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Summary 

 
Retrovirus particles are surrounded by a lipid envelope that is acquired from their host 

cell during budding. While it is clear that lipids play important roles in its replication cycle, 

many potential functions remain poorly characterized. An important first step towards 

elucidating these functions would be a detailed biochemical characterization of the lipid 

inventory of retrovirus envelopes. We hypothesize that the enrichment of particular lipid 

classes in retrovirus envelopes is an indication that these lipids may play important roles in 

retrovirus replication (Aloia et al., 1993; Brugger et al., 2006).  

The lipidome of highly purified retroviruses human immunodeficiency virus (HIV) 

and murine leukemia virus (MLV) was analyzed comparatively to their corresponding host 

membrane lipids. Using primarily electrospray ionization mass spectrometry (ESI-MS) based 

methods, a wide variety of lipid classes were covered in this analysis, including 

glycerophospholipids, sphingolipids, glycerolipids and sterols. We report that both HIV and 

MLV share a similar lipid composition to their host plasma membrane and each other despite 

being produced from different cell types. Significantly, a few classes of lipids remain 

enriched in the both retrovirus envelopes over their respective host plasma membrane: 1) 

phosphoinositides, phosphorylated derivatives of phosphatidylinositol; 2) raft lipids including 

cholesterol, ceramide and the glycosphingolipid GM3. Microvesicles, which are similar in 

size to viruses and are also released from the plasma membrane of HIV producing cells, 

exhibit a similar lipid composition to retroviruses. However, while microvesicles are enriched 

in raft lipids, they are not enriched in phosphoinositides. These data suggest that while raft 

lipids may play a general role in vesicle budding, phosphoinositides seem to play a critical 

role specifically in retrovirus assembly and budding.  
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Based on the lipid composition analysis, we first decided to investigate the role of 

phosphoinositides in retrovirus budding. Analysis of virus like particles produced using 

mutant HIV Gag mapped the enrichment of PIP2 in HIV envelope to the polybasic matrix 

domain of HIV Gag. One specific phosphoinositide isomer, PI(4,5)P2, has been implicated in 

membrane targeting of HIV Gag (Ono et al., 2004; Saad et al., 2006). Consistent with this 

observation, we showed that enzymatic depletion of PI(4,5)P2 from cells reduced both HIV-1 

and MLV production. In the second line of investigation, we studied the effects of using 

phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP) to deplete cellular 

glycosphingolipid levels and its impact on MLV infectivity. We demonstrated that MLV 

infectivity may be hindered or enhanced by PPMP treatment, depending on whether 

glycosphingolipids are virus- or cell-associated. Thirdly, we examined the asymmetric 

distribution of aminophospholipids in purified MLV. Aminophospholipids that was exposed 

on the outer leaflet of MLV envelopes was modified using trinitrobenzenesulfonic acid 

(TNBS) and analyzed by ESI-MS. It was found that plasmalogen phosphatidylethanolamine 

are specifically enriched in the outer leaflet of the MLV membrane. 

Overall, the lipidomics experimental approach used in this study enabled the 

identification of several important lipid molecules that contribute significantly towards 

retroviral replication. Taking a broader view, this approach should be equally useful in the 

study of other medically important enveloped viruses.  
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Chapter 1 – Introduction 
 

The Acquired Immune Deficiency Syndrome, commonly known as AIDS, continues 

to be a major health pandemic. Based on the 2007 AIDS Epidemic Update published jointly 

by UNAIDS and WHO (UNAIDS and WHO, 2007), it was estimated that 33.2 million 

people worldwide, of which 2.5 million are children under 15 years old, live with Human 

Immunodeficiency Virus (HIV), the causative agent of AIDS. The bulk of these patients live 

in Sub-Saharan Africa (22.5 million) followed by South and South East Asia (4.0 million), 

Eastern Europe and Central Asia (1.2-2.0 million) and Latin America (1.6 million). The 2007 

death toll as a result of AIDS was approximately 2.1 million people worldwide with 76% of 

these deaths occurring in sub-Saharan Africa (UNAIDS figures), making AIDS the leading 

cause of death in that region. Because of such blistering figures, it is not surprising to know 

that HIV is one of the world’s most intensively studied human pathogen. As a result, 

enormous progress has been made in understanding molecular details of HIV replication 

cycles.  

 

1.1 Basic retrovirus biology 
 

While HIV is one of the most studied member of the Retroviridae family, it belongs to 

just one of seven genera or subfamilies. These seven include Alpharetrovirus, Betaretrovirus, 

Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus (all of which used to be classified under 

the Oncovirus genus), Lentivirus (which includes HIV) and Spumavirus (Table 1). 

Retroviruses cause a wide variety of diseases besides AIDS, ranging from malignancies and 

neurological disorders. All retroviruses genomes contain three major structural genes – 

group-specific-antigen protein (Gag), Gag-polymerase (Pol) and the envelope glycoprotein 
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(Env). Retroviruses can be further described as simple or complex depending on the presence 

of additional genes. The genomes of simple retroviruses such as Murine Leukemia Virus 

(MLV) and Avian Leukosis Virus (ALV) consist only of three structural genes, whereas 

complex retroviruses such as HIV and Simian Immunodeficiency Virus (SIV) contain 

additional regulatory and accessory genes such as negative regulatory factor (Nef), viral 

infectivity factor (Vif), regulator of virion (Rev), transactivator (Tat), viral protein R, and 

viral protein U or viral protein X, all of which are essential for viral pathogenesis in vivo 

(Malim and Emerman, 2008). 

 

Genus Examples Morphology 

Alpharetrovirus Avian leukosis virus (ALV) C-type 

  Rous sarcoma virus (RSV)   

Betaretrovirus Mouse mammary tumor virus (MMTV) B-, D-type 

  Mason-Pfizer monkey virus (MPMV)   

  Jaagsiekte sheep retrovirus (JSRV)   

Gammaretrovirus Murine leukemia virus (MLV) C-type 

  Feline leukemia virus (FLV)   

  Gibbon ape leukemia virus (GaLV)   

Deltaretrovirus Human T-lymphotropic virus (HTLV)-1, -2 - 

  Bovine leukemia virus (BLV)   

  Simian T-lymphotropic virus (STLV)-1, -2, -3   

Epsilonretrovirus Walleye dermal sarcoma virus - 

  Walleye epidermal hyperplasia virus 1   

Lentivirus Human immunodeficiency virus (HIV)-1, -2 Rod/cone core 

  Simian immunodeficiency virus (SIV)   

  Equine infectious anemia virus (EIAV)   

  Caprine arthritis encephalitis virus (CAEV)   

Spumavirus Human foamy virus (HFV) Immature 
Table 1. The retrovirus family and their representative species. 

 

The basic structural unit of a retroviral virion is similar to other enveloped viruses 

(Figure 1A). Each infectious virion carries two identical positive-sense RNA genome 

contained within a protein cage of matrix (MA), capsid (CA), and nucleocapsid (NC) 
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subunits that are formed by the proteolysis of a Gag precursor protein during virus 

maturation. The Pol gene products are packaged into the viral core consisting of reverse 

transcriptase (RT) responsible for the conversion of viral RNA into DNA, protease (PR) 

responsible for processing Gag precursor proteins into their mature products, and integrase 

(IN) that inserts the viral DNA in the host genome. Encapsulating this core is a host derived 

lipid bilayer that provides a protective membranous envelope to house its fusion glycoprotein 

Env.  

The general replication cycle of retroviruses is illustrated in Figure 1B. In the early 

phase of its replication cycle, retroviruses gain entry into cells by first binding to specific 

receptors on the cell surface, followed by the fusion of the virion membrane with the host 

membrane. This process releases the internal viral core containing the reverse transcription 

complex (RTC) into the cytoplasm followed by its disassembly. The RTC containing the viral 

RNA and RT protein performs the reverse transcription of the RNA genome into double 

stranded cDNA, which is next delivered into the nucleus in the form of a pre-integration 

complex (PIC). In the nucleus, the PIC becomes uncoated and the cDNA is integrated into 

the host genome by the IN activity, resulting in a provirus that serves as a template for 

transcription of viral mRNA by the host RNA polymerase II system. It is this DNA 

intermediate step that is unique to retroviruses. Comparatively, other RNA viruses utilize 

their genomes directly as mRNA for the production of viral proteins. 
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Figure 1. Illustrative cartoon of a retrovirus particle (A). Simplified illustration of the retrovirus lifecycle (B).  
Retroviruses enter cells through initial contact with its receptors followed by fusion of the virus particle (Step 
1). RTC is released into the cell and the RNA genome is reverse transcribed into double stranded cDNA as part 
of the PIC (Step 2). The cDNA is delivered into the cell nucleus and integrated in the host genome (Step 3). The 
viral cDNA is transcribed (Step 4) and viral RNA is translated (Step 5) using the host cell machinery to produce 
Gag and other proteins not shown here (Step 6). In most cell types, Gag/GagPol RNA precursors are targeted to 
plasma membrane for assembly and budding through acidic membrane lipids such as PI(4,5)P2 (Step 7). Gag 
then recruits ESCRT proteins which assist the budding (Step 8) and fission process (Step 9). Infective viruses 
are produced through viral protease action (Step 10). However, in some cell types, Gag may be targeted to 
MVBs, budding into its lumen using the ESCRT machinery (Step 11). These viruses are released from the cell 
when MVBs fuses with the limiting plasma membrane (Step 12). Host structures and virus structures are labeled 
in green and red respectively. Please see text for additional details and references. 
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The late phase of the retroviral life cycle begins with the processing and export of 

viral mRNA out of the nucleus. Following viral protein translation, Gag proteins and viral 

RNAs are transported to the site of particle assembly. Depending on cell type and virus 

species, the assembly site can occur at the plasma membrane (Jouvenet et al., 2006; Neil et 

al., 2006; Ono and Freed, 2004) or at multivesicular bodies (MVBs) via the vesicular 

trafficking pathway (Mothes et al., 2000b; Nguyen et al., 2003; Ono and Freed, 2004; 

Pelchen-Matthews et al., 2003). The process of retrovirus budding requires the endosomal 

sorting complex required for transport (ESCRT) machinery, which is a collection of 

approximately 20 host proteins that mediate cargo protein sorting into the endosomal 

pathway under normal cellular function. In retrovirus infected cells, Gag redirects multiple 

components of the host ESCRT machinery to the budding site at the plasma membrane or 

MVBs to promote virion budding and release (Strack et al., 2003; von Schwedler et al., 

2003). This is followed by viral protease action that produces mature retrovirus particles. 

 

1.2 The role of lipids in retrovirus replication 
 

The replication cycle of retroviruses and other enveloped viruses is a process 

regulated by the synergistic interaction of viral proteins and host factors. Unlike proteins, the 

contribution of lipids to this process has been largely neglected thus far. Lipids can be 

envisioned as multidimensional entities, from larger lipid aggregates such as the lipid rafts 

within subcellular membranes to structurally diverse single lipid molecules (Figure 2). In 

addition, lipids are non-randomly distributed in cellular membranes, which serve to 

compartmentalize their function in specific cellular locations (Figure 3). Like proteins, the 

structural diversity and topological specificity of lipid molecules translate to a myriad of 

potential functional roles in general enveloped virus replication (Table 2). The following 

review will mostly focus on the functions of lipids with respect to retroviruses. 
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Figure 2. Lipid diversity in nature. 
Lipids are grouped in five different classes according to their structural and chemical properties. Prominent 
representatives of each lipid are illustrated. Figure taken from (Wenk, 2005).  
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Stage Involvement of lipids Selected References 
   

Extracellular Viral envelopes are enriched in sphingomyelin (Brugger et al., 2006; van 
Genderen et al., 1994) 

 Envelope cholesterol is critical for structure and 
infectivity 

(Campbell et al., 2002; Graham 
et al., 2003) 

   

Docking Phosphatidylserine stimulates entry of enveloped viruses (Callahan et al., 2003; Coil and 
Miller, 2005a) 

 Vaccinia virus uses phosphatidylserine in apoptotic 
mimicry to infect cells 

(Mercer and Helenius, 2008) 

 Cell surface glycosphingolipids act as alternative 
receptors for viral envelope proteins 

(Campanero-Rhodes et al., 
2007a; Fantini et al., 1993) 

   

Entry Signaling via lipid kinases is activated during viral entry (Pelkmans et al., 2005) 
 Sphingolipids and glycolipids regulate CD4-dependent 

chemokine receptor mediated fusion of HIV 
(Ablan et al., 2006; Finnegan et 
al., 2004; Finnegan et al., 2007; 
Hug et al., 2000; Puri et al., 
1998; Puri et al., 2004; Rawat et 
al., 2006) 

 Cholesterol in both virus- and cell- associated membrane 
is required for fusion and infection 

(Guyader et al., 2002; Liao et al., 
2001; Liao et al., 2003) 

 Lysolipids are able to inhibit fusion of influenza virus 
and tick-borne encephalitis virus 

(Chernomordik et al., 1993; 
Stiasny and Heinz, 2004) 

   

Intracellular 
replication 

HIV Nef up-regulates cholesterol biosynthesis to support 
lipid raft formation 

(van 't Wout et al., 2005b; Zheng 
et al., 2003) 

 Cholesterol efflux is impaired in HIV infected cells. (Mujawar et al., 2006) 
 Fatty acyl and cholesterol synthesis are required for 

Hepatitis C virus RNA replication 
(Kapadia and Chisari, 2005; Su 
et al., 2002) 

 Host protein geranylgeranylation is required for Hepatitis 
C virus RNA replication 

(Kapadia and Chisari, 2005; Ye 
et al., 2003) 

 Lysobisphosphatidic acid and PI(3)P regulate release of 
VSV nucleocapsid into cytoplasm 

(Le, I et al., 2005) 

 Ethanolamine phospholipids required for Sindbis virus 
production 

(Kuge et al., 1989) 

 Semliki Forest virus mRNA capping enzyme requires 
association with anionic membrane phospholipids for 
activity 

(Ahola et al., 1999; Spuul et al., 
2007) 

   

Budding and 
escape 

Vaccinia virus envelope protein p37 has lipase activity 
required for egress from cell 

(Baek et al., 1997) 

 HIV Gag protein interaction with the plasma membrane 
is regulated by myristol switch 

(Resh, 2004; Saad et al., 2007; 
Zhou et al., 1994) 

 Viral assembly and budding occur from plasma 
membrane lipid rafts that are enriched in cholesterol, 
sphingolipids and glycolipid 

(Beer et al., 2005; Nguyen and 
Hildreth, 2000; Ono et al., 2007; 
Ono and Freed, 2001; Scheiffele 
et al., 1999) 

 Nef transports cholesterol to site of HIV budding (Brugger et al., 2007; Zheng et 
al., 2003) 

 HIV particle assembly is modulated by inositol phosphate 
molecules 

(Campbell et al., 2001; Shkriabai 
et al., 2006) 

 HIV Gag is targeted to plasma membrane by specific 
interaction with PI(4,5)P2 

(Chukkapalli et al., 2008; Ono et 
al., 2004; Saad et al., 2006) 

 Unsaturated fatty acids block HIV budding (Lindwasser and Resh, 2002) 
   

Table 2. Known functions of lipid classes at various steps in enveloped virus replication.  
Adapted from (Wenk, 2006) 
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Figure 3. Membrane lipids show non-random distribution between and within organelles that are connected by 
vesicular pathways.  
The plasma membrane (labeled PM in the figure) is rich in sterols, sphingolipids and saturated glycerolipids. 
Due to their high packing densities, these lipids promote bilayer rigidity and impermeability. In addition, the 
plasma membrane has an asymmetric lipid arrangements with the aminophospholipids concentrated in the 
cytosolic leaflet and the sphingolipids concentrated in the exoplasmic leaflet. The membrane topology of 
cholesterol is not known, but its location is probably determined by its high affinity for sphingolipids and 
saturated glycerolipids. The endoplasmic reticulum (ER) membrane, on the other hand, shows a symmetric lipid 
distribution and primarily contains unsaturated glycerolipids that make the membrane flexible, and therefore 
facilitate the incorporation of newly synthesized proteins. Figure taken from (Holthuis and Levine, 2005). 

 

1.2.1 Extracellular structural integrity and morphology 
 

The most obvious role of the lipid envelope is to provide a protective membrane to 

the fragile internal contents of an extracellular retrovirus. High levels of lipid ordering and 

rigidity has been reported not only with HIV (Aloia et al., 1988; Aloia et al., 1993) but a 

range of other retroviruses as well, including equine infectious anemia virus (EIAV), bovine 

leukemia virus (BLV), murine leukemia virus (MLV) and avian myelolastosis virus (Slosberg 

and Montelaro, 1982). This physical characteristic is in turn attributed to the high 

cholesterol/sphingomyelin to phospholipids ratio present in retroviral envelopes. As a proof 
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of concept, it has been shown that the removal of virion-associated cholesterol in HIV 

(Figure 4) and SIV using 2-hydroxy-propyl-β-cyclodextrin (β-cyclodextrin) permeabilizes the 

viral membrane (Graham et al., 2003). As a result, the retroviruses become inactivated due to 

a loss in their protein core and genome integrity. This led to the suggestion that removal of 

raft lipids may provide therapeutic intervention against HIV infection (Nguyen and Taub, 

2004) and is currently being investigated in animal models using SIV (Ambrose et al., 2008) .  

 
 

Figure 4. The role of lipids in maintaining retrovirus particle integrity and morphology. 
Electron microscopy of HIV-1 treated under permeabilizing conditions revealed holes in the membrane of the 
virus. HIV-1 samples that were untreated (A and D), treated under non-permeabilizing conditions (B and E), or 
treated under permeabilizing conditions (C and F to K) were examined by transmission electron microscopy. 
Magnifications: x4,000 (A and F) and x20,000 (B to E and G to K). Figure taken from (Graham et al., 2003). 
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1.2.2 Retrovirus proteins interact with membrane lipids to determine assembly and 
budding site 

 

1.2.2.1 The viral proteins 
 

One of the key questions in retrovirus research pertains to the selection of the 

assembly and budding site. It has been noted that the expression of retrovirus Gag alone is 

enough to produce the assembly and release of non-infectious virus-like particles (Demirov 

and Freed, 2004). The Gag precursor protein can be generally subdivided into four different 

domains, each with a unique function: MA domain contains the membrane targeting signal 

for Gag; CA domain contains sequences responsible for Gag-Gag multimerization that drives 

the assembly process; nucleocapsid NC domain is involved in the interaction of Gag with the 

viral RNA genome; L domain functions in recruiting the ESCRT machinery and is 

responsible for the final release of the virus particle from the cell. It is interesting to note that 

there are analogous structural proteins found in other virus families like Rhabdoviridae 

(Vesicular Stomatis Virus) (Swinteck and Lyles, 2008), Orthomyxoviridae (Influenza Virus) 

(Nayak et al., 2004) and Paramyxoviridae (Respiratory Syncytial Virus) (Marty et al., 2004) 

that also use the plasma membrane site for budding.  

Other viral factors besides Gag may influence site selection. For instance, in polarized 

epithelial cells, Gag that is expressed alone localizes to both apical and basolateral surfaces, 

while Gag that is co-expressed with Env is directed only to the basolateral surface (Lodge et 

al., 1997b; Lodge et al., 1997a). On its own, retrovirus Env glycoprotein appear to be 

trafficked to lipid rafts because its transmembrane domain bears either cysteine residues 

which are targets for palmitoylation or contains residues with bulky hydrophobic side chains 

(Bhattacharya et al., 2004; Rousso et al., 2000). More recently, it was shown that Gag 
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interaction with Env through the MA domain is also essential for promoting Env localization 

to detergent resistant membranes (DRMs) or lipid rafts (Bhattacharya et al., 2006). 

 

1.2.2.2 Lipid rafts 
 

The general idea that retroviruses and other enveloped viruses are targeted to and bud 

from lipid rafts has gained widespread acceptance (Briggs et al., 2003; Ono and Freed, 2005; 

Rajendran and Simons, 2005). Lipid rafts are ordered domains that exist within the 

disordered phase of the bulk cell membrane. These dynamic lipid-protein assemblies are 

characterized by the relative enrichment of cholesterol, sphingolipids, saturated 

glycerophospholipids and protein molecules with a high inherent affinity for ordered lipid 

domains. Raft lipids are believed to be held together weakly, establishing a dynamic 

equilibrium of raft and non-raft regions within the plasma membrane (Harder and Simons, 

1997). The sphingolipids interact laterally through van der Waals interactions and extensive 

hydrogen bonding between the sphingosine backbones and between the sugar head groups 

(Ramstedt and Slotte, 2006). Moreover, the majority of sphingolipids have saturated, and 

therefore unkinked, acyl chains that allow tighter packing of laterally associated lipids and a 

higher gel-liquid phase transition temperature (Ramstedt and Slotte, 2002). These interactions 

lead to segregation of sphingolipid rich domains from their glycerophospholipid-rich 

surroundings. The degree of lateral association is further increased by the presence of 

cholesterol. The 3-β-hydroxyl group of cholesterol hydrogen bonds with the ceramide group 

of sphingolipids, while its planar sterol ring interacts with the saturated acyl chain (Ramstedt 

and Slotte, 2006; Xu and London, 2000).  

It should be noted that the molecular features of lipid rafts described above are mainly 

based on data obtained from in vitro model membrane experiments, and is probably an 
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oversimplification of actual biological interactions. Nevertheless, it is clear that the lipid and 

protein composition of lipid rafts are restricted by the biophysical properties of their 

individual molecules. This means that newly formed rafts tend to recruit other molecules by 

their affinity for the initial raft molecules, resulting in an increasing concentration of ordered 

lipids and proteins in a larger raft platform on the membrane. The molecular signal for the 

raft affinity of peripheral and transmembrane proteins is based on myristoyl and palmitoyl 

covalent modifications respectively (Brown, 2006). Thus, the observation that retrovirus Gag 

and Nef proteins are typically myristoylated while Env glycoproteins are palmitoylated 

(Resh, 1999) suggests that these proteins are targeted to lipid rafts during assembly.  

The involvement of lipid rafts in retrovirus assembly offers a convenient model for 

visualizing how retrovirus assembly may occur (Briggs et al., 2003 and Figure 5). Retrovirus 

infection leads to the production of retroviral Gag and Env proteins and their trafficking to 

pre-existing rafts at the cell surface. The affinity of the viral proteins for a particular lipid 

population leads to an increase in recruitment of more host lipids and proteins of similar 

affinity, resulting in their enrichment at a focal point where budding is to take place. This 

process would continue until the collection of viral proteins and host proteins, and their 

interaction with the inner leaflet of the membrane results in curvature and budding of the 

retrovirus particle. There exist numerous lines of evidence that retroviruses assemble and bud 

through lipid rafts, including (1) co-flotation of Gag proteins with DRMs and associated 

marker proteins in density gradients after cold detergent treatment (Lindwasser and Resh, 

2001), (2) blocking of virus assembly and budding after raft disruption by cholesterol 

depletion (Ono and Freed, 2001), and (3) observing punctuate co-localization of viral proteins 

with raft markers in the plasma membrane by immunofluorescence microscopy (Nguyen and 

Hildreth, 2000). However, the most compelling evidence comes from the observation that 

purified virus particles are enriched in raft lipids including cholesterol, sphingomyelin (SM), 
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dihydrosphingomyelin (dhSM) and glucosylceramide (Glu-Cer), relative to the bulk cellular 

lipid composition (Aloia et al., 1993; Brugger et al., 2006).  

1

2

3

4

Non-raft Membrane

Raft domain

Membrane protein

Raft protein

Retrovirus GagEnv protein

1

2

3

4

Non-raft Membrane

Raft domain

Membrane protein

Raft protein

Retrovirus GagEnv protein
 

Figure 5. Involvement of lipid raft in retrovirus budding.  
Step 1: Pre-existing rafts are found on the plasma membrane. Step 2: Retrovirus infection results in the 
expression of Gag and Env protein which are targeted to the plasma membrane rafts due to their intrinsic raft 
affinity. Step 3: Aggregation of Gag pulls the separate rafts together. Non-raft membranes and membrane 
proteins without a raft affinity become excluded from the enlarged raft structure. Step 4: The budding process is 
initiated, carrying along not only retrovirus protein but also raft associated host proteins. Adapted from (Briggs 
et al., 2003). 
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1.2.2.3 Phosphoinositides 
 

While the lipid raft theory provides an attractive description of how viral membranes 

are formed, the precise molecular interaction between viral protein and the membrane is less 

evident. An early clue to this issue was provided by the observation that MA domain of Gag 

directs the polypeptide precursor to the plasma membrane via a bipartite motif consisting of 

an N-terminal myristic acid that is covalently attached (Bryant and Ratner, 1990) and a 

highly basic cluster of amino acid residues (Yuan et al., 1993). However, myristoylation 

modification alone cannot be solely responsible for Gag transport to the plasma membrane 

since not all myristoylated proteins are associated with the plasma membrane (Resh, 1999; 

Schultz et al., 1988). Moreover, non-myristoylated Gag from retroviruses like rous sarcoma 

virus (RSV) and EIAV, are still targeted to the plasma membrane for assembly and budding 

(Conte and Matthews, 1998). Hence, the additional signal for plasma membrane binding must 

reside within the basic cluster of positively charged amino acid residues.  

The cytosolic surface of the plasma membrane carries an appreciable negative charge 

due to the large proportion of negatively charged acidic phospholipids relative to other 

intracellular membranes. The most abundant of these phospholipids is the monovalent acidic 

phosphatidylserine (PS), which represent 10-20% of plasma membrane lipids (Vance and 

Steenbergen, 2005). Plasma membrane localization of a number of cellular proteins seem to 

depend on PS re-distribution in certain cellular events including calcium influx (Yeung et al., 

2008) and phagocytosis (Yeung et al., 2006). In addition to PS, other negatively charged 

phospholipids appear to be enriched in the inner leaflet of the plasma membrane including 

phosphatidic acid (PA), phosphatidylinositol (PI) and their polyphosphorylated derivatives 

(collectively termed as phosphoinositides) such as phosphatidylinositol-4,5-bisphosphate 

(PI(4,5)P2) and phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3). While PI(4,5)P2 and 
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PI(3,4,5)P3 represent only a minor fraction of the plasma membrane lipids, they play multiple 

vital roles in diverse cellular functions (Rusten and Stenmark, 2006). Therefore, their 

concentration is tightly regulated enzymatically by a significant number of kinases and 

phosphatases (Downes et al., 2005) and spatially by reversible phosphoinositide binding 

proteins such as MARCKS (McLaughlin and Murray, 2005).  

The complementary charge state of Gag MA and inner plasma membrane surface 

intuitively suggests an electrostatic mechanism by which Gag interact with the membrane. 

This early hypothesis was supported by liposome pull-down assays showing that Gag can be 

enriched by liposomes containing PS (Zhou et al., 1994). A link between phosphoinositides 

and retrovirus assembly was provided by the observation that inositol polyphosphate 

molecules are able to promote cell free assembly of virus like particles from recombinant 

HIV-1 Gag molecules (Campbell et al., 2001). More recently, it was shown that depletion of 

PI(4,5)P2 inhibits HIV assembly and leads to accumulation of Gag at late endosomes and 

MVBs (Ono et al., 2004). The work of Saad et al. provided a structural framework (Figure 6) 

in which both PI(4,5)P2 association and myristic switch work cooperatively during HIV-1 

assembly (Saad et al., 2006). By nuclear magnetic resonance structural analysis, the authors 

reported that myristylated MA binds directly to PI(4,5)P2 and that this binding is highly 

specific. Furthermore, it was proposed that the inositol headgroup and the 2’ fatty acid chain 

of the lipid molecule fit directly into a hydrophobic cleft in MA, thus allowing the negatively 

charged phosphates to form salt bridges with basic residues in MA. This interaction causes 

the MA myristic acid moiety to flip out from a sequestered to an exposed conformation 

thereby increasing Gag membrane partitioning.  

An interesting feature of this myristic switch model is that it also reconciles an 

apparent conflict with the lipid raft model (Freed, 2006). As mentioned above, lipid rafts are 

concentrated in saturated glycerophospholipids. Because the predominant form of PI(4,5)P2 



 
 

16

in cells contains a saturated 1’ fatty acid side chain (C18:0) and also a poly-unsaturated 2’ 

side chain (C20:4), PI(4,5)P2 may equilibrate between raft and non-raft domains in the 

membrane. During Gag binding, the 2’ side chain is extruded from the lipid bilayer and 

packed into MA, with myristic acid taking its place in the bilayer. Thus, only the fully 

saturated 1’ fatty acid and myristic acid remains in the plasma membrane, thus increasing the 

affinity of PI(4,5)P2 and its associated Gag molecule for the lipid raft. 

 

Figure 6. Binding of MA domain to Pr55 Gag to PI(4,5)P2.  
Gag precursor protein showing the four different functional domains (A). The MA domain is covalently 
attached with a sequestered myristic acid moiety (green) and a highly basic binding pocket (blue). Gag is 
targeted to the MA domain via the electrostatic interaction between the basic binding pocket and the negatively 
charged PI(4,5)P2 head group (B). According to the model of Saad et al., binding between MA and PI(4,5)P2 
leads to the flipping out of the sequestered myristic acid moiety into the plasma membrane while the 2’ poly-
unsaturated fatty acid of PI(4,5)P2 is flipped out of the plasma membrane and into the hydrophobic domain 
originally occupied by myristic acid. (C) Illustrative cartoon of PI(4,5)P2 structure, with phosphates on the 4 
and 5 position (red) of the inositol ring (yellow) and the 1’ – and 2’- acyl chain indicated. Note that the 2’ acyl 
chain is more kinked than the 1’ chains, indicating a higher degree of poly-unsaturation. Figure taken from 
(Freed, 2006).  
 

 

While such specific mechanisms have not been established for other retroviruses, the 

electrostatic homology between all retrovirus Gag MA domains predicts a commonly evolved 

pathway for Gag targeting to the plasma membrane during retrovirus assembly (Murray et al., 
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2005; Riffel et al., 2002). This would likely involve interactions with PI(4,5)P2 and/or 

PI(3,4,5)P3, the predominant phosphoinositide species in the plasma membrane (Rusten and 

Stenmark, 2006).  

 

1.2.3 Lipids as alternative receptors for retrovirus entry 
 

In order to enter its host, a retrovirus needs to first bind to specific receptors on the 

cell surface through its Env glycoprotein. However, this seems to contradict clinical 

observations that HIV can also infect CD4 negative cells found in the brain and 

gastrointestinal tract. This has contributed to investigations directed at the role played by non 

protein molecules such as lipids in retrovirus entry.  

 

1.2.3.1 Glycosphingolipids as alternative receptors for retrovirus entry 
 

Cell associated glycosphingolipids (GSLs) have been widely investigated for their 

role in retroviral entry. GSLs are ubiquitous constituents of mammalian plasma membranes, 

with diverse cellular roles including cell recognition, growth control, differentiation and 

tumorigenesis (Tettamanti, 2004). Structurally, GSLs contain a lipid group linked to a 

carbohydrate group via a glycosidic bond. In mammalian cells, the lipid group is typically 

made up of a ceramide molecule containing a sphingoid base that is derivatized on the 2-

amino group with a fatty acid. The fatty acids vary in chain length and degree of saturations, 

though the most common in mammalian cells appear to be 16:0, 24:1 and 24:0. The attached 

carbohydrate group can take the form of uncharged sugars such as glucose, galactose and N-

acetylglucosamine (GlcNAc) or may contain ionized functional groups such as phosphate, 

sulfate or charged carbohydrate residues such as sialic acid (N-acetylneuraminic acid) in 
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gangliosides. Because of such structural diversity, GSLs may exhibit numerous functions in 

cellular physiology.  

GSL levels appear to regulate virus entry differently depending on the viral receptor 

status of the cell. In cells that do not express CD4 such as neuronal cells (Harouse et al., 

1989) and colonic epithelial cells (Fantini et al., 1993), HIV appears to use GSLs as substitute 

receptors to gain entry. A binding site for galactosyl ceramide has been mapped to the HIV 

Env gp41 residues 650-685 thereby providing a structural basis for GSLs in HIV entry 

(Alfsen and Bomsel, 2002). In cells producing functional retroviral receptors, a direct 

association between the HIV receptor CD4 (Popik et al., 2002; Sorice et al., 2000), co-

receptors CCR5 (Nguyen et al., 2005; Nguyen and Taub, 2002) and CXCR4 (Sorice et al., 

2001) with GSL enriched lipid rafts has been observed. When cells express low endogenous 

levels of viral receptors, cell surface GSLs are known to be involved in promoting receptor 

aggregation, thus increasing the potential of receptor interaction (Rawat et al., 2004b; Rawat 

et al., 2006). On the other hand, when GSLs are expressed in excess in certain cell lines, they 

become a barrier to prevent virus receptor clustering, thus blocking subsequent events 

necessary for the formation of a functional fusion pore and infection (Rawat et al., 2004b). 

Conversely, one would predict that enrichment of GSLs on the retrovirus envelope (Nguyen 

and Hildreth, 2000) can also contribute to the attachment of the virus to the host. However, 

there is no experimental evidence suggesting this. 

 

1.2.3.2 Role of PS in viral entry 
 

So far, there have been limited reports regarding the involvement of PS in retrovirus 

entry. Lipid asymmetry exists in all cells, whereby PS and PE are cytoplasmic while PC and 

SM are exoplasmic facing lipids (Figure 3). During HIV infection of macrophage cells,  
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apoptosis occurs and PS becomes externalized (Callahan et al., 2003). Thus HIV virions 

produced from macrophages are known to be decorated with PS on the surface on their 

envelopes. In this system, the addition of PS-specific binding protein Annexin V or PS 

vesicles is able to reduce HIV-1 infection of macrophages but not T cells. This suggests that 

PS is an important cofactor specifically in HIV-1 infection of macrophages (Callahan et al., 

2003), although the molecular mechanism at work is unknown. One possibility stems from a 

recent study of Vaccinia virus, which appear to use externalized PS in apoptotic mimicry as a 

way to infect macrophages (Mercer and Helenius, 2008).  

Cell associated PS can also regulate retrovirus entry. When target cells bearing 

functional retrovirus receptors are treated with PS liposomes, which results in an increase of 

cell surface PS levels, retrovirus infectivity is non-specifically enhanced by up to 20-fold 

(Coil and Miller, 2005a). In some cases, cell specific glycosylation of viral receptors near the 

active virus binding site result in a block to functional receptor-virus interactions. However, 

with pre-treatment of PS liposomes, such blocks are relieved and the cells become susceptible 

to retrovirus infection. This effect is referred as “glycosylation-specific enhancement” by PS 

(Coil and Miller, 2005b). 

 

1.2.4 Virus fission and fusion 
 

An equally intuitive role of the retrovirus envelope is to provide the means by which 

the nascent retrovirus can form a protrusion at the assembly site before finally budding from 

the site through fission (Figure 7A). This envelope composition must subsequently allow 

efficient fusion of the mature virus with the membrane of a new host cell. For both events to 

occur, both cell and virus associated membrane bilayers must generate membrane curvature 

through a coordinated sequence of events involving membrane proteins and lipids to provide 
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the physical forces required to disrupt the original bilayer membrane structures (McMahon 

and Gallop, 2005; Zimmerberg and Kozlov, 2006). A part of this energy is provided by the 

interaction of specific retroviral proteins with their host counterparts, i.e. Gag with the 

ESCRT machinery and Env with the host surface receptors like CD4 (HIV) and mCAT-1 

(MLV) (Goff, 2007).  Another aspect of this energy is provided by the presence of particular 

lipids that are capable of producing curvature spontaneously or through interaction with 

protein partners.  

 

1.2.4.1 Curvature inducing lipids 
 

The underlying basis of lipids producing spontaneous curvature depends very much 

on their individual molecular geometry (Figure 7B). Lipids that have conical and inverted-

conical shapes promote negative and positive spontaneous curvature respectively. Conical 

lipids are characterized by a relatively small head group compared to its fatty acyl portion 

and are represented by PA, cholesterol, ceramide, diacylglycerol (DG) and 

phosphatidylethanolamine (PE). Inverted conical lipids are characterized by a large head 

group compared to its fatty acyl portion and are represented mainly by lysolipids, i.e. lipids 

with a single fatty acyl chain. On the other hand, PS and phosphatidylcholine (PC) have 

relatively low spontaneous curvature because their large head group compensates for the 

double fatty acyl chains, giving these lipids a cylindrical shape. In theory, membrane in a 

state of dynamic flux should exhibit local accumulations of curvature forming lipids and a 

concomitant decrease in cylindrical lipids in membrane regions with a highly bent structure 

(Figure 7A). This would lead to an energetically favorable state that allows membrane 

rupture and mixing needed to complete fusion or fission activities.  
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There are a number of ways that changing lipid composition can drive curvature in a 

biological system. Common enzymatic reactions such as the production of lysoPA and PA, 

which are interconverted by lysophophasphatidic acid acyl transferase and phospholipase A2 

activity respectively, favor opposite membrane curvatures (McMahon and Gallop, 2005). On 

the other hand, lipids may respond to curvature by concentrating in domain curvatures that 

they energetically prefer. A direct demonstration of this effect was recently shown by the 

accumulation of PE in the membrane fusion stalk of mating Tetrahymena cells (Ostrowski et 

al., 2004). Lastly, when flippases and scramblases change the topology of lipids like PS and 

PE, it effectively changes asymmetry of a membrane bilayer and the net curvature energy 

along a lipid plane. This results in spontaneous membrane curvature and vesicle formation 

required during endocytosis (Farge et al., 1999; Hua and Graham, 2003). 

One would expect lipids to play a major role in directing membrane activity in viruses 

during budding and fusion (Figure 7A). Recently lipidomics analysis of HIV particles found 

high levels of plasmalogen PE (pPE) molecules, a lipid class with strong fusogenic activity 

(Nagan and Zoeller, 2001), compared to total cellular levels. The loss of carbonyl oxygen and 

the presence of the vinyl ether double bond give pPE different physical properties when 

compared to their diacyl PE counterparts. For instance, pPE tends to form non-bilayer Hex II 

structures at or below 30°C, while diacyl analogues form these structures at much higher 

temperatures (Glaser and Gross, 1994; Lohner, 1996). Energetically, this would mean easier 

formation of the hemi-fusion stalk-like state so that budding and entry become less 

challenging for the retrovirus. Consistent with this idea, it has been shown in both class I 

(Chernomordik et al., 1998; Gunther-Ausborn and Stegmann, 1997; Martin and Ruysschaert, 

1995) and class II (Stiasny and Heinz, 2004) viruses, the presence of inverted-cone shaped 

lipids in the target membrane severely inhibit the fusion mechanism while cone shaped lipids 

enhance it.  
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Figure 7. Progression of membrane invagination and dynamics involved in viral budding.   
(A). Step 1: Early stage budding of plasma membrane triggered by invagination of membrane. Step 2: 
Hemifusion state characterized by the formation of the vesicle and the pulling of adjoining membranes together. 
Step 3:  Late stage stalk formation, characterized by the two adjoining membranes merging their outer leaflet 
together. Step 4: Fission of membrane stalk to form complete virus vesicle. Red, blue and green arrows show 
bilayer regions expected to accumulate lipids exhibiting negative, positive and zero curvature respectively. 
Membrane curvature formed by accumulation of lipids with inherent geometrical shapes (B). Cylindrical shaped 
lipids (green) produces zero curvature, conical lipids (red) produces negative curvature while inverted-conical 
lipids (blue) produces positive curvature.  
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1.2.5 Lipid expression is modified to support retrovirus replication 
 

The replication of an obligatory retrovirus would undoubtedly place some burden on 

the host cell lipid metabolism. In fact, an increased risk of arthrosclerosis and coronary artery 

disease due to dyslipidemia is a recognized clinical problem in HIV-infected patients (El-

Sadr et al., 2005; Escaut et al., 2003) as is the appearance of antibodies against GM2 (Wu et 

al., 1999), GM3 (Griggi et al., 1994), and PS (Silvestris et al., 1996). At the cellular level, it 

was found that changes in cellular morphology including the appearance of lipid bodies in 

macrophages, led to the formation of foam cells common in arthrosclerosis (Mujawar et al., 

2006).  

Gene expression analysis of both MLV and HIV infected cell lines and primary cells 

indicated that numerous genes involved in cholesterol metabolism and trafficking are altered 

by infection (Beer et al., 2003; Giri et al., 2006). In the case of HIV, it was found that 

expressing the Nef accessory protein of HIV alone is able to simultaneously increase 

cholesterol biosynthesis and impair ATP-binding cassette transporter A1 (ABCA1)-

dependent cholesterol efflux from human macrophages. Furthermore, Nef contains a 

cholesterol binding sequence in its C terminus which allows it to transport cholesterol to lipid 

rafts and progeny viruses to allow proper HIV release (Zheng et al., 2003).  

 

1.3 Motivation and objectives of study 

 

1.3.1 Past studies on retroviruses 
 

It is clear from literature review that lipids play important roles in the replication 

cycle of retroviruses to support of virus propagation. Therefore, detailed knowledge 

pertaining to the molecular composition of the retroviral lipid envelope would provide 
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important information about its role in the replication cycle, particularly regarding the nature 

of the budding site.  

Previously published works compared the lipid composition of HIV with that of 

plasma membrane and total cell membrane of their host cell respectively and suggested that 

HIV buds from microdomains or lipid rafts (Aloia et al., 1993; Brugger et al., 2006). While 

both of these studies were fundamentally important, they were hampered by two main 

deficiencies. Firstly, both studies presented data on only a limited number of lipid classes 

despite the wide diversity of lipids found in mammalian cells. Because of this, we expect that 

lipids of significant biological properties would have been missed from these studies. 

Secondly, both studies only utilized HIV produced from a single cell type. One possible 

outcome is that this may lead a biased interpretation of results since different cell types, and 

by extension viruses produced from them, are expected to contain different lipid composition. 

In addition, the previous studies were HIV-specific and thus cannot sufficiently address the 

role of lipids on general retrovirus phenomenon.   

 

1.3.2 Lipidomics model system 
 

Given this context, it is clear that a more systematic and broad scoped lipid analysis of 

HIV and other retroviruses is needed. This would enable us to identify lipid targets for further 

functional characterization in the context of the retrovirus replication cycle. In this regard, we 

propose the use of a lipidomics approach to study retrovirus lipids (Figure 8). The 

methodology of lipidomics, defined as the systems level analysis and characterization of 

lipids and their interacting moieties, consist of a four steps approach: 1) identify the 

conditions required and sample preparation, 2) lipid extraction, 3) lipid analysis and 4) 

functional analysis of candidate lipid pathway metabolism (Wenk, 2005). Such a framework 
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provides a convenient and logical way by which to visualize the experimental design that we 

will be using in this study and the intended objectives of these experiments. 

 

1.3.3 Experimental approach and intended outcomes 
 

The first step begins with identifying and preparing the conditions to analyze, which 

in our case consists of purified retrovirus particles (Figure 8) and a suitable reference. 

Retroviruses were propagated to high titers and purified from host cells using standard 

biochemical protocols.  This work was done in collaboration with our collaborators Walther 

Mothes (Yale University School of Medicine, Department of Microbial Pathogenesis) and 

David Ott (AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute 

at Frederick). We used both total cell membrane and plasma membrane fractions as a basis of 

comparison for the retrovirus lipid data. The purity of virus isolates and plasma membrane 

fractions were judged by electron microscopy and western blotting techniques against 

membrane markers respectively. With the total cell membrane control, we are looking to 

recapitulate the results of Brugger et al, thus proving that our methods of analysis are 

comparable. On the other hand, purified plasma membrane fractions would serve as a more 

relevant control since retroviruses use the plasma membrane as their budding site.  

Next, lipids from the viruses and control samples must be extracted using the 

appropriate extraction solvent composition (Figure 8). Unlike nucleic acids and proteins, lipid 

molecules are diverse in structure and hence also widely varying in their biochemical and 

biophysical properties, including differences in solubility in different types of solvents. 

Because of this, there is currently no extraction method that can efficiently recover all classes 

of lipids in a single protocol. For our intention of detecting and measuring all lipids found in 
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the retrovirus envelopes, we will be investigating the use of different extraction methods to 

sufficiently cover most lipid classes.  

In the third step, lipid extracts were analyzed mainly via liquid chromatography (LC) 

and electrospray ionization mass spectrometry (ESI-MS) (Figure 8). In ESI-MS, the 

ionization and fragmentation pattern of a lipid extract can be finely controlled and used in 

both profiling and structural identification of lipids. Almost all of the major lipid classes that 

we are interested in including phospholipids, sphingolipids and neutral lipids, can be readily 

detected. The fragmentation patterns of many lipid classes has been resolved via tandem mass 

spectrometry and will allow us to quantify lipid classes based on their specific product ions 

(Brugger et al., 1997; Han and Gross, 2005). While the ESI-MS ion source enables the 

convenience of direct infusion of crude lipid extracts (Han and Gross, 2005), there is also the 

option of coupling HPLC separation with ESI-MS analysis (Camera et al., 2004; Isaac et al., 

2003; MacPherson et al., 1996; McDonald et al., 2007; Merrill, Jr. et al., 2005; Shui et al., 

2007a). This increases the sensitivity of the instrument by decreasing the chemical 

suppression in the ion source and also allows the separation of lipid molecules with the same 

m/z value but different physical properties. The objectives of these experiments will be to 

identify lipid molecules which are enriched or de-enriched in the retrovirus envelope with 

respect to the control membrane fraction. We hypothesized that lipid enrichment in the 

retrovirus envelope may imply that the particular lipid class plays an important functional 

role in the biogenesis of the virus.  

Lastly, based on the results of the detailed lipid analysis, we investigated the 

biological activity of specific lipid classes including phosphoinositides, GSLs and 

aminophospholipids in the context of the retrovirus replication (Figure 8). It is envisioned 

that such experiments will help to validate the importance of the biochemical data obtained 

through initial comprehensive lipid profiling.  
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Figure 8. An illustrative framework for the functional lipidomics analysis of retrovirus envelope lipids.  
Adapted from (Wenk, 2005).  
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Chapter 2 – Lipidomics analysis of retrovirus envelopes  

 

2.1 Introduction 
  

In this study, we anticipate that a detailed analysis of the lipid composition of 

retrovirus envelopes compared to the host cell membrane may provide important information 

about the assembly and budding process, especially regarding the nature of the budding site. 

We built upon previous analyses of HIV lipid composition (Aloia et al., 1993; Brugger et al., 

2006) and analyzed the lipid composition of highly purified samples of retroviruses including 

HIV and MLV by mass spectrometry. Comparisons were made not only to total cell 

membrane but to that of the membrane from which these viruses bud, the plasma membrane 

(Figure 9). In order to minimize biased interpretation that may result from the unique lipid 

composition of a host cell, we expanded the host range where possible, i.e. HIV was 

produced from both H9 cell line (Ott et al., 1995) and monocyte-derived macrophages 

(MDM) (Freed et al., 1995) while MLV was produced from both Rat Embryonic Fibroblast 

cell line (REF) and avian embryonic fibroblast cell line expressing the murine ecotropic 

receptor MCAT-1 (DFJ8) (Barsov et al., 2001). Given the scope of lipid diversity present in 

mammalian cells, we attempted to provide a broader coverage of lipids compared to Aloia et 

al. and Brugger et al. These include important lipid classes involved in lipid signaling and 

immunological responses such as phosphatidylinositol (PI), phosphatidylinositol phosphate 

(PIP), phosphatidylinositol bisphosphate (PIP2), ether phosphatidylcholine (ePC), 

glycosphingolipids GM3 and neutral lipids including diacylglycerols (DG), triacylglycerols 

(TG), cholesterol (Chol) and cholesterol esters (CE).  
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Figure 9. Experimental setup for comparative lipid profiling of retrovirus envelopes. 
(A) Purification of retrovirus particles. Step 1: Roller bottle culture of adherent cells to concentrate retrovirus 
production. Step 2: Filter sterilize culture supernatant using 0.45µM filter. Step 3: Layer culture supernatant on 
a 15% sucrose cushion. Step 4:  Centrifuge at 25,000rpm for 1.5hr at 4°C. Step 5: Remove supernatant and 
sucrose cushion to obtain pure virus pellet ready for lipid analysis.  Purification of HIV requires an additional 
step using anti-CD45 immunodepletion. (B) Isolation of plasma membrane fraction. Step 1: Culture and collect 
producer cells. These cells are either used for total membrane reference or for further isolation of plasma 
membrane. Step 2: Coat cells with cationic silica beads (positive charge) followed by an outer layer of 
polyacrylic acid solution (negative charge). Step 3: Lyse cells and carry out a pre-clearing centrifugation step on 
the lysate to remove internal vesicles. Step 4: Layer the cell lysate on a 70% Histodenz cushion. Step 5:  
Centrifuge at 20,000rpm for 0.5hr at 4°C. Step 6: Remove supernatant and 70% Histodenz to obtain purified 
plasma membrane fraction.  

A 
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2.2  Materials and Methods 

 

2.2.1 Reagents 
 

All cell culture media and supplements were purchased from GIBCO, Invitrogen 

(Carsbad, CA, USA) or from the National University Medical Institute (NUMI, Singapore) 

supply store. Lipid standards were purchased from Avanti Polar Lipid Inc (Alabaster, AL, 

USA) and Echelon Biosciences Inc (Salt Lake City, UT, USA). All other reagents and 

chemicals including HPLC grade methanol, chloroform, piperidine were purchased from 

Sigma Aldrich (St Louis, MO, USA) unless stated otherwise. Antibodies were either 

purchased from Zymed Laboratories (South San Francisco, CA, USA), BD Biosciences 

(Franklin Lakes, NJ, USA), Abcam (Cambridge, UK) or Santa Cruz Biotechnology (Santa 

Cruz, CA, USA). 

 

2.2.2 Cell culture 
 

Uninfected H9 and the chronically HIV-1-infected H9 cell line, Clone 4 (Ott et al., 

1995) were cultured in RPMI 1640 media with 10% fetal bovine serum, 2mM L-glutamine, 

penicillin G at 100U/ml, and streptomycin sulfate at 100µg/ml (complete media). Uninfected 

and chronically infected rat embryonic fibroblast (REF) cell lines were cultured in DMEM 

media with 10% fetal bovine serum, 2mM L-glutamine and penicillin G at 100U/ml, and 

streptomycin sulfate at 100µg/ml (complete media). Avian embryonic fibroblast cell line 

expressing the murine ecotropic receptor MCAT-1 (DFJ8), were grown in the same media 

supplemented with G418 at 200μg/ml to maintain stable expression (Barsov et al., 2001). 

During virus production, DFJ8 cells were cultured without G418 as it was suspected that 

G418 may interfere with the viral budding process. 
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2.2.3 Isolation and culture of macrophages 
 

Elutriated monocytes from HIV-negative donor leukopacs were obtained from the 

NIH Transfusion Branch and cultured at 2-3x106 cells per well on ultralow-attachment six-

well Costar plates (catalog # 3471, Corning, Acton, MA) in RPMI 1640 media as 

supplemented above for 7 days to generate monocyte-derived macrophages (MDMs). MDMs 

were infected with the CCR5-tropic NLAD8 (Freed et al., 1995) overnight followed by two 

PBS washes to remove non-adhered virus. The infected cultures were then cultured and 

supernatants were periodically removed for virus isolation. 

 

2.2.4 Virus stock preparation 
 

Concentrated MLV stocks were produced in roller culture bottles from chronically 

infected REF and DFJ8 cells. The culture supernatants were collected and passed through a 

0.45µm filter, centrifuged at 25,000rpm at 4oC for 90min through a 15% sucrose layer to 

obtain purified virus. For HIV produced from Clone 4 and MDMs, the culture supernatants 

were passed through a 0.45µm filter, centrifuged through 15% sucrose cushion and the 

resulting HIV pellet further purified away from contaminating microvesicles using anti-CD45 

depletion (Trubey et al., 2003). The purity of our virus was either checked via electron 

microscopy or western blots against the retrovirus Gag proteins. All virus and microvesicle 

stocks were stored at -80°C until further use.  
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2.2.5 Plasma membrane extraction using cationic silica beads1 
 

Plasma membrane fractions were purified using cationic colloidal silica beads (Harila 

et al., 2006; Mason and Jacobson, 1985; Stolz and Jacobson, 1992). At least 106 cells were 

typically used for each extraction experiment. Adherent cells were washed with PBS and 

trypsinized at 37°C for 3-4min to detach them from the tissue culture plate. The trypsin was 

inactivated by washing the detached cells with complete cell culture media. The cells were 

finally washed with PBS and pelleted with centrifugation carried out at 300g for 3min at 4°C. 

Suspension cells were also washed with PBS in the same way. These steps prepared cell 

pellets that were ready for silica beads coating. All subsequent steps hereafter were 

performed at 4°C.  

The cell pellet was re-suspended in 1ml of plasma membrane coating buffer (PMCB). 

The cell suspension was added drop-wise into 5ml of 1% (wt/vol) cationic colloidal silica 

beads (kindly provided by Donna Beer Stolz, University of Pittsburgh School of Medicine) in 

PMCB. To remove excess unbound cationic silica, the cells were then washed with 20ml total 

volume of PMCB by pelleting through centrifugation carried out at 300g for 3min, repeated 

three times. After the third wash, the cells, now bound with cationic silica beads, were again 

resuspended in 1ml of PMCB. The cells were added drop-wise into 5ml of polyacrylic acid in 

PMCB (PAA/PMCB). The cells were washed twice with 20ml total volume of PMCB 

followed by to remove excess PAA/PMCB solution. The bound cells were then incubated in 

a hypotonic lysis buffer, supplemented with protease inhibitors (Roche, IN, USA) for 30mins, 

with gentle agitation. The hypotonic condition resulted in swelled cells that were then lysed 

using 20-30 strokes of a tight fitting Dounce homogenizer. Cell disruption was verified by 

trypan blue (Gibco) exclusion using a light microscope. The suspension was then centrifuged 

                                                 
1 Refer to Appendix 1 for the recipes of reagents used under the section “Plasma membrane extraction from 
cells using cationic silica beads”. 
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at 900g for 10min to remove internal membranes released; leaving behind a pellet that 

contains nuclei and silica bound plasma membrane fragments. The plasma membranes in the 

resulting pellet were purified away from the nuclei by sedimentation through a 70% (wt/vol) 

Histodenz (Sigma) in lysis buffer cushion using a TW41 rotor at 20,000 rpm for 30mins. The 

purified plasma membrane pellet, which appeared as a glassy membranous disc, was 

collected into a microfuge tube and washed 3 times with the lysis buffer at 14,000rpm for 

5mins to remove any residual Histodenz as Histodenz is known to interfere with subsequent 

protein analysis. The purified PM was stored at -80°C before further use.  

 

2.2.6 Plasma membrane extraction from cells using Optiprep gradient2 
 

Plasma membrane was also extracted using a 5-20% (wt/vol) continuous Optiprep 

(Axis-Shield, Sigma) gradient, as described in the Optiprep application sheet S23. Optiprep is 

a 60% solution of iodixanol in water. A 40% iodixanol working solution (WS) was prepared 

by mixing 2 volumes of Optiprep with 1 volume of Optiprep diluent. Subsequent dilutions of 

the WS were carried out using a WS diluent. The continuous gradient was prepared by 

layering equal layers of 5% (top), 10%, 15% and 20% (bottom) of iodixanol in the 

ultracentrifuge tube and allowing passive diffusion to occur at room temperature over a 

period of 3h to 4h prior to use. At least 106 cells were harvested in 250µl of homogenization 

buffer, supplemented with protease inhibitor (Roche) and lysed using 20-30 strokes of a 

Dounce homogenizer. Homogenates were centrifuged at 1000g for 5min to pellet nuclei and 

cell debris. Postnuclear supernatant was loaded onto the preformed 5 to 20% continuous 

Optiprep gradient and centrifuged at 150,000g at 4°C for 20h using a SW41 ultracentrifuge 

                                                 
2 Refer to Appendix 1 for the recipes of reagents used under the section “Plasma membrane extraction from 
cells using Optiprep”. 
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rotor. 13-15 fractions (800µl) were sampled from the top of gradient and subsequently stored 

at -80°C before further use.  

 

2.2.7 Protein analysis to check for plasma membrane purity3 
 

The purity of the plasma membrane preparations was checked via western blotting. 

Proteins from the plasma membrane preparations were extracted using RIPA buffer (Pierce, 

IL, USA) supplemented with protease inhibitor (Roche). PM fractions in the extraction buffer 

was agitated for 30min at 4°C and then centrifuged at 12,000 rpm for 30min at 4°C. The 

supernatant was then collected and used for further protein analysis. The protein amount was 

quantified using the Bio-Rad (Hercules, CA, USA) Protein Assay, based on the method of 

Bradford. The protein samples were loaded onto either a 10% or 12% SDS-PAGE gel and the 

proteins were separated by electrophoresis at 120V for a period of about 2h. The molecular 

weight marker used was the Precision Plus Protein Dual Color Standards from Bio-Rad. After 

protein separation, the proteins were transferred onto a PVDF membrane (Pall, Northern 

Boulevard East Hills, NY, USA) via wet transfer at 100V for 2h or 20V for O/N. Prior to the 

transfer reaction the PVDF membrane was activated by soaking in methanol for 15 min, 

followed by washing with the transfer buffer for 5 min prior to use.  

To ensure proper protein transfer reaction, the membrane was reversibly stained by 

Ponceau S (Bio-Rad) solution before washing off the stain using Milli-Q water. The 

immunodetection reaction was initiated by blocking non-specific binding by immersing the 

membrane in blocking solution for 30min. Next, the membrane was immersed in primary 

detection antibody that was diluted in the blocking solution for at least 2h at room 

temperature or overnight at 4°C. The primary antibodies used included anti-TrF (Zymed 

                                                 
3 Refer to Appendix 1 for the recipes of reagents used under the section “Protein analysis”. 
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Laboratories), anti-Flotillin (BD Biosciences or Abcam), anti-Caveolin, (Abcam), anti-Actin 

(Abcam), anti-Rab5 (Abcam), EEA1 (Santa Cruz) and Lamp1 (Santa Cruz) and these were 

diluted according to the manufacturer instructions. This was followed by two membrane 

washes in 3x changes of wash solution, 5min per wash. The membrane was then transferred 

to the appropriate secondary antibody solution for at least 2h at room temperature or 

overnight at 4°C. The antibody was diluted according to the manufacturer instructions to 

ensure proper staining without background. After secondary detection, the membrane was 

washed 3x with the wash solution. The antibodies were detected using SuperSignal West 

Dura Pico Substrate solution from Pierce Biotechnology (Rockford, IL, USA) according to 

the manufacturer instructions. The blots were re-used up to 3 times by stripping away the 

binding antibodies using Restore PLUS Western Blot Stripping Buffer (Pierce). Refer to 

Appendix 1 for recipe of solutions used. 

 

2.2.8 Lipid preparation 
 

Total lipid samples were prepared using a modified version of Bligh and Dyer method 

(Bligh and Dyer, 1959). All buffers and reagents were pre-chilled in an ice-bath. Virus or 

cells were washed and re-suspended in 50µl PBS. 0.6ml of a chloroform:methanol (1:2) mix 

was added to the sample and the mixture was vortexed vigorously for 3x1 min with a 5 min 

interval in between. Next, 0.3ml chloroform and 0.2ml 1M KCl was added to the tube and the 

mixture was again vortexed, three times for 30 s with intervals of 1 min in between. The 

mixture was then centrifuged for 2 min at 9,000 rpm to separate the phases. The lower 

organic layer was transferred to a clean microfuge tube and was dried under a stream of N2 

gas or via speed vacuum. Phosphoinositide enriched lipid samples were prepared by 

replacing the 1M KCl solution with 1M HCl (Wenk et al., 2003). Sphingolipid samples were 
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prepared via the alkaline hydrolysis method described by Merill (Merrill, Jr. et al., 2005). 

Briefly, 0.75ml of chloroform:methanol (1:2) was added to the sample and sonicated until 

they appeared evenly dispersed, then incubated overnight at 48°C. Next the tubes were 

cooled and mixed with 75μl of 1 M KOH in methanol, and incubated for 2 hr at 37°C with 

shaking. The sample was then neutralized with 6μl of glacial acetic acid. Lastly, 0.5ml of 

chloroform and 0.3ml of water was added to the tube and the mixture was then centrifuged 

for 2 min at 9,000 rpm to separate the phases. The lower organic layer was transferred to a 

clean microfuge tube and was dried under a stream of N2 gas or via speed vacuum. A 

summary of the methods used are provided in Table 3. 

Sample Type Method Lipids measured by 
ESI-MS  Remarks 

Total lipid extract Modified Bligh and Dyer 
with 1M KCl break phase 

All lipids except DHSM, 
PIP and PIP2 

General lipid extraction 
protocol 

Phosphoinositide extract Modified Bligh and Dyer 
with 1M HCl break phase 

PI, PIP and PIP2 
Acid labile plasmalogens 
and ether phospholipids 
are hydrolyzed 

Sphingolipid extract 
Modified Bligh and Dyer 
extraction follow by 
KOH hydrolysis 

SM, DHSM, sphigosine, 
ceramides, hexosyl 
ceramides and GM3 

Glycerophospholipids are 
hydrolyzed 

Table 3. Lipid extraction protocols used in this study. 
 

2.2.9 Analysis of lipids using high performance lipid chromatography/electrospray mass 
spectrometry 

 

Qualitative lipid profiling via electrospray ionization mass spectrometry (ESI-MS) 

was carried out with a Waters Micromass Q-TOF mass spectrometer with an upfront Waters 

CapLC inlet (Waters Corp., Milford, MA) as described previously (Shui et al., 2007b). The 

capillary voltage and sample cone voltage were maintained at 3.0kV and 50V, respectively. 

The source temperature was 80°C, and the desolvation temperature was set at 250°C. Mass 

spectra were acquired in the negative ion mode with an acquisition time of 3 min. 



 
 

37

Chloroform-methanol (1:1, vol/vol) at a flow rate of 15µl/min was used as the mobile phase. 

Typically, samples were dissolved in the mobile phase to give an appropriate concentration 

and 2µl of sample was injected for analysis. 

For quantitative analysis, we used a triple quadrupole instrument ABI 4000 Q-Trap 

(Applied Biosystems, Foster City CA) in the multiple reactions monitoring (MRM) mode. In 

our experiments, the internal standards used included 1,2-dimyristoyl-glycero-phosphoserine 

(DMPS), 1,2-dimyristoyl-glycero-3-phosphoethanolamine (DMPE), 1,2-dimyristoyl-glycero-

3-phosphocholine (DMPC), lauroyl sphingomyelin (L-SM), N-heptadecanoyl-d-erythro-

sphingosine (C17 Ceramide) and d-glucosyl-ß1-1'-N-octanoyl-d-erythro-sphingosine (C8 

Glucosyl Ceramide) (Avanti Polar Lipids) which allowed the measurement of 

phosphatidylserine (PS), phosphatidylethanolamine (PE) and plasmalogen 

phosphatidylethanolamine (pPE), phosphatidylcholine (PC) and ether phosphatidylcholine 

(ePC), sphingomyelin (SM) and dihydrosphingomyelin (dhSM), ceramide (Cer) and 

glucosylceramide (GluCer) respectively. PI, PIP and PIP2 levels were referenced to 1,2-

dioctanoyl-glycero-3-phosphoinositol (C8-PI), 1,2-dioctanoyl-glycero-3-[phosphoinositol-4-

phosphate] (C8-PI(4)P) and 1,2-dioctanoyl-glycero-3-[phosphoinositol-4,5-bisphosphate] 

(C8-PI(4,5)P2) (Echelon Biosciences Inc) respectively. Since a suitable standard was not 

available for GM3, we normalized GM3 levels to SM levels. In other instances where no 

internal standards were used, the individual lipid species were normalized to the total 

measured signal intensity of the sample. The total lipid and sphingolipid extracts were 

dissolved in chloroform:methanol (1:1, vol/vol) and typically, 10 to 15µl of the sample was 

injected via autosampler. For the phosphoinositide samples, the lipids were dissolved in 

chloroform:methanol (1:1), spiked with 1/10 volume of 300ppm piperidine solution and 

directly infused into the mass spectrometer (Wenk et al., 2003). The m/z transitions used 

were published previously (Brugger et al., 1997; Merrill, Jr. et al., 2005; Wenk et al., 2003) 
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and we optimized the declustering potential and collision energy using the Quantitative 

Optimization function available on the Analyst 1.4.1 software. The optimized parameters 

used in these experiments are displayed in Appendix 2 to 4. The instrument was calibrated 

using PPG standards provided by ABI and the mass tolerance was adjusted to ~100ppm or 

0.1Da. The signal intensity obtained for each lipid species was converted to their mol level in 

each fraction by normalization to the appropriate internal standard. The final lipid molar 

percentages of each sample were obtained by cross normalizing the lipid levels of each 

fraction measured as described below (Ivanova et al., 2001). The standard deviations shown 

represent the variation in at least 3 replicate experiments, i.e. n≥3, unless stated otherwise.  

For the measurement of neutral lipids, we employed a triple quadrupole instrument 

ABI 3200QT (Applied Biosystems, Foster City CA) connected with a high performance 

liquid chromatography (HPLC) system using a sensitive HPLC/ESI-MS method (Shui G et 

al, manuscript in preparation). Briefly, lipids were separated on an Agilent Zorbax Eclipse 

XDB-C18 column with dimensions 4.6x150mm (Agilent Technologies, Santa Clara CA) at 

30°C using chloroform:methanol:2% 0.1M NH4OAC (100:100:4 vol/vol/vol) as a mobile 

phase at a flow rate of 250µL/min and an injection volume of 30μl. Mass spectrometry was 

recorded at both positive and negative ESI modes in enhanced MS (EMS) scan mode for 

overall spectrum profile and Q3 scan mode for targeted lipid profile. The relevant instrument 

conditions included a turbo spray source voltage of +5000V and -4500V for positive and 

negative respectively and a source temperature of 250°C. A total run time of 30min was 

utilized to elute both polar lipids and neutral lipids. The elution profile of the various lipid 

classes are in the following order: MG (5.5-6min), free Chol (7-7.5min), CE (12-20min), DG 

(7-10min), TG (12-26min), phospholipids (7-12min). Due to the lack of relevant internal 

standards for the neutral lipids, the intensity level measured in each class of neutral lipids 

obtained was normalized to the total Q3 signal intensity obtained from each analysis. Chol-
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to-PC ratio was also used to compare the cholesterol levels between the samples as carried 

out previously by Brugger et al. The cholesterol levels were calculated by normalizing the 

369 m/z peak intensity to the total PC peak intensity, both of which were measured at 

positive mode. 

 

2.2.10 Calculation of total lipid levels 
 

For each of these different extracts, the quantity of each relevant lipid species was 

measured by following their MRM transition. The signal intensity obtained for each lipid 

species was converted to their mole levels using Eqn (1). The assumption we have made here 

is that the standards and the lipids being measured are found within the linear concentration 

to signal intensity range. 

 

SpeciesLipidof
IntensitySignal

StandardInternalofIntensity Signal
StandardInternalofMolesofNo

SpeciesLipid
ofMolesofNo

×=  

 
Next, we then calculated the molar fraction of the lipid species measured within each 

extract using the Eqn (2). 

 

=
SpeciesLipidEach

ofFractionMolar ∑÷ MeasuredSpeciesLipidAll
ofMolesofNo

SpeciesLipid
ofMolesofNo

 

 
Subsequently, the molar fraction of the lipids measured with the sphingolipid extract 

(SLE) and phosphoinositide extracts (PIE) were scaled to that of the total lipid extracts (TLE) 

by using SM and PI respectively as common denominator levels (3). An example is given 

below for the scaling of lipids from the SLE levels to TLE levels. 

 

SLEinSMofFractionMolar
inTLESMofFractionMolar

SLEinSpeciesLipid
EachofFractionMolar

SLEinSpeciesLipidEach
ofFractionMolarScaled

×=  

 

(1) 

(2) 

(3) 
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This would allow the addition of the molar fractions of lipids measured in the SLE 

and PIE to that of TLE to obtain a cumulative molar fraction of all the lipids measured by 

MRM (4). 

 

∑= PIEandSLEfromLipidsAllofFractionMolarScaled
PIandSMexceptTLEfromLipidsAllofFractionMolar

MeasuredLipidsAllof
FractionMolareCummulativ ),(

 
 

The final normalized molar fraction of each lipid class measured is then calculated as 

in Eqn (5). 

 

MeasuredLipidsAllof
FractionMolareCummulativ

MeasuredClassLipid
ofFractionMolar

ClassLipidEachof
FractionMolarNormalized

÷=  

(4) 

(5) 
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2.3 Results 
 

2.3.1 Preparation of pure retrovirus particles 
 

In order to analyze retroviral lipids, we purified HIV and MLV from culture 

supernatants of chronically infected cells by ultracentrifugation through 15% sucrose 

cushions. Electron microscopy inspection showed that this resulted in highly purified MLV 

particles with an electron dense core (Figure 10A). More importantly, the MLV preparation 

lacked any detectable microvesicles (MV) particles that appear as pleomorphic vesicles with 

a transparent centre that range in size from about 50 to 500nm (Bess, Jr. et al., 1997; 

Gluschankof et al., 1997) (Figure 10B). In contrast, HIV preparations isolated from culture 

supernatants of Clone 4 cells (Ott et al., 1995), a chronically infected H9 T-cell line, and 

monocyte derived macrophages (MDM), were previously shown to contain contaminating 

non-viral particles of MV (Bess, Jr. et al., 1997; Gluschankof et al., 1997). Proteomic 

analysis of these particles found that MV were enriched for CD45, T200 leukocyte common 

antigen, in its membrane  while HIV specifically excluded CD45 from its membrane (Esser et 

al., 2001). Therefore, pure HIV particles were obtained by further purification of the culture 

supernatant after the 15% sucrose cushion step, using anti-CD45 immunodepletion to remove 

the contaminating MV (Trubey et al., 2003) (Fig 10B). 



 
 

42

A

B
Untreated CD45-Depleted

100nm 100nm

200nm

A

B
Untreated CD45-Depleted

A

B
Untreated CD45-Depleted

100nm 100nm

200nm

 

Figure 10. (A) Electron microscopy of purified MLV particles. (B) Electron microscopy images of purified HIV 
particles before and after anti-CD45 immunodepletion. 
 

2.3.2 Methodology for lipid analysis 
 

Due to the varying chemistry and solubility of different lipid classes, we prepared our 

samples in three different fractions using a variation of the chloroform:methanol extraction 

method (Bligh and Dyer, 1959) (Table 3). Total lipid (PS, PC, ePC, PE, pPE, PI, and SM) 

fractions were prepared using a slightly modified version of the standard Bligh and Dyer 

method, using 1M KCl instead of water for phase separation. This is thought to prevent some 
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acidic lipids from binding to denatured proteins during phase separation. Phosphoinositides 

(PI, PIP and PIP2) are known to bind even more strongly to denatured protein, thus had to be 

extracted by partitioning into the organic phase at low pH using 1M HCl (Wenk et al., 2003). 

Sphingolipids (SM, dhSM, Cer, GluCer) were made accessible following mild alkaline 

hydrolysis of the total lipid extract (Merrill, Jr. et al., 2005). This treatment releases esterified 

fatty acid from the “contaminating” phospholipids in the mixture, leaving amide linked acyl 

groups in sphingolipids unaffected. This resulted not only in higher sphingolipid detection 

levels (Jiang et al., 2007), but also allowed the discrimination of SM species signal intensity 

from PC isomeric species signal intensities that have overlapping m/z values.  

Finally, we employed a combination of electrospray ionization mass spectrometry 

(ESI-MS) methods to profile our lipid samples. Using the Waters Micromass Q-TOF 

instrument, our analyses were useful in providing a qualitative perspective of the lipid 

samples and also in identifying the different classes of lipids found in the sample due to its 

excellent peak resolution. However, it is important to note that the nature of these results 

provided only semi-quantitative data of the amount of lipids present in the samples. There are 

two reasons for this – (1) due to the different chemistries of the two different extracts, 

commonly known as the matrix effect of the sample, one can expect different ionization even 

of the same ions in the two different samples. This was most clearly shown by the differences 

in ionization of internal standards spiked into the samples (data not shown). (2) Beside this 

problem, another difficulty was trying to obtain a similar concentration of lipid extract to 

inject during the experiment. Differences in sample lipid concentration may result in 

differences in ionization efficiencies and ionic suppression. This problem was partially solved 

by using a crude method of spotting the samples on a TLC silica plate to check for their 

concentration and then re-dissolving them to the appropriate concentrations before carrying 

out the Q-TOF experiments (data not shown). We addressed this problem by using the ABI 
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4000 Q-Trap instrument for multiple reactions monitoring (MRM) measurements. This 

method is optimized to detect only specified ions of interest, thus increasing sensitivity and 

selectivity of detection, without being affected by the different chemistries of the samples 

(Fei et al., 2008; Merrill, Jr. et al., 2005). In total, ~250 individual lipid species were detected 

and quantified in the complex sample mixtures. To allow for the quantification of the relative 

amounts of lipids, each sample was spiked with a relevant cocktail of internal standards. The 

inclusion of the internal standards normalized for differences in ionization and fragmentation 

patterns of different lipid classes. By referencing to these internal standards, we were able to 

calculate the molar percentages of the individual lipid classes in each fraction, and then, 

through cross normalization to common lipid classes in each of the different extracts 

(described in Materials and Methods), the total molar percentages of all detectable lipid 

classes were obtained (Table 4, 5A and 6A). 
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 This Study Brugger et al, 
2006 Aloia et al, 1993 

Virus HIV HIV CD45 MV MLV MLV HIV HIV-1 
Cell Line H9 MDM MDM REF DFJ8 MT4 H9 

PS 13.4 ± 1.5 10.5 ± 1.4 9.4 ± 1.2 15.7 ± 1.9 15.1 ± 1.9 15.5 ± 2.2 9.0 
PI 2.7 ± 1.3 3.0 ± 1.4 2.7 ± 0.6 1.5 ± 0.4 2.2 ± 0.4 n/a 0.4 

PIP 2.1 ± 0.4 3.1 ± 0.4 0.7 ± 0.1 1.8 ± 0.3 3.1 ± 0.7 n/a n/a 
PIP2 2.6 ± 0.7 3.6 ± 0.8 0.6 ± 0.1 7.3 ± 0.4 0.8 ± 0.4 n/a n/a 
PE 8.0 ± 2.5 5.3 ± 2.2 3.8 ± 0.9 7.3 ± 2.4 7.2 ± 1.2 8.2 ± 1.3 24.6 

pPE 13.6 ± 3.9 12.6 ± 3.2 13.9 ± 3.0 16.0 ± 3.0 13.5 ± 2.2 27.0 ± 3.3  
PC 22.4 ± 3.8 17.0 ± 2.6 21.7 ± 1.5 15.6 ± 3.1 21.8 ± 1.8 16.0 ± 1.0 29.9 
ePC 5.4 ± 0.9 4.6 ± 0.9 7.1 ± 0.9 3.4 ± 1.2 5.4 ± 1.2 n/a  
SM 20.7 ± 3.0 26.7 ± 2.3 28.9 ± 1.8 22.5 ± 3.1 26.6 ± 0.9 33.1 ± 1.2 24.1 

dhSM 3.1 ± 0.2 8.3 ± 0.5 6.7 ± 0.3 5.6 ± 0.6 3.8 ± 0.1   
Cer 1.5 ± 0.4 1.6 ± 0.3 2.3 ± 0.3 1.4 ± 0.6 0.3 ± 0.2 n/a n/a 

GluCer 4.4 ± 1.0 3.7 ± 1.8 2.3 ± 0.4 2.0 ± 0.9 0.3 ± 0.2 n/a n/a 
PA n/a n/a n/a n/a n/a n/a 1.2 

Others n/a n/a n/a n/a n/a n/a 8.3 
Chol 0.14 ± 0.04 0.12 ± 0.03 0.36 ± 0.03 0.11 ± 0.01 0.09 ± 0.03 n/a n/a 
GM3 0.08 ± 0.01 0.12 ± 0.04 0.04 ± 0.00 0.35 ± 0.10 0.012 ± 0.005 n/a n/a 

 
Table 4. Lipid composition of different retrovirus envelopes produced from various cell types.  
Values for all lipid classes except cholesterol (Chol) and GM3 are expressed as molar percentages of a given lipid to total lipids measured. Chol and GM3 are expressed as 
ratios of its signal intensity to total PC level and total SM level respectively. The data represents the average and standard deviation of at least three independent samples, 
n≥3. The lipid composition of HIV from previous studies by Aloia et al. and Brugger et al. are shown for comparison.  
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Cell Line H9 REF DFJ8 
PS 4.7 ± 0.4 6.3 ± 1.3 7.9 
PI 7.7 ± 0.7 16.6 ± 8.3 13.7 

PIP 1.5 ± 0.1 1.6 ± 0.2 0.3 
PIP2 1.1 ± 0.2 1.2 ± 0.3 0.2 
PE 5.0 ± 0.6 8.4 ± 2.8 8.6 

pPE 6.2 ± 0.6 12.8 ± 6.6 10.9 
PC 30.2 ± 1.2 26.6 ± 4.0 31.2 
ePC 20.4 ± 1.2 6.0 ± 1.5 8.4 
SM 9.8 ± 1.1 12.3 ± 0.9 14.4 

dhSM 1.2 ± 0.2 2.4 ± 0.0 2.0 
Cer 5.3 ± 1.4 4.2 ± 0.7 1.9 

GluCer 6.9 ± 0.8 1.7 ± 0.3 0.5 
 

 

 This Study Brugger et 
al, 2006 

Virus HIV MLV MLV HIV 
Cell Line H9 REF DFJ8 MT4 

PS 2.8*** 2.5*** 1.9 2.1 
PI -0.4*** -0.1* -0.2 n/a 

PIP 1.4* 1.2 10.3 n/a 
PIP2 2.4** 5.9*** 4.0 n/a 
PE 1.6 -0.9 -0.8 -0.5 

pPE 2.2** 1.3 1.2 1.7 
PC -0.7** -0.6** -0.7 -0.4 
ePC -0.3*** -0.6* -0.6 n/a 
SM 2.1*** 1.8*** 1.8 

dhSM 2.5*** 2.3*** 1.9 
3.2 

Cer -0.3** -0.3*** -0.2 -0.3 
GluCer -0.6** 1.2 -0.6 2.6 

 
Table 5. Comparative lipid analysis of retroviruses versus total cell membrane. 
(A) Lipid composition of various total cell membrane used in this study. Values are expressed as molar 
percentages of a given lipid to total lipids measured for the sample. The data represents the average and standard 
deviation of at least three independent samples, n≥3, except DF1 cells. (B) Ratio of retroviral lipids to total 
membrane lipid composition of host cells. Lipids which are significantly enriched (>1.5 fold) or excluded (<1.5 
fold) in viral envelopes are highlighted in red and green, respectively. The data represents the average of at least 
three independent samples, i.e. n≥3. Statistical significance was calculated using unpaired student’s T test, 
where *, ** and *** denotes p < 0.05, p < 0.01 and p < 0.001 respectively.  

A 

B 
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2.3.3 Phospholipids and sphingolipids profile of HIV and other retroviruses 
 

The HIV lipid composition data obtained in this analysis was in close agreement with 

data generated in previous studies by Aloia et al. and Brugger et al (Aloia et al., 1993; 

Brugger et al., 2006) (Table 4). To reveal the potential enrichment or exclusion of lipids in 

retroviruses, we compared viral lipids to total cellular lipids of their uninfected producer cells 

(Table 5). The comparative ratio of HIV lipids to H9 total cellular lipids confirmed the 

enrichment of PS, pPE, Chol, SM, dhSM and GluCer previously reported Brugger et al. 

(Brugger et al., 2006), while PC and Cer are excluded (Table 5B) (Aloia et al., 1993; Brugger 

et al., 1997; Brugger et al., 2006). By recapitulating this result, we confirmed that even 

though our methods of analysis are different4, we were able to yield similar results when the 

conditions under study were the same, thus validating our comparative data shown in later 

experiments. Interestingly, PI levels were consistently low while phosphoinositides were 

highly elevated in HIV envelopes. 

Qualitatively, parallel experiments with virions produced from H9 cells infected with 

a mutant construct found that the lipid composition of HIV was not changed in the absence of 

the viral envelope glycoprotein (Env) (Figure 11A and Figure 12B-C), suggesting that, even 

though the Env is thought to be associated with lipid rafts (Rousso et al., 2000), Env does not 

assist the specific incorporation of any lipid. Instead, our data suggests that Gag alone 

dictates the major lipid components incorporated into HIV, consistent with the fact that Gag 

alone is responsible for lipid raft association (Bhattacharya et al., 2006) and is sufficient for 

particle assembly and release (Morita and Sundquist, 2004). 

HIV derived from either H9 cells or MDM cells were also virtually identical, with the 

exception that dhSM is elevated in HIV from MDM cells (Table 5 and Figure 12A). While 

                                                 
4 Brugger et al. used precursor ion and neutral ion loss scans while we used MRM scans. 
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the differences are subtle, they could be a consequence of the precise site of assembly in both 

cell types. HIV from H9 cells buds at the plasma membrane while HIV budding from MDM 

may occur either at MVBs (Nguyen et al., 2003; Ono and Freed, 2004) or at deeply 

invaginated membrane structures that appear to be derived from the plasma membrane in 

MDM (Deneka et al., 2007; Jouvenet et al., 2006; Welsch et al., 2007). Their overall 

similarity in virion lipid composition is in agreement with the emerging evidence that both 

assembly sites are continuous with the plasma membrane (Deneka et al., 2007; Jouvenet et 

al., 2006; Rudner et al., 2005; Welsch et al., 2007). Analysis of MV released from infected 

MDM cells (i.e. the CD45 enriched fraction) revealed that they exhibit similar lipid 

compositions to HIV released from these cells, albeit with much lower levels of 

phosphoinositides PIP and PIP2 while HIV from the same cells contained these lipids (Table 

4 and Figure 12D). Lipid profiles of MLV produced from REF and DFJ8 cells also showed 

remarkable similarity to that of HIV despite belonging to different retrovirus genus and being 

produced from different cell types (Table 4 and Figure 10B). This data suggested that the 

budding membranes of these different viruses are actually similar and likely to be the plasma 

membrane of the cell.  We noted that MLV-DFJ8 exhibited an unusually high PIP content, 

possibly due a PIP2 hydrolysis during their purification or a cell line specific effect or other 

cell specific effects (Table 4). 
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Figure 11. Qualitative lipid analysis of HIV, MLV and their respective host cell membrane.  
ESI-MS spectra in the negative mode are shown for lipid mixtures from CD45 depleted HIV (A), H9 plasma 
membrane (PM) (C) and H9 total membranes (TM) (E). Similar analysis of lipids extracted from MLV (B), REF 
PM (D) and REF TM (F). The representative spectra shown are normalized to the highest peak within the m/z 
range. Prominent ions which were characterized by MS/MS are labeled. 
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Figure 12. Qualitative lipid analysis of HIV and microvesicles. 
ESI-MS analysis of lipids extracted from CD45 depleted HIV from monocyte derived macrophages (MDM) 
(A), HIV mutant that does not express Env from H9 cells (B), HIV with an endocytosis signal mutation in Env 
(Y712S in Tm)  from H9 cells (C), CD45 enriched microvesicles from MDM (D). The representative spectra 
shown are normalized to the highest peak within the m/z range. Prominent peaks that were characterized by 
MS2 methods are labeled in the figure. 
 
 

2.3.4 Purification of plasma membrane fractions 
 

The lipid composition of the plasma membrane is distinct from that of other cellular 

membranes, exhibiting higher levels of cholesterol and sphingolipids (van Meer, 2005). 

Because HIV and MLV both use the plasma membrane for budding, we analyzed the lipids 

present in the plasma membrane rather than total cellular membrane to better assess 

enrichment. We enriched for plasma membrane via the use of cationic silica beads that 

adhere electrostatically to the plasma membrane (Harila et al., 2006; Mason and Jacobson, 

1985; Stolz and Jacobson, 1992). To monitor the efficacy of these cationic beads for plasma 

membrane preparation, we followed the enrichment of raft (flotillin and caveolin) and non-
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raft markers (transferrin receptor, TrF) (Figure 13A and 13B). Actin (cytoplasmic protein) 

and Rab5 (endosomal protein) served as indicators for plasma membrane purity (Figure 13A 

and 13B). Membranes are relatively plastic and can be altered by external agents. Therefore, 

before proceeding, we investigated if the concentration of cationic beads had any artificial 

effects on the membrane preparations that could lead to artifacts. At a low bead concentration 

of 1%, all three markers were present to a similar extent in adherent REF cells (Figure 13A). 

TrF levels in the plasma membrane fractions appear to be constant with increasing bead 

concentration and less abundant than total membrane levels. Since TrF recycles between 

plasma membrane and endosomes in a cell (Green et al., 1987), it explains why REF plasma 

membrane preparation will contain less TrF than observed in the REF total membrane 

preparations. Unexpectedly, the raft markers flotillin and caveolin appeared to be enriched 

over the non-raft marker TrF with increasing amounts of beads used, suggesting that these 

beads have a propensity for inducing lipid raft fractions at high concentrations (Figure 13A). 

This was confirmed by lipid analysis of the fractions showing that plasma membrane fraction 

extracted using 10% beads contained increased levels of SM (Figure 13C). Therefore, we 

decided to apply the 1% cationic bead solution which does not induce this artifact to prepare 

plasma membranes from all other adherent cell lines including DF1 and MDM. We found 

that the condition also works well for the suspension cell line H9 which showed equal levels 

of TrF and flotillin (Figure 13B).  
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Figure 13. Purification of plasma membrane using cationic silica beads. 
Plasma membrane (PM) fractions were isolated from (A) REF and (B) H9 cells using cationic beads and 
compared to total cell membrane (TM) fractions. Western blotting for raft (flotillin and caveolin) and non-raft 
markers (transferrin receptor, TrF) were used to assess plasma membrane characteristics while actin 
(cytoplasmic protein) and Rab5 (endosomal protein) served as indicators for plasma membrane purity. (C) 
Comparative lipid profile of REF PM isolated using 10% (■) and 1% (□) bead concentration. The standard 
deviation was derived from indepdent samples (n=3). 
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Considering the importance of the PM isolation to our analysis, we explored another 

PM isolation technique on the REF cell line using pre-formed Optiprep gradient procedure 

(Finzi et al., 2007; Sheff et al., 1999). Based on previous reports, it was found that the 

concentration of the PM would be found between fraction 4 and 5 based on 800µl sample 

volume from the lowest density gradient. We confirmed this result by recapitulating some of 

the western blot results showing an overlap of enrichment between TrF and early endosomal 

marker EEA1 (Sheff et al., 1999). Further lipid analysis of the various fractions of the 

gradient showed that the PM fraction is located in fraction 5&6 in our case (Figure 14B). 

More importantly, this result showed that both methods of PM isolation gave similar results 

(compare Figure 14B and 11D). Given the shorter preparation time required for the cationic 

silica method (<6hr) compared to the Optiprep method (>24hr), we elected to use the former 

method for the remainder of our experiments. 
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Figure 14. Purification of plasma membrane using Optiprep gradients 
(A) Plasma membrane (PM) fractions from REF cells were isolated by centrifugation through a continuous 
Optiprep gradient. The fraction number refers to 800µl of gradient sampled from lower density to higher 
density. Membrane identity was confirmed by western blotting for various cellular organelles. TrF is a non-raft 
plasma membrane marker that also appears in the endosomal system while EEA1 is a marker for early 
endosomes. (B) ESI-MS analysis of fractions in negative modes are shown for three pooled fractions taken from 
the gradient. The representative spectra shown are normalized to the highest peak within the m/z range. 
Prominent peaks were labeled based on m/z identity. 
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2.3.5 The lipid composition of retroviruses resembles that of plasma membrane 
 

Unbiased lipid profiling of purified viral particles and plasma membrane fractions 

revealed that the mass spectrometry patterns of MLV and HIV-H9 lipids were highly similar 

to their plasma membrane lipids, but not total cellular lipids (Figure 11A-F). Both virus and 

plasma membrane spectra were dominated by PS ions, namely PS 36:1, PS 34:1 and PS 38:3 

or PS 38:2 in the negative polarity ESI mode (Figure 11A and B). This can be attributed to 

the abundance of PS in the lipid extract and the high ionization efficiency of PS as well as the 

exclusion of PI in viral envelopes. In addition to PS other minor ions in the mass spectra 

corresponded to numerous species of PE, pPE, PI, PA and GM3 which are not labeled in the 

spectra shown here. REF and H9 plasma membrane spectra were also similar to the viruses in 

having high PS levels, but differed in having higher levels of PI (Figure 11C and D). The 

absolute molar percentages of individual phospholipid and sphingolipid molecules are 

presented in Figure 15, 16, 17 and 18 for HIV-H9, MLV-REF, MLV-DFJ8 and HIV-MDM 

respectively. Detailed analysis of the head group charge and fatty acyl distribution indicates 

that retroviral envelopes have a tendency to harbor the more anionic lipids and shorter and 

more saturated fatty acyl chains compared to total cellular lipids (Figure 15-18). This 

distribution of retroviral lipid species is highly similar to the plasma membrane while being 

distinctly different from the total membrane of their respective host cell.  

The comparison of viral lipids to plasma membrane lipids illustrates the striking 

similarity of retroviruses with plasma membrane lipids (Table 6B). In contrast, when total 

cell lipids are used for comparison, PS, pPE, SM, and DHSM are significantly enriched, 

while PI, PC, PE and Cer are excluded from viral envelopes (Table 5B). Thus, the plasma 

membrane is the appropriate cellular reference for comparison. In general, Chol, Cer and 

GM3 remain enriched in both retroviral envelopes as well as CD45-enriched MV over their 
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producer cell plasma membrane (Table 6B). More significantly, PIP and PIP2 are enriched in 

the retrovirus envelopes compared to plasma membrane (Table 6B and Figure 19) and MV 

(Table 6B and Figure 18). These data suggest that while rafts lipids such as Chol, Cer and 

GM3 are generally important for the formation of both retroviruses and MV, the requirement 

for phosphoinositides is specific to retroviruses. 
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Cell Line H9 MDM REF DF1/DFJ8 
PS 13.5 ± 1.3 11.0 ± 0.6 11.3 ± 0.3 7.2 ± 1.7 
PI 8.8 ± 1.0 6.3 ± 0.4 13.4 ± 1.9 8.3 ± 1.1 

PIP 1.3 ± 0.4 1.2 ± 0.3 0.5 ± 0.2 2.4 ± 0.4 
PIP2 1.6 ± 0.3 0.9 ± 0.3 0.9 ± 0.4 0.4 ± 0.2 
PE 8.7 ± 1.7 6.1 ± 0.6 5.9 ± 0.5 7.7 ± 1.0 

pPE 14.9 ± 1.8 15.2 ± 0.3 15.8 ± 0.6 9.6 ± 1.2 
PC 16.9 ± 1.7 19.4 ± 0.8 20.5 ± 1.7 29.8 ± 3.9 
ePC 4.9 ± 0.5 4.6 ± 0.2 6.0 ± 0.8 7.8 ± 0.9 
SM 16.4 ± 1.0 21.6 ± 0.5 18.1 ± 1.1 22.3 ± 2.2 

dhSM 4.4 ± 0.1 10.0 ± 0.2 3.7 ± 0.6 3.0 ± 0.1 
Cer 1.6 ± 0.3 0.6 ± 0.1 0.8 ± 0.2 0.3 ± 0.1 

GluCer 7.1 ± 0.7 3.1 ± 0.3 3.2 ± 1.0 1.2 ± 0.5 
Chol 0.05 ± 0.00 0.09 ± 0.02 0.06 ± 0.01 0.03 ± 0.00 
GM3 0.06 ± 0.01 0.01 ± 0.00 0.15 ± 0.01 0.001 ± 0.0 

 

Virus HIV HIV MLV MLV CD45 MV 
Cell Line H9 MDM REF DFJ8 MDM 

PS -1.0 -0.9 1.3* 2.1** -0.8 
PI -0.3** -0.5* -0.1*** -0.3*** -0.4** 

PIP 1.6 2.6** 4.7** 1.3 -0.6 
PIP2 1.6* 4.2** 10.4*** 2.0** -0.7 
PE -0.9 -0.9 1.1 -0.9 -0.6* 

pPE -0.9 -0.8 -0.9 1.4** -0.9 
PC 1.3 -0.9 -0.7 -0.7 1.1 
ePC 1.1 1.0 -0.4* -0.7 1.6** 
SM 1.3 1.2* 1.3* 1.2 1.3** 

dhSM -0.7*** -0.8** 1.8* 1.3** -0.7*** 
Cer -0.9 2.8** 2.2 1.0 3.9*** 

GluCer -0.6* 1.2 -0.7 -0.3* -0.7 
GM3 1.4* 11.6** 2.9* 12 5.0*** 
Chol 2.7* 1.4 2.0** 3.0* 4.2*** 

 
Table 6. Comparative lipid analysis of retroviruses versus plasma membrane. 
(A) Lipid composition of plasma membrane derived from host cells used in this study. Values for all lipid 
classes except cholesterol (Chol) and GM3 are expressed as molar percentages of a given lipid to total lipids 
measured for the sample. Chol and GM3 are expressed as ratios of its signal intensity to total PC level and total 
SM level respectively. The data represents the average and standard deviation of at least three independent 
samples, n≥3. (B) Ratio of retroviral lipid composition to plasma membrane lipid composition. Lipids which are 
significantly enriched (>1.5 fold) or excluded (<1.5 fold) in viral envelopes are highlighted in red and green, 
respectively. The data represents the average of at least three independent samples, i.e. n≥3. Statistical 
significance was calculated using unpaired student’s T test, where *, ** and *** denotes p < 0.05, p < 0.01 and 
p < 0.001 respectively. 

A 

B 
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Figure 15. Glycerophospholipids and sphingolipids distribution of HIV and H9 host cells.  
Abundance is represented as the molar percentages (y-axis) of a given lipid (x-axis), to total lipid measured 
except GM3 which was normalized to the total SM levels. Lipids were extracted from purified virus (black 
bars), total cell membrane (open bars), plasma membrane fractions (grey bars) and quantified via mass 
spectrometry using multiple reaction monitoring. Mole percentages were calculated with relevant internal 
standards. GM3 quantification is represented in relative levels due to the lack of suitable internal standards. 
Sphingolipids are presented as sphingoid base residue/fatty acyl residue. The standard deviation was derived 
from independent samples (at least n=3).  
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Figure 16. Glycerophospholipids and sphingolipids distribution of MLV and REF host cells.  
Abundance is represented as the molar percentages (y-axis) of a given lipid (x-axis), to total lipid measured 
except GM3 which was normalized to the total SM levels. Lipids were extracted from purified virus (black 
bars), total cell membrane (open bars), plasma membrane fractions (grey bars) and quantified via mass 
spectrometry using multiple reaction monitoring. Mole percentages were calculated with relevant internal 
standards. GM3 quantification is represented in relative levels due to the lack of suitable internal standards. 
Sphingolipids are presented as sphingoid base residue/fatty acyl residue. The standard deviation was derived 
from independent samples (at least n=3). 
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Figure 17. Glycerophospholipids and sphingolipids distribution of MLV and DFJ8 host cells.  
Abundance is represented as the molar percentages (y-axis) of a given lipid (x-axis), to total lipid measured 
except GM3 which was normalized to the total SM levels. Lipids were extracted from purified virus (black 
bars), total cell membrane (open bars), plasma membrane fractions (grey bars) and quantified via mass 
spectrometry using multiple reaction monitoring. Mole percentages were calculated with relevant internal 
standards. GM3 quantification is represented in relative levels due to the lack of suitable internal standards. 
Sphingolipids are presented as sphingoid base residue/fatty acyl residue. The standard deviation was derived 
from independent samples (at least n=3 except DFJ8 total cell membrane where n=1).  
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Figure 18. Glycerophospholipids and sphingolipids distribution of HIV, CD45-enriched microvesicles and 
monocyte derived macrophages (MDM) host cells.  
Abundance is represented as the molar percentages (y-axis) of a given lipid (x-axis), to total lipid measured 
except GM3 which was normalized to the total SM levels. Lipids were extracted from purified virus (black 
bars), microvesicles (open bars), MDM plasma membrane fractions (grey bars) and quantified via mass 
spectrometry using multiple reaction monitoring. Mole percentages were calculated with relevant internal 
standards. GM3 quantification is represented in relative levels due to the lack of suitable internal standards. 
Sphingolipids are presented as sphingoid base residue/fatty acyl residue. The standard deviation was derived 
from independent samples (at least n=3). 
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Figure 19. Profiling of phosphoinositides in retroviral envelopes.  
Precursor ion scanning for m/z 241 (dehydrated inositol fragment) was used to detect PI and phosphoinositides 
in MLV (top) and plasma membrane (PM) (bottom). 
 
 

2.3.6 Methodology for neutral lipid analysis 
 

In earlier works on lipid analyses of HIV envelope, the authors measured only the free 

cholesterol levels in the envelope but neglected neutral lipids like TG, DG and cholesterol 

ester (CE) in their analysis (Aloia et al., 1993; Brugger et al., 2006). The analysis of neutral 

lipids by ESI-MS is not trivial because these lipids do not ionize efficiently. The addition of 

ammonium acetate (NH4OAC) in the chromatography solvent mixture provides ammonium 

counter ions that charges the neutral lipid and facilitates ionization during the electrospray 

process, thereby increasing the sensitivity of neutral lipid detection (Hutchins et al., 2008; 

Krank et al., 2007; Murphy et al., 2007; Sommer et al., 2006). This prompted us to 
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investigate the presence of neutral lipids via a HPLC-ESI-MS method combining reverse 

phase C18 column separation using Chol:MeOH:2% 0.1M NH4OAC as a solvent5. Using this 

methodology, we were able to analyze both phospholipids and neutral lipids including free 

Chol, CE, DG and TG, sampling from both the positive and negative ion mode 

simultaneously.  

The elution times for the different lipid classes were previously established through 

the use of lipid standards (data not shown) and it is clear that HPLC separation is successful 

in separating the different classes of neutral lipids from phospholipids (Figure 20A). 

Therefore, while the polarity and m/z value of some of these lipids overlapped, we were still 

able to differentiate them based on the different elution time from the column. For example, 

cholesterol and cholesterol ester both produced 369.3 m/z species but were eluted at 7-7.5min 

and 12-20min respectively (Figure 20B). Although DG has the same elution time as Chol and 

PL (Figure 20C), their unique m/z value means that their identity will not be mistaken.  In 

another example, the elution time of PL and TG occurs between 7-12min and 12-26min 

respectively (Figure 20D and E), so molecules such as TG 50:4 and PC 40:1a which have 

844.8m/z will not overlap. We note that the neutral lipids are detected only in the positive 

modes, probably due to the positive charge originating from the ammonium counter ion.  

We quantified the neutral lipid abundance using the Q3 scan mode. In the Q3 mode, 

the instrument is programmed to detect specific m/z species at fixed collision energy 

throughout the duration of the analysis. Therefore, we can follow the specific ions of interest 

and normalization procedures were made simpler. It should be noted that we normalized the 

individual lipid signal intensity to the total lipid signal intensity produced by the sample due 

to the lack of proper internal standards for the neutral lipid classes. Hence, the data presented 

is a relative value to total amount of lipids in the sample.  

                                                 
5  This method was developed  in-house by Dr Shui Guanghou (unpublished work). 
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Figure 20 . HPLC chromatogram profile of MLV lipid extract.  
Chromatogram of total lipid sample (A), chromatogram of Chol and CE 369.2-369.7 m/z (B), chromatogram of 
DG 36:0 607.5-608.0 m/z (C), chromatogram of TG 52:0 880.7-881.2 m/z (D), chromatogram of PS 36:1 788.5-
790.0 m/z (E). The elution times of various lipids classes are indicated using the horizontal bars.  
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2.3.7 Neutral lipid composition of retroviruses envelopes 
 

Our results show that retroviral envelope lipid contains additional neutral lipids like 

CE, DG and TG in addition to free Chol (Table 7). Similar analysis was carried out on the 

neutral lipids of total cell membrane lipids as a comparison. As expected, MLV and HIV are 

highly enriched in cholesterol compared to their host cell total membrane levels (Table 7). 

Contrary to Chol levels, the specific inclusion of CE in the retrovirus envelope is not as clear 

cut. One the one hand, HIV-H9 is enriched in CE compared to its producer cell total 

membrane while on the other hand, MLV-REF has lower levels of CE compared to their host 

(Table 7B). Retrovirus envelopes are also enriched in DG (Table 7B), particularly in 

saturated DG species such as DG 36:0 and DG 34:0 (data not shown) when compared to their 

host cells. The identities of these DG species were confirmed by tandem MS analysis (Figure 

21A and B). Unexpectedly, TG is also found to be present in the retrovirus envelope, albeit at 

much lower levels compared to their host cell levels (Table 7B). It is interesting to note that 

the ratio saturated to unsaturated TG present in retrovirus envelopes is higher compared to the 

same ratio in the producer cells (Table 7A). Tandem MS analysis of an m/z value 

corresponding to TG 52:0 (16:0/18:0/18:0), resulted in the formation of daughter ions 

corresponding to saturated DG 16:0/18:0 and DG 18:0/18:0 ions, thus confirming the identity 

of the TG parent ion (Figure 21C). Overall, the enrichment of cholesterol and saturated DG 

and TG in the virus envelope compared to host cell total membrane suggests that the 

mechanics of lipid raft clustering may be involved during virus assembly.  



 
 

66

 

 HIV-H9 H9 Cells TM MLV-REF REF TM 
Chol 2.5 ± 0.2E-02 3.2 ± 0.3E-03 1.7 ± 0.1E-02 5.2 ± 0.5E-03 
CE 1.5 ± 0.3E-02 1.1 ± 0.1E-02 1.4 ± 0.2E-02 3.6 ± 0.2E-02 
DG 4.2 ± 0.9E-01 1.6 ± 0.5E-01 5.2 ± 0.1E-01 2.8 ± 0.5E-01 
TG 1.9 ± 0.3E-01 5.5 ± 0.2E-01 5.1 ± 0.01E-02 2.6 ± 0.1E-01 

     
DG saturated 3.5 ± 1.1E-01 1.0 ± 0.5E-01 4.2 ± 0.1E-01 1.7 ± 0.6E-01 

DG mono-
unsaturated 4.4 ± 1.6E-02 3.8 ± 0.5E-02 8.1 ± 0.3E-02 7.8 ± 0.2E-02 

DG di-unsaturated 2.3 ± 0.6E-02 2.2 ± 0.2E-02 2.4 ± 0.1E-02 3.1 ± 0.1E-02 
     

TG saturated 6.6 ± 0.3E-02 3.5 ± 0.6E-02 1.2 ± 0.1E-02 3.5 ± 0.1E-02 
TG mono-
unsaturated 1.4 ± 0.1E-02 9.1 ± 0.4E-02 7.0 ± 0.3E-03 6.0 ± 0.1E-02 

TG poly- 
unsaturated 1.1 ± 0.1E-01 4.3 ± 0.2E-01 3.2 ± 0.1E-02 1.7 ± 0.1E-01 

 

 HIV-H9 MLV-REF 
Chol 7.8*** 3.3*** 
CE 1.4 -0.4*** 
DG 2.6* 1.9** 
TG -0.3*** -0.2*** 

   
DG saturated 3.5* 2.5** 
DG mono-
unsaturated 1.2 1.0 

DG di- 
unsaturated 1.0 -0.8** 

   
TG saturated 1.9** -0.3*** 
TG mono-
unsaturated -0.2*** -0.1** 

TG poly- 
unsaturated -0.3*** -0.2*** 

Table 7. Comparative neutral lipid analysis of retrovirus envelopes and their producer cells.  
(A) LC/ESI-MS analysis was used to analyze the neutral lipids of HIV produced from H9 cells and MLV 
produced from REF cells and their respective producer cell total membrane (TM). The data presented show 
relative amounts of each lipid classes normalized to the total ion count detected from their extract.  The data 
represents the average and standard deviation of three independent samples, n=3. (B) Ratio of retroviral neutral 
lipids to total membrane neutral lipid composition of host cells. Lipids which are significantly enriched (>1.5 
fold) or excluded (<1.5 fold) in viral envelopes are highlighted in red and green, respectively. The data 
represents the average of at least three independent samples, i.e. n≥3. Statistical significance was calculated 
using unpaired student’s T test, where *, ** and *** denotes p < 0.05, p < 0.01 and p < 0.001 respectively.  
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Figure 21. Tandem MS analysis of MLV neutral lipids. 
MS/MS analysis was conducted using MLV lipid extracts on m/z values corresponding to DG 36:0 (A), DG34:0 
(B) and TG 52:0 (C) was conducted to ascertain their identity. Acylium ions ([RCO]+), Acylium ions with loss 
of water ([RCO]+-H2O), and ions retaining the glycerol backbone ([R’+74]+) are present in these spectra. 
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Chapter 3 – Functional roles of lipids in retrovirus envelopes 

 

3.1 Introduction 
 

In Chapter 2, detailed lipid analysis demonstrated that the lipid compositions of 

retrovirus envelopes are mostly similar to the plasma membrane of their respective host cells. 

An interesting feature of their lipid composition is the high levels of sphingomyelin (SM), 

phosphatidylserine (PS) and plasmalogen phosphatidylethanolamine (pPE) that differentiate 

them from the total cellular membrane. Moreover, retrovirus envelopes can be further 

distinguished from plasma membranes by enriched levels of phosphoinositides, particularly 

PIP2, and raft lipids including cholesterol (Chol), ceramide (Cer) and GM3. As we had 

hypothesized earlier, these enriched lipid classes will likely play important roles in the 

retroviral replication cycle.  

We propose that the enrichment of lipids occurs because they may be crucial to the 

assembly and budding of retrovirus particles. Numerous lines of evidence supports the 

validity of lipid raft associated retrovirus assembly (Briggs et al., 2003). Therefore, retrovirus 

proteins are targeted to microdomains at the plasma membrane that are intrinsically enriched 

in rafts lipids such as cholesterol, ceramide and GM3. The targeting of retrovirus Gag also 

appear to be regulated electrostatically by phosphoinositide PI(4,5)P2 (Ono et al., 2004; Saad 

et al., 2006) which would ultimately result in their enrichment in the retroviral envelope. In 

complex retroviruses like HIV, accessory proteins such as Nef can also regulate the inclusion 

of Chol and SM into the assembly site  (Brugger et al., 2007; Zheng et al., 2003). 

Furthermore, the lipid composition of the site of retrovirus assembly must exhibit properties 

that enhance retrovirus budding. The result of these processes would be reflected in an 

enrichment of these lipids in the retrovirus envelopes as compared to the plasma membrane. 
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We further propose that the lipid composition of the retrovirus envelopes may have 

evolved to provide maximal protection to retrovirus virions when they exist outside a cell and 

enable it to infect a new host cell.  For this purpose, the virus is required to make contact with 

the host through the appropriate receptors that may be protein or lipid in nature, followed by 

fusion of the virus envelope with the cell limiting membrane. It is clear that lipid envelope of 

the virus can facilitate entry in a number of ways, including (1) initial capture of the virus to 

the target cell surface (Ugolini et al., 1999), (2) co-receptor or alternative receptor functions 

(Callahan et al., 2003; Coil and Miller, 2005a; Hug et al., 2000; Puri et al., 1999) and (3) 

providing a micro environment that promotes membrane fusion (Haywood and Boyer, 1984; 

Stiasny and Heinz, 2004).  

Based on the framework above, we propose to investigate the function of these 

enriched lipids with respect to retrovirus replication. Our paradigm suggests that if we 

scramble or disrupt the normal production of these lipids, specific aspects of viral replication 

will be disrupted. In section 2 of this chapter, we will examine the mechanism and 

implications of PIP2 enrichment in retroviral envelopes through genetic manipulations. In 

section 3, the chemical inhibitor phenyl-2-hexadecanoylamino-3-morpholino-1-propanol 

(PPMP) will be used to investigate the involvement of glycolipids in MLV replication. Lastly 

in section 4, the topology of aminophospholipids PS, PE and pPE in the MLV envelope will 

be mapped via chemical modification using trinitrobenzenesulfonic acid (TNBS) followed by 

analysis using electrospray ionization mass spectrometry (ESI-MS) 
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3.2 Functional relevance of PIP2 enrichment retrovirus envelopes 
 

3.2.1 Introduction 
 

In mammalian cells, a wide diversity of phosphatidylinositol polyphosphate or 

phosphoinositides isomers are distributed across the different membrane organelle, each 

performing vital functions in signaling and membrane trafficking (Rusten and Stenmark, 

2006). In the plasma membrane, the majority of phosphoinositides are believed to be 

PI(4,5)P2 while low levels of PI(3,4)P2 and PI(3,4,5)P3 exist and are detected upon cell 

stimulation (Figure 22)  (Rusten and Stenmark, 2006). While we were not able to 

differentiate the PIP2 isomeric components in retrovirus envelope via our MS detection 

methods, we are assuming, in this line of investigation, that the PIP2 present in retrovirus 

envelopes are chiefly composed of PI(4,5)P2. This is based on the previous and ongoing 

studies showing the specific interaction between Gag and PI(4,5)P2 at the plasma membrane 

assembly site (Murray et al., 2005; Ono et al., 2004; Saad et al., 2006).   

We begin our investigation by deciphering the source of PIP2 enrichment by 

comparing PIP2 levels of virus like particles (VLP) produced from wild type Gag constructs 

and mutant Gag constructs which lacks the polybasic residues of MA domain. This is 

followed by an examination of the role of PI(4,5)P2 levels in the plasma membrane in 

supporting HIV and MLV production. We propose to enzymatically deplete PI(4,5)P2 levels 

using well defined plasmid constructs and determine the amount of virus particles released.  
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Figure 22. Phosphoinositide species found in mammalian plasma membrane.  
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3.2.2 Materials and Methods 
 

3.2.2.1 Reagents 
 

All cell culture media and supplements were purchased from GIBCO, Invitrogen 

(Carsbad, CA, USA) or from the National University Medical Institute (NUMI, Singapore) 

supply store. All other reagents and chemicals including HPLC grade methanol, chloroform, 

and piperidine were purchased from Sigma Aldrich (St Louis, MO USA) unless stated 

otherwise. 

 

3.2.2.2 Preparation of virus like particles6 
 

Constructs expressing wild type and ∆MA HIV-Gag in the absence of Env were made 

based on pNL4-3/KFS (Ono et al., 2004) (a gift from Eric Freed, NCI, Frederick). Pol was 

deleted and a HA tag added to the C-terminus of Gag to study the release of virus-like 

particles (VLP) in the absence of protease. To make a ∆MA HIV-Gag expression vector, part 

of the globular MA head (aa 8-126) was deleted from the modified NL4-3/KFS clone. 

HEK293 cells were transfected with wild type and ∆MA HIV expression vector. At 48h post-

transfection, the supernatants were collected and passed through a 0.45µm filter. The clarified 

supernatants were centrifuged at 25,000 rpm at 4oC for 3h through a 15% sucrose layer to 

obtain purified VLPs. VLPs were lipid extracted for phosphoinositides enrichment (Bligh and 

Dyer, 1959) and measured using ABI 4000 Q-Trap (Applied Biosystems) as described in 

Chapter 2. 

 

                                                 
6 Preparation of VLPs was carried out by our collaborator Walther Mothes’ lab. 
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3.2.2.3 Measuring viral infectivity by flow cytometry 
 

The level of retrovirus infectivity under different experimental conditions was 

assessed using flow cytometry analysis. An infectivity assay was established using purified 

MLV-GFP particles. These viruses were produced from REF cells that were transfected with 

a construct encoding Full length Friend MLV with a GFP insertion in the Env protein. As 

before, culture supernatant from the infected cells were collected, passed through a 0.45µm 

pore filter followed by ultracentrifugation through a 15% sucrose cushion at 25,000rpm at 

4°C for 1.5h. The purified virus pellet was suspended in 1xPBS solution and stored at -80°C 

till further use. The conditions for this assay including the amount of virus to add from this 

stock, starting cell number and supplementation of hexadimethrine bromide or polybrene 

(Sigma) was initially investigated to determine the optimal conditions for subsequent 

experiments. For these experiments, approximately 5,000 REF cells were plated into each 

well of a 12 well plate and left over night to adhere to the well. The following morning, 

different volumes of virus stock was added to the cells in serum free media, with or without 

polybrene, and allowed a 2h infection period. Serum free media was used to prevent any 

interference between MLV particles contact to the host cell receptors. Thereafter, the 

unbound viruses were removed by aspiration, and fresh culture media was added to the wells. 

Infection was carried out for an additional 36-48h before fixing the cells in 2% 

paraformaldehyde for flow cytometry analysis. MLV-GFP infected cells were detected and 

counted by green fluorescence gating using the FACScalibur (BD Biosciences, CA USA). 

Chronically infected and uninfected REF cells were used as a positive and negative control 

respectively. The data presented are taken from the R1 gate that encompassed cells within 

220-820 forward scatter (FSC) and 80-480 side scatter (SSC). In the end, we decided to use 

5ul of virus from our stock without polybrene for infection of approximately 5,000 REF cells 

seeded per well in a 12 well plate for all subsequent experiments.  
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3.2.2.4 Virus budding and release assay7 
 

To assess HIV release, 2.5 x 105 HEK293 cells in 24-wells were transfected with 

150ng of replication-competent pHXB-GFP-IRES-nef construct plasmids (a gift from 

Premlata Shankar, Immune Disease Institute, Harvard University) together with plasmids 

expressing 5-phosphatase IV (5PaseIV), or catalytically inactive 5-phosphatase Δ1 (5PaseΔ1) 

(gifts from Eric Freed, NCI, Frederick with permission from P. Majerus, Washington 

University of School of Medicine, St. Louis, MO) or empty vector control. The 5PaseIV 

construct was obtained by cloning full-length human 5Pase IV (GenBankTM AF187891) into 

the BamHI site of pcDNA 4/TO vector while the 5Pase∆1 mutant lacking the phosphatase 

signature domain was constructed by removing a 1.1.-kb fragment between the NarI and 

BstBI restriction sites (Kisseleva et al., 2002; Ono et al., 2004). For MLV release assays, 

200ng of plasmid MLV Env-GFP encoding full-length Friend 57 MLV genome with a GFP 

insertion into the envelope protein (Sherer et al., 2003) was co-transfected together with 

plasmids encoding 5PaseIV, catalytically inactive 5PaseΔ1 or vector control as above. 48h 

post-transfection, the released virus infectivity was measured by titering serial dilutions of the 

culture supernatants onto target cells TZM-bl (Derdeyn et al., 2000) and DFJ8 (Barsov et al., 

2001) cell lines for HIV and MLV, respectively. TZM-bl cells are a HeLa cell line 

engineered to express human CD4, CCR5, and CXCR4 while DFJ8 cells express the murine 

ecotropic receptor MCAT-1. GFP-positive cells were enumerated after additional 36–48h 

using flow cytometry analysis (Bector Dickinson [BD] Biosciences, CA USA).  The 

experiment was carried out in duplicates per trial on two separate days. The data was 

normalized to virus infectivity released from empty vector transfected samples and presented 

as fold inhibition. 
                                                 
7 This work was carried out by the lab of our collaborator Dr Walther Mothes. 
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3.2.3 Results 
 

3.2.3.1 Incorporation of PIP2 into HIV is reduced in HIV lacking the MA domain. 
 

It has been shown that the expression of retrovirus Gag alone is able to induce 

budding of virus like particles (VLP) (Campbell et al., 2001; Demirov and Freed, 2004). 

Numerous studies have argued that retrovirus Gag MA domains from different retrovirus 

families share a polybasic protein homology which interacts electrostatically with PI(4,5)P2 at 

the inner leaflet of the plasma membrane during virus assembly (Chukkapalli et al., 2008; 

Dalton et al., 2007; Murray et al., 2005; Ono et al., 2004; Saad et al., 2006). This suggests a 

possible role of MA domain in the enrichment of PIP2 in the retrovirus envelope. To test if 

MA is involved in PIP2 incorporation, we produced and purified VLP from HEK293 cells 

expressing either wild-type HIV-Gag or mutant HIV Gag lacking the polybasic globular head 

of MA domain but still maintaining the N-terminal myristoylation signal (∆MA HIV-Gag) 

and compared their phosphoinositide profiles (Table 8). Strikingly, PIP2 and PIP level was 

reduced 2.1-fold and 1.5-fold respectively in ∆MA HIV-Gag VLP. This is close to 

corresponding basal levels of PIP2 and PIP in microvesicles and plasma membrane, 

suggesting that the MA domain of HIV-Gag is responsible for the enrichment of these lipids 

in retroviral envelopes. Surprisingly, despite production from totally different cell types, the 

levels of PIP2 and PIP in the HIV-Gag VLPs closely resemble those of purified HIV particles 

from H9 cells and monocyte derived macrophages (Table 8). This data suggest that 

electrostatic interaction between HIV-Gag MA with PIP2 and PIP lipids occurs with 

conserved molecular specificities.  
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 WT Gag ∆MA Gag 
PI* 32.0 ± 5.7 63.2 ± 3.1 
PIP 28.3 ± 5.2 18.4 ± 3.0 
PIP2* 39.8 ± 5.4 18.5 ± 6.0 

 
 

 HIV-H9 H9-PM 
PI** 36.5 ± 8.7 74.7 ± 12.3 
PIP*** 28.1 ± 5.3 11.5 ± 3.4 
PIP2* 35.4 ± 9.9 13.8 ± 5.2 

 
 

  HIV-MDM MV 
PI ** 31.1 ± 4.4 67.3 ± 1.4 
PIP ** 31.5 ± 4.1 17.6 ± 2.4 
PIP2* 37.3 ± 8.6 15.1 ± 3.6 

 
Table 8. Contribution of polybasic MA domain to phosphoinositide incorporation into retrovirus envelope.  
Comparative phosphoinositide composition of WT Gag virus like particles (VLP) and ∆MA Gag VLP from 
HEK293 cells (A), purified HIV and plasma membrane fraction from H9 cells (B) and HIV and microvesicles 
(MV) produced from monocyte derived macrophages (MDM) (C). Values are expressed as molar percentages of 
the lipid extract and data presented represents an average of at least 3 independent experiments. Statistical 
significance between samples for (A) and (C) was measured using paired student’s T test while the same for (B) 
was measured using unpaired student’s T test. *, ** and *** denotes p < 0.05, p < 0.01 and p < 0.001 
respectively. 
 
 

3.2.3.2 Optimal conditions for detecting MLV infection in REF cells via flow cytometry  

 
In order to assess the level of viral infectivity, we had to establish a flow cytometry 

assay to distinguish between infected and uninfected REF cells (refer to Material and 

Methods for full details) (Figure 23). Uninfected and chronically infected REF cells were 

used as a negative and positive control respectively. The background signal was arbitrarily set 

as being less than 5% of gated green fluorescence cells in the negative control which resulted 

in 79% GFP positive counts in the positive control. By plating 5,000 REF cells per well in a 

12 well plate format, 24h before initiating the infection experiments, an initial well 

C 

B 

A 
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confluency of approximately 20-25% was obtained. Such low cell density is required for 

these experiments because MLV replication requires cell division to take place (Goff, 2007). 

Based on this background, approximately 37%, 28% and 23% of cells were GFP positive 48 

h post-infection when 5µl, 2µl and 1µl of virus were used respectively. When polybrene was 

added, infection rates increased to 48%, 35% and 31% with the same amount of virus used. 

Polyebrene is a cationic polymer that neutralizes the charge repulsion between virions and 

cell surface, thereby increasing the efficiency of infection. For the purpose of our 

experiments, using polybrene may be counter productive as this chemical may interfere with 

any alteration in net charge or cell adhesiveness that may be associated with perturbations to 

the virus envelope.  Taking all factors into consideration, we decided to use 5µl of the virus 

stock without polybrene for further experiments (described from here onwards) as this 

amount of virus gave a good level of infection.  
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Figure 23. Optimization of conditions for measuring MLV infection using FACS analysis.   
(A) A stock of MLV Env-GFP was produced and purified from REF cells, diluted in 1x PBS and stored in -
80°C until further use. The volume of virus added to uninfected REF cells is indicated in the labels, with or 
without the cationic polymer polybrene (PB). The negative and positive controls used referred to non-infected 
REF and chronically infected REF cells respectively. (B) Actual FACS data showing the distribution of GFP 
positive cells between REF cells infected with 5µL of virus stock, negative control and positive control. 
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3.2.3.3 Depletion of PI(4,5)P2 leads to reduced MLV and HIV production 
 

While we were unable to ascertain the PIP2 isomer identity present in retrovirus 

envelopes, we expected mainly PI(4,5)P2 since it is the predominant phosphoinositide isomer 

present in mammalian plasma membranes. We thus decided to investigate if decreasing 

PI(4,5)P2 levels in plasma membrane would have an inhibitory effect on retrovirus 

production (Figure 24A and B). The levels of cellular PI(4,5)P2 were reduced by the 

expression of human 5PaseIV constructs which hydrolyzed the phosphate group at the D5 

position of PI(4,5)P2 (Kisseleva et al., 2002). Consistent with a role for PI(4,5)P2 in retrovirus 

assembly and budding, HIV and MLV release were lowered with increasing amounts of 

5PaseIV used in transfection which corresponded to decreasing cellular levels of PI(4,5)P2. 

As a control experiment, we expressed the catalytically inactive form 5Pase∆1 which lacked 

the phosphatase signature domain and therefore does not reduce cellular PI(4,5)P2 levels 

(Ono et al., 2004). While 5Pase∆1 did not affect virus release significantly, we observed that 

at high transfection levels, the inactive form of the enzyme also interfered with MLV release 

suggesting pleiotropic side effects under these conditions (Figure 24B).  
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A

B
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Figure 24. Effects of PI(4,5)P2 depletion on (A) HIV and (B) MLV release from HEK293 cells.  
The 5PaseIV and 5Pase∆1 data was normalized to virus infectivity released from empty vector transfected 
samples and presented as fold inhibition. The ratio data was obtained by normalizing the 5PaseIV to 5Pase∆1 
data. The western blots show the levels of HIV (panel A) and MLV (panel B) Gag expression in cells and 
released virus detected in culture supernatants.  
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3.3 Glycosphingolipid depletion using PPMP 
 

3.3.1 Introduction 
 

Glycosphingolipids (GSLs) are ubiquitous constituents of mammalian plasma 

membranes that have been widely investigated for their role in viral entry (reviewed in 

Chapter 1). GSLs such as GluCer and GM3 are synthesized from ceramide precursors (Figure 

25A), which occupy a central point in the sphingolipid biosynthetic pathway. A variety of 

powerful inhibitors that block enzymes specific to GSL biosynthesis or reactions steps 

upstream have been touted as potential anti-viral drugs (Figure 25B).  

In a large body of work carried out by Blumenthal and colleagues, it was shown that 

pharmacological inhibition of GSL biosynthesis by phenyl-2-hexadecanoylamino-3-

morpholino-1-propanol (PPMP) (Abe et al., 1992) reduces HIV-1 entry. Furthermore, entry 

could be restored following the addition of erythrocyte derived GSLs or purified GSLs like 

Gb3 and GM3 to the treated cells (Ablan et al., 2006; Finnegan and Blumenthal, 2006; Hug 

et al., 2000; Puri et al., 1998; Puri et al., 1999; Puri et al., 2004; Rawat et al., 2004b; Rawat et 

al., 2006). Other classes of sphingolipid inhibitors such as Fumonisin B1 (FB1) (Gelderblom 

et al., 1988) has also been used to deplete SM and GSLs from HIV producing cells, resulting 

in mutant HIV virions that were 5-fold weaker in infectivity compared to wild type HIV 

virions (Brugger et al., 2006).  

While these studies show a dependence of HIV viability on the presence of GSLs in 

their envelope, the use of such inhibitors as antiretroviral therapeutics remains controversial. 

Overall lipid metabolism is co-regulated in cells and the use of chemical inhibitors can induce 

significant changes in glycerophospholipid and cholesterol homeostasis, membrane 

organization, cell growth and DNA replication (Barbour et al., 1992; Burger et al., 2007; 
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Glaros et al., 2005; Kovacs et al., 2000; Makino et al., 2006). Therefore, the interpretation of 

results obtained by using these chemicals has to be considered in correlation to overall 

cellular changes. 

To address the issues described above, we propose to characterize the changes in lipid 

composition associated with the use of PPMP in MLV particles and rat embryonic fibroblast 

(REF) cells. We then complement this analysis by examining changes in MLV infectivity 

towards REF cells. Infectivity will be assessed from two perspectives: 1) comparing wild 

type MLV to mutant MLV produced from PPMP treated cells (Figure 26A) and 2) comparing 

the amount of infectivity in PPMP treated cells (Figure 26B). These experiments are 

important to distinguish between the effects of GSL depletion by PPMP at both virus-

associated and host cell-associated levels.  
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Figure 25. Formation of GM3 from sphingolipid precursors. 
(A) The biosynthesis of glycosphingolipids from ceramide. Cellular enzymes responsible for the various steps in 
the reaction and the inhibitory action of PPMP are labeled in diagram. (B) Sphingolipid biosynthesis pathway. 
Cellular enzymes responsible for the various steps in the reaction and the inhibitors used to study HIV-1 entry 
are labeled in diagram. Taken from (Rawat et al. 2005).  
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Figure 26. Schematic diagram of experimental steps to test effects of PPMP at the virus level (A) and at total 
cell level (B). 
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3.3.2 Materials and Methods 
 

3.3.2.1 Lipid analysis of mutant MLV-PPMP envelope and PPMP treated cells 
 

The effects of PPMP (Matreya LLC, Pleasant Gap PA) on changing lipid composition 

were examined in two aspects. Firstly, chronically infected REF cell lines were treated with 

10µM PPMP for at least three days before MLV was purified from the culture supernatant. 

Previous reports have indicated the use of PPMP at concentrations of up to 10µM with 

complete inhibition of GSL production seen after three days (Hug et al., 2000; Puri et al., 

2004). The mutant MLV-PPMP particles were then lipid extracted (Bligh and Dyer, 1959) 

and examined for changes in lipid profile using the ABI 4000 Q-Trap (Applied Biosystems, 

Foster City CA) in multiple reactions monitoring (MRM) mode and ELISA as described 

above. Besides lipid analysis, the structure of the mutant virus was also examined by electron 

microscopy8. All experiments were carried out in comparison to wild type MLV controls. 

Secondly, freshly plated REF cells were cultured in media supplemented with different media 

concentration of PPMP (mock, 1µM, 5µM and 10µM) for three days before harvesting and 

lipid extraction (Bligh and Dyer, 1959). The changes in lipid composition of PPMP-treated 

REF cells were examined using the MRM.  

 

3.3.2.2 Glycosphingolipid detection by ELISA9 
 

Virus particles were diluted in coating buffer to the required concentration and 100µl 

of diluted virus was added to the wells of a 96-wells microplate (PerkinElmer, Waltham MA, 

USA). The plates were sealed and incubated overnight at 4oC to allow adherence of the virus. 

                                                 
8 This analysis was carried out with the help of Ms Cheong Wei Fun. 
9 Refer to Appendix 1 for the recipes of reagents used under the section “ELISA analysis”. 



 
 

86

The following day, the non adhering viruses were removed by aspiration and the wells were 

washed once with 1x PBS. Each well was then loaded with 300 µl of blocking solution, the 

plates sealed and incubated for 2 hours at room temperature. After this, the blocking solution 

was removed and the plate was washed at least five times with 1x PBS. 100µl of primary 

antibody, diluted to 1:250 or 1:500 using blocking solution, was then added to the wells, plate 

sealed and incubated overnight at 4oC. The primary antibodies used were directed against 

gangliosides, including mouse monoclonal anti-GM3 (Seikagaku Corp, Tokyo), rabbit 

polyclonal anti-GM2 and rabbit polyclonal anti-GM1 (both from Matreya LLC, PA). 

Unbound primary antibody was then aspirated and the wells were washed with PBS at least 

five times. 100µl of biotinylated detection secondary antibody, diluted 1:5000 using blocking 

solution, was then added to the wells with a 1h incubation period. After this, unbound 

secondary antibody was aspirated and the wells were washed at least five times with 1x PBS. 

Lastly, 100µl of OptEIA TMB One-Step Substrate reagent (BD Biosciences, Franklin Lakes, 

NJ) solution was added to the wells and incubated for 30min for color development. The 

reaction was stop by adding 100µl of 1M H3PO4 and the final absorbance was read at 450nm. 

 

3.3.2.3 Measuring infectivity of mutant MLV-PPMP viruses 
 

Equal quantity of purified wild type MLV and mutant MLV-PPMP, as determined by 

total viral protein concentration (BioRad, Hercules CA), were used to infect untreated REF 

cells for 2hr (Figure 26A). After this initial incubation period, the culture media was changed 

to remove unbound virus. Following a further 48hr incubation period, the genomic DNA that 

now harbored the integrated viral genome was extracted using the DNeasy kit according to 

the manufacturer’s protocol (Qiagen, Valencia CA). The amount of proviral integrations was 

analyzed using the 7300 Real Time PCR system (Applied Biosystems). IQ SYBR Green 
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Supermix (BioRad) was used as the reporter signal with the following PCR protocol: Cycle 1 

(1X): Initialization Step 95°, 2min, Cycle2 (45X): Denaturation Step 95°, 30sec, Annealing 

Step 55°, 30sec, Elongation Step 72°, 1min, Cycle3 (1X): 4°, 5min. The primers used for 

MLV genome analysis was CTGTGTCTGTCCGATTGTCTAGTG (forward primer) and 

ACAGAGACAACACAGAA-CGATG (reverse primer) that amplifies the MLV LTR (Chan 

et al., 2008; Mothes et al., 2000a). The copies of MLV proviral genomes were normalized to 

the amount of cellular actin copies present. The primers used for actin analysis are 

ATCGCTGACAGGATGCAGAA (forward primers) and TAGAGCCACCAATCCACAC-

AG (reverse primers).  

 

3.3.2.4 Measuring infectivity of PPMP treated REF cells 
 

Infectivity of REF cells was quantified using MLV-GFP virus as described in sections 

2.2.3 and 2.3.2 of this chapter. Briefly, the infection of REF cells was initiated by incubating 

5µl of MLV-GFP with REF cells in serum free media for 2hr. The serum free media with 

unbound virus was then aspirated and replaced with fresh media for an additional 36-48h, 

before the cells were harvested and fixed. Flow cytometry was used to measure the amount of 

infected, GFP-positive cells. To study the effect of PPMP on MLV infection of REF (Figure 

26B), a number of different experimental conditions were included: 1) conditioning cells with 

different concentrations of PPMP 24h prior to virus infection and continuing treatment 

throughout the infection process, 2) treating cells with different concentration of PPMP only 

after the initial 2h infection period and 3) “rescuing” PPMP conditioned cells by replacing 

with normal cell culture media after the initial 2h infection period.  
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3.3.3 Results 
 

3.3.3.1 Glycosphingolipid composition of MLV particles 
 

In Chapter 2, it was established that the MLV envelope is enriched in GM3 over the 

plasma membrane fraction. GM3 with ceramide moieties d18:1/c16:0, d18:1/c24:1 and 

d18:1/c24:0 are the most abundant species in MLV particles (Figure 27A). The distribution of 

ceramide moiety closely resembles the molecular species distribution of Cer and SM of MLV 

(Figure 16). This is expected since the formation of glycosphingolipids like GM3 starts with 

a ceramide parent molecule (Figure 25A). We tried scanning for more complex gangliosides 

like GM1 and GM2 as well, but measurements were difficult due to lower concentrations of 

GM1 and GM2 and low virus titer. Moreover, due to the highly soluble nature of GM1 and 

GM2, these molecules normally partition to the aqueous phase during 

chloroform:methanol:water extraction techniques, thereby necessitating solid phase 

extraction. To circumvent this problem, we investigated the use of antibodies directed against 

GM1, GM2 and GM3 on purified MLV particles using an ELISA assay (Figure 27B). We 

were able to detect all three classes of GSLs on intact MLV virions but it was clear that the 

relative abundance is in a decreasing order where GM3>GM2>GM1.  
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Figure 27. Complex glycosphingolipids found in MLV virus envelopes. 
(A) Representative GM3 profile of purified MLV virus particles detected via ESI single stage scanning in 
negative ionization mode. The individual GM3 species are designated as sphingosine backbone (d18:1) to amide 
linked fatty acid carbon length and number of unsaturated bonds. (B) Detection of gangliosides GM1 (top), 
GM2 (middle) and GM3 (bottom) on purified MLV particles using ELISA. The primary (1°) antibodies were 
used in different dilutions as indicated in the legend. Amount of antibody binding is represented by absorbance 
measured at 450nm (y-axis). Experiments were carried out in a series of conditions indicated in the x-axis. The 
masses refer to the total MLV protein used per well. The control conditions included no virus control and no 
primary antibody (1°) control. Number of independent experiments for anti-GM1 is n=2, for anti-GM2 and anti-
GM3 is n=3 and the error bars represent the standard deviation of the mean.  
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3.3.3.2 Overall lipid composition of MLV-PPMP is distinct from MLV-REF virions  
 

PPMP is a chemical inhibitor of GSL synthesis that works by inhibiting UDP-glc 

glucosyltransferase activity, thereby preventing glycosylation of ceramide that leads to 

GluCer and other complex GSLs (Figure 25) (Abe et al., 1992). We continuously cultured 

MLV infected REF cells in culture media supplemented with 10µM of PPMP and collected 

the supernatant for virus purification, which we now refer to as MLV-PPMP. The lipid 

composition of these mutant viruses was compared to that of wild type MLV-REF particles.  

To obtain a quantitative description of the changes in lipids composition, MLV-PPMP 

was compared to MLV-REF using MRM detection for phospholipids and sphingolipids 

(Table 9 and Figure 28). As expected, MLV-PPMP particles showed a drastic reduction in 

GluCer and GM3 levels compared to MLV-REF particles. The reduction of GM3 was further 

validated using ELISA measurements (Figure 30A). This effect caused a significant increase 

in Cer levels in MLV-PPMP. Significantly, the overall levels of phosphoinositides in MLV-

PPMP were drastically modulated. Compared to MLV-REF, PI and PIP levels became highly 

elevated in MLV-PPMP envelopes while PIP2 was drastically reduced. Another interesting 

observation was that MLV-PPMP envelopes became slightly enriched in long chained 

(C>36) PC and ePC (Figure 28). This was balanced by decreasing levels of short chained 

(C≤34) PC and ePC, thus resulting in minimal changes in overall PC and ePC levels (Figure 

28). PE and pPE also appear to be up-regulated in MLV-PPMP envelopes although this effect 

is negated by large variations in signal intensity (Figure 28). No significant changes were 

seen in the other phospholipid classes measured. 
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 MLV-REF MLV-PPMP 
PS 4.4 ± 0.6E-02 4.8 ± 0.3E-02 
PI 4.5 ± 0.0E-03 10.0 ± 1.9E-03 

PIP 5.5 ± 0.8E-03 13.0 ± 2.3E-03 
PIP2 22.0 ± 1.3E-03 2.0 ± 0.9E-03 
PE 1.3 ± 0.1E-03 1.7 ± 0.6E-03 

pPE 3.3 ± 0.5E-03 4.1 ± 1.4E-03 
PC 5.5 ± 0.1E-01 5.9 ± 0.3E-01 
ePC 1.6 ± 0.0E-01 1.2 ± 0.0E-01 
SM 2.0 ± 0.1E-01 2.1 ± 0.2E-01 
Cer 2.1 ± 0.6E-04 4.4 ± 0.6E-04 

GluCer 7.7 ± 0.9E-04 3.0 ± 0.7E-04 
GM3 1.0 ± 0.2E-02 1.4 ± 0.6E-03 

 

 

 MLV-PPMP 
/MLV-REF 

PS 1.1 
PI 2.2** 

PIP 2.4** 
PIP2 -0.1*** 
PE 1.3 

pPE 1.2 
PC 1.1 
ePC -0.8 
SM 1.1 
Cer 2.1** 

GluCer -0.4** 
GM3 -0.1*** 

 

Table 9. Effects of PPMP treatment on the overall lipid composition of MLV-REF envelope.  
(A) Lipids from MLV-PPMP and MLV-REF were measured using MRM and are presented as relative values 
normalized to total ion counts. The data shown are averages and standard deviations of three independent 
samples, n=3. (B) Ratio of MLV-PPMP to MLV-REF lipid composition. Lipids which are significantly enriched 
(>1.5 fold) or excluded (<1.5 fold) in viral envelopes are highlighted in red and green, respectively. The data 
represents the average of three independent samples, n=3. Statistical significance was calculated using unpaired 
student’s T test, where *, ** and *** denotes p < 0.05, p < 0.01 and p < 0.001 respectively. 
  

A 
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Figure 28. Glycerophospholipids and sphingolipids distribution of MLV-REF versus MLV-REF.  
Abundance is represented as the relative intensity (y-axis) of a given lipid (x-axis) normalized to total lipid 
signal intensity in each sample. Lipids were extracted from purified MLV-REF (black bars) and MLV-PPMP 
(open bars), and quantified via mass spectrometry using multiple reaction monitoring. Sphingolipids are 
presented as sphingoid base residue/fatty acyl residue. The standard deviation was derived from a sample size of 
at least n=3.  
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3.3.3.3 MLV-PPMP virions are morphologically different from MLV-REF and show 
weakened infectivity 

 

The changes in lipid composition, particularly to raft lipids like GM3 and Cer and the 

fatty acyl chain distribution of PC and ePC, suggested that MLV-PPMP virus may exhibit 

morphological differences compared to MLV-REF particles. Comparing both particles by 

electron microscopy, we found that MLV-PPMP particles showed abnormal membrane 

structure compared to MLV-REF particles (Figure 29). The membranes of MLV-PPMP 

virions were marked by distinct regions of increased darkening alternating with lighter areas 

at the edges, suggesting abnormal clustering of electron dense proteins and/or lipids in MLV-

PPMP envelopes. This image is reminiscent of HIV and SIV particles that were depleted of 

cholesterol molecules by β-methylcyclodextrin, resulting in what was described as “a 

punctuate looking virus” (Graham et al., 2003). With decreased amount of GSLs exposed on 

its envelope surface, we predicted that MLV-PPMP virions may not be able to attach 

efficiently to its target cell and thus exhibit lower infectivity compared to MLV-REF.  

Alternatively, the changes in lipid composition and membrane structure may not provide a 

suitable membrane environment for the proper functioning of the MLV Env protein (Guyader 

et al., 2002).  

We tested this hypothesis by carrying out an infectivity assay comparing purified 

MLV-PPMP to MLV-REF (Figure 26A). Freshly prepared MLV-PPMP and MLV-WT 

stocks were quantified by total protein measurements (data not shown). Since both types of 

particles have been purified to the same extent, total protein measurements should provide a 

reasonable estimation of the number of virus particles used for infection. With this new batch 

of virus, we also confirmed by ELISA assay that GM3 level in PPMP-MLV particles was 

indeed reduced compared to WT-MLV particles (Figure 30A). REF cells, plated at 20% 

confluence at the start of the experiment, were exposed to equal amounts of MLV-PPMP or 
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MLV-REF for 2h to initiate infection. Polybrene was not used in this experiment as 

polybrene may artificially increase the binding of the virus to the host cell surface. The cells 

were grown in normal cell culture media throughout the duration of the experiment. It is 

important to note that under such conditions, the effects of lowered GSL levels are studied 

only during the initial infection step since the subsequent rounds of virus particles produced 

would exhibit wild type morphology. In this experiment, the viruses used did not express a 

fluorophore, so infectivity was quantified by measuring the number of copies of proviral 

genome that was integrated into the host cell genome using real time PCR. The amount of 

viral genome detected was normalized to the cellular actin copy number to account for 

differences in cell number. It was found that MLV-PPMP infectivity was reduced ~5 folds 

compared to MLV-REF (Figure 30B).  
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A B

C D

E F

A B

C D

E F

 

Figure 29. Changes in envelope morphology of MLV-PPMP. 
Electron microscopy of wild type MLV-REF particles produced from REF cells (A and B) and MLV-PPMP 
particles produced from REF cells treated with 10µM PPMP (C-F). The boxed area for figures A, C and E were 
enlarged and presented as B, D and F respectively. The arrows point out the punctured structures.  
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Figure 30. Differences in GM3 and infectivity levels between MLV-PPMP and MLV-REF particles. 
(A) Measurement of GM3 in purified wild type MLV (■) versus MLV produced by PPMP treated REF cells 
(□). Detection of GM3 was via ELISA, using antibody concentration of 1:500 dilution as determined earlier. 
0.5µg of virus, as determined by total viral protein, was used as the antigen. (B) Infectivity of MLV-REF versus 
MLV-PPMP was measured via the amount of viral genome copy number integrated into the host genome, using 
real time PCR analysis. The standard deviation was obtained from a sample size of n=3. Statistical significance 
between MLV-PPMP and MLV-REF was measured using paired student’s T test. ** and *** denotes p < 0.01 
and p < 0.001 respectively. 
 

3.3.3.4 PPMP treatment of REF cells result in changes to overall lipid composition 
 

We next examined the changes in lipid composition caused by PPMP treatment in 

cells. In accordance with previously reported therapeutic ranges for PPMP application (Hug 

et al., 2000; Puri et al., 2004), we cultured REF cells in medium supplemented with 1µM, 

5µM or 10µM of PPMP for three days before harvesting and lipid extraction. We quantified 
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and compared the total relative sphingolipids and phospholipids composition of the cells 

using MRM (Table 10).  

Expectedly, the level of detectable GM3 decreased with increasing concentrations of 

PPMP. GluCer levels also decreased with 1µM of PPMP but appeared to normalize and 

increase to control levels with increasing PPMP concentrations. Unlike in MLV-PPMP 

envelope, PPMP treated REF cells showed a reduction in Cer levels while SM levels were 

up-regulated compared to normally cultured REF cells. Significant changes in phopsholipid 

composition were detected as well. PC levels became more elevated with increasing PPMP 

concentrations while ePC first became elevated with low PPMP concentration then 

decreasing to below normal level with increasing concentrations of PPMP. In contrast, both 

PE and pPE levels decreased, although there seems to be a return to normal levels for long 

chain (C>36) and poly-unsaturated species at the highest PPMP concentration (Figure 31). In 

contrast to MLV-PPMP, PI levels were also decreased, specifically with their major species 

PI 38:3, PI 38:2 and PI 36:2 (Figure 31). Overall PS levels increased only slightly with higher 

PPMP concentrations, with increases in short chain (C32-34) and poly-unsaturated (PS 38:4, 

PS 40:5 and PS 40:4) species being balanced by decreases in long chained species (Figure 

31).  
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 REF Control REF+1uM 
PPMP 

REF+5uM 
PPMP 

REF+10uM 
PPMP 

PS 3.4 ± 0.3E-01 3.3 ± 0.1E-01 3.5 ± 0.3E-01 3.9 ± 0.4E-01 
PI 1.8 ± 0.2E-01 1.5 ± 0.1E-01 1.2 ± 0.1E-01 1.2 ± 0.1E-01 
PE 1.6 ± 0.3E-02 9.3 ± 3.2E-03 8.8 ± 0.6E-03 1.1 ± 0.3E-02 

pPE 2.2 ± 0.2E-02 9.7 ± 2.9E-03 9.1 ± 0.6E-03 1.1 ± 0.3E-02 
PC 2.3 ± 0.1E-01 3.4 ± 0.2E-01 3.6 ± 0.2E-01 3.4 ± 0.3E-01 
ePC 6.4 ± 0.4E-02 9.5 ± 0.5E-02 8.0 ± 0.3E-02 5.8 ± 0.3E-02 
SM 4.4 ± 0.2E-02 6.1 ± 0.2E-02 6.4 ± 0.5E-02 6.3 ± 0.6E-02 
Cer 4.1 ± 0.4E-04 2.5 ± 0.2E-04 2.2 ± 0.2E-04 2.5 ± 0.9E-04 

GluCer 1.8 ± 0.2E-04 7.7 ± 0.6E-05 9.3 ± 1.0E-05 1.7 ± 0.1E-04 
GM3 1.0 ± 0.0E-01 8.0 ± 2.4E-03 4.4 ± 0.3E-03 4.9 ± 1.3E-03 

 

 REF+1uM PPMP/ 
REF Control 

REF+5uM PPMP/ 
REF Control 

REF+10uM PPMP/ 
REF Control 

PS 1.0 1.0 1.1 
PI -0.8 -0.7** -0.7** 
PE -0.6 -0.6* -0.6 

pPE -0.4** -0.4*** -0.5** 
PC 1.5** 1.6*** 1.5** 
ePC 1.5** 1.3** -0.9 
SM 1.4*** 1.5** 1.4** 
Cer -0.6** -0.5** -0.6* 

GluCer -0.4** -0.5** -0.9 
GM3 -0.1*** -0.04*** -0.1*** 

 

 
Table 10. Effects of PPMP treatment on the overall lipid composition of REF total cell membrane.  
(A) Lipids from control REF and PPMP treated REF cells were measured using MRM and are presented as 
relative values normalized to total ion counts. The data shown are averages and standard deviations of three 
independent samples, n=3. (B) Ratio of PPMP treated REF cells to control REF cells lipid composition. Lipids 
which are significantly enriched (>1.5 fold) or excluded (<1.5 fold) in viral envelopes are highlighted in red and 
green, respectively. The data represents the average of three independent samples, n=3. Statistical significance 
was calculated using unpaired student’s T test, where *, ** and *** denotes p < 0.05, p < 0.01 and p < 0.001 
respectively.  
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Figure 31. Glycerophospholipids and sphingolipids distribution of REF after PPMP treatment.  
Abundance is represented as the relative intensity (y-axis) of a given lipid (x-axis) normalized to total lipid 
signal intensity in each sample. Lipids were extracted from REF Control (black bars), REF treated with 1µM 
(gray bars), 5µM (purple bars) and 10µM (open bars) of PPMP, and quantified via mass spectrometry using 
multiple reaction monitoring. Sphingolipids are presented as sphingoid base residue/fatty acyl residue. The 
standard deviation was derived from a sample size of at least n=3.  
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3.3.3.5 PPMP treated REF cells are more susceptible to MLV infection compared to 
untreated REF cells 

 

We are unsure of the physiological consequences of these changes in lipid 

composition but it was observed that PPMP treated REF cells exhibited increasing 

cytoplasmic granularity (Figure 32A) and also exhibited slower growth rates in culture, 

particularly when 10 µM of PPMP was used (data not shown). Since MLV infection and 

replication requires cell division to occur, we decided to examine if treatment of REF cells 

with PPMP will interfere with the infectivity of the cells. In this experiment, three different 

conditions were investigated as illustrated in (Figure 26B). We set the threshold level of 

infected GFP positive cells as more than 5% GFP background signal in the negative control 

(Figure 32B).   

Surprisingly, instead of a decrease in infection levels, it was found that cells 

conditioned in PPMP actually resulted in increased infection levels (Figure 33, gray bars). 

Infectivity peaked at 5µM PPMP concentration but decreased when 10µM PPMP 

concentration was used. To better determine the replication step in which PPMP treatment 

may enhance, we exposed the cells to the inhibitor only after the initial infection step. This 

also resulted in increased infectivity (Figure 33, white bars), similar in levels to conditioned 

cells, therefore suggesting that the enhancement of replication is likely to occur after the 

entry step. On the other hand, when PPMP conditioned cells were rescued, i.e. returned to 

normal media conditions, the level of MLV infection was reduced proportionately, although 

the condition with initial 10µM PPMP treatment seemed not to recover as well as those with 

lower PPMP concentration (Figure 33, black bars). 
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Figure 32. FACS analysis of infectivity level using MLV-GFP virus under different PPMP conditions.  
(A) Scatter plot of MLV-GFP infected REF cells, cultured at the indicated PPMP concentration. The y-axis 
represents the side scatter of the sample, indicating the amount of granularity of the cells. The x-axis represents 
the forward scatted of the sample, indicating size distribution of the cells in the sample. Sample gating limits is 
set within oval R2, from which the FACS instrument will measured GFP positive cells. (B) Amount of infected 
GFP positive cells in the differently treated samples. R3 indicates the cutoff used to determine true GFP positive 
cells and is based on <%5 basal level of GFP positive cells in the negative control.    
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Figure 33. MLV infection of PPMP treated REF cells.  
Gray bars represent experiments carried out on REF cells that were already conditioned with PPMP at the 
indicated concentration for at least 24h prior to infection. Cells continued to be treated with the indicated PPMP 
concentration for the duration of the experiment. White bars represent experiments where MLV infection was 
carried out on untreated REF cells first. The cells were newly treated with the indicated PPMP concentration 
after initial MLV infection for the duration of the experiment. Black bars show levels of infection when 
conditioned cells are rescued by switching to normal culture media after initial MLV infection. The infected 
cells were detected as percentage of GFP positive cells via flow cytometry. The results represent a sample size 
of n=3. Statistical significance between different PPMP treatments and their controls was measured using paired 
student’s T test. *, ** and *** denotes p < 0.05, p < 0.01 and p < 0.001 respectively. 
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3.4 Aminophospholipids distribution in MLV envelope  
 

3.4.1 Introduction 
 

The aminophospholipids PS and PE represent the most abundant lipid classes in the 

retrovirus envelope after PC and SM. In Brugger et al., the authors reported that PS and pPE 

are enriched in HIV envelopes when compared to total cell membrane (Brugger et al., 2006). 

In this study, we recapitulated this result in all our retrovirus envelopes when using total cell 

membrane composition as the comparator (Table 5B). However, when we compared viral 

envelopes to the plasma membrane, we find that this enrichment is lost except PS in MLV 

(Table 6B). This is due to the fact that the plasma membrane itself is highly enriched in PS 

and pPE compared to the rest of the cellular organelle (van Meer, 2005).  

Asymmetrical distribution of PS and PE in the plasma membrane is achieved by a 

number of factors including biophysical properties that restrict the ability of a lipid to cross 

the bilayer spontaneously and the presence of lipid binding enzymes that regulates 

translocation across bilayer (Holthuis and Levine, 2005). As discussed in Chapter 1, PS lipids 

have potential co-receptor functions in virus entry and, in some cases, is able to promote 

virus infections (Callahan et al., 2003; Coil and Miller, 2005a; Coil and Miller, 2005b). 

Another important consideration regarding, PS, PE and pPE is their contribution to 

membrane dynamics (McMahon and Gallop, 2005; Zimmerberg and Kozlov, 2006). 

Naturally, the transbilayer distribution of these lipid classes would have critical influence on 

their function in retroviral budding and entry.  

To gain insight into the functions of aminophospholipids, we seek to investigate the 

topology of these lipids in MLV particles produced from REF cells. 2,4,6-trinitrobenzene 

sulfonic acid (TNBS) has been used to investigate the asymmetry of aminophospholipids in a 
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variety of biological membranes including VSV (Fong et al., 1976; Fong and Brown, 1978), 

exosomes (Laulagnier et al., 2004) and mammalian cells (Fontaine and Schroeder, 1979; 

Marinetti and Cattieu, 1982; Schwartz et al., 1987). We propose to covalently modify 

aminophospholipids on the external leaflet of MLV envelopes with TNBS, followed by 

identifying these lipids via ESI-MS. We anticipate that these results will contribute to our 

understanding of the roles these aminophospholipids in mediating retrovirus and/or general 

vesicle budding and fusion activity with the host cell.  
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3.4.2 Materials and Methods 
 

3.4.2.1 Preparation of liposomes 
 

Lipids in organic solvents were mixed in the appropriate final liposome concentration 

using egg yolk derived PC with suitable amounts of DMPS, DMPE or pPE 38:4 (Refer to 

Appendix 5). The solvent was then removed by rotary evaporation in a speed vacuum, 

leaving behind a thin lipid film on the side of the tube. The lipid film was rehydrated by 

addition of 1ml 1xPBS, incubated for 1hr at room temperature with occasional vortexing, and 

finally agitated in a bath sonicator for 15min. This resulted in large multilamellar vesicles 

(LMV) suspension. This suspension was subjected to extrusion through a polycarbonate filter 

with 0.45µm pore size (Millipore, MA, USA) resulting in small unilamellar vesicles (SUV).  

 
 

3.4.2.2 TNBS labeling of liposomes 
 

We used SUV to establish the non-penetrating conditions for TNBS labeling. In these 

experiments, TNBS labeling of SUV was carried out under different reactions conditions 

including temperature variation during incubation (4°C, 25°C, 37°C) and concentration of 

TNBS used (1mM, 2mM, 4mM). The labeling reaction was carried out for 1.5h and 

terminated by quenching excess TNBS with a 2% final concentration of fatty acid free BSA 

(Roche, IN, USA). The samples were then lipid extracted using the Bligh and Dyer method 

(Bligh and Dyer, 1959) and the lipid samples subjected to lipid analysis using Waters 

Micromass Q-TOF (Waters Corp.) and ABI 4000 Q-Trap (Applied Biosystems) mass 

spectrometers as described in Chapter 2. It was found that the optimal reaction condition for 

TNBS labeling is 4°C for 1.5h using 2mM of TNBS.  
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3.4.2.3 TNBS labeling of MLV particles 
 

TNBS has been used to study asymmetry of aminophospholipids in VSV membrane 

bilayer (Fong et al., 1976; Fong and Brown, 1978) and we have modified the protocol 

accordingly for our experiments. For the labeling of MLV particles, only freshly produced 

MLV particles were used as it was found in that freeze thawing will affect the permeability of 

the virus envelope (Fong et al., 1976). Following the TNBS labeling and quenching step 

described above, the virus particles were layered above a 6ml volume of 15% sucrose 

cushion and pelleted through the cushion at 25,000rpm for 1.5h at 4°C to separate the TNBS 

labeled MLV particles from the reaction mixture. The labeled TNBS-MLV was then 

subjected to lipid extraction (Bligh and Dyer, 1959) and analysis via ESI-MS using the 

Waters Micromass Q-TOF (Waters Corp.) mass spectrometer using the same parameters 

described in Chapter 2. The results presented represents the mean of 3 replicates, i.e. n=3. 

Individual samples were processed by warping and presented as log10 ratio of TNBS labeled 

MLV to untreated MLV using a Matlab (MathWorks, Natick MA, USA) based programme 

that was developed in-house10. MRM quantification of TNBS-labeled aminophospholipid 

was carried out using ABI 4000 Q-Trap (Applied Biosystems). For TNBS-PS, we followed 

the mass transition of the parent ion to precursor ion fragment 235m/z which corresponds to 

charged head group TNBS+serine-H2O. For TNBS-PE or TNBS-pPE, we followed the mass 

transition of the parent ion to neutral loss of 254m/z which corresponds to the 

TNBS+ethanolamine-H2O head group. 

 

                                                 
10 This programme was written by Ms Chua Gek Huey. 
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3.4.3 Results 
 

3.4.3.1 ESI-MS analysis of TNBS labeled aminophospholipid standards 
 

TNBS reacts covalently with the aminophospholipids, undergoing nucleophilic 

aromatic substitution with the free amino group NH2 on the phospholipid head group, 

resulting in the expulsion of the SO3
-2 group from TNBS. This reaction would generate a 

mass shift from the original molecule that can be detected using ESI-MS (Figure 34). To 

investigate this, we made DMPS, DMPE and pPE 38:4 liposomes and treated the liposomes 

with TNBS. This resulted in modified aminophospholipids that we shall name as TNBS-

DMPS (Figure 34A), TNBS-DMPE (Figure 34B) and TNBS-pPE 38:4 (Figure 34C) 

respectively. It was found that the phospholipid with a serine head group, DMPS, exhibited a 

mass shift of 149m/z (Figure 34A). For this to occur, we predicted that PS head group and 

TNBS molecule probably went through double aromatic substitution. Under increased 

collision energy, TNBS-DMPS produced a large characteristic precursor ion fragment with 

235 m/z, predicted to be the charged head group TNBS+serine-H2O. The fragments at m/z 

363, 381 and 591 represent the neutral loss of the fatty acid chain and the TNBS-labeled head 

group respectively. In contrast to DMPS, DMPE and pPE 38:4 lipids exhibited a mass shift of 

+211 m/z, corresponding to a single nucleophilic substitution (Figure 34B and C). During 

MS/MS analysis, neutral loss of the TNBS-labeled head groups of both DMPE and pPE 38:4 

(i.e. parent ion -254m/z), produced large peaks that correspond to PA-like fragments at 591 

and 707 m/z respectively. In addition, characteristic neutral losses of the fatty acid chains 

resulted in lysoPA-like fragments as indicated in the figures.  
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Figure 34. MS/MS of TNBS labeled phospholipids.  
Proposed TNBS labeled molecular structures are presented and potential fragment daughter ions are labeled 
doubly in the structure and spectra. Known daughter ions such as fatty acyl (FA) and glycerphosphate – water 
(GlyP-H2O) are labeled in the spectra directly.  Spectra are presented as relative values normalized to the 
highest peak in the spectra. (A) TNBS-DMPS. (B) TNBS-DMPE. (C) TNBS-PE 38:4p.  
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3.4.3.2 Optimization of TNBS labeling conditions 
 

The success of these experiments would depend on the optimization of TNBS labeling 

conditions such that TNBS is unable to penetrate the membrane bilayer. Previous studies 

have suggested that the reaction temperature may be the most important factor controlling the 

extent of TNBS penetration (Fong et al., 1976; Fontaine and Schroeder, 1979; Williams et al., 

2000). We thus investigated the loss of DMPE and gain of TNBS-DMPE after TNBS 

treatment on liposomes under different temperature conditions 4°C, 25°C and 37°C (Figure 

35). Expectedly, higher reaction temperature resulted in increased DMPE loss and TNBS-

DMPE gain. This suggests that at higher temperature, the liposome becomes more permeable 

to TNBS, resulting in increased labeling of both outer and inner leaflet DMPE. Because 

specificity is crucial in this analysis, we decided to conduct the rest of our experiments using 

4°C.  

Next we attempted to find the optimum concentration of TNBS based on the amount 

of amount of DMPE lipid molecules present (Figure 36). We had initially suspected that 

higher concentrations of TNBS would result in proportionally increasing loss of DMPE and 

gain of TNBS-DMPE. Instead, we discovered that we were unable to get a proportionate 

corresponding signal in DMPE after treatment while we find that the amount of TNBS-

DMPS measured increased inversely compared to TNBS used. We were unable to explain 

why this happened except due to variance in ESI-MS signal output. Nevertheless, we decided 

to go with the lowest concentration of 1.0mM as that concentration seemed to give adequate 

labeling without causing membrane damage. 
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Figure 35. Effects of temperature on TNBS labeling of DMPE liposomes.  
TNBS labeling of liposomes containing varying amounts of DMPE was carried out using different reaction 
temperatures as indicated in the x-axis. The y-axis represents the absolute signal intensity from the instrument. 
Top panel shows the amount of DMPE detected by MRM before and after treatment with TNBS. Bottom panel 
shows the corresponding signal intensity of detectable TNBS-DMPE. A single replicate was used for this initial 
experiment, i.e. n=1.  
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Figure 36. Effects of TNBS concentration on TNBS labeling of DMPE liposomes.  
TNBS labeling of liposomes containing varying amounts of DMPE was carried out using different TNBS 
concentrations as indicated in the x-axis. The y-axis represents the absolute signal intensity from the instrument. 
Top panel shows the amount of DMPE detected by MRM before and after treatment with TNBS. Bottom panel 
shows the corresponding signal intensity of detectable TNBS-DMPE. The results shown represent the average 
of three independent replicates, n=3. 
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3.4.3.3 TNBS labeling of MLV particles 
 

Freshly produced MLV particles were purified and used immediately for TNBS 

labeling. It was found previously that freeze thawing of VSV particles resulted in a leaky 

bilayer that was accessible to TNBS (Fong et al., 1976). After removal of excess TNBS and 

lipid extraction, the lipid samples, including mock treated samples (negative control, Figure 

37A), TNBS treated MLV at 4°C (Figure 37B) and TNBS treated MLV at 37°C (positive 

control, Figure 37C) were subjected to ESI-MS Q-TOF analysis. Comparing the spectra of 

both mock treated (Figure 37A) and the 4°C TNBS labeled MLV (Figure 37B) showed that 

covalent modification of aminophospholipids had occurred. A slight reduction in the two 

most prominent PS peaks, PS 36:1 and PS 34:1, was observed along with the appearance of 

peaks between m/z 900 and 1000. These new peaks corresponded to the mass shift of 

aminophospholipids that were modified by TNBS, the most prominent of which are 937.9 

(possibly TNBS-PE 36:2p and/or TNBS-PS 36:1) and 961.8 (possibly TNBS-PE 38:4p 

and/or TNBS-PS 38:3) (Figure 37B). At 4°C reaction temperature, TNBS cannot penetrate 

the MLV membrane; therefore the modified aminophospholipids must be located on the other 

leaflet of the MLV envelope. When temperature is increased to 37°C, TNBS is able to 

penetrate the MLV envelope and would label aminophospholipids on both outer and inner 

leaflets of the envelope. This resulted in further reduction of unlabeled PS while more TNBS 

labeled aminophospholipids are produced (Figure 37C).  

These changes are more clearly illustrated when comparing the Log10 ratio of TNBS-

MLV at 4°C (Figure 38A) and TNBS-MLV at 37°C (Figure 38B) to mock TNBS-MLV 

spectra. In these figures, a higher peak value in the TNBS spectra is represented in the 

positive y-axis while a lower peak value in the TNBS spectra is seen in negative y-axis. In 

this way, changes in peak intensity are based on fold changes rather than changes in absolute 
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abundance. One problem of identifying the new TNBS labeled lipids by mass shift alone is 

that there might be overlap between both classes of lipids. For instance, TNBS-PS 36:1 and 

TNBS-PE 36:2p both have m/z 937.9 while TNBS-PS 40:1 and TNBS-PE 40:2p both have 

m/z 994.0 (Table 11). It is clear that when a particular TNBS-aminophospholipid species is 

formed, the level of the corresponding unlabeled aminophospholipids must decrease. Thus, 

by identifying this reciprocal change in lipid levels, it was found that newly formed TNBS 

lipids in the 4°C reaction were mostly composed of TNBS-pPE (Table 11). Additionally, 

TNBS-PS molecules were also found to be prominent while TNBS-PE molecules were less 

abundant in the reaction. As a confirmation of our data, the same trend is also observed when 

the reaction temperature is increased to 37°C (Table 12). This indicates that pPE are mostly 

located on the external bilayer leaflet of the MLV envelope while PS and PE molecules are 

sequestered in the internal bilayer leaflet respectively.  
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Figure 37. Qualitative lipid analysis of TNBS labeled MLV particles.  
Purified MLV particles were (A) mock treated, (B) incubated with 2mM TNBS at 4°C or (C) incubated with 
2mM TNBS at 37°C. These MLV particles were lipid extracted and analyzed via ESI-MS single stage scanning 
in negative mode. Each graph is normalized to the total signal intensity of the sample and shown as relative 
intensity on the y-axis and the x-axis represents the m/z range. Prominent peaks are labeled. The inserts in (A) 
and (B) are magnifications of the 900-1000m/z range for comparative purpose. These graphs are the average of 
three independent experiments, n=3. 
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Figure 38. Changes in lipid profiles due to TNBS treatment.  
The mass spectra of TNBS labeled MLV is compared to mock treated MLV and presented as log 10 ratio (y-
axis) against the m/z range measured (x-axis). Positive log 10 ratio refers to an enrichment of lipids in TNBS 
labeled MLV while negative log 10 ratio refers to an enrichment of lipids in mock treated MLV. Log 10 ratio of 
MLV incubated with 2mM of TNBS at 4°C to untreated MLV particles (A). Log 10 ratio of MLV incubated 
with 2mM of TNBS at 37°C to untreated MLV particles (B).  These graphs are the average of three independent 
experiments, n=3. 
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Up-regulated lipids Down-regulated lipids 
m/z TNBS-PS TNBS-PE log10ratio m/z PS PE log10ratio 

937.9 TNBS-PS 36:1 TNBS-PE 36:2p 0.725 750.8   PE 38:4p -0.238 
961.8 TNBS-PS 38:3 TNBS-PE 38:4p 0.600 790.8 PS 36:0 PE 40:6a -0.224 
959.9 TNBS-PS 38:4 TNBS-PE 38:5p 0.563 722.8   PE 36:4p -0.213 
939.9 TNBS-PS 36:0 TNBS-PE 36:1p 0.539 786.8 PS 36:2 PE 40:0p -0.213 
935.9 TNBS-PS 36:2 TNBS-PE 36:3p 0.529 760.8 PS 34:1   -0.213 
963.9 TNBS-PS 38:2 TNBS-PE 38:3p 0.471 748.8   PE 38:5p -0.212 
911.9 TNBS-PS 34:0 TNBS-PE 34:1p 0.432 724.7   PE 36:3p -0.210 
933.9 TNBS-PS 36:3 TNBS-PE 36:4p 0.410 726.8   PE 36:2p -0.208 
957.9 TNBS-PS 38:5 TNBS-PE 38:6p 0.361 728.7   PE 36:1p -0.206 
987.9 TNBS-PS 40:4 TNBS-PE 40:5p 0.343 700.8   PE 34:1p -0.202 
953.9   TNBS-PE 36:2a 0.342 774.8   PE 40:6p -0.201 
955.9   TNBS-PE 36:1a 0.263 834.8 PS 40:6   -0.200 
965.8 TNBS-PS 38:1 TNBS-PE 38:2p 0.258 836.8 PS 40:5   -0.195 
983.9 TNBS-PS 40:6 TNBS-PE 38:1a 0.228 752.8   PE 38:3p -0.190 
909.9 TNBS-PS 34:1 TNBS-PE 34:2p 0.223 742.7   PE 36:2a -0.189 
967.9 TNBS-PS 38:0 TNBS-PE 38:1p 0.195 802.8   PE 40:0a -0.186 
941.8   TNBS-PE 36:0p 0.174 812.8 PS 38:3   -0.184 
979.9   TNBS-PE 38:3a 0.168 814.8 PS 38:2   -0.172 
993.8 TNBS-PS 40:1 TNBS-PE 40:2p 0.167 746.7   PE 38:6p -0.171 
977.8   TNBS-PE 38:4a 0.167 816.8 PS 38:1   -0.167 
927.8   TNBS-PE 34:1a 0.154 776.8   PE 40:5p -0.165 
951.9   TNBS-PE 36:3a 0.153 844.9 PS 40:1   -0.162 
690.6   PE 32:0a 0.149 744.8   PE 36:1a -0.148 
925.9   TNBS-PE 34:2a 0.145 772.8   PE 38:1a -0.144 
931.8 TNBS-PS 36:4 TNBS-PE 36:5p 0.144 788.7 PS 36:1   -0.130 
991.9 TNBS-PS 40:2 TNBS-PE 40:3p 0.132 766.8   PE 38:4a -0.127 
995.8 TNBS-PS 40:0 TNBS-PE 40:1p 0.129 762.8 PS 34:0 PE 38:6a -0.121 
975.6   TNBS-PE 38:5a 0.125 810.8 PS 38:4   -0.121 
949.8   TNBS-PE 36:4a 0.122 846.9 PS 40:0   -0.114 
901.7   TNBS-PE 32:0a 0.116 754.8   PE 38:2p -0.113 
969.9   TNBS-PE 38:0p 0.114 698.7   PE 34:2p -0.109 
973.8   TNBS-PE 38:6a 0.099 843.8 PS 40:2   -0.104 

1003.9   TNBS-PE 40:5a 0.094 730.8   PE 36:0p -0.103 
981.9   TNBS-PE 38:2a 0.094 756.8   PE 38:1p -0.103 

1001.9   TNBS-PE 40:6a 0.093 768.8   PE 38:3a -0.103 
719.4   TNBS-PE 20:0a 0.081 838.8 PS 40:4   -0.098 

 
Table 11. List of up- and down-regulated aminophospholipids in TNBS labeled MLV at 4˚C.  
The list species shown here are obtained from the log 10 ratio of mass spectra of TNBS labeled MLV at 4˚C 
compared to mock treated MLV, where n=3 (refer to Figure 34). Newly formed TNBS aminophospholipids are 
arranged in descending values of log 10 ratios, which is indicative of their relative abundance in TNBS labeled 
MLV compared to mock treated MLV. Unlabeled aminophospholipids are arranged in ascending values of 
negative log 10 ratios, which is indicative of the amount of unlabeled aminophospholipids remaining in TNBS 
labeled MLV compared to mock treated MLV. 
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Up-regulated lipids Down-regulated lipids 
m/z TNBS-PS TNBS-PE log10ratio m/z PS PE log10ratio 

937.9 TNBS-PS 36:1 TNBS-PE 36:2p 1.484 750.8   PE 38:4p -0.578 
939.9 TNBS-PS 36:0 TNBS-PE 36:1p 1.239 748.8   PE 38:5p -0.528 
935.9 TNBS-PS 36:2 TNBS-PE 36:3p 1.077 726.8   PE 36:2p -0.501 
961.7 TNBS-PS 38:3 TNBS-PE 38:4p 1.047 700.7   PE 34:1p -0.493 
911.9 TNBS-PS 34:0 TNBS-PE 34:1p 1.044 742.8   PE 36:2a -0.492 
959.9 TNBS-PS 38:4 TNBS-PE 38:5p 0.960 724.7   PE 36:3p -0.489 
963.8 TNBS-PS 38:2 TNBS-PE 38:3p 0.934 722.7   PE 36:4p -0.488 
953.9   TNBS-PE 36:2a 0.826 752.8   PE 38:3p -0.480 
933.9 TNBS-PS 36:3 TNBS-PE 36:4p 0.798 728.8   PE 36:1p -0.472 
955.9   TNBS-PE 36:1a 0.787 774.8   PE 40:6p -0.423 
909.9 TNBS-PS 34:1 TNBS-PE 34:2p 0.737 746.8   PE 38:6p -0.388 
957.7 TNBS-PS 38:5 TNBS-PE 38:6p 0.708 790.8 PS 36:0 PE 40:6a -0.363 
987.9 TNBS-PS 40:4 TNBS-PE 40:5p 0.676 786.8 PS 36:2 PE 40:0p -0.362 
965.9 TNBS-PS 38:1 TNBS-PE 38:2p 0.660 836.8 PS 40:5   -0.362 
968.0 TNBS-PS 38:0 TNBS-PE 38:1p 0.596 776.8   PE 40:5p -0.360 
983.9 TNBS-PS 40:6 TNBS-PE 38:1a 0.539 834.8 PS 40:6   -0.360 
941.8   TNBS-PE 36:0p 0.474 760.8 PS 34:1   -0.358 
927.9   TNBS-PE 34:1a 0.466 812.8 PS 38:3   -0.337 
925.9   TNBS-PE 34:2a 0.400 744.8   PE 36:1a -0.328 
979.7   TNBS-PE 38:3a 0.396 766.8   PE 38:4a -0.314 
977.8   TNBS-PE 38:4a 0.394 802.8   PE 40:0a -0.313 
994.0 TNBS-PS 40:1 TNBS-PE 40:2p 0.377 754.8   PE 38:2p -0.299 
913.8   TNBS-PE 34:0p 0.370 814.8 PS 38:2   -0.298 
951.9   TNBS-PE 36:3a 0.359 716.8   PE 34:1a -0.285 
931.9 TNBS-PS 36:4 TNBS-PE 36:5p 0.348 714.7   PE 34:2a -0.279 
990.0 TNBS-PS 40:3 TNBS-PE 40:4p 0.334 768.8   PE 38:3a -0.277 
996.0 TNBS-PS 40:0 TNBS-PE 40:1p 0.330 756.8   PE 38:1p -0.277 
992.0 TNBS-PS 40:2 TNBS-PE 40:3p 0.289 816.8 PS 38:1   -0.272 
949.9   TNBS-PE 36:4a 0.271 762.8 PS 34:0 PE 38:6a -0.270 
970.0   TNBS-PE 38:0p 0.250 698.7   PE 34:2p -0.266 

1001.9   TNBS-PE 40:6a 0.238 842.9 PS 40:2   -0.263 
548.7 PS 20:2   0.231 740.8   PE 36:3a -0.260 
981.9   TNBS-PE 38:2a 0.222 788.8 PS 36:1   -0.257 
719.4   TNBS-PE 20:0a 0.214 738.8   PE 36:4a -0.251 
975.8   TNBS-PE 38:5a 0.213 792.8   PE 40:5a -0.222 
907.7 TNBS-PS 34:2   0.207 844.9 PS 40:1   -0.220 

 
Table 12. List of up- and down-regulated aminophospholipids in TNBS labeled MLV at 37˚C.  
The list species shown here are obtained from the log 10 ratio of mass spectra of TNBS labeled MLV at 37˚C 
compared to mock treated MLV, where n=3 (refer to Figure 34). Newly formed TNBS aminophospholipids are 
arranged in descending values of log 10 ratios, which is indicative of their relative abundance in TNBS labeled 
MLV compared to mock treated MLV. Unlabeled aminophospholipids are arranged in ascending values of 
negative log 10 ratios, which is indicative of the amount of unlabeled aminophospholipids remaining in TNBS 
labeled MLV compared to mock treated MLV. 
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Chapter 4 – Discussion 

 

4.1 Detailed lipidomics analysis of retroviruses 
 

With this work, we present an extensive analysis of the lipidome of HIV produced 

from both T cells and monocyte-derived-macrophages (MDM) along with corresponding 

lipid contents of the plasma membrane from which the virus buds. Additionally, we analyzed 

the oncoretrovirus MLV to provide a more unbiased assessment of retroviral envelopes. This 

study greatly expands the coverage of lipid classes previously analyzed in HIV envelopes 

(Aloia et al., 1993; Brugger et al., 2006), including the bioactive phospholipids PIP and PIP2, 

sphingolipids GM3 and neutral lipids CE, DG and TG. Moreover, to avoid biased 

interpretation based on cell specific differences, we produced retroviruses from different cell 

types for analysis. We report that retroviruses HIV and MLV share a similar lipid 

composition despite being produced from different cell types (Table 4).  

Importantly, when retroviral lipids were compared to plasma membrane (Table 6B), it 

is clear that the lipid profile of retroviruses largely resembled that of plasma membrane. We 

demonstrated that we were able to recapitulate the results of Brugger et al. when total cell 

membrane was used as a reference for retroviral lipids (Table 5B). However, total cell 

membrane includes lipids from organelles and other membrane structures that are unlikely to 

support retroviral budding. In contrast, the comparison between viral envelopes and plasma 

membranes is more biologically relevant given the current data that support HIV budding 

from the plasma membrane (Booth et al., 2006; Deneka et al., 2007; Finzi et al., 2007; 

Jouvenet et al., 2006; Welsch et al., 2007).  
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4.1.1 Procedure for preparing pure retrovirus particles 
 

The purification of MLV from cell culture supernatant was carried out with relative 

ease using standard methods. This involved initial filtration of the infected culture 

supernatant, followed by centrifugation through a 15% sucrose cushion (Figure 9A). This 

resulted in highly purified MLV preparations that were ready for lipid analysis (Figure 10A). 

The purification of HIV particles required an additional step to remove contaminating 

microvesicles by anti-CD45 immunodepletion (Esser et al., 2001; Trubey et al., 2003). 

Mircrovesicles have been shown to be a contaminating fraction when attempting to purify 

HIV particles from T cells and MDM (Bess, Jr. et al., 1997; Gluschankof et al., 1997). The 

role of this vesiculation in normal cell function is undefined but may involve the elimination 

of excess membrane or membrane associated proteins, or a novel mechanism of antigen 

presentation, or a process for membrane repair (Miyake and McNeil, 1995). Additionally, the 

release of exosomes may present another source of contamination in our preparation of HIV 

virions. Exosomes are known to form through budding into multivesicular bodies (MVBs) in 

immunological cells such as T-cells, B-Cells and mast cells, and are released from the cell by 

the fusion of the MVBs with the plasma membrane of the cells (Subra et al., 2007). While 

their function is controversial, they are believed to serve as intercellular communication 

vehicles that assist immune responses (Subra et al., 2007). Without further biochemical 

analysis, we are unable to determine the exact identities of vesicles present in the HIV 

preparation (Figure 10B). Nevertheless, there is convincing evidence that both microvesicles 

and exosomes are enriched in CD45 antigens while HIV specifically exclude CD45 from 

their envelope (Coren et al., 2008; Esser et al., 2001; Trubey et al., 2003; Wubbolts et al., 

2003). Therefore, both contaminating vesicles can be removed from our HIV preparation by 

anti-CD45 immunodepletion (Figure 10B).  
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4.1.2 Considerations for preparing plasma membrane fractions 
 

The plasma membrane preparations are crucially important as references used for 

comparison with retroviral lipids. We isolated plasma membrane from cells by using cationic 

silica beads that adhered electrostatically to negatively charged plasma membrane surface 

(Harila et al., 2006; Mason and Jacobson, 1985; Stolz and Jacobson, 1992). One major 

concern is the contamination of the plasma membrane preparations with lipids from cellular 

organelles which have different lipid compositions (van Meer, 2005). We ensured plasma 

membrane purity by testing for the presence of plasma membrane markers such as transferrin 

receptor (TrF) and the exclusion of cytoplasmic and endosomal markers such as actin and 

Rab5 (Figure 13A).  In addition to purity, we were also concern that cationic silica interaction 

with the plasma membrane surface may artificially induce surface artifacts such as lipid rafts 

(Figure 13A and C). We monitored the conditions used for cationic silica binding to eliminate 

this possibility, finally using a low bead concentration for purification (Figure 13A and B). 

Our methodology was reaffirmed by purifying plasma membrane using an alternate method, 

continuous Optiprep gradient centrifugation, which produced similar mass spectra profile in 

the fraction believed to contain plasma membrane (Figure 14).  

 

4.2 Differences between retrovirus and plasma membrane lipids 
 

Despite the similarity between plasma membrane and viral envelopes, retroviral lipids 

were still distinct from plasma membrane, specifically showing enriched levels of 

phosphoinositides (PIP and PIP2) and raft lipids like cholesterol, Cer (except HIV produced 

from H9 cells) and GM3. These data suggest that these lipid classes are specifically enriched 
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in the retrovirus envelope and therefore must play a role at some stage of the retrovirus 

replication process. We carried out additional experiments to address the possible functions 

of these enrichment and our observations are discussed below.  

 

4.3 Retrovirus envelopes are enriched in phosphoinositides 
 

The first distinction drawn from our lipid comparison is that retroviruses lack PI while 

PIP and PIP2 are highly enriched compared to plasma membrane levels. We note that it is 

possible that cellular phosphatase activity may have reduced the native levels of PIP2 in the 

plasma membrane samples during isolation and resulted in a corresponding increase in PI 

levels. Nevertheless, the key feature that distinguishes retroviruses and microvesicles is the 

level of phosphoinositides, particularly PIP2. Microvesicles would likely reflect the PIP2 

levels in the native plasma membrane, thereby providing indirect proof of PIP2 enrichment in 

retrovirus envelopes. Unfortunately, it is not possible to discriminate stereoisomers of PIPn 

by mass spectrometry, but we expect that the virus associated PIP2 to consist mainly of 

PI(4,5)P2 since this is the major PIP2 isomer found at the plasma membrane in resting 

mammalian cells (Rusten and Stenmark, 2006).  

 

4.3.1 Gag MA basic domain is the source of PIP2 enrichment 
 

During the late phase of HIV-1 replication, newly synthesized retroviral Gag 

precursor proteins are targeted to the plasma membrane where they colocalize at lipid rafts 

and assemble into immature virions. Before the start of this study, it had been known for 

some time that the membrane targeting and binding capacity of the HIV-1 Gag involve: 1) a 

MA domain N-terminal myristate which partitions stably into the plasma membrane bilayer 
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hydrocarbon environment (Schultz et al., 1988), 2) a cluster of basic residues in the MA 

domain that becomes exposed as a positively charged surface patch in native Gag structures, 

which is proposed to interact electrostatically with acidic phospholipid headgroups (Yuan et 

al., 1993; Zhou et al., 1994) , and 3) oligomerization of Gag that may increase membrane 

partitioning of Gag by producing a larger composite basic surface which favour the exposure 

of the myristate (Zhou and Resh, 1996). In this scenario, what is the plasma membrane 

component that directs the membrane binding of HIV-1 Gag oligomers? 

The strong enrichment of multivalent acidic lipids PIP and PIP2 in retrovirus 

envelopes (Table 6B) suggests that phosphoinositides are the plasma membrane components 

involved in the targeting of Gag, through electrostatic interaction with the MA domain. We 

investigated the cause of this enrichment by comparing the phosphoinositide profile of virus 

like particles (VLP) made from wild type HIV-Gag and ∆MA HIV-Gag (Table 8A). These 

data determined that the presence of polybasic residues found in MA domain is indeed 

responsible for the enrichment of PIP2 found in the final envelope composition in wild type 

VLP. This conclusion is further strengthened by the observation that the wild type VLP bears 

similar phosphoinositide profiles as HIV particles while the mutant ∆MA VLP matches that 

of plasma membrane and microvesicles (Table 8B and C). Since the basic MA domain is 

conserved amongst all known retrovirus Gag (Murray et al., 2005; Riffel et al., 2002), it 

would be safe to assume that other retroviruses, as it was shown with MLV (Table 4), would 

also be enriched in phosphoinositide in their membrane envelope. 

 

4.3.2 Phosphoinositides target Gag to the plasma membrane 
 

From a functional perspective, the presence of PI(4,5)P2 is clearly important for the 

efficient assembly and budding of a retrovirus. We proved this by showing that the depletion 
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of PI(4,5)P2 by overexpression of 5PaseIV activity in HEK293 cells results in a decrease in 

HIV and MLV release (Figure 24). Our findings are consistent with the idea that PI(4,5)P2 

acts in the targeting of the HIV-1 Gag protein, via an interaction with the MA domain of Gag, 

to the plasma membrane (Ono et al., 2004). In that study, Ono et al. showed that when 

PI(4,5)P2 was similarly depleted in HeLa cells, Gag localization was directed away from the 

plasma membrane to the late endosomes (Ono et al., 2004). In this manner, the retrovirus Gag 

targeting mechanism appears to have copied the way proteins with polybasic clusters are 

targeted through PI(3,4,5)P3 and PI(4,5,)P2 to the plasma membrane. (Heo et al., 2006). 

A complementary insight to our data is provided by recent structural analysis of HIV-

1 Gag and its interaction with PI(4,5)P2 (Saad et al., 2006). The electrostatic interaction 

between the positively charged pocket of Gag MA domain and negatively charged head 

group of PI(4,5)P2 results in the exposure of the Gag myristic acid into the budding 

membrane and the equivalent flipping out of the polyunsaturated 2’-fatty acid of PI(4,5)P2 

resulting in the formation of an extended lipid conformation.  From a free energy standpoint, 

electrostatic interaction (∆G ~-9/-8 kcal/mol depending on whether Gag exists as trimer or 

dimer) and hydrophobic interaction of the myristate (∆G ~-12 kcal/mol) contribute a total 

membrane binding free energy of ∆G ~-21 kcal/mol (Murray et al., 2005). When the loss of 

PI(4,5)P2 at the plasma membrane occurs, membrane binding free energy is decreased by 

almost half, thus leading to poorer association of Gag with the plasma membrane.  

 

4.3.3 Considerations for future experiments on phosphoinositide functions in retrovirus 
replication 
 

An important point to note is that the current set of data do not provide a clear picture 

regarding the cellular source of PI(4,5)P2. Are PIP kinases activated during virus infection to 
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up-regulate the levels of PI(4,5)P2 in the plasma membrane? Such a mechanism would 

increase plasma membrane concentration of PI(4,5)P2 and its net negative charge, thereby 

increasing electrostatic attraction between Gag and the plasma membrane. Alternatively, we 

can look to current theories of how PI(4,5)P2 is spatially regulated in the plasma membrane to 

provide some clues. It is believed that there are two separate pool of PI(4,5)P2 in the plasma 

membrane (Gambhir et al., 2004). About two-thirds is believed to be electrostatically 

sequestered by protein buffers with clusters of basic residue such as myristylated alanine-rich 

C Kinase substrate (MARCKS), only to be released in response to specific stimuli such as an 

increase in local calcium ion concentration. The remainder of PI(4,5)P2 is unbound and free 

to diffuse in the plasma membrane milieu. If this free pool of PI(4,5)P2 is not enough to 

support retrovirus assembly and budding, can retrovirus replication manipulate the host cell 

to release the sequestered pool of  PI(4,5)P2? Such a mechanism would appear to “beneficial” 

for the host cell since it does not require the activation of PIP kinases for the production of 

extraneous PI(4,5)P2 and would therefore use less energy. 

Besides initiating retrovirus assembly through Gag, further roles for PI(4,5)P2 remain 

a distinct possibility. Intriguingly, PI(4,5)P2 is intimately involved in the inward and outward 

bending of plasma membrane in other biological systems. During endocytosis, BAR domain 

proteins bind to PI(4,5)P2 rich membranes to form inward invaginations (Itoh and De Camilli, 

2006; Zimmerberg and Kozlov, 2006). Conversely, during the formation of filopodia, MIM 

and IRSp53, proteins which contain BAR-like domains, can lead to the formation of outward 

bending of PI(4,5)P2 rich membranes (Mattila et al., 2007). Considering the strong 

enrichment of PIP2 lipids in the viral envelope, we hypothesize that binding of retroviral Gag 

proteins to PI(4,5)P2 may contribute to the induction of membrane curvature during virus 

assembly and budding.  
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4.4 Raft lipids cholesterol, ceramide and GM3 are enriched in retrovirus envelopes 
 

In addition to phosphoinositides, retrovirus envelopes are highly enriched in raft lipids 

like cholesterol, Cer (except HIV produced from H9 cells) and GM3. The enrichment of 

cholesterol and GM3 comes without surprise because it has been well established that HIV 

bud selectively from cholesterol (Ono et al., 2007) and glycolipid (Nguyen and Hildreth, 

2000) enriched membrane rafts. Moreover, HIV has been shown to specifically control the 

enrichment of both these lipids through its accessory Nef protein (Mujawar et al., 2006; 

Zheng et al., 2001). However, the enrichment of Cer rather than SM or dhSM (as previously 

reported by Brugger et al.) signifies a fundamental difference in the type of lipid raft that 

forms during retroviral assembly.  

 

4.4.1 Possible functions of ceramide in retrovirus replication 
 

Cer molecules can dramatically change the biophysical properties of rafts. In vivo, the 

accumulation of Cer at the plasma membrane occurs as a result of activation and surface 

translocation of acid sphingomyelinase (SMase) (Grassme et al., 2001). Not only is Cer a 

strong promoter of lipid raft formation, Cer-rich rafts appear to spontaneously coalesce to 

form larger macrodomains or platforms through fusion (Bollinger et al., 2005). Cer further 

exerts its effects by selectively displacing cholesterol in the rafts and interfering with the 

association of cholesterol binding/interacting proteins with these platforms (Megha and 

London, 2004; Yu et al., 2005). Thus, Cer-enriched membrane platforms appear to function 

as a tool that re-organizes receptor and signaling molecules in and at the cell membrane to 

facilitate and amplify signaling processes.  
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It was recently demonstrated that Cer-enriched exosomes bud into multivesicular 

bodies, triggered by localized accumulation of Cer through sphingomyelinase action 

(Trajkovic et al., 2008). Earlier works also show that Cer plays a strong role in membrane 

destabilization and fusion in model membrane systems (Veiga et al., 1999). Both reports are 

consistent with the enrichment of Cer shown in our own data for both microvesicles and 

retroviruses if the budding mechanisms follow similar principles. However, it appears that the 

level of Cer has to be carefully regulated in order to ensure continued re-infection. 

Interestingly, increasing Cer levels in cells by pharmacological or enzymatic means inhibits 

HIV infectivity (Finnegan et al., 2004), supposedly by inducing CD4 clustering and 

preventing sequential co-receptor engagement and viral entry (Finnegan et al., 2007). It is 

intriguing to consider how the supposed formation of Cer-enriched macrodomains would fit 

into a dynamic model for the formation of microvesicles and retrovirus particles yet remain 

within the range to support infection.  

An association with tetraspanins represents another parallel phenomenon seen 

between retroviruses, microvesicles and/or exosomes. For exosomes, the enrichment of 

tetraspanins, including CD37, CD 63, CD81, CD82 and CD86, has been well established 

(Escola et al., 1998; Wubbolts et al., 2003).  Likewise, it was shown that HIV Gag and Env 

co-localizes with distinct tetraspanin enriched microdomains (TEM) containing CD9, CD53, 

CD63, CD81 and CD82 during particle assembly at the plasma membrane (Deneka et al., 

2007; Jolly and Sattentau, 2007; Nydegger et al., 2006). At the same time, components of the 

cellular budding machinery including TSG101and VSP28 are also recruited to TEM to 

facilitate viral budding (Morita and Sundquist, 2004; Nydegger et al., 2006).  In this context, 

it is possible that the precise regulation of plasma membrane cholesterol and Cer level helps 

control the dimensions of TEM structures, so as to accommodate all these membrane 

associated protein structures during the retrovirus assembly and budding process. 
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4.4.2 Functions of GM3 and other glycosphingolipids in retrovirus replication 
 

Glycosphingolipids (GSLs), including GluCer and GM3, have been widely studied for 

their role in HIV entry, either as an alternative receptor (Fantini et al., 1993; Harouse et al., 

1989) or by regulating viral receptor clustering (Hug et al., 2000; Puri et al., 2004; Rawat et 

al., 2004a; Rawat et al., 2006; Viard et al., 2004). Most of these studies usually involve loss 

of function experiments using antibodies against GSLs or pharmacological inhibitors of GSL 

biosynthesis like phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP) and 

Fumonisin B1. PPMP, a cationic ceramide analogue, is a direct inhibitor of 

glucosyltransferase (Abe et al., 1992). While these experiments show that loss of GSLs is 

inhibitory to effective HIV infection, they fail to adequately address the effects of changes in 

overall lipid homeostasis and cell physiology, including cell growth, DNA replication and 

membrane organization (Barbour et al., 1992; Burger et al., 2007; Glaros et al., 2005; Kovacs 

et al., 2000; Makino et al., 2006). These associated phenomena suggest that the loss of GSLs 

alone cannot be exclusively responsible for defects in HIV infection.  

 

4.4.2.1 MLV-PPMP virions exhibit different lipid profile and morphology compared to 
MLV-REF virions 

 

We analyzed the lipids of mutant MLV-PPMP and wild type MLV-REF particles and 

found that their overall lipid composition was significantly different from each other (Table 9 

and Figure 28). While MLV-PPMP showed the expected decrease in GM3 and MHCer 

levels, it was Cer, and not SM, that was up-regulated. The overall phospholipids composition 

(except phosphoinositides) appeared to remain constant between both conditions, but closer 

examination showed that MLV-PPMP was enriched in long chained (C>36) and poly-
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unsaturated species of PC, ePC, PE and pPE while being depleted in short chained and 

saturated species of the same classes of lipids. In contrast, PI and PIP were highly up-

regulated while PIP2 was down-regulated in MLV-PPMP. Because the lipid composition of 

MLV-PPMP envelopes is distinctly different from MLV-REF envelopes, it is expected that 

the MLV-PPMP membrane morphology would be different compared to wild type virions. 

This was shown to be the case when we compared the structure of MLV-PPMP to MLV-REF 

via electron microscopy (Figure 29), revealing membrane defects reminiscent of Chol 

depleted HIV particles (Graham et al., 2003).  

 

4.4.2.2 MLV-PPMP is weaker in infectivity compared to MLV-REF 
 

We compared the infectivity of MLV-PPMP against MLV-REF particles (Figure 

26A), and found that the mutant virus exhibited a much lowered infectivity (Figure 30B). 

One of the caveats in using purified virus particles for the above experiment is that we do not 

have a way of quantifying the true infectivity of the virus stock, which may have been 

diminished unequally during the purification process. However, one has to assume that since 

both virus conditions were processed in the same way, such handling errors would be 

negligible.  

Based on the experimental design, reduced infectivity can be potentially attributed to 

defects in primary virus attachment and/or viral fusion. The first possibility is suggested by 

the loss of GM3 and other glycolipids from the surface of the virus envelope (Figure 28 and 

30A).  Due to their large head group moiety, GSLs are highly immunogenic (Misasi et al., 

1993; Misasi et al., 2000) and have been shown to be an effective ligand for tethering viruses 

to the surface of its target host cell (Campanero-Rhodes et al., 2007b; Ferreira et al., 2004; 

Ugolini et al., 1999). In the case of HIV, this interaction would seem to complement the weak 
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binding affinity between HIV associated Env glycoprotein gp120 and its entry receptor CD4 

(Ugolini et al., 1999). Like HIV, the binding affinity of MLV Env glycoprotein to its mCAT-

1 receptor is considered weak at Kd 55nM (Davey et al., 1997). If membrane associated GSLs 

are indeed involved in virus attachment, the mutant MLV-PPMP particle would be less able 

to attach itself to the cell surface, thus lowering infectivity. Additionally, based on evidence 

that MLV Env is co-localized to lipid rafts (Beer et al., 2005),  MLV Env targeting to the 

budding site may be defective since raft lipid metabolism is affected due to PPMP treatment. 

This may result in lower copies of the fusion Env glycoprotein in the MLV-PPMP envelope, 

thus effectively lowering the potential of MLV-PPMP attaching to a host cell. The second 

possibility for reduced infectivity is due to a defective virus-cell fusion step. The drastic 

changes seen in the envelope of PPMP-MLV viruses may result in altered membrane 

architecture (Figure 29) that may not be optimized for the proper functioning of the MLV 

Env glycoprotein or membrane fusion kinetics (McMahon and Gallop, 2005; Stiasny and 

Heinz, 2004).  

 

4.4.2.3 PPMP treatment alters cellular lipid metabolism and physiology  
 

In addition, we examined the effects of PPMP treatment on the overall lipid 

metabolism of REF cells. We discovered that PPMP treatment resulted not only in depletion 

of GSLs but also striking changes in the overall lipid composition of total cellular membrane 

in REF cells (Table 10 and Figure 31). As expected, the lipids upstream of GSLs were 

changed, whereby Cer levels decreased and SM level increased. Interestingly, the level of 

GluCer was up-regulated with increasing concentration of PPMP, suggesting that the cells 

may have compensatory mechanisms to cope with the inhibition of glucosyltransferase, as is 

the case with GM3 synthase knockout fibroblast cells (Shevchuk et al., 2007). The 
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phospholipid composition of treated cell also showed prominent changes in composition, 

with increasing levels of PC and ePC and decreasing levels of PE, pPE , PS and PI (Table 

10). Intriguingly, level long chained (C>34) and poly-unsaturated lipids appear to be 

specifically up-regulated in PC, ePC and PS while the same were down regulated in PE and 

pPE (Figure 31). Docosahexanoate (C22:6) containing species of PE and PC have been 

shown to influence the overall lipid content and physical properties of plasma membrane in 

murine leukemia cells (Williams et al., 1998; Williams et al., 1999). Moreover, it has been 

shown that while PC 18:0/22:6 is highly cytotoxic, PE 18:0/22:6 is not (Zerouga et al., 1996). 

Taken together with the observation of increasing cell granularity (Figure 32A), it is clear 

that these lipid changes are associated with defects in normal cellular function in PPMP 

treated cells.   

 

4.4.2.4 PPMP treated REF cells become susceptible to MLV infection 
 

We investigated the inhibitory effects of PPMP treatment at the cellular level (Figure 

26B). Unexpectedly, PPMP conditioned REF cells showed increased infectivity by MLV 

(Figure 33, gray bars). Temporally, this enhancement by PPMP treatment is likely to occur at 

a step after initial virus entry since cell newly treated with PPMP after initial exposure to 

MLV showed similar enhancements to conditioned cells (Figure 33, white bars). 

Additionally, we observe that infectivity is returned to normal by culturing the cells in culture 

media without PPMP (Figure 33, black bars), thus confirming the positive effects of PPMP 

treatment on MLV infection of REF cells. This result is intriguing because we had already 

shown that PPMP treated cells exhibit altered overall lipid metabolism (Table 13 and Figure 

33) and cellular physiology (Figure 38A). It appears that this new cellular state enhances 

MLV infectivity.  
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A number of possible scenarios could have resulted in the higher infectivity observed. 

Firstly, the number of virus particle produced per cell may have increased, thereby 

compensating for the reduction of infectivity in the mutant virus. This is less likely given that 

an increase in MLV-PPMP production would add significant stress to the host cell metabolic 

system that is already under siege by the effects of the PPMP treatment. Moreover, the 

reduction of PIP2 coupled with enrichment of PI and PIP in the MLV-PPMP envelope (Figure 

29), suggests that the budding mechanism of MLV-PPMP may not be functioning optimally.  

A second possibility is that with the changes in lipid metabolism, membrane 

organization, trafficking and signaling associated with PPMP treated cells, cells may become 

more susceptible to cell-to-cell transmission of MLV infection. Cell-to-cell transmission of 

HIV appear to be an efficient mode of productive infection in vivo and in vitro, requiring 

transient adhesive contact between infected and uninfected host cells (Groot et al., 2008; 

Ruggiero et al., 2008). In such a scenario, the viability of the MLV particle may not play such 

an important role in propagating infection. While the exact mechanism involved in increasing 

infection remains to be determined, these results highlight the possible danger of using 

inhibitor compounds such as PPMP as a clinical treatment against HIV infection.  

 

4.5 Aminophospholipid composition of retroviruses 
 

Aminophospholipids including PS, PE and pPE make up 28.1-39% of the total lipid 

composition in retrovirus envelopes (Table 4). While these lipids are not enriched when 

compared to plasma membrane levels (Table 6B), they make up a large percentage of the 

retroviral envelope and therefore may be functionally relevant in the retrovirus replication 

cycle, particularly as a mediator of membrane curvature (McMahon and Gallop, 2005; 

Zimmerberg and Kozlov, 2006) and PS as a cofactor for retrovirus entry (Callahan et al., 
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2003; Coil and Miller, 2005a; Coil and Miller, 2005b). Ultimately, their function would 

depend on their distribution between the bilayer leaflets of the retrovirus envelope.  

 

4.5.1 Analyzing aminophophoslipid asymmetry using TNBS 
 

We attempted to map the asymmetry of aminophospholipids by making use of TNBS 

which is able to react covalently with free amino groups on the head group of PS, PE and 

pPE. A nucleophilic substitution reaction takes place between the aromatic TNBS molecule 

and the free amino group, thus resulting in a mass shift that can be detected by ESI-MS. 

Because this is the first reported analysis11 of TNBS labeled aminophophoslipid using ESI-

MS, an effort was put into deciphering the fragmentation pattern of the new lipids so as to 

find diagnostic ions for its identification. It was shown that the PS and PE/pPE lipids 

exhibited a mass shift of m/z 149 and 211 respectively (Figure 34). Unfortunately, we were 

unable to identify any unique diagnostic ions between the two classes of lipids.  

For this experiment, it was important to ensure that the TNBS reaction was taking 

place under non-membrane penetrating conditions. We tested a number of different 

parameters including temperature and TNBS concentration using liposomes consisting of 

DMPE. Of these two parameters, it is clear that temperature was the more important factor. 

By carrying out the labeling reaction at three different temperatures, 4°C, 25°C and 37°C, we 

found increasing levels of TNBS-DMPE produced (Figure 35). This indicates either 

increased TNBS penetration through the bilayer and/or higher reactivity rates between TNBS 

and DMPE due to the increase in temperature. In previous reports of TNBS labeling 

experiments carried out on purified VSV particles, 25°C was used as the non-penetrating 

                                                 
11 A study published by Laurinavicius et al., reported the use of TNBS labeling of PE coupled with ESI-MS. 
However, this study only measured decrease in PE levels after treatment, without making reference to 
measurements of TNBS-PE. 
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temperature (Fong et al., 1976; Fong and Brown, 1978). However, we decided to be more 

stringent with our labeling temperature, so decided to use 4°C for the rest of the reaction 

experiments. We also tested for the concentration effect but could not find a good correlation 

between labeling efficiency and TNBS concentration (Figure 36). Finally, we used a lower 

concentration of TNBS to prevent potential membrane disruption.  

 

4.5.2 Plasmalogen PE are enriched in the outer leaflet of the retrovirus envelope 
 

To ensure that the MLV membrane was intact and not leaky, the TNBS reactions 

were only carried out using freshly produced MLV particles. Our data revealed that the 

majority of the lipids available for TNBS labeling are pPE molecules while PE is mostly 

confined in the inner leaflet of the envelope (Figure 37 and 38, Table 11 and 12). It was 

found that a small amount of PS lipids were also labeled by TNBS to produce TNBS-PS 

molecules. There appears to be no specific enrichment involved with PS (Table 11 and 12), 

thereby suggesting that PS molecules are mostly confined in the inner leaflet of the envelope. 

Moreover, attempts to block externalized PS in MLV envelope using Annexin V did not 

significantly affect MLV infection of REF cells (Figure 45).  

How could this asymmetry arise? As we have already shown, MLV envelopes 

originate from the plasma membrane of its host cell, thereby inheriting the signature 

properties of the host cell plasma membrane. Since membrane translocation of phospholipids 

in mature MLV virions is probably slow due to energetic barriers in flip across the middle 

hydrophobic region of a bilayer, the lipid asymmetry observed in the MLV envelope must 

exist at least temporarily in the plasma membrane budding site. Therefore, the origin of the 

asymmetry in the MLV envelope can be resolved by explaining the origin of asymmetry in 

the host cell plasma membrane. One possibility is that asymmetry could be generated at the 
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budding site of the virus, for example by the interaction of host cell phospholipids with MLV 

specific proteins like Gag or Env. Another possibility is that asymmetry may be a usual and 

normal feature of the uninfected host cell membrane, so a budding MLV virion would simply 

acquire a representative feature of the host cell plasma membrane. Either way, the specific 

localization of pPE and PE in the external and internal leaflets respectively would indicate 

that this feature may play a role in virus budding.  

 

4.5.3 Possible functions of plasmalogen PE in the outer leaflet of retrovirus envelope 
 

Plasmalogens are glycerophospholipids characterized by an alk-1′-enylether bond in 

position sn-1 and an acyl bond in position sn-2. The sn-2 acyl chain of plasmalogen lipids is 

oriented in a perpendicular direction to the membrane surface. This extended conformation 

results in an effectively longer hydrocarbon portion in plasmalogen than in the diacyl analog 

(Lohner, 1996). Moreover, the lack of the carbonyl oxygen in position sn-1 affects the 

hydrophilicity of the headgroup and weakens intermolecular hydrogen-bonding between the 

headgroups of pPE and other phospholipids in the membrane leaftlet. Therefore, pPE tend to 

favor the formation of non-lamellar structures which destabilizes the membrane that they are 

contained in (Lohner, 1996). This feature of pPE may be useful in the budding and fusion 

activity of the retrovirus envelope. 

In support of this hypothesis, Glaser and Gross previously identified glyceraldehyde-

3-phosphate dehydrogenase (GAPDH), in rat brain cytosol, as a protein that appears capable 

of facilitating fusion of pPE-containing vesicles (Glaser and Gross, 1995). Specifically, the 

ideal fusion vesicles found in this study contains approximately 40% Cholesterol, 27% PC, 

27% pPE and 6% PS, which approximates the measured level of these lipids in found 

retrovirus envelopes (Table 4). Coincidentally, the identification of GAPDH as a host protein 
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that is found in the envelope of HIV particles also suggests an involvement of such fusion 

mechanisms in retrovirus infection (Ott et al., 2000). Concurrently, having PE concentrated 

on the inside of the membrane, would allow it to promote negative membrane curvature and 

energy favorability to the hemi-fusion stalk-like state (Haque et al., 2001; Kasson and Pande, 

2007; Siegel and Epand, 1997) during both the end and start stage of budding and fusion 

events respectively. It would be interesting to decipher how the arrangement of pPE and PE 

may play synergistic roles together with other curvature inducing lipids such as 

phosphoinositides, PA and lysoPA, and also cellular cytoskeleton and protein activities 

(McMahon and Gallop, 2005) in a way unique to retrovirus membrane dynamics.  

 

4.6 Neutral lipid composition of retroviruses 
 

For the first time, we report the total analysis of neutral lipids from purified retrovirus 

envelopes, identifying not only Chol, but CE, DG and TG as well. We noted that the level of 

enrichment of Chol and CE is much greater in HIV compared to MLV, where CE levels 

appear to be lower compared to its host cell total (Table 7). The structural difference between 

Chol and CE is the presence of an esterified fatty acyl chain at the hydroxyl group of 

cholesterol. While cholesterol is predominantly present at the plasma membrane of 

mammalian cells, CE pools are typically found in the cytosol of the cells as part of lipid 

droplets (Simons and Ikonen, 2000). Alternatively, cholesterol and CE may be also be 

exchanged directly between circulating lipopropteins from serum and the plasma membrane 

(Simons and Ikonen, 2000). Recent evidence showed that the HIV-1 replication machinery 

harbors several mechanisms to increase cholesterol transport to the budding site of the virus. 

In T-cells, the Nef protein appears to not only increase the biosynthesis of cholesterol but also 

the uptake of cholesterol from extracellular LDL (van 't Wout et al., 2005a; Zheng et al., 
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2003).  In macrophages, the virus does this by impairing the ATP-binding cassette transporter 

A1 (ABCA1)-dependent cholesterol efflux, also mediated by Nef (Mujawar et al., 2006). 

Therefore, the action of Nef may have resulted in significant enrichment of Chol and CE 

levels in the HIV envelope. In contrast, MLV is simple retrovirus without similar accessory 

proteins, and therefore may not be able to control cholesterol trafficking to the same extent as 

HIV.  

 

4.6.1 Saturated species of DG and TG can be found in retrovirus envelopes 
 

The DG profile of the HIV and MLV envelopes consist a high ratio of saturated 

species compared to their respective host cell total membrane (Table 7). Its been shown that 

mono/saturated DG species are derived predominantly from PC, through an intermediate 

dephosphorylation step of PLD-generated PA (Hodgkin et al., 1998). In a similar manner to 

Cer, the presence of mono/saturated DG alone can add significant structural plasticity to the 

plasma membrane (Armstrong et al., 2002; Veiga et al., 1999). This will be useful not only in 

the trafficking of material in and out of a cell, but it may also support viral budding and 

fusion reactions. Unexpectedly, we also detected TG in our analysis of the purified retrovirus 

envelope. Similar to DG, the TG profile of both HIV and MLV envelope consist a high ratio 

of saturated species when compared to the total membrane. This ratio may be reflective of the 

plasma membrane TG profile that is reported to be rich in mono/saturated species 

(Mackinnon et al., 1992; May et al., 1997). It is also not difficult to conclude that these 

saturated DG and TG lipids would fit nicely into a lipid raft model for retrovirus assembly. 
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4.7 Conclusion 
 

Taking a broader view, the lipidomics approach should be equally useful in the study 

of other medically important enveloped viruses. As mentioned in Chapter 1, viruses such as 

Vesicular Stomatis Virus, Influenza Virus and Respiratory Syncytial Virus possess structural 

proteins analogous to retrovirus Gag and also use the plasma membrane as an assembly and 

budding site. Thus, it would be interesting to examine the commonalities and differences in 

lipid inventory of these viruses as a means to dissect the protein-lipid interaction involved in 

the assembly of these viruses. In addition, it would be important to also apply lipidomics in 

the study of viruses that are formed in intracellular organelles such Dengue Virus and 

Hepatitis C Virus. Because intracellular organelles have very different lipid characteristics 

compared to the plasma membrane, these viruses are likely to have developed unique modes 

of lipid-protein interactions compared to plasma membrane budding viruses. Detailed lipid 

analysis of these purified viruses would therefore elucidate important lipid classes involved in 

the replication of these viruses. 

In conclusion, we have demonstrated that detailed lipid profiling of retrovirus 

envelopes helped identify enriched lipids such as PIP2 and raft lipids that are important to 

retrovirus replication. However, beyond analyzing the obvious enrichment of these lipids, it 

must be noted that other lipids that occur in high abundance but are less enriched, such as PS, 

pPE, SM and even PC, are nonetheless important in the formation of the native retroviral 

envelope and deserve further investigation as well. 
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Appendix 1 
 
Recipe list 
 
Plasma membrane extraction from cells using cationic silica beads 
 
1. Plasma membrane coating buffer (PMCB)  

 

20 mM MES, 0.8 M sorbitol, 150 mM NaCl 

Mix together 20ml 1M MES, 140ml 2M sorbitol and 30ml 5M NaCl 

Adjust to pH 5.5-6.0 with conc. NaOH 

Make up to 1L with ddH2O 

 

2. Polyacrylic acid (PAA) (Sigma) in PMCB, PAA/PMCB  
 

Dissolve PAA (average molecular weight 100,000Da) in PMCB (1mg/ml) 

Adjust to pH 6-6.5 with conc. NaOH 

*Check pH using pH paper because PAA may damage pH electrodes 

 

3. Lysis buffer  
 

2.5 mM imidazole in ddH2O 

Supplement with protease inhibitor tablet (Roche) 

 

4. 70% Histodenz (Sigma) 
 

Make a 100% w/v Histodenz by dissolving 10g Histodenz in 5.5ml of lysis buffer. 

Dilute 100% stock solution to 70% using lysis buffer 

 

 

Plasma membrane extraction from cells using optiprep 
 
1. Optiprep diluent  

 

235mM KCl, 12 mM MgCl2, 25 mM CaCl2, 30mM EGTA, 150mM Hepes-NaOH 

Mix together 23.5ml 1M KCl, 1.2ml 1M MgCl2, 2.5ml 1M CaCl2, 30ml 100mM 

EGTA and 15ml 1M Hepes 
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Adjust to pH 7.0 with 1M KOH 

Make up to 100ml with ddH2O 

 

2. Working solution (WS)  
 

78mM KCl, 4 mM MgCl2, 8.4 mM CaCl2, 10mM EGTA, 50mM Hepes-NaOH 

Mix together 7.8ml 1M KCl, 0.4ml 1M MgCl2, 0.84 1M CaCl2, 10ml 100mM EGTA 

and 5ml 1M Hepes 

Adjust to pH 7.0 with 1M KOH 

Make up to 100ml with ddH2O 

 

3. Homogenization buffer 
 

Dissolve 8.5g sucrose in WS 

Adjust to pH 7.0 with 1M KOH 

Make up to 100ml with WS 

 

 

Protein analysis 
 
1. SDS-Page Resolving Gel, 10ml recipe 
  

(ml) 10% Gel 12% Gel 
ddH2O 4 3.3 
30% Acrylamide 3.3 4 
1.5M Tris (pH 8.8) 2.5 2.5 
10% SDS 0.1 0.1 
10% APS 0.1 0.1 
TEMED 0.004 0.004 

 
2. SDS-Page Stacking Gel, 5ml recipe 
 

(ml) Stacking 
ddH2O 3.4 
30% Acrylamide 0.83 
1.0M Tris (pH 6.8) 0.63 
10% SDS 0.05 
10% APS 0.05 
TEMED 0.005 
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3. Electrophoresis running buffer (10x solution) 
  

 Dissolve 144 g Glycine, 24g Tris base, 10g SDS in ddH2O  

Adjust to pH 8.3 with conc. HCl 

Make up to 1L with ddH2O 

*Dilute to 1x before use 

 

4. Transfer buffer  
 

Dissolve 3.02g Tris base, 14.41g Glycine in 200ml methanol 

Make up to 1L with ddH2O 

 

5. Wash solution (TBST) 
  

Dissolve 8.8g Tris base, 1.2g NaCl and 500µl in ddH2O 

Make up to 1L with ddH2O 

*Blocking solution is prepared by dissolving 5g of non-fat milk powder with 100ml 

of TBST 

 

 

ELISA  analysis 
 
1. Coating buffer 
  

Dissolve 3.03g Na2CO3 and 6.0g NaHCO3 in ddH2O 

Adjust to pH 9.6 with conc. HCl 

Make up to 1L with ddH2O 

 

2. Blocking solution 
 

Dissolve 1g BSA in 100ml coating buffer 
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Appendix 2 
 

Optimized MRM parameters for glycerophospholipids detection by liquid 
chromatography 

ESI- Q1 Q3 Dwell Time 
(ms) 

Declustering 
Potential (V) 

Collision 
Energy (V) 

Cell Exit 
Potential (V) 

PS       
DMPS 678.6 591.6 50 -110 -32 -16 
PS 32:1 732.6 645.6 50 -120 -34 -20 
PS 32:0 734.6 647.6 50 -130 -34 -18 
PS 34:2 758.6 671.7 50 -115 -34 -10 
PS 34:1 760.6 673.7 50 -105 -32 -16 
PS 34:0 762.6 675.7 50 -120 -36 -18 
PS 36:4 782.6 695.7 50 -115 -34 -18 
PS 36:3 784.6 697.6 50 -140 -34 -20 
PS 36:2 786.6 699.6 50 -130 -36 -22 
PS 36:1 788.6 701.6 50 -140 -36 -13 
PS 36:0 790.6 703.7 50 -125 -38 -10 
PS 38:5 808.6 721.6 50 -145 -38 -15 
PS 38:4 810.6 723.6 50 -105 -36 -10 
PS 38:3 812.6 725.7 50 -130 -34 -10 
PS 38:2 814.6 727.7 50 -145 -34 -10 
PS 38:1 816.6 729.7 50 -110 -38 -10 
PS 38:0 818.6 731.7 50 -135 -36 -14 
PS 40:6 834.6 747.7 50 -125 -34 -10 
PS 40:5 836.6 749.7 50 -115 -38 -26 
PS 40:4 838.6 751.7 50 -145 -38 -26 
PS 40:3 840.6 753.7 50 -120 -34 -12 
PS 40:2 842.6 755.7 50 -145 -36 -15 
PS 40:1 844.6 757.7 50 -140 -38 -20 
PS 40:0 846.6 759.7 50 -125 -38 -20 
PS 42:6 862.6 775.7 50 -180 -36 -20 
PS 42:5 864.6 777.7 50 -185 -36 -20 
PS 42:4 866.6 779.7 50 -155 -40 -22 
PS 42:3 868.6 781.7 50 -130 -34 -12 
PS 42:2 870.6 783.7 50 -90 -45 -15 
PS 42:1 872.6 785.7 50 -150 -60 -15 
PS 42:0 874.7 787.8 50 -130 -60 -6 

PI       
diC8-PI 585.5 241.1 50 -130 -65 -12 
PI 34:1 835.5 241.1 50 -120 -60 -18 
PI 34:0 837.6 241.1 50 -90 -80 -6 
PI 36:4 857.6 241.1 50 -120 -65 -18 
PI 36:3 859.6 241.1 50 -130 -65 -12 
PI 36:2 861.6 241.1 50 -110 -65 -6 
PI 36:1 863.6 241.1 50 -120 -65 -21 
PI 36:0 865.6 241.1 50 -120 -80 -15 
PI 38:6 881.6 241.1 50 -90 -80 -9 
PI 38:5 883.6 241.1 50 -140 -80 -27 
PI 38:4 885.6 241.1 50 -150 -70 -15 
PI 38:3 887.6 241.1 50 -160 -70 -15 
PI 38:2 889.6 241.1 50 -90 -60 -12 
PI 38:1 891.6 241.1 50 -150 -65 -15 
PI 38:0 893.6 241.1 50 -110 -80 -24 
PI 40:6 909.6 241.1 50 -90 -80 -24 
PI 40:5 911.6 241.1 50 -100 -80 -27 
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PI 40:4 913.6 241.1 50 -115 -55 -5 
PI 40:3 915.6 241.1 50 -115 -55 -5 
PI 40:2 917.6 241.1 50 -115 -55 -5 
PI 40:1 919.6 241.1 50 -115 -55 -5 
PI 40:0 921.6 241.1 50 -115 -55 -5 

PE & pPE       
DMPE 634.6 196.1 50 -120 -45 -9 

PE 32:1a 688.6 196.1 50 -110 -45 -15 
PE 32:0a 690.6 196.1 50 -140 -53 -12 
PE 34:2a 714.6 196.1 50 -130 -53 -9 
PE 34:1a 716.6 196.1 50 -165 -53 -12 
PE 34:0a 718.6 196.1 50 -170 -60 -9 
PE 36:4a 738.6 196.1 50 -140 -53 -24 
PE 36:3a 740.6 196.1 50 -140 -45 -6 
PE 36:2a 742.6 196.1 50 -155 -60 -25 
PE 36:1a 744.6 196.1 50 -185 -50 -18 
PE 38:6a 762.6 196.1 50 -170 -50 -33 
PE 38:5a 764.6 196.1 50 -100 -53 -33 
PE 38:4a 766.6 196.1 50 -145 -53 -33 
PE 38:3a 768.6 196.1 50 -145 -55 -33 
PE 38:2a 770.6 196.1 50 -160 -53 -18 
PE 38:1a 772.6 196.1 50 -155 -65 -20 
PE 40:6a 790.6 196.1 50 -145 -53 -33 
PE 40:5a 792.6 196.1 50 -145 -53 -12 
PE 40:4a 794.6 196.1 50 -140 -65 -6 
PE 40:3a 796.6 196.1 50 -100 -63 -6 
PE 40:2a 798.6 196.1 50 -110 -60 -9 
PE 40:1a 800.6 196.1 50 -130 -63 -33 
PE 40:0a 802.6 196.1 50 -100 -75 -6 
PE 34:2p 698.6 196.1 50 -135 -65 -9 
PE 34:1p 700.6 196.1 50 -130 -63 -6 
PE 34:0p 702.6 196.1 50 -130 -65 -9 
PE 36:4p 722.6 196.1 50 -145 -63 -9 
PE 36:3p 724.6 196.1 50 -100 -63 -9 
PE 36:2p 726.6 196.1 50 -145 -63 -9 
PE 36:1p 728.6 196.1 50 -175 -60 -17 
PE 36:0p 730.6 196.1 50 -175 -60 -8 
PE 38:6p 746.6 196.1 50 -145 -63 -9 
PE 38:5p 748.6 196.1 50 -170 -63 -6 
PE 38:4p 750.6 196.1 50 -165 -63 -9 
PE 38:3p 752.6 196.1 50 -165 -63 -9 
PE 38:2p 754.6 196.1 50 -165 -63 -9 
PE 38:1p 756.6 196.1 50 -155 -63 -13 
PE 38:0p 758.6 196.1 50 -100 -53 -9 
PE 40:6p 774.6 196.1 50 -135 -60 -15 
PE 40:5p 776.6 196.1 50 -160 -60 -25 
PE 40:4p 778.6 196.1 50 -160 -60 -33 
PE 40:3p 780.6 196.1 50 -170 -62 -17 
PE 40:2p 782.6 196.1 50 -145 -75 -30 
PE 40:1p 784.6 196.1 50 -145 -63 -30 
PE 40:0p 786.6 196.1 50 -145 -75 -30 
PE 16:0p 436.3 196.1 50 -160 -40 -6 
PE 18:2p 460.3 196.1 50 -100 -40 -27 
PE 18:1p 462.3 196.1 50 -100 -53 -12 
PE 18:0p 464.3 196.1 50 -100 -40 -12 
PE 18:2a 476.3 196.1 50 -110 -40 -9 
PE 18:1a 478.3 196.1 50 -120 -40 -33 
PE 18:0a 480.3 196.1 50 -120 -45 -24 
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PE 20:4a 500.3 196.1 50 -115 -55 -5 
PE 20:3a 502.3 196.1 50 -115 -55 -5 
PE 20:2a 504.3 196.1 50 -115 -55 -5 

PC & ePC       
DMPC 678.5 184.1 50 135 42 10 

PC 32:2a 730.6 184.1 50 125 38 16 
PC 32:1a 732.6 184.1 50 80 42 10 
PC 32:0a 734.6 184.1 50 135 42 10 
PC 34:3a 756.6 184.1 50 125 42 10 
PC 34:2a 758.6 184.1 50 125 42 10 
PC 34:1a 760.6 184.1 50 135 42 10 
PC 34:0a 762.6 184.1 50 135 42 10 
PC 36:4a 782.6 184.1 50 125 46 10 
PC 36:3a 784.6 184.1 50 125 46 10 
PC 36:2a 786.6 184.1 50 150 42 10 
PC 36:1a 788.6 184.1 50 135 50 10 
PC 36:0a 790.6 184.1 50 125 42 13 
PC 38:6a 806.6 184.1 50 135 46 13 
PC 38:5a 808.6 184.1 50 125 42 10 
PC 38:4a 810.6 184.1 50 125 42 31 
PC 38:3a 812.6 184.1 50 125 50 31 
PC 38:2a 814.6 184.1 50 125 42 34 
PC 38:1a 816.6 184.1 50 125 42 34 
PC 38:0a 818.6 184.1 50 80 46 31 
PC 40:6a 834.6 184.1 50 125 50 31 
PC 40:5a 836.6 184.1 50 125 42 31 
PC 40:4a 838.6 184.1 50 125 50 34 
PC 40:3a 840.6 184.1 50 125 50 37 
PC 40:2a 842.6 184.1 50 125 38 34 
PC 40:1a 844.6 184.1 50 125 38 31 
PC 40:0a 846.6 184.1 50 90 54 13 
PC 32:1e 718.6 184.1 50 125 38 31 
PC 32:0e 720.6 184.1 50 125 38 31 
PC 34:3e 742.6 184.1 50 80 34 34 
PC 34:2e 744.6 184.1 50 135 38 34 
PC 34:1e 746.6 184.1 50 135 38 31 
PC 34:0e 748.6 184.1 50 135 42 31 
PC 36:4e 768.6 184.1 50 90 46 37 
PC 36:3e 770.6 184.1 50 90 42 37 
PC 36:2e 772.6 184.1 50 90 38 34 
PC 36:1e 774.6 184.1 50 90 38 10 
PC 36:0e 776.6 184.1 50 135 54 34 
PC 38:6e 792.6 184.1 50 90 46 10 
PC 38:5e 794.6 184.1 50 90 46 10 
PC 38:4e 796.6 184.1 50 90 42 13 
PC 38:3e 798.6 184.1 50 80 38 34 
PC 38:2e 800.6 184.1 50 90 46 10 
PC 38:1e 802.6 184.1 50 80 50 31 
PC 38:0e 804.6 184.1 50 125 42 10 
PC 40:6e 820.6 184.1 50 80 46 10 
PC 40:5e 822.6 184.1 50 80 54 10 
PC 40:4e 824.6 184.1 50 80 54 34 
PC 40:3e 826.6 184.1 50 80 46 10 
PC 40:2e 828.6 184.1 50 80 42 34 
PC 40:1e 830.6 184.1 50 80 46 31 
PC 40:0e 832.6 184.1 50 80 46 34 
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Appendix 3 
 

Optimized MRM parameters for sphingolipids detection by liquid chromatography. 
ESI- Q1 Q3 Dwell Time 

(ms) 
Declustering 
Potential (V) 

Collision 
Energy (V) 

Cell Exit 
Potential (V) 

SM       
L-SM 647.6 184.1 50 130 50 34 

SM 18:1/16:1 701.5 184.1 50 140 65 15 
SM 18:1/16:0 703.5 184.1 50 140 45 36 
SM 18:1/18:1 729.6 184.1 50 140 65 36 
SM 18:1/18:0 731.6 184.1 50 140 60 36 
SM 18:1/20:1 757.6 184.1 50 150 65 10 
SM 18:1/20:0 759.6 184.1 50 130 60 36 
SM 18:1/22:0 787.6 184.1 50 130 60 33 
SM 18:1/24:1 813.6 184.1 50 130 60 36 
SM 18:1/24:0 815.6 184.1 50 130 60 33 
 SM 18:0/16:0 705.8 184.1 50 120 35 27 
SM 18:0/18:0 733.8 184.1 50 120 35 27 
SM 18:0/20:0 761.8 184.1 50 110 40 33 
SM 18:0/22:0 789.9 184.1 50 130 52.5 33 
SM 18:0/24:0 817.9 184.1 50 140 52.5 30 
SM 18:0/26:1 843.9 184.1 50 140 52.5 30 
SM 18:0/26:0 845.9 184.1 50 140 65 30 

Cer       
C17-Cer 552.7 264.4 50 100 52.5 36 

Cer 18:1/16:0 538.7 264.4 50 100 52.5 36 
Cer 18:0/16:0 540.7 266.4 50 100 52.5 36 
Cer 18:1/18:0 566.7 264.4 50 100 55 36 
Cer 18:0/18:0 568.7 266.4 50 100 40 28 
Cer 18:1/20:0 594.7 264.4 50 120 52.5 44 
Cer 18:0/20:0 596.7 266.4 50 80 55 16 
Cer 18:1/22:0 622.8 264.4 50 120 55 36 
Cer 18:0/22:0 624.8 266.4 50 80 30 32 
Cer 18:1/24:1 648.9 264.4 50 120 55 32 
Cer 18:0/24:1 650.9 266.4 50 120 55 32 
Cer 18:1/24:0 650.9 264.4 50 120 55 32 
Cer 18:0/24:0 652.9 266.4 50 80 55 32 
Cer 18:1/26:1 676.9 264.4 50 120 55 32 
Cer 18:0/26:1 678.9 266.4 50 70 40 24 
Cer 18:1/26:0 678.9 264.4 50 80 30 12 
Cer 18:0/26:0 680.9 266.4 50 50 30 12 

Glu-Cer       
C8-GC 588.7 264.4 50 90 60 36 

GC 18:1/16:0 700.7 264.4 50 80 60 33 
GC 18:0/16:0 702.7 266.4 50 100 65 14 
GC 18:1/18:0 728.7 264.4 50 80 60 27 
GC 18:0/18:0 730.7 266.4 50 55 50 14 
GC 18:1/20:0 756.7 264.4 50 90 60 33 
GC 18:0/20:0 758.7 266.4 50 90 70 17 
GC 18:1/22:0 784.8 264.4 50 80 60 33 
GC 18:0/22:0 786.8 266.4 50 90 55 14 
GC 18:1/24:1 810.9 264.4 50 80 60 33 
GC 18:0/24:1 812.9 266.4 50 90 70 33 
GC 18:1/24:0 812.9 264.4 50 80 60 30 
GC 18:0/24:0 814.9 266.4 50 80 60 33 
GC 18:1/26:1 838.9 264.4 50 45 70 14 
GC 18:0/26:1 840.9 266.4 50 90 45 17 
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GC 18:1/26:0 840.9 264.4 50 80 60 30 
GC 18:0/26:0 842.9 266.4 50 80 70 33 

GM3       
GM3 

18:1/16:1 1149.6 290.1 50 -190 -65 -15 
GM3 

18:1/16:0 1151.6 290.1 50 -180 -65 -20 
GM3 

18:0/16:0 1153.6 290.1 50 -180 -65 -15 
GM3 

18:1/18:1 1177.6 290.1 50 -190 -65 -15 
GM3 

18:1/18:0 1179.6 290.1 50 -180 -65 -15 
GM3 

18:0/18:0 1181.6 290.1 50 -190 -65 -20 
GM3 

18:1/20:1 1205.6 290.1 50 -190 -65 -15 
GM3 

18:1/20:0 1207.6 290.1 50 -180 -65 -15 
GM3 

18:0/20:0 1209.6 290.1 50 -180 -65 -15 
GM3 

18:1/22:1 1233.6 290.1 50 -180 -65 -15 
GM3 

18:1/22:0 1235.6 290.1 50 -190 -65 -15 
GM3 

18:0/22:0 1237.6 290.1 50 -180 -65 -15 
GM3 

18:1/24:1 1261.6 290.1 50 -180 -65 -15 
GM3 

18:1/24:0 1263.6 290.1 50 -180 -65 -15 
GM3 

18:0/24:1 1265.6 290.1 50 -170 -65 -15 
GM3 

18:1/26:1 1289.6 290.1 50 -180 -65 -15 
GM3 

18:1/26:0 1291.6 290.1 50 -180 -65 -15 
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Appendix 4 
 

Optimized MRM parameters for phosphoinositides detection by direct infusion. 
ESI- Q1 Q3 Dwell Time 

(ms) 
Declustering 
Potential (V) 

Collision 
Energy (V) 

Cell Exit 
Potential (V) 

PI       
diC8-PI 585.6 241.1 50 -120 -40 -4 
PI 32:2 805.6 241.1 50 -125 -55 -4 
PI 32:1 807.6 241.1 50 -125 -55 -4 
PI 32:0 809.6 241.1 50 -125 -55 -4 
PI 34:2 833.6 241.1 50 -140 -60 -4 
PI 34:1 835.6 241.1 50 -140 -60 -4 
PI 34:0 837.6 241.1 50 -140 -60 -4 
PI 36:4 857.6 241.1 50 -140 -60 -4 
PI 36:3 859.6 241.1 50 -150 -60 -4 
PI 36:2 861.6 241.1 50 -150 -62.5 -4 
PI 36:1 863.6 241.1 50 -150 -62.5 -4 
PI 36:0 865.6 241.1 50 -150 -62.5 -4 
PI 38:5 883.7 241.1 50 -150 -62.5 -4 
PI 38:4 885.7 241.1 50 -150 -62.5 -4 
PI 38:3 887.7 241.1 50 -150 -62.5 -4 
PI 38:2 889.7 241.1 50 -150 -62.5 -4 
PI 38:1 891.7 241.1 50 -150 -62.5 -4 
PI 38:0 893.7 241.1 50 -150 -62.5 -4 
PI 40:6 909.7 241.1 50 -160 -65 -4 
PI 40:5 911.7 241.1 50 -160 -65 -4 
PI 40:4 913.7 241.1 50 -160 -65 -4 

PIP       
diC8-PIP 665.7 321.1 50 -150 -45 -4 
PIP 32:2 885.7 321.1 50 -160 -50 -4 
PIP 32:1 887.7 321.1 50 -160 -50 -4 
PIP 32:0 889.7 321.1 50 -165 -52.5 -4 
PIP 34:2 913.7 321.1 50 -165 -52.5 -4 
PIP 34:1 915.7 321.1 50 -165 -52.5 -4 
PIP 34:0 917.7 321.1 50 -175 -55 -4 
PIP 36:4 937.7 321.1 50 -175 -55 -4 
PIP 36:3 939.7 321.1 50 -175 -55 -4 
PIP 36:2 941.7 321.1 50 -175 -55 -4 
PIP 36:1 943.7 321.1 50 -175 -55 -4 
PIP 36:0 945.7 321.1 50 -175 -57.5 -4 
PIP 38:5 963.7 321.1 50 -175 -60 -4 
PIP 38:4 965.7 321.1 50 -175 -60 -4 
PIP 38:3 967.7 321.1 50 -175 -60 -4 
PIP 38:2 969.7 321.1 50 -175 -60 -4 
PIP 38:1 971.7 321.1 50 -175 -60 -4 
PIP 38:0 973.7 321.1 50 -180 -62.5 -4 
PIP 40:6 989.7 321.1 50 -180 -62.5 -4 
PIP 40:5 991.7 321.1 50 -180 -62.5 -4 
PIP 40:4 993.7 321.1 50 -180 -63.5 -4 

PIP2       
diC8-PIP2 745.8 401.1 50 -170 -47.5 -4 
PIP2 32:2 965.8 401.1 50 -180 -50 -4 
PIP2 32:1 967.8 401.1 50 -180 -52.5 -4 
PIP2 32:0 969.8 401.1 50 -180 -52.5 -4 
PIP2 34:2 993.8 401.1 50 -180 -52.5 -4 
PIP2 34:1 995.8 401.1 50 -180 -55 -4 
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PIP2 34:0 997.8 401.1 50 -180 -55 -4 
PIP2 36:4 1017.8 401.1 50 -180 -55 -4 
PIP2 36:3 1019.8 401.1 50 -180 -55 -4 
PIP2 36:2 1021.8 401.1 50 -180 -55 -4 
PIP2 36:1 1023.8 401.1 50 -180 -57.5 -4 
PIP2 36:0 1025.8 401.1 50 -180 -57.5 -4 
PIP2 38:5 1043.8 401.1 50 -180 -57.5 -4 
PIP2 38:4 1045.8 401.1 50 -180 -57.5 -4 
PIP2 38:3 1047.8 401.1 50 -180 -57.5 -4 
PIP2 38:2 1049.8 401.1 50 -180 -57.5 -4 
PIP2 38:1 1051.8 401.1 50 -180 -60 -4 
PIP2 38:0 1053.8 401.1 50 -180 -60 -4 
PIP2 40:6 1069.8 401.1 50 -180 -60 -4 
PIP2 40:5 1071.8 401.1 50 -180 -50 -4 
PIP2 40:4 1073.8 401.1 50 -180 -55 -4 
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Appendix 5 
  

Liposome composition mix.  
Lipid standard 
concentration 

Egg yolk PC 
10mg/ml 

DMPS 
5mg/ml 

DMPE 
5mg/ml 

pPE 38:4 
1mg/ml 

Liposomes for Section 4.3.1 

DMPS 9.5µl 1.0µl - - 

DMPE 9.5µl - 1.0µl - 

pPE 38:4 9.5µl - - 5.0µl 

Liposome for Section 4.3.2 

No DMPE 10.0µl - - - 

0.5mg DMPE 9.5µl - 1.0µl - 

1mg DMPE 9.0µl - 2.0µl - 

2mg DMPE 8.0µl - 4.0µl - 
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