
DEVELOPMENT OF LATTICE

BOLTZMANN METHOD FOR

COMPRESSIBLE FLOWS

QU KUN

(B. Eng., M. Eng., Northwestern Polytechnical University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2008



Acknowledgements

I would like to thank Professor Shu Chang and Professor Chew Yong Tian, my supervisors,

for their guidance and constant support during this research.

I had the pleasure of meeting Professor Luo Li-shi. He expressed his interest and gave

me a better perspective in my work.

I am grateful to my parents, my elder sister and my lovely niece for their patience and

love. Without them this work would never have come into existence.

Of course, I wish to thank the National University of Singapore for providing me with

the research scholarship, which makes this study possible.

Finally, I wish to thank the following: Dr. Peng Yan (for her friendship and discus-

sion); Dr. Duan Yi of CASC, Dr. Zhao YuXin of NUDT (for their discussion on high

resolution upwind schemes); Dr. Su Wei and Zeng XianAng of NWPU (for their help on

the 3D multiblock solver); Shan YongYuan, Huang MingXing, Qu Qing, Huang JunJie,

Cheng YongPan, Liu Xi, Zhang ShenJun, Zeng HuiMing, Huang HaiBo, Wang XiaoYong,

Xu ZhiFeng, ...(for all the good and bad times we had together); and Ao Jing whom I

love forever.

i



Contents

Acknowledgements i

Summary v

List of Figures vii

List of Tables xi

List of Symbols xii

List of Abbreviation xv

1 Introduction 1

1.1 Computational fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Basis of lattice Boltzmann method . . . . . . . . . . . . . . . . . . 4

1.2.2 Lattice Boltzmann models . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 LB models for compressible flows . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Current LB models for incompressible thermal flows . . . . . . . . 9

1.3.2 Current LB models for compressible flows . . . . . . . . . . . . . . 12

1.4 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . 18

2 A New Way to Derive Lattice Boltzmann Models for Incompressible

ii



Flows 19

2.1 A simple equilibrium distribution function, CF-VIIF . . . . . . . . . . . 19

2.2 Discretizing CF-VIIF to derive a LB model . . . . . . . . . . . . . . . . . 22

2.2.1 Conditions of discretization . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Constructing assignment functions . . . . . . . . . . . . . . . . . . 25

2.3 Chapman-Enskog analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Simulating the lid-driven cavity flow with collision-streaming pro-

cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Simulating the lid-driven cavity flow with finite difference method 34

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Development of LB Models for Inviscid Compressible Flows 40

3.1 Looking for a simple equilibrium distribution function for inviscid com-

pressible flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Deriving lattice models for inviscid compressible flows . . . . . . . . . . . 44

3.2.1 Constraints of discretization from CF-ICF to a lattice model . . . 44

3.2.2 Introduction of energy-levels to get fully discrete f eq
i . . . . . . . . 47

3.2.3 Deriving a 1D lattice Boltzmann model for 1d Euler equations . . 48

3.3 Chapman-Enskog analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 FVM formulations in curvilinear coordinate system . . . . . . . . . . . . . 50

3.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Sod shock tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Lax shock tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 A 29◦ shock reflecting on a plane . . . . . . . . . . . . . . . . . . . 58

3.6.4 Double Mach reflection . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.5 Flow past a bump in a channel . . . . . . . . . . . . . . . . . . . . 59

3.6.6 Flows around Rae2822 airfoil . . . . . . . . . . . . . . . . . . . . . 61

iii



3.6.7 Supersonic flow over a two dimensional cylinder . . . . . . . . . . . 66

3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Development of LB Models for Viscous Compressible Flows 71

4.1 Simple equilibrium distribution function for viscous compressible flows . . 72

4.1.1 Chapman-Enskog analysis . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 The circular function for viscous compressible flows . . . . . . . . . 77

4.2 Assigning functions and lattice model . . . . . . . . . . . . . . . . . . . . 81

4.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Solution procedure and parallel computing . . . . . . . . . . . . . . . . . . 84

4.5 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5.1 Simulation of Couette flow . . . . . . . . . . . . . . . . . . . . . . 85

4.5.2 Simulation of laminar flows over NACA0012 airfoil . . . . . . . . . 88

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 LBM-based Flux Solver 101

5.1 Finite volume method and flux evaluation for compressible Euler equations 101

5.2 LBM-based flux solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Numerical validation for one dimensional FV-LBM scheme . . . . . . . . . 107

5.4 Multi-dimensional application of FV-LBM . . . . . . . . . . . . . . . . . . 108

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusion and Outlook 116

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Recommendation for future work . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 119

A Maple Scripts to Generate f eq 127

A.1 D2Q13 for isothermal incompressible flows . . . . . . . . . . . . . . . . . . 127

A.2 D2Q13L2 for inviscid compressible flows . . . . . . . . . . . . . . . . . . . 128

iv



A.3 D1Q5L2 for inviscid compressible flows . . . . . . . . . . . . . . . . . . . . 128

A.4 D2Q17L2 for viscous compressible flows . . . . . . . . . . . . . . . . . . . 129

v



Summary

As an alternative method to simulate incompressible flows, LBM has been receiving more

and more attention in recent years. However, its application is limited to incompressible

flows due to the used of simplified equilibrium distribution function from the Maxwellian

function. Although a few scientists made effort to developing LBM for compressible flows,

there is no satisfactory model. The difficulty is that the Maxwellian function is complex

and difficult to manipulate. Usually, Taylor series expansion of the Maxwellian function

in terms of Mach number is adopted to get a lattice Boltzmann version of polynomial

form, which inevitably limits the range of Mach number. To simulate compressible flows,

especially for the case with strong shock waves, we have to develop a new way to construct

the equilibrium distribution function in the lattice Boltzmann context.

The aim of this work is to develop a new methodology to construct the lattice Boltz-

mann model and its associated equilibrium distribution functions, and then apply devel-

oped model to simulate compressible flows. In this thesis, we start by constructing a simple

equilibrium function to replace the complicated Maxwellian function. The simple func-

tion is very simple and satisfies all needed relations to recover to Euler/Navier-Stokes(NS)

equations. The Lagrangian interpolation is applied to distribute the simple function onto

a stencil (lattice points in the velocity space) to get the equilibrium function at each

direction. Several models were derived for compressible/incompressible viscous/inviscid

flows with this method.

Finite volume method which can provide numerical dissipation to capture shock waves

and other discontinuities in compressible flows of high Mach number with coarse grids, is

vi



used to solve the discrete Boltzmann equation in simulations of compressible flows. At the

same time, implementations of variant boundary conditions, especially the slip wall and

nonslip wall conditions, are presented. The proposed models and the solution technique

are verified by their applications to efficiently simulate several viscous incompressible

flows, inviscid and viscous compressible flows.

At the same time, the LB models for compressible flows can be applied to develop a

new flux vector splitting (FVS) scheme to solve Euler equations. The LBM based FVS

scheme was tested in 1D and 3D simulations of Euler equations. Excellent results were

obtained.

In a summary, a simple, general and flexible methodology is developed to construct a

Boltzmann model and its associated equilibrium distribution functions for compressible

flows. Numerical experiments show that the proposed model can well and accurately

simulate compressible flows with Mach number as high as 10. A LBM based FVS was

developed to solve Euler equations. It is believed that this work is a breakthrough in

LBM simulation of compressible flows.
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Chapter 1

Introduction

In this chapter, we will give a brief introduction to computational fluid dynamics and the

lattice Boltzmann method. Then a review on development of LBM in compressible flows

is presented. After that, the objective of this thesis and the organization of the thesis are

described.

1.1 Computational fluid dynamics

Nowadays, computational fluid dynamics (CFD) has been developed into an important

subject of fluid dynamics as computers are becoming more and more powerful. The core

of CFD is to numerically solve governing equations of fluid dynamics with proper initial

conditions and boundary conditions to get the behavior of dependent variables (density,

velocity, pressure, temperature ...) in flow fields.

For Newtonian fluids, the governing equation is a set of the second order partial

difference equations (PDE), which are usually called compressible Navier-Stokes equations

written as

∂ρ

∂t
+
∂ρuα

∂xα
= 0 (1.1a)

∂ρuα

∂t
+
∂ρuαuβ

∂xβ
= − ∂p

∂xα
+
∂Παβ

∂xβ
(1.1b)

1



∂ρE

∂t
+
∂ρEuα

∂xα
= −∂puα

∂xα
+

∂

∂xβ

(

k
∂T

∂xβ
− Παβuα

)

(1.1c)

where

p = ρRT = (γ − 1) ρe

E = CvT +
1

2
u2

Cv = R/ (γ − 1)

Παβ = µ

(
∂uα

∂xβ
+
∂uβ

∂xα
− 2

3

∂uχ

∂xχ
δαβ

)

+ µb
∂uχ

∂xχ
δαβ

and µ is the viscosity, µb is the bulk viscosity, k is the thermal conductivity, γ the specific

heat ratio, Cv is the constant-volume specific heat capacity, R is the gas constant. For

incompressible flows, since the work done by viscous stress and pressure is usually very

small and can be neglected, Equs. (1.1) can be simplified to

∂uα

∂xα
= 0 (1.2a)

∂uα

∂t
+ uα

∂uβ

∂xβ
=

1

ρ

[

− ∂p

∂xα
+

∂

∂xβ

(

µ
∂uα

∂xβ
+ µ

∂uβ

∂xα

)]

(1.2b)

∂T

∂t
+
∂Tuα

∂xα
=

∂

∂xα

(

k
∂T

∂xα

)

(1.2c)

Equs (1.1) can be reduced to Euler equations when viscous effects are neglected.

∂ρ

∂t
+
∂ρuα

∂xα
= 0

∂ρuα

∂t
+
∂(ρuαuβ + p)

∂xα
= 0

∂ρE

∂t
+
∂(ρE + p)uα

∂xα
= 0

With other assumptions, many other types of simplified governing equations can be de-

rived, such as the potential equation, the parabolized NS equations, the thin-layer NS

equations...

2



Traditionally, the finite difference method (FDM), the finite volume method (FVM)

and the finite element method (FEM) are the three most popular numerical discretization

methods used in CFD. The fundamental idea of FDM is to approximate derivatives in

governing equations by a local Taylor series expansion at grid points in the adopted grid.

In a uniform rectangular grid, FDM is accurate, efficient and easy to implement. And it

can be applied to structural grids in complex domains with coordinate transformation.

But FDM can not be applied in unstructured meshes, which hinders its applications in

complex domains. In contrast, FEM is natural for unstructured meshes, so it is more

suitable for complex domains than FDM. In FEM, the whole domain is divided into

many small elements. In every element, unknown variables are approximated by linear

combination of a set of base functions. Usually, the Galerkin method, also named as the

weighted residual method, is applied to discretize governing equations. In the framework

of Galerkin method, it is easy to achieve high order of accuracy. Those FEM with high

order polynomials as base functions, called spectral element methods, can achieve very

high order spatial accuracy. However, traditional FEM has some difficulties in solving

convective problems such as compressible flows if additional stabilizing techniques are

not applied explicitly. Unlike FDM and FEM, FVM solves integral form of governing

equations. The whole domain is divided into many small volumes. In every small volume,

the adopted governing equations of integral form which describe physical conservation

laws are discretized. As compared with FDM and FEM, FVM can not only be applied

to solve elliptical and parabolic PDE but also hyperbolic system. And FVM can also be

applied on unstructured meshes. On the other hand, we have to indicate that it is not

easy to implement schemes of high order accuracy (higher than second order) in FVM.

So, a new method, the discontinuous Galerkin method, or discontinuous finite element

method, was developed in recent years. It is a more general FEM for conservation laws

and combines the feature of traditional FVM and FEM.

Beside these methods, which are usually used to solve NS/Euler equations, there are

some other approaches in CFD to simulate flows which may not be well described by

NS/Euler equations. These approaches include the kinetic method, direct simulation

3



Monte Carlo, the lattice Boltzmann method, dissipative particle dynamics method, the

molecular dynamics method, and so on.

1.2 Lattice Boltzmann method

1.2.1 Basis of lattice Boltzmann method

In the last decade, as a new and promising method of computational fluid dynamics,

LBM, developed from lattice gas automata (LGA) [1], was widely studied. It has been ap-

plied in isothermal/thermal viscous flows, bubble dynamic simulations, multiphase/multi-

component flows, turbulent flows, flows in porous media, elastic-viscous flows, particle

suspension, microflows, etc.

The standard lattice Boltzmann equation (LBE) is written as

fi (x + ei, t+ 1) = fi (x, t) + Ωi (1.3)

where the density distribution function fi(x, t) is regarded as a pseudo particle mass, ei is

the velocity of fi, and Ωi is a local collision operator. For example, D2Q9 (which means

a nine-velocity model in two dimensional space), a two-dimensional model for isothermal

incompressible flows, as shown in Fig. 1.1, has 9 density distribution functions at every

node in its lattice. Equ. (1.3) also describes the solution procedure. First, at every node,

all pseudo particles (fi, i = 0 . . . 8 ) collide together according to the collision operator Ωi

and get updated at the time t . This is the collision step. Then, every updated pseudo

particle fi +Ωi at x streams in the i-th direction with its own velocity ei. It arrives at the

location x + ei, after one unit time step, at the time t+ 1. This is called the streaming

step. After that, a new loop of collision-streaming begins. And the mean flow variables

can be computed as 





ρ =
∑

i
fi

ρv =
∑

i
fiei

(1.4)

4



0

2

13

4

56

7 8
 

Figure 1.1: Schematic of D2Q9 model

Usually, the BGK collision model [2] is used as the collision operator

Ωi = −fi − f eq
i

τ
(1.5)

to obtain the BGK-LBE

fi (x + ei, t+ 1) = fi (x, t) −
fi − f eq

i

τ
(1.6)

where τ is the relaxation time, f eq
i is the equilibrium distribution function at the i-th

direction. f eq
i only depends on the local density ρ, velocity v and temperature T (in case

of thermal models) at x and t . This collision model means that every density distribution

function fi relaxes to its equilibrium state f eq
i in time τ . So, these two variables are the

most important factors in BGK-LBE. f eq
i , usually in polynomial form, is determined in

such a way that the macroscopic variables obtained from LBE can satisfy NS equations.

τ is related to viscosity of fluid. Besides the BGK model, other collision operators can

be used, such as double relaxation time collision [3] and multi-relaxation time collision

[4, 5]. These collision operators were proposed to achieve better stability and get more

parameters to adjust the properties of the LB models.
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1.2.2 Lattice Boltzmann models

Since LBE has a very simple form and f eq
i is in polynomial form, implementation of LBM

with computer code is very easy. The difficulty is how to derive a lattice model ei and its

equilibrium distribution functions, f eq
i . Presently, there are two kinds of deriving methods

to construct LB models. The first is the undetermined coefficient method. Another way

is the Hermite tensor expansion method.

In the undetermined coefficient method, f eq
i is first assumed as a polynomial with

unknown coefficients. Usually, the polynomial is the expanded Maxwellian function as

shown below

g =
ρ

(2πRT )D/2
exp

[

−(ξ − u)2

2RT

]

(1.7)

With the physical conservation laws, the isotropic relations of the lattice tensors and some

other assumptions, the coefficients in the polynomial expansion can be determined [6, 7].

The Hermite tensor expansion method was proposed by He, Luo, Shan, etc. al [8–11].

In [8, 9], He and Luo began from the continuous BGK-Boltzmann equation

∂f

∂t
+ ξ · ∇f = −f − g

τ
(1.8)

and turned it into

f (x + ξδt, ξ, t + δt) − f (x, ξ, t) = −f (x, ξ, t) − g (x, ξ, t)

τ
(1.9)

by integration. Unlike the undetermined coefficient method, there is no need to assume

a polynomial form of f eq
i in this method. Alternatively, they expanded the Maxwellian

function with Taylor series under the assumption of small Mach number

g ≈ ρ

(2πRT )D/2
exp

(
−ξ2/2RT

)

×
[

1 +
(ξ · u)

RT
+

(ξ · u)2

(RT )2
− u2

2RT

]
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By setting

ψ (ξ) =
ρ

(2πRT )D/2
×

[

1 +
(ξ · u)

RT
+

(ξ · u)2

(RT )2
− u2

2RT

]

the Maxwellian function can be approximated by

f eq ≈ exp
(
−ξ2/2RT

)
ψ (ξ) (1.10)

whereD is the dimension of the space, ξ is the particle velocity, u is the flow mean velocity,

R is the gas constant, T and ρ are mean flow density and temperature. Up to the third

order moment of f eq in ξ, I =
∫ +∞

−∞
f eqξξξdξ , should be computed exactly during the

process of recovering the isothermal incompressible NS equations by Chapman-Enskog

analysis. Since ψ(ξ) is a second order polynomial of ξ , the integral can be written as

I =

∫ +∞

−∞

e−ξ2/2RTP (5)(ξ)dξ

set ς = ξ/
√

2RT ⇒ I =

∫ +∞

−∞

e−ς2

P (5)(ς)dς (1.11)

where P (5)(ς) is the fifth order polynomial of ς. Given proper discretization of ς, Equ.

(1.11) can be evaluated with desirable accuracy by Gaussian-Hermite quadrature

∫ +∞

−∞

e−ς2

P (5)(ς)dς =
∑

j

WjP
(5)(ςj) (1.12)

where ςj and Wj are the abscissas and weights of Gaussian-Hermite quadrature. So the

equilibrium distribution function f eq
i and the discrete velocity vector ξ can be derived.

D2Q7, D2Q9 and D3Q27 were derived with this method in [8, 9]. Since this method does

not need an assumed polynomial, it is more natural than the undetermined coefficient

method. It should be indicated that without the assumption of small Mach number

and isothermal condition, the Gaussian-Hermite quadrature can not be applied. For this

reason, it is not fit for developing multi-velocity thermal models.

He and Shan et. al [10, 11] further studied this method and proposed a new version, in
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which Taylor series expansion is not used. Instead, the Maxswellian function is expanded

in the velocity space with Hermite tensor

g (ξ) ≈ g(N) (ξ) = ω (ξ)

N∑

n=0

1

n!
a(n)H(n) (ξ) (1.13)

where H(n) (ξ) is the n-th order Hermite polynomial of ξ, a(n) is its coefficient and ω (ξ)

is the weight function. The third order expansion of the Maxwellian function is

g ≈ ω (ξ) ρ{1 + ξ · u +
1

2

[

(ξ · u)2 − u2 + (θ − 1)
(
ξ2 −D

)]

︸ ︷︷ ︸

2nd order

+
ξ · u

6

[
(ξ · u) − 3u2 + 3 (θ − 1)

(
ξ2 −D − 2

)]

︸ ︷︷ ︸

3rd order

}

The second order expansion is needed for isothermal flows, and the third order expansion

is for thermal flows. Similar to [8, 9], the discrete velocities can be determined from

Gaussian-Hermite polynomial.

1.3 LB models for compressible flows

LBM has been used to simulate incompressible flows since it was invented. To extend

LBM to simulate compressible flows, there are two aspects of work to be done. First, it

is to develop LB models for compressible flows. Second, it is to find feasible numerical

methods. Compressible flows are thermal flows in nature. But thermal LB models are

not as mature as isothermal LB models. For incompressible thermal flows, there are

several feasible models. But for compressible flows, the current models still encounter

some difficulties and there is no satisfactory model for compressible flows so far. In this

section, we will review the current LB models for thermal flows (both incompressible and

compressible) to evaluate their ideas, advantages and disadvantages, from which we may

explore new LB models for compressible flows.
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1.3.1 Current LB models for incompressible thermal flows

Present LBM for incompressible thermal flows can be divided into three classes: the

multi-velocity models, the multi-distribution-function models and the hybrid method.

Multi-velocity models are natural extension of the isothermal models. They use only

the density distribution function in the collision-streaming procedure. f eq
i of these models

contains higher order terms of particle velocity in order to recover the energy equation and

additional particle velocities are necessary to obtain a higher order isotropic lattice since

higher order lattice tensors are needed in Chapman-Enskog analysis. Alexander, Chen,

Sterling [7] expanded the Maxwellian function to the third order of velocity and developed

the first multi-velocity thermal model with 13 velocities. Although it could provide the

basic mechanisms of heat transfer, it had some nonlinear deviations and did not recover

the right energy equation. Afterwards, Chen [12, 13] proposed 1D5V and 2D16V models

which can get rid of the nonlinear deviations and could recover the right energy equation

by assuming another form of polynomial with more terms. Nevertheless, multi-velocity

models suffer severe numerical instability and temperature variation is limited to a narrow

range. Recently, Shan [11] stated that multi-velocity models could be derived by the third

order Hermite tensor expansion of the Maxwellian function. However, it still needs further

verification.

Unlike multi-velocity models of single density distribution function, multi-distribution-

function models contain another distribution function of internal energy or temperature,

while velocity and pressure are computed with standard LBM. It is known that the tem-

perature can be regarded as a passive-scalar component transported by the velocity field

when the compression work and the viscous heat dissipation are neglected. Based on this

knowledge, some researchers proposed passive-scalar approach to simulate thermal flows.

Shan [14] derived the scalar equation for temperature based on two-component models.

Shan simulated two-dimensional and three-dimensional Rayleigh-Benard convection. The

results agreed well with previous numerical data obtained using other methods. This ap-

proach shows better stability than multi-velocity models. Afterwards, He [15] proposed a
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two-distribution-function model. Different from the passive-scalar approach, the temper-

ature distribution function was derived from the Maxwellian function and compression

work and viscous heat dissipation were incorporated. And the numerical results of this

model agree excellently with those in previous studies. Its numerical stability is similar

to that of the passive-scalar approach. Peng etc. al [16] further simplified He’s model

to neglect the compression work and viscous heat dissipation so that the computational

effort is greatly reduced. This modified thermal model has no gradient term and is easier

to be implemented. As compared with multi-velocity models, multi-distribution-function

models are able to simulate flows of larger range of temperature variation. Therefore

multi-distribution-function models are much more popular than multi-velocity models.

The third way, the hybrid method, is to simulate temperature field by other ap-

proaches, such as FDM [17–19]. The method was first proposed by Filippova in [16,

17] to simulate low Mach number reactive flows with significant density changes. In

[19], Lallemand and Luo proposed their hybrid thermal LBE. With multi-relaxation-time

(MRT) collision operator, their method gave excellent results and better stability than

multi-velocity thermal models. The hybrid method has better efficiency since the number

of distribution functions is less than that in the other two methods. It should be indicated

that this way is not a pure LBM and it is a kind of compromise.

All these models are related to the Maxwellian function. Except for Shans multi-

velocity models, all the other models adopt Taylor expansion of the Maxwellian function

with the small Mach number assumption. Hence they can only be applied to simulate

incompressible flows. Shan’s multi-velocity model is quite new and has not been tested

for real problems, and its capability in simulating compressible flows is still unknown.

Minoru [20, 21] gave a detailed derivation of multi-velocity models and presented several

models. His models gave better results than the models in [7, 12, 13]. He also simulated

some cases of compressible flows in [22]. But these cases are not persuadable since no

classic case in the community of simulating compressible flows was presented. It seems

that these LB models could not be applied to simulate compressible flows and it might

be difficult to deriving LB models for compressible flows from the Maxwellian function.
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Moreover, we believe that it is impossible to derive a satisfactory LB model for com-

pressible flows from Equ. (1.7). The reason is that Equ. (1.7) only describes monatomic

molecules which have D transversal degrees of freedom while diatomic and polyatomic

molecules have more degrees of freedom. For example, diatomic molecules have 5 degrees

of freedom (3 transversal degrees and 2 rotating degrees) under usual condition. These

extra degrees of freedom are important and they determine specific heat ratio γ of a gas.

Considering the extra degrees of freedom, the Maxwellian function should be [23]

g (ξ) =
ρ

(2πRT )
K+D

2

exp







−

(ξ − u)2 +
K∑

i=1
ξ2i

2RT








(1.14)

where D is space dimension, ξi, i = 1 · · ·K are extra degrees of freedom, and K is the

number of extra degrees K = b −D. Notably, D is the dimension of the mean flow. In

case of two dimensional flows, the other transversal degree of freedom is regarded as an

extra degree. Here, b is the total number of degrees of freedom and it determines the

specific heat ratio of a gas as

γ =
b+ 2

b

For example, b = 3 for monatomic gases, b = 5 for diatomic gases and b = 5, 6 for linear

and nonlinear triatomic gases, respectively. In case of incompressible flows, the extra

degrees have little effect and K can be set as zero. Thus, Equ. (1.14) is reduced to Equ.

(1.7). Consequently, the modified Maxwellian function Equ. (1.14) is more complicated

than Eq.(1.7). It is more difficult to mathematically manipulate this modified Maxellian

function. Nevertheless, we believe that deriving LB models from a known equilibrium

function is more natural than the undetermined coefficients method. This idea should be

very useful for developing LB models for compressible flows.
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1.3.2 Current LB models for compressible flows

As introduced in the last subsection, the polynomial forms of f eq
i usually come from the

Maxwellian function by Taylor series expansion on Mach number. Thus Mach number

should be very small. Otherwise, the truncation error of the series expansion could be very

large. The small Mach number condition limits the application of LBM to incompressible

flows. Thus, it seems that the expanded Maxwellian function results in difficulties for

developing LB models for compressible flows. If the polynomial is assumed without the

Maxwellian function, LB models for compressible flows might be obtained by means of the

under determined coefficient method. The question is how to propose a good polynomial

form. Previous studies [24, 25] showed that f eq
i derived from this method contains many

free parameters which have to be tuned carefully to make simulations stable. Nevertheless,

towards this direction, some LB models for compressible flows were proposed. In this

subsection, we briefly introduce four LB models for compressible flows. Although there are

some other models, these models are typical models. In the following, we only introduce

these four models.

The model of Yan et al. [24]

Yan, Chen and Hu [24] proposed a 2D 9-bit model with two energy levels. Their model

can recover Euler equations. In this model, the lattice is assumed the same as that of

D2Q9 model (Fig. 1.1), but there are two particles, fiA and fiB (i = 1 . . . 8) at each

lattice velocity direction except at the static site (i = 0). Thus there are 17 particles.

These 17 particles are grouped into 3 energy-levels: εA for fiA , εB for fiB , and εD for

the static particle (i = 0). Macroscopic variables are defined as

ρ =
∑

i,X=A,B,D

fiX (1.15)

ρu =
∑

i,X=A,B,D

fiXei (1.16)

1

2
ρu2 + ρE =

∑

i,X=A,B,D

fiXεX (1.17)
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and the flux conditions of momentum and energy are:

ρuu + pI =
∑

i,X=A,B,D

f eq
iXeiei (1.18)

(
1

2
ρu2 + ρE + p

)

u =
∑

i,X=A,B,D

f eq
iXεiei (1.19)

The polynomial form of f eq
i is assumed the same as that of D2Q9. But the coefficients are

different for different energy-levels. These coefficients can be determined from the above

relations and isotropy of the lattice tensors. The Sod and Lax shock tube problems were

successfully simulated with the streaming-collision procedure by this model. Its drawback

is that there are a number of free parameters in the model to be specified.

The model of Shi et al. [25]

Shi et al. [25] constructed a 2D 9-bit model which can recover Euler equations. They

used the same lattice with D2Q9 (Fig. 1.1), and the form of f eq
i was assumed to be

the same as that of D2Q9 model. The conservation laws and flux relations are defined

in Equ. (1.21). They also introduced three rest-energy-levels: εA (for i = 1, 2, 3, 4), εB

(for i = 5, 6, 7, 8) and εD (for i = 0). The rest energy of particles, standing for energy of

extra degrees of freedom, can make heat special ratio adjustable. With these relations and

isotropy of the lattice tensors as well as some other assumptions, the unknown coefficients

can be determined.

Instead of using the collision-streaming procedure, Harten’s minmod TVD finite differ-

ence scheme [26] was used in this model to solve the discrete velocity Boltzmann equation

(DVBE) of the BGK type

∂fi

∂t
+ ei · ∇fi = −fi − f eq

i

τ
(1.20)

The energy levels in this model should be chosen carefully to guarantee positivity of f eq
i .

ρ =
∑

i

f eq
i (1.21a)
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ρu =
∑

i

f eq
i ei (1.21b)

1

2
ρu2 + ρE =

∑

i

f eq
i (

1

2
e2

i + εi) (1.21c)

ρuu + pI =
∑

i

f eq
i eiei (1.21d)

(
1

2
ρu2 + ρE + p

)

u =
∑

i

f eq
i (

1

2
e2

i + εi)ei (1.21e)

The models of Kataoka and Tsutahara [27, 28]

Kataoka and Tsutahara [27] proved that, in the limit of small Knudsen number, DVBE

could approach Euler equations in smooth region and if stiff region could not be resolved,

DVBE could approach the weak form of Euler equations as long as a consistent numerical

scheme is used to discretize DVBE. This important conclusion suggests that discontinuity-

capturing schemes could be applied to discretize DVBE in order to capture discontinuities

on coarse grids. They also developed some LB models for compressible flows. For the

two dimensional inviscid flows, their method is similar to the work of Shi et al. [25]. The

polynomial of f eq
i is the same as that of D2Q9, but the rest energy is only available on the

rest particle. Although the model has 9 velocity vectors, the configuration of the lattice

is different from that of D2Q9.

Besides LB models for inviscid compressible flows, a two dimensional 16-velocity model

for viscous compressible flows was presented in [28]. The form of f eq
i is approximated by

a high order polynomial, which satisfies the conservation laws and flux relations, as well

as two dissipative relations of momentum and energy. Similar to the work of Shi et al.

[25], the second order upwind FDM scheme was used to solve DVBE, and two shock tube

problems and Couette flows were simulated effectively. However, their models showed

numerical instability when Mach number exceeds 1. The reason for this is not clear.

Although these three models have many limitations, they give some useful hints for

simulation of compressible flows by LBM. First, the use of the Maxwellian distribution

function or its expanded form might not be necessary in the LBM simulation of com-
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pressible lows. The polynomial forms of f eq
i in these models for inviscid compressible

flows are all assumed as that of D2Q9. Although f eq
i of D2Q9 can be derived from the

Maxwellian function, its form loses the original meaning in case of compressible flows

with adjustable γ value. It seems that these LB models for inviscid flows just occasion-

ally take the polynomial form of f eq
i of D2Q9. The second is that, the rest energy should

be introduced to make γ be adjustable. If there is no rest energy, the total energy of a

particle only consists of transversal energy and cannot consider other degrees of freedom,

making γ fixed as
D + 2

D
. The third is that, it might be more feasible to solve DVBE by

FDM, FVM or FEM to simulate compressible flows with discontinuities. According to

Kataoka’s proof [27], DVBE approaches to Euler equations with an error of O(ε), which

means that Knudsen number ε should be very small. However, the dimensionless width

of a discontinuity is of the order of O(ε). So the mesh size should be much smaller than

O(ε) if there is no artificial viscosity. It is impractical to simulate discontinuities in such

fine meshes. Fortunately, Kataoka and Tsutahara proved that DVBE discretized with

a consistent numerical scheme of the p-th order spatial accuracy is consistent with the

weak form solution of Euler equations even if the mesh size is much larger than O(ε)

and the error is max(O(∆xp), O(ε)) [27]. Since we have to capture discontinuities, the

adopted schemes should have TVD, TVB or ENO/WENO characteristic. Many works

have been done in solving hyperbolic conservation laws with FDM, FVM and FEM in the

last decades. Modern FDM, FVM and FEM have many advanced features in simulation

of compressible flows with high Mach number and discontinuities. These methods can be

adopted to efficiently solve DVBE.

On the other hand, it has to be indicated that so far, only results of subsonic cases

with weak shock waves were presented in these models. Simulating high Mach number

compressible flows with strong shock waves by LBM is still a challenging issue. Further

work is needed in this field.
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The adaptive LB model of Sun [29–33]

Towards simulating compressible flows, Sun [29–33] developed the adaptive LB model.

The pattern of the lattice velocities of this model varies with the mean flow velocity and

internal energy. The adaptive LB model contains several discrete velocity vectors which

are symmetrically located around the mean velocity in the velocity space. As shown in

Fig. 1.2, the density is equally distributed on all the discrete velocity vectors.

This is just like the molecular velocity in the kinetic theory: ξ = V+C where ξ is the

molecular velocity, V is the mean velocity and C is the peculiar velocity. This adaptive

LBM permits mean flow to have high Mach number. However, the relaxation parameter τ

can only be set as one because the discrete velocity vectors vary with mean velocity. Thus

the viscosity can not be adjusted by changing τ . The model can only be used to simulate

inviscid flows if the viscosity terms are regarded as numerical dissipation. Some cases of

compressible flows with weak or strong shock waves were successfully simulated by the

adaptive LBM. On the other hand, we have to indicate that unlike the conventional LBM,

density, momentum and energy are all needed to be transported with nonlinear convection

(streaming) in the adaptive LBM. Therefore, it is more like a special flux vector splitting

(FVS) scheme, rather than a pure LBM.

Nevertheless, the adaptive LBM is very illuminative. The form of its f eq
i seems very

simple and has nothing to do with the Maxwellian function, but can recover to NS equa-

tion. It prompts us that the Maxwellian function could be substituted with some other

functions while keeping the property of recovering Euler/NS equations. This idea is very

important for us to develop new lattice models to simulate compressible flows.

1.4 Objective of this thesis

The objectives of this thesis are to develop a general and simple methodology to construct

new LB models and associated equilibrium distribution functions for compressible flows,

explore relative boundary conditions and numerical methods, and simulate compressible

flows with developed models.
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Figure 1.2: Streaming in the adaptive LBM of Sun

The first task of this work is to develop a new deriving method which is suitable

to construct LB models for compressible flows. Due to limitation of the two traditional

deriving methods, it is difficult to construct satisfactory LB models for compressible flows.

Therefore, it is necessary to develop a new deriving method. This method should need

fewer assumptions so as to decrease ambiguities, and it should be easy to implement,

general to extend to different problems (1D/2D/3D, inviscid/viscous).

The second is to develop proper boundary conditions and numerical method for LBM

simulation of compressible flows. Compared with incompressible flows, compressible flows

are more complicated. They are thermal flows naturally and may have discontinuities,

such as shock waves and contact interfaces which may interact with shear layers (for vis-

cous flows), producing very complex phenomena. Compressible flows need more boundary

conditions of which some are complicated and need sophisticated mathematical process-

ing. Hence, apart from the LB models, much work is also needed to implement boundary

conditions and numerical discretization.

Last task is to verify the above work. They will be implemented into computer code

to simulate compressible flows to validate all the deriving method, models, boundary

conditions and numerical methods.
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1.4.1 Organization of this thesis

The thesis is organized as follows:

Chapter 2 preliminarily describes a new deriving method. A simple function is pro-

posed to replace the Maxwellian function. This function has a very simple form and is

easy to manipulate. It can be discretized onto a lattice to derive the LB model. The

constraints of discretization, as well as how to determine the configuration of a proper

lattice are also discussed. A new D2Q13 LB model for isothermal incompressible flows is

derived to examine the idea. With this model, the lid driven cavity flow was simulated by

means of the traditional streaming-collision procedure and the finite difference method.

In Chapter 3, the deriving method is extended to develop LB models for inviscid

compressible flows. Another simple function is constructed. With the same discretizing

method, some LB models for inviscid compressible flows are derived. At the same time,

numerical methods, including spatial discretization schemes, time integral methods and

implementation of boundary conditions are discussed. Some inviscid compressible flows

with weak and strong shock waves are simulated successfully by the present models and

numerical methods.

Chapter 4 presents how to construct a LB model for viscous compressible flows. We

construct the third simple function to replace the Maxwellian function. Several numerical

results are shown to validate our models and numerical methods.

In Chapter 5, a new idea of combination of the LB model and a classical Euler FVM

solver is proposed. A new flux vector splitting (FVS) scheme is developed based on

D1Q4L2 LB model. One dimensional and multidimensional numerical tests produce ex-

cellent results.

Chapter 6 concludes the present work and suggests recommendation for the future

study.
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Chapter 2

A New Way to Derive Lattice

Boltzmann Models for

Incompressible Flows

This chapter proposes a new way to derive lattice Boltzmann models. In this method,

a simple circular function replaces the Maxwellian function. Thanks for its simplicity, it

can be easily manipulated to derive LB models. Based on the idea, a new D2Q13 LB

model for incompressible flows is derived in this chapter.

2.1 A simple equilibrium distribution function, CF-VIIF

It has been known that f eq
i in LBM is usually related to the Maxwellian function. As LBM

is a kind of discrete velocity method in which the continuous velocity space is replaced

by a set of lattice velocities, an interesting question is whether the Maxwellian function

or its simplified form is really needed in LBM. In fact, the Maxwellian function is in the

exponential form, which cannot be directly applied in LBM. As shown in Chapter 1, its

simplification to the polynomial form is necessary in LBM. On the other hand, we may

be able to find a simple form of equilibrium function, gs, which can make the Boltzmann
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equation of BGK type

∂f

∂t
+ ξ · ∇f = (gs − f) /τ (2.1)

recover the macroscopic governing equations (Euler/NS equations). If this gS is very

simple and easy to manipulate mathematically, it might be used to derive LB models

which are difficult to construct with the traditional methods described in Chapter 1. In

this chapter, in order to examine this idea, we will develop a LB model for two-dimensional

viscous isothermal incompressible flows as this problem is the simplest case.

Before looking for the simple function, we firstly study the Maxwellian function. For

isothermal incompressible flows, in deriving NS equations from Chapman-Enskog analysis,

the continuity equation and the momentum equation are the results of the zeroth and first

order moments in the velocity space

∫
[

∂tf + ξ · ∇f = −f − g

τ

]






1

ξ




 dξ

⇒







∂tρ+ ∇ · (ρv) = 0

∂t (ρv) + ∇ · (ρvv + pI) = ∇ · Π

In Chapam-Enskog expansion, only the first two terms of approximations for f are con-

sidered. Therefore, given the equilibrium distribution function, the Maxwellian function

g, up to the third order moment of g must be able to be computed. The moments (from

the zeroth order to the third order) of the Maxwellian function are listed in Equ. (2.2)

∫

gdξ = ρ (2.2a)
∫

gξαdξ = ρuα (2.2b)
∫

gξαξβdξ = ρuαuβ + pδαβ (2.2c)
∫

gξαξβξϕdξ = p (uαδβϕ + uβδϕα + uϕδαβ) + ρuαuβuϕ (2.2d)

Indeed, these relations guarantee that the BGK-Boltzmann equation, Equ. (2.1), can
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Figure 2.1: The schematic view of the circular function. The small circles are discrete
velocities in the velocity space. ei is one of them. u is the mean velocity, c is the effective
peculiar velocity and zi is the vector from any point on the circle to ei.

recover the isothermal incompressible Navier-Stokes equations.

∂ρ

∂t
+
∂ρuα

∂xα
= 0

∂ρuα

∂t
+
∂ρuαuβ

∂xα
+

∂p

∂xα
=

∂

∂xβ

[

µ

(
∂uα

∂xβ
+
∂uβ

∂xα

)]

where µ is the viscosity µ = ρRTτ . Obviously, the simple function that we are looking

for, should satisfy these four moment relations.

For 2D problems, we can consider a very simple function as (Fig. 2.1)

g =







ρ

2πc
if ‖ξ − u‖ = c =

√

D
p

ρ

0 else

(2.3)

where D = 2 is the spatial dimension. This function means that all density and momen-

tum concentrate on a circle with radius of c and center of u.

The velocity on the circle can be written as ξ = u+c and the integral in the continuous
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velocity space can be reduced to the integral along the circle. Thus, for a small arc ds on

the circle, the density dρ and momentum dPα are

dρ =
ρ

2πc
ds =

ρ

2π
dθ

dPα =
ρ

2πc
ξds =

ρ

2π
(uα + cα) dθ

It is easy to verify that this circular function satisfies the following relations

∮

gdξ =

∮

dρ = ρ (2.4a)
∮

gξαdξ =

∮

dPα = ρuα (2.4b)
∮

gξαξβdξ =

∮

dPα (u + c)β = ρuαuβ + pδαβ (2.4c)
∮

gξαξβξϕdξ =

∮

dPα (u + c)β (u + c)ϕ

= p (uαδβϕ + uβδϕα + uϕδαβ) + ρuαuβuϕ (2.4d)

where

p =
1

D
ρc2

These relations are the same as Equ. (2.2). So, this circular function can replace the

Maxwellian function to recover the isothermal incompressible NS equations. In this work,

we name it Circular Function for Viscous Isothermal Incompressible Flows (CF-VIIF).

2.2 Discretizing CF-VIIF to derive a LB model

It was shown in the last section that CF-VIIF satisfies the constraints (2.2) and the

isothermal incompressible Navier-Stokes equations can be recovered. However, CF-VIIF

cannot be directly applied in LBM. Although CF-VIIF is greatly simplified as compared

to the Maxwellian function, it is still a continuous function, and the integrals in the

velocity space are performed along the circle. In the context of LBM, the discrete lattice

velocities are given and fixed, and the integrals are replaced by summations over all the
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lattice velocity directions. It is expected that the equilibrium distribution function in

a lattice model can be obtained by discretizing CF-VIIF onto a lattice in such a way

that the constraints (2.2) can be satisfied in the context of LBM when the integrals are

replaced by the summations. In this section, we will study in the process what conditions

of discretization should be satisfied.

2.2.1 Conditions of discretization

Here, based on CF-VIIF, we try to derive a LB model for incompressible isothermal flows.

Suppose that in the velocity space ξx − ξy, there are N discrete velocities, {ei, i =

1 . . . N} (Fig. 2.1). CF-VIIF will be discretized to all e . For any dρ on the circle, it has

a contribution φi(ξ)dρ on ei , where φi(ξ) is called assigning function. The contribution

of the whole circle to ei can be written as

ρi =

∮
ρ

2πc
φi (ξ) ds =

ρ

2π

∫ 2π

0
φi (u+ c cos θ, v + c sin θ) dθ (2.5)

ρi could be the particle equilibrium distribution function f eq
i in the ei direction, f eq

i .

In context of LBM, Equ. (2.4) are replaced by summations

N∑

i=1

ρi =

∮

dρ (2.6a)

N∑

i=1

ρieiα =

∮

dPα (2.6b)

N∑

i=1

ρieiαeiβ =

∮

(dPα) (u + c)β (2.6c)

N∑

i=1

ρieiαeiβeiχ =

∮

(dPα) (u + c)β (u + c)χ (2.6d)

As shown in Fig. 2.1, the relationship between the discrete velocity ei and the original

velocity ξ is

ei = ξ + zi(ξ) (2.7)
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Substituting Equ. (2.5) and Equ. (2.7) into Equ. (2.6a) gives

N∑

i=1

ρi =
N∑

i=1

∮
ρ

2πc
φi (ξ) ds ≡

∮
ρ

2πc
ds

Thus
N∑

i=1

φi (ξ) = 1 (2.8)

is a sufficient condition for equation Equ. (2.6a). Then substituting Equ. (2.5), Equ.

(2.7) and (2.8) into (2.6b)

N∑

i=1

ρieiα =

∮
ρ

2πc
ξds+

∮
ρ

2πc

N∑

i=1

zi(ξ)αφi (ξ) ds ≡
∮

ρ

2πc
ξds

Similarly, we can give a sufficient condition of Equ. (2.6b)

N∑

i=1

φi (ξ) zi(ξ) = 0 (2.9)

Furthermore, substituting Equ. (2.5) and Equ. (2.7-2.9) into (2.6c) leads to

N∑

i=1

ρieiαeiβ =

∮
ρ

2πc
ξα ξβ ds+

ρ

2πc

∮ N∑

i=1

zi(ξ)αzi(ξ)βφi (ξ) ds ≡
∮

ρ

2πc
ξα ξβ ds

which can give
N∑

i=1

φi (ξ) zi(ξ)zi(ξ) = 0 (2.10)

Finally, substituting Equ. (2.5), Equ. (2.7-2.10) into (2.6d) gives

N∑

i=1

φi (ξ) zi(ξ)zi(ξ)zi(ξ) = 0 (2.11)

Equs (2.8-2.11) are the constraints for assigning function φi(ξ). Once we find φi(ξ), f eq
i

can be determined from Equ. (2.5).
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Figure 2.2: Schematic view of assigning a particle Γp at xp onto several other points xi.

2.2.2 Constructing assignment functions

The use of assigning functions to assign a variable from one point to several other points

is widely used in particle methods, such as particle in cell (PIC) method, vortex method

(VM) and vortex in cell (VIC) method. It was found [34] that assigning a particle Γp

at xp with a self-contained set of n-th order Lagrangian polynomials onto n + 1 discrete

points xi, i = 0 . . . n (Fig. 2.2) can conserve up to n-th moment of the particle. That is

Γpx
j =

n∑

i=0

Γix
j
i j = 0...n (2.12)

where Γi = Γpφi (xp) is the part assigned to point xi. This means that

n∑

i=0

Γi (x− xp)
j = 0 j = 0...n (2.13)

So Equ. (2.8-2.11) can be satisfied, when a self-contained set of third order Lagrangian

polynomials is taken as the assigning function. And the interpolating stencil made of

those points in the velocity space serves as the velocity vectors of a LB model. Thus, if

we find the set of polynomials and its stencil, the lattice is formed and determination of

f eq
i is trivial.
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The actual form of polynomials depends on the configuration of the lattice in the

velocity space. According to the constraints shown in Section 2.2.1, we need to construct

a third order two-dimensional polynomial. In the two-dimensional space x− y, a general

form of the third order polynomial can be written as

P (x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y + a9xy
2 + a10y

3 (2.14)

where a10 6= 0. To determine the 10 coefficients ai, i = 1 . . . 10, Equ. (2.14) has to

be collocated at 10 points. A 10-node triangular element could be a choice. However,

the velocity vectors determined from these 10 points may be difficult to perform the

collision-streaming process. To remove this difficulty, we try to use a square element.

The base functions of 9-node square element whose shape is the same as D2Q9 lattice,

contain the terms
{
1, x, y, x2, xy, y2, x2y, xy2, x2y2

}
, lack of x3 and y3 . As compared

with D2Q9 lattice, D2Q13 lattice has 4 additional velocities, (0, 2), (0, 2), (−2, 0) and

(0,−2). Consequently, the base functions of the 13-node element based on D2Q13 lattice

have 3 more terms, a11x
4 + a12x

2y2 + a13y
4, than Equ. (2.14). The polynomial for the

13 points can be written as

φi (x, y) = ai,1 + ai,2x+ ai,3y + ai,4x
2 + ai,5xy + ai,6y

2 + ai,7x
3 + ai,8x

2y

+ai,9xy
2 + ai,10y

3 + ai,11x
4 + ai,12x

2y2 + ai,13y
4 (2.15)

which contains all the terms of Equ. (2.14). So, this 13-node element can be used. All

the base functions of the 13-node element, φ(x, y), can be written as the

φ (x, y) = At (2.16)
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Figure 2.3: The scheme of D2Q13 lattice..

where

A =












a1,1 a1,2 · · · a1,13

a2,1 a2,2 · · · a2,13

...
...

. . .
...

a13,1 a13,2 · · · a13,13












t =
[
1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x2y2, y4

]T

Since φi(x, y) is a Lagrangian interpolation polynomial, it should satisfy

φi (xj, yj) = δij i, j = 1, 2, ..., 13

⇒ AT = I (2.17)

where (xj , yj) is the location of node j of the element and

T = [t (x1, y1) , t (x2, y2) , ...t (x13, y13)]
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So the coefficients can be computed from a linear system

A = T−1 (2.18)

By substituting Equ. (2.18) into Equ. (2.16), we can obtain all the base functions as

φ1 (x, y) = 1 − 5

4
x2 − 5

4
y2 +

1

4
x4 + x2y2 +

1

4
y4 (2.19a)

φ2 (x, y) =
2

3
x+

2

3
x2 − 1

6
x3 − 1

2
xy2 − 1

6
x4 − 1

2
x2y2 (2.19b)

φ3 (x, y) =
2

3
y +

2

3
y2 − 1

2
x2y − 1

6
y3 − 1

2
x2y2 − 1

6
y4 (2.19c)

φ4 (x, y) = −2

3
x+

2

3
x2 +

1

6
x3 +

1

2
xy2 − 1

6
x4 − 1

2
x2y2 (2.19d)

φ5 (x, y) = −2

3
y +

2

3
y2 +

1

2
x2y +

1

6
y3 − 1

2
x2y2 − 1

6
y4 (2.19e)

φ6 (x, y) =
1

4
yx+

1

4
x2y +

1

4
xy2 +

1

4
x2y2 (2.19f)

φ7 (x, y) = −1

4
yx+

1

4
x2y − 1

4
xy2 +

1

4
x2y2 (2.19g)

φ8 (x, y) =
1

4
yx− 1

4
x2y − 1

4
xy2 +

1

4
x2y2 (2.19h)

φ9 (x, y) = −1

4
yx− 1

4
x2y +

1

4
xy2 +

1

4
x2y2 (2.19i)

φ10 (x, y) = − 1

12
x− 1

24
x2 +

1

12
x3 +

1

24
x4 (2.19j)

φ11 (x, y) = − 1

12
y − 1

24
y2 +

1

12
y3 +

1

24
y4 (2.19k)

φ12 (x, y) =
1

12
x− 1

24
x2 − 1

12
x3 +

1

24
x4 (2.19l)

φ13 (x, y) =
1

12
y − 1

24
y2 − 1

12
y3 +

1

24
y4 (2.19m)

By substituting above equations into Equ. (2.5), the integral can be evaluated analytically

to get f eq
i since φi(x, y) is a polynomial
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





f eq
1 =

1

16
ρ(4u4 + 5c4 − 20c2 + 16 + 16u2v2 + 4v4 − 20v2 + 20c2v2 + 20c2u2 − 20u2)

f eq
2 = − 1

24
ρ

(
−16u2 + 3c4 + 4u4 − 8c2 + 6c2v2 + 12uv2 + 18c2u2 + 12c2u+ 12u2v2 − 16u+ 4u3

)

f eq
3 = − 1

24
ρ

(
12u2v2 + 6c2u2 + 18c2v2 + 12c2v + 12u2v + 3c4 − 8c2 + 4v4 − 16v2 + 4v3 − 16v

)

f eq
4 = − 1

24
ρ

(
−16u2 + 3c4 + 4u4 − 8c2 + 6c2v2 − 12uv2 + 18c2u2 − 12c2u+ 12u2v2 + 16u− 4u3

)

f eq
5 = − 1

24
ρ

(
−4v3 − 12c2v − 12u2v + 3c4 − 8c2 + 4v4 − 16v2 + 16v + 12u2v2 + 18c2v2 + 6c2u2

)

f eq
6 =

1

32
ρ

(
8uv2 + 8vu+ 4c2u+ 4c2v + 8u2v + c4 + 8u2v2 + 4c2v2 + 4c2u2

)

f eq
7 =

1

32
ρ

(
c4 + 4c2v − 8uv2 − 8vu+ 4c2u2 − 4c2u+ 4c2v2 + 8u2v2 + 8u2v

)

f eq
8 =

1

32
ρ

(
c4 − 4c2v − 8uv2 + 8vu+ 4c2u2 − 4c2u+ 4c2v2 + 8u2v2 − 8u2v

)

f eq
9 =

1

32
ρ

(
c4 − 4c2v + 8uv2 − 8vu+ 4c2u2 + 4c2u+ 4c2v2 + 8u2v2 − 8u2v

)

f eq
10 = − 1

192
ρ

(
16u+ 8u4 − 4c2 − 8u2 + 24c2u2 + 3c4 + 16u3 + 24c2u

)

f eq
11 =

1

192
ρ

(
−16v + 24c2v − 8v2 + 8v4 − 4c2 + 24c2v2 + 16v3 + 3c4

)

f eq
12 =

1

192
ρ

(
16u+ 8u4 − 4c2 − 8u2 + 24c2u2 + 3c4 − 16u3 − 24c2u

)

f eq
13 =

1

192
ρ

(
16v − 24c2v − 8v2 + 8v4 − 4c2 + 24c2v2 − 16v3 + 3c4

)

(2.20)
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2.3 Chapman-Enskog analysis

In the last section, we have derived a D2Q13 model. Its f eq
i satisfies







∑

i
f eq

i = ρ

∑

i
f eq

i eiα = ρuα

∑

i
f eq

i eiαeiβ = ρuαuβ + pδαβ

∑

i
f eq

i eiαeiβeiϕ = ρuαuβuϕ + p (uαδβϕ + uαδβϕ + uαδβϕ)

(2.21)

With this model, the following DVBE

∂tfi + eiα∂αfi = (f eq
i − fi) /τ (2.22)

can recover the isothermal incompressible NS equations by means of Chapman-Enskog

analysis.

At first, the following expansions are introduced

fi = f
(0)
i + εf

(1)
i

∂t = ∂t0 + ε∂t1

∂α = ∂α1

Substituting above equations into Equ. (2.22) gives

(

∂t0f
(0)
i + eiα∂α1f

(0)
i + f

(1)
i /τ

)

+ ε
(

∂t1 f
(0)
i + ∂t0

f
(1)
i + eiα∂α1f

(1)
i

)

+O
(
ε2

)
= 0

Since ε is an arbitrary small number, we have

∂t0f
(0)
i + eiα∂α1f

(0)
i + f

(1)
i /τ = 0 (2.23a)

∂t1f
(0)
i + ∂t0f

(1)
i + eiα∂α1f

(1)
i = 0 (2.23b)
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From Equ. (2.23a), we can get macroscopic equations in the time scale t0

∑

i

(

∂t0f
(0)
i + eiα∂α1f

(0)
i + f

(1)
i /τ

)






1

eiβ




 = 0

⇒







∂t0ρ+ ∂α1 (ρuα) = 0

∂t0 (ρuα) + ∂α1 (ρuαuβ + pδαβ) = 0
(2.24)

From Equ. (2.23b), we can get macroscopic equations in the time scale t1

∑

i

(

∂t1 f
(0)
i + ∂t0

f
(1)
i + eiα∂α1f

(1)
i

)






1

eiβ




 = 0

⇒







∂t1ρ = 0

∂t1 (ρuα) + ∂α1
∑

i f
(1)
i eiαeiβ = 0

(2.25)

Here

∑

i

f
(1)
i eiαeiβ = −τ

∑

i

(

∂t0f
(0)
i + eiχ∂χ1f

(0)
i

)

eiαeiβ

= −τ
∑

i

[

∂t0f
(0)
i eiαeiβ + ∂χ1

(

f
(0)
i eiαeiβeiχ

)]

(2.26)

The first term of Equ. (2.26) can be expanded as

∑

i

(

∂t0f
(0)
i eiαeiβ

)

= ∂t0

[

ρuαuβ +
1

2
c2ρδαβ

]

= −1

2
c2ρδαβ∂χ1uχ − 1

2
c2 (uχδαβ∂χ1ρ+ uβχ∂α1ρ+ uα∂β1ρ)

−∂χ1 (ρuαuβuχ)
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and the second term of Equ. (2.26) can be written as

∑

i
∂χ1

(

f
(0)
i eiαeiβeiχ

)

= ∂χ1

[
1

2
ρc2 (uαδβχ + uβδχα + uχδαβ) + ρuαuβuχ

]

=
1

2
ρc2 (δαβ∂χ1uχ + ∂α1uβχ + ∂β1uα)

+
1

2
c2 (uχδαβ∂χ1ρ+ uβχ∂α1ρ+ uα∂β1ρ)

+∂χ1 (ρuαuβuχ)

So, we get

∂β1
∑

i
f

(1)
i eiαeiβ = ∂β1

[
1

2
ρc2 (∂α1uβχ + ∂β1uα)

]

= −∇1 ·
[
pτ

(
∇1v + ∇T

1 v
)]

Thus the macroscopic equations in the time scale t1 can be obtained as







∂t1ρ = 0

∂t1 (ρuα) = ∇1 ·
[
pτ

(
∇1v + ∇T

1 v
)]

Combining the equations of the two time scales, we can get the macroscopic equations as







∂ρ

∂t
+ ∇ · (ρv) = 0

∂ρv

∂t
+ ∇ · (ρvv + pI) = ∇ ·

[
µ

(
∇v + ∇Tv

)]
(2.27)

where

µ = pτ

In case of a small Mach number, ρ varies little and can be regarded as constant. Then,

Equ. (2.27) can be reduced to isothermal incompressible NS equations







∇ · v = 0

∂v

∂t
+ v∇v = −1

ρ
∇p+ ∇ ·

[
ν

(
∇v + ∇Tv

)]

It should be pointed out that the form of f eq
i is not involved in the above derivation
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process. This D2Q13 model is just a discrete form of CF-VIIF which satisfies Equs.

(2.4a -2.4d) and recovers the viscous isothermal NS equations. Another point we should

indicate is that f eq
i can recover Equ. (2.22) without the assumption of small Mach number

and the isothermal condition (c = const) because of the simple form of CF-VIIF. This

is a major advantage of our derivation method. As shown in the next chapter, we will

further extend this method to develop lattice Boltzmann models for compressible flows

with shock waves.

2.4 Numerical tests

To validate this model, we simulated the lid-driven cavity flow. This is an isothermal

incompressible flow problem. The following conditions should be satisfied

‖u‖ << c = const (2.28a)

‖u‖ + c <
√

2 (2.28b)

Equ. (2.28a) means the small Mach number and isothermal conditions, while Equ. (2.28b)

makes sure that the circle is inside the interpolation stencil to avoid extrapolation.

2.4.1 Simulating the lid-driven cavity flow with collision-streaming pro-

cedure

First, the traditional collision-streaming(CS) process was used. Because of the numerical

viscosity of CS, the viscosity should be modified as

ν = p

(

τ − 1

2

)

ρ =
1

2
c2

(

τ − 1

2

)

The velocity of the top lid is set as 0.08 and c = 0.8 to satisfy Equ. (2.28). The initial

density is set as 1. On the top boundary, fi is always set as the equilibrium state f eq
i . On

the other walls, the bounce-back condition is used.

For the case of Re = 1000, three vortices were computed. And the locations of the
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Primary Lower left Lower right
x/Llid y/Llid x/Llid y/Llid x/Llid y/Llid

Re = 1000 Ghia 0.5313 0.5625 0.0859 0.0781 0.8594 0.1094
Hou 0.5333 0.5647 0.0902 0.0784 0.8667 0.1137

Present 0.5301 0.5639 0.0832 0.0774 0.8625 0.1130

Re = 5000 Ghia 0.5117 0.5352 0.0703 0.1367 0.8086 0.0742
Hou 0.5176 0.5373 0.0784 0.1373 0.8078 0.0745

Present 0.5159 0.5360 0.0721 0.1425 0.8059 0.0724

Table 2.1: Locations of vortices for the lid-driven cavity flow of Re = 1000 and 5000

vortices, as well as previous results by Ghia et al. [35] (with FDM NS solver) and Hou et

al. [6] (with D2Q9 LBM), are listed in Tab. 2.1. Our results agree with the referenced

data excellently. Fig. 2.4 presents the streamlines and normalized velocity profiles along

the two centerlines of the box. The solid symbols are the results of Ghia et al. [35]. Good

agreement between our results and the benchmark solutions can be observed. On the

other hand, it should be indicated that the stability of collision-streaming process of this

model is not good. A 401× 401 uniform grid is needed in the simulation to get a smooth

pressure field. It might be due to the non-smooth CF-VIIF and existence of negative f eq
i

resulted from the third order Lagrangian interpolation. Nevertheless, the results agree

excellently well with previous studies. This implies that our deriving method and model

are correct and feasible. In order to increase the stability of the model, a smooth function

and an optimized interpolation stencil might be prefered. In simulation, finite difference

method might be also a feasible way since finite difference schemes can introduce numerical

dissipation to stabilize the computation.

2.4.2 Simulating the lid-driven cavity flow with finite difference method

In order to investigate the capability of this model to simulate incompressible flows at

higher Reynolds numbers, we will use the finite difference method to solve DVBE for sim-

ulation of the problem at Re = 5000. The smaller CFL number and numerical dissipation

of the finite difference scheme might stabilize the simulation.
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Figure 2.4: Streamlines and velocity profiles along the two central line of the lid-driven
cavity flow of Re = 1000 (computed with streaming-collision procedure).
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The explicit finite difference LBM for curvilinear coordinates developed by Guo and

Zhao [36] was applied here to simulate the lid-driven cavity flow of Re = 5000. In this

FDM LBM, DVBE is first integrated to give

fn+1
i − fn

i + ∆tei · ∇fn
i = ∆t

[
θΩn+1

i + (1 − θ)Ωn
i

]
(2.29)

where tn+1 = tn + ∆t , Ω is the collision operator and 0 ≤ θ ≤ 1. Here, θ = 0 or 1 means

that the collision term is treated completely explicit or implicit, respectively. To achieve

the second-order approximation, θ is set as
1

2
. But, with this setting, Ωn+1 needs be

computed implicitly. To avoid it, they introduced the following function

hi = fi + ωθ(fi − f eq
i ) (2.30)

where ω = ∆t/τ . Then the following semi-discretized DVBE can be obtained

hn+1
i + ∆tei · ∇fn

i = (1 − ω + ωθ)fn
i + ω(1 − θ)f eq,n

i (2.31)

where

fn
i =

1

1 + ωθ
(hn

i + ωθf eq,n
i )

The macroscopic density and velocity can be computed from hi directly as

ρ =
∑

hi ρv =
∑

hiei (2.32)

In a general curvilinear coordinate ξ − η, the advection term is written as

ei · ∇fi = eiα
∂fi

∂xα
= ciβ

∂fi

∂ξβ
(2.33)

where ciβ = eiα
∂ξβ
∂xα

. Numerical discretization can be made by combining the second
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order upwind scheme and the central scheme

∂fi

∂ξβ
= σSu

i + (1 − σ)Sc
i

where Su
i and Sc

i are the upwind and central scheme, respectively, 0 ≤ σ ≤ 1 is a control

parameter to adjust the weight of the two schemes. In our simulation, σ is set as 0.05.

Non-equilibrium extrapolation method [37] is applied to implement the non-slip wall

boundary conditions. In this method, the distribution function fi(xb) on the wall node

xb is determined from fi(xf ) at xf which is the nearest neighboring fluid node of xb

fi(xb) = f eq
i (xb) + [fi(xf ) − f eq

i (xf )] (2.34)

Here f eq
i (xb) is computed from mean flow variables (ρb and vb). vb is known and ρb can

be approximated with ρf which is the density at xf .

A 101 × 101 nonuniform grid was used for simulation. The locations of vortices, as

well as previous results by Ghia et al.[35] and Hou et al. [6], are listed in Tab. 2.1. Fig.

2.5 presents the streamlines and velocity profiles along the two centerlines where the solid

symbols are the results of Ghia et al.. The two sets of results agree very well. Comparing

with the same simulation by Guo and Zhao [36] who used D2Q9 model, a smaller time

step had to be used in our simulation. It suggests that the stability of this new model is

not good.

2.5 Concluding remarks

In this chapter, we systematically present a new methodology to construct lattice velocity

models and associated equilibrium distribution functions. In particular, the D2Q13 model

was developed to simulate viscous isothermal incompressible flows. The high accuracy of

the model was verified by its application to simulate lid-driven cavity flows.

The new methodology may provide some interesting features for development of new

lattice models. First, it has been shown that, there is no need to assume a formula be-
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Figure 2.5: Streamlines and velocity profiles along the two central lines of the lid-driven
cavity flow of Re = 5000 (computed with FDM).
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forehand since it can be derived step by step naturally. Also the configuration of the

lattice can be obtained with some basic knowledge on polynomial and linear theory. It

is expected that with a spherical function and a 3D Lagrange interpolation stencil, the

three dimensional LB models can be developed using the same way. The present method

is more natural and straightforward than the undetermined coefficient method. Second,

we do not need the small Mach number assumption and isothermal assumption as mathe-

matical requirements during the derivation. Although the D2Q13 is derived for isothermal

incompressible flows, the integral (2.5) can be evaluated without these assumptions. Only

in the phase of simulation, they are imposed as Equs. (2.28a and 2.28b). This means that

our model can be derived without these two assumptions. The present approach is differ-

ent from the traditional deriving methods in which the assumptions of low Mach number

and isothermal flows are indispensable. Therefore, our deriving method has fewer limits.

LB models for compressible flows might be derived from a proper simplified equilibrium

function. Third, it is interesting to note that using a symmetric stencil here is just for

convenience of applying the collision-streaming procedure and bounce-back wall boundary

condition but not necessary for recovering Navier-Stokes equations. Since FDM, FVM and

FEM can handle non-uniform gird and the wall boundary conditions with implementa-

tion of non-equilibrium extrapolation method, LB models based on an asymmetric lattice

might be feasible. Then, neither of the Maxwellian equilibrium distribution function nor

the symmetric lattice is necessary.

In the next chapter, we will discuss how to apply the newly derived method to con-

struct LB models for compressible flows.
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Chapter 3

Development of LB Models for

Inviscid Compressible Flows

In this chapter, the newly derived method proposed in the last chapter is extended to

derive LB models for inviscid compressible flows. The key problem is how to find a simple

function which can recover to Euler equations. And after the models are constructed, how

to choose a proper numerical method to capture discontinuities in compressible flows of

a high Mach number is another challenging issue. This chapter will address these issues

and implementation of boundary conditions in details.

3.1 Looking for a simple equilibrium distribution function

for inviscid compressible flows

In compressible flows, energy evolution couples with momentum equation and kinetic en-

ergy can be converted to internal energy, and vice versa. Thus energy equation should

be introduced. For inviscid compressible flows, the governing equations of inviscid com-
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pressible flows are Euler equations written as

∂ρ

∂t
+
∂ρuα

∂xα
= 0 (3.1a)

∂ρuα

∂t
+
∂(ρuαuβ + pδαβ)

∂xβ
= 0 (3.1b)

∂ρE

∂t
+
∂ (ρE + p)uα

∂xα
= 0 (3.1c)

where

p = (γ − 1)ρe

E =
1

2
u2 + e

e = CvT

We have argued that in Chapter 1, the Maxwellian, Equ. (1.7) can not be used to

derive LB models for compressible flows because it dose not consider rotational degrees

of freedom of diatomic or polyatomic molecules. Our work is based on the modified

two-dimensional Maxwellian with extra degrees of freedom, Equ. (1.14).

g (ξ) =
ρ

(2πRT )
K+D

2

exp







−

(ξ − u)2 +
K∑

i=1
ξ2i

2RT








It satisfies the following relations

∫

gdξ = ρ (3.2a)
∫

gξαdξ = ρuα (3.2b)

∫
1

2
gξ2αdξ = ρ

(
1

2
u2

α +
b

2
RT

)

(3.2c)

∫

gξαξβdξ = ρ (uαuβ +RTδαβ) (3.2d)

∫
1

2
gξ2αξβdξ = ρ

(
1

2
u2

α +
b+ 2

2
RT

)

uβ (3.2e)

Here, R is gas constant, b is the number of total degrees of freedom of a molecule and
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related to specific heat ratio, γ = (b + 2)/b. Equs (3.2a-3.2c) are mass, momentum and

energy conservation relations, while Equs. (3.2d, 3.2e) are momentum and energy flux

relations. With these relations, the BGK Boltzmann equation

∂f

∂t
+ ξ · ∇f = (g − f) /τ (3.3)

can recover Euler equations, Equ. (3.1).

We can see that the conservation relations of mass and momentum Equs. (3.2a, 3.2b),

as well as the momentum flux relation Equ. (3.2d), are the same as those of CF-VIIF. So

we can still use the circular function in the velocity space to satisfy these three relations.

The other two relations Equs. (3.2c, 3.2e) are energy conservation and flux relations.

Since only the total energy of those extra degrees makes the difference, we try to add an

extra degree of energy into the circular function CF-VIIF.

We consider a very simple circular function, gs, as shown in in Fig. 3.1

gs =







ρ

2πc

if ‖ξ − u‖ = c ≡
√

D (γ − 1) e

and λ = ep =

[

1 − D

2
(γ − 1)

]

e

0 else

(3.4)

where λ is an extra axis standing for the total energy of all the extra degrees, and D = 2

is the spatial dimension. Here, ep is the mean flow rest energy which comes from the extra

energy of molecules. This gs means that all mass, momentum and energy concentrate on

a circle located in a 3D space of ξx − ξy −λ . So, its energy d (ρζ) consists of two parts:

kinetic energy
1

2
ξ2 and the extra energy λ = ep.

For a small arc ds on the circle, the mass, momentum and energy are

dρ =
ρ

2πc
ds

d(ρξα) =
ρ

2πc
(uα + cα) ds

d(ρζ) =
ρ

2πc

[
1

2
ξ2χ + λ

]

ds =
ρ

2πc

[
1

2
(uχ + cχ)2 +ep

]

ds
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Figure 3.1: The schematic of the circular function gs. It is located on a plane λ = ep in
the ξx − ξy − λ space. u is the mean velocity and c is the effective peculiar velocity.

where cα is the component of vector c and c =‖ c ‖ .

Taking account

ds = cdθ

and
∮

cds = c2
∫ 2π

0
(cos(θ)i + sin(θ)j)dθ = 0i + 0j

It is easy to verify that this circular function satisfies the following relations

∮

dρ = ρ (3.5a)
∮

d(ρξα) = ρuα (3.5b)
∮

(uβ + cβ) d(ρξα) = ρ (uαuβ +RTδαβ) (3.5c)

∮

d(ρζ) = ρ

(

u2
χ +

b

2
RT

)

(3.5d)

∮

ξαd(ρζ) =

(

ρu2
χ +

b+ 2

2
RT

)

uα (3.5e)

These relations are the same as Equ. (3.2). So, we can use this circular function
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to replace the Maxwellian function to derive f eq
i for inviscid compressible flows. For

simplicity, this function is named as Circular Function for Inviscid Compressible Flows

(CF-ICF) in this thesis.

3.2 Deriving lattice models for inviscid compressible flows

We have shown that CF-ICF satisfies the constraints Equ. (3.2) and Euler equations can

be recovered. Like what we have done with CF-VIIF in last chapter, it is expected that

the equilibrium distribution function in a lattice model can be obtained by discretizing

CF-ICF onto a lattice in such a way that the relations Equ. (3.5) can be conserved in the

context of LBM when the integrals are replaced by the summations. In this section, we

will study what condition of discretization should be satisfied.

3.2.1 Constraints of discretization from CF-ICF to a lattice model

Different from CF-VIIF which is a two variable function (ξx and ξy ), CF-ICF is a function

in three-dimensional space ξx − ξy − λ. Thus, how to deal with the third variable λ is a

new problem.

Suppose that in the ξx − ξy − λ space, there are 1 . . . N points, ei. CF-ICF will

be discretized to all ei. For any dρ on the circle, it has a contribution φi(ξ, λ)dρ on

the discrete velocity ei, where φi(ξ, λ) is the assigning function. Thus, the accumulated

density on ei is Thus, the accumulated density on ei is

ρi =
ρ

2πc

∮

φi (ξ, λ) ds (3.6)

If we use ρi as the particle equilibrium distribution function f eq
i , what conditions do

φi(ξ, λ) have to satisfy? Now, let us study this problem.

For convenience, we consider a case in which all ei are located on the plane of λ = ep.
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Figure 3.2: Configuration of the circle and the discrete velocity vectors in the velocity
space of λ = ep. ei is one of the discrete velocity vectors, u is the mean velocity, c is the
effective peculiar velocity and zi is the vector from the position on the circle to ei.

On this plane, φi(ξ, λ) is reduced to φi(ξ). And Equ. (3.6) can be written as

ρ̃i =
ρ

2πc

∮

φi (ξ) ds (3.7)

On this plane, Equ. (3.5) can be written as the form of summation

N∑

i=1

ρ̃i =

∮

dρ (3.8a)

N∑

i=1

ρ̃i eiα =

∮

d(ρξα) (3.8b)

N∑

i=1

ρ̃i eiαeiβ =

∮

(u + c)β d(ρξα) (3.8c)

N∑

i=1

ρ̃i

(
1

2
e2iχ + ep

)

=

∮

d(ρζ) (3.8d)

N∑

i=1

ρ̃i

(
1

2
e2iχ + ep

)

eiα =

∮

ξαd(ρζ) (3.8e)

In Fig. 3.2, we can see that the relation between the discrete velocity ei and the original
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velocity ξ is

ei = ξ + zi(ξ) (3.9)

Substituting Equ. (3.9), Equ. (3.7) into Equ. (3.8a), we can get

N∑

i=1

ρ̃i =

∮
ρ

2πc

N∑

i=1

φi (ξ) ds ≡
∮

ρ

2πc
ds⇒

N∑

i=1

φi (ξ) = 1 (3.10)

Then substituting Equ. (3.7), (3.9) and (3.10) into (3.8b) gives

N∑

i=1

ρ̃i eiα =

∮
ρ

2πc
ξαds+

∮
ρ

2πc

N∑

i=1

zi(ξ)αφi (ξ) ds ≡
∮

ρ

2πc
ξαds

⇒
N∑

i=1

zi(ξ)αφi (ξ) = 0 (3.11)

Furthermore, substituting Equ. (3.7), Equs. (3.9-3.11) into (3.8c) leads to

N∑

i=1

ρ̃i eiαeiβ =

∮
ρ

2πc
ξαξβds+

∮
ρ

2πc

N∑

i=1

zi(ξ)αzi(ξ)βφi (ξ) ds ≡
∮

ρ

2πc
ξαξβds

⇒
N∑

i=1

φi (ξ) zi(ξ)zi(ξ) = 0 (3.12)

With Equs. (3.10-3.12), Equ. (3.8d) can be satisfied automatically. Finally, substituting

Equs. (3.7, 3.9-3.12) into Equ. (3.8e), we can get

N∑

i=1

φi (ξ) zi(ξ)zi(ξ)zi(ξ) = 0 (3.13)

Equs. (3.10-3.13) are the constraints for the assigning function φi (ξ).

We can see that these constraints are the same as those for CF-VIIF developed in the

last chapter. So, we can use the same lattice (in Fig. 2.3) and the Lagrangian interpolation

polynomials Equ. (2.19) derived in the last chapter. Substituting these base functions,

Equ. (2.19), into Equ. (3.7), we can get all ρ̃i which are the same as those f eq
i listed in

Equ. (2.20).
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Figure 3.3: D2Q13L2 lattice.

3.2.2 Introduction of energy-levels to get fully discrete f
eq
i

Notice that the summation relations, Equ. (3.8), contain ep which is a mean flow variable

dependent on time and space. In a pure lattice model, only f eq
i depends on space and

time. So we should find a way to express the summation relations with only f eq
i , ei and

some other constants.

Since λ is another dimension standing for rest energy, we may introduce several fixed

energy-levels to assign ep. As ep is appeared linearly in Equ. (3.8d and 3.8e), conservation

of the first order moment of ρ̃i in λ is enough, which means that we can set two energy-

levels, λ1 = 0 and λ2 > ep. Linearly assigning every ρ̃i onto the two energy-levels gives







ρi1 = ρ̃i (λ2 − ep) /λ2

ρi2 = ρ̃i ep/λ2
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which makes
2∑

v=1
ρivλv = ρ̃iep. Thus ρiv can satisfy







N∑

i=1

2∑

v=1
ρiv = ρ

N∑

i=1

2∑

v=1
ρiveiα = ρuα

N∑

i=1

2∑

v=1
ρiveiαeiβ = ρ(uαuβ +RTδαβ)

N∑

i=1

2∑

v=1
ρiv

(
1

2
e2iχ + λv

)

= ρ

(
1

2
u2

χ +
b

2
RT

)

N∑

i=1

2∑

v=1
ρiv

(
1

2
e2iχ + λv

)

uα = ρ

(
1

2
u2

χ +
b+ 2

2
RT

)

uα

(3.14)

and we can use ρiv as f eq
iv . Now we get a two-dimensional 13-velocity and 2-energy-levels

lattice model, named D2Q13L2 (Fig. 3.3).

All the derivation can be implemented with Maple or Mathematica. Appendix A.2

presents the Maple scripts to get the base function φi(x, y) , f eq
iv and optimized C language

codes. Here, we can see that there is only one free parameter, λ2, in our models and it is

easily determined as 1 (see Section 3.4).

3.2.3 Deriving a 1D lattice Boltzmann model for 1d Euler equations

In order to simulate 1D shock tube problems, we construct a one dimensional model.

Here, a simpler two-point function is used:

gs =







ρ

2

if ξ − u = ±c = ±
√

D (γ − 1) e

and λ = ep =

[

1 − D

2
(γ − 1)

]

e

0 else
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where D = 1. Using 5-node Lagrange interpolation method, we get a D1Q5L2 model as







ρ0 =
ρ

(
d1

2 d2
2 − d1

2 u2 − d1
2 c2 − d2

2 u2 − d2
2 c2 + u4 + 6u2c2 + c4

)

d1
2 d2

2

ρ1 =
ρ

(
3 d1uc

2 − d1 d2
2 u− d2

2 u2 − d2
2 c2 + 6u2c2 + c4 + u4 + d1u

3
)

2 d1
2
(
d1

2 − d2
2
)

ρ2 =
ρ

(
−3 d1uc

2 + d1 d2
2 u− d2

2 u2 − d2
2 c2 + 6u2c2 + c4 + u4 − d1u

3
)

2 d1
2
(
d1

2 − d2
2
)

ρ3 = −ρ
(
−d2 d1

2 u+ 3 d2uc
2 − d1

2 u2 − d1
2 c2 + 6u2c2 + c4 + u4 + d2u

3
)

2 d2
2
(
d1

2 − d2
2
)

ρ4 = −ρ
(
d2 d1

2 u− 3 d2uc
2 − d1

2 u2 − d1
2 c2 + 6u2c2 + c4 + u4 − d2u

3
)

2 d2
2
(
d1

2 − d2
2
)







f eq
i0 = ρi (λ2 − ep) /λ2

f eq
i1 = ρiep/λ2

where d1 and d2 are two integers, d1 < d2. The 5 particle velocities are 0, d1, −d1, d2,

−d2. In Appendix A.3, the Maple script to derive this model is presented.

3.3 Chapman-Enskog analysis

It can be easily shown that the present models recover to Euler equations with Chapman-

Enskog expansion.

With Chapman-Enskog expansion, the distribution function fiv is approximated by

f eq
iv

fiv = f eq
iv +O (ε) (3.15)

By multiplying Equ. (1.20) with the collision invariant vector

[

1, eiβ ,
e2iχ
2

+ λv

]T

and

doing summation, we get

i=N,v=2
∑

i=1,v=1







[
∂fiv

∂t
+ ∂α (fiveiα)

]









1

eiβ

e2iχ
2

+ λv















=

i=N,v=2
∑

i=1,v=1

[
f eq

iv − fiv

τ

]









1

eiβ

e2iχ
2

+ λv









(3.16)
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By substituting Equs. (3.14) and (3.15) into Equ. (3.16), we can get the macroscopic

equations as

∂

∂t









ρ

ρuα

ρE









+ ∂α









ρuα

ρuαuβ + p

ρ (E + p)uα









= O (ε) (3.17)

So Euler equations can be approximated with the truncation error O(ε).

3.4 FVM formulations in curvilinear coordinate system

Since DVBE recovers Euler equations in the order of O(ε), Knudsen number ε should be

very small in numerical simulations. And the dimensionless width of an interface (a shock

wave or a contact discontinuity) is in the order of ε. In order to resolve the interface,

the mesh size should be smaller than ε. The use of such small mesh size is unacceptable.

Kataoka and Tsutahara [27] proved that with a consistent numerical scheme of the p-th

order accuracy, DVBE approaches to the weak form solution of Euler equations even if

the mesh size is much larger than ε and the error is max(O(∆xp), O(ε)). This means that

we can solve DVBE on a coarser grid.

To well capture the discontinuity, artificial dissipation is needed. The artificial dis-

sipation in the present work comes from two parts. One is the model dissipation, O(ε).

The other is the numerical dissipation resulted from the numerical scheme adopted. The

model viscosity is related to ε. Since ε is taken as very small, the model dissipation is

not enough to capture discontinuities without oscillation. So, the main dissipation comes

from the numerical scheme. In this work, a third order MUSCL FVM scheme (Monotone

Upstream-centered Scheme for Conservation Laws) [38] is used to solve DVBE.

Since FVM is used to solve DVBE, we write BGK DVBE as the conservative form in

2D general coordinates

∂ f̂k

∂t
+
∂ F̂ k

∂ξ
+
∂ Ĝk

∂η
= Ω̂k (3.18)
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J is the Jacobian of coordinate transformation

J =
∂ (ξ, η)

∂ (x, y)
=

∣
∣
∣
∣
∣
∣
∣

∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

∣
∣
∣
∣
∣
∣
∣

−1

(3.19)

In Equ. (3.18), f̂k is the distribution function, where k is the index of all distribution

functions

f̂k =
fk

J
(3.20)

And the flux terms and source term

F̂ k =
fkekξ

J
Ĝk =

fkekη

J
Ω̂k = −fk − f eq

k

τJ
(3.21)

The contravariant velocities are given by







ekξ = ξxekx + ξyeky

ekη = ηxekx + ηyeky

(3.22)

The semi-discretized form is

1

J

∂fk,i,j

∂t
= −

[

F̂
k,i+

1
2 ,j

− F̂
k,i−

1
2 ,j

]

−
[

Ĝ
k,i,j+

1
2
− Ĝ

k,i,j−
1
2

]

− Ω̂k,i,j (3.23)

where i is a cell index, F̂
k,i±

1
2 ,j

and Ĝ
k,i,j±

1
2

are numerical fluxes on the interfaces of a cell

(i, j). They can be computed with a Riemann solver. For Equ. (3.18), the exact Riemann

solver is available and cheap since it is a constant linear hyperbolic system. F̂
k,i+

1
2 ,j

for

instance

F̂
k,i+

1
2 ,j

=







(fL)
k,i+

1
2 ,j
ekξ/J if ekξ ≥ 0

(fR)
k,i+

1
2 ,j
ekξ/J if ekξ ≤ 0

(3.24)

where fL and fR are the distribution function just on the left and right side of the interface

(i+ 1
2 , j) . In this work, they are determined by the third order MUSCL with the smooth
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limiter to extrapolate the value of f̂
n

α on the two side of an interface







(fL)
k,i+

1
2 ,j

= fα,i,j +
{s

4
[(1 − κs)∆− + (1 + κs) ∆+]

}

i

(fR)
k,i+

1
2 ,j

= fα,i+1,j −
{s

4
[(1 − κs)∆+ + (1 + κs)∆−]

}

i+1

(3.25)

where κ = 1/3 and s is the Van Albada limiter [39]

s =
2∆+∆− + ε2

∆2
+ + ∆2

− + ε

Here ε is a small number (we set ε = 10−6 ) preventing division by zero in region of null

gradient and

(∆+)i = fk,i+1,j − fk,i,j

(∆−)i = fk,i,j − fk,i−1,j

With (fL)
i+

1
2

and (fR)
i+

1
2

, the numerical flux on the interface i + 1
2 can be computed

according to the exact Riemann solver Equ. (3.24). Computing Ω̂k,i,j is easy when a full

explicit time scheme is applied for time advancement. However, in order to resolve the

dimensionless relaxation time τ , the time step ∆t should be smaller enough as compared

to τ value.

In this work, the Euler forward scheme is applied for the temporal discretization.

Although it is a first order explicit scheme, it is good enough not only for steady flows

but also for many unsteady problems since the time step ∆t is limited by τ , making the

CFL number very small. Because no convergence acceleration methods were applied, the

computing is very time consuming.

Because the lattice of the LB model is fixed, the problems to be simulated should

be normalized to the scale of the lattice. So, dimensionless equations should be used.

There are three independent reference variables, reference density ρ0, length L0 and in-

ternal energy e0 (note, this e0 is not a discrete velocity vector). The other reference and
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dimensionless variables are defined as follows

U0 =
√
e0 t0 =

L0

U0

t̆ =
t

t0
x̆ =

x

L0
ρ̆ =

ρ

ρ0

ĕ =
e

e0
τ̆ =

τ

t0
λ̆2 =

λ2

e0
ŭ =

u

U0

Here τ̆ is the Knudsen number and is very small for inviscid flows (we set τ̆ = 10−4 ∼

10−3). So the dimensionless time step is seriously limited (we set ∆t̆ = 0.3τ̆ ). The value

of e0 is very important. It determines U0 and normalizes e to ĕ from which c̆ is computed.

And in order to make the circle located inside the lattice to avoid extrapolation, we need

|ŭ|+ c̆ <
√

2 where
√

2 is the shortest distance from the original point to the edges of the

D2Q13 lattice. So, e0 should be big enough. Determining this parameter is easy and it

has clear physical and mathematical meaning. For safety, e0 can be set a little bit greater

than the maximum specific stagnation internal energy, max(e∗), in the whole flow field.

Also, λ2 should be big enough. In our simulations, we set λ2 = e0 for simplicity. So

λ̆2 = 1 and we have the following relations







ρ̆ =
13∑

i=1

2∑

v=1
f eq

iv

ρ̆ŭ =
13∑

i=1

2∑

v=1
f eq

iv ei

ρ̆Ĕ =
13∑

i=1

[
2∑

v=1
f eq

iv

e2
i

2
+ f eq

i2

]

and 





ĕ = Ĕ − ŭ2

2

p̆ = (γ − 1) ρ̆ĕ

3.5 Boundary conditions

In our simulations in this work, many boundary conditions are involved, such as subsonic

inlet/outlet, supersonic inlet/outlet and adiabatic inviscid wall boundary conditions. For

all the boundary conditions, we can use the following way to implement them. At first,
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Figure 3.4: Implementation of slip wall condition. The thick line is the wall, cells drew
with thin solid lines are cells in fluid domain, and cells drew with dash lines are ghost
cells inside the wall.

we need to determine mean flow variables (ρ, u, v and e) on the boundary using available

means of traditional CFD. Then, we can compute f eq
iv on the boundary according to ρ,

u, v and e on the boundary. Since inviscid flows are considered and shear stress, heat

conduction and work done by shear stress are negligible, the non-equilibrium part of fi

which results in the viscous effects, can be neglected. This guarantees that the use of f eq
iv

on the boundary is accurate enough.

We also implement the slip adiabatic wall boundary condition with a reflection-

projection method. On a rectangular grid, it is easy to perform the specular reflecting

operation to implement slip-wall condition because every velocity has its mirror peer.

However, this is not the case for curvilinear grids. We have a little more work to do for

the curvlinear gird. Fig. 3.4 shows the wall and the nearby cells. The thick line is the

wall, cells drew with thin solid lines are cells in fluid domain. We first reflect every veloc-

ity of the center of cell 2, ei. Usually, the reflected velocity e′i is not coincident with any

node in the D2Q13L2 lattice (Fig. 3.5). So we assign (project) its corresponding fiv(2)

onto every node of the D2Q13L2 lattice. And the accumulated value on the velocity ej ,
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wall tangent vector

αe

α′e

 

Figure 3.5: Reflection-projection method for the inviscid wall boundary condition.

fjv(2
′) is

fjv(2
′) =

13∑

i=1

fivφj (eix, eiy)

Then distribution function on the wall, fw
iv , can be computed by averaging these two

values

fw
iv =

fiv(2) + fiv(2
′)

2

Thus the flux through the wall can be computed. Alternatively, with the same method,

after computing the distribution function fiv(3
′) in the ghost cell 3′, the flux through the

wall can be computed with MUSCL scheme when cells 2 and 2′ are internal cells. It is

not difficult to prove that this reflection-projection operation satisfies the inviscid wall

condition and is of the second order accuracy.

3.6 Numerical results

This section presents numerical results of many test cases, including different dimensional

problems (one dimensional and two dimensional), different Mach numbers (subsonic, tran-

sonic, supersonic and hypersonic flows), different geometries (rectangular and irregular
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domains). All these numerical tests show that our deriving method, models, numerical

procedure and implementation of boundary conditions are right.

3.6.1 Sod shock tube

The first test case is the Sod shock tube problem. This is a one-dimensional problem. So,

we simulated it with the D1Q5L2 model. The initial condition is

(ρL, uL, eL) = (1, 0, 2.5) −0.5 < x < 0

(ρR, uR, eR) = (0.125, 0, 2) 0 < x < 0.5

In this case, the reference internal energy e0 = 4 > max(e∗) = 2.5 , ρ0 = 1, L0 = 1

and ε̆ = 10−4 . The mesh size ∆x = 1/200 and time step ∆t̆ = ε̆/4 . Before the waves

propagate to the two boundary ends, the distribution functions at the boundary can be set

as the equilibrium distribution functions computed from the initial value of macroscopic

variables. The initial value of fi is set as equilibrium function. The computed density,

velocity, pressure and internal energy profiles at t = 0.22 are shown as symbols in Fig.

3.6. Also displayed in this figure are the exact solutions (solid lines). Clearly, the present

results agree excellently well with the exact solution.

3.6.2 Lax shock tube

The second test case is the Lax shock tube problem, which is also a 1D problem and is

solved by the D1Q5L2 model. The initial condition of the problem is given as

(ρL, uL, eL) = (0.445, 0.698, 19.82) −0.5 < x < 0

(ρR, uR, eR) = (0.5, 0, 2.855) 0 < x < 0.5

We set e0 = 30 > max(e∗) = 19.82 , ρ0 = 1 , L0 = 1, ε̆ = 10−4. The mesh size is the

same as those of the Sod case. And time step is ∆t̆ = ε̆/4. The initial value of fi is set as

equilibrium function. The computed density, velocity, pressure and internal energy profile

at t = 0.14 are shown and compared with the exact solution in Fig. 3.7
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Figure 3.6: Density (left up), pressure (right up), velocity (left bottom) and internal
energy (right bottom) profiles of Sod case.

X

R
h

o

-0.4 -0.2 0 0.2 0.4

0.4

0.6

0.8

1

1.2

X

P

-0.4 -0.2 0 0.2 0.4
0.5

1

1.5

2

2.5

3

3.5

X

U

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

X

e

-0.4 -0.2 0 0.2 0.4

5

10

15

20

 

Figure 3.7: Density (left up), pressure (right up), velocity (left bottom) and internal
energy (right bottom) profiles of Lax case.
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Figure 3.8: Density contour of shock reflection on a plane.

3.6.3 A 29◦ shock reflecting on a plane

The two cases presented above are actually 1D problems. To further validate the present

approach, we simulated a 2D supersonic flow in which a 29◦ shock of 2.9 Mach number

reflects on a wall. The computational domain is a rectangle of length 4 and height 1.

Uniform mesh of 150 × 100 is used. The left and top boundary conditions are

(ρL, uL, vL, eL) = (1, 2.9, 0.0, 1.785714)

(ρT , uT , eT ) = (1.69997, 2.61934,−0.50633, 2.247378)

The right boundary condition is supersonic outflow where extrapolation is applied.

At the bottom, it is a slip wall below which 2 level of mirror points are set and the

value of particle distribution functions are obtained by mirror reflecting their symmetric

particle distribution functions. In the computation, we set ρ0 = 1 , L0 = 1, ε = 10−4 and

e0 = 8 > max(e∗) = 7.78 . Still ε̆ = 10−4, and the time step is time step is ∆t̆ = ε̆/4.

Fig. 3.8 presents the density contour in which the shock wave is captured excellently.

3.6.4 Double Mach reflection

In the last case of shock reflection, the pressure ratio cross the shock wave is 2.14, which

is not high enough to generate a strong shock wave. Now, we simulate a case of high

pressure ratio, the double Mach reflection problem (pressure ratio is 116.5), to show the

ability of the present model to simulate strong shock waves. For this case, a normal shock
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Figure 3.9: Schematic diagram of the double Mach reflection case.

wave with Mach number of 10 passes through a 30◦ wedge (Fig. 3.9). Uniform mesh size

of 300×100 is used. The reference variables are set as ρ0 = 1, L0 = 1, ε̆ = 10−4, ∆t̆ = ε̆/4

and e0 = 75 > max(e∗) = 72.8.

The computed density and pressure contours are shown in Fig. 3.10. These results

are in good agreement with those obtained by using the upwind scheme to solve Euler

equations [40]. The complex features such as oblique shocks and triple points are well

captured.

3.6.5 Flow past a bump in a channel

All the cases presented above are simulated on uniform Cartesian grids. In order to

validate the capability of our method for its application on curvilinear grids, the following

cases will be studied.

First, we consider a flow in the GAMM channel (Fig. 3.11) which has a 10% circular

bump (h = 0.1) in it. The inflow Mach number is 0.675. Fig. 3.12 shows the 80× 22 grid

of the channel.

In the computation, total energy e∗ = 1.96 for u = 0.675 and ρ = 1 of Mach = 0.675.

The reference variables are ρ0 = 1, L0 = h, ε̆ = 10−3, ∆t̆ = ε̆/4 and e0 = 2 > max(e∗) =
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Figure 3.10: Density (top), pressure (middle) and internal energy (bottom) contours of
the double Mach reflection case.
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Figure 3.11: Schematic of GAMM channel. h is the height of the circular bump.

 

Figure 3.12: The structural curvilinear grid of channel with bump of 10%

1.96

The left boundary is subsonic inlet, the right boundary is set as extrapolating outflow,

the top and bottom boundaries are slip adiabatic walls. The computed Mach number

contour is shown in Fig. 3.13. And Fig. 3.14 shows the Mach number profiles on the

walls. The solid dot line in this figure is the result computed by solving Euler equation

with WENO scheme [41]. Obviously, the present results agree well with those obtained

by the Euler solver.

3.6.6 Flows around Rae2822 airfoil

Two simulations were performed for this case. For the first one, M∞ = 0.75 and α = 3◦ ,

while for the second one, M∞ = 0.729, α = 2.31◦. In these simulations, a 225×65 C-type
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Figure 3.13: Mach number contour of M∞ = 0.675 flow in the channel of 10%.
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Figure 3.14: Distribution of Mach number along walls.
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Figure 3.15: Boundary conditions of flow around Rae2822 airfoil.

grid was used. And the boundary conditions are shown in Fig. 3.15 in which the outer

boundary is about 20 times of the chord length far from the airfoil.

In the computation, for u∞ = Mach and ρ∞ = 1, the internal energy can be deter-

mined as

e∞ =
p∞

(γ − 1)ρ∞
=

1/γ

(γ − 1) × 1
=

1

γ(γ − 1)

Then total energy e∗ can be obtained according to the Mach number. The reference

variables are ρ0 = 1, L0 = chordlength, ε̆ = 10−3, ∆t̆ = ε̆/4 and e0 > max(e∗)

The pressure contours of the first case are shown in Fig. 3.16. The shock wave is

captured clearly. And the pressure coefficient profile is presented in Fig. 3.16 in which

the results computed with the same grid by means of solving Euler solver with Jameson’s

central scheme [42] are shown as solid symbols. These two results agree excellently. For

the second case, the pressure contours and pressure coefficient profiles are shown in Figs.

3.18 and 3.19 respectively. And the solid dots in Fig. 3.19 are the experimental result

[43] which has some small difference from our result because the flow in the experiment is

a turbulent flow in which the shock wave interacts with the boundary layers. Therefore,

its stiffness and location are different from those of the numerical inviscid simulation.
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Figure 3.16: Pressure contours of flow over Rae2822 airfoil ( M∞ = 0.75 and α = 3◦ )
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Figure 3.17: Pressure coefficient profiles of flow over Rae2822 airfoil ( M∞ = 0.75 and
α = 3◦ )
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 Figure 3.18: Pressure contours of flow over Rae2822 airfoil ( M∞ = 0.729 and α = 2.31◦
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Figure 3.19: Pressure coefficient profiles of flow over Rae2822 airfoil ( M∞ = 0.729 and
α = 2.31◦ )
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Figure 3.20: Mach 3 flow around a cylinder. Grid and pressure contour.

3.6.7 Supersonic flow over a two dimensional cylinder

Finally, supersonic flow over a cylinder is simulated for two different Mach numbers

(M∞ = 3, 5). A 61 × 81 mesh, shown in Fig. 3.20 was generated analytically [44].







x = −(Rx − (Rx − 1)ξ) cos(θ(2η − 1))

y = (Ry − (Ry − 1)ξ) sin(θ(2η − 1))
(3.26)

where Rx = 3, Ry = 6, and θ = 5π/12. The flow fields is initialized according to the free-

stream state, while reflection wall conditions are imposed at the surface of the cylinder.

On the two supersonic outflow boundaries, extrapolating method is applied.

The contours of pressure for M∞ = 3 are plotted in Fig. 3.20. Although the pressure

jump is very large, the shock wave is captured without spurious oscillations. Fig. 3.21

shows the profile of pressure along the central line, as well as the result computed from
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Figure 3.21: Pressure coefficient profile along the central line for Mach 3 flow around a
cylinder.

the sixth order compact-Roe scheme with the adaptive filter by Visbal & Gaitonde [45].

Our profile agrees excellently well with theirs. It is noticed that the shock we simulated

smears over 3 cells and our profile is not as sharp as the reference data. It is because that

the grid used by Visbal & Gaitonde is finer (101× 81 in the upper-half domain) than the

present work and their sixth order scheme is much more accurate than the third order

MUSCL scheme we used here.

For the higher free-stream Mach number case, simulation of flows around blunt bodies

with Roe scheme may produce the so-called ”carbuncle” [46] which ruins the bow shock

waves. Some special treatments such as entropy fixing are needed to fix this problem.

The ”carbuncle” phenomenon doses not occur in our LBM simulation (Fig. 3.22). The

pressure profile and reference data [45] are shown in Fig. 3.23. The location of the shock

wave agrees excellently well with the semi-empirical value [47] and the result by Visbal

& Gaitonde. Because a much finer grid (201× 121 in the upper-half domain) was used in

[45], our shock wave is much more smeared than the data extracted from [45].
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Figure 3.22: Pressure contour of Mach 5 flow around a cylinder.
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Figure 3.23: Pressure coefficient profile along the central line for Mach 5 flow around a
cylinder.
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3.7 Concluding remarks

In this chapter, the new deriving method proposed in the last chapter is extended to

develop LB models for inviscid compressible flows. A simple function, CF-ICF, is con-

structed to replace the Maxwellian function as the equilibrium density distribution func-

tion. CF-ICF satisfies all statistical relations needed to recover Euler equations. CF-ICF

is assigned onto the lattice velocity directions by the Lagrangian interpolating stencil to

obtain the equilibrium distribution functions and the associated lattice velocity models.

Numerical experiments showed that compressible inviscid flows with strong shock waves

can be excellently simulated by the present model.

We can see that, in the derivation of the method, there is no need to assume a formula

of f eq
i beforehand and they are naturally derived step by step. Although the number of

particle distribution functions of our models is more than previous models, the numerical

tests show that they have only one free parameter e0 and can simulate flows with very high

Mach number and strong shock waves. And, the most important, the deriving method

proposed in this work is easy to implement and needs fewer assumption. It gives a new

way to develop lattice models for compressible inviscid flows. Although we only present

one and two dimensional models for inviscid compressible flows, it is natural to extend

this deriving method to three dimensional space (just use a sphere shell function and a

three dimensional Lagrange interpolating stencil).

Different from Gaussian-Hermite expansion method which is adopted to discretize the

Maxwellian function to derive the classic LB models, interpolating approach is applied to

discretize CF-ICF in our deriving method. So the idea of assigning functions make the

slip wall boundary condition easy to implement.

On the other hand, we have to indicate that the collision term on the right hand

side of DVBE is a stiff nonlinear source term. This makes CFL number very small since

only a full explicit scheme without any acceleration method is used in this work. So the

simulations are very time consuming, hundreds times slower than solving Euler equations

with FVM. Maybe some form of implicit methods and acceleration measures (such as
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multigrid) should be applied to increase CFL number.

70



Chapter 4

Development of LB Models for

Viscous Compressible Flows

The feasibility and advantages of our derivation method have been demonstrated in the

last two chapters. In this chapter, a two dimensional LB model for viscous compressible

flows is derived. For viscous compressible flows, heat conduction and the work done by

viscous stress should be recovered in the energy equation. Again, we will try to construct

another circular function. Its moment integrals have to recover the right energy equation.

Then, by using a set of Lagrangian polynomials to discretize it, a LB model for viscous

compressible flows, D2Q17L2, is obtained. With this model, some test cases are simulated.

Promising results are produced. On the other hand, we have to indicate that, the pressure

fields have some errors because of the nonzero bulk viscosity and the unit Prandtl number

which come from the BGK collision model.
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4.1 Simple equilibrium distribution function for viscous com-

pressible flows

In Chapter 1, we have pointed out that for compressible flows, considering the extra

degrees of freedom of gas molecules, the Maxwellian function should be Equ. (1.14)

g (ξ) = ρ (2πRT )−
K+D

2 exp







−

(ξ − u)2 +
K∑

i=1
ξ2i

2RT








where D is space dimension, ξi, i = 1 . . . K are extra degrees of freedom, K = b − D

[22]. Equation (1.14) satisfies the seven relations of Equ. (4.1) to recover compressible

Navier-Stokes equations.

∫

gdξ = ρ (4.1a)
∫

gξαdξ = ρuα (4.1b)

∫
1

2
gξ2χdξ = ρ

(
1

2
u2

χ +
b

2
RT

)

(4.1c)

∫

gξαξβdξ = ρ (uαuβ +RTδαβ) (4.1d)

∫
1

2
gξ2χξβdξ = ρ

(
1

2
u2

χ +
b+ 2

2
RT

)

uβ (4.1e)

∫

gξαξβξφdξ = p (uαδβφ + uβδφα + uφδαβ) + ρuαuβuφ (4.1f)

∫
1

2
gξ2χξαξβdξ = ρRT

{
b+ 2

2
RTδαβ +

1

2

[
(b+ 4)uαuβ + u2

χδαβ

]
}

+
1

2
ρu2

χuαuβ (4.1g)

where
∫

ξ =
∫ +∞

−∞
· · ·

∫ +∞

−∞
dξX1

· · · dξXD
dξ1 · · · dξK means a integral in the whole velocity

space (including extra degrees of freedom) and b is related to specific heat ratio γ as

γ =
b+ 2

b
.
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Starting from CF-ICF, it is easy to obtain following relations

∫

gdξdλ = ρ (4.2a)
∫

gξαdξdλ = ρuα (4.2b)

∫

g

(
1

2
ξ2χ + λ

)

dξdλ = ρ

(
1

2
u2

χ +
b

2
RT

)

(4.2c)

∫

gξχξβdξdλ = ρuαuβ + pδαβ (4.2d)

∫

g

(
1

2
ξ2χ + λ

)

ξβdξdλ = ρ

(
1

2
u2

χ +
b+ 2

2
RT

)

uβ (4.2e)

∫

gξαξβξχdξdλ = p (uαδβχ + uβδχα + uχδαβ) + ρuαuβuχ (4.2f)

∫
1

2
g

(
ξ2χ + 2λ

)
ξαξβdξdλ = ρRT

{
1

2
bRTδαβ +

1

2

[
(b+ 4)uαuβ + u2

χδαβ

]
}

+
1

2
ρu2

χuαuβ (4.2g)

where
∫
g(ξ, λ)dξdλ =

∫ +∞

0

∫ +∞

−∞

∫ +∞

−∞
g(ξx, ξy, λ)dξxdξydλ. Compared with Equ. (4.1),

only the underlined term in Equ. (4.2g) is different from that of Equ. (4.1g). So, we may

modify this circle function to make up this small difference.

How to modify CF-ICF? Before answering this question, we should check the role of

the underlined term in recovering macroscopic equations. It can be found by means of

Chapman-Enskog analysis.

4.1.1 Chapman-Enskog analysis

In this section, instead of presenting the complete derivation procedure, we will only show

how to derive the parts of non-equilibrium effects in the momentum and energy equations

because we have derived the model to recover Euler equations in the last chapter.

We write Equ. (4.1g) and Equ. (4.2g) into a general form

ρRT

{
1

2
bθRTδαβ +

[
1

2
(b+ 4) uαuβ +

1

2
u2

χδαβ

]}

+
1

2
ρu2

χuαuβ

= θCvpTδαβ +

[(
Cp

R
+ 1

)

uαuβ +
1

2
u2

χδαβ

]

p+
1

2
ρu2

χuαuβ (4.3)
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where, Cv and Cp are the specific heats at constant volume and pressure, γ is the specific

heat ratio, and R is the gas constant. And θ is a switch parameter, θ = γ for the

Maxwellian function and θ = 1 for CF-ICF.

Momentum equation

With the expansion

f = f (0) + εf (1) +O(ε2)

the viscous stress is expressed as

Π =

∫

f (1)ξαξβdξ

= −τ
∫ (

∂tf
(0) + ξα∂αf

(0)
)

ξβξγdξ (4.4)

The first term in Equ. (4.4) can be converted to the expression of mean flow variables

∫

∂tf
(0)
i ξβξγdξ = ∂t (ρvv + pI)

= ∂t (ρv)v + ρv∂tv + (γ − 1) ∂t (ρe) I (4.5)

Substituting the momentum and energy equations of Euler equations into Equ.(4.5), we

can get

∫

∂tf
(0)
i ξβξγdξ = −∇ · (ρvvv) − (v∇p+ ∇pv) −∇ · (pv) I − (γ − 1) p (∇ · v) I (4.6)

The second term in Equ. (4.4) can be converted as

∫

ξα∂αf
(0)ξβξγdξ

= ∂α [p (uαδβχ + uβδχα + uχδαβ)] + ∂αρuαuβuχ

= ∇ · (ρvvv) + ∇ · (pv) I + p
(
∇v + ∇Tv

)
+ v∇p+ ∇pv (4.7)

Combining Equ. (4.6) and Equ. (4.7), we can get the viscous stress as

74



Π = −τ
∫ (

∂tf
(0)
i + ξα∂αf

(0)
i

)

ξβξγdξxdξy

= −τ
[
p

(
∇v + ∇Tv

)
+ (γ − 1) p (∇ · v) I

]

= −τp
(

∇v + ∇Tv − 2

3
(∇ · v)I

)

−
[
2

3
− (γ − 1)

]

τp (∇ · v) I

So, the momentum equation is

∂t (ρv) + ∇ · (ρvv + pI) = ∇ ·
[

µ

(

∇v + ∇Tv − 2

3
(∇ · v)I

)

+ µb(∇ · v)I

]

where

µ = τp

µb =

(
5

3
− γ

)

µ

We notice that the bulk viscosity µb = (
5

3
−γ)µ. The bulk viscosity vanishes only when

γ =
5

3
corresponding to monatomic gas. For diatomic or polyatomic gas, the nonzero bulk

viscosity is the same order of the shear viscosity µ. For most cases, µb is usually much

smaller than µ and can be neglected. However, for some cases, the none zero µb might be

a problem for simulations of compressible viscous flows, which will be shown later.

Energy equation

The energy of a particle can be written as

ζ =







1

2
ξ2 for the Maxwellian function

1

2
ξ2 + λ for CF − ICF

(4.8)
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The non-equilibrium parts of heat flux is

q =

∫

f (1)ζξαdξ

= −τ
∫ (

∂tf
(0)ζξα + ξβ∂βf

(0)ζξα

)

dξ (4.9)

The first term in Equ. (4.9) can be written as

∂t

∫

f
(0)
i ζξαdξ

= ∂t [(ρE + p)uα]

= [∂t (ρE)uα + ρE∂tuα] + [uα∂tp+ p∂tuα]

= −∇ · (ρEvv) − E∇p− 2∇ · (pv)v − (γ − 1) pv∇ · v

−pv · ∇v − (γ − 1) e∇p (4.10)

The second term can be expressed as

∫

ζ∂βf
(0)
i ξαξβdξ

= ∂β

{

θpCvTδαβ +

[

(ρCpT + p) uαuβ +
1

2
pu2

χδαβ

]

+
1

2
ρu2

χuαuβ

}

= ∂β

{

p

(

θCvT +
1

2
u2

χ

)

δαβ + ρ

(

CvT +
1

2
u2

χ

)

uαuβ + 2puαuβ

}

Set E′ = θCvT + 1
2u

2
χ, this expression can be written as

∫

ζ∂βf
(0)
i ξαξβdξ

= ∇ ·
(
pE′I

)
+ ∇ · (ρEvv) + 2∇ · (pvv)

= ∇
(
pE′

)
+ ∇ · (ρEvv) + 2∇ · (pv)v + pv ·

(
∇Tv + ∇v

)
(4.11)
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So, by combining Equ. (4.10 and 4.11), we can get

q = −τ [pθ∇e+ (θ − γ) eτ∇p] − Π · v

The energy equation is

∂ (ρE)

∂t
+ ∇ · (ρEv + pv) = ∇ · (Π · v) + ∇ · (k∇T ) + ∇ · [(θ − γ) eτ∇p]

where heat conductivity k = θτpCv. And there is an extra term ∇ · [(θ − γ)eτ∇p] which

can be cancelled by setting θ = γ. This means that Equ. (4.14g) should be exactly

satisfied.

4.1.2 The circular function for viscous compressible flows

From the above derivation, we can see that θ only affects heat conductivity and the

extra term in energy equation. And the transportation coefficients, such as the heat

conductivity and the viscosity, are functions of p and τ .

In kinetic theory, pressure can be expressed as

p =
1

D

∫

gm(ξ − u)2dξ =
1

D

∫

gmC2dC

where D is the spatial dimension, C is the peculiar velocity and gm is the Maxwellian

function. Define the mean peculiar velocity as

C̄ =

√

1

ρ

∫

gmC2dC

Then we have p =
1

D
ρC̄2. Thus µ and k can be expressed as

µ =
1

2
τρ C̄

2

k =
1

2
τργ C̄

2
Cv
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So, viscosity and heat conductivity are effects of the peculiar velocity of gas molecules.

Obviously, the bigger C̄, the larger these two transportation coefficients. Set rm = C̄ and

rt =
√
γC̄, we can write viscosity and heat conductivity as

µ =
1

2
τρr2m

k =
1

2
τρr2tCv

Here, we can regard rm and rt as the rates of diffusion of momentum and thermal (internal)

energy, respectively.

For CF-ICF, p =
1

D
ρc2 where c is the radius of the circle. Thus,

µ =
1

2
τρc2

k =
1

2
τρc2Cv

This means that, for CF − ICF, rt = rm = c, momentum and thermal energy diffuse

at the same rate c, which contradicts the Maxwellian function. Thus, we should modify

CF-ICF so that rt =
√
γrm.

Intuitively, the reason why CF-ICF can not lead to the right energy dissipation term

should be that both density and internal energy concentrate on the same circle of r = c,

which makes momentum and thermal energy have the same rate of diffusion. So, if we

can make density and thermal energy distribute differently, we might get different rm and

rt.

We construct a modified circular function as

g (ξ, λ) =







ρc

2πr
if ‖ξ − u‖ = r andλ = λc

ρp if ξ = u and λ = 0

(4.12)

Different from CF-ICF, the density are divided into two parts. The first part, ρc, concen-
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Figure 4.1: The modified circle function.

trates on a circle of radius r with rest energy λc. And the other part, ρp, is located at

the projection of the circle center (point P ) on the ξx − ξy plane. So all internal energy

is distributed on the circle which hosts only a fraction of density (Fig. 4.1). ρc, ρp, r and

λc should satisfy

ρ = ρc + ρp (4.13a)

ρe = ρc(
1

2
r2 + λc) (4.13b)

p = (γ − 1)ρe =
1

2
ρcr

2 (4.13c)

which means that the density, internal energy and pressure remain invariant. Because ρc

is uniformly distributed along the circle and the projection of the its center on the ξx − ξy
plane is the mean flow velocity v, the momentum is invariant as long as ρ = ρc + ρp.

From Equ. (4.13), we can obtain ρp, r and λc as functions of ρc

ρp = ρ− ρc, r =

√

2(γ − 1)ρe

ρc
and λc =

(2 − γ)ρe

ρc
(4.14)
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It is easy to get the moment integrals of this modified circular function as

∫

gdξdλ = ρ (4.15a)
∫

gξαdξdλ = ρuα (4.15b)

∫

g

(
1

2
ξ2χ + λ

)

dξdλ = ρ

(
1

2
u2

χ +
b

2
RT

)

(4.15c)

∫

gξαξβdξdλ = ρuαuβ + pδαβ (4.15d)

∫

g

(
1

2
ξ2χ + λ

)

ξαdξdλ = ρ

(
1

2
u2

χ +
b+ 2

2
RT

)

uα (4.15e)

∫

gξαξβξχdξdλ = ρuαuβuχ +
1

2
ρc2 (uαδβχ + uβδχα + uχδαβ) (4.15f)

∫
1

2
g

(
ξ2χ + 2λ

)
ξαξβdξdλ = ρRT

{
ρ

ρc
bRTδαβ +

1

2

[
(b+ 4) uαuβ + u2

χδαβ

]
}

+
1

2
ρu2

χuαuβ (4.15g)

By setting ρc =
ρ

γ
, Equ. (4.15g) is the same as Equ. (4.1). Now, the seven moment inte-

grals of the modified circular function are the same as those of the Maxwellian function.

Thus they can make the BGK-Boltzmann equation recover to Navier-Stokes equations as

∂tρ+ ∇ · (ρv) = 0 (4.16a)

∂t (ρv) + ∇ · (ρvv + pI) = ∇ ·Π (4.16b)

∂ (ρE)

∂t
+ ∇ · (ρEv + pv) = ∇ · (Π · v) + ∇ · (k∇T ) (4.16c)

80



where

Π =

[

µ

(

∇v + ∇Tv − 2

3
∇ · vI

)

+ µb∇ · vI

]

µ = τp

µb =

(
5

3
− γ

)

µ

k = τpCp =
γ

γ − 1
τpR

Now, we have the Circular Function for Viscous Compressible Flows (CF-VCF).

It should be noticed that the viscosity and the heat conductivity are not independent

(making Prandtl number fixed as 1), also the bulk viscosity µb is non-zero. These two

model errors are resulted from the BGK collision model since it has only one parameter

τ to adjust all the three transport coefficients. Because the Prandtl number can only be

unit, the model can not be applied to do thermal simulation of viscous flows with non-unit

Prandtl number. But when Mach number is not too high (in this case, aerothermal effects

are not important), aerodynamic forces are not sensitive on temperature. So we can hope

to obtain reasonable aerodynamics forces when Mach number is not very high.

4.2 Assigning functions and lattice model

With the experience of developing LB models for inviscid compressible flows in the last

chapter, constructing assigning functions and lattice model for viscous compressible flows

is straightforward. Integrals in Equ. (4.1) are moments of g in ξ (up to the forth order)

and λ (the first order). So, in order to conserve these moments, a Lagrangian interpolating

stencil of the forth order in ξ and the first order in λ is needed.

A forth order 17-node Lagrangian interpolating stencil in velocity space was first

constructed (shown in Fig. 4.2). The 17 velocity vectors are listed in Tab. 4.1. There is no

need to set all components of lattice velocity as integer since we use FVM to solve DVBE.

With the interpolating polynomials of above stencil φi(ξ), coupled with two energy levels,
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Figure 4.2: D2Q17 lattice.

λ1 = 0 and λ2 > λc, the new LB model for viscous compressible flows can be developed

as

f eq
i1 =

∫ 2π

0

ρc

2π
φi(u+ rc cos θ, v + rc sin θ)

λ2 − λc

λ2
dθ + ρpφi(u, v) (4.17a)

f eq
i2 =

∫ 2π

0

ρc

2π
φi(u+ rc cos θ, v + rc sin θ)

λc

λ2
dθ (4.17b)

After scaling, λ̆2 = 1. Since the expressions of f eq
iv are very tedious, they are not listed

here. It is easy to run the Maple script in Appendix A.4 to obtain them.

e0 = (0, 0) for i = 0

ei =
2

3
(cos

iπ

2
, sin

iπ

2
) for i = 1 . . . 4

ei = (cos
iπ

2
, sin

iπ

2
) for i = 13 . . . 16

e5 =

(
4

3
,
2

3

)

e7 =

(

−2

3
,
4

3

)

e9 =

(

−4

3
,−2

3

)

e11 =

(
2

3
,−4

3

)

e6 =

(
2

3
,
4

3

)

e8 =

(

−4

3
,
2

3

)

e10 =

(

−2

3
,−4

3

)

e12 =

(
4

3
,−2

3

)

Table 4.1: Velocity vectors of D2Q17L2.
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4.3 Boundary conditions

For viscous compressible flows, implementation of the non-slip wall boundary condition is

the most important while other boundary conditions can be implemented in the same way

as for inviscid flows described in the last chapter. So, in this section, only the non-slip

wall boundary condition is discussed.

In the traditional LBM, the non-slip wall boundary condition is usually implemented

with the bounce-back rule. It can guarantee the non-slip condition on a wall. For LBM on

curvilinear grids or unstructured meshes, the bounce-back method is still feasible. But for

multi-velocity thermal models, the bounce-back method can only be used to implement

the non-slip and adiabatic wall condition. For other wall conditions such as walls with

specified temperature or heat flux, special treatment is needed.

Recently, Guo et al. [37] proposed a method based on the extrapolation of the nonequi-

librium part of distribution functions [36]. This method is of second-order accuracy. As-

sume that xb is a boundary node, and xf is the nearest neighboring fluid node of xb.

Then, the distribution function at xb is set to be

fi(xb) = f eq
i (xb) + [fi(xf ) − f eq

i (xf )] (4.18)

where the second part in the bracket on the right hand side is the nonequilibrium part of

the distribution function at xf , which is used to approximate the value at node xb. f
eq
i (xb)

can be computed with the mean flow variables (ρb, vb and eb) which can be determined

with those methods in the traditional CFD. In the kinetic theory, viscous stress, energy

diffusion and dissipation come from the nonequlibrium part of distribution function. So,

in this nonequilibrium extrapolation method, both of the mean flow variables and the

microscopic fi are consistent.

In our simulations, the mean flow variables on the wall (ρb and eb) can be determined

as follows

1. According to the pressure condition on the wall
∂p

∂n

∣
∣
∣
∣
b

= 0, extrapolate pressure pb
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Figure 4.3: Schematic of wall boundary condition.

at the wall node from the fluid nodes near xb with the second order or even higher

order method. For structural grids, if the grid is orthogonal and smooth near the

wall (Fig. 4.3), pb can be written as

pb =
9p1 − p2

8

2. Determine the internal energy eb at the wall node. If the wall is isothermal, eb

is a constant specified. If the heat flux qb on the wall is specified, it means that

the normal gradient of internal energy,
∂e

∂n

∣
∣
∣
∣
b

, is constant. Then eb can also be

extrapolated from the fluid nodes near xb like computing pb

eb =
9e1 − e2

8
− 3

8

∂e

∂n

∣
∣
∣
∣
b

3. Compute ρb from pb and eb according to the equation of state p = (γ − 1)ρe

4.4 Solution procedure and parallel computing

Because the governing equation is still DVBE and only the model is different, the solu-

tion procedure is almost the same as that for simulation of inviscid compressible flows

introduced in the last chapter except for the following differences:
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1. The grid should be fine enough to capture the shear layers in viscous flows.

2. Non-slip wall boundary condition. It has been discussed in the last section.

3. τ̆ is not constant any longer. It is determined according to Equ. (4.16).

4. ∆t̆ should be smaller enough than τ̆ to avoid obvious numerical dissipation.In our

simulations, we set ∆t̆ = 0.1τ̆m, where τ̆m is the minimum value in the field.

For viscous flows, mesh spacings near non-slip walls are very small to resolve bound-

ary layers. Usually, higher Reynolds number case needs smaller mesh spacing near the

boundary to capture the thinner boundary layers. And the small mesh spacing limits the

time step. So simulating viscous flows is very time consuming. It may take several days

for our serial code to simulate the flow of Reynolds number 500 over a NACA0012 airfoil

on an Itanium workstation.

In order to accelerate convergence of numerical simulation of viscous flows, parallel

computing with shared memory is adopted. By means of domain decomposition, a struc-

tural grid is partitioned into several blocks and each block is assigned to a CPU. In order

to keep simplicity of the code, every CPU holds a complete grid and arrays. Two levels

of ghost cells serve as the internal boundary between the neighboring blocks (Fig. 4.4).

At every time step, these internal boundaries are updated through MPI communicating

subroutines. The flowchart of the algorithm is shown in Fig. 4.5.

4.5 Numerical tests

We will consider two test problems: Couette flow and laminar compressible flow around

NACA0012 airfoil.

4.5.1 Simulation of Couette flow

Couette flow refers to the flow between two planes with constant separation between them,

moving relative to one another. It is a good test of numerical methods for viscous heat

dissipation [7, 13]. With the top wall moving at the speed of U and the bottom wall fixed,
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Figure 4.4: Update an internal boundary between two partitions.

the velocity profile is a straight line and the internal energy profile satisfies the following

relations [7, 13]

e− e0
e1 − e0

=
y

H
+
EcPr

2

y

H

(

1 − y

H

)

for e0 6= e1 (4.19a)

e− e0 =
PrU

2

2γ

y

H

(

1 − y

H

)

for e0 6= e1 (4.19b)

where e0 and e1 are the internal energies at the bottom and top walls, respectively, y

is the distance from the bottom wall, H is the height of the channel, Pr is the Prandtl

number and Ec = U2/γ(e1 − e0) is the Eckert number.

All cases were simulated on the same 6×50 grid. The non-slip wall boundary condition

is applied on the bottom and top walls. At the left and right boundaries, periodic condition

is implemented. The Reynolds number Re =
UH

ν
is set as 500.

We simulated several cases of different Ec number. We set H = 1, γ = 1.4, e0 = 1,

U = 2 and Pr = 1 which is fixed for our model. By adjusting e1, Ec can be changed.

Figure 4.6 shows the internal energy profiles (solid dots) and the exact solutions (solid

86



Read case file
Set up case parameters

Read grid file
Process grid

Initial field

Init MPI
Partition domain

Apply BC

Advance a step

Synchronize
Update internal boundary

Output?

Gather all distribution
functions to CPU 0

Output to files

End

Finished?

Yes

Yes

No

No

 

Figure 4.5: Flowchart of the parallel code.
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Figure 4.6: Internal energy profiles in Couette flow.

lines) for e1 = 1, 1.05, 1.1, 2 ,3 which correspond to Ec = 1, 28.572 , 14.286, 1.4286,

0.7143. The Mach number of the sliding top wall for these cases are 2.673, 2.608, 2.548,

1.890 and 1.543, respectively. We can see that our numerical results agree excellently well

with the exact solution. However, it should be pointed out that the extra bulk viscous

stress vanishes in this simple parallel flow case with ∇·v = 0, which makes our simulated

results very accurate. For general compressible fows of ∇ · v 6= 0, the extra bulk viscous

stress might affect the results.

4.5.2 Simulation of laminar flows over NACA0012 airfoil

Here, the results of laminar flows over NACA0012 by our D2Q17L2 model coupled with

FVM are presented.

Fig. 4.7 shows the schematic of this problem. The chord length of the airfoil is 1.

The distance between the leading edge and the outflow boundary is 21 chord lengths.

And 17 chord lengths are used between the leading edge and the free stream boundary.

Free-stream conditions are imposed at the outer boundaries (edge FGH), except for the

88



Outflow 

Wake cut 

Free stream 

G C 
D 

B 

E 

A 

F 

H 

I 

J 

Figure 4.7: Schematic of flow over NACA0012.

two downstream edges, FA and EH where a first-order extrapolation is used for unknown

distribution functions. The adiabatic non-slip wall condition is imposed on BCD. A

281× 70 C-type grid (Fig. 4.8) was used for all these cases. The wake cute AB is divided

into 70 segments. And the wall of the airfoil, BCD, has 140 segments. The minimum grid

size normal to the wall boundary is taken as 4 × 10−4 in units of chord length.

Pressure coefficient Cp and skin friction coefficient Cf along the wall are compared

with previous studies for quantitative comparison. They are defined as

Cp =
p− p∞
1
2ρ∞U

2
∞

Cf =
ft

1
2ρ∞U

2
∞

Here, the skin friction ft at a wall point is determined by projecting viscous stress tensor

onto the tangent direction nt of the wall point.

ft = Π · nt (4.20)
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 Figure 4.8: Schematic of the grid (shown every 2 grid points).

And for a LB model, the viscous stress tensor can be computed directly without using

derivative

Π =
∑

iv

(fiv − f eq
iv ) ei ei (4.21)

Case 1, M∞ = 0.8, Re = 500, α = 10◦

First, we simulate a case of M∞ = 0.8, Re = 500, attack angle α = 10◦. This is the

test case A3 of GAMM workshop in 1985 [48]. The free-stream boundary conditions and

the initial conditions are ρ = 1, u = 0.8 cos 10◦, v = 0.8 sin 10◦ and p = 1/1.4. And the

reference internal energy is 2.5. Dimensionless time step ∆t̆ is 2.0 × 10−4.

Fig. 4.9 shows the Mach number contours which agree satisfactorily with the result

in [49]. In Figs. 4.10 and 4.11, the profile of the skin friction coefficient and pressure

coefficient along the airfoil are shown. Also included in these figures are the data in [49].

The upper profiles are the coefficients along the upper surface of the airfoil, and vice

versa. The skin friction coefficient Cf agrees with the reference data very well. However,

the pressure coefficient Cp of the upper surface deviates the reference data significantly.
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Figure 4.9: Mach number contours around NACA0012 (α = 10◦ , M∞ = 0.8 , Re = 500
).

We think that the non-zero bulk viscosity might make this difference when vortices exist.

Detailed discussion will be presented later.

Case 2, M∞ = 0.5, Re = 5000, α = 0◦

The second is a more difficult test case. It is the lamina subsonic flow at an angle of

attack α = 0◦, free-stream Mach number M∞ = 0.5, and Reynolds number 5000. This

case is near the upper limit of steady laminar flow. The flow separation occurs near the

trailing edge which causes the formation of a small recirculation bubble.

Again, we set e0 = 2.5. And initially, a bigger dimensionless time step ∆t̆ = 1.0×10−4

was used. After some time steps, the simulation was shifted to a smaller time step

∆t̆ = 1.0 × 10−5 for more accurate computation.

Fig. 4.12 shows the Mach number contour around the airfoil. Although agreeing

qualitatively well with the contour in [50], there is a bump after the trailing edge and

the wake there is thicker in Fig. 4.12. Shown in Figs.4.14 and 4.13 are the chord-wise

distribution of the pressure and skin friction coefficients from the present computations
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Figure 4.10: Skin friction coefficient for NACA0012 (α = 10◦ , M∞ = 0.8 , Re = 500).
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Figure 4.11: Pressure coefficient for NACA0012 (α = 10◦ , M∞ = 0.8 , Re = 500.
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Figure 4.12: Mach number contours around NACA0012 (α = 0◦ , M∞ = 0.5 , Re = 5000
).

Chord Length

C
f

0.2 0.4 0.6 0.8
-0.18

-0.12

-0.06

0

0.06

0.12

0.18

 

Figure 4.13: Skin friction coefficient for NACA0012 (α = 0◦ , M∞ = 0.5 , Re = 5000).
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Figure 4.14: Pressure coefficient for NACA0012 (α = 0◦ , M∞ = 0.5 , Re = 5000).

(shown as lines) and the reference data from [50] (shown as solid squares). Comparing

with the profiles in the last case, our two profiles approximate the reference data much

better. The skin friction coefficient profile agrees very well with the results computed

with discontinuous Galerkin method by Bassi and Rebay in [50]. However, the location of

the zero friction point, corresponding to the separation point, is 0.97 which deviates the

range 0.810 ∼ 0.824 in [51]. The Cp profile is not as good as the Cf profile. Comparing

with the reference data, in the zone near the trailing edge, the pressure is higher, which

should be relative to the error of the skin friction coefficient near the trailing edge.

Case 3, M∞ = 0.85, Re = 2000, α = 0◦

The third case is the test case A6 from GAMM workshop [48]. The free stream Mach

number is 0.85 and the Reynolds number is 2000.

The Mach number contour is shown in Fig. 4.15 which agrees very well with that of

Forsyth and Jiang in [52]. Skin friction coefficient profile (the solid line in Fig. 4.16) agrees

perfectly with the reference data (the solid squares) in [52]. And the separation point is

0.66, close to 0.70 in [52]. Similar to that of the second case (M∞ = 0.5, Re = 5000), the

pressure coefficient profile shown in Fig. 4.17 presents higher value near the trailing edge.
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Figure 4.15: Mach number contours around NACA0012 (α = 0◦ , M∞ = 0.85 , Re = 2000
).
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Figure 4.16: Skin friction coefficient for NACA0012 (α = 0◦ , M∞ = 0.85 , Re = 2000).
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Figure 4.17: Pressure coefficient for NACA0012 (α = 0◦ , M∞ = 0.85 , Re = 2000).

Case 4, M∞ = 2, Re = 1000, α = 10◦

The last case, test case A4 from GAMM workshop [48], is a laminar supersonic flow

problem with the angle of attack α = 10◦, free-stream Mach number of 2.0, Reynolds

number of 1000. Different from the previous three cases, there is no vortex in this case.

In this case, e0 is set as 4.0 and the dimensionless time step ∆t̆ = 8.0 × 10−5. In

fact, in order to accelerate the convergence, a bigger time step ∆t̆ = 2.0× 10−4 was used

first. After the residual is small enough, we then use the smaller time step and continue

iteration.

The Mach number contour is shown in Fig. 4.18. And Figs. 4.19 and 4.20 show the

skin friction and pressure coefficient distribution along the airfoil. It is interesting to see

that our results agree excellently with the results computed with NS solver by Forsyth

and Jiang in [52].

Observing all the above four simulations of flows over NACA0012, we can see that the

results are very good and some of them are excellent. The pressure field and separation

point have some deviations from reference data. It is believed that such deviations might

be the result of the nonzero bulk viscosity in the recovered Navier-Stokes (4.16) from
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Figure 4.18: Mach number contours around NACA0012 (α = 10◦ , M∞ = 2 , Re = 1000
).
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Figure 4.19: Skin friction coefficient for NACA0012 (α = 10◦ , M∞ = 2 , Re = 1000).
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Figure 4.20: Pressure coefficient for NACA0012 (α = 10◦ , M∞ = 2 , Re = 1000).

DBVE. Consider the continuity equation of the following form

Dρ

Dt
= −ρ∇ · v (4.22)

Here,
Dρ

Dt
is the material derivative of density along a path line which is coincident

with streamline in case of steady flows. From Equ. (4.22), we can see that along a path

line, when the gas is expanding (
Dρ

Dt
< 0), the divergence of the velocity, ∇ · v > 0, and

vise versa. For compressible flows, fluid severely expands or is compressed, especially near

shock waves. Thus the term of bulk viscosity, µbI∇·v, plays a big role in the compressible

flow field.

Since µbI∇·v is a normal stress tensor, it is like a pseudo-pressure tensor. So it might

directly affect the pressure field. That could be why the error of the pressure field is more

obvious. The shear stress could feel the influence of the bulk viscous stress indirectly

through pressure change. So, the skin friction is not very sensitive to the bulk viscous

stress. As a result, it could agree well with the results by solving Navier-Stokes equation

without the bulk viscous stress. In compression or expansion zones where ∇·v is big, the

effects of the bulk viscosity stress might be big. However, if inertia is high enough, the

effect of bulk viscosity might not be obvious to impact the flow field. When the inertia

of fluid is not large enough to suppress the bulk viscosity stress, for instance, in a vortex
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attached to the suction wall of a airfoil where gas is expanding and velocity is small, the

bulk viscous stress might impact the flow field even if the derivative of ∇ · v is not very

big. The flow fields near vortices have a big error. In our simulations, Cp profiles deviate

bigger at the place where vortices are produced. For Case 1, there is a big vortex on the

upper surface. Thus the error of Cp is big. In Case 2 and 3, the vortices are small, so

pressure coefficient profiles are much more accurate than that of Case 1. For Case 4, still

α = 10◦, but there is no separation. So both Cp and Cf profiles are very accurate.

We can see that the bulk viscosity makes obvious different. In order to make more

accurate simulations with LBM, eliminating the bulk viscous stress is necessary. MRT

collision model [4, 5] might be a choice, since it provides more adjustable parameters to

tune the transportation properties.

4.6 Concluding remarks

In this chapter, the new derivation method proposed in the last chapter is further ex-

tended to develop LB models for viscous compressible flows. A simple function, CF-VCF

, is constructed to replace the Maxwellian function as the equilibrium density distribu-

tion function by modifying CF-ICF which is proposed for inviscid flows in Chapter 3.

CF-VCF satisfies all statistical relations needed to recover NS equations. And CF-VCF

is assigned onto the lattice velocity directions by the Lagrangian interpolating stencil to

obtain the equilibrium distribution functions and the associated lattice velocity model.

In the derivation, our new method presented its generality and simplicity. Except the

simple function, which is used at the beginning of derivation, is different, all the other

steps are same. And the whole procedure can be automatically implemented with Maple

or Mathematica software.

Numerical experiments showed that compressible viscous flows can be well simulated

by the present model. The numerical method is the same as that described in the previous

chapter. For flows without vortices, such as Couette flow and flow around a NACA0012

with M∞ = 2, Re = 1000 and 10 degree attack-angle, the results agree excellently with
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previous studies. However when vortices are available, the simulations can not give accu-

rate results. The non-zero bulk viscosity might be the reason. The bulk viscosity stress

could make difference in the zone where gas is compressed or expanded suddenly, such

as the vortices at the sucking face of a body. To overcome this problem, MRT collision

model might be useful because more relaxation parameters [4, 5] could be used to adjust

transportation coefficients.

Still, the computing is very time consuming since only full explicit scheme without

any acceleration method was implemented. An case of NACA0012 of Re = 5000 could

take 1 or 2 days. When simulating flows of higher Reynodls number, mesh size will be

larger, making computing time longer. So, applying implicit scheme with some kind of

acceleration methods is necessary.

Also, for viscous flows of higher Reynolds number, simulation of turbulent flows is

a important topic. For LBM simulation of turbulent flows, turbulence models are still

needed, like solving NS equations to simulate turbulent flows with RANS or LES.
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Chapter 5

LBM-based Flux Solver

In this chapter, a new application of LBM in simulation of compressible flows, LBM-based

flux solver, is briefly described. Different from solving DVBE in the previous chapters,

Euler equations are solved in this approach, and the flux at the interface is evaluated

by a compressible lattice Boltzmann model developed in the previous chapters. This

application combines LBM and FVM for solving Euler/NS equations. The proposed

approach is validated by its application to solve one-dimensional and three-dimensional

test problems.

5.1 Finite volume method and flux evaluation for compress-

ible Euler equations

In FVM, a domain is discretized into many small control volumes which are usually called

cells. The variation of flow states in every cell is expressed as the sum of flux across all

the interfaces of the cell.

∂Q̄V

∂t
= −

K∑

k

(Fk + Dk) sk

where Q̄ is the cell averaged flow state (density ρ , moment v and energy E), V is the

volume, K is the number of interfaces of the control volume, Fk and Dk are the inviscid

flux and viscous flux (only for viscous flows) across the k-th interface, and sk is the area
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the interface. When FVM is applied to solve compressible Euler/NS equations, one key

issue is to evaluate the inviscid flux Fk at the interface. Among various FVM schemes,

generalized Godunov schemes are widely used. In these schemes, the smooth profiles of

variables in each cell are reconstructed according to the cell averaged quantities of the cell

and its neighbors. Across the interfaces of the cells, the profiles may not be continuous.

The great feature of generalized Godunov schemes is that the interaction between every

two neighboring cells is considered with a flux solver F̂.

F ≈ F̂ (Ql,Qr)

where Ql and Qr are flow states on the two sides of the interface. The task of a flux solver

is to compute the inviscid flux of mass, momentum and energy through a discontinuous

interface (Fig. 5.1). For the original Godunov scheme [53], the piecewise constant profile

inside a cell was assumed. So Ql and Qr are the same as cell average values on each side

of the interface

Ql = Q̄l

Qr = Q̄r

where Q̄l and Q̄r are cell average values. The second order generalized Godunov schemes,

such as MUSCL schemes, take linear profiles. Thus, Q̄l is expressed as

Ql = Q̄l + (xl − xc) · ∇Q

where xl is the location of the interface center, xc is the center of the control volume. For

higher order generalized Godunov schemes like ENO/WENO, higher order polynomial

profiles are used.

Originally, the exact Riemann flux solver was used by Godunov [53]. That is the

exact solution of a Riemann problem. A Riemann problem is a Cauchy problem of Euler
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Figure 5.1: The schematic view of one dimensional Godunov scheme. The domain is
divided into some finite volumes, (. . . i− 3, . . . , i+ 3, . . .) . The profiles of variables are
assumed linear in every volume. The white arrows are interfaces between neighboring
cells

equations with initial data that is discontinuous along a plane, i.e

q0 (x) =







qL x < 0

qR x > 0

in one dimensional space. Later, several approximate one dimensional Riemann flux

solvers (such as Roe [54], HLL [55] and Osher [56]) were developed.

At the same time, flux vector splitting (FVS) methods [57, 58] are also widely used

as flux solvers to compute flux across the cell interface. The idea of FVS is to divide the

flux vector [ρu, ρuu+ p, (ρE + p)u] into several sub-vectors along different directions and

determine the flux crossing an interface according to the directions of sub-vectors on the

two sides of the interface. Fig. 5.2 illustrates the idea of FVS. F (Ql) at the left side of the

interface is divided into two parts, F− (Ql) and F+ (Ql). And F+ (Ql) contributes to the

interface flux because it crosses the interface. Also, F (Qr) is divided and its contribution

is determined in the same way. Thus the interface flux F = F− (Qr) + F+ (Ql) .

In addition, based on the gas kinetic theory, Xu [23] proposed a BGK gas kinetic

scheme which was derived from the BGK Boltzmann equation. The idea of the kinetic

scheme is to compute flux from the distribution functions on both sides of an interface.

For a distribution function, the effective part which crosses the interface contributes to

the interface flux. The two effective parts of the distribution functions on the two sides of

interface are integrated in time and phase space to evaluate the interface flux. Moreover,
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Figure 5.2: Schematic view of FVS. The shaded vectors cross the interface and contribute
to the interface flux.

instead of using equilibrium distribution function, Xu [23] took account the effect of

non-equilibrium due to the gradient of the gas inside every volumes to achieve higher

accuracy. Different from the approximate Riemann flux solvers which can only compute

inviscid flux, Xu’s BGK kinetic scheme can compute viscous flux at the same time. Also,

he claimed that this scheme is more stable than approximate Riemann flux solvers. The

distribution function is used only during derivation of the flux solver, while the flux solver

can be expressed in form of the macroscopic variables. However, Xu’s kinetic scheme is a

little complicated because some integrals of the Maxwellian function are involved during

the derivation process, and taking non-equilibrium effect into consideration introduces

more complexity.

Nevertheless, using distribution function on an interface to compute flux provides

a good effective way. This idea can alos be applied in LBM. Since summations replace

integrals in LBM, the kinetic scheme of LBM version should be simpler and its application

is much easier.

5.2 LBM-based flux solver

In previous chapters, DVBE was solved with FVM. Due to the linear advection term in

DVBE, the flux of the distribution functions through the interfaces could be computed

easily with the exact Riemann solver. Since macroscopic variables (density, momentum
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and energy) and their fluxes can be derived from the distribution functions, the compu-

tation of the flux from distribution functions could be regarded as a special flux solver

which might be applied in solving Euler/NS equations.

When DVBE is solved, the flux through an interface can be determined as follows

(Fig. 5.3).First, extrapolate the distribution functions on each side of an interface, fL

and fR, by means of MUSCL scheme. If the discrete velocity (ek) of a component of

the distribution function, fk , crosses the interface, this component contributes to the

interface flux. Then, the flux vector can be determined. At this point, we can see

that the flux of macroscopic variables can be determined by fL and fR. Because the

[ρu, ρuu+ p, (ρE + p)u] contributed by the component fk

Fk =









ρv

ρvv + pI

(ρE + p)v









k

· nA =









fkek

fkekek

(
1
2fkek · ek + fkλ

)
ek









· nA

where A is the area of the interface and n is its unit normal vector, the total flux through

the interface is obtained by summing up all the contributions of those components across

the interface.

In one dimensional space, assuming that two-velocity model is applied for simplicity,

the component fL
1 of fL and fR

2 of fR are across the interface (Fig. 5.3). Thus the flux

of macroscopic variables is the summation of the fluxes of fL
1 and fR

2 .

ρv = fL
1 e1 + fR

2 e2 =
∑

k

fE
k ek

ρvv + pI = fL
1 e1e1 + fR

2 e2e2 =
∑

k

fE
k ekek

(ρE + p)v = e1f
L
1

(
1
2e1 · e1 + λ1

)
+ e2f

R
2

(
1
2e2 · e2 + λ2

)
=

∑

k

ekf
E
k

(
1
2ek · ek + λk

)

This means that we could regard fL
1 and fR

2 as a set of effective distribution functions fE

on the interface. Then the flow states on the interface can be determined directly from

fE. As a consequence, the flux can be computed.
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Figure 5.3: The effective distribution functions on an interface.

As shown above, a new flux solver might be developed based on our LB models for

compressible flows. That is to compute distribution functions, fL and fR, on each side of

an interface and then apply the above method to construct effective distribution function

on the interface. From the distribution function, flow state and flux on the interface can be

computed. The easiest way is to assume equilibrium states on the interface. This means

that fL and fR are computed by equilibrium functions according to macroscopic variables

QL and QR obtained with MUSCL extrapolation or other reconstruction method. With

this algorithm, CFL number can be determined by the convection term of Euler equations,

making time step much larger than that of DVBE simulations by several orders. So this

algorithm is much faster than direct solving DVBE with the full explicit method used

in previous chapters. However, during implementation, it was found that this procedure

is not very efficient since it needs the flow states on the two sides of the interface to be

scaled to the lattice unit when fL and fR are computed, and be transferred back after fE

is constructed.

In fact, this flux solver based on LBM can also be interpreted and implemented as a

special FVS scheme. The procedure can be considered as the following LBM flux vector

splitting (FVS) scheme, which can be more conveniently implemented than computing

flux by constructing the effective distribution function fE stated above. The procedure

can be described as following (Fig. 5.4):

1. Reconstruct profiles of macro variables in cell i and get QR
i−1/2 and QL

i+1/2 on the

two interfaces of the cell.
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Figure 5.4: Flux vector splitting implementation of LBM based flux solver.

2. For each of QR
i−1/2 and QL

i+1/2, determine discrete velocity stencil according to the

total energy max max (‖ek‖) =
√
e∗, which means that there is no need to scale the

macroscopic variables and transfer back the distribution function. Compute discrete

equilibrium function f eq and obtain flux across the interface from those components

of crossing the interface. Thus the flux of macroscopic variables contributed by f eq

can be obtained.

3. After all the cells are accessed and their contributions are computed, the fluxes

between every couple of neighbor cells are determined.

5.3 Numerical validation for one dimensional FV-LBM scheme

In this section, the one dimensional Sod shock tube case was presented to test the FV-

LBM. In the simulation, the 3rd order MUSCL scheme and Van Albada slope limiter

[39] were used for reconstruction. The 4-stage Runge-Kutta method was applied for time

integration. The domain is equally divided into 100 small cells.

The LB model used here is D1Q4L2, of which 4 velocities are d1, −d1, d2, −d2. This

model has no static particle which could make trouble when identifying whether it will

be across an interface. Here, d1 and d2 are left as variables which can be determined
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according to local total energy e∗ . In our simulation, d1 = d2/4. The expression of

D1Q4L2 is listed in Equ. (5.1a).







ρ1 =
ρ

(
−d1 d2

2 − d2
2 u+ d1u

2 + d1c
2 + u3 + 3uc2

)

2d1

(
d1

2 − d2
2
)

ρ2 =
ρ

(
−d1d

2
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(5.1a)







f eq
i0 = ρi (1 − ep)

f eq
i1 = ρiep

(5.1b)

where ep =
3

2
(γ − 1) e. The result is presented in Fig. 5.5. The lines are exact solution,

while the solid symbols are computed with FV-LBM. It can be seen clearly that our new

flux solver provides very good results.

As stated above, the time step is determined by the CFL condition, which is not

limited by the stiff collision term. And only three equations (continuity, momentum and

energy equations) rather than eight equations of distribution functions. So it is much

faster than directly solving DVBE. Although accuracy analysis was not made, the fact

that such solution profiles are obtained with grid size of 100 may suggest the second order

of accuracy for the solution. Later numerical test on the 3D case also confirms this point.

5.4 Multi-dimensional application of FV-LBM

Although multi-dimensional FV-LBM can be developed based on the multidimensional LB

models developed in the previous chapters, this way is not efficient since one dimensional

FV-LBM can be well applied to simulate multi-dimensional problems, just like applying

one dimensional flux solvers in multi-dimensional problems.

Usually, in a multi-dimensional simulation, the one dimensional flux solver is applied

along the normal direction of an interface. So, mass flux, normal momentum flux and
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Figure 5.5: Sod shock tube simulation by solving Euler equations with LBM-based Flux
Vector Splitting scheme. The grid size is 100.
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Figure 5.6: Schematic view of applying 1D LBM FVS in multi-dimensional problems.
The flux solver is operated along the normal direction (dash-dot line) of the interface. Un

is used as velocity to compute 1D normal flux, while the momentum and kinetic energy
of tangent velocity Ut are passively transported by the mass flux.

normal energy flux can be obtained. The tangent momentum flux and tangent kinetic

energy can be regarded as passive quantities transported by mass flux (shown in Fig. 5.6).

So, the procedure of applying FV-LBM for 3D problems can be described as follows:

1. Reconstruct profiles of macro variables in cell and extrapolate to obtain Qin =

[ρ, u, v, w, e]T on the inner sides of all the interfaces

2. For a Qin at an interface A = A [nx, ny, nz]
T ([nx, ny, nz]

T is the unit normal vector

of the surface, A is the area), compute total energy e∗, the normal velocity Un =

Un [nx, ny, nz]
T and the tangent velocity Ut = [Utx, Uty , Utz ]

T . e∗ will be used to

determine the lattice, Un is used as the velocity in the one dimensional flux solver,

while Ut will be used to compute passively transported moment and kinetic energy.

3. Determine discrete velocities (d2 =
√
e∗ and d1 = d2/4 ) according to e∗. Based

on these velocities, discrete equilibrium distribution functions f eq can be computed

according to [ρ, Un, e]. From these distribution functions, select those functions

streaming out of the cell, f eq
out

4. Compute the mass flux, momentum flux and entropy flux normal to the interface
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from the cell across the interface A according to the 1D LBM FVS stated in previous

section

ρUnA = A
∑

i

f eq
out,iei (5.2)

(ρUnUn + p)A = A
∑

i

f eq
out,ieiei [nx, ny, nz]

T (5.3)

[

ρ

(

e+
1

2
U2

n

)

+ p

]

Un ·A = A
∑

i

eif
eq
out,i

(
1

2
eiei + λi

)

(5.4)

5. Compute the passively transported tangent momentum flux as

ρUnA [Utx, Uty, Utz ] (5.5)

where ρUnA is obtained from Equ. (5.2). Thus the total moment flux can be

obtained as

A
∑

i

f eq
out,ieiei [nx, ny, nz]

T + ρUnA [Utx, Uty, Utz ]
T (5.6)

6. Passively transported tangent kinetic energy is

1

2
ρUnAU

2
t (5.7)

So the total flux of total enthopy is

A
∑

i

eif
eq
out,i

(
1

2
eiei + λi

)

+
1

2
ρUnAU

2
t (5.8)

Thus the flux vector from this cell across the interface F+
A is obtained. With the same

method, the flux vector from the neighboring cell to this cell, F−

A, can also be computed.

Then the total flux across the interface is FA = F+
A + F−

A.

This flux solver can be implemented in the form of FVS and easily incorporated in

traditional FVM Euler/NS solver. In a 3D multi-block structured grid solver, ADIMB

developed by the CFD lab in ADI Corp., this new FV-LBM was implemented without

111



 

Figure 5.7: Srface grid of AFA model.

modifying other parts. LU-SGS implicit time advancing scheme is used with a large CFL

number (up to 20).

With this solver, AFA model [59] was computed with Jameson’s central scheme, Van

Leer FVS scheme and present scheme. AFA model is a half-model of a simplified F16

fighter, used for aeroelastic analysis. The flow condition is defined as inviscid flow, Mach

number 0.8 and 2◦ angle of attack. The grid contains four blocks. And about 310, 000

mesh points are used.

Fig. 5.7 shows the grid of the model. The grid consists of four blocks. And H-type grid

is used to carve the wings. The pressure coefficient contours computed with the three

schemes are presented in Fig. 5.8. We can see that very good agreement is achieved,

especially between Van Leer FVS and LBM FVS. Tab. 5.1 shows coefficients of lift, drag

and moment computed with the three schemes, which also shows the agreement between

these three results. Obviously, the present results are in excellent agreement with those

of Van Leer FVS scheme. Fig. 5.9 presents the residual histories of the three schemes,

from which we can see that the convergence of present scheme is almost the same as Van

Leer FVS. The time used by LBM FVS is about 25% more than that of Van Leer scheme.

Considering that the current implementation of LBM FVS is not optimized at all, this

efficiency could be satisfactory. In the current implementation, the equilibrium functions
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Cl Cd CM

Jameson’s central scheme 0.2303 0.0103 -0.0225

Van Leer FVS 0.2384 0.0124 -0.0336

LB-FVS 0.2375 0.0123 -0.0345

Table 5.1: Coefficients of lift, drag and moment computed with Jameson’s central scheme,
Van Leer FVS scheme and our LBM-FVS scheme

are actually computed. In fact, it is not necessary to compute them. And the flux vectors

can be directly expressed as functions of those macroscopic flow variables. In this way,

the efficiency can be improved.

5.5 Concluding remarks

In this chapter, an idea of developing LBM-based flux solver was presented, which can be

directly implemented in the conventional finite volume Euler solver. In this flux solver,

with equilibrium distribution functions on two sides of a cell interface, the distribution

functions streaming across the interface contribute to the flux through the interface.

With this idea, a flux vector splitting (FVS) scheme based on LBM was developed. The

proposed approach was first validated by its application to solve the one dimensional

Sod shock tube problem, and then applied to simulate the three-dimensional flow around

an aircraft by using a multi-block 3D CFD solver. The obtained numerical results are

compared excellently well with those of Van Leer FVS scheme.

So far, it is not clear what advantages this LBM FVS has. At least, LBM based FVS

could provide an new view of flux solver. From this view, people might obtain useful hints.

Due to time constraint, only preliminary applications of FV-LBM were demonstrated in

this chapter. More analysis, tests and validations will be needed in the future work to

find out the advantages/disadvantages, accuracy and efficiency of the proposed FV-LBM.
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Figure 5.8: Surface Cp contours computed with FV-LBM (top), Van Leer FVS (middle)
and Jameson’s central scheme (bottom). Contour levels are from −0.6 to 0.5 with step
as 0.05.
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Figure 5.9: Comparison of convergence history.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, a novel and convenient derivation method for constructing lattice Boltz-

mann models have been described. In this method, the Maxwellian distribution function

is replaced by a circular function which is very simple and satisfies all needed statistical

relations to recover the compressible Euler/NS equations. By the Lagrangian interpola-

tion, the circular function is then discretized onto the lattice velocity directions with all

the needed statistical relations exactly satisfied. In this frame, the equilibrium distribu-

tion functions and the associated lattice velocity model can be derived naturally without

assuming specific forms.

This method was first applied to develop a D2Q13 model for isothermal incompressible

flows. A circular function in velocity space was proposed and discretized with a two-

dimensional Lagrangian polynomial of the third degree to construct the D2Q13 model.

The new D2Q13 model was tested by simulating the lid driven cavity flow with the

standard streaming-collision procedure and the finite difference method. Excellent results

were obtained, which proved the validity and feasibility of the new deriving method. The

new deriving method provides some interesting suggestions about LBM. First, in this

deriving method, there is no need to assume a formula beforehand. In fact, it can be

derived step by step naturally. Also the configuration of the lattice can be obtained with
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some knowledge of polynomial and linear theory. The idea of this deriving method is

very natural and clear. Second, we do not need the small Mach number assumption

and isothermal assumption as mathematical requirements during derivation. Although

the D2Q13 is derived for incompressible and isothermal flows, these two conditions are

imposed only during simulations. So this method has fewer limits. Third, it is interesting

to note that using a symmetric stencil might not be necessary for recovering Navier-Stokes

equations. Since numerical methods such as FVM and FEM can handle irregular gird

and lattice and the wall boundary conditions can be implemented with non-equilibrium

extrapolation method, LB models based on an asymmetric lattice might be feasible.

Lattice Boltzmann models for inviscid compressible flows were developed with this

deriving method. A new circular function was constructed in a velocity-energy space. This

circular function satisfies all statistical relations needed to recover the compressible Euler

equations. The idea of discretization with Lagrangian interpolating stencil was extended

to the velocity-energy space. D1Q5L2 model and D2Q13L2 model were developed. And

with MUSCL FVM scheme, the models are used to simulate several cases with shock

waves. Again, the excellent results show that the deriving method is right and the derived

models are feasible for simulation of high Mach number inviscid flows.

In order to develop lattice Boltzmann models for viscous compressible flows, the second

version of circular function was modified to cancel the extra heat source in the energy

equation, and a D2Q17L2 model was derived naturally. It should be indicated that the

recovered Navier-Stokes equation contains a nonzero bulk viscous stress and the Prandtl

number is fixed as due to the limit of the BGK collision model. Nevertheless satisfactory

numerical results of laminar flow over NACA0012 airfoil were obtained and some of them

agree perfectly with simulation results by a Navier-Stoke solver.

LB models for compressible flows can also be applied in solving Euler equations.

An idea of developing LBM-based flux solver was presented, which can be directly imple-

mented in the conventional finite volume Euler solver. In this flux solver, with equilibrium

distribution functions on two sides of a cell interface, the distribution functions streaming

across the interface contribute to the flux through the interface. With this idea, a flux
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vector splitting (FVS) scheme based on LBM was developed. The proposed approach was

first validated by its application to solve the one dimensional Sod shock tube problem,

and then applied to simulate the three-dimensional flow around an aircraft by using a

multi-block 3D CFD solver. The obtained numerical results are compared excellently

well with those of the Van Leer FVS scheme.

6.2 Recommendation for future work

The work presented in this thesis allows several possible extensions. Although several LB

models for compressible flows were developed in this work, more work has to be done to

make them perfect. In our models, the number of discrete velocities might be too many.

It is possible to decrease them by optimizing the Lagrangian interpolating stencil. For

the viscous model, the nonzero bulk viscosity and the fixed Prandtl number impede its

application. Adjustable bulk viscosity and Prandtl number might be achieved by applying

the multi-relaxation-time collision [3, 5].

The temporal scheme used in this work is the Euler forward scheme. However the

time step is not determined according to the CFL condition but severely limited by the

collision term which is a stiff source term. Thus the time step used in this work is

much smaller than that determined from the CFL condition, especially for simulations of

inviscid flows in which grids are much coarser than those used in simulations of viscous

flows. So applying implicit scheme to the collision term should be a good choice. In fact,

Implicit-Explicit (IMEX) algorithm has been studied to solve hyperbolic system with stiff

sources [60–64]. For BKG equation, because the collision term dosen’t change mean flow

variables (density, velocity and internal energy), applying IMEX can be very easy and

cheap [65]. But simulation of viscous flow with this BGK simplified IMEX haven’t been

released.

Furthermore, since we abandoned the standard streaming-collision procedure and fi-

nite volume method was used in this work, many related numerical methods in the tra-

ditional CFD can be applied. For instance, local time step, multigrid method, implicit
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residual smooth, linearized implicit algorithm ..., can be applied to accelerate conver-

gence. Automatic mesh refine (AMR), anisotropic mesh refine, higher order FVM schemes

(PPM, ENO/WENO), or high order finite element methods (spectral element method,

discontinuous Galerkin method) ..., can be used to obtain more accurate results.

Another interesting study is the flux solver based on LBM. In Chapter 5, only prelim-

inary applications of FV-LBM were demonstrated. More analysis, tests and validations

have to be done in the future to find out the advantages/disadvantages, accuracy and

efficiency of the proposed FV-LBM. Although the current LB based flux solver is much

simpler than the kinetic scheme of Xu Kun, it is not as powerful and stable as the kinetic

scheme. It is possible to integrate in time to incorporate viscous effects like the kinetic

scheme. Also, LB based flux solver might be tried to be applied in more fields.
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Appendix A

Maple Scripts to Generate feq

A.1 D2Q13 for isothermal incompressible flows

> restart:with(linalg):

> f:=(x,y)->[1,x,y,x^2,y*x,y^2,x^3,x^2*y,x*y^2,y^3,x^4,x^2*y^2,y^4]:

> dc:=array(1..13,1..2,

[[0,0],[1,0],[0,1],[-1,0],[0,-1],[1,1],[-1,1],

[-1,-1],[1,-1],[2,0],[0,2],[-2,0],[0,-2]]):

> A:=Matrix([f(0,0),f(1,0),f(0,1),f(-1,0),f(0,-1),f(1,1),f(-1,1),

f(-1,-1),f(1,-1),f(2,0),f(0,2),f(-2,0),f(0,-2)]):

> B:=inverse(A):

> base_f:=evalm(transpose(B) &*

matrix(13,1,[1,x,y,x^2,y*x,y^2,x^3,x^2*y,x*y^2,y^3,x^4,x^2*y^2,y^4]));

> feq:=array(1..13):

> for i from 1 to 13 do

> feq[i]:=int(rho*subs(x=u+c*cos(alpha),y=v+c*sin(alpha),

base_f[i,1])/(2*Pi), alpha=0..2*Pi):

> end do;

> with(codegen):cost(feq);cost(optimize(feq));

> C(feq,optimized);
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In our simulation, c was set as 0.85 and ‖v‖ = 0.1.

A.2 D2Q13L2 for inviscid compressible flows

> restart:with(linalg):

> f:=(x,y)->[1,x,y,x^2,y*x,y^2,x^3,x^2*y,x*y^2,y^3,x^4,x^2*y^2,y^4]:

> dc:=array(1..13,1..2,

[[0,0],[1,0],[0,1],[-1,0],[0,-1],[1,1],[-1,1],

[-1,-1],[1,-1],[2,0],[0,2],[-2,0],[0,-2]]):

> A:=Matrix([f(0,0),f(1,0),f(0,1),f(-1,0),f(0,-1),f(1,1),f(-1,1),

f(-1,-1),f(1,-1),f(2,0),f(0,2),f(-2,0),f(0,-2)]):

> B:=inverse(A):

> base_f:=evalm(transpose(B) &*

matrix(13,1,[1,x,y,x^2,y*x,y^2,x^3,x^2*y,x*y^2,y^3,x^4,x^2*y^2,y^4]));

> feq:=array(1..13,1..2):eta:=array(1..2):

> for i from 1 to 13 do

> tfeq:=int(rho*subs(x=u+c*cos(alpha),y=v+c*sin(alpha),

base_f[i,1])/(2*Pi), alpha=0..2*Pi):

> feq[i,1]:=tfeq*(1-ep);

> feq[i,2]:=tfeq*ep;

> end do;

> with(codegen):cost(feq);cost(optimize(feq));

> C(feq,optimized);

Here, ep = (2 − γ)e and c =
√

2(γ − 1)e.

A.3 D1Q5L2 for inviscid compressible flows

> restart:

> with(linalg):

128



> f:=(x)->[1,x,x^2,x^3,x^4]:

> dc:=array(1..5,[0,d[1],-d[1],d[2],-d[2]]):

> A:=Matrix([f(dc[1]),f(dc[2]),f(dc[3]),f(dc[4]),f(dc[5])]):

> B:=inverse(A):

> base_f:=evalm(transpose(B) &* matrix(5,1,[1,x,x^2,x^3,x^4])):

> feq:=array(1..10):

> for i from 1 to 5 do

tfeq:=simplify((subs(x=u+c,base_f[i,1])+subs(x=u-c,base_f[i,1]))*rho/2):

feq[i+i-1]:=tfeq*(1-ep):

feq[i+i]:=tfeq*ep:

end do:

> with(codegen): C(feq,optimized);

Here, ep = 1
2 (3 − γ)e and c =

√

(γ − 1)e. In our simulation, d[1] = 1 and d[2] = 2.

A.4 D2Q17L2 for viscous compressible flows

> restart:with(linalg):

> f:=(x,y)->[1,x,y,x^2,x*y,y^2,x^3,x^2*y,x*y^2,y^3,

x^4,x^3*y,x^2*y^2,x*y^3,y^4,x^5,y^5]:

> dc:=array(1..17,1..2,

[

[0*2/3,0*2/3],

[1*2/3,1*2/3], [-1*2/3,1*2/3], [-1*2/3,-1*2/3], [1*2/3,-1*2/3],

[1*2/3,2*2/3], [2*2/3,1*2/3], [-1*2/3,2*2/3], [-2*2/3,1*2/3],

[-1*2/3,-2*2/3], [-2*2/3,-1*2/3], [1*2/3,-2*2/3], [2*2/3,-1*2/3],

[3*2/3,0*2/3], [0*2/3,3*2/3], [-3*2/3,0*2/3], [0*2/3,-3*2/3]

]);

> A:=Matrix([

f(dc[1,1],dc[1,2]),
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f(dc[2,1],dc[2,2]),

f(dc[3,1],dc[3,2]),

f(dc[4,1],dc[4,2]),

f(dc[5,1],dc[5,2]),

f(dc[6,1],dc[6,2]),

f(dc[7,1],dc[7,2]),

f(dc[8,1],dc[8,2]),

f(dc[9,1],dc[9,2]),

f(dc[10,1],dc[10,2]),

f(dc[11,1],dc[11,2]),

f(dc[12,1],dc[12,2]),

f(dc[13,1],dc[13,2]),

f(dc[14,1],dc[14,2]),

f(dc[15,1],dc[15,2]),

f(dc[16,1],dc[16,2]),

f(dc[17,1],dc[17,2])]);

> B:=inverse(A):

> base_f:=evalm(transpose(B) &*

matrix(17,1,[1,x,y,x^2,x*y,y^2,x^3,x^2*y,x*y^2,y^3,

x^4,x^3*y,x^2*y^2,x*y^3,y^4,x^5,y^5])):

> feq:=array(1..34):

> for i from 1 to 17 do

tfeq:=int((rho/theta)*subs(x=u+c*cos(alpha),y=v+c*sin(alpha),

base_f[i,1])/(2*Pi),alpha=0..2*Pi):

feq[i*2-1]:=tfeq*(1-gamma*ep)+(rho*(gamma-1)/gamma)*subs(x=u,y=v,

base_f[i,1]):

feq[i*2]:=tfeq*gamma*ep:

end do:
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> c:=(gamma*C^2)^(1/2):

> with(codegen): C(feq,optimized);

Here, ep = (2 − γ)e and c =
√

2(γ − 1)e.
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