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Summary

Summary

The research reported in this thesis was undertaken from November 2007 to

November 2008 at the Department of Mechanical Engineering of the National

University of Singapore. This research focuses on the Hilbert-Huang transform,

a new and powerful signal-processing technique, which has greater capability

than all other existing methods in analysing any nonlinear and non-stationary

signal. The Hilbert-Huang transform provides a time-frequency-amplitude rep-

resentation of the data, which gives a very meaningful interpretation of the

physical processes accounting for the phenomenon studied. Since its creation

in 1998, scientists have successfully applied this method in many domains such

as: biomedical applications, chemistry and chemical engineering, digital im-

age analysis, financial applications, fluid mechanics, meteorological and atmo-

spheric applications, ocean engineering, seismic studies, structural applications,

health monitoring, and system identification.

The algorithm implementing the Hilbert-Huang transform is an empirical

method with some mathematical and practical limitations. Firstly, the problem

of the end-effect, which is inherent to the study of finite-length signals, can pose

practical difficulties to the calculation of the envelopes of the signal, a funda-

mental step of the sifting process. Secondly, because of mathematical uncertain-

ties, the sifting process has to be iterated several times before finding each mode

of the signal. It becomes necessary to define at which iteration the sifting pro-
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Summary

cess must be stopped. Thirdly, mode mixing can occur with a straightforward

application of the algorithm. If this issue is not addressed, the results can be

distorted.

After reviewing the basics of the Hilbert-Huang transform, solutions, com-

prising the source codes implemented in Matlab, addressing its flaws are pre-

sented under the form of control parameters of the original algorithm. Four

end-point options are described: the clamped end-point option, the extrema ex-

tension technique, the mirror imaging extension method and a damped sinu-

soidal extension using an auto-regressive model. Then, a particular stopping

criterion based on the two conditions defining an intrinsic mode function is cho-

sen from a review of four criteria. Finally, the algorithm of an intermittency test

handling the problem of mode mixing is provided. After that, a method evalu-

ating the performances of the enhanced algorithm is described. It makes use of

four indicators, from which the last three are newly introduced: the index of or-

thogonality, the number of IMFs, the number of iterations per IMF and the index

of component separation. Next, a study of five test signals shows the abilities

and the reliability of each indicator. Then, the choice of the control parameters

based on a systematic study of the length-of-day data is discussed. It is found

that the fourth end-point option combined with intermediate thresholds for the

stopping criterion generally gives the best results. Finally, the efficiency of the

intermittency test is demonstrated through the study of vortex-shedding signals.

An unexpected discovery of periodical intra-wave frequency modulation with

respect to the theoretical shedding frequency has been made from this analysis.
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Chap. 1. Introduction

. Introduction

1.1 The Hilbert-Huang transform

Analysing time-series data or signals is a very frequent task in scientific research

and in practical applications. Among traditional data processing techniques,

the Fourier transform is certainly the most well-known and powerful one. It

has been frequently used in theoretical and practical studies since it was in-

vented by Fourier in 1807. However, its application is limited to only linear and

stationary signals, thus making it unsuitable for analysing some categories of

real-world data. Then, several methods, based on joint time-frequency analysis,

were developed during the last century to handle non-stationary processes and

better explain local and transient variations: the windowed Fourier and Gàbor

transforms, the Wigner-Ville distribution, and wavelet analysis and its derived

techniques (see Cohen 1995 [10] for a detailed introduction to these techniques).

Nevertheless, the main shortcoming of all these methods is their inability to

study nonlinear signals, and their need of a predefined basis. Despite all the ef-

forts of the scientific community to improve these techniques, none of them can

correctly handle nonlinear and non-stationary data, which represent the most

common data in real-world phenomena.
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Recently, a new data-analysis method, named the Hilbert-Huang transform

(HHT), has been introduced by Huang et al. (1998 and 1999) [27] [26] in order

to study nonlinear and non-stationary signals. In addition, it aims at providing

a physical understanding of the underlying processes represented in the signal,

thus achieving the primary goal of signal processing. The HHT method pro-

ceeds in two steps: first, a signal is decomposed, following the Empirical Mode

Decomposition (EMD) scheme, into Intrinsic Mode Functions (IMFs); second,

the application of the Hilbert transform to each mode yields the complete time-

frequency-energy representation of the signal. The algorithm actually relies on

the ability of the Hilbert transform to reveal the local properties of time-series

data and calculate the instantaneous frequency (Hahn 1995 [21]). However, due

to theoretical limitations, a straightforward application of the Hilbert transform

to the original signal would be very likely to lead to misleading results. For

example, the instantaneous frequency could have negative values which is, of

course, physically impossible. Therefore, the fundamental breakthrough of the

HHT lies in the first step: the EMD prepares and decomposes the raw data into

appropriate modes or IMFs, which can be subsequently analyzed by the Hilbert

transform to eventually yield physically meaningful results.

The EMD is an empirical method based on the assumption that every signal

consists of a superposition of narrow band-passed, quasi-symmetrical compo-

nents. In order to retrieve these well-behaved components, the signal is de-

composed by an ingenious method called the sifting process. Unlike all other

techniques, the EMD has the distinctive feature of being adaptive, meaning that

the decomposition depends only on the signal. There is no a priori defined basis

such as the harmonics in the Fourier transform. This difference is very important

because it ensures that all the information contained in the original signal are not

distorted and that they can be fully recovered in the IMFs. Therefore, because of

its adaptiveness and its ability to correctly analyze nonlinear and non-stationary

data, the HHT proves to be the most powerful data-processing technique.
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1.2 Applications of the HHT

Since the HHT was developed in 1998, many scientists and engineers have used

this technique in various fields of science as well as in practical applications. In

every case, the results given by the HHT are reported to be as good as or better

than those obtained from other techniques such as the Fourier transform and the

wavelet transform. We present here a few examples of the existing applications.

Biomedical applications: Huang et al. (1998) [30] analyzed the pulmonary

blood pressure of rats with both the HHT and the classical Fourier analysis.

A comparison of the results showed that the HHT could reveal more informa-

tion on the blood pressure characteristics. Huang et al. (1999) [31] also studied

the signals obtained from pulmonary hypertension. Their study investigated

the linear and nonlinear influences of a step change of oxygen tension on the

pulmonary blood pressure. Using the HHT, they found the analytic functions

of both the mean blood pressure response, represented by the sum of the last

IMFs, and the oscillations about the mean trend, represented by the sum of the

first IMFs. Finally, from the mathematical formulations they were able to under-

stand mechanisms related to blood pressure, which are crucial for applications

in tissue remodeling of blood vessels.

Chemistry and chemical engineering: Phillips et al. (2003) [37] studied molec-

ular dynamics simulation trajectories and conformational change in Brownian

dynamics. Comparisons between HHT and wavelet analysis showed overall

similar results; however, the HHT gave a better physical insight of conforma-

tional change events. Wiley et al. (2005) [50] investigated the internal motions

and changes of conformations of proteins in order to understand their biologi-

cal functions. Since these phenomena are wavelike in nature, they developed a

technique called Reversible Digitally Filtered Molecular Dynamics to focus on

low frequency motions, which correspond to large scale changes in structures.
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The HHT proved to be a better tool than Fourier-based analysis to study these

transient and non-stationary signals.

Financial applications: Huang et al. (2003) [29] demonstrated the usefulness

of the EMD in statistical analysis of nonlinear and non-stationary financial data.

They invented a new tool to quantify the volatility of the weekly mean of the

mortgage rate over a thirty-year period. This tool, named the variability, was

based on the ratio of the absolute value of the IMF to the signal. It offers a sim-

ple, direct and time-dependent measure of the market volatility, which proves

to be more realistic than traditional methods based on standard deviation mea-

surements.

Fluid Mechanics: Zeris and Prinos (2005) [55] performed a comparative anal-

ysis between wavelet transforms and the HHT in the domain of turbulent open

channel flow. They managed to identify and study near wall characteristic co-

herent structures. They concluded that the HHT method should be prefered to

the wavelet technique in any investigation on non-stationary flows because it

gives more accurate results in joint time-frequency analysis, while the wavelet

transform is strongly affected by smear effects. Hu et al. (2002) [22] conducted

an experimental study of the instantaneous vortex-shedding frequency (Fs) in

periodically varying flow (of frequency Fo). Using the HHT to decompose the

streamwise velocity signal in the wake of a stationary T-shaped cylinder, they

found three different regimes depending on the ratio Fs/Fo. Firstly, for Fs/Fo >

4.37, the variations of the instantaneous vortex-shedding frequency are corre-

lated to the variations of the incoming flow without phase lag. Secondly, for

1.56 < Fs/Fo < 4.37, the same behaviour is observed but with a phase lag lin-

early related to the frequency ratio. Furthermore, they observed a hysteresis

vortex-shedding behaviour. Thirdly, for 0.29 < Fs/Fo < 1.56, they found no in-

teractions between Fs and Fo. Moreover, this regime features two occurrences of

lock-on at Fs/Fo ≈ 1 and Fs/Fo ≈ 0.5.
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Image analysis: Long (2005) [33] showed that it was possible to use the HHT

in image analysis because rows and columns can be seen as discrete-space se-

ries. The study of inverse wavelengths and energy values as functions of time

or distance for the case of water-wave images made possible the measurement

of characteristic features. In conclusion, the author emphasized the great per-

spectives offered by the HHT in the domain of image processing. Nunes et al.

(2005) [36] went further by applying the HHT to 2D data such as images. They

developed a bidimensional version of the EMD and replaced the Hilbert trans-

form by the Riesz transform, which can be applied on multidimensional signals.

Finally, they demonstrated that their enhanced version of the HHT was efficient

to detect texture changes in both synthetic and natural images. Later, Damerval

et al. (2005) [12] improved the bidimensional EMD by using Delaunay triangu-

lation and piecewise cubic interpolation. They showed, through an application

on white noise, that their improvements on the algorithm significantly increased

the computational speed of the sifting process.

Noise detection: After discovering that the EMD behaved like a dyadic filter,

Flandrin et al. (2005) [16] suggested its use to denoise-detrend signals containing

noise. Coughlin and Tung (2005) [11] also demonstrated how noise could be

identified in atmospheric signals. They defined a statistical test of confidence to

discriminate noise from the signals according to their respective energy spectra.

Huang et al. (1998) [27] showed that the EMD could serve as a filtering tool by

simply retaining and summing the IMFs of desired bandwidth.

Ocean engineering: Many studies have been conducted in this domain after

Huang et al. (1999) [26] analysed nonlinear water waves in 1999. For example,

Schlurmann and Dätig (2005) [46] were interested in rogue waves. Understand-

ing how they are generated is very important for designing offshore structures

and ships that will not be damaged by these waves. Yan et al. (2005) [54] also

showed that the HHT could help assessing the health of marine eco-systems by
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analyzing ocean color data.

Structural engineering applications: Salvino et al. (2005) [44] used the HHT

as a means to identify internal mechanical failures of structures. The locations of

failure were identified by analyzing the instantaneous phase of structural waves.

A similar application was developed by Huang et al. (2005) [25] to diagnose

the health of bridges. The HHT analyzed responses of vibration-tests, and two

criteria based on the instantaneous frequency were defined to assess the state of

the structure.

Needless to say, this list is not exhaustive, and other interesting applications

can be found in Attoh-Okine (2005) [1]. Finally, since its creation a decade ago,

the HHT has been developed in various applications with successful results,

indicating the great potential for this novel data-processing technique.

1.3 Objectives of the study

The main objective of this study is to serve as a guide for understanding, im-

plementing and using the Hilbert-Huang transform. Explanations about the un-

derlying motivations of the development of the HHT, i.e. how to retrieve the

instantaneous frequency, are given along with details about the algorithm. The

main flaws of the algorithm, namely the end-effect, the stopping criterion and

the mode mixing phenomenon, are thoroughly discussed. Then, different solu-

tions to these limitations are proposed under the form of control parameters in

the algorithm. Finally, these control parameters are tested with different signals.

Meanwhile, four quantitative indexes, which aim at assessing the results of the

HHT, are presented and it is shown how they can help finding the most adapted

control parameters for the study of a signal with the HHT algorithm. Precisely,

the purpose of the present work is to ease some of the tedious and lengthy tasks

that users of the HHT could encounter during the implementation or the appli-
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cation of this technique, which, however, deserves to be considered as the first

and most powerful method to analyse real-world phenomena.

Chapter 2 begins with the description of the empirical mode decomposition

and how the Hilbert transform can retrieve the instantaneous frequency and am-

plitude from the intrinsic mode functions. Then, a literature review of the critical

points of the HHT is conducted. The fundamental concept of instantaneous fre-

quency is reviewed. The main flaws of the algorithm are described and the con-

cept of confidence limit for the HHT is presented. Finally, the implementation

of the HHT algorithm is detailed. Firstly, the EMD and the Hilbert-transform

algorithms are introduced. Secondly, four end-point options handling the prob-

lem of end-effect as well as an efficient stopping criterion for the sifting process

are described. Thirdly, the implementation of the intermittency test, a neces-

sary test to prevent mode mixing, is given. Fourthly, four quantitative indexes

evaluating the decomposition and the Hilbert spectrum are introduced. Fifthly,

the algorithm to calculate the confidence limit for the HHT is provided. All the

source codes, implemented in Matlab, of the HHT algorithm and its control pa-

rameters can be found in Appendix B.

Chapter 3 presents three studies of computed and experimental signals per-

formed with the HHT. The first study shows the behaviour of the HHT algo-

rithm with five simple test signals. The influence of each control parameter on

the results is assessed by the quantitative indexes. Second, a systematic study

of the end-point options and of the stopping criterion is conducted with the

length-of-day data. Third, the phenomenon of vortex-shedding is investigated

to show how the HHT algorithm can be successfully used to interpret a physical

nonlinear phenomenon.
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. HHT algorithm

2.1 Basics of the HHT

2.1.1 Empirical mode decomposition

As Huang et al. (1998) [27] explained, the empirical mode decomposition me-

thod is an empirical sifting process aiming at decomposing any nonlinear and

non-stationary signal into a set of IMF components. In order to have well-

behaved Hilbert transforms of the IMFs, i.e. a meaningful instantaneous fre-

quency, the components must have the following characteristics: firstly, they

must have a unique time scale; secondly, they must be quasi-symmetric. The

characteristic time scale is determined with the distance between successive ex-

trema. Therefore, an IMF can be defined as follows:

1. Its number of extrema and zero-crossings must be equal or differ at most

by one.

2. At any point, the mean value of its envelopes defined by the local maxima

and the local minima should be zero.

The sifting process, which reveals the intrinsic oscillations of a time-series data,

X(t), has been described by Huang et al. (1998) [27] as “intuitive , direct, a pos-
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teriori and adaptive, with the basis of the decomposition based on and derived

from the data”. However, since it is a very recent method, its whole mathemat-

ical validation has yet to be proved, the mathematical issues related with the

HHT will be discussed in Section 2.2.

The first step of the sifting process is to identify the local extrema of the sig-

nal, then the upper and lower envelopes are calculated as the cubic spline inter-

polations of the local maxima and minima respectively. Next, the first compo-

nent h1, designated as the first proto-IMF, is the difference between the data and

the mean of the envelopes m1:

X(t)−m1 = h1. (2.1)

Figure 2.1 illustrates these steps. h1 should ideally represent the first IMF. How-

ever, due to several mathematical approximations in the sifting process, this

first proto-IMF may not exactly satisfy the two conditions of IMF. Since nei-

ther a mathematical definition of an envelope nor a mathematical definition of

the mean exist, the use of cubic spline interpolations can lead to some imper-

fections. For example, an inflexion point or a riding wave in the original data,

which certainly has a physical meaning and represents the finest time-scale, may

not be correctly sifted and new local extrema can appear after subtracting the

mean from the signal. In addition, the mean may not be exactly zero at the end

of the first step. Therefore, to eliminate riding waves and to make the profile

more symmetric, the sifting process must be repeated several times, using the

resulting proto-IMF as the data in the following iteration. Finally, k iterations

may be necessary to get the first IMF h1k

h1(k−1) −m1k = h1k. (2.2)

The first IMF of the test data is displayed on Figure 2.2; it has been obtained

after 40 sifting iterations and it shows the finest scale of the signal. Then, it is
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Figure 2.1: Illustration of the sifting process: (a) test data (blue); (b) test data,
upper and lower envelopes (green), and mean m1 (red); (c) test data and first
proto-IMF h1 (pink). We can see on Figure (c) that the inflexion point at t = 1.7 s
in the data has become a new oscillation in h1, which is not symmetric. There-
fore, the sifting process must be iterated to eliminate this kind of imperfection.
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recorded as:

h1k = c1. (2.3)
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Figure 2.2: The first IMF component c1 of the test data, after 40 iterations.

The stoppage of the sifting process can be difficult to determine in practice.

Although the first condition can be easily implemented, a clear definition of the

second one is somewhat cumbersome since converging toward a zero numerical

mean is almost impossible. Consequently, a stopping criterion must be adapted

to determine the degree of approximation for the implementation of the second

condition. Four different stopping criteria are introduced and discussed in Sec-

tion 2.2.5. This criterion is a critical point because it must ensure that the signal

has been sufficiently sifted so that all the hidden oscillations have been retrieved;

on the other hand, too many iterations can flatten the wave amplitude, thus af-

fecting the original physical sense.

Once the first IMF c1 has been obtained, the sifting process is repeated with

the first residue r1 resulting from the difference between c1 and the signal:

X(t)− c1 = r1. (2.4)

Finally, the last IMF cn, after n sifting processes, is reached when the last residue

rn has either a too low amplitude or becomes a monotonic function. It can be re-

marked that the frequency range of the successive IMFs decreases with increas-
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ing IMF number. Indeed, the first IMFs capture the finest scales of the signal

while the subsequent residues keep only the oscillations of larger time scales. In

addition, the choice to base the time scale on the distance between successive

extrema has the non-negligible benefit of requiring no zero reference. For exam-

ple, in the case of a signal with a non-zero trend, this trend will eventually be

recovered in the last residue. Finally, the original signal is:

X(t) =
n∑

i=1

ci + rn. (2.5)

Therefore, the signal has been decomposed into n modes or IMFs and one resi-

due rn. Now, the Hilbert transform can be applied to these modes since they all

possess the adequate characteristics: they contain a single time scale, and their

wave-profile is symmetric.

2.1.2 Hilbert spectral analysis

Hilbert transform

The second phase of the HHT consists of applying the Hilbert transform to all

the IMFs in order to determine their instantaneous frequency as well as their

instantaneous amplitude. Though the EMD has already given meaningful in-

formation about the data by showing the time evolution of its intrinsic modes,

the Hilbert transform can reveal the frequency and the amplitude of each IMF

and at each time instant. This is a step further in understanding the physical

mechanisms represented in the original signal.

The Hilbert transform (see Appendix A.2) of an IMF c(t) is simply the prin-

cipal value (PV ) of its convolution with 1/t:

H[c(t)] =
1

π
PV

∫ ∞

−∞

c(τ)

(t− τ)
dτ. (2.6)
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Then, we can deduce the analytic signal of c(t):

A[c(t)] = c(t) + iH[c(t)] = a(t)eiθ(t), (2.7)

with a the instantaneous amplitude and θ the phase function defined as:

a(t) =

√
c2(t) +

(
H[c(t)]

)2
, and θ(t) = arctan

(H[c(t)]

c(t)

)
, (2.8)

hence we can immediately compute the instantaneous frequency

ω(t) =
dθ(t)

dt
. (2.9)

The Hilbert transform can be applied to each IMF component so that the original

data can be expressed in the following form:

X(t) = <
[

n∑

j=1

aj(t) exp

(
i

∫
ωj(t)dt

)]
+ rn, (2.10)

where < denotes the real part. The last residue rn has been left on purpose

because its frequency is infinite. The Fourier representation of the same signal

would be

X(t) = <
[

n∑

j=1

aje
iωjt

]
, (2.11)

with aj and ωj constant. Therefore, comparing Equation (2.10) with Equation

(2.11), the HHT can be seen as a generalization of the Fourier transform. This

form accounts for the ability of the HHT to handle nonlinear and non-stationary

signals.

Hilbert spectrum and marginal spectrum

The expansion (2.10) of the signal can yield a very meaningful time-frequency-

amplitude distribution, or a time-frequency-energy distribution (where the en-

ergy is the square of the amplitude) if prefered. This representation is desig-
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nated as the Hilbert spectrum H(ω, t). Basically, H(ω, t) is formed by the data

points (t, wj(t), aj(t)), directly obtained from (2.10), for all t and for 1 ≤ j ≤ n.

As an example, the Hilbert spectrum of the test data has been plotted on Fig-

ure 2.3 in its three-dimensional form, and on Figure 2.4 in its two-dimensional

form and with the amplitude based on a color scale. In this example, the dis-

crete Hilbert transform was applied to each IMF using the embedded function

’hilbert’ of Matlab. This function provides with the instantaneous amplitude

and the instantaneous phase. To obtain the instantaneous frequency, the discrete

derivation described in Equation (2.20) is used. A smoothed Hilbert spectrum

can also be plotted to obtain a more qualitative representation; however, the

original Hilbert spectrum is more accurate. Then, the integration over time of
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Figure 2.3: 3D Hilbert spectrum of the test data. Each point represents a given
array (t, wj(t), aj(t)) for t and j fixed. Each color corresponds to a specific IMF
(i.e. a given j).

the Hilbert spectrum can be calculated. It yields the marginal spectrum h(ω):

h(ω) =

∫ T

0

H(ω, t)dt. (2.12)

As an example, the marginal spectrum of the data has been plotted on Figure 2.5.

Although it is possible to compare the Fourier spectrum with the marginal

spectrum, there is a fundamental difference between the two representations.
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Figure 2.5: Marginal spectrum of the test data.
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If a certain frequency has a high energy, in the Fourier spectrum it means that

there is the corresponding harmonic (a sinusoidal wave) with a high amplitude

over the whole time span. On the other hand, in the marginal spectrum it means

that, over the time span, local oscillations with this frequency occur more often.

Finally, because the Hilbert spectrum can give time information, it should be

prefered to the marginal spectrum. In particular, the marginal spectrum cannot

be used in the case of non-stationary data because it would fail to describe the

instantaneous and transient characteristics of the signal.

2.2 Literature review

2.2.1 Meaningful instantaneous frequency

The concept of instantaneous frequency is essential in the Hilbert-Huang trans-

form. Indeed, the key motivation behind this new data analysis technique stems

from generations of scientists who have sought to grasp, not only the mathemat-

ical meaning, but also the physical essence of this concept. Since the works of

Fourier and Hilbert, many researchers have attempted to develop joint time-

frequency analysis. The main reason why so many mathematicians and physi-

cists have continuously striven for a good definition of this concept is simple: if

the time evolution of physical phenomena is of prime importance, the knowl-

edge of its frequency is also necessary for their complete understanding. Al-

though the Fourier transform is the first great tool which puts forward the idea

of time-frequency duality, it actually fails to predict the evolution in time of the

frequency. Indeed, the Fourier spectrum can show us the energy distribution of

a signal in the frequency domain, but it cannot give the precise timing at which

each frequency appears. Yet, this information is crucial to study accurately non-

stationary 1 and transient phenomena. From our own experience, we know that

1A definition of stationarity can be found in Appendix A.1. Briefly, a time series is stationary
if its mean, variance and autocorrelation function do not change over time (see, for example,
Brockwell and Davis 1996 [7]).
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most of the natural processes are rarely stationary, hence the need for a means

of handling this kind of signals. For instance, in daily life experiences, music

demonstrates the importance of frequency variation: melodies are based upon

the variations of pitch, or frequency, of the sound produced by the instruments.

In this example, the knowledge of which frequency appears in the melody, as

the Fourier spectrum could give, is not very useful. That is why in many situa-

tions, and not only in signal processing, we want to know precisely the timing

of each frequency. For this purpose, techniques such as the short-time Fourier

transform (see, for example, Cohen 1995 [10], Prasad and Iyengar 1997 [40],

or Gàbor 1946 [18]), the Wigner-Ville distribution (see, for example, Boashash

(1992) [5], Mecklenbräuker and Hlawatsch (1997) [34], or Cohen 1995 [10]), and

the wavelet analysis (Prasad and Iyengar 1997 [40] or Daubechies 1992 [13]) have

been developed 2. However, they suffer from either poor time resolution or poor

frequency resolution. For instance, the principle of the short-time Fourier trans-

form is to decrease the width of the window in order to focus on local variations

of the frequency; however, doing so results in the broadening of the frequency

bandwidth, thus worsening the frequency resolution. This inherent limitation is

known as the uncertainty principle (see, for example, Skolnik 2001 [48] or Prasad

and Iyengar 1997 [40]); it has first been derived by Heisenberg in 1927 while he

was studying the nascent quantum mechanics. As Cohen (1995) [10] explains,

the uncertainty principle states that “the densities of time and frequency cannot

both be made narrow” arbitrarily.

However, Huang et al. (1998) [27] and Cohen (1995) [10] remark that the

problem in the calculus of the frequency may actually stem from the method it-

self. Indeed, it seems paradoxical that to estimate the local frequency, one must

perform an integration over the whole time domain. Thus, a new method, dif-

ferent from any existing technique, should be found. So, attempting to give a

new definition, Cohen suggests calculating the frequency as the derivative of

2A more exhaustive overview of data-analysis techniques can be found in Huang et al.
(1998) [27].
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the phase of the signal. But then, the problem is to retrieve the phase, and a

first method, namely the quadratic model, proved to be difficult to apply in

most cases. Hopefully, a second solution, derived by Gàbor in 1946 [18] from

the concept of analytic signal and using the Hilbert transform 3, eases this issue.

However, as Cohen 1995 [10] further explains this definition is not yet perfect

because many paradoxes can arise. For example, the instantaneous frequency

can have negative values although the spectrum of the analytic signal is, by def-

inition, equal to zero for negative frequencies. In fact, a good definition cannot

be simply mathematical, but it must also ensure that it is physically meaningful.

In the research for a correct definition of the instantaneous frequency, the

work of Huang et al. (1998) [27] has been definitive. They explain that, con-

trary to what Hahn claims, the Hilbert transform cannot be directly applied to

any time series. A straightforward application can actually lead to the following

problems for the phase function: firstly, it may not be differentiable; secondly, it

can have unbounded derivatives; and thirdly, it can lead to non-physical results

(such as negative derivatives). Furthermore, Shen et al. (2005) [47] state that, in

order to retrieve a physically meaningful instantaneous frequency after apply-

ing the Hilbert transform, the signal has to be in a self-coherent form. In other

words, it should be quasi-periodic and quasi-symmetric (or quasi-monotone)—

these properties actually corresponds to the conditions of IMF described in Sec-

tion 2.1.1. Another way to verify whether an analytic signal is self-coherent is to

study its representation in the complex space. In polar coordinates, the instanta-

neous amplitude and the instantaneous frequency are represented by the radius

of rotation and the time evolution of the phase angle. Salvino et al. (2005) [44]

report that, to be self-coherent, a signal must have “a definite evolving direction

(e.g., either clockwise or counterclockwise) and a unique center or rotation at

any time” in the complex space. Actually, if a system did not follow these con-

3The mathematical formulations of the Hilbert transform, the analytic signal and the deriva-
tion of the instantaneous frequency are detailed in Appendix A.2, and further explanations can
be found in Hahn (1995) [21].
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ditions, then there would be infinite ways of describing its time evolution, and

the instantaneous frequency would have the problems mentioned previously.

Huang (2005a) [23] has very well illustrated this problem with the case of a sim-

ple sine wave; he has noticed that the addition of a constant to this function can

influence its Hilbert transform so that the instantaneous frequency is eventually

affected. Moreover, when this constant is superior than the amplitude of the

signal, the results can even yield negative frequencies. However, we can intu-

itively understand that a change in the trend should, by no means, affect the

frequency of the signal. On the other hand, he has showed that when the signal

is self-coherent, the instantaneous frequency is always meaningful. Therefore,

this condition seems to be a requirement before applying the Hilbert transform.

Although the idea of Huang et al. (1998) [27] to define the instantaneous

frequency only for self-coherent signals is reasonable from a physical point of

view, a proper theoretical definition is still an unsettled question. However, this

hypothesis has been the basis of the Hilbert-Huang transform. Likewise the

Fourier theory invented in 1807 but not fully proved until 1933 by Plancherel

(1933) [39], it may need some years before achieving the complete and rigor-

ous mathematical proof of the HHT. Then, assuming that the instantaneous fre-

quency could not be directly retrieved from the signal, Huang et al. (1998) [27]

invented the EMD method which precisely decomposes the signal into a set of

self-coherent components. The key idea behind this approach is the concept

of multicomponentness described by Cohen (1995) [10]. First, he explains that a

monocomponent signal is a signal with a unique and well-defined instantaneous

frequency (derived from the phase function of the analytic signal). Then, by gen-

eralization, he defines a multicomponent signal as the sum of monocomponent

signals whose instantaneous bandwidth are well separated. Finally, we can see

that the HHT expansion, presented in Equation (2.10) and rewritten hereafter,

has effectively achieved this goal: to retrieve all the monocomponent signals
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entangled in a single signal.

X(t) = <
[

n∑

j=1

aj(t) exp

(
i

∫
ωj(t)dt

)]
+ rn, (2.13)

Likewise it seems natural that common phenomena are seldom stationary or

linear, it seems plausible that real-world signals can mingle various processes at

the same time. Furthermore, it is very unlikely that these intrinsic components

can be decomposed on a predefined basis, hence the importance of the HHT

to be adaptive. In conclusion, the HHT, which starts by retrieving the mono-

components and then calculates the instantaneous frequency and amplitude of

a signal, is a powerful method revealing the underlying physical mechanisms

contained in any phenomenon.

2.2.2 Completeness and orthogonality

Completeness: As Huang et al. (1998) [27] explain, the completeness of the de-

composition is automatically satisfied according to Equation (2.5). Furthermore,

they report that numerical tests conducted with different data sets confirm this

property of the EMD. In fact, the difference between the sum of all the IMFs, in-

cluding the last residue, and the signal is found to be inferior than the roundoff

error of the computer.

Orthogonality: According to Huang et al. (1998) [27], the decomposition pro-

cedure should ensure the local orthogonality of the IMFs. From Equations (2.1)

to (2.3) we can see that an IMF is obtained from the difference between the signal

X(t) and its mean X(t), hence

〈(X(t)−X(t)), X(t)〉 = 0, (2.14)

in which 〈 . , . 〉 designates the scalar product. However, this equation is not

exact because first, the mean is not the true mean since it is calculated from
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computed cubic spline envelopes; and second, an IMF does not entirely corre-

spond to X(t) since several sifting iterations are often needed. But Huang et al.

(1998) [27] further report that the leakage is often very small in practice: around

1% in most cases, and inferior than 5% for very short data. Finally, they add that

othogonality should not be a requirement for nonlinear decompositions because

it is not physically sensical.

In this study, the orthogonality between the IMFs will be used as a means

to assess the quality of the decomposition. Moreover, an index of orthogonality

will be presented in Section 2.3.6 to quantify the overall orthogonality of the

EMD.

2.2.3 Mean and envelopes

The calculation of the mean of a signal is another crucial issue in the HHT. As

can be seen in the decomposition process presented in Section 2.1.1, it is a key

phase in the sifting process; nevertheless, a mathematical definition of the mean

of a signal does not exist. So, Huang et al. (1998) [27] originally suggested to

identify it as the average of the upper and lower envelopes. But this hypothesis

does not truly resolve the problem of the mean because, as Riemenschneider et

al. (2005) [41] underlined, “a good mathematical description of envelopes re-

mains an unsolved issue”. However, different practical solutions, as regards the

envelopes, have been investigated: low- and high-order polynomial interpola-

tions have been tested. Finally, Huang (2005b) [24] concluded that cubic spline

interpolations offered the best solution because they did not require too much

computation processing, and they needed very few predetermined parameters

(only two extrapolated points at the edges of the signal), thus preserving the

adaptive character of the EMD.

In this study, different polynomial interpolations have been tested, for ex-

ample linear interpolations and the so-called pchip interpolation; however, none

produced as good results as the cubic spline. Therefore, the solution of two cubic

22



2.2. Literature review Chap. 2. HHT algorithm

spline envelopes to calculate the mean has been adopted.

2.2.4 End-effect

End-effect is a common issue in data-processing of finite-length signals. In the

HHT, it occurs in the sifting process for the calculation of the cubic spline in-

terpolations, and then, in the application of the Hilbert transform to the IMFs.

In the first case, the problem is to terminate the cubic spline interpolations at

the edges of the signal. Actually, if the ends of the envelopes were left uncon-

strained, the resulting IMFs would display large swings with spurious energy

levels at their ends. Therefore, a solution must be adopted to extend the data

and terminate the envelopes, so that the propagated error is minimized. Vari-

ous solutions have been presented in the literature and Shen et al. (2005) [47]

categorize them as:

• signal extension approaches with or without damping;

• and extrema extension techniques. These methods require two predicted

extrema at both ends in the case of cubic spline envelopes.

In addition, we must keep in mind that the issue of forecasting time series can

be particularly difficult for non-stationary data since they are unpredictable by

essence.

A first solution, stated by Duffy (2005) [15], consists of extending the signal

with sinusoidal curves of the size of the signal. Coughlin and Tung (2005) [11]

also used this method, but they added only two or three oscillations in order

to flatten the envelopes; they reported that longer extensions could affect low-

frequency IMFs. In these two studies, the authors also reported that they did

not seek for more complicated techniques since these sine extensions allowed

sufficiently good qualitative results. Hwang et al. (2005) [32] chose a mirror

imaging extension (possibly including windowing with an exponential decay)

method: 30% of the signal was mirrored beyond the end-points. This solution
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raises the question of the length of the extension, the authors noticed that one

third of the data length gave the best results. However, we can wonder whether

this solution can be effective for every signal. Another interesting approach of

signal extension was adopted by Pinzón et al. (2005) [38], who extended their

signals with similar experimental data without trends. This solution shows that

a strong knowledge of the phenomenon can actually be very useful to predict

more data points.

A simple and effective method of extrema extension was described by Shen

et al. (2005) [47]. Compared to the previous techniques, the addition of only

two extrema can be very useful because it consumes very few computation re-

sources.

Finally, all these solutions can greatly alleviate end problems for periodic or

quasi-periodic signals; however, they may not be as effective for non-stationary

and transient signals. In this regard, Cheng et al. (2007) [9] performed a com-

parative analysis between three sophisticated forecasting techniques. A study

of nonlinear and non-stationary data with intermittent signals showed that a

method based on support vector regression machines was superior than a tech-

nique based on neural networks as well as an auto-regressive model. In partic-

ular, the first method was less time consuming and had usually smaller exper-

imental errors. Moreover, it needed much less a priori knowledge of the phe-

nomenon than the second forecasting technique, which required several control

parameters.

In this study, four techniques have been tested and compared: a clamped

end-point option, a mirror imaging technique, an extrema extension approach

and an auto-regressive model. More details of their implementation are pre-

sented in Section 2.3.3.
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2.2.5 Stopping criteria for the sifting process

Basically, the purpose of the stopping criterion is to end the sifting process when

a proto-IMF verifies the two conditions of IMF. This issue, summarized in Equa-

tion (2.3), is critical because the success of the whole decomposition, and then

of obtaining a physically meaningful instantaneous frequency entirely depends

upon the correct enforcement of these two requirements. As we have seen, the

proto-IMF resulting after the first iteration may not be an IMF because of im-

perfections in the sifting process due to the calculation of the mean with the

envelopes. Therefore, more iterations are needed to ensure that riding waves

and inflexion points have been correctly sifted, and that the local mean is almost

equal to zero. On the other hand, too many iterations can also be damaging for

the IMFs because, as Huang et al. (1998) [27] observed, it tends to flatten intrinsic

oscillations thus distorting and affecting the original information. In addition,

Rilling et al. (2003) [42] state that over-sifting can lead to over-decomposition,

meaning that after too many iterations a single monocomponent can be spread

on several successive IMFs.

First stopping criterion: A first idea for the implementation of the stopping

criterion was suggested by Huang et al. (1998) [27], it is based on the standard

deviation, SD, computed from two consecutive sifting results

SD(hj(k−1), hjk) =
T∑

t=0

[
|(hj(k−1)(t)− hjk(t))|2

h2
j(k−1)(t)

]
, (2.15)

in which j designates the sifting process number or the IMF number. Then,

the sifting process is stopped and the jth IMF is found if SD is inferior than a

predetermined threshold SDmax (typical values lie between 0.2 and 0.3 [27]). Set

in a mathematical formulation:

hjk = cj if SD(hj(k−1), hjk) ≤ SDmax. (2.16)
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However, this stopping criterion has several shortcomings according to Huang

(2005b) [24]: for instance, even though the standard deviation is small, the first

condition of equal numbers of extrema and zero-crossings may not be guaran-

teed.

Second stopping criterion: Afterwards, another stopping criterion, more re-

lated to the definition of the IMFs, has been presented by Huang et al. (1999,

2003) [26] [28]: the IMF is chosen as the first proto-IMF of a series of S con-

secutive iterations which successfully verify the first IMF-requirement. Set in a

mathematical formulation:

hjk = cj if |Nzc(hjk)−Next(hjk)|, . . .

. . . , |Nzc(hj(k+S−1))−Next(hj(k+S−1))| ≤ 1, (2.17)

in which Nzc designates the number of zero-crossings and Next the number of

extrema. The S-number is a predetermined parameter which should be set be-

tween 4 and 8 according to Huang et al. (2003) [28]. This simple criterion not

only guarantees the first condition, but the S successful iterations also ensure

that all the extrema have been sifted and that the mean is approximately zero.

Moreover, the first proto-IMF is chosen in the series in order to limit the prob-

lem of over-sifting already mentioned. Finally, as the S-number increases, the

stopping criterion becomes stricter, and the number of iterations needed to ob-

tain the IMF increases as well. Therefore, S must be chosen with care in order to

obtain a meaningful decomposition.

Third stopping criterion: A third and simpler stopping criterion has some-

times been suggested [28] [42]. The sifting process is stopped after a prede-

termined number M of iterations, regardless of the two requirements. Set in a
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mathematical formulation:

hjk = cj if k = M. (2.18)

It can be either combined with the previous criterion, or it can be used alone. It

is meant to prevent over-sifting and also to avoid a never-ending sifting loop 4.

However, this solution does not guarantee any of the two IMF-requirements,

therefore it can be unsatisfying since the number of iterations depends very

much on the data and it can also vary between IMFs of a same decomposition.

Fourth stopping criterion: A fourth stopping criterion handling the two IMF-

requirements has been enunciated by Rilling et al. (2003) [42]: the sifting process

is stopped if both the two following conditions are satisfied,

• the numbers of zero-crossings and extrema of the proto-IMF hjk differ at

most by one. (This is simply the first condition of IMF.)

• the absolute value of the ratio of the mean mjk(t) of hjk to its mode ampli-

tude (defined as ajk(t) = (emax[hjk(t)]−emin[hjk(t)])/2, where emax and emin

designate the upper and lower envelopes respectively) is lower than a pre-

determined threshold θ1 for a fraction of the total signal size, say (1 − α);

and, this ratio is lower than a second threshold θ2.

Set in a mathematical formulation for a discrete-time series of length T :

hjk = cj if





|Nzc(hjk)−Next(hjk)| ≤ 1,

and σjk(t) < θ1 ∀ t ∈ J ⊂ T : #(J) ≥ (1− α)#(T ),

and σjk(t) < θ2 ∀ t ∈ T,
(2.19)

in which σjk(t) = |mjk(t)/ajk(t)|, and #(J) and #(T ) designate the cardinality

(size) of the sets J and T respectively. As Rilling et al. (2003) [42] detail: the

4The problem of convergence of the sifting process is another unsolved mathematical issue
of the HHT (see Huang 2005b [24]).
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second condition imposes “globally small fluctuations in the mean” with the first

threshold θ1 and a small tolerance α, “while taking into account locally large

excursions” with the second threshold θ2 in the third condition. They further

suggest to set θ1 ≈ 0.05, α ≈ 0.05 and θ2 ≈ 10θ1. As an example, the second

condition of this stopping criterion (2nd and 3rd equations in (2.19)) for (θ1 =

0.05, θ2 = 0.5, α = 0.05) can be interpreted as follows. The relative mean of the

IMF (|mjk/ajk|) has to be lower than θ1 = 0.05 for at least (1 − α) = 95% of the

data over the time span, while the relative mean of the remaining 5% of the data

has to be only lower than θ2 = 0.5.

In the present work, the fourth stopping criterion has been used in the HHT

algorithm because it seems to be the most complete one as it clearly accounts

for the two conditions of IMF. Moreover, the influence of the thresholds and the

tolerance on the results of the decomposition and on the Hilbert spectrum is

thoroughly investigated in Chapter 3. The aim is to provide a good evaluation

of the appropriate values to choose for the two thresholds and the tolerance.

2.2.6 Mode mixing in the decomposition

According to Huang et al. (1999) [26], the problem of mode mixing is in-

herent to a straightforward application of the EMD algorithm—and more pre-

cisely to the sifting process, as it has been described in Section 2.1.1. It can be

caused by intermittent signals or noisy data, and the main consequence is the

spread of modes between the IMFs. This problem must be prevented, and var-

ious solutions, such as the intermittency test presented by Huang et al. (1999,

2003) [26] [28], have been proposed to tackle it.

This phenomenon, likewise turbulence in fluid dynamics, is the mixing of

different time scales in a single component. It can occur intermittently, meaning

that it is not regular and therefore difficult to predict and interpret. Huang et

al. (1999) [26] further explain that mode mixing is actually not physically pos-
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sible because “no process can engender very different time scales in the same

response”; consequently, it must be identified and the mixed components must

be separated. In the EMD, the problem of intermittency is very important since

it can severely affect the shape of an IMF as it tends to mingle different mono-

components in the same mode. Normally, as we have seen in Section 2.2.1, IMFs

should contain only one range of frequencies since each represents a monocom-

ponent signal whose bandwidth clearly differs from others.

Figure 2.6 depicts the effect of mode mixing on the IMFs when the original

EMD algorithm is used. As can be seen on Figures (e) to (h) the intermittent

high-frequency component has strongly affected the decomposition. The first

IMF contains two components of very different frequency bandwidth; in this ex-

ample, the carrier frequency is actually one tenth of the intermittent frequency.

In addition, it can also be observed that the next IMFs are affected by the prob-

lem of mode mixing in c1. In fact, any problem encountered in one mode is

transmitted to the subsequent modes as a result of Equation (2.4) at the end of

the sifting process. So, to obtain the correct IMFs, from (b) to (d), the signal has

first undergone an intermittency test. Finally, the intermittent signal has been

entirely extracted in the first IMF, while the carrier has then been properly re-

covered in the second.

The intermittency test prescribed by Huang et al. (1999, 2003) [26] [28] works

as follows: in signals or residues to be analyzed, if the distance between two

successive extrema is greater than a predetermined value n1, then all the data

between these two extrema must be discarded from the resulting IMF. In other

words, n1 corresponds to the maximum half-period which the IMF can possess.

The aim is to discriminate intermittent components, which are either noisy data

or whose frequency is unexpected in the mode, from the signal so that the sifting

process will not mingle very different frequency scales in the same IMF.

Other techniques tackling mode mixing can be found in Gao et al. (2008) [17].

Moreover, Gao et al. (2008) [17] offer an alternative to the intermittency test
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Figure 2.6: Illustration of mode mixing in the decomposition of an intermittent
signal, Figure (a). Figures from (e) to (h) show the IMFs from a straightforward
decomposition and using the algorithm presented in Section 2.1.1; we can see
that mode mixing occurs in the first IMF c1 and also that c2, c3, and r are affected.
Figures from (b) to (d) display the IMFs of a decomposition of (a) using first the
intermittency test and second the EMD algorithm; the intermittent low ampli-
tude signal is completely retrieved in c1 and does not mingle anymore with the
lower-frequency sine wave successfully retrieved in c2.
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developed by Huang et al. (1999, 2003) [26] [28]. First, they suggest to use

the Teager Kaiser Energy Operator to locate the intermittent components of the

signal. They prefer this operator to the Hilbert transform since it is not subjected

to the Gibbs effect 5 and since its computation is also slightly faster. Second, the

mingled components are separated using a difference operator, the EMD and

cumulative sums.

In conclusion, these two algorithms seem to be effective to prevent mode

mixing, tests with LOD data show similar satisfying results. However, it must

be noted that both of them need one predetermined parameter to discriminate

either the critical half-period in the intermittency test, or the critical energy level

in the second technique. Finally, Huang et al. (1999) [26] caution about the

utilisation of such tests because any manipulation to the data increases the risk

to affect the decomposition. Indeed, some information could be lost or the IMFs

could be distorted by forcing the signal to behave in a particular way. In fact, the

adaptive aspect of the HHT could be compromised by too many manipulations;

however, intermittency and mode-mixing are not physical, therefore they must

be prevented.

In the present work, we have chosen to implement the intermittency test

of Huang et al. (1999, 2003) [26] [28]. Details regarding the algorithm will be

presented in Section 2.3.5.

2.2.7 Confidence limit

Huang et al. (2003) [28] established a method to determine the confidence limit

for the results of the HHT. Their method is based on the calculus of the ensemble

mean of different sets of IMFs derived from a unique signal. The particularity

of their approach is that they could not invoke the ergodic assumption 6 since

5The Gibbs effect, also known as ’ringing phenomenon’, describes the overshooting of the
Fourier series, or other eigenfunctions such as the Hilbert transform, at a jump discontinuity
(see Weisstein (no date) [49]).

6The ergodic assumption is applicable for linear and stationary data and allows to substitute
the ensemble mean by the temporal mean (see, for example, Gray and Davisson (1977) [19]).

31



2.3. Implementation of the HHT algorithm Chap. 2. HHT algorithm

most signals studied with the HHT are neither linear nor stationary, two nec-

essary conditions for this assumption. Therefore, they suggested to generate

different decompositions from the same data by varying the control parameters

of the EMD. For example, by adjusting the second stopping criterion with var-

ious values for the S-number and M -number, they obtained slightly different

sets of IMFs. In fact, each decomposition is statistically near from the ideal de-

composition, and, as we have seen, the differences are related to the practical

implementation of the EMD algorithm. Therefore, the ensemble mean and the

standard deviation can be computed for each IMF (see Section 2.3.7 for calcu-

lation details), and the results yield the confidence limit of the data set without

any loss in time and frequency resolution, a problem which frequently occurs

under the ergodic assumption. In addition to providing with a standard mea-

sure of the accuracy of the marginal spectrum and the Hilbert spectrum, their

method revealed the optimal range for the second stopping criterion (i.e. the

stopping criterion that is likely to lead to a meaningful decomposition). In par-

ticular, Huang et al. (2003) [28] found that, in the case of the LOD data, the

optimum S-number should be chosen between 4 and 8.

At first, the HHT can be rather difficult to monitor since several parameters

such as the stopping criterion, the end-point option and the intermittency test

can be adapted. In this regard, one objective of this study is to give some indi-

cations about these control parameters; and, likewise Huang et al. (2003) [28]’s

study on the S-number, we will investigate the optimum choice for the fourth

stopping criterion and for the end-point options throughout Chapter 3.

2.3 Implementation of the HHT algorithm

In this section are first described the crucial and adjustable control parameters

of the HHT algorithm whose parametrization can affect the results. Second,

means to assess the data are introduced. Third, the confidence-limit algorithm
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is presented. Finally, the different parts of the HHT algorithm can be found in

Appendix B.

2.3.1 Empirical mode decomposition

The source code showed in Section B.1 is a basic implementation of the empirical

mode decomposition; it returns the IMFs and the last residue of an input signal.

The end-point option can be chosen, and the thresholds of the fourth stopping

criterion can be adjusted. A last option can be used to perform an intermittency

test for some IMFs during the sifting process (see Section 2.3.5 for details on the

algorithm of the intermittency test).

2.3.2 Hilbert transform

The source code presented in Section B.2 computes the analytic signal using

the Hilbert transform, then the instantaneous amplitude and instantaneous fre-

quency are calculated. The computation of the amplitude is a straightforward

application of Equation (2.8). However, the computation of the frequency is not

simply the derivative of the phase function, and the formula used in the algo-

rithm is based on a method developed by Barnes (1992) [2]. In fact, the com-

putation of the derivative of a discrete-time function can be difficult, so a good

representation of the discrete-time instantaneous frequency is

w[t] =
1

2∆t
tan−1

(
x[t−∆t]y[t+ ∆t]− x[t+ ∆t]y[t−∆t]

x[t−∆t]x[t+ ∆t] + y[t+ ∆t]y[t−∆t]

)
, (2.20)

in which x and y denote respectively the real part and the imaginary part of a

discrete-time analytic signal z[t] = x[t] + iy[t], and ∆t is the time step. A second

method using the central difference scheme has been described by Boashash

(1992) [4], it gives also satisfying results. The discrete-time instantaneous fre-

quency is defined as

w[t] =
θ[t+ ∆t]− θ[t−∆t]

2∆t
, (2.21)

33



2.3. Implementation of the HHT algorithm Chap. 2. HHT algorithm

where θ[t] is the discrete-time phase function of the analytic signal. Furthermore,

the Matlab embedded function unwrap has been used in the computation of the

instantaneous frequency in order to prevent 2π-periodic strong discontinuities.

Finally, the algorithm features three different extension options 7 to extend

the data in order to deal with the Gibbs effect:

1. With the first option, there is no extension.

2. With the second option, the signal is mirrored anti-symmetrically at the

edges.

3. The third option extends the data with a damped sinusoidal curve using an

auto-regressive model. If one IMF contains less than one extrema, which

can occur for intermittent IMFs, this option cannot be used so the first op-

tion will automatically be chosen for this IMF.

The extension has to be as continuous as possible, so that a smooth transition can

alleviate the end-effect in the instantaneous amplitude and frequency curves.

2.3.3 End-point options8

Clamped end-points

The clamped end-point option is the simplest technique to terminate the cubic

spline interpolations. The first and last points of the data are considered as both

maxima and minima for every iteration of the sifting process. In other words,

the IMFs are forced to be zero at their ends. Figure 2.7 depicts the upper and

lower cubic spline envelopes using this option for the test data.

Though the risk of having large spurious swings in the IMFs has disap-

peared, this option imposes a strong constraint on the cubic spline envelopes. By

7These three extension options must not be confused with the four end-point options detailed in
Section 2.3.3. The main difference is: the end-point options are applied to the signal, the residues
or the proto-IMFs in the sifting process; whereas the extension options are used when applying
the Hilbert transform to each IMF in the second step of the HHT algorithm.

8The source code of the four different end-point options can be found in Appendix B.1 at the
end of the EMD algorithm.
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Figure 2.7: Illustration of the clamped end-point option. The first and last data
points are considered as both maxima and minima. As a result, the mean curve
is equal to the signal at the edges, and all the IMFs are forced to be zero at their
ends.

reducing the degree of freedom of the IMFs, this technique actually creates dis-

tortion in the modes. Therefore, we will investigate in the next chapter whether

the clamped end-option is adapted to minimize the propagated error due to the

termination of the envelopes.

Extrema extension

The method of extrema extension was developed by Shen et al. (2005) [47], it

consists of the addition of two extrema at the edges of the signal (see Figure 2.8).

Considering the beginning of the signal (the procedure is exactly symmetrical

for the end of the signal), the position and the amplitude of these two added ex-

trema are calculated using the first data point, designated as (t0, x0), and the first

two extrema, designated as (te1 , xe1) and (te2 , xe2) respectively (the nature of the

extrema—minimum or maximum—has no importance). Then, the procedure to

determine the extremum preceding the commencement of the signal (te−1 , xe−1)

and the leftmost extremum (te−2 , xe−2) works as follows:

35



2.3. Implementation of the HHT algorithm Chap. 2. HHT algorithm

first, 



te−1 = min(t0, (te1 − (te2 − te1)))

xe−1 = xe2 if te−1 < t0

x0 otherwise;

(2.22)

second, 



te−2 = te−1 − (te2 − te1)

xe−2 = xe1 .
(2.23)

This technique is actually an extension of a half-oscillation at both ends, and

whose time scale and amplitude are based on the neighbouring first and last

half-waves. It can be remarked that two extrapolated extrema on both sides are

sufficient to calculate the cubic spline envelopes, which need at least three in-

terpolation points. This corresponds to the number of maxima or minima of the

last IMF. The main advantages of this technique are its small need in computa-

tion resources and its adaptive character. However, we can wonder whether it

is sufficient to flatten the ends of the envelopes in every case. Moreover, it also

assumes that the signal is locally stationary around the edges, a condition that

may not always be true.

Mirror imaging extension

The mirror imaging technique is an extension of the data by reproducing the

symmetry of the signal with respect to the first and last data points (see Fig-

ure 2.9). Thus, the continuity between the signal and its extension is immediate.

Moreover, the nonlinearities that may exist in the signal are preserved. However,

this technique imposes a strong constraint of periodicity, and any non-stationary

or transient features occuring in the signal can therefore introduce some period-

icity in the low-frequency IMFs. Finally, this option can also increase the com-

putation burden if large data sets are studied.
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Figure 2.8: Illustration of the extrema extension technique. In this case, the two
added extrema before and after the signal have been calculated with the first two
and last two extrema respectively. We can observe that large swings have been
created before the first interpolation point of the lower envelope and after the
last interpolation point of the upper envelope. This is precisely the behaviour,
which occurs when the envelopes are left unconstrained, that we must avoid
within the length of the signal.
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Figure 2.9: Illustration of the mirror imaging extension method.
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Auto-regressive model

This last end-point option is also a signal extension technique. A damped sinu-

soidal curve, based on a second-order auto-regressive model, is extrapolated at

the edges of the time series. The extrapolated points are calculated according

to a recursive scheme based on the two preceding data points. The procedure

for the extrapolation of the end of the signal (the procedure for the beginning is

identical) can be described as follows:

let X = (x(t1), . . . , x(tN)) a time series of size N , Xepl = (x(tN+1), . . . , x(tNepl
))

the extrapolated sinusoidal curve of sizeNepl, Navg the length of averaging, κ the

damping coefficient, ωs the pulsation of the sinusoidal extension, and b1 and b2

two coefficients. First, the mean of the signal, µ, is shifted to zero according to

the average calculated with the last Navg points:

Xshift = X − µ(Navg) with µ(Navg) = mean(x(tN−Navg+1), . . . , x(tN)), (2.24)

then, the two coefficients are

b1 =
2− (ωs∆t)

2

1 + κ∆t
2

, b2 = −1− κ∆t
2

1 + κ∆t
2

, (2.25)

where ∆t = (t2 − t1) is the time step of the time series. Next, the extrapolated

points are calculated recursively with the two preceding points,

xshift(ti) = b1 · xshift(ti−1) + b2 · xshift(ti−2) ∀ i ∈ {(N + 1), . . . , Nepl}, (2.26)

and finally, the extrapolation sinusoidal curve is

Xepl = (x(tN+1), . . . , x(tNepl
)) = (xshift(tN+1), . . . , xshift(tNepl

)) + µ(Navg). (2.27)

The pulsation ωs (in the calculation of b1) can be determined using the time

scale defined by the nearest local extrema, as suggested by Coughlin and Tung
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(2005) [11],

ωs =
π∣∣∣tel
− te(l−1)

∣∣∣
, (2.28)

where tel
and te(l−1)

are the time instants of the last extrema and the next to last

one respectively. Moreover, it has been found that the difference between the

last two extrema has to be greater than four times the time step to prevent the

auto-regressive model from diverging to infinity. So, the following condition is

adopted in the algorithm:

ωs =





π∣∣∣tel
−te(l−1)

∣∣∣
if

∣∣∣tel
− te(l−1)

∣∣∣ ≥ 4∆t

π
4∆t

otherwise.
(2.29)

It can also be remarked that the phase and the amplitude of the sinusoidal ex-

tension are automatically adjusted by the auto-regressive model.

This end-point option is illustrated in Figure 2.10. Several parameters (the

length of extrapolation, the length of averaging, the size of the extrapolation and

the damped coefficient) can be adjusted with this technique, and their values can

depend on the signal studied. Finally, this technique is appropriate to flatten the

envelopes without creating any artificial periodicity in the low frequency IMFs.

However, nonlinear characteristics of the signal cannot be reproduced by this

model.

2.3.4 Fourth stopping criterion

The algorithm of the fourth stopping criterion, summarized in Section 2.2.5 and

initially developed by Rilling et al. (2003) [42], has been implemented using

Matlab. It is described in Source Code 2.1. In the system of equations (2.19),

the implementation of the first and third equations is almost straightforward, as

can be seen in the source code. However, the second equation with the notion of

cardinality is less obvious. So, the code can be interpreted as follows: condition 2

is verified if the proportion of data whose relative mean (ratio of the mean to the
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Figure 2.10: Illustration of the signal extension using an auto-regressive model.
The signal has been extrapolated with a damped sinusoidal curve of length
Nepl = 0.25N , a length of averaging Navg = 0.2N and a damping coefficient
κ = 0.5.

mode amplitude) exceed the first threshold θ1 is inferior than the tolerance α.

Source code 2.1: Matlab source code of the fourth stopping criterion

1 func t ion s t o p _ s i f t i n g = S t o p p i n g _ c r i t e r i o n _ 4 ( nzc , ne , me , ma , t h r e s h o l d s )
2 % S t o p p i n g c r i t e r i o n 4 r e t u r n s s t o p s i f t i n g == t r u e i f t h e c u r r e n t
3 % s i f t e d p r o t o − I M F s a t i s f i e s t h e two IMF− r e q u i r e m e n t s .
4

5 n_zc = nzc ; % number o f z e r o c r o s s i n g
6 n _ e x t r = ne ; % number o f e x t r e m a
7 mean_pIMF = me ; % mean o f t h e c u r r e n t p r o t o − I M F
8 mode_amp = ma ; % mode a m p l i t u d e
9 t h e t a 1 = t h r e s h o l d s ( 1 ) ; % f i r s t t h r e s h o l d

10 t h e t a 2 = t h r e s h o l d s ( 2 ) ; % s e c o n d t h r e s h o l d
11 a l p h a = t h r e s h o l d s ( 3 ) ; % t o l e r a n c e
12

13 % I m p l e m e n t a t i o n o f c o n d i t i o n 1
14 cond_1 = ( abs ( n_zc − n _ e x t r ) <= 1 ) ;
15

16 % I m p l e m e n t a t i o n o f c o n d i t i o n 2
17 cond_2 = ( ( mean ( abs ( mean_pIMF ) > t h e t a 1 ∗abs ( mode_amp ) ) ) < a l p h a ) ;
18

19 % I m p l e m e n t a t i o n o f c o n d i t i o n 3
20 cond_3 = a l l ( abs ( mean_pIMF ) < t h e t a 2 ∗abs ( mode_amp ) ) ;
21

22 % I m p l e m e n t a t i o n o f t h e s t o p p i n g c r i t e r i o n
23 s t o p _ s i f t i n g = ( cond_1 && cond_2 && cond_3 ) ;
24

25 end
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2.3.5 Intermittency test

Huang et al. (1999 and 2003) [26] [28] stressed the importance of using an inter-

mittency test to prevent problems of mode mixing in the decomposition. How-

ever, they did not give a detailed description of the algorithm of this test whose

principles were briefly presented in Section 2.2.6. Therefore, we have thought

it would be useful to provide some explanations about its use and its imple-

mentation; in addition, the source code of the intermittency test can be found in

Appendix B.3. So, the algorithm is as follows:

1. An EMD without intermittency test is performed to identify the IMFs with

mode mixing.

2. The intermittent criterion n1(j) is determined for each IMF cj (it defines

the maximum half-period that can be found in cj), zero or negative values

are associated with the IMFs that do not require the test.

3. An EMD with intermittency test can be called, and the vector n1 is added

to the input parameters.

The intermittency test is automatically launched once at the beginning of the

first iteration of the sifting process (more precisely, just after the search for the

extrema and before the calculation of the cubic spline envelopes, see the second

function of the source code in Appendix B.1) for each residue rj which are to

produce an imperfect IMF. In the residue rj , if the distance between two suc-

cessive extrema is greater than n1(j), then the upper and lower envelopes are

forced to be equal to the residue in the portion of the curve between these two

extrema. Therefore, the resulting mean mj,int is equal to rj in the portions of the

signal where the half-period is larger than n1(j), and equal to the genuine mean

mj1 anywhere else. Finally, the intermittent IMF cj,int—calculated by subtract-

ing the residue from the mean—retains only the waves with half-period shorter

than n1(j), and equals zero everywhere else. After that, the sifting process is

immediately stopped without calling the stopping criterion function.
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Four remarks regarding this algorithm:

• First, a new IMF is created for each strictly positive intermittency criterion.

Indeed, imperfect IMFs must be split into as many modes as it actually

contains.

• Second, the sifting process of residues which produce imperfect IMFs is

stopped at the end of the first iteration (without the stopping criterion),

and the first resulting proto-IMF is chosen as the IMF cj,int for practical

reasons. In fact, we have found that if cj,int was sifted several times, for

example until the two IMF-conditions are truly satisfied, it would result

in many spurious large swings located at the portions where the curve is

equal to zero. Therefore, to prevent the propagation of these strong distor-

tions to the subsequent IMFs, we have decided to separate the intermittent

IMF cj,int from the residue without performing a complete sifting process.

Nevertheless, if the intermittent IMFs contained useful information they

could still be analyzed separately with the EMD algorithm.

• Third, the choice of the intermittent criterion n1 should be motivated by

physical considerations: when confronted with plain mode mixing, and

when the bandwidth of the entangled modes can be clearly separated.

• Fourth, the continuity in the intermittent IMF between the zero portions

and the intermittent portions is automatically ensured by the cubic spline

interpolations. That is, between the last extremum of a long wave (half-

period larger than n1) and the first two extrema of a short wave, the two

envelopes separate from each other, and the upper and lower envelopes

are interpolated toward their respective maximum and minimum. There-

fore, a smooth transition is ensured.

In conclusion, the intermittency test separates intermittent signals from the

rest of the data according to a predetermined criterion. The intermittent IMFs

can be analysed separately if they have not been properly sifted. However, the
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most important is eventually to prevent the mixing of modes because it does not

represent any physical phenomenon.

2.3.6 Four quantitative indexes for the HHT

Having some means to assess the results given by the HHT is very important

since the actual algorithm is not ideal. In fact, different parameters can be ad-

justed, such as those described in the previous sections, thus producing slightly

different sets of IMFs for the decomposition of the same signal. Therefore, in this

section are described five simple qualitative and quantitative means to assess the

results of the EMD algorithm as well as the Hilbert spectrum.

Qualitative assessment

The decomposition into IMFs of a signal should first be inspected qualitatively

by eye, as prescribed by Drazin (1992) [14]. Though it is a subjective and some-

times difficult approach, experience can help identify the most important fea-

tures in a time-series signal. For example, trends and periodic characteristics of

stationary data can be identified. Then, knowledge about the phenomenon stud-

ied can also be very useful to understand the representation of nonlinearities in

the modes and eventually in the Hilbert spectrum. For example, if the origi-

nal signal has some frequency or amplitude modulations, these characteristics

will appear in the decomposition and will be revealed by the Hilbert transform.

Finally, experience in the HHT algorithm and especially in the choice of the dif-

ferent control parameters, such as the stopping criterion, the end-point options

and the intermittency test, can be very useful to assess the decomposition and

adjust the parameters in order to improve the results.

Index of orthogonality

An index of orthogonality can assess accurately the decomposition. As dis-

cussed in Section 2.2.2, the orthogonality of the EMD is theoretically satisfied.
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However, due to imperfections, the IMFs may not be orthogonal to each other in

practice. Therefore, an overall index of orthogonality IO developed by Huang

et al. (1998) [27] can be defined as follows

IO =

∑
t

∑
j 6=k |cj(t)ck(t)|∑
t |X(t)|2 . (2.30)

The index of orthogonality should be as small as possible for a good decompo-

sition. As an indication, Huang et al. (2003) [28] state that a decomposition is

deemed correct if IO ≤ 0.1.

Index of energy conservation

An index of energy conservation IEC was introduced by Chen et al. (2006) [8].

It can be computed as the ratio of the squared values of the IMFs to the squared

values of the signal minus the residue

IEC =

∑
t

∑
j |cj(t)|2∑

t |X(t)− rn(t)|2 . (2.31)

The residue is not taken into account in this index because having, in some cases,

a considerable energy relatively to the modes (the energy of the trend) it would

have overshadowed the other modes, thus rendering the index useless. How-

ever, we can show that the index of energy conservation is actually related to the

index of orthogonality. By virtue of the empirical mode decomposition we have

(
X − rn

)
=

n∑

j=1

cj (2.32)

Taking the square of this equation and expanding the right-hand side, we obtain

(
X − rn

)2
=

n∑

j=1

c2
j + 2

∑

j 6=k

(
cjck

)
, (2.33)
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Finally, summing each side over time and dividing by the left-hand side we find

1 = IEC + 2 IO. (2.34)

Therefore, the index of energy conservation will not be used in this study since

it is redundant with the index of orthogonality.

Index of component separation

An index of component separation, ICS, is introduced to give an accurate mea-

sure of the separation of the instantaneous bandwidth of two monocomponents.

As Cohen (1995) [10] explains, a signal is a multicomponent signal if the instan-

taneous bandwidths of its components, defined as the ratio between the time

derivative of the amplitude and the amplitude a′(t)/a(t), are small compared to

the difference of their instantaneous frequency. In other words, this index can be

applied to a pair of successive IMFs, cj and cj+1, and taking only the oscillatory

components of the Hilbert-Huang transform of a signal (from Equation (2.10)),

z(t) =
n∑

j=1

aj(t) exp

(
i

∫
ωj(t)dt

)
, (2.35)

then, two successive IMFs are separated if

∣∣∣∣
a′j(t)

aj(t)

∣∣∣∣ ,

∣∣∣∣
a′j+1(t)

aj+1(t)

∣∣∣∣� |ωj+1(t)− ωj(t)| with 1 ≤ j < n. (2.36)

Therefore, the instantaneous index of component separation can be defined as

the logarithm of the ratio of the right-hand side to the left-hand side of Equa-

tion (2.36) for each component

ICSj(t) =

[
log

(
|ωj+1(t)− ωj(t)|∣∣∣a

′
j+1(t)

aj+1(t)

∣∣∣

)
, log

(
|ωj+1(t)− ωj(t)|∣∣∣a

′
j(t)

aj(t)

∣∣∣

)]
with 1 ≤ j < n,

(2.37)
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and it must satisfy

ICSj(t) > 0 for all 1 ≤ j < n (2.38)

to ensure that the IMFs are well separated. If this criterion is not satisfied, it

can mean that there is mode spreading over successive IMFs, in other words the

algorithm has mixed some modes and this problem should be solved using the

intermittency test. Otherwise, it can signify that there is over-decomposition,

that is, the same monocomponent has been decomposed on two IMFs by the

sifting process. This problem should be solved by relaxing the stopping crite-

rion, which may be too strict, or by changing other control parameters. Finally,

the time average of this index can be calculated for stationary signals

ICSj =
1

T

N∑

i=1

ICSj[ti] with 1 ≤ j < n, (2.39)

where T = (tN − t1) is the time span of the signal. This index is very important

to assess the Hilbert spectrum because it gives an evaluation of the frequency

resolution.

Number of IMF

The number of IMF, designated by NIMF is also a simple quantitative means

to evaluate the decomposition. It is essentially useful when compared to other

decompositions of the same signal. In most cases, NIMF should not vary more

than one IMF between different sets of IMFs. However, it should not change

significantly, and a set with a very different number of IMFs than the average is

considered unsatisfying.

Number of iterations

The number of iterations for each IMF Nite,j , or the total number of iterations

for a set of IMFs Nite,T is another simple comparative means to assess the EMD
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algorithm. This criterion is greatly influenced by the stopping criterion as we

will discuss in Chapter 3. Moreover, Nite,j can fluctuate by more than 10 or 20

iterations between different decomposition sets. This is mainly due to the stop-

ping criterion: if the thresholds are low, which means stricter constraints, then

the number of iterations tends to increase, and conversely. However, overall,

the number of iterations should not vary too much for a given IMF, and a limit

of 500 iterations per IMF will be set for the studies of the LOD data (see Sec-

tion 3.3) and the vortex-shedding signal (see Section 3.4) to prevent problems of

convergence in the sifting process.

2.3.7 Confidence limit

The confidence-limit algorithm is based on the study of Huang et al. (2003) [28]

whose results were reported in Section 2.2.7. It aims at giving a quantitative

view of the results given by HHT. Several sets of IMFs are calculated from the

same data but with different control parameters, and the resulting sets are as-

sumed to have equal probability. Then, the algorithm calculates the ensemble

mean of the sets of IMF and the standard deviation to give a confidence limit. A

preliminary test is performed before calculating the mean and the standard de-

viation, all the sets whose IO is not below predefined thresholds (e.g. IO ≤ 0.1)

are discarded. Moreover, Huang et al. (2003) [28] explains: “assuming that the

error is normally distributed, the confidence limit is usually defined as a range

of values near this mean: one standard deviation is equivalent to 68%, and two

standard deviations are equivalent to a 95% confidence limit.” Finally, the al-

gorithm produces the following results: the time evolution of the mean IMFs

and their standard deviation; the marginal spectra of all the cases with the mean

marginal spectrum and the 68% or 95% confidence limit (CL) marginal spectra;

and the mean Hilbert spectrum.

The architecture of the confidence-limit algorithm is shown in appendix B.4.

Two cases, which need a different implementation, must be distinguished to
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compute the ensemble mean and which need different implementation:

1. If the numbers of IMFs in each set or case, which have passed the pre-

liminary tests, are equal, then, the ensemble mean E(cj) and the standard

deviation σ(cj) of each IMF cj can be computed as follows

E(cj) = cj =
1

Nset

Nset∑

i=1

cj,i with 1 ≤ j ≤ NIMF , (2.40)

and

σ(cj) =
√
E
(
(cj − cj)2

)
=

√√√√ 1

Nset

Nset∑

i=1

(cj,i − cj)2 with 1 ≤ j ≤ NIMF ,

(2.41)

where Nset designates the number of sets, and cj,i the jth IMF of the ith set.

2. If the numbers of IMFs differ between the cases, a straightforward com-

putation of the ensemble mean and the standard deviation is not possi-

ble. However, a bin method developed by Huang et al. (2003) [28] can be

used. It consists in averaging the Hilbert spectra of the different cases. A

time-frequency grid with rectangular bins of width the frequency step and

length the time step is defined. Then, the amplitude of all the points be-

longing to the same bin is averaged. The computation of the discrete-value

mean Hilbert spectrum H[t, ω] is defined as follows: let t1, . . . , tj, . . . , tm m

increasing time values of constant time step ∆t = (t2 − t1), and ω1, . . . , ωk,

. . . , ωn n increasing frequency values of constant frequency step ∆ω =

(ω2 − ω1), then for all 1 ≤ j ≤ m and for all 1 ≤ k ≤ n

E(Hj,k) = Hj,k = H[tj, ωk] =
1

Nj,k

∑

tj≤ti<tj+1

ωk≤ωi<ωk+1

Hi[ti, ωi], (2.42)
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and for all 1 ≤ j ≤ m and for all 1 ≤ k ≤ n

σ(Hj,k) =

√
E
((
Hj,k −Hj,k

)2
)

=

√√√√√
1

Nj,k

∑

tj≤ti<tj+1

ωk≤ωi<ωk+1

(
Hi[ti, ωi]−H[tj, ωk]

)2

,

(2.43)

where Hi is the amplitude of any set i and Nj,k is the number of points

Hi[ti, ωi] belonging to the bin defined as: tj ≤ ti < tj+1 and ωk ≤ ωi <

ωk+1. The definitions of the time step ∆t and the frequency step ∆ω are

important: a fine grid tends to increase the squattering of the results; on

the other hand, a loose grid smoothes the results but lowers the resolution.
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. Results and discussion

3.1 Procedures

First, five simple test signals, i.e. a two-component sinusoidal signal, an ampli-

tude-modulated signal, a frequency-modulated signal, an amplitude-step signal

and a frequency-shift signal, are studied with the HHT algorithm to understand

the influence of the end-point option and the fourth stopping criterion on the

index of orthogonality, the index of component separation, the number of itera-

tions and the number of IMFs. Second, through a systematic analysis of length-

of-day data, we investigate the optimal end-point option and the optimal thresh-

olds and tolerance for the stopping criterion. Third, a vortex-shedding signal

from hot-wire measurements in the wake of a cylinder are studied to show the

importance of the control parameters and the intermittency test to obtain mean-

ingful results.

For each study, the same formalism is used to describe the parameters cho-

sen in the algorithms. The EMD algorithm is referred to as ’EMD’, and it has

the following inputs: EMD([t;signal],epo,thresholds), and a last argument

n1 (a row vector) can be added when invoking the intermittency test. Pre-

cisely, t designates a one-row time vector written in the Matlab formalism, i.e.
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t=t0:Dt:tN where t0 is the first time instant, Dt is the time step (no time step

means Dt=1) and tN is the last point; next, signal is the name of the signal; epo

is the end-point option with epo=1 for the clamped end-point option, epo=2 for

the extrema extension option, epo=3 for the mirror imaging option and epo=4

for the auto-regressive extension option; and thresholds is a row vector with

thresholds(1)=theta1 the first threshold θ1, thresholds(2)=theta2 the sec-

ond threshold θ2 and thresholds(3)=alpha the tolerance α of the fourth stop-

ping criterion. Finally, the intermittent criterion vector n1 follows the same no-

tation as used by Huang et al. (2003) [28]: it is a row vector in which each

coordinate corresponds to the intermittent criterion assigned to the IMF of same

index. Moreover, a zero value indicates that the intermittency test is not per-

formed, superscripts indicate the number of consecutive IMFs having the same

criterion and a negative value is used in last position if all the remaining IMFs do

not need the test. For example, n1=[5,03,302,-1] means that an intermittency

test is performed on the first IMF c1 with n1(1) = 5, then no intermittency test is

called for IMFs c2 to c4, then a test with the same criterion n1(5) = n1(6) = 30 is

performed on IMFs c5 and c6, and finally IMFs c7 to cn are sifted normally with-

out invoking the intermittency test. A last remark: the units of n1 are the same

as the units of t. Similarly, the Hilbert-transform algorithm is referred to as ’HT’.

Its input arguments are: ’HT([t;signal],eo,le)’ in which eo designates the

extension option with eo=1 for no extension, eo=2 for an antisymmetric mirror

imaging extension and eo=3 for an extension with a damped sinusoidal curve

using an auto-regressive model (see Section 2.3.2 for details about the three ex-

tension options). le designates the length of extension as a proportion of the

size of the signal.
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3.2 Study of five simple test signals

Five simple signals are used to test the HHT algorithm (EMD and Hilbert-trans-

form algorithms) and to study the influence of the end-point options and the

stopping criterion on both the decomposition and the Hilbert spectrum. More-

over, the analysis of these test signals can help us calibrate the four quantitative

criteria, IO, ICS, NIMF and Nite, and also give us precious information on their

reliability to assess the results of the HHT. The test signals chosen were previ-

ously investigated by Huang et al. (1998) [27] and Meeson (2005) [35]. They both

gave a thorough interpretation of the decomposition and the Hilbert spectrum

of each signal. For example, Huang et al. (1998) [27] explained through a com-

parative analysis with the wavelet transform and the Fourier transform how

nonlinearities, such as frequency or amplitude modulation, can be accounted

for by the Hilbert spectrum. Then, Meeson (2005) [35] showed the differences

between the sifting process in the EMD and filtering techniques. In particu-

lar, he found that the Hilbert spectrum provides a better representation of non-

stationary phenomena such as a step of amplitude or a frequency shift. Further-

more, he discovered aliasing in the HHT which can lead to misinterpretation of

signals, whose frequencies are above the peak-to-peak sampling rate, as lower-

frequency components. However, the purpose of our analysis is not to interpret

further these signals, but rather to study the impact of the control parameters on

the HHT as well as the results found by the quantitative criteria. The five test

signals are:

1. A two-component sinusoidal signal, see Figure 3.1 (a):

S1(t) = cos (2πt) + 0.5 cos (πt). (3.1)

2. An amplitude-modulated signal, see Figure 3.1 (b):

S2(t) =
(

1 + 0.5 cos (πt)
)

cos (2πt). (3.2)

52



3.2. Study of five simple test signals Chap. 3. Results and discussion

3. A frequency-modulated signal, see Figure 3.1 (c):

S3(t) = cos
(

2πt+ 0.5 sin (2πt)
)
. (3.3)

4. An amplitude-step signal, see Figure 3.1 (d):





sin (2πt) ∀ t ≤ 0

2 sin (2πt) ∀ t ≥ 0
(3.4)

5. A frequency-shift signal, see Figure 3.1 (e):





sin (2πt) ∀ t ≤ 0

sin (4πt) ∀ t ≥ 0
(3.5)

Each signal is studied with each end-point option and three different groups

of thresholds for the stopping criterion: thresholds=[0.01,0.1,0.01], a strict

criterion; thresholds=[0.05,0.5,0.05], the criterion suggested by Rilling et

al. (2003) [42]; and thresholds=[0.1,1,0.1], a loose criterion. The parameters

for the fourth end-point option as well as the extension options for the Hilbert-

transform algorithm are adjusted to obtain the best results. The Hilbert spectrum

of a few cases are presented to illustrate interesting behaviours of the HHT, and

all the results for the quantitative criteria are reported in Appendix C.

3.2.1 Two-component signal

Empirical mode decomposition: From the results presented in Table C.1 of

Appendix C.1 we can notice that, overall, the EMD of the two-component sig-

nal is good independently from the choice of the end-point option. The shape

of the IMFs (not shown in this report) is very similar between the last three op-

tions, slight differences can be found at the edges where the choice of the option

can affect the termination of the curves. Moreover, for all the end-point tech-
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Figure 3.1: Five simple signals: (a) is a two-component sinusoidal signal, (b) is
an amplitude-modulated signal, (c) is a frequency-modulated signal, (d) is an
amplitude-step signal and (e) is a frequency-shift signal. The first signal is both
stationary and linear, then the second and third are nonlinear signals and finally
the last two are non-stationary signals.
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niques, except the clamped end-point technique, the number of IMFs is either

two or three. In fact, the third IMF, which actually has a very low amplitude

in all cases, is generally produced with the two lowest groups of thresholds

(thresholds=[0.01,0.1,0.01] or thresholds=[0.05,0.5,0.05]) because

they impose more sifting iterations as can be seen with the results of Nite, j.

Then, the index of orthogonality are very good for these options, i.e. IO < 0.05.

Finally, the first end-point option (clamped end-point option) differs from the

others since it cannot be used with the second and third conditions of the fourth

stopping criterion (see Section 2.2.5) due to a problem of convergence in the sift-

ing process. This option actually imposes a strong constraint on the ends of the

IMFs, thus distorting each IMF so that the fourth stopping criterion can never

be satisfied.

Hilbert spectrum: The Hilbert spectrum in the case of the first end-point op-

tion has been plotted on Figure 3.2. Because of a relaxed stopping criterion, no

iterations of the sifting process were needed, so the signal was found as IMF.

However, we can see from the Hilbert spectrum that the two components of the

signal have not been found. Instead, it shows non-physical amplitude modula-

tion and frequency modulation. This illustrates the importance of decomposing

a signal into IMFs before applying the Hilbert transform. The results with the

other options show some discrepancies caused by the occurrence of end-effect.

In fact, the propagation of the error at the edges can be emphasized by the ex-

tension option. For example, the Hilbert spectrum on Figure 3.4 (with the IMFs

on Figure 3.3) obtained with the second extension option (anti-symmetric mir-

ror imaging) displays strongly distorted wavy components with much larger

amplitude at the ends. This extension technique, instead of minimizing the end-

effect, seems to amplify it. Moreover, this result is also supported by the index

of component separation because it has negative values: ICS1 = (−1.72,−0.82).

On the other hand, Figure 3.6 (with the IMFs on Figure 3.5) shows an excel-

lent Hilbert spectrum: the frequency and the amplitude of the two components
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Figure 3.2: Hilbert spectrum of the two-component signal (s1) with the follow-
ing parameters: EMD([0:0.01:9;s1],1,-) and HT([t1;s1],1,0). Due to a
problem of convergence with the clamped end-point option, the stopping cri-
terion has been relaxed (only the first IMF-condition was required). Eventually
the signal itself was recorded as IMF. However, the Hilbert spectrum is not cor-
rect because it shows amplitude modulation and frequency modulation in this
simple signal.

are well retrieved (normalized in the figure); and the end-effect is successfully

mitigated by the third extension option (auto-regressive model). Moreover, the

third, and spurious, IMF has a very low amplitude and its frequency does not

mix with the two main components. Finally, the indexes of component separa-

tion for this graph are very high, ICS1 = (2.34, 2.14) and ICS2 = (1.46, 0.79),

thus emphasizing the good frequency separation of the IMFs.

3.2.2 Amplitude-modulated signal

Empirical mode decomposition: According to Table C.2 in Appendix C.2,

similar tendencies as those observed with the previous signal can be found for

the amplitude-modulated signal. First, the clamped end-point option differs

once again from the other options. Second, the decomposition is still strongly

influenced by the stopping criterion. Then, the index of orthogonality, the num-

ber of IMFs and the number of iterations per IMF all give a good evaluation

of the results of the EMD. In this regard, the fourth end-point option is a good
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Figure 3.3: IMFs of the two-component signal (s1) with the following parame-
ters: EMD([0:0.01:9;s1],3,[0.1,1,0.1]).
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Figure 3.4: Hilbert spectrum of the two-component signal (s1) with the following
parameters: EMD([0:0.01:9;s1],3,[0.1,1,0.1]) and HT([t1;s1],2,0.9).
The end-effect is very strong, as shown by the spurious oscillations of the two
components, thus meaning that the extension option is not adapted to attenuate
it.
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Figure 3.5: IMFs of the two-component signal (s1) with the parameters:
EMD([0:0.01:9;s1],4,[0.01,0.1,0.01]).
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Figure 3.6: Hilbert spectrum of the two-component signal (s1) with the pa-
rameters: EMD([0:0.01:9;s1],4,[0.01,0.1,0.01]) and HT([t1;s1],3,1);
moreover, the parameters for the third extension option are: Navg = 0.25N and
κ = 0.001. The frequency resolution is excellent and the two components are
very well retrieved.
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illustration: low thresholds (thresholds= [0.01,0.1,0.01]) in the first row

have induced over-sifting, as shown by the large numbers of iterations (Nite,j =

(71, 66, 56, 175, 90, 27, 10)), and over-decomposition, as shown by the large num-

ber of IMFs (NIMF = 7), and the IO is as high as 4.7. On the other hand, the least

strict constraints with this option (thresholds=[0.1,1,0.1]) give the best re-

sults: few iterations Nite,j = (2, 0), two IMFs and a good index: IO = 0.03. Fi-

nally, it can be remarked that, overall, the index of orthogonality is not as good

as in the study of the two-component signal. This may be due to the nonlinear

character of this signal. In fact, Huang et al. (1998) [27] stated that nonlinear

signals are not supposed to be orthogonal in the sense of the Fourier decom-

position. Nevertheless, the results show that the good decompositions of this

amplitude-modulated signal have relatively low low IO.

Hilbert spectrum: The amplitude-modulated signal can be interpreted in two

manners. First, the signal can be seen as a monocomponent signal with a sin-

gle frequency and a modulated instantaneous amplitude. This point of view

is illustrated by the Hilbert spectrum obtained with the first end-point option

or clamped end-point option (see Figure 3.7). We can also notice that the end-

effect has been correctly mitigated by the use of the third extension option (auto-

regressive model), with length of extension equals to the signal size and a low

damping coefficient κ = 0.01. Second, the signal can be decomposed in two com-

ponents as shown on Figure 3.8: a first IMF with a constant amplitude a1(t) ≈ 1

and a modulated frequency varying from 0.73 < ω1 < 1.15 and oscillating at a

constant period Tω1 = 1; and a second IMF with a constant amplitude a2(t) = 0.5

and a constant frequency ω2 = 0.5 (a third IMF has also been found by the EMD,

but it has a much lower amplitude, a3(t) ≈ 0.01, than the first two IMFs and it

is not visible on Figure 3.9). This second type of decomposition has also been

found by Meeson (2005) [35] who suggests that it is not accurate because of the

problem of aliasing. Then, we can observe that no extension of the IMFs has led

to a localized problem of increasing or decreasing frequency (by 20% to 50%) and
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Figure 3.7: Hilbert spectrum of the amplitude-modulated signal (s2) with the
clamped end-point option and the following parameters: EMD([0:0.01:9;s2],
1,-) and HT([t2;s2],3,1); moreover, the parameters for the third extension
option (auto-regressive model) are: Navg = 0.25N and κ = 0.01. There is only
one mode with a modulated frequency around ω1 = 1. Finally the end-effect has
been very well handled by the third extension option.

increasing amplitude (by a factor 2) at both ends of the signal. Although there is

a problem of end-effect, the index of component separation is still good for the

first two IMFs: ICS1 = (1.43, 1.88), meaning that their frequency bandwidth are

globally well distinguished.

3.2.3 Frequency-modulated signal

Empirical mode decomposition: When the first three end-point options are

used, the frequency-modulated signal is not decomposed into modes because it

already satisfies the two IMF-conditions (see Table C.3 in Appendix C.3). Only

the last option finds 5 different IMFs; however, this result is not correct because

the algorithm has produced spurious IMFs. In fact, the fourth option does not

seem suitable with a strict stopping criterion, and the results are better when the

thresholds increase.

Hilbert spectrum: All the decompositions being similar, except for the first

and second cases of the fourth end-point option, the Hilbert spectra are also
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Figure 3.8: IMFs of the amplitude-modulated signal (s2) with the parameters:
EMD([0:0.01:9;s2],3,[0.05,0.5,0.05]). There are three IMFs from this
signal: a constant-amplitude frequency-modulated component, a carrier and a
negligible very-low-amplitude component.
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Figure 3.9: Hilbert spectrum of the amplitude-modulated signal (s2) with the pa-
rameters: EMD([0:0.01:9;s2],3,[0.05,0.5,0.05]) and HT([t2;s2],1,0).
There are three IMFs from this signal: a constant-amplitude frequency-modula-
ted component, a carrier and a negligible very-low-amplitude component. The
end-effect, appearing because no extension was done, is localized at the edges
and consists of increasing amplitudes (by a factor 2) and increasing or decreas-
ing frequencies (by 20% to 50%) for the two modes.
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similar. The slight differences are seen at the ends of the mode depending on

the choice of the extension option. For instance, the sinusoidal extension tech-

nique is very good to alleviate the end-effect if a low damping coefficient is used,

κ < 0.01. Then without extension the results are also good, as can be seen on Fig-

ure 3.10. However, the anti-symmetric mirror imaging technique does not give

a good Hilbert spectrum. In fact, for this kind of signals, this extension method

is not good because the extension is not symmetrical with respect to the mean

of the signal. This is due to the fact that the signal is terminated by two extrema

(see Figure 3.1 (c)).
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Figure 3.10: Hilbert spectrum of the frequency-modulated signal (s3) with the
parameters: EMD([0:0.01:9;s3],1,-) and HT([t3;s3],1,0). The first exten-
sion technique used here has effectively mitigated the end-effect.

3.2.4 Amplitude-step signal

Empirical mode decomposition: In this study of a non-stationary signal, we

can see the power of the HHT, which is able to perform a very good analysis of

the amplitude step occuring at time t = 0. Table C.4 in Appendix C.4 confirms

the excellent results of the decomposition (displayed on Figure 3.11) with very

low indexes of orthogonality IO < 0.011. Moreover, we can observe that strict

stopping criteria increase the number of sifting iterations per IMF as well as the
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number of IMFs in a few cases, whereas higher thresholds give opposite results.

Figure 3.11: IMFs of the amplitude-step signal (s4) with the parame-
ters: EMD([-4.5:0.01:4.5;s4],2,[0.1,1,0.1]). The anti-symmetric mirror
imaging technique used to extend the IMFs before applying the Hilbert trans-
form has successfully alleviated the end-effect in this case.

Hilbert spectrum: As depicted in Figure 3.12, three IMFs are produced by the

EMD algorithm: the first IMF accounts for the step in amplitude, and the last

two, which have very low amplitudes (a2, a3 ≈ 0.17), are created because of the

brutal change in amplitude and their frequencies actually mark the time of the

step. Another important remark is that, for the first time, extension option 2,

which has been used to compute the Hilbert spectrum presented in Figure 3.12,

effectively mitigates the end-effect at the edges of the signal. The main differ-

ence with the three previous signals is that this signal ends at its mean value

(see Figure 3.1 (d)), thus allowing the anti-symmetric extensions to be symmet-

ric with respect to the mean value. As we have already found, this point is very

important in order to minimize the end-effect. Finally, Table C.4 also shows that

the indexes of component separation are consistently very good between the

first and second IMFs: ICS1 > (0.86, 0.87) for all the cases. However, the study

of the instantaneous ICS (see Figure 3.13), which is more accurate in the case of

non-stationary signals, actually shows a drop of approximately 2 points of the
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first component of ICS1 between −1.55 < t < 1.55. This is clearly due to the oc-

currence of the step of amplitude, which has induced some Gibbs phenomenon

between t ≈ −1.5 and t ≈ 1.5.
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Figure 3.12: Hilbert spectrum of the amplitude-step signal (s4) with the parame-
ters: EMD([-4.5:0.01:4.5;s4],2,[0.1,1,0.1]) and HT([t4;s4],2,1). The
anti-symmetric mirror imaging technique used to extend the IMFs before apply-
ing the Hilbert transform has successfully alleviated the end-effect in this case.

3.2.5 Frequency-shift signal

Empirical mode decomposition: Likewise the frequency-modulated signal,

the frequency-shift signal is analysed by the Hilbert transform without being

decomposed by the sifting process. According to Table C.5 in Appendix C.5,

there is only the case with the fourth end-point option and the strictest stopping

criterion which differs by producing two more spurious IMFs.

Hilbert spectrum: Overall, the Hilbert spectra are similar whatever the end-

point option. The only differences are due to the choice of the extension option:

some end-effect is seen with the first one; otherwise the second and third one can

alleviate the problem of increase in amplitude and frequency at the edges. How-

ever, from Figure 3.14 we can notice that some frequency waves still propagate

toward the interior of the signal. Moreover, these waves are more important af-

ter the frequency shift than before. No explanations have been found about this
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Figure 3.13: Instantaneous index of component separation ICS1(1) and its mean
(blue line) for the amplitude-step signal. This index decreases sharply by ap-
proximately 2 points between t = −1.55 and t = 1.55. It is due to the step
of amplitude, and it shows that the Hilbert transform has difficulties to handle
brutal changes in amplitude.

none-symmetric phenomenon. Finally, comparing this case with the amplitude-

step signal, it can be deduced that the Hilbert transform seems to handle fre-

quency changes better than amplitude changes. In fact, the Gibbs phenomenon

around t = 0 is much less important in the Hilbert spectrum of the frequency-

shift signal.

3.2.6 Conclusions on the five-signal study

First, the study of these five test signals showed that the end-point options could

affect the decomposition of the signal. The first option was different from the

others because it had to be used with a stopping criterion that only demanded

the first IMF-condition. So, it could lead to different interpretations of the signal:

for the two-component signal it failed to retrieve the two components; but for

the amplitude modulated signal, while all other options found two IMFs, this

option resulted in a much more intuitive representation of the phenomenon.

The second and third options were very similar, as it could have been expected

according to their respective implementation, and no differences could be ob-

served in the Hilbert spectrum. In fact, there were only small discrepancies in
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Figure 3.14: Hilbert spectrum of the frequency-shift signal (s5) obtained with the
following parameters: EMD([-4.5:0.01:4.5;s5],2,[0.01,0.1,0.01]) and
HT([t5;s5],2,1). The anti-symmetric mirror imaging technique used to ex-
tend the IMFs before applying the Hilbert transform has somewhat alleviated
the end-effect. However, we can still observe frequency waves in the second
part of the signal.

the way their respective IMFs terminated. The fourth end-point option was ac-

tually more difficult to monitor because it had several parameters such as the

length of extrapolation of the sinusoidal curve, the length of averaging and the

damping coefficient. Good results were found with Nepl = N , Navg = 0.3N

and κ ≤ 0.01. However, we also saw that this option was not adapted with

low thresholds since it created many spurious IMFs when the stopping crite-

rion was strict: thresholds= [0.01,0.1,0.01] and sometimes thresholds=

[0.05,0.5,0.05].

Second, the extension option which best alleviated the end-effect was the

third one, the extension with a damped sinusoidal curve, when very low damp-

ing coefficients were used: κ ≤ 0.005. Without extension, we could observe

fallacious large increase or decrease in amplitude and frequency at the edges of

the modes in the Hilbert spectrum. The second one, the anti-symmetric mirror

imaging technique was found to be counter-productive when the IMFs termi-

nated on extreme points. In other words, large frequency waves propagated

from the edges toward the center of the mode. However, when the components
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terminated on their mean value, so that the extensions could be also symmetrical

with respect to the mean, this option was effective to mitigate the end-effect.

Third, the first three quantitative criteria—the index of orthogonality, the

number of IMFs and the number of iterations per IMF—were very useful to

assess the performances of the EMD algorithm. The last one, the index of com-

ponent separation, was a good indicator of the frequency resolution and band-

width separation of the modes in the Hilbert spectrum. Moreover, we found that

for stationary signals its time average was sufficient. However, its instantaneous

form was much more accurate to evaluate non-stationary phenomena.

Finally, the optimal combinations of the different implementation options

for these five signals can be found in Table G.1 in Appendix G. These results are

based on the conclusions discussed above.

3.3 Study of the length-of-day data

In the previous section we have seen the influence of the end-point option and

the stopping criterion on the decomposition of simple test signals. Moreover,

we have found that the index of orthogonality, the number of IMFs, the num-

ber of iterations per IMF and the index of component separation could provide

valuable information about the results of the EMD and the Hilbert spectrum. In

the study of length-of-day data, we use these indicators to perform a system-

atic investigation of the choices of the end-point option and the thresholds of

the fourth stopping criterion. The aim is to establish the set of control parame-

ters which leads to a good decomposition and to a meaningful time-frequency-

amplitude representation.

The daily length-of-day data set (LOD data set) used for this study were

originally constructed by Gross (2001) [20] and can be found on-line in the file

’comb2000_daily.eop’. Gross (2001) [20] gave a detailed study of the physical

phenomena at the origin of the daily variations of the length of the day. Then,
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Huang et al. (2003) [28] performed a thorough analysis of this data set and

showed that the HHT could bring a complete understanding of the physics rep-

resented in this signal1. For example, influence of the tides, semi-annual cycles,

annual cycles and longer-period cycles, such as the periodic El Niño event, were

identified in the IMFs. They also demonstrated the importance of the intermit-

tency test to remove aliases caused by mode mixing. Finally, they computed the

mean Hilbert spectrum and calculated the confidence limit for the HHT by vary-

ing the second stopping criterion presented in Section 2.2.5. Therefore, similar

to their analysis of the second stopping criterion, we use the LOD data to study

the second, third and fourth end-point options, as well as the thresholds and

tolerance of the fourth stopping criterion.

The study of the LOD data set proceeds as follows: for each of the sec-

ond, third and fourth end-point options (epo) the signal is decomposed with

the EMD method. In each case, the thresholds and tolerance of the stopping

criterion vary from (θ1 = 0.03, α = 0.03) to (θ1 = 0.3, α = 0.3) with the steps

∆(θ1) = ∆(α) = 0.005; the second threshold is maintained proportional to the

first one with θ2 = 10θ1, as prescribed by Rilling et al. (2003) [42]. Actually,

the thresholds cannot be set lower due to problems of convergence during the

sifting process. Moreover, a limit of 500 iterations per IMF is set, above which

the second and third conditions of the fourth stopping criterion are relaxed.

In addition, this study is conducted two times: firstly without the invoking

intermittency test; and secondly with the intermittency test using the criteria

n1=[4,03,452,-1] 2. In each case defined by a triplet Ci = (epoi, θ1,i, αi), the

IO, NIMF , Nite,j and ICSj are computed. For the index of component separa-

tion, its time average is chosen because the data can be considered as station-

ary, then the arithmetical mean over all the IMFs is computed so as to give an

overall evaluation of the Hilbert spectrum in a single graph, it is designated as

1A decomposition of the LOD data in IMFs can be found in Appendix D.1. The results ob-
tained in this study are compared to the results obtained by Huang et al. (2003) [28].

2These intermittency criteria were suggested by Huang et al. (2003) [28].
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mean(ICS). The EMD algorithm and the Hilbert-transform algorithm presented

in Appendix B are used for the computations. The first end-point option is not

investigated because we found in the study of the five signals (Section 3.2.6) that

this option could not be combined with the fourth stopping criterion. Finally, the

extension option used for all the cases to mitigate the end-effect in the Hilbert

spectrum is the third one: HT([(1:1:14232)/365,LOD],3,1). Moreover, the

modes are extrapolated with a damped sinusoidal curve, with the parameters:

Nepl = N , Navg = 0.1N and κ = 0.0001. These parameters were chosen according

to the conclusions reached in the five-signal study.

3.3.1 Assessing the end-point option, the stopping criterion and

the intermittency test

Second end-point option, no intermittency test: As shown on Figure 3.15,

four different regions can be distinguished: first, for θ1 ≤ 0.035 the IO is very

low at around 0.015. Second, for 0.04 ≤ θ1 ≤ 0.1 and α ≥ 0.08 the IO is extremely

low, except for θ1 = 0.05 where the IO shows a short increase. Third, the region

for 0.1 ≤ θ1 ≤ 0.17 is an intermediate area where the highest values are reached

for α ≤ 0.11, and then the index of orthogonality is lower for larger α values

except for the IO near α ≥ 0.25. Fourth, the rest of the space is almost flat with

a low index. Overall, this index is relatively low and does not reflect serious

problems in the decomposition. From the first graph of Figure 3.16 we can see

that the first threshold has a significant influence on the number of IMFs. It

can vary from ten IMFs for the strictest stopping criteria (θ1 = 0.3, α ≤ 0.08) to

seven IMFs for the area where θ1 ≥ 0.1. In fact, the inspection of the IMFs has

revealed that seven IMFs is not enough because the lowest frequency modes are

not separated (see Figure D.1 in Appendix D.1). On the other hand, 10 IMFs

is also not correct because some modes have been over-decomposed due to too

many sifting iterations, as shown on the second graph of Figure 3.16. Finally,

with eight and nine IMFs, the differences are not so important and even if we
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Figure 3.15: Index of orthogonality versus (θ1, α) for the study of the LOD data
with the second end-point option and without intermittency test.

attempt to correlate these two graphs with the IO results, it is still difficult to

discriminate which number of IMFs gives the best decomposition. Moreover,

Huang et al. (2003) [28] also found the same results: they decomposed the signal

into eight IMFs with the least strict stopping criterion (S = 2 and M = 100);

and, they found nine IMFs with the strictest stopping criterion (S = 10 and

M = 100). Therefore, further analysis is needed to determine how many IMFs

best decompose the LOD data.

Third end-point option, no intermittency test: Figure 3.17 shows that the

IO is very low everywhere except in two points or small areas at (0.03 ≤ θ1 ≤

0.04, 0.03 ≤ α ≤ 0.04) and (θ1 = 0.08, α = 0.03) where IO = 0.2. Figure 3.18

further reveals that the decomposition is very good almost everywhere with this

end-point option. Only eight and nine IMFs have been produced, with a much

larger area corresponding to eight IMFs. In addition, the number of iterations is

below 200 iterations, which is good for the decomposition of the LOD data, in

most cases, except for very strict thresholds (θ1 = 0.03, α ≤ 0.11) and near (θ1 =

0.03, α = 0.08). Therefore, this option seems to be very efficient to decompose

the LOD data except for very strict thresholds. Furthermore, these results tend

to confirm that the correct number of IMFs is eight rather than nine.
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Figure 3.16: Number of IMFs (top) and total number of iterations (bottom) ver-
sus (θ1, α) for the study of the LOD data with the second end-point option and
without intermittency test.
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Figure 3.17: Index of orthogonality versus (θ1, α) for the study of the LOD data
with the third end-point option and without intermittency test.
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Figure 3.18: Number of IMFs (top) and total number of iterations (bottom) ver-
sus (θ1, α) for the study of the LOD data with the third end-point option and with-
out intermittency test.
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Fourth end-point option, no intermittency test: Figure 3.19 shows excellent

results for the index of orthogonality in the case of the fourth end-point option

(auto-regressive model) without intermittency test. There are only two relatively

high peaks at θ1 = 0.02, α = 0.03 and θ1 = 0.02, α = 0.17. In fact, it was possible

to reach convergence in the sifting process for θ1 = 0.02 using this end-point

option, except for a few points which are not represented in the graph. The
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Figure 3.19: Index of orthogonality versus (θ1, α) for the study of the LOD data
with the fourth end-point option and without intermittency test.

two graphs displayed in Figure 3.20 are very much similar to the same graphs

obtained in the case of the second end-point option. Nevertheless, it can be

seen that the 9-IMF region covers a much smaller area and only corresponds to

very strict thresholds, thus further reinforcing that a decomposition with eight

IMFs is the most appropriate. At last, some cases with strict thresholds have

produced ten IMFs because of over-sifting. However, from the inspection of the

IMFs, it can be seen that some IMFs are actually redundant (see Figure D.2 in

Appendix D.1).

Second end-point option with intermittency test: The results of the IO, for

the second end-point option (extrema extension technique) with intermittency

test, are displayed on Figure 3.21. High values are found for θ1 = 0.03 and

α ≥ 0.0225 with a peak reaching 0.08 for the IO. Then, between θ1 = 0.035
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Figure 3.20: Number of IMFs (top) and total number of iterations (bottom) ver-
sus (θ1, α) for the study of the LOD data with the fourth end-point option and
without intermittency test.
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and θ1 = 0.09 the index is very low. At higher thresholds, 0.09 ≤ θ1 ≤ 0.14

and α ≥ 0.2, the IO has intermediate values. Finally, the index has very low

values at very high thresholds. Moreover, the IO never exceeds the prescribed

maximum value of 0.1. Finally, the observation of the IMFs reveals that some

of them feature large-amplitude swings at their ends. For example, c7 of the de-

composition at the highest peak (θ1 = 0.03, α = 0.225) displays a large swing

at one end on a very short distance, less than 1% of the size of the signal (see

Figure D.3 in Appendix D.1). Furthermore, c11 and c12, the last two IMFs, have

also larger-amplitude waves which compensate one another at the begining of

the signal. In other words, the sum of c11 and c12 is approximately zero at the be-

gining; however, the sum of their energy is not zero but twice the energy of each

of them. This is a common problem encountered at strict stopping criteria. Next,
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Figure 3.21: Index of orthogonality versus (θ1, α) for the study of the LOD data
with the second end-point option and with intermittency test.

Figure 3.22 shows that in most cases, eleven IMFs are found, corresponding to

the eight IMFs found without intermittency test plus three intermittent IMFs.

Ten IMFs are created for very high thresholds, (θ1 ≥ 0.23, α ≥ 0.17). On the

other hand, twelve IMFs can be produced if the stopping criterion is very strict,

θ1 ≤ 0.045. High numbers of IMFs very well coincide with high total numbers
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of iterations, Nite,T ≥ 500. Actually, further explorations of the number of itera-

tions per IMF reveal that when Nite,T ≥ 500, for one IMF, generally c7 which is

after the third intermittency test, the sifting process could not converge and the

stopping criterion had to be relaxed after the 500th iteration. Normally, approxi-

mately 100 iterations are needed to find all the IMFs when the intermittency test

is invoked.
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Figure 3.22: Number of IMFs (top) and total number of iterations (bottom) ver-
sus (θ1, α) for the study of the LOD data with the second end-point option and with
intermittency test.
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Third end-point option with intermittency test: In three regions the index of

orthogonality reaches high values, IO ≥ 0.08, as shown on Figure 3.23. First,

near (θ1 = 0.06, α = 0.035); second, for 0.05 ≤ θ1 ≤ 0.055 and α ≥ 0.095; and

third, in a vast area with 0.135 ≤ θ1 ≤ 0.19 and α ≥ 0.08. In other regions,

this index is lower than 0.04. Compared to the results without intermittency

test, the index of orthogonality is higher and the high values cover larger areas.

Next, similar to the results found with the second end-point option, Figure 3.24
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Figure 3.23: Index of orthogonality versus (θ1, α) for the study of the LOD data
with the third end-point option and with intermittency test.

shows that the number of IMFs is either ten, eleven or twelve, varying from the

least strict stopping criteria to the strictest ones. Moreover, the total number

of iterations shows that the maximum limit of 500 iterations is reached for low

thresholds, θ1 ≈ 0.055 and α ≥ 0.17.

Fourth end-point option with intermittency test: The results of the IO dis-

played on Figure 3.25 are excellent in the case of the fourth end-point option

(auto-regressive model) with intermittency test. The IO is below 0.01 every-

where except at one peak where it is approximately 0.18. According to this

graph, the fourth end-point option seems to be much better adapted to decom-
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Figure 3.24: Number of IMFs (top) and total number of iterations (bottom) ver-
sus (θ1, α) for the study of the LOD data with the third end-point option and with
intermittency test.

78



3.3. Study of the length-of-day data Chap. 3. Results and discussion

pose the LOD data, with the intermittency test, than other end-point options

(see Figure D.4 in Appendix D.1). Next, as can be seen on Figure 3.26, the re-
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Figure 3.25: Index of orthogonality versus (θ1, α) for the study of the LOD data
with the fourth end-point option and with intermittency test.

sults for the number of IMFs and the number of iterations confirm the excellent

results found with the index of orthogonality. Clearly, the LOD data should be

decomposed in ten or eleven IMFs (eight IMFs, two or three intermittent IMFs

and one residue) and in approximately 100 iterations. Only very low thresholds,

θ1 = 0.035, can have a problem of convergence and actually over-decompose the

data.

Index of component separation, no intermittency test: Figure 3.27 shows the

results of the mean of the average index of component separation for the second

(top, first graph), third (middle, second graph) and fourth (bottom, third graph)

end-point options without intermittency test. First, we can notice that, overall,

the index is low in the three graphs, mean(ICS) ≤ 0.7, except for a few points

in the second graphs (epo = 3, θ1 = 0.03, 0.1 ≤ α ≤ 0.2). Second, it is clear that

for the second and fourth end-point options, the mean(ICS) is better when θ1 is

low, regardless of the value of the tolerance. The limit is found at approximately

θ1 = 0.1. This suggests that a strict stopping criterion is more likely to separate

the modes in the frequency space. Finally, we can also observe that the index is
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Figure 3.26: Number of IMF (top) and total number of iterations (bottom) versus
(θ1, α) for the study of the LOD data with the fourth end-point option and with
intermittency test.
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consistently higher in the case of the fourth end-point option than in the other

cases, by approximately 0.15 compared to the first graph, and 0.4 to 0.6 com-

pared to the second graph. In fact, a comparison of the IMFs produced by each

end-point option shows that the fourth one can better alleviate the end-effect

than the other two options, which might explain why its index of component

separation is consistently higher.

Index of component separation with intermittency test: Figure 3.28 presents

the results of the mean of the average index of component separation for the

second (top), third (middle) and fourth (bottom) end-point options with inter-

mittency test. In these results, the fifth component of the ICS has not been taken

into account in the computation of the mean value because, corresponding to

two intermittent IMFs (c5,int and c6,int), this index was almost always infinite for

all the cases: ICS5(C) = (−∞,−∞). This is due to the fact that the intermittent

IMFs c5,int and c6,int are almost always zero over the time span. Firstly, we can

observe that the results on Figure 3.28 are unequivocally much better than the

results without intermittency test. Actually, in this case, the mean(ICS) is al-

most always higher than the highest value found in the previous graphs. There-

fore, it demonstrates the importance of the intermittency test to prevent mode

mixing in the IMFs and to separate the bandwidths of the modes in the fre-

quency spectrum. Secondly, we can notice that the three graphs are similar in

values and variations: for low thresholds, θ1 ≤ 0.12, the index is approximately

mean(ICS) = 1; then, for higher thresholds, θ1 ≥ 0.12, the index is approxi-

mately mean(ICS) = 1.5. Finally, it can be seen that the transition between the

two regions is very abrupt.

3.3.2 Remarks and discussion

The results given by the index of orthogonality, the number of IMFs, the total

number of iterations and the index of component separation for the LOD data
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Figure 3.27: Results of the mean of the average index of component separation,
mean(ICS), versus (θ1, α) for the study of the LOD data with each end-point
option and without intermittency test: top, second end-point option; middle, third
end-point option; bottom, fourth end-point option.

82



3.3. Study of the length-of-day data Chap. 3. Results and discussion

0
0.05

0.1
0.15

0.2
0.25

0.3 0

0.1

0.2

0.3

1

1.2

1.4

1.6

1.8

 

α

θ1
 

m
ea

n
(I

C
S
)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0
0.05

0.1
0.15

0.2
0.25

0.3 0

0.1

0.2

0.3

0.8

1

1.2

1.4

1.6

 

α

θ1
 

m
ea

n
(I

C
S
)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0
0.05

0.1
0.15

0.2
0.25

0.3 0

0.1

0.2

0.3

1.1

1.2

1.3

1.4

1.5

 

α

θ1
 

m
ea

n
(I

C
S
)

1.1

1.2

1.3

1.4

1.5

Figure 3.28: Results of the mean of the average index of component separation,
mean(ICS), versus (θ1, α) for the study of the LOD data with each end-point
option and with intermittency test: top, second end-point option; middle, third
end-point option; bottom, fourth end-point option.
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analysed with the second, third and fourth end-point options and with vari-

ous thresholds for the fourth stopping criterion are extremely rich. We have

found that the data set is better decomposed in eight IMFs and one residue,

or eight IMFs, three intermittent IMFs and one residue when the intermittency

test is invoked, and that the total number of iterations should not exceed 80

or 100 iterations. The index of orthogonality is very good for all the end-point

options without intermittency test except for low thresholds (θ1 ≤ 0.04). With

the intermittency test, the best regions were at either intermediate thresholds

0.04 ≤ θ1 ≤ 0.12 or at very high thresholds θ1 ≥ 0.22. However, the prob-

lem encountered at very high thresholds is an incomplete decomposition of the

signal, only seven IMFs are found. Then, we have found that though the inter-

mittency test tends to increase the IO in some regions (low thresholds or high

thresholds), it gives considerably better results for the index of component sep-

aration. Therefore, the intermittency test is efficient to reduce mode mixing.

Finally, comparing the three end-point options, it can be concluded that the last

one, the auto-regressive model, gives the best results and is efficient to allevi-

ate end-effect, except for very low thresholds. Therefore, this option is recom-

mended with the following options: a length of extension equals to the signal

size (Nepn = N ), a length of averaging approximately equals to one-tenth of the

signal size (Navg = 0.1N ) and a very low damping coefficient κ ≈ 10−4.

The main limitation regarding these indexes is that they cannot give a very

precise assessment of the decomposition or the Hilbert spectrum because they

average the results over the time span and over all the IMFs. For example, it

cannot show which IMF is actually affected by end-effect or the ones that are

affected by mode mixing. In fact, a somewhat finer analysis could be performed

by computing the number of iterations per IMF, the index of orthogonality be-

tween two IMFs and the instantaneous index of component separation per IMF.

However, due to the great number of cases involved in this study, it was not

possible to analyse in detail each of these indicators.
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Then, we can wonder whether the results of the indexes in the space (θ1, α)

are actually accurate and whether or not they can depend on the fineness of the

mesh, ∆(θ1) = ∆(α) = 0.005. First, we can remark that the results are exact

at least at the point where they are calculated. Second, the continuity of the

indexes is a delicate question since it very much depends on each step of the

sifting process. In our understanding, the functions IO and ICS should be con-

tinuous only in subsets of the space. In fact, discontinuities clearly exist. For

example, at a change of number of IMFs, the discontinuity is very important.

Then, the occurrence of large swings at the ends of the IMFs is another example

of disruptions in the space (θ1, α). Their appearance and their disappearance

are always sudden and depend on the calculation of the cubic spline interpola-

tions. In other words, a slight variation in the stopping criterion can provoke

a completely different interpolation of the extrema. Third, according to incom-

plete computations obtained with a much finer grid, ∆(θ1) = ∆(α) = 0.001, after

several days, the results for the second end-point option were identical, thus as-

serting that the finesse of the mesh is not very important. In fact, the borders

delimiting each continuous region of similar values is a much more important

information.

Another important point is that the actual value of the indicators is very use-

ful through comparisons of the results obtained from the same signal. However,

with different time-series the order of magnitude of the indexes may change,

thus making difficult the comparisons between various signals. Finally, these

indicators should never be analysed separately from the IMFs and the Hilbert

spectrum. It is only the inspection of all these elements that can give the most

comprehensive and the clearest evaluation of the results given by the HHT.

3.3.3 Mean marginal spectrum, confidence limit and deviation

The mean marginal spectrum of the LOD data and its confidence limit are com-

puted in two different cases: with and without intermittency test. It means
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that the mean spectrum h, and its standard deviation σh, are computed with

the results from all the different decompositions with the three end-point op-

tions and the 3025 various stopping criteria (as an illustration, the results of

eleven individual cases, the mean marginal spectrum and its 95% confidence

limit can be found in Figure D.5 Appendix D.2). Then, the sum over frequency

of the squared deviation between each case—designated by sd(Ci) where Ci is

a combination of an end-point option and a stopping criterion—and the mean

marginal spectrum is calculated according to the method presented by Huang

et al. (2003) [28],

sd(Ci) =
∑

ω

(
h(ω,Ci)− h(ω)

)2

. (3.6)

All the graphs presented on Figures 3.29 (without intermittency test) and 3.30

(with intermittency test) have the same cumulative squared deviation scale (z-

axis, 0 ≤ sd(C) ≤ 5.5 10−4) to allow direct comparisons between them, but

not the same color scale. Figure 3.29 displays the results of sd(C) for the sec-

ond (top, first graph), third (middle, second graph) and fourth (bottom, third

graph) end-point option in the space defined by (θ1, α) and without intermit-

tency test. As can be seen on the first graph, we can distinguish three different

zones: very low thresholds, (θ1 ≤ 0.06, α ≤ 0.17), where the squared devia-

tion is low, sd(C) ≈ 10−5; a second zone with low and intermediate thresh-

olds, 0.065 ≤ θ1 ≤ 0.17 where sd(C) has intermediate values or high values,

sd(C) ≥ 10−4 for α ≤ 0.06; in the rest of the space, the squared deviation is

decreasing toward very low values as θ1 and α increases. It is very interest-

ing to compare these results to the results of the IO on Figure 3.15 with the

same parameters. The same peak is found in the second region, and the rest

of the space almost does not change. Therefore, it shows that the index of

orthogonality gives a good evaluation of the marginal spectrum. Second, the

squared deviation with the third end-point option appears to be mostly lower

than with the second option. Nevertheless, sd(C) is very high over a small area

for (θ1 = 0.03, 0.1 ≤ α ≤ 0.16) with sd(C) ≥ 2 10−4. These high values exactly
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correspond to the cases with the highest number of iterations, as presented on

Figure 3.18. So, it means that problems of convergence in the sifting process can

have an impact on the marginal spectrum. In the third graph, the squared devi-

ation is globally lower than in the first two graphs, with values equal to or lower

than 10−5. These slightly better results for the fourth end-point option were also

reported when comparing the indexes of component separation on Figure 3.27.

Next, Figure 3.30 depicts the results of the squared deviation for the second

(top, first graph), third (middle, second graph) and fourth (bottom, third graph)

end-point option with the intermittency test. Once again, the results shown in

the first graph are almost identical to the results of the IO for the second end-

point option with intermittency test (see Figure 3.21). Apart from the high peak

near (θ1 = 0.12, α = 0.03), the variations of sd(C) exactly follow the variations

of the IO, thus asserting that this indicator is useful to assess the marginal spec-

trum. Second, the results of the squared deviation for the third end-point op-

tion can also be compared to the results of the IO (see Figure 3.23). However,

though the comparison is good for low thresholds θ1 ≤ 0.12, it is not anymore

for higher thresholds. In fact, the results of the marginal spectrum are more sim-

ilar to the mean(ICS) (see Figure 3.28), which is much better for high thresholds

than for low thresholds. The last graph shows that the results obtained with the

fourth end-point option are clearly the best, similarly to the results of the index

of component separation (see Figure 3.28). In this case, the squared deviation is

approximately one order of magnitude lower than with the first two end-point

options. Therefore, it is strongly recommended to use this option in the HHT

algorithm.

3.3.4 Optimal sifting parameters

The four indicators, the index of orthogonality, the number of IMFs, the total

number of iterations and the index of component separation, have not only

proved to be useful to assess the results of the decomposition and the Hilbert
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Figure 3.29: Cumulative squared deviation between the mean marginal spec-
trum and marginal spectra of the LOD data according to the end-point option
and without intermittency test: top, second end-point option; middle, third end-
point option; bottom, fourth end-point option.
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Figure 3.30: Cumulative squared deviation between the mean marginal spec-
trum and marginal spectra of the LOD data according to the end-point option
and with intermittency test: top, second end-point option; middle, third end-point
option; bottom, fourth end-point option.
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spectrum, but they are also well correlated to the squared deviation of the mar-

ginal spectrum to the mean marginal spectrum. Therefore, these indexes are

recommended to be used together in the HHT algorithm in order to find the

control parameters that can perform the best decomposition. From this study

of the LOD data, it can be concluded that the auto-regressive model, which is

used to extend both the residues in the sifting process and the modes before the

application of the Hilbert transform, and not too low thresholds in the fourth

stopping criterion, θ1 ≥ 0.12, yield the best results. Finally, even though the ef-

ficiency of this set of parameters has not been demonstrated for every type of

signals, these parameters are recommended as the starting point of any investi-

gation with the Hilbert-Huang transform.

3.4 Study of vortex-shedding data

A signal measured with a hot-wire sensor located in the wake of a circular cylin-

der is presently considered. The streamwise component of the flow velocity (see

Figure 3.31) has been recorded for a Reynolds number Re = 105, which cor-

responds to the stable 2-dimensional vortex shedding range (50 ≤ Re ≤ 150)

described by Roshko (1954) [43]. The aim is to decompose this noisy signal

with the EMD algorithm in order to retrieve the vortex-shedding component.

Then, applying the Hilbert transform to this mode, the results of the instanta-

neous vortex-shedding frequency are compared with the results given by the

Fourier transform. This phenomenon has been extensively studied since the

experiments of Strouhal in 1878, and a thorough introduction can be found in

Williamson (1988, 1996a and 1996b) [51] [52] [53].

From Roshko (1954) [43], the theoretical vortex-shedding frequency Fs,T at

Re = 105 can be estimated (with 1% precision) as follows:

Fs,T =
ν

d2
(0.212Re− 4.5) = 0.07 Hz (3.7)
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Figure 3.31: Hot-wire measurements in the wake of a circular cylinder at Re =
105. The signal has been measured at the centerline of the vortex streets, thus
showing the influence of the two vortex rows.

where ν = 1.003×10−6 denotes the kinematic viscosity at 20◦C and d = 15.9 mm

denotes the cylinder diameter. Since the probe is located at the centerline of the

vortex streets the measurements are influenced by both rows. Therefore, it is

expected to find twice the vortex shedding frequency: 2Fs,T = 0.14 Hz. Before

performing the decomposition with the algorithm, a low-pass filter has been

applied to the signal in order to reduce the size of the data from 262144 points

to 4946 points. In fact, problems of time computation or even convergence in

the sifting process were encountered with data sets larger than 40000 points.

Hence, the sampling frequency is decreased from 1000 Hz to 18.9 Hz, which

is deemed largely sufficient to retrieve the vortex-shedding frequency. More-

over, only noise and turbulent signals can be observed at high frequencies in

the signal. Actually, the sampling frequency must be carefully chosen because

the success of the decomposition greatly depends on the accuracy with which

the extrema are located. As we have seen, the identification of the extrema is a

primordial step in the sifting process because the cubic spline interpolations and

thus the computation of the mean of the signal directly depend upon it. Rilling

et al. (2003) [42] also emphasized using “a fair amount of oversampling” for the

discrete-time signal, so that extrema be correctly identified.
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3.4.1 Optimal parameters for the decomposition of the vortex-

shedding signal

A study of the end-point options and the fourth stopping criterion similar to

the one performed with the LOD data has been conducted. The results of the

four quantitative criteria and the cumulative squared deviation of the marginal

spectra from the mean spectrum can be found in Appendix E. Overall, the same

tendencies observed with the LOD data are found with this signal, though the

actual values of the indicators can differ. For example, with the second and third

end-point options the highest values of the IO are found for the strictest thresh-

olds, θ1 ≤ 0.04. Low values of the first threshold also correspond to the largest

numbers of IMFs and iterations. The fourth end-point option leads to different

results, a few very high peaks for the IO, NIMF and Nite,T can be observed at

very low thresholds, (θ1 ≤ 0.04, α ≤ 0.1). Overall, the results of the mean(ICS)

are somewhat better for low and intermediate thresholds. Finally, it can be re-

marked that the influence of the tolerance on the different indicators is much less

important in this study than in the study of the LOD data. From these results,

no end-point option clearly appears to be better than others. However, it can

be seen that intermediate thresholds (θ1 ≈ 0.1, α ≈ 0.1) show relatively better

performances.

Table 3.1 presents the results of the quantitative criteria and the squared de-

viation for the case (θ1 = 0.095, α = 0.125) with the three different end-point

options. At this point, the results produced using the fourth end-point option

are the best: the IO and the sd(C) have the lowest values, and the mean(ICS) is

the highest. It can be further noticed that this end-point option gives one more

IMF and needs slightly more iterations, in particular for the first IMF. However, a

difference of one IMF is not very important. Therefore, the fourth end-point op-

tion and these thresholds are chosen to perform the decomposition of the data.
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Table 3.1: Results of the index of overall orthogonality IO, the number of IMF
NIMF , the number of iteration per IMF Nite,j , the mean index of component sep-
aration mean(ICS) and the squared deviation between the marginal spectrum
of this case (θ1 = 0.095, α = 0.125) and the mean marginal spectrum for the
vortex-shedding signal (without intermittency test).

End-point IO NIMF Nite,j mean(ICS) sd(C)
option (c1, c2, . . . , cn)

2 0.095 8 (59, 20, 13, 2, 35, 6, 3, 3) 0.765 0.611
3 0.207 8 (59, 20, 17, 3, 8, 6, 2, 3) 0.254 0.162
4 0.088 9 (71, 16, 21, 3, 6, 4, 4, 7, 1) 1.03 0.117

3.4.2 Decomposition of the vortex-shedding signal

Figure 3.32 displays the nine IMFs and the residue obtained from the decom-

position of the vortex-shedding signal with the fourth end-point option and

(θ1 = 0.095, α = 0.125). Overall, the decomposition has no major problems in

the vicinity of the edges, contrary to the decompositions found with the same

stopping criterion but with the other two end-point options—this is another el-

ement in favor of using the auto-regressive model. Next, inspecting closer the

modes, the first three IMFs seem to contain only noise, whereas the fourth one,

which has the largest amplitude, is the signal that we are interested in. How-

ever, we can notice some intermittent disturbances in c4, three between t = 50 s

and t = 100 s and two others before t = 150 s and t = 250 s. These intermittent

signals are actually responsible for the spread of the vortex-shedding signal on

c4 and c5. As a result, we can identify in c5 oscillations of similar period as in c4

and which are located precisely at the timing of the disturbances. Then, it is diffi-

cult to know whether c6 is physically meaningful or whether it also results from

the mode mixing. Finally, the last three IMFs have an amplitude approximately

one order of magnitude lower than c4, thus suggesting they might account for

low-frequency disturbances occurring during the experiment.

The mode mixing can be removed by invoking an intermittency test before

the fourth IMF. An intermittency criterion of n1 = 2.7 s is applied in the sifting

process, this criterion has been chosen slightly smaller than the theoretical half-

period of the vortex-shedding signal, which is 1/4Ts = 3.55 s. As can be seen on
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Figure 3.32: The IMF components of the vortex-shedding data (no intermitten-
cy test) for the case: EMD([1:0.053:262; V-S 105],4,[0.095,0.95,0.125])

with Nepn = N , Navg = 0.2N and κ = 10−3. The fourth IMF, which contains most
of the vortex-shedding signal, shows some mode mixing occurring between t =
50 s and t = 100 s and before t = 150 s and t = 250 s. Consequently, the
oscillations of the signal at these timing are also found in the next IMF, c5.
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Figure 3.33, the intermittent signals (in c4) have been separated from the vortex-

shedding signal (c5). Moreover, the signal is not anymore spread on two modes

but it is fully isolated in a single IMF. Finally, the quantitative criteria for this de-

composition have been greatly improved: IO = 0.073 and mean(ICS) = 25. In

particular, the index of component separation has considerably increased, thus

demonstrating the efficiency of the intermittency test to remove mode mixing.

The number of IMF has not changed, which may mean that at least one IMF was

created by mode mixing in the decomposition when the intermittency test was

not invoked.

3.4.3 Identification of intra-wave frequency modulation

Figure 3.34 (top) depicts the marginal spectrum of the vortex-shedding signal.

First, we can see the main broad peak centered on 0.165 Hz and spanning from

0.135 Hz to 0.195 Hz, this is the contribution of IMF c5. Second, the first three

IMFs clearly appear as noise of low amplitude in the high frequency range (the

frequency scale has been truncated). Third, four secondary steep peaks can be

observed in the low frequencies: at 0.06 Hz, 0.025 Hz, 0.02 Hz and 0.01 Hz. They

correspond to the last IMFs and their physical origin has not been completely de-

termined, the first secondary peak, which is near the actual shedding frequency,

may be due to an unbalanced influence between the two vortex rows. For in-

stance, the probe could be located not exactly in the middle of the two rows,

thus detecting a different level of energy between the two vortex streets. These

secondary peaks may also represent low frequency disturbances in the experi-

ments, as we have already suggested. Fourth, the very high spike at 0.004 Hz is

a fallacious peak, probably created during the computation of the Hilbert trans-

form, and whose period actually corresponds to the time span. On the other

hand, the application of the Fourier transform to the signal (without filtering)

gives the Fourier spectrum displayed on Figure 3.34 (bottom). The main steep

peak at 0.16 Hz corresponds to the vortex-shedding frequency. Then, there

95



3.4. Study of vortex-shedding data Chap. 3. Results and discussion

−0.05

0

0.05
c1

−0.05

0

0.05
c2

−0.05

0

0.05
c3

−0.05

0

0.05
c4

−0.05

0

0.05
c5

−0.05

0

0.05
c6

−0.05

0

0.05
c7

−5

0

5
x 10

−3

c8

−5

0

5
x 10

−3

c9

0 50 100 150 200 250
−5

0

5
x 10

−3

r9

Time (s)

Figure 3.33: The IMF components of the vortex-shedding data using the
fourth end-point option and for the case: EMD([1:0.053:262; V-S 105],

4,[0.095,0.95,0.125],[0,0,0,2.7,-1]) with Nepn = N , Navg = 0.1N and
κ = 10−3 and with intermittency test. The mode mixing has been successfully
prevented by the intermittency test. The intermittent signals are found in c4 and
the vortex-shedding signal is completely recovered in c5.
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are no other lower frequency peaks but only the harmonics of the main peak

at 0.32 Hz, 0.48 Hz and 0.73 Hz. However, these harmonics are mathemati-

cally meaningful, but their physical interpretation has not yet been fully un-

derstood. In conclusion, the vortex-shedding frequency recovered by the HHT,
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Figure 3.34: Marginal spectrum (top) and Fourier spectrum (bottom) of the
vortex-shedding signal. The two spectra have their main peaks centered on the
shedding frequency at approximately 0.16 Hz. However, the marginal spectrum
shows a much wider peak than the Fourier spectrum.

2Fs,HHT = 0.165 Hz, and the Fourier transform, 2Fs,FT = 0.165 Hz, show an ex-

cellent agreement. Nevertheless, the theoretical estimation, 2Fs,T = 0.14 Hz, is

slightly lower than these two results. This difference may be due to experimen-

tal approximations.
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The comparison between the marginal spectrum and the Fourier spectrum

actually brings much more information than solely the value of the shedding

frequency. In fact, the great difference between the width of the main peaks in

the two spectra is characteristic of a shortcoming of the Fourier transform: it can-

not handle nonlinear phenomena. In other words, the broad peak found in the

marginal spectrum reveals that the vortex-shedding frequency is not constant

over time but that it varies from approximately 0.135 Hz to 0.195 Hz. Actually,

the result given by the Fourier spectrum is the average of the true instantaneous

vortex-shedding frequency. As an example showing the inability of the Fourier

transform to correctly analyse a nonlinear signal, the Fourier spectrum and the

marginal spectrum of the frequency modulated signal studied in Section 3.2.3

have been plotted on Figure F.1. Furthermore, as can be seen on the Hilbert

spectrum plotted on Figure 3.35, the oscillations of the instantaneous frequency

of c5 clearly seem to be periodical. Further inspections can reveal that the fre-

quency oscillates at approximately twice the shedding frequency. Applying both

the Hilbert-Huang transform and the Fourier transform to the instantaneous fre-

quency signal of c5 (ω5), the marginal spectrum and the Fourier spectrum pre-

sented on Figure 3.36 clearly reveal a main peak at 2Fs. On the other hand,

the secondary peaks that are found in the marginal spectrum below 0.08 Hz are

not taken into account since they may be the result of too many manipulations.

Therefore, ω5 oscillates at a frequency of 2Fs about its mean ω5 = 0.163 Hz and

with a standard deviation of σ(ω5) = 0.043 Hz.

A second vortex-shedding signal at Re = 145 has also been studied using

the same method and invoking the intermittency test to prevent mode mixing.

The results of the marginal spectrum and the Hilbert spectrum can be found

in Appendix E.2. Similarly, the same phenomenon of frequency modulation of

the vortex-shedding component (the third IMF) can be observed, and ω3 is also

found to oscillate at approximately 2Fs about its mean ω3 = 0.232 Hz and with a

standard deviation of σ(ω3) = 0.063 Hz (at this Reynolds number, the theoretical
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shedding frequency given by Equation (3.7) is 2Fs,T = 0.21 Hz and the shedding

frequency found by the Fourier transform is 2Fs,FT = 0.235 Hz).

In conclusion, a nonlinear phenomenon of intra-wave frequency modulation

varying at the frequency 2Fs has been identified in the vortex-shedding signal

for Reynolds number belonging to the stable regime.

3.4.4 Discussion and interpretation of the phenomenon of in-

tra-wave frequency modulation

In this study of vortex-shedding signals, we have shown how the results given

by the quantitative indexes can help choose the best control parameters in the

HHT algorithm in order to yield a successful decomposition. Then, the intermit-

tency test has been invoked to prevent mode mixing in the resulting IMFs. This

step was very important to isolate the vortex-shedding signal. Then, after not-

ing a significant difference between the marginal spectrum and the Fourier spec-

trum, the Hilbert spectrum has revealed a phenomenon of intra-wave frequency

modulation in the vortex-shedding signal. Moreover, the instantaneous fre-

quency has been found to oscillate at a frequency equal to two times the vortex-

shedding frequency, and its variations range between approximately +25% and

−25% with respect to the mean frequency at both Re = 105 and Re = 145, the

mean frequency being equal to 2Fs.

The periodical variations of the vortex-shedding frequency physically corre-

spond to the underlying mechanisms of the vortex-shedding phenomenon. Let

us consider the line of vortices at a distance sufficiently far downstream from

the cylinder so that the vortices are fully developed. The vortex cycle starts with

the appearance of a vortex and ends with the appearance of the following. This

cycle has a fixed period of Ts = 1/Fs. However, within a cycle the energy mea-

sured by a probe is not constant: a rapid increase of the energy is first recorded

for a short time interval which corresponds to the peak of vorticity convected by

the flow; second, the energy slowly dissipates for a longer time interval, during
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Figure 3.35: Hilbert spectrum of the vortex-shedding signal: all the IMF com-
ponents (top), IMF c5 (bottom). The evolution of the instantaneous frequency
of c5 (with the largest amplitude) seems to oscillate at a fixed period. The large
swings that can be observed, especially in the high frequencies, are due to the
computation of the Hilbert transform. The white dashed line at 0.004 Hz is the
minimum frequency that can be recovered from this signal. However, the fre-
quency evolution of c5 is well above this limit, contrary to lower-frequency IMFs.

100



3.4. Study of vortex-shedding data Chap. 3. Results and discussion

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

Frequency (Hz)

A
m

pl
it

ud
e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

Frequency (Hz)

A
m

pl
it

ud
e

Figure 3.36: Marginal spectrum (top) and Fourier spectrum (bottom) of the in-
stantaneous frequency of c5. The main peaks found at 0.16 Hz in the two spectra
clearly show that ω5 oscillates at a frequency of 2Fs.
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which the flow tends to return to a quiescent state. Therefore, this is precisely

these instantaneous fluctuations of the energy which are put forward by the

Hilbert-Huang transform.

This phenomenon does not seem to have been reported before. Only one

study from Hu et al. (2002) [22] reported having observed—in similar experi-

ments with T-shaped cylinder, but at Re = 1.51 × 104—that “the instantaneous

vortex-shedding frequency does not appear as a constant although the varia-

tions are rather small”. However, they thought that these variations were the

consequences of either perturbations in the flow or numerical errors in the com-

putation of the Hilbert transform. From the analysis of their experimental re-

sults, we believe that they actually noticed the same phenomenon of intra-wave

frequency modulation as found in this study, thus strengthening our findings.

Except in this study, the Hilbert-Huang transform has never been applied before

to the phenomenon of vortex shedding. In fact, the Fourier transform, which

cannot handle nonlinearities, has always prevailed. Therefore, we believe this is

the reason why this phenomenon has never been discovered.

In conclusion, this analysis of an experimental nonlinear signal with the HHT

has revealed an unexpected finding in the physics of vortex shedding. However,

the phenomenon can be further explored by investigating more signals in other

ranges of the Reynolds number. The magnitude of the variations of the instan-

taneous frequency with respect to the average shedding frequency can also be

analysed to know whether or not it is invariant with the Reynolds number. Fur-

thermore, measurements from only one vortex row should be considered in or-

der to see whether low frequency modes are still present in the decomposition.

Finally, this study is another demonstration of the power of the HHT compared

to Fourier-based techniques, and we strongly recommend its use in the domain

of fluid mechanics, where mostly nonlinear and transient mechanisms are en-

countered.
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. Conclusion

In the current work, a new and powerful signal-processing technique, the Hil-

bert-Huang transform has been studied. The novelty of this method is that it can

yield the instantaneous frequency and the instantaneous amplitude of any non-

linear or non-stationary data, contrary to other existing techniques. However,

the algorithm of the empirical mode decomposition, which decomposes the sig-

nal into monocomponents or IMFs, has several flaws, namely the end-effect, the

stopping criterion and the mode mixing phenomenon, which we addressed in

great detail. Four end-point options, the clamped end-point option, the mirror

imaging extension technique, the extrema extension method and the damped

sinusoidal extrapolation based on a second-order auto-regressive model, were

described and tested with a stopping criterion based on the two IMF condi-

tions. To evaluate the performance of the HHT algorithm with different com-

binations of control parameters, four quantitative indexes were introduced: the

index of orthogonality, the number of IMF, the number of iteration and the in-

dex of component separation. From the systematic study of five test signals

and the length-of-day data, we showed that these indicators were very useful

to determine the control parameters that can yield a successful decomposition,

a task which is usually troublesome. In most cases, the fourth end-point option
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gave the best results. Then, the thresholds of the stopping criterion should not

generally be set to very low values to avoid problems of convergence or over-

decomposition of the modes. On the other hand, very high thresholds can fail

to fully decompose the signal. In other words, the intermediate range of thresh-

olds: (0.04 ≤ θ1 ≤ 0.12, θ2 = 10θ1, 0.05 ≤ α ≤ 0.2), is recommended for this

stopping criterion. A summary of the optimal combination of implementation

options for each signal studied can be found in Table G.1. Finally, after pro-

viding the source code of each algorithm, we demonstrated their efficiency in

the study of a vortex-shedding signal. A decomposition free of mode mixing

was achieved with the intermittency test and the Hilbert spectrum revealed an

unexpected result: a nonlinear phenomenon of quasi-periodic intra-wave fre-

quency modulation accounting for the intrinsic physics of vortex shedding. For

Reynolds number in the stable regime, the instantaneous frequency was found

to vary ±25% with respect to the theoretical shedding frequency. This result

demonstrates the power of the HHT compared to Fourier based techniques,

which cannot handle nonlinear phenomena. We strongly recommend the use

of this method as it yields physically meaningful results and brings a rich inter-

pretation of the underlying mechanisms of any signal when there is sufficient

physical knowledge about the data.
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A. Mathematical formulae

A.1 Definition of stationarity

Formally, a real-valued time series X(t) is strictly stationary (see Brockwell and

Davis 1996 [7]) if its cumulative distribution function F at time t1, . . . , tk satisfies

F [x(t1), . . . , x(tk)] = F [x(t1 + τ), . . . , x(tk + τ)], (A.1)

for all k, for all τ and for all t1, . . . , tk.

In signal processing, a weak form of stationarity is traditionally employed

since the strict definition is usually extremely difficult to obtain. It is known

as weak-sense stationarity, wide-sense stationarity, second-order stationarity, or

covariance stationarity. So, a real-valued time series, X(t), is stationary in the

wide sense, if, for all t and for all τ ,

E[X(t)] = µ, (A.2)

V ar[X(t)] = σ2 <∞, (A.3)

Cov[X(t1), X(t2)] = Cov[X(t1 + τ), X(t2 + τ)] = Cov(t1 − t2), (A.4)

in which E[·] and V ar[·] define the ensemble average and the variance of the
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quantity respectively, µ is the mean value or first moment, σ is the standard

deviation and Cov[·] is the autocorrelation function. The weak-sense stationarity

can, therefore, be interpreted as follows:

• First, Equation (A.2) means that the ensemble mean is constant over time,

i.e. there is no trend.

• Second, Equation (A.3) means that the variance is a finite value and is also

constant over time.

• Third, Equation (A.4) means that the autocorrelation function only de-

pends on the difference between t1 and t2.

A.2 Hilbert transform and analytic signal

The Hilbert transform (see Hahn 1995 [21] or Bendat and Piersol 2000 [3]) of any

real valued function x(t) of Lp class 1 extending over R 2 is a real valued function

y(t) defined by

y(t) = H[x(t)] =
1

π
PV

∫ ∞

−∞

x(τ)

(t− τ)
dτ, (A.5)

where PV (alternative notations to PV are P orCPV ) indicates the Cauchy prin-

cipal value of the singular integral. This improper integral can also be defined

by the limit

y(t) = lim
ε→0
A→∞

1

π

{∫ t−ε

−A

x(τ)

(t− τ)
dτ +

∫ A

t+ε

x(τ)

(t− τ)
dτ

}
. (A.6)

Thus, y(t) can be defined as the convolution product of x(t) and 1/(πt)

y(t) = x(t) ∗
(

1

πt

)
. (A.7)

1The Lp class denotes the space of p-power integrable functions in the sense of Lebesgue
integration (see Bony (2003) [6]).

2R denotes the set of all real numbers.
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Then, the analytic signal of x(t) is the complex signal z(t) whose imaginary part

is the Hilbert transform of x(t), therefore we have

z(t) = A[z(t)] = x(t) + iy(t) = a(t)eiθ(t), (A.8)

where i denotes the imaginary unit, a is the amplitude function and θ is the

phase function. Finally, the instantaneous frequency ω is the derivative of the

phase function:

ω(t) =
dθ(t)

dt
. (A.9)
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B. HHT algorithm

B.1 EMD algorithm and sifting process

The first function of Source Code B.1 is the main loop, which calls the sifting

process, computes Equation (2.4) and also tests whether the residue is the last

one. Then comes the sifting process, which calls several sub-functions such as

the intermittency test, the calculation of the envelopes and finally tests whether

the sifted proto-IMF is an IMF by calling the fourth stopping criterion function

presented in Source Code 2.1. Next follows all the sub-functions. The only func-

tion which has not been written in this source code is the function crossings

that appears in the function extrema, the Matlab file ’crossings’ has been imple-

mented by Saragiotis (2007) [45].

Source code B.1: Matlab source code of the EMD algorithm

1 func t ion [ set_IMF , r e s i d u ] = EMDint ( t , s i g n a l , epo , t h r e s h o l d s , n1 )
2

3 % EMD i s t h e a l g o r i t h m o f t h e E m p i r i c a l Mode D e c o m p o s i t i o n
4 % w i t h p o s s i b i l i t y o f i n v o k i n g t h e i n t e r m i t t e n c y t e s t .
5 % I t r e t u r n s t h e s e t o f I M F s and t h e l a s t r e s i d u e .
6

7 % t : t i m e v e c t o r , t o d e t e r m i n e t h e t i m e s t e p ,
8 % i f t = [ ] t h e p r o g r a m w i l l a s s i g n d t = 1 .
9 % s i g n a l : t i m e s e r i e s (1− row v e c t o r )

10 % epo : end−p o i n t o p t i o n : 1 −> clamped end−p o i n t s
11 % 2 −> e x t r e m a e x t e n s i o n
12 % 3 −> m i r r o r i m a g i n g
13 % 4 −> auto− r e g r e s s i v e model
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14 % t h r e s h o l d s = [ t h e t a 1 , t h e t a 2 , a l p h a ] : f o u r t h s t o p p i n g c r i t e r i o n
15 % n1 : i n t e r m i t t e n c y c r i t e r i o n f o r each I M F ( row v e c t o r o f
16 % l e n g t h ( n1 ) = nb o f IMF , and based on a t i m e s t e p = 1 )
17 % o r s e t n1 = [ ] n o t t o i n v o k e t h e i n t e r m i t t e n c y t e s t
18

19 % I n i t i a l i s a t i o n
20 r e s i d u = s i g n a l ;
21 set_IMF = [ ] ;
22 s t o p _ m a i n _ l o o p = 0 ; % S t o p p i n g c r i t e r i o n f o r t h e l a s t I M F
23 i = 1 ; % Number o f I M F
24 i f isempty ( t )
25 d t = 1 ;
26 e l s e
27 d t = ( t ( 2 ) − t ( 1 ) ) ;
28 end
29 % Non−d i m e n s i o n a l i s a t i o n o f t h e i n t e r m i t t e n t c r i t e r i o n v e c t o r
30 n1 = n1 / d t ;
31

32 % Main Loop
33 while ~ s t o p _ m a i n _ l o o p
34 % C a l l t h e s i f t i n g p r o c e s s
35 IMF = s i f t i n g _ p r o c e s s ( r e s i d u , epo , t h r e s h o l d s , n1 , i ) ;
36 set_IMF = c a t ( 1 , set_IMF , IMF ) ; % S t o r e t h e I M F
37 r e s i d u = r e s i d u − IMF ; % New r e s i d u e
38 % C a l l t h e l a s t r e s i d u e f u n c t i o n
39 s t o p _ m a i n _ l o o p = l a s t _ r e s i d u ( r e s i d u ) ;
40 i = i + 1 ;
41 end
42 end
43

44 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 func t ion IMF = s i f t i n g _ p r o c e s s ( r e s i d u , epo , t h r e s h o l d s , n1 , i )
46 s t o p _ s i f t i n g = 0 ; % S t o p p i n g c r i t e r i o n f o r t h e s i f t i n g
47 pIMF = r e s i d u ; % I n i t i a l i s a t i o n o f t h e p r o t o − I M F
48

49 % S i f t i n g l o o p
50 while ~ s t o p _ s i f t i n g
51 % C a l c u l a t e t h e number o f z e r o − c r o s s i n g s
52 nzc = length ( c r o s s i n g s ( pIMF , [ ] , 0 , ’dis’ ) ) ;
53 % C a l l t h e f u n c t i o n t o i n d e x t h e e x t r e m a
54 [ maxima_idx , minima_idx ] = ex t r ema ( pIMF ) ;
55 i f ( isempty ( maxima_idx ) | | isempty ( minima_idx ) )
56 IMF = pIMFsave ;
57 re turn
58 end
59 % O p t i o n t o c a l l t h e i n t e r m i t t e n c y t e s t
60 i f ( ( i <= length ( n1 ) ) && ( n1 ( i ) > 0 ) )
61 IMF = i n t e r m i t t e n c y _ t e s t ( pIMF , epo , n1 ( i ) , maxima_idx , minima_idx ) ;
62 re turn
63 end
64 % C a l l t h e f u n c t i o n t o c a l c u l a t e t h e mean and t h e mode a m p l i t u d e
65 [ me , ma ] = e n v e l o p e ( pIMF , epo , maxima_idx , minima_idx ) ;
66 ne = ( numel ( maxima_idx ) + numel ( minima_idx ) ) ; % Number o f e x t r e m a
67 % C a l l t h e f o u r t h s t o p p i n g c r i t e r i o n f o n c t i o n
68 i f ~( epo ==1)
69 s t o p _ s i f t i n g = S t o p p i n g _ c r i t e r i o n _ 4 ( nzc , ne , me , ma , t h r e s h o l d s ) ;
70 e l s e
71 s t o p _ s i f t i n g = ( abs ( nzc − ne ) <= 1 ) ;
72 end
73 i f s t o p _ s i f t i n g
74 IMF = pIMF ;
75 re turn
76 e l s e
77 pIMFsave = pIMF ;
78 pIMF = pIMF − me ; % New p I M F
79 end
80 end
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81 end
82

83 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 func t ion s t o p _ m a i n _ l o o p = l a s t _ r e s i d u ( r e s i d u )
85 [ maxima_idx , minima_idx ] = ex t r ema ( r e s i d u ) ;
86 n e _ r e s i d u = ( numel ( maxima_idx ) + numel ( minima_idx ) ) ;
87 % Crude e s t i m a t i o n o f t h e a m p l i t u d e
88 amp_res idu = abs (max ( r e s i d u ) − min ( r e s i d u ) ) ;
89 % T e s t o f l a s t r e s i d u e
90 s t o p _ m a i n _ l o o p = ( ( n e _ r e s i d u < 3) | | ( amp_res idu < 1e −10) ) ;
91 end
92

93 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 func t ion [ maxima_idx , minima_idx ] = ex t r ema ( x )
95 s i g n _ d e r i v = s ign ( d i f f ( x ) ) ; % S i g n o f t h e d e r i v a t i v e o f t h e s i g n a l x
96 e x t r _ i d x = c r o s s i n g s ( s i g n _ d e r i v , [ ] , 0 , ’dis’ ) ; % I n d e x e s o f e x t r e m a
97 i f isempty ( e x t r _ i d x )
98 maxima_idx = [ ] ;
99 minima_idx = [ ] ;

100 re turn
101 end
102 % F i n d t h e i n d e x e s o f t h e maxima and m i n i m a
103 i f ( s i g n _ d e r i v ( e x t r _ i d x ( 1 ) ) < 0)
104 maxima_idx = e x t r _ i d x ( 1 : 2 : end ) ;
105 minima_idx = e x t r _ i d x ( 2 : 2 : end ) ;
106 e l s e i f ( s i g n _ d e r i v ( e x t r _ i d x ( 1 ) ) == 0)
107 b e f o r e _ 0 = e x t r _ i d x (1) −1;
108 while ( s i g n _ d e r i v ( b e f o r e _ 0 ) == 0)
109 b e f o r e _ 0 = be fo re_0 −1;
110 end
111 i f ( s i g n _ d e r i v ( b e f o r e _ 0 ) < 0)
112 minima_idx = e x t r _ i d x ( 1 : 2 : end ) ;
113 maxima_idx = e x t r _ i d x ( 2 : 2 : end ) ;
114 e l s e
115 maxima_idx = e x t r _ i d x ( 1 : 2 : end ) ;
116 minima_idx = e x t r _ i d x ( 2 : 2 : end ) ;
117 end
118 e l s e
119 minima_idx = e x t r _ i d x ( 1 : 2 : end ) ;
120 maxima_idx = e x t r _ i d x ( 2 : 2 : end ) ;
121 end
122 end
123

124 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
125 func t ion [ mean_amp , mode_amp ] = e n v e l o p e ( pIMF , epo , maxima_idx , minima_idx )
126 % F i n d t h e p o s i t i o n and v a l u e o f a l l t h e e x t r e m a ( s i g n a l + e x t e n s i o n s )
127 % a c c o r d i n g t o t h e end−p o i n t o p t i o n .
128 % F i n d a l s o t h e l e n g t h o f t h e s i g n a l + e x t e n s i o n ( x x ) and t h e
129 % i n d e x e s o f t h e f i r s t and l a s t p o i n t s o f t h e s i g n a l ( x s t a r t and xend )
130 [ a l l_max , a l l _ m i n , xx , x s t a r t , xend ] = e n d _ p o i n t ( pIMF , maxima_idx , minima_idx , epo ) ;
131 u p p e r _ e n v e l o p e = i n t e r p 1 ( a l l _max ( 1 , : ) , a l l _max ( 2 , : ) , xx ,’spline’ ) ;
132 l o w e r _ e n v e l o p e = i n t e r p 1 ( a l l _ m i n ( 1 , : ) , a l l _ m i n ( 2 , : ) , xx ,’spline’ ) ;
133 mean_amp = ( u p p e r _ e n v e l o p e ( x s t a r t : xend ) + l o w e r _ e n v e l o p e ( x s t a r t : xend ) ) / 2 ;
134 mode_amp = ( u p p e r _ e n v e l o p e ( x s t a r t : xend ) − l o w e r _ e n v e l o p e ( x s t a r t : xend ) ) / 2 ;
135 end
136

137 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
138 func t ion [ a l l_max , a l l _ m i n , xx , x s t a r t , xend ]= e n d _ p o i n t ( pIMF , max_idx , min_idx , epo )
139 x = [ 1 : length ( pIMF ) ; pIMF ] ; % I n i t i a l i s a t i o n
140 n = length ( x ) ;
141 i f ( epo == 1) % F i r s t end−p o i n t o p t i o n
142 % T h e e n d p o i n t s a r e b o t h l o c a l maxima and m i n i m a
143 a l l _max = [ x ( : , 1 ) x ( : , max_idx ) x ( : , end ) ] ;
144 a l l _ m i n = [ x ( : , 1 ) x ( : , min_idx ) x ( : , end ) ] ;
145 xx = x ( 1 , : ) ;
146 x s t a r t = 1 ;
147 xend = n ;
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148 e l s e i f ( epo == 2) % Second end−p o i n t o p t i o n
149 % Method o f e x t r a p o l a t i o n o f t h e f i r s t and l a s t two e x t r e m a
150 e x t r _ i d x = s o r t ( [ max_idx min_idx ] ) ;
151 t p 1 = min ( 1 , ( 2∗ x ( 1 , e x t r _ i d x (1))− x ( 1 , e x t r _ i d x ( 2 ) ) ) ) ;
152 t p 2 = t p 1 − ( x ( 1 , e x t r _ i d x (2))− x ( 1 , e x t r _ i d x ( 1 ) ) ) ;
153 i f t p 1 < x ( 1 , 1 )
154 xp1 = x ( 2 , e x t r _ i d x ( 2 ) ) ;
155 e l s e
156 xp1 = x ( 2 , 1 ) ;
157 end
158 xp2 = x ( 2 , e x t r _ i d x ( 1 ) ) ;
159 t p a d = max ( x ( 1 , end ) , ( 2∗ x ( 1 , e x t r _ i d x ( end))−x ( 1 , e x t r _ i d x ( end − 1 ) ) ) ) ;
160 t p d = t p a d + ( x ( 1 , e x t r _ i d x ( end ) ) − x ( 1 , e x t r _ i d x ( end−1 ) ) ) ;
161 i f t p a d > x ( 1 , end )
162 xpad = x ( 2 , e x t r _ i d x ( end−1 ) ) ;
163 e l s e
164 xpad = x ( 2 , end ) ;
165 end
166 xpd = x ( 2 , e x t r _ i d x ( end ) ) ;
167 i f xp1 < xp2
168 a l l_max = [ [ t p 2 ; xp2 ] x ( : , max_idx ) ] ;
169 a l l _ m i n = [ [ t p 1 ; xp1 ] x ( : , min_idx ) ] ;
170 e l s e
171 a l l_max = [ [ t p 1 ; xp1 ] x ( : , max_idx ) ] ;
172 a l l _ m i n = [ [ t p 2 ; xp2 ] x ( : , min_idx ) ] ;
173 end
174 i f xpad < xpd
175 a l l_max = [ a l l_max [ t p d ; xpd ] ] ;
176 a l l _ m i n = [ a l l _ m i n [ t p a d ; xpad ] ] ;
177 e l s e
178 a l l_max = [ a l l_max [ t p a d ; xpad ] ] ;
179 a l l _ m i n = [ a l l _ m i n [ t p d ; xpd ] ] ;
180 end
181 xx = t p 2 : 0 ;
182 x s t a r t = length ( xx ) + 1 ;
183 xx = [ xx x ( 1 , : ) ] ;
184 xend = length ( xx ) ;
185 xx = [ xx ( ( x ( 1 , end ) + 1 ) : t p d ) ] ;
186 e l s e i f ( epo == 3) % T h i r d end−p o i n t o p t i o n
187 % M i r r o r i m a g i n g o f t h e s i g n a l s b e s i d e t h e edges
188 xspan = ( n − 1 ) ;
189 xx = [ x ( 1 , 1 : ( end−1))−xspan , x ( 1 , 1 : ( end−1)) , x ( 1 , : ) + xspan ] ;
190 y m i r r o r = [ f l i p l r ( x ( 2 , 2 : end ) ) , x ( 2 , : ) , f l i p l r ( x ( 2 , 1 : ( end − 1 ) ) ) ] ;
191 [ mamr , mimr ] = ex t r ema ( y m i r r o r ) ;
192 % We m u s t remove t h e f a l l a c i o u s l o c a l e x t r e m a a t t h e two e n d p o i n t s o f t h e
193 % i n i t i a l s i g n a l
194 i f ( numel ( f ind ( n==mimr ) ) == 1) && ( numel ( f ind (2∗n−1==mimr ) ) == 1)
195 mimr = mimr ( [ 1 : ( f ind ( n==mimr ) − 1 ) , . . .
196 ( f ind ( n==mimr ) + 1 ) : ( f ind ( ( 2∗ n−1)==mimr ) − 1 ) , . . .
197 ( f ind ( ( 2∗ n−1)==mimr ) + 1 ) : end ] ) ;
198 e l s e i f ( numel ( f ind ( n==mamr ) ) == 1) && ( numel ( f ind (2∗n−1==mimr ) ) == 1)
199 mamr = mamr ( [ 1 : ( f ind ( n==mamr)−1) ( f ind ( n==mamr ) + 1 ) : end ] ) ;
200 mimr = mimr ( [ 1 : ( f ind ( ( 2∗ n−1)==mimr)−1) ( f ind ( ( 2∗ n−1)==mimr ) + 1 ) : end ] ) ;
201 e l s e i f ( numel ( f ind ( n==mimr ) ) == 1) && ( numel ( f ind (2∗n−1==mamr ) ) == 1)
202 mamr = mamr ( [ 1 : ( f ind ( ( 2∗ n−1)==mamr)−1) ( f ind ( ( 2∗ n−1)==mamr ) + 1 ) : end ] ) ;
203 mimr = mimr ( [ 1 : ( f ind ( n==mimr)−1) ( f ind ( n==mimr ) + 1 ) : end ] ) ;
204 e l s e i f ( numel ( f ind ( n==mamr ) ) == 1) && ( numel ( f ind (2∗n−1==mamr ) ) == 1)
205 mamr = mamr ( [ 1 : ( f ind ( n==mamr ) − 1 ) , . . .
206 ( f ind ( n==mamr ) + 1 ) : ( f ind ( ( 2∗ n−1)==mamr ) − 1 ) , . . .
207 ( f ind ( ( 2∗ n−1)==mamr ) + 1 ) : end ] ) ;
208 end
209 a l l _max = [ xx ( mamr ) ; y m i r r o r ( mamr ) ] ;
210 a l l _ m i n = [ xx ( mimr ) ; y m i r r o r ( mimr ) ] ;
211 x s t a r t = n ;
212 xend = (2∗ x s t a r t − 1 ) ;
213 e l s e i f ( epo == 4) % F o u r t h end−p o i n t o p t i o n
214 % E x t r a p o l a t i o n o f t h e c u r v e s w i t h a damped s i n u s o i d a l c u r v e u s i n g an
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215 % auto− r e g r e s s i v e model .
216 % T h e f o l l o w i n g t h r e e p a r a m e t e r s can be a d j u s t e d
217 l e x = 1 ; % L e n g t h o f e x t r a p o l a t i o n
218 l a v = 1 / 1 0 ; % L e n g t h o f a v e r a g e
219 kappa = 0 . 0 0 1 ; % Damping c o e f f i c i e n t
220

221 avb = mean ( x ( 2 , ( 1 : f l o o r ( n∗ l a v ) ) ) ) ;
222 ave = mean ( x ( 2 , ( end−f l o o r ( n∗ l a v ) ) : end ) ) ;
223 xb = zeros ( 1 , f l o o r ( n ∗ ( l e x + 1 ) ) ) ; xe = zeros ( 1 , f l o o r ( n ∗ ( l e x + 1 ) ) ) ;
224 xb ( 1 , ( f l o o r ( n∗ l e x ) + 1 ) : end ) = x (2 , : ) − avb ; xe ( 1 , 1 : n ) = x (2 , : ) − ave ;
225 % T h e t i m e s c a l e i s based on t h e f i r s t and l a s t two e x t r e m a
226 Tb = 2∗abs ( x ( 1 , max_idx (1))− x ( 1 , min_idx ( 1 ) ) ) ;
227 Te = 2∗abs ( x ( 1 , max_idx ( end))−x ( 1 , min_idx ( end ) ) ) ;
228 % C o n d i t i o n o f min imum p e r i o d
229 i f ( Tb < 4)
230 Tb = 4 ;
231 end
232 i f ( Te < 4)
233 Te = 4 ;
234 end
235 omegab = 2∗pi / ( Tb ) ; % P u l s a t i o n o f t h e s i n e wave a t t h e b e g i n n i n g
236 omegae = 2∗pi / ( Te ) ; % P u l s a t i o n o f t h e s i n e wave a t t h e end
237

238 b1b = (2 − omegab ^ 2 ) / ( 1 + kappa / 2 ) ;
239 b1e = (2 − omegae ^ 2 ) / ( 1 + kappa / 2 ) ;
240 b2 = −(1 − kappa / 2 ) / ( 1 + kappa / 2 ) ;
241

242 % I t e r a t i o n p r o c e s s t o c a l c u l a t e t h e damped s i n u s o i d a l e x t e n s i o n s
243 f o r i i = 1 : ( f l o o r ( n∗ l e x ) )
244 p o i n t b = b1b∗xb ( f l o o r ( n∗ l e x )− i i +2)+ b2∗xb ( f l o o r ( n∗ l e x )− i i + 3 ) ;
245 p o i n t e = b1e∗xe ( n+ i i −1)+b2∗xe ( n+ i i −2);
246 xb ( f l o o r ( n∗ l e x )+1− i i ) = p o i n t b ;
247 xe ( n+ i i ) = p o i n t e ;
248 end
249 x e x t = [ ( xb ( 1 : f l o o r ( n∗ l e x ) ) + avb ) , x ( 2 , : ) , ( xe ( n +1: end )+ ave ) ] ;
250 xx = [ f l i p l r (0:−1:(1−n∗ l e x ) ) , x ( 1 , : ) , ( n + 1 ) : ( n+n∗ l e x ) ] ;
251 [ maex , miex ] = ex t r ema ( x e x t ) ;
252 a l l _max = [ xx ( maex ) ; x e x t ( maex ) ] ;
253 a l l _ m i n = [ xx ( miex ) ; x e x t ( miex ) ] ;
254 x s t a r t = (1 + f l o o r ( n∗ l e x ) ) ;
255 xend = f l o o r ( n ∗ ( l e x + 1 ) ) ;
256 end
257 end

B.2 Hilbert-transform algorithm

Source code B.2 determines the instantaneous frequency and the instantaneous

amplitude of a signal or IMFs using the Hilbert transform. Besides the time-

series and its time vector (essentially to define the time-step), the inputs are the

extension option (1, no extension; 2, extension with an anti-symmetric mirror

imaging; 3, extension with a damped sinusoidal curve using an auto-regressive

model) and the length of extension, which is a proportion of the size of the data.
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Source code B.2: Matlab source code of the Hilbert-transform algorithm

1 func t ion [ Ampli tude , F requency ] = H i l b e r t _ t r a n s f o r m ( t , s i g n a l , e_o , l _ e )
2 % H i l b e r t t r a n s f o r m o f a s i g n a l o r s e t o f I M F ( s e t I M F )
3 % s i g n a l i s a m u l t i p l e −row v e c t o r
4 % t : t i m e v e c t o r
5 % F o u r e x t e n s i o n −o p t i o n s p o s s i b l e :
6 % e o = 1 −> No e x t e n s i o n
7 % 2 −> A n t i − s y m m e t r i c m i r r o r i m a g i n g
8 % 3 −> E x t e n s i o n w i t h a damped s i n u s o i d a l c u r v e ( AR model )
9 % l e : l e n g t h o f e x t e n s i o n ( p r o p o r t i o n o f t h e s i g n a l s i z e )

10 % w i t h 0 < l e < n
11

12 i f isempty ( t ) , d t = 1 ;
13 e l s e d t = t (2)− t ( 1 ) ; % I n i t i a l i s a t i o n o f t h e t i m e s t e p
14 end
15 m = s i z e ( s i g n a l , 1 ) ;
16

17 f o r k = 1 :m
18 % C a l l t h e e x t e n s i o n f u n c t i o n
19 [ x , x s t a r t , xend ] = e x t e n s i o n ( s i g n a l ( k , : ) , e_o , l _ e ) ;
20 i f ( k == 1)
21 Ampl i tude = zeros (m, length ( x ) ) ;
22 Frequency = zeros (m, length ( x ) ) ;
23 end
24 % C o m p u t a t i o n o f t h e a n a l y t i c s i g n a l w i t h t h e H i l b e r t t r a n s f o r m
25 Ana_sig = h i l b e r t ( x ) ;
26 Ampl i tude ( k , : ) = abs ( Ana_s ig ) ;
27 Frequency0 = 1 / ( 4∗ pi∗ d t ) ∗ . . .
28 unwrap ( atan2 ( ( r e a l ( Ana_s ig ( 1 : end − 2 ) ) . ∗ . . .
29 imag ( Ana_s ig ( 3 : end))− r e a l ( Ana_s ig ( 3 : end ) ) . ∗ . . .
30 imag ( Ana_s ig ( 1 : end−2 ) ) ) , ( r e a l ( Ana_s ig ( 1 : end − 2 ) ) . ∗ . . .
31 r e a l ( Ana_s ig ( 3 : end ) ) + imag ( Ana_s ig ( 3 : end ) ) . ∗ . . .
32 imag ( Ana_s ig ( 1 : end − 2 ) ) ) ) ) ;
33 Frequency ( k , : ) = [ Frequency0 ( 1 ) Frequency0 Frequency ( end ) ] ;
34 end
35 Ampl i tude = Ampl i tude ( : , x s t a r t : xend ) ;
36 Frequency = Frequency ( : , x s t a r t : xend ) ;
37 end
38

39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 func t ion [ s i g n a l _ e x t , x s t a r t , xend ] = e x t e n s i o n ( x , e_o , l _ e )
41 n = length ( x ) ;
42

43 i f ( e_o == 1) % 1 s t e x t e n s i o n o p t i o n
44 % No e x t e n s i o n
45 s i g n a l _ e x t = x ;
46 x s t a r t = 1 ;
47 xend = n ;
48 e l s e i f ( e_o == 2) % 2 nd e x t e n s i o n o p t i o n
49 % A n t i − s y m m e t r i c m i r r o r i m a g i n g
50 i f ( l _ e == 1)
51 l _ e = (1 − 1 / n ) ;
52 end
53 i f ( l _ e == 0)
54 l _ e = 1 / n ;
55 end
56 s i g n a l _ e x t = [ ( 2∗ x(1)− f l i p l r ( x ( 2 : f l o o r ( n∗ l _ e ) ) ) ) , x , . . .
57 (2∗ x(1)− f l i p l r ( x ( ( n−f l o o r ( n∗ l _ e ) ) : ( end − 1 ) ) ) ) ] ;
58 x s t a r t = f l o o r ( n∗ l _ e ) ;
59 xend = ( f l o o r ( n∗ l _ e ) + n − 1 ) ;
60 e l s e i f ( e_o == 3) % 3 r d end−p o i n t o p t i o n
61 % E x t r a p o l a t i o n o f t h e c u r v e s w i t h a damped s i n u s o i d a l
62 % c u r v e u s i n g an auto− r e g r e s s i v e model .
63 % T h e f o l l o w i n g p a r a m e t e r s can be a d j u s t e d
64 l a v = 1 / 1 0 ; % L e n g t h o f a v e r a g e
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65 kappa = 0 . 0 0 1 ; % Damping c o e f f i c i e n t
66

67 e x t r _ i d x = c r o s s i n g s ( s ign ( d i f f ( x ) ) , [ ] , 0 , ’dis’ ) ; % I n d e x t h e e x t r e m a
68 i f ( length ( e x t r _ i d x ) < 2)
69 warn ing (’Need at least two extrema for the AR model extension’ ) ;
70 % E x t e n s i o n w i t h a c o n s t a n t
71 s i g n a l _ e x t = [ x ( 1 )∗ ones ( 1 , f l o o r ( n∗ l _ e ) ) , x , . . .
72 x ( end )∗ ones ( 1 , f l o o r ( n∗ l _ e ) ) ] ;
73 x s t a r t = 1 + f l o o r ( n∗ l _ e ) ;
74 xend = f l o o r ( n ∗ ( l _ e + 1 ) ) ;
75 re turn
76 end
77 avb = mean ( x ( 1 : f l o o r ( n∗ l a v ) ) ) ;
78 ave = mean ( x ( ( end−f l o o r ( n∗ l a v ) ) : end ) ) ;
79 xb = zeros ( 1 , f l o o r ( n ∗ ( l _ e + 1 ) ) ) ; xe = zeros ( 1 , f l o o r ( n ∗ ( l _ e + 1 ) ) ) ;
80 xb ( ( f l o o r ( n∗ l _ e ) + 1 ) : end ) = x − avb ; xe ( 1 : n ) = x − ave ;
81 % T h e t i m e s c a l e i s based on t h e f i r s t and l a s t two e x t r e m a
82 Tb = 2∗abs ( e x t r _ i d x ( 2 ) − e x t r _ i d x ( 1 ) ) ;
83 Te = 2∗abs ( e x t r _ i d x ( end ) − e x t r _ i d x ( end−1 ) ) ;
84 i f ( Tb < 4)
85 Tb = 4 ;
86 end
87 i f ( Te < 4)
88 Te = 4 ;
89 end
90 omegab = 2∗pi / Tb ; % P u l s a t i o n o f t h e s i n e wave a t t h e b e g i n n i n g
91 omegae = 2∗pi / Te ; % P u l s a t i o n o f t h e s i n e wave a t t h e end
92

93 b1b = (2 − omegab ^ 2 ) / ( 1 + kappa / 2 ) ;
94 b1e = (2 − omegae ^ 2 ) / ( 1 + kappa / 2 ) ;
95 b2 = −(1 − kappa / 2 ) / ( 1 + kappa / 2 ) ;
96

97 % I t e r a t i o n p r o c e s s t o c a l c u l a t e t h e damped s i n u s o i d a l e x t e n s i o n s
98 f o r i i = 1 : ( f l o o r ( n∗ l _ e ) )
99 p o i n t b = b1b∗xb ( f l o o r ( n∗ l _ e )− i i +2)+ b2∗xb ( f l o o r ( n∗ l _ e )− i i + 3 ) ;

100 p o i n t e = b1e∗xe ( n+ i i −1)+b2∗xe ( n+ i i −2);
101 xb ( f l o o r ( n∗ l _ e )+1− i i ) = p o i n t b ;
102 xe ( n+ i i ) = p o i n t e ;
103 end
104 s i g n a l _ e x t = [ ( xb ( 1 : f l o o r ( n∗ l _ e ) ) + avb ) , x , ( xe ( n +1: end )+ ave ) ] ;
105 x s t a r t = 1 + f l o o r ( n∗ l _ e ) ;
106 xend = f l o o r ( n ∗ ( l _ e + 1 ) ) ;
107 end
108 end

B.3 Intermittency test

Source code B.3 is the intermittency test that can be called in the sifting process

(see the second function in Source Code B.1). Its inputs are: a proto-IMF, which

is actually a residue or the signal itself because it is the first iteration of the sifting

process; the end-point option; the intermittency criterion for the current residue;

and the indexes of the extrema of this residue. Its unique output is the resulting

intermittent IMF.
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Source code B.3: Matlab source code of the intermittency test

1 func t ion IMF = i n t e r m i t t e n c y _ t e s t ( pIMF , epo , n1 , max_idx , min_idx )
2

3 % C a l l t h e e n d p o i n t f u n c t i o n t o g e t t h e i n d e x e s o f a l l t h e e x t r e m a
4 [ lmax , lmin , xx , x s t a r t , xend ] = e n d _ p o i n t ( pIMF , max_idx , min_idx , epo ) ;
5

6 t _ e x t r e m a = s o r t ( [ lmax ( 1 , : ) , lmin ( 1 , : ) ] ) ;
7 % I d e n t i f i c a t i o n o f t h e p o r t i o n s o f p I M F
8 % i n w h i c h waves have a h a l f −p e r i o d > n1
9 p o r t i o n _ s u p _ n 1 = ( d i f f ( t _ e x t r e m a ) > n1 ) ;

10 p o r t i o n _ i d x = f ind ( p o r t i o n _ s u p _ n 1 = = 1 ) ;
11

12 % I d e n t i f i c a t i o n o f t h e e x t r e m a s f o r t h e u p p e r and l o w e r e n v e l o p e s
13 i f isempty ( p o r t i o n _ i d x )
14 l m a x i n t = lmax ;
15 l m i n i n t = lmin ;
16 e l s e
17 i f ( lmax ( 1 ) < lmin ( 1 ) )
18 double_max_idx = c e i l ( ( p o r t i o n _ i d x + 1 ) / 2 ) ;
19 doub le_min_ idx = f l o o r ( ( p o r t i o n _ i d x + 1 ) / 2 ) ;
20 e l s e
21 doub le_min_ idx = c e i l ( ( p o r t i o n _ i d x + 1 ) / 2 ) ;
22 double_max_idx = f l o o r ( ( p o r t i o n _ i d x + 1 ) / 2 ) ;
23 end
24 while ( doub le_min_ idx ( end ) > length ( lmin ) )
25 doub le_min_ idx ( end ) = [ ] ;
26 end
27 l m a x i n t = [ lmax , lmin ( : , doub le_min_ idx ) ] ;
28 [ t _ l m a x i n t , l m a x i n t _ s o r t _ i d x ] = s o r t ( l m a x i n t ( 1 , : ) ) ;
29 l m a x i n t = l m a x i n t ( : , l m a x i n t _ s o r t _ i d x ) ;
30

31 while ( double_max_idx ( end ) > length ( lmax ) )
32 double_max_idx ( end ) = [ ] ;
33 end
34 l m i n i n t = [ lmin , lmax ( : , double_max_idx ) ] ;
35 [ t _ l m i n i n t , l m i n i n t _ s o r t _ i d x ] = s o r t ( l m i n i n t ( 1 , : ) ) ;
36 l m i n i n t = l m i n i n t ( : , l m i n i n t _ s o r t _ i d x ) ;
37

38 [ b1 , m1] = un iq ue ( l m a x i n t ( 1 , : ) , ’first’ ) ;
39 [ b2 , m2] = un iq ue ( l m i n i n t ( 1 , : ) , ’first’ ) ;
40 l m a x i n t = l m a x i n t ( : , m1 ) ;
41 l m i n i n t = l m i n i n t ( : , m2 ) ;
42 end
43

44 % C a l c u l a t i o n o f t h e mean o f t h e p I M F
45 l o w e r _ e n v e l o p e = i n t e r p 1 ( l m i n i n t ( 1 , : ) , l m i n i n t ( 2 , : ) , xx ,’spline’ ) ;
46 u p p e r _ e n v e l o p e = i n t e r p 1 ( l m a x i n t ( 1 , : ) , l m a x i n t ( 2 , : ) , xx ,’spline’ ) ;
47 me = ( u p p e r _ e n v e l o p e + l o w e r _ e n v e l o p e ) / 2 ;
48 xnew = zeros ( 1 , length ( xx ) ) ;
49 xnew ( x s t a r t : xend )= pIMF ;
50

51 % T h e mean i s f o r c e d t o be e q u a l t o t h e p I M F and t h e l o n g−wave p o r t i o n s
52 f o r i = 1 : length ( p o r t i o n _ s u p _ n 1 )
53 i f ( p o r t i o n _ s u p _ n 1 ( i ) == 1)
54 xx1 = f ind ( xx == t _ e x t r e m a ( i ) ) ;
55 xx2 = f ind ( xx == t _ e x t r e m a ( i + 1 ) ) ;
56 me ( xx1 : xx2 ) = xnew ( xx1 : xx2 ) ;
57 end
58 end
59 me = me ( x s t a r t : xend ) ;
60

61 % C a l c u l a t i o n o f t h e I M F
62 IMF = pIMF − me ;
63 end
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B.4 Confidence-limit algorithm

The overall architecture of the confidence-limit algorithm is described below in

the pseudo code B.4. Besides the signal, the inputs are the control parameters

for each case. The outputs are: the time evolution of the mean IMFs and their

standard deviation; the marginal spectra of all the cases with the mean marginal

spectrum and the 68% or 95% confidence limit marginal spectra; and the mean

Hilbert spectrum.

Pseudo code B.4: Architecture of the confidence limit algorithm

1 f u n c t i o n [ Mean_IMFs , Std_IMFs ] = C o n f i d e n c e _ l i m i t ( t , s i g n a l , p a r a m e t e r s )
2

3 % s e t I M F s i s a 3D a r r a y , w i t h I M F s a s row v e c t o r s
4 % and d i f f e r e n t s e t s v a r y i n g w i t h t h e l a s t d i m e n s i o n
5

6 N_set = s i z e ( p a r a m e t e r s ) ; % Number o f s e t s
7

8 f o r i =1 : N_se t
9

10 % C a l l t h e EMD a l g o r i t h m
11 [ se t_ IMFs ( : , : , i ) , IO ( i ) ] = EMDint ( t , s i g n a l , p a r a m e t e r s ( i ) ) ;
12

13 % P r e l i m i n r a y t e s t s
14 i f ( IO ( i ) > 0 . 1 )
15 se t_IMFs ( : , : , i ) = [ ] ;
16 end
17 end
18

19 N_set = s i z e ( se t_ IMFs ) ; % R e i n i t i a l i s a t i o n o f t h e number o f s e t s
20

21 % E q u a l number o f I M F s i n each s e t ?
22 eq_nb_IMFs =1;
23 f o r i =1 : N_se t
24

25 f o r j =1 : N_se t
26 i f s i z e ( se t_ IMFs ( : , : , i ) , 2 ) ~= s i z e ( se t_ IMFs ( : , : , j ) , 2 )
27 eq_nb_IMFs =0;
28 end
29 end
30

31 % I n s t a n t a n e o u s f r e q u e n c y and a m p l i t u d e
32 [ IF_IMF ( : , : , i ) , IA_IMF ( : , : , i ) ] = H i l b e r t _ t r a n s f o r m ( se t_IMFs ( : , : , i ) ) ;
33 % M a r g i n a l s p e c t r u m
34 [M_F( i , : ) , M_A( i , : ) ] = Marg_spect rum ( IF_IMF ( : , : , i ) , IA_IMF ( : , : , i ) ) ;
35 end
36

37 % Mean and 95% CL m a r g i n a l s p e c t r u m
38 Mean_M_A = 1 / N_se t∗sum (M_F , 1 ) ;
39 Std_M_A = s t d (M_A, 1 ) ;
40 % P l o t M a r g i n a l s p e c t r u m w i t h i t s mean and 95% CL
41 p l o t (M_F,M_A)
42 hold on
43 p l o t (M_F, Mean_M_A)
44 p l o t (M_F , ( Mean_M_A + 2∗Std_M_A ) )
45 p l o t (M_F , ( Mean_M_A − 2∗Std_M_A ) )
46 hold o f f
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47

48 % C a l c u l a t i o n o f t h e m e a n I M F s , S t d I M F s , and H i l b e r t s p e c t r u m
49 i f eq_nb_IMFs % 1 : e q u a l n u m b e r s o f I M F s
50

51 Mean_IMFs = 1 / N_se t ∗sum ( set_IMFs , 3 ) ;
52 Std_IMFs = s t d ( set_IMFs , 3 ) ;
53

54 % Mean H i l b e r t s p e c t r u m
55 Mean_IF_IMF = 1 / N_se t ∗sum ( IF_IMF , 3 ) ;
56 Mean_IA_IMF = 1 / N_se t ∗sum ( IA_IMF , 3 ) ;
57 % P l o t mean H i l b e r t s p e c t r u m
58

59 p l o t 3 ( t , Mean_IF_IMF , Mean_IA_IMF )
60

61 e l s e % 2 : d i f f e r e n t n u m b e r s o f I M F s
62

63 % B i n method t o c a l c u l a t e t h e mean H i l b e r t s p e c t r u m
64 [ Mean_IF_IMF , Mean_IA_IMF ] = Bin_method ( IF_IMF , IA_IMF ) ;
65

66 % P l o t mean H i l b e r t s p e c t r u m
67 p l o t 3 ( t , Mean_IF_IMF , Mean_IA_IMF )
68 end
69 end
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C. Results for the five test signals

C.1 Two-component signal

Table C.1 shows the results of the quantitative criteria for the study of the two-

component signal with the HHT algorithm. In the second row, second column:

’n. a.’ means ’not applicable’. In other words, the fourth stopping criterion can-

not be used in its current form, and the second and third conditions are dropped.

Furthermore, ’−’ means that the index cannot be computed because there is only

one IMF found by the EMD algorithm.
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Table C.1: Results of the index of overall orthogonality IO, the number of IMFs
NIMF , the number of iterations per IMF Nite,j , and the index of component sep-
aration per IMF ICSj for the two-component signal.

End-point 4th Stopping ICSj

option criterion IO NIMF Nite,j [cj − cj+1]
(θ1, θ2, α) (c1, c2, . . . , cn) [cn−1 − cn]

1 n. a. − 1 (0) (−,−)
2 (0.01, 0.1, 0.01) 0.014 3 (134, 3, 15) (2.85, 2.10)

(1.56, 1.24)
(0.05, 0.5, 0.05) 0.007 2 (5, 0) (−0.48,−0.16)

(0.1, 1, 0.1) 0.016 3 (2, 1, 4) (0.64, 0.97)
(0.24, 0.55)

3 (0.01, 0.1, 0.01) 0.012 3 (16, 3, 2) (2.12, 1.75)
(0.83, 1.62)

(0.05, 0.5, 0.05) 0.021 3 (6, 1, 4) (0.56, 1)
(−0.25, 0.9)

(0.1, 1, 0.1) 0.062 2 (2, 0) (−1.72,−0.82)
4 (0.01, 0.1, 0.01) 0.007 3 (9, 9, 33) (2.43, 2.14)

(1.46, 0.79)
(0.05, 0.5, 0.05) 0.029 3 (3, 1, 19) (1.50, 1.90)

(1.42, 0.61)
(0.1, 1, 0.1) 0.039 2 (2, 0) (−0.77,−0.38)

C.2 Amplitude-modulated signal

Table C.2 shows the results of the quantitative criteria for the study of the am-

plitude-modulated signal with the HHT algorithm.
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Table C.2: Results of the index of overall orthogonality IO, the number of IMFs
NIMF , the number of iterations per IMF Nite,j , and the index of component sep-
aration per IMF ICSj for the amplitude-modulated signal.

End-point 4th Stopping ICSj

option criterion IO NIMF Nite,j [cj − cj+1]
(θ1, θ2, α) (c1, c2, . . . , cn) [cn−1 − cn]

1 n. a. − 1 (0) (−,−)
2 (0.01, 0.1, 0.01) 0.105 3 (6, 18, 15) (1.92, 2.21)

(1.26,−0.08)
(0.05, 0.5, 0.05) 0.074 3 (3, 1, 14) (−0.51,−0.29)

(−1.15, 0.12)
(0.1, 1, 0.1) 0.046 2 (2, 0) (0.85, 0.74)

3 (0.01, 0.1, 0.01) 0.107 3 (17, 4, 6) (1.40, 1.26)
(0.20,−0.22)

(0.05, 0.5, 0.05) 0.098 3 (5, 1, 6) (1.43, 1.88)
(1.26, 1.51)

(0.1, 1, 0.1) 0.115 3 (2, 1, 4) (−1.20,−0.04)
(−0.68, 0.27)

4 (0.01, 0.1, 0.01) 4.686 7 (71, 66, 56, 175, . . . (1.00,−0.19)
. . . 90, 27, 10) (−1.28,−0.25)

(−0.25,−0.70)
(−1.69, 0.35)
(0.42,−0.91)

(−2.09,−1.64)
(0.05, 0.5, 0.05) 0.053 3 (3, 1, 9) (1.38, 2.27)

(1.46, 0.81)
(0.1, 1, 0.1) 0.027 2 (2, 0) (0.84, 1.36)

C.3 Frequency-modulated signal

Table C.3 shows the results of the quantitative criteria for the study of the fre-

quency-modulated signal with the HHT algorithm.
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Table C.3: Results of the index of overall orthogonality IO, the number of IMFs
NIMF , the number of iterations per IMF Nite,j , the and index of component sep-
aration per IMF ICSj for the frequency-modulated signal.

End-point 4th Stopping ICSj

option criterion IO NIMF Nite,j [cj − cj+1]
(θ1, θ2, α) (c1, c2, . . . , cn) [cn−1 − cn]

1 n. a. − 1 (0) (−,−)
2 (0.01, 0.1, 0.01) − 1 (0) (−,−)

(0.05, 0.5, 0.05) − 1 (0) (−,−)
(0.1, 1, 0.1) − 1 (0) (−,−)

3 (0.01, 0.1, 0.01) − 1 (0) (−,−)
(0.05, 0.5, 0.05) − 1 (0) (−,−)

(0.1, 1, 0.1) − 1 (0) (−,−)
4 (0.01, 0.1, 0.01) 0.524 5 (31, 126, 46, . . . (0.84, 1.34)

. . . 36, 12) (−0.84,−0.72)
(−0.28, 0.90)
(1.09, 0.77)

(0.05, 0.5, 0.05) 0.018 2 (1, 18) (1.64, 3.67)
(0.1, 1, 0.1) − 1 (0) (−,−)

C.4 Amplitude-step signal

Table C.4 shows the results of the quantitative criteria for the study of the am-

plitude-step signal with the HHT algorithm.
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Table C.4: Results of the index of overall orthogonality IO, the number of IMFs
NIMF , the number of iterations per IMF Nite,j , and the index of component sep-
aration per IMF ICSj for the amplitude-step signal.

End-point 4th Stopping ICSj

option criterion IO NIMF Nite,j [cj − cj+1]
(θ1, θ2, α) (c1, c2, . . . , cn) [cn−1 − cn]

1 n. a. − 1 0 (−,−)
2 (0.01, 0.1, 0.01) 0.003 3 (5, 95, 6) (1.56, 1.22)

(−0.17,−0.01)
(0.05, 0.5, 0.05) 0.010 3 (1, 5, 1) (2.84, 2.62)

(−0.31,−0.40)
(0.1, 1, 0.1) 0.009 3 (1, 4, 1) (3.34, 2.39)

(−0.71,−0.85)
3 (0.01, 0.1, 0.01) 0.007 4 (5, 138, 27, 3) (2.07, 1.01)

(−0.53, 0.14)
(0.69, 0.54)

(0.05, 0.5, 0.05) 0.009 3 (1, 4, 1) (2.59, 2.54)
(−0.50,−0.16)

(0.1, 1, 0.1) 0.008 3 (1, 3, 1) (1.83, 2.53)
(−0.47, 2.42)

4 (0.01, 0.1, 0.01) 0.011 4 (5, 26, 18, 19) (0.86, 0.87)
(−0.60,−0.47)
(−0.48,−0.47)

(0.05, 0.5, 0.05) 0.005 3 (1, 15, 4) (1.49, 1.09)
(−0.33,−0.78)

(0.1, 1, 0.1) 0.004 3 (1, 9, 3) (2.48, 0.87)
(−0.31, 0.15)

C.5 Frequency-shift signal

Table C.5 shows the results of the quantitative criteria for the study of the fre-

quency-shift signal with the HHT algorithm.
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Table C.5: Results of the index of overall orthogonality IO, the number of IMFs
NIMF , the number of iterations per IMF Nite,j , and the index of component sep-
aration per IMF ICSj for the frequency-shift signal.

End-point 4th Stopping ICSj

option criterion IO NIMF Nite,j [cj − cj+1]
(θ1, θ2, α) (c1, c2, . . . , cn) [cn−1 − cn]

1 n. a. − 1 (0) (−,−)
2 (0.01, 0.1, 0.01) − 1 (0) (−,−)

(0.05, 0.5, 0.05) − 1 (0) (−,−)
(0.1, 1, 0.1) − 1 (0) (−,−)

3 (0.01, 0.1, 0.01) − 1 (0) (−,−)
(0.05, 0.5, 0.05) − 1 (0) (−,−)

(0.1, 1, 0.1) − 1 (0) (−,−)
4 (0.01, 0.1, 0.01) 0.015 3 (3, 26, 33) (1.46, 1.83)

(−2.16,−1.95)
(0.05, 0.5, 0.05) − 1 (0) (−,−)

(0.1, 1, 0.1) − 1 (0) (−,−)
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D. Length-of-day results

D.1 IMF components

The decomposition of the LOD data with the EMD algorithm is presented on

Figure D.1 and D.2 without intermittency test and Figure D.3 and D.4 with in-

termittency test. These results have been compared to the results obtained by

Huang et al. (2003) [28]. Overall, the same IMFs are found between the two stud-

ies although different stopping criteria and end-point options have been used.

Only a few discrepancies have been observed near the edges of some IMFs. This

is clearly due to the use of different ways to handle the end-effect problem. Then,

in both cases the intermittency test improves the decomposition by removing

the mode mixing. Finally, it can be remarked that a strict stopping criterion cor-

responds to low thresholds in this study (e.g. θ1 < 0.05, θ2 = 10θ1, α < 0.05),

and to a high S-number in Huang et al. (2003) [28]’s study (e.g. S ≥ 10). In

both studies, a strict stopping criterion tends to increase the number of IMFs

and over-decompose the signal.
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Figure D.1: The IMF components (multiplied by a factor 1000) of the case:
EMD([1962:2001; LOD data],2,[0.2,2,0.15]) (no intermittency test). Only
seven IMFs have been found because the stopping criterion is not strict enough.
In fact, the eighth IMF is mixed with the seventh.
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Figure D.2: The IMF components (multiplied by a factor 1000) of the case:
EMD([1962:2001; LOD data],4,[0.02,0.2,0.035]) with Nepn = N , Navg =
0.2N and κ = 10−3 (no intermittency test). Too many IMFs have been created be-
cause of over-sifting due to too low thresholds. It can be noticed that c9 and c10

are almost symmetrical and have the same frequency range, thus meaning that
the last one is a fallacious IMF.
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Figure D.3: The IMF components (multiplied by a factor 1000) of the case:
EMD([1962:2001; LOD data],2,[0.03,0.3,0.225],[4,03,452,-1]) (invok-
ing the intermittency test). The intermittent IMFs are c1, c5 and c6. Firstly, we can
observe that c7 and c8 have a problem at one end: large steep swings terminate
the two curves. Secondly, the begining of c11 and c12 are symmetrical and com-
pensate each other. This problem is due to low first and second thresholds.
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Figure D.4: The eleven IMF components (multiplied by a factor 1000) of
the case: EMD([1962:2001; LOD data],4,[0.12,1.2,0.1],[4,03,452,-1])

with Nepn = N , Navg = 0.2N and κ = 10−3 (with intermittency test). The intermit-
tent IMFs are c1, c5 and c6. These parameters have produced a good decompo-
sition without mode mixing and end-effect, and the IMFs were obtained in only
63 iterations.
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D.2 Marginal spectrum
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Figure D.5: Marginal spectra of a few individual cases selected randomly, mean
marginal spectrum (divided by a factor 100) and 95% CL of the LOD data with-
out intermittency test (top) and with intermittency test (bottom). As can be seen,
the mean marginal spectrum, the 95% CL and the individual cases are all very
similar between these graphs.
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E. Vortex-shedding results

E.1 Vortex-shedding signal at Re=105

Figure E.1 to E.7 show the results of the quantitative indexes, IO, NIMF , Nite,T

and mean(ICS), in the space (0.02 ≤ θ1 ≤ 0.3, 0.02 ≤ α ≤ 0.3) and with the

second, third and fourth end-point options.

Figure E.8 shows the squared deviation between the marginal spectrum of

each individual cases and the mean marginal spectrum.
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Figure E.1: Index of orthogonality versus (θ1, α) for the study of the vortex shed-
ding data with the second end-point option and without intermittency test.
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Figure E.2: Number of IMFs (top) and total number of iterations (bottom) versus
(θ1, α) for the study of the vortex-shedding data with the second end-point option
and without intermittency test.
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Figure E.3: Index of orthogonality versus (θ1, α) for the study of the vortex-
shedding data with the third end-point option and without intermittency test.
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Figure E.4: Number of IMFs (top) and total number of iterations (bottom) versus
(θ1, α) for the study of the vortex-shedding data with the third end-point option
and without intermittency test.
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Figure E.5: Index of orthogonality versus (θ1, α) for the study of the vortex-
shedding data with the fourth end-point option and without intermittency test.
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Figure E.6: Number of IMFs (top) and total number of iterations (bottom) versus
(θ1, α) for the study of the vortex-shedding data with the fourth end-point option
and without intermittency test.
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Figure E.7: Results of the mean of the average index of component separation,
mean(ICS), versus (θ1, α) for the study of the vortex-shedding data with each
end-point option and without intermittency test: top, second end-point option;
middle, third end-point option; bottom, fourth end-point option.
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Figure E.8: Cumulative squared deviation between the mean marginal spectrum
and marginal spectra of the vortex-shedding data according to the end-point
option and without intermittency test: top, second end-point option; middle, third
end-point option; bottom, fourth end-point option.
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E.2 Vortex-shedding signal at Re=145
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Figure E.9: Marginal spectrum of the vortex-shedding signal at Re = 145 ob-
tained with EMD([0:0.175:131], V-S 145,2,[0.05,0.5,0.05],[0,1.58]).
The vortex-shedding frequency is well retrieved at approximately 2FS,HHT =
0.23 Hz. However, likewise the signal at Re = 105, the main peak is wide, thus
showing some frequency modulation.
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Figure E.10: Marginal spectrum of the third IMF of the vortex-shedding signal
at Re = 145. Though the resolution is lower than with the signal at Re = 105,
we can visualise the periodical frequency modulation of the instantaneous fre-
quency ω3 of ±27% with respect to the mean frequency ω3 = 0.233 Hz.
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F. Frequency-modulated signal
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Figure F.1: Marginal spectrum (top) and Fourier spectrum (bottom) of the
frequency-modulated signal presented in Paragraph 3.2.3. The marginal spec-
trum has recovered the whole bandwidth of the signal which varies from 0.5 Hz
to 1.5 Hz accordingly to Equation 3.3. On the other hand, the Fourier spectrum
fails to retrieve the nonlinear character of the signal, the instantaneous frequency
is averaged, as shown by the main peak at 1 Hz, and spurious harmonics are cre-
ated, as shown by the secondary peaks at 2 and 3 Hz.
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G. Optimal implementation options

Table G.1 shows the optimal implementation options found for each signal stud-

ied. These findings are based on the results obtained with the four quantitative

criteria, the analysis of the IMFs and the study of the Hilbert spectrum. The

end-point options 1 to 4 are respectively the clamped end-point technique, the

extrema extension technique, the mirror imaging extension and the damped si-

nusoidal extension based on an auto-regressive model (AR model). IT means

intermittency test.

Table G.1: Optimal implementation options for each signal studied.

Signal End-point Stopping Extension Comments
option criteria option

2-component signal 4 strict AR model -
e.g. (0.01, 0.1, 0.01)

AM signal 2 loose AR model -
or 4 e.g. (0.1, 1, 0.1)

FM signal 2 any AR model -
or 3

amplitude step signal 2 loose AR model -
e.g. (0.1, 1, 0.1)

frequency step signal 2 any AR model -
or 3

LOD data 4 intermediate AR model with IT
e.g. (0.05, 0.5, 0.05)

vortex shedding signal 4 loose AR model with IT
e.g. (0.095, 0.95, 0.125)
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