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ABSTRACT 

  

 
We study the problem of detecting concepts in news video. Some existing 

algorithms for news video concept detection are based on single-resolution 

(shot), single source (training data), and multi-modal fusion methods under a 

supervised inductive inference; while many others are based on a text retrieval 

with visual constraints framework. We identify two important weaknesses in 

the state-of-the-art systems. One is on the fusion of multimodal features; and 

the other is on capturing the concept characteristics based on training data and 

other relevant external information resources.   

In this thesis, we present a novel multi-resolution, multi-source and multi-

modal (M3) transductive learning framework to tackle the above two 

problems. In order to tackle the first problem, we perform a multi-resolution 

analysis at the shot, multimedia discourse and story levels to capture the 

semantics in news video. The most significant aspect of our multi-resolution 

model is that we let evidence from different modal features at different 

resolutions support each other. We tackle the second problem by adopting a 

multi-source transductive inference model. The model utilizes the knowledge 

not only from training data but also from test data and other online information 
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resources. We first perform transductive inference in order to capture the 

distributions of data from both the observed (test) and specific (training) cases 

to train the classifiers. For those test data that cannot be labeled by 

transductive inference, our multi-source model brings in web statistics to 

provide additional inference on text contents of such test data to partially 

tackle the problem. 

We test our M3 transductive model to detect semantic concepts using the 

TRECVID 2004 dataset. Experiment results demonstrate that our approach is 

effective.
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C h a p t e r  1  

 

INTRODUCTION 

 

 

1.1 Motivation  

 

Our entrance into the information age has had significant impacts on our 

society. We have systematized the production of knowledge and amplified our 

brainpower. To use an industrial metaphor, we now mass-produce knowledge 

from information and this knowledge is the driving force of our economy. 

Thus, Naisbitt [1982] believed that the most important strategic resource is 

information. Therefore, more and more people have paid attention to the value 

of information and information dissemination. With the increasing value of 

information and the popularization of the Internet, the volume of information 

has been soaring ceaselessly. Based on the research by Lyman and Varian 

[2003], the world produced about five exabytes of new information in 2002, 

which is equivalent in size to the information contained in 37,000 new libraries 
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the size of the book collections in the US Library of Congress. Furthermore, 

the speed of producing information has the growth rate of 50% year on year. 

With such a rapid growth of information, we can find that multimedia data 

play a more and more important role. In the 1990’s, the major use of a 

computer is to count the numbers and process text data. It is reported in China 

Internet Network Information Center [1997] that in 1997, text-based web 

browsing, e-mail, ftp and telnet accounted for about 78.3%, 10.7%, 8.4 % and 

1.6% of Internet traffic respectively. From such statistics, we can observe the 

fact that at that time the major modality in Internet traffic is text information. 

However, the advancement in computer processor, storage and the growing 

availability of low-cost multimedia recording devices have led to the explosive 

growth of multimedia data. Evans [2003] claimed that for BBC1 & BBC2 

alone there were 700 hours of TV programs transmitted per week. 

Furthermore, in BBC alone, there were over 750,000 hours of television 

programs in the archive. It was reported in [Chang, 2007] that there are 31 

million hours of TV programs produced each year. Since P2P was invented 

and widely used on Internet applications, more and more multimedia data has 

been transferred from one computer to another via the web. The statistics from 

an Internet study1 shows that about 65% of Internet traffic was being taken up 

by transferring multimedia contents in 2007. Among them, about 73.79% is 

                                                 
1 http://www.ipoque.com/media/internet_studies/internet_study_2007 
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video related content. With such huge volume of multimedia information, if 

such information is uncontrolled and unorganized, it becomes impossible to 

find them. In fact, researchers are even overwhelmed by the huge amount of 

technical data that it often takes more time to find out whether or not an 

experiment has been done than to do the experiment itself. Nasibitt and 

Aburdene [1990] claimed that: “we are drowning in information but starved 

for knowledge”.  

In order to make use of such huge information, search engines like Google2 

provide a good solution to utilize text information resources. The success of 

text search engines whetted the appetite of users who hope to have similar 

abilities to search over large multimedia corpora. For example, in the early 21st 

century, many researchers such as [Chua et al. 2001] have a dream of building 

Video-On-Demand systems. Recently, news video retrieval sites such as 

Blinx.com3 and Streamsage.com4 aim to aggregate news videos from multiple 

sources for retrieval. Such systems are based purely on the automatic speech 

recognition (ASR) text and are as effective as the quality of the ASR text. In 

particular, if the relevant video clips do not have the query text available, such 

video clips will not be retrievable. On the other hand, much false retrieval will 

occur for those irrelevant clips that contain the query text. Thus for effective 

                                                 
2 http://www.google.com 
3 http://www.blinkx.com/ 
4  http://www.streamsage.com/ 
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management and retrieval of multimedia contents, we need to index the 

multimedia data at the higher semantic level, such as whether a shot contains 

person-X or object X etc. that frequently appear in queries. One example query 

is “find shots of Benjamin Netanyahu”. The target of our system is to find 

shots visually containing Benjamin Netanyahu in the given news video. In this 

example, the visual semantic concept is the visual appearance of Benjamin 

Netanyahu. However, it is impossible for humans to manually annotate 

concept X, as it is both error-prone and time consuming [Lin, Tseng, and 

Smith, 2003]. On average, the human annotator will use about 6.8x times that 

of the broadcast time to annotate news video properly. Therefore, there is an 

urgent need to automatically infer concept X.  

 

1.2 Problem statement    

 

The semantic concept detection task has attracted the attention of many 

researchers. One of the largest researcher communities to work under this 

topic is the TRECVID community [TRECVID, 2002-2007]. TRECVID is an 

annual benchmarking exercise, which encourages research in video 

information retrieval by providing a large video test collection, a set of topics, 

uniform methods for scoring performance, and a forum for organizations 

interested in comparing their results. The semantic concept detection task 
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began in 2002. The target of this task is to find whether the shot includes 

certain visual semantic concepts. Most participating groups have tackled the 

concept-detection task as either a shot-based supervised visual pattern 

classification problem [Naphade and Smith, 2004] or a text retrieval problem 

which combines text results with visual constraints [Yang et al. 2004]. In spite 

of these efforts, we are still far from achieving a good level of concept 

detection performance. Based on our analysis, we have identified two major 

weaknesses of current systems that should be addressed to enhance the 

performance. 

� Fusion of text and visual features 

Multimedia refers to the idea of integrating information of different 

modalities [Rowe and Jain, 2005] such as the combination of audio, text 

and images to describe the progress of news events in news video. As 

speech in news video is often the most informative part of the auditory 

source, we focus on the fusion of automatic speech recognition (ASR) 

text with visual features. However, there are errors in the ASR text and 

there often exist mismatches between text clues and visual contents at 

the shot layer [Yang et al. 2004]. On the other hand, it is very hard for 

detectors to use only visual features to detect whether such concepts 

exist in the shots. This is because of the wide variations of visual objects 

in videos. The variations are caused by changes in appearance, shape, 
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color and illumination conditions. Figure 1.1 shows examples of 

concept “boat” in news video with different shapes and colors. Thus, 

semantic concept detectors require a good fusion method to combine 

text and visual features. Although many efforts [TRECVID, 2002-2007] 

have been made, most of the existing systems fail to allow the evidence 

from text and visual features to support each other effectively. 

 

    

     

    
Figure 1.1: The concept “boat/ship” with different shapes and different 

colors 
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• Capturing the characteristic of the concepts via the training data 

and concept descriptions  

Many of the so-called concepts5 are abstract in that they focus on 

extracting the similarity of instances under these concept classes, while 

ignoring their differences. For the example in Figure 1.1, although 

different boats may have different colors and shapes, the boats have 

some common characteristics that are a watercraft of modest size 

designed to float or plane on water, and provide transport over it.  

In general, there are two commonly used concept definition 

approaches. One is an example-based definition method, in which the 

examples are provided by the training data. Given a set of training 

data, the most widely used method is a supervised learning approach. 

However, such a type of learning requires the estimation of unknown 

function for all possible input items. This implies the availability of 

good quality training data, which must include the typical types of the 

data available in the test set. If such a condition is not satisfied, the 

performance of such systems may degrade significantly. One solution 

to obtaining good quality training data is to label as many training data 

as possible. However, preparing training data is a very time consuming 

task. Thus, in many cases, we need to face the sparse training data 

                                                 
5 http://en.wikipedia.org/wiki/Concept 
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problem [Naphade and Smith, 2004]. The other concept definition 

method is a text description approach, where we use text to describe 

significant characteristics of the concept from its text description. For 

example, we can use “boat / ship: segment contains video of at least 

one boat, canoe, kayak, or ship of any type” to define the concept 

“boat / ship”. The concept text description is “boat / ship”. Thus, 

another widely used method to detect concepts is a text retrieval 

method such as [Hauptmann, et al., 2003, Yang et al., 2004, Chua et 

al., 2004, Campbell et al., 2006]. These methods regard words from 

concept text descriptions or some predefined keywords as the query 

and employ the text retrieval approach with query expansion 

techniques to capture the semantic concepts. However, the analysis in 

news video based only on text is effective only if the desired query 

concepts appear in both visual and text contents.  

In general, we found that it is not easy to capture the characteristics of 

concept by using either type of definition methods. How we can make 

use of the knowledge from both definition methods to capture the 

characteristics of the concepts is an open problem.  
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1.3 Our approach 

 

In this thesis, we propose a multi-resolution, multi-source and multi-modal 

(M3) transductive framework to tackle the above two problems. In our multi-

resolution model, we first analyze different modal features at different 

resolutions such as the shot or story levels. When analyzing the evidence from 

each single resolution, we regard the evidence from other modalities at the 

other resolutions as contextual information or constraints to support the 

decision. Next, we fuse the evidence from different resolutions together 

according to the confidence. Based on such a framework, we allow the 

evidence from different modalities to support each other. In each resolution 

analysis, we adopt a transductive inference model. Such a model aims to 

capture the distributions of the training and test data well so that we have the 

knowledge to know when we can make an inference via training data. In order 

to tackle the limitation of the training data, our multi-source model brings the 

web statistics into the framework. Such web statistics are designed to capture 

the relationship between the text content in the test data and concept text 

descriptions via the web. Finally, we utilize the bootstrapping technique to 

make use of unlabeled data to boost the overall system performance. We test 

our M3 transductive model on the TRECVID 2004 dataset. The test results 

demonstrate that our M3 transductive framework is superior to the systems 
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based on text or visual information alone, and the reported multi-modal fusion 

frameworks. 

    

1.4 Main contributions 

 

In this thesis, we make the following contributions: 

• A novel multi-resolution multimodal fusion model 

                 Multimedia refers to the idea of integrating information of different 

modalities. As different modal features only work well in different 

temporal resolutions and different resolutions exhibit different types of 

semantics, we perform a multi-resolution analysis at the shot, multimedia 

discourse (or multi-sentence) and story levels to capture the semantics in 

news video. While visual features play a dominant role at the shot level, 

text plays an increasingly important role as we move towards the 

multimedia discourse and story levels. More importantly, text and visual 

features in news video are coherent. In our multi-resolution multimodal 

fusion model, we let evidence from text and visual features support each 

other.  
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• A novel multi-source transductive learning model with bootstrapping   

Different with traditional classifiers, the output of our novel multi-source 

transductive classifier has three possible states: positive, unknown and 

negative. The function of the new unknown state is similar to that of “0” 

between positive and negative numbers in mathematics.  It suggests that 

in such cases, it is hard to assign a positive or negative label to these test 

data via the knowledge learned from the training data. To disambiguate 

test shots with unknown states, we integrate web statistics into the three 

transductive learners at different resolutions under our multi-resolution 

framework. Finally, we combine our M3 transductive learning 

framework with a bootstrapping technique to further process the test 

results with low confidence. 

 

1.5 Organization of the thesis 

 

The organization of this thesis is as follows: 

Chapter 2 introduces background and related work about this topic. The 

chapter covers the background of concept detection; visual and text based 

inference; fusion of visual and text features, and machine-learning methods in 

the concept detection task. 
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Chapter 3 presents the architecture of multi-resolution, multi-source and multi-

modal transductive learning framework. We provide a brief introduction of 

design consideration and the system architecture. The detailed discussion for 

each component will be covered in Chapters 4 and 5.  

Chapter 4 covers the multi-resolution analysis at the shot, multimedia 

discourse, and story layer. We discuss the multi-resolution features, similarity 

measures and multi-resolution constraint clustering.  

Chapter 5 discusses our multi-source transductive learning model. We first 

introduce the detail on transductive learning. We then expand our algorithm to 

using sub-domain knowledge. Finally, we combine our M3 transductive 

framework with a bootstrapping technique.  

Chapter 6 reports the design of the experiments; measurements of the system 

performance and our experiment results with analysis.  

Finally, Chapter 7 concludes the thesis with suggestions for future work. 
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Chapter 2 

 

Background Studies and Literature 

Reviews 

 

 

Semantic concept detection from multi-modal features enables high-level 

access to multimedia contents. In this chapter, we first introduce the 

background of concept detection. We then introduce the concept detection 

systems by using single modality such as visual or text features. Next, we 

report different strategies on the fusion of multi-modal features in the state-of-

the-art systems. After that, different types of machine learning methods used in 

concept detection are covered. Finally, we introduce the background of multi-

resolution analysis followed by a summary of the current problems with 

possible solutions.    
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2.1 Background 

 

2.1.1 What is the concept detection task? 

 

The purpose of a semantic concept detection task is to assign the appropriate 

semantic labels to a video clip based on visual appearance. Currently, the shot 

is the basic video unit in the benchmark TRECVID corpus. Figure 2.1 

provides an example of the concept detection. Given a video shot, we can 

extract multi-modal features. In news video, the widely used multi-modal 

features are visual and text features. The text features come from the automatic 

speech recognizer, such as those shown in Figure 2.1. The visual features are 

color, texture, shape and so on. In addition, there are at least three types of 

knowledge that we can use in the semantic concept detection task. They are: 

knowledge from training data, knowledge from concept descriptions, and 

knowledge from external resources of information.  
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The keyframe of the video shot    Text information from ASR results 

 

Figure 2.1: An example of detecting the concept “train” 

 

More formally, the video concept detection task is defined as: given a set of 

predefined concepts C : [C1, C2 ...Cn], develop a classifier to determine if the 

concept Ci appears visually in shot Sk.  

 

2.1.2 Why do we need to detect semantic concepts?  

 

Semantic concept detectors are very important and fundamental to multimedia 

retrieval. There are at least two reasons that we need to detect semantic 

concepts. The first reason is that most users tend to express their information 

needs in terms of semantic concepts. An example query from the TRECVID6 

is “Find shots of one or more buildings with flood waters around it/them”. 

Given such a natural language query, the query analysis model [Chua et al. 

                                                 
6 http://www-nlpir.nist.gov/projects/tv2004/topics/topics.2004.xml 

As for senators their $214 hundred and 
fourteen billion bill started out much lower 
but big state senators said we need more for 
mass transit. 
 



 

 16

2004] can transfer the users’ information need from such a query to a Boolean 

Expression: “building” + “flood waters”. If we have detected such concepts, 

we can employ a traditional retrieval method [Yates and Neto, 1999] to satisfy 

such queries. The second reason is due to the difference between multimedia 

retrieval and traditional text retrieval. Conventional text retrieval systems 

[Salton and McGill, 1983] only deal with simple data types, such as strings or 

integers. However, multimedia retrieval systems cannot rely on a single modal 

feature analysis such as visual or text matching alone. Figure 2.2 illustrates the 

problem of using only single modal feature matching to detect the concept 

“boat/ship”. Suppose Figure 2.2 (a) is a query image for the concept “boat”. 

Although there is high similarity between Figures 2.2 (a) and (b) in the low 

level feature space, the concept “boat” does not occur in Figure 2.2 (b). On the 

other hand, there is a large variation in the low-level visual feature spaces 

between Figures 2.2 (a) and (c), but Figure 2.2 (c) includes the concept 

“boat/ship”. Similarly, Figures 2.2 (d) and (e) demonstrate the cases of false 

alarms and misses by keyword matching from the ASR results alone. The 

multimedia community calls this gap between the high-level semantics and the 

discrimination power from low-level features as the semantic gap 

[Hauptmann, 2005]. Thus, one important motivation for concept detection is to 

fuse evidence from different modalities from multimedia corpora to bridge the 

semantic gap.      
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 (a)  Image query         (b) A false alarm by image (c) A miss by image  
                                           matching                             matching   

 

  
(d) A false alarm by using text matching 

 

  

 
 

(e) A miss by using text matching 
 
Figure 2.2: False alarms and misses when performing matching using low-

level features to detect the concept “boat/ship” 
 

2.2 Visual-based semantic in the concept detection task 

 

Visual features are one of the most important classes of features in video 

analysis. In general, there are two types of visual features. One class is the set 

of low-level visual features such as color, textual and so on, and the other is 

the mid-level abstractions such as anchor person detectors, face detector and 

so on.  

The image part with relationship ID rId30 was not found in the file.

A jury also found her guilty the year 
before of pushing her 19 - year - old 
paralyzed son off a boat and watching 
him drown. 

Life is an adventure because you are 
over and still exploring.  
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2.2.1 Low level visual features 

 

In TRECVID, there are mainly three types of low-level image features that 

have been applied. They are the color [Stricker and Orengo, 1995], texture 

[Ohanian and Dubes 1992, Ma and Manjunath 1995] and shape [Amir et al. 

2005]. 

Color has been shown to be the most widely used low-level visual features in 

TRECVID. This is because color provides strong clues that capture human 

perception. Many color models have been proposed such as the RGB, YUV, 

HSV, L*u*v* and L*a*b. One of the most effective and widely used 

representations of color-based feature is color moments [Stricker and Orengo, 

1995]. As most of the information is concentrated in the first few moments, 

most researchers [TRECVID, 2002-2007] utilized only the first 3 moments, 

namely the mean, variance and skewness of the color distributions for each 

channel. Another type of color-based feature is color correlogram [Huang et 

al., 1997], which encodes the spatial correlation of pairs of colors.  

Texture-based features are characterized by the spatial distribution of gray 

levels in a neighborhood [Jain, Kasturi, and Schunck, 1995]. In general, there 

are four types of methods to model texture [Tuceryan and Jain 1998]. They are  

• Statistical methods, such as co-occurrence methods [Jain, Kasturi, 

and Schunck, 1995]; 
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• Geometric methods, such as Voronoi tessellation features 

[Tuceryan and Jain 1990]; 

•  Structural methods, such as texture primitives [Blostein and 

Ahuja 1989]; 

• Signal processing methods, such as Gabor filters and Wavelet 

models [Jain and Farrokhnia 1991].  

In TRECVID evaluations, two widely used texture features are co-occurrence 

[Ohanian and Dubes 1992] and wavelet texture [Ma and Manjunath 1995].  

Another type of low-level feature is shape. Various schemes have been 

proposed in the literature for shape-based retrieval, such as polygonal 

approximation of the shape [Schettini, 1994], image representation based on 

strings [Cortelazzo et al. 1994] and so on. However, such shape-based 

representation schemes are generally not invariant to large variations of image 

size, position and orientation. Thus, in TRECVID evaluations, the commonly 

used shape-based feature is edge-histogram layout [Amir et al. 2005].  
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2.2.2 Mid-level abstraction (detectors) 

 

In addition to the low-level visual features, many mid-level detectors have also 

been built and widely used in news video processing. The most widely used 

mid-level detectors include face, anchorperson, and commercial, and shot 

genre detectors. 

Because human activities are one of the most important aspects of news video, 

and many such activities can be deduced from the presence of faces, face 

detection is one of the most useful image processing technologies in the 

concept detection task [Hauptmann, 2005]. Yang, Kriegman, and Ahuja 

[2002] surveyed different methods to face detection. The methods usually 

made use of knowledge or machine learning based methods to detect face by 

facial features such as eyebrows, eyes, nose, mouth, skin color, and so on. 

Pham and Worring [2000] evaluated several reported methods currently 

available. They found that the method proposed by Rowley, Baluja, and 

Kanade [1998] performed the best. Such a neural network-based system is 

able to detect about 90% of all upright and frontal faces. The face detectors are 

used to detect people-related concepts. However, it should be noted that not 

many people-related concepts include only upright and frontal faces; hence, 

the use of frontal face detector has mixed performance in detecting people 

related concepts. One of the effective applications for face detectors is the 
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anchorperson detection. Anchorperson shots are graphically similar and occur 

frequently in a news broadcast. After obtaining results from face detectors, the 

systems in [Nakajima et al., 2002; Hauptmann et al. 2003] further detect 

anchorperson shots by combining text, audio, shot duration and visual 

features.  

In news video, commercials are often inter-mixed with news stories. For 

efficient analysis of news video, the detection of commercials is essential. In 

general, there are three types of methods to detect commercials.  

• Heuristic cutting marker methods 

These methods of [Koh and Chua 2000] [Hauptmann and Witbrock, 

1998] employed some special cutting markers such as black frames to 

detect commercials.  

• Duplicate sequence methods 

These methods [Chen and Chua, 2001] [Duygulu, Chen and 

Hauptmann, 2004] first detected candidate repeating keyframes and 

then construct the longest sub-sequence in detecting repeated 

commercials.  

• Machine learning methods 

The methods of [Duygulu, Chen and Hauptmann, 2004] employed a 

classifier such as a SVM to fuse the audio and visual features. 
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All methods have their strengths and weaknesses. No approaches can achieved 

the best in all situations. Thus researchers had been applying different methods 

in different applications.  

Another type of visual-based detector is the shot genre detector. Such shot 

genre detectors [Chaisorn 2004; Snoek et al., 2004] divided news video into 

small sub-domain concepts such as live reporting, sports, finance, 

anchorperson, and so on. Researchers adopted knowledge engineering, 

machine learning, or their mixture to build such detectors.    

The above mid-level detectors are widely used in news video processing. This 

is because: 

• Such sub-domain data frequently occur in news video. For 

example, according to the statistics from Chaisorn [2004] in the 

TRECVID 2003 corpus, commercial shots and anchorperson shots 

account for about 40% and 9.5% of all the shots in news video, 

respectively. 

• The performance of such sub-domain detectors is good. For 

example, Chaisorn [2004] claimed that the commercial detector 

achieves 99% in precision and over 95% in recall; the 

anchorperson detector achieves a performance of over 84.84% in 

precision and 87.6% in recall, and the overall accuracy of shot 

genres detectors is over 90%. 
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When obtaining such mid-level detectors, some researchers [Amir et al., 2005, 

Hauptmann, et al., 2005, Chua et al. 2004] made use of them to refine the 

results from general concept detectors. 

In summary, in spite of many efforts that have been made to capture semantic 

concepts by visual features alone, except a few specific mid-level feature 

detectors in certain domains, the overall performance of the concept detection 

task is still unsatisfactory [TRECVID 2002-2007]. 

  

2.3 Text semantics in the concept detection task 

 

Text information is another important information source in multimedia 

applications.  

Rowe [1994] proposed to infer visual objects by using text semantics. In the 

paper, the author found that the primary subject noun phrase usually denotes 

the most significant information in the media datum or its “focus”. In the 

example of the image caption “Sidearm missile firing from AH-1J helicopter”, 

the “Sidearm missile” is the subject noun and “Ah-1J helicopter” is the 

prepositional phrase. Usually, we can expect to see a Sidearm missile firing in 

the image and we do not guarantee to find the helicopter in the image, because 

helicopter is in a preposition phrase and is secondary in focus. This image 

caption retrieval system was developed with the MARIE project for navy 
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aircraft equipment photographs. It was reported that the system could achieve 

30 percent better precision and 50 percent better recall over a standard key 

phrase approach.  

Sable et al. (2002) claimed NLP knowledge is useful in categorization based 

on text captions. Figure 2.3 shows an example. If we use the standard bag of 

words approach, we would associate the image with at least two categories: 

• Rescuers         workers responding 

• Victim             affected people 

However, the predicate structure of the sentence emphasizes the rescuers and 

the ground truth made by human indicates that this image belongs to workers 

responding category. 

  

                 

Figure 2.3 Captions: Philippine rescuers carry a fire victim in March 19 who 
perished in a blaze at a Manila disco. <Taken from [Sable et al. 2002]> 

 

However, we could not directly utilize such syntactic semantic technologies 

from the image caption retrieval to the concept-X detection task in news video. 

One of the important reasons is that the syntactic semantic analysis usually 

needs semantic parsers but they are designed for the grammatically correctly 
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written text. The other reason is that speech recognition text often contains too 

many errors that render the semantic parser ineffective. However, we can 

borrow the idea on using text focus to infer visual objects.  

In news video processing, Satoh et al. [1997] suggested that co-occurrence 

relationship between name entities and concept person X is important in the 

“Name-It” project. Figure 2.4 shows two examples of the association between 

faces and names in videos. 

  

 

Figure 2.4: The association between faces and names in videos <Taken from 
Satoh et al. [1997]> 

 

However, in many cases, we could not often find such a correlation 

relationship in a shot because of the mismatches between shot boundaries and 

text clues. Figure 2.5 shows the frequency of visual appearances of Bill Gates 

in relation to name occurrences, and Yang et al. [2004] used the Gaussian 

curves to capture the frequency distribution. However, Figure 2.6 shows that 
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different persons have different distance distributions, no matter whether we 

use the time-based or shot-based distance. Collecting such kinds of spatial 

distributions is a time-consuming task. It is also difficult to use such 

techniques in real applications. In any case such research suggests that text 

clues often have mismatches with the visual content.    

 

Figure 2.5: The frequency of Bill Gates visual appearances in relation to name 
occurrences. < Taken from Yang et al. [2004]>. We can find that there are 

time offset between visual appearance and name occurrences. 

 

 

Figure 2.6 Different person X with different time distributions <Taken from 
Yang et al. [2004]> 
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There are two widely used methods to capture text semantics for general 

concepts in news video. One is text classification and the other is text retrieval. 

Text classification [Hauptmann et al., 2003] works for concepts that are 

transcribed with a specific and limited vocabulary such as the concept 

“Weather” in the CNN Headline News. However, in general, the performance 

of text classification in the concept detection task is not good. This is partly 

because of the mismatch between text and visual contents at the shot layer and 

the difficulty in obtaining all typical training data. Text retrieval methods 

[Chua et al., 2004; Yuan et al., 2004; Campbell et al., 2006] regard words from 

concept text descriptions or some predefined keywords as queries and employ 

text retrieval with query expansion to find the related ASR transcriptions. 

After that, we can pinpoint the visual appearance based on the time 

information on the ASR results. Such methods are the only effective means 

when the training data is sparse and the text content in the test data includes 

the query word. However, in many cases, text clues in the test data do not 

contain the query words, and sometime not even appear in the expanded query 

word list.   

Based on the above discussion, we found that both types of text analysis 

methods have their own strengths and weaknesses. Text classification captures 

the knowledge of training data. However, when the quality of training data is 

poor, the performance of the system is degraded. On the other hand, text 
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retrieval only captures the knowledge from concept text descriptions. Thus, 

when we could not find the text clues related to the query or when there are 

mismatches between text and visual appearance, the performance of the 

system will be poor. Hence, given a concept with some training data and the 

associated concept text descriptions, it is hard to know in advance which 

method is better. 

In general, the analysis in news video based only on text is effective only if the 

textual descriptions of the desired visual concepts are well correlated.  

 

2.4 Fusion of multimodal features 

 

In general, there are three strategies to fuse the text and visual features in 

multimedia applications. They are:  

• Strategy 1: First apply visual analysis to infer the concepts, and then 

employ the text semantic analysis. 

• Strategy 2: First apply text analysis to infer the semantics, and then 

use the visual semantic analysis.  

• Strategy 3: Jointly apply text and visual semantic analysis models to 

detect the concepts.  

A lot of researchers adopted strategy 1 to fuse multi-modal features. For 

example, some image annotation algorithms, such as the translation model 
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[Duygulu et al., 2002], cross-media relevance model [Jeon, Lavrenko, and 

Manmatha, 2003], pattern-word association model [Xie et al., 2004] and so on, 

adopted the unsupervised visual analysis approaches to model images as the 

basis for annotation. For such a strategy, the performance of the systems is 

strongly influenced by the quality of visual clustering alone. It may result in 

images with different semantic concepts but similar appearance to be grouped 

together, while images with the same semantic contents may be separated into 

different clusters due to their diverse appearances. Another example is the 

“Name it” project. The system built by Satoh et al. [1997] first detect faces, 

and then link name entities with those faces. However, in cases of errors (both 

misses and false alarm errors) in face detection, the later text analysis could 

not recover the errors from face detections.  

 Some researchers employed strategy 2 to detect semantic concepts. In the 

“Person X” detection project, Yang et al. [2004] first analyzed the text clues 

and they refined the results using visual constraints such as the filtering of 

anchorpersons. However, such a method will miss some relevant shots without 

appropriate text clues.   

In TRECVID evaluations, many researchers adopted strategy 3 to combine 

multi-modal features. Snoek et al. [2006] summarized two general fusion 

approaches from different types of individual concept detection systems in 

TRECVID: namely early fusion and late fusion. The early fusion scheme 
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integrates unimodal features before learning the concepts. The strength of this 

approach is that it yields a truly multimedia feature representation, since the 

features are integrated from the start. One of the weaknesses of this approach 

is that it is difficult to combine features into a common representation at the 

shot layer. In video analysis, a shot is one of the most widely used analysis 

units. It is an unbroken sequence of frames from one camera shot. As the shot 

boundary is designed to capture the changes of visual features, it is suited to 

visual analysis but fails to capture the text semantics well. This is because the 

breaks from the shot boundaries occur often in the middle of a sentence. 

Figure 2.7 illustrates the problem of analyzing text using shot units, where the 

sentence is separated into three shot boundaries, which causes the mismatch 

between the text clue and the concept “Clinton”. To tackle this problem, 

Wilson and Divakaran [2008] proposed to detect scene changes by using 

training data under a supervised learning framework. 
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Figure 2.7:  The sentence separated by three shot boundaries causes the 
mismatch between the text clue and the concept “Clinton”. 

 

The late fusion scheme first reduces the unimodal features to separately learn 

the concept scores, and then integrate these scores to induce the concepts. The 

advantage of this approach is that it focuses on the individual strength of each 

modality. However, there is information loss in transferring from the original 

feature representations to scores. This brings about the potential loss of 

eye the Palestinian 
president Yasser Arafat 

and the Israeli prime 
minister  Benjamin 
Netanyahu 

are being encouraged by 
president Clinton to come up 
with a meaningful peace 
agreement . 

Today in Maryland well 
away from the public 
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correlation in the mixed feature space in the combination of scores from multi-

modal feature analysis. 

In summary, no matter which strategy is used, it is hard to let the evidence 

from different modalities support each other.     

 

2.5 Machine learning in the concept detection task 

 

Generally speaking, there are two approaches to describe the visual 

appearance of the concept in videos. One way is to adopt the rule-based 

approach. Several researchers [Yang, et al. 2004] captured semantic concepts 

by using a text retrieval approach with manual combination of some visual 

constraints. However, the drawbacks of such rule-based approaches are the 

lack of scalability and robustness. To overcome the problems, machine 

learning-based methods are widely used to detect semantic concepts in 

TRECVID evaluations. Given a set of training data, usually there are three 

types of machine learning inference methods. They are supervised inductive 

learning, semi-supervised learning and transductive learning. Most fusion 

approaches belong to supervised inductive learning. A number of researchers 

have adopted semi-supervised learning to fuse the multi-modal features. Few 

transductive learning algorithms have been used in the analysis of visual 

features. In this section, we will review the above three learning methods.  
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2.5.1 Supervised inductive learning methods 

 

Supervised learning is an inference method, which first estimates the unknown 

dependency from training data and then uses the learned dependency model to 

predict outputs for future inputs. Most generic models [Snoek et al. 2006, 

Souvannavong et al. 2004, Naphade et al. 2002] in the semantic concept 

detection task employed supervised inductive learning methods such as Neural 

Networks [Amir et al. 2003], Hidden Markov Models [Huang, Wei and 

Petrushin, 2003], Support Vector Machines [Snoek et al., 2006], AdaBoost 

[Wu et al., 2003], Decision Trees [Hauptmann et al., 2002] and so on. 

However, according to the “No Free Lunch Theorem” [Duda, Hart and Stork, 

2004], we could not prove in theory that any algorithm is better than the other 

learning algorithms. The reason is that the assumptions about the learning 

domains are relevant to the choice of the learning algorithm. In practice, we 

could observe the fact that more and more researchers have selected SVMs as 

their classifiers. This is because there are not enough training data in the 

TRECVID corpus and SVMs work well, especially when the training data is 

sparse. In addition, some researchers attempt to combine several learning 

methods together. For example, the best performance [Yuen et al. 2007] in 

TRECVID 2007 was achieved by combining of several learning methods such 
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as Stack SVM, RankBoost, and so on. However, how to select the learning 

methods and how to combine them are still open problems.  

 

2.5.2 Semi-supervised learning  

 

Semi-supervised learning [Zhu 2006] was proposed to use large amount of 

unlabeled test data together with the labeled training data to build classifiers. 

The co-training algorithm [Blum and Mitchell 1998, Pierce and Cardie 2001] 

is a typical semi-supervised learning method. The algorithms apply to learning 

problems that have multiple views, i.e., several disjoint subset of features, each 

of which is sufficient to learn the concepts of interest. Generally, semi-

supervised learning algorithm includes two steps. First, they use a small-

labeled training set to learn a classifier in each view. Then they bootstrap the 

views from each other by augmenting the training set with unlabeled samples 

acquired from the other views with high-confidence predictions. A number of 

researchers such as [Yan and Naphade 2005] adopted a semi-supervised 

learning method in semantic concept detection on news video corpus. Yan and 

Naphade [2005] proposed a semi-supervised cross feature learning method, 

which is a type of co-training algorithm. They removed one assumption of co-

training algorithm that each view should be sufficient for learning by adding a 

validation set to monitor the performance of each view. The advantage of such 
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a semi-supervised learning is to use unlabeled test data to reduce the efforts of 

preparing the training data. In the report of Kender et al. [2004], they 

demonstrated that their semi-supervised learning method could achieve a good 

performance. However, it is still worse than the best supervised learning 

system developed in their own group. One of the reasons is that it is hard to 

make sure that the data in the validation set has the same distribution as those 

in the test set, especially when the corpus is large. Tian et al. [2004] pointed 

out that the unlabeled data helps only if the labeled and unlabeled data are 

from the same distribution. Otherwise, the unlabeled data may degrade the 

performance when it is added. 

 

2.5.3 Transductive learning 

 

Instead of obtaining a general hypothesis capable of classifying any “unseen” 

data under a supervised inductive learning framework, transductive learning 

[Marchenko, Chua and Jain, 2006] [Qi et al. 2007] [Yaniv and Gerzon, 2004] 

is concerned with directly classifying the given unlabeled data. Qi et al. [2007] 

proposed to further purify those hierarchical clustering results by a Gaussian 

Mixture Model (GMM) with an expectation maximization algorithm. A pure 

cluster is defined as the one where the labels of training samples are mostly 

positive or negative such that the entire cluster including the test samples can 
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be labeled accordingly. Qi et al. assumed that they could find a good number 

of the Gaussian mixtures and the data distribution follows the Gaussian 

distribution. However, when the corpus is large, the above conditions are not 

always being satisfied. This is because there are many different types of data 

distributions, Gaussian distribution is only one of them and it is hard to 

estimate a good number of Gaussian distributions to model the data. In 

addition, only focusing on the purity of the cluster is not enough. This is 

because the performance of the system relies not only on precision, but also on 

recall. As we know, the purest state is that each shot is a cluster. However, it is 

not useful to make any inference, because it has the lowest recall. Therefore, 

the size of the cluster is another important factor for the performance of the 

classifiers. Marchenko et al. [2006] compared single-link, complete-link, 

average-link and k-means clustering approaches in the transductive learning 

framework. Their test results demonstrate that the results from the average-link 

clustering achieve the best results in her painting domain data set.  

The above two methods only employ the visual features only. How to explore 

the correlation between text and visual features under a transductive 

framework is still an open problem.  

In summary, the key to transductive learning is how to map specific (test) 

cases to specific (training) cases. Such a mapping could be obtained by a 

hierarchical clustering method [Jain, Murty and Flynn, 1999]. However, there 
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are at least two open problems. One is how to segment the clusters until their 

contents are as pure and as large as possible. The other problem is how to 

analyze the unknown clusters, which are impure clusters or clusters that 

include only test samples.  

 

2.5.4 Comparison of the three types of machine learning 

methods 

 

Although much progress has been made in machine learning, how to capture 

the characteristics of semantic concepts has not been entirely successful. Table 

2-1 contrasts the main features of the major machine learning approaches.  
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Table 2-1: Comparison of three types of learning approaches 

 Assumptions  The size of 

training data 

Inference ability  

Supervised 

learning 

� Distribution of 

training set ≈ test 

set 

� Other specific 

assumptions7. 

As large as 

possible. 

Make inferences 

for any input data 

via building a 

model based on 

training data.  

Semi-

supervised 

learning 

� Distribution of  

training set ≈ test 

set 

� The newly 

added 

unlabeled data 

assumptions8. 

Need some 

seed data. 

Make inferences 

for any input data 

via building a 

model based on 

training data. 

Transductive 

learning 

No above 

assumptions, but it 

needs to map test 

data to training data. 

Need typical 

data for the 

given corpus. 

 

Any available test 

data set. 

 

Both supervised and semi-supervised learning has different types of 

assumptions. The most important assumption is that the data distribution from 

                                                 
7 For example, the KNN algorithm works well in the cases that we could obtain a good “K” in advance. 

Bayesian inference builds the whole framework on the probability theory, which assumes to follow the 

“Law of large numbers” and most of possible cases in the test data should be covered in the training set. 

8 At each iteration, semi-supervised learning will add some unlabeled data with high confidence of predicting 

labels into training data set. It assumes that the labeled and the new added unlabeled data are from the 
same distribution. 



 

 39

training set and test set is similar. On the other hand, transductive learning 

does not require the above assumption. In addition, supervised learning 

approaches need as much training data as possible in order to capture the 

characteristics of unknown test data. Semi-supervised learning attempts to 

tackle the large training data problem by incorporating unlabeled data with 

high confidence semantic labels into the training set. In order to achieve a 

good performance, it assumes such new unlabeled data comes from the same 

data distribution as that of the labeled training data. However, the assumption 

is not always satisfied. Transductive learning needs some typical training data 

for the given corpus, because it attempts to label test data by mapping it to 

training data, instead of a general model for any input data. However, one 

requirement of transductive learning is that it needs the test data set to be 

available in advance. This is because it does not have a model that can process 

any possible input.  

 

2.5.5 Domain adaptation 

 

Domain adaptation of statistical classifiers is the technique that arises when the 

data distribution in the test domain is different from that in the training 

domain. Most recent methods attempted to capture the data distributions in a 

new domain by using a large numbers of data from other domains and a 
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relative small amount of data in the new domain. Researchers will need to 

label some data in the new test domain as supplementary training data set to 

adapt the older classifiers. For example, given an existing classifier, Yang et al 

[2007] required a sufficient amount of labeled examples in the new dataset 

(test set) to learn the “delta function” between the original and the adapted 

classifier. Jiang and Zhai [2007] proposed to implement several adaptation 

heuristics to train a model from source domain (training) to predict the target 

domain (test). There are three heuristics in their proposal: (1) removing 

misleading training instances in the source domain; (2) assigning higher 

weights to labeled target instances than labeled source instances; and (3) 

augmenting training instances with target instances with predicted labels. 

 The assumption of such heuristics is that they have some labeled data in the 

test set. This may not be practical in many cases because there may not be 

much labeled data. Hence, if we just have very few labeled data from the test 

domain, how can we ensure that such data are typical?  
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2.6 Multi-resolution analysis 

 

Davis and Bigelow [1998] provided a definition of multi-resolution models: 

� An integrated family of two or more mutually consistent 

models of the same phenomena at different levels of 

resolution. 

Generally, a researcher first takes data at the different resolutions to create a 

multi-resolution structure and then derives error metrics to help decide the best 

level of detail to use. The multi-resolution model is widely used in image 

processing, such as image pyramids [Wang and Li, 2002]. Such an approach 

first analyzes data at different resolutions to create a multi-resolution structure 

and then derives error metrics to help decide the best level of detail to use. Lin 

[2000] and Li [2001] used a multi-resolution model to detect shot and story 

boundaries for video and text documents respectively. They used information 

at the lower resolution to locate the transition points and the higher resolution 

to identify the exact boundaries by finding the maximal path. Similarly, Slaney 

et al. [2001] proposed a multi-resolution analysis method to detect 

discontinuities in videos for story segmentation.  

As far as we know, few multi-resolution models have been applied in the 

semantic concept detection task to fuse multi-modal features in the TRECVID 

corpus [TRECVID, 2002-2007]. Most current approaches, especially those 
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used in the large-scale TRECVID video concept detection and retrieval 

evaluations, such as [Chua et al., 2004], employed a hybrid approach of using 

text to retrieve a subset of videos at the story layer before performing visual 

and text analysis at the shot level to re-rank the video shots. Such approaches 

are not multi-resolution fusion as the analysis at the story level is used as a 

filter, and not used to reinforce the subsequent shot level analysis. They may 

miss many relevant video shots that are not retrieved in the text–based story 

retrieval stage. An important characteristic of multi-resolution analysis is that 

the results of the analysis at each resolution should support each other to 

overcome the respective weaknesses. Thus two key challenges of multi-

resolution video analysis are: (1) the definition of good units for fusion that 

leverage the strong points of text and visual features; and (2) the combination 

and integration of evidence from multi-resolution layers. 

 

2.7 Summary  

 

From the above discussion, we found that multimedia requires the integration 

of multi-modal features, and systems that emphasize only the use of single 

modality obtain poor performance. Recently, many systems focused on fusing 

the multi-modal features to detect concepts. Compared to the single modality 

based analysis, multi-modal fusion systems have reported better performance. 
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However, few works have been done to allow evidence from different 

modalities to support each other. Thus, Rowe and Jain [2005] listed the 

multimedia fusion as one of the SIGMM grand challenges: 

“A third facet of integration and adaptation is the emphasis on using 

multiple media and context to improve application performance.”   

Fusion of multi-modal features in news video to capture semantics has been 

carried out in many years. Most researchers employ machine learning 

approaches to perform fusion. Although much progress has been made in 

machine learning, the application of these technologies to news video concept 

detection has achieved mixed results. This is because machine learning 

systems are highly dependent on the quality of training data. In the concept 

detection task, the selection of training data is based on random sampling. We 

use a set of news video at the certain time period as training data and regard 

another set of news video at the other time period as test data. Due to the 

characteristics of news video, we could not always ensure the distribution of 

training data is similar as that in the test data. On the other hand, some 

researchers adopt text retrieval techniques to capture concepts in the news 

video. However, it is effective only when the textual descriptions of desired 

concepts are synchronized with the visual contents. Thus, we can find that 

both machine learning and text retrieval methods have their own strengths and 

weaknesses and their relative performance across multiple test corpora are 
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mixed. However, few works have integrated those two methods together and 

tried to let multi-modal features support each other.  

In this thesis, we propose a method to integrate machine learning method and 

text retrieval together. It first adopts transductive inferences to label those test 

data that can be confidently labeled from training data by using either visual or 

text features. It then estimates the occurrence of concepts for the remaining 

ambiguous test samples by performing a multi-resolution analysis that 

incorporates web-based knowledge in a retrieval framework. The multi-

resolution model makes use of different modal features at different resolution 

levels and introduces constraints from other levels when performing analysis 

at each resolution level. This model can let evidence from different resolutions 

support each other.  
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C h a p t e r  3  

 

SYSTEM ARCHITECTURE 

 

In this chapter, we first briefly introduce our design consideration. We then 

report the system architecture.   

  

3.1 Design consideration  

 

In this section, we introduce the motivation of our M3 framework. In 

particular, we focus our discussion on three topics: the multi-resolution 

analysis, the multiple sub-domain analysis and the combination of machine 

learning and text retrieval.   

 

3.1.1 Multi-resolution analysis 

 

In order to fuse text and visual features effectively, we propose our multi-

resolution transductive model. In our framework, we define three resolution 
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layers. They are the shot, multimedia (MM) discourse and story layer. A shot 

is an unbroken sequence of frames from one camera shot. The so-called 

multimedia (MM) discourse aims to capture the synchronization between 

visual features at the shot level and text features at the sentence level. A story 

provides the detailed information of an event. At each resolution, we make 

inferences by using a transductive inference to capture the knowledge from 

training data.       

 

                       
  (a) Visual analysis is able to cluster two shots sharing the same concepts.            

 

                                 
(b) Visual analysis fails to group two shots sharing the concept “Clinton”. 

 
Figure 3.1: The ability & limitation of visual feature analysis at the shot layer 
 

At the shot layer, our transductive inference is based on color, texture and edge 

visual features. Generally speaking, it puts similar images together and 

transfers the semantic labels from training to test data among similar images.  
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We adopt an average-link clustering method to cluster images from the whole 

corpus. The choice of the clustering results is selected based on Vapnik 

Combined Bound [Vapnik, 1998] in the transductive inference. Figure 3.1 

provides some examples to demonstrate the ability and limitation of visual 

feature analysis at the shot layers to cluster shots sharing same concepts. 

Because of the limitation in discriminative power of visual analysis, it may 

cause many false alarms and misses. To overcome these limitations, we purify 

the clustering results and make further inference by using text information. In 

order to tackle the mismatches between the text clues and visual contents at the 

shot layer, we define a new unit, namely the multimedia discourse unit. MM 

discourse boundaries may only occur at the co-occurrence of sentence and shot 

boundaries. In this work, we adopt the speaker change boundaries generated 

by a speech recognizer [Gauvain, Lamel, and Adda, 2002] as the pseudo-

sentence boundaries. At the MM discourse layer, we capture the semantics 

mainly by extracting a group of words from the enclosing ASR text. The 

transductive inference attempts to use such words to capture semantics and 

transfer the semantic labels by finding similar text contents. However, as the 

ASR text at the MM discourse layer is insufficient to infer the linguistic 

variations and domain knowledge, we narrow this gap by exploring the 

relationship between concept text description and text contents in the test data 

via web co-occurrence. Figure 3.2 gives some examples to demonstrate the 
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ability and limitation of text feature analysis at the MM discourse layer.  

 

 

 
(a) The concept “Clinton” and the word vector <Clinton, President, 

education…> at the MM discourse layer.  

 
(b) The concept “Clinton” and the word vector <Cohorts, political …>”  
      at the MM discourse layer.  
 

Figure 3.2: The ability and limitation of text analysis at the MM discourse 
layer 

 

Although we can infer that the shot in Figure 3.2 (a) has high degree of 

relevance to the concept “Clinton” based on the word vector at the MM 

discourse layer, it is hard to make a decision in Figure 3.2 (b). In order to 

tackle the problem in Figure 3.2 (b), we incorporate text analysis at the story 

layer into the framework. The text analysis at the story layer is similar to that 

at the MM discourse layer. The main difference is that we attempt to capture 

the semantic concepts by exploring the relationship between the concept and 

the topics of a story. Here the topic refers to the main focus of a story. We 

employ the method developed in [Lin, 1997] to extract topics, which mainly 

In his state of the union address last 
January President Clinton called for 
more spending on education. 

They’ve been political cohorts from day 
one.  
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depends on a set of high frequency ASR words in a story. After extracting 

topics from a story, we form the topic vector for a story, which includes all 

topic terms at the story. For example in Figure 3.3, we can obtain the topic 

vector as {president, Clinton, Blair}. According to such a topic analysis, we 

can conclude that the enclosed shots (such as the shot in Figure 3.2 (b)) should 

have some degree of relevance to the concept “Clinton”.   

Among these three resolutions, the shot layer analysis could achieve the 

highest precision, but the lowest recall. The performance of multimedia 

discourse layer analysis is in the middle at both precision and recall. The story 

layer analysis could obtain the best recall but the worst performance in 

precision. We adopt a bottom-up strategy to integrate three-layer analysis 

together to achieve higher performance.  

 

 
 

The topic vector of the above story is {president, Clinton, Blair} 
 

Figure 3.3: An example text analysis at the story layer 
 
 
As different modal features in news video represent the same events, we 

should let different modalities at different resolutions support each other. Thus, 
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we propose two constraints: the must-link and cannot-link constraints. The 

must-link constraints try to model the phenomenon that the precision goes 

down from the highest resolution layer (shot) to the lowest resolution layer 

(story). That is, the decision made at the higher resolution must be followed in 

the lower resolution analysis. Thus, when performing the lower resolution 

analysis, we incorporate the must-link constraints from the higher resolutions 

such that the shots clustered by a higher resolution shot layer analysis must be 

put in the same cluster at the lower resolution analysis. The cannot-link 

constraints are designed to employ lower resolution text semantics to purify 

higher resolution results so that we have less chance to regard the low-level 

feature similarity (say visual similarity) as the high-level semantic similarity. 

That is, the semantic similarity depends not only on visual similarity, but also 

text similarity. If two given shots are only similar in visual feature space, these 

two shots cannot be clustered together. In our framework, when performing 

higher resolution analysis, we bring in cannot-link constraints from the lower 

resolution to leverage the higher resolution analysis.  

The above discussion briefly introduces our bottom-up multi-resolution 

strategy. An alternative design is to consider a top-down multi-resolution 

strategy. However, because of the low discriminative power of the higher 

resolution analysis, it is hard to infer semantics from different resolutions by 

adopting a top-down multi-resolution strategy. For example, although we find 
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that a story (say the story in Figure 3.3) is related to the concept (for example, 

the concept “Clinton”), not all the shots in the story contain the concept. 

Moreover, it is hard to remove the noise shots from the shot lists in the story 

by performing the MM discourse and shot layer analysis. The situation at the 

MM discourse layer is similar to that of the story layer. Thus, we do not 

employ a top-down multi-resolution inference strategy.  

 

3.1.2 Multiple sub-domain analysis 

 

In concept detection, many researchers have developed mid-level detectors to 

supplement the low-level features such as the color and texture. Several 

researchers have reported good performance on a number of mid-level 

detectors in news video. For example, Chaisorn [2004] reported high accuracy 

of over 90% for shot genre detectors, such as anchorperson, live reporting, 

commercial, finance, etc. Techniques to detect sub-domain boundaries are 

relatively mature. Thus, the multiple sub-domains analysis has been used in 

the query-class dependent retrieval [Yan et al., 2004, Chua et al., 2004]. They 

first classified each user’s query into one of the predefined categories and then 

aggregated the retrieval results with query-class associated weights. This 

suggests that multiple sub-domain analysis should be effective. However, few 



 

 52

works have made use of the concept occurrence distributions from multiple 

sub-domains to enhance the concept detection task [TRECVID 2002-2007].   

 

 
Figure 3.4: The distributions of positive data of 10 concepts from TRECVID 

2004 in the training set. 

 

In our work, we segment the news video corpus into the sub-domains of 

anchorperson, sports, finance, commercial, with the rest being placed under 

live reporting. The reasons for the above choice are that the detectors for the 

first four categories are well-defined [Chua et al., 2004], and the distributions 
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of concepts in those 5 categories are distinctive. We use TRECVID 2004 as 

our test corpus, which has two series of news, ABC World News Tonight and 

CNN Headline News. Because the styles of these two sources of news are 

different, we segment them separately. This gives rise to eight sub-domains of: 

ABC live reporting, ABC commercial news, ABC anchorperson, CNN live 

reporting, CNN sports, CNN finance news, CNN anchorperson and CNN 

commercial news. From Figures 3.4, we can observe that the distributions of 

concepts in these sub-domains are very different. Thus, we should encode such 

distributions into the framework to improve the concept detection 

performance. 
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(a) Two examples for concept “Boat/ship” in ABC commercial sub-domain. 

 

     

    

(b)Two examples for concept “Boat/ship” in ABC live reporting sub-domain 

 

Figure 3.5: The characteristics of data from different domains may be different 

 

In addition, the characteristics of data from different domains may be different. 

From Figure 3.5, we find that shots sharing the same semantic concept for a 

product commercial usually have high similarity (or are even identical) in both 

visual and text components. However, shots sharing the same semantic 

well you'll need strength knowledge and 
experience on your sign that specific like 
helping you protect your family and plan to 
stick your retirement. 

She was the flagship of windjammer’s 
fleet a 300 - foot reconditioned tall ship 
called the “Fantome". 

The ship had been held for five months in 
a Mexican port while authorities there 
tried to get the owners to pay their bills. 

well you'll need strength knowledge and  
experience on your sign that specific like  
helping you protect your family and plan to  
stick your retirement. 
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concept in live reporting may only share a few clue words in the ASR text, and 

tend to have large variations in visual feature space. In order to capture the 

characteristics from different sub-domains, we need to analyze data from 

different sub-domains separately.  

 

3.1.3 Machine learning and text retrieval 

 

The common problem of current learning approaches is that the inference is 

based on “static” data, which comes in the form of training data. We assume 

that we have the ability to make inferences from the knowledge of training 

data alone. However, news video often contains new reports, and thus the 

domain has the inherent characteristic that there are always some differences 

between the training data and test data. Based on our analysis, there are at least 

two types of variations between the training and test data. One is called 

“gradual transition”. For example, two news reports -- one about “September 

11 event” and the other about “The progress of NATO invading Afghanistan” 

are given in the training and test data respectively. If we have documents about 

“September 11 event and al-Qaeda forces” and “NATO invaded Afghanistan 

to remove al-Qaeda forces”, we may transfer the semantic label “violence” 

from training to test data via these linked documents. Otherwise, we may have 

difficulties to assign the semantic label “violence” to the test data based on 
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training data. The other variation is called “mutation”, in which the concept 

can occur in unrelated events. For example, the concept “Clinton” may occur 

in the event of a Middle-East peace talk. It can also appear in the event of the 

Lewinsky scandal.  Again, it may be difficult to transfer the semantic label 

“Clinton” from one event to the other event. Thus, we should consider these 

two problems in our framework. 

Although machine learning methods could learn some knowledge from 

training data, performance is highly dependent on the quality of the training 

data. On the other hand, text retrieval may be effective when the training data 

is sparse and text contents in the test data includes some query terms. For 

example, for test data 1 in Figure 3.6 (b), text retrieval could capture the 

concept “boat/ship”, because the query word “ship” appeared in the ASR 

transcript. At the same time, machine learning methods may fail, because of 

the large gap between training and test data. For test data 2 in Figure 3.6 (c) 

machine learning methods using text features can work well, because there 

exist clearly patterns between training and test data, but text retrieval will fail. 

This is because the ASR transcripts do not include any keyword related to the 

queries “boat” or “ship” and text retrieval fails to use the knowledge from 

training data. Hence, machine learning using text features and text retrieval 

approaches have their own strengths and we need to combine them to take 

advantage of their strengths in concept detection.   
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Figure 3.6: An example of detecting concept “boat/ship” using two text 
analysis methods. 

 

In our framework, we propose the multi-source transductive learning under the 

bootstrapping framework. That is, we first employ transductive learning to 

capture the distributions of training and test data so that we have the 

knowledge to know when we can make an inference via training data. We then 

tackle the “gradual transition” problem by using a bootstrapping learning 

approach. It may add some linked documents to reduce the gap between 

training and test data. We tackle the “mutation” problem via our multi-source 

 

Test  
data 2 
(c) 

 

Test  
data 1 
(b) 

 
Training 
data  
(a) 
 

Life is an adventure because 
you are over and still 
exploring.  

Life is an adventure because 
you are over and still 
exploring.  

 

The ship had been held for 
five months in a Mexican 
port while authorities there 
tried to get the owners to 
pay their bills. 

Images The ASR results at the MM discourse layer   
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text retrieval model, which captures the relationship between the words 

describing events and concepts such as “boat / ship” via web statistics.  

 

3.2 System architecture 

 

In this section, we describe the architecture of our system. Figure 3.7 shows 

the bootstrapping architecture of our system. Given a corpus, we first employ 

the high performance mid-level detectors such as the anchorperson, 

commercial, finance and sports detectors [Chua et al., 2004] to segment the 

corpus into sub-domain data sets. We then perform the multi-resolution, multi-

source and multi-modal (M3) transductive learning model as shown in Figure 

3.8 to detect the concepts in each of the sub-domain data set separately. After 

that, we select results with high confidence from all sub-domain data sets. If 

the number of positive test data is above the threshold, or when data 

propagation has converged, we will terminate the process. Otherwise, we 

employ a bootstrapping method to make further inferences.  We repeat the M3 

transductive inference in sub-domain data sets, where new test data are added 

into the training data.  
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Figure 3.7: The bootstrapping architecture  
 

Yes 

No 

Divide the whole corpus data set into smaller 
sub-domain data sets based on mid-level 
detectors. 

Employ a M3 transductive learning 
framework to infer concepts in each sub-
domain data set separately. (See Figure 3.8) 
 

Converged or sufficient 
number of relevant test 

shots found. 

Add new-labeled test data into training data 

End 

Combine the results from all sub-domains M3 
transductive learning. 
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The final ranking shot sequence: P1, P2, P3, U3, N3, N2, N1. 

Figure 3.8: The multi-resolution transductive learning framework for each sub-
domain data set 

Shot layer analysis via transductive learning  

Assign positive 
labels to confident 
test data (P1) 

Assign unknown 
labels to ambiguous 
test data (U1) 

Transductive learning 
at the multimedia 
discourse layer 

Web-based image label 
analysis at the multimedia 
discourse layer 

Fusion of two types of analyses though a confidence measure 

Assign negative 
labels to confident 
test data (N1) 

Assign positive 
labels to confident 
test data (P2) 

Assign unknown 
labels to ambiguous 
test data (U2) 

Assign negative 
labels to confident 
test data (N2) 

Transductive learning 
at the story layer 

Web-based image label 
analysis at the story layer 

Assign positive 
labels to confident 
test data (P3) 

Fusion of two types of analyses though a confidence measure 

Assign unknown 
labels to ambiguous 
test data (U3) 

Assign negative 
labels to confident 
test data (N3) 
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Figure 3.8 shows the details of the M3 transductive inference framework for 

each sub-domain. Our inference begins with the shot layer analysis. We infer 

the labels of test shots by clustering shots via a transductive learning 

framework. The confidence of our inference depends on the number of 

training data and its purity in any cluster. Based on the analysis, we divide the 

test data into three categories. The first two categories of test data can be 

labeled by the training data in the same cluster with high confidence. We use 

P1 and N1 to represent the set of positive and negative test shots, respectively.  

The other category of test data cannot be labeled as positive or negative with 

high confidence. We use U1 to represent these unknown shots. Two situations 

may give rise to such unknown shots. One is that the cluster does not include 

any training data; and the other is when the number of training data is small or 

the purity of the cluster is low.  

In order to label the U1 shots, we automatically annotate such visual clusters 

by the word vector at the MM discourse layer. Two types of methods will be 

applied to make further inference. One is to capture the relationship between 

the word vector at the MM discourse layer and words from concept text 

descriptions via web statistics. The other is to further cluster shots by a 

transductive learning method based on the word vectors. After the analysis of 

MM discourse layer, we can divide the U1 set into two sets. One set is the 

labeled set: which includes a positive (P2) and a negative set (N2). The other 
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set is still the unknown set (U2).  

For the U2 clusters, we label them using the topics extracted at the story layer. 

We then perform a similar transductive inference as in the MM discourse layer 

to rank the U2 shots based on the story layer inference. After story layer 

analysis, the U2 data set is classified into P3, N3, and U3 sets. The final 

ranking of the shots is as follows:  P1, P2, P3, U3, N3, N2, N1.  
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C h a p t e r  4  

 

MULTI-RESOLUTION 

ANALYSIS  

 

In this chapter, we first introduce different types of features used in different 

resolution layers. We then report the multi-resolution constraints clustering.   

 

4.1 Multi-resolution features 

 

In this section, we first present visual features at the shot layer. Because there 

are few differences between our design with that of others at the shot layer, we 

only briefly present our approach here. One of the significant differences with 

other works is how we capture text semantics to help detect visual concepts. 

Thus, we pay more attention to discuss the text feature at the multimedia 

discourse and story layer. 
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4.1.1 Visual features  

 

At the shot layer, we use common low-level visual features as used in most 

other works to analyze the key frame images for each shot. The visual features 

includes: Edge Histogram Layout (EHL: 8 dimension), Color Correlogram 

(CC: 64 dimension), Color Moments (CM: 225 dimension), Co-occurrence 

Texture (CT: 96 dimension) and Wavelet Texture Grid (WTG: 90 

dimensions). For each shot, we extract the above visual features and generate a 

feature vector ),...,,,( 321 tfffff . As discussed in the previous chapters, the 

clustering processing is one of the core components in our transductive 

learning. One of the most important aspects in the clustering processing is the 

definition of the similarity measure. At the shot layer, we adopt the cosine 

similarity between feature vectors as the similarity between shot i and shot j: 
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In addition to the above low-level visual features, we also employ four high 

performance mid-level detectors as follows: 

1) The anchor person detector [Chua et al., 2004] 

        This is the most typical shot genre in news reports with one to two 
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anchorpersons appearing in the fixed background. Such shots normally 

contain at least one detected fronted face and always contain many 

repeating occurrences with similar images on the same day in news 

video. Examples of anchorperson shots in a news video from the 

TRECVID data are shown in Figure 4.1. It is reported [Chaisorn, 2004] 

that the anchorperson detector could achieve a performance of over 

84.84% in precision and 87.6% in recall.  

 

   

Figure 4.1: Examples of anchorperson shots from a news video 
 

2) Commercial 

            Commercials are used to convey messages for selling products. The 

commercial shots typically contain fast changing shots and end with 

still images showing the company’s logos or products. The commercial 

boundaries can normally be characterized by the presence of black 

frames, still frames and/ or audio silence [Koh and Chua 2000]. 

Sample keyframes of a product commercial are shown in Figure 4.2. 

Experiment results [Chaisorn, 2004] showed that the commercial 

detector could achieve 99% in precision and over 95% in recall. 
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Figure 4.2: Commercial shots for a product in news video 

 

3) CNN finance 

CNN finance is a special news program, which usually appears in the 

middle of CNN Headline News. Such finance shots normally begin with 

some special logo shots, include finance diagram shots and end with the 

beginning of the next commercial shots. Examples of the typical financial 

shots are shown in Figure 4.3. We use the tools in Chua et al. [2004] to 

label the CNN finance shots. Chaisorn [2004] claimed that the finance 

detector could achieve 100% in precision and 100% in recall in a small 

data set. 
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(a) A financial program logo                    (b) A finance diagram shot 

Figure 4.3: Examples of CNN financial shots 

 

4) CNN sports 

CNN sports is a special news program in CNN Headline News, which 

follows the CNN financial news. Such sports shots normally begin with 

some special logo shots and normally contain shots with noisy 

background and high motion activities. Examples of the typical sports 

shots are shown in Figure 4.4. We employ the tools in Chua et al. 

[2004] to label the CNN sports shots. Chaisorn [2004] reported that the 

performance of such a detector is high with accuracy of over 90%. 

 

                           

(a) A sports program logo            (b) An example of sports shot              

Figure 4.4: Examples of sports shots 
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The above mid-level detectors are used to segment shots into different sub-

domains. Except the above four types of shots, we assign the label “live-

reporting” to the remaining shots. Because the styles in ABC World News 

Tonight and CNN Headline News are different, we divide them separately. 

Thus, we segment the TRECVID 2004 corpus into eight sub-domains, which 

are shown in Figure 3.4.  

 

4.1.2 Text features 

 

Because the characteristics between MM discourse and story layer are 

different, we capture two types of text semantics, respectively. Usually, one 

MM discourse includes one or very few sentences, which come from 

automatic speech recognition (ASR) results and closed captions (if they are 

available). Closed captions typically display a transcription of the audio 

portion of a program with punctuations. If closed captions are available, we 

use them to align ASR results to obtain the punctuation marks and reduce 

speech recognition errors from the ASR text. Otherwise, we regard the speaker 

change boundary as the pseudo punctuation mark to segment the ASR text. 

The text features used at the MM discourse layer are words. On the other hand, 

a story includes many sentences. Compared to the resource at the MM 

discourse layer, it provides a relatively rich set of linguistic information. We 
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are thus able to employ a topic extraction algorithm [Lin 1997] to capture text 

focus of the story. Compared to words, using topic terms to infer visual 

concept is more effective. This is because the topic usually refers to the high 

frequency visual concept in the story. We extract topic terms at the story layer. 

In general, there are three types of methods to capture topic semantics. They 

are statistics-based [Paice, 1990], knowledge-based [Hahn, 1990] and hybrid 

[Hearst, 1994]. Among these techniques, only the word frequency counting 

method, which belongs to the statistical methods, can be used robustly across 

different domains; the other techniques rely on stereotypical text structure or 

the functional structures of specific domains. In video processing, some 

researchers [Shibata and Kurohashi, 2006] adopted knowledge-based 

approaches to identify topics in some specific domains, such as cooking 

instruction videos. However, as far as we know, few researchers adopted topic 

identification techniques to support concept detection in an open domain such 

as news video [TRECVID, 2002-2007]. 

Both the word vector at the MM discourse layer and topic term vector at the 

story layer are used to represent the text content of individual entity at both 

layers. We denote such text vector as T ),...,,( 21 nwww . On the other hand, we 

need to model the text content of multiple terms at the cluster level, which was 

denoted as TC ),...,,( 21 nwww . This is needed to build the linkage between text 

and visual features, which we will discuss in Section 4.1.2.2. Although there 
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are two types of text vectors, we employ the same text similarity measure and 

weighting scheme. Thus, in discussion on such issues, we use one notation T 

to represent both types of text vectors. 

In this section, we first discuss the relationship between text features and 

visual semantics. We then present the method to establish the linkage between 

text and visual features. After that, we report our weighting scheme. Finally, 

we introduce our web-based concept similarity measure.  

 

 4.1.2.1 The relationship between text features and visual concepts  

 

The relationship between text features and visual concepts at the MM 

discourse and story layer is not exactly the same, but similar. Spatially, the text 

descriptions do not always co-occur with the visual concepts at the shot level. 

Following, we discuss the situations at the MM discourse and story layer 

respectively.    

In general, there are four types of relationships between keyword-based text 

semantics and shot-based visual semantics at the MM discourse layer.  

a) Type 1: We could infer the visual concept based on the text clues.   

Figure 4.5 shows an example where we find text clue word “Clinton”, 

while the visual content showing “Clinton” simultaneously.  
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Figure 4.5: The text clue “Clinton” co-occurred with the visual concept. 
 

b) Type 2: We could find related text clue words, but the visual concept is 

not present. Figure 4.6 shows an example in which the keyword 

“Clinton” appears in the ASR transcripts, but we could not find the 

semantic concept “Clinton” occurring in the shot.  

 

                                
 

Figure 4.6: An example of when the text clues appeared, but the visual 
concept did not occur. 

 
 

c) Type 3: The visual concept is present but the related text clue words 

are absent. Figure 4.7 shows an example in which the concept occurs 

in the shot, but it is difficult to capture the text clues. 

 

 

 

Yesterday Mr. Clinton and Israeli 
Prime Minister Benjamin 
Netanyahu agreed on a partial 
peace plan. ...... 

President Clinton said today the U. 
S. must try to limit the international 
financial crisis before it gets worse 
in Latin America. ...... 
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Figure 4.7: An example of when the visual concept occurred, but we 
could not capture the text clues. 

         

d) Type 4: Both text clue words and visual features are not available. 

Because it is not useful in concept detection, we will not discuss such a 

case in detail.  

The relationship between text features and visual concepts at the story layer is 

similar as that at the MM discourse layer.  

At the story layer, we attempt to capture the semantic concepts by exploring 

the relationship between the concept and the topics of a story. Generally 

speaking, at the story layer, if topics include the concept, we usually can find 

the visual semantic in the story. Figure 4.8 shows an example. However, we 

observe that not all the shots in the story include the concept “train”. Thus, 

how to establish the relationship between topics and visual content at the story 

layer is an important problem too.  

  

His defenders though are 
sending out a dual - pronged 
message. 
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Figure 4.8: Keyframes from shots and the topic vector in the story 

The topics extracted from the above story is {train, 
conductor, jelly, country} 
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4.1.2.2 Establish the relationship between text features and visual 

concepts 

 

The above analysis highlights one challenge. That is how to find the terms 

(words and topic terms) from ASR transcripts to describe the image content. In 

our framework, we first cluster visually similar images together, which is done 

by a transductive learning algorithm. We then label the clusters by using the 

following approach.   

For all terms appearing in the visual shot-based cluster )( ivcr , we first remove 

all stop terms [Salton and McGill, 1983]. We then assign the weight for the 

remaining term kW  using the following equation:  

 
                                                                                                             (4-2)                                        
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Images at the shot layer ASR results at the MM discourse layer 

ASR missing in the transcript 

 
 

 
 

 (a) 

 (b) 

 (c) 
 
 
 
 
 
 

Figure 4.9: An example of labeling a visual cluster by text information 
 

If β>),( ik vcrWP , we regard such a term as a text label for the cluster. For 

each of the visual clusters, we collect a group of words and build a text vector 

TC ),...,,( 21 nwww .   

Figure 4.9 gives an example of visual cluster labeling by words at the MM 

discourse layer. The visual cluster result vcri is labeled by a word vector TCi= 

{Clinton, Israeli, peace}. 

However, in some cases, we could not find any text labels. This is because the 

Checking the top stories - President 
Clinton will try again to get the 
Israeli and Palestinians leaders to 
hammer out a Mideast peace 
agreement. ...... 

Yesterday Mr. Clinton and Israeli 
Prime Minister Benjamin 
Netanyahu agreed on a partial peace 
plan. ..... 

 

Clinton, Israeli, peace Text labels from ASR 



 

 76

ASR words in a cluster exhibits large diversity. Figure 4.10 shows such an 

example. Because of such a characteristic, we could partially tackle the 

problem in Section 4.1.2.1 type 2, in which no labels for the cluster can be 

found. Hence MM discourse layer could not return any matching.   

 

Keyframes at the shot layer     ASR transcripts at the MM discourse layer   

 

 

 
 

Figure 4.10: An example where no text label could be extracted from the 
image cluster. 

 

 

However, Equation (4-2) could not solve the problem in Figure 4.7 at the MM 

discourse layer. In order to tackle this problem, we add text analysis at the 

story layer into the framework. The analysis at the story layer provides a 

global view to decide whether the shot includes the concept. At the story layer, 

we build the linkage between topic terms and visual contents in the same 

manner as that at the MM discourse layer, which uses Equation (4-2).  

That is our report on “world news tonight.” 
later on “nightline” - they are graphic and 
disturbing and apparently effective. They 
are some of the newest anti - smoking ads. I 
m peter Jennings. Have a good evening. 

President Clinton said today the U. S. must 
try to limit the international financial crisis 
before it gets worse in Latin America. 

In Berlin today one of the world’s most 
famous places has been rededicated 
dedicated after more than 50 years. 
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4.1.2.3 Word weighting 

 

To improve the effectiveness of web search and text based transductive 

inference, we need to select a few dominant terms in the text vector. Here we 

employ a text-weighting scheme based on tf.rf developed in [Lan, et al. 2006] 

for text classification. Such a method measures the importance of a term based 

on its frequency (tf) and relevant frequency (rf). Here the relevant frequency is 

obtained by computing the ratio of the term’s occurrences in the positive and 

negative training data. In our application, we found that some important terms 

may occur only in the test data; while the relevance frequency rf in the tf.rf 

approach does not consider terms only occurring in the test set. In order to 

tackle this problem, we leverage the web statistics to obtain other relevance 

information. The new weighting equation is: 

]
)(#

),(#
*)1(

)(#

),(#
*[*)(

webi

webxi
w

trainingi

trainingxi
wi W

CW

W

CW
tfWWeight αα −+=      (4-3) 

                                 

We obtain trainingxi CW ),(#  and trainingiW )(#  by counting the co-occurrence 

between terms Wi and Cx,, and the occurrence of term Wi in the training data, 

respectively; we obtain webxi CW ),(#  by using the concept text description Cx  

(such as “Clinton”, “Boat”, etc.) together with term Wi as the query to Google 

search engine, and count the estimated number of hits that include the query 
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terms. webiW)(#  is computed in a similar manner. wα  is designed to balance 

the training data and web statistics. We defined it as follows:         

                      )1()1( tfLog ++α      tf<α 

=wα                                                                                                          (4-4) 

                            1
                      

 Otherwise                                      

where tf is the term frequency in the whole corpus and α is a predefined 

threshold. That is if the term is of sufficiently high frequency in the training 

data, the value of rf is based on the statistics in the training data. Otherwise, we 

will incorporate web statistics for smoothing. The resulting scheme considers 

all the words in the whole corpus instead of just words in the training data.  

 

4.1.2.4 Similarity measure 

 

Computing semantic distances between two text vectors is one of the most 

important issues in the text-based clustering. Given two vectors, most systems 

adopt the cosine similarity measure. However, the cosine similarity measure 

considers the degree of the word overlapping. However, the same concept may 

be expressed in different word vectors that share few words. Figure 4.11 

illustrates an example relating to concept “Clinton”. That is, the concept 

“Clinton” can occur in the different events such as the sex scandal and Middle 

East peace talk. However, due to different focuses, two reports may include 
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the same semantic concept but share few words in common. Thus, if we were 

to employ the cosine similarity, we could not detect that these two multimedia 

discourses are similar in the semantic view of the concept, say “Clinton” in 

Figure 4.11. 

 

           
                             (a) Event: Clinton and Lewinsky 

            
(b) Event: Clinton and Middle East peace 

 
Figure 4.11: Two non-overlapping word vectors indicating a same concept 

“Clinton” 
 

To overcome this problem, we propose a new web-based concept similarity 

measure. Such a method can assign a high similarity score to those word 

vectors with few or even non-overlapping words. For example: the text vector 

1: < Erskine Bowles, president, Lewinsky, White House> should infer the 

occurrence of the concept “Clinton”; and the text vector 2: <Clinton, Israeli, 

Prime minister, Benjamin Netanyahu> should also infer the presence of the 

concept “Clinton”. Although there are no words that overlap, because of the 

high co-occurrence on the web statistics between the word vectors and the 

Word vector at the MM 
discourse: <Erskine bowles, 
president, Lewinsky, white 
house> 

The word vector at the MM 
discourse layer is <Clinton, 
Israeli, Prime minister, 
Benjamin Netanyahu>  
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concept text description “Clinton”, both word vectors indicate a high 

probability of the occurrence of concept “Clinton”. On the other hand, if a high 

amount of words overlap between two text vectors, such a method will be 

assigned a high similarity score too.  

The definition of such a similarity measure is:  

)2|()1|(1)2,1( TCPTCPTTSim xwebxwebunit −−=                              (4-5)           

where T1, T2 are text vector instances, which is made of terms at the MM 

discourse or story layers. xC  is the concept text description (say “Clinton”). 

The basic idea of this formula is that the similarity between two vectors is 

based on not only their contents, but also the co-occurrence relationship 

between the text content and the concept text descriptions. Because there are 

large amount data on the Web, we capture the co-occurrence relationship by 

counting web statistics, which is similar to the work of [Tan et al., 2008]. 

We obtain )|( TCP xweb  in Equation (4-5) as follows: 
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We obtain # (Cx,T), # (T) is computed in a similar manner as the variables in 

Equation (4-3).   
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In the following, we will demonstrate our new concept-based similarity 

measure step by step using the example in Figure 4.11.  

Step1: We use the word vector {Erskine Bowles, president, Lewinsky, White 

House} as a query to Google search engine, which is shown in Figure 4.12. 

 

   

 
Figure 4.12: The Google search results using {Erskine Bowles, president, 

Lewinsky, white house} as a query. 
 
From the Google search results, we can find that there are approximately 839 

documents that satisfy the query in the Google collection.    

Step2:  We need use the word vector T1 {Erskine Bowles, president, 

Lewinsky, White House} together with the concept description word 

“Clinton” as a query again to Google search engine, which is shown in Figure 

4.13.  
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Figure 4.13: The Google search results using {Erskine Bowles, president, 
Lewinsky, White House} and “Clinton” as a query. 

 
For this a query, we can obtain approximately 829 documents.  

Step 3: We process the word vector T2 {Clinton, Israeli, Prime Minister, 

Benjamin Netanyahu} in a similar manner. The results are shown in Figure 

4.14 and 4.15 with the same number of retrieval documents of 11,600.  

 

 
 
Figure 4.14: The Google search results using {Clinton, Israeli, Prime Minister, 

Benjamin Netanyahu} as a query. 
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Figure 4.15: The Google search results using {Clinton, Israeli, Prime Minister, 

Benjamin Netanyahu} and “Clinton” as a query. 
 
Based on the above retrieval results and by applying Equation (4-6), we obtain  

 

 P�Clinton|T1�  ���
���  0.988 

 P�Clinton|T2�  �����
�����  1 

 
We can substitute these two web-based similarity values in Equation (4-5) to 

compute the similarity between the two MM discourse text segments, and 

obtain the following result                                                        

988.0|1988.0|1)2,1( =−−=SSSim    

 
Based on the above results, we can conclude that these two text segments are 

similar.  
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4.2 The multi-resolution constraint-based clustering  

The key to transductive learning is how to map specific (test) cases to 

corresponding (training) cases. Such a mapping could be obtained by an 

average-link clustering. The ideal clustering results for transductive learning 

are that the clusters are pure and large. If the clusters are pure, we could 

achieve high precision. If the size of the clusters is large, we could obtain high 

recall. However, it is often hard to achieve both characteristics at the same 

time. Thus, our strategy includes three steps.  

First, we attempt to obtain small and pure cluster results. In order to make the 

cluster results as pure as possible, our shot layer clustering process is based not 

only on visual features, but also on constraints from different resolutions. At 

the shot layer, we first employ a visual based must-link constraint. That is, if 

both shot i and shot j are detected as anchorperson shots, then these two shots 

must be clustered together. After that, text constraints from lower resolutions 

are used to provide the cannot-link constraints that avoid the clustering of 

semantically dissimilar shots together. Figure 4.16 illustrates the cannot-link 

constraints from the MM discourse and story layer to purify the shot clustering 

results. If we were to measure the similarity between these two shots by global 

visual features alone, they may have some degrees of similarity as shown in 

Figure 4.16. However, when we consider its contextual information at the MM 

discourse and story layers, we would know that one is related to the concept 
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“Clinton” while the other is irrelevant. That is, the two shots are not similar to 

the concept “Clinton” in the semantic view. The text constraints are designed 

to avoid clustering the shots with a high visual similarity, but a low semantic 

similarity. The text-based cannot-link constraint is defined as follows. For a 

shot layer clustering, given two shots S(i) and S(j) with high visual similarity, 

if 1)](),([ δ<jSiSSimMD  and 2)](),([ δ<jSiSSimST  then shots i and j cannot 

be clustered together, where ()MDSim  and ()STSim  are text similarity at the 

MM discourse and story layer respectively. Thus, the clusters we obtained in 

this step are relatively pure and small.   

 

  

  
 

Figure 4.16: An example of using the cannot-link text constraints to purify the 
visual shot clustering results: the above images have high visual similarity, but 

when we consider text information, we find they have low possibility of 
including the same concept. Thus, the cannot-link constraints ensure that they 

are not clustered together. 
 

Second, when using the text features at the MM discourse layer to further 

cluster the results from the first step, we make use of the must-link and cannot-

The word vector at the MM discourse 
layer is {Nancy Reagan, lumpectomy 
...} 
The topic vector at the story layer is 
{Nancy Reagan} 

The word vector at the MM discourse 
layer is {Clinton, Chile, summit....} 
The topic vector at the story is 
{Clinton} 
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link constraints, to ensure high quality clusters too. We use the must-link 

constraints derived from visual shot clustering to ensure that two highly 

“visually” similar shots that were gathered in the shot layer analysis are 

remained clustered together at the MM discourse layer. It helps to establish the 

linkage between visual features and ASR terms. That is, given two shots S(i) 

and S(j), and vcr is a cluster among visual-shot based clustering results; then 

the must-link constraint at the MM discourse cluster layer is defined as 

follows: kjSiS ),(),(∃ , if )(iS and )( jS kvcr∈ , the shot i and j must be 

linked together at the MM discourse layer analysis. We also introduce a 

cannot-link constraint at the MM discourse layer from the lower story layer. 

That is, given two shots S(i) and S(j) with high text similarity at the MM 

discourse layer, however, if 2)](),([ δ<jSiSSimST  then shots i and j cannot be 

clustered together, where ()STSim  are text similarity at the story layer.       

Third, we use the text features at the story layer to further cluster the shots 

based on the results at the MM discourse layer by utilizing the must-link 

constraints. The must-link constraints at the story layer clustering is defined 

as: suppose mmcr is a cluster from MM discourse layer clustering results, 

kjSiS ),(),(∃ , if )(iS and )( jS kmmcr∈ , then shot i and j must be linked 

together at the story layer analysis.  
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Finally, we rank the results based on the shot, MM discourse and story layers. 

Because the cluster results at the shot layer is the purest, we have the highest 

confidence for the results and we assign them with the highest ranking. With 

the sizes of the cluster results becoming larger and larger at the MM discourse 

and story layer, our confidence of the clusters become lower. Thus, we assign 

lower rankings to these results. Based on the above strategy, we are able to 

derive good ranking of shots for each concept by using the full range of 

features. 
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CHAPTER 5 

 

TRANSDUCTIVE INFERENCE 

 

 

In this chapter, we first discuss the transductive algorithm. We then report our 

transductive-based cross-domain adaptation algorithm. Finally, we combine 

our M3 transductive inference with a bootstrapping technique.  

 

5.1 Transductive inference 

  

The transductive inference is used to analyze both the visual and text features 

at the different resolutions in our framework. It has two important functions. 

One is to capture knowledge from the training data. The other is to capture the 

distributions of training and test data well so that we have the knowledge to 

know when we can make an inference via training data. The differences 

between our design with the other works are listed as follows: 
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•  We propose a new state “unknown” in transductive learning. The so-

called unknown category of test data is that cannot be labeled as positive 

or negative with high confidence. If a test data belongs to such an 

unknown category, we can explore the relationship between concept text 

description and text content in the test data by using web co-occurrence to 

help infer the semantic label.  

• We propose a novel multi-resolution based transductive learning inference. 

Thus, we could let the clusters in transductive learning approximately be 

as pure and as large as possible.   

Generally speaking, transductive learning involves three stages. In stage 1, a 

series of clustering are applied as different inference hypotheses by using a 

constraint-based average-link clustering method at each resolution, which is 

discussed in Section 4.2. Such a clustering typically results in three types of 

clusters: 

Type1: The cluster contains data from both training and test sets. Only in 

this type of clusters, we could use labeled training data to predict 

the relevance of the unlabeled test data. 

Type 2: The cluster contains only data from the training set. This shows 

that such training data is not useful in predicting the relevance of 

unlabeled test set. 
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Type 3: The cluster contains data from the test set only. We do not know 

whether such a cluster is relevant to concept X or not. We call 

such clusters ambiguous/unknown clusters.  

In stage 2 of transductive inference, a hypothesis is selected based on Vapnik 

combined error bound [Vapnik, 1998] to determine the confidence of the 

series of clusters. The basic idea of such a error bound is to minimize the 

inference risk in the test data. That is, given a hypothesis Hh∈ and unlabeled 

test set uX , the predicted risk )( uh XR  of unlabeled samples is:  

)

1
ln)1log(

)(()()(
m

C

u

um
XRXR mhuh

δ
τ +−+++≤                                 (5-1) 

where m is the number of labeled samples in the training data; u is the number 

of unlabeled samples in the test data; δ  is the confidence; C is the maximal 

partitions in the corpus; and τ  is the number of clusters in current hypotheses 

(cluster). )( mh XR  is the total number of positive and negative training data in 

the same clusters.  

In stage 3, we label the test sample in the selected hypothesis by using the 

training data in the same cluster. We can label the type 1 cluster as positive (P) 

or negative (N) when the confidence is high, and unknown when the 

confidence is low. The unknown type 1 cluster together with Type 3 clusters 

are grouped as U (Unknown set). That is, given a test shot S, appearing in a 
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visual based cluster ivcr  containing both training and test data, we compute 

the probability of Cx appearing in the cluster, or )|( SCP x , as: 

 

P�C�|S�  ����, �
�� � ! "#$%&'()*+*+, -%./0*.-����1+.-2�3#/.2(�45(6�

"#$7&'()*+*+, -%.1+.-2�3#/.2(�45(6�                   (5-2) 

 

However, some clusters may include very few training data instance, which 

may violate the “law of large numbers” in probability inference. Thus, we 

have to add a variable: confidence index (CI) to partially tackle this problem. 

We estimate CI as follows: 

               )1()1( TDLog ++λ      TD<λ                                                            (5-3) 

=CI       1                             Otherwise     

where TD represents the number of training data in a cluster and λ is the 

predefined threshold.      

In addition, we include the probability of concept xC  in sub-domain iD , or 

)|( ix DCP , into the final score function for S as: 

  )]|(1[log*)|(*)( 2 ixx DCPSCPCISScore +=                                            (5-4) 

where CI is the confidence index for the cluster that includes the test shot S.  

Because in some sub-domains there is even no positive training data, the value 

of )|( ix DCP may be zero. This causes the score from Equation (5-4) for the 

test data in such domains is zero. Thus, it is difficult for us to rank them. In 
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order to tackle the problem, we employ an add-one smoothing method 

[Jurafsky and Martin, 2000] to estimate the probability of concept xC  in sub-

domain iD as: 

        
1)(

1)()(
)|(

+
+

≈
ingInTheTrainDShotsIn

DinCShotWith
DCP

i

ix
ix                                  (5-5) 

where Di  is a sub-domain data set.  

Also because some clusters include only test data, that is type 3 clusters, we 

could not compute Equation (5-2). Thus, we adopt a multi-resolution analysis 

strategy and a web-based text retrieval approach to tackle this problem. The 

so-called multi-resolution strategy is to make an inference according to shot, 

MM discourse and story in order. In the following section, we mainly 

introduce our web-based text retrieval approach. 

At the MM discourse layer, we bring text retrieval into the framework when 

the training data is not enough. This is because the current web is a huge data 

depository and we can make use of the term co-occurrence relationship to 

explore the semantic. In our text retrieval model, we make use of the web 

statistics. The difference between our design and the other works are shows as 

follows: 

� There are some works in text retrieval that used Web statistics to 

expand the query words. Suppose we have a query word “Clinton”, the 

query expansion method may find many co-occurrence words for 
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“Clinton”, such as “President”, “Lewinsky”, and so on.  Because the 

number of expansion words is limited, some words such as “Albright” 

may be not in the query expansion list. If we use the query and its 

expansion words in Figure 5.1 to do text retrieval, the document 1, 2, 3 

may have similar relevance scores for the query “Clinton”. In fact, if a 

human being reads such documents, usually we can draw the 

conclusion that Document 1 is related to “Clinton” and Documents 2 

and 3 are not. Thus, simply expanding query words via web statistics 

could not tackle the problem.   

 

Figure 5.1: A traditional query expansion method that uses Web statistics 

 

� In our retrieval model, we consider all text clues in the documents as a 

whole group, instead of a bag of independent words. Figure 5.2 

demonstrates the idea in our design. Given a query, say, “Clinton”, we 
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did not expand a lot of related words. This is because usually one 

query may have many co-occurrence words. For example, the query 

“Clinton” is at least related to the following terms such as “Lewinsky 

scandal”, “Middle-East peace agreements” and so on. If we did not 

consider the retrieval targets (document space), it is hard to make a 

decision. Thus, some expansion words may fail to occur in the real 

target corpus. On the other hand, the list of query expansion words 

may fail to include some related query words in the target corpus. In 

order to tackle this problem, the basic idea of our design is to find the 

relationship between the query word and the text content in the target 

corpus. Generally, there are three steps. First, we establish the linkage 

between text features and visual clusters to obtain text labels (text 

clues) in the target news video corpus (test set). Next, because we 

know the date information of the news video in the TRECVID corpus, 

we can find documents on the web corpus with the same date as the 

target news corpus. These web documents would include all the text 

clues, such as “USA, President, Albright, White House”. Third, we 

check how many searched documents include the query “Clinton”. 

Based on the above statistics, we can estimate the relevance of the 

documents by using both the query words (concept text descriptions) 

and contents in the target corpus. Due to web redundancy, we can 
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approximately estimate the relationship between query and contents in 

document space. Thus, we could infer that the possibility of concept 

“Clinton” occurred in document 1 is higher than that in documents 2 

and 3 for the case in Figure 5.1.  

  

Figure 5.2: An example of our text retrieval model 

 

Based on our discussion, the inference at the MM discourse layer is defined as 

follows: given a test shot S, we can find a MM discourse cluster mmcrj, which 

includes the test shot S. The text label vector for the cluster is TC, which is 

obtained by Equation (4-2).  

 

Score�C�|S�  ;CI = P5%(>#/�C�|S� ? @1 A CIB = PC2D�C�|TC�E   

= log�@1 ? P�C�|D*�B                                                    �5 A 6� 
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P�%(>#/�C�|S�  P5%(>#/�C�, S�
P5%(>#/�S�  

!
NumofTrainingShotsWith�C��InSmmcrTU

TotalTrainingshots
NumofTrainingShotsInSmmcrTU

TotalTrainingshots
 

 NumofTrainingShotsWith�Cx�in�mmcrj�
NumofTrainingShotsIn�mmcrj�

            �5 A 7�  
            

PC2D�C�|TC�   PC2D�C�, S�
PC2D�S�  


#�C�, TC�C2D

TotalNumofWeb
#�TC�C2D

TotalNumofWeb
 

                      

 #�C�, TC�C2D
#�TC�C2D

                                                                   �5 A 8� 

         

                                              

We obtain # (Cx,TCi)web, # (TCi)web in a similar manner as that in Equation (4-

3), CI is the confidence index and Di  is a sub-domain data set.  

At the story layer, the inference is similar to that at the MM discourse layer. 

After each layer’s analysis, a shot classification component is used to divide 

the test shots into positive (P), unknown (U) and negative (N) sets. We can 

classify the test shots S at a certain resolution layer as follows: 

a) If layerlayerx SCScore α>)|( , we label it as positive data and put it into 

the P shot set. 
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b) If layerlayerx SCScore δ<)|( , we label it as negative data and put it into 

the N shot set. 

c) Otherwise, we assign an unknown label to it and put it into U set for the 

lower resolution layer inference. 

where layerlayer δα ,  are pre-defined thresholds.  

 

5.2 Multiple sub-domain analysis 

 

In this section, we discuss how to encode multiple sub-domain knowledge in 

our transductive inference framework. As discussed in the previous chapter, 

the sub-domain information is important. If we ignore the characteristics of 

sub-domain data or train a model via mixture of different sub-domain sets, we 

may lose information specific to the sub-domains and degrade the 

performance of the system. On the other hand, if we segment training data into 

several small data sets and use them separately, we have to face a problem of 

imbalanced distribution of training data in certain segments of sub-domains. 

However, the existing cross-domain adaptation algorithms could not tackle the 

problem. This is partly because they adopted supervised learning approaches. 

One of the most important assumptions in supervised learning is that the 

training samples have the same distribution as that of future test samples. 
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Thus, if there is a problem of imbalanced distribution of training data (say very 

few or even no positive training data) in some sub-domain data sets, it is hard 

for these algorithms to adapt their classifiers, unless we manually label more 

data in the test set.  

Here, we develop a pseudo-Vapnik combined error bound transductive 

learning approach to partially tackle this problem without additional manually 

assigning labels in the test data. As we have discussed in the previous section, 

our inference follows the label of training data if and only if there is enough 

training data with the same label in the same cluster as the target test data. 

However, the function of Vapnik combined error bound is to select a cluster 

hypothesis. If there is very few or even no positive data, it is hard to compute 

the term )( mh XR  in Equation (5-1) accurately. To tackle this problem, we 

develop a pseudo-Vapnik combined error bound adaptation algorithm. Given 

that there is insufficient training data in current sub-domain dataset, we 

leverage on training data in other sub-domains to estimate the Vapnik 

combined error bound. We obtain similarity values from those sub-domain 

data sets that have enough positive and negative training data. We then use the 

average of these similarity values as the pseudo-Vapnik combined error bound 

for the sub-domains with imbalanced training data.  

The detail of the adaptive cross sub-domain transductive learning algorithm in 

our M3 framework is outlined as follows: 
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Input:   A full sample set X ={X 1, X2…Xm+u}; 

             A training set with semantic labels {(X1, Y1)…  (Xm,Ym)}. 

Step 1: Compute the similarity between each sample pair (Xi, Xj) and build a 

similarity matrix.  

Step 2: If there is a constraint between each sample pair (Xi , Xj), then we set 

Sim(Xi , Xj)=0 for a Cannot-Link constraint; or Sim(Xi , Xj)=1 for a 

Must-Link constraint.  

Step 3: Place each sample in X as its own cluster, creating the list of clusters 

C:C=c1, c2…cl+u  

While (there exists a pair of mergeable clusters) do  
(a) Select a pair of clusters ci and cj according to the minimal 

average group distance. 

(b)  Merge ci to cj. 

(c) Save each partition as a hypothesis to the disk. 

  End while  

Step 4: For each hypothesis, we compare it with pseudo-Vapnik combined 

bound and select the hypothesis that satisfies our pseudo-Vapnik 

combined bound constraints as our final clustering result. 

Step 5: Label the test samples for those clusters that include both training and 

test data.   

Figure 5.3: A constraint based transductive learning algorithm 
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5.3 Multi-resolution inference with bootstrapping 

  

We employ the bootstrapping technique to further process the unknown test 

results from our initial M3 transductive learning. Up to now, many 

bootstrapping algorithms are available. Most of them assume that the newly 

added unlabeled data belongs to the same distribution as the labeled data. 

However, it is not always true. In order to reduce the errors from newly added 

unlabeled data, we propose a new bootstrapping algorithm, which is shown in 

Figure 5.4. The basic idea is that we use test data with high inference 

confidence to rerank the data in the unknown clusters from our initial M3 

transductive model. The main differences between our approach and the other 

bootstrapping works [Feng et al. 2004] are:  

  (a) In order to reduce the risk of adding unlabeled data with wrong 

annotation labels, we set the confidence of the newly added test data to 

a relatively lower value as compared to the labeled training data.  

  (b) The bootstrapping method only processes the data in the unknown 

clusters from our M3 transductive learning, rather than the whole test 

set. 

The detail of our bootstrapping algorithm is outlined as follows: 
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Notation: P(i)(j) is a positive shot set, where i shows the layer of resolution for 

inference with i=1 denoting the inference at the shot layer; i=2 for MM 

discourse layer; and i=3 for story layer. Index j records the number of iteration 

in the bootstrapping module. N(i)(j) and U(i)(j) are defined in a similar manner 

for the negative and unknown shot sets respectively.  

Step1: j=0; initialize K=C, where C is a constraint (say C=50). We perform an 

initial M3 transductive inference. We  obtain an initial shot ranking 

sequence RS{P(1)(0), P(2)(0), P(3)(0), U(3)(0), N(3)(0), N(2)(0), 

N(1)(0)};  

Step2: If U(3)(j) is empty or the number of the sequence  in [P(1)(0),P(2)(0), 

P(3)(0), .....P(i)(j)] is above the user’s requirement or data propagation 

has converged, we stop the program. 

Else, go to step 3.  

Step3: We obtain the top k shots from the shot ranking sequence RS as newly 

added positive labeled data and the bottom k shots from RS as newly 

added negative labeled data. 

Step 4: We redo the M3 transductive inference. We divide U(3)(j) into two 

sets. One set is a labeled set: which includes three positive sets 

P(1)(j+1), P(2)(j+1), P(3)(j+1) and three negative sets N(1)(j+1), 

N(2)(j+1), N(3)(j+1). The other set is still the unknown set U(3)(j+1). 

Step 5: Add the new inference results into the shot ranking sequence: 

RS{P(1)(0), P(2)(0), P(3)(0) ... P(1)(j+1), P(2)(j+1), P(3)(j+1), 

U(3)(j+1), N(3)(j+1), N(2)(j+1), N(1)(j+1)...N(3)(0), N(2)(0), 

N(1)(0)}; 

Step 6: Update j and K for next iteration, j=j+1; K=K+C; Go to step 2 

Figure 5.4: Our bootstrapping algorithm 
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CHAPTER 6 

 

EXPERIMENTS 

 

 

In this chapter, we first introduce the corpus. We then report some baseline 

results from single modal systems, multi-modal fusion, sub-domain based 

multi-modal fusion, and sub-domain based multi-modal multi-resolution 

fusion. After that, we report the result from our multi-resolution, multi-source, 

multi-modal transductive learning framework. Finally, we compare our results 

with the reported systems on this corpus.  
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6.1 Introduction of our test-bed 

 

We use the training and test sets of the TRECVID 2004 corpus to infer the 

visual concepts. The corpus includes 137 hours of news video from CNN 

Headline News and ABC World News Tonight; 67 hours of news video are 

used for training and 70 hours for testing. We measure the effectiveness of our 

model using all the 10 semantic concepts defined for the TRECVID 2004 

semantic concept task. The concepts are listed in Table 6-1. Although many 

works have been done in other TRECVID corpus, few works tackled the two 

problems discussed in this thesis. The two problems are: (a) how to let the 

evidence from text and visual features support each other to detect concepts, 

and (b) how to capture the characteristics of concepts via training data and 

concept descriptions. Most researchers focused on how to model good visual 

features such as parts-based object detection model [Zhang and Chang, 2005], 

SIFT features [Snoek et al. 2006] and concept relationship [Chang et al. 2006]. 

In order to evaluate how we tackle the two problems without affecting the 

other issues, such as machine translation errors, good visual features, concept 

relationship modeling and so on, we adopt the TRECVID 2004 data set and 

extract the common visual features and ASR results.  
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Table 6-1:  Ten semantic concepts used in TRECVID 

 
1 2 3 4 5 

Boat Madeleine  
Albright 

Bill Clinton Train Beach 

6 7 8 9 10 
Basket 
Scored 

Airplane 
takeoff 

People walking 
and running 

Physical 
violence 

Road 

 

The performance of the system is measured using the mean average precision 

(MAP) based on the top 2000 retrieved shots for all ten concepts. This is the 

same as the evaluation metric used in TRECVID 2004. The value of MAP is 

the mean of the average of precisions over all relevant judged shots. Hence, it 

combines precision and recall into one performance value. Let 

},...,,{ 21 k
k iiip = be a ranked version of the answer set A. At any given rank k, 

let kpRI  be the number of relevant shots in the top k of p, where R is the 

total number of relevant shots. Then the MAP for the ten concepts is defined 

as:  
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ϕ∑∑
==

= I
                                               (6-1) 

where the indictor function 1)( =kiϕ if Rik ∈ and 0 otherwise. Because the 

denominator k and the value of )( kiϕ are dominant, it can be understood that 

this metric favors highly ranked relevant shots.  
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6.2 Test 1: Concept detection via single modality 

analysis 

 

In this section, we evaluate the performance of using the single modal feature, 

text or visual so that we can observe the description power of individual 

modality analysis.   

 

6.2.1 Concept detection by using text feature 

 

We first investigate different combinations of text retrieval and classification 

methods. For each method, we consider the scope of text features for the shot 

to be: (a) within the shot boundaries; (b) within the MM discourse boundaries; 

and (c) within the story boundaries. The text semantic analysis belongs to two 

methods. One is text classification, which we adopt the SVMlight 9  as the 

classifier. The other is text retrieval, which we adopt a state of the art retrieval 

system [Cui et al. 2004] with query expansion techniques using external 

knowledge. For completeness, we also explore the combinations of both 

methods using the following equation:  

          )(*)1()(*)( SScoreSScoreSScore TCLIR αα −+=                          (6-2) 

                                                 
9   http://svmlight.joachims.org/ 
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where IR is the score of the retrieval method and TCL is the score of the 

corresponding classification method.   

Figure 6.1 lists the results based on text classification and retrieval at the shot, 

MM discourse and story layer respectively. We experiment with different 

values ofα  ranges from 0 to 1, and report only the increment of α  at 25% 

interval.  

 

 

Figure 6.1: The results of combining two types of text analysis 
 

From the Figure, we can derive the following observations: 

• The systems based on the MM discourse boundaries perform the best for 

both classification and retrieval methods. The main reason is that systems 

based on the shot boundaries could only obtain fragmented text clues; 
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whereas systems based on the story boundaries tend to cover a large 

number of shots and hence could obtain higher recall, but lower precision.   

• The performance of text retrieval system is superior to that of the text 

classification system. This is because we usually face the sparse training 

data problem in TRECVID data [Naphade and Smith, 2004] and text 

retrieval method tends to perform better than the text classification 

method under such circumstances.  

•  Although we tried different setting for the combinations of text 

classification and retrieval method, no combinations could outperform the 

text retrieval systems. On the other hand, the performance of some 

combinations may be worse than the results from the text classification 

system. This suggests that if we want to combine different text analysis 

methods, we have to know the strengths and weaknesses of different 

methods in detail.   

 

6.2.2 Concept detection by visual feature alone 

   

We employ two types of machine learning methods to detect concepts by 

using visual features. One is a supervised learning method, which is based on 

the SVMlight. The other is a transductive learning method, in which we adopt 
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the method discussed in Chapter 5. The results of comparing SVM against 

transductive learning are listed in Figure 6.2.  

 

 

Figure 6.2: Two types of machine learning methods that detect concepts by 
using visual features alone 

 

From the figure, we can derive the following observations: 

� The result based on transductive learning is better than that of SVM 

approach. This is partly because transductive learning could capture 

the distribution of whole corpus so that we can obtain a better 

hypothesis.  

� In addition, if we make analysis based on the shot layer using only 

visual features alone, we achieve a very low MAP of 0.026, which is 

much lower than that achievable using the text retrieval method (at 

MAP=0.051, See Figure 6.1).  This shows that when the performance 
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of the ASR results are good such as ABC and CNN news 

transcriptions, the use of text is superior to that of using only the visual 

feature. Hence, text analysis helps in visual analysis. 

 

6.3 Test 2: Multi-modal fusion 

 

We employ the early fusion and late fusion [Snoek et al. 2006] to detect 

concepts by using text and visual feature at the shot layer. These are the state 

of the arts systems. Figure 6.3 shows results based on the early and late fusion, 

respectively.    

From the figure, we can draw the following conclusions: 

� The performance of concept detection by multi-modal fusion is better than 

those of single modal detectors. This is because multi-modal features 

provide more information than single modality alone. However, how to 

fuse multi-modal features affects the performance of the system. We note 

that the performance of the late fusion is better than that of early fusion 

strategy.  

� The result from the text retrieval system at the MM discourse layer (the 

best text analysis result) is comparable to those from early and late fusion 

approaches. In fact, the results are only slightly worse than that using the 

late fusion strategy. This suggests that the choice of a good unit to analyze 



features is a very important issue. 

  Figure 6.3: Concept detection 

 

6.4: Test 3: Encode the sub

As we discussed earlier

source. We encode it into the early and late fusion framework by using the 
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very important issue.  

Concept detection using single modality versus multi-

6.4: Test 3: Encode the sub-domain knowledge

we discussed earlier, sub-domain knowledge is an important information 

source. We encode it into the early and late fusion framework by using the 

 

-modality 

 

domain knowledge is an important information 

source. We encode it into the early and late fusion framework by using the 
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following equation.  

Weight�S�  PositiveSScore�S�U = P�C�|D*�                                   (6-3) 

where P�C�|D*�  is defined as same as Equation (5-5), which encodes sub-

domain knowledge and Score(S) is the result from the SVM classifier. The 

definition of the function Positive ( ) is as follows: 

PositiveSScore�S�U  Score�S� ? offset                                           (6-4) 

Because the score from a SVM can be positive or negative, in order to rank the 

test shots by combining the knowledge from sub-domain and multi-modal 

feature space, we add a constant (offset=10) to let all the value to be positive.  

Figure 6.4 presents the results of fusion system with and/or without encoding 

the sub-domain knowledge. 

 

  

Figure 6.4: The systems with / without sub-domain knowledge 
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From the figure, we find that if we encode the sub-domain knowledge into the 

frameworks, we can achieve significant improvement in both the results of 

using early fusion and late fusion. This suggests that the use of sub-domain 

knowledge is beneficial to the concept detection task.  

 

6.5 Test 4: Multi-resolution multimodal analysis 

In the previous section, we observe that the performance of multimodal 

analysis is usually better than that of single modal analysis. However, how to 

fuse multimodal features is still a problem. We believe different modal 

features work well at the different resolutions and different resolutions have 

different types of semantics. Thus, we should fuse multimodal features at 

different resolutions. In this section, we first introduce a baseline multi-

resolution system and then report our M3 transductive framework results.  

 

6.5.1 A baseline multi-resolution fusion system 

 

We build a baseline multi-resolution multimodal system to demonstrate the 

effective of our proposed multi-resolution fusion method. At each resolution, 

we select the method with the best performance in the previous experiment to 

perform concept detections. At the shot layer, we adopt transductive learning 

using visual features. At the MM discourse and story layers, we employ text 
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retrieval methods. We combine the results from such three layers via a linear 

combination using Equation (6-5).  

\]^_`a�b�   c = bdef]ghij ? k = bdef]llmnopqrsot ? u

= bdef]vjiwx                                                               �6 A 5� 

where Score(S)shot  is the inference score at the shot layer by using a 

transductive learning, which is defined in Equation (5-2); Score(S)MMdiscourse  

Score(S)story  are the inference scores at the MM discourse and story layer by 

using text retrieval. We define them as follows: 

bdef]�b�yz{j  ∑ }~���iw�n��
n��

z                                                         �6 A 6�  

where a unit can be a MM discourse and story, n is the number of terms in the 

query expansion list and the function Rel (word) is defined the relevance of 

query words from the system [Cui et al. 2004].  

 

Table 6-2: The setting parameters of the linear combination 

 Shot layer 

(α) 

MM discourse 

layer   (β) 

Story layer 

(γ) 

Fusion System 1 0.25 0.25 0.5 

Fusion System 2 0.25 0.5 0.25 

Fusion System 3 0.5 0.25 0.25 

 

Figure 6.5 presents the results of different fusion schemes based on the 



parameter setup as shown in Table 6.2. The results presented do not make use 

of sub-domain knowledge. 

 

Figure 6.5: Results of s
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parameter setup as shown in Table 6.2. The results presented do not make use 

domain knowledge.  

Results of single resolution fusion vs. multi-resolution fusion
without using sub-domain knowledge 

igure, we can derive the following observations: 

The performances of multi-resolution fusion systems are better than 

obtained using a single resolution analysis. The best result of

resolution at MAP of 0.053 comes from the late fusion strategy
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Figure 6.3). On the other hand, all the results obtained from multi-

resolution fusion systems are above the MAP of 0.086. The best result 

among the multi-resolution fusion systems come from system 3, with 

an MAP of 0.087. This result amounts to over 64% improvement in 

MAP performance as compared to the best of single resolution analysis 

method based on the late fusion scheme. 

In order to evaluate the effects of sub-domain knowledge, we conduct a further 

experiment that encodes the sub-domain knowledge into the multi-resolution 

framework. We compute the weight of each test shot by using the following 

equation.  

\]^_`a�b�  �c = bdef]ghij ? k = bdef]llmnopqrsot ? u =
 

bdef]vjiwx� =

����|�{�                                                                                                                   (6-7) 

where P�C�|D*� is defined as same as Equation (5-5) and the definitions of the 

three occurrence of the function “Score” are described by Equation (6-5). 
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Figure 6.6: Multi-resolution systems with and/or without sub-domain 
knowledge 

 

Figure 6.6 presents the results of multi-resolution analysis with and without 

the use of sub-domain knowledge. From the figure, we observe that the use of 

sub-domain knowledge could general improve the performance of the systems 

from the MAP of 0.086 to 0.105, which a 21% relative improvement. This 

confirms that the use of sub-domain knowledge is effective in the concept 

detection task.  

 

6.5.2 Our proposed approach 

 

We employ our M3 transductive framework as discussed in Chapters 3, 4, 5. 

In particular, we perform three experiments: (a) Transductive learning based 

on shot layer visual analysis without text; (b) shot layer + MM discourse layer 

analysis; (c) our full M3 model with story layer analysis, and (d) our full 
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model + bootstrapping. The results are shown in Figure 6.7.  

 

   

Figure 6.7: The result based on the shot layer analysis and different 
combinations of multi-resolution analysis 

 
From the figure, we can observe that the performance of multi-modal fusion is 

better than that of single modal analysis. This is demonstrated in runs (b) and 

(c) that incorporate text semantics. In particular, run (b) which incorporates 

text features at the MM discourse layer achieves a substantially improved 

result at MAP of 0.116; while the better result is achieved when we perform 

the full multi-resolution analysis at the shot, MM discourse and story level, 

with a MAP of 0.144. In addition, run (d) shows that there is further 

improvement of 1% when we employ the bootstrapping approach. The 

improvement is statistically significant as judged by using paired t-test [Hull, 
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1993] (p<0.05). This shows that the bootstrapping method is feasible. 

Figure 6.8 compares our M3 model and the baseline multi-resolution linear 

fusion systems with the use of sub-domain knowledge.  

 

 

Figure 6.8: Two types of multi-resolution fusion systems 

From Figure 6.8, we found that our M3 transductive model achieves an 

improvement of 37% over the best baseline multi-resolution system. We are 

able to achieve the better performance, mainly because: 

a) We employ the must-link and cannot-link constraints and multi-

resolution inference structure so that we can let evidence from different 

resolutions support each other. On the other hand, without such multi-

resolution strategies, there were many false alarms and misses from the 
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transductive learning and text retrieval inference. These cause the 

performance of the baseline system to be worse than our M3 model.   

b) We combine transductive inference and web-based text retrieval model 

at the MM discourse and story layer so that we can exploit the training, 

concept text description and web statistics at each resolution. On the 

other hand, for the baseline system, it is hard to combine the SVM 

results and text retrieval results. Also, without encoding the knowledge 

from training data, the performance of the system will be degraded. 

 

6.6 Test 5: The comparison of M3 model with other 

reported systems 

 

In order to compare our results with other reported systems, we tabulate the 

results of all reported systems [TRECVID 2004] that have completed all ten 

concepts in Figure 6.9. We can divide the reported systems into three 

categories. They are text retrieval systems, machine learning system using text 

and visual features and the linear combination of text retrieval and machine 

learning based systems.  In Figure 6.9, we include the results of our four 

systems as listed in Figure 6.7.  
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Figure 6.9: Comparison with other reported systems in TRECVID. 

 

From Figure 6.9, we also observe that our four combinations of M3 models 

tested in Figure 6.7 are ranked as 1st, 2nd, 6th, and 37th, respectively. As 

compared to the best reported system which is ranked 3nd in Figure 6.9, our 

M3 transductive framework is able to achieve more than 22% improvement in 

MAP performance. This clearly demonstrates that our M3 model is superior.   

From our prior analysis, we found that these current systems have the 

following two problems: 

a) It is difficult for the current systems to allow the evidence from 

different modalities to support each other. 

b) The performance of these supervised inductive inference approaches 

is highly dependent on the size and quality of training data. If the 

quality of training data is not good, the performance of the systems 
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will degrade drastically. On the other hand, the text retrieval based 

system failed to make use of knowledge in the training data. Thus, 

the ability to combine both advantages from machine learning 

method and text retrieval is an important problem.  

We believe that our M3 framework provides a novel multi-resolution solution 

to integrate multimodal features naturally that partially tackles problem 1 as 

follows: 

• It allows the visual analysis to support text analysis. For example, 

if we were to rely on just text analysis without visual clustering at 

the shot level to group visually relevant shots we would have 

captured some false positive shots such as those illustrated in 

Figure 4.6, and missed some relevant shots such as shown in 

Figure 4.9 (c). 

• It permits text analysis to leverage on visual detection. For example, 

if we were to rely on just visual analysis, shots with high visual 

similarity but large semantic variance will not be grouped together 

such as in Figure 4.16. In addition, without text analysis, shots with 

large visual variance but sharing the same concept are not detected.  

In addition, our multi-source transductive model provides a novel solution to 

combine the training and external web knowledge as illustrated in Figure 6.10. 

We observe that there are significant difference between training and test data 
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on the concept “train” from both the text and visual features. Thus, we failed 

to find similar shots in Figure 6.10 (b) and (c) from the training data by using 

transductive inference. In these cases, the external knowledge from the web 

statistics played a dominant role in capturing the evidence {train, freight, 

storm} and {train, conductor, jelly, country} for the above two examples at the 

MM discourse and story layer respectively. This is the reason that the 

performance of our system is better than those using training data only.  

 

 
  (a) An example for the concept “train” in training data 

     

     (b) An example for the concept “train” in test data 
 

      
     (c) An example for the concept “train” in test data  

Figure 6.10: An example of our M3 transductive framework on the concept 
“train” 

  

The text label at the MM discourse layer 
is {navy, disposal, company} 
The text label at the story layer is 
{NAPALM, company} 

The text cluster label at the MM discourse 
layer is {train, freight, storm} 
The text cluster label at the story layer is 
{wind, storm}  

The text cluster label at the MM discourse 
layer is {communism, capitalism} 
The text cluster label at the story layer is 
{train, conductor, jelly, country} 
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CHAPTER 7 

                                   

CONCLUSION AND FUTURE 

WORK 

 

 

In this thesis, we have identified two important weaknesses in current research 

on semantic concept detection. We proposed a multi-resolution, multi-source 

and multimodal transductive learning framework to tackle these problems. In 

this chapter, we recap our contributions of the research and summarize them in 

the next subsections. We will then discuss the limitations of this work. Finally, 

we conclude the thesis with an outline of future work.   
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7.1 Contributions  

 

Although research on semantic concept detection has been carried out for 

many years, the analysis based on multi-resolution and the combination of the 

knowledge from the training labels, concept text descriptions and web 

statistics via a transductive learning model has been relatively recent. In this 

thesis, we make the following contributions: 

• A novel multi-resolution multimodal fusion model 

• A novel multi-source transductive learning model 

 

7.1.1 A novel multi-resolution multimodal fusion model 

 

We developed a multi-resolution model to fuse of text and visual features in 

news video to detect semantic concepts. The multi-resolution model 

contributes to the field of multimedia processing. Fusion of multimodal 

features has been developed for many years. However, we found that most of 

the existing works only focus on single resolution (usually at the shot layer) 

fusion. Such efforts suffered from the mismatch between text and visual 

features at the shot layer.  
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In contrast, we perform our analysis at the shot, multimedia discourse and 

story layers to tackle the mismatch that occurs when using resolution at the 

shot layer. Furthermore, our multi-resolution model can capture different types 

of semantics at different resolutions. More importantly, our framework allows 

evidence from text and visual features to support each other. Thus, our 

framework achieves the aim of processing multimedia content in a unified 

framework, instead of processing multimodal features independently.   

 

7.1.2 A novel multi-source transductive learning model 

 

This work contributes to machine learning in multimedia applications. Most 

current efforts detect concepts by using machine learning methods, text 

retrieval methods and their combinations. However, both the first two types of 

methods have their strengths and weaknesses. Without deep analysis of their 

characteristics, it is hard to obtain a good result by the combination. In this 

thesis, we propose a multi-source transductive learning model to combine the 

two methods together. It leverages on both of the training data and test data, 

along with others sources of information to reduce the reliance on training 

data. Transductive learning captures the data distribution of the corpus and 

makes an inference based on training data. Text retrieval, as a smoothing 

method, is employed to process the test data with unknown labels.  
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Based on the evaluation results, our system outperforms the reported systems.  

 

7.2 Limitations of this work 

 

This thesis has contributed in narrowing the semantic gap. However, it has 

several limitations that need to be addressed.  

• Transductive learning is a very time consuming process.  

Because transductive learning exhaustive analyzes all possible 

relationships between training and test data instead of using training 

data alone, it is a very time consuming process. In order to speed up 

transductive learning, we should carry out further theoretical studies 

especially in mathematical optimization. In fact, many groups 

complained about the large computational efforts of multimedia 

analysis, even under the supervised learning frameworks. For 

example, Snoek et al. [2004] estimated that the processing of the 

entire TRECVID 2004 data set would have taken over 250 days on 

the fastest available sequential machine at that time. Cao et al. 

[2006] claimed the same problem in their report. They estimated 

that they need over 600 days for one computer to complete their 

algorithms for semantic concept detection.  The efficiency problem 

in concept detection task is still a big obstacle. 
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•  Multi-label annotation 

It is an important trend to use relationships among concepts to help 

concept detection. However, in real news reports, new concepts 

such as names, events and so on are always occurring. The 

relationship among concepts may also change over time. Although 

in our framework, we do not pre-define the list of concepts, each 

non-stop-word in the corpus can represent a concept. We attempt to 

encode the relationship of concepts using web statistics.  However, 

we still have difficulty in making use of concept relationships in 

visual content and fusing them with the text component.  

 

7.3 Future work 

 

We summarize our plan for future research. 

• Integration of corpus knowledge with the knowledge from 

human annotations and manually built encyclopedia 

Under current frameworks, the preparation of training data and 

analysis of corpus data via transductive learning is independent. The 

random sampling or time period selection of training data causes at 

least the following problems: 
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� Training data usually cannot include all typical scenarios in 

the test data. Thus, there is a large gap between the 

distributions of data in training and testing.   

� In multimedia processing, the problem of imbalanced 

training data usually exists. That is, the number of negative 

label training samples is significantly larger than that of the 

positive samples. In fact, only those negative training 

samples that are similar to those positive training samples 

are useful.  

� Without the support of automatic data analysis tools, human 

annotators have to repeatedly assign labels to similar 

multimedia contents in different videos as shown in Figure 

7.1. Such efforts are time-consuming and error-prone.  

 

                  

Figure 7.1: Repeatedly labeling for similar images in the 
different videos. 

 

Because the interactive combination of automatic data analysis and 

manual labeling is another new and challenging task, we did not 
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incorporate it in our M3 framework. Thus, in the near future, we 

plan to develop a new interactive concept detection system. With 

the help of automatic corpus data analysis such as clustering 

together with the use of active learning approach, we can identify 

typical data for manual labeling. This will reduce the amount of 

annotation efforts and boost system performance.  

• Optimization of transductive learning algorithm  

We plan to explore techniques to speed up the transductive learning. 

Current transductive learning algorithm assumes that the entire test 

data is given. However, we often need to process new data, after we 

have processed existing test corpus data. Thus, how to incrementally 

make use of the results in old test data, instead of re-computing 

everything from scratch, is another optimization problem. We will 

explore an efficient algorithm for transductive learning.  

• Encoding concept relationships in concept detection  

Encoding concept relationships is an important problem in concept 

detection. There are two types of concept relationships. One is static 

and the other is dynamic. Current systems only encode the static 

relationship among concepts. However, the contents of news are 

always dynamically changing. We should consider dynamic concept 

relationship in the concept detection framework.  
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• Develop more effective visual features and visual models 

Because our goal is to detect visual semantics in the video, it is 

important to develop effective visual features and models to capture 

the visual semantics.  
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