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Summary 

 

With highly fragmented market and increased competition, platform-based product 

family design has been recognized as an effective method to construct a product line 

that satisfies diverse customer’s demands while aiming to keep design and production 

cost- and time- effective. Recognizing the essentiality of modularity and commonality 

in the platform development, this thesis presents a systematic framework to 

implement top-down platform and product family development, which aims to 

achieve modularity for variety management at system-level design stage and 

rationalize commonality configuration for module instantiation at detailed design 

stage   

Rather than just identifying module boundary and interface in the product 

architecture, the development of product family architecture (PFA) in this research 

incorporates customized requirements and constructs a flexible and robust product 

architecture to accommodate variations. Towards this, the implication of PFA can be 

viewed as a conceptual structure with three interrelated elements: module, variant, 

and coupling interface. Variants in term of different customer requirements act as the 

external drivers of architectural variation and meanwhile variation is propagated 

within the product architecture through module interaction. Based on this principle, a 

step-by-step method is proposed to systematically modularize the PFA, involving 

functional modularization and variety analysis. The generated product portfolio 

architecture provides an engineering insight to manage variety in terms of functional 

 vii



module configuration and also prepares the targets for further design. 

To achieve economy of scales by increasing commonality during module 

instantiation, a scalable platform design method is adopted at the detailed design stage. 

Its success often relies on properly resolving the inherent tradeoff between 

commonality across the family and performance loss compared to individually 

tailored design. In this research, we propose a multi-platform product family (MPPF) 

approach to accomplish such balance. In the light of the basic premise that increased 

commonality enhances manufacturing efficiency, we present an effective platform 

decision strategy to quantify family design configuration using a commonality index. 

The proposed strategy takes into account the basic platforming elements and expected 

sharing degree by coupling design varieties with production variation. Meanwhile, 

unlike many existing methods that assume a single given platform configuration, the 

proposed method addresses the multi-platforming configuration across the family, and 

can generate alternative product family solutions with different levels of commonality. 

A modified genetic algorithm is developed to solve the aggregated multi-objective 

optimization using an efficient and dynamic weighted aggregation method. 

In the case studies, a family of power tool design is used to demonstrate the 

proposed method at system-level and detailed design stages.  
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Chapter 1 Introduction 

1.1 Background 

Today’s turbulent market compels enterprises to redefine the paradigm of doing 

business. Customers express their preferences not only for product quality, but also 

for variety and personalization. Therefore, identification and fulfillment of 

customer’s individual needs become imperatives to maintain competitiveness by 

integrating customer requirements in the value creation. Meanwhile, increasingly 

competitive intensity - arising in particular from unceasing technical renovation, 

globalization and convergence of industries – rapidly shortens the product life cycle 

from launch to disposal, and thus compels companies to reduce delivery time to 

market and expand product variety (Anderson, 1997).  

In response to this customer-driven market, most manufacturers take advantage of 

the strategy of mass customization or mass personalization to increase customer 

satisfaction with a high variety of offerings. Contrary to the traditional one-at-a-time 

design, mass customization aims to deliver a variety of products and services 

simultaneously for various market niches without sacrificing efficiency, 

effectiveness and low costs. With effective planning and management of product 

development, mass customization enables manufacturers to quickly respond to 

market fluctuation and grasp latent opportunities. In addition, the emergence of 

e-business also relies on and facilitates the successful implementation of mass 

customization to maximize the customers’ satisfaction through expansion of their 

product lines. 
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1.2 Platform-based Product Family Design 

Currently, a popular strategy to effectively deliver a stream of products is to 

design multiple products as a product family, within which components, processes 

and technologies are effectively shared among the family members via a product 

platform. Then the individual product can be derived from the platform in an 

effectively planned manner to meet various requirements, which may come from 

space context as spatial variety and time context as generational variety (Martin and 

Ishii, 2002). Spatial variety refers to the variety that the company offers the market 

at a point in time, in terms of various combinations of features or cost segmentations. 

The generational variety involves the evolutional changes of a product family over 

time. Both spatial and generational varieties are very important and always 

synchronously implemented for product development  

Clusters of examples from different industries have been reported that take 

advantage of platform-based product family development to cater for spatial and 

generational requirements, as shown with examples illustrated in Figure 1.1. Sony 

has used three platforms to successfully create hundreds of different portable stereo 

models in its Walkman line since 1980’s (Sanderson and Uzumeri, 1997). This 

variety-intensive development pattern helps Sony to dominate worldwide market for 

more than a decade despite fierce competitions from other contenders. Black & 

Decker, the world’s largest producer of power tools, built its product line around 

motor platform to meet different applications (Meyer and Lehnerd, 1997). Kodak is 

reported to win the market share of single-use cameras back from Fuji by effectively 

planning platform development (Robertson and Ulrich, 1998). Hewlett Packard 

successfully develops a series of printers and gains platform benefits by postponing 

the point of differentiation (Feitzinger and Lee, 1997). In the automotive industry, 
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Volkswagen has shared its platform across several brands, such as Audi, Seat, Skoda, 

as well as Volkswagen (Simpson, 2004b&2006). These successful examples prove 

the feasibility and superiority of platform-based strategies to ensure companies’ 

competitiveness by creating a consecutive line of product offerings. While adopting 

platform thinking in the product development, these companies present different 

platform definitions and strategies in their context due to the spectrum covered in 

the platform planning and development, as well as the nature of targeted products 

and marketplace (Halman et al., 2003). 

 

Figure 1.1: Industrial examples of platform-based product families 

1.2.1 Product Architecture 

To efficiently customize products for individual customers and help understand 

the complexity of product design at the conceptual design stage, the definition of 

product architecture is brought forward to decompose the complex system into 

subsystems or chunks. Ulrich (1995) defines product architecture as a scheme by 

which the function of a product is allocated to physical components. Modularity is 
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referred to as the most important characteristics of product architecture and 

accordingly there are two types of architecture: modular and integral. A modular 

product architecture is one-to-one or many-to-one mapping relationship between 

functional elements and physical structure, and can easily create product variants by 

combinations of functional blocks, such as personal computers; otherwise, integral 

architecture is characterized by a complex or coupled mapping of functional 

elements to physical structures and it can acquire advantages of performance due to 

elimination of interfaces and integration of multi-functions into fewer parts 

(Gonzalez-Zugasti, 2000). While integral architectures aim to increase product 

performance and reduce cost, modular architectures are driven by variety, product 

change, and standardization (Cutherell, 1996). 

Modularity or modular design enables firms to achieve many strategic advantages 

and has become a major focus for product realization (Baldwin and Clark, 2000; 

Jose and Tollenaere, 2005; Jiao et al., 2007d). In terms of functional modularity, 

companies can easily create the variety of product offerings by changing the 

arrangement and adding new functional modules (Ulrich and Eppinger, 2000). 

Meanwhile, modular design provides a flexible and loosely coupled product 

structure and thus allows for reuse of the existing design with minor changes and 

reduced efforts for product upgrade (Sand et al., 2002). Additionally, modularity can 

help designers to decompose the overall design into smaller tasks and achieve 

parallel product development to shorten time-to-market (Gershenson et al., 2003). 

1.2.2 Platform Strategies 

Although various approaches to product family design are developed by many 

companies or researches to deliver a series of variants targeted to different market 

niches, there is still a strategic difference among them depending on whether or not 
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the companies take proactive steps to mange the platform development and variety 

generation (Simpson et al., 2001a). One is called the top-down approach wherein a 

company strategically develops a family of products based on a carefully tailed 

product platform, as illustrated by platform B in Figure 1.2 (Simpson, 2004b; Alizon 

et al., 2007). Some industrial companies (e.g. Sony, Kodak) are reported to introduce 

a derivative based series on a product platform by carefully planning and managing 

the platform design (Sanderson and Uzumeri, 1997; Robertson and Ulrich, 1998). 

Another approach is the bottom-up approach or reactive redesign, wherein a 

company redesigns or consolidates a group of distinct products to improve 

economies of scale by standardizing the components, as illustrated by platform A in 

Figure 1.2 (Simpson, 2004b; Alizon et al., 2007). For instance, Black & Decker is 

reported to benefit from component standardization by redesigning universal motor 

(Meyer and Lehnerd, 1997). Whether it is top-down or bottom-up approach, 

platform-based product development provides a lot of benefits, including reduced 

development complexity and cost, reduced production cost, improved response to 

market, and reduced risk for new product development (Meyer and Lehnerd, 1997; 

Simpson, 2004b&2006;). 

 

Figure 1.2: Illustrations of bottom-up platform A and top-down platform B 

1.2.3 Modular and Scalable Product Platform 
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Depending on the hierarchical level in the product architecture, there are two 

different types of platform: modular and scalable platform. The former platform is 

through the development of modular product architecture and product family 

members are instantiated by adding, substituting, and/or removing one or more 

functional modules from the platform (Simpson, 2004b). For example, Sony builds 

all of its Walkmans around key modules and platforms by using the principle of 

modular design to deliver more than 250 models (Sanderson and Uzumeri, 1997). 

The scalable platform is to “stretch” or “shrink” the platform in one or more 

dimensions to satisfy a variety of market niches (Simpson et al., 2001a). Unlike 

module-based product platforms, scale-based platform focuses on the commonality 

issue at the lower level of product structure and provides an effective means to 

satisfy a variety of performance requirements by scaling one or more variables. For 

example, Simpson et al. (2001a) develop a family of electrical motors based on 

scaling optimization along various dimensions to produce a range of power outputs 

for diverse applications.  

1.3 Research Objectives 

Recognizing the essentiality of modularity and commonality in platform-based 

product development, this research aims to develop a top-down methodology for 

proactive product family design to aid in product differentiation for various market 

requirements and thereby facilitate the effective implementation of mass 

customization. More specifically, the necessary tasks in this study are identified as 

follows. 

 The first task is to achieve modularity at the system-level design stage for variety 

generation and management. By extending the extent of the traditional product 
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architecture, the product family architecture is approached as a conceptual 

structure with three important interrelated elements: module, variant and coupling 

interface. An integrated modularization approach is developed to translate the 

variety of requirements into a dynamic configuration of the conceptual product 

family architecture, involving variety analysis, functional modularization, and 

generation of product portfolio architecture. 

 The second task is to tackle the commonality issue as a multi-objective 

optimization problem based on an effective platform decision. To enhance 

commonality at detailed module instantiation stage while maintaining certain 

economical efficiency, a manufacturing-biased platform decision strategy for 

scalable product family design is presented to coordinate design variety with 

production variation so that the family members can be derived in expected 

economical manner. 

 The third task is to develop an effective optimizer to solve the inherent trade-off 

between performance and commonality. A modified genetic algorithm is 

developed to explore the alternative solutions with varying level of commonality 

based a dynamic weighted aggregation method. 

The results of this study as a whole would serve as a guide tool to approach the 

platform-based product family design. The proposed methodology does not intend to 

replace the existing development process but assist in handling multi-product 

development while exploiting opportunities to achieve economy of scales with 

effective planning and optimization.  

1.4 Organization of this thesis 

The thesis is organized as follows.  
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Chapter 2 reviews the research work related to platform-based family design, as 

well as the gaps current approaches reported in the literature, and motivation for this 

research.  

Chapter 3 presents the framework for platform-based family design in this thesis, 

which is viewed as a top-down development paradigm to achieve modularity at the 

system-level design stage and commonality at the detailed design stage.  

Chapter 4 focuses on system-level modularization of product family architectures 

for variety generation based on functional modeling, and also develops a 

quantitative method to analyze the variety effect of customization on modules. A 

case study of power tool family design is used to demonstrate the proposed method. 

Chapter 5 introduces a manufacturing-biased platform decision for detailed 

module instantiation and commonality optimization at the detailed design stage. The 

proposed platform strategy attempts to quantify family design configuration using a 

commonality index that couples design varieties with production variation. Then the 

measured commonality is incorporated into the family design model 

Chapter 6 presents the development of a modified genetic algorithm for 

optimizing multi-objective product family design using dynamic weighted 

aggregation method.  

Chapter 7 demonstrates the proposed approaches to scalable product family 

design and optimization on a case study of designing a family of transmission 

module. 

Chapter 8 gives the conclusions, contributions and recommendations.
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Chapter 2 Literature Review 

2.1 Overview 

An increasingly large but diverse body of research on platform-based product 

family design has been made over the last decade to address various aspects of 

product fulfillment, involving marketing, design, manufacturing, management and 

so on. The variety of methodologies stems from not only the particular aspects of 

family design addressed, but also the inherent nature of their case studies and 

assumptions made. Thus it is very difficult to capture the rationale behind the 

seemingly isolated issues without a conceptual structure and overall logical 

organization. Fortunately, the adoption of multi-domain views along the entire 

spectrum of product realization (Suh, 1990&2001) enables platform-based family 

design to be tackled from several coherent perspectives, namely customer, 

functional, physical, and process domains as shown in Figure 2.1 (Jiao et al., 2007d). 

Although the platform-based approaches proposed in the literature share the same 

principle of commonalization, the platform in each domain exhibits different 

implication within the context. 

 

Figure 2.1: An overview of platform-based product family design 
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The customer domains can be described with a set of diverse customer needs 

(CNs), which represent different functions and performance characteristics towards 

the target product. Accordingly, the task is to plan the right product variety to the 

right market segment and then trigger the downstream stage of product design in a 

cascading manner (Jiao et al., 2007d). In the functional domain, the CNs are first 

translated into functional requirements (FRs) in terms of available engineering 

technologies. Then a conceptual architecture for product family can be developed to 

assist in the variety generation and management. Subsequently, the detailed family 

solutions are generated in the physical domain by mapping FRs to design parameters 

(DPs) based on the effective platform basis. This stage not only involves decisions 

regarding family design and optimization to minimize the loss of performance or 

distinctiveness due to the platforming effect, but also maintain the manufacturing 

efficiency by coupling design varieties with product variation. At the back-end, the 

mapping from DPs to process variables (PVs) generate production planning to 

construct a standard process platform or infrastructure, around which variant 

processes can be derived to realize the production of the product family (Jiao and 

Tseng, 2004).  

As a whole, the implementation of mass customization begins with the front-end 

customer domain and then spreads to the latter design stage in terms of various 

functional/physical entities, and then to the production stage in terms of re-allocation 

of processes and resources. To maintain the whole value chain in a cost- and time- 

effective manner, various platform-based approaches in each domain are developed 

to capture and utilize commonality for variety generation. 
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2.2 Product Family Architecture 

2.2.1 Product Architecture and Modularity 

The development of a product architecture, assigning forms to functional 

elements, is a critical phase at the conceptual design stage because the choice 

generated will strongly influence the product performance in several aspects, 

including later detailed design, manufacturability, product variety, and so on. Ulrich 

and Eppinger (1995) define a product architecture as consisting of three elements: (1) 

the arrangement of functional elements (2) the mapping relation between functions 

and physical elements, and (3) the specification of the interfaces among interacting 

physical components.  

Most research in this field focuses on identification and representation of modular 

architecture using decomposition and clustering techniques. Pimmler and Eppinger 

(1994) decompose the product into elements and then cluster them into chunks by 

considering the generic interaction types: spatial, energy, information and material. 

Kusiak and Huang (1996) develop the modular product with the consideration of 

performance and cost, and later they develop a decomposition approach to solve 

modularity problem based a matrix representation (Huang and Kusiak, 1998). Gu 

and Sosale (1999) identify product modules from various life cycle engineering 

perspectives such as assembly, maintenance and recycling. Van Wie et al. (2001) 

address architectural issues from interface perspective and aims to reduce assembly 

cost by investigating component interactions. Later, he and co-authors (2003) 

present an architecture representation to link functional design and embodiment 

design. 

Functional modeling or diagram in terms of available engineering technologies 
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provides another effective means to modularize product architecture at the 

conceptual design stage. Stone et al. (2000b) combine functional model and a 

heuristic method to assist in identifying modules. Later, they propose a quantitative 

functional model to develop architecture with consideration of customer need ratings 

(Stone et al., 2000c). Dahmus et al., (2001) also adopt functional modeling method 

to modular product architecture for multi-product design. By incorporating 

functional structure, Holtta et al. (2005) present a method to measure redesign effort 

based on analysis of functional flows: material, energy, and information.  

Additionally, modularity has been well studied from many perspectives (Fixson, 

2003; Gershenson et al., 2003&2004). Mikkola and Oliver (2003) introduces a 

mathematical modularization function to assess the degree of modularity in a given 

product architecture. Kusiak (2002) investigates the integration aspects of 

modularity of products, processes and resources. Sosa et al., (2000) analyze the 

difference in the way modular and integrative design teams handle interface using 

design structure matrix (DSM). 

2.2.2 Architecture for Product Family 

The emergence of product family design to meet customized requirements 

imposes new challenges to define product architecture. As Fujita and Yoshida (2004) 

point out, the most important difference between the architecture of a product family 

and that of a single product is the simultaneous handling of multiple products. Thus, 

the concept and implication of product architecture have to be extended to manage 

the complexity of product family. Du et al. (2001) view a product family 

architecture (PFA) as the logical organization of a product family with a generic 

product structure. Then tailored product variants can be generated with several 

generic mechanism (e.g. module swapping, scaling). By capturing the functionally 
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common and unique structures, Dahmus et al. (2001) develop a conceptual method 

to architecture the product family. 

PFA has been studied from different perspectives along the product life cycle. 

Erens and Verhulst (1997) assert that the development of a product family requires 

the definition of product architecture in three domains: function, technological 

realization, and physical realization. The multi-view of PFA development is also 

supported by Jiao and Tseng (1999&2000), who present a method to rationalize 

product family development for mass customization from three aspects of functional, 

technical and physical views. Additionally, Du et al. (2001) investigate some 

fundamental issues regarding the architecture of a product family from both sales 

and engineering perspective. Muffatto and Roveda (2002) also study the multiple 

aspects of product architecture including functions, requirements, technological 

solutions, product concepts, product strategies and platforms. Serving multiple 

managerial purposes, Fixson (2005) investigates the multi-dimensional architecture 

issues, involving product development, process and supply chain design.  

As a whole, the operation of modularity analysis at different development stage is 

the strategic result of a search for potential common technical solutions. The earlier 

modularization process provides more freedom to define architectural content, and 

allocates function-component mapping relationship. Function-based module 

definitions can explore conceptual product architecture and gain an early insight into 

common and unique functionality (Stone et al., 2000a&2000b; Dahmus et al, 2001). 

Such functional modularization relaxes the constraint of the pre-definition of 

sub-module level components and offers a fundamental approach for proactive 

platform development. Assuming the basic physical element as fixed, physical 

modularization generates the modular product architecture by re-arranging these 
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elements into larger units (modules), and is always adopted for product or platform 

redesign (Martin and Ishii 2002; Hsiao and Liu 2005). Parametric modularity 

considers the product structure as essentially fixed and product characteristics are 

varied only within boundaries of the individual elements or parameters. This kind of 

approach provides the least freedom to change product structure and only pursues 

certain commonality at detailed module/assembly design stage (Simpson et al., 

2001a). 

Based on the previous review, the architectures for product and product family 

have been well studied from the perspectives of definition, representation, 

vocabulary, multi-view synchronization and so on. However, in a dynamic market 

environment with uncertainty, the modularization of product family architecture not 

only requires qualitative identification of module boundary and standardization of 

coupling interface, but also needs quantitative analysis to estimate the customization 

effect on product architecture and translate the external variety of requirements into 

a dynamic configuration. Unfortunately, few studies have been done so far with 

respect to this direction.  

2.3 Platform-based Product Family Design 

2.3.1 Platform Implications 

The definitions of platform have been diverse due to the specific perspective and 

purpose (Halman et al., 2003). Jiao et al. (2007d) divide them into two classes: 

namely physical platform and abstract platform. The former platform refers to a 

collection of common elements including features, parts, modules, subsystem 

(Meyer and Lehnerd, 1997). Then a stream of derivative products can be developed 
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by operating (e.g. swapping, scaling, adding) elements. This kind of platform 

definition is easily understood and the range of products can be described with 

physical entities. The abstract one is broadly defined as the collection of functions, 

components, processes, knowledge, people, and even relationships that are shared by 

a set of products (Robertson and Ulrich, 1998). Accordingly, the major issues may 

not be limited to the scope of product definition and design, and can be extended to 

the front-end of marketing (Jiao et al., 2005) and the back-end of process platform 

(Jiao et al., 2007c) and supply chain (Fixson, 2005; Lamothe et al., 2006;). 

To assist in platform planning and development, the market segmentation grid is 

always used to represent the principal customer groups served by the offering 

products. Accordingly, Meyer and Lehnerd (1997) define three different platform 

leveraging strategies within the grid shown in Figure 2.2: horizontal leveraging, 

vertical leveraging, and the beachhead approach, which combines both. Although 

horizontal leveraging strategies always take advantage of modular platforms, 

scale-based platform design can be used for vertical leveraging strategies (Simpson 

et al., 2001a). 

Another interesting pattern observed from industrial and academic examples 

shows that most large corporations (e.g. Volkswagen, Boeing, Kodak, Sony, and HP) 

have started platform development in a systemic and planned manner, usually with 

effective multi-discipline coordination in platform thinking, involving marketing, 

design, production and even supply chain. On the other hand, small/medium 

enterprises (SME) run short of technical workforce and financial support so that the 

platform development can only be leveraged through reactive re-engineering to 

reduce unwanted internal varieties (Simpson, 2004b). Hence, despite the advantages 

in strategic and tactical terms, the content of top-down platform approach, 
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particularly from an engineering design view, has not been completely understood 

and utilized by SME practitioners. 

 

Figure 2.2: Three platform leveraging strategies (Meyer and Lehnerd, 1997) 

2.3.2 Types of Platform Design 

Corresponding to the scalable and modular product platforms, there are two types 

of approaches to platform-based product family design. One is referred to as 

configuration-based product family design. This higher-level method aims to 

develop modular product architecture and then construct a combinatorial design 

space. The individual product can be generated by adding, substituting, and/or 

removing one or more functional modules (Ulrich and Eppinger, 2000; Du et al., 

2001; Simpson, 2004b). So, it is also called module-based product family design and 

can achieve certain economic efficiency to produce custom-built product from 
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standard models.  

In academic community, some researches tackle module-based product family 

design by establishing mathematical models to capture the module/component 

combination and also optimize objectives of interest. Chakravarty et al. (2001) 

optimize module variation to achieve profit maximization. Given sets of module 

instances, Yigit and Allahverdi (2003) formulate modular design as an integer 

optimization problem and try to find a trade-off between quality loss and 

reconfiguration cost. Rai and Allada (2003) also tackle modular product family 

design as a multi-objective optimization problem and use agent-based techniques to 

determine Pareto-design solutions. Kreng and Lee (2004) develop QFD-based 

design method to model a linear optimization problem by capturing the modular 

drivers. Moon et al. (2007) adopt a dynamic multi-agent system to determine 

platform level selection. Jiao et al. (2007b) use a genetic algorithm based method to 

design a family of products while maximizing the customer-perceived benefit 

per-cost. In addition, module/component selection for a product family in a supply 

chain is also investigated as an integer-programming model (Gupta and Krishnan, 

1999;  Da Cunha et al., 2007). 

While modular elements are assumed priori to optimization of module-based 

family design, identification of modular product architecture is reported in several 

papers to discuss the mechanism to generate product family from functional or 

physical perspectives. Chandrasekaran et al. (2004) propose a template-based design 

method for product family generation based on patterns of functional flow. De Lit et 

al. (2003) develop a method to integrate the product family design and assembly 

system design using functional entities of product. With data mining and fuzzy 

clustering techniques, Moon et al. (2006) propose a method to cluster functional 
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features into modules for product family. While functional modularization can help 

designers to proactively plan platform development at the conceptual design stage, 

physical component-based methods provide an effective means to redesign existing 

product structure for multiple product design. Martin and Ishii (2002) develop an 

index based method to develop a decoupled and standardized architecture for future 

generation of products. Similarly, Hsiao and Liu (2005) investigate the component 

interaction and redesign a product physical structure for variety generation.   

The other lower-level one is called scalable or parametric product family design, 

which utilizes the principle of stretching or shrinking the product platform in one or 

more dimensions to meet diverse performance requirements (Simpson et al., 2001a). 

Unlike module-based product platforms, scale-based platform focuses on the lower 

level of product architecture and provides an effective means to satisfy a variety of 

performance requirements by scaling one or more variables. Accordingly, balancing 

the trade-off between commonality and individual performance deviation is the core 

issue for scalable product family design. The detailed review of research on scalable 

platform design will be given in section 2.4.  

Module- and scale-based platform designs always address only one aspect of 

product development because of simple assumption. However, some 

variety-oriented product development always requires the flexible mix of modular 

and scalable platform design. Accordingly, this type of product family entails greater 

actual complexity with its dynamics and uncertainty (Maier and Fadel, 2007). Fujita 

(2002) classifies the product variety design into three categories: attribute 

assignment, module combination and simultaneous design of both. Later, he and 

Yoshida (2004) optimize the simultaneous design of module combination and 

module attributes in multi-stage. Hernandez et al. (2003) develop product platform 
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constructal theory method (PPCTM) and adopt two modes of dimensional 

customization and modular combination to deliver a series of differentiated product. 

Later, Williams et al. (2007) augment PPCTM for non-uniform market demand and 

extend its application to the domain of process parameter design. Li et al. (2007) 

develop a genetic algorithm based method to design adaptive platform involving 

structural and parametric optimization.  

2.3.3 Commonality Metrics for Product Family Design 

Commonality refers to the similarity extent of product characteristics from a 

particular point of view, such as requirements, design features, and even physical 

structures. The commonality measure of a generic BOM (bill-of-material) structure 

allows post-assessment of product family efficiency and also provides feedback 

information to redesign family members (Jiao and Tseng, 2000a; Kota et al., 2000; 

Blecker and Abdelkafi, 2007). Most developed commonality indices include 

component-level information, such as the number of common components, the 

component cost, manufacturing process, and so on. Thevenot and Simpson (2006) 

have made a detailed comparison among several commonality indices existing in the 

literature as to consistency, repeatability, sensitivity, and then proposed a framework 

to redesign a product family using such indices. However, a component-level 

commonality measure overlooks the quality/performance aspect in the evaluation, 

and can not fully reflect the inherent trade-off existing in a product family design. 

2.4 Scalable Platform and Product Family Design 

First proposed by Simpson et al. (2001a), scale-based product family design aims 

to synchronously design multiple products to maximize commonality across the 
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whole family while minimizing impact on their individual performance. Accordingly, 

the challenge is to resolve the inherent tradeoff or balance between monetary and 

technical aspects: increasing commonality in the family and minimizing 

performance loss compared to individual design. Most existing approaches meet the 

challenge as a multi-conflicting-criteria problem and utilize multi-objective 

optimization techniques to solve the problem from the perspective of meeting 

performance variation (Nelson et al., 2001; Simpson, 2004b). To simplify the 

optimization model, most approaches assume that maximizing commonality in 

terms of shared variable settings among products minimizes production cost. 

Although fulfilling the diverse functional requirements through a variety of design 

parameters is the major concern in design, it is the production stage that actually 

determines the final product costs, process complexity, and lead time (Jiao et al., 

2007c). Therefore, without explicitly investigating the associated manufacturing cost 

or coordination with production stage, the simple assumption may lead to 

sub-optimal family solutions (Simpson, 2004b). Recent research trend in family 

design is towards a more systematic process as shown in Figure 2.3, involving 

effective platform decision with coordination of the back-end production stage, 

multi-platforming configuration with varying level of commonality, and integration 

with the front-end marking research. 

A number of product examples have been used as case studies to demonstrate the 

proposed approaches, including consumer products or components (such as 

transmission module for drills, universal electrical motor, and automobiles), 

industrial products (such as absorption chillers, flow control vales), conceptual 

products (such as cantilever beams, pressure vessels and nail guns) and complex 

systems (such as aircraft and spacecraft). Most examples involved in the case studies 
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are described with analytical equations or computation simulations to capture the 

relationship between the input and output variables. When explicit equations are not 

given, design of experiments (DOE) is used to develop a response surface and then 

derive these equations as an approximation to the relationship between variables 

(Hernandez et al., 2001; Jiang and Allada, 2005). 

 

Figure 2.3: Research scope of scalable product family design 

2.4.1 Platform Configuration and Decision 

Platform decision in family design includes two different strategies to select 

appropriate shared elements of the platform: pre-specified platform and optimized 

platform configuration (Simpson, 2004b; Simpson et al., 2007d). The former 

requires the specification of the elements (variables or components) to be shared a 

priori to the optimization, and aims to reduce the computational efforts and make 

the family design more tractable. Accordingly, this kind of approaches always 

involves only a single platform configuration, which makes the platform elements 
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shared across the entire family and non-platform elements instantiate the individual 

products. However, it may lead to the local compromise of performance because the 

unique platform setting may not be ideal for every product in the family. Some 

low-end products may be over-designed or certain high-end products may be 

under-designed (Dai and Scott, 2007).  

Subsequently, a separate optimization stage using robust design principles is 

employed to determine the platform settings, such that shared variables have the 

smallest impact on performance variation (Messac et al., 2002a&2002b; Nayak et 

al., 2002). The recent trend is to consider dynamic platform configuration or 

multiple platforms during optimization. Simpson and D’Souza (2004a) consider 

varying levels of platform commonality within the product family by setting a set of 

“switch” codes to control the commonality of the corresponding design variable. 

However, these approaches cannot remove the disadvantage of the single platform 

settings, in which variables are either shared across the entire family or not at all. 

Fellini et al. (2005&2006) attempt to explore partial component sharing between 

any two variants in the family using a heuristics algorithm. Dai and Scott (2007) 

develop sensitivity and cluster based method to construct multiple platforms, in 

which some design variables can be shared by any subset of variants within the 

family. Although these strategies pose many computational challenges, it enhances 

exploration of the design space and may yield better solutions. 

Additionally, whether pre-specified or not, most current approaches decide 

platform settings primarily from the aspects of the design problems. They seek to fix 

those variables which have not made much contribution to the performance variation 

and thus may not result in much performance loss when consolidated (Messac et al., 

2002a&2002b; Nayak et al., 2002; Fellini et al., 2004&2005&2006). Unfortunately, 
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this method overlooks a fact that commonality among these design variables cannot 

always generate great benefits from other product lifecycle activities. Accordingly, 

the results of product family hardly reduce the process complexity or manufacturing 

cost without linking to the back-end of product realization during the family design 

(Simpson, 2004b). Simpson et al. (2001a) discuss this issue in their case study of the 

electrical motor and explore possible benefit from the commonality settings from an 

engineering standpoint. Although their proposed optimization approach revealed that 

the motor platform should be scaled around the radius, the best choice in the 

practical situation was stack length from the perspective of production cost. Dai and 

Scott (2003) also propose a meaningful method to consider monetary and technical 

aspects of commonality in the platform decision. Therefore, there is a clear need to 

incorporate the impact of product platforms on the production stage into the model 

of product family design to derive an economical platform setting. 

Although sharing of variable values is assumed to derive some benefits, another 

inevitable problem, but still unsolved, is that some design variables are coupled to 

jointly determine the dimensions of a sub-assembly or component (Scott et al., 

2006). It means that under specific manufacturing condition, there is no expected 

benefit to be generated from variable sharing unless we synchronously share all 

variables related to the component. This complicated or coupled design situation 

poses more challenges on the family design and requires an effective strategy in 

platform decision. Unfortunately, few studies have been done so far on the coupled 

design case for product family design. 

2.4.2 Optimization Stages and Techniques 

The optimization procedure for the family design problem can be classified into 

one-stage and multi-stage (Simpson, 2004b). One-stage approaches seek to optimize 
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the platform settings and the corresponding members of family simultaneously, 

while multi-stage approaches optimize the platform first, and then instantiate the 

individual products during the second stage. Although the two approaches are about 

equally common in the literature, the choice often depends on the size of the product 

family design. Both platform settings and non-platform design variables are often 

solved in one stage when the number of derived products and design variables is 

relatively small (Simpson, 2001a; Messac et al., 2002a&2002b; Simpson and 

D’Souza, 2004a; Fujita and Yoshida, 2004; Kumar and Allada, 2007). These 

methods yield the best overall performance of product family, but require huge 

computational expense. When the size of product family or the number of design 

variables increases, the dimensionality of the optimization problems can become so 

high that for the one-stage method it become difficult to deal with the complexity 

and computational expense. As a result, multi-stage approaches can provide an 

effective means to divide the task into two stages: platform configuration to decide 

which variables are shared and their settings, and instantiation to generate the 

optimal values for non-platform variables for all product variants (Nayak et al., 2002; 

Dai and Scott, 2006&2007; Fellini et al., 2004&2005&2006; Hernandez et al., 

2003). 

Simpson (2004b) has given a detailed review on optimization algorithms used for 

family design. Some derivative-free methods, including genetic algorithms, 

simulated annealing, pattern search, and branch-and-bound techniques, are 

employed in many studies, in addition to linear and non-linear programming 

algorithms. The choice of optimization techniques depends on the size of the design 

space. When the design space is relatively small, exhaustive search techniques are 

used to generate all possible combinations. However, many researchers advocate the 
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use of genetic algorithms (GA) for product family design due to the combinatorial 

nature of design problems and its high efficiency for one-stage optimization in 

exploring the design space (Simpson and D’Souza, 2004; Fujita and Yoshida, 2004; 

Li and Azarm, 2002; D’Souza and Simpson, 2003; Jiao et al., 2007a&2007b; Li et 

al., 2007; Huang et al., 2007; Khajavirad et al., 2007).  

Due to the nature of multi-objective optimization, various GA based approaches 

are developed to deal with objective conflict, mainly including commonly-used 

weighted aggregation, goal programming, and non-dominated based methods. The 

classical weighted aggregation based approaches, which are conceptually easy to 

understand, provide an advantage of computational efficiency. However, they can 

obtain only one solution from one run and also have unsatisfactory performance 

when dealing with optimization problems with a concave Pareto front (Jin et al., 

2001). Goal programming technique is similar to the method of objective weighting 

except that it requires a goal vector for each objective prior to aggregation. The most 

profound drawback of the two kinds of approaches is their sensitivity to settings of 

weights or goals and the prerequisite of understanding the design problem 

comprehensively a priori to optimization (Srinivas and Deb, 1994). Towards this, 

non-dominated sorting approaches are adopted in a few researches to fully search 

solutions along the Pareto front (D’Souza and Simpson, 2003&2004; Akundi et al., 

2005). Compared to the conventional methods involving single overall objective 

function, non-dominated approaches handle multiple objectives synchronously and 

provide decision-makers an opportunity to explore a number of Pareto-optimal 

solutions from one run of optimization without pre-specifying any priority for 

objectives. But this kind of methods involves exhaustive non-dominated sorting 

among all the objectives throughout the population and thus imposes extremely high 
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computation expense during optimization, especially for family design with larger 

design space or size of family. 

2.5 Summary 

The purpose of this chapter is to describe the related research background in the 

field of platform-based product family design and conduct a meaningful review of 

existing methodologies. Meanwhile, some research gaps or drawback existing in the 

current literature are identified and discussed.  

From the above review, modularity and commonality are two essential issues for 

platform-based product development and play different roles in different context of 

product family design. For a bottom-up or assembly-to-order family design 

approach, combination or clustering of variants from a given collection of module 

instances becomes the main means to deliver a family of products and is always 

accomplished by optimizing objectives of interests, such as profit, cost, sales, or 

even customer preferences in terms of expected utilities. Instead of being design 

goals to be achieved, modularity and commonality always serve as pre-conditions or 

constraints in the model.  

Otherwise, a top-down or proactive platform development approach requires 

definition of product architecture in terms of modularity first (if the end product is 

directly targeted for market) and then enhance the commonality across the family at 

detailed design stage of module instantiation. Unfortunately, these two topics are 

seldom captured together as a logically correlative manner to handle variety-oriented 

product development. Meanwhile, few studies have been done so far to help clarify 

the entire content of proactive platform development, which involves carefully 

planned management of modularity in response to external variety of requirements, 
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and effective decision of commonality with coordination of product realization 

within an entire framework.  
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Chapter 3 A Framework for the Proactive 

Platform-based Product Family Design 

3.1 Introduction 

From the aforementioned literature review, it can be seen that a bottom-up 

platform approach is characterized by the enhancement of common elements among 

a group of distinct products without fundamentally redefining the product 

architecture; whereas, a top-down one is driven by the combinatorial platform of 

planned modular architecture and optimal physical configuration. Therefore, the two 

issues of modularity and commonality may co-exist for a proactive platform 

development, and are logically inseparable along product creation process.  

As a whole, modularity and commonality are two essential dimensions to 

characterize varieties among family members and their correlation can be embodied 

in a class-member manner (Jiao et al., 2000b). As shown in Figure 3.1, a product 

architecture is defined in terms of its modularity, through which module boundaries 

are specified according to technological feasibility of the design solutions. For each 

type of module (class), variety of design can further result from diverse instances 

(members) in response to variety of external requirements. As a result, derived 

product variants may share the same module boundaries but entail different 

instances of every module. In other words, a family of products is described by 

modularity, whereas product variants differentiate according to the commonality 

among module instances. The less commonality among module instances, the more 

differentiation among product variants. Furthermore, viewpoint-specific (e.g. 
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functional, physical, life-cycle) modularity operation on product architecture 

develops a structural design space, wherein the design tasks are broken into 

module/assemble-level instantiations with a less complicated commonality design 

space. 

 

Figure 3.1: Modularity and commonality for platform development 

Modularity and commonality design work under the same cost-effective 

platforming principle to meet mass customization, as illustrated in Figure 3.2. That 

is, elements that incur additional complexities or expense, but contribute less value 

in customer view, are to be stabilized and consolidated as a platform base, while 

elements that may offer more customer-perceived value ought to be customized with 

more emphasis and resources. 
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Figure 3.2: Platforming principles for modularity and commonality 

With standardized interfaces, a suitably conceived modular architecture provides 

a platform basis for variety generation. As shown in Figure 3.2, in the form of 

common (functional and parametric) features, some elements address fewer 

customer-perceived varieties and can be shared as a common base. Otherwise, to 

respond to more external variety of requirements, some modules need to be 

instantiated in the dimensions of engineering specifications for different family 

members. These differentiated modules are basic elements making one product 

different from another. Sometimes, unique functional modules may exist to provide 

special customer-perceived distinctiveness. Meanwhile, one-time development cost 

acts as another important constraint to impact on the platforming decision. Modules 

with higher ratios of customer-perceived values (e.g. distinctiveness, variety) to 

initial investment may increase market coverage more efficiently and gain more 

customized designs (Zacharias and Yassine, 2008); otherwise, higher development 

costs incurred from some modules may depreciate the value in the employment of 

complete design differentiation on them although they address certain variety. 
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The same platforming direction can be applied to the detailed module 

instantiation, wherein reduction of recurring engineering cost (e.g. manufacturing 

expense) will be pursued by increasing commonality across the family configuration. 

A specific module type characterized by modularity involves less design 

complexities, and can be described by an explicit analytical or simulation-based 

model to reflect engineering relationship between controllable variables and 

performance responses (another term of customer-perceived value). Based on a 

scaling platform, these instances can be clustered to achieve the reuse of some 

elements (variables or parts) and gain certain economical efficiency from common 

settings while minimizing impact on their individual performance. Therefore, the 

core challenge is to resolve the inherent trade-off or balance between the desired 

commonality across the family, and allowable performance loss compared to certain 

benchmark design.  

Based on this principle, the whole procedure for the top-down platform 

development can be divided into two levels: namely system-level design for 

modularity, and detailed design for commonality. The following section presents 

general steps involved in the top-down platform development process. 

3.2 A Framework for Top-down Product Family Design 

In this research, we view the top-down platform development as two different 

tasks, namely modularity at system-level design stage and commonality at detail 

design stage as shown in Figure 3.3. System-level design, which links with the 

front-end planning phase, aims to define conceptual product architecture by 

decomposing the complex product into sub-systems or chunks according to 

available technological solutions. In the context of multiple-product design, the 
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external variation existing in the market should be taken into account to achieve 

flexible and robust modularity. While modularity resembles decomposition of 

product structures and can provide a platform basis for variety generation at the 

system level, commonality at the design stage of module instantiation embodies the 

difference among product variants. Therefore, pursuing commonality based on a 

platform decision is the main concern of detail design. 

 

Figure 3.3: A proposed framework for product family design 

3.2.1 System-level design: Modularization of PFA 

This higher-level design centers on modularization of product architecture for 

variety generation. Rather than just identifying module boundary and interface in the 

product architecture, the development of product family architecture (PFA) in this 

research incorporates customized requirements and constructs a flexible and robust 

product architecture to accommodate variations. Towards this, the implication of 

PFA can be viewed as a conceptual structure with the following three interrelated 
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elements: module, variant, and coupling interface. Variants in term of different 

customer requirements act as the external drivers of architectural variation and 

meanwhile variation is propagated within the product architecture through module 

interaction. 

Step 1 in this phase is about product planning to identify the portfolio of products. 

A range of products are collected and described in terms of product attributes and 

their corresponding level. Several product family planning and strategy evaluation is 

available in the literature and results of market analysis are assumed to exist 

beforehand. 

Step 2 is conceptual modularization and variety analysis, which involves the 

identification of conceptual modules based a functional modeling method and 

generates the variety index for each module using the derived attributed-module 

matrix (AMM). AMM is characterized by the engineering relation between product 

attributes in the customer domain and the conceptual module in the functional 

domain. 

Step 3 is to finalize the product family architecture in term of common modules 

and differentiated modules. Meanwhile, engineering specifications are allocated to 

module instances to form an engineering view of product portfolio architecture and 

provide further goals for detailed design stage.  

3.2.2 Detailed Design: Commonality Optimization of Scalable Product Family 

Design  

The detailed design phase aims to address the commonality issue using a scaling 

platform method and achieve the manufacturing efficiency through an effective 

platform decision strategy. 

Step 1 is about platform decision to decide the right elements to be shared during 
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the family design. In order to access varying levels of commonality, this research 

adopts a mechanism of quantifying the level of commonality as commonality index. 

The developed commonality index (CI) is a measure of sharing degree regarding the 

design parameters throughout the entire product family. By coupling design varieties 

with production variation, the derived CI function for the whole family can be 

viewed as an efficiency indicator of reduced manufacturing complexity and cost 

savings. 

Step 2 is to formulate the optimization model for family design. The scale-based 

family design involves two conflicting aspects: performance responses and 

commonality index. Based on preference aggregation method, the multi-objective 

optimization is aggregated into a single overall function by incorporating the 

quantified level of commonality. By varying weights for commonality objective, the 

proposed method can access alternative product family solutions with different level 

of commonality. 

Step 3 is to develop a GA-based optimizer to solve the product family design and 

optimization problem. GA-based optimization method provides an effective means 

to explore the mixed-discrete non-linear problem behind the family design. By 

adopting the evolutionary dynamic weighted aggregation method, the modified 

optimizer can explore solutions along the Pareto front while maintaining the 

computational expense at the economical level.  

3.3 Problem Boundary 

Firstly, a generic product development process may include feasible study, 

conceptual design, detail design, process design and so on. This research mainly 

focuses on platform development from conceptual design to detail design. Although 
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the proposed method involves co-ordination or link with front-end market research 

and back-end production stage, we assume the required information exists and is 

available.  

Secondly, the proposed method principally aims to assist engineering designers in 

the handling multi-product design by exploiting the potential platform opportunities, 

and does not replace the existing design rules and flows. Meanwhile, the application 

or implementation of the proposed method requires some prerequisite, such as 

available analytical or computational model to predict the engineering relationship 

between variables and responses, and technological solutions to realize specific 

functional goals. 

Finally, although the proposed framework involves decomposition of the product 

structures into several chunks or modules for further detailed design, this study does 

not provide decision support to decide whether a specific module and its instances 

should be designed and produced inside the firms or be outsourced to other 

organizations. 
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Chapter 4 Modularization of Conceptual PFA 

Successful platform development always begins with the system-level design of 

product architecture (Ulrich, 1995), including decomposition of the product into 

modules and classification of module types. A functional diagram provides designers 

opportunities to modularize product structures at the early design stage due to the 

functional nature of modularity. In this chapter, we present an integrated method to 

modularize the product architecture for variety generation by incorporating the 

external variety of requirements. 

4.1 Introduction 

The success of mass customization lies in the manufacturer’s ability to cater for 

the potential market niches by providing suitably customized varieties based on a 

rationally technical framework in an effective and timely manner. Since most 

relevant decisions about the cost and schedule of components or parts are made in 

the design phase, it is believed that mass customization can be approached from the 

perspective of design, particularly the early stage of architecture design (Erens and 

Verhulst, 1997; Jiao and Tseng, 1999&2000). 

Here we look at the product family architecture (PFA) as a conceptual structure 

consisting of three elements: modules, coupling interface, and variants. Figure 4.1 

illustrates the interrelation among the three elements of PFA. The traditional product 

architecture only consists of module and interface because product development is 

always stably driven by producers’ marketplace. However, the paradigm of mass 

customization, which is incurred by buyers’ market, impose a necessity on 
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manufacturers to suit individual customer needs and thus poses new requirements on 

the form of product architecture (Anderson, 1997). Being the external factors in 

terms of scattered customer requirements, variants result in the spatial and 

generational varieties, and act as a new source of product development complexity. 

Because of variants some module boundaries have to be redefined or reconfigured to 

form new modules corresponding to the variant attributes of products. Some 

modules may become a common platform basis to support the whole product family, 

and some modules need to be differentiated in specific dimensions for variety 

generation. Meanwhile, the higher risk and complexity involved in product family 

design require such information as design efforts for architectural variation to make 

an early evaluation and operational decision. So, the modularization process for a 

family of products includes not only the identification of module boundary, but also 

the classification of modules according to the variety of requirements, as well as 

quantitative analysis of customization effects on the product architecture.  

 

Figure 4.1: Three elements of Product Family Architecture 
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At the same time, variants impose certain technical standardization of the 

coupling interface to achieve exchangeability among modules (Chen and Liu, 2005), 

and loosely coupled granularity on architectural elements so that the resultant 

product architecture can accommodate customized requirements without too many 

changes of the modules and their interface. Therefore, interface definition and 

strategy is another important issue in modularizing product architecture, especially 

for a family of products (Chen and Liu, 2005), and its complexity directly affects the 

final cost (Van Wie et al., 2001). As a result, the realization process for 

variety-oriented design moves toward the module/component configuration 

mechanism based on the common platform basis and differentiation enabler (Du et 

al., 2001), as shown in figure 4.1.  

4.2 Variety Analysis 

In Axiomatic Design introduced by Suh (2001), product design can be viewed 

from different domains: customer, functional, physical, and process domain. Each 

domain is characterized by the needs or attributes which provide solution for the 

preceding domain while giving new requirements for the next domain. To 

conceptualize the solution, we need the mapping process between the domains and 

also can mathematically model this mapping process in terms of the characteristic 

vectors that define the design goals and design solution (Suh, 2001). Similarly, this 

method can be applied in the modularization of PFA to capture the architectural 

variation due to the customized variants. 

At the conceptual design stage, product design can be considered as the mapping 

between the functional domain and customer domain, and written as follows: 

    AMMCM                                    (4.1) 
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where C=[C1, C2 … Cn] is the vector of product attribute requirements in the 

customer domain and may be characterized with a finite number of engineering 

metrics (e.g. voltage, power, weight), and M=[M1, M2 … Mp] is the conceptual 

module vector and can be described as functional entities based on the feasible 

engineering technologies. For example, the functionality of power module is to 

provide electricity and can be physically realized by a battery module. AMM is 

design matrix, namely the attribute-module matrix that characterizes the relation 

between product attribute requirements and the conceptual module. If one product 

attribute or metric is implemented or affected by one or more modules, there will be 

an engineering relationship between this attribute and its corresponding modules. 

The attribute-module matrix has following form. 
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Usually the products catering for heterogeneous market niches will be launched at 

different levels along the dimensions of product attributes to result in various 

product offerings. When this variety of requirements {ΔC} in customer view needs 

corresponding realization, the variation will spread to the functional domain and 

generate the variant module configuration {ΔM}. This customization process can be 

written as 

     AMMCM                                      (4.3) 

Here we develop a variation mapping method, namely Variety Index (VI), to 
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investigate how variants affect the conceptual modules. Similar to quality function 

deployment (QFD) method in transferring customer requirements into design 

characteristics, VI transfers variance from customer requirements into architectural 

elements M= [M1, M2… Mp] in the function domain, as shown in Figure 4.2. Thus, 

VI can be viewed as an indicator of design variations or efforts on conceptual 

modules to meet customer-perceived variation.  

 

Figure 4.2:  Illustration of Variety Index 

The range of the product family is a collection of product variants V= [V1, V2… 

Vm] with customized value or level for each product attribute C= [C1, C2… Cn]. VI 

can be represented as VI: ΔCΔM, where ΔC= [Δc1, Δc2…Δcn] is variance of 

attribute and ΔM= [ΔM1, ΔM2…ΔMp] is variance of module. To balance the attribute 

in customer choice, preferences for product attributes are normalized and given 

through assigning weights by market analysis. For module k, VI (ΔM) can be 

mathematically represented as follows 

    jjjkk wcaVI                                      (4.4) 
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where jw  is the weight for attribute j to normalize the customer preference.  

For all modules, VI can be represented as the following matrix form. 
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   (4.5) 

VI provides a simple and straightforward tool to analyze the variation of the 

conceptual product architecture due to the customized requirements. Although 

depending on the specific design context, the derived variety index, together with 

other constraints of initial investment and feasibility of over-design, can assist 

designers in identifying crucial modules and further determining platforming 

direction in the product architecture. Smaller VI means less variety value, from the 

customer viewpoint, delivered by the corresponding modules, which may be 

over-designed and settled down as a platform base of standard components; larger 

VI denotes greater customer-perceived value in terms of varieties and requires more 

design efforts to differentiate them. However it is still desirable to impose suitable 

over-design on module instantiation to reduce the number of instances and thus 

developing cost 

Meanwhile, uncoupled design, in which AMM is diagonal and each attribute can 

be satisfied independently by means of one module, maintains the independence of 

the functional requirements and is more suitable for mass customization than 

decoupled design with interlaced relationship between modules and attributes (Dan 

and Tseng, 2007). 
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4.3 Integrated Method to modularize Conceptual PFA 

To better understand the variety effect on product architecture and support 

platform-based product family development, the modularization procedure of the 

conceptual PFA is studied here to achieve system-level modularity. In our proposed 

method, there are primarily three steps to modularize the conceptual PFA, as 

illustrated in Figure 4.3. Step 1 is about product family planning. Step 2 utilizes a 

functional modeling method to identify functional modules and generate the variety 

index (VI) for each module based on the estimated Attribute-Module matrix. Step 3 

generates engineering specification for each module instance, and then integrates 

them into a product portfolio architecture (PPA). The three steps are described in 

detail in the following sections that aim to guide designers through the 

modularization process. 

 

Figure 4.3: Three steps for modularizing the conceptual PFA 

4.3.1 Product Family Planning 
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Since variety comes from various market segments, it is very necessary to 

rationally plan the whole product family offered to the market. In this step, product 

specifications existing in the market are collected and prepared for analysis. 

Although the original mindset of family design is to provide variety of products for 

market, immoderate customization may constrain customers’ satisfaction and even 

lead to mass confusion (Huffman and Kahn, 1998). To finalize the range of target 

offerings, the company must choose the optimal level of product attributes 

(engineering metrics) for each product variant, and the optimal amount of product 

offerings. Such decisions may involve effective product family positioning or 

product portfolio planning (PPP) to maximize profit, sales or share of choices. 

Among many methods developed, conjoint analysis is one of the most popular 

preference-based techniques to decide product variety (Moore et al., 1999). In 

particular, portfolio decision with customer-engineering interaction can effectively 

balance trade-offs between the benefits derived from providing variety and cost 

savings that can be achieved within firms (Jiao et al., 2005).  

In this research, we assume the range of product family and their specification in 

terms of engineering metrics are available for further investigation. From the 

collection of product specifications, we can use equation (4.6) to simply estimate the 

variance degree of product attribute ΔC.  

j

( -1) / ,  for the discrete attribute

c , 1, 2...  

0 ,  for the binary attribute

jN m

j n


     



    (4.6) 

where Δcj  is the variance degree for product attribute j; Nj is the number of levels 

offered for product attribute j; m is the number of variants offered in the product 

family. For example, the voltage metric need to be customized at the 4 different 
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levels for 6 variants and thus the variance degree is (4-1)/6=0.5. For binary attribute 

(i.e. yes or no), variance degree is always 0 since it can be viewed as an auxiliary 

feature. If derived variance degree of specific product attribute is closer to 1, this 

attribute may require more customization efforts to implement it. 

4.3.2 Function-based Product Modularization  

For product modularization process, there are three different types of approaches 

reported in the literature: customer-, function- and structure-based approaches as 

summarized in table 4.1. Each type of modularization process occurs at different 

product development stage and defines its own rule in its scope. 

Table 4.1:  Comparison of various modularization processes 

Orientation Approach Methodology Scope Case Study 

Moore et al., 1999  Conjoint analysis Product family 
Electrical 
equipment Customer 

Yu et al., 1999 Market analysis Product family Leg room of car 

Stone et al., 2000b 
Functional 
modeling & 
heuristic method 

Product 
Electrical 
equipment 

Dahmus et al., 2001 
Functional 
modeling & 
heuristic method 

Product family Power tools 

Kurtadikar et al., 2004
Functional 
modeling & 
heuristic method 

Product family Shop vacuum 

Function 

Zhang et al., 2006 
Functional 
modeling 

Product family 
Assembly 
device 

Newcomb et al., 1998 
Modularity 
measure 

Product Center console 

Gershenson et al., 
1999  

Modularity 
measure 

Product 
Mechanical 
pencil 

Structure 

Hsiao and Liu, 2005  
Interpretive 
Structural Model 

Product family Coffee maker 

 

Since the definition of product architecture begins with the arrangement of 

functional element, functional modularization method provides an early schematic 

view of architectural exploration for product family while linking customer needs 
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with engineering design. Meanwhile, the implication of modularity is to form basic 

configurable elements for functional sharing and variety generation. Therefore we 

adopt functional modeling method to modularize the product. 

 

Figure 4.4: Illustration of functional modeling 

Functional modeling is a key step at the conceptual design stage (Pahl and Beitz, 

1996; Stone and Wood, 2000a), whether original or redesign. It provides an 

engineering view of how the sub-functions work together (based on feasible 

technological solutions) to achieve the desired functional requirements, and is 

independent of how the function is performed. This model uses a graph-based 

functional design language to form the product conceptual structure, where the 

product function is characterized in a standardized verb-object (function-flow) 

format and decomposed further into sub-functions (Stone and Wood, 2000a), as 

shown in Figure 4.4. Then a modular architecture is formed by grouping 

sub-functions together to form modules based on three heuristic methods: dominant 

flow, branching flow, and transmission/conversion (Stone et al., 2000b). The 
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modules identified can be used for concept generation and embodiment design. 

Using the functional model can significantly contribute to the product architecture 

development by moving the product architecture decision earlier in the conceptual 

design stage, particular for a series of similar products. 

4.3.3 Variety Analysis 

To fully understand the engineering relation between product attributes and 

conceptual modules for variety analysis, the source of architectural variation should 

be identified first. Several researches existing in the literature investigate the 

mechanism of variation transmission between segmented market and product 

architecture. They view the variety of requirements as the external drivers of 

variation, and the coupling interactions among components as the internal variation 

propagation (Martin & Ishii, 2002; Hsiao & Liu, 2005). Similarly, this thesis also 

approaches the generation of the Attribute-Module Matrix (AMM) from two 

perspectives: namely specification implementation and specification propagation. 

Specification Implementation 

Specification flows can be viewed as the design information that must be passed 

among designers to design their respective modules. Generally, each product 

attribute has its engineering metric to be customized for different levels and each 

conceptual module has the specification output to implement the corresponding 

product attribute. Thus, by directly mapping the product attribute to the module 

implementing the specification, we can establish their mapping relationship from the 

perspective of specification implementation. Table 4.2 presents an example showing 

the engineering relation between metrics and modules regarding power drill. 

Then we use a 9/6/3/1/0 rating system for estimating the relation values, as shown 
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in Table 4.3. The used ratio or proportional rating scale has been investigated in the 

field of cognitive psychology and seems preferable to the traditional linear interval 

scale, for example 8/6/4/2/0 (Franceschini and Rupil, 1999). For each relation node 

in the matrix, the design team estimates the implementation degree, which can be 

viewed as an indicator of redesign efforts to meet attribute change. Higher value 

means a stronger implementation relationship and results in greater redesign on the 

corresponding module. For example, metrics of voltage and charger time are 

completely realized by electricity supply module and any varieties of these two 

attributes will incur great changes in designing. Accordingly their relation values are 

assigned the highest value of 9. 

Table 4.3 VI rating system 

Rating  Description 

9 Has a crucial relation between attribute and module  

6 Has a strong relation between attribute and module 

3 Has a partial relation between attribute and module 

1 Has a minor relation between attribute and module 

0 No relation exists 
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Table 4.2: Specification implementation between modules and attributes 

Product Attributes and Engineering Metrics Modules 
(Input/Output Flow) Voltage 

(V) 
Max. torque 

(in-lbs) 
Number of 

variable speed 
Rotation Speed 

(rpm) 
Hammer 
capacity 

Chuck size 
(mm) 

Charger time 
(minutes) 

Clutch setting 

Elec. Supply Module 
(Electricity, V)  

X      X  

Actuator Module 
(Signal/Electricity, V) 

X        

Elec.-to-torque Module 
(Electricity, V/ 
Torque, in-lbs &rpm) 

 X  X X    

Transmission Module 
(Torque/Torque,  
in-lbs &rpm) 

 X X X     

Hammer Module 
(Torque/Torque,  
in-lbs &rpm) 

    X   X 

Secure Module 
(Torque/Torque,  
in-lbs &rpm) 

     X   

Handle Module 
(Signal/Torque,  
in-lbs &rpm) 
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Specification Propagation 

The coupling interaction among modules in term of specification flow is another 

important aspect of product architecture according to the definition by Ulrich (1995). 

Thus the specification change drawn from the various customer requirements may 

spread within the product architecture by module interaction. Here, since we focus 

on the functional aspects of product architecture, the functional modeling can 

provide a visual tool to identify the specification propagation within the product 

architecture by tracing the flows. 

For the specifications propagated among modules, the design team should 

estimate the sensitivity of each module (based on feasible solutions) to a change in 

those propagated specification flows. Here we also use the 9/6/3/1/0 rating system to 

quantify the sensitivity. If a small change in the propagated specification requires a 

large change in the realization of the module, this module has a high sensitivity to 

the change of the attribute with that specification and thus their relation is given a 

higher rating value. For example, the electricity flow associated with voltage is 

propagated to actuator module. Although the electrical flow can range from 12V to 

24V, a small change occurs to the actuator (switch) since most of switch designs can 

accommodate the different voltage settings from 12V to 24V. So the relation 

between voltage and actuator module is rated to be 1. But for electricity-to-torque 

module (motor), the change of electricity flow will require a moderate design 

change and thus the relation between voltage and electricity-to-torque module is 

rated to 6. 

Variety Index 

Traditionally individual product design captures customer needs and transfers 
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them into engineering design. However current multi-product development usually 

involves designing a series of similar products/components synchronously and 

continuously. This compels designers to understand and evaluate the variation effect 

from customers on product architecture and later detailed design in the early design 

phase. Given a collection of the specifications for a product family, product 

architecture, and attribute-module relation, we can estimate VI for each module 

according to equation (4.5), which provides an indicator of the extent of efforts we 

need to design module instances.  

4.3.4 Product Portfolio Architecture 

The modules with low VI can be the common modules of product platform and 

will be used across the entire product family. On the other hand, the modules with 

high VI can be the differentiating modules, which need more instantiation for the 

specific variant product. Differentiating modules and their instances can be viewed 

as class-member relations. The instantiation design usually involves the scale-based 

optimization to achieve commonality with respect to variables/parts. 

In order to further facilitate product development, product variants with their 

corresponding module instances in terms of engineering specification should be 

generated. Du et al. (2001) have investigated this process, namely variant derivation, 

which may involve four important steps: selection constraints, parameter 

propagation, include condition, and variety generation. In this thesis, parameter 

propagation is mainly used to accomplish the derivation of module instances. 

At the end of this step, a product portfolio architecture (PPA) is formed to guide 

subsequent design activities and early product evaluation, which provide an 

engineering view of product family configuration characterized by combinations of 

the common modules {CMj*, j=1, 2 … k}, and a set of differentiating modules {DMi, 
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i=1, 2 … n} associated with their customized instances. To represent a family and its 

product variants, a decomposition /classification structure can be adopted to 

represent PPA as shown in Figure 4.5. In the vertical direction, PFA is constructed in 

a hierarchical form with the decomposition in each sub-level and with instances 

attached to the end modules. In the horizontal direction, PPA is organized into two 

categories of conceptual modules: common and differentiating ones. Meanwhile, the 

coupling interfaces among modules will be committed between different design 

team, and defined in terms of consistent engineering specifications (e.g. dimension, 

torque).  

 

Figure 4.5: Engineering view of product portfolio architecture  

4.4 Case Study 

For the case study, a family of power tools is used here to illustrate the 

aforementioned approach because the target market is increasingly segmented and 

filled with clusters of products with different functional features and engineering 

metrics, such as drill and jigsaw. Meanwhile, a lot of research work has used 

different types of power tools in their case study and provided plentiful technical 

support. In the following section, a step-by-step method is illustrated to investigate 
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the architectural variation due to customized requirements and identify platforming 

direction at the system-level design. 

4.4.1 A Product Family of Cordless Drills/Drivers 

The investigated power tools are centered on a cordless drill/driver series, which 

is assumed to share the same functionality but target at different price-performance 

levels. According to the market strategy, the firm aims to serve different application 

in the vertical market segments (e.g. household, workshop, construction). Based on 

the market analysis using quality function deployment (QFD), eight relevant product 

attributes that are important in the customer choice are identified: voltage, maximum 

torque, the number of variable speed, rotation speed (no load), clutch settings, chuck 

size, charging time, and hammer capacity. However, potential customers express 

different extents of preference toward these attributes. To balance the attribute 

importance in customer choice, preferences for different attributes are normalized 

based on questionnaire survey and given through weight assignments by 

experienced designer, as shown in Table 4.6.  

Since product family planning is not our research focus and several researches 

have provided support to accomplish it (Jiao et al., 2005&2007a), the resultant range 

of product family (6 variants) is assumed to be available at this stage, as shown in 

Table 4.4. Three common attributes and five differentiating attributes for variants are 

identified, together with their corresponding attribute levels.  

 
 
 
 
 
 
 
 
 



Chapter 4 Modularization of PFA 

53 

Table 4.4 Collection of product family specifications 

Common Attributes 

Clutch Settings (C8) 23 

Charging Time (C7) 1 hour 

Clutch Size (C6) 13mm 

For all variants 

Differentiating Attributes for Variants 

12 V V1 

14.4 V V2, V4 

18 V V3, V5 
Voltage (C1) 

24 V V6 

22 N.m V1 

27 N.m V2 

34 N.m V3, V4 

40 N.m V5 

Max. Torque * (C2) 

46 N.m V6 

2 V1,V3,V4 Number of Variable Speeds 
(C3) 3 V2,V5,V6 

400 rpm For all variants 

1400 rpm V1,V2,V3,V4,V5 No Load Speed (C4) 

2000 rpm V2,V5,V6 

yes V4,V5, V6 
Hammer (C5) 

no V1,V2,V3 

 

According to equation (4.5), the vector of variance degree for each product 

attribute (C1, …, C8) in the family of cordless drills is normalized as ΔC= [3/6, 4/6, 

1/6, 2/6, 0, 0, 0, 0]. For example, 5 desired levels for torque attribute will result in a 

variance degree of (5-1)/6.  

4.4.2 Functional Modularization 

Although physical components and structures for target product may exist, a 

functional view can acquire early modularity in the architecture, especially when 

some components/modules require orders from other firms. In addition, borrowing 

functional vocabulary from design repositories can facilitate the concept generation 

and design reuse (Stone and Wood, 2000a).  

The functional diagram of cordless drills/drivers is shown in Figure 4.6 and Table 
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4.5 lists the candidate modules identified by functional modeling. By tracing the 

flow status through the whole function chain, we can divide the cordless 

drills/drivers into four sub-systems: electrical, conversion, mechanical and support 

sub-systems. Each sub-system is decomposed into modules, which address the 

implementation of related product attributes. In this example, electrical sub-system 

includes electricity supply module and actuator module. Conversion sub-system 

only has electricity-to-torque module. Mechanical sub-system contains transmission, 

hammer, and secure module. Handle module is accessorial support sub-system. 

Since the target product family has the same product attributes but different levels 

at some attributes, they can share a common functional model. But for each product 

variant, some modules in the functional diagram differ in the flow intensity. For 

instance, although electricity-to-torque module provides the same functionality for 

each product, the required input flow (electricity) and generated output flow (torque) 

hold different intensities according to engineering metrics. As a result, the identified 

architecture of PFA at this stage provides the same module type but may require 

further instantiation for each variant. 

Table 4.5:  Modules of the cordless drill family 

Module Module Name Used Heuristic Method 

M1 Elec. Supply module Dominant Flow 

M2 Actuator module Dominant Flow 

M3 Elec.-to torque module Transformation/Conversion 

M4 Transmission module Dominant Flow 

M5 Hammer module Dominant Flow 

M6 Secure module Dominant Flow 

M7 Handle module Branching Flow 
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Figure 4.6: Functional modeling of power tool family
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4.4.3 Attribute-Module Matrix and Variety Analysis 

In this example, AMM is determined by interviewing the experienced designers. 

Two perspectives of attribute-module relation will be investigated according to the 

method mentioned earlier. Figure 4.7 illustrates the final mapping relation result 

regarding specification implementation and specification propagation. By tracing the 

flow status in functional diagram, the relation between modules and engineering 

metrics can be easily identified. For instance, electricity flow is always related to 

such metrics as voltage and charging time; torque flow determines maximum torque 

and rotation speed.  

 

Figure 4.7: Two perspectives of Attribute-Module relation 

Table 4.6 lists the estimated value for attribute-module matrix, together with 

preference weights and variance degrees for product attributes. Then the VI for each 

module can be derived by incorporating the rated relation between the attribute and 

the module, with variance degree and preference weight. For instance, electricity 
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supply module is responsible to two attributes: voltage and charging time with 

different preference weights [0.14, 0.08]. Voltage and charging time will vary for the 

whole product family with normalized variance degree 3/6 and 0, respectively. Thus 

according to equation 4.4, VI for electricity supply module will be 

1 1 9 0.14 3/6 9 0.08 0 0.63j j jVI a c w         .  

The derived variety index can assist designers in identifying crucial modules. 

Smaller index means less variety value in customer view and may require less 

attention; larger index means possible greater customer-perceived value and more 

design complexity delivered by the differentiation. In order to identify the modules 

and their corresponding components/assembly on which we should focus in the latter 

design, module-component categorization is given in Table 4.7. This evaluation 

process also lists the estimated nonrecurring engineering (NRE) costs, which refers to 

the one-time cost of researching, designing, and testing a new product and can be 

viewed as an effort indicator of designing the differentiating components. In this case, 

the NRE cost mainly includes payment for designers, prototyping cost, and tooling 

cost and has been collected from the investigated company in China. In addition, the 

feasibility of over-design for each module is evaluated by the design team and 

represented as “bubble”, as plotted in Figure 4.8, to indicate how well the component 

design can accommodate the specification change through over-design without much 

cost increase and performance loss. If the component/module has a higher VI and 

NRE cost, balance needs to be made to decrease the developing cost incurred from the 

increasing number of instances; otherwise, those modules with lower VI and NRE 

cost may be potential platform elements for reuse among variants. The threshold 

values of 5000, 0.5 are given as reference line and derived based on the mean value of 

NRE and VI, respectively.
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Table 4.6:  Attribute-Module Matrix and Variety Index 

Product Attributes 
Sub- 

system 
Module Voltage 

(C1) 
Max. torque

(C2) 

Number of 
variable 

speed (C3) 

Speed 
(C4) 

Hammer 
capacity 

(C5) 

Chuck size 
(C6) 

Charger 
time 
(C7) 

Clutch 
Settings 

(C8) 

Architectural 
Variety 

(VI) 

Elec. Supply  
module (M1) 

9 0 0 0 0 0 9 0 0.63 
Electrical 

Actuator module  
(M2) 

3 0 0 0 0 0 0 0 0.21 

Conversion 
Elec.-to torque  
module (M3) 

6 9 0 6 3 0 0 0 2.08 

Transmission  
module (M4) 

0 6 9 9 6 0 0 0 1.54 

Hammer module  
(M5) 

0 1 0 0 9 0 0 9 0.17 Mechanical 

Secure module  
(M6) 

0 1 0 0 3 9 0 0 0.17 

Support  
Handle module  
(M7) 

0 1 0 0 3 0 0 0 0.17 

Weight of attribute (wj) 0.14 0.25 0.20 0.08 0.14 0.03 0.08 0.08 

Variance Degree (ΔC) 3/6 4/6 1/6 2/6 0 0 0 0 
∑wj =1 
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Table 4.7:  Module-component categorization of cordless drill 

Module Component/assembly VI 
Feasibility of 
Over-design 

NRE ($)* 

M1 Battery  0.63 Low 3,000 

M2 Switch 0.21 High 500 

M3 D.C Motor 2.08 Low 5,000 

M4 Gear Assembly 1.54 Medium 18,000 

M5 Clutch (Cam) 0.17 High 7,000 

M6 Chuck 0.17 High 1,500 

M7 Handle 0.17 High 1,000 

* NRE is nonrecurring engineering cost and cannot be repetitive 

 

Figure 4.8: VI versus NRE versus feasibility of over-design 

Over-design may be an effective design strategy to improve standardization and 

commonality across the family of products. For those modules with lower VI and 

higher feasibility of over-design, they can be considered “fixed” for the product 

family through standardization. This implies standardizing these modules so that 

they can accommodate a small or even moderate change in the specification. For 

example, the actuator module (switch) may require different working voltage for 
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each variant. However standardizing the switch that works at different voltages 

raging from 12V to 24V can keep only one instance for all variants since there is 

little cost increase and performance lost. In this example, Actuator (M2), Hammer 

(M5), Secure (M6) and Handle (M7) modules compose the platform basis and can be 

reused across the whole family. On the other hand, those modules with higher VI, 

such as electricity supply (M1), electricity-to-torque (M3), and transmission (M4) 

modules, will be differentiating modules and need more instances to meet different 

specifications. Gear assembly (M4) has a highest VI and NRE cost, which means the 

module instantiation for each product requires greatest complexity and cost. To 

reduce cost saving from repetitive design and process reuse, suitable over-design 

will be adopted to reduce the number of instances in the detailed design stage, which 

will be explored in Chapter 5.  

4.4.4 Instance Derivation and Product Portfolio Architecture 

After variety analysis for each module, the suitable instance specification for each 

module should be determined according to variant requirements. This process is 

typically based upon a set of selected options from customers (Du et al., 2001). 

Selected attribute levels are transformed to the variety parameters of the end-product 

and then propagated down the hierarchy of product architecture. Through this 

parameter propagation, all parameters of module instances obtain specific values. 

However the allocation of parameter value to each instance requires domain 

knowledge (e.g. industrial standard) about mapping functional requirements to 

design parameters (Suh, 2001). Table 4.8 lists the 6 variants at the end-product level 

and the corresponding instances for each module with the aid of engineer designers. 
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Table 4.8: Engineering specification for module instances 

 Module/Component Instance Specification Description Variants 

A1
1 Output:12V; Capacity: 1.7 Amp-Hour V1 

A1
2 Output:14.4V; Capacity: 1.7 Amp-Hour V2,V4 

A1
3 Output:18V; Capacity: 1.7 Amp-Hour V3,V5 

M1/ Battery Package 
(Ni-Cd) 

A1
4 Output:24V; Capacity: 1.7 Amp-Hour V6 

A3
1 Input:12V; Max. Speed:20k rpm, Torque (stall)=0.55 Nm V1 

A3
2 Input:14.4V; Max.Speed:20k rpm, Torque (stall)=0.675 Nm V2 

A3
3 Input:14.4V; Max.Speed:20k rpm, Torque (stall)=0.85 Nm V3 

A3
4 Input: 18V; Max. Speed:20k rpm, Torque (stall)= 0.85 Nm V4 

A3
5 Input: 18V; Max. Speed:20k rpm, Torque (stall)=1.0 Nm V5 

M3/D.C. Motor Assembly 
(D.C.) 

A3
6 Input: 24V; Max. Speed:20k rpm, Torque (stall)=1.15 Nm V6 

A4
1 Output: Speed=500/1500 rpm, Max Torque =22 Nm V1 

A4
2 Output: Speed=500/1500/2000rpm, Max Torque =27 Nm V2 

A4
3 Output: Speed=500/1500 rpm, Max Torque =34 Nm V3,V4 

A4
4 Output: Speed=500/1500/2000rpm, Max Torque =40 Nm V5 

D
if

fe
re

n
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M4/Planetary Gear Train 
 

A4
5 Output: Speed=500/2000 rpm, Max Torque =46 Nm V6 

M2/Switch A2
1 D.C; Voltage:12-24; Switch type: on/off/Variable speed All 

M5/Clutch(Cam) A5
1 Coil Clutch; (Number of cam tooth:18) All 

M6/Chuck A6
1 Chuck Size:13mm; Keyless; Single sleeve; Metal All 

C
om

m
on

  

M7/Handle A7
1 Material: plastic All 
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4.5 Summary 

This chapter investigates the modularization of the conceptual PFA. Based on 

traditional definition of product architecture and the proposed variety analysis, the 

proposed method provides designers a step-by-step procedure to achieve early 

modularity at the system-level design stage, integrating product family planning, 

functional modularization, and variety analysis. Incorporating the external variety of 

requirements into definition of product architecture and constructing a PFA at the 

conceptual design stage not only can benefit early product family evaluation and 

conceptual design, but also address other operational issues (Fixson, 2005), such as 

supply chain, collaborative development, variety management, and so on. A family 

of cordless drills/drives is used as case study to demonstrate the proposed 

modularity analysis and finalize the platforming direction in the product architecture. 

Eventually, the product portfolio architecture with detailed design specifications for 

each module is formed to guide subsequent module instantiation and commonality 

design at phase 2. 

It is very interesting to note that AMM matrix indicates the interrelated coupling 

between customer domain and functional domain, and its characteristics (e.g. 

diagonal and non-diagonal) determine the complexity in modularizing PFA. For 

AMM with a diagonal matrix, each functional module in the product implements the 

corresponding attribute without interacting with other modules, and accordingly 

modularization of PFA can be easily tackled in either domain. However, most 

practical product systems are characterized by non-diagonal matrix, which make 

modularization of PFA more complicated and involve interaction between two 

domains. For the highly coupled design, AMM might be a complexity indicator to 
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re-construct functional architecture by grouping some highly interrelated elements 

into big chunks. Moreover, a 9/6/3/1/0 rating scale is used in this thesis to quantify 

AMM based on subjective judgment of coupling degree between modules and 

attributes. A further investigation of rating scale on the effect of variety analysis has 

not been carried on at this stage because the use of rating scales itself is an 

interesting topic in the field of cognitive psychology and beyond the current research 

scope in the thesis. More comparison and illustration about rating scale in QFD can 

be found in (Franceschini and Rupil, 1999). 

Suitable over-design can be an effective design strategy to reduce the number of 

instances and increase commonality across a family of products by over-designing 

component dimensions to accommodate the specification variation. However some 

disadvantages can be incurred from over-design. One of them is that the individual 

performance may be impaired. Also the increased material costs due to 

over-designed dimension of component may limit the commonality of this 

component. In addition, the achieved economical benefit from commonality 

configuration is another factor to determine the extent of over-design. In the next 

chapter, these issues will be investigated to achieve commonality at the detailed 

design stage.
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Chapter 5 A Manufacturing-biased Platform 

Decision and Product Family Design 

5.1 Introduction 

While modularity identified at the system-level design stage aims to help 

designers decompose product structures and manage variety generation, 

commonality is another important issue for platform development during the detail 

design stage and determines the final economies of scale. Towards this end, most 

researches attempt to balance the trade-off between reducing variety or increasing 

commonality of design, and performance deviation of individual variant due to 

platforming effect. Varieties of design that incur additional complexity but 

contribute less value in customer view need to be standardized or commonalized, 

but those varieties to provide more customer-perceived values (functional and 

performance characteristics) should be emphasized and require more resource to 

realize them. However, it is always assumed that maximizing commonality across 

the family minimizes the production cost and minimizing performance deviation 

maximizes its demand, since it is very difficult and not practicable to directly 

capture the relationship between commonality and cost during early design stage, as 

well as the relationship between performance and market demand. 

To meet external variety of requirements characterized by functional features and 

engineering specification, the corresponding internal varieties of design and 

production have to be offered (Anderson, 1997). Variety of design refers to the 

diversity of product definition in terms of various functional and technical varieties. 
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Similarly, the direct consequence of product variety on production is observed as an 

exponentially increased number of process variation such as customized operations, 

and resource variation, such as diverse machines, tools, inventories and labors. 

Although most decisions related to product definition are made during the design 

stage, the major portion of product costs is actually committed and determined at 

production stage, as shown in Figure 5.1. This implies that product family design 

can only be rationalized by effectively coordinating product design and production 

processes and exploiting potential platforming opportunities.  

 

Figure 5.1: Cost contribution of different varieties 

5.2 Multi-platforming Configuration 

Mathematically, the family design problem with p products can be formulated as 

follows: 
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where the vector of design variables X describes the target product, including 

possible platform settings and unique variables. ∑f 
P(X) is a set of design objectives 

or responses for the whole family. f 
C(X) is the commonality aspects of the whole 
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family, and may be pre-specified (e.g. single-platform) or optimized during the 

family design. gj(X) represents the constraint function in the design model. A design 

space is the range that the design variables can take. Currently, most methods 

existing in the literature only involve continuous types of variables. However, for 

conformance to industrial standards and manufacturing requirements, the design 

space for some design variables is not always continuous (Xd), but discrete (Xc) or 

even binary.  

A successful family design always begins with an effective platform configuration, 

which provides designers with various platforming directions. Despite the advantage 

of simplicity, single-platform configurations may make some low-end products 

over-designed and some high-end products under-designed because the unique 

common value for one variable may not be ideal for each product in the family (Dai 

and Scott, 2007). As shown in Figure 5.2 (a), one platform variable x is shared by all 

of the products in single-platform configuration. However, variant p1 and p4 have 

more performance loss because the uniquely converged point deviates more from 

optimum points of variant p1 and p4. To avoid the drawback, one possible way is to 

partially share the variable value among subset of variants. As shown in Figure 5.2 

(b), x for variant p1 and p2 can be clustered into x1** and meanwhile x for variant p3 

and p4 can be clustered into x2**.  
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Figure 5.2: (a) Single-platform configuration (b) Multi-platforming configuration 

This multi-platforming configuration, in which variables may be partially shared 

among variants in any possible combination of subsets, offers opportunities for more 

superior overall design but presents a more difficult computation problem. Suppose 

the target product is described by a set of 6 design variables and there are 4 variants 

in the family, the total number of possible combinations is 156, compared to 26 

possible combinations of the single-platform configuration. Detailed derivation can 

be found in (Dai and Scott, 2007). Moreover, this number of multi-platforming 

combinations increases rapidly with both number of design variables and the 

number of product variations. 

5.3 Manufacturing-biased Commonality Index 

In order to access multi-platforming family solutions with varying levels of 
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commonality, we adopt a mechanism of quantifying the level of commonality as 

commonality index (CI), and incorporating it into the family design to dynamically 

generate the platform configuration. CI is a measure of sharing degree regarding the 

design parameters throughout the entire product family. It can be viewed as an 

efficiency indicator of reduced manufacturing complexity or cost savings from 

family design, and also as a means to control the level of commonality across the 

family during optimization. Although several component-based commonality 

indices have been proposed in the literature, they emphasize on the bill-of-material 

assessment of product family based on their particular standpoint (Thevenot and 

Simpson, 2006; Blecker and Abdelkafi, 2007), which is also mathematically difficult 

to be implemented at the parametric design stage. 

The motivation behind the scale-based family design is to derive certain economic 

benefits from sharing some variable values over more than one product. Thus an 

effective quantification of commonality regarding design space determines the final 

outcome. However, some unsolved challenges remain and should be met before the 

final formulation is given. The first is that of resolving the coupled design case, 

where several variables jointly determine the final dimensions of a single component. 

Consider the simple example of a structural component with cross-section 

characterized by three variables: b, h and t as shown in Figure 5.3. By sharing b and 

h and holding different t, two instances are derived to meet different requirements. If 

stamping is used to produce it, certain manufacturing benefit can be generated from 

reuse of the bottom die. However, when powder injection molding method is used, 

partial sharing cannot produce any benefit at all because the three variables jointly 

determine the component dimensions and the corresponding molds used by this 

process. In other words, only complete sharing of b, h and t between the two 
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products will reuse the molds to be tooled and thus reduce cost. Thus, the first 

challenge is to provide for benefit from variable sharing with regard to 

manufacturing requirements. In the simple or uncoupled design case, each variable 

corresponds to one component or process, and the sharing of variables generates the 

expected advantages at the manufacturing stage. However, the coupled design 

situation does not necessarily ensure benefit from direct sharing of variables. 

Toward this, analysis of sharing pattern linked to the manufacturing stage is required 

to decide on the basic platforming elements, whose reuse will reduce manufacturing 

complexity and thus improve economic efficiency. In this case, the basic elements 

may not be single variables, but subset of variables or even a set of all variables 

related to one component. In the previous example, the basic element to be shared is 

the subset of b and h for stamping method; for injection molding method, all 

variables (b, h and t) related to the component form the basic element.  

 

Figure 5.3: Platform decision affected by manufacturing consideration 

More generally, the identification of the basic platforming elements is not a 

separate task at design phase and requires careful coordination with that of the 

production stage. Commonality in terms of shared variable values must be 

consistent with technical commonality in fulfillment. 

Another challenge is to determine the relative extent that the platforming element 
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can provide the desired benefits from sharing among family products. This situation 

can be illustrated with the family design of electric motors used earlier by Simpson 

et al. (2001a). Although their proposed optimization approach revealed that the 

motor platform scaled on the outer radius of stator can achieve better specified 

performance compared to that scaled on the stack length, the manufacturers still 

choose the latter due to lower production cost. Therefore, when measuring the level 

of commonality regarding the shared elements, we need to pay special attention on 

the derived benefits on the manufacturing cost from their sharing. Toward this, we 

propose the expected sharing degree (ESD) for each platforming element to reflect 

their contribution in cost saving. Those elements which generate more cost saving 

from being shared will be assigned a higher ESD. Accordingly they will contribute 

more value to the overall CI and have a higher probability of being shared among all 

the candidate platform elements.  

Finally, for a product family with p products, the formulation of CI is proposed in 

this research and can be defined as follows: 
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where wj
e is the expected sharing degree (ESD) for the basic platforming element j; 

Sj is the number of different instances for element j and range from 1 to p; Cj is the 

commonality index for element j and treated as a linear normalization as shown in 

Figure 5.4, which means a fixed increase of Cj from one less instance of element j; 

μc is the overall commonality index for the family by aggregating commonality 

index of all k elements according to their ESD. μc has a range of [0, 1] and the larger 

μc means higher level of commonality regarding the design space throughout the 

whole family.  
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Figure 5.4: A linear relation between CI and the number of instance 

Unlike the pre-specified platform configuration mentioned in the literature, the 

use of commonality index (μc) enables dynamic platform configuration during the 

family design and can potentially provide various family solutions with different 

level of commonality. In the meantime, the platform decision in this paper focuses 

on manufacturing efficiency so that those platforming elements with higher ESD 

will have a higher possibility of being reused, and thus generate a cost-effective 

platform configuration. 

5.4 Systematic Scalable Product Family Design 

Based on the aforementioned platform decision strategy, a systematic method for 

scale-based family design is proposed and developed, with its framework illustrated 

in Figure 5.5. This newly proposed method begins with an individual design and 

takes its overall design requirements (e.g. performance specification from 

system-level modularity analysis) as the input. The output is the specifications of the 

product family design (e.g. physical parameters to describe each product) with 

varying levels of commonality. Each step is explained in detail as follows and serves 

to guide the engineering designer to formulate and solve the family design problem. 
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Figure 5.5: Framework of systematic product family design 

5.4.1 Individual Design 

The first step is to generate the optimal null-platform parameter configuration for 

each product by solving the design problem individually. The result will serve as the 

design target to normalize the performance objective for the corresponding family 

design and also for comparison as a benchmark. This step may be not necessary if 

the benchmark can be collected from existing counterparts by other providers. An 

explicitly mathematical model or computational simulation is first required to reflect 

the relationship between the input variables and the output performance response. 

Although most approaches assume an existing design model, whether mathematical 

or simulation-based, it is necessary to carefully prepare the model and identify two 

important factors as follows: 
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 Response: performance output of the product family to distinguish from products 

in the market. Performance response may be a single feature or be a 

multi-objective function if more than one aspects of product behavior are 

involved. In the latter case, the different responses have to be normalized first 

and combined into an aggregated objective function. In addition, it is assumed 

that the performance responses of a family of products will never be improved 

by increasing commonality. 

 Control factors: design variables that can be freely specified within the 

boundaries by a designer to characterize the product. These variables may 

include the platform elements, pre-specified or determined during optimization, 

and scaling variables by which a product platform is leveraged through a scaling 

method to derive the family members. 

  Assuming that all products in the family share the same constraints but goals may 

differ depending on the market segments served by the each variant; the following 

optimization is used to obtain optimal design solutions for each family member. 
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where Xi is a vector of design variables for product i. Although only the performance 

aspect is involved in the individual design, several performance criteria with different 

dimensions may be normalized and aggregated, to be explored in section 5.3.3. This 

individual design is repeated by p times, each time with the design goals for the 

selected product. 
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5.4.2 Platform Decision 

This step centers on determining the right components/variables to be shared or 

reused during the family design so that the family members can be derived in a 

cost-effective manner. Although the economic efficiency (e.g. manufacturing cost) 

has been widely accepted as the core issue driving the reuse of variables, 

components, and resources, most family design approaches relying on scale-based 

platform in the literature determined the combination of common and scaling 

parameters only from the aspects of design problem (e.g. minimizing performance 

variation), as mentioned in the literature review of Chapter 2. Accordingly, the 

resultant family design marginally achieves the desired economical advantage. In 

order to resolve the drawback existing in the platform decision, we adopt a 

systematic means to analyze the impact of product platforming on production 

activities by coordinating design varieties with process variations and while 

quantifying the level of commonality as an index of manufacturing efficiency.  

Modeling of Production System 

The first task in the platform decision is to investigate cost implications of 

production system. Several different approaches have been developed to model 

production flow based on their particular standpoint. The Activity-Based Costing 

(ABC) method is reported in many researches to support product family design due 

to its effectiveness and accuracy in tracing costs in the context of mass 

customization (Hundal, 1997; Park and Simpson, 2005; Zhang and Tseng, 2007). 

Based on the ABC principle, the production system can be modeled as a hierarchy of 

activities, in which various activities or processes are identified and associated 

resources are assigned as shown in Figure 5.6. Generally, activities can be classified 

into type of direct costs at unit-level, and type of indirect costs at batch-, product-, 
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and facility-level. Due to the fact that scale-based platform approaches are always 

dedicated to design a family of component/module-level products, the complexity 

involving the production model is much reduced, and unit- (e.g. casting, machining) 

and batch-level (e.g. setup, work-in-process) activities can suffice to help to analyze 

the platforming effect. However, for a large-scale design problem with complicated 

production system, a comprehensive cost estimation system for product family can 

be developed to assist in the platform decision (Park and Simpson, 2005). Since it is 

a broad topic and beyond our research scope, we only focus on those activities 

potentially affected by platform and product family design. 

 

Figure 5.6: The principle of activity-based costing 

Variety Coordination 

Secondly, mapping design variety to manufacturing process variation in the 

context of manufacturing requirement is analyzed to investigate the platforming 

influence on production. Generally, parts or components in a product with various 

features usually involve several manufacturing processes and require different 

resources to achieve part differentiation. However, not all related processes will be 

affected by platform design. To identify the platforming effect, the sets of design 

parameters are mapped to the resources consumed by processes in the production 

flow to determine the affected activities and basic platforming elements, the reuse of 

which can create economy of scale by reducing the required resource. Consider a 
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cylindrical component with a coaxial hole described by t (thickness) and r (inner 

radius) for example, and assume die casting process (affected activity) to produce it. 

To reduce cost from reuse of common die (resource), both variables t and r have to 

hold common values among different products. Accordingly, the basic element in 

this case will be a set of t and r since they are coupled together in the process. 

However, the coupled relationship between r and t can be released in case of other 

types of processes. Two different machining processes (cutting and drilling), for 

example, are employed sequentially to finish the whole cycle. Variable r is related to 

drilling process (affected activity) and common use of r among products can 

produce savings from tool sharing and setup labor reduction (resource). Thus, the 

single variable r is the basic platforming element and its reuse or sharing can 

generate certain manufacturing benefit.  

Allocation of Expected Sharing Degree 

Thirdly, expected sharing degree (ESD) will be assigned to all basic platforming 

elements for reuse to reflect their contribution in cost savings. To achieve this, the 

additional cost (Ca
j, j=1… k) incurred from one more instance for element j needs to be 

calculated from allocated resources, or estimated based on historical data. Then the 

additional cost of each element is normalized by the aggregated additional cost of all 

elements and assigned as ESD. 
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For the previous example, the set of r and t is a basic platforming element e1 and 

affects the number of molds consumed by die casting process. The additional cost 

from differentiating such the element mainly includes the expense to make the mold. 

So, the expected degree for sharing e1 can be obtained by computing their relative 
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additional cost of tooling one mold to overall additional cost of all platforming 

elements. For those elements whose varieties result in more than one additional cost 

from allocated resources in the production flow, the aggregated additional costs 

(∑Ca
j) are used to reflect the overall influence of element platforming on the 

production system.  

Formulation of Commonality Index 

Finally, the formulation of commonality index (CI) for the whole family can be 

derived according to equation (5.2) with identified set of basic platforming elements 

and associated expected sharing degree (ESD). Instead of single variable, 

platforming elements represent the basic reusing entities under the specific 

manufacturing environment; ESD denotes their relative contributions of the 

corresponding elements to cost savings. When incorporated into the stage of family 

design and optimization as commonality objective, CI can direct the platforming in a 

desired economical manner as illustrated in Figure 5.7.  

 

Figure 5.7 Illustration of manufacturing-biased platform decision 

However, pre-selection of the common variables, proven to have no impact on 

performance variation by engineering experience or separated optimization stage, 
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can be included to reduce the computational efforts, especially for a large-scale 

design problem. Several optimization approaches using robust design principles are 

available in the literature to investigate those variables “insensitive” to performance 

variation (Nayak et al., 2002; Sopadang et al., 2001). 

5.4.3 Aggregation of Multiple Objectives 

Scale-based product family design is a multi-objective optimization problem, 

involving two different aspects: performance and commonality. For some design, the 

aspect for performance even includes a weighted set of multiple objectives. Thus, 

the results of product family are always sensitive to the particular method used for 

normalizing and aggregating the objectives. In this paper, we use preference based 

method to aggregate objectives as follows, where preferences are expressed as 

normalization of performance measures (Dai and Scott, 2006).  
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where γP and γC are importance weights for normalized performance and 

commonality objectives. To access different levels of commonality across the family, 

we can vary different weights γC to the commonality objective. ∑ωiθi/p is an 

aggregated set of averaged preferences or normalized values based on performance 

priority (ωi), and f 
C(X) is the commonality index. 

The performance preference functions θi take values from a range of [0, 1], with 0 

indicating completely unacceptable and 1 indicating totally satisfactory. They can be 

derived through normalization of performance measure based on the design targets. 

For example, the mass objective of family design can be simply normalized as 

shown in equation (4), where the mass target mT is determined from individual 
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design since family design will definitely compromise the response of mass. 

Similarly, safety factor is normalized as a simple linear preference and over-design 

above pre-specified target SFT is not expected.  
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       (5.6) 

Although higher weights can be assigned to objectives of higher priority, the 

weight assignment among performance objectives is problem-dependent and 

requires a trial-and-error step to generate the expected results. On the other hand, by 

adjusting the weight ratio among the performance criteria, the weight-based 

aggregation method to formulate a single overall performance measure provides 

decision makers strategic opportunities to deliver families of products with different 

preferences for diverse market environments. 

5.5 Discussion 

A commonality index is developed to measure the shared or reused elements 

across the whole family from the perspective of manufacturing efficiency. If a 

comprehensive cost model exists, it can provide a more explicit insight on what can 

be achieved from economic efficiency. However, traditional costing method by 

allocating fixed costs and variable costs across multiple products may produce 

distorted cost analysis due to possible sunk costs associated with investment into 

product and process platforms (Jiao et al., 2007d). Meanwhile, the related 

information, such as manufacturing and inventory cost, is not always available or 

complete during the early design stage. Although several ABC-based costing 

methods are developed in the literature to assist in estimating the cost in the context 

of product family design, there is no uniform agreement on tracing the relationship 
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between product variety and cost.  

Focusing on the affected manufacturing activities or processes due to the family 

design, we only capture the additional cost incurred by varieties of design on the 

activities or consumed resources. Therefore, the measured commonality across the 

family can reflect the potential platforming benefit without costing the whole 

process flow. Another advantage of commonality index is its capability of numerical 

operation, e.g. easy normalization with range of [0, 1]. On the contrary, the cost 

model cannot be normalized and aggregated into the multi-objective family design 

without the pre-specified cost goal. Additionally, in terms of a function with respect 

to parameter settings, CI can provide a straightforward view on the reuse status of 

the identified basic platforming elements.    

Though the proposed platform decision confines the costs and activities to 

manufacturing aspect, the methodology can be extended into the assessment of other 

types of costs such as product design and development cost, logistic cost and 

purchasing cost. Accordingly, the basic platforming elements may not be limited to 

intra-organizational processes, but intra-organizational activities. 

5.6 Summary 

This chapter introduces a platform decision strategy to maintain the 

manufacturing efficiency due to the increasing commonality. Considering that 

increased commonality implies reduced complexity and cost of manufacturing, we 

take into account expected sharing degree and sharing pattern with coordination 

between design and production stages. Then an effective quantification to measure 

the reuse degree of basic platforming elements across the whole family is developed 

to capture the level of commonality and reflect the enhanced manufacturing 
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efficiency. Meanwhile, a step-by-step method to design a product family based on 

scalable platform is given to help designers guide the whole design procedure, 

involving individual design, platform decision and aggregation of multi-objectives.
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Chapter 6 Product Family Design Using a Modified 

GA-based Optimizer 

6.1 Introduction 

As discussed in chapter 5, scalable product family design involves two tasks: to 

minimize performance deviation from the individually tailored design and to 

maximize measured commonality across the family. This multi-objective 

optimization not only involves mix-discrete non-linear programming, which is 

intractable for most general optimization approaches, but also requires a flexible and 

efficient algorithm to explore design space along the Pareto front and access 

alternative solutions with varying level of commonality. Genetic algorithm (GA) has 

been reported in recent literature and appears well suited for optimizing a product 

platform and the corresponding family members due to the combinatorial nature of 

the family design problem. Towards this end, this chapter presents the development 

of a modified GA-based optimizer to solve product family design and optimization. 

6.2 Evolutionary Weight Aggregation for Multi-objective 

Optimization 

6.2.1 Non-dominated Solution 



Chapter 6 GA-based Multi-objective Optimization 

83 

 

Figure 6.1: Multi-objective optimization for family design 

Multi-conflicting-objective optimization (e.g. product family design) tends 

towards a set of solutions that are not superior to one another according to each 

objective. These solutions are known as non-dominated solutions or Pareto-optimal 

solutions, as illustrated in Figure 6.1. The bold curve of these non-dominated 

solutions is called Pareto front. The rest of solutions are called as dominated 

solutions. 

In a minimization or maximization problem, the non-dominated solutions can be 

defined as follows. Given a multi-objective optimization problem with m (m>1) 

objectives, a solution X(1) is said to dominate the other solution X(2) if both the 

following condition are true: 

1) The solution X(1) is no worse than X(2) in all objectives. 

2) The solution X(1) is strictly better than X(2) in at least one objective. 

If any of the above condition is violated, the solution X(1) does not dominate the 

solution X(2). Similarly, this concept can be extended to find a non-dominated set of 

solutions in a population of solutions. Consider a set of N solutions, each having m 

(m>1) objective function values. The following algorithm is used to find the 
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non-dominated set of solutions: 

Algorithm 1: Non-dominated Sorting 

Step 0: Begin with i=1. 

Step 1: For all j≠i, compare solutions X(i) and X(j) for domination using the above 

two conditions for all m objectives. 

Step 2: If for any j, X(i) is dominated by X(j), mark X(i) as “dominated”. Increment i 

by one and go to Step 1. 

Step 3: If all solutions in the set are considered, go to Step 4; else increment i by 

one and go to Step 1. 

Step 4: All solutions that are not marked “dominated” are non-dominated 

solutions. 

Obviously, N×N (N2) iterations of comparison among solutions are required to 

find non-dominated solutions among N population, if only two objectives are 

involved. A population of solutions can be classified into groups of different 

non-dominated levels. When Algorithm 1 is applied for the first time in a population, 

the generated set is the non-dominated set of first level. To have further 

classification, these non-dominated solutions can be temporarily omitted from the 

original set and the algorithm 1 can be applied again to generate non-dominated 

solutions of second level. This procedure can be continued until all population 

members are classified into a non-dominated level. Based on this procedure, several 

non-dominated sorting methods existing in the literature are reported to solve the 

product family design problem (D’Souza and Simpson, 2003; Akundi and Simpson, 

2005). However, the computational expense for non-dominated sorting at all levels 

is tremendously large, and for the worst case where there exists only one solution at 

each level, the complexity is O(mN3), where m is the number of objectives and N is 
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the number of populations. For instance, Simpson and D’Souza (2003) optimize a 

family of 3 variants with 6 design variables using non-dominated sorting GA. When 

implemented on the workstation, the execution time is reported to be 6-8 hours. 

Akundi and Simpson (2005) find that as many as 25,000 generations and a 

population size of 1500 are need to obtain a good spread solutions for a family of 10 

universal motor described by 8 design variables. Although detailed running time has 

not been published, the computational expense seems unreasonably large.  

6.2.2 Dynamic Weighted Aggregation 

To make the optimization tractable and efficient, the weight-based aggregation 

method is adopted to aggregate the multiple objectives into single overall objective 

function. For product family design, two objectives of performance and 

commonality are aggregated based on the assigned weight. However, the fixed 

weight setting always generates one solution during one optimization run. Moreover, 

the discrete nature of some objectives (e.g. commonality index) imposes certain 

noisy effect on the exploration of design space so that the optimization may not 

work effectively (Srinivas and Deb, 1994). To solve such drawbacks, we adopt 

evolutionary dynamic weighted aggregation (EDWA) method, as proposed by Jin et 

al. (2001). In EDWA the weight for different objectives are changed during 

optimization so that the optimizer can access all points along the Pareto front. This 

dynamic weighted method not only avoids the drawback of conventional weighted 

aggregation, but also maintains the computational expense of exploring multiple 

non-dominated solutions at the economical level (Jin et al., 2001). 

As illustrated in Figure 6.2, the weights {w1(t), w2(t)} for the two objectives are 

changed gradually so that the optimizer will go along the Pareto front from one 

stable non-dominated point to another. However, the dynamic weighted aggregation 
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function need experimental running before it can deliver satisfying results. 

Meanwhile, it is necessary to record the Pareto solutions that have been found so far. 

 

Figure 6.2: Dynamic weighted aggregation toward Pareto front 

6.3 GA-based Optimizer for Product Family Design 

6.3.1 Generic Coding 

 

Figure 6.3: Example of coding scheme for product family 

An important procedure in the implementation of GA involves the representation 

of a problem to be solved with a finite-length string called chromosome. Figure 6.3 

shows one example of the structure of a mixed chromosome representing the 
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product family. A chromosome consists of one to many fragments corresponding to 

the individual product in the family. Every fragment of the chromosome comprises 

many genes, each of which can assume one possible value of design variables in the 

product model. Then the fitness for each solution is evaluated according to the single 

aggregated function, including performance and commonality aspects. Similarly, the 

individual design can be represented by only one fragment as shown in Figure 6.4 

and the fitness evaluation only involves the aggregated performance objectives.  

 

Figure 6.4: Example of generic representation for individual design 

Since the optimization in our approach is a mixed-discrete nonlinear problem 

involving discrete and continuous variables, different coding schemes are used for 

representation. For the discrete design variable Xd, the possible values can only take 

from a set of pre-defined values and therefore they are coded as a binary string. The 

number of bits for coding one variable is determined by the number of possible 

values for the target variable. If, for example, a variable x2 has no more than 8 (23) 

possible values, 3 bits are sufficient to represent x2, as shown in Figure 6.4. For the 

continuous design variables Xc, we use a floating point representation as it is 

conceptually closest to the problem space and also allows for easy and efficient 

implementation of dynamic operators (Michalewicz, 1994).  

For those variables proven for effective platform settings from engineering 

experience, pre-specified controlling genes may be put in front to help determine the 

sharing status of the corresponding variables during optimization. If one gene takes 

the value of 1, the corresponding variable is a proven platform variable, and will be 
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shared across the whole family during optimization; otherwise, it is still 

undetermined and requires the optimization procedure to finalize the sharing status. 

6.3.2 Generic Operator: Mutation and Crossover 

Crossover and mutation are two main generic operators to realize the population 

evolution in GA. Crossover can help to explore new regions of the design space by 

exchanging the digits at a randomly chosen position. Even though selection and 

crossover effectively search and recombine extant solution, they occasionally lose 

some useful genetic features. Therefore, mutation is needed to avoid this situation 

and meanwhile increase the diversity of the population for the global search. 

To increase computational efficiency, two-point crossover is adopted, which 

involves randomly choosing two crossover sites in the mix-coded strings of parents 

and exchanging the digits between the selected two sites, as illustrated in Figure 6.5. 

 

Figure 6.5: Illustration of two-point crossover 

After crossover, the mutation operator is applied to the whole population in a 

specified probability. Since there are two different coding schemes in this work, two 

different mutation operators are adopted for binary and floating codes, respectively, 
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as shown in Figure 6.6. For binary codes, a simple switch between 0 and 1 is applied; 

for floating codes, a non-uniform mutation is applied to aim at both improving 

single-element tuning and reducing the disadvantage of random mutation in the 

floating point implementation (Michalewicz, 1994). The new operator is defined as 

follows: if st
v={v1, …, vm} is a chromosome (t is the generation number and m is the 

population size) and the element vk is selected for this mutation, the result is a vector 

st+1
v={v1, …, v’k, …, vm}, where 

' ( , )        0

( , )       1
k k

k
k k

v t UB v if a random digit is
v

v t v LB if a random digit is

  
   

              (6.1) 

and UB and LB are upper and lower bounds of the variable vk. The function Δ(t, y) 

returns a value in the range [0, y] such that the probability of Δ(t, y) being close to 0 

increases as t increases. This property causes this operator to search the space 

uniformly initially when t is small and very locally at later stages, thus increasing 

probability of generating the new number closer to its successor which is a random 

choice. We use the following function: 

(1 )
( , ) ( (1 ))

bt

Gy
t y p Round r

p


   


                           (6.2) 

where Δp is the required precision for the floating value; Round(x) returns the 

nearest integer; r is a random number from [0, 1]; G is the maximal generation 

number; b is a system parameter determining the degree of dependency on iteration 

number (Michalewicz, 1994) and we use b=0.5. 

 

Figure 6.6: Illustration of two mutation operators 
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6.3.3 Fitness Evaluation 

Fitness evaluation of product family design involves two aspects of performance 

and commonality. Fitness evaluation regarding performance can be easily obtained 

by averaging the individually normalized product performance according to 

equation 5.2. One of the challenges is constraint handling, in which genetic 

operation tends to generate the new chromosome randomly and often yield 

infeasible offspring. Toward this, we accomplish constraint handling from two 

aspects of range checking and compatibility. A penalty strategy is implemented after 

a new generation to penalize the infeasible chromosomes violating certain 

constraints. This technique does not simply reject the infeasible solutions which may 

contain much useful information about the optimal solutions and thus acquire a 

balance between information preservation and selection capability. However, those 

chromosomes that do not satisfy compatibility constraints are rejected right away 

and the new chromosomes will be produced and supplemented in the population. 

Another remaining challenge lies in the evaluation of commonality index, which 

requires dynamic calculation of the number of instance for each basic platforming 

element. Before computing the commonality index for each solution, we need to 

build the matrix to characterize the relationship between the basic platforming 

elements and design variables as follows:  

1 2

1 11 12 1

2 21 22 2

1 2

                         ...    
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 

                               (6.3) 

Imn is assigned a value of 1 if there is a relation between variable n and element m; 

otherwise, Imn is given 0. Therefore, the variable set Xem related to element m can be 
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described as follows.  
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For example, a planetary gear train to be investigated as a case study in the next 

chapter can be described with variables [F, Zr, Zs, Zp, Md, Np] and four basic 

platforming elements are identified: sun gear (e1), planet gear (e2), ring gear (e3), and 

planet carrier (e4). The engineering relation between variables and platforming 

elements can be found in (Roos and Spiegelber, 2004) and characterized by a matrix 

as follows. 
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  (6.5) 

Based on this matrix representation, each instance for one basic platforming 

element can be derived by assigning the corresponding parameter values, and then 

the following algorithm can be used to calculate the number of instances.  

Algorithm 2: Calculation of the number of instances N_ins for the basic 

platforming element ei 

Step 0: Begin with j=2, N_ins =1, temp_CI (status variable)=1. 

Step 1: If j <=N_p (family size), begin with k=1; else go to Step 6 

Step 2: If k<=j-1, compare instance j and k; else go to Step 4 

Step 3: If same, temp_CI=0, increment j by 1 and go to step 1; else, temp_CI=1, 

increment k by 1 and go to step 2. 
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Step 4: If temp_CI==1, N_ins for element i increase by 1; 

Step 5: Increment j by 1 and go to Step 1. 

Step 6: The number of instances for element i is recorded as N_ins. 

6.3.4 Selection 

To improve the efficiency of computation, a modified elitism-replacement-based 

strategy is adopted to select the next new generation from the parent and the 

offspring solutions generated (Michalewicz, 1994). The steps of the algorithm are 

listed as follows. 

Algorithm 3: Elitism-Replacement-based selection  

Step 1: Select t (10%) chromosomes with best fitness as elitism to be preserved 

for next generation. 

Step 2: Select r (40%) parents from current generation based on universal 

sampling method to be preserved for next generation. Each selected chromosome is 

marked as applicable to exactly one fixed genetic operation. 

Step 3: Selection pop_size (the size of population)-r-2t distinct chromosomes 

from current generation and copy them to next generation. 

Step 4: Let r+t parent chromosomes breed to produce exactly r+t offsprings 

Step 5: Insert these r+t new offsprings into the next generation. 

The above selections (Steps 2 and 3) are done according to stochastic universal 

sampling method (Baker, 1987). The elitism-replacement-based algorithm reserves 

the best solutions in the current generation and at the same time replaces those 

solutions with lower fitness with new offspring. Experimental results show the 

modified elitism-based strategy can acquire more stable and effective results when 

compared to the traditional approaches only involving evaluation and selection. 

6.3.5 Overall Workflow 
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The overall workflow for the proposed multi-objective optimization is 

summarized in Figure 6.7. To improve searching efficiency, the optimization 

program can be run without considering commonality objective and the generated 

family solutions are collected as seeds for later family design with varying level of 

commonality.    

 

Figure 6.7: Overall procedure of GA-based optimization 

6.4 Summary 

This chapter presents the development of a GA-based optimizer to assist in 

solving the multi-objective product family design and optimization problem. To 

solve the drawback of conventional weighted aggregation and maintain the 

computational expense at the economical level, we adopt an evolutionary dynamic 
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weighted aggregation method in the GA-based optimization to help explore multiple 

non-dominated solutions. 

In addition, different from the conventional methods with pre-specified platform 

or optimized single platform, the proposed product family design method determines 

the platforming direction during the evolving process by using computed 

commonality index of chromosomes as another objective function. On the other 

hand, normalized performance functions ensure the performance deviation from 

benchmark at the acceptable range. Those chromosomes with less performance loss, 

which also achieve higher index regarding the defined commonality, will have a 

larger possibility of being preserved from selection. This scheme enables designers 

to access the optima of multi-platforming settings at one stage. 
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Chapter 7 Case Study: A family of transmission 

module design 

In this chapter, we illustrate the proposed product family design method using a 

case study of designing a family of transmission modules for drills/drivers. Given 

explicitly analytical equations for the planetary gear train and the derived 

engineering metrics from system-level design phase, the simultaneous design of 

multiple transmission instances are constructed as a multi-objective optimization 

model, involving normalized performance and measured commonality. 

7.1 Introduction 

An industrial example of transmission modules for a family of cordless 

drills/drivers with different applications, e.g. household, workshop, construction, is 

used to demonstrate the proposed method. The function of a transmission module is 

to transmit power and speed (ωin) generated from the motor to the chuck with the 

output speed (ωout) at a targeted transmission ratio of (ωout/ωin). As shown in an 

explored view in Figure 7.1, each transmission generally consists of three coupled 

layers of planetary gears and in each layer, one driving sun gear meshes with several 

planet gears coupled to planet carrier simultaneously, while these planet gears 

engage the inside of the ring gear.  
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Figure 7.1: Explored structure of planetary gear train (Simpson et al., 2001b) 

One of the main factors to distinguish different market niches for drills/drivers is 

the torque output, ranging from 20 Nm to 50 Nm. Heavier drills transmit more 

torque and require larger dimensions of gears to meet allowable bending and contact 

stresses on the meshing teeth of each gear. Although this can be accomplished by 

increasing the number of planets, modules or the face width of gears, the 

proliferated components from unplanned individual design will impose undesirable 

manufacturing complexity and thereby diminish the benefits of providing the 

additional variety. So, it is very necessary to impose certain platform commonality 

on the family of planetary gear trains for different drills/drivers to reduce the 

average production cost and efforts, whilst minimizing performance loss when 

compared to individual design. 

In this case the family of planetary gear transmissions includes 5 variants [v1, v2, 

v3, v4 , v5], which are characterized by different torque outputs ([22, 27, 34, 40, 46] 

Nm) for the corresponding market niches according to market analysis in Table 4.4. 

The performance requirements include: minimum mass, targeted transmission ratio, 

and safety factor (SF). The targets and market preferences for all performance 

criteria are presented in Table 7.1. The transmission mass is designed to be 

minimized to lower the moment exerted on the user’s wrist. The mass target of each 

variant may be decided by analyzing the counterparts from the highly competitive 
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providers existing in the market. However the related information is not available in 

this case and the mass targets will be determined from individually optimal design 

of each product. SF for strength requirements is the most important functional 

characteristic, and targeted at higher value for larger torque output, as shown in 

Table 7.1, due to the heavy-duty requirement from harsh operating condition and 

additional hammering function. The transmission ratio is another important 

performance requirement for drills/drivers to generate certain rotational speed for 

various applications. In this case, the transmission module is a three-layer planetary 

gear where the second planetary layer can be engaged/disengaged to provide two 

different transmission ratios. Generally, cordless drills have 1,400 and 400 rpm for 

high and low output speeds, and the speed (at no load) of the standard electrical 

motor is around 20,000 rpm. Then the high to low ratio can be derived to be 14.29 

(20,000/1,400) and 50.0 (20,000/400), respectively and the transmission ratio for the 

three layers may be targeted for 4.29, 3.5, and 3.33 respectively. Detailed ratio 

derivation can be found in (Gear Manual, 2000).  

In this case, multiple performance responses are involved and their relative 

preference varies in the different market situation. SF is the crucial factor as it 

affects life expectancy of tools and determines the market domination. For a highly 

competitive market, it should be given highest priority. That means that SF should 

be compromised to the least extent by platform leveraging since family design 

results in members of product family losing performance to different extent. On the 

other hand, minimum mass of the gear train is not the best desirable performance 

characteristic because mass variation of gear train is generally smaller compared to 

the total mass of the drill. To reflect the relative importance of the respective 

performance criterion in the market preference, a weighted aggregation method is 
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used in this case to derive a single overall performance measure, and the setting of 

weight ratio is problem-dependent and a trial-and-error step. 

Table 7.1: Performance criteria with target and preference 

Family Member (pi, i=1,2,3,4,5) Performance
Criteria p1 (22Nm) p2 (27Nm) p3 (34Nm) p4 (40Nm) p5 (46Nm) 

Preference  

Mass Based on individual design of each layer Moderate priority 

Safety Factor 1.2 1.2 1.25 1.25 1.3 High priority 

Ratio 4.29/3.5/3.33 for layer 1, 2, 3 respectively Moderate priority 

7.2 Individual Design 

The application of the proposed method begins with individual design of each gear 

train. In other cases, this step may be not necessary if the benchmark can be collected 

from existing counterparts by other providers.  Figure 7.2 shows the simplified 

design model for the planetary gear. The derivation of the mathematical model for 

mass, SF and transmission ratio is given in the Appendix A and detailed formulas can 

be found in (Roos and Spiegelber, 2004; Gear Manual, 2000).  Table 7.2 lists 

information of 6 design variables in the model for the planetary gear, in which the 

variable range and type are obtained from experienced designers and (Gear Manual, 

2000). Three different types of variables are involved in this case: continuous, integer 

and discrete. The gear material is assumed to be consistent for the three layers. 

Table 7.2: Information of design variables 

Variables Description Range and type 

F Face width 1.5 mm ≤ F ≤15 mm, continuous 

Zs Num. of teeth on sun gear 10 ≤Zs ≤25, integer 

Zr Num. of teeth on ring gear 37 ≤Zr ≤52, integer 

Zp Num. of teeth on planet gear 6 ≤Zp ≤21, integer 

Md
* Gear module [ 0.6, 0.7, 0.8, 0.9]mm, discrete 

Np Number of planet gears 3≤Np ≤5, integer 
*Gear module describes the gear size and differs from the module extensively used in this thesis 
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The individual design model for the planetary gear train is shown in Figure 7.2. In 

summary, for each layer there are six variables, five constraints, and a single overall 

objective based on three aggregated performance responses. Dimension constraint 

(g1) imposes the outer diameter of ring gear to be within certain range to ensure that 

the ring gear of each layer can be assembled into the gear housing within required 

clearance. Relation (g2) and assembly constraints (g3) provide the acceptable 

conditions for assembly. Interference constraint (g4) ensures no interference occurring 

during operation. Strength constraint (g5) makes sure that the basic requirements of 

bending and contact stresses can be met. Detailed explanation of constraints can be 

referred in (Gear Manual, 2000). The gear material is powdered alloy steel for all 

layers. To aggregate the three performance objectives into an overall measure, weight 

ratio needs to be assigned to reflect their relatively importance. After trial test of 

different weight combinations on the design results, a ratio of (0.2/0.5/0/3) for mass, 

SF and ratio objectives, respectively, is applied to maintain high priority for SF. 

Meanwhile, estimated values of less than the possible minimum mass are assigned as 

the mass targets for each individual design. 
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Figure 7.2: Simplified design model for planetary gear train 
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The individual design is implemented with GA-based programming. Based on 

preliminary tests, a population size of 200, a mutation rate of 0.08, a crossover rate 

of 0.7, and a maximum generation limit of 400 are adopted during optimization. 

When run on the IBM T43 notebook with the 1.86 GHz processor, execution time 

for the whole GA optimization is approximately 30 seconds, allowing us to analyze 

the results very quickly. Figure 7.3 shows one running examples of individual 

design. GA optimizer converges and returns the optimal result after 100 generations. 

 

Figure7.3: Running samples of individual deign 

Table 7.3 shows the results of the individual design of each layer for each gear train, 

which is solved 15 times (5 different torque requirements in 3 layers) by genetic 

algorithm. Note that not much commonality exists in the variable settings. 

Accordingly in each layer both SF and transmission ratios reach the design targets, 

and each variant achieves the lowest mass while meeting constraints. Also obvious is 

that the average mass of layer 3 plays a dominant part in the whole train due to the 

augmented torque output exerted on this layer. After totalizing the three layers of each 
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transmission, we derive a line of products with gradually increased weights ([67.1, 

75.9, 96.8, 109.0, 132.6] g) and with completely targeted requirements of SF and 

transmission ratio. 

Table 7.3: Results of individual design (benchmark) 

Design Variables Performance Variant 
F  Zs Zr Zp Md Np m(g) SF Ratio 

v1
1 1.5 14 46 16 0.6 3 10.5 1.32 4.29 

v2
1 1.6 14 46 16 0.6 3 10.6 1.20 - 

v3
1 1.6 14 46 16 0.6 4 11.6 1.25 - 

v4
1 1.9 14 46 16 0.6 4 12.6 1.25 - 

L
ay

er
 1

 

v5
1 2.3 14 46 16 0.6 4 14.2 1.30 - 

v1
2 2.8 16 40 12 0.7 4 19.0 1.20 3.50 

v2
2 2.4 20 50 15 0.6 5 21.4 1.20 - 

v3
2 3.3 20 50 15 0.6 5 25.3 1.25 - 

v4
2 5.5 16 40 12 0.7 4 28.4 1.25 - 

L
ay

er
 2

 

v5
2 6.9 16 40 12 0.7 4 33.0 1.30 - 

v1
3 9.0 18 42 12 0.6 5 37.6 1.20 3.33 

V2
3 11.0 18 42 12 0.6 5 43.8 1.20 - 

v3
3 11.1 21 49 14 0.6 5 59.9 1.25 - 

v4
3 13.0 18 42 12 0.7 5 68.0 1.25 - 

L
ay

er
 3

 

v5
3 12.4 18 42 12 0.8 5 85.5 1.30 - 

v1       67.1 
v2       75.9 
v3       96.8 

To
ta

ls
: 

v4       109.0 
 v5       132.6 

* Meet SF 
requirements 
 
* High Ra.=14.29 
Low Ra=50 

 

Further observation of results shows that the main difference of variable settings in 

each layer is the various combinations of different face width (F), module (Md), and 

number of planets (Np). The range of face width changes from 1.5mm to 12.4mm in 

order to meet stress requirements. The module also varies from uniform setting of 

0.6mm for layer 1 to mix of [0.6, 0.7, 0.8] mm for layer 2 and 3. The tooth numbers of 

the planet, sun, and ring gears (Zs, Zr, Zp) appear quite similar since the requirements 

of transmission ratio for all products are the same and completely determined by the 

function regarding Zs, Zr, Zp. Engineering experience from gear designers also 

provides a strong support that the three variables (F, Md, and Np) are very effective 

scales that can be varied to meet different torque requirements; on the other hand, 
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other variables (Zs, Zr, Zp) have no impact on performance variation and can be settled 

into platform setting. 

7.3 Platform Decision 

 

Figure 7.4: A scheme of the influence of platforming elements on processes 

The task of platform decision is to determine the basic platforming elements from 

views of manufacturing efficiency. Beforehand, an explicit analysis of production 

flow for planetary gears is required to fully understand the platforming effect on the 

manufacturing cost. The investigated planetary gear train is produced using powder 

injection molding method and the process flow is modeled in Figure 7.4 based on 

ABC principle. Several processes are required to fulfill the production of gear train; 

however, the molding process is most affected by family design and accordingly the 

greatest platforming benefit will be the reduced tooling cost by reusing molds among 

the family members. Typically, each layer has four basic parts to be manufactured. 

Although the sun gears in layers 2 and 3 and planet carriers in layers 1 and 2 are 

compound parts, we still view them as basic parts to avoid design confusion. If the 

dimensions of one part are all identical, the same mold can be reused and the tooling 



Chapter 7 Case Study 

103 

cost will be reduced. Otherwise, partially sharing dimensions for one component still 

generate various combinations and require different molds to be tooled. As stated 

previously in chapter 5, simply using variable sharing cannot guarantee the expected 

benefits from platform settings, and therefore, the basic platforming elements in this 

case are sun gear (e1), planet gear (e2), ring gear (e3), and planet carrier (e4). Other cost 

savings based on platform design may come from inventory management and 

experimental prototyping. However these indirect benefits are relatively less 

significant compared to tooling cost savings and are not considered in this example. 

The design variables are mapped into vectors of variables corresponding to the four 

basic elements as follows: 

Xe1=[x
1
e1, x

2
e1, x

5
e1]T=[F, Zs, Md]

T 

Xe2=[x
1
e2, x

4
e2, x

5
e2]T=[F, Zp, Md]

T 

Xe3=[x
1
e3, x

3
e3, x

5
e3]T=[F, Zr, Md]

T 

Xe4=[ x
3
e3, x

5
e4 , x

6
e4]T=[Zr, Md, Np]

T 

The ESD (wi
e) can be determined from variety cost of resource since one more 

instance of platforming element will incur certain additional cost of affected process. 

Table 7.4 shows the normalized ESD for the four basic platforming elements. In this 

case the additional cost simply comes from the molds to be tooled and corresponding 

tooling cost for the basic parts is collected based on historic data from the investigated 

company. For a more complicated production system, the variety cost for certain 

platforming element may stem from different processes and require aggregation of the 

additional costs of consumed resources to reflect its overall platforming effect on 

production. 
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Table 7.4: ESD for the basic platforming elements 

Platforming elements 
(e=[e1, e2, …]) 

Additional Cost 
(Ca

j, j=1… k) 
Normalized Weight 
(wi

e) 

Sun gear (e
1
) 5,000 RMB 5,000/28,000=0.18 

Planet gear (e
2
) 5,000 RMB 5,000/28,000=0.18 

Ring gear (e
3
) 10,000 RMB 10,000/28,000=0.35 

Planet carrier (e
4
) 8,000 RMB 8,000/28,000=0.19 

Total 28,000 RMB 1 

 

 In addition, to reduce the computational efforts, Zs, Zr, Zp are pre-selected as 

common variables to be shared by all variants since they have relatively little impact 

on performance variation. The following equation (7.1) is the formulated function of 

commonality index regarding the four basic platforming elements, and will be 

employed during optimization to calculate the commonality level across the family. 

1

1 2 3 4

( )
1

0.18 (5 ) 0.18 (5 ) 0.35 (5 ) 0.19 (5 )
    

4

k
je

C j
j

p S
w

p

S S S S









          



         (7.1) 

where Si, i=1, 2, 3 ,4 denotes the number of instances for the basic platforming elements 

and will be computed by comparing vector of variable values related to the target 

element among the product family. 

7.4 Aggregation of Multiple Objectives 

The model for the entire product family can be achieved by incorporating the 

commonality index as another objective. Equation (7.2) is the aggregated family 

design model with averaged performance normalization and commonality index. 
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where θmass
i, θSF

i, and θratio
i are the preference function to normalized mass, SF, and 

transmission ratio (Ra) based on the design target as shown in Figure 7.5. mT
i is the 

mass target derived from individual design results for product i. SFT
i, RaT

i is the 

respective target for SF and ratio, and will be fixed for all variants according to 

Table 7.1. The preference function for mass indicates that any mass less than or 

equal to target from individual design is considered completely satisfactory with a 

preference of 1. SF is normalized in similar manner. A triangular function is used to 

normalize the preference for ratio with a tolerance range of 10% deviation from the 

target based engineering experience. In this case we only adopt simple or linear 

preference functions for simplicity. More sophisticated functions could be used to 

precisely reflect performance satisfaction with respect to performance output.  

 

Figure 7.5: Preference functions for performance normalization 

7.5 Family Design using GA 

The family design and optimization for each layer is implemented in a Matlab® 

environment with the modified genetic algorithm, as detailed previously in chapter 6. 
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The aggregated two-objective function, including commonality and performance 

aspects, will provide an overall fitness value for solution selection. Here a maximum 

number of 1000 generations is specified as the criterion for termination. Based on 

the experimental test, a mutation rate of 0.08 and a crossover rate of 0.7 are used 

during optimization. For the family size in this case, a population size of 400 is 

found to give computational effectiveness, beyond which further improvement is 

marginal. Initially, the optimization program is run without considering 

commonality objective (γC=0) and the generated results are collected as seeds for 

later family design to improve searching efficiency.  

Multi-objective optimization using the conventionally weighted aggregation is 

conceptually straightforward and computationally efficient. However, there are some 

drawbacks which hamper accessing all Pareto fronts in the design space. For 

example, only one Pareto solution can be achieved from one single run of 

optimization; the discrete nature of some objectives (e.g. commonality index) might 

restrict the searching direction into the local optima (Jin et al., 2001). To overcome 

these drawbacks, the evolutionary dynamic weight aggregation method can be used 

to explore all the solutions along the Pareto front. It is suggested the change of 

weight should be smooth to allow the optimizer to move from one stable point to 

another (Jin et al., 2001). Based on trial test, it is found that a dynamic change of 

weights can be realized in the following way for the two-objective optimization: 

1/ 2

1/ 2

( ) (1 / )

( ) 1 (1 / )

P

C

t t G

t t G





 

  
                                       (7.3) 

where t is the generation index; G is the maximum number of generations (1000) to 

be run as stopping criterion. γP and γC are dynamically weighted functions for 

performance and commonality objectives, respectively.  
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Figure 7.6 shows the running examples of product family design based 

GA-optimizer. Implemented on the same running platform with individual design, 

family design requires more computational resource and execution time as much as 

12 minutes. In view of the discrete nature of measured commonality index, the 

fitness curve regarding commonality displays ladder-shape increase during 

evolutionary optimization. On the other hand, the normalized performance fitness 

decreases with increasing generations because of its gradually lower weight 

assignment.  

 

Figure 7.6 Running sample of product family design 

Due to the nature of the multi-objective problem, the GA optimizer generates 

some non-dominated solutions, none of which is superior to each other regarding 

both normalized performance criteria and commonality index. Thus, during 

optimization it is necessary to archive all non-dominated Pareto solutions. The 

detailed data of all the non-dominated solutions found during optimization (3 times 

running) can be referred at Appendix B and the plotted results for each layer 

regarding commonality index and normalized performance are shown in Figure 7.7.
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Figure 7.7: Plotted family solutions with varying level of commonality 
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With the plotted tradeoff charts in Figure 7.7, the engineering designers can be 

provided with various platform-based families with different level of commonality. 

However, the final decision involves mutual coordination from market and 

manufacturing, and cannot be achieved in a quantitative manner so far. The desirable 

family solutions should reduce average production cost for effective margin of 

platform settings while reducing the impact (e.g. market demands, overall product 

performance) of performance deviation to benchmark. In this case, the three layers 

of gear train are viewed as three different products and the decision of family 

solution can be accomplished individually. The first layer with small torque exerted 

on it requires small dimensions and mass to meet stress requirements. For a part 

with mass less than 15 g, the tooling cost is always a dominant factor (German, 

2003). On the other hand, performance loss resulting from family design mainly lies 

in the increased mass due to the assigned high priority for SF. However, compared 

to the whole transmission system, mass of layer 1 is much smaller that higher 

performance loss is acceptable from market view. Accordingly, the family solution 

at point 1, as shown in Figure 7.7 (a), is picked to provide one unique setting for all 

variant in the family. The selected product family offers 60% increase in defined 

commonality over the benchmark with only 3.64% performance deviation from 

targets. Similarly, the family solution for layer 2 can be picked at point 2, as shown 

in Figure 7.7 (b), to provide two different settings for the whole family since the 

increased mass augments the proportion of material cost and reduces the acceptable 

extent of performance deviation. Layer 3 transmits the largest torque and the 

increased mass plays the most important role in both overall cost and performance 

aspects. Thus the decision needs careful balance between performance loss and 

increased commonality. In Figure 7.7 (c), the commonality decreases rapidly from 
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60% at point 4 to about 5% at point 8 while the performance only loses about 2%; 

however, increasing commonality above 60% causes performance to decrease very 

rapidly. Thus the family solution for layer 3 can be picked at point 4 for the effective 

margin of commonality. The final family specification for each layer (point 1, 2, and 

4, respectively) with multi-platforming configuration is tabulated as follows. 

Table 7.5: Specification of multi-platforming family design 

Design Variables Performance Variant 
F  Zs Zr Zp Md Np m(g) SF Ra. 

v1
1 2.3 14 46 16 0.6 4 14.2 1.88 4.29 

v2
1 - - - - - - - 1.70 - 

v3
1 - - - - - - - 1.51 - 

v4
1 - - - - - - - 1.39 - 

L
ay

er
 1

 

v5
1 - - - - - - - 1.30 - 

v1
2 3.5 16 40 12 0.7 4 21.2 1.33 3.50 

v2
2 3.5 - - - - - 21.2 1.20 - 

v3
2 6.9 - - - - - 33.0 1.51 - 

v4
2 6.9 - - - - - 33.0 1.39 - 

L
ay

er
 2

 

v5
2 6.9 - - - - - 33.0 1.30 - 

v1
3 8.1 18 42 12 0.7 5 47.5 1.33 3.33 

V2
3 8.1 - - - 0.7 5 47.5 1.20 - 

v3
3 13.0 - - - 0.7 5 68.0 1.36 - 

v4
3 13.0 - - - 0.7 5 68.0 1.25 - 

L
ay

er
 3

 

v5
3 12.4 - - - 0.8 5 85.5 1.30 - 

v1       82.9 

v2       82.9 

v3       115.2 

To
ta

ls
: 

v4       115.2 

 v5       132.6 

* Meet SF 
requirements 
 
* High Ra.=14.29 
Low Ra=50 

 

Direct observation of parameter configuration in Table 7.5 indicates that there is 

one unique setting for layer 1 and thus all the products have one instance. For layer 

2, F is treated as the scalable variable and there are two different settings for the 

family. For layer 3, more variable settings with scalable F and Md are generated, and 

three settings are needed to differentiate the individual product. A further 

comparison with result from individual design, as shown in Table 7.6, finds that 

MPPF design achieves or exceeds the targets of SF and transmission ratio due to 
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assigned higher priorities and can be considered to be equivalent to the benchmark; 

however, each individual product has a mass increase with different extents 

(23.5%~5.4%) except variant v5 designed for the heaviest drill. Obviously, this 

multi-platform configuration results in the mass increase of each variant due to 

over-design of lower-end products, but achieves a higher level of commonality in 

the design space and makes it possible to reduce production cost by maintaining 

economies of scale. 

Family solutions are characterized by certain performance deviation from 

individually tailored design and increased commonality or reduced variety across 

family. However, based on different perspectives, commonality/variety encompasses 

different implications and thus exhibits evolutionary track during the family design. 

Figure 7.8 depicts three different scenarios of the average performance deviation 

with respect to: (a) measured commonality index, (b) number of variable instances, 

and (c) number of part instances. For example, in terms of the same number of 

variable instances as shown in Figure 7.8 (b), family solutions 6 and 7 result in 

different number of part instances, as shown in Figure 7.8 (c), due to the coupled 

relationship between design domain (variables) and physical entities (parts). 

Similarly, family solutions 4 and 5 have the same number of part instances but 

different measured commonality since the proposed index incorporates cost factors. 

In other words, inconsistent results of family design may be generated if the 

commonality is defined in a different way.  
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Figure 7.8: Performance deviation in layer 3 with respect to commonality (a), 

number of variable instances (b), and number of part instances (c)
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Table 7.6: Performance comparison of non-platform and platform designs 

Mass (m) Safety Factor Transmission Ratio 
vi Individual 

Design 
Family  
Design 

Difference Individual 
Design 

Family  
Design 

Difference Individual 
Design 

Family Design Differenc
e 

v1 67.1 82.9 23.5% 1.32/1.20/1.20 1.88/1.33/1.33 Equiv. 4.29/3.5/3.33 4.29/3.5/3.33 Equiv. 

v2 75.9 82.9 9.2% 1.20/1.20/1.20 1.70/1.20/1.20 - - - - 

v3 96.8 115.2 19.0% 1.25/1.25/1.25 1.51/1.51/1.36 - - - - 

v4 109.0 115.2 5.7% 1.25/1.25/1.25 1.39/1.39/1.25 - - - - 

v5 132.6 132.6 0 1.30/1.30/1.30 1.30/1.30/1.30 - - - - 

 

Table 7.7: Results of families with pre-specified single platforms 

 Design Variables Performance 

Layer 1 Layer 2 Layer 3 
Vi 

F  Zs Zr Zp Md Np F Zs Zr Zp Md Np F  Zs Zr Zp Md Np 
m(g) SF Ra. 

Product Family scaled around F 

v1 2.3 14 46 16 0.6 4 6.9 16 40 12 0.7 4 5.0 18 42 12 0.8 5 92.5 

v2 - - - - - - - - - - - - 6.2 - - - - - 98.8 

v3 - - - - - - - - - - - - 8.5 - - - - - 111.2 

v4 - - - - - - - - - - - - 10.0 - - - - - 119.4 

v5 - - - - - - - - - - - - 12.4 - - - - - 132.6 

* Meet SF 
requirements 
* High Ra.=14.29 
Low Ra.=50 

Product Family scaled around Np 

v1 2.3 14 46 16 0.6 4 6.9 16 40 12 0.7 4 12.4 18 42 12 0.8 3 118.7 

v2 - - - - - - - - - - - - - - - - - 3 118.7 

v3 - - - - - - - - - - - - - - - - - 4 125.7 

v4 - - - - - - - - - - - - - - - - - 4 125.7 

v5 - - - - - - - - - - - - - - - - - 5 132.6 

* Meet SF 
requirements 
* High Ra.=14.29 
Low Ra.=50 
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7.6 Verification and Discussion 

The result from proposed MPPF approach is verified by comparing with the ones 

based on the Product Platform Concept Exploration Method (PPCEM) (Simpson et 

al., 2001a). In their method, the platform variables are pre-selected as the scale 

factors from which the family members are derived. As suggested by Simpson 

(2001b), the two families with different scaling factors, Np and F respectively, are 

tested. Similarly, we implement the optimization with GA and Table 7.7 shows the 

final results. For each family, it is suggested that layers 1 and 2 should use the same 

set of variable configuration since their mass is much smaller compared to layer 3. 

In layer 3, one variable, F and Np respectively, is identified as a scale factor that can 

be varied to meet the individual performance requirements for each variant while 

keeping other variables common across the family. 

Considering the computational expense, the pre-specified single platform only 

explores the optimum regarding the performance objective. Thus it needs a smaller 

number of populations in GA optimization and relatively less computational time, 

compared to the MPPF method. With regard to the performance aspects, both SF 

and ratio achieve their targets in the two family solutions due to the high priorities 

for SF and transmission ratio.  The consequence is that the individual product 

exhibits non-uniform performance loss in mass due to much over-design of low-end 

products in the family as shown in Figure 7.9. Compared to the family scaled on F, 

the solution scaled on Np is found to have more mass deviation from the benchmark. 

The reason behind this may be that increasing number of planets for large torque 

based on platform design is not an effective method to maintain compact dimensions 

of gear train.  
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Figure 7.9: Mass comparison among the four family solutions 

Family design will generate less variety of parts to be produced. On the other 

hand, it can result in the over-design of dimensions of low-end products and thus 

increase the average material cost for each variant. Thus, it is necessary to evaluate 

the family design and its effect on production cost. Here we do not attempt to model 

the full cost of manufacturing planetary gear, but only investigate some important 

cost factors: powder, tooling, and overhead cost, which are potentially affected by 

the family design. The tooling cost (CT) for one set of molds including planet/sun 

gear, carrier and ring gear is approximately 28,000 RMB based on a case study of 

power tool company in China. Here we assume the product volume (Q) across the 

family is uniform and equal to 50,000 for each product. Molding cost (CM) is a fixed 

part of final cost since molding process has not affected by family design. Then the 

average cost for a family of products can be estimated using equation (7.4).   

( ) /P aver T T O MC C m N C C Q C       

where Cp is the material cost based on China market and maver refers to the average 

mass for a family of products; NT is the number of tooling sets; CO is the overhead 

cost and can be approximated from tooling cost. 
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Table 7.8: Cost comparison among individual and family designs 

Manufacturing Cost Factors 
Scheme 

Powder cost 
(CP=0.04g/RMB) 

Tooling cost 
(CT=28,000/set) 

Overhead cost 
(CO) 

Cost Comparison 
(Molding cost is fixed 
and 2.5 RMB/piece) 

Individual Design 
[67.1, 75.9, 96.8, 109.0, 132.6]g 
Average 3.85 RMB/piece 

15 sets of  molds to be tooled 
Average 1.68 RMB/piece 

Average 9.00 RMB/piece 

Multi-platforming 
Family Design  

[82.9, 82.9, 115.2, 115.2, 132.6]g 
Average 4.23 RMB/piece  

6 sets of  molds to be tooled 
Average 0.67 RMB/piece  

Average 7.56 RMB/piece  
(16%) decrease 

Family Design scaled 
around F 

[92.5, 98.8, 111.2, 119.4, 132.6]g 
Average 4.44 RMB/piece  

7 sets of  molds to be tooled 
Average 0.78 RMB/ piece 

Average 7.94RMB/piece 
(12%) decrease 

Family Design scaled 
around Np 

[118.7, 118.7, 125.7, 125.7, 132.6]g 
Average 4.97 RMB/piece  

3 sets of  molds to be tooled 
Average 0.34 RMB/Piece  

* More parts increase 
experiment, prototyping, 
and inventory cost 
 
* inverse proportional to 
production volume 
 
* Approximately 4% 
more tooling cost 
increase for one more 
set of molds  

Average 7.85 RMB/piece 
(13%) decrease 
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Table 7.8 shows the cost comparison of individual and the proposed family 

designs. It is estimated that, despite the material cost increase with larger dimensions, 

MPPF design can still reduce the production cost per piece for a line of 

transmissions by approximately 16% from tooling and overhead cost saving. When 

the other two families with the pre-specified platforms are taken into comparison, 

we find that the family with scale F is not the expected effective method to construct 

such a line. This is attributed to the fact that the sharing of variable F cannot 

generate the expected cost saving from tooling stage since the face width is coupled 

with other variables (e.g. Zs, Zr, Md) to jointly determine the dimensions of parts 

(sun, ring, and planet gears) to be tooled. The family with scale Np generates most 

cost saving from tooling since the number of planets (Np) is hardly coupled with 

other variables to affect the component dimensions. However, it will require much 

extra cost in material and consequently, this platform is also not a best choice for the 

product family in our case. But when the production volume for each product is 

reduced to 10,000 as shown in Figure10, this platform scaled around Np will provide 

a most economical solution to meet various requirements since tooling cost of other 

platforms accounts for more percentage of production cost in a low volume. 

Otherwise, when the production volume increases to 200,000 units for each product, 

individual design requires lowest cost due to material saving from individually 

optimized design. 

Furthermore, we can find that production quantity (Q) and material cost (CP) are 

two important factors affecting the appropriate use of family design. Smaller 

quantity of production needs certain component reuse to share the tooling and 

overhead cost, and move approximately the economical point to the direction of 

family design with higher level of commonality as shown in Figure 7.10; whereas, 
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larger quantity can stabilize the production cost and enable individual design to be a 

better choice. On the other hand, the higher material cost will depreciate the use of 

family design because of extra expense for over-design of low-end products. 

 

Figure 7.10: Comparison of the average production cost by four methods with 

varying volume 

7.7 Summary 

Through design of planetary gear transmission for power tool family, the 

proposed method for scale-based platform and product family design has provided 

an effective means to balance the tradeoff between commonality across the family 

and performance loss. Compared to the traditional scalable product family design, 

the proposed MPPF approach incorporates analysis of the platforming effect on the 

production cost and thus enables manufacturers to deliver a variety of products in 

cost-effectively manner. Meanwhile, the measured commonality index provides 

designers opportunity to explore alternative family solutions with varying level of 

commonality for various market demands.  
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Although this study has dealt with detail design of commonality as 

multi-objective optimization problem, successful implementation of scalable 

platform for practical application involves a few factors (e.g. availability of 

analytical or simulation model). It would be desirable to develop an effective and 

efficient optimizer with standard interface to easily build and solve different family 

design problems. In addition, how to integrate the proposed family design approach 

into computer-aided support system (e.g. CAD, CAE) need to be addressed in the 

future study.
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Chapter 8 Conclusion 

This chapters gives a summary of the methods presented in this dissertation, 

discusses the contribution of research, and proposes several recommendations for 

future work, 

8.1 Conclusion 

The main objective in this research is to provide a systematic top-down method to 

design a family of platform-based products based an umbrella of modularity and 

commonality.  

Effective product family design begins with a systematic modularization 

procedure of product architecture in the context of mass customization to achieve 

modularity. The proposed method begins with product family planning, and then 

adopts the functional modeling method to identify module boundary. To estimate 

variance degree of each module due to different customer requirements, Variety 

index is developed at the early stage of product family development by establishing 

the attribute-module relation from two perspectives: specification implementation 

and specification propagation. Finally, instance specifications for all modules are 

derived and integrated to form product portfolio architecture, which provides an 

engineering view of variety generation and develops targets for further product 

family design.  

Commonality is another important issue at the detailed design stage of module 

instantiation, which aims to concurrently design a series of product members 

through scaling platform settings. The proposed method for scale-based platform 
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and product family design has provided an effective means to balance the tradeoff 

between commonality across the family and performance loss. A 

manufacturing-biased platform decision strategy is developed to measure the level 

of commonality as commonality index, which is aggregated into the family design 

with normalized performance objective. To solve this multi-objective optimization 

problem, a modified GA optimizer is developed.  

Although both modularity and commonality are recognized as two essential issues 

for platform development, the implementation of the proposed framework can be 

scaled down to fit reality of target design. For highly standardized design, the 

platforming direction may be confined to modular aspect of product architecture; for 

highly integrated design, only commonality may be the desirable issues. 

8.2 Contributions 

The contribution of the proposed platform-based family design approach can be 

captured as follows: 

8.2.1 Modularity Analysis for Variety Generation  

Recognizing the necessity to explore the customization effect on product 

architecture, this study investigates the architectural robustness of product family 

architecture by extending the concept of the traditional product architecture and 

modeling the product family architecture (PFA) as a conceptual structure with three 

important interrelated elements: module, variant and coupling interface. Variants in 

terms of different customer requirements act as the external drivers of architectural 

variation, which is then propagated within the product architecture through module 

interaction. Within this framework, a step-by-step method to systematically 
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modularize the PFA has been proposed. Rather than just identification of the module 

boundary, the proposed modularization methods translates the variety source 

generated from requirements analysis into a dynamic configuration of the conceptual 

PFA, involving variety analysis, functional modularization and generation of 

product portfolio architecture (PPA). The PPA provides an engineering insight to 

understand product variety in terms of conceptual module configuration and 

meanwhile develops the targets for the further development of product family. 

8.2.2 Manufacturing-biased Platform Decision 

In the light of the basic premise that increased commonality implies reduced 

complexity and cost of manufacturing, we present an effective commonality 

decision strategy to help dynamically determine the shared elements and thus 

generate an economical platform configuration. By coordinating design with 

production stages, we first propose the concept of the basic platforming elements, 

whose reuse will reduce manufacturing complexity and thus improve economic 

benefit. Then the proposed strategy takes into account expected sharing degree to 

reflect their contribution of those elements to cost savings and adopts an effective 

quantification to measure the reuse degree of platforming elements across the whole 

family as commonality index (CI). The proposed CI can serve as an efficiency 

indicator of reduced manufacturing complexity or cost savings from family design, 

and also as a means to control the level of commonality and assure the platforming 

direction in a desired economical manner when incorporated in the family design.  

8.2.3 Effective GA-based Optimizer for Product Family Design 

Unlike most existing methods that assume a given single platform, our research 

attempts to address the multi-platforming configuration across the family by 
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incorporating the quantified level of commonality into the family design and 

optimization. The proposed method not only yields better solutions through more 

effective exploration of design space, but also achieves alternative product family 

settings with different levels of commonality.  

The product family design problem with two conflicting objectives: performance 

and commonality, is normalized and aggregated into one single overall function. A 

modified genetic algorithm is developed to solve the mixed-type optimization 

problem. The evolutionary weighted aggregation is adopted to dynamically change 

the weight assignment among objectives so that the optimizer can access all points 

along the Pareto front. This dynamic weighted method not only avoids the drawback 

of conventional weighted aggregation, but also maintains the computational expense 

at the economical level. 

8.3 Recommendation for Future Work 

  While the methods developed in this thesis can assist engineering designers in the 

development of product family, there are still several opportunities for further 

investigation and improvement.   

8.3.1 Interface Design for PFA 

Although this study highlights some important issues regarding the variety 

analysis and modularization of the conceptual product family architecture, there are 

still some limitations that need to be solved in future research. For example, 

interface can be another important aspect in product family architecture. How to 

evaluate or quantify the degree of coupling interfaces existing among the modules 

and their effect on product family development may be a challenge for further 
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research.  

8.3.2 Integration of Market Research 

It is always assumed that the reduced performance loss from family design and 

optimization increases customer satisfaction or sales, but a more realistic model 

should take into account some other factors (e.g. volume, distribution) existing in 

the market and allow designers to gain a comprehensive insight into issues regarding 

family design. As illustrated in the case study of transmission module, the demand 

volume determines the final evaluation of family design and in turn affects the 

decision on the desired level of commonality. Moreover, demand distribution 

information would help designers focus on particular sets of products. Those 

products that have a higher volume of sales or are sensitive to performance variation 

should be given more attention or favor with respect to their performance. However, 

such information as volume distribution and performance preference is not available 

in this case study, so a more systematic study is not possible at this stage. Therefore, 

future work should improve on the decision model and incorporate the 

cross-functional information consisting of design, manufacturing, and marketing 

into the more precise modeling of family design to realize a successful product 

platform.  

8.3.3 Improvement of Computational Efficiency 

Improvement of the computational efficiency for a large-scale family design 

problem can be included in future studies to make optimization tractable. Although 

GA-based optimizer provides an effective means to access the non-dominated Pareto 

front, the design space may expand increasingly when the size of product family or 

number of design variables increases so that one-stage method cannot deal with the 
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complexity and computational expense. Instead, two-stage approaches seem well 

suitable for optimizing a product platform and the corresponding family members 

separately. Detailed implementation of the new optimization procedure may be 

investigated in the future work. 
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Appendix A 

 

Figure A1: Sketch of a three wheel planetary gear train (Roos and Spiegelber, 2004) 

The formulae for planetary gear train are presented here. Only those final equations 

for mass, SF and stress analysis, and transmission ratio are given because of the 

limited pages. Detailed derivation can be found in (Roos and Spiegelber, 2004; Gear 

Manual, 2000). Since the planetary gear consists of one internal gear pair (the ring and 

planet gears) and one external gear pair (the sun and planet gears), both pairs have to 

be checked with respect to Hertzian pressure and bending fatigue as follows.  

Mass of planetary gear for one layer: 
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where ms, mr, mp and mc are the masses of the sun gear, ring gear, planet gears and 

planet carrier respectively. 

Transmission ratio: 
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where ωout is the output rotating speed and ωin is the input rotating speed.  
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Safety Factor and Stress Analysis: 
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Assuming the same material in all wheels, the maximum allowed stresses may be 

found out in the gear design manual depending on the material property. There is 

however one exception to this, the maximum root bending stress of the planet 

wheels. Since the peripheral (load) force changes sign every second contact, it is 

necessary to reduce the allowed bending stress with 30% (Gear Manual, 2000). 

, 0.7F all
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



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The following table lists the design factors used in equations of planetary gear 

train, include their descriptions, constant values and equations to derive values. 

Table A.1: Design Factors for planetary gear design (α=20o) 

Design Factor Description Value 

YF Form factor  Approximately YF =2.2+3.1e-z/14 

Yβ Helix angle factor Yβ=1 for spur gear 
Yε Contact ratio factor Yε=1/εa 

ZH Form (Zone) factor ZH=(4/sin2a)1/2 for spur gear, ZH=2.50 

ZM Material factor 2 3
1 2

1 2

1

1 1
( )

MZ
v v

E E



 


 

Zε Contact ratio factor 
4

3
aZ


  

Ka Application factor Ka=1 
Kv Dynamic factor Kv=1 
KFa, KHa KFa, KHa =1  
KFβ, KHβ 

Load distribution 
factor KFβ, KHβ=1.3 
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Table A2: Radial Contact Ratio of Standard Spur Gears, εα (α=20o) 

 12 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 
12 1.420                     
15 1.451 1.481                    
20 1.489 1.519 1.557                   
25 1.516 1.547 1.584 1.612                  
30 1.537 1.567 1.605 1.633 1.654                 
35 1.553 1.584 1.622 1.649 1.670 1.687                
40 1.567 1.597 1.635 1.663 1.684 1.700 1.714               
45 1.578 1.609 1.646 1.674 1.695 1.711 1.725 1.736              
50 1.588 1.618 1.656 1.683 1.704 1.721 1.734 1.745 1.755             
55 1.596 1.626 1.664 1.691 1.712 1.729 1.742 1.753 1.763 1.771            
60 1.603 1.633 1.671 1.698 1.719 1.736 1.749 1.760 1.770 1.778 1.785           
65 1.609 1.639 1.677 1.704 1.725 1.742 1.755 1.766 1.776 1.784 1.791 1.797          
70 1.614 1.645 1.682 1.710 1.731 1.747 1.761 1.772 1.781 1.789 1.796 1.802 1.808         
75 1.619 1.649 1.687 1.714 1.735 1.752 1.765 1.777 1.786 1.794 1.801 1.807 1.812 1.817        
80 1.623 1.654 1.691 1.719 1.740 1.756 1.770 1.781 1.790 1.798 1.805 1.811 1.817 1.821 1.826       
85 1.627 1.657 1.695 1.723 1.743 1.760 1.773 1.785 1.794 1.802 1.809 1.815 1.821 1.825 1.830 1.833      
90 1.630 1.661 1.699 1.726 1.747 1.764 1.777 1.788 1.798 1.806 1.813 1.819 1.824 1.829 1.833 1.837 1.840     
95 1.634 1.664 1.702 1.729 1.750 1.767 1.780 1.791 1.801 1.809 1.816 1.822 1.827 1.832 1.836 1.840 1.844 1.847    
100 1.636 1.667 1.705 1.732 1.753 1.770 1.783 1.794 1.804 1.812 1.819 1.825 1.830 1.835 1.839 1.843 1.846 1.850 1.853   
110 1.642 1.672 1.710 1.737 1.758 1.775 1.788 1.799 1.809 1.817 1.824 1.830 1.835 1.840 1.844 1.848 1.852 1.855 1.858 1.863  
120 1.646 1.676 1.714 1.742 1.762 1.779 1.792 1.804 1.813 1.821 1.828 1.834 1.840 1.844 1.849 1.852 1.856 1.859 1.862 .867 1.871 
RACK 1.701 1.731 1.769 1.797 1.817 1.834 1.847 1.859 1.868 1.876 1.883 1.889 1.894 1.899 1.903 1.907 1.911 1.914 1.917 1.922 1.926 
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Appendix B 

The following tables show alternative family solutions with varying level of 

commonality for layer 1, 2 and 3. 

Table B1: Specification of multi-platforming family design (Layer 1) 

Design Variables Performance Variant 
F  Zs Zr Zp Md Np m(g) SF Ra. 

v1
1 2.3 14 46 16 0.6 4 14.2 1.88 4.29 

v2
1 - - - - - - - 1.70 - 

v3
1 - - - - - - - 1.51 - 

v4
1 - - - - - - - 1.39 - 

Solution 1 
CI=1.000 

v5
1 - - - - - - - 1.30 - 

v1
1 1.8 14 46 16 0.6 4 12.5 1.67 4.29 

v2
1 1.8 - - - - - 12.5 1.51 - 

v3
1 1.8 - - - - - 12.5 1.35 - 

v4
1 1.8 - - - - - 12.5 1.24 - 

Solution 2 
CI=0.8225 

v5
1 2.3 - - - - - 14.2 1.30 - 

v1
1 1.8 14 46 16 0.6 3 11.5 1.45 4.29 

v2
1 1.8 - - - - 3 11.5 1.31 - 

v3
1 1.8 - - - - 4 12.5 1.35 - 

v4
1 1.8 - - - - 4 12.5 1.24 - 

Solution 3 
CI=0.7500 

v5
1 2.3 - - - - 4 14.2 1.30 - 

v1
1 1.5 14 46 16 0.6 3 10.5 1.32 4.29 

v2
1 1.5 - - - - 3 10.5 1.19 - 

v3
1 1.8 - - - - 4 12.5 1.35 - 

v4
1 1.8 - - - - 4 12.5 1.24 - 

Solution 4 
CI=0.6450 

v5
1 2.3 - - - - 4 14.2 1.30 - 

v1
1 1.5 14 46 16 0.6 3 10.5 1.32 4.29 

v2
1 1.5 - - - - 3 10.5 1.19 - 

v3
1 1.6 - - - - 4 11.9 1.29 - 

v4
1 1.8 - - - - 4 12.5 1.24 - 

Solution 5 
CI=0.5725 

v5
1 2.3 - - - - 4 14.2 1.30 - 
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Table B2: Specification of multi-platforming family design (Layer 2) 

Design Variables Performance Variant 
F  Zs Zr Zp Md Np m(g) SF Ra. 

v1
2 5.4 16 40 12 0.7 4 28.1 1.67 3.50 

v2
2 - - - - - - - 1.51 - 

v3
2 - - - - - - - 1.35 - 

v4
2 - - - - - - - 1.24 - 

Solution 1 
CI=1.000 

v5
2 - - - - - - - 1.16 - 

v1
2 3.5 16 40 12 0.7 4 21.2 1.33 3.50 

v2
2 3.5 - - - - - 21.2 1.20 - 

v3
2 6.9 - - - - - 33.0 1.51 - 

v4
2 6.9 - - - - - 33.0 1.39 - 

Solution 2 
CI=0.8225 

v5
2 6.9 - - - - - 33.0 1.30 - 

v1
2 3.5 16 40 12 0.7 4 21.2 1.33 3.50 

v2
2 3.5 - - - - - 21.2 1.20 - 

v3
2 5.5 - - - - - 28.4 1.36 - 

v4
2 5.5 - - - - - 28.4 1.25 - 

Solution 3 
CI=0.6450 

v5
2 6.9 - - - - - 33.0 1.30 - 

v1
2 3.5 16 40 12 0.6 4 21.2 1.33 3.50 

v2
2 3.5 - - - - - 21.2 1.20 - 

v3
2 4.7 - - - - - 25.7 1.25 - 

v4
2 5.5 - - - - - 28.4 1.25 - 

Solution 4 
CI=0.4675 

v5
2 6.9 - - - - - 33.0 1.30 - 

v1
2 2.8 16 40 12 0.6 4 19.1 1.20 3.50 

v2
2 3.5 - - - - - 21.2 1.20 - 

v3
2 4.7 - - - - - 25.7 1.25 - 

v4
2 5.5 - - - - - 28.4 1.25 - 

Solution 5 
CI=0.2900 

v5
2 6.9 - - - - - 33.0 1.30 - 
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Table B3: Specification of multi-platforming family design (Layer 3) 

Design Variables Performance Variant 
F  Zs Zr Zp Md Np m(g) SF Ra. 

v1
3 12.9 18 42 12 0.7 5 67.6 1.68 3.33 

v2
3 - - - - - - - 1.52 - 

v3
3 - - - - - - - 1.35 - 

v4
3 - - - - - - - 1.25 - 

Solution 1 
CI=1.000 

v5
3 - - - - - - - 1.16 - 

v1
3 8.1 18 42 12 0.7 5 47.5 1.33 3.33 

v2
3 8.1 - - - - - 47.5 1.20 - 

v3
3 13.0 - - - - - 68.0 1.36 - 

v4
3 13.0 - - - - - 68.0 1.25 - 

Solution 2 
CI=0.8225 

v5
3 13.0 - - - - - 68.0 1.17 - 

v1
3 8.1 18 42 12 0.7 5 47.5 1.33 3.33 

v2
3 8.1 - - - - - 47.5 1.20 - 

v3
3 11.1 - - - - - 60.0 1.25 - 

v4
3 15.0 - - - - - 76.4 1.34 - 

Solution 3 
CI=0.6450 

v5
3 15.0 - - - - - 76.4 1.25 - 

v1
3 8.1 18 42 12 0.7 5 47.5 1.33 3.33 

v2
3 8.1 - - - 0.7 - 47.5 1.20 - 

v3
3 13.0 - - - 0.7 - 68.0 1.36 - 

v4
3 13.0 - - - 0.7 - 68.0 1.25 - 

Solution 4 
CI=0.5725 

v5
3 12.4 - - - 0.8 - 85.5 1.30 - 

v1
3 6.6 18 42 12 0.7 5 41.2 1.20 3.33 

v2
3 8.1 - - - 0.7 - 47.5 1.20 - 

v3
3 13.0 - - - 0.7 - 68.0 1.36 - 

v4
3 13.0 - - - 0.7 - 68.0 1.25 - 

Solution 5 
CI=0.3950 

v5
3 12.4 - - - 0.8 - 85.5 1.30 - 

v1
3 8.1 18 42 12 0.7 4 44.0 1.19 3.33 

v2
3 8.1 - - - 0.7 5 47.5 1.20 - 

v3
3 11.1 - - - 0.7 5 60.0 1.25 - 

v4
3 13.0 - - - 0.7 5 68.0 1.25 - 

Solution 6 
CI=0.3225 

v5
3 12.4 - - - 0.8 5 85.5 1.30 - 

v1
3 6.6 18 42 12 0.7 5 41.2 1.20 3.33 

v2
3 8.1 - - - 0.7 - 47.5 1.20 - 

v3
3 11.1 - - - 0.7 - 60.0 1.25 - 

v4
3 13.0 - - - 0.7 - 68.0 1.25 - 

Solution 7 
CI=0.2175 

v5
3 12.4 - - - 0.8 - 85.5 1.30 - 
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