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SUMMARY 

 
Rescheduling strategies integrated in railway traffic control system play a crucial role 

in improving the performance of a mass rapid transit (MRT) system in terms of 

passenger service and operation cost. Without any form of rescheduling activities, the 

performance of a MRT system, which operates according to pre-determined time-

tables, is prone to degradation caused by operational disturbances. In contrast, if an 

intelligent rescheduling system is implemented, the effect of these disturbances can be 

avoided or reduced to an acceptable level.  

 
The purpose of this thesis is to present a new on-line rescheduling strategy, in which 

Differential Evolution (DE) with fuzzy logic is combined for multi-objective 

optimisation for conflict resolution as well as maintaining optimal overall 

performance. A simulation software package integrated with decision support 

systems, called Automatic Train Regulator (ATR), is developed to evaluate 

performance of the proposed strategy for the study of MRT systems under various 

scenarios. The proposed optimization is based on the passenger-flow profiles of a 

typical medium-sized mass transit system.  

 

ATR is a complex real-time system, which is programmed in multithreaded mode to 

simulate the train movement and traffic control systems that run in parallel at the two 

levels, namely: Local Processing Units (LPU) and Operation Center Control (OCC). 

Object-oriented techniques are used to simulate the operations of the MRT system. 

The proposed strategy divides the study/control period into time windows of equal 

length, which slides from one time window to another according to a real-time clock.  

Using real-time information of the MRT system, ATR predicts the timing of each 



                                                                                                      
 

   IX 

inter-station run and other performance indices occurring in the present time window. 

According to the latest simulation results, ATR executes a DE-optimized train 

rescheduler to adjust all the train dispatch and dwell times, and train coasting levels of 

all inter-station runs within each time window. The DE-optimized train rescheduler 

also identifies potential conflict scenarios for fast, robust and near-optimal solutions. 

The traffic condition of each potential conflict is represented by four fuzzy 

performance indices, namely [2]: (i) regularity, (ii) overall energy consumption, (iii) 

platform congestion and (iv) train congestion, which also form the basis of train 

rescheduling. Besides DE, its counterpart, Genetic Algorithm (GA) is applied to ATR 

as a comparative study to prove DE’s high efficiency on solving the online 

optimization problems. 

 

The simulation tests reveal that the proposed strategy implemented in ATR has a great 

potential for online detecting and resolving conflicts within strict time constraints as 

well as maintaining a satisfactory overall operational performance under both normal 

and disturbed running conditions.  
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CHAPTER 1 

INTRODUCTION 

 
 

The first section of this chapter briefs the background of this research. The second 

section reviews the previous works on the train control and scheduling problems. In 

the third section, the objectives of the research and new techniques adopted are listed. 

Lastly, the organization of the thesis is given. 
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1.1 Background and Aims of Study 

 

Mass rapid transit (MRT) system services have increasingly become more 

competitive. Hence, they demand more new features in the planning process and 

online real-time rescheduling operations. The increasing traffic density on railways 

desires sophisticated operation control systems, which provide intelligent tools to help 

operators to meet changes in passenger demand. 

 

With the advancement in communication network and computer technology, efficient 

and easily represented evolutionary computing techniques, such as Differential 

Evolution (DE), can be applied to the realm of on-line rescheduling of MRT systems 

to solve some complicated multi-objective optimisation problems. This research 

project aims to devise an on-line rescheduling strategy to optimize passenger service 

with low electrical energy cost, which is one of the major components of the overall 

MRT operating costs. 

 

1.2 Review of Literature 

 

In recent years, the vast processing power available in the distributed computing 

environment has been used to assist railway engineers in the design of new services 

and the operation of existing systems.  Noteworthy contributions have been made in 

this area. 

 

Taskin and Allan [1] from the London Underground Limited and University of 

Birmingham explore the ongoing Service Regulation subsystem development for the 
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Central Line. Their study discusses the feasibility of designing a Service Regulation 

subsystem that reflects the passenger flow dynamics of the line, as well as the 

signaling system characteristics. It identifies the requirements for a Service 

Regulation subsystem as represented by a set of cost functions. These cost functions 

penalize the delays to the nominal passenger journey times of a maximum number of 

passengers. 

 

Yasunobu and his colleagues [2] developed a predictive fuzzy controller (PFC) for 

automatic train operation (ATO) that controls the train’s departure, speed regulation 

and stopover at target points at each station. A microcomputer with built-in program 

composed of the control rules established based on skilled operators’ experience and 

their evaluation method was incorporated in the on-board equipment. Shinji and Sone 

[3] proposed an online traffic control system for modifying predetermined schedules. 

The control scheme is accomplished by adjusting station stopover times and/or inter-

station running times to ensure the regularity of trains and quality of passenger 

service. Chua [4] devised a traffic control algorithm, which operates within the 

constraints of minimum run times, minimum stopover times and minimum headways 

to recover the train service from disturbance. In his design, the source of the train 

delays is identified and the regularity adjustments are carried out in each of the three 

regions. The on-line control instructions are to be conveyed to the trains at the stations 

based on the sources of train delay.  Chang and Quek [5] developed a simulation 

package that employs a dwell time and dispatch frequency controller which makes use 

of fuzzy decision-making to determine the optimal schedules for train dwell times and 

dispatch intervals based on the criteria of regularity of service, energy consumption, 

train congestion as well as platform congestion levels. These railway control schemes 
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in terms of individual train control and station-based decision-making were most 

frequently applied when train service providers update existing systems during the 

period of transition from manual to automatic operation. 

 

Apart from train automatic operations, train scheduling is one of the most challenging 

problems in railway traffic control. In the traditional approach, the train traffic 

scheduling was often analysed by mathematical modelling. Higgins and E.Kozan [6] 

have studied the problem of dispatching freight trains in a single-line track aiming to 

minimize the total weighted travel times. They formulated a mixed integer linear 

problem in which the arrival and departure times are modelled as continuous decision 

variables and the conflicts resolution as binary variables. Local search heuristics, 

genetic algorithms, tabu search, and related hybrid algorithms were developed to 

optimise a train schedule on a single line.  

 

Cai and Goh [7] proposed a greedy construction heuristic for timetabling and 

dispatching trains on a single-track railroad. The heuristic approach is capable of 

resolving the conflicts of planned schedule by selecting the train(s) to traverse the 

conflict segment according to a greedy local criterion.   

 

Raymond and Mistry [8] applied a co-evolutionary algorithm for an automatic 

generation of planning train timetables. The departure time, scheduled runtimes and 

resource option at a station are identified as key solution variables. Based on co-

operative co-evolution, the train timetabling problem is decomposed into sub-

components that are evolved by a separate evolutionary algorithm. A collaborative 

schemes is operated between the co-evolved species so that solution from each 
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component can be pooled together to derive a better evaluation than if members of 

species were evaluated separately. Kraay and Harker [9] proposed a model for 

optimising freight train schedules over the entire rail network with the intention of 

using them as part of a real-time control system. Its goal was to help coordinate train 

dispatchers by determining the target time for each train at major points of its 

itinerary. Ho and Norton [10] applied dynamic programming to an event-based traffic 

flow model of fixed-block signalling system to realize a delay-optimized traffic 

controller for a converging railway junction to resolve conflicts. Brannlund [11] 

proposed an integer programming model to obtain a profit maximizing timetable in 

which profit was measured by estimating the value of running different services at 

specified times, and solve it using Lagrangian relaxation. 

 

Simulation analysis approach can be well applied to solve problems that do not have 

analytical and mathematical solutions, and makes it possible to study the complex 

internal interactions of the system being simulated. It is now also used as a decision 

support tool in some facets of transportation engineering. Chang [5, 12] applied 

different computational intelligence methods, such as fuzzy logic and tabu search to a 

computer-based simulation for testing and evaluating their performance in optimizing 

the traffic schedule for MRTS. 

 

From the review of the past works, it can be summarized that most of the control 

schemes in the area of automatic train control were applied to individual train or 

station only. Although these conventional automatic train controllers are able to add 

some intelligence to train operations to reduce human interference, their lack of a 

system view cannot ensure the optimality of the overall system performance. As 
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discussed, the studies of train scheduling problem often adopted the mathematical 

modelling approach to optimise train timetable using various optimisation techniques 

in an offline mode to get a predetermined timetable. This approach can only achieve 

an optimal system performance in a theoretical environment without external 

disturbance. To date, no work has been done to integrate the automatic train controller 

and train scheduling into a live system to do an online optimisation, which takes into 

account the various disturbances that may arise. This thesis proposes an online 

rescheduling algorithm which optimises the dynamic working timetable using 

Evolutionary algorithms with the aid of the existing train control schemes to achieve 

an optimised operational performance for the whole MRT line. 

 

1.3 Objective of the Study and New Technique Adopted 

 

This project aims to devise and test an on-line rescheduling strategy that optimizes 

passenger service with low energy cost on a simulated real-time environment. In the 

previous work done by Quek, a dwell time and dispatch frequency controller using 

fuzzy decision-making was employed in each station to determine the optimal train 

dwell time and dispatch interval for individual train dwelling at the station. This 

decomposition approach that deals with one train at a time can lead to good or near-

optimal solutions for each train. However, this may also result in a poor global 

solution since the schedule of trains is made independently and does not consider its 

impact of conflicting schedules. In this project, a new approach with a system level 

view is introduced. The active timetable of the whole track line under study is 

observed and optimised as a background task to provide online operational parameters 

for the foreground train movement simulation task. A new simulation method, 
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multithreaded programming, is adopted in a simulated ATR system to accommodate 

the proposed approach. In Quek’s work, four fuzzy performance indices were 

calculated simply according to their corresponding membership functions to evaluate 

the operational performance of the MRT system. The final decision-making consists 

of evaluating 30 potential solutions.  From each potential solution, the minimum 

(worst case) value among the four performance indices is used for comparison with 

other solutions.  The dwell time obtained from the solution with the highest minimum 

value is considered the optimal dwell time. The simplified optimisation process may 

was not able to fully achieve a satisfactory overall performance. In this thesis, all four 

performance indices and fuzzy inference rule base form a fuzzy expert evaluation 

system. A complete fuzzy logic control process including fuzzification, rule inference, 

and defuzzification is performed to aggregate all four performance indices into a 

fitness value that reflects the expert’s evaluation of the corresponding solution. With 

the fitness value from fuzzy evaluation system, EA-based optimization can identify 

the near optimal solution from thousands of other potential solutions in the system 

level solution space.  Finally, a set of optimized control variables is generated as 

inputs of active timetable for real time operations.   

 

In summary, the objectives of this research are listed below: 

  

1. To build a comprehensive real-time simulation, which performs all the 

important functions of the real MRT system and provides the platform for the 

research’s analytical work under different scenarios. In order to make the 

simulation truly reflect the nature of the real system, the multithreading 

technique [12] should be applied to simulate the train movement and traffic 
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control systems that run in parallel at the two levels, namely: Local Processing 

Units (LPU) and Operation Center Control (OCC). 

2. To propose online rescheduling method that is able to perform the functions of 

scenario analysis and optimization through maintaining an Active Timetable, 

which includes planning information of all trains along the track line and is 

updated online by the rescheduler.  

3. To identify possible conflicts in advance and to solve these conflicts in an 

optimal way so that passenger service can be optimized while at the same 

time, a low operational cost can be maintained.  

4. To apply a feasible optimization method to solve the multi-objective 

optimization problem based on the analysis of Active Timetable. Evolutionary 

algorithms (EA) such as Genetic Algorithm (GA) and Differential Evolution 

(DE) are applied to do the optimization search. Inferred by a series of 

adjustable fuzzy rules, the performance indices of regularity, energy, and train 

and platform congestion are mapped into an overall performance index which 

functions as the fitness value of EAs.  

 

1.4 Scope of the Thesis 

 

This thesis comprises of seven chapters, which are briefly described as follows: 

 

Chapter 1 introduces the previous works on the train control and scheduling problems, 

as well as the objectives of the research and new techniques adopted. 
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Chapter 2 gives an overview of the MRT system and a brief description of automatic 

signaling and train control systems as they play a key role in the satisfactory 

performance of MRT operations. 

 

Chapter 3 describes two train-rescheduling algorithms at the Operational Control 

Centre and Local Process Units in ATR. 

 

Chapter 4 describes the development of Automatic Train Regulator (ATR) simulation 

software, which is used to simulate the train movement and train control system. The 

software is programmed in Visual C++ 6.0 environment.  

 

Chapter 5 develops Evolutionary Algorithms such as Genetic Algorithms and 

Differential Evolution with a fuzzy fitness in the ATR controller.  

 

Chapter 6 discusses the simulation results obtained after optimization for the normal 

and disturbed running conditions of train operation.  

 

Chapter 7 summarizes the main achievements of the research. Recommendations for 

future work are given. 
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CHAPTER 2 

BASICS OF MASS RAPID TRANSIT SYSTEM 

 
 

This Chapter provides a general study of the basics of automatic train control in 

existing MRT system. The overall structure and functional components of automatic 

signaling and train control system are illustrated. The signaling scheme and 

mechanism of Automatic Train Control are discussed. 
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2.1 General Introduction to Mass Rapid Transit System  
 

The overall development of modern metropolitan cities around the world in terms of 

population, trade and commerce has increased the traffic tremendously over the years 

causing congestion, delays and pollution, which in turn will adversely affect the future 

economic growth of the city. This situation has made policy makers of many 

developing countries envisage the need of an efficient, economical, equitable and 

environment friendly MRT system for achieving sustainable city development.  

 

The MRT system, or metro system, is reputed for its capability to upgrade the quality 

of life of a highly populated city’s inhabitants by providing significant improvements 

as such as: a) to provide a convenient means of public transportation; b) to relax the 

tense contradiction of transportation; c) to reduce overall fuel and energy 

consumption; and d) to reduce environmental pollution and noise. 

 

Compared with long-distance railway systems, MRT systems experience higher speed 

and dispatch frequency, which demand high levels of safety and reliability and great 

system flexibility to deal with variations in traffic density. The purpose of this chapter 

is to give a brief description of automatic signaling and train control system that play 

a key role in MRT operations for the satisfactory performance. 

 

2.2 Automatic Signaling and Train Control 

 

2.2.1 Overall Structure and Functional Components  
 

MRT signaling system is designed to achieve four basic objectives [13]: 
 



                                            Chapter 2 - Basic of Mass Rapid Transit System (MRTS) 
 

 12 

1. Ensure safety of trains that the route ahead is clear and remains so until after 

the train is clear. 

2. Maintain the regularity of transport service. A good regularity means a small 

deviation from pre-determined timetable. 

3. Ensure swift response to passenger demands. 

4. Enable the railway to be operated at minimum cost with maximum passenger 

satisfactions. 

Signaling and train control facilities used by MRT can be classified into 4 distinct 

categories. They are: 

1. Signaling system 

2. Automatic Train Supervision (ATS) system 

3. Automatic Train Control (ATC) system 

4. Automatic Train Regulator (ATR) system 

 

The signaling system in MRT includes the conventional equipment such as point 

machines, colored light signals, signaling panels and relay interlocking. All the above 

signaling and train control systems are under the overall surveillance of the Automatic 

Train Supervision (ATS) system. The ATS system performs functions of train 

location monitoring, train routing and timetable running. Fig 2.1 shows the schematic 

on signaling and train control system.  

 

The computer based ATS system monitors and controls the whole signaling system in 

accordance with timetable working. ATS consists of the Operating Control Center 

(OCC), the Interlocking Stations, and the Intermediate Stations. The OCC, which is 

equipped with the Main Computer and the Scheduler Compiler, amongst other 
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signaling and SCADA systems, is the heart of the ATS system. The Main Computer 

controls the railway operation whilst the schedule Compiler compiles schedules and 

works as a redundancy or ‘standby’ for the Main Computer, in case it fails. 

 

 

Fig 2.1 Schematic on signaling and train control system 

 

The MRT system employs a network of distributed processing computing units and 

does not rely solely on the Main Computer at the OCC to perform all automated task. 

Although the Main Computer retains overall control of the system, the individual 

Local Processing Units (LPU) situated at the Interlocking and Intermediate Stations 

actually are the ones controlling the trains. This feature enables the MRT network to 

continue operating with minimal disruption even when part of the system fails to 

function. 

2.2.2 Signaling Scheme in Mass Rapid Transit System 

Automatic block, track circuit based operation continues to be the most widely used 

form of signaling for MRT systems. Two forms of blocking signaling schemes are 
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most often employed for automatic train protection, namely the Multiple Aspect Equi-

Block Sigalling Scheme (EBSS) and the Moving Block Signaling (MBSS) [14].  

 

Under ATP block signaling of EBSS, the railway track is divided into ATP blocks 

whose length can be made shorter than the braking distance of the trains. Advance 

warning of restrictive speed conditions is given up to n blocks ahead, which reduces 

the separation of successive trains, thus improving the headway performance. 

Reducing the headway brings about an increase in the overall line capacity of the 

system which in turn can ease congestion levels during the peak periods of train 

operation.  

 

 

a. 

 

b. 
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c. 

Fig 2.2 Trajectories for block signaling 

 

a. Block length > braking distance 

b. Block length < braking distance 

c. Block length = 0 

 

As shown in Fig 2.2, under ATP block signaling of EBSS, the railway track is divided 

into ATP blocks whose length can be made shorter than the braking distance of the 

trains. Advance warning of restrictive speed conditions is given up to n blocks ahead, 

which reduces the separation of successive trains, thus improving the headway 

performance. Reducing the headway brings about an increase in the overall line 

capacity of the system which in turn can ease congestion levels during the peak 

periods of train operation.  

 

If the block length La is reduced to zero, it can represent a complete accuracy of the 

train’s position. Theoretically, the headway between successive trains will become 

minimum (refer to Fig 2.2 c). To implement the MBSS, each train needs to know its 

own position, its speed, and its distance to the next station stopover point and to the 

rear of the leading train. This distance must be dynamically fed to each train, thus 
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making continuous and reliable bi-directional data transmission crucial between 

trackside circuit and each train. 

 

EBSS represents a crude form of positional resolution used in modern mass transit 

systems. Our proposed ATR models the Moving Block Signaling System which 

theoretically allows a much greater number of trains to be run at peak times since the 

trains would be separated by the minimum safe distance. Under this signaling scheme, 

the train would continually monitor its position using trackside beacons. It would send 

this data to the central computer, along with data about what speed it was doing. The 

computer then sends back information about what speed it should be doing. Hence, 

continuous and reliable bi-directional data transmission is crucial between trackside 

circuit and each train.  However, in the software simulation this signaling scheme can 

be implemented simply through adding communication functions between the train 

objects and the object of Operational Control Center to update the trains’ position and 

other related status information. 

 

2.3 Basics of Automatic Train Control System 

 
Playing an indispensable role for making high-speed operation into reality, Automatic 

Train Control (ATC) is comprised of Automatic Train Protection (ATP) and 

Automatic Train Operation (ATO).  ATP is the ‘vital’ system that protects against 

collision, switch malfunction, overspeeds, door malfunctions, and other related 

operational problems. The ATO system drives the train automatically to achieve the 

prescribed operational performance. 
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The ATP that consists of the ATP Trackside system and the ATP Train-carried 

system provide ‘over-speed protection’ for the railway system. When the ATP 

Trackside system detects a train, it transmits the Maximum Safe Speed (MSS) and 

Target Speed (TS) to the ATP Train-carried equipment. The speed restriction is 

displayed in the drives cab and the speed restriction is conveyed to the braking control 

system. If the actual speed exceeds the MSS, the emergency brakes will be applied, 

bringing the train to a halt. 

 

The ATO system uses an onboard database containing lineside data to control train 

braking, coasting and acceleration to suit the relevant conditions at each station. 

During operation, information from the ATP system, instructions from the ATS 

system and other data such as gradient, distance to station stop, braking rates, etc, are 

collected. ATO also gives a precision and repeatability of performance impossible of 

attainment with manual driving thus enabling inter-station run times, headways and 

energy consumption to be optimized.  

 

The ATO system uses an onboard database containing lineside data to drive the train 

in accordance with the desired operational performance by carrying out the following 

functions: Speed regulation, accurate station stopping, execution of signaling stops 

and automatic restart, coasting control, indications to train operator to open/close 

doors, enabling of door open/close controls. ATO gives a precision and repeatability 

of performance impossible of attainment with manual driving thus enabling inter-

station run times, headways and energy consumption to be optimized. The train 

running in this mode always has the fail-safe backup of the ATP system, which makes 

an emergency brake application if incorrect operation of the ATO equipment causes 
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the Maximum Safe Speed to be exceeded.  Fig 2.3 shows the ATO system. The 

equipment comprises a train borne ATO controller, ATO antennae and trackside 

marker and data loops. 

 

Cont r ol l erTr ai n Speed

Ant ennae

Loop Feed Uni t

Tr ans mi t t er
Oper at i ng

i nf or mat i on

Br ak es

Mot or s

Tr ai n

Tr ac k

 

Fig 2.3 ATO block diagram 

 

It has been seen that the ATO controller receives inputs of target speed, train and 

operating mode from the non-vital ATP unit. From the trackside loop via the train’s 

ATO antennae it receives information for the next inter-station run and from the train 

operator’s panel start button commands, driving mode and direction of travel. The 

ATO controller provides outputs to the train’s traction control system, calling for 

motors or brakes and to the train operator’s panel indicating open or close doors and 

alarms 



                                            Chapter 2 - Basic of Mass Rapid Transit System (MRTS) 
 

 19 

 

The ATO system uses an onboard database containing lineside data to control train 

braking, coasting and acceleration to suit the relevant conditions at each station. 

During operation, information from the ATP system, instructions from the ATS 

system and other data such as gradient, distance to station stop, braking rates, etc, are 

collected. ATO also gives a precision and repeatability of performance impossible of 

attainment with manual driving thus enabling inter-station run times, headways and 

energy consumption to be optimized.  

 

2.4 Cost Functions of Mass Rapid Transit  

As described, the main objective of MRT operation is to enhance the efficiency of 

passenger service, that is, improving or maintaining passenger satisfaction while 

utilizing the resources in system economically. To evaluate the status of resource 

utilization, the Singapore Mass Rapid Transport (SMRT) looks into a series of cost 

components that are compiled into one spreadsheet. The spreadsheet is used to 

calculate the daily operational cost of one MRT track in an offline mode. It consists of 

6 main input sections: time periods, service information, coast level, total of spare and 

double ending hours, train operations and transport allowances, and miscellaneous 

data. The 3 output sections are costs, train usage, and passenger load and headway. 

The derivation of the cost equations for the total operational cost and its components, 

such as fixed cost (rolling stock, infrastructure, track and rolling stock maintenance, 

etc) and variable cost (power consumption and train operational manpower), can also 

be found in the APPENDIX. The rest of this section is mainly focused on identifying 

the variables that would affect the cost functions.  
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2.5 Relation between Variables in Cost Equations 

It was observed that the terms, dwell time, run time, layover time and headway exist 

in most of the cost equations. Dwell time denotes the amount of time a train remains 

at a particular station. The run time is the amount of time a train spends on each inter-

station journey. Layover time is the amount of time taken for the change of shift and 

other mandatory checks at the terminal/interchange stations. Headway is defined as 

the dispatching time/interval between two consecutive trains from the terminal 

station. 

 

It was seen from the various costs as shown in Appendix D that an increase in any of 

the three variables (layover, dwell time and run time) would increase the cost, while 

an increase in the headway would decrease the total operating costs. In this thesis, the 

fixed costs are not considered since train operation has no effect on the fixed cost 

(whether or not trains are run fixed costs are incurred). For the variable cost aroused 

by power consumption and train operational manpower, only the cost of electrical 

energy for traction power and air-conditioning are identified as factors affecting 

operating costs which can be effectively optimized by the proposed online 

rescheduling algorithm in the thesis.  For the purpose of simplicity but without losing 

generality, layover time is not being included into the factors affecting the operational 

costs. Therefore, the three factors, headway, dwell time and coast level (run time is 

related to the coast level of the train) are adopted as primary variables for the online 

rescheduling optimization in this research. 
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CHAPTER 3  

AUTOMATIC TRAIN REGULATOR FOR ONLINE TRAIN 

RESCHEDULING AND CONFLICT RESOLUTION OF MASS 

RAPID TRANSIT SYSTEM  

 
 

Based on the structure of Automatic Train Control (ATC) and signaling system 

introduced in Chapter 2, an innovative Automatic Train Regulator is proposed in this 

Chapter in order to fulfill the operational objectives commonly set by railway 

industry. Correspondingly, fundamental performance indices are presented to evaluate 

the performance of each individual train or platform. The two train-rescheduling 

algorithms at the Operational Control Centre and Local Process Units in ATR are 

presented. 
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3.1 Overview 

 

Advancement in communication networks and high speed computers have provided 

control systems with real time information on the position and speed of the trains, 

which allow automation of many real time functions in train operations such as 

controlling and rescheduling of train services. This project proposes an innovative 

train rescheduling strategy known as Automatic Train Regulator (ATR) at the OCC 

and LPU levels to optimize the overall performance of mass transit systems.  ATR 

employs soft computing techniques, such as fuzzy logic system and evolutionary 

computing and the fuzzy performance indices of regularity, energy, train as well as 

platform congestion for online train rescheduling. 

 

3.1.1 Operational Objectives  
 
System safety, operational efficiency, and passenger satisfaction are most often 

adopted indices to evaluate the performance of a MRT system. To remain competitive 

in the transport industry, railway operators aim to achieve certain important 

operational objectives as follows: 

1. To keep train operate in high safety (identification and resolution of possible 

conflicts)  

2. To maintain operational efficiency (service regularity and energy efficiency) 

3. To ensure passenger satisfaction (punctuality, train and platform congestion). 

 

Passenger satisfaction relates to factors that have an effect on the quality of transit 

service, which includes service regularity, train congestion level and platform 

congestion level. Regularity of service is denoted by the degree to which the trains 
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actually operate according to their pre-defined timetables. The performance index of 

regularity penalizes on the early or late arrival or dispatch of trains, since irregular 

waiting times for trains can bring about frustration as well as other inconveniences for 

commuters.  

 

Commuter dissatisfaction can also arise from the experiences in an overcrowded train, 

whereas under-utilization of train cabins can be considered being highly inefficient in 

terms of operating costs to dispatch an empty train at a close time interval from the 

previous one. Hence, the performance index of train congestion penalizes on a 

deviation of passenger number in the train away from a nominal number. 

 

Platform congestion is a critical indication of the demand of service, since a huge 

number of passengers waiting at the next platform prompts for an early train dispatch 

to satisfy the increasing demand for service and return the platform congestion to 

normal. In the worst, deteriorating platform congestion poses a potential safety hazard 

to the system. However, a low platform congestion level is an indication of low train 

utility, which should warrant a delay in train dispatch either from its terminal or 

dwelling station. As such, the performance index of platform congestion rewards an 

adherence to a nominal commuter number on the platform and penalizes on a 

deviation from it. 

 

Operational efficiency refers to the efficiency in the utilization of resources such as 

electricity, trains and other inventories. The economy of operation of the railway 

depends very much on these factors as well. Total train energy consumption is sought 

to be minimized as a criteria that brings with it higher operational efficiency which in 
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turn means lower operating costs for the mass transit operator. The window period for 

consideration is the minimum service headway and encompasses trains operating on 

the up and down tracks of the railway line simulated.  

 

One of most important objectives for train schedulers is to avoid a headway conflict 

or any train encroaching upon another train’s headway leading to an unplanned stop. 

To this end, the railway traffic controller continuously monitors train traffic to 

identify any abnormality that can lead to a headway conflict, under which. ATC/ATP 

devices will take over and automatically stop a train. In this project, two typical 

conflict scenarios are represented by a set of operational constraints to detect potential 

conflicts. 

 

3.1.2 Performance Indices 

 

For situations that the most important information comes from human experts, fuzzy 

control would be the best choice. Fuzzy controllers provide a systematic and efficient 

framework to incorporate linguistic information from human experts. It can act as a 

human operator by translating experts’ linguistic description into an algorithm 

suitable for computer programming.  

 

The objectives discussed in section 3.1.1 can be evaluated by incorporating into four 

fuzzy performance indices all the information gained from experience of field experts 

or comprehensive survey data collected by MRT Company. To gain the reference data 

regarding passenger satisfaction such as regularity, train and platform congestion, the 

best way for service provider is to conduct various questionnaires since they are 



Chapter 3 – Automatic Train Regulator for Online Train Rescheduling and Conflict                          
Resolution of Mass Rapid Transit System 

 

 25 

customer-oriented.  Therefore, the shapes of those three membership functions 

derived from the survey data need to be adjusted accordingly only when the trains and 

platforms in the whole MRT system are upgraded in order to accommodate a growing 

number of passengers.  In contrast to other membership functions, the parameters that 

determine the shape of membership function for evaluating energy consumption can 

be varied according to the predicted maximum value and minimum value of energy 

consumption in each time window.   It is designed to estimate the condition of energy 

consumption for potential solutions and function as a reference to counter the side 

effect introduced by solely considering the factors in passenger satisfaction.  

 

The following linguistics levels are used: Regularity {Early, Okay, Late}, Energy 

{Low, Normal, High}, Train/platform congestion {Empty, Satisfactory, Congested}. 

Fuzzy memberships of these performance indices are shown in Figs 3.1-3.4. 

 

Performance Index 1-Regularity 

The performance index of regularity reflects how closely the train operation follows 

the pre-defined timetable. The train is considered absolutely early if it arrives 60 

seconds before or earlier, and it is considered absolutely late if it arrives 90 seconds 

after or later. The in-between arrival times are described by a mix of the fuzzy 

membership functions known as “Early”, “Okay”, and “Late” as in Fig 3.1. 
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Fig 3.1 Fuzzy memberships for regularity performance index 

 

Performance Index 2-Energy Consumption 

The total energy consumption is calculated as the aggregate sum of the traction 

energy of all trains running in each time window. The maximum and minimum values 

of the energy consumption in the time-window are predicted by adjusting the dispatch 

interval, dwell time and coast level. Based on this, a convincing membership function 

can be derived in the following ways: 

 

 

Fig 3.2 Fuzzy memberships for energy consumption performances index 
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Performance Index 3-Train Congestion 

The performance index of train congestion determines the total number of passengers 

residing on a train. The nominal passenger capacity of a train is set at 650, and the 

maximum passenger congestion level allowable is set at 1500. The train congestion 

performance index is expressed as follows: 

 

Fig 3.3 Fuzzy memberships for train congestion performance index 

 

Performance Index 4-Platform Congestion  

The performance index of platform congestion expresses the congestion level on a 

platform in any time window. The nominal commuter packing capacity of the 

platform is set at 350 and the maximum platform congestion level allowable is set at 

800. The platform congestion performance index is measured according to the 

following fuzzy membership functions: 
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Fig 3.4 Fuzzy memberships for platform congestion performance index 

 

3.2 Functional Description of Proposed Automatic Train 

Regulator  

 

The proposed ATR optimizes the passenger service while maintaining low operational 

cost. Due to complexity of the railway operations, a MRT system commonly operates 

with a master schedule strategy. According to this strategy, a feasible timetable is 

produced in advance for each scheduled train. The predefined timetable must provide 

sufficient operational flexibility for (1) a consistent operating plan that can achieve 

train schedule with high probability, and (2) a platform for making operational 

variations as a result of unexpected disturbances in passenger flows as well as 

interferences and delays encountered by each train.  

 

While detailed tactical schedules are developed for all trains through the predefined 

timetable, unforeseen events can arise and require timetable modifications without 

short notice.  These events can take the form of train headway conflicts, distributed or 
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sharp rises in passenger load at some stations.  Accordingly, ATR produces an active 

timetable, and updates it regularly for online train rescheduling and conflict 

resolution. 

 

In the modeling of MRT system, a clear separation is made between the train 

movement and traffic control system. The former models train movements on tracks. 

The latter is regulated by a proposed intelligent Decision Support System (DSS) to 

resolve conflicts, maintain train regularity, and reduce train congestion, platform 

congestion and energy consumption. The proposed DSS performs two main functions, 

namely Scenario Analysis and Intelligent Decision-making.  

 

Accordingly, ATR performs scenario analysis as a key function to keep track of train 

traffic evolution.  ATR also looks one time window ahead to predict the optimal dwell 

times and coast levels with the help of scenario analysis.  

      

With the assistance of scenario analysis, ATR implements intelligent decision-making 

to work out a near-optimal solution. For instance, when a present or potential 

headway conflict has been detected, ATR assesses its impact by examining the active 

timetable along with the local state of the MRT system (including its regularity, 

congestion, and energy consumption) to generate a solution with satisfactory overall 

performance and steer the system clear of conflict. Finally, all operational constraints 

and the four performance indices associated with each possible solution are updated. 

Some local controllers employed in traditional methods detect and solve the conflict 

without consideration of the aggravated delays, which can induce new conflicts in 

other parts of line. As conflict resolution is an optimization problem, a conflict-
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solving module equipped with evolution algorithm is applied to optimize the conflict 

resolution process, taking into account the state of the whole line within a predefined 

time window.  

 

In current MRT practice, conflicts are resolved mainly manually. The proposed 

computerized DSS has been designed and implemented to support the dispatchers to 

quickly and effectively reschedule the train movements en route. 

 

As shown in Fig 3.5, from a systematic view, the proposed DSS will be divided into a 

hierarchy of three sub-algorithms: 

 

a. Train Rescheduling Algorithm at Operational Control Centre (OCC): 

This scheme controls the whole railway line under study, helping monitoring 

operators by making decisions on dispatch interval, dwell times and coast 

levels.   

 

b. Train Rescheduling Algorithm at Local Process Units (LPU): This 

distributed scheme detects severe abnormalities or disturbances arising locally 

within a short time and modifies decisions on dwell times and coast levels at 

station controllers.  

 

c. Coordinating Train Rescheduling Algorithms: This is a master schedule 

strategy for providing global control to coordinate the two schemes at the 

OCC and LPU for online rescheduling under various disturbance scenarios. 
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Fig 3.5 Layout of the proposed train rescheduling at Operational Control Centre 
and Local Process Units 

 

3.3 Proposed Train Rescheduling Algorithm at Operational 

Control Centre  

 

This algorithm is implemented at the OCC to employ primary rescheduling that takes 

into account all trains and stations in each track as objects of an optimization problem.  

 

3.3.1 Control Variables 

In each time window, the controller in ATS is triggered to predict the controls and 

movements of all trains over the time window through scenario analysis. Whenever a 

conflict is detected, a new dynamic control vector is derived  

),....,,...,( ,2,121, tmllltttP mnGi ΔΔΔ=Δ  to synthesize a new active timetable, where tΔ , l , 

and tm are the dwell time, coast level, and dispatch interval respectively. n is the 

number of passenger stations included in each time window, and m is the number of 

trains included in each time window. The dynamic control vector is represented by 
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chromosomes in evolutionary computing. The three control variables are defined as 

follows: 

 

1. Dispatch Interval tm : This is defined as the time difference between successive 

trains (known as time margin) to be dispatched from a terminal station. The train 

rescheduling algorithm adjusts tm  to maintain system performance at the OCC level. 

 

2. Dwell Time tΔ : This is the time taken by a train to stop over at a particular station. 

Adjustment to the dwell time of a train will alter the time margin with the train ahead, 

the time margin with the train behind, the passenger loading time. This variable is 

affected by passenger flow (rate of entering and leaving) and the time taken by 

passengers to board/alight each train. 

 

3. Coast Level l: This describes the train movement profile in the journey between 

each pair of successive stations (or inter-station journey). The run time of each inter-

station journey a train depends on the amount of coasting and powering in the 

journey.  As illustrated in an inter-station velocity-time profile (Fig 3.6), the train is 

powered on and accelerated after departure. When it reaches a desired velocity, the 

train can either (a) remain powered and maintain the desired velocity (Coast Level 0) 

to cover a given distance within the shortest runtime but requiring the highest energy 

consumption. (b) turn the motive power on and off alternately at certain preset 

velocities (Coast Level 1), or (c) turn off the motive power completely (Coast Level 

2) for the longest run time but consuming the lowest energy. Adjustment to coast 

level will alter the energy usage during the inter-station run. 
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Fig 3.6 Train run-time profiles at different coasting levels 

 

3.3.2 Functions of Proposed Train Rescheduling Algorithm at Operational 

Control Centre  

The rescheduler at OCC executes an evolutionary-algorithm for optimizing train 

rescheduling to adjust all the train dispatch and dwell times, and train coasting levels 

of all inter-station runs within each time window. Based on the analysis of the real-

time information on the MRT system such as the passenger incoming or outgoing rate 

at the stations, the online rescheduling algorithm at OCC predicts the runtime and 

other performance indices of trains entering each time window, adjusts the train 

dispatch times and dwell times, and hence updates an active timetable to satisfy all 

operating requirements for the whole line. All the adjustable parameters are sampled 

as the input parameter vector of the evolutionary algorithms to make a fast and robust 

numerical optimization in order to generate a near optimal solution. A group of 

operational constraints are set in order to detect potential conflicts, which may occur 

under different conflict scenarios as a result of the various possible solutions. A fuzzy 
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fitness aggregated with the four sets of fuzzy performance indices has been used to 

measure the effects of rescheduling. 

 

3.3.3 Active Timetable 

Starting from the predefined timetable, MRT operators maintain several active 

timetables using rescheduling computer software. The proposed ATR reads one of 

these timetables for performing scenario analysis and dynamic decision-making 

according to the latest operational circumstances for conflict identification and 

resolution. In an object-oriented environment, ATR creates an active timetable as a 

live object with a structure as in Fig 3.7. 

 

Object Name: Active timetable  
Data attribute: 
Arrive time; 
Departure time; 
Coast level; 
Associate methods: 
Search Monitored stations; 
Retrieve or update arrive time; 
Retrieve or update departure time; 
Retrieve or update coast level; 

                          
Fig 3.7 Structure of proposed active timetable 

 

As discussed, at the beginning of a control transaction, active timetable is originally a 

copy of predefined timetable. During the control transaction, the active timetable is 

retrieved by DSS for scenario analysis and updated by new schedules after going 

through the evolutionary-algorithm-optimised rescheduler. Fig 3.8 illustrates the 

processes of scenario analysis on the active timetable through sliding time windows. 
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As shown in Fig 3.8, the active timetable stores schedule information of every train 

including its dispatch time, arrival time and departure time. The slope angle α  of 

lines connecting two stations reflects the coast-level information. From the 

information above, dwell times for every station and headway between two 

consecutive trains can be deduced:  

 

(3.2)                                  eArrivaltimeArrivaltimheadway
(3.1)                                imeDepartureteArrivaltimdwelltime

ststt t
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where  stdwelltime ,  is the dwell time for train t at station s, 2,1 t theadway  is the 

headway between train t1 and t2.  

 

ATR divides the study/control period into time windows of equal length, sliding from 

one time window to another according to a real-time clock. As illustrated in Fig 

3.8(b), time windows distributed along the active timetable are labeled with 

implementation, prediction, and future areas for reference purposes. For instance, in 

Fig 3.8(a), arrival time of train EW003 for station 2 and similarly that of train EW004 

for station 3, are within the scope of time window I (shadow area). Hence using real-

time information of the MRT system, ATR predicts the timing of each inter-station 

run and other performance indices occurring in the present time window. Adjustment 

to the dwell time and coast level of a train will alter the headway with the train ahead, 

the headway with the train behind, the passenger loading time and the energy usage 

during an inter-station runtime.  
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α

                                                             (a) 

(b) 

Fig 3.8 Illustration of scenario analysis on Active Timetable 
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Accordingly the adjustment to the value of tdwell and the selection of the coast level 

will affect the following: 

 
1. The regularity of train service, Reg [(tdwell, cl)]. 

2. The energy consumption, Eng [(tdwell, cl)]. 

3. The congestion level on the train, TrnCg [(tdwell, cl)]. 

4. The congestion level on the next platform, PFCg [(tdwell, cl)]. 

 

Reg, Eng, PFCg, and TrnCg are performance indices that reflect regularity, energy, 

and congestion. tdwell and cl are the dwell time and the coast level respectively.  

 

The performance index for the regularity of train service Reg(tdwell) is a measure of 

the deviation of the train departure time from the predetermined timetable. 

 

Reg[(tdwell, cl)] = Current Time + (tdwell - planned departure time)+(runtime[cl]-

runtime[CL])                                                                                    (3.3) 

 

where runtime[CL] is the runtime at predefined coast level CL and runtime[cl] is the 

runtime of the current coast level. 

 

Eng [(tdwell, cl)] is the performance index that measures energy consumption, which 

depends on the control variable. Runtime-profiles, which correspond to different coast 

levels, indicate unique inter-station energy consumption curves. 

 

The performance index for the congestion level on the current platform TrnCg (tdwell) 

is measured by the number of passengers on the dwelling train when the train doors 
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are closed. Before the calculation of PFCg(tdwell), the number of passengers to be 

loaded onto the train PsgToBeLoad(tdwell), the maximum number of passengers able to 

aboard in tdwell seconds MaxPsgLoad(tdwell), and the maximum available space on the 

train MaxAvailSpc(tdwell) have to be calculated. 

 

 PsgToBeLoad(tdwell) = PFCurrPsg + PFRatei *tdwell                                    (3.4) 

 

 MaxPsgLoad(tdwell) = (tdwell - APsg/LRate) * LRate                                   (3.5) 

 

 MaxAvailSpc = TrnSpc - TrnPsg - APsg                         (3.6) 

 

where, 

PFCurrPsg - refers to the current number of passengers on platform 

PFRatei - refers to the rate of passengers entering the platform i 

APsg  - refers to the number of alighting passengers 

LRate  - refers to the rate of passenger flow 

 

The number of passengers actually loaded is: 

LPsg [(tdwell, cl)] = min(PsgToBeLoad(tdwell), MaxPsgLoad(tdwell), MaxAvailSpc)                        

(3.7) 

 

Hence,  TrnCg [(tdwell, cl)] = TrnCurrPsg +LPsg              (3.8) 

 

The performance index for the congestion level on the next platform PFCg(tdwell) is 

predicted from the rate of passenger entering the next platform PFRatei+1. 
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 PFCg [(tdwell, cl)] = [tm
curr +Reg[(tdwell, cl)] * PFRatei+1                       (3.9) 

 

where tmcurr refers to the current time interval. 

 

After the prediction, ATR slides forward from time window I to time window II 

whilst the ATR executes an evolutionary-algorithm-optimized train re-scheduler to 

adjust all the train dispatch and dwell times, and train coasting levels of all inter-

station runs within each time window. Details of EA optimization process are 

presented in the Section 5.3.  

 

3.3.4 Runtime Constraints for Two Types of Conflict Scenarios 

The decision support system in the ATR is subject to various runtime constraints to 

ensure safe operations. These constraints are also be used to reduce the space of 

search and computing time required for optimal solution.   

For each train t traveling between two adjacent stations s and s+1: 

 

                 (3.10) 

 

 

 

For any two consecutive trains t1 and t2: 

 

.min

.
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.min
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stst

stst
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         (3.11) 

 

The above safety constraints are used to detect and avoid head-to-tail collisions. Some 

specific constraints can be introduced to detect and solve conflicts arising locally in a 

given area. For instance, one typical conflict scenario arising in the terminals of MRT 

system was simulated in the ATR and relevant constraints were attached for conflict 

detection and resolution.   

 

Taking E1, E2, W3, and W4 as the four conflicting points along the tracks at the 

terminal station as in Fig 3.9:  

 

 

 

 

 

 

 

         

                Fig 3.9 Typical conflict scenario arising at terminal stations 

 

For train t1 departing from Terminal to east, there were two possible pathings  
 

a) EastlineEEPlatform >−>−>− 211                                                               (3.12)   

b) EastlineEWWPlatform >−>−>−>− 2432 .                                                 (3.13) 
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For train t2 arriving at Terminal from east to west, there were two optional pathings: 

 

c) 234 PlatformWWWestline >−>−>−                                                       (3.14) 

d) 1134 PlatformEWWWestline >−>−>−>−             (3.15)

     

Accordingly, the following safety constraints were added to the three conflict 

scenarios when two of the above mentioned pathings occurred simultaneously 

resulting in a conflict: 

 

 a) and d)  Interval SafetyeArrivaltimimeDeparturet EtEt ≥− 1,21,1               (3.16) 

 b) and c)  IntervalSafetyeArrivaltimimeDeparturet wtwt  4,24,1 ≥−                (3.17) 

 b) and c)  IntervalSafetyeArrivaltimimeDeparturet wtwt  3,23,1 ≥−            (3.18) 

 

3.3.5 Evolutionary-algorithm-optimised Rescheduler 
 
In principle, finding the optimal rescheduling strategy requires the analysis of a very 

large solution space. An exhaustive search is not compatible with the real-time 

constraint imposed by the application. A routine transaction, consisting of the active 

timetable update, conflict detection and construction of a rescheduling strategy such 

as ATR, is fast enough for real-time, if it is completed within the span of each time 

windows.  

 

To aim for such computing-time requirement, DE is considered as an exceptionally 

simple strategy that has the promise of providing robust and real-time optimizations. 

The design and the implementation of the proposed DE-optimized rescheduler are 
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discussed in detail in Chapter 5. Genetic algorithm (GA), another candidate among all 

evolution strategies, is applied to ATR to compare performance with DE in Chapter 6 

for solving the train rescheduling problem. 

 

3.4 Proposed Train Rescheduling Algorithm at Local Process Units 

 

LPUs receive rescheduled operational information from the OCC and regulate the 

departure time and routing of all trains within its own area. The train rescheduling 

algorithm at LPU serve as the auxiliary strategy to the one at OCC in case severe 

disturbances take place after the real-time information of system states is sampled by 

OCC at the start of a time window for rescheduling within predefined time window. 

For instance, if the passenger flow increases in some stations or a certain accident 

delays the train over a set value, some adjustment must be applied to command 

station-based LPU to subdue the ensuing unpredictable influences and hence avoid 

losing critical real-time information. LPU controllers complement and adjust if 

necessary the commands issued by the OCC controller at all stations from the 

beginning of each time window.  The OCC controller examines the status of the MRT 

system states at the end of each time window for fine-tuning the commands in the 

next time window.  

 

LPU controllers make use of fuzzy decision-making to adjust schedules based on the 

same fuzzy performance indices of regularity of service, energy consumption, train 

congestion as well as platform congestion levels. LPUs equipped with the on-line 

rescheduling algorithm that controls the departure of a train from the passenger station 

effectively controls the dwell time of that train at the station. 
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When a train arrives at a passenger station and the LPU controllers are set to “ON”, 

the algorithm will be activated to retrieve the dwell time from the Active timetable 

and reschedule the train departure time if necessary. The schematic of the events from 

the time the train arrives at the station is given in Fig 3.10. 

 

Fig 3.10 Schematic of train dwell time rescheduling in LPU 

 

Adjustment to dwell time of the train will vary headway of the train with respect to 

the leading and lagging trains as well as the passenger loading time. Although this 

algorithm makes adjustment to headway, the variation is relatively minor compared to 

the on-line rescheduling of train dispatch interval from the terminal stations. 

However, it should be noted that once the train is dispatched from the terminal station, 

the on-line rescheduling of station dwell time becomes an important available means 

to regulate the dynamic headway of the train, besides other alternatives like train 

coasting, etc. 

 

The Master Schedule Scheme is designed as “a global control” to coordinate the two 

schemes. It set the scenarios of triggering the corresponding schemes. Fig 3.11 shows 

the overall DSS block diagram, which applies the DE-based method for train 

rescheduling. 
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               Fig 3.11 Block diagram of Decision Support System for ATR  
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CHAPTER 4 
 
OBJECT-ORIENTED SIMULATION OF MASS RAPID 

TRANSIT SYSTEM WITH AUTOMATIC TRAIN 

REGULATOR 

 

This Chapter explores the simulation of MRT that provides a platform to 

accommodate ATR rescheduling algorithms discussed in Chapter 3. The architecture 

of proposed ATR in simulation is illustrated. The application of object-oriented, 

multi-threading programming, and online database management techniques on ATR 

simulation is described. Lastly, typical train and platform operational profiles are 

presented as simulation outputs. 
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4.1 Overview 

 

4.1.1 Layout of Object-oriented Mass Rapid Transit Simulation 

Simulation attempts to develop models to synthesize and study the dynamic behavior 

of actual real-life systems. Precise and comprehensive knowledge representations of 

the MRT system are often beyond the scope of a simplified mathematical model for 

its complexity. These representations must be based on well-defined objects, which 

have data attributes, associate methods, and structures of their counterparts in the real 

world.  

 

ATR has a simulation program integrating all train operation and train control 

functions. It is a time-driven simulation of train movement being incremented by a 

real-time clock in fixed steps to monitor and record the current states. It also models a 

decision support system for train dispatchers to schedule trains in real-time in an 

optimal way and as a planning tool to evaluate the impacts of possible timetable 

changes on the overall operational performance for the selected line track under study.  

 

To model all ATR functions, the simulation model has to accommodate both discrete 

events and continuous train movements on the same simulation platform for modeling 

dynamic behavior of the MRT system. The main process of simulation is described as 

below:  

1. Initialize the system state and simulation time 

2. In each time increment until simulation is finished: 
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(a) Collect and save the current state described by the travel time, train 

chainage, speed, energy consumption, and the number of passenger on 

platforms or trains. 

(b) Simulate all events that occurred between last step and the present 

time, which include system, platform and ATR controls and other 

discrete events on the trains such as ‘open the door’, ‘close the door’, 

“dispatch the train”, and “ run scenario analysis”. 

(c) Increment simulation time  

 

The development of simulation software for the operation of a MRT system demands 

enormous effort on understanding the operation, preparing the study data, and 

programming language. Hence, reusability is a highly desirable feature. Because of 

the enormous amount of data to be processed online, efficient data organization and 

management are indispensable for robustness. The coordination and interaction 

between different functional components require one mechanism that is able to reflect 

the nature of real-life system. ATR applies object-oriented programming, relational 

database management and multithreaded programming techniques to satisfy the above 

requirements.  

 
4.1.2 Review on Object-oriented Representations for MRT System Simulation 
 
Object Oriented Programming (OOP) [15] has long been acclaimed as an efficient 

methodology for minimizing development time and maximizing code reusability. 

OOP creates a modular design that is easily modified without having to restructure the 

entire system. OOP organizes objects into classes, which inherit properties from their 

ancestors and be reused in future projects. In our proposed ATR, three basic classes 

were defined: TRAIN, STATION, and TRACK. 
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The class TRAIN is created to represent the drop off and pick up of passengers at 

every station. It will stop the train at every station on its route. It keeps track of the 

total trip time for each passenger if the passenger has arrived at his or her final 

destination. TRAIN records each train’s its current location, destination, energy 

consumption, speed, travel time, and the total number of passengers. At the end of the 

simulation, TRAIN returns the current state for display and further studies. 

 

The class STATION is created to accommodate passengers and implement functions 

of LPU controller. It records the total number of passengers and the arrival and 

departure times for all trains. STATION also operates the train for its arrival and 

departure. At the end of simulation, STATION returns the current state for display 

and further studies.  

 

The class TRACK is more of an arbitrator class. TRACK imposes global controls to 

keep track of the objects, coordinate the arrival and departure of TRAINs, define the 

schedules of TRAINs and resources, and print results. It also reschedules trains in 

operations and provides safety protection.  

 

4.2 Simulation Detail of Automatic Train Regulator  

 

4.2.1 Development of Automatic Train Regulator in Visual C++ 

The simulation is developed in Visual C++ including four main parts: Main User 

Interface, Train Movement Simulation, Decision Support System, and Reports 

Systems. Fig 4.1 illustrates the architecture of the ATR simulation.  
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Main User Interface is programmed through the Microsoft Functions Class in VC++ 

to enable human-machine interactions. It provides user-friendly interfaces to 

configure the layout of MRT systems or design parameters of reschedule controller, 

thus greatly benefiting the study of performance under different system settings.  

   

                            

Fig 4.1 Architecture of proposed ATR and data flows 

 

Train movement simulation is built based on train movement profiles organized in a 

relational database and on operational controller that fulfills basic operation of train in 

MRT system. ATR sends a command message to activate information manager that 

periodically updates and retrieves operational data stored in the information database. 
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Then Controller applies these data to update the state of all the station and train 

objects in operation.  

Report systems serve to present high quality output graphics (time-distance, platform 

occupation, and speed profiles) and various performance indices of regularity, energy, 

train and platform congestion in tabulated form. They include two kinds of reports: 

real time graphics and static graphics. 

 

4.2.2 Implementation of Multithreading Technique in Automatic Train    

Regulator 

ATR simulation is conducted using multithreading techniques in Visual C++6.0. The 

simulation of each inter-station train movement is programmed as a thread because of 

its common features and close interaction to other train movements. A worker thread 

is created for Decision Support System running in the background to do scenario 

analysis, conflict resolution and optimisation. These two threads of execution are run 

concurrently and cooperate with each other through thread synchronization objects 

and thread communication mechanism (as provided by Windows), which simulate the 

real-time communications between trains, LPU and OCC. 

 

4.3 Design for Real Time MRT Systems 

 

Since the ATR simulation is designed for an online rescheduling task, the real time 

requirements or constraints are always crucial in the design process for its actual 

implementation in a real life MRT control system.  A real time system must respond 

to events such as disturbances or accidents within a finite and specifiable delay in 

order to recover its service to normal and to prevent the system from any disaster. 
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The unpredictable disturbances could be caused by traction equipments faults, 

communication link failure or excessive boarding times that are beyond the control of 

railway engineers. While system safety is assured through software and mechanical 

fail-safe interlocks, the disturbances can affect the smooth functioning of the system.  

In this research the focus is on the disturbances caused by the excessive boarding time 

because of the sudden increase of passenger demand. Without any adjustment on the 

scheduling factors such as dispatch time, dwell time or coast level, the delay to one 

train may eventually slow down the trains behind and hence magnify a minor 

disturbance into a total system failure. Hence, Controllers in MRT monitor and 

control system are typically organized hierarchically to ensure its real time reliability. 

One or more digital controllers at the lowest level directly control the physical 

devices. A second level controller typically performs scheduling functions to achieve 

a higher-level goal. In particular, it tries to find one of the most desirable timings for 

individual trains among all possible timings that meet the constraints of the system 

and optimises energy consumption.  A timely rescheduling to react and minimize any 

negative effect of the disturbance keeps the system within its acceptable operating 

range. 

 

The second level control structure for the proposed real time system is designed as 

shown in Figure 4.2. 

 

 

Do the following in each 0.125 second cycle: 

1. Validate sensor data and select data source, such as trains’ distance, speed, and 

current, and store the real time data into buffers. 
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2. In the presence of failures (data transmission failure or exceptional data, etc), 

reset the system to its last safe schedule configuration.  

3. Do the following computations, once every 4 cycles (0.5 second): 

- Perform data normalization and coordinate transformation 

- Do speed regulation and control with ATP according to the two speed    

parameters: Maximum Safe Speed and The Target Speed.  

- Encode and package the control commands and parameters  

4. Do the following computations, every 8 cycles (1 second) using the data 

produced by task 3. 

- Update the database with real-time train operational data and display 

the information to train controllers on monitor 

- Retrieve passenger flow data, detect disturbance, and update the 

database 

5. Do the online rescheduling algorithms every 240 ~ 640 (30~80 seconds) cycles 

using data provided by task 4 to optimise terminal dispatch time, inter-station 

dwell time and coasting level in terms of regularity, energy consumption, train 

and platform congestion satisfying various constraints. 

6. Output command 

7. Wait until the beginning of the next cycle 

 

Figure 4.2 Software control structure of real time MRT control system 

 

The ATO system indirectly controls the embedded components in lower levels of the 

control hierarchy. The system needs to compute some control laws to monitor and 

control the transitions between different schedules as well as algorithms for 
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estimating and predicting times between stations. These values correlate directly with 

the smooth operation of the trains in dispersing the passengers from an overloaded 

station.  These time-critical computations tend to be simpler and more deterministic 

and have periods in the order of seconds.  

 

ATO system detects the disturbances arising in the system and then updates the 

system parameters according to the online sampled real-time data. The rescheduling 

processes are triggered again within a specified time from the detection of the 

disturbances. With updated system information, the Main computer in OCC has 

minutes to do rescheduling to achieve the optimal solution or otherwise accept sub-

optimal solutions when there is insufficient time.  By restricting the allowable 

computational time of the rescheduling analysis, the best available solution is always 

posted in real time to the controller for an action to be taken. 

 

4.4 Online Database Management 
 

ATR is an information-based system in which one relational database is created to 

organize various operational data that supply ATR with prompt and accurate 

information about the monitored railway scenario. Using a database greatly enhances 

the ease of such complex data management since the program can handle single-

database files more easily than it does hundreds of different data files. Moreover, 

because the data is arranged logically in a relational database in a tabular form, it 

makes the job of programming and data retrieval and updating more efficient and 

systematic. Three types of operational data are provided by railway industry to 

simulate the train movement based on real-life scenarios. 
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4.4.1 Train Movement Profiles 

These profiles can be generated by an ‘Interstation Train Movement’ program 

developed by C.S.Chang [13], which generates inter-station single train run-time 

profiles for energy and signaling studies.  

 

4.4.2 Passenger Flow during Busy Time or Less Busy Time 

Accurate passenger forecasts provide the essential information for evaluating online 

control under all conditions. With the advancements in communication networks and 

the introduction of the Automatic Fare Collection (AFC) system, predicting the 

passenger flow becomes available. In this project, the demand of passengers during 

different operating hours, such as normal, peak, and sudden sharp rise is simulated, 

and the approximate passenger flow data is used.  

 

During simulation, passengers enter the platform i at a rate of ir . Given that the 

number of passengers on the platform i  at time k  is kiPF , , the number of passengers 

on the platform i  at time kt  is given by [16]: 

kkmikiki tutrPFPF α×Δ×−Δ×+=+ ,,1,                 (4.1) 

kkmkkmkiki ltuTPTP βα ×−×Δ×+=+ ,,,1,        

where ≤+1,kiTP  passenger carrying capacity of train m , kmu ,  is the rate of passenger 

boarding the train from the platform, kml ,  is the rate of passengers leaving the train.  

kα  and kβ  are scaling coefficients to the passenger flow of passengers boarding the 

train and the passengers alighting the train respectively. kα  and kβ  can be estimated 

by onsite passenger survey. 
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4.4.3 Predefined Timetable 

This is predetermined using experience and knowledge of prevailing conditions or 

off-line optimization. This timetable is accessed by ATR in read-only mode during 

traffic control operations. Predetermined timetable is the products of an off-line 

optimization on the train scheduling on different operational hours. Originating from 

the initial optimized timetable, the simulation software provides a platform for the 

investigation and fine-tuning of the schedules to further the optimization into an 

online mode. 

 

4.5 Results from Simulation 

 

4.5.1 Study System 
 
The simulation covers a medium-sized MRT line 29 passenger stations, and 30 trains 

in a simulation time of 2.5 hours. Layout of the simulation is shown in Fig 4.2 

 

 

 

 

 

 

Fig 4.3 Layout of study system 

 

After initialization, the ATS module is simulated to dispatch the trains according to 

the pre-defined or active timetable.  The ATP provides over-speed protection, and the 

ATO regulates the movement of train. 

     29 stations 

Track
Platform Platform 
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Platform Platform 

Depot

Depot 
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4.5.2 Simulation Output 

Typical simulated speed-time and distance-time profiles are shown in Fig 4.3 and Fig 

4.4. Other information such as coast level in each inter-section run, dwell time at each 

passenger station and other displays is described in Section 4.2.1.   

 

 

 

Fig 4.4 Speed-time profile under normal condition 

 

Fig 4.5 Distance-time graph of trains operating with a 2 minutes time margin 
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Fig 4.5 illustrates the passenger congestion on a particular platform under normal 

conditions, where passengers enter the platform at rate 1.2 person/sec.  

 

 

Fig 4.6 Platform congestion under normal condition 

Fig 4.6 illustrates the passenger congestion on three trains, in which the congestion on 

trains grows to the top on stations at the central district of the city and then is 

appeased until the destination depot.   

 

 
Fig 4.7 Train congestion under normal condition 
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4.6 Summary of the Simulation Studies 
 

The simulation studies are conducted to study the performance of MRT systems under 

different operating conditions, which is evaluated by regularity, congestion on both 

platforms and trains, and energy consumption.  

 

The regularity in service is affected by the intervention of the ATO and ATP systems. 

By maintaining an appropriate headway between successive trains, intervention from 

the ATO and ATP systems can be prevented. The number of passengers at the 

platform can be lowered if trains arrive more frequently. Hence, the congestion 

problem can be reduced by decreasing dispatch interval. In the operation of the MRT 

system, the number of trains in service has to meet the passenger demand. As the high 

number of trains in service will lead to high costs, and the low number of trains in 

service will lead to passenger dissatisfaction, the dispatch frequency has to be 

adjusted so that optimal utilization of trains is achieved. It is apparent that all these 

performance indices are affected by the time margin between successive trains. 

 

In this research project, a Decision Support System equipped with evolutionary 

algorithms is devised to improve the performance of the MRT system. The on-line 

rescheduling strategy improves the performance of the MRT system by making 

adjustment to headway. By rescheduling the dispatch of trains from the terminal 

station, and by rescheduling the departure of trains from passenger stations, the 

headway between successive trains can be adjusted. Details on these rescheduling 

algorithms will be presented in Chapter 5. 
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CHAPTER 5  
 
APPLICATION OF EVOLUTIONARY ALGORITHMS 

OPTIMIZATION WITH FUZZY FITNESS 

 

In Chapters 3 and 4, the two ATR train-rescheduling algorithms at OCC and LPU and 

the simulation mechanism are outlined. In this Chapter, the design and 

implementation of evolutionary algorithms for decision-making in ATR are discussed 

in detail.   
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5.1 Introduction of Evolutionary Algorithms 

 

The pioneer work on evolutionary strategy (ES) [17] was developed in 1964 at the 

Technical University of Berlin by Rechenberg and Schwefel as an experimental 

optimization technique. Evolutionary algorithms (EAs) are global stochastic search 

algorithm whose search methods model some natural processes: genetic inheritance 

and Darwinian strife for survival. Evolutionary algorithms operate on a population of 

potential solutions applying the principle of survival of the fittest to produce better 

and better approximations to a solution without early convergence to local optima. 

Each individual is evaluated to find its fitness by substitution into the fitness function, 

which measures the quality of the individual. A new set of individuals is created by 

the process of selecting individuals based on their fitness and breeding them together 

using operators such as selection, recombination, mutation and immigration.  

 

In evolutionary algorithm (EA) and some other parameter optimization techniques, a 

set of variables is optimized to maximize some target such a profit or to minimize cost 

or error. They are treated as a black box with a series of control parameters, and the 

only output of the black box is a value returned by an evaluation function indicating 

how well a particular combination of parameter settings solves the optimization 

problem.   

 

Evolutionary algorithms have become established as the method for solving 

optimization problems that are too complex to be solved by exact methods, such as 

linear programming and gradient search. Typically, evolutionary algorithms are 

applied on nonlinear problems where it is not possible to treat each parameter as an 
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independent variable that can be solved in isolation from the other variables. There 

are interactions such that the combined effects of the parameters must be considered 

in order to maximize or minimize the output of the black box. Dynamic programming 

is an option for solving high-dimensional and nonlinear discrete optimization 

problem. It breaks down a multistage decision process containing many 

interdependent decision variables into a series of sub-problems, each containing only 

a few. Hence the common feature of the problems that could be solved by dynamic 

programming is that they can be divided into stages with a decision required at each 

stage. If the train rescheduling problem discussed in this thesis is decomposed into 

subproblems and all combinations of possible solutions are examined in the solving 

process, the combination numbers are so huge that the optimum combination cannot 

be solved in practical process time which constrains this online optimization problem. 

Therefore, EA as a proven technique is more efficient in solving such kind of 

optimization problems with large number of possible solutions. 

 

In real-life problems, functions of many variables have a large number of local 

minima and maxima.  EAs differ from more traditional optimization techniques in 

that they involve a search from populations of individuals instead of a single point. 

This way the search is performed in a parallel manner, covering a wider solution 

space. Moreover, many search techniques require some not readily available 

information in order to work properly. For example, the Hill climbing method 

requires derivatives of the fitness function, which is fairly complex for a multi-

parameter function, in order to guide the search direction. To perform an effective 

search, EAs only require objective or fitness function values associated with 
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individual strings.  Once the EAs know the current measure of fitness about a point, 

the values can be used to continue searching for the optimum.  

 

In the industry, control systems are usually designed by using one of two general 

approaches. The first approach is the mathematical model-based approach.  However, 

in a large number of instances, the system to be controlled is too complex to be 

understood and modeled, or is time varying. The lack of system information makes 

the mathematical modeling difficult or completely impossible. To deal with this 

problem, the control strategy and control system elements are selected based on the 

knowledge, experience and insight of experts of the processes for evaluation. In the 

event that only expert knowledge or experience rather than a mathematical input-

output relationship is available, the second approach, knowledge or rule based 

controller such as fuzzy logic controller, is a possible alternative to build up control 

systems. 

 

For the online train rescheduling problem presented, the number of control parameters 

and their relationship with the objectives are decided by real time information 

collected from the simulated system. Hence, with a flexible length solution set, the 

EA provides a natural representation for this problem.  Fuzzy logic algorithm 

interpolates the action of any individual rule from the available finite rule base using a 

choice of fuzzy logic operation and defuzzification method.  

 

In this research, the effectiveness of two EA-based optimization methods (DE and GA) 

in solving the online rescheduling problem is compared.  In each test, one of the EA-
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based methods is integrated into the online rescheduling strategy to do multi-

objectives optimization based on the analysis of an active timetable.   

 

This chapter is organized into 6 sections. Section 5.2 specifies the system variables 

for optimization and coding of control variables into chromosome. Section 5.3 defines 

optimization objectives and presents a fuzzy expert evaluation system for calculating 

fitness of individuals in evolutionary algorithms. Performance indices and rules base 

are created according to human expert experiences. Section 5.4 and 5.5 present the 

design and implementation of the GA and DE accordingly for run-time train 

scheduling. Section 6 gives the choice of the look-ahead time window and results out 

of optimization. 

 

5.2 Application of Fuzzy Evolutionary Algorithms in Online 

Rescheduling Strategy 

 

5.2.1 Objectives of Optimization  

As stated in the Chapter 3, ATR assists railway operator with train rescheduling by 

aiming for the operational goals of passenger satisfaction and operational efficiency 

under operational safety constraints. The performance indices relating to the 

operational goals of passenger satisfaction and operational efficiency include 

regularity of service, energy consumption, train congestion and platform congestion.  

 

In the EA-based ATR, a set of control variables is fed through analysis of active 

timetable stored in memory. The number of trains being included in the current time 

window governs the number of control variables. A population of candidate solutions 
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are generated and applied to the active timetable to predict the fuzzy performance 

indices (Section 3.1.1) of all trains included in the time window. . The EA-based 

optimization then finds the near-optimal solution aiming for no conflicts with the 

following: 

 
1. Average performance index of regularity  

2. Performance index of overall energy consumption 

3. Average performance index of platform congestion 

4. Average performance index of train congestion 

 

5.2.2 Fuzzy Fitness [18] 

EAs associate to each individual a value corresponding to the fitness function. Based 

on this fitness, some of better candidates are chosen to seed the next generation by 

applying recombination and mutation.  

 

In case of multi-objective optimization problems, there is often a dilemma as how to 

determine if one solution is better than another because of multiple conflicting 

objectives.  

 

The weighted sum approach is commonly used to aggregate the objectives together 

using different weighting coefficients for each one of them. The strength of this 

method is its efficiency. However its main disadvantage is the difficulty in 

determining appropriate weights while there is no enough information available about 

the problem. 
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A fuzzy expert evaluation system is introduced in the ATR to take advantage of the 

experts’ perceptions and reasoning in evaluation of solutions. The four performance 

indices defined above are aggregated by the fuzzy expert evaluation system to 

generate a fitness value that reflects the expert’s evaluation of the corresponding 

solution. The structure of Fuzzy Expert Evaluation system created for ATR is 

illustrated in the Fig 5.1. 

 

 

Fig 5.1 Structure of fuzzy expert evaluation system 

 

5.2.3 Fuzzy Inference Rule Base 

Fuzzy inference rule base contains fuzzy inference rules, which are usually 

characterized by a set of linguistic statements generated by human experts. The fuzzy 

inference rule base is initially constructed by the ‘rule of thumb’ human intuition and 

heuristics, and then trained and tested with measured training data through trial and 

error.  In this project, all the possible combinations of fuzzy rules have been tried out 

in the simulation to come out with the fuzzy inference rule base that gives the best 

optimization performance.  
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Twelve fuzzy inference rules are used for evaluating the performance for all trains in 

the time window. The membership function for each input estimates each objective’s 

values. The antecedent and the consequence of the fuzzy rules indicate combinations 

of objectives and human reasoning for the associated combination:  

 

R1: IF regularity is OK AND energy is Low AND train congestion is Satisfactory 

AND platform congestion is Satisfactory THEN overall performance is Good 

R2: IF regularity is OK AND energy is Normal AND train congestion is 

Satisfactory AND platform congestion is Satisfactory THEN overall 

performance is Good 

R3: IF regularity is Early AND energy is Normal AND train congestion is 

Satisfactory AND platform congestion is Satisfactory THEN overall 

performance is Normal 

R4: IF regularity is Late AND energy is Normal AND train congestion is 

Satisfactory AND platform congestion is Satisfactory THEN overall 

performance is Normal 

R5: IF regularity is OK AND energy is High AND train congestion is Satisfactory 

AND platform congestion is Satisfactory THEN overall performance is 

Normal 

R6: IF regularity is OK AND energy is Normal AND train congestion is Empty 

AND platform congestion is Satisfactory THEN overall performance is 

Normal 

R7: IF regularity is OK AND energy is Normal AND train congestion is 

Satisfactory AND platform congestion is Empty THEN overall performance 

is Normal 
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R8: IF regularity is Early AND train congestion is Crowded AND platform 

congestion is Satisfactory THEN overall performance is Bad 

R9: IF regularity is AND energy is AND train congestion AND platform 

congestion is THEN overall performance is Bad 

R10: IF regularity is Early AND train congestion is Satisfactory AND platform 

congestion is Crowded THEN overall performance is Bad 

R11: IF regularity is Late AND train congestion is Crowded AND platform 

congestion is Satisfactory THEN overall performance is Bad 

R12: IF regularity is Late AND train congestion is Satisfactory AND platform 

congestion is Crowded THEN overall performance is Bad 

More fuzzy rules generated could be added to the inference engine from expert 

knowledge or human experience, when necessary. 

 
The equivalent rules for fuzzy logic operation using the root-sum-square method are: 

R1: 1Goodμ =min ( ROμ , ELμ , TSμ , PSμ )                          (5.1) 

R2: 2Goodμ =min ( ROμ , ENμ , TSμ , PSμ )                         (5.2) 

Then         5.0
21 )2^2^( GoodGoodGood μμμ +=                (5.3) 

Similarly μNormal,   μBad  can be calculated:                    

5.0
54321 )2^2^2^2^2^( NormalNormalNormalNormalNormalNormal μμμμμμ ++++=            (5.4) 

5.0
54321 )2^2^2^2^2^( BadBadBadBadBadBad μμμμμμ ++++=             (5.5) 
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GDμ ,
NMμ  and BDμ  are membership values for overall performance corresponding to 

linguistic levels Good, Normal, and Bad. The output membership function is shown in 

Fig 5.2.  

 

5.2.4 Fuzzy Fitness after Defuzzification 

Defuzzification is used to obtain a crisp fitness output t by combining the results of 

the above inference process and then computing the “fuzzy centroid” of the area. The 

weighted strengths of all output member functions are multiplied by their respective 

centers of each output membership function as shown in Fig 5.2, and then summed. 

Finally, the resulted sum (area) is divided by the sum of the weighted member 

function strengths and the result is taken as the crisp output: 

 

Fig 5.2 Output fuzzy performance index membership function 

 

 

GoodNormalBad

GoodNormalBad CentreGoodCentreNormalCentreBadFitness
μμμ

μμμ
++

×+×+×
=

___  

                                  (5.6) 
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5.3 Coding Scheme and Control Variables for Evolutionary 

Algorithms 

 

ATR carries out scenario analysis (Section 3.2) in every time window. Whenever a 

conflict is detected, ATR synthesizes a dynamic control vector for a new active 

timetable.  The vector contains the dwell time, coast level, and dispatch interval to be 

adjusted within the time window. 

In the proposed DE and GA optimization, a population is a collection of solutions 

each of which is represented by a chromosome made up of a set of genes. The coding 

of variables has a great impact on search performance. Whilst the most commonly 

used representation in GAs is the binary alphabet {0, 1}.  An integer representation 

[19, 20] is used in both DE and GA in this research because of following reasons: 

 

1). Both the dispatch time and dwell time are varied in steps of 1sec whereas the coast 

level is an integer of 0, 1, or 2.  

2). The use of integer-valued genes can increase the efficiency of the GA as there is 

no need to convert chromosomes to phenotypes before each function evaluation; 

hence, less memory is required as efficient integer internal computer representation 

can be used directly.  

 

In chromosomes, each gene has two attributes, namely: dwell time and coast level, 

except the last gene that is left to the dispatch time included in the working time 

window. The length of the chromosome representation for the train schedule solution 

may vary when the time window slides from one to another.  An example is illustrated 
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in Fig 5.3, which is the chromosome representation of the train schedule solution in 

Fig 3.8.  

 

 

Fig 5.3 Structure of a chromosome for the train schedule solutions 

 
5.4 Implementation of Genetic Algorithm in Online Rescheduling 

 

GA initially begins search with random points in the solution space then 

incrementally generate new points by applying operators. These points are pursued is 

controlled by a probabilistic decision procedure that guides the method into optimal 

regions of the solution space. Fig 5.4 shows the block diagram that applies the GA to 

the on line train rescheduling.  A review of the basic GA is given in [Appendix B]. 
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Fig 5.4 Block diagram of the GA-based method for timetable rescheduling  

 

5.5 Implementation of Differential Evolution in Online Rescheduling 
 

Although GA can achieve better performance than the traditional optimization 

technique for its robustness, reliability, and flexibility in many cases, in some online 

applications GA cannot exploit its own merits fully within strict time constraints 

because of its complicated process of genetic operations. Among all the EAs, DE is 

not only significantly faster at numerical optimization than GA, it is also much more 

likely to find a function’s true global optimum. DE is exceptionally simple in that its 

main search engine can be easily equipped into the applications.  
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Differential Evolution is a parallel direct search method which basically employs the 

difference of two randomly selected parameter vectors as the source of random 

variations for a third parameter vector. The crucial idea behind DE is the scheme for 

generating trial parameter vectors. DE generates new parameter vectors by adding the 

weighted difference vector between two population members to a third member. If the 

resulting vector yields a lower objective function value than a predetermined 

population number, the newly generated vector replaces the vector with which it was 

compared. In addition, the best parameter vector is determined for every generation in 

order to keep track of the progress made during the optimisation process. 

 
The following steps are implemented in DE’s mechanism: 

Step 1 After scenario analysis, a dynamic control vector will form the input 

)...,,( 321 nS SSSP =  for each time window, where iS , the combination of itΔ  

and il  is the possible solution for dwell time and coast level at station i.  

 

Step 2 Generating an initial population 

The initial population is often generated by adding normally distributed random 

deviations to the nominal solution that is the combination of nominal dwell times and 

coast levels for the corresponding stations. A population is described in equation: 

{  G  P ,1 , G  P ,2 , G  P ,3  … G  NPP ,   } 

where NP is the individual’s index number and G is the generation number. 

 

As the individuals of the population, G  P ,1 , G  P ,2  … G  NPP ,  are described in equation:  
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G  P ,1  = {  NS SSS ,13,12,11,1 ...,,   }      

 (5.7) 

G  P ,2  = {  NS SSS ,23,22,21,2 ...,,   }     

 (5.8) 

…… 

G  iP ,  = {  Niiii S SSS ,3,2,1, ...,,   }     

 (5.9) 

…… 

G  NPP ,  = {  NNPNPNPNP S SSS ,3,2,1, ...,,   }     

 (5.10) 

where niiii S SSS ,3,2,1, ...,,  are the solutions (dwell time and coast level) of the thi  

individual and N is the number of stations included in the current time window. 

 

Step 3 Calculating the fitness value for each individual, finding the fittest individual 

G BestP ,  and saving it. 

Step 4 Creating a new trail vector 

For each vector G  iP , , i=0, 1, 2, …, NP-1, a new vector 1, +G  iV  is generated according 

to following mutation scheme: 

)()( ,,,2,1,1, G iG BestG rG rG iG  i PPPPFPV −×+−×+=+ λ            (5.11) 

The integer 1r  and 2r  are chosen randomly over [0, NP-1]. F is a real and constant 

factor, which controls the amplification of the differential variation )( ,2,1 G rG r PP − . λ  

is to provide a mean to enhance the greediness of the scheme by incorporating the 

current best vector G BestP , . 
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Step 5 Determining the new vector for the next generation 

Step 5.1 Recombination 

To increase the diversity of the new parameter vectors, discrete recombination is 

introduced, the vector T
N u ..., u uu ),,( 21=  

with             
⎩
⎨
⎧ >+<>+<>=<

=                                                              otherwise                 P
1-Ln 1n nj for                          V

u
jGi

NNNj

)(
,....,,

,

                             (5.12) 

 

The starting index n is a randomly chosen integer from the interval [0, N-1]. The 

integer L is drawn from the interval [0, N-1] with the probability .)()Pr( vCRvL ==  

]1,0[∈CR is the crossover probability. The random decisions for both n and L are 

made anew for each trail vector, so a certain sequence of the vector elements of u  are 

identical to elements of 1, +G  iV , and the other elements of u  acquire the original 

values of G  iP ,  

Step 5.2 Selection 

In order to decide whether the new vector u  shall become a population member of 

generation G+1, it will compete against one population member G  iP , . If vector u  

yields a higher fitness value than G  iP , , then 1, +G  iP  is set to u ; otherwise, the old value 

G  iP ,  is retained. 

Step 6 Repeating steps 4 and 5 for all individuals in this generation and finding the 

one with highest fitness value. 

Step 7 Repeating steps 4, 5 and 6 until a certain number of iterations have been 

executed or the time window comes to its end, the process will be terminated and the 

fittest solution from the current generation will be preserved.  
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5.6 Selection of Control Parameters  

 
There have been a variety of studies on determining the best control parameter values 

for EAs to optimally balance exploration and exploitation. If crossover and mutation 

rates are very high, much of the space will be explored, but there is a high probability 

of losing good solutions and failing to exploit existing schema.  

 

Operational Performances GA  DE 

Population size 30 30 

Coding Type Integer  Integer  

Roulette wheel λ :Linear decrease 

from 0.1 to 0 

Crossover (single point, 0.8) F :Linear decrease 

from 0.35 to 0 

 

 

Selection and 

Reproduction mechanisms 

Mutation rate  

Linear decrease from 0.01 to 0) 

 

Crossover rate:1 

 
Table 5.1 Control parameters for GA and DE 

 

Simple forms of dynamic tuning on control parameters were used in the two EAs 

because of its simplicity and fast implementation on real time system. This variation 

allows for a large exploration of the search space at the initial stage (global 

exploration) and a faster convergence after sufficient iterations (local fine tuning).  

 

In order to be accepted as a reliable optimization technique in the industry, EAs under 

discussion need to demonstrate reliable performance within a given number of 

generations with the selected parameters including population size, mutation and 

crossover rate. In the process of selecting the optimal population size, 20 trial runs of 
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simulations were performed for each population size in a range from 10 to 80 (in steps 

of 10) with termination condition of 800 generations. The results recorded from each 

population size were the average of the best fitness value and the average time (the 

number of generation) at which it reaches the best fitness. The result shows that with a 

population size of 30 and above, the fitness value achieved from EAs averages at 

approximately 0.750 without any significant improvement with larger population 

sizes. However, the larger the population size is, the more time consuming the 

algorithm would be. Hence, a population size of 30 was selected as it can achieve 

satisfactory fitness value within time constraints.   

 

Further trial simulations were run for the selection of initial value of mutation and 

crossover rate for GA or initial value of λ  and F  for DE. Each simulation was 

performed using different parameter values.  For GA, a mutation rate was chosen 

from interval [0.001, 0.1] and a crossover rate was chosen from interval [0.1, 1]. For 

DE, λ  was chosen from interval [0.5, 1] and F  was chosen from interval [0.1, 1]. 

The simulation results yielded an array of fitness levels for each combination of 

parameters.  Finally the optimum initial values that presented the highest fitness levels 

as indicated in Table 5.1 were selected for all simulations in this thesis. 

 

Another important control parameter for the online optimization is the time window 

size. As discussed, starting from an active timetable, ATR derives a series of control 

variables from the timing and other operational states of monitored trains within each 

time window, typically set at 80secs after many tests for striking a balance between 

computation efficiency and optimisation effort. Before comparing the results of the 

two algorithms, the selection of the length of time window needs to be explained first. 
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The experimental tests are conducted under DE with control parameters listed in 

Table 5.1. 

 

Table 5.2 shows the performances of the ATR under various time window lengths. 

The selected time window should have three features: 1). The higher the number of 

trains whose arriving times are within the selected window, the higher will be the 

quality of optimization. 2) Evolutionary optimization done within the time constraints 

could get the nearest result to the optimal one, which largely depends on the selection 

of algorithms and the performance of computer in use.  3) The maximum time-

window length is limited by the capacity of information to be monitored promptly.  

 

The optimal fitness is the fitness value to which EAs converge without a time 

constraint. Average fitness value is the average fitness for a number of experiments 

that are conducted within a specific time constraint. From the Table 5.2, the maximum 

number of operational parameters derived from the 80sec time window could reach 

22. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 5.2 Choice of best look-ahead control window 

74.8 79.6 88.9 90.8 93.3 93.8 97.9 100 100 Percentage 
(%) 

0.720 0.756 0.789 0.758 0.824 0.858 0.846 0.842 0.723 
  Optimal 

0.539   0.602 0.702 0.689 0.769 0.805 0.828 0.842 0.723 Average  
fitness value 

30 26 22 20 18 15 11 8 6 Maximum No. 
of parameters 

100 90 80 70 60 50 40 30 20 Time windows 
(s) 
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The average fitness value is also satisfactory, 88.9% to the optimal fitness. To keep 

the DSS updated with real time operational information, 80sec would be an 

appropriate time span according to experimental experiences. Therefore, the proposed 

ATR adopted 80sec as the length of the time window on which the rest of 

experiments were conducted.  
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CHAPTER 6 

OPTIMIZATION RESULTS FOR ONLINE TRAIN 

RESCHEDULING AND CONFLICT RESOLUTION OF MASS 

RAPID TRANSIT SYSTEM 

 

This chapter documents the simulation test of the ATR online rescheduling 

algorithms. The optimization results of two evolutionary algorithms, GA and DE, 

which are applied in ATR, are compared against each other in terms of convergence 

pattern and overall system performances improvement. The robustness and efficiency 

of the proposed on-line rescheduling strategy under disturbances are validated through 

six case studies. 
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6.1 Introduction 

 

Simulations are conducted on the Intel Pentium IV 2.5GMHZ, 512 RAM computer 

using the ‘Automatic Train Regulator’ (ATR) simulation package to investigate the 

performance of railway operation on the Singapore MRT East-West Line (EWL) from 

Boon Lay (BL) to Changi Airport (CA), with a total of 29 stations accommodating 30 

trains operating with or without automatic train regulation in various scenarios. In 

Section 6.2.1, two evolutionary algorithms, DE and GA, are implemented for 

comparison in the DSS of the ATR with 8 conflicts involving headway encroachment, 

to test the effectiveness and efficiency of the proposed online rescheduling strategy 

under disturbance.  Section 6.2.2 presents 6 case studies involving sudden increases in 

passenger flows. The control parameters that govern the performance of the GA- and 

DE- algorithms are presented in the Table 5.1. In sections 6.3 and 6.4, four case 

studies are performed using the preferred evolutionary algorithm to test the robustness 

of ATR in preventing the system from breakdown under sharp disturbances. 

 

6.2 Study Cases and Test Situations  
 

In all case studies, pre-scheduling is performed to simulate the early-hour operation of 

MRT system by starting trains from terminal stations and running them according to a 

pre-defined off-peak timetable. After reaching the steady state, passenger flows at the 

trains and platforms remain unchanged before the next change in running condition, 

which can take the form of headway encroachment due to run-time delay of certain 

train, distributed increases in passenger flow at all stations (peak conditions 1 and 2), 

or sharp passenger rise at specific station. Data of these running conditions are 
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provided in Appendix C.  With either change in running condition, ATR fine-tunes 

the predefined timetable.  ATR divides the study time period into a series of time 

windows, within which potential conflicts are detected and resolved with near-optimal 

performance. The online rescheduling algorithm in the DSS is triggered as soon as 

any potential conflict is detected.  A time window having a potential conflict is called 

a critical time window.  In a critical time window, the active timetable is analyzed 

along with the current state of the railway (regularity, congestion or energy 

consumption degree etc.) in order to generate a solution with satisfactory overall 

performance.  

 

6.3 Comparison of Results of Two Evolutionary Algorithms  
 

6.3.1 Resolution of Train Headway Encroachment 

Table 6.1 compares the performance of the DE-, GA- and RS (random search)-based 

optimizations for resolving the eight (8) conflicts created within a critical time 

window.  As detailed in Appendix C, Conflicts 1-6 arise from headway encroachment 

of trains traveling between two stations iS  and 1+iS  (equations 3.9 and 3.10), and can 

potentially cause head-tail collision.  Conflicts 7 and 8 arise from headway 

encroachment at the terminal (equations 3.11-3.13). The second and third columns in 

Table 6.1 define the initial location and time of occurrence of these conflicts. The RS 

algorithm is added in Table 6.1 as a reference of comparison. It shows that both GA 

and DE always achieve the better solution than RS, which reflects their intelligence in 

searching for the optimal solution. Results clearly favor the DE for achieving the best 

solution after optimization within 80sec operational time window. The calculation the 

fitness value of individual solutions is described in the Section 5.2. 
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Fitness Value 
( DE ) 

Fitness Value 
( GA ) 

Conflict No. 
Between 

 stations 

Time of 
Occurrence (s) Within 80secs After 

convergence
Within 80 

seconds 

After 
convergence 

Fitness Value
( RS ) 

1 S5↔S6 1530 0.801 0.858 0.732 0.858 0.415 

2 S6↔S7 1737 0.776 0.776 0.731 0.776 0.523 

3 S9↔S10 2055 0.495 0.684 0.486 0.681 0.433 

4 S8↔S9 2407 0.689 0.798 0.543 0.794 0.321 

5 S4↔S5 2806 0.884 0.917 0.661 0.917 0.316 

6 S8↔S9 3659 0.928 0.958 0.743 0.956 0.621 

7 Terminal area 4022 0.824 0.854 0.712 0.854 0.516 

8 Terminal area 4159 0.734 0.852 0.545 0.845 0.478 

 
                Table 6.1 Comparison of fitness values for DE, GA and RS  
 

Figures 6.1-6.3 illustrate the convergence patterns of the DE and GA algorithm for the 

2nd, 5th, and 7th conflicts as in Table 6.1. The best fitness in each generation is 

captured in these figures.  Convergence is assumed when the variation in the best 

fitness is less than 0.01% within the first 300 generations.  The calculation will 

however be terminated after 1000 generations.    

 

From Figs 6.1- 6.3, both GA and DE converge quickly during the early generations, 

and smoothly after about 120 generations.  Though both algorithms converge to the 

same values after about 750 generations, GA performs inferiorly to DE.  The latter 

takes 7.5 minutes in average to converge, whereas the former takes 9 minutes. Both 

algorithms have taken more the size of each time window (80secs) to converge before 

entering the next time window.  Both algorithms are therefore not fast enough for on-
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line optimization. DE provides in general better fitness values after a computation 

time of 80ses.    

 

Fig 6.1 Convergence pattern of GA and DE optimization results for resolving conflict 2 

 

 
Fig 6.2 Convergence pattern of GA and DE optimization results for resolving conflict 5 
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Fig 6.3 Convergence pattern of GA and DE optimization result for resolving conflict 7 

 

In addition to better computational performance as above, DE also enjoys being 

simpler than GA.  Other reasons for favoring DE are: 

 

1) In DE, selection is done after mutation and crossover. So DE does not need the 

elitism operator as widely used in GA in order to maintain the fittest in each 

generation. The fittest candidate automatically survives in the subsequent 

generation. When a certain number of iterations have been executed or the time 

window comes to its end, the process will be terminated and the fittest solution 

will be preserved from the current generation.  

2) For each crossover and mutation, GA most commonly uses three kinds of crossover 

namely: single point, two-point, template crossover with a certain probability 

determined by crossover rate. Two children are born at a time. DE, on the other 
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hand, adopts uniform crossover. Less than one child is born each time, as the child 

whose fitness is lower than its parent may be aborted. 

3) The GA employs randomly bit flipping in the procedure of mutation, while the DE 

algorithm adds a scaled differential vector to the target solution. The later is the 

more convenient source of zero mean Gaussian noise used in the EA as a 

mutation operator. 

 

6.3.2 Performance of ATR under Different Passenger Flows 

Table 6.2 presents the 6 cases of increases in passenger flows, whose flow rates are 

provided in Appendix C.   

 
Case Is DE-based ATR scheme 

incorporated? 
Prescheduling

(off peak) 
Passenger flow data 
used (duration time) 

 
1 Yes 0 - 15 min. Peak 1(15-45 min) 

2 No 0 - 15 min. Peak 1( 15-45 min) 

3 No 0 - 35 min. Peak 2 (35-60 min) 

4 Yes 0 - 35 min. Peak 2 (35-60 min) 

5 No   0-28min. Sharp Passenger Rise at 
Specific Station  

(28-60 min) 
6 Yes   0-28min  Sharp Passenger Rise at 

Specific Station 
(28-60 min) 

 
Table 6.2 Summary of study cases of increases in passenger flows 

 

ATR is applied with either GA or DE for a study period of 4800 seconds after 

prescheduling under Peak 1. As seen in Table 6.3, both GA and DE have improved 

over the performance indices by appropriately degrading train regularity, as compared 

with the case of no regulation.  Both train and platform congestion levels have 
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consistently been moved closer to the desired operating levels with the overall energy 

consumption reduced.   

 

Operational Performances Without 

ATR 

Optimization 

With GA-

based ATR 

Optimization  

With DE-

based ATR 

Optimization 

Average delay per train (second) 0 55 52 

Energy consumption (kwh) 7620        6782 6798 

Maximum platform congestion 520 423 406 

Maximum train congestion 1480 1270 1256 

Average platform congestion 

performance index 

0.424 0.602 0.605 

Average train congestion 

performance index 

0.621 0.788 0.782 

 
Table 6.3 Summary and comparison of operational performances for ATR without 

optimization, with GA-based or DE-based optimization under Peak 1 
 

Figs 6.4 – 6.7 show the comparison between the fuzzy performance indices before 

and after GA- and DE-based ATR optimization. The simulation results from the 

previous Fuzzy-control based ATR [5] are illustrated together with GA- and DE-

based ATR to show the improvement of the proposed EA-based algorithms.  The 

Fuzzy control-based ATR employs a dwell time and dispatch frequency controller in 

local stations to determine the optimal schedules for train dwell time and dispatch 

intervals for individual trains based on the four performance indices.  
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Fig 6.4 Performance index of regularity of 30 trains 

 

 

                          Fig 6.5 Performance index of energy consumption for 30 trains 
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Fig 6.6 Average performance of train congestion for 30 trains 

 

 

Fig 6.7 Average performance index of platform congestion for 29 platforms 

 

Figure 6.4 shows average performance index of regularity for trains that presents the 

degree to which the trains deviate from their predefined schedule.  The first train 

always gains better regularity performance than the subsequent ones because the 
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deviation from the predefined schedule accumulates from every train to the next train.  

Figure 6.5 shows performance indices of the energy consumption for 30 trains after 

one journey between two depots.  Figure 6.6 and Fig 6.7 shows average performance 

indices of congestion level in 30 trains and 29 platforms respectively.  

 

Results show clearly that in all three optimization methods performance index of 

regularity is degraded to achieve improvement over the other three performance 

indices: energy consumption, train congestion and platform congestion.  However, 

since the fuzzy control-based ATR locally optimize the individual train without 

considering inter-train parameter coupling, the performance improvement made by 

the previous fuzzy-control method as shown in Figures 6.4-6.7 is significantly less 

than the ones made by the GA and DE based ATR, which take into account the whole 

line and optimize operational parameters of the various trains at the same time.  

Results also show that both DE and GA based ATR reach the same level of 

effectiveness in improving energy cost and congestion. As DE is preferred to GA for 

optimizing the ATR (see Section 6.2.1), four case studies (cases 3-6 in Table 6.2) are 

simulated in the following sections to validate the robustness of the proposed on-line 

rescheduling strategy.  

 

6.4 Performance of the On-line Rescheduling Strategy after Sharp 

Rise in Overall Passenger Demand 

 

After off-peak prescheduling (Figs. 3.1-3.5), Peak 2 (Appendix C) is applied in the 

35th minute causing huge surges in passenger flows as below.  
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6.4.1 Performance of Mass Rapid Transit system without DE-optimized ATR 

Control 

Using ATR without DE-based train rescheduling, trains are dispatched according to 

the pre-defined timetable from terminal station at fixed 180-second intervals.  

Although being adequate for prescheduling, the 180-second time interval is seen to be 

unsuitable to Peak 2. Among the four performance indices, train congestion and 

platform congestion are most severely affected as shown in Fig 6.8 and 6.9.  

 

 

 

Fig 6.8 Platform congestion after a rise of passenger load across the network in the 
35th min with no DE-optimized ATR control 
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Fig 6.9 Train congestion after a rise of passenger load across the network with no DE-
optimized ATR control 

 

Plots (a) and (b) in Fig. 6.8 represent the passenger congestion level at the most 

congested station and the average platform congestion for the whole MRT line. Fig 

6.9 illustrates the passenger on-board for four successive trains under Peak2, which 

hit the train capacity for part of their journey.  This is clearly not desirable as the 

passenger congestion level in the train builds up.  

 

6.4.2 Performance of Mass Rapid Transit System with DE-optimized ATR 

Control 

DE-optimized ATR fine-tunes the dispatch interval from each terminal station, dwell 

times at immediate stations and coast levels at each inter-station run.  This has 

effectively prevented the rapid buildups in congestion at both platforms (Fig.6.10) and 

trains (Fig.6.11) arising from drastic rises in passenger flow (Peak 2) from the 35th 

minute.  Fig. 6.12 shows the variation in dispatch interval, which has been gradually 

decreased from 180 seconds to 90 seconds.  
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Fig 6.10 Platform congestion after a rise of passenger load across the network with 
DE-optimized ATR 

 

 
 

Fig 6.11 Train congestion after a rise of passenger loads across the network with DE-
optimized ATR Control 
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Fig 6.12 Dispatch interval of trains before and during disturbance across the network 

 

Fig 6.13 indicates the corresponding variations in dwell times at intermediate stations 

showing a well coordinated solution for improving platform and train congestions, 

regularity and energy consumption.  
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Fig 6.13 Dwell times of stations before and during disturbance across the network 
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6.5 Performance of the On-line Rescheduling Strategy after Sharp 

Rise in Passenger Demand at Specific Station  

 
Such scenario can happen in MRT system with large-scale activities, such as 

exhibitions or sports matches, which .is studied by applying a sharp rise in passenger 

demand (7.2 persons per sec) at JUR station at the 28 minutes after a period of off-

peak operation (2.45 persons per sec). The platform congestion levels at JUR station 

without DE-optimization are shown in Fig. 6.14.  The DE-optimized platform 

congestion levels are shown in Fig. 6.15, showing remarkable improvements. 

 

 

Fig 6.14 Number of passengers on JUR station platform during a sudden disturbance 
without DE-based ATR 
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Fig 6.15 Number of passengers on platform of JUR station during a sudden 
disturbance with DE-based ATR 

 
Correspondingly, the DE-optimized dispatch intervals and dwell times are included in 

Figs. 6.16 and 6.17. 
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Fig 6.16 Dispatch interval of trains before and during disturbance at JUR station 
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Fig 6.17 Dwell time of stations before and during disturbance at JUR station 
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS 

 
 

In this chapter, a summary of the work done and the achievements made are given. 

Possible areas of future work are described. 
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7.1 Conclusions  
 
This research project is based on our substantial exposure to the knowledge of 

practical industry operations through our many years collaboration with SMRT. We 

met regularly with engineers and operators from SMRT to learn about the practical 

MRT control systems, especially the software system running on the control 

computers which monitor the key operational variables including speed, energy 

consumption, and passenger flow.  These key operational variables are the basis for 

all train scheduling optimization techniques and have been incorporated into the 

numerical optimization algorithm in this thesis.  In SMRT, various reports of 

operational performances indices were generated for the purpose of monitoring and 

analyzing. The method in which SMRT adjusts the timetable manually to construct 

the daily schedule was introduced and clarified in the discussion meeting.  This 

method originates the idea of using a working timetable as the online optimization 

object in this thesis. SMRT also provided the sampled statistical data such as 

passenger flow data, normal schedule timing and energy consumption on different 

coast levels as the inputs to our simulated railway system. This ensures that the 

simulations closely match real world situations.  From the large dataset available, 

selected frequently recurring cases studies were performed on the ATR simulation 

software to prove the effectiveness of the proposed numerical optimization algorithm 

in the reduction of power consumption, which is the major component of actual 

operational cost. Justification of using the optimization algorithm in this thesis also 

resides in the discussion on limitations and weaknesses of some other optimization 

techniques applied to solve the online train-rescheduling problem. 
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The project objectives have been accomplished with the development of an innovative 

online rescheduling strategy to solve the multiobjective optimization problem for train 

rescheduling. In the process, a comprehensive Automatic Train Regulator has been 

developed to serve as a platform for implementing various control strategies. Two 

Evolutionary Algorithms (EA), Differential Evolution (DE) and Genetic Algorithms 

(GA), have been applied to optimize the online Active Timetable based on a fuzzy 

expert fitness evaluation system. 

 

Simulated tests on ATR have demonstrated the feasibility and effectiveness of the 

proposed online rescheduling strategy for several real-world scenarios.  By optimizing 

the Active Timetable, the MRT system equipped with the DE-based controller has 

shown significant reduction or removal of congestions while maintaining relatively 

low loss in energy efficiency and regularity.  Since safety was another major concern 

in this project, the proposed strategy has included “hard” safety constraints for 

conflict detection and resolution, which have been tested in 8 scenario studies.   

 

The main contributions of this project are as follows: 

1. Multithreaded and object-oriented programming techniques are adopted to simulate 

the MRT system in real time, which makes the system simulated closer to the real life 

system. The simulation of train movement is programmed as a thread while a worker 

thread created for Decision Support System runs in the background to perform 

scenario analysis, conflict resolution and optimisation. The thread communication 

mechanism simulates real-time communications between the trains, the Local Process 

Unit (LPU) and the Operation Control Centre (OCC), which reflects the actual 

communication process in a real-life system. Object-oriented techniques are used in 
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the construction of the ATR to achieve reusability, extendibility, and efficiency for 

future development. The proposed ATR allows the simulation of different scenarios 

and synthesizing of many strategies. 

 

2. In this project, the proposed strategy evaluates the MRT line as a whole to ensure a 

global optimization in the system level unlike the online rescheduling strategies 

applied in the previous works that optimize the individual trains at a time. The Active 

Timetable mechanism is the key to the realization of the new methods. By analyzing 

and optimizing the Active Timetable, potential conflicts are detected and removed 

with a near-optimum solution.  

 

3. The multiobjective optimization problem in this project is solved through the 

combination of EAs and a fuzzy expert evaluation system. To optimize the train 

operations, this method utilizes the excellent performance of EAs with the aid of 

expert experiences, which are mainly represented in terms of sets of fuzzy 

performance indices and a rule-base.  This combination makes the strategy very 

flexible to include new constraints or rules to be introduced for new optimization 

problems.  The simulation results verify the simplicity, effectiveness and efficiency of 

DE over GA for solving the online train rescheduling problems.  

 
7.2 Recommendations for Further Work 
 

In this thesis, the train rescheduling problem was explored on a single-line system, 

which has established a foundation for the extension into a full-fledged multi-track 

MRT system, all track lines are interconnected by several interchange stations.  For 

example, in the current MRT system, the East West line is connected to the North 
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South line at interchange stations: Jurong East, Dhoby Ghuant, City Hall, and Raffles 

Place. Hence, the timetables for the two lines will overlap at these points. This 

situation potentially introduces a challenging new area of research, known as the line-

to-line coordination, for automatic train regulators. This will involve close matching 

between arrival, departure and dwell times for several train as well as coast levels 

around these interchange stations for minimizing the passenger’s time taken to change 

from one MRT line to another, and other objectives of the MRT operation. 
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APPENDIX A: FUZZY LOGIC SYSTEM 
 
A.1 Introduction to Fuzzy Logic  
 

The term "fuzzy logic" emerged in the development of the theory of fuzzy sets by 

Lotfi Zadeh. Fuzzy logic is used in system control and analysis design, because it 

shortens the time for engineering development and sometimes, in the case of highly 

complex systems, is the only way to solve the problem.  

In effect, fuzzy logic may be viewed as a methodology for computing with words 

(linguistic variables) rather than numbers. Although words are inherently less precise 

than numbers, their use is closer to human intuition.  In this project, fuzzy perception 

is an assessment of a physical condition that is not measured with precision, but is 

assigned an intuitive value.  

A.2 Fuzzy Sets 

The very basic notion of a fuzzy system is a fuzzy set. In crisp sets, a given element is 

either wholly included or wholly excluded from the set.  In contrast, fuzzy set is a set 

without a crisp, clearly defined boundary. It contains elements that have varying 

degrees of membership in the set, as the following statement that lays the foundation 

of logic: In the world of fuzzy logic, the truth of any statement becomes only a matter 

of degree. 

 
A.3 Membership Function 
 
The membership function is a graphical representation of the magnitude of 

participation of each input. It associates a weighting with each of the inputs that are 

processed, define functional overlap between inputs, and ultimately determines an 
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output response. The most commonly used membership functions include the 

triangular MF and the trapezoidal MF, which is really a truncated triangular MF. The 

linguistic variables are usually labeled LN, MN, SN, ZE, SP, MP, and LP which 

symbolizes Large Negative, Medium Negative, Small Negative, Zero, Small Positive, 

Medium Positive, and Large Positive respectively. 

 

A.4 Fuzzification 
 
Fuzzification is the process of assigning a degree of truth to statements about the input 

variables via membership functions. The input is always a crisp numerical value 

limited to the universe of discourse of the input variable and the output is a fuzzy 

degree of membership ( always in the interval between 0 and 1 ) corresponding to one 

or more membership functions. Fig A.1 illustrates the process of fuzzification:  

μ

85.0)( 0 =xspμ

22.0)( 0 =xspμ

x

 

Fig A.1 Fuzzification: The point X0  = 8.0 is a member of ZE to a degree of 0.85 and a 

member of SP to a degree of 0.22 

 
A.5 Fuzzy Inference 
 
Approximate reasoning is made based on linguistic variables and their values. Fuzzy 

rules are generated based on previous experience.  The rules combine two or more 

input fuzzy sets, called the antecedents sets. The inputs are combined logically using 

the AND operator to produce output response values for all expected inputs. The 
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active conclusions are then combined into a logical sum for each membership 

function. A firing strength for each output membership function is computed. Due to 

the partial matching attribute of fuzzy control rules and the fact that the preconditions 

of the rules do overlap, usually more than one fuzzy rule will fire at one time. The 

fuzzy reasoning process of Mamdani’s minimum operation that is one of the most 

commonly used fuzzy reasoning methodologies is illustrated in Fig A.2. 

Given:    Rule 1: if X is SP and Y is MN Then Z is SN 

               Rule 2: if X is ZE and Y is LP Then Z is ZE 

 

Fig A.2 Graphical illustration of Mamdani’s minimum operation rule 

 

One method of storing and representing fuzzy rules is through the use of a fuzzy 

associative memory (FAM) matrix. The number of inputs, or antecedents, to the fuzzy 

rules determines the dimension. Three inputs would result in a FAM matrix that looks 

like a 3-dimensional cube. Each FAM matrix entry is an output fuzzy set or linguistic 

variable that is the consequent of the fuzzy rule corresponding to the input variables 

associated with it.  
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A.6 Defuzzification 

The fuzzy outputs for all rules are finally aggregated to one fuzzy set.  To obtain a 

crisp decision from this fuzzy output, we have to defuzzify the fuzzy set. This 

necessary operation produces a crisp value that best represents the aggregate 

membership function obtain from the fuzzy inferencing process. The two most 

common defuzzification methods are the Center-of-Area method (COA) and the 

Center-of –Sum method (COS). The COA method attempts to determine the centroid 

or centre of area of the aggregate MF and assign it as the defuzzified output. The COS 

method is a simplified version of the former and is formally given by: 
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where: 

m :  number of overlapped rules that are fired simultaneously 

iz ,μ : membership value of the output for the i th fired rule 

iz : specific crisp value assigned to each linguistic variable 
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APPENDIX B:  GENETIC ALGORITHM AND DIFFERENTIAL 
EVOLUTION  

 
B.1 The Method of GA 
 
Genetic Algorithms (GAs) are adaptive heuristic search algorithm premised on the 

evolutionary ideas of natural selection and genetic. The basic concept of GAs is 

designed to simulate processes in natural system necessary for evolution, specifically 

those that follow the principles first laid down by Charles Darwin of survival of the 

fittest. As such they represent an intelligent exploitation of a random search within a 

defined search space to solve a problem. 

 

First pioneered by John Holland in the 60s, Genetic Algorithms has been widely 

studied, experimented and applied in many fields in engineering worlds. Not only 

does GAs provide an alternative method to solving problem, it consistently 

outperforms other traditional methods in most of the problems link. Many of the real-

world problems involved finding optimal parameters, which might prove difficult for 

traditional methods but ideal for GAs. The pseudo-code for GA is presented: 

Procedure GA: 

Begin 

 t=0; 

 Initialize Population(t); 

 Evaluate Population(t); 

 While not finished do 

 Begin 

  t=t+1; 

Select P(t) from P(t-1); 

Mate pairs at random; 



                                                               
 

 111

Apply crossover and mutation operators; 

Evaluate each individual's fitness; 

 End 

End 

 

B.1.1 Reproduction 
The production operator involves choosing a number of individuals according to 

fitness that will be used for breeding. The purpose of the reproduction is to give more 

reproductive chances, on the whole, to those individuals that have high fitness values. 

There are many different techniques, which a genetic algorithm can use to select the 

individuals to be copied over into the next generation, such as the tournament 

selection and the roulette wheel selection. In the tournament selection, subgroups of 

individuals are chosen from the larger population, and members of each subgroup 

compete against each other. Only one individual from each subgroup is chosen to 

reproduce. As for the roulette wheel selection, a form of fitness-proportionate 

selection in which the chance of an individual's being selected is proportional to the 

amount by which its fitness is greater or less than its competitors' fitness. 

Conceptually, this can be represented as a game of roulette - each individual gets a 

slice of the wheel, but more fit ones get larger slices than less fit ones. The wheel is 

then spun, and whichever individual "owns" the section on which it lands each time is 

chosen. The roulette wheel selection is adopted in the study. The integer-coded 

chromosomes are used in this project to perform the operations of crossover and 

mutation [19-20]. 
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B.1.2 Crossover 

Crossover is performed upon the selected chromosome. It takes two such strings 

(parents) and exchanges portions of the strings to produce two new strings (children) 

with probability determined by the crossover rate. Each child incorporates 

information from the two parents. The effect of crossover is to produce new 

individuals, which contain genetic material from two parents. There are several 

different crossover operators, and the following two operators are used most 

commonly. 

 

1. Single point crossover. A point of exchange is set at a random location in the two 

individuals' genomes, and one individual contributes all its code from before that 

point and the other contributes all its code from after that point to produce an 

offspring. For example, given two initial strings  

 

A = 25   30 | 38 13    B = 20 14 | 36 19  

 

and the randomly selected cross point indicated between the third and forth gene 

(indicated by the | ). In this case, crossover generate the following two new strings 

 

A’ = 25 30 | 36 19     B’ = 20 14 | 38 13 

 

(2) Two-point crossover. Two distinct cross points along the string are chosen 

uniformly at random. The segments between the two points on these two strings are 

exchanged. For example, consider the two strings: 

C = 25 | 30  38 | 13    D = 20  | 14   36 | 19  
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And the randomly selected two cross points indicate between genes 1 and 2 and 

between genes 3 and 4. In this case, the two-point crossover operator generates the 

following two new strings: 

C’ = 25  | 14  36 |  19   D’ = 20 | 30  38 | 13 

 

B. 1.3 Mutation 

In natural evolution, mutation is a random process, where one gene of a chromosome 

is replaced by another to produce a new genetic structure. In GA, mutation involves a 

change to any particular gene of an individual. Each gene is considered in turn, and is 

considered with probability determined by the mutation rate. The effect of mutation 

on an integer string of 4 genes is illustrated  

 

E = 25   30   38  13 

Then, the following string will be obtained 

E’ = 25  15  38  13   (the 2nd gene is “mutated” to a different value between the upper 

bound and lower bound of the variable) 

 

Mutation can introduce new genetic material into the population. When the values in 

the same bits of all individuals are the same, this value cannot change if only the 

crossover operator is used.  However, mutation operator can change the bit value 

thereby introduce new material. 
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Typical crossover rates are between 0.6 and 0.9. Typical mutation rates are of the 

order one in a hundred to one in a thousand bits. Much higher rates tend to disrupt the 

action of crossover and lead to a more random type of search. 

 
B.2 The Method of Differential Evolution (DE)  
 
Differential evolution is a novel parallel direct search method, which utilizes NP 

(number of population) n-dimensional parameter vectors as the population for each 

generation G for each iteration of the minimization: 

,,GiX  i = 0,1, 2,…, NP-1 

NP is fixed during the minimization process. The initial population is usually 

achieved by generating the required number of individuals using a random number 

generator that uniformly distributes numbers in the desired range. The DE algorithm 

generates new parameter vectors by adding the weighted different vector between two 

population members to a third member. If the resulting vector yields a lower objective 

function value than a predetermined population member, then the newly generated 

vector will replace the old vector. Otherwise, the old vector is retained.  

 

There are several variants of DE algorithms. Among them, Strategy DE/best and 

Strategy DE/rand as well as Strategy DE/rand-to-best are the most promising 

strategies. In the three strategies, the trail vector is generated by following equations 

B 3.1, B3.2, B3.3 respectively. 

 

)( ,2,1,1, G rG rG iG  i PPFPV −×+=+  

)( ,2,1,1, G rG rG bestG  i PPFPV −×+=+  

)()( ,,,2,1,1, G iG BestG rG rG iG  i PPPPFPV −×+−×+=+ λ  
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In equations B2.1 and B3.3, G bestP ,  is the best candidate in each generation for the 

constant dimensioned problem. In equation B3.3, F  is a real and constant factor 

within the range of [0,2], which amplifies the differential, variation )( ,2,1 G rG r PP − . 

λ  controls the greediness of the scheme.  

 
To increase the potential diversity of the perturbed parameter vectors, a crossover 

probability CR is introduced. To this end, the new vector becomes: 

T
N u ..., u uu ),,( 21=  

u is an n-dimensional parameter vector and  

⎩
⎨
⎧ >+<>+<>=<
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                                                             otherwise                 P
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The starting index n is a randomly chosen integer from the interval [0, N-1].  The 

integer L, which denotes the number of parameters that are going to be exchanged, I 

is drawn from the interval [1, n].is drawn from the interval [0, N-1] with the 

probability .)()Pr( vCRvL ==  ]1,0[∈CR is the crossover probability. 
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APPENDIX C:  POTENTIAL CONFLICTING POINTS IN SINGAPORE 

MASS RAPID SYSTEM AND OPERATIONAL DATA FOR 

CASE STUDIES 

 
Appendix C-1: 
 
The Automatic Train Regulator is built based on the Singapore MRT network as its 

simulation platform. The track layout of MRT systems determines the natures of 

potential conflicts, which provide relevant information for detection and resolution. 

Hence, for the knowledge of the conflicts, it is necessary to understand the 

infrastructure of SMRT.   The Singapore MRT system consists of the following 

tracks: 

 

1. North track 

2. South track 

3. East track 

4. West Track 

5. North-East Track (North-bound) 

6. North-East Track (South-bound) 

7. Changi (East-bound) 

8. Changi (West-bound) 

9. Marina (South-bound) 

10. Marina (North-bound) 

 

The overview of the MRT network is illustrated in the Fig C.1: 
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Fig C.1: Overview of the MRT Network 

 

Three types of conflicts may occur at specific spots distributed in the existing network 

of SMRTS: passing conflict, junction conflict, and terminal conflict. 

 

Passing conflict 

Passing conflict arises whenever, on the basis of their timings, two trains, running on 

the same track, in the same direction, are expected to arrive in a station on an inverse 

order with respect to their departure from the previous station. Practically, this means 

that a train is leaving a station before another train with a time margin not sufficient to 

reach the next station before the latter with the safety time interval. Passing conflict 

arises if one of the following conditions (a), (b), or (c) holds: 

1a  and 2a  represent the time instants in which the train can arrive at station 1+is ; 

1d  and 2d  represent the time instants in which the train can depart at station is ; 

st  represents the safety time interval between two consecutive arrivals and two 

consecutive departures. 
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1a 2a
1+is

is
1d 2d

1+is

is

1a 2a

1d 2d  

1+is

is

2a 1a

1d 2d  

             (a)                                               (b)                                                (c) 

Fig C.2 Three conditions of passing conflict 

 

(a) the time interval between the time instants associated with 1a  and 2a  is smaller 

than st , 1d < 2d  and stdd <Δ ),( 21 , see Fig A3-2 (a); 

(b) the time interval between the time instants associated with 1d  and 2d is smaller 

than st , 1a < 2a  and staa <Δ ),( 21 , see Fig A3-2 (b); 

 (c) the two line 1a 1d  and 2a 2d  cross each other, see Fig A3-2 (c); 

 

Terminal conflict 

Terminal conflict occurs due to common route, where 2 trains cannot occupy the same 

route at the same time. As illustrated in Fig C.3, E1, E2, W3, W4 are four conflicting 

points along the tracks within the terminal area illustrated in Fig 8.  

For train t1 departing from Terminal to east, there are two possible routes:   

a) EastlineEEPlatform >−>−>− 211 : the train departs from platform 1, passes E1, E2, 

and then runs along the rest of east line; 

b): EastlineEWWPlatform >−>−>−>− 2432 : the train departs from platform2, 

passes W3,  W4,  through a branch to E2, and then  runs along the rest of east line; 

. 
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Similarly, for train t2 arriving at Terminal from east to west, there are two optional 

pathings: 

c): 234 PlatformWWWestline >−>−>−  

d): 1134 PlatformEWWWestline >−>−>−>−  

The trains are driven according to scheduled routes and timings in order to avoid the 

potential conflicts. This kind of conflict occurs in most terminal stations, like Marina 

Bay which is highlighted with circle (a) in Fig C.3, as well as Boonlay, Pasir Ris, etc. 

 

 

 

 

 

 

 

 

Fig C.3 Conflict scenario arising at terminal stations 

       

Junction conflicts  

Junction conflict arises as 2 trains cannot occupy the same station platform at the 

same time. It occurs at some interchange station like Jurong East highlighted in Fig 

C.1 with circle (b), where one platform needs to be shared by trains. As illustrated in 

Fig C.4, the trains from North track dwell on the platform 2 and then depart from it. 

Hence, the competition for track of platform 2 between the dwelling train t1 and the 

incoming train t2 create the potential conflicts for schedulers to resolve.  
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Fig C.4 Conflict scenario arising at Jurong East interchange 

 

In this research, the former two types of conflicts which exist in the Eastwest line are 

discussed. The conditions of conflicts are formulated into the corresponding 

constraints for conflict detection and resolution.  
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Appendix C-2 
 
Table A1 provide the study data for this thesis on passenger-flow rates at stations 

during the running condition Off peak, Peak 1 and Peak 2.  

 
Station_name Passenger rate 

(off-peak) 
Passenger rate 

(Peak 1) 
Passenger rate 

(peak 2) 

BNL 0.60 0.72 1.04 
LKS 1.42 1.70 2.30 
CNG 0.80 0.96 1.52 
JUR 2.45 2.95 4.90 
CLE 4.00 4.80 5.16 
SGP 2.58 3.09 4.32 
BNV 6.40 7.04 8.12 
COM 3.47 4.06 5.34 
QUE 3.15 3.78 6.36 
RDH 1.23 1.47 2.56 
TIB 1.75 2.10 3.45 
OTP 2.30 2.76 3.21 
TPG 2.76 3.13 5.13 
RFP 2.60 3.01 5.36 
CTH 1.56 1.87 3.12 
BGS 1.20 1.44 2.23 
LVR 0.78 0.91 1.16 
KAL 1.66 1.98 2.35 
ALJ 0.70 0.84 1.03 
PYL 1.20 1.44 2.21 
EUN 1.34 1.61 2.45 
KEM 1.56 1.87 3.30 
BDK 1.46 1.75 3.29 
PSR 1.08 1.30 1.16 
TAM 2.78 3.33 5.38 
SIM 1.76 2.10 3.53 
TNM 1.03 1.21 2.11 
EXP         0.50 0.62 1.06 
CHA 0 0 0 

 
 

Table A.1 Rate of passenger flow of Off peak, Peak1, and Peak 2 
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APPENDIX D:  SMRT COST FUNCTIONS 

 

One basic objective of the Singapore MRT system is to operate the railway at low 

cost while maintaining maximum passenger satisfaction.  The cost of running the 

MRT system is affected by factors like the electrical energy usage, the salary paid to 

the crews and the maintenance costs of tracks and other facilities etc.  

 

The MRT has a set of cost functions that are based on the following set of idea in 

mind: 

1. Total Cost = fixed cost + variable cost 

   2. Fixed cost = rolling stock + infrastructure + track maintenance + rolling stock 

maintenance + system maintenance + station operations + overhead 

3. Variable cost = Power consumption (Traction energy + Air-conditioning) + Train 

Ops manpower (TO salary + shift allowances + transport allowances). 

 

The cost functions provided by SMRT are listed below: 

1. Total Driver Cost 
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3. Cost of Shift Allowance 
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4. Cost of electrical energy for air-conditioning 
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5. Cost of electrical energy for traction power 
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In summary: 

Total variable cost of train service per day, 

$X (variable components only) = $TO + $ EG + $RS + $TM 

where, 

$TO = total cost of train operations manpower per day 

$EG = total cost of energy consumption per day 

$RS = total variable cost of rolling stock maintenance per day 

$TM = total variable cost of track maintenance per day 

and 

$TO = $TD + $SA + $TA 

$TD = Train driver cost =  
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(No. of train in each time period + No. of double-end duty + No. of spare duty) * 

Cover factor * Salary of train driver (a function of cycle time & headway) 

$SA = Cost of shift allowance (a function of no. of off-peak train) 

$TA = Cost of transport allowance (a function of no. of off-peak train) 

$EG = $AC + $TC 

$AC = Cost of electrical energy for air-conditioning (a function of runtime and 

headway) 

$TC = Cost of electrical energy for traction power (a function of train KM) 

$TM = Indirect cost + Direct variable cost (a function of headway) 

NB: The direct variable costs are small when compared to the indirect cost 

 

In the above equations, dt  denotes dwell time, rt denotes run time, lt  denotes 

layover time, and h denotes headway. 
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