specific binding site positions, or (iii) motifs based on 

IUPAC characters, might lead to a more accurate model.  The motif model of 

LocalMotif may be revised to study this effect while retaining the same scoring 

function.   

2. The LocalMotif algorithm is currently derived as a modification of the SP-STAR 

algorithm of Pevzner and Sze (2000).  It would be more efficient to use a faster 
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algorithm with a broader search space such as the suffix tree algorithm of Weeder 

[Pavesi et al. (2001)]. 

3. The BayesProm program was trained on 1796 human promoters from EPD version 74.   

Much more extensive public repositories of human promoters such as DBTSS have 

become available.  The model may be retrained on the extended dataset for improved 

performance.  In addition, a whole genome search could be performed to output a list 

of predicted genome wide binding sites. 

4. Feature selection can be attempted on the BayesProm naïve Bayes model to remove 

unprofitable oligonucleotides from the model.  Introducing dependencies among the 

attribute nodes in the Bayesian network model (such as a TAN Bayesian model) 

could also be tried. 

5. Specific biological knowledge could be added to the BayesProm software to further 

improve its performance.  For example (i) separately training two different models for 

CpG island and non-CpG island related promoters, (ii) coupling a gene prediction 

algorithm with BayesProm as has been done in FirstEF [Davuluri et al. (2001)] and 

Dragon gene start finder [Bajic and Seah (2003)]. 

6. A major research problem could be to apply the Modulexplorer concept to vertebrate 

CRMs.  This would firstly require developing a procedure to annotate TFBSs in 

vertebrate CRMs.  Vertebrate CRMs are different from insect CRMs in that they 

contain binding sites for a larger variety of TFs and have fewer instances of 

homotypic clustering of TFBSs.  Thus they would require a different approach for 

TFBS annotation.  The Bayesian network model would also have to be modified 

accordingly. 
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7. In Modulexplorer, feature based clustering of CRMs has currently been performed 

using frequent itemset mining.  However the Bayesian network model originally 

models probabilisitic interactions among the motifs in CRMs.  Thus better ways to 

perform clustering could be explored, which may allow separation of CRM clusters 

of smaller sizes with common function.  This will lead to the discovery of more 

regulatory codes and refinement of the existing ones. 

8. The novel enhancers discovered by Modulexplorer can be validated in the wet lab by 

generating P-element constructs fused to eve basal promoter and a lacZ reporter gene 

and examining the expression of these constructs by in-situ RNA hybridization to the 

lacZ transcript in the embryo in the desired tissue and stage of embryogenesis. 

9. The new motifs reported by Modulexplorer in the development of mesoderm, ventral 

nerve cord, eye-antennal disc and the wing imaginal disc could be studied to see if 

they give any new biological information about transcription factors in Drosophila.  

Deletion studies could be carried out to validate these motifs. 
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APPENDIX 

APPENDIX A. Spatial Confinement Score in LocalMotif 

A.1  Spatial confinement 

 Consider a  ,l d  motif M with its instances (relative to the anchor point) 

observed in a large set of sequences, S , of length L each, aligned relative to an anchor 

point A.  Spatial confinement of M within a position interval  1 2,p p  is defined as the 

difference between the fraction of binding sites actually observed within the interval 

 1 2,p p  and the fraction that would be expected to lie in it if binding sites were 

uniformly distributed across the entire sequence length.  For instance a length 2L  

interval  , 2p p L  is expected to contain 50% of the observed binding sites if they 

were uniformly distributed.  But if this interval contains 65% of the total binding sites, 

then it has +0.15 spatial confinement of M. 

 Spatial confinement always lies in the range  1,1 .  Its positive value in an 

interval signifies higher than expected binding site concentration in that interval.  Figure 

A-1 shows the spatial confinement of the motif TTGACA in E. coli promoter sequences 

for various intervals.  The interval length  2 1p p  is shown on the x-axis and the 

interval beginning position 1p  is shown on the y-axis.  Spatial confinement is shown as a 

surface in the z-axis.  Maximum spatial confinement is observed for the interval (30,50) 

indicating that the motif is confined within this interval.  The interval is indeed 

biologically accurate [Harley and Reynolds (1987)]. 
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Figure A-1 Spatial confinement of the motif TTGACA in different intervals  1 2,p p  

in a set of 471 E. coli promoter sequences of length 101 each.  The x-axis 

denotes position p1 and the y-axis denotes the interval width  2 1p p .  

Maximum is observed at 1 30p   and width=20, indicating that the motif 

is confined within the interval (30,50), which agrees with the literature 

[Harley and Reynolds (1987)]. 

 Thus spatial confinement gives a picture of the relative concentration of binding 

sites for a motif in different position intervals, and can be used to identify the position 

interval where the motif is maximally confined.  However in practice it is difficult to 

accurately compute it because the number of input sequences provided to the algorithm is 

mostly limited.  The limited information can be utilized most effectively using statistical 

procedures.  A statistical measure for spatial confinement is therefore derived as the 

spatial confinement score. 

A.2  Spatial confinement score 

 Instead of the large sequences set S , let only a subset SS   be available as input 

to the algorithm.  Thus S is a sample data from the population S .  Let c be the 

concentration of binding sites for the motif M in position interval  1 2,p p  within the 

population S .  An estimate ĉ  of c may be obtained from the sample S.  Let n denote the 
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total number of binding sites for M in the sequence set S, of which 1n  lie within the 

interval  1 2,p p  and 0 1n n n   lie outside this interval.  The maximum likelihood 

estimate is given as  1 0 1ĉ n n n  . 

 The spatial confinement of M in the interval  1 2,p p  is measured as the 

difference 0c c , where 0c  is the concentration of binding sites expected in  1 2,p p  

according to uniform density, given by 0 2 1c p p L  .  Since the exact value of c is 

unknown, the problem is to assess from the sample estimate ĉ  whether or not 0c c  in 

the interval  1 2,p p  and to what degree c exceeds 0c .  This would be a statistical 

measure of the spatial confinement of M in  1 2,p p . 

 A statistical hypothesis test is defined to assess whether 0c c  with the following 

elements: the null hypothesis, the alternate hypothesis, the test statistic and the rejection 

region.  The two hypotheses are: 

0 0:H c c  

 1 0:   one tailedH c c  

The test statistic is derived via likelihood ratio procedure.  The complete derivation is 

described in the Appendix B.2.   In essence, it is stated as the Kullback-Leibler distance 

between ĉ  and 0c  in equation B.10, which is thus used as the statistical measure for 

spatial confinement, called as the spatial confinement score.  The rejection region for the 

hypothesis test is also described in the Appendix B.2. 
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APPENDIX B. Normalization of Scoring Functions in LocalMotif 

B.1  Normalization of the relative entropy score (RES) 

 The relative entropy of the motif is the Kullback-Leibler divergence between the 

motif M and the background B: 

   ,
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which can be decomposed as 
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If 1 2 1nx x x     then the maximum of the entropy function  
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i i
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x x


  occurs for 

1 2 1nx x x n     and the maximum value is  ln n .  Therefore the first term can be 

normalized by the factor  1 ln4l .  Normalizing the second term by the same factor 

 1 ln4l , it appears as   ,

1

1 1
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background, where pb=0.25, this term reduces to 1 since 1b

b

f  .  Another special case 

is when , b bb f p  .  Then after normalization the term becomes 1.  As the difference 

between bf  and bp  increases, the term can become >1. 
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B.2  Derivation and normalization of the spatial confinement score (SCS) 

 The spatial confinement score is derived as follows.  According to uniform 

density, the proportion of binding sites of a motif that lie within the interval of interest 

 1 2,p p  will be 
0 2 1c p p L  , where L is the sequence length.  Considering that the 

population distribution is uniform (hypothesis 0H ), in a randomly chosen sample, the 

likelihood of observing 1n  binding sites within the interval  1 2,p p  and 0n  outside this 

interval is given by the binomial formula: 

         1 0

11 1 2 0 0 0 1 0 0Pr  sites in , , 1
n nn

nn p p c L c n n C c c    (B.4) 

 Considering that the population distribution is non-uniform (hypothesis 1H ), let 

the concentration of binding sites in the interval  1 2,p p  be c.  The binding site 

observations are outcomes of a binomial experiment where a binding site lies within the 

interval  1 2,p p  with probability c  and outside it with probability  1 c .  If the total 

number of observed binding sites is n, of which 1n  lie within  1 2,p p  and 0 1n n n   lie 

outside, then the likelihood of observing 1n  binding sites within the interval  1 2,p p  and 

0n  outside this interval is again given by 

         1 0

11 1 2 0 1Pr  sites in , , 1
n nn

nn p p c L c n n C c c    (B.5) 

The maximum likelihood estimate ĉ  of c is thus obtained as 

 1

0 1

ˆ0      
dL n

c
dc n n

  


 (B.6) 
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The likelihood ratio test statistic 1  for the hypothesis test defined in Section IV-2.3 is 

then obtained as 
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and the rejection region is determined by 

 1:RR k   (B.8) 

where k is chosen according to the desired level of significance   of the test.  According 

to the Wilks' theorem [Rice (1995)], 12ln  is approximately 2  distributed with one 

degree of freedom.  This information can be used to derive the value of k given a fixed 

level of significance  .  If 1  lies in the rejection region then there is sufficient evidence 

to conclude that the concentration of binding sites for the motif M in the interval  1 2,p p  

is greater than what would be expected from uniform density.  As the value of 1  

approaches zero, the hypothesis 1H  is favoured increasingly over 0H .  The likelihood 

ratio test statistic 1  is related to the Kullback-Leibler distance between ĉ  and 0c  as 

  0 1

1
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n
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which can be shown to be equal to 

  1

0 0

ˆ ˆ1 1
ˆ ˆln ln 1 ln

1

c c
c c

n c c


   
      

   
 (B.10) 

 The above equations are used as the statistical measure for the spatial confinement 

score.  It is already in a normalized form being independent of motif length etc. 
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B.3  Derivation and normalization of the over-representation score (ORS) 

 Searching for motif instances (TFBS) in a set of sequences can be considered as a 

binomial experiment where patterns of length l are drawn from the sequences and each 

pattern is classified as either a motif instance or a non-instance.  The probability of 

observing k  instances of the motif among a total of n  samples is given by: 

      , Pr  "true" in 1
n kn k

kP k n k n C p p


   , (B.11) 

where p is the proportion of TFBS in the sequences.  For example, under the (l,d) motif 

representation, the chance proportion 0p  of the TFBS of a motif according to uniform 

background is computed theoretically as follows: 
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The background probability distribution of the TFBS is then 

     0 00 0

00 0 0 0 0, 1
n kn k

kP k n C p p
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If the background distribution is not uniform, the expression will be modified in a 

suitable manner to incorporate the individual probabilities of each of the 0k  patterns that 

match the (l,d) motif. 

 As n grows to be large, specifically if both 5np   and  1 5n p  , the binomial 

distribution may be approximated by the Gaussian distribution   , 1np np p .  Thus, 

         0 00 0

00 0 0 0 0 0 0 0 0 0 0, 1 , 1
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kP k n C p p p x n p n p p
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     , (B.14) 
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 If in 1n  actual trials (i.e., upon searching the set of sequences consisting of 1n  

oligonucleotides of length l) the observed number of matching patterns be 1k .  This 

represents an observed proportion 1 1 1p k n .  Hence the observed probability 

distribution of the TFBS is: 

         1 11 1

11 1 1 1 1 1 1 1 1 1 1, 1 , 1
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The Z-score for computing the over-representation is based on the Gaussian 

approximation: 
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The Z-score is not a normalized measure as it depends upon the number of samples 1n . 

 An entropy measure for over-representation derived directly (without Gaussian 

approximation) from the binomial distribution in a normalized form is used in LocalMotif.  

It is obtained as the Kullback-Leibler divergence between the two binomial distributions: 
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Upon expanding the above expression for KL divergence and normalizing, it turns out 

that the expression may be simplified as: 
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which is independent of the number of samples n.  This is used as the measure for over-

representation in LocalMotif. 
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 For a Gaussian approximation of the binomial distribution, the KL divergence 

between two Gaussians is given by 
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and thus 
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which is approximately identical with the previous expression for most cases, except 

when 0p  or 1p  have extreme values that are close to 1 or 0, in which case the Gaussian 

approximation has significant error. 

APPENDIX C. Fast Computation of Scores in LocalMotif 

 The equations for fast computation of score for a longer interval from scores for 

shorter constituent intervals are derived as follows.  Let 1 2 3p p p  , and let quantities 

for the interval  ,x yp p  be denoted with superscript xy.  Then, 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1.  Results of running LocalMotif on the dataset of [Blanchette 

and Tompa (2002)].  Predicted binding sites reported by [Blanchette and Tompa (2002)] 

are shown in the left column, while the corresponding motifs predicted by LocalMotif are 

shown alongside to the right.  Binding sites having experimental evidence are marked 

with an asterisk. 
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Supplementary Figure 2.  Comparison of LocalMotif‟s predictions with published 

TFBS annotations in long upstream regulatory sequences.  The species whose sequence 

annotations are derived from the literature is highlighted in boldface and the reference is 

provided alongside.  Each published TFBS is shown with its matching LocalMotif 

prediction, and the matching subsequence within the TFBS is highlighted in red color.  

Only the top 25 predictions made by LocalMotif were considered.  “NP” indicates that 

none of the top 25 LocalMotif predictions match the TFBS. 
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Supplementary Figure 3.  Validation of Forkhead motif consensus identified by 

LocalMotif.  All Forkhead binding sites present within 200 bp distance of a known ER 

full or half binding site are listed with their locations in the original dataset of Caroll et al. 

(2005).  Binding sites that contribute to Forkhead consensus reported by LocalMotif are 

marked. 
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Supplementary Figure 4.  Complete list of 813 CRMs predicted by Modulexplorer. 
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