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Abstract 

Metal-oxide-semiconductor field effect transistors (MOSFETs) are 

continuously scaled down in the past four decades to increase its speed and 

performance. However, due to short channel effects and reliability issues, further 

scaling faces immerse challenges in achieving the aggressive on-off current target for 

high performance logic applications.  Alternative approaches such as new device 

structures and new materials are being actively explored to extend the limits of 

transistor performance improvement.  One promising approach is to enhance the 

carrier mobility through strain engineering.  

In this work, we focus on the strain engineering related issues for p-channel 

transistors.  

To enhance the level of strain in p-channel field effect transistors (p-FETs), a 

novel method of increasing Germanium content in a p-FET with SiGe source/drain 

(S/D) stressor is demonstrated. The process involves laser-induced local melting and 

intermixing of a Ge layer with an underlying Si0.8Ge0.2 S/D region, leading to a graded 

SiGe S/D stressor with significant increase in the peak Ge content. Various laser 

fluences were investigated for the laser annealing process. The process is then 

successfully integrated in a device fabrication flow, forming strained silicon-on-

insulator p-FETs with high Ge content in SiGe S/D. A drive current enhancement of 

~14% was achieved with this process, as compared to a strained p-FET with Si0.8Ge0.2 

S/D p-FETs with similar control of short channel effects. 

Furthermore, a new device structure employing a reverse embedded Silicon-

Carbon (Si:C) stressor under the transistor channel is also investigated.  As the Si:C 

was formed in the early stage of transistor fabrication, there are concerns such as the 

potential C precipitation and relaxation of  Si:C during subsequent high temperature 
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processes. These concerns are addressed through material studies using high resolution 

x-ray diffraction (HRXRD), and micro Raman analysis.  Device fabrication process 

was also discussed with the focus on key process steps, challenges and solutions.  For 

the device performance, due to the defects at the Si-Si:C heterojunction interface 

caused by poor epitaxy quality and/or implantation and annealing damages, devices 

with Si:C stressor below the channel currently has a high source to drain leakage 

current.  Proposals on further work to improve the device performance are covered. 

In addition, issues related to the undesirable tensile stress caused by high Boron 

doping in p-FETs S/D is also discussed in the thesis work.  Due to the smaller covalent 

bond radius of boron than silicon, when highly activated boron formed in S/D or S/D 

extension regions in a p-channel transistor, it can cause local lattice contraction of Si 

S/D, and introduce undesirable tensile channel strain in p-FET channel. Incorporation 

of Sn was investigated as a strain compensation implant. HRXRD measurement after 

the laser annealing confirms that the tensile strain caused by supersaturated boron was 

relieved by tin co-implantation. In addition, this Sn strain compensation implant was 

also found to enhance boron’s thermal stability, and improves the retention of highly-

activated and metastable boron during subsequent thermal anneals through a local 

strain compensation effect. The physics behind this enhanced thermal stability was 

explained.  
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CHAPTER 1 

Introduction and Background 

 

1.1. Background 

For the past decades, geometrical scaling of metal-oxide-semiconductor field-

effect transistor (MOSFET) dimensions-Moore’s Law, has dominated the 

semiconductor industry for greater transistor density and the corresponding transistor 

performance enhancement.  The basic proposal by Dr. Gordon E. Moore in 1965 was 

that transistor density on an integrated circuit would approximately double every two 

years [1.1].  Since then, much innovation in the area of transistor scaling to follow the 

Moore’s Law has been accomplished and led to the state-of-the-art MOSFET today.  

With the advance in lithography, the minimum feature size of a transistor has been 

remarkably scaled from several microns in the 1970’s to merely sub-30 nm at 65 nm 

logic technology generation.  The exponential progress predicted by Moore’s Law 

stayed firm on its path for over four decades, however, the physical scaling can not 

continue the trend forever [1.2]. 

As the industry enters  the 45 nm generation, where the transistor gate length 

drops down to 35 nm and the gate oxide thickness to 1 nm, aggressive scaling of planar 

bulk MOSFETs has faced significant challenges due to the inadequate control of short 

channel effects (SCE) and physical limitations such as increasing gate leakage current. 

Therefore, researchers have been actively searching for new materials and methods 

that can extend the conventional scaling, and some of the candidates are shown in Fig. 

1.1.   
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Fig. 1.1. New materials or new research directions to extend Si MOSFET scaling. 

 

Adoption of high-κ gate dielectrics provides an alternative way to reduce the 

equivalent oxide thickness, yet maintain the gate leakage current in a tolerable range.  

However, issues such as the high-κ dielectric interface defects, and mobility 

degradation must be solved before adoption of high k dielectrics [1.3].  On the other 

hand, the conventional poly-Si gate depletion effect increases the effective gate 

dielectric thickness, and causes drop in drive current.  The use of metal gate solves the 

gate depletion issue.  However, issues such as the appropriate tuning of metal gate 

work function and the process integration of these materials in complementary metal-

oxide-semiconductor (CMOS) process must be solved before pursuing adoption of 

metal gate in production [1.4]. 

Another approach to enhance the performance of MOSFET is through carrier 

mobility enhancement by strain-induced modification of the band structure.  The 

introduction of strain in the channel of a CMOS silicon transistor has been widely 

accepted as a way to boost integrated circuit performance by using a relatively simple 
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change in starting materials, allowing less aggressive scaling of the transistor’s gate 

length and oxide thickness. The technique has become an integral part of the 

International Technology Roadmap for Semiconductors (ITRS), starting at the 90 nm 

technology node, and is considered a gift in the way that it enables the postponement 

of the implementation of more challenging process options such as metal gates and 

non-planar devices by one or two generations. 

In this thesis work, issues related to strain engineering for p-FET performance 

improvement are discussed. 

 

1.2.      Physics of Strain Induced Mobility Enhancement  

Strained engineering is a technology which increases the switching speed by 

enhancing the carrier mobility. In this section, the physics governing the mobility 

enhancement due to strain effects will be discussed. 

The carrier mobility µeff is given by 

µeff = 
*m

qτ
  ,                                                                     (1-1)  

where 1/τ is the scattering rate and m* is the conductivity effective mass. 

The carrier mobility can be enhanced by reducing the effective mass and/or 

reducing the scattering rate of carriers.   

 For electron transport in bulk Si at room temperature, the conduction band 

comprises six degenerate valleys of equal energy, as shown in Figure1.2 (a) which 

reflect the cubic symmetry of the Si lattice.  The constant energy surface is ellipsoidal 

with longitudinal effective mass ml = 0.916mo, and transverse effective mass mt = 

0.19mo (mo denotes the free electron mass). 

Under biaxial tension, the degeneracy of the valleys is broken [Fig. 1.2(b)], and 

the energy level of the two valleys perpendicular to the growth plane (�2) is lowered 
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with respect to the energy level of the four in-plane valleys (�4).  The lower energy of 

the �2 valleys means that they are preferentially occupied by electrons.  Therefore, the 

electron mobility partly improves via a reduced in-plane and increased out-of-plane m* 

due to the favorable mass of the �2 valleys. In addition, the inter-valley scattering is 

efficiently reduced due to the splitting in energy between the �2 and �4 valleys, and 

contributes to the improvements of electron mobility [1.5, 1.6].  

Similar to the case of biaxial tensile strain, uniaxial tensile strain induced along 

the longitudinal channel direction also results in reduced electron effective mass and 

enlarged energy splitting, which both contributes to electron carrier mobility 

enhancement [1.7]. 
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Fig. 1.2. Conduction bands for (a) unstrained Si and for (b) Si under biaxial tensile strain.  
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For hole transport, the hole mobility improves in a similar way, however, the 

valence band structure of silicon is much more complex. The valence band comprises 

of three bands: heavy-hole(HH), light-hole(LH) and split-off bands(SO).  In unstrained 

silicon, the heavy hole and light hole sub-bands are degenerate at the Г point, while the 

spin-orbit sub band is located only 0.44 eV below these 2 sub-bands [Fig 1.3 (a)].  

With biaxial tensile strain, the energy of the heavy hole and spin-orbit sub-bands is 

lowered relative the light hole sub-band [Fig. 1.3 (b)].  The strain also lowers the spin 

orbit band and deforms all the bands, changing the hole effective mass in each. The 

heavy hole effective mass reduces for both biaxial compressive and tensile strain. For 

the light-hole mass, biaxial tensile strain reduces the mass value but biaxial 

compressive strain increases the mass (Fig. 1.4) [1.8]. The reduction in the heavy-hole 

mass with biaxial compressive strain, however, is significantly higher, results in a net 

effect of reduced in-plane effective mass.  Reduced hole intervalley scattering with 

band splitting under biaxial strain [1.9] also contributes to the improved carrier 

mobility. With stress more than 1 GPa, the band splitting is comparable to the optical 

phonon energy of ~60 meV, and the intervalley scattering can be significantly reduced 

[1.10]. 

 

 

Fig. 1.3. Valence bands structure of (a) unstrained Si and (b) baxial tensile strained Si [1.12].  
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Fig. 1.4. Hole effective mass with biaxial strain. The heavy hole (HH) density of states is reduced 

for both compressive and tensile strain, while light-hole (LH) mass reduces with tensile strain and 

increases with compressive strain [1.8]. a0 is the substrate lattice constant, and a// represents the 

lattice constant for epitaxial grown layer on substrate. When a///a0<1, there will be tensile strain in 

the top layer. 

 

For an uniaxial compressive strain, the hole mobility can also be improved as 

described in [1.7, 1.11]. A redistribution of the carrier population at the lowest energy 

hole band with steeper gradient results in reduced hole transport mass in the channel 

direction. The advantage of a uniaxial strain compared to a biaxial strain, is the 

enhancement of mobility sustains at a high electric field [1.12]. 

 

1.3. Sources of Strain in Transistors 

To date, various strain engineering options have been proposed and 

demonstrated to introduce beneficial strain in the transistor channel region. We discuss 

the sources of stress/strain in MOSFETs in this section.  
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The stress in a transistor channel could be from the deposition of a film with 

intrinsic stress, annealing of materials with different thermal expansion coefficients, 

lattice interaction at heterojunctions between lattice mismatched films, and/or 

introduction of a dopant with larger or smaller covalent bond radius. 

 

1.3.1. Intrinsic Stress Films  

Strain in a transistor could be introduced by depositing a material with intrinsic 

stress. Intrinsic stress is a type of residual stress, generated due to factors such as 

deposition rate, thickness and deposition temperature of a thin film. For example, 

silicon nitride (SiN) with different deposition process conditions can be either tensile 

or compressive strained [1.13]. Diamond like carbon (DLC) film, as a dense form of 

amorphous carbon with significant sp3 bonding, can have a high compressive stress of 

more than 6 GPa [1.14]. These high stress films could be deposited over the transistor 

as an etch stop layer to transfer its intrinsic stress to the channel, and improve the drive 

current of a transistor [1.15, 1.16]. 

 

1.3.2. Thermal Mismatch Stress 

Thermal mismatch stress occurs when two materials with different thermal 

expansion coefficients are heated and expanded in contact at different rates. For 

example, due to a difference in thermal expansion coefficient between silicon and 

silicon oxide in the shallow trench isolation (STI), a compressive stress develops 

during oxidizing thermal anneals. For TaN metal gate capped with silicon nitride, due 

to the thermal-expansion coefficient mismatch between the gate and the capping layer, 

resulting strain can be retained and transferred to the Si channel after annealing [1.17].  
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1.3.3. Stress Induced from Lattice Interaction  

When a film with a different lattice constant from the substrate is grown 

epitaxially on it, a strain develops due to the lattice interaction at the hetrojunction.   

For example, as Germanium (Ge) has a lattice constant larger than Si, when the 

cubic SiGe alloy is formed, its equilibrium lattice constant can be estimated by the 

linear interpolation between the lattice constant of Si and Ge according to the Vegard’s 

law [Fig. 1.5 (a)], 

aSiGe  =  (1− x) aSi + x aGe        (1-2) 

where aSi and aGe are the lattice constant of Si and Ge, respectively, and x is the Ge 

concentration incorporated in the SiGe alloy. 

When a thin Si film is grown pseudomorphically on the relaxed SiGe layer, the 

silicon lattice will be biaxially stretched to match the larger lattice constant of SiGe 

alloy [Fig. 1.5 (b)]. 
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                (a) 

 

(b) 

Fig.1.5. (a) Schematic drawing of he lattice constant of Si, Ge, and SiGe alloy. The equilibrium 

lattice constant of SiGe is estimated using Vegard’s law.  (b) When a thin Si film is grown 

pseudomorphically on the relaxed SiGe layer, a tensile strained in silicon will be achieved. 

 

1.3.4. Dopant Induced Stress 

When a dopant atom is introduced through ion implantation or diffusion, a 

local lattice expansion or contraction occurs depending on the varying atomic sizes and 

bond lengths of the atoms.   

For example, Boron has an atomic size that is much smaller than Si. When it is 

incorporated substitutionally in Si, a local lattice contraction is introduced (Fig. 1.6). 

This configuration with local lattice contraction would increase the strain energy stored 

in the lattice. Deactivation of highly activated and metastable boron in S/D or S/D 

extension of a p-FET may occur during subsequent thermal process and lead to 

performance degradation. 

 
 

Ge 

aGe = 5.646 Å 

Si 
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Å 

Si1-xGex 

aSiGe = (1-x) . aSi +x . aGe 

      

  

 

 

  

  
     

 

  

 

     
 
  

 

Tensile Strain Si 



  10  

 
 

(a)                                         (b) 
 

Fig.1.6. Schematic drawing of (a) Silicon Lattice and (b) Silicon lattice contraction caused by 

Boron doping. 

 

In addition, the overall equilibrium lattice constant of Si S/D would be reduced 

with the incorporation of a high concentration of B. This reduction of S/D lattice 

constant would introduce an undesirable tensile strain in the transistor channel and lead 

to p-FET performance degradation. Therefore, reduction of the undesirable strain 

caused by boron doping is an important issue. 

 
1.4. Strained P-FET Technologies 

Strain engineering is a very effective way to improve p-FET performance and 

reduce the gap between p-FET and n-FET in current drivability. After knowing the 

sources of strain in a transistor we review the strained p-FET technologies in this 

section. 

Generally, the strain techniques can be classified into global strain and local 

strain techniques. 

 

1.4.1. Global Strain Technique 

For the global strain, it is usually introduced early in the fabrication process, for 

example, by growing Si channel on relaxed silicon-germanium (SiGe) (Fig 1.7).  In 
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such an approach [1.18], a thick layer of graded SiGe buffer is firstly grown on Si.  

This graded SiGe buffer confines the dislocations at the bottom, and results in the 

relief of elastic strain. A relaxed SiGe layer can then be grown on the thick graded 

buffer layer.  Finally, a layer of Si is grown pseudomorphicly on the relaxed SiGe. Due 

to the lattice mismatch of Si and relaxed SiGe, the pseudomorphic layer of Si is under 

biaxial tensile strain, which modifies the band structure and enhances carrier transport 

[1.18]. 

 

Fig. 1.7. Schematic drawing of strained Si channel transistor formed by growing Si channel on 

relaxed SiGe. The relaxed SiGe was grown on a thick graded SiGe buffer, which serves as the 

dislocation filter and trap the dislocations at the interface between graded SiGe buffer and Si 

substrate. 
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However, there are several drawbacks of this method. Firstly, even after 

extensive effort has been made, high surface dislocation density remains an issue 

[1.19].  Secondly, dislocations at the Si channel/relaxed SiGe interface can causes high 

leakage current from source to drain. It is known that a higher Ge concentration in the 

relaxed SiGe layer requires thinner Si channel, consistent with the model of defect 

introduction via partial relaxation [1.20]. Though a higher Ge content is desired for 

introducing larger strain in the channel, a reduction of Si layer thickness and/or 

increase in the Ge concentration in the substrate increases the likelihood of Ge atoms 

diffusing to the interface between the gate dielectric and the strained Si channel [1.21].  

This introduces interface states and oxide charges and degrades the carrier mobility.  

Thirdly, the hole mobility enhancement observed in a strained-Si/relaxed SiGe p-

MOSFET diminishes at high vertical field regime, making it a less attractive option for 

implementation in high volume production.  

 

1.4.2. Local Strain Techniqes 

For local strain, the strain is introduced only in specific regions of device, and 

introduced only in the later stage of a fabrication process.  Some examples of local 

strain techniques include using shallow trench isolcation (STI) to introduce 

compressive strain in the p-FET channel, using silicide-induced stress, adoption of the 

compressive nitride or diamond like carbon (DLC) stress liner, or incorporation of 

lattice mismatched S/D stressors. 

Shallow trench isolation process may induce significant mechanical stress in 

devices [1.22].  The higher the distance STI to gate edge is, the lower the compressive 

stress is.  This stress technique enhances p-FET performance and degrades n-FET 

performance. 
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Another approach for introducing beneficial strain in p-FET is by silicide 

induced stress [1.23]. Nickel-platinum silicide (NiPtSi) was reported as a S/D material 

for strain engineering in p-MOSFETs to improve drive current performance.  During 

the nickel-platinum silicidation process due to volume change and reaction parameters, 

a compressive strain can be generated in the channel region. 

In addition, films with intrinsic compressive stress deposited as an etch stop 

layer can also transfer its intrinsic stress to transistor channel and generate beneficial 

strain in p-FETs. Currently, SiN linear, with the highest reported compressive stress of 

around 2.4–3.5 GPa is being employed to give significantly boost the transistor 

performance [1.24, 1.25].  Very recently, Diamond-like carbon (DLC) film, known to 

exhibit a very high intrinsic compressive stress more than 6 GPa, was first introduced 

in a p-FET to drastically increase the stress level and drive current of a p-FET [1.14, 

1.26].  

  Furthermore, using a lattice mismatched S/D stressor, such as Si1-xGex S/D 

[1.27-1.30], is also a very promising technique to introduce local compressive strain in 

channel region for p-FET performance boost.  More than 50% enhancement in hole 

mobility over universal mobility curve can be achieved [1.30] with only a few key 

process steps added to the standard CMOS fabrication (Si recess etch after the spacer 

formation, and Si1-xGex S/D selective epitaxy growth).  The origin of the strain in the 

channel region is from the interaction between the pair of lattice-mismatched materials 

at semiconductor heterojunctions (Fig. 1.8), which induces lateral compressive strain 

along the Si channel direction and enhances the hole mobility.  
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Fig. 1.8. Schematic drawing of a transistor with SiGe S/D. Lattice interactions at the hetero-

interfaces induces compressive strain in the channel region along the carrier transport direction 

[1.31]. 

 

For p-MOSFET with Si1-xGex S/D, early numerical simulation studies [1.31] 

indicate that the magnitude of the lateral compressive strain εxx and the vertical tensile 

strain εzz induced in the Si channel can be increased by increasing the Ge mole fraction 

x in the Si1-xGex S/D region, by increasing the recess depth of the Si1-xGex S/D, or by 

reducing the separation between the Si1-xGex S/D regions.   

 
 
1.5.  Objective of Research 

The main objective of this thesis work is to explore various potential ways to 

enhance p-MOS performance through strain engineering.  These include demonstration 

of new process technology to increase the strain level in SiGe S/D p-FET, adoption of 

novel device structures to introduce strain from beneath the channel, and reducing the 

undesirable tensile strain caused by boron doping in p-FET S/D. 
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1.6.  Outline 

The issues discussed in this thesis are as following: 

Chapter 2 demonstrates a new method of local Germanium enrichment in S/D 

stressor for transistor performance enhancement. By laser induced melting, 

intermixing, and re-growth of amorphous Germanium on Si0.8Ge0.2 S/D, a graded Ge 

profile with peak Ge content of ~37% in the S/D was formed upon recrystallization. 

Process integration issues are addressed, including selection of laser anneal conditions 

for increasing Ge content in SiGe S/D without degrading gate stack integrity. High 

resolution x-ray diffraction (HRXRD) was used to characterize the change in lattice 

constant after the Germanium enrichment process.  Micro Raman analysis confirmed 

the retention of high strain level after recrystallization. Device characterization was 

performed, and we observed an IDsat enhancement of ~14% for Ge-enriched S/D device 

over control strained p-FETs with Si0.8Ge0.2 S/D at comparable short-channel effects 

and S/D sheet resistance.  The issues and limitations of this technique will also  be 

discussed, and future work is proposed. 

Chapter 3 explores a novel structure in employing a reverse embedded Silicon-

Carbon (Si:C) stressor (also known as the strain transfer structure STS) under the 

transistor channel, which makes use of the lattice interactions at the vertical 

heterojunction between the Si and the embedded Si:C STS to impart lateral 

compression in the Si channel. However, as the Si:C stressor is grown at the early 

stage of fabrication, there are concerns on the potential relaxation of Si:C during 

subsequent high temperature process. These concerns are addressed in this chapter by 

material studies with high resolution x-ray diffraction (HRXRD), and micro Raman 

analysis.  Device fabrication is also discussed with the focus on key process step 
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challenges and solutions.  Finally a summary of device performance and proposal on 

further work to improve the device performance are covered. 

Chapter 4 discusses the undesirable tensile stress caused by high concentration 

of Boron doping in p-FETs S/D. Incorporation of Sn was investigated as a strain 

compensation implant.  High resolution XRD measurement after laser annealing at  a 

fluence of 740 mJ/cm2 confirms that the tensile strain caused by supersaturated boron 

was relieved by tin co-implantation.  In addition, this Sn strain compensation implant 

was also found to enhance boron’s thermal stability, and improves the retention of 

highly-activated and metastable boron through a local strain compensation effect.  A 

correlation was observed between the overall tensile strain in the film and the sheet 

resistance increment during post-LA thermal processing. Detailed explanations on the 

physics behind were discussed.  

Finally, a summary of this thesis work and proposal for future works are 

included in chapter 5. 
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CHAPTER 2  

Germanium Enrichment in Silicon-Germanium 

Source/Drain for P-FETs Strain and Performance 

Enhancement 

 

2.1 Introduction 

As we discussed previously, in recent technology development, a promising 

and effective method for extending p-FETs performance makes use of lattice-

mismatched silicon-germanium (SiGe) source and drain (S/D) stressors [2.1-2.3]. Due 

to the lattice interactions at the vertical SiGe/Si heterojunction, a lateral compressive 

strain and vertical tensile strain are induced in the adjacent transistor channel region, 

which contributes favorably to drive current improvement. Moreover, retention of the 

significant hole mobility enhancement even at a high effective field Eeff regime [2.1] 

makes it an attractive strain engineering approach. 

Larger strain effects and further performance improvement can be achieved by 

increasing the Ge content x in the Si1-xGex S/D stressors [2.4, 2.5].  However, strain 

relaxation and defect formation may occur during the epitaxial growth process which 

typically employs temperatures above 500°C.  The retention of strain in SiGe (on bulk 

Si) formed by conventional epitaxy process is difficult when the Ge content is very 

high.  Non-equilibrium processes, such as pulsed laser annealing (LA), with a heating 

time down to nano-seconds, could be a good candidate for suppressing the propagation 

and growth of misfit dislocations and for forming highly strained Si1-xGex [2.6].  Laser-

induced and localized surface melting of both a Ge film and a part of the underlying 



  25  

substrate can lead to inter-diffusion of liquid Ge and Si, the resulting melt can then re-

crystallize epitaxially with the substrate as a template.  This laser-assisted epitaxy of 

Si1-xGex alloys has been reported to produce strained crystalline Si1-xGex [2.7, 2.8].  

However, such process has never been exploited for transistor fabrication, particularly 

for defect/strain management during SiGe S/D formation in strained p-FETs. 

Therefore, we investigate the laser-induced intermixing and recrystallization of 

amorphous Ge (α-Ge) on SiGe S/D for increasing the Ge content in S/D stressors of 

strained p-FETs.  

 

2.2 Process Flow  

Silicon-on-insulator (SOI) substrates with a Si thickness of ~60 nm were used 

for this technology demonstration. SOI substrate was chosen because both the thin 

silicon film on buried oxide (BOX) and the polysilicon gate pattern on gate oxide are 

thermally isolated from bottom silicon substratewhich is a good heat dissipation path. 

As a result, the low laser fluencemay be used to activate the impurities in SOI without 

any other integration problem such as poly gate distortion [2.9]. 

The key process steps and schematic drawing after several critical steps are 

shown in Fig. 2.1. 

 



  26  

 

 

Fig. 2.1. (a) Key process steps to form a p-FET with enriched Ge content in SiGe S/D stressor.  

The novel Ge enrichment process involves (b) deposition of α-Ge (10 nm), laser annealing, and (c) 

selective removal of unreacted Ge to form the complete device. 

 

After LOCOS formation, threshold voltage VT adjust implant was performed.  

A 3.0 nm SiO2 was thermally grown as the gate dielectric, followed by a 100 nm poly-

Si gate which was subsequently implanted with BF2 and activated.   

A SiO2 hardmask or optical layer (100 nm) was formed to protect the gate stack 

in a laser annealing step to be performed later.  This SiO2 coating reduces the laser 

absorption on gate, and it increases the process window for the melting laser annealing 

[2.10].  Optical lithography and photo-resist trimming were then employed for gate 

patterning.  After gate etch, S/D extension and slim silicon nitride spacers were formed.  

S/D recess etch of ~30 nm and Si0.8Ge0.2 selective epitaxy using ultra-high vacuum 

chemical vapor deposition (UHVCVD) were performed to form slightly raised 

embedded Si0.8Ge0.2 S/D stressors.  Deep S/D implants and rapid thermal anneal (RTA) 

at 900 ºC for 30 s were then performed.  
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 For the Ge enrichment device split, 10 nm of α-Ge was sputter-deposited over 

the entire device region.  All wafers went through a shallow S/D implant. For laser 

annealing splits, deposition of an additional 30 nm thick SiO2 layer as an anti-

reflection layer for laser annealing was then performed.  While the wafer without α-Ge 

deposition may have some additional implant damage in the SiGe from the shallow 

S/D implant, significant impact on strain level is not expected following laser 

annealing and rapid re-crystallization [2.11].   

The laser was operated in N2 ambient at wavelength of 248 nm with pulse 

duration (FWHM) of 23 ns, with 10 pulses, and repetition rate of 1 Hz.  The laser 

fluence ranges from 150 to 400 mJ/cm2.  Ten laser pulses were applied on all laser-

annealed samples in this work.  Multiple pulses are used to reduce the variation of 

laser fluence and to achieve a more homogenous Ge profile and higher strain level 

[2.12].  The localized surface melting of both the α-Ge film and a part of the 

underlying Si0.8Ge0.2 S/D formed a melt, in which inter-diffusion occurred.  Upon 

cooling and recrystallization, a SiGe S/D with good crystalline quality and high Ge 

content was formed.  The remaining Ge and Si1-xGex (where x > 60%) over gate and 

spacer were selectively etched using hot H2O2 solution. Aluminum contacts to S/D 

(unsilicided) were made for device characterization.   

 

2.3 Selection of Laser Fluence 

Proper selection of laser fluence is the key to this technique. To have successful 

laser assisted epitaxy, the energy absorbed needs to be high enough to melt the whole 

amorphous Ge layer, and sufficient amount of underlying substrate for good crystalline 

re-growth. Yet at this fluence, the gate stack integrity must be preserved for a device 

integration. If the gate stack is heated to excessively high temperature, it potentially 
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deforms or explodes. As the energy absorbed is very close to the surface and due to 

short wavelength of the laser, the Ge layer thickness was kept low to be around 10nm.  

Figure 2.2 shows the Ge profile obtained after LA at various fluences.  A 

graded gradual change in Ge profile was observed for most LA fluences.  A possible 

mechanism for the graded Ge profile is due to the Ge partitioning at the solid-liquid 

SiGe interface at ultrafast cooling rate. Solute segregation is usually characterized by 

the partition coefficient k, the ratio of the atomic fraction of solute in the solid Xs to 

that in the liquid Xl at the interface (k=Xs /Xl) [2.13].  The equilibrium k value of Ge is 

0.45 [2.13] or 0.33 [2.14]. With laser annealing, which is a localized heating process, 

the Si around acts as a heat sink, leading to the ultrafast cooling rate that induces Ge 

trapping in the solid phase. The partition coefficient of Ge in this case increases to 

around 0.73 [2.13], but it is still less than 1, hence the graded Si1−xGex is observed.   

Another possible reason of the graded Ge profile could be due to the local diffusion of 

Ge. During the recrystallization process (i.e. the melt transfer from liquid to solid 

phase), large amount of heat was released from the melt, and transferred to underlying 

or surrounding Si.  This heat, confined by LOCOS and buried oxide, can lead to local 

diffusion of Germanium, and result in a graded Ge profile.  

It is also observed that at a low fluence of 230 mJ/cm2, there is a steep grading 

of Ge concentration, while with increasing fluence, the Ge profile becomes more 

uniform due to increased intermixing of the Ge layer with the underlying SiGe S/D 

with higher energy absorbed.  
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Fig. 2.2. Depth profile of Ge obtained by SIMS analysis after laser annealing (LA) of amorphous 

Ge on Si0.8Ge0.2 using different laser fluences.  10 laser pulses were used at each fluence. Ge 

concentration was increased in the SiGe S/D after LA.  

 

For a S/D stressor application, uniformed Ge profile in the S/D is more 

desirable, because with raised S/D, the top Ge enrichment would have limited strain 

benefits, and could lead to high silicide resistance. However, when this technique is 

integrated into transistor fabrication flow, high laser fluence could cause boron 

penetration through gate dielectric and increase the gate leakage current.  In extreme 

cases, it can also cause severe gate deformation.  Figure 2.3 (a) shows a device with 

severely deformed or broken gate line after being annealed at 400 mJ/cm2 10 pulses, 

compared to a device annealed at 290 mJ/cm2 for 10 pulses [Fig. 2.3(b)].              
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Fig. 2.3. (a) SEM images of p-FET after laser annealing at a fluence of 400 mJ/cm2 (10 pulses).  

The gate line was broken due to excessive heat at this laser fluence. (b) SEM image of p-FET after 

the Ge-enrichment process using a laser fluence of 290 mJ/cm2 (10 pulses).  The gate integrity was 

preserved. 

 

 Therefore, to integrate the laser-induced Ge-enrichment process in device 

fabrication, LA conditions have to be carefully selected in addition to the use of  a 

protective gate hardmask.  Figure 2.4 illustrates how the laser fluence was chosen for 

device integration. 
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Fig. 2.4. S/D sheet resistance and gate leakage current when being annealed using different laser 

fluences for 10 consecutive pulses.  LA at 290 mJ/cm2 is observed to substantially lower the sheet 

resistance, and still preserve the gate stack integrity.   

 

 The sheet resistance of laser annealed samples as well as RTA (annealing 

temperature of 900 oC) annealed blanket samples are plotted in Figure 2.4. It is 

observed that with increasing laser fluence, the dopant activation improves. At a laser 

fluence of 290 mJ/cm2, the laser annealed S/D has substantially lower sheet resistivity 

as compared to rapid thermal annealed S/D.  This high efficiency of dopant activation 

can be attributed to melting and the fast re-growth time of the silicon (10-10 s) which 

allows trapping of the dopants in substitutional lattice sites in great excess of the 

maximum solid solubility in the metastable state [2.15].   

 The gate leakage current for laser annealed and RTA devices was measured at 

VD = VG -VT = -1.2 V after different annealing conditions and also shown in Figure 2.4.  

Devices laser-annealed using a fluence of 290 mJ/cm2 shows comparable gate leakage 
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current with rapid thermal annealed devices, indicating no gate dielectric degradation 

due to LA.  Thus this laser annealing fluence of 290 mJ/cm2 could be used on 

transistor fabrication. 

 To further examine the device performance with this laser annealing condition, 

the ID-VD and ID –VG characteristics of a laser annealed device (process flow shown in 

Figure 2.1 (a)) compared to an RTA control is shown in Figure 2.5.  Comparable off-

state leakage current (IOFF), sub-threshold swing (SS) and drain induced barrier 

lowering (DIBL) was observed. This confirms that the laser annealing process did not 

have negative effect on the transistor performance. Furthermore, a drive current 

enhancement of ~ 10 % was observed for the laser annealed (290 mJ/cm2, 10 pulses) 

Si0.8Ge0.2 S/D p-FET, compared to RTA annealed control due to lower S/D resistance, 

and higher dopant activation. 

 

 

 

 

 



  33  

-1.5 -1.0 -0.5 0.0 0.5

10-8

10-7

10-6

10-5

10-4
 L

G
 = 120 nm

W = 0.3 µµµµm

V
D
 = - 0.1 V

V
D
 = - 1 V

D
ra

in
 C

ur
re

nt
 | 
I D
 | 

(A
/ µµ µµ

m
)

 

 

 
Gate Overdrive V

G
-V

T
 (V)

 Si
0.8

Ge
0.2

 S/D (RTA)

  Si
0.8

Ge
0.2

 S/D (LA)

-1.2 -0.8 -0.4 0.0
0

50

100

150

200

250

Drain Voltage VD (V)
D

ra
in

 C
ur

re
nt

 | 
I D
 | 

( µµ µµ
A

/ µµ µµ
m

)

V
G
 -V

T
 = -1.2 V 

 

 

 Si
0.8

Ge
0.2

 S/D (RTA)

 Si
0.8

Ge
0.2

 S/D (LA)

V
G step -0.3 V

W = 0.3 µ µ µ µm

10%

 

                         (a)                                                              (b) 

Fig. 2.5.  (a) ID-VG characteristics for laser annealed and RTA devices with a gate length of 120nm 

show comparable off-state leakage current, sub-threshold swing(SS) and drain induced barrier 

lowering (DIBL). (b) ID-VD characteristics of these closely matched devices. The laser annealed  

Si0.8Ge0.2 p-FET shows a drive current enhancement of ~10% compared to RTA control 

  

Therefore, 290 mJ/cm2 is an appropriate LA condition for integration of the Ge-

enrichment process on p-FETs.  

 

2.4 Material Study with Selected Fluence 

Material studies on large areas are performed with this selective laser annealing 

condition (290 mJ/cm2) after Germanium enrichment process.   

The crystal quality and change in lattice constants for Si1-xGex formed by laser 

annealing of amorphous Germanium on Si0.8Ge0.2 stack are examined by high 

resolution x-ray diffraction (HRXRD) (Fig.2.6).  The well-defined Si1-xGex satellite 

peaks (shown in the insert) indicate the formation of a high-quality Si1-xGex epi-layer 
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after the Ge enrichment process.  The increase of lattice constant over that of Si can be 

calculated based on the displacement of the satellite peak from Si substrate peak [2.16, 

2.17].  The as-grown Si0.8Ge0.2 has a lattice constant that is 0.78% larger than that of Si. 

While Ge-enriched Si1-xGex (peak Ge content of ~38%) formed by laser annealing of 

α-Ge/Si0.8Ge0.2 at 290 mJ/cm2 has a lattice constant that is 1.1% larger than that of Si, 

which corresponds to an equivalent average Ge content of 30%.  This matches the 

spatially averaged Ge content (obtained from SIMS).  Strain relaxation does not 

generally occur for this Ge content. 

 

 

Fig. 2.6.  HRXRD spectra for Ge-enriched SiGe formed after LA of α-Ge/Si0.8Ge0.2 with a fluence 

of 290 mJ/cm2 (10 pulses), showing excellent crystalline quality of the Si1-xGex film on Si.  The shift 

of the satellite peak to a lower angle indicates an increase in the lattice constant in the SiGe film or 

a successful increase in Ge content. 
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  UV Raman measurement was also performed for Si1-xGex grown on Si to 

determine the strain in Si1-xGex  before and after Germanium enrichment process. It is 

known that Raman frequency of the Si-Si vibrational mode in heteroepitaxial Si1-xGex 

(represented by ωSi-Si(x)) shift from the unstrained Si substrate peak due to both 

germanium content, x, and the strain in Si1-xGex layer, ε [2.18] is given by 

εω 830680.520)( −−=− xxSiSi .       (2-1) 

When there is no strain in Si1-xGex, i.e. fully relaxed, )(xSiSi −ω is equal to x680.520 − , 

where x is the Ge content in Si1-xGex. When there is strain in Si1-xGex, the level of 

strain is proportional to extend of the peak shift from the relaxed Si1-xGex peak.  

As shown in Figure 2.7, the Ge enriched sample has a very high compressive strain of 

-1.1%, as compared to a -0.7% strain for laser-annealed Si0.8Ge0.2 ( Fig. 2.7).   
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Fig. 2.7. UV Raman spectra showing that Ge enriched SiGe layer formed by laser annealing of α-

Ge on SiGe has a higher compressive strain of -1.1%. 
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2.5 Device Characteristics 

Fig. 2.8 shows a TEM image of the completed Germanium enriched S/D device 

with gate length of 120 nm. 

 

Fig. 2.8. TEM image of a completed p-FET with Ge-enriched SiGe S/D. 

 

The device performance of laser annealed Si0.8Ge0.2 S/D and Germanium 

enriched SiGe S/D p-FETs are shown in Figure 2.9.  ID-VG characteristics of these 

devices [Fig 2.9 a)] shows comparable off-state leakage current IOFF, sub-threshold 

swing (SS), and drain-induced barrier lowering (DIBL).  This indicates that the 

germanium enrichment process did not cause degradation in the transistor short-

channel performance.  At the same time, with the same gate over-drive of -1.2 V, a 

drive current enhancement of approximately 13% was observed for Ge-enriched S/D 

over laser annealed p-FETs with Si0.8Ge0.2 S/D [Fig 2.9 b)].   
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Fig. 2.9.  (a) ID-VG  characteristics for laser annealed Si0.8Ge0.2 S/D and Germanium enriched S/D 

devices with a gate length of 120nm show comparable off-state leakage current, sub-threshold 

swing(SS) and drain induced barrier lowering (DIBL). b) ID-VD characteristics of these closely 

matched devices. The Germanium enriched S/D p-FET shows a drive current enhancement of 

~13% compared to the laser annealed device with Si0.8Ge0.2 S/D. 

 

To verify the impact of S/D series resistance RSD and carrier mobility on IDsat 

enhancement, a total resistance slope-based approach [2.19] was employed. The total 

resistance RTOT (=VD/ID) as a function of gate length LG is plotted (Fig. 2.10) for p-

FETs with both LA Si0.8Ge0.2 S/D and Ge enriched S/D at VG-VT of -1.2 V. 

The total resistance( RTOT ) measured with presence of series resistance is given 

by the sum of channel resistance ( RCH ) and S/D series resistance ( RSD ) [2.19], i.e. 

 BALRLLARRR GSDGSDCHTOT +=+∆−=+= )(     (2-2) 

where
inveff WQ

A
µ

1
=  and, 

LARB SD ∆−= , and 
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LG is the measured physical gate length. 

Physically, A is the intrinsic channel resistance per unit effective channel 

length, and can be obtained from the slope of RTOT versus physical gate length LG plot, 

i.e. A= dRTOT/dLG. 

It was observed that Ge-enrichment in S/D stressors leads to reduced dRTOT/dLG 

or in other words, mobility enhancement. The S/D series resistance is also slightly 

improved for p-FETs with Ge-enriched S/D stressors, probably due to the enhanced B 

dopant activation with increasing Ge content. 
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Fig. 2.10. Total resistance RTOT (= VD/ID) as a function of gate length LG. Devices with Ge enriched 

S/D have a smaller slope (dRTOT/dLG), indicating enhanced carrier mobility.  
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Figure 2.11 shows the saturation drive current IDsat enhancement as a function 

of gate length for p-FETs fabricated using this novel Ge-enrichment process compared 

to LA Si0.8Ge0.2 S/D control.  IDsat is measured at a gate overdrive of -1.2 V and a VD of 

-1.2 V.  In general, IDsat enhancement increases with decreasing LG due to the enhanced 

strain effects or influence of S/D stressors in shorter channel devices when the 

stressors are of close proximity.  
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Fig. 2.11. Saturation drain current IDsat of p-FETs with Ge-enriched SiGe S/D is enhanced over 

that of p-FETs with Si0.8Ge0.2 S/D. Larger IDsat enhancement is observed at smaller gate length LG 

due to enhanced strain effects when S/D stressors are placed in closer proximity. 
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The IOFF -IDsat for laser annealed Si0.8Ge0.2 S/D and Germanium enriched S/D p-

FETs with LG in the range of 120-150 nm is plotted in Figure 2.12. The Ge-enriched 

graded SiGe S/D gives an IDsat enhancement of ~12% compared to the laser annealed 

Si0.8Ge0.2 p-FETs at a fixed off-state current of 20 nA/µm due to strain enhanced 

transistor performance.  
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Fig. 2.12. IOFF -IDsat for laser annealed Si0.8Ge0.2 S/D and Germanium enriched S/D p-FETs. At IOFF 

of 20nA/µm, Ge enriched S/D p-FET shows an IDsat enhancement of 12% compared to LA 

Si0.8Ge0.2 S/D p-FETs. 
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For ID,lin, a higher enhancement of ~21% was observed for the Ge enriched p-

FET compared to LA Si0.8Ge0.2 S/D p-FETs (Fig. 2.13) due to the higher sensitivity of 

ID,lin to mobility enhancement [2.20].  
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Fig. 2.13.  IOFF -IDlin for laser annealed Si0.8Ge0.2 S/D and Germanium enriched S/D p-FETs. At 

IOFF of 20nA/µm, Ge enriched S/D p-FET shows an IDlin enhancement of 21% compared to LA 

Si0.8Ge0.2 S/D p-FETs. 
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In addition, as the laser annealing condition of 290 mJ/cm2 gives higher dopant 

activation and lower S/D resistance compared to RTA (900 C, 30s) (Fig 2.14), the 

Germanium enrichment process has an additional ~9% drive current enhancement 

compared to an RTA control, as shown in the IDsat -IOFF  plot in Figure 2.15. 
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Fig. 2.14. Statistical plot of S/D sheet resistance for LA at 290 mJ/cm2 and RTA 900 ºC 30s. LA at 

290 mJ/cm2 achieves lower sheet resistance compared to RTA. The box contains the middle 50% 

of data, the top edge of the box indicates the 75th percentile of the data set, and the lower edge of 

box indicates the 25th percentile.  
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Fig. 2. 15. IOFF -IDsat for RTA annealed Si0.8Ge0.2 S/D, laser annealed Si0.8Ge0.2 S/D and Germanium 

enriched S/D p-FETs.  Additional drive current enhancement was observed compared to an RTA 

Si0.8Ge0.2 S/D  p-FETs due to higher dopant activation.  

 

IDsat performance for all these 3 splits is also compared at a given DIBL (Fig. 

2.16). At a DIBL of 0.07V/V (DIBL = 
( )

1.01
|1.0()1|

−
−=−−= DTDT VVVV

), p-FETs with 

Ge-enriched graded SiGe S/D demonstrate ~14% improvement over the LA control p-

FET, and an additional 10% enhancement compared to an RTA control. 
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Fig. 2.16 Excellent IDsat improvement is demonstrated by the novel S/D Ge enrichment process at a 

comparable DIBL of 70 mV/V. 

 

 

2.6 Summary 

In summary, a new process technology for boosting the Ge content in SiGe 

source/drain (S/D) stressors was demonstrated to increase strain and performance 

levels in p-FETs.  Selection of laser annealing conditions for device integration was an 

important issue for this Germanium enrichment process. Using a laser fluence of 290 

mJ/cm2, laser-induced local melting and intermixing of an amorphous Ge layer with an 

underlying Si0.8Ge0.2 S/D region enable the formation of p-FETs with Ge-enriched 

graded SiGe S/D, giving an IDsat enhancement of about ~14% over control strained p-

FETs with Si0.8Ge0.2 S/D at similar short-channel effects and S/D sheet resistance.   
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2.7 Limitations and Future Work 

As the laser spot size is 3mm×3mm, the non-uniformity of the laser fluence at 

the edge of the spot can causes large device performance variation. Therefore, the 

amount of overlap between the spots could be of great interest to achieve uniform 

device performance. Furthermore, as the Ge enrichment achieved using this technique 

is more pronounced near the S/D surface, silicidation process would consume the top 

high Ge content SiGe and lead to lost of strain benefits and increase in silicide sheet 

resistance. Therefore, further process tuning, e.g. using a higher laser fluence, might be 

needed to achieve a more uniform Ge-enrichment in the S/D. However, with higher 

laser fluence, melting or rapid thermal expansion of the poly-Si gate sandwiched 

between spacers can cause gate deformation, and pose integration challenges.  

Therefore, how to effectively protect the gate line is an important issue.  
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CHAPTER 3 

Strained P-MOSFETs with Reverse Embedded Silicon-

carbon (Si:C) Stressor  

 

3.1 Introduction 

As we discussed in earlier chapters, strain engineering is a very promising way 

to improve transistor performance.  

Recently, a new device heterostructure with an embedded SiGe region beneath 

the Si channel [3.1], also known as strain-transfer structure (STS) [3.2, 3.3] or reverse- 

embedded SiGe region [3.4], was demonstrated to induce tensile strain in the 

longitudinal direction of the transistor channel for electron mobility enhancement in 

nMOSFET. Unlike conventional methods of strain introduction, this approach makes 

use of the lattice interactions at the vertical heterojunction between the Si regions and 

the embedded SiGe STS to impart lateral tension to the Si channel. This concept can 

be combined with other stressors.  

In this chapter, we utilize a similar concept and investigate a new structure with 

only reverse embedded silicon-carbon (Si:C) stressor to impart stress from beneath the 

channel for p-FET performance enhancement.  

 

3.2 Process Flow and Key Process Steps for Fabricating P-FET 

with Reverse Embedded Si:C Stressor 

Fig. 3.1 shows the schematic drawing of main process steps involved in 

fabricating a transistor with reverse embedded Si:C stressor. 
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Fig. 3.1. Schematic drawing of key process steps involved in the fabrication flow of p-FET with 

reverse embedded Si:C stressor.  (a) After LOCOS formation and channel epitaxy of Si(15- 20nm) 

/Si:C(35-40nm) stack  (b) After gate patterning and spacer formation. (c) after S/D recess etch.  (d) 

Final device structure after S/D Si selective epitaxial growth. 

 

8-inch bulk (001) Si substrates were employed in the device fabrication. 

Isolation was first formed using the local oxidation of silicon (LOCOS) process. On a 

first wafer, silicon-carbon (Si:C) of thickness tSiC ~ 32nm and a thin Si channel layer of 

thickness tSi ~ 15 nm were grown selectively using ultra-high-vacuum chemical vapor 

deposition on the active region (as shown in Fig. 3.1 a). On the control wafer, a 

selective epitaxial growth of Si with thickness of ~50nm was performed to make a fair 

comparison. After that n-well, punchthrough, and threshold voltage VT adjust implants 

were subsequently performed and activated at 900 ºC for 10s. 
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Gate stack comprised of a thermally grown SiO2 gate dielectric with a 

thickness of 3 nm and a SiO2-hardmask capped the poly-Si gate electrode (100nm) was 

then formed and patterned.  Following that, S/D extension implant, and a ~40nm 

nitride spacer was formed [Fig. 3.1 (b)].   Then S/D recess etch on all of the wafers 

was performed [Fig. 3.1 (c)].  An in-situ prebake step at 800 °C for 5 min was carried 

out to remove the native oxide before the selective epitaxy growth (SEG).  S/D 

implantation was performed and dopant activation was carried out using rapid thermal 

anneal at 900°C for 10s.   

Some critical process steps in making a pFET with reverse embedded Si:C 

stressors are discussed in following sections. 

 

3.2.1 Channel Epitaxy Growth 

The channel epitaxy process is a very critical step for this process flow. Dilute 

HF solution was used to remove of any native oxide in the channel regions prior to 

selective epitaxial growth in an ultra high vacuum chemical vapor deposition 

(UHVCVD) chamber.  

To achieve selective epitaxial growth of Si or Si1-yCy, the epitaxy reactor uses a 

cyclic process. Each cycle comprising a growth period and an etch period. For 

selective growth of Si:C, it is achieved by flowing disilane (Si2H6) and dilute 

monomethylsilane (SiH3CH3) precursor gases.  For Silicon growth step, only disilane 

was used as the growth precursor gas for the epitaxy growth. A low growth 

temperature (~640°C) was employed to avoid carbon precipitation.  During the growth 

period, Si or Si:C is first grown on Si with intrinsic selectivity, and after a brief period 

of time ( known as the incubation time ), both Si channel region and LOCOS were 

grown.  As the incubation time is often too short for sufficient thickness of epi layers, a 
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etch step after each growth period is often introduced.  The etch step utilizes diluted 

chlorine (Cl2) to etch back the islands of Si or Si:C on LOCOS. It also attacks the 

Si/Si:C grown on the channel region.  Due to the Si / Si:C growth rate difference on Si 

and dielectrics and different etch rate between good crystalline quality Si/Si:C on Si 

and the polycrystalline Si/Si:C on LOCOS, selective growth is achieved.   

For a good selective epi growth, the ratio of the growth and etch back period 

needs to be maintained within a certain range.  An insufficient etch back time would 

cause lost of selectivity, while too long etch back time will cause an increase in surface 

roughness due to excessive attack from the chlorine.   

As shown in Figure 3.2 are the SEM images after selective Si channel growth 

with (a) 60 s Cl2 etch time /cycle, (b) 56 s Cl2 etch time /cycle, and (c) 53 s Cl2 etch 

time/cycle at a fixed disilane (Si2H6) precursor flow time of 20 s/cycle. It is observed 

that with the reduced Cl2 etch time per cycle, density of surface pits reduces. With 53 

s/cycle Cl2 flow time, a smooth surface was achieved and it also maintained a good 

selectivity towards oxide. 
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(a) 

 
(b) 

 
c) 

 

Fig. 3.2. SEM images after selective epitaxy growth of Si with different Cl2 etch time and fixed 

disilane (Si2H6)  precursor flow time of 20s/cycle. (a) with  60s Cl2 etch time/cycle, (b)  with 56s Cl2 

etch time /cycle, and (c) with 53s Cl2 etch time/cycle. 

 

LOCOS 

LOCOS 
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3.2.2 Gate etch 

Gate etch process for a p-FET with STS structure also needs extra attention. 

Due to the raised channel region, the morphology would leave a gate stringer at the 

sidewall of channel region if extensive over etch is not performed. These gate stringers 

remaining at the sidewall of LOCOS or raised channel region would cause short circuit 

between gate and S/D during subsequent S/D epitaxy growth or silicidation.   

To remove the stringers completely without etching through the gate oxide, a 

improved HBr/Cl2/He/O2 plasma etch process described in [3.5] is used. Figure 3.3 

shows the SEM images after gate etch with a) conventional gate etch recipe for planner 

devices and b) improved gate etch with 75%  HBr in Cl2/HBr gas as described in [3.5].  

 

 

(a)      (b) 

Fig 3.3. SEM images after gate etch. Extensive over-etch is required to remove the gate stringers 

remaining at the sidewall of raised channel. (a) SEM image of STS device after gate etch with 

conventional etch process for planner devices.  (b) SEM image for gate etch using improved gate 

etch recipe with 75% HBr in Cl2/HBr gas mixture. Stringers removed without etching through 

gate oxide.  

 

Gate stringers 
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3.3  Selection of Annealing Conditions for Minimizing Carbon 

Precipitation and Strain Relaxation 

As the Si:C stressors are grown at the early stage of a transistor fabrication, 

after several thermal cycles, relaxation of Si:C with C precipitation might occur. The 

main process steps causing Si:C relaxation would be n-well and S/D activation steps, 

which usually requires high temperature above 800 ºC. Thus, in this section, we 

investigate the effect of temperature and annealing time on strain relaxation and C 

precipitation in the embedded Si:C. This serves a guideline for selection of annealing 

conditions. 

To determine the subsitutional carbon content (Csub) in the buried Si:C stressor,  

HRXRD scans were performed on blanket samples with Si(15nm) on Si:C(32nm) 

stack grown on Si substrate after threshold VT adjustment, punchthrough and well 

implants and different annealing conditions (Fig. 3.4).  
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Fig. 3.4. HRXRD of Si(15nm)/Si:C((32nm) grown on Si substrate after VT, punch through, and 

well implants and annealing. The Si:C satellite peaks shift towards Si substrate peak with 

increasing annealing temperature indicates a decrease in substitutional Carbon content (Csub) with 

increasing annealing temperature. 

 

The displacement of satellite peaks from Si substrate peak (change in Bragg 

angle) due to the Si:C layer is proportional to the subsitutional Carbon content in the 

epi layer.  It is observed that the Si:C satellite peak shifts to lower angles, closer to Si 

substrate peak, with increasing annealing temperature, which indicates a drop in 

subsitutional carbon content ( Csub).  

To determine the Csub in the buried Si:C after each annealing condition, 

simulations are done to match the experiment results. For example, Figure 3.5 shows 

the simulated HRXRD curve for Si(15nm)/ Si0.992:C0.008(32nm) on Si substrate, which 

matches well with the experimental result obtained after annealing at 850 ºC for 10s.  
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Fig. 3.5. Simulation of HRXRD spectrum for Si(15nm)/Si0.992:C0.008(32nm) stack grown on Si 

substrate shows a good agreement with the experiment result after annealing at 850 ºC for 10s. 

Csub in the buried Si:C layer is thus determined to be 0.8 atomic percent with this annealing 

condition. 

 

Therefore, the Csub in the buried Si:C after annealing at 850 ºC for 10s is 

approximately 0.8 atomic percent. 

We then plot the Csub vs. annealing temperature (Time is 10s for each anneal 

split) in Figure 3.6. A steeper drop in Csub was observed with temperature higher than  

900 ºC.   
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Fig. 3.6. Csub vs. annealing temperature. A drop in Csub is observed with increasing temperature, 

indicating that more C atoms diffuse from substitutional sites into interstitial sites with increasing 

annealing temperature. Thus, the use of high temperature process should be avoided for 

structures with Si:C stressors. 

 

Another parameter which affects the Csub is annealing time. With increasing 

annealing time at 900 ºC, the Csub drops from 0.7 at. % for 10s anneal, to 0.6 at. % for 

30s anneal (as seen from Fig. 3.7).  
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Fig. 3.7. HRXRD rocking curves of implant and annealing Si(15nm)/Si:C (32nm) epi layers grown 

on Si substrate. The substitutional C content drops from 0.7 atomic percent with 10s anneal to 0.6 

atomic percent for 30 s anneal. 

 

The substitutional carbon content after different annealing conditions are 

summarized in Table 3.1. This can serves as a guideline when choosing S/D annealing 

conditions in device fabrication.  The annealing condition used in this study is 900 ºC, 

10s, which has a Csub of approximately 0.7 atomic percent. 

 

Table 3.1. Summary of Csub after different annealing conditions.  

Annealing 
Temperature (ºC)  Time (s) Csub(atomic %) 

800 10 0.9 
850 10 0.8 
900 10 0.7 
900 30 0.6 
950 10 0.5 
1000 1 0.7 
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3.4 Device Characteristics and Strain Measurement  

Figure 3.8 shows the TEM image of a p-FET with reverse embedded Si:C 

stressor beneath the channel. The gate length of this device is around 90 nm.  

 

 

Fig. 3.8. TEM image for device with Si:C strain transfer structure. 

 

S/D annealing at 900 ºC for 10s was performed for all the devices.  Figure 3.9 

shows the IS -VG plot of typical devices with Si epi channel and reverse embedded Si:C 

stressor. It is observed that generally, devices with Si:C STS has higher IOFF . This 

could be attributed to higher source to drain leakage current which is caused by defects 

along the channel region shown in the insert. These defects could be caused by poor 

quality of the epitaxy growth, or formed by implantations and subsequent annealing. In 

addition, it is observed that the sub-threshold swing (SS) of devices with Si:C strain 

transfer layer is degraded compared to the Si control device. This could be due to the 

diffusion of C atoms to the oxide interface which degraded the oxide quality. This 

issue could be solved by increasing the thickness of Si channel epi layer. 
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Fig. 3.9. Typical IS -VG plot of devices with Si epi channel and reverse embedded Si:C stressor. 

Higher source current was observed for devices with strain transfer structure. This could be due 

to defects along the channel as depicted in the inset. 

 

Direct measurement of channel strain using UV Raman analysis was also 

performed on blanket samples with Si(15nm)/Si:C(32nm) on Si substrate after 

implantations and annealing.  

A 325nm He-Cd laser was used to measure the strain in top Silicon epitaxy 

layer (The probing depth of the UV Raman is around 10nm in Si). To avoid down shift 

of the Si-Si peak caused by laser heating, the laser power on the samples surface was 

kept to be less than 250 microwatt. Since the spectral resolution of the UV Raman is 

only 0.6 cm-1, a fit by Lorenztian function was used to extract the peak position.  
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Fig. 3.10. UV Raman analysis of Si grown on Si:C after implantations and annealing. The probe 

depth of UV Raman is within the top Si epi layer. The strain in Si is proportional to the extent of 

red shift from the unstrained Si peak. 

 

Figure 3.10 shows the locations of Si peaks in the top Si epi layer after 

implantations and different annealing conditions.  

A theoretical calculation of strain was performed assuming the Si is grown on 

fully relaxed Si:C with carbon concentration of Csub ( measured from HRXRD). And 

this was compared to the UV Raman measured compressive strain for each annealing 

condition in Table 3.2. 

It is observed that the actual strain level measured by UV Raman is much 

smaller than that of the theoretical calculation.  

There are several reasons behind.   
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Firstly, due to thin layer of Si:C growth(~32 nm) on Si, the Si:C layer is not 

fully relaxed. The Si:C lattice conforms to the Si substrate template with partial 

relaxation, therefore during subsequent Si channel epitaxy growth, less strain is 

experienced in the top Si layer compared to the case of Si growth on fully relaxed Si:C. 

Another possible reason is that, due to the defects at Si/Si:C interface by epi 

growth or defects caused by implantation and annealing, the strain level in the top Si 

epi layer drops further.  

 

Table 3.2 Summary of calculated strain and measured strain by UV Raman Spectroscopy  

Annealing 
Temperature 
(ºC) 

Time 
(s) 

Csub measured 
from XRD 

Theoretical strain for Si 
grown on fully relaxed Si:C 

Strain measured by 
UV Raman 

800 10 0.9 0.30% 0.13% 

850 10 0.8 0.27% 0.10% 

900 10 0.7 0.24% 0.03% 
 

To improve the transistor performance, the thickness of Si:C strain transfer 

layer could be increased, and the usage of high thermal budget process should be 

avoided.  

 

3.5 Summary and Future work 

P-FET with reverse embedded Si:C stressor beneath the channel was fabricated. 

The process related issues are discussed, however, the performance of these devices 

are poor due to high source drain leakage current and poor SS. This could be due to 

low epitaxy quality, C precipitation and diffusion, and/or strain relaxation of Si:C 

during subsequent implantation, and thermal processes. 

To further improve the device performance, the epitaxy Si:C quality needs to 

be improved, and thermal budget after this epitaxy process needs to be kept low. In 
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addition, for channel epitaxy, we could also adopt insitu doped Si channel and  insitu 

doped Si:C strain transfer layer to minimize defects and strain relaxation caused by 

subsequent implantation and annealing processes. 
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CHAPTER 4 

Stress by Boron Doping in P-channel Devices and Strain 

Compensation Implant 

 

4.1  Introduction  

As we know, besides the strain generated by lattice mismatched epitaxy layers, 

when a dopant atom is introduced into silicon substrate through ion implantation or 

diffusion, a local lattice expansion or contraction will occur depending on the varying 

atomic sizes and bond lengths of the atoms.  Boron, widely used as a dopant in the p-

FET S/D, with a small covalent radius of 0.9 Å, introduces lattice contraction in Si 

when it is in substitutional sites [4.1]  

Nowadays, nanoscale metal-oxide-semiconductor field-effect transistors 

(MOSFETs) require heavily doped ultra-shallow source/drain extensions for good 

control of short-channel effects and superior drive current performance. These shallow, 

yet highly activated implants can be achieved by laser anneal, which activates dopants 

to concentrations exceed their solid solubility [4.2-4.4].  For p-FETs, ultra shallow and 

highly activated boron is desired in the S/D and S/D extension region. However, a 

layer of Si supersaturated with boron has a smaller over-all lattice constant than Si, and 

when formed in source and drain extension regions in a p-channel transistor, this can 

cause undesirable tensile strain in the channel and lead to p-FET performance 

degradation (Fig. 4.1). The stress induced in the channel due to boron doping was 

insignificant for long-channel devices, but for CMOS transistor channel lengths in the 

nanometer realm, this stress could play a significant role in determining the carrier 

mobility.   
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Fig. 4.1. Schematic drawing of Si transistor with high concentration of Boron doping in the S/D.  

In the S/D region boron doping causes local lattice contraction. The overall lattice constant of S/D 

is reduced, and a tensile strain in the channel along the carrier transport direction is introduced. 

 

In addition, though a highly activated boron profile is desirable in the S/D and 

S/D extension of a p-FET for lower series resistance and higher drive current 

performance, the retention of supersaturated boron produced by laser annealing is 

difficult during subsequent thermal processes. The mechanism of deactivation was 

suggested to be high strain energy caused by local contraction of Si lattice with boron 

doping, which accelerates the injection of Si interstitials [4.5], and makes the retention 

of high boron concentration difficult. 

Therefore, the stress generated due to boron doping can cause undesirable 

performance degradation of p-FET performance, and it is a case of technical 

importance.   

In this chapter, we discuss the effect of tin (Sn) strain compensation implants, 

and its effects on reducing the local strain energy and enhancing boron’s thermal 

stability. Tin was chosen as the strain compensation implant, as it is a group-IV 

element with a large covalent bond radius of 1.4 Å.  Sn, when incorporated in Si, 
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contributes to an increase in lattice constant, which counteracts the contraction of 

lattice constant caused by a high concentration of boron. 

 

4.2 Experiments 

N-type bulk Si wafers were used in this experiment.  A 10 nm sacrificial silicon 

oxide was deposited prior to ion implantation of BF2 at a dose of 6×1015 ions/cm2 with 

an energy of 8 keV (7˚ tilt).  

Sn co-implantation at 15 keV with a dose of  2×1014 cm-2 and 1×1015 cm-2  was 

performed for some wafers.  The Sn co-implant was skipped for a control wafer.  P-N 

diodes were also fabricated with the same implantation conditions to monitor the 

leakage current of the junctions.  Laser annealing was carried out in nitrogen ambient 

using a 248 nm KrF excimer laser with full-width half-maximum pulse duration of 23 

ns.  The laser fluence was varied from 670 mJ/cm2 to 800 mJ/cm2 to melt the Sn- and 

B- implanted layer on the Si surface.   

 

4.3 Strain Compensation with Sn Implants  

The strain for control and Sn co-implanted wafers after laser annealing are 

measured through high resolution x-ray diffraction (HRXRD).   

In the x-ray rocking curves shown in Figure 4.2, the satellite peak from the 

boron-implanted layer (with no Sn implant) has a larger Bragg angle than the Si (004) 

peak, showing a lattice constant that is smaller than Si, which indicates tensile strain in 

the top boron doped film.  With increasing Sn dose, the satellite peak shifts towards Si 

substrate peak, demonstrating that Sn incorporation has increased the lattice constant 

and relieved the tensile strain in the top boron doped Si layer. 
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Fig. 
�

.2. High Resolution XRD rocking curves measured after laser annealing. The satellite peak 

from Boron implanted film has a larger Bragg angle than the Si (004) substrate peak, showing a 

lattice constant smaller than Si, which indicates a tensile strain in the film. The satellite peak shift 

towards silicon substrate peak with increasing Sn dose demonstrates the tin incorporation has 

indeed relieved the strain formation in the boron doped silicon layer. 

 

The stress (strain) calculation is based on the change in the interplanar spacing 

∆d which will produce a corresponding change in the Bragg angle, ∆θ, such that lattice 

expansion in normal direction could be obtained by [4.6, 4.7]  

 

(∆d/d) = (cot θ)·∆θ,                                   (4-1) 
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where d is the unstrained lattice spacing, and ∆θ is the change in Bragg diffraction 

orientation due to the strain.  When a film is biaxially stretched to adopt the lattice 

parameter of the substrate and consequently contract in the direction perpendicular to 

the film, this tetragonal distortion can be obtained according to the pseudomorphic 

lattice growth mismatch formula, and the change of the alloy lattice constant (∆a/a) is 

related to  the lattice contraction in normal direction by [4.8] 

 

d
d

CC
C

a
a ∆

×
+

=
∆

1211

11

2
,                                       (4-2) 

 

where C11=16.577×1011 dynes/cm2, and C12 =6.39×1011 dynes/cm2 are the elastic 

moduli of Si. 

 

The satellite peaks for laser annealed samples with 0 cm-2, 2×1014 cm-2, and 

1×1015 cm-2 Sn implant dose are located at 0.31, 0.22, and 0.16 degree, respectively, 

above the silicon substrate peak, which correspond to 
d
d∆

 of 0.78%, 0.55%, and 

0.403%, respectively.  Therefore, the lattice strain in the top Boron doped layer, 

i.e.
a
a∆

 , for those samples is equal to 0.44%, 0.31%, and 0.227%, respectively.  

Therefore, the Sn co-implantation has indeed successfully compensated the strain 

caused by boron implant. 

 

4.4 Boron’s Thermal Stability with Strain Compensation Implants 

The local lattice contraction caused by Boron doping may increase the strain 

energy in the lattice and make the retention of high concentration Boron difficult 
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during subsequent thermal cycles. Thus, in this section, we investigate the effect of Sn 

strain compensation implant on Boron’s thermal stability, and explain the physics 

behind the observed phenomenon. 

 

4.4.1 Motivation for Post LA Rapid Thermal Anneal 

Figure 4.3 shows the B and Sn depth profiles in three samples with various Sn 

doses (0, 2×1014, and 1×1015 cm-2) which were laser-annealed at a laser fluence of 740 

mJ/cm2.  The top surface comprising the B- and Sn- implanted layer (~ 15 nm) was 

melted and re-crystallized, as evident from the flat boron profile in the top region.  

However, residual defects, such as stacking faults, dislocation, or end-of-range 

damage, that were not removed by LA or secondary defect generated during laser 

annealing can be detrimental and can drastically increase the leakage current when the 

defects are situated in the depletion region of the junction. Figure 4.4 shows the diode 

characteristics of the p+/n junction formed by laser annealing at 740 mJ/cm2, 1 pulse, 

5 pulses, and 10 pulses. A high reverse leakage current was observed for diodes after a 

single pulse laser annealing indicating high density of electrical active defects in the 

depletion region. 
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Fig. 
�

.3. SIMS profile of boron and tin after laser annealing at a laser fluence of 740 mJ/cm2 .  The 

laser light melts the top layer which was implanted with B and Sn. A flat boron distribution in the 

top layer was observed.  Similar boron profiles were obtained for samples with various doses of Sn 

implanted. 

 

By increasing the number of pulses, eg. from 1 pulse to 5 pulses, or 10 pulses, 

the reverse leakage current reduces.  However, the diode characteristics still suggest 

that there are large amount of remaining crystalline defects at the p/n junction.   
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Fig. 
�

.4. I-V characteristics of p+/n junction subjected to laser annealing of 740 mJ/cm2 with 1 

pulse, 5 pulses, or 10 pulses. 

 

To further reduce the electrically active defects, a post laser annealing RTP was 

carried out at 700 ºC for 20 s. The post-LA RTP conditions were chosen such that no 

observable diffusion of boron would occur [4.9]. Characterization of diodes shows that 

the post-LA RTP at 700 ºC for 20 s significantly reduced the leakage current, as seen 

in Figure 4.5, and Figure 4.6.  Without the post-LA RTP, the junction leakage current 

is ~4 orders of magnitude higher. Therefore, the post laser annealing RTP has 

effectively reduced the electrical active defects.  
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Fig. 
�

.5. I-V characteristics of p+/n junction subjected to laser annealing of 740 mJ/cm2  only and 

laser annealing of 740 mJ/cm2 followed by an RTA of 700 ºC for 20s. 
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Fig� �.6. Distribution of diode leakage current for BF2 implanted n-type wafer before and after 

post laser annealing rapid thermal processing (RTP).  More than 15 diodes were characterized for 
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each curve to get cumulative results. The post LA RTP condition was 700 °C for 20 s, which 

significantly reduced the leakage current.   

4.4.2 Boron’s Thermal Stability 

In order to study the effect of Sn strain compensation implant on boron’s 

thermal stability, samples with only Boron implant, and samples with both Boron and 

Sn implantation were subject to RTP at a temperature of  700 ºC or 850 ºC for a 

duration ranging from 15 to 120 s in a nitrogen ambient after laser annealing.  The 

sheet resistance RS of these samples was monitored vs. annealing time at a post LA-

RTP temperatures of 700 ºC [Fig. 4.7(a)] and 850 ºC [Fig. 4.7(b)].  
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(a) 

 

       (b) 

 

Fig. 
�

.7. Sheet resistance Rs increases as a function of time for (a) post laser annealing at 700 ºC, 

and (b) post laser annealing at 850 ºC. Suppressed increase in RS with increasing dose of co-

implant was observed. 
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Time-dependent electrical deactivation of B was observed as RS increases with 

increasing t.  The deactivation occurs even with a post-LA RTP time as short as 15 s.  

For samples without Sn implant, this increase in RS with t is the most rapid.  This fast 

deactivation process relates to the transfer of boron atoms from substitutional to 

interstitial lattice sites, releasing strain energy in the tensile strained layer comprising 

supersaturated boron.  With the incorporation of Sn, the rate of increase of RS with t is 

reduced.  In addition, a higher Sn dose causes the value of RS to settle at a lower value 

even with extended anneal time, suggesting that Sn stabilizes the deactivation of 

electrically active B.   

For post-LA RTP condition of 850 ºC for 120 s, the RS values for a sample 

without Sn co-implant and a sample implanted Sn at a dose of 1×1015 cm-2 are ~290 

Ω/square and 246 Ω/square, respectively. This difference in RS is not due to a 

difference in the Boron depth distribution, as the Boron profiles are comparable (Fig. 

4.8), hence the level of dopant activation is indeed higher with Sn co-implantation after 

post-LA RTP. 
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Fig. 
�

.8. SIMS profiles of B and Sn after post laser RTP. The filled symbols indicate the boron 

depth profile, while the open symbols indicate the tin depth profile. Comparable Boron profile 

observed regardless of Sn co-implantation does. The co-implants did not cause an increased 

diffusion or deeper of junction depth. 

 

4.4.3 Physics of Enhanced Thermal Stabilty 

To further confirm and understand the relation between enhanced boron’s 

thermal stability with Sn strain compensation implant,  we correlate the lattice strain 

calculated after laser annealing ( obtained in section 4.3 ) with the change in sheet 

resistance  (Rf – R0)/R0 after post LA RTP of 800 ºC, 120s, as shown in Figure 4.9.  
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Fig. 
�

.9. Percentage change in Rs decreases with reduced tensile strain. Rf is the final sheet 

resistance measured after post laser annealing at 850ºC for 120s, while R0 is the initial sheet 

resistance after laser annealing. 

 

This relation could be understood by considering the strain energy w of lattice 

mismatched epitaxial layer on Si <100> substrate. The strain energy stored in this 

system can be obtained by the elastic energy expression for semiconductor materials. w 

= (∆a/a)2(C11 + C12 – 2C12
2/C11).[4.10, 4.11]  With the larger lattice deformation or 

∆a/a in the control sample with BF2 implant only, the elastic energy stored is higher. 

With the introduction of an increasing dose of Sn, the strain energy is reduced.  So the 

lower tensile strain energy in the whole system with the Sn co-implantation leads to 

reduced boron deactivation and less change in sheet resistance.    
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4.5 Summary 

Incorporation of Sn was investigated as a means to reduce undesirable lattice 

strain caused by boron doping.  

High resolution XRD measurement after laser annealing at a laser fluence of 

740 mJ/cm2 confirms that the tensile strain caused by supersaturated boron was indeed 

relieved by tin co-implantation. This strain compensation by Sn implantation also 

suppresses Boron deactivation during post laser annealing thermal processing. 

Therefore, Sn co-implantation with Boron in S/D or S/D extension could be an 

effective way to reduce the potential p-FET performance degradation due to tensile 

strain caused by Boron doping. 

 

4.6 Future Work 

There may be concerns about the implantation of heavy atoms such as Sn 

causing an increase in crystal damage in the substrate, leading to increase in junction 

leakage.  However, electrical characterization shows that this is not the case with Sn 

dose up to 1×  1015 cm-2.  Comparable diode leakage current was observed independent 

of Sn implantation dose (Fig. 4.10).   
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Fig. 
�

.10. Diode leakage current measured before and after post laser annealing at 700 ºC for 20 s 

with different Sn dose. The co-implants did not increase the leakage current. 

 

To further improve the performance of a p-FET, high compressive strain levels 

in the channel can also be achieved by Si1-zSnz S/D stressors with high subsitutial Sn 

content formed using Sn implantation and anneal.  However, due to the low solid 

solubility of Sn in Si (the solubility of Sn in silicon is limited to ≈0.01%), it is very 

challenging to produce Si1-zSnz S/D with large Sn content. Up to now, molecular beam 

epitaxial (MBE) growth at relatively low temperature for Si1-zSnz growth can achieve 

metastable, pseudomorphic Si1−zSnz films with Sn content up to 5% [4.12],. However, 

Sn metallic precipitates would occur with subsequent thermal process[4.13, 4.14],. 

How to produce SiSn S/D with high Sn content is still challenging and an interesting 

direction for further research. 
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CHAPTER 5 

Conclusions and Future Work 

In conclusion, novel process, structures, or concept related to strain engineering 

techniques have been proposed and experimentally explored for nanoscale p-channel 

transistors. The major conclusions and contributions of this work are summarized as 

following: 

 

5.1 Ge Enrichment in Si1-xGex S/D Stressor for P-FET Performance 

Enhancement 

Increasing the Ge content in the embedded SiGe (eSiGe) Source/Drain (S/D) 

stressors improves p-FET performance. However, challenges are faced in managing 

strain relaxation and defect formation in an epi-SiGe S/D formed using a conventional 

process.  A new process technology for boosting the Ge content in SiGe source/drain 

(S/D) stressors was demonstrated to increase strain and performance levels in p-FETs.  

By laser-induced local melting and inter-mixing of an amorphous Ge layer with an 

underlying Si0.8Ge0.2 S/D region, a graded SiGe S/D stressor is formed upon 

recrystallization.  Raman analysis confirmed the retention of high S/D strain levels due 

to the rapid non-equilibrium recrystallization process.  For a p-FET with Ge enriched 

S/D, an IDsat enhancement of about ~14% over control strained p-FETs with Si0.8Ge0.2 

S/D at similar short-channel effects and S/D sheet resistance was observed.   
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5.2 Reverse Embedded Si:C stressor for P-FET Performance 

Enhancement  

A new structure with reverse embedded Si:C stressor was fabricated. Unlike 

the conventional stress from the S/D region, this stress comes from beneath the 

channel. The challenges and issues of the fabrication process were discussed. Issues 

like carbon precipitation and strain relaxation expose a limitation for high temperature 

process in the later stage of device fabrication. The channel epitaxial process is 

extremely challenging, excellent epitaxy quality is required for good transistor 

performance and drive current enhancement. Our current results showed poor device 

performance with high leakage current from source to drain due to defects from the 

low epitaxy quality or defects generated during subsequent implantation and annealing. 

To further improve the transistor performance with this reverse embedded Si:C 

stressors, the epitaxial quality need to be improved, and the process of implantation 

and activation for VT adjustment and punch through suppression implants need to be 

optimized. This implantation and annealing could be even omitted by growing in-situ 

doped Si/ Si:C layer.  

 

5.3 Tin Strain Compensation Implant for Reduction of Tensile 

Strain Caused by Boron Doping 

 
Nanoscale p-channel metal-oxide-semiconductor field-effect transistors 

(pMOSFETs) require heavily doped and highly activated boron in the source/drain or 

source/drain extensions for good control of short-channel effects and low series 

resistance. However, due to the smaller covalent bond radius of boron than silicon, a 

layer of Si supersaturated with boron will have a smaller lattice constant and 
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experience a local lattice contraction. When highly activated boron formed in S/D or 

S/D extension regions in a p-channel transistor, it can cause undesirable tensile channel 

strain that leads to p-FET performance degradation due to the smaller lattice constant 

of the S/D region. The supersaturated and metastable boron that produced by laser 

annealing could also deactivate during post laser thermal cycles, and lead to 

undesirable performance degradation. Effect of tin incorporation on the strain 

compensation and thermal stability of boron was studied for the first time. High 

resolution XRD measurement indicates that the tensile strain caused by a high boron 

concentration was reduced by the introduction of tin. Sn co-implantation also 

effectively reduces the strain energy and therefore enhances the thermal stability of 

boron in post-laser-anneal rapid thermal processing. Therefore, Sn co-implantation 

with Boron in S/D or S/D extension could be an effective way to reduce the possible p-

FET performance degradation due to tensile strain caused by Boron doping. 

 
 
5.4 Future Work 

This thesis explored several technology options for the enhancement of p-

channel transistor performance.  Some further work in this area is open for 

investigation. 

Laser annealing, being a non equilibrium process, could be useful for 

prevention of strain relaxation, and to activate dopants such as carbon or Sn to 

concentrations far excess of their solid solubility for S/D stressor application. A high 

laser fluence is usually required to achieve better activation of dopants, however, the 

excess heat absorbed by the gate can cause dopants penetration, high gate leakage 

current, or even gate deformation. Therefore, how to effectively protect the gate, and 
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reduce the laser absorption by gate line is an important issue, and can be of interest of 

future research. 

In addition, reverse embedded Si:C strain transfer structure could be used to 

impart strain from beneath the channel for transistor performance enhancement. 

Further performance optimization work could be done. These include increasing the 

thickness of embedded Si:C layer for higher strain, or/and adopting in-situ doped Si:C 

strain transfer regions with high [C] content, for minimizing strain relaxation. An 

integration of high stress diamond like carbon (DLC) etch stop layer with this novel 

device structure could also be exploited for further strain and performance 

enhancement. This structure could also be integrated with the metalized S/D for high 

channel mobility and low S/D resistance. Other characterization work, such as direct 

measurement of strain using a nano Raman with a dummy/ disposable gate, could 

provide insights to the actual strain distribution under the gate, and is an interesting 

direction of future work. 

In the case of Sn incorporating for strain compensation of boron, we show that 

the lattice constant has been enlarged by Sn co-implantation and anneal. Other p-type 

dopants such as Ga or In, with the larger atomic radius than Si can also been explored 

as alternative dopant or co-implant with boron in Si for p-MOS S/D application.  

Areas that are not discussed in this thesis work, such as the silicide induced 

stress could also be interesting direction of future research.  
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