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Abstract

Visual object detection has conceivably prevailing applications in the Internet age for

multimedia interactions. This thesis aims to explore the data-parallel architecture of com-

modity graphic processors that enables fast and promising object detection. Firstly, boost-

ing is identified as the promising and widely usable approach for object detection. An

efficient architecture in streaming paradigm is then designed to map the boosted cascade

to GPU as data streaming coprocessor. We take into account the hardware characteristics

to enable further speedup. Promising results were achieved, as up to 5 times speedup

was obtained. By study the performance impacts from experiments on GPUs that are of

different generations, we explore the suitable designs for future generation GPU models.

Our experiences reveal the underlying principles when mapping the boosted detector to

similar data-parallel architectures.
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Chapter 1

Introduction

1.1 Motivation

Visual Object Detection on natural images has been a long standing goal in computer

vision research. Its conceivable applications in numerous fields like semantic image

understanding, autonomous robot control, human-computer interactions, security video

surveillance, etc have driven this trend. As Vint Cerf, the Chief Internet Evangelist in

Google once envisioned[VC08], the future Internet will ”transform multimedia contents”

(images, videos) to be more interactive, where medias containing user interested objects

can be retrieved and labeled with relevant information. One can easily imagine that the

tremendous amount of object detection work on vast amount of multimedia contents in

the Internet is the basic step towards that goal.

Visual object detection studied in this thesis can be defined as detecting the pres-

ence of specific class of objects in the input image; and if presented, localizing them

in the image. The problem is inherently difficult due to large variability in object ap-

pearance, poses, viewpoints, illumination conditions, and imaging conditions, etc. The

vast differences in various types of objects add to the difficulty of coming out a gen-

eral solution to the problem. For example, to detect structured objects(like face, car),
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or articulated objects (pedestrians, animals, etc) or textured objects, it is often rational

to extract image features of different characteristics and use different object models for

better performance.

A general principle for object detection is to devise object models that represent the

object class by learning sufficient domain knowledge from the images. To this end the

object models often employ image features and a representational framework that can

minimize intra-class variation while emphasizing inter-class variations. Thus, extracting

a suitable set of features, and use an efficient learning framework to acquire the appro-

priate object model is the key. Figure 1.1 shows a typical object detection framework.

Figure 1.1: Typical object detection framework.

1.1.1 Boosting as Promising Approach

In the literature, an extensive body of works have proposed and evaluated different types

of features and models suitable for object detection ranging from very specific class (e.g.

objects with different viewpoint or poses treated as different classes), to generic class

where the appearance of the objects belonging to the same category can vary a lot. Table
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1.1 tabulates a summary of the popular approaches in the literature that solves problems

of varying degree of complexity, using different type features and learning approaches.

As one of the earliest successful attempt in object detection, Lowe[Low99] proposed

an object detection framework for detecting very specific object class. It defines the ob-

ject class using a set of characteristic views. A view is represented by collections of

keypoint descriptors (features invariant to affine transformations (SIFT)) extracted from

training images. This framework can only cope with rigid structured objects with sim-

ilar appearance, and performs poorly when object appearance or structures have large

variations.

People detection is more difficult because of wide variability in appearance due to

clothing, articulation and illumination conditions. Dalal & Triggs[DT05] presented an

algorithm that detects people in a single image with high accuracy. The algorithm extracts

histogram of oriented gradients (HOG) from a dense grid of image blocks. A linear

support vector machine is learned from training images. A fixed size detection windows

is then sliding over the images to decide the presence of human object. The success

of this method greatly attribute to the use of HOG which represents spatially unordered

measurements over local image region, and is invariant to a degree of variations in object

appearance.

Zhu[ZYCA06] further extends the above approach by using AdaBoost, one of the

variants of Boosting learning framework. Boosting is a learning meta-algorithm for

performing supervised learning; it creates a single strong classifier from a set of weak-

classifiers. A weak classifier is defined to be only slightly correlated with the true classi-

fication. In contrast, a strong classifier is arbitrarily well-correlated with the true classifi-

cation.

Boosting is a powerful learning mechanism that combines the property of an efficient

classifier and a feature selector. This framework can select most descriptive HOG fea-

tures of human based on much larger set of variable-size image blocks. The detection
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Approaches Solved problem Feature-

to-Use

In-class vari-

ability

View match-

ing based on

SIFT[Low99]

Detect rigid ob-

ject with varia-

tion in viewpoints

SIFT

features

Handles only

small variation

in views for

structured object

Linear SVM

based on

HoG[DT05]

Pedestrian detec-

tion

Histogram

of oriented

gradients

Large variability

in appearance

AdaBoost

based on

HoG[ZYCA06]

Pedestrian detec-

tion

Histogram

of Oriented

Gradients

Large variability;

faster and accu-

rate

Boosting based

on features

in heteroge-

nous/homogenous

region[OPFA06]

Generic object

detection

heteo/homo

features,

e.g. SIFT,

Intensity

distrib.

arbitrary ob-

ject type, large

variability, occlu-

sions

Boosted cascade

of Haar-like

features[VJ01]

Structured object,

e.g. frontal faces

Simple

haar-like

feature

Variability in

structured object

with similar pose

Table 1.1: A literature survey of some important object detection approaches; it shows
the relative importance of the boosting approaches
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performance improved substantially both on speed and accuracy. The Boosted histogram

framework is also used in Laptev[Lap06] for detecting object classes like motorbikes,

cars etc. The results presented in PASCAL VOC (visual object categories, a prominent

object detection challenge) shows superiority over other approaches.

The powerfulness of the Boosting framework is further demonstrated by Opelt et

al[OPFA06] in their work towards generic object detection. Their work can cope with

object class with large variability in scales, viewpoints, poses, occlusions and is thus

termed generic. They extract information using a combination of different feature de-

scriptors like SIFT, Invariant Moments, Intensity distributions extracted from regions of

discontinuity or homogeneity. Then they employ boosting to find the most representative

set of features to form a strong classifier. Their approach detects generic object class in

very complex images with promising results.

Obviously, Boosting methods are applied in a wide range of object classes detection

tasks. Consequently, it is safe to say that Boosting is a very promising approach for object

detection. Its effectiveness comes with two main reasons.

1. Boosting can learn from an over-complete set of features that are rich in describing

domain knowledge. Other approaches like SVM or neural networks that provide a

single strong classifier can’t make use of such a large feature set efficiently.

2. Boosting learns only a small representative set of features as the strong classifier.

A cascade of the boosted classifiers can form a highly efficient final classifier, for

discarding non-object region aggressively.

The first successful use of Boosting framework in object detection was proposed by

Viola and Jones[VJ01] in the context of face detection. Based on haar-like simple features

and employed classifiers cascade, their work achieves both high detection rate and high

speed. The haar-like feature set encodes redundant representation of domain knowledge

and yet is simple to compute. The boosted strong classifier ensures high acceptance
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rate for image sub-windows containing object, while rejecting majority of negative sub-

windows. A cascade of strong classifiers can further improve the performance and speed.

Most negative sub-windows are rejected at early stages, focusing processing on promising

image regions.

1.1.2 GPU as Efficient Data Coprocessor

Considering the future Internet where the usage of multimedia contents will be equal

or even richer than text, the current state-of-art object detection techniques are far from

sufficient. In terms of detection speed, we need fast computational architecture that can

deal with the ocean amount of multimedia contents growing each day. CPU alone is not

particularly suitable for this task as CPU is designed for handling complex logic, which

sacrifices data throughput.

From section 1.1.1, we understand that Boosting is an efficient and promising frame-

work for object detection. Although the boosted cascaded detector is one of the fastest

state-of-art detectors, its speed in CPU is not entirely up to expectations. For people

detection in Zhu[ZYCA06], the system can only process about 5 images of resolution

320× 280 per second (fps). For a simpler task of frontal face detection, Lienhart[LM02]

reported a 5 fps for image resolution of 320×240 on a Pentium-4 2GHz. Given nowadays

high resolution images, this speed is well below many applications’ requirements.

From analyzing the boosting cascade in the classification stage, we know that the

computation bottleneck resides on evaluating early stages of the classifier cascade. As

all or most of the pixel locations are required to be evaluated at the stages, this task is

particularly data intensive. When large resolution images or batch images are required to

be processed, CPU is very limited in performance.

Graphics processing units (GPUs), on the other hand, provide attractive alternatives.

Originally designed for speeding up graphics applications, GPU is best suited for data
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intensive computational task. As its computation capacity and programmability evolves

rapidly over time, general purpose computations on GPU (GPGPU[OLG+07]) has be-

come feasible, and more and more popular. GPUs can potentially speed up applications

that exhibit large data parallelism, as its built-in parallel data processing capacity over

performs CPU substantially.

For generous purpose computations, a streaming computation paradigm is usually

formalized on GPU, where input/output data are treated as streams, and computations

on them are expressed as kernels operating on them. The programmability of GPU

also gets mature in recent years. The OpenGL library[WNDS99] and Cg (stands for

C for graphics)[MGA03] for programming GPU cores provide an expression of the com-

putation in graphics terms. More recently, several high-level languages that encode

the streaming concept are also implemented. Examples are Brook, and CUDA from

NVIDIA.

In this thesis, we explore the use of GPU programming model to as an efficient archi-

tecture for object detection.

1.2 Thesis objective and organizations

From the above we understand that Boosting is a promising object detection approach,

and GPU as a data streaming coprocessor provides an opportunity to speed up the detec-

tion significantly. Consequently, this thesis work aims to design and implement a com-

putation framework that uses GPU as data coprocessor to speedup the Boosted Cascade

detection framework. Note that our focus is on the classification stage, i.e. the detecting

process on the images. The concrete objectives include:

1. To explore the possibility of using GPU to speedup detecting objects in large im-

ages, based on promising detection approach
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2. To look for efficient design and implementation of GPU-based object detector,

leveraging on GPU architecture and hardware characteristics

The contributions of our thesis are in three-fold:

1. The design principals and considerations were investigated to come out an efficient

implementation for the detector.

2. Practical experiments on large images were performed on our GPU-based detectors

on various cases to see the performance impact. Up to 5 times speedups were

obtained over pure CPU-based version.

3. Hardware characteristics are also taken into account; as a result, we implemented

both single-image based detectors and multi-image based version which required

more memory operations.

4. We experimented the performance differences on two GPUs of different gener-

ations. This further explores the suitable designs for object detection on future

GPUs.

To do this work, we firstly identify the computation part that requires large data-

parallel processing and map it to GPU by expressing it in GPU computation paradigm.

Experiments are performed to examine the effectiveness of the implementation. The

principle and usability of GPU is investigated by discussion on the results. By doing this

work, the limitation and future applicability of GPU on similar tasks can also be revealed.

In chapter 2, we have a closer look at the Boosting algorithm for object detection, in

the context of frontal face detection. The core computation for classification that can be

candidate for porting to GPU will be presented in this chapter. In chapter 3, GPU as a

data streaming coprocessor will be shown in more detail, with a survey in the history of

general purpose computation in GPU. After a literature review on application of GPU in

computer vision, the design of GPU based object detection framework will be presented

8



in chapter 4. Experimentations of the GPU-based boosted detector will be presented in

chapter 5, where we will also discuss and analysis their results. Chapter 6 will conclude

this work with some possible future outlook.
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Chapter 2

Boosted Object Detection Framework

2.1 Overview of Object Detection Framework

Generally, a visual object detection framework consists a learning stage and a classifi-

cation stage (figure 1.1). Both stages involve visual feature extraction, which extracts

the local feature of the objects from the image. Depending on type of objects to detect,

different types of features are extracted ranging from simple linear haar-like features to

complex features that are in some sense invariant to scale or view-points. SIFT, histogram

of gradient orientations are examples of complex features, which are more expensive to

compute.

The learning stage learns a representational model and a discriminative classifier for

the object class. The learning is supervised or semi-supervised, depending on how the ob-

ject instances in the training images are labeled. Usually a rectangle enclosing the object

region is drawn for supervised learning. The corresponding features are extracted from

the labeled region. Clustering of the features and analysis of how representative of the

feature clusters for the object class are performed. Statistical (probability density estima-

tion or Gaussian modeling, etc) or discriminative methods (neural networks, AdaBoost

learning, etc) can be applied to find the most distinctive and representative set of feature
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clusters that represent the object class.

The classification stage refers to the procedure to classify input data (image) accord-

ing to the model or classifier learned. Most of the solutions slide a detection window over

the input image, thus are termed as ”scanning window” approaches. As an image can

contain object of variable scale and size, a fix-size window is usually scanned in different

scales of the image (image pyramid). On the sub-window, the classifier is applied based

on extracted feature value. Lastly, the classification results are combined to form the

final detection results. At the core of most scanning-window algorithms is usually a dis-

criminative classifier, AdaBoost classifier, neural networks or support vector machines,

etc.

From the introduction we understand that Boosting algorithms are promising ap-

proaches for learning and detection, as they combine the procedure of learning an ef-

ficient classifier with selecting which features to extract. The boosted cascade classifier

based on simple features proposed by Viola and Jones[VJ01] is the first robust and near

real-time object detector in the literature. Lienhart et al[LKP02] gives a further extension

and comprehensive analysis of the approach. It achieves state-of-art detection accuracy

for highly structured object as frontal face. The following sections describe the features

it uses and its learning and classification mechanism.

2.2 Boosted Cascade of Simple Features

2.2.1 Features Pool

In principle, the main purpose of using feature over raw data is to reduce/increase intra-

/inter-class variability. The Boosted framework uses simple linear feature set, which are

reminiscent of Haar Basis functions. A large and general pool of simple haar-like feature

combined with feature selection encodes domain knowledge a lot better than raw input
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image data, thus is easier for classification.

w

h

w

h

Figure 2.1: Haar-like feature in a subwindow, and the types of them.

In Lienhart’s work[LM02], a feature is formally defined as the weighted combination

of pixel sums of two upright or 45◦ rotated rectangles (figure 2.1). Assume the detection

subwindow is of W×H pixels. A rectangle is specified by a tuple r = (x, y, w, h, α) with

0 ≤ x, x+w ≤W , 0 ≤ y, y+h ≤ H , x, y, w, h ≥ 0, and α ∈ {0◦, 45◦}, with (x, y) being

the top left corner of the rectangle; its pixel sum is denoted by RecSum(r). The weights

of two rectangles have opposite signs, and are used to compensate for the difference in

area size between the two rectangles. In mathematics notation, we have −w0Ȧrea(r0) =

w1Ȧrea(r1). To evaluate the feature, we use featureI =
∑

i∈I={1,2} ωiṘecSum(ri).

The feature pool consists of three basic types of feature prototypes as shown in the

figure 2.1: four-edge feature, Eight-line feature, and center-surround feature. The aspect

ratio of from rectangle r0 to r1 is fixed in each prototype. But the prototypes are scaled

independently for its w and h, in order to generate an over-complete set of features.

12



The number of features within a detection window far exceed the number of pixels. For

example, there are a total of 225, 897 per detection window of size 24×24. This provides

the basics for learning.

Figure 2.2: Computation of integral images(SAT and RSAT).

The haar-like feature can be computed in constant time for any size and location by

means of an image representation called Integral Image (also named Sum Area Table for

upright rectangles and Rotated Sum Area Table for 45◦ rotated rectangles), as shown in

figure 2.2. The sum area table can be computed from input image I in one pass over all

the pixels from left to right and top to bottom using

SAT (x, y) = SAT (x, y − 1) + SAT (x− 1, y) + I(x, y)− SAT (x− 1, y − 1),

The rotated sum area table can be computed with two passes. The first pass from left to

right and top to bottom determines

RSAT (x, y) = RSAT (x−1, y−1)+RSAT (x−2, y)+ I(x, y)−RSAT (x−2, y−1)

whereas the second pass from right to left and bottom to top calculates

RSAT (x, y) = RSAT (x, y) + RSAT (x− 1, y + 1)−RSAT (x− 2, y)

From the Integral images, the sum of any rectangle can be computed by four table

lookups. For upright rectangle r = (x, y, w, h, 0), RecSum(r) = SAT (x− 1, y − 1) +

13



SAT (x+w− 1)+SAT (y +h− 1)−SAT (x− 1, y +h− 1)−SAT (x+w− 1, y− 1).

For 45◦ rotated rectangle, RecSum(r) = RSAT (x+w, y +w)+RSAT (x−h, y +h)−
RSAT (x, y)− RSAT (x + w − h, y + w + h).

Before training or detection, the detection windows are normalized against illumi-

nation effects. The special properties of the haar-like features also enable fast contrast

stretching of the form I(x, y) = I(x,y)−μ
cσ

, c ∈ R+. μ can be easily looked up from

SAT (I), whereas σ can be computed by looking up from SAT (I 2) which is the integral

image of squared image of I.

2.2.2 Learning Cascade of Boosted Classifiers

Boosting is a learning technique combining a number of weak-classifiers to form a strong

classifier. In particular, AdaBoost provides an effective learning algorithm and strong

bounds on generalization performance. Viola. et al[VJ01] stated that its training error

approaches zero exponentially in the number of rounds, and it achieves large margin of

training samples rapidly.

Learning is based N weighted training samples (x1, y1), . . . (xN , yN) where yi ∈
{1,−1}, xi is a vector of feature values evaluated from the sample image. A weak

classifier is only required to better than chance. In a simple case it can be represented

by fm(x|tm) ∈ {1,−1} where tm is the threshold for the selected feature value. In

each training round, a weak-classifier is produced by selecting one or several features

that minimize the weighted training error errm = Ew[1(y �=fm(x))]; weights of the sam-

ples are updated so that more weights are put to misclassified samples. The final strong

classifier learned is of the form C(x) = sign(ΣMc
m=1αmḟm(x|tm) + b), where α =

log((1− errm)/errm).

Lienhart et al[LKP02] extended the simple weak-classifier that only depends on one

feature (therefore called ”stump-based”) to two or more features. A weak-classifier em-
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ploys NSPLIT features is in the form of CART tree. This permits the expression of

dependency between different features, therefore is often superior than stump-based in

detection tasks.

From the observation it is clear that vast majority of image regions contains no object

of interests. Thus it is essential to be able to reject those regions in early stages for

fast processing. Based on this principle, a cascade of boosted classifiers are built. The

detection process is then essentially of a degenerated decision tree. If any classifier in one

stage rejects the sub-window, no further processing is performed.

To preserve detection accuracy, however, in training any stage, the classifier must be

able to detect almost all faces while rejecting certain fraction of non-faces. That is, to train

any successive stage, one should set a target of minimum detection rate and maximum

allowed false positives. For example, in each stage we require a hit rate of 99.8% while

eliminating 50% of the non-faces. After 13 stages we can expect false positive rate of

0.513 ≈ 1.2e − 04 and a hit rate of 0.99813 ≈ 0.97. This is illustrated in figure ??. The

negative training patterns for stage n of the cascade are collected by scanning the partial

cascade (stage 0 to n− 1) across non-face images and collect false positives.

Stage 1 2 3 … N

Figure 2.3: Cascade of the Boosted Classifiers.

The cascade can be viewed as an object-specific focus-of-attention mechanism. How-

ever it provides no statistical guarantees that discarded regions are unlikely to contain the

object of interest.

15



2.2.3 Analysis of the Detection Cascade

The detection cascade employed in the classification stage has increasingly more weak-

classifiers in successive stages. For example, in a frontal face detector cascade (total of 20

stages and features) provided by Lienhart[LKP02], the number of weak-classifiers for the

first five stages is 3, 9, 14, 19, 20 and 27 respectively. This is obvious as in training each

successive stage, meeting the target hit rate and false positive rate becomes increasingly

difficult.

During detection, a sliding window was moved pixel by pixel over the picture at each

scale. Instead of scaling the picture, it is more efficient to scale the detection window as

evaluating the scaled feature takes constant time using integral image.

Lienhart[LKP02] gives an empirical analysis of different configurations and variants

of the detection cascade of Boosted classifiers. Experimented on the CMU frontal face

test set, they reported 20×20 as optimal input pattern size; Gentle AdaBoost as the better

variant of the AdaBoost learning algorithms; and CART tree as better weak-classifier

than stump-based.

The detection time they reported is about 5fps on 320 × 240 images with a scaling

factor of 1.2 on detection windows. The detection speed is closely related to the average

number of features evaluated per detection sub-window. Viola & Jones[VJ01] reported

an average of 10 features out of 6061 was evaluated per sub-window in their version of

detector. This is possible because a large portion of sub-windows are rejected at first few

stages.

While the speed is promising for small image size or small set of images for process-

ing, it is surely not satisfiable for large amount of processing. This is particularly true for

today’s internet with huge amount of multimedia data.

From the above analysis, we observed that the largest portion of the computation fo-

cus on the first few stages of the cascade. From the initial stage, the detection sub-window
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must be put regularly on image pixels; in each sub-window, table lookups must be per-

formed to evaluates corresponding features in the classifiers, making the computation

extremely data-intensive. As memory is the main bottleneck in CPU computations, the

first few stages contribute most in the detection time.

GPUs, on the other hand, provide an best alternative for data intensive applications.

In the next chapter, we will look at GPU as efficient data streaming coprocessors, and

give an implementation of the detection cascade in terms of GPU computation model.
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Chapter 3

GPU as Data Streaming Coprocessor

In the past few years, graphics processing units (GPU) have evolved to be one of the most

powerful computational hardware for a given price. Specifically designed for speeding

up graphics applications, GPUs provide tremendous memory bandwidth and computa-

tional horsepower. Currently, the peak performance of state-of-the-art consumer graphics

cards is more than ten times faster than that of comparable CPUs. For example, high-end

GPUs such as NVIDIA GeForce 9800 GTX+ boasts 70.4GB/sec memory bandwidth,

and can sustained a measured 705 GFLOPS floating-point arithmetics, compared to 8.5

GB/sec and 25.6GFLOPS theoretical peak for a dual-core 3.7GHz Intel Pentium Extreme

as high-end CPU. GPUs are faster and getting faster quickly. The GeForce 7800GTX

(165GFLOPS) more than triples that of its predecessor, GeForce 6800GTX. In general,

the computational power of GPUs compound at a yearly rate of about 1.7, significantly

out-paced the Moore’s Law as applied to microprocessors, which is 1.4 for CPU perfor-

mance.

This disparity arises from their fundamental architecture differences. CPUs are opti-

mized for sequential code, with transistors dedicated to extracting instruction-level paral-

lelism. On the other hand, the data-parallel nature of graphics applications enable GPUs

dedicating transistors uses to computation.
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GPUs are commodity components nowadays. Their programmability is increasingly

enhanced. As a result, many researchers have advocated the use of GPUs as a co-

processor[BFH+04, Pur04] for general purpose computations, commonly termed GPGPU.

GPGPU are deployed in a wide range of applications, scientific computing, database pro-

cessing, bio-informatics, and image processing, to name a few. Owens et al.[OLG+07]

provides a detailed survey of the GPGPU framework and a variety of applications. An

active online community can also be found at gpgpu.org.

Architecturally, GPGPU implements what is referred to as data streaming processor

[BFH+04]. Streaming computation paradigm provides an efficient abstract of computing

tasks that are data-centric, i.e. involving intensive data processing that are parallel in

nature.

The following section examines the GPGPU programming model in details.

3.1 GPGPU Programming Model

3.1.1 Graphics Pipeline

Computation on a GPU follows a fixed order of processing stages, called the graph-

ics pipeline (see Figure 3.1). The pipeline consists of three stages: vertex processing,

rasterization and fragment processing. The vertex processing stage transforms three-

dimensional vertex world coordinates into two-dimensional vertex screen coordinates.

The rasterizer then converts the geometric vertex representation into an image fragment

representation. Finally, the fragment processor forms a color for each pixel by reading

texels (texture values of pixels) from the texture memory. Modern GPUs support pro-

grammability of the vertex and fragment processor. Fragment programs for instance can

be used to implement any mathematical operation on one or more input vectors (textures

or fragments) to compute the color of a pixel.
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In order to meet the ever increasing performance requirements set by the gaming in-

dustry, modern GPUs use two types of parallelism. Firstly, multiple processors work

on the vertex and fragment processing stage, i.e. they operate on different vertices and

fragments in parallel. For example, a typical mid-range graphics card such as the nVidia

GeForce 7800GTX has 10 vertex processors and 24 fragment processors. Secondly, oper-

ations on 4-dimensional vectors (the four channels Red/Green/Blue/Alpha (RGBA)) are

natively supported without performance loss.

Vertex
Processor Rasterizer Fragment

Processor

Vertices (3D)

Vertices
(2D)

Fragments Final/
Temp pixels

Frame
Buffer

Texture
Memory

Render-to-texture

Vertex
Program

Fragment
Program

Textures

Figure 3.1: Graphics Pipeline

3.1.2 Streaming Paradigm for General-purpose Computation

Several researchers have described GPU as streaming processor (Buck et al [BFH+04],

Lefohn et al [LKO05], Owens et al [OLG+07] and Purcell [Pur04]). Streaming proces-

sors read an input stream, apply the kernel to the stream and write the results into an

output stream. In case of several kernels, the output stream of the leading kernel is the

input stream for the following kernel (see Figure 3.2). Pixel computations must be com-

pletely independent. Scatter operations that enable different fragment processors writing

to the same pixel are not supported.

The vast majority of general-purpose GPU applications use only fragment programs
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Input
stream

Output
streamOperation1 Operation n

Kernel

Figure 3.2: Streaming model that applies kernels to an input stream and writes to an
output stream.

for their computation. In this case textures are considered as input streams and the tex-

tures as render targets are output streams. Because currently fragment processors are

SIMD architectures, only one program can be loaded at a time. Applying several kernels

thus means to do several passes (see figure 3.3).

Shader Progam

Input Registers

Textures

Constants

Temp Registers

Output Registers

Figure 3.3: Fragment program in a GPU pass as kernel computation

A typical GPGPU program is structured as follows.

(a) Data-parallel sections of the application are identified by the programmer. Each

such section can be considered a kernel and is implemented as a fragment program.

The input and output of each kernel are one or more data arrays, which are often

stored in 2D textures in GPU memory.

(b) To invoke a kernel, the range of the computation (or the size of the output stream)

must be specified. The programmer does this by passing vertices to the GPU. A
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typical GPGPU invocation is a quadrilateral (quad) oriented parallel to the image

plane, sized to cover a rectangular region of pixels matching the desired size of the

output array.

(c) The rasterizer generates a fragment for every pixel location in the quad, producing

thousands to millions of fragments.

(d) Each of the generated fragments is then processed by the active kernel fragment

program. The fragment program can read from arbitrary texture memory locations

but can only write to memory locations corresponding to the location of the frag-

ment in the frame buffer.

(e) The output of the fragment program is a value (or vector of values) per fragment.

This output may be the final result of the application, or it may be stored as a

texture and then used in subsequent passes. This feedback loop is realized by using

the output buffer of a completed pass as input texture for the following one (known

as render-to-texture (RTT) (figure 3.1)).

(f) If the output of the fragment program will be further processed on the CPU, data

read-back from GPU to CPU is required. Because of the relatively low bus band-

width between the CPU and GPU, the read-back operation is a known bottleneck

for GPGPU applications and should be minimized.

3.1.3 Programming Languages

The high-level GPU programming languages are often referred to as shading languages,

as they are designed for rendering pictures from graphics primitives. Cg[MGA03] or

HLSL enable programming in a C-like programming syntax. The programs then are

compiled into vertex or fragment shader which are bound as computation kernel when

rendering graphics. OpenGL[WNDS99] enables communication between CPU and GPU
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by setting the rendering context in GPU. The input and output of the program are set up as

textures. Data is communicated between CPU and GPU memories using OpenGL library

calls.

Many efforts are in place to make the abstraction of GPU to streaming paradigm seam-

less, which provide programming languages for expressing streaming computation with-

out graphics knowledge. These includes Brook[BFH+04] from Stanford, Accelerator[TPO06]

from Microsoft, and most notably CUDA[NBGS08] from NVIDIA. However, we choose

to implement our object detector to base on OpenGL and Cg, mainly because by using

them we can have more controls over hardware details. Consequently we can study more

detailed effects of object detector in GPU with hardware constraints.

3.2 Hardware Characteristics and Constraints

As GPU architecture is designed for graphics rendering tasks, there are a number of

hardware characteristics and constraints. Firstly, input and output are bound as separated

textures; inputs as textures permit random access, however, outputs for a pixel are written

to a fix position. This is to ensure high data throughput. As a result, GPU data structure is

not as flexible as CPU’s. We need to re-design the data structure for efficient processing

on GPU.

Secondly, current GPU architectures have limited support for flow controlling[HB05].

Fragment processors process pixels in SIMD groups, within which both sides of branch

must be evaluated if one or more processors evaluate the condition differently, thereby

leading to reduced performance. This has special performance implications to our im-

plementations of GPU-based object detectors. If the algorithm on GPU is to detect one

image at a time, branching support can be employed to efficiently evaluate detector. On

the other hand, if multiple images are to be processed in GPU at a time (i.e. each pixel

is meant for computing multiple images), all computation paths have to be taken by each
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pixel. However, there will still be gain in performance. More details of the algorithms

and their effects are presented in chapter 4 and 5.

Thirdly, there is also a limited number of constant registers in current GPUs. For

example, the NVIDIA GeForce 7900GTX has 32 constant registers. This limits the com-

plexity of the program we can use.

The positive sides of the architectures include the native support for vector arith-

metics, e.g. RGBA color computation; and support for multiple outputs per any graphics

primitives, termed as multiple render targets (MRT). Up to 4 render textures are sup-

ported, which help GPGPU programs a lot as it leads to larger program inputs, hence

harnessing greater GPU computation power.

In the next chapter, our design of cascaded boosted object detector on GPU will be

presented. The design principle is generally applicable while catering hardware charac-

teristics.
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Chapter 4

GPU-based Cascaded Boosted Detector

4.1 Related Work

The use of graphics processor for general-purpose computation grows rapidly in recent

years. A wide range of algorithms from graphics-related global illuminations to signal

and image processing, from database operations to system designs[FCS+07] etc have

been ported to GPU. Owens et al.[OLG+07] provides an excellent survey on GPGPU.

In computer vision, GPGPU has been explored in topics such as image filtering, track-

ing and geometrical transformations. NVIDIA’s ”GPU Gems 2”[PF05] book has a chap-

ter dedicated to computer vision, which presents Canny edge detector, tracking hands

etc. Yang et al.[YPL04] implements real-time stereo on GPU. Ohmer[OMB05] imple-

mented a face recognition system using Kernel PCA and SVM. Labatut et al.[LKP06]

implemented level-set based multi-view stereo. The well-known SIFT algorithms was

implemented by Heymann et al.[HMS+07] in 2007. There are also libraries providing

re-usable implementations of basic vision algorithms such as OpenVIDIA[FM05] and

GPUCV[pFHGA06].

However, the use of GPU in high level vision task such as object detection is rare. Li

Zhang et al.[ZN08] built on GPU a pedestrian detector that uses histogram of oriented
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gradient (HOG) features and SVM classifier. Their detector is scan-window based, as

most of the prevailing approaches are. But the classifier is a single strong classifier,

unlike our cascaded boosted classifiers. Consequently, our implementation of cascaded

boosted classifiers provides more general knowledge on applying complex and promising

object detectors on GPU.

4.2 Design and Implementations

The success of GPU-based algorithms depend on the degree of data parallelism of the

computation, and that the computation intensity significantly prevails the load to transfer

data from CPU to GPU. Therefore, we first analyzed the cascaded boosted classifiers to

identify the portion exhibiting that characteristics.

In the approach, feature extraction and classification steps are repeated for every scan

window. The number of input scan windows reduced dramatically in successive stages, as

a nature of the attentional cascades. Therefore we can predict that the first few stages are

good candidates for porting to GPU. Windows scanning is also performed at every scales.

Detections on different scales can be implemented on GPU as multi-pass by rendering a

target with the re-scaled sizes. In our approach, the scan-windows is resized instead of

input image because of the easy in computing feature in scan window at different scale.

The classification results from GPU can then be downloaded and used in CPU to form

the final detection results.

The architectural design of our GPU-based detector is shown as in figure 4.1. This

includes design considerations for all function modules for feature extractions and clas-

sifications. Among them, integral images computations and classifications of last stages

are mapped into CPU. Integral image computation is highly sequential, and take only one

to two pass of the image to compute. As last stages are more complex, and there are

only a small number of sub-windows to compute, mapping them to GPU will hinder the
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performance. This is because the SIMD-based fragment processors will be stalled until

all the expensive computations finished. Each pass of the GPU corresponds to a detection
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Figure 4.1: GPU-based architecture for boosted cascade object detection.

in different scale. Resizing the feature is also done in CPU between successive passes.

As the reference rectangle coordinates of the features are used identically across all scan

windows, it is beneficial to map the computation to CPU to avoid redundant computations

in GPU in every pixel.

The data-intensive parts of feature extraction and classifications in the number of

stages in the cascade are mapped onto GPU.

To further harness GPU’s capacity in vector arithmetics, we also implement versions
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of detecting on multiple images in a single pass. For experiments, we implements 4

images in a pass.

4.2.1 Data Structures

Careful design considerations have been given to GPU data structure. The main objec-

tives are to enable efficient memory operations in GPU for feature evaluation and classi-

fications, as well as to minimize CPU-GPU data transfer.

For feature computations, we represent integral images as texture identical in the size

of input image I . Basically 4 types of textures are used to store the integral images, corre-

sponding to (rotated) area sum tables, denoted SAT (I), SAT (I 2) and RSAT (I), RSAT (I2)

of the squared image as in chapter 2. For detection on 4 images in a single pass, one

RGBA texture is used to store one type of integral images for 4 images, e.g 4SAT (I) or

SAT (I2). The integral-image textures have to be download to GPU only once for the

multi-pass algorithm as they are constant during the computation. For classification, we

Figure 4.2: GPU-based classifier cascade texture: updated every pass to adapt fractional
re-scaling.

need to store the classifiers cascade in GPU as texture. Unlike CPU which uses structure

to store classifiers cascade and use pointers pointing to classifiers and features, we need to

re-formulate it to texture data layout. Figure 4.2 shows our implementation of the cascade

data structure in GPU. To store n stages in GPU, we define a RGBA texture with height n.
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For a cascade using CART-based weak-classifier, each row of the texture align a regular

interval of grids to store each simple classifier; inside the interval, 5 grids of pixels are

allocated to store a feature, where 3 pixels are used to store the rectangles information

(RGBA corresponding to the reference top-left (x, y), width and height), and another 2

pixels store weights of the rectangles, classifier threshold, left and right indexes (used to

reference to α); the last pixel in the interval stores the α values of the weak-classifier.

In each re-scaling step, fractional re-scaling of the feature leads to fractional posi-

tion of rectangles. Unfortunately, a simple rounding to integral position leads to severe

degrade of performance, therefore a weight-correction is necessary to preserve the fea-

ture properties, which is relatively expensive computation. Keeping this computation in

fragment processing would generate highly redundant computation load as it is repeated

at each pixel. As a result, we use CPU to update the classifier data structure at each

re-scaling of the multi-pass algorithm.

The results matrix of sub-window classification results (1 if positive,≤ 0 if negative)

is of the size of the scaled image. In each pass, a texture of that size bound as render

target is defined. At the end of each pass, the results matrix is downloaded to CPU to use

as mask for computation in the remaining stages. Render-to-texture support is provided

by the framebuffer object (FBO) extension of the OpenGL library.

4.2.2 Algorithms and Program Flow

To start the computation in GPU, OpenGL and Cg context are firstly initialized, followed

by creation and upload of integral-image textures. In a loop over different detection

scales, the classifier data texture is computed and uploaded to GPU; a quadrilateral of the

scaled image size is rendered to trigger the actual computation in fragment processors; the

results matrix is downloaded for computation in remaining classification stages. Finally,

the results from all scales are combined to produce the final detections.
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Algorithm 1 depicts the whole algorithm that implements GPU as data streaming

coprocessor.

The algorithm 1 can either detect a single image at a time, or multiple (we choose

4 for experiments) images. The algorithm computes the results matrices R correspond-

ing to the scanning subwindow in each pixel location in each scale during executions.

The final output is a sequence of detected sub-windows in Seq. The StreamRead, and

StreamWrite operations do the uploading and downloading of the GPU data. They

are termed according to the streaming computation paradigm. Inside the while loop, the

ClassifyOnGPU function evaluates the a number of beginning stages on GPU, which

is also the computational intensive part. CPU evaluates the remaining stages according

to results matrix returned by GPU. After the loop, the overlapping list of positive sub-

windows are combined to produce the final detection results.

The following algorithms depict the fragment processing part in GPU for feature ex-

traction and classification. Two types of implementations are included: one is for detect-

ing one image at a time, as shown in algorithms 2 and 3; the other (algorithms 4 and 5) is

for detecting multiple images at a time, for which the results matrix are stored in RGBA

channels of a single or multiple render targets. The algorithms are designed to be able to

handle CART tree as weak-classifier.

Note that algorithm 2, 3 and algorithm 4, 5 differs primarily in the branch handling

parts. All ”if” and ”else” in algorithm 2 and 3 have been replaced with other constructs

in algorithm 4 and 5. As each pixel of GPU stores intensities of 4 images, in order to use

the RGBA vector arithmetics, both sides of the branches have to be taken. The correct

results are only written to destinations at the final step. This is essentially ”predication”,

one of the branch handling approach.

This approach appears not efficient. However, provided GPU’s inherent support for

vector arithmetics, it may still be satisfiable. In addition, predication is also common

approach in branch handling for data-parallel architectures. The SIMD architecture of
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Algorithm 1 The whole algorithm for GPU-based Boosted Cascade of object detection

Require: Intensity image array I[n], n ∈ {1, 4} where n is the number of images in

processed in GPU at a time; a cascade of boosted classifier C as a CPU structure; a

scale factor r

Ensure: Results matrix R[n], n ∈ {1, 4}; detected sub-windows sequence Seq

1: scale← 1

2: Build Integral images SAT (I), SAT (I2) and RSAT (I), RSAT (I2)

3: StreamRead(SAT (I), SAT (I2) and RSAT (I), RSAT (I2))

4: while scale ∗ scan window size < image size do

5: Build classifier texture Ct, StreamRead(Ct)

6: Build R with size (image size / scale)

7: ClassifyOnGPU(SAT (I), SAT (I2), RSAT (I), RSAT (I2), R)

8: SreamWriteR

9: for all image coordinates (x, y) ∈ R do

10: if R(x, y) = 1 then

11: ClassifyOnCPU(SAT (I), SAT (I2), RSAT (I), RSAT (I2), and Seq)

12: end if

13: end for

14: scale = scale ∗r
15: end while

16: CombineResults(Seq)

17: Output the final sequence of detected sub-windows in Seq
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Algorithm 2 Fragment program in GPU for detecting objects on single image

Require: SAT (I), SAT (I2), RSAT (I), RSAT (I2) and classifier cascade texture Ct

Ensure: Results matrix R as single channel render texture

1: Variance normalized factor σ ← eval norm(SAT (I2), RSAT (I2))

2: for i← 1 to number of stages to compute in GPU do

3: initialize stage sum to 0

4: for j ← 1 to number of weak-classifiers in stage i do

5: stage sum← stage sum + eval CART tree(SAT (I2), RSAT (I2), σCt[j])

6: end for

7: if stage sum < stage threshold then

8: return R← 0

9: end if

10: end for

11: return R← 1

Algorithm 3 compute eval CART tree

Ensure: α by the evaluated tree node

1: Root node haar-like feature value vfeat ← eval feat(SAT (I), RSAT (I))

2: if root node threshold ∗σ > vfeat then

3: continue to evaluate child node

4: else

5: return α by this node

6: end if
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Algorithm 4 Fragment program in GPU for detecting objects on multiple image

Require: SAT (I), SAT (I2), RSAT (I), RSAT (I2) and classifier cascade texture Ct

Ensure: Results matrix R as RGBA render texture

1: Variance normalized factor σ ← eval norm(SAT (I2), RSAT (I2))

2: R← 1

3: for i← 1 to number of stages to compute in GPU do

4: stage sum← 0

5: for j ← 1 to number of weak-classifiers in stage i do

6: stage sum← stage sum + eval CART tree(SAT (I2), RSAT (I2), σCt[j])

7: end for

8: R temp← (stage sum < stage threshold)?0 : 1

9: R← (r = 1)?R temp : 0

10: end for

Algorithm 5 compute eval CART tree

Ensure: α by the evaluated tree node

1: Root node haar-like feature value vfeat ← eval feat(SAT (I), RSAT (I))

2: index =(root node threshold ∗σ > vfeat)?left:right

3: continue to evaluate child node, return corresponding index1

4: index = (index > 0)?index1 : index

5: return α[index]
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current fragment processors often need to evaluate both sides of branch if group of them

evaluate the branch differently, which essentially reduced to ”predication”. Thus we pre-

dict that processing multiple images in a GPU-pass will still provide benefits. Experi-

ments are needed to uncover the myth.

In the next chapter, we will present the experiments setup and discuss on the results.
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Chapter 5

Experiments and Results Discussions

The primary goal of our experiments is to prove the superiority of the GPU-based stream-

ing architecture for Boosted cascade of object detection, in terms of speed. In addition,

the experiments also aim to examine the architecture’s scalability and robustness in terms

of handling different set of inputs and running programs of different complexity, while

providing benefits.

To this aim, we have implemented different versions of the GPU-based detector, and

tested on different inputs. Experiments that address different goals are briefly described

as following.

• As each GPU-pass is applied in a level in the input image pyramid, the top levels

perhaps provide too small input for GPU computation. We tested variants where

top levels of the pyramid smaller than a threshold size are not mapped to GPU.

• Different numbers of stages of the cascade are included in the kernel (computed on

fragment processors), ranging from 1 stage to a maximum of 8. This proves the

scalability of GPU computation as well as showing the performance characteristics

of GPU running the detection cascade.

• We varied the inputs by using images in different scales to see the performance
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impacts of GPU-based detector on input sizes.

• Besides the versions that compute a single image, there are versions that process

multiple images (4) in a single GPU-pass, where results are stored in the RGBA

channels of render targets. This shows benefits in making use of GPU hardware

characteristics; its performance implications further reveal guidelines in mapping

the computations.

In the following sections, we first describe our experimental setup and then present

the results and discussions.

5.1 Experiment Setup

Our experiments were carried out on a Windows PC with a 3.0 GHz Pentium 4 CPU with

1G of RAM. On the same PCI-express board, we experimented both a NVIDIA GeForce

9800GTX card with 1GB RAM, and a GeForce 8800GTS card with 640MB RAM. The

PCI-Express bus provides high data bandwidth between CPU and GPU. OpenGL library

with Shader Model 3.0 support and Cg is used as the programming platform. The frame-

buffer object (FBO) extension supporting render-to-texture is used to store the rendered

results.

While the GeForce 8800GTS measures a 64 GB/sec memory bandwidth, GeForce

9800 GTX+ features 70.4 GB/sec memory bandwidth. In terms of computational power,

GeForce 8800GTS can sustain a measured 345.6 Gigaflops, while the GeForce 9800GTX+

can sustain up to 705 Gigaflops. Depending on application types, we expect that GeForce

9800GTX+ should be 1 to 2 times faster than GeForce 8800GTS. On applications with

high data bandwidth requirements, the speedups should not be as obvious as on compu-

tation intensive applications.
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5.1.1 Software Preassumptions

For the experiments we used a frontal face detector cascade trained by Lienhart[LKP02],

which is included in the open source OpenCV library[Bra08]. This detector provides

state-of-art performance both on accuracy and speed. As reported in[LKP02], evaluated

on the complete CMU face test set, at only tens of false positives, the detector achieves

near 90% hit rate. The detector was trained using an input pattern size of 20 × 20. This

indicates that for detection, we will slide a scanning window starting from that size.

During detection, we fixed a re-scale factor of 1.1, as this is reported to provide good

tradeoff between hit rate and false positives.

The detector cascade consists of 20 stages, and a total of 1047 weak-classifiers. Each

weak-classifier is a CART tree. Our input images test set consists of 40 digital photos

taken under a variety of scenes, both outdoor and indoor. This collection contains variety

of faces in different scale and poses, and is typical in everyday life. The images are

of the same resolution, 2912 × 2184. Note that this resolution is common in nowadays

digital collections. Experiments on larger resolution also reveal the speed advantage of

our GPU-based face detector better.

In the following sections, unless otherwise specified, all running time reported is

based on the average time measured from processing the images from the test set. Differ-

ent input image sizes were also tested. These were obtained by dividing the resolution by

a factor f2, f ∈ {1.0, 1.1, 1.2, 1.3, 1.4}.

5.2 Results and Discussion

During detection, a scan window at every pixel location is processed in the image scale

pyramid in our GPU-based detector. To facilitate performance comparison, we also run

the CPU detection in the same manner.

A detection sub-window that goes through the feature evaluations of all stages is
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Stage of Cascade 1 2 3 4 17 18 19 20

number of features 6 18 28 38 182 194 180 218

rejected subwindows (use CPU, %) 30.7 30.6 20.3 9.4 0.01 0.002 0.001 0.0008

difference in GPU classifications (%) 0.32 0.41 0.15 0.07 - - - -

Table 5.1: The classifiers cascade and rejected subwindows in each stage.

classified as positive. The percentage of such positive sub-windows over an input image

is very small. A majority of them are rejected in the early stages. Table 5.1 presents

the number of features for the first and last 4 stages of the cascade, and the average

percentages of rejected subwindows in each stage. From the table it is obvious that the

most computational intensive part are at the first few stages.

5.2.1 Preliminary Results

In terms of accuracy, our GPU-based detector must perform more or less identical to

the CPU version. Because of GPU’s compliance to different floating point arithmetics

standard, the results might differ to a certain extend. But we have to ensure that difference

is negligible, especially in the final detection results.

We measured the accuracy of our GPU-based detector in terms of the differences

from the CPU version, in the classification results, stage-by-stage. The third row of

table 5.1 shows the average percentage of sub-windows in an image that are classified

differently in the CPU version and GPU-based version. The percentage difference in

stage i is calculated as pi = (| nGPU
i − nCPU

i |)/t × 100%, where n is the number of

negative subwindows in each stage, and t is the total number of subwindows evaluated.

From the results, it is obvious that a negligible percentages of such difference are found

in each stage. More importantly, measured over our test images set, there is no difference

in the final detection results, i.e. all the detections on CPU version and our GPU-based
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version are identical. This sufficiently proves the correctness of our GPU-based detector.

Next, as each GPU-pass involves overheads in setting up the appropriate classifier

data as well as the rendering pipeline, GPU is perhaps inefficient for classifications on

the top-levels of the image pyramids. Rather it might be helpful to define a threshold in

image size so that the levels with smaller scales will map entirely to CPU instead. Thus

we experimented such thresholds to measure the total running time. The measurements

are based on running 4 stages on GPU and detecting single-image at a time. Figure 5.1

shows the graph of detection time on both GPU cards with respect to different thresholds.

The graph shows that with large thresholds, the detection speeds are slower; however, as

threshold becomes smaller than 100×100, the performance difference is negligible. This

indicates that the GPU object detector is superior with larger image sizes, and even with

very small image size, GPU processing does not cause noticeable overheads. Thus, for

all following experiments, we applied full GPU-based detector, i.e. all image scales in

the pyramid are processed in GPU.

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 200 300 400 600 800

8800 single 4

9800 single 4

Figure 5.1: Detection time (sec) VS. image size threshold: smaller image not mapped to
GPU; Series 9800-single-4 is the running time on GF9800GTX+.

5.2.2 Single-image GPU based detector

In Chapter 4 algorithms 2 and 3 depict the implementation of GPU-based detector that

detects single image at a time. For this detector, we uses the if...else construct in the
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Cg language, which provides the most efficient branch handling in GPU’s SIMD based

fragment processors.

Firstly, experiments are performed to find out the number of stages running in GPU

that gives the best overall detection time. As we know GPU is more computationally

powerful than CPU, thus it should run much faster to evaluate more stages on GPU.

However, as a great number of subwindows are rejected in the early stages, the later

stages which are more complex are only needed to be evaluated in far less positions.

Mapping those stages to GPU may cause lots of unnecessary processing on GPU, thus

hinders the performance.

Series 9800-single and 8800-single in figure 5.2 gives the running time on GF 9800GTX+

and GF 8800GTS respectively as a curves against the number of stages running in GPU.

The curves essentially depict the performance tradeoff and show the best number of stages

to map to GPU. The experiments were run on input images size of ((2912×2184)/f 2, f =

1.1).
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Figure 5.2: Detection time with different number of stages running on GPU.

From the series, we can see that for single-image based GPU detection, 5 to 7 stages

usually provide the best overall running times. On GF 8800GTS, stage 6 gives the best
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time 7.54 seconds. On GF 9800GTX+, stage 7 gives the best running time 4.2 seconds.

After that stage, the detection time rises.

This is as expected if we consider the number of rejected sub-windows in different

stages in table 5.1. After 7 or 8 stages processing, most of the sub-windows has been

rejected so that each remaining stage will reject only very small portion of them. And

adding each additional stage to GPU means adding more complex computation on GPU,

which is unnecessary on most fragments to be processed. Thus it is safe to predict that,

for single-image GPU based detector, mapping 6 or 7 stages to GPU provides the best

speedup.

For different input image sizes, GPU may give different speedup compared to the

CPU version. Experiments are run to find out its performance in different input im-

age size. Series 9800-single-7 and 880-single-6 in figure 5.3 give the running time

on GF 9800GTX+ and GF 8800GTS respectively for images with resolution ((2912 ×
2184)/f 2, f ∈ {1, 1.1, 1.2, 1.3, 1.4}).
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Figure 5.3: GPU Detection time for different input image sizes: time(seconds) as a func-
tion of f .

On resolution of ((2912 × 2184)), GF 9800GTS (5.17 seconds) provides about 4.38

times speedup over CPU(22.62 seconds). As from the speedup ratios presented in figure
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5.4 and in table 5.2, larger input image size normally leads to greater speedup. This

proves the advantage of GPU architecture in handling data intensive computations.

5.2.3 Multiple-image GPU based detector

Algorithms 4 and 5 in chapter 4 describe the GPU-based detector processing multiple

images at a time, by using the RGBA channels of the render targets. As each image

are processed in a single channel of the fragments, multiple images will possibly taken

different branches. Thus the only way is to evaluate both branches and only write the

correct result at the final step. This is essentially ”predication” in branch handling, and

is not very efficient. However due to reasons we already presented in chapter 4, we expect

there will still be benefits.

First of all, experiments are designed to evaluate the detection time of running differ-

ent number of stages on GPU, taking as input 4 random images (of the same resolution)

from the test images set. The average running time is obtained by divide the total time

by 4, and is compared to the single-image GPU based detector. The series 9800-multiple

and 8800-multiple in figure 5.2 show the average running time against different number

of stages mapping to GPU. Similar to single-image versions, running 5 to 7 stages in

GPU gives the best speedup. For GF 9800GTX+, the best running time is 4.16 seconds

when running 6 stages; while for GF 8800GTS, the best running time is 5.27 seconds also

running 6 stages.

Notice that when mapping more than 6 stages to GPU, multiple-image based versions

has a steeper increase in detection time than single-image versions. Particularly for GF

9800GTX+, when mapping 7 or 8 stages, it needs even more time than its single-image

counter part.

For different input image sizes, the speedups of the multi-image GPU based detector

may also be different. Series 9800-multiple-6 and 8800-multiple-6 in figure 5.3 give the
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running time on GF 9800GTX+ and GF 8800GTS for different image sizes, by running 6

stages of the cascade in GPU. Series CPU gives the corresponding running time of CPU-

based version. Figure 5.4 shows the speedup ratios of different GPU based detectors.
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Figure 5.4: Speedup ratios for different GPU based detectors on different input image
sizes.

From the figure, there are some interesting observations. First of all, multiple-image

based detectors normally provide more speedup. However, not all larger resolution leads

to better speedup, particularly for GF 8800GTS, at f = 1, the speedup is negligible.

This is perhaps due to its poor memory bandwidth support. As multiple-image detection

introduced a lot more than 4 times texture lookups, memory bottleneck hinders most of

the performance.

The best overall speedup over CPU is 4.42 times, when running 6 stages in GF

9800GTX+ for the multiple-image based detector for the resolution of ((2912×2184)/f 2, f =

1.1).

5.2.4 GF 9800GTX+ VS. GF 8800GTS

From previous descriptions we know that GF 9800GTX+ provides only slightly better

memory bandwidth than GF 8800GTS, while sustain about 2 times more computational
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Input resolution (/f) 1 1.1 1.2 1.3 1.4

9800-single-7 4.37 4.38 4.0 3.82 3.67

9800-multiple-6 4.3 4.42 4.41 4.35 4.16

8800-single-6 2.8 2.43 2.50 2.44 2.22

8800-multiple-6 2.86 3.48 3.81 3.58 3.37

Table 5.2: The speedup ratio of GPU-based detectors with different image sizes.

capacity (measured in GFLOP). In terms of their performance on our single- or multiple-

image based detectors, there are also interesting observations revealing underlying prin-

ciples. In figure 5.5, series 88s/98s and 88m/98m depict speedup of GF 9800GTX+ over
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Figure 5.5: Comparison on GF 9800GTX+ VS. GF 8800GTS: mapping different number
of stages

GF 8800GTS on single-image and multiple-image based detectors respectively; series

98s/98m and 88s/88m, on the other hand, depict speedup of the different GPUs’ own run-

ning of multiple-image and single-image based detectors. Through analysis of the series,

we can see the following.

1. There are a lot more speedup of 9800GTX+ over 8800GTS on single-image based

detector than on multiple-image based detectors.

2. On 9800GTX+, the speedup of multiple-image over single-image based detector is

44



Data preprocess GPU compute download CPU compute total time

8800-single-6 1.02 4.55 0.6 1.37 7.54

8800-multiple-6 1 2.34 0.63 1.3 5.27

9800-single-7 0.98 1.36 0.59 1.27 4.2

9800-multiple-6 0.96 1.31 4.41 0.6 4.16

Table 5.3: A detailed breakdown of the running time.

much less than the corresponding speedup on the 8800GTS.

These two facts are correlated. As we know that GPUs are evolving in the direction

of becoming more computationally powerful, yet its memory speeds are improved in a

much slower fashion. So as there are more memory operations on the multiple-image

based detector, 9800GTX+ inherently improved more on single-image based detector.

This also shows that 9800GTX+ is more efficient in branch handling than its predecessor.

5.2.5 A detailed breakdown

The overall detection time of our GPU-based detector consists of four components, data

structure preprocessing time (including upload time to GPU), GPU computation time,

GPU results downloading time, and CPU processing time. A detailed breakdown of the

time spent on each components gives more insights on our GPU-based detector architec-

ture better.

For this purpose, experiments were performed to find out the average processing time

of each components, both for the single-image and multi-image based version. The input

image size is of ((2912× 2184)/f 2, f = 1.1)). Table 5.3 presents the results. The multi-

image based result is the total time divided by four.

Figure 5.6 presents the results in more intuitive way. From the figure, we know that
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the data preprocessing time take quite a big portion, as it is needed in every round. The

portion of CPU computation in multi-image based detector is larger, simply because GPU

takes less time in processing each image. For GF 9800GTX+, the GPU compute time for

multi-image and single-image based detector is almost the same. This again illustrate the

points above.

Figure 5.6: GPU detection time detailed breakdown
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Chapter 6

Conclusions and Future Work

The importance of object detection as fundamental step towards semantic multimedia

content understanding can not be overly emphasized. It is conceivable application in

internet today and tomorrow also strive for the need to have a specialized and efficient

object detection architectures. While today’s applications are mostly based on CPU, this

thesis explores the possibility to use commodity graphics processor’s architecture to do

the task.

Firstly, the boosting approach is identified as an promising and widely applicable

object detection techniques. Detailed analysis are then given to identify the computa-

tional bottleneck in CPU, i.e. the data intensive portion of the detection cascade. The

architecture design that use GPU as data streaming coprocessor is properly formulated.

Experiments were performed to identify the benefits and tradeoffs. Up to about 5 times

speedup was obtained on the GPU-based detectors over the pure CPU-based versions.

As GPU is specially designed for graphics rendering task, there are a number of hard-

ware characteristics that may help or hinder our performance. To this end, we also im-

plemented the GPU-based detector that processes multiple images at a time, using GPU’s

native vector arithmetics and predication branching support. Our implementation shows

that by using these, even greater speedup was obtained.

47



We did experiments on two GPU models that are of two generations: NVIDIA GF

9800GTX and GF 8800GTS. The continuing evolution of GPUs definitely has an impact

on the performance of our single-image and multi-image based detectors. To summarize,

the more recent model improves more substantially on the single-image than multi-image

based detectors. This is because the later has more memory operations, for which GPUs

evolves much slower.

Consequently, we predict that as GPUs evolves, single-image based detector which

make use of more complex and flexible logic will be more suitable to implement.

While our work is specifically for mapping boosted cascade of simple features, the

design principle is generally applicable. For those approaches making use of complex

features like SIFT [HMS+07] and histogram of oriented gradient, there would be possibly

be more benefits. This could be our possible future work.

GPU architectures evolve rapidly, both their computational capacity and programma-

bility. GPU can be seen as early generation of commodity data parallel co-processors.

As envisioned by Owens et al.[OLG+07], a ”right” high level programming model for

aggressively multi-threaded parallel computation would emerge. One can thus predict,

the implementation of object detection’s work would be more intuitive and promising in

the future.
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