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Summary 

 

Glass-ionomer cements (GICs) are biocompatible, anticariogenic and can 

chemically adhere to tooth structure. These positive characteristics account for their 

popularity in dentistry. The clinical performance of GIC restoratives, however, varies 

in different patients. Intra-oral environment of patients is complex and consists of 

mechanical, biological, thermal and chemical factors. GICs, being hydrophilic and 

salt-based, are susceptible to degradation by the intra-oral chemical environment. 

While GICs are vulnerable to acids, some components e.g. calcium and phosphate in 

the oral environment may have positive effects on GICs. Little information is 

currently available on the co-effects of pH and inorganic constitutes of saliva on GICs. 

This new knowledge will lead to better understanding of the clinical performance of 

GICs, provide guidance to their clinical use and facilitate development of new 

materials.  

The effects of environmental calcium/phosphate and pH on two highly viscous 

GIC (HVGIC) restoratives were investigated in this study. Results suggest that the 

effects of environmental calcium and phosphate on both calcium and strontium based 

HVGICs are pH dependent. When pH was at 7 and 5, variations in environmental 

calcium and phosphate levels did not significantly affect the hardness, elastic modulus 

and surface structure. However, at pH 3, hardness and elastic modulus of these GICs 

were increased by the addition of environmental phosphate. The improved properties 



 xii

were strongly correlated to a modified surface reaction layer arising from the 

interaction between environmental phosphate and GICs when exposed to acids (pH 

3). 

The structure, compositions and physico-mechanical properties of the surface 

reaction layer were characterized using a series of surface analytic techniques. When 

subjected to higher levels of environmental phosphate, the surface reaction layer was 

thinner and mechanical properties of the surface reaction layer were higher. This layer 

consisted of two distinct zones, an inner degradation zone and an outer phosphate 

complexation zone. The outer zone was closely related to the presence of 

environmental phosphate and may be responsible for the reduction of the inner 

degradation zone. Results of ion release from GICs suggest that the phosphate uptake 

in the outer zone may be the result of ligand exchange between environmental 

phosphate anions and intrinsic carboxyl groups. The results of ion release also 

confirmed the inhibition effect of environmental phosphate on acid degradation of 

GICs.  

Moreover, the clinically related properties of wear resistance and shear strength 

of GICs in acidic conditions were also improved when phosphate was present. 

Although fluoride released by GICs in acidic conditions was slightly decreased by 

environmental phosphate, the fluoride release was kept at a substantial level. The 

findings of the current study suggest that the introduction of local phosphate to GICs 

may result in better clinical performance of glass-ionomer restoratives in vivo. 
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Chapter 1 

Introduction 

 

The use of tooth-colored restorative materials has increased significantly due to 

rising aesthetic demands by patients. Contemporary direct tooth-colored restorative 

materials include glass-ionomer cements (GICs), resin-modified glass-ionomer 

cements (RMGICs), polyacid-modified resin composite (compomer), giomers and 

composite resins. GICs and composite resins possessing distinctive characteristics are 

on the two extreme ends of the continuum of direct tooth-colored restorative materials 

(Figure1-1). 

 

 
 

Figure 1-1 Continuum of direct tooth-colored restorative materials 

GIC 

RMGIC 

Giomer 

Compomer 

Composite Resin

Acid-base reaction 

Resin 
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An ideal restorative material should have comparable properties to tooth tissue. 

No existing materials, however, completely fulfill this criterion. GIC sets by an 

acid-base reaction and has the advantages of fluoride release, chemical adhesion with 

tooth structure and excellent biocompatibility. Composite resin, on the other hand, is 

cured by free radical addition polymerization and has the merits of excellent 

aesthetics and good handling property. Modern hybrid direct tooth-colored restorative 

materials have been developed based on GIC and/or composite technique to 

incorporate the advantages of both materials. 

Since GICs were first reported by Wilson and Kent (1972), both polyacid liquid 

and basic glass powder have been continuously modified to achieve optimum 

mechanical, aesthetic and handling properties. Alterations in powder and liquid 

formulation or powder to liquid ratio result in GICs with a variety of 

physico-mechanical properties and clinical applications.  

Based on their clinical applications, GICs can be categorized using the following 

classifications (Wilson and Mclean, 1988a): 

 

Type I Luting and bonding cement 

Type II Restorative cement 

 (a) aesthetic 

 (b) reinforced 

Type III Lining or base cements 



Chapter 1 

 3

Luting and bonding GICs are composed of finer powder particles at a low 

powder:liquid ratio to achieve an optimum film thickness. Lining GIC has similar 

powder to liquid ratio as luting GIC, while base GIC consists of higher percentage of 

glass powder for base purpose. Restorative GIC has the highest content of glass 

particles compared to other types of GICs. Amongest GIC restoratives, 

metal-reinforced GIC (MRGIC) has been developed by adding metals or sintering 

silver with glass particles. With increased physical properties, MRGIC is, however, 

lack of aesthetic properties and wear resistance. In addition, highly viscous GIC 

(HVGIC) with rapid set and great physical properties has been subjected to occlusal 

defects. Regarding HVGICs, excess calcium ions are removed from the surface of 

glass particles and higher powder to liquid ratio is adopted (Mount, 2002). With 

improved physical and handling properties, HVGICs are also named “packable” GIC.  

According to their setting reactions, GICs can also be classified as conventional 

GICs and resin-modified GICs (RMGICs). Conventional GIC consists of 

polycarboxylic acids and basic fluoroaluminosilicate glass particles. It sets by an 

acid-base reaction between the polyacids and glass particles, which is capable of fully 

curing in the dark. RMGIC is composed of water-soluble resin monomers in addition 

to conventional polycarboxylic acids and glass particles. This type of GIC is hardened 

not only by acid-base reaction but also by free radical addition polymerization of resin 

monomers. Both conventional and resin-modified GICs can be used as luting, 

bonding, lining, base and restorative materials. 
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1.1 Clinical performance of glass-ionomer restoratives  

GICs are commonly used in deciduous teeth as alternatives to dental amalgam. In 

permanent teeth, they are mainly employed in cervical lesions, atraumatic restorative 

technique (ART), tunnel and sandwich techniques due to their excellent bonding and 

moderate mechanical properties. In addition, GICs are also indicated in patients with 

high caries risk, such as patients with xerostomia, taking advantage of the cariostatic 

potential of fluoride release from glass-ionomer materials. 

 

1.1.1 Longevity of glass-ionomer restoratives in vivo  

Several clinical trials have been conducted on the longevity of GICs over the last 

decade or so. Some clinical trials published in full text since 1991 are summarized in 

Table 1-1. These studies longitudinally observed restorative GICs for at least 2 years. 

Those studies involving non-restorative GICs or specifically recruiting subjects with 

high risk of caries were excluded. It can be seen that longevity of glass-ionomer 

restoratives varied widely between different clinical surveys. Like other dental 

restoratives, the longevity of glass-ionomer restoratives is influenced by operator, 

material and patient factors (Manhart et al., 2004).  

a. Operator effect 

GICs are prepared immediately before insertion in cavities and are fragile for 

some time after hardening. Taifour et al. (2002) examined glass-ionomer restoratives 
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Table 1-1 Longevity of glass-ionomer restoratives 

Authors Observation 
Period 
(years) 

Black
Class

Restorative Materials Sampl
e 

Size 

Survival 
Rate 

Survival criteria 

Yu et al. (2004) 2 I# 
II# 
I# 
II# 

Fuji IX GP (HVGIC, GC, Japan) 
Fuji IX GP (HVGIC, GC, Japan) 
KetacMolar (HVGIC, ESPE, Germany) 
KetacMolar (HVGIC, ESPE, Germany) 

20 a 
15 a 
17 a 
20 a 

89.2% 
49.1% 
93.8% 
55.0% 

Present, good or marginal defect less than 
0.5mm 

Mandari et al. 
(2003,2001) 

6 
2 

I# Fuji II (GIC, GC, Japan) 177 b 
212b 

72% 
96% 

Perfect or satisfied marginal adaption and 
anatomic form without secdonary caries+ 

Gao et al.  
(2003) 

2.5 I# Fuji IX GP (HVGIC, GC, Japan) 
KetacMolar (HVGIC, ESPE, Germany) 

12b 
17 b 

92% 
88% 

Retention 

Mallow et al. 
(1998) 

3 I# Fuji II (GIC, GC, Japan) 39b 59% Present, good or marginal defect less than 
0.5mm 

Hubel and Mejare
(2003) 

3 
 

II* Fuji II (GIC, GC, Japan) 
Vitremer (RMGIC, 3M, USA) 

62a 
53a 

81% 
94% 

Perfect or satisfied marginal adaption and 
anatomic form without secdonary caries+ 

Espelid et al. 
(1999) 

3 II* Vitremer (RMGIC, 3M, USA) 
KetacSilver (MRGIC, ESPE, Germany) 

49a 

49a 
98% 
73% 

Perfect or satisfied marginal adaption and 
anatomic form without secdonary caries+ 

Qvist et al. (1997) 3 
8 

I/II* 
 

KetacFil (GIC, ESPE, Germany) 515a 63% 
58% 

Retention (including censored restorations) 

Kilpatrick et al. 
(1995) 

2.5 II* KetacFil (GIC, ESPE, Germany) 
KetacSilver (MRGIC, ESPE, Germany) 

46a 
46a 

77% 
59% 

Perfect or satisfied marginal adaption and 
anatomic form without secdonary caries+ 

Ostlund et al. 
(1992) 

3 II* ChemFil (GIC, Dentsply, USA) 25a 40% Perfect or satisfied marginal adaption and 
anatomic form without secdonary caries+ 
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Table 1-1 (Continued) 

Authors Observation 
Period 
(years) 

Black
Class

Restorative Materials Sample
Size 

Survival 
Rate 

Survival criteria 

Welbury et al. 
(1991) 

5 II* KetacFil (GIC, ESPE, Germany) 119a 67% Perfect or satisfied marginal adaption and 
anatomic form without secdonary caries+ 

Franco et al. (2006) 5 V Vitremer (RMGIC, 3M, USA) 28b 96.4% Retention 
Onal and Pamir 
(2005) 

2 V Vitremer (RMGIC, 3M, USA) 24a 100% Retention 

Brackett et al. 
(2003, 1999) 

2 V Fuji II LC (RMGIC, GC, Japan) 
KetacFil (GIC, ESPE, Germany) 
PhotacFil (RMGIC, ESPE, Germany) 

37 a 
34a 
34 a 

96% 
93% 
93% 

Retention 

Loguercio et al. 
(2003) 

5 V Vitremer (RMGIC, 3M, USA) 16a 93% Retention 

Ermis (2002) 2 V Vitremer (RMGIC, 3M, USA) 20a 95% Retention 
Folwaczny et al. 
(2001) 

3 V Fuji II LC (RMGIC, GC, Japan) 
PhotacFil (RMGIC, ESPE, Germany) 

51a 
31a 

96% 
90% 

Retention 

Neo and Chew 
(1996) 

3 V KetacFil (GIC, ESPE, Germany) 50a 96% Retention 

Powell et al. (1995) 3 V KetacFil (GIC, ESPE, Germany) 37b 97.3% Retention 
#ART restoration; *Restorations in primary teeth; aNumber at start; bNumber at final recall; +Modified USPHS Ryge criteria  

GIC: Conventional GIC; RMGIC: Resin-modified GIC; HVGIC: Highly viscous conventional GIC; MRGIC: Metal-reinforced GIC 

 

http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Onal+B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&itool=pubmed_Abstract&term=%22Pamir+T%22%5BAuthor%5D
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manipulated and placed by 8 operators and found a significant difference in survival 

rate of GIC restorations between different operators after 3 years. In another study on 

GICs handled by general practitioners, although proper powder to liquid ratio for 

preparation was indicated by manufacturers, GICs were quite often mixed in a much 

lower powder to liquid ratio and may have less-than optimum physical properties 

(Billington et al., 1990). 

To minimize the operator effect, manufacturers introduced GIC in capsulated 

form. The capsulated materials are standardized with fixed powder to liquid ratio and 

mixed by shaking or rotating machines ensuring optimum properties (Nomoto et al., 

2004). Meantime, light-cured and fast-set GICs of quick initial set were also 

developed. This leads to less sensitivity to early moisture contamination and therefore 

optimum properties of GICs. In addition, well-informed instructions for material 

usage reduce technique difference between experienced practitioners and 

inexperienced ones. Application of surface coating on GICs is generally employed to 

overcome early moisture sensitivity and dehydration of glass-ionomer restoratives 

(Mount, 1999). 

b. Material type 

Physico-mechanical properties of GICs vary enormously among different types of 

GICs and commercial products. This also accounts for the varied clinical performance 

of glass-ionomer restoratives. Conventional GICs are auto-cured within several 

minutes, while RMGICs are light-initiated and polymerized instantaneously by 
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incorporation of photoinitiator. The additional water-soluble resin monomers bestow 

RMGICs more aesthetic property than conventional ones (Yap et al., 1999). 

Auto-cured HVGICs were developed by stripping excess calcium ions from the 

surface of glass particles. HVGICs have improved mechanical properties via 

modifications of glass particle size, size distribution and glass surface reactivity 

(Young et al., 2004). 

HVGICs were originally developed for atraumatic restorative technique (ART). 

This technique is noted by removal of tooth decay with hand instruments and filling 

cavity with GICs (Frencken et al., 1996). The survival rate of ART restoratives using 

contemporary HVGICs is higher than early conventional GICs as shown in Table 1-1. 

However, Yu et al. (2004) reported that ART using HVGICs was only suitable for 

Class I lesion but not for Class II cavity. 

GICs are generally not considered as routine restoratives in stress-bearing 

posterior teeth due to their inadequate strength. In early clinical trials, conventional 

GICs (40%) in Class II cavities of primary teeth had lower success rate compared to 

amalgam (92%) (Ostlund et al., 1992). With improvement of glass-ionomer materials, 

the longevity of conventional GICs in later studies was higher than before. 

Additionally, RMGICs performed better than early conventional GICs in Class II 

restorations and were comparable to amalgam in deciduous teeth (Table 1-1).  

In case of Class V restorations, although the longevity was slightly different 

between various commercial products (Brackett et al., 2003, 1999; Ermis, 2002), 
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GICs generally had satisfactory performance in restoring cervical defects as shown in 

Table 1-1.  

c. Patient effect 

Besides the operator and material factors, patient factor has a significant 

influence on glass-ionomer restoratives. In a clinical survey for causes of restoration 

failure, the ranking of failure factors was in decreasing order of patient, operator and 

material factors (45%, 35% and 20%, respectively) (Maryniuk and Kaplan, 1986). It 

is well-known that the oral environment is complex and varies among individuals. 

The intra-oral mechanical, biological, thermal and chemical environments may 

independently or conjunctly influence the longevity of dental restorations in vivo. 

Pyk and Mejare (1999) evaluated 242 tunnel restorations of reinforced GICs for 

3.5 years and found failure of restorations in molar was four times higher than 

premolar. Mjör and Jokstad (1993) observed that glass-ionomer restoratives in upper 

molar suffered more bulk fracture. In another study of tunnel restorations, patients 

with high caries activity experienced significantly more failure of restorations (Strand 

et al., 1996). When GICs were applied in xerostomic patients, all restorations 

presented shorter survival time (Wood et al., 1993). Moreover, some studies reported 

deterioration of cervical GIC restoratives and dissolution of GIC open-sandwich 

restorations (Abadalla et al., 1997; Van Dijken, 1994; Van Dijken et al., 1999). Pluim 

and Arends (1986) evaluated solubility of GICs in vivo and found some patients had a 

larger material loss than others. In another study, a patient with diabetes taking 
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sugarless diet had minimal degradation of GICs in vivo and very little S. mutans 

counts (Mesu and Reedijk, 1983). The aforementioned studies suggest the oral 

environment may play an important role in the performance of glass-ionomer 

restorative in vivo. 

 

1.1.2 Failure of glass-ionomer restoratives in vivo  

In terms of in vivo evaluation of dental restoratives, the most commonly used 

criterion is the United States Public Health Service (USPHS) system, also named 

Ryge criteria. In most clinical trials, the restoratives are qualitatively judged by 

anatomy form, marginal adaptation, color match, marginal discoloration, surface 

roughness, as well as secondary caries following Ryge criteria (Ryge et al., 1981). 

Clinical studies have shown that bulk fracture and loss of anatomy form are the 

main reasons for the failure of GIC restoratives in general practice (Mjör, 1997; 

Mandari et al., 2001, Burke et al., 2001). For xerostomic patients, the most frequently 

observed failure for glass-ionomers were loss of anatomy, marginal deterioration and 

erosion of material (McComb et al., 2002; Hu et al., 2002).  

Glass-ionomers suffered more bulk fracture when inserted in a large Class I 

cavity. Bulk fracture of Class II restoratives was mostly located at the isthmus 

(Smales et al., 1990; Qvist et al., 1997). These results may be ascribed to the low 

capacity of GICs to undergo strain without fracture. It also indicates that GIC is not 

suitable for stress-bearing sites. 
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Loss of anatomy is indicative of material deterioration. The intrinsic structure and 

properties of materials, as well as chemical erosion, may be simultaneously 

responsible for wear of glass-ionomer restoratives (Mair et al., 1996; Maeda et al., 

1999). According to McKinney et al. (1987), the wear patterns of GIC restoratives in 

occlusal contact area (OCA) and contact free area (CFA) were the same. He 

highlighted the importance of the chemical environment in the degradation process of 

glass-ionomer restoratives. In most cases, the functional glass-ionomer restoratives 

were maintained in situ while dissolution was observed which may lead to a shorter 

duration of restorations (Van Dijken, 1994; Van Dijken et al., 1999; Abadalla et al., 

1997; Gao et al., 2003). The early GICs had poor resistance to chemical degradation. 

This property was improved in newer glass-ionomer materials developed later. 

For glass-ionomer restoratives, color changes and discoloration are minor 

problem and the development of secondary caries is negligible. Hu et al. (2002) 

observed patients after radiation therapy for two years and found no secondary caries 

around GICs restoratives, even when glass-ionomer restoratives were lost. Compared 

with composite resins and amalgam, GICs significantly reduced recurrent caries in 

xerostomic patients without taking topical fluoride supplementation (McComb et al., 

2002; Haveman et al., 2003; Wood et al., 1993). Although Mjör (1996) reported 

recurrent caries as the main cause for replacement of glass-ionomer restoratives, a 

possible reason is that GICs are usually placed in high caries risk patients in which 

other dental materials may have worse performance. Burke et al. (2001) analyzed 
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patient factor related to failure of restorations. He highlighted that GIC had the least 

secondary caries among different dental materials and more patients provided with 

glass-ionomers had poor oral hygiene and higher caries susceptibility. In a systematic 

review paper, Randall and Wilson (1999) concluded that although GICs had positive 

effects against secondary caries for some patients, the evidence that GIC was 

associated with prevention of secondary caries was not strong. More well designed 

and controlled clinical trials are warranted. 

 

1.2 Recent studies on chemical environment and GICs in vitro  

Thus far, specific patient factors influencing the in vivo performance of GICs 

among individual patients are still not clear. As the chemical environment is an 

important one, in vitro studies have been carried out to evaluate chemical degradation 

of glass-ionomers. 

The intra-oral chemical environment is very complex. Inorganic and organic 

substances in the chemical environment come from saliva, plaque, gingival fluids, 

preventive agents, foods and beverages, etc. The quality and quantity of 

environmental chemicals in vivo vary from time to time and among individuals (Edgar, 

1992). This topic will be reviewed in greater detail in chapter 2.2. 

Being a salt-based material with abundant inorganic ions, GICs are hydrophilic 

and more sensitive to an acidic and ionic chemical environment. Many in vitro studies 

had demonstrated the evidence of acid dissolution of GICs (Fukazawa et al., 1990; 
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Nomoto and McCabe, 2001). In a recent study, it was found that storage in saliva 

significantly improved surface hardness of GICs, which might be related to calcium 

and phosphate present in saliva (Okada et al., 2001). This indicates that some 

“positive” factors in the intra-oral chemical environment may improve mechanical 

properties of GICs, and thus may extend longevity of glass-ionomers restoratives in 

vivo. A review of the interaction between chemical environment and GICs is included 

in chapter 2.3. 

By now, few studies have systematically investigated the factors with the most 

potential “positive” effects, calcium and phosphate (the abundant inorganic ions in 

vivo), on glass-ionomer restoratives. Knowledge of how we can improve the clinical 

performance of glass-ionomer restoratives will give a new insight and provide 

additional guidance to their clinical use as well as facilitate the development of new 

materials. 
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Chapter 2 

Literature Review 

 

The two fundamental components of GICs are aluminosilicate glass and 

polyelectrolytes. GICs set via an acid-base interaction between polycarboxylic acids 

and basic silicate glass particles. Although this reaction may last over a period of 

weeks or even months, GICs gain most properties during the first 24 hours after initial 

hardening. After mixing polycarboxlic acids with basic glass powder, acidic protons 

of polyacids attack glass particles, metal cations are then released and attached to 

polycarboxylic anions forming salt bridge, which leads to cross-linking of polymer 

chains. With increasing inter- and intra-molecular bridging points, the matrix moves 

from a gel structure to a solid one (Maeda et al., 1999). Aluminum polyacrylates, 

which are stiffer and more insoluble than calcium polyacrylates, can slowly displace 

calcium polysalts in matrices (Wasson and Nicholson, 1993), then continue the 

development of physical properties of GICs after initial setting (Pearson and Atkinson, 

1991; Mitra and Kedrowski, 1994). An inorganic network of pure silicate or mixed 

silicate/phosphate also forms with time and corresponds to the post-hardening process 

(Wasson and Nicholson, 1991; Wilson, 1996). 

Set GIC can be regarded as a composite of polysalt matrices penetrated by 

silicate/phosphate inorganic network and unreacted glass particles sheathed by 

siliceous gel (Figure 2-1). 
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Figure 2-1 Diagram of set GIC structure 

 

Being a water-based material, the components of GIC may react with the 

intra-oral aqueous environment. In the hydrogel matrices cross-linked by ionic 

bridges, cement-forming and non-cement-forming ions, such as aluminum, 

strontium/calcium, silicon, phosphorus, fluorine and sodium, together with aqueous 

hydrogen and hydroxide ions, can be mobile (Okada et al., 2001). The potential 

ion-exchange ability enables GICs bio-interaction with oral environment and tooth 

(Yoshida et al., 2000), as well as prevention of caries of adjacent tooth (Forsten, 

1991). 
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2.1 Development of GICs 

One of the main limitations of GICs is the lack of physico-mechanical properties. 

This limits the use of GICs to deciduous teeth and non-stress bearing areas of 

permanent teeth. Several approaches have been employed to improve the 

physico-mechanical properties of GICs. They include modification of the glass and 

polyelectrolyte components, and inclusion of resins. 

 

2.1.1 Modification of the glass  

a. Composition 

The original glass employed was calcium fluoroaluminosilicate glass with the 

formula SiO2-Al2O3-CaF2-AlPO4-Na3AlF6. Silica and alumina form the skeletal 

structure of glass (Figure 2-2).  
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Figure 2-2 Skeletal structure of calcium fluoroaluminosilicate glass 

(Modified according to Saito et al., 1999)  
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Replacement of silica with alumina makes the glass network ionic and vulnerable 

to reaction with acids. CaF2 or Na3AlF6 is used as flux in manufacturing process to 

decrease melting temperature. Higher concentration of silica relates the glass to 

transparency while alumina and calcium fluoride are responsible for the opacity of the 

glass. For optimum setting time, opacity and compressive strength, a ratio for 

SiO2:Al2O3 of about 2:1 is recommended (Wilson and McLean, 1988a). The variation 

of metal oxide ratio in calcium fluoroaluminosilicate glass is important for improving 

handling properties and decreasing early water sensitivity of set GICs (Wilson and 

McLean, 1988a). In commercial products, the composition ratio of silica, alumina, 

fluorine and calcium varies according to manufacturers. 

During the glass manufacturing process, phase separation causes formation of 

droplets with calcium-rich surface. Calcium is thus preferentially leached out and 

activates the setting process by forming calcium polycarboxylates. Minimization of 

the calcium-rich surface of the glass increases working time and decreases water 

sensitivity (Schmitt et al., 1983). Strontium, barium or lanthanum has been used to 

replace calcium in the glass to improve radio-opacity (Smith, 1998). Due to the 

similarity between calcium and strontium, calcium can be substituted by strontium 

totally or partially without disrupting the glass structure. Darling and Hill (1994) 

reported a hydrolytically stable zinc silicate glass of short setting time and high 

compressive strength. In this glass system, the setting reaction was influenced by 

network connectivity of the glass and not by aluminum to silicon ratio. 
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Bioactive glass (SiO2-Na2O-CaO-P2O5) has been attempted to be blended with 

traditional glass particles to improve mineralization ability. The mixed glass, however, 

compromised mechanical properties (Yli-Urpo et al., 2005a, b). To increase strength, 

glass fibers or amalgam alloy powder have also been added and silver was sintered to 

glass particles. These reinforced materials exhibited increased flexural strength, but 

wear resistance and fracture toughness were poor (Wilson and McLean, 1988a). Gu et 

al. (2005) investigated incorporation of hydroxyapatite/zirconia particles of nano-size 

into glass powder and reported superior mechanical properties of the modified GIC. 

b. Particle size 

The particle size and size distribution of the glass powder are also important for 

setting, handling and mechanical properties of GICs.  

Originally, glass particles with a maximum size of 50 µm were adopted for 

restorative glass-ionomers. Following modifications to decreased acid reactivity of the 

glass, particle size of the glass was also decreased. Fast-set and condensable GICs 

contain glass particles in μm or nm scale. Examples include KetacMolar Quick and 

Fuji IX Fast (Guggenberger et al., 1998; Yap et al., 2003a). Theoretically, finer glass 

particles have greater surface and faster setting reaction. They may, however, lead to 

lower bulk density and powder to liquid ratio, and result in decreased strength (Gu et 

al., 2004).  

In terms of particle size distribution of the glass powder, Prentice et al. (2005) 

found that increasing the proportion of smaller particles (3.34 µm) resulted in higher 
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strengths, while increasing the proportion of larger particles (9.60 µm) led to 

decreased viscosity of the unset cement. Gu et al. (2004) also reported GICs had 

lower strength when fine glass particles (< 5 µm) were absent. Mitsuhashi et al. (2003) 

found that the incorporation of more fine glass particles decreased fracture toughness 

of GICs. He recommended particle size of up to 10 µm for glass powder to maintain 

smooth surfaces and high fracture toughness.  

More investigations on optimisation of glass composition, particle size and size 

distribution are warranted to achieve operator-friendly handling characteristics and 

greater strength of GICs. 

 

2.1.2 Modification of the polyelectrolyte 

When polyacrylic acid is used solely in glass-ionomers, the cement takes a long 

time to set and the liquid gels in a short time. To overcome gelation of the low 

molecular weight polyacrylic acid, copolymers of acrylic acid and di- or tri-carboxylic 

acids were introduced. The most frequently used polyacids are derived from 

polyacrylic acids or copolymers of acrylic-itaconic acids [poly(AA-co-IA)], 

acrylic-maleic acids [poly(AA-co-MA)], and acrylic-methacrylic acids (Figure 2-3) 

(Culbertson, 2001). 
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Figure 2-3 Major acids used in GICs (From Hosoda, 1993) 

 

These copolymers have more reactivity due to increased carboxyl groups per unit. 

In addition, incorporation of tartaric acid in polyacid system significantly improves 

the handling property and increases setting reaction rate (Culbertson, 2001). 

Increasing concentration and/or molecular weight of polymeric acids improve 

physical properties of GICs. Handling properties are, however, compromised (Wilson 

et al., 1989). Optimizing the molecular weight and concentration ratio of polyacids 

can minimize viscosity of polyacids but only to a certain extent. There are two 

optimal ways to increase mechanical properties of GICs without sacrificing handling 

characteristics. One is adopting a higher powder to liquid ratio; another is adding the 

polyacids in dried form to glass powder yielding a water-hardening cement (McLean 

et al., 1984). 
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Changing the type of polyelectolyte has also been accepted. 

Poly(vinylphosphonic acid) (PVA) was used in experimental GIC. However, the PVA 

and its copolymers reacted too actively with glass particles and were not feasible 

(Braybook and Nicholson, 1993). To improve the rigid matrix of polyacrylic acid and 

copolymers, new monomers have been used to modify or copolymerize with acrylic 

acid functioning as a spacer. In these modified polyelectolytes, carboxylic acid group 

is attached to the backbone via a long flexible chain and is more free and less 

sterically hindered. The most widely investigated are amino acid containing monomer 

(Culbertson et al., 1999) and N-vinylpyrrolidone (NVP) (Xie et al., 1998a, b, c). 

Polyelectrolytes based on these modifications gain some mechanical properties and 

may improve performance of GICs. 

 

2.1.3 Inclusion of resins 

New generation hybrid glass-ionomers has been designed to achieve improved 

handling and esthetic characteristics. This type of material, known as resin modified 

GICs (RMGICs), has two mechanisms of curing. They include an acid-base reaction 

and an activated free-radical polymerization forming a matrix network of 

polycarboxylates and polymers (McCabe, 1998). Commonly, the light-initiated cure 

of this material is accomplished by copolymerization of methacrylate group. The 

unsaturated methacrylate group can be incorporated by tether to polyacids via 

monomers, such as 2-hydroxyethyl methacrylate (HEMA), glycidyl methacrylate, and 
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2-isocyanatoethyl methacrylate (IEM) (Figure 2-4). The polymerizable monomer 

HEMA is hydrophilic and is linked to polyacids by hydrogen bonding. Glycidyl 

methacrylate and IEM are grafted to the polyacids via reaction with the pendent 

carboxylic acid of the backbone (Culbertson et al., 2001). 
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Figure 2-4 Structure of monomers tethered to polyacids 

Other approaches to the hybrid cements are the development of polymerizable 

polyalkenoic acid functionalized monomer, which achieves polyacid structure in situ 

and is ready to react with basic glass. The structure of some commercial monomers is 

listed in Figure 2-5. However, these modified polyacids are usually hydrophobic and 

combined with monomers in commercial products. The hybrid material, namely 

compomer, is hardened via free-radical polymerization. The acid-base reaction occurs 

only after material hardening and absorption of water. These materials do not cure in 

the dark and are not true GICs. 
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Figure 2-5 Structure of monomers present in hybrid cement system 

(From Hammersfahr, 1994) 

 

RMGICs have less moisture sensitivity than conventional GICs. The command 

light-cured mode of RMGICs also meets the requirements of clinician satisfyingly. 

Advantages of fluoride release and chemical bond to teeth are preserved for RMGICs 

(Forsten, 1994; McLean, 1996). However, the intrinsically hydrophilic characteristic 

causes RMGICs to have lower mechanical strength than composite resins and even 

some chemical-cured GICs. 

Progressing from the original glass-ionomers, modern chemical and light-cured 

GICs have achieved improved physical/mechanical properties and handling 

characteristic, as well as aesthetic appearance (Guggenberger et al., 1998; McCabe, 

1998). Modern GICs have made important and significant impact on restorative and 

preventive dentistry and have been accepted widely in the dental community.  

OEMA 

TCB 



Chapter 2 

 24

2.2 Complex chemical environment in vivo 

The intra-oral chemical environment is very complex. The main constituents are 

saliva and metabolite of plaque. Together with preventive agents, foods and beverages 

dosed at intervals also contribute to the chemical environment. The ionic components 

in plaque are close to those in saliva with the exception of pH, which is near neutral in 

saliva. Most soft drinks with carbohydrates are of low pH values of 2.48 ~ 3.20 

(Larsen and Nyvad, 1999) and the carbohydrates intake may quickly decrease plaque 

pH to about 4.0 (Muhlemann et al., 1977). Depending on the intended use, preventive 

agents will contain different chemical substances. In view of the aforementioned, it is 

not surprising that the intra-oral chemical environment is varied among individuals 

and also inconsistent within the same individual over time.  

Water is the predominant component of saliva and plaque fluid, as well as the 

chemical environment. Solutes in the chemical environment can be simply classified 

into inorganic and organic components. The organic component involves numerous 

proteins and the inorganic component mainly consists of sodium, potassium, calcium, 

phosphate, chloride and carbonate, in addition to other trace ions. These components 

maintain physiological functions of oral cavity, for instance, facilitating digestion of 

starch, lubrication of oral surfaces, dilution of substance introduced to the mouth and 

neutralization/buffering of acids (Edgar, 1992). With regards to caries prevention, 

calcium and phosphate in saliva are critical for remineralization of decayed tooth 

structure. The inorganic constituents of saliva and plaque fluid are briefly summarized 
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in Table 2-1. The wide variation of the inorganic component concentration indicates 

large variations between individuals and even within an individual at various time. 

The organic components will not be reviewed at length, since they are beyond the 

scope of current research. 

 

Table 2-1 Concentration of selected inorganic constituents of whole saliva and 

plaque fluid 

 

 Whole saliva* Rested and starved plaque fluid*

pH 5.0 ~ 8.0 5.69 ~ 7.08 

Bicarbonate 0 ~ 40 mg/100ml ------ 

Sodium 0 ~ 80 mg/100ml 8.9 ~ 38.9 mM 

Potassium 60 ~ 100 mg/100ml 41.0 ~ 85.1 mM 

Calcium 2 ~ 11 mg/100ml 1.2 ~ 12.0 mM 

Phosphorus (inorganic) 6 ~ 71 mg/100ml 10.1 ~ 54.5 mM 

Chloride 50 ~ 100 mg/100ml 22.2 ~ 42.8 mM 

Fluoride 0.01 ~ 0.04 ppm 0.002 ~ 0.029 mM 

 

*The saliva data are from Edgar (1992) and plaque fluid data are from Margolis and 

Moreno (1994). 

 

The following factors should be considered with regards to the variation of the 

intra-oral environment. 



Chapter 2 

 26

2.2.1 Biological variation 

The compositions of unstimulated and stimulated saliva as well as saliva from 

various glands are different. It has been demonstrated that calcium concentration is 

higher in submandibular saliva and phosphorus is higher in unstimulated saliva 

(Suddick et al., 1980). 

In addition, the circadian rhythm of an individual influences both flow rate and 

composition of saliva (Humphrey and Williamson, 2001). Circadian low flow 

normally takes place during sleep while peak flow happens during simulation period, 

e.g. chewing or acidic taste stimuli. Salivary electrolytes and proteins also vary 

according to the rhythm, e.g. low levels of calcium and phosphate in the early 

morning (Edgar, 1992). When saliva flow increases to peak value, salivary pH 

accordingly increases and cation level remains constant. For anions, carbonate and 

chloride increase with the peaked saliva flow, while phosphorus decreases (Ferguson 

and Botchway, 1980).  

With regards to gender and age, Dodds et al. (2005) reported that salivary 

secretion declined with increasing age and females had lower flow rate than males.  

 

2.2.2 Diet 

Both diet component and diet behavior have significant effects on the chemical 

environment. During and after food consumption, intra-oral pH value may be lowered. 

The duration of pH drop depends on consumption frequency, salivary buffering, 
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clearance and flow rate (Bibby et al., 1986).  

The frequent consumption of acidic foods and drinks has been shown to soften 

dental hard tissues and contribute to erosion and abrasion of teeth (Lussi et al., 1995, 

1997). The pH, phosphate, calcium and fluoride content of some beverage and foods 

are shown in Table 2-2.  

 
Table 2-2 The pH and selected inorganic content in different beverage and 
foodstuffs* 
 

 pH 
Phosphate 

(mM) 
Calcium 

(mM) 
Fluoride 

(ppm) 
Coca Cola 2.6 5.43 0.84 0.13 
Fanta orange 2.9 0.12 0.75 0.05 
Sprite light 2.9 0.00 0.26 0.06 
Ice tea 3.0 0.08 0.56 0.83 
Pepsi light 3.1 3.94 0.90 0.04 
Grapefruit juice fresh squeezed 3.1 0.23 3.50 0.08 
Grapefruit juice 3.2 2.58 3.14 0.16 
Vinegar 3.2 2.18 3.40 1.20 
Apple juice 3.4 1.74 4.03 0.11 
Red wine 3.4 3.25 1.90 0.16 
Red Bull 3.4 <0.01 1.70 0.36 
Kiwi juice fresh squeezed 3.6 5.30 4.15 0.06 
Salad dressing 3.6 1.64 0.28 0.14 
White wine 3.7 3.16 0.91 0.35 
Orange juice 3.7 5.54 2.20 0.03 
Yoghurt kiwi 4.1 34.0 42.5 0.06 
Yoghurt orange 4.2 43.0 31.6 0.05 
Carrot juice 4.2 8.35 5.00 0.09 
Carlsberg beer 4.4 7.33 2.23 0.28 
Milk 6.7 18.9 29.5 0.01 

*Data from Lussi et al. (2004) 
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2.2.3 Other Factors  

Certain medications, Sjögren’s syndrome and radiation therapy may result in 

salivary hypofunction. Saliva flow is dramatically decreased and the oral chemical 

environment is significantly changed, thus increasing the caries risk of patients 

(Lacatusu et al., 1996). Some patients may recover and have normal saliva secretion 

while in others the condition is irreversible due to permanent damage of salivary 

glands. 

In these cases, the saliva is more viscous with decreased buffering capacity. Some 

studies reported increased salivary concentrations of protein and inorganic ions, such 

as sodium, calcium, magnesium and chloride, due to lower flow rate and condensed 

saliva (Schwarz et al., 1999). On the contrary, reduced protein secretion rate was 

shown in some patients (Pedersen et al., 2005). For these patients, saliva pH is low 

and Streptococcus mutans and Lactobacillus species carriage are high (Schwarz et al., 

1999).  

As can be seen, the intra-oral chemical environment is very varied. This may 

account for the different performance of glass-ionomer restoratives in clinical studies. 

These variations should be considered for proper evaluation of glass-ionomer 

restoratives in vivo. 
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2.3 Interaction between chemical environment and GICs  

Understanding the interaction between dental materials and their intra-oral 

environment will provide useful knowledge for the enhancement of materials and 

clinical processes. As in vivo trial is usually long-term and costly, numerous in vitro 

studies have been carried out to evaluate and compare dental materials. Commonly, 

one or more parameters of the oral environment are mimicked in in vitro studies. 

Results from in vitro studies must, however, be properly interpreted and conclusions 

should be cautiously drawn when translating to clinical applications. 

 

2.3.1 Saliva  

Saliva is the primary constituente of intra-oral chemical environment. As natural 

saliva is varied/unstable and more than 90% of saliva is water, most in vitro studies 

use water as the storage medium for evaluating dental materials. In International 

Organization for Standardization (ISO) standards for GICs, distilled water is 

recommended (ISO 9917, 1991). Nicholson et al. (2001) reported that GICs behaved 

differently in ionic and acidic solutions compared to water. Many recipes for artificial 

saliva have been developed to try making in vitro study closer to real intra-oral 

conditions (Leung and Darvell, 1997). The ideal artificial saliva should be the exact 

replication of natural saliva, however, this is impossible due to the inconsistency of 

natural saliva.  
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Table 2-3 In vitro studies on artificial saliva and GICs 

Authors Artificial saliva composition Results 
Hayacibara et al. 
(2004) 

Ca 1.5mM, PO4 0.9mM, KCl 150mM, 
Tris buffer 20mM, NaN3 0.02%, pH 7.0 

KetacFil, Vitremer and Fuji Ortho LC had less 
F- release in artificial saliva compared with 
those in distilled water. The concentration of 
Al3+ was below the limitation of analysis 
method. 

Williams et al. 
(1997) 

NaCl 0.4g/l, KCl 0.4g/l, CaCl2 0.6g/l, 
Na2HPO4 0.6g/l, CO(NH2)2 1.0g/l, Mucin 
4.0g/l, Mg2P2O7 0.0016g/l, Na2S 
0.0016g/l 

Compared with deionized water, artificial saliva 
reduced ion release (F-) from MiracleMix, 
ChelonSilver, KetacSilver, OpusSilver and 
OpusFil. 

Karantakis et al. 
(2000) 

CaCl2 1mM, NaH2PO4•2H2O 1mM, NaCl 
35mM, CH3COONa•3H2O 15mM, pH 7 

There was no significant difference in the 
amounts of fluoride release from Argion, Fuji II 
LC and Vitremer in water vs. artificial saliva. 

Levallois et al. 
(1998) 

NaCl 125.64mg/l, KCl 963.90 mg/l, 
KSCN 189.20mg/l, KH2PO4 654.50mg/l, 
CO(NH2)2 200.00mg/l, CaCl2•2H2O 
227,80mg/l, Na2SO4•10H2O 763.20mg/l, 
NH4Cl 178.00mg/l, NaHCO3 630.80mg/l, 
pH 5.1 

Fuji II LC and Vitremer released significantly 
more fluoride in water than in artificial saliva.  

Hattab and 
Amin  (2001) 

NaCl 0.400g/l, KCl 0.004g/l, 
CaCl2•2H2O 0.445g/l, NaH2PO4•2H2O 
0.78g/l, Na2S•xH2O (x=7-9) 0.005g/l, 
urea 1.0g/l, pH 5.5 

For KetacFil, Fuji II and KetacSilver, the 
release of F- in artificial saliva was significantly 
less than in deionized water. 

el Mallakh and 
Sarkar (1990) 

NaCl 0.4g/l, KCl 0.4g/l, CaCl2•H2O 
0.795g/l, Na2HPO4•H2O 0.69g/l, 
Na2S•9H2O 0.005g/l, pH 5.525 

Ketac-Fil, Ketac-Silver, Fuji-II and Miracle 
Mix released more fluoride in de-ionized water 
than in artificial saliva. 

Turssi et al. 
(2002,2003) 

Ca 1.5mM, PO4 0.9mM, KCl 150mM, 
Tris buffer 0.1mM, pH 7.0 

Fuji II LC and Fuji II Improved showed similar 
surface roughness and morphology in artificial 
saliva as those in distilled water. 

Yip et al. (2004) Acetate buffer 0.05M, CaHPO4 2.2mM, 
pH 5.0 

Fuji IX Fast and KetacMolar showed an 
increase in surface roughness after stored in 
artificial saliva (3weeks). 

Mckenzie et al. 
(2003b) 

NaCl 0.50g/l, NaCO3 4.20g/l, NaNO2 
0.03g/l, KCl 0.20g/l 

Storage in artificial saliva gave ChemiFil 
Superior, ChemFlex, Fuji II LC and Vitremer of 
lower surface hardness than in natural saliva 
and water. 

Mojon et al. 
(1996) 

Mucin 40g/l, NaCl 0.85g/l, KCl 1.2g/l, 
MgCl2•6H2O 0.05g/l, CaCl2•6H2O 
0.15g/l, K2HPO4 0.35g/l, NaF 0.0042g/l, 
Sorbitol 30g/l, CKNS 0.1g/l, pH 6.7 

Water had a greater softening effect than 
artificial or natural saliva on Fuji I, while the 
difference between water and natural saliva was 
not significant. 

Kanchanavasita 
et al. (1998a,b) 

K2HPO4 0.200g/l, Ca3(PO4)2 0.300g/l, 
KSCN 0.330g/l, NaHCO3 1.500g/l, NaCl 
0.700g/l, KCl 1.200g/l, (NH2)2CO 
0.130g/l, pH 6.7 

Vitremer, Fuji II LC, Vitrebond and Fuji Lining 
LC stored in artificial saliva were relatively 
softer than those in water and showed a 
decrease in surface hardness with time. But 
similar flexural values were presented for these 
GICs in water and artificial saliva. 

Musanje et al. 
(2001) 

Na 28.16mM, K 25.74mM, NH4 
4.10mM, Cl 29.84mM, PO4 4.67mM, 
SCN 2.24mM, Lac 0.78mM, Cit 
0.95mM, Urate 0.11mM, Urea 3.30mM, 
CO2 0.04g, pH 6 

ChemFil showed a marked decrease in flexural 
strength and elastic modulus in artificial saliva 
compared with those in water vapor. 
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Most studies on GICs and artificial saliva have focused on fluoride release (Table 

2-3). Previous studies have shown that GICs released less fluoride in artificial saliva 

than in water, regardless of glass-ionomer type and artificial saliva component 

(Hayacibara et al., 2004; Hattab and Amin, 2001; Williams et al., 1997; Levallois et 

al., 1998; el Mallakh and Sarkar, 1990). These results suggest that GICs interact with 

components in saliva, of which calcium is the most probable. A CaF2 layer may form 

on the surface of GICs (Levallois et al., 1998). 

A few studies have concentrated on effects of artificial saliva on 

physico-mechanical properties of glass-ionomers, which are equivocal (Table 2-3). 

Glass-ionomers presented rougher or unchanged surface morphology in artificial 

saliva (Turssi et al., 2002, 2003; Yip et al., 2004). Some researchers reported 

decreased surface hardness and flexural strength of GICs in artificial saliva compared 

to water (Kanchanavasita et al., 1998a; Musanje et al., 2001), while others 

demonstrated comparable strength of GICs in artificial saliva and in water 

(Kanchanavasita et al., 1998b; Mojon, 1996). The different GICs and artificial saliva 

used may account for these varied results. However, studies on whether and how the 

special components in artificial saliva interact with GICs have not been addressed. 

The studies investigating effects of natural saliva on GICs are very limited. In a 

recent study, Okada et al. (2001) reported that a glass-ionomer (Fuji IX) in natural 

saliva showed higher surface hardness than in water. He postulated that salivary 

calcium and phosphate might diffuse into GICs forming a thin layer of calcium 
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phosphate, aluminum phosphate and polyacrylate salts. However, in a previous study, 

the surface hardness of a luting GIC was found to be similar whether in natural saliva 

or in water (Mojon et al., 1996). McKenzie et al. (2003a) also commented that natural 

saliva had no more effect than water on surface hardness of both conventional and 

resin-modified GICs. In a further study, he reported that compressive and biaxial 

strength of GICs were also not affected by natural saliva (McKenzie et al. 2003b). It 

should be noted that the natural saliva and its pH were not characterized and different 

glass-ionomer products were evaluated in these studies.  

In summary, it can be concluded that GICs may interact with saliva depending on 

material type. However, the interactive factors in intra-oral environment, whether 

positive or negative, are not specified and require investigations. 

 

2.3.2 Intra-oral pH  

Although GIC is more stable than other dental cements, this salt-based material is 

still vulnerable to acid attack due to its composition. Clinical trials have shown 

dissolution of both conventional and resin-modified GICs (Van Dijken, 1994; Van 

Dijken et al., 1999; Abadalla et al., 1997; Gao et al., 2003). In vivo studies have 

reported that the dissolution of GIC is not related to salivary buffing capacity or saliva 

pH. Pluim and Arends (1987) postulated that the dissolution of GIC in vivo may be 

caused by acids from dental plaque and/or food and beverage. In an in vitro study, 

Mesu and Reedijk (1983) have found that in vitro acid erosion testing closely predicts 
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the clinical durability of GICs. A standard acid erosion test is recommended by ISO 

(ISO 9917, 2003). 

Many in vitro studies have investigated effects of environmental pH on GICs. 

Walls et al. (1988) exposed GICs to pH 4 ~ pH 10 conditions and found that they had 

good resistance to erosion at pH 6 and higher, but were prone to erosion at pH 4. The 

greater erosion of GICs in lower pH solutions was confirmed by Fukazawa et al. 

(1987) and Eisenburger et al. (2003). They put forward that dissolution of GICs was 

mainly influenced by the concentration of H+ ion at the cement surface. Nomoto and 

McCabe (2001) found that GIC specimens exposed to acidic buffered solutions had 

higher erosion depth than in pure acids of the same pH. This phenomenon may be 

explained by the fact that the pH remained stable in buffered solutions. 

Fukazawa et al. (1990) reported that erosion of GICs was also acid anion 

dependent. GICs immersed in citric acid degraded faster and more severely than those 

in lactic and acetic acids due to different chelating ability of acid anions. In a recent 

study, McKenzie et al. (2003a) reported that GIC performed better in Coca-Cola than 

in orange and apple juice. In the latter media, GIC specimens were dissolved after 6 

months. He pointed out that Cola contains phosphoric while the fruit juices contain 

some carboxylic acids. 

Dissolution of GIC is also material dependent. Fukazawa et al. (1987) reported 

that the matrix structure of GIC influenced the diffusion process of acid. GICs based 

on maleic acid copolymers are less resistant to acid attack than those based on acrylic 
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acid copolymers (Setchell et al., 1985; Wilson et al., 1986). 

The exact mechanism of acid erosion of GIC is still not very clear. Acids can 

disrupt ionic bonds which are abundant in GIC matrix. When the number of broken 

salt bridge reaches a threshold level, the matrix may be decomposed. Using Scanning 

Electron Microscopy (SEM), Roulet and Walti (1984) observed the dissolution of 

polyacrylate matrices with extruding filler particles left. Fano’s study with confocal 

laser microscopy showed that acid erosion (pH 3.5) affected not only the matrix but 

also the gel layer circling glass particles (Fano et al., 2001). 

On the other hand, Nicholson et al. (1999) assumed that both conventional GICs 

and RMGICs showed the ability to neutralize surrounding acidic solutions. The 

surface area of set GIC is critical to adjustment of surrounding pH (Patel et al., 2000). 

This fact may be linked to calcium polyacrylate and unreacted polyacids in set GIC, 

which may act as chemical buffer and alter environmental pH.  

Although both environmental pH and salivary inorganic ions play important roles 

in the clinical performance of GICs in vivo, there are few studies investigating the 

concurrent effects of environmental pH and salivary inorganic ions in this process. 

 

2.3.3 Other factors  

a. Professional topical fluoride agents 

Caries prevalence in many countries has declined remarkably due to the 

cariostatic effect of fluoride (Brunelle and Carlos, 1990; Karlsbeek and Verrips, 1990). 
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Fluoride agents are usually used in preventive programs for high caries risk patients. 

These fluoride agents are commonly manufactured in gel, solution or varnish forms. 

Fluoride is incorporated as acidulated phosphate fluoride (APF), stannous fluoride 

and sodium fluoride of different concentration (Stephen, 1994). 

el-Badrawy et al. (1993) compared effects of different fluoride gels on 

conventional GICs and found APF (pH 5) and sodium fluoride containing citric acid 

(pH 5.8) significantly affected both matrices and particles of GIC, while neutral 

sodium fluoride had no such effect. He highlighted that both the pH and the acid used 

in fluoride agents contributed to this degradation of GICs. RMGICs also exhibited the 

same trends when exposed to APF. The degradation was, however, lesser in extent 

(Triana et al., 1994; el-Badrawy and McComb, 1998).  

Billington et al. (1987) found that exposure to 2% neutral NaF solution reduced 

hardness of GICs. This phenomenon was explored further by Hadley et al. (2000). 

They discovered that GICs containing fluoride, whether intrinsic or admixed, showed 

more surface disintegration in NaF solution than those without fluoride. It was 

hypothesized that NaF breaks Al-based salt bridge by F- reaction with AlF2+ crosslinks 

in Al-polycarboxylate matrix. 

b. Bleaching agents 

Bleaching for now is very popular in the practice of esthetic dentistry. Due to 

their ability at oxidization, hydrogen peroxide and peroxide releasing agents 

(carbamide peroxide and sodium perborate) are generally the main components of 
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bleaching agents. The concentration of oxidizing agents is lower in home-used 

products (10~16% carbamide peroxide) than in in-office items (30~35% hydrogen or 

carbamide peroxide) (Attin et al., 2004). 

There are limited studies investigating the effect of bleaching agents on GICs. 

Yap and Wattanapayungkul (2002) demonstrated that application of 35% carbamide 

peroxide and hydrogen peroxide did not affect surface hardness of GICs. Mair and 

Joiner (2004) added 6% hydrogen peroxide to a phosphate buffer of pH 5.5 and found 

this bleaching gel had no effects on GICs compared with those in water and phosphate 

buffer. However, Jefferson et al. (1992) reported that 10% carbamide peroxide at pH 

4.5 decreased surface content of aluminum and may cause matrix decomposition in 

GICs. It seems that the pH of bleaching agents is more critical than the oxidizer in the 

interaction between bleaching agents and glass-ionomers. 

As fore mentioned, GICs being hydrophilic and salt-based, are susceptible to 

degradation by the intra-oral chemical environment. Although GICs are vulnerable to 

acids, some components e.g. calcium and phosphate in the oral environment may have 

positive effects on GICs. Little information is currently available on the co-effects of 

environmental pH and inorganic constituents of saliva on GICs. This new knowledge 

will lead to better understanding of the clinical performance of glass-ionomer 

restoratives, provide guidance to their clinical use and facilitate development of new 

materials.  
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2.4 Strategies and methods for characterizing GICs 

A wide range of surface analytical techniques have been used to characterize 

glass-ionomers and their interactions with the chemical environment. These include 

scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), 

atomic force microscopy (AFM), surface profiler, nano-indentation testing, acoustic 

microscopy, solid state nuclear magnetic resonance spectroscopy (NMR), Raman 

spectroscopy (RM), Fourier transform infrared spectroscopy (FTIR), secondary ion 

mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), electron probe 

microanalysis (EPMA) and energy dispersive X-ray analysis (EDS) amongst others 

(el-Badrawy et al., 1993; Fano et al., 2001; Denisova et al., 2004; Wilder et al., 2000; 

Mohamed-Tahir and Yap, 2004; Towler et al., 2001; Lloyd et al., 1999; Young et al., 

2000, 2004; Jones et al., 2003; Okada et al., 2001; Yli-Urpo et al., 2005b). These 

methods provide valuable information on the structural, chemical and 

physico-mechanical characteristics of GICs. Each technique, however, has its 

advantages and limitations. To truly understand a material and its interaction with the 

environment, the use of more than one method is required. The techniques commonly 

used for surface characterization of GICs are summarized in Table 2-4. 

Despite their valuable functions, for some techniques, an ultra high vacuum 

environment and special sample preparation are required. Water-containing materials 

such as GICs may be damaged due to dehydration and cracking caused by the vacuum 

and sample preparation. The most surface analysis equipments are also very 

expensive, not readily available and require special training to operate.  

 

http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Mohamed%2DTahir+MA%22%5BAuthor%5D


Chapter 2 

 38 

Table 2-4 General information of the surface analytical techniques used for GICs  

Technique Application Principle Depth 
Resolution

 

Special Requirement 

SEM/EDS Topographical imaging and 
elemental microanalysis 
(not for light element) 

An electron beam bombards the sample and creates 
various signals such as secondary and backscattered 
electrons. These signals are collected and displayed on 
the cathode ray tube thus forming an image.  
The energy and intensity distribution of X-ray signals 
are measured by energy dispersive spectroscopy for 
determination of elemental composition. 
 

sub µm Vacuum and conductive sample 

FTIR-ATR Qualitative and quantitative 
analysis of chemical bond 
information 

The infrared spectrum is obtained by a measurement 
of the intensity of a beam of infrared radiation before 
and after interaction with the sample. 
 

2-3 µm --- 

SIMS Topographical mapping; 
Qualitative and quantitative 
analysis of element and 
chemical bond information; 
Depth profiling 
 

When an energetic beam of ions or neutrals bombards 
the sample, secondary electrons are ejected and 
detected by a mass spectrometer. 
 

outer 1-2 
monolayer 

Vacuum 

XPS Qualitative and quantitative 
analysis of element and 
chemical bond information 
(not for trace element)  
 

An monochromatic low-energy X-ray beam bombards 
the sample and causes emission of photoelectrons, 
which is used to identify the element. 

3nm Vacuum 

EPMA Qualitative and quantitative 
analysis of element 
information at ppm level 

An electron beam bombards the sample and emits 
X-ray photons, which is recorded as WDS spectra and 
used to identify the element composition. 
 

1µm Vacuum 
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Table 2-4 (Continued)  

Technique Application Principle Depth 
resolution

Special Requirement 

NMR Qualitative and quantitative 
analysis of chemical bond 
information 

In an external magnetic field, an energy transfer of a nucleus 
takes place at a wavelength that corresponds to radio 
frequencies. This transfer is measured and processed to yield 
an NMR spectrum for the nucleus concerned. 
 

--- --- 

AFM Topographical imaging at 
atomic resolution 
 

An extreme sharp probe integrated on a tiny cantilever scans 
over a sample surface at a distance over which atomic forces 
act. The cantilever deflection caused by the forces is 
measured by a photo detector mapping the topography of the 
sample.  
 

10nm --- 

LSCM Topographical imaging; 
Series optical imaging 

A laser beam is focused in a fluorescent sample. The emitted 
fluorescent light is recollected by the objective lens and the 
reflected into a photo detection device forming an image. 
 

0.5µm Sample treated with fluorescent 
dyes 

Micro-/Nano- 
indentation 

To characterize hardness, 
elastic modulus and fracture 
toughness 

An indenter tip with a known geometry is penetrated into the 
sample by applying a load. Through analysis the area of the 
indentation or the applied load and the corresponding 
penetration depth, hardness and/or elastic modulus is 
calculated. Fracture toughness is determined by directly 
measuring radial cracks as a function of indentation load. 
 

--- --- 

Mechanical 
profiler 

Surface roughness A sharp stylus is drawn across the sample surface. The surface 
roughness is obtained by amplification and analysis of the 
deflection of the stylus. 
 

0.5nm --- 

(From Brundle et al., 1992; Watson, 1991; Chung et al., 2005; Li and Bhushan, 2002) 

 



40 

In this study, micro- and nano-indentation testing, SEM, EDS, FTIR-ATR, and 

surface profilometry were used to characterize GICs. These techniques are 

summarized in the following sections. 

 

2.4.1 Indentation testing 

Indentation testing is the most commonly used technique to determine 

mechanical properties of dental materials, since it is semi-destructive allowing 

repeatable measurements of the same specimen and easy to operate. According to the 

indentation load, macro-, micro- and nano-indentation testing are catalogued. 

 

2.4.1.1 Micro-indentation testing 

Micro-indentation testing has been widely used for mechanical characterization 

of dental materials. Generally, a load at micro level has been applied providing a 

sufficient penetration depth to determine the bulk mechanical properties of these 

materials (Okada et al., 2001; Chung et al., 2005).  

In this study, a depth-sensing micro-indentation testing was used to examine 

mechanical properties (plasticity and elasticity) of GICs. This novel method has 

advantages of deriving hardness and elastic modulus values in a single test using 

small size specimens (Yap et al., 2004). The detail of this method will be covered in 

Chapter 4.

Chapter 2 



Chapter 2 

 41

2.4.1.2 Nano-indentation testing 

Nano-indentation testing is able to determine hardness and elastic modulus 

precisely at nanometer penetration depth, thus, it is commonly used for mechanical 

characterization of microstructure. When equipped with a continuous stiffness 

measurement (CSM) technique, nano-indentation testing provides depth-profile of 

mechanical properties. In the CSM technique, in addition to the normal load on 

specimens, an oscillating force is simultaneously superimposed on the indenter 

causing in-phase and out-of-phase components of the displacement response. Thereby, 

an accurate determination of continuous contact stiffness along the loading curve is 

reached. With the continuous record of contact stiffness/load/displacement, hardness 

and elastic modulus of specimens are derived as a function of indenter penetration 

depth using the following equations (Li and Bhushan, 2002; Shen et al., 2003).  

max

max

A
PH =

                                                (2-1) 

( )2

max

11
2

νπ
−= S

A
E

                                   (2-2) 

where Pmax is the maximum indentation load, Amax is the maximum projected contact 

area, S is contact stiffness and ν is Possion’s ratio. 

In addition, the relation between contact stiffness and indenter penetration depth 

can be used to study the uniformity of materials. It can be theoretically derived as 

follows: 

From Eq. (2-2), one obtains 
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max2
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AES
πν−

=                                       (2-3) 

The contact area for a perfect Berkovich indenter is given by  

2
max 56.24 phA =                                            (2-4) 

where, hp is the true contact depth during indentation.  

Substituting Eq. (2-4) to Eq. (2-3), stiffness can be derived as  

phES 56.242
1 2 πν−

=                                     (2-5) 

According to Eq. (2-5), for a uniform material with a constant elastic modulus (E), 

S is linearly proportional to hp. While for a non-uniform material, E is not constant and 

changes with hp, so the linear relationship between S and hp does not exist.  

By now, few studies have used nano-indentation testing for characterizing 

mechanical properties of GICs (Towler et al., 2001; Xu, 2003). The CSM technique 

has not been used to study changes in mechanical properties of GICs after exposure to 

various chemical environments. In this study, a nano-indentation testing equipped 

with CSM technique was used to mechanically characterize the surface of GICs after 

interaction with environmental calcium/phosphate and pH. 

 

2.4.2 SEM/EDS 

SEM is the main surface analytical method for studying the microstructure of 

GICs. Assisted by EDS x-ray microanalysis, SEM has been used to demonstrate the 

morphologic characteristics and compositions of conventional and modified GICs, 
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such as highly viscous GIC (HVGIC), fast set HVGIC, metal-reinforced GIC and 

bioglass/hydroxyapatite added GIC (Xie et al., 2000; Yap et al., 2003a; Sarkar, 1999; 

Yli-Urpo et al., 2005b; Arita et al., 2003). It has been used to determine the 

mechanism of OCA or CFA wear (Yap et al., 2001b; van Duinen et al., 2005; Momoi 

et al., 1997). Moreover, the effects of environment (water, acid and saliva, etc.), 

clinical treatment (finishing, surface coating, acid etching and periodontal scaling, etc.) 

and prophylaxis agents (fluoride agents and bleaching agents) on GICs have also been 

evaluated using SEM/EDS (Fukazawa et al., 1990; Smith, 1988; Barkmeier et al., 

1992; el-Badrawy et al., 1993; Turker and Biskin, 2003).  

Since GIC is water-based material, cracks have been observed on the surface of 

specimens with SEM due to the high vacuum and sample preparation requirement 

(Swift and Dogan, 1990; Yip et al., 2004). Modified SEM techniques, such as field 

emission SEM, environmental SEM and cyto-SEM were developed to overcome the 

problems of water-containing specimens (Tanumiharja et al., 2001; Turssi et al., 2002; 

Nomoto et al., 2003). However, the high costs of these instrumentations limit their 

availability. 

 

2.4.3 FTIR-ATR 

FTIR technique provides chemical bond information through analysis of an 

infrared radiation beam. Attenuated total reflectance (ATR) technique allows for 

sampling solid specimens. In ATR technique, an IR beam is directed into a crystal 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Momoi+Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Swift+EJ+Jr%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Dogan+AU%22%5BAuthor%5D
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with a high refractive index and creates an evanescent wave. The IR beam is changed 

after weak interaction with the sample and is detected by a spectrometer. The 

evanescent wave penetrates only a few micrometers into the sample, thus, the surface 

of solid samples can be analyzed by FTIR with ATR technique (Brundle et al., 1992). 

FTIR-ATR has been used to study the chemical composition and setting reaction of 

GICs (Young, et al., 2004; De Maeyer et al., 2002). The effect of artificial saliva on 

compositions of GICs was also interpreted using FTIR spectra (Yip and To, 2005).  

In the FTIR spectra interpretation, the peak assignment to components in GICs 

is slightly different due to the varied compositions of GIC products and resonance 

effect. The peak assignment for GICs in different studies is summarized and listed in 

the following table (Table 2-5).  

Table 2-5 FTIR peak assignment for GICs 

Studies Compound Wavenumber 

(cm-1) 

Assignment 

 

1540 COO- (asym) Mono- or divalent-PAA 
1420 COO- (sym) 
1600 COO- (asym) Al-PAA 
1460 COO- (sym) 

Young (2002) 

glass 940 Si-O stretch 
Ca-PAA 1580 COO- (asym) Young et al. (2000) 
Al-PAA 1620 COO- (asym) 

De Maeyer et al. (2002) glass 1000 ~ 1200 Si-O (asym) 
Sr-PAA 1550 COO- (asym) 
Ca-PAA 1551 COO- (asym) 

Deb and Nicholson 
(1999) 

Al-PAA 1614 COO- (asym) 
1050 Si-O-Si stretch Matsuya et al. (1996) Hydrated silica gel 
950 Si-OH 

*asym: asymmetric; sym: symmetric 

http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22De+Maeyer+EA%22%5BAuthor%5D


Chapter 2 

 45

2.4.4 Mechanical profiler 

Profilometry is the most popular method used to measure surface topography of 

GICs. Among the stylus instruments used for measurement of surface roughness, 

mechanical profiler has advantages of better lateral resolution and a larger height 

measurement range (up to several micrometers) (Sherrington and Smith, 1988). Using 

a stylus based profilometer, many studies have examined the changes in surface 

roughness of GICs after different treatments, such as finishing/polishing, 

thermo-cycling, acid erosion, bleaching agents, etc. (Yap et al., 2002; Muraguchi et 

al., 2004; Mohamed-Tahir and Yap, 2004; Wattanapayungkul et al., 2004). 

Thus, with the wide selection of techniques used for characterization of GICs, 

only the aforementioned techniques will be used for the surface characterization of 

GICs after interaction with environmental calcium/phosphate and pH in this study. 

Combining the structural information, elemental constitutes, chemical bond, 

mechanical properties and surface texture of the surface, the interaction occurring 

between GICs and environmental calcium/phosphate and pH will be explored. 

 

 

http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Mohamed%2DTahir+MA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Yap+AU%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Wattanapayungkul+P%22%5BAuthor%5D
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Chapter 3 

Research Objectives and Research Program 

 

3.1 Aims 

The overall aims of this research are: 

1. To study the effects of environmental calcium/phosphate and pH on GICs in 

terms of 

(a) surface hardness and elastic modulus; 

(b) clinically related properties: strength, wear resistance and fluoride release. 

2. To investigate surface physico-mechanical, chemical and microstructural 

characteristics of GICs.  

3. To analyze ion release from GICs. 

4. To propose a mechanism of interaction of GICs with environmental 

calcium/phosphate and pH. 
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3.2 Research program 

To achieve these aims, the study was divided into the following phases:  

 

 
 

Phase I 

Phase II 

Phase VI 

Phase V 

Phase III 

Phase IV 

Validation of methods 
Preliminary investigation of degradation of GICs 
 

Influence of environmental calcium/phosphate 
and pH on surface properties of GICs 

Surface characterization of GICs 

Analysis of ion release from GICs 

Examination of clinically related properties 

General conclusions, proposed mechanism 
and future perspectives 
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Phase I 

Environmental Degradation of GICs: A Preliminary Study 

The aims of this phase (Chapter 4) were to (1) examine the suitability of the 

depth-sensing micro-indentation testing for GICs, and (2) preliminarily investigate the 

effects of environmental conditions, such as water, 100% humidity and ionic media of 

varying pH, on hardness and elastic modulus of GICs using the micro-indentation 

method.  

In this phase, two RMGICs and three HVGICs conditioned in water and 100% 

humidity were used to evaluate the suitability of the depth-sensing micro-indentation 

technique. To investigate the effect of environmental pH on GICs, ionic media with 

constant calcium/phosphate level and varying pH of 7, 5 and 3 were employed. They 

represent the pH of saliva, critical pH for demineralization of hydroxyapatite and 

acidic beverage respectively. 

 

Phase II 

Influence of Environmental Calcium/Phosphate and pH on GICs 

The aim of this phase (Chapter 5) was to investigate the effects of environmental 

calcium/phosphate and pH on surface properties of GICs. 

In this phase, a series of ionic media with varying calcium/phosphate levels and 

pH were employed. The surface mechanical properties (hardness and elastic modulus) 

and surface micro-structural feature of two HVGICs (calcium and strontium based) 



Chapter 3 

 49

were examined using the depth-sensing micro-indentation testing and SEM. The 

changes in surface mechanical properties and surface micro-structural feature were 

evaluated and correlated with environmental calcium/phosphate and pH of storage 

media. 

 

Phase III  

Surface Characterization of GICs Exposed to Acidic Conditions: Effects of 

Environmental Calcium/Phosphate 

The aim of this phase (Chapter 6) was to explore the mechanism of interaction of 

GICs with environmental calcium/phosphate and pH via characterization of the 

surface of GICs after interaction with environmental calcium/phosphate at pH 3. 

The surface of GICs was characterized using (1) Nano-indentation testing for 

surface mechanical properties, (2) Attenuated Total Reflectance Fourier Transform 

Infrared Spectrometers (FTIR-ATR) and Energy Dispersive X-ray analysis (EDS) for 

chemical compositions, and (3) Scanning Electron Microscopy (SEM) and 

profilometer for surface morphology feature. 

 

Phase IV 

Ion Release by GICs Exposed to Acidic Conditions: Effects of Environmental 

Calcium/Phosphate 

The aim of this phase (Chapter 7) was to further explore the mechanism of 

interaction of GICs with environmental calcium/phosphate and pH via analysis of 
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ion/ligand release from GICs in pH 3 ionic media with varying levels of 

environmental calcium/phosphate. 

In this phase, the ions/ligands were determined using Inductively Coupled Plasma 

Optical Emission Spectrometry (ICP-OES), Ion Selective Electrode (ISE) and 

Ultraviolet-Visible (UV-Vis) spectroscopy. 

 

Phase V 

Effects of Environmental Calcium/Phosphate on OCA Wear and Shear Strength 

of GICs subject to Acidic Conditions  

The aim of this phase (Chapter 8) was to investigate the effects of environmental 

calcium/phosphate and pH on clinically related properties of GICs under acidic 

conditions. 

Shear strength and wear resistance of GICs were measured using customized 

shear-punch and OCA wear testing.  

 

Phase VI 

General Conclusion, Proposed Mechanism and Future Perspectives 

The last phase summed up all the research findings (Chapter 9). The mechanism 

of interaction of GICs with environmental calcium/phosphate and pH was interpreted 

based on a postulated model. Limitations of this study and recommendations for 

future work were also addressed. 
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Chapter 4 

Environmental Degradation of GICs: A Preliminary Study 

 

4.1 Introduction 

All modern day tooth-colored restoratives are based on glass-ionomer and/or 

composite resin technology. GICs are water-based materials, in which water is bound to 

coordination sites of polycarboxylate matrices and siliceous hydrogel surrounding glass 

particles (Ngo, 2002). Despite this, water contamination and dehydration during initial 

setting reaction can result in dissolution or cracking of materials leading to decreased 

physical properties (Wilson and McLean, 1998b). In addition, GICs being salt-based 

cements are vulnerable to acids and ionic solutions (Eisenburger et al., 2003; McKenzie 

et al., 2003a).  

To improve the physical and handling properties of traditional GICs, RMGICs were 

developed by incorporating water-soluble resin monomers, while HVGICs were 

modified by removing excess calcium ions from glass particles, decreasing particle size 

and increasing powder to liquid ratio (Guggenberger et al., 1998). Contrary to common 

knowledge, a commercial HVGIC showed higher strength with early water exposure 

(Leirskar et al., 2003). Increase in hardness was also observed when a HVGIC was 

conditioned in natural saliva. This may be due to the material’s interaction with calcium 

and phosphate present in saliva (Okada et al., 2001). The results suggest that these 

modified GICs may behave differently from traditional GICs in various oral conditions.  
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Hardness and elastic modulus are basic mechanical properties of restorative 

materials, which measure the resistance to load penetration and elasticity respectively. 

Hardness relates to the plastic deformation of restoratives under occlusal stress, while 

elastic modulus is responsible for the integrity of interface between restoratives and 

tooth structure (Sabbagh et al., 2002). Hardness is usually measured using indentation 

testing in which a sharp diamond indenter is pressed into the material. The hardness 

number is then calculated by dividing the peak load over the projected contact area of 

the indent impression (Chandler, 1999). Elastic modulus of dental materials is 

commonly measured with a three-point bending method, which requires large beam 

specimen (2 mm × 2 mm × 25 mm) and high surface quality (ISO 4049:2000).  

Recently, a depth-sensing micro-indentation technique was successfully used by Yap 

et al. (2004) to derive hardness and elastic modulus of dental materials in a single test. 

In the depth-sensing micro-indentation testing, indentation load (P) and corresponding 

indenter penetration depth (h) were measured continuously. Hardness and elastic 

modulus were then calculated from the loading and unloading portion of the P-h curve, 

respectively. Some of the advantages associated with the micro-indentation testing 

include ease of specimen preparation and small specimen size. The depth-sensing 

micro-indentation test, like other types of indentation tests, will leave an indent on 

testing surface and is not a truly non-invasive method. Due to the indent size of 

microscale, repeatable tests can, however, be performed on different sites of the same 

sample. In a separate study, Chung et al. (2005) found a significantly strong and positive 
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correlation between this method and ISO 4049 flexural test results. 

This study evaluated the suitability of the depth-sensing micro-indentation testing 

for GICs. This study also preliminarily investigated the influence of various 

environmental conditions, such as water, 100% humidity and ionic media of varying pH, 

on hardness and elastic modulus of modified restorative GICs using the depth-sensing 

micro-indentation approach. 

 

4.2 Materials and methods 

The restorative GICs studied included two RMGICs (Fuji II LC [FL]; Photac-Fil 

Quick [PQ]) and three HVGICs (Fuji IX Fast [FN]; KetacMolar [KM]; KetacMolar 

Quick [KQ]). The material profiles are listed in Table 4-1. 

Table 4-1 Technical profiles of the materials evaluated in present study 

Material Classification Manufacturer Batch Number Shade Curing time

Fuji II 
LC Capsule 
(FL) 

RMGIC GC Corp., Tokyo, 
Japan 

0107105 A2 Light-cured
20s 

Photac-Fil 
Quick Aplicap 
(PQ) 

RMGIC 3M-ESPE, Seefeld, 
Germany 

123075 A2 Light-cured
20s 

Fuji IX 
Fast Capsule 
(FN) 

HVGIC GC Corp., Tokyo, 
Japan 

0109083 A2 Auto-cured 
3min 

Ketac-Molar 
Quick Aplicap 
(KQ) 

HVGIC 3M-ESPE, Seefeld, 
Germany 

132967 A2 Auto-cured 
3min 30s 

Ketac-Molar 
Aplicap 
(KM) 

HVGIC 3M-ESPE, Seefeld, 
Germany 

114129 A1 Auto-cured 
4min 30s 
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All materials were in capsule form and manipulated according to manufacturers’ 

instructions. The mixed materials were injected into the square recesses (3 mm long, 3 

mm wide and 2 mm deep) of customized acrylic molds and covered with acetate strips 

(Hawe-Neos Dental, Bioggio, Switerzland). A glass slide was placed over the acetate 

strip and pressure was applied to extrude excess material. The light-cured materials were 

polymerized using the Spectrum light unit (Dentsply/Caulk, Delaware, US) with mean 

intensity greater than 400 mW/cm2. All specimens were allowed to set at 37 ºC and 

100% humidity for 1 hour before being subjected to different storage conditions. 

For evaluation of suitability of the depth-sensing micro-indentation testing, 14 

specimens for each material were randomly divided into two groups (n=7) and 

conditioned in 100% humidity (H) and distilled water (W) at 37 ºC for 4 weeks without 

being disturbed (Yap et al., 2001a). After determination of hardness and elastic modulus, 

the indent impressions were captured and compared with a custom-designed digital 

imaging system (Chung et al., 2005).  

For observation of effects of environmental pH, a RMGIC (FL) and a HVGIC (FN) 

produced by the same manufacturer were used. Twenty-one specimens for FL and FN 

respectively were randomly distributed into three groups (n=7) and separately treated in 

ionic media of pH 7 (IM7), pH 5 (IM5) and pH 3 (IM3). These ionic media consisted of 

common components of 1.5 mM CaCl2, 0.9 mM KH2PO4 and 150 mM KCl. In addition, 

20 mM HEPES for IM7 and 50 mM acetic acid for IM5 and IM3 were added, coupled 
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with 1 M KOH for adjusting pH to desired value (Appendix A). Hardness and elastic 

modulus were measured at weekly interval for four weeks. 

 

 
 

 
 

Figure 4-1 Depth-sensing micro-indentation testing set-up 

 

In this study, specimens were kept in moisture by blotting out excessive water 

gently and fixed tightly on the x-y motorized stage centrally beneath the customized 

indentation head unit (Figure 4-1). A four-sided diamond Vickers indenter was used and 

xy-motorized stages 
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specimens were indented at a rate of 0.0005 mm/s until a maximum load of 10 N was 

attained. The peak load was held for 10 seconds and unloaded fully at a rate of 0.0002 

mm/s. The indenter penetration depth (hmax) were in ranges of 24 ~ 29 µm and 30 ~ 35 

µm for HVGICs and RMGICs respectively. Hardness and elastic modulus were derived 

using in-house developed software (PhCalculator Version 1.1).  

Hardness (H) was determined by dividing the peak load over the maximum contact 

area, while elastic modulus (Ein) was calculated using an unloading contact stiffness 

analysis according to Oliver & Pharr method (Figure 4-2) (Oliver and Pharr, 1992). The 

equations used were as follows:  

max

max

A
PH =

                                                  (4-1) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

−
=

o

o

in
in

ES
A

E
)1(

142.1

1
2

max

2

ν

ν

                                (4-2) 

2
max

maxmax 4
3

56.24 ⎟
⎠
⎞

⎜
⎝
⎛ −=

S
P

hA
                                   (4-3) 

 

where Pmax = maximum indentation load, 

Amax = maximum projected contact area, 

hmax = indentation depth at maximum load, 

Eo = elastic modulus of the indenter, 

vo = Poisson ratio of the indenter, 

vin = Poisson ratio of the indented material of interests, and 

S = unloading contact stiffness. 
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Figure 4-2 A typical P-h curve during a loading-unloading cycle 

 
where hmax is the maximum indenter displacement at peak indentation load (Pmax), 

dh
dP

 is the slope of the P-h curve during the initial unloading stage, 

hf and hc are the final (residual) and contact depth of the indent impression respectively. 
 

 

Results were analyzed using independent-sample T-test and one-way 

ANOVA/Scheff’s post-hoc test at significance level of 0.05.
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4.3 Results 

Mean value of hardness and elastic modulus of modified GICs in 100% humidity 

and water are presented in Figure 4-3 and Table 4-2.  
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Figure 4-3 Hardness (a) and elastic modulus (b) of GICs in 100% humidity and water 
*Vertical lines represent standard deviations 

 

The mean hardness ranged from 65.24 to 98.24 HV and 37.14 to 47.99 HV, while 

mean elastic modulus ranged from 14.43 to 19.32 GPa and 9.51 to 10.77 GPa for 

HVGICs and RMGICs respectively. HVGICs (KM, KQ and FN) showed significantly 

higher hardness and modulus than RMGICs (FL and PQ) in all storage conditions 

(p<0.05). Storage in water significantly decreased hardness and elastic modulus of PQ 

(p<0.05), but significantly increased hardness and elastic modulus of FN (p<0.05) (Table 

4-3). 

(a) 

(b) 
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Table 4-2 Hardness and elastic modulus of GICs in 100% humidity and water 

 

Hardness (HV) Elastic modulus (GPa)  

100% humidity Water 100% humidity Water 

FL 47.99 (6.30) 44.03 (2.84) 10.40 (1.36) 10.29 (0.45) 

PQ 43.93 (2.12) 37.14 (2.55) 10.77 (0.80) 9.51 (0.85) 

KM 75.15 (12.64) 73.21 (3.62) 15.87 (1.76) 16.37 (1.19) 

KQ 65.24 (6.72) 66.89 (3.33) 14.43 (1.66) 15.23 (1.20) 

FN 80.51 (13.86) 98.24 (7.54) 15.66 (2.68) 19.32 (1.33) 

Standard deviation in parentheses (n=7) 

 

 

Table 4-3 Statistical comparison of hardness and elastic modulus between 100% 

humidity and water 

 

Variables Materials Difference 

FL No significant difference RMGIC 

PQ H > W 

KM No significant difference 

KQ No significant difference 

Hardness 
(HV) 

HVGIC 

FN W > H 

FL No significant difference RMGIC 

PQ H > W 

KM No significant difference 

KQ No significant difference 

Elastic Modulus 
(GPa) 

HVGIC 

FN W > H 

 
Results of independent-samples T-test (p < 0.05) 
> indicates statistically significant difference in hardness/elastic modulus 
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Effects of pH of ionic media on FL and FN are shown in Figure 4-4, Figure 4-5, and 

Table 4-4 respectively. Both FL and FN stored in IM7 and IM5 showed relatively 

consistent hardness and elastic modulus in the 4-week observation period. In IM3 

condition, FL showed constant and comparable hardness and elastic modulus with those 

stored in IM7 and IM5. On the contrary, FN presented decreased hardness in IM3, which 

was significantly lower than those in IM7 and IM5 at 4 weeks time (Table 4-5).  

 

 
 

 
 
Figure 4-4 Hardness (a) and elastic modulus (b) of FL in ionic media of varying pH 
*Vertical lines represent standard deviations 

(a) 

(b) 
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Figure 4-5 Hardness (a) and elastic modulus (b) of FN in ionic media of varying pH 
*Vertical lines represent standard deviations 

 

(a) 

(b) 
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Table 4-4 Hardness and elastic modulus of FL and FN in ionic media of varying pH 
 

FL FN   

Hardness (HV) Elastic 
modulus (GPa)

Hardness (HV) Elastic 
modulus (GPa)

pH 7 49.86 (7.54) 9.80 (1.36) 100.08 (21.56) 18.27 (1.79) 

pH 5 48.59 (5.76) 10.74 (1.24) 90.17 (4.79) 17.76 (1.10) 

1 week 

pH 3 49.64 (5.26) 9.87 (1.07) 91.52 (7.37) 16.36 (1.98) 

pH 7 46.60 (3.89) 9.62 (1.16) 88.27 (11.88) 16.45 (2.20) 

pH 5 50.99 (7.57) 10.82 (1.56) 87.64 (5.53) 16.78 (1.85) 

2 week 

pH 3 50.66 (5.36) 9.36 (0.80) 78.76 (10.65) 15.59 (1.91) 

pH 7 42.21 (4.78) 8.73 (0.74) 103.21 (21.18) 18.17 (1.67) 

pH 5 48.45 (4.26) 9.53 (0.77) 86.94 (16.67) 16.97 (1.93) 

3 week 

pH 3 43.38 (2.16) 8.78 (0.65) 74.57 (11.10) 15.05 (2.60) 

pH 7 44.26 (7.03) 8.77 (0.81) 88.06 (9.09) 17.21 (1.35) 

pH 5 43.80 (6.64) 9.78 (0.96) 86.92 (8.26) 16.74 (1.92) 

4 week 

pH 3 45.48 (3.06) 9.70 (0.38) 69.38 (8.11) 14.67 (2.11) 

Standard deviation in parentheses (n=7) 

 

Table 4-5 Statistical comparison of hardness and elastic modulus between ionic 
media of varying pH (after 4 weeks) 
 

Materials Variables Difference 

Hardness (HV) No significant difference FL 

Elastic modulus (GPa) No significant difference 

Hardness (HV) IM7, IM5 > IM3 FN  

Elastic modulus (GPa) No significant difference 

 
Results of one-way ANOVA/Scheff’s post-hoc test (p < 0.05) 
> indicates statistically significant difference in hardness/elastic modulus 
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The typical indent impressions of GICs are presented in Figure 4-6, whereas the 

phenomenon of “sink in” (materials around contact area deform downwards with respect 

to the original surface plane.) and indistinct indentation contour of some GICs are 

clearly shown. This indicates that it is difficult to optically measure the diagonal length 

of indentation impressions for glass-ionomer specimens. 

 

          

 

      

 

Figure 4-6 Indent impressions of various GICs in water 

B, undistinguished boundary; S, “sink-in” indentation shape  

KM KQ 

B

S

FL PQ FN
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4.4 Discussion 

Hardness is a parameter describing the resistance of material to permanent 

deformation and is related to several properties including resistance to plastic 

deformation, friction and abrasion (Chandler, 1999). Micro-indentation testing is 

commonly used to evaluate setting reaction and influencing factors of dental materials 

(Kanchanavasita et al., 1998; Musanje et al., 2001). From a method point of view, the 

determination of contact area at the maximum load is critical for micro-indentation test. 

For conventional micro-indentation testing with Vickers indenter tip, hardness is derived 

from measurement of the diagonal length of the indentation impression. In this study, the 

indent images of some GICs conditioned in water were blurred and showed 

indistinguishable boundary (Figure 4-6), which made it difficult to measure the diagonal 

length and hence the precise calculation of the hardness. In the depth-sensing 

micro-indentation testing, we used Oliver & Pharr method (1992) for calculating the 

indenter contact area, which avoided measurement error caused by uncertainty of the 

diagonal length measurement and “pile-up” or “sink-in” effect (Yap et al., 2004). During 

indentation test, materials around contact area may deform upwards (pile-up) or 

downwards (sink-in) with respect to the original surface plane. Sink-in decreases and 

pile-up increases the contact area, thus, true contact area may be over- or 

under-estimated. Oliver & Pharr method (1992) works for hard materials which 

predominantly show “sink-in”, but fails with materials which display extensive 

“pile-up”. In this study, “sink in” of the materials around the indent impression was 

clearly visible in some indentation images (Figure 4-6). With the present setting, 
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hardness values of HVGICs and RMGICs obtained by the depth-sensing 

micro-indentation testing were in the same order as those reported in previous studies 

(Yap et al., 2003a; Ellakuria et al., 2003). In this study, the indentation depth derived 

from the micro-indentation testing was 24 ~ 35 μm, which covered the size of most glass 

particles. The test thus reflects the bulk property of GICs (Yap et al., 2003a; 

Guggenberger et al., 1998). The major advantage of this novel test is that considerable 

experiment time and materials were saved as hardness and elastic modulus were derived 

in a single test.  

GICs being water-based cements are susceptible to aqueous conditions. Although 

water is essential for acid-base setting reaction in GICs, water contamination during 

early setting hydrolytically degrades calcium polycarboxylate matrix and reduces 

mechanical properties of GICs (Wasson and Nicholson, 1993; Mojon et al., 1996). Thus, 

all specimens in the present study were kept in 100% humidity for 1 hour immediately 

after initial setting. This protocol is commonly used in in vitro study on GICs and has 

been reported to give the samples optimum properties (Causton, 1981). On the other 

hand, set GICs require aqueous environment for maintaining hydro-gel structure and 

physico-mechanical properties (Wilson et al., 1979). To avoid dehydration of 

glass-ionomer specimens during indentation testing, in this study, the specimen surface 

was kept in moisture by blotting out excessive water just before the indentation testing 

(Yap et al., 2004). 

To mimic in vivo conditions, the ionic media used in this pilot study consisted of 
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150 mM KCl providing a constant ionic strength similar to saliva (ten Cate and Duijsters, 

1982). Levels of calcium (1.5 mM) and phosphate (0.9 mM) in the ionic media were 

also comparable to saliva, which was recommended by ten Cate and Duijsters (1982) for 

demineralization and remineralization of tooth in vitro. pH of the ionic media was varied 

as pH 7, pH 5 and pH 3 representing pH of saliva, critical pH for demineralization of 

hydroxyapatite and acidic beverage pH respectively (Edgar, 1992; Larsen and Nyvad, 

1999). 

Regardless of storage conditions, HVGICs showed greater hardness and elastic 

modulus than RMGICs after conditioning. This is in agreement with the one-year results 

by Ellakuria et al. (2003) using the conventional hardness testing. The improved 

hardness and elastic modulus of HVGICs may be accounted for as follows. Firstly, 

removal of excess calcium ions from the surface of glass particles in HVGICs allows 

formation of insoluble aluminum polycarboxylate at early setting time (Young et al., 

2004, Yap et al., 2003a). The insoluble aluminum salts are more resistant to aqueous 

conditions and improve the mechanical properties (De Maeyer et al., 1998). By contrast, 

RMGICs consist of polymer and polycarboxylate matrix network. HEMA polymer 

matrix in RMGICs may retard H+ mobility, inhibit further acid-base reaction and 

therefore prevent complete formation of polycarboxylate matrix (Bourke, 1992). 

Secondly, a dense surface texture with tightly packed glass particles may result in higher 

surface hardness of GICs (Xie et al., 2000). Thus, larger glass particle size and higher 

powder to liquid ratio may contribute to the superior mechanical properties of HVGICs 
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(Yap et al., 2003a; Guggemberger et al., 1998). Thirdly, in RMGICs, HEMA polymer 

entangled with polycarboxylate matrix may lead to an inferior interface between glass 

particles and matrices (de Gee, 1999). Possible phase separation due to the inferior 

interface may result in degradation of the composite structure and lead to lower 

mechanical properties. 

In this study, HVGICs behaved differently from RMGICs when exposed to water 

after initial setting. Compared to those in 100% humidity, HVGICs presented higher or 

comparable hardness and elastic modulus while RMGICs showed comparable or 

decreased mechanical properties in water. The improved hardness and elastic modulus 

for HVGICs exposed to water further indicate that aqueous environment is critical for 

set GICs of polycarboxylates structure (Mount, 2002). On the other hand, the reduction 

in hardness and elastic modulus of RMGICs may be attributed to plasticization arising 

from water absorption by hydrophilic HEMA in matrices (Kanchanavasita et al., 

1998a,b; Yap, 1997). These results suggest that set HVGICs should be prevented from 

dehydration while RMGIC restoratives should be sealed with a resin after placement. 

With regard to environmental pH effects, FN showed decreased hardness in the pH 

3 ionic media, while the hardness of FL was unchanged and independent of the ionic 

medium pH. Generally, GICs perform well in pH 6 to pH 10 conditions and are prone to 

degradation in pH 4 (Walls et al., 1988). In acidic conditions, the solubility of GICs 

increases with a decrease in environmental pH (Eisenburger et al., 2003). It is postulated 

that acids extract metal cations from matrices and glass particles, thus leading to the 



Chapter 4 

 68

degradation of materials (Fukazawa et al., 1990). The unaffected properties of RMGICs 

exposed to low environmental pH should be attributed to the incorporation of HEMA 

resin. This entangled polymer-polycarboxylate structure may improve the resistance to 

acid erosion via obstructing movement of H+ (Bourke et al., 1992). Results from this 

study suggest that HVGICs are stable in pH 5 surroundings but are vulnerable in pH 3 

conditions. Further investigations on the interaction of GICs with environmental 

calcium/phosphate and pH are warranted. 

 

4.5 Conclusions 

The suitability of the depth-sensing micro-indentation testing and the effects of 

storage conditions on hardness and elastic modulus of modified restorative GICs were 

investigated in this study. For glass-ionomer materials, the depth-sensing 

micro-indentation testing was found to be both efficient and effective. In this study, 

HVGICs were significantly harder and stiffer than RMGICs. When exposed to water, 

hardness and elastic modulus of HVGICs increased or remained the same. In contrast, 

RMGICs showed comparable or decreased hardness and elastic modulus in water. Ionic 

media of varying pH did not affect surface mechanical properties of FL. pH 3 ionic 

medium, however, had a significant effect on FN. These results suggest that the 

performance of GICs is material-type and storage condition dependent. Preventing 

HVGIC restoratives from dehydration and protecting RMGIC restoratives with 

waterproof coatings after initial setting are recommended. 
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Chapter 5 

Influences of Environmental Calcium/Phosphate 

and pH on GICs 

 

5.1 Introduction 

Set GIC can be regarded as a composite of polycarboxylate matrices and 

unreacted glass particles sheathed by siliceous gel. The polycarboxylate matrices are 

cross-linked by calcium/strontium or aluminum polycarboxylate salt bridges (Maeda 

et al., 1999). Divalent calcium/strontium ions may bridge two polycarboxylate chains 

with the remaining coordination positions occupied by water molecule. In steric 

consideration, trivalent aluminum ions may only bridge two polycarboxylate chains 

and the third valency may be with fluoride or hydroxyl ions (Wilson and McLean, 

1988a). The ionic and hydrophilic structure imparts ion-exchange ability in GICs. 

Hence, GIC is capable of interaction with the oral environment/tooth (Yoshida et al., 

2000) and release/uptake of fluoride (Forsten, 1991). 

The ionic and hydrophilic structure also render GICs vulnerable to acids and ions 

present in the intra-oral environment (Eisenburger et al., 2003; Nicholson et al., 2001). 

With regard to environmental ions, the common monovalent ions, such as Na+, K+ and 

Cl-, have no significant effect on GICs (McKenzie et al., 2003a). In addition, 

Billington et al. (1987) reported that neutral NaF solution reduced the hardness of 

GICs. He postulated that F- may react with ionic salt bridges and break the 
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cross-linking of matrix (Billington et al., 2000). In another study, Okada et al. (2001) 

reported that a HVGIC in natural saliva had improved surface hardness compared to 

those in distilled water. This may be related to a possible surface reaction involving 

salivary calcium and phosphate.  

It is known that acids have negative effects on GICs. The acid degradation of 

GICs depends on environmental pH, acid anion and glass-ionomer type. GICs suffer 

greater degradation in lower pH solution (Fukazawa et al., 1990; Eisenburger et al., 

2003). Citric acid degrades GICs faster and more severely than lactic and acetic acids 

(Fukazawa et al., 1990). In addition, GICs with maleic acid copolymers were less 

resistant to acid attack than those with acrylic acid copolymers (Setchell et al., 1985; 

Wilson et al., 1986). Under acid challenge, matrix salt bridges are hydrolyzed and 

Ca2+/Sr2+/Al3+ cations are released, thus, matrix-glass particle structure is decomposed 

resulting in degradation of GICs (Fukazawa et al., 1990). 

The acids in vivo come either by degradation of carbohydrates in stagnant areas 

of the mouth, consumption of acidic beverage/foodstuffs, or regurgitation of stomach 

acids. The consumption of soft drinks and juices has been steadily increasing resulting 

in the high prevalence of dental erosion in children and adolescents (Lussi and 

Schaffner, 2000; Ganss et al., 2001; Johansson et al., 1996). Most carbonated 

beverages and juices are of pH 3 and can damage glass-ionomer restoratives (Lussi et 

al., 2004). Recently, McKenzie et al. (2003a, 2004) observed that GICs in CocaCola 

(~ pH 3.0) showed comparable properties to those in neutral media and much better 

http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Ganss+C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Johansson+AK%22%5BAuthor%5D
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than those in other acidic beverages. They postulated that phosphoric acid in 

CocaCola may form insoluble complexes with calcium and be responsible for 

maintaining the strength of GICs. This indicates that intra-oral calcium and phosphate 

may have positive effects on GICs. Few studies have, however, systemically focused 

on this issue and the effects of environmental phosphate/calcium on GICs at different 

pH conditions are not known.  

In our preliminary study, the HVGIC (FN) showed sensitivity to the pH of ionic 

storage media with fixed calcium/phosphate level. In this study, the concentrations of 

calcium/phosphate in ionic storage media were varied between the range found in 

saliva and beverages. The aim of this study was to investigate the effects of 

environmental calcium and phosphate on HVGICs at different pH. 

 

5.2 Materials and methods 

Two HVGICs Fuji IX Fast ([FN], GC, Japan) and KetacMolar ([KM], 3M ESPE, 

Germany) were used in this study. FN is strontium based and KM is calcium based. 

Both of them set by traditional acid-base reaction. These materials were in 

encapsulated form and activated/mixed according to manufacturers’ instructions. 

Specimen preparation procedures were the same as those in chapter 4. One hundred 

and five specimens for each material were randomly divided into 15 groups (n=7) and 

stored in different ionic media for 4 weeks. The compositions of ionic media with 

varying calcium/phosphate and pH are listed in Table 5-1. Preparation of the ionic 
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media is shown in Appendix A.  

Table 5-1 Compositions of storage media 
  CaCl2•

2H2O 
(mM) 

KH2PO4 

(mM) 
KCl 

(mM) 
HEPES 
(mM) 

Acetic 
Acid 
(mM) 

pH*

pH7-Control 0 0 150 20 --- 7 
pH7-A 2.4 0 150 20 --- 7 
pH7-B 1.5 0.9 150 20 --- 7 
pH7-C 1.2 1.2 150 20 --- 7 

Group 
pH7 

pH7-D 0 2.4 150 20 --- 7 
pH5-Control 0 0 150 --- 50 5 

pH5-A 2.4 0 150 --- 50 5 
pH5-B 1.5 0.9 150 --- 50 5 
pH5-C 1.2 1.2 150 --- 50 5 

Group 
pH5 

pH5-D 0 2.4 150 --- 50 5 
pH3-Control 0 0 150 --- 50 3 

pH3-A 2.4 0 150 --- 50 3 
pH3-B 1.5 0.9 150 --- 50 3 
pH3-C 1.2 1.2 150 --- 50 3 

Group 
pH3 

pH3-D 0 2.4 150 --- 50 3 
*pH was adjusted with 1 M KOH;  

HEPES: N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid 

The calcium/phosphate levels were varied based on remineralization/ 

demineralization solutions from ten Cate and Duijsters’ study (1982) and were within 

the range of saliva and beverages (Edgar, 1992; Larsen and Nyvad, 1999). For each 

pH group, one subgroup (pH-Control) contained neither calcium nor phosphate, two 

subgroups (pH-A and pH-D) contained either calcium or phosphate, and other two 

subgroups (pH-B and pH-C) contained both calcium and phosphate of different ratio. 

pH 7, pH 5 and pH 3 were representative of pH in saliva, critical pH for 

demineralization of hydroxyapatite and acidic beverage pH respectively. For the 

purpose of simulating in vivo condition and keeping approximately equal ionic 
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strength of various solutions, KCl was added at a concentration of 150 mM, which 

was much higher than the concentration of calcium/phosphate. It was assumed that 

KCl would contribute most to the ionic strength of solution. Given the approximately 

equal ionic strength of solutions and controlled experimental temperature (37℃), the 

comparison of effects of calcium/phosphate by concentration was deemed reasonable. 

As mentioned in chapter 2.2, calcium, phosphate and pH of the intra-oral 

environment vary from time to time. In order to study the maximum effects of 

environmental calcium/phosphate and pH on GICs, all specimens in this study were 

conditioned continuously in storage media for 4 weeks. Hardness and elastic modulus 

of specimens were determined using a depth-sensing micro-indentation testing at 

weekly intervals. This method was described in detail in Chapter 4. Hardness and 

elastic modulus of FN and KM after 4 weeks were analyzed using one-way 

ANOVA/Scheff’s post-hoc test or Kruskal-Wallis/Mann-Whitney test at significance 

level of 0.05.  

Three specimens of each group were randomly selected for observation of surface 

structure. Specimens were rinsed with tap water and sectioned. The sectioned surface 

was dried, sputter coated with gold and examined using a SEM (JSM-5600, JEOL, 

Japan). Secondary electron microscopic images for each group were obtained at ×500 

magnification using an accelerating voltage of 5 kV and a spot size of 22 nm. For pH 

3 group, extra images were collected at higher magnification of ×1000. 
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5.3 Results 

Hardness and elastic modulus for FN and KM are presented in Figure 5-1, Figure 

5-2 and Table 5-2 to Table 5-5. Hardness ranged from 36.27 to 114.88 HV and 18.41 

to 80.47 HV, while elastic modulus ranged from 9.87 to 20.13 GPa and 5.36 to 16.40 

GPa for FN and KM respectively. The effects of calcium/phosphate level in storage 

media on hardness and elastic modulus of both FN and KM were found to be pH 

dependent. 

At pH 7 and pH 5, the hardness and elastic modulus of both FN and KM 

remained relatively constant as a function of time and were independent on 

calcium/phosphate level in storage media. No significant differences in hardness and 

elastic modulus were present among specimens conditioned in ionic media of varying 

calcium/phosphate levels after 4 weeks (Table 5-6). 

At pH 3, FN and KM showed varied hardness and elastic modulus depending on 

levels of calcium/phosphate in ionic storage media. When exposed to pH 3 conditions 

without calcium and phosphate (pH 3-Control group), both FN and KM showed 

decreased hardness and elastic modulus compared to those under pH 7 and pH 5 

conditions. FN and KM in pH 3-A group (with calcium and without phosphate) 

showed similar hardness and elastic modulus to those in pH 3-Control group, while 

FN and KM in pH 3-D group (high in phosphate level) exhibited higher hardness and 

elastic modulus than those in pH 3-Control group. After 4 weeks, FN and KM 

exposed to pH 3 storage media with higher phosphate level had significantly higher 

hardness and elastic modulus (p<0.05) (Table 5-6). 
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Figure 5-1 Hardness and elastic modulus of FN 

*Vertical lines stand for standard deviations. 
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Figure 5-2 Hardness and elastic modulus of KM 

*Vertical lines stand for standard deviations. 
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Table 5-2 Hardness (HV) of FN 

  1 week 2 week 3 week 4 week 

pH7-Control 111.59 (14.39) 99.78 (9.35) 97.55 (7.48) 98.24 (7.54) 

pH7-A 98.23 (7.29) 88.03 (12.44) 95.84 (16.53) 105.28 (18.94)

pH7-B 100.08 (21.56) 91.58 (9.14) 93.03 (15.58) 88.06 (9.09) 

pH7-C 86.75 (8.70) 98.72 (13.72) 94.98 (13.11) 89.07 (7.09) 

pH7-D 88.95 (12.25) 95.65 (6.34) 97.31 (23.01) 91.58 (16.92)

Group 

pH7 

p value 0.022# 0.218* 0.985* 0.093* 

pH5-Control 87.56 (16.00) 86.88 (22.83) 90.25 (26.17) 93.42 (21.80)

pH5-A 93.36 (12.30) 97.64 (9.73) 95.71 (9.75) 93.32 (8.24) 

pH5-B 90.17 (4.79) 87.64 (5.53) 86.94 (16.67) 86.92 (8.26) 

pH5-C 83.56 (11.54) 91.58 (9.67) 95.22 (5.66) 94.40 (9.09) 

pH5-D 91.71 (11.41) 101.48 (20.23) 101.92 (6.97) 95.60 (10.55)

Group 

pH5 

p value 0.569* 0.152# 0.427# 0.532# 

pH3-Control 65.46 (8.10) 52.53 (7.15) 47.15 (4.65) 36.27 (3.63) 

pH3-A 65.24 (11.34) 51.14 (10.05) 38.88 (8.68) 34.54 (7.97) 

pH3-B 91.52 (7.37) 78.76 (10.65) 74.57 (11.10) 69.38 (8.11) 

pH3-C 104.83 (5.79) 96.40 (11.48) 86.97 (12.94) 91.45 (8.68) 

pH3-D 104.56 (15.43) 103.48 (12.48) 114.88 (15.33) 108.22 (17.27)

Group 

pH3 

p value 0.000* 0.000* 0.000* 0.000# 

Standard deviations in parentheses (n=7) 

Results of one-way ANOVA* or Nonparametric Test (Kruskal Wallis) # 
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Table 5-3 Elastic modulus (GPa) of FN 

  1 week 2 week 3 week 4 week 

pH7-Control 20.13 (1.73) 19.24 (1.51) 19.10 (1.55) 19.32 (1.33) 

pH7-A 19.15 (0.86) 17.24 (1.48) 17.69 (1.71) 19.09 (1.90) 

pH7-B 18.27 (1.79) 17.06 (1.85) 17.53 (2.07) 17.21 (1.35) 

pH7-C 17.04 (1.61) 17.30 (2.10) 16.90 (1.62) 16.94 (1.71) 

pH7-D 17.59 (3.11) 17.64 (2.15) 18.64 (3.34) 18.17 (3.09) 

Group 

pH7 

p value 0.023# 0.192* 0.342* 0.095# 

pH5-Control 15.39 (1.52) 15.31 (1.90) 16.01 (3.17) 15.95 (2.29) 

pH5-A 18.89 (2.68) 17.26 (2.10) 18.81 (1.71) 18.76 (1.91) 

pH5-B 17.76 (1.10) 16.78 (1.85) 16.97 (1.93) 16.74 (1.92) 

pH5-C 17.86 (2.52) 18.57 (2.34) 18.23 (1.57) 18.88 (2.02) 

pH5-D 18.67 (3.08) 19.66 (3.19) 20.03 (1.46) 19.07 (2.06) 

Group 

pH5 

p value 0.099# 0.173* 0.131* 0.115* 

pH3-Control 12.65 (1.27) 11.85 (1.54) 10.77 (1.04) 10.42 (0.93) 

pH3-A 14.61 (1.97) 12.70 (2.34) 10.81 (1.39) 9.87 (1.78) 

pH3-B 16.36 (1.98) 15.59 (1.91) 15.05 (2.60) 14.67 (2.11) 

pH3-C 19.20 (1.94) 17.18 (2.54) 16.66 (2.67) 16.97 (2.21) 

pH3-D 18.67 (1.67) 19.03 (2.35) 18.64 (2.36) 18.75 (3.11) 

Group 

pH3 

p value 0.000* 0.000* 0.000* 0.000* 

Standard deviations in parentheses (n=7) 

Results of one-way ANOVA* or Nonparametric Test (Kruskal Wallis) # 
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Table 5-4 Hardness (HV) of KM 

  1 week 2 week 3 week 4 week 

pH7-Control 68.62 (14.19) 68.16 (8.58) 68.04 (9.72) 67.83 (9.35) 

pH7-A 61.53 (10.79) 60.15 (5.36) 63.72 (12.39) 60.49 (8.37) 

pH7-B 69.83 (12.54) 66.88 (14.64) 66.99 (6.57) 65.59 (13.40)

pH7-C 69.71 (8.80) 71.89 (9.31) 64.44 (9.36) 62.14 (10.30)

pH7-D 61.84 (11.21) 67.68 (11.42) 65.99 (9.65) 63.29 (9.78) 

Group 

pH7 

p value 0.459* 0.335* 0.917* 0.705* 

pH5-Control 68.07 (9.39) 76.36 (13.93) 70.33 (17.48) 63.66 (10.09)

pH5-A 66.09 (11.83) 65.47 (12.11) 60.25 (7.26) 65.09 (14.96)

pH5-B 55.58 (5.01) 68.53 (12.14) 74.88 (17.34) 69.97 (13.40)

pH5-C 66.83 (12.58) 64.19 (9.72) 73.45 (11.37) 68.10 (11.66)

pH5-D 74.03 (17.18) 72.83 (17.05) 71.87 (14.72) 67.03 (10.72)

Group 

pH5 

p value 0.093* 0.404* 0.344* 0.886* 

pH3-Control 22.81 (9.48) 23.46 (4.84) 18.41 (4.97) 18.85 (3.56) 

pH3-A 14.98 (4.86) 13.14 (3.33) 11.97 (2.89) 11.20 (2.64) 

pH3-B 17.46 (4.94) 19.65 (4.89) 16.55 (5.34) 13.52 (3.45) 

pH3-C 60.55 (11.78) 48.56 (8.48) 35.22 (3.50) 30.43 (4.79) 

pH3-D 80.47 (9.90) 40.86 (7.10) 65.02 (12.13) 50.17 (8.88) 

Group 

pH3 

p value 0.000* 0.000* 0.000# 0.000# 

Standard deviations in parentheses (n=7) 

Results of one-way ANOVA* or Nonparametric Test (Kruskal Wallis) # 
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Table 5-5 Elastic modulus (GPa) of KM 
 

  1 week 2 week 3 week 4 week 

pH7-Control 14.82 (2.20) 14.78 (2.06) 15.09 (2.22) 15.56 (2.33) 

pH7-A 13.28 (1.17) 13.25 (1.37) 13.92 (1.44) 13.16 (1.53) 

pH7-B 14.51 (1.82) 14.50 (2.08) 14.59 (0.82) 14.20 (1.80) 

pH7-C 14.24 (1.05) 14.48 (1.39) 13.65 (1.14) 12.73 (1.01) 

pH7-D 14.88 (1.75) 14.94 (1.85) 15.15 (1.67) 14.77 (1.59) 

Group 

pH7 

p value 0.386* 0.429* 0.351# 0.071* 

pH5-Control 13.98 (2.16) 16.22 (2.11) 14.80 (2.27) 14.70 (1.54) 

pH5-A 13.73 (2.14) 13.90 (1.70) 13.57 (0.43) 13.58 (1.65) 

pH5-B 13.54 (1.49) 14.15 (1.18) 15.41 (3.01) 14.71 (2.43) 

pH5-C 14.15 (1.12) 13.57 (0.85) 14.92 (1.07) 14.27 (2.02) 

pH5-D 14.79 (2.92) 14.82 (3.06) 14.46 (1.57) 13.45 (1.33) 

Group 

pH5 

p value 0.818* 0.180# 0.289# 0.568* 

pH3-Control 8.86 (3.37) 8.33 (0.73) 6.98 (1.21) 7.26 (1.37) 

pH3-A 6.07 (1.53) 5.58 (1.29) 6.70 (3.78) 5.36 (1.23) 

pH3-B 6.19 (1.06) 6.50 (1.00) 6.33 (1.45) 5.57 (0.90) 

pH3-C 14.77 (3.21) 13.07 (2.89) 10.23 (1.38) 10.41 (2.19) 

pH3-D 16.40 (1.83) 11.01 (0.97) 14.08 (2.13) 12.88 (1.90) 

Group 

pH3 

p value 0.000# 0.000# 0.000* 0.000* 

Standard deviations in parentheses (n=7) 

Results of one-way ANOVA* or Nonparametric Test (Kruskal Wallis)# 
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Table 5-6 Statistical comparison of hardness and elastic modulus (after 4 weeks) 
between storage media 

 
 

Materials Variables Groups Difference 

pH 7 No significant difference* 

pH 5 No significant difference# 

Hardness 
(HV) 

pH 3 pH3-D, pH3-C > pH3-B > pH3-A, pH3-Control# 

pH 7 No significant difference# 

pH 5 No significant difference* 

FN 

Elastic 
modulus 

(GPa) 

pH 3 pH3-D > pH3-B, pH3-Control, pH3-A 

pH3-C > pH3-Control, pH3-A* 

pH 7 No significant difference* 

pH 5 No significant difference* 

Hardness 
(HV) 

pH 3 pH3-D > pH3-C > pH3-Control > pH3-B, pH3-A#

pH 7 No significant difference*  

pH 5 No significant difference* 

KM 

Elastic 
modulus 

(GPa) 

pH 3 pH3-D, pH3-C > pH3-Control, pH3-B, pH3-A* 
 
Results of one-way ANOVA/Scheff’s post-hoc test* and Kruskal-Wallis/Mann-Whitney test#  
(p < 0.05) 
 
> indicates statistically significant difference in hardness/elastic modulus 
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The representative SEM micrographs are shown in Figure 5-3 to Figure 5-10. 

Both FN and KM showed similar surface structure in pH 7 and pH 5 storage media 

regardless of environmental calcium/phosphate levels. The specimen surface was 

intact and did not show obvious signs of glass particle degradation and matrix 

dissolution (Figures 5-3, 5-4, 5-7 and 5-8). The irregular cracks shown in these figures 

seem to be the results of glass-ionomer dehydration due to high vacuum for SEM 

preparation. A minor number of oval shape voids were also observed which appeared 

to be air voids formed during material mixing (Fukazawa et al., 1987). 

In pH 3 ionic media, a microscopic surface reaction layer was observed for FN 

and KM (Figure 5-5 and Figure 5-9). Thickness of this layer ranged from 15 to 70 µm 

and 10 to 75 µm for FN and KM respectively. When phosphate was present in the 

ionic media (Group pH 3-B, pH 3-C and pH 3-D), the surface reaction layer was 

thinner than those in phosphate-free storage media (Group pH 3-Control and pH 3-A). 

At higher magnification (×1000), two types of microstructural features were revealed 

in this surface reaction layer (Figure 5-6 and Figure 5-10). For Group pH 3-Control 

and pH 3-A, numerous voids and some protruded glass particles can be seen, which 

was different from the underlying normal glass-ionomer structure. Most voids were 

polygonal in shape and appeared to be the remains of lost glass particles. For Group 

pH 3-B, pH 3-C and pH 3-D, along with the porous structure as mentioned above, 

densely packed small particles were observed on the superficial surface. The surface 

reaction layer of these phosphate-containing groups was characteristic of two zones: 

the outer dense and the inner porous zones. Thickness of the inner porous zone was 

decreased with an increase in environmental phosphate levels. 
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(a) pH 7-Control                              (b) pH 7-A 

      

(c) pH 7-B                                   (d) pH 7-C 

  

(e) pH 7-D  
 

Figure 5-3 FN after conditioning at pH 7 

(a) pH 7-Control, (b) pH 7-A, (c) pH 7-B, (d) pH 7-C, (e) pH 7-D 
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            (a) pH 5-Control                             (b) pH 5-A 

      

           (c) pH 5-B                                   (d) pH 5-C 

 

           (e) pH 5-D 
 

Figure 5-4 FN after conditioning at pH 5 

(a) pH 5-Control, (b) pH 5-A, (c) pH 5-B, (d) pH 5-C, (e) pH 5-D 
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           (a) pH 3-Control                              (b) pH 3-A 

      

          (c) pH 3-B                                    (d) pH 3-C 

 

           (e) pH 3-D  

 

Figure 5-5 FN after conditioning at pH 3 

(a) pH 3-Control, (b) pH 3-A, (c) pH 3-B, (d) pH 3-C, (e) pH 3-D 

“S”: surface reaction layer 

S S

S S

S
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           (a) pH 3-Control                              (b) pH 3-A 

      

          (c) pH 3-B                                    (d) pH 3-C 

 

          (e) pH 3-D  

 

Figure 5-6 FN after conditioning at pH 3 (Magnification ×1000) 

(a) pH 3-Control, and (b) pH 3-A only show the porous structure; (c) pH 3-B, (d) 

pH 3-C, and (e) pH 3-D show both the outer dense and the inner porous structure 
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             (a) pH 7-Control                              (b) pH 7-A 

      

             (c) pH 7-B                                   (d) pH 7-C 

 

             (e) pH 7-D 
 

Figure 5-7 KM after conditioning at pH 7 

(a) pH 7-Control, (b) pH 7-A, (c) pH 7-B, (d) pH 7-C, (e) pH 7-D 
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(a) pH 5-Control                                 (b) pH 5-A 

      

            (c) pH 5-B                                     (d) pH 5-C 

 

            (e) pH 5-D   
 

Figure 5-8 KM after conditioning at pH 5 

(a) pH 5-Control, (b) pH 5-A, (c) pH 5-B, (d) pH 5-C, (e) pH 5-D 
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             (a) pH 3-Control                               (b) pH 3-A 

      

             (c) pH 3-B                                    (d) pH 3-C 

 

             (e) pH 3-D  
 

Figure 5-9 KM after conditioning at pH 3 

(a) pH 3-Control, (b) pH 3-A, (c) pH 3-B, (d) pH 3-C, (e) pH3-D 

“S”: surface reaction layer 

 

S S

S S

S 
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              (a) pH 3-Control                              (b) pH 3-A 

      

             (c) pH 3-B                                    (d) pH 3-C 

 

             (e) pH 3-D  
 

Figure 5-10 KM after conditioning at pH 3 (Magnification ×1000) 

(a) pH 3-Control, and (b) pH 3-A only show the porous structure; (c) pH 3-B, (d) 

pH 3-C, and (e) pH 3-D show both the outer dense and the inner porous structure 
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5.4 Discussion 

In this study, the effects of environmental calcium/phosphate and pH on GICs 

were evaluated with a depth-sensing micro-indentation testing and SEM. The most 

significant finding was that the effects of environmental calcium/phosphate on the 

properties of GIC were pH dependent.  

In neutral media, FN and KM in the current study exhibited relatively constant 

hardness and elastic modulus within the four-week observation period. This indicates 

that the HVGICs gained most of their properties one week after setting. In this study, 

environmental calcium and phosphate in the range found in saliva did not “positively” 

influence surface hardness of FN and KM. This was in contrast with a previous study 

that reported a GIC in natural saliva had higher hardness than in water (Okada et al., 

2001). The disparity may be accounted by different glass-ionomer materials and 

hardness testing methods used. Fuji IX Fast used in this study is fast setting version of 

Fuji IX observed by Okada et al. (2001). The smaller glass particles and higher 

powder to liquid ratio in Fuji IX Fast (Yap et al., 2003a) may lead to varied reactivity 

to environmental conditions. With regard to the methods, hardness testing is 

consistent for homogenous materials regardless of indentation loads applied (Chandler, 

1999). However, for inhomogeneous materials, indentation load and resulting 

indentation depth influence hardness measurements. Using the depth-sensing 

micro-indentation testing in this study, depth of penetration was 20 ~ 40 μm. This was 

larger than most glass particles and the readings thus reflect the bulk property of 
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glass-ionomers. McKenzie et al. (2003b) found that the strength of GICs was not 

improved by exposure to natural saliva. Their results were supported by those of the 

present study. Cross-sectional view of the specimens with SEM revealed a 

non-disturbed surface structure, which suggests environmental calcium/phosphate at 

neutral pH had no significant effect on GICs evaluated in this study. 

Previous studies have reported that the solubility of GICs increased with a 

decrease in environmental pH (Eisenburger et al., 2003). Walls et al. (1988) found 

that GICs had good resistance to erosion at pH 6 or higher but were prone to erosion 

at pH 4. In this study, both FN and KM tested at pH 5 did not show a significant 

decrease in surface hardness and elastic modulus. Additionally, variation of 

environmental calcium/phosphate levels at pH 5 had no significant effects on these 

GICs. This phenomenon may be due in part to the improved properties of HVGICs. 

The latter was achieved by removing excess calcium ions from glass particles, 

decreasing particle size and increasing powder to liquid ratio (Guggenberger et al., 

1998). Combined with a relatively intact surface structure observed with SEM, the 

hardness and elastic modulus results suggest that HVGICs are not apt to degradation 

at pH 5.  

Both FN and KM in this study exhibited diverse mechanical properties at pH 3 

depending on environmental phosphate level. The hardness and elastic modulus of 

both materials were significantly lower in pH 3 than in pH 7 and pH 5 conditions 

when environmental calcium and phosphate were absent. This was in agreement with 
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other studies that found GICs degraded in acetic acid of pH 3 (Fukazawa et al., 1990). 

However, when environmental phosphate was introduced to the acidic conditions of 

pH 3, both FN and KM showed improved surface hardness and elastic modulus. The 

varied mechanical properties correlated well with the changes in surface structure. A 

thinner surface reaction layer led to higher hardness and elastic modulus. 

Thickness and structure of the surface reaction layer were also dependent on 

environmental phosphate level. The inner zone of the surface reaction layer, which 

presented numerous voids and some protruded glass particles, may be the result of 

glass particle degradation and matrix dissolution (el Badrawy et al., 1993). When 

environmental phosphate level was higher, the inner degradation zone was thinner. On 

the other hand, the outer zone of dense structure was closely related to the presence of 

environmental phosphate. This suggests that phosphate salts may be the main 

component in the outer zone. The outer zone may render GICs less soluble in pH 3 

conditions and contribute to a thinner inner degradation zone. The existence of the 

outer zone may be critical for the decrease in thickness of the microscopic surface 

reaction layer and maintenance of surface mechanical properties. 

Although FN and KM have different compositions (one is strontium based while 

the other is calcium based), they showed the similar trends under pH 3 conditions. 

Environmental calcium did not positively affect these materials while environmental 

phosphate improved surface mechanical properties of GICs. The significant effects of 

environmental phosphate on GICs in pH 3 acidic conditions may be due to the 
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following mechanism. When H+ diffuses into GIC and attacks the matrices and glass 

particles, Al3+, Ca2+ or Sr2+ cations are released from the matrix backbone and diffuse 

outwards. Simultaneously, environmental phosphate may form complexes with these 

intrinsic metal cations. These phosphate salts may retain mechanical properties of 

GICs as within silicate cements (Kent et al., 1969). The newly formed salts may also 

prevent further H+ diffusion by reaction with H+ in situ, therefore, causing less matrix 

salt bridge and glass particle decomposition by H+. Thus, thickness of the inner 

degradation zone in the surface reaction layer may be decreased by supplementary 

environmental phosphate.  

From the results of this study, the positive effect of environmental phosphate on 

GICs at low pH (pH 3) should be given more attention. The mechanism of this 

phenomenon warrants further investigations. From a clinical view point, increasing 

environmental phosphate may lead to better performance of glass-ionomer 

restoratives when challenged by acids in vivo. 

 

5.5 Conclusions 

The effects of environmental calcium/phosphate and pH on surface mechanical 

properties and structure of HVGICs were evaluated in this study. Both FN and KM 

showed relatively consistent hardness/elastic modulus and intact surface structure in 

pH 7 and pH 5 conditions regardless of environmental calcium/phosphate levels. 

When exposed to pH 3 acidic conditions, hardness and elastic modulus of HVGICs 
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varied depending on environmental phosphate levels. With increasing phosphate 

levels, hardness and elastic modulus of these GICs were significantly increased. A 

surface reaction layer which featured outer dense and inner porous zones was 

observed. The thickness of these layers differed in accordance with environmental 

phosphate levels. The results suggest that environmental phosphate may protect GICs 

from acid degradation through surface modifications of GICs. 
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Chapter 6 

Surface Characterization of GICs Exposed to Acidic 

Conditions: Effects of Environmental Calcium/Phosphate 

 

6.1 Introduction 

In Chapter 5, the interaction of two HVGICs with environmental 

calcium/phosphate and pH was investigated using a depth-sensing micro-indentation 

method and SEM approach. Results showed that the interaction was pH and 

environmental calcium/phosphate dependent. At pH 7 and pH 5, environmental 

calcium/phosphate had no significant effects on surface hardness and elastic modulus 

of these HVGICs, while environmental phosphate protected GICs at pH 3. 

A reaction layer on the surface of glass-ionomer specimens was observed at pH 3. 

The thickness of the surface reaction layer was decreased by environmental phosphate. 

The surface reaction layer had two characteristic zones. The inner zone was porous 

while the outer zone was dense. The presence of the outer zone was closely related to 

environmental phosphate.  

These results indicate that surface compositions, structures and mechanical 

properties of GICs may be changed after interaction with environmental phosphate 

anion in acidic conditions. Surface analytical techniques are thus warranted to analyze 

the surface reaction layer in depth. 

As mentioned in chapter 2.4, a variety of surface analytical methods have been 
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used to characterize the surface of GICs. These include scanning electron microscopy 

(SEM), laser scanning confocal microscopy (LSCM), acoustic microscopy, solid state 

nuclear magnetic resonance spectroscopy (NMR), Raman spectroscopy (RM), Fourier 

transform infrared spectroscopy (FTIR), secondary ion mass spectrometry (SIMS), 

X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and 

energy dispersive X-ray analysis (EDS) etc. (el-Badrawy et al., 1993; Fano et al., 

2001; Denisova et al., 2004; Watts, 1998; Lloyd et al., 1999; Young et al., 2000, 2004; 

Jones et al., 2003; Okada et al., 2001; Yli-Urpo et al., 2005b). As each technique has 

its strength and weakness, a detailed surface characterization therefore requires the 

use of more than one technique. 

In this study, the mechanical properties, chemical compositions and 

morphological features of the surface reaction layer were investigated using a 

nano-indentation testing, FTIR-ATR, EDS, SEM and mechanical profiler respectively. 

Nano-indentation testing allows for the determination of mechanical properties 

(hardness and elastic modulus) of nm to µm scale layers by low loading and high 

spatial resolution. FTIR-ATR and EDS provide organic and inorganic information 

(chemical bond and element constitution) of the superficial surface of samples. 

Surface microstructure was observed using SEM and surface roughness was measured 

using profilometry. The details of these methods have been reviewed earlier in 

Chapter 2.4. 

The present study examined and compared the surface characteristics of GICs 
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exposed to acidic conditions (pH 3) with varying concentrations of calcium/phosphate. 

The aim was to characterize the surface reaction layer and explore the possible 

mechanism of interaction between GICs and environmental calcium/phosphate and 

pH. 

 

6.2 Materials and methods 

6.2.1 Specimen preparation 

Fuji IX Fast (FN) and KetacMolar (KM) were activated/mixed according to 

manufacturers’ instructions and injected into customized molds. An acrylic mold with 

square recesses (3 mm long × 3 mm wide × 2 mm deep) was used for 

nano-indentation testing while a split Teflon mold (10mm in diameter and 1mm in 

thickness) was employed for other measurements. The molds were filled with 

materials, covered with an acetate strip and compressed using finger pressure with a 

glass slide to extrude excess material. The specimens were randomly divided into 5 

groups (n=3), kept in 100% humidity at 37 ºC for 1 hour and stored in acidic 

conditions for 4 weeks. The pH of the storage media was fixed at 3 and the levels of 

calcium/phosphate were varied as shown in Table 6-1, which was similar to those in 

chapter 5. The calcium and phosphate concentration of Group B solution was equal to 

that of remineralization/demineralization solutions recommended by ten Cate and 

Duijsters (1982). The total amount of calcium and phosphate of Group A, C and D 

were all equal to that of Group B. Group A and D only contained calcium or 

phosphate, while Group C consisted of equal ratio of calcium and phosphate. After 

conditioning, the specimens were subjected to the following surface analysis. 
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Table 6-1 Compositions of acidic conditions 
 
 CaCl2•2H2O

(mM) 
KH2PO4 

(mM) 
KCl 

(mM) 
Acetic Acid 

(mM) 
pH 

Control group 0 0 150 50 3 
Group A 2.4 0 150 50 3 
Group B 1.5 0.9 150 50 3 
Group C 1.2 1.2 150 50 3 
Group D 0 2.4 150 50 3 

 

6.2.2 Nano-indentation testing 

Hardness and elastic modulus of specimens were determined using a 

nano-indentation testing (MTS Nano Indenter® XP, USA) (Figure 6-1). The 

nano-indentation testing employed a CSM technique and was capable of continuously 

recording load, displacement and stiffness throughout an indentation cycle. Hardness 

and elastic modulus were reported as a function of indentation penetration depth.  

A Berkovich triangular pyramidal indenter with a resonant frequency of 45 Hz 

(for CSM technique) was used in this study. The indentation procedures were 

computer-controlled and consisted of four segments: approaching to surface, loading 

to the maximum depth, holding at the maximum depth and unloading. In the loading 

segment, a constant strain rate of 0.05 (1/s) was imposed until a penetration depth of 

10 µm was reached and the load was defined as the maximum load. This maximum 

load was held constant for 10 s (holding segment) and subsequently unloaded at the 

same rate as loading. At the end of the unloading segment, a second hold segment at 

10% of the maximum load was used to correct thermal drift (Shen et al., 2003). 
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Hardness and elastic modulus were determined using the following equations. 

max

max

A
PH =

                                                  (6-1) 

( )2

max

11
2

νπ
−= S

A
E

                                     (6-2) 

where Pmax is the maximum indentation load, Amax is the maximum projected contact 

area, and S is contact stiffness. ν is Possion’s ratio and 0.35 was chosen in this study. 

 

    
 

Figure 6-1 Photo and schematic of MTS Nano Indenter® XP 

 

Ten indentations were performed on different locations of each specimen. 

Therefore, a total of 30 stiffness, hardness and elastic modulus measurements were 

obtained for each group of testing. Hardness and elastic modulus at maximum 

displacement (10µm) were compared between acidic conditions using 

Kruskal-Wallis/Mann-Whitney test (p<0.05).  

Indenter tip

X-Y Stage

Sample 

Support spring

Coil and magnet 

Support spring 

Capacitance sensor
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6.2.3 FTIR-ATR 

Chemical bond information of the specimens was determined with a Fourier 

transform infrared (FTIR) spectrometer. An attenuated total reflectance (ATR) 

accessory was attached and allowed for solid specimen sampling (FTIR Spectrum 

2000, PerkinElmer Instruments Inc., USA) (Figure 6-2). The FTIR-ATR system was 

controlled by commercial software (Spectrum, PerkinElmer Instruments Inc., USA).  

 

        

 

Figure 6-2 FTIR instrumentation and ATR apparatus 

 

After background scanning was executed, the specimen was secured in the ATR 

apparatus. The number of scans was fixed at 16 for spectrum collection. FTIR spectra 

were obtained using a mid-infra red source with wavelength range between 400 and 

4000 cm-1 and resolution of 4 cm-1. 

Specimen 
ATR crystal 
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6.2.4 SEM-EDS 

Surface structure was observed with a JSM-5600 SEM (JEOL, Japan). Element 

constitution analysis was carried out using an Oxford ISIS EDS system connected to 

the JSM-5600 SEM microscope. Specimens were coated with a thin layer of gold and 

mounted in the vacuum chamber. Secondary electron images and energy dispersive 

X-ray analysis (EDS) were taken with a standardized method using an accelerating 

voltage of 15 KV and a working distance of 21 mm. The analysis was done using a 

spot size of 40 nm and a magnification of ×2000. Element composition was recorded 

as atomic percentage.  

 

6.2.5 Surface profilometry 

Surface roughness was measured and recorded using a stylus profilometer with a 

probe diameter of 2 µm (Surftest SV-402, Mitutoyo Instruments, Tokyo, Japan). The 

vertical and horizontal magnifications were set at ×2000 and ×50. One measurement 

was taken across a length of 0.25 mm × 4. Ten measurements were performed on 

different locations of each specimen and a total of 30 readings were obtained for each 

group. The roughness parameter was recorded as average roughness (Ra). Ra was 

compared between acidic conditions with different calcium/phosphate concentrations 

using ANOVA/post-hoc Scheffe’s test (p<0.05). 

 

6.3 Results 

6.3.1 Nano-indentation testing 

Figure 6-3 and Figure 6-4 show the depth profile of contact stiffness as a function 

of indentation depth for FN and KM respectively. At the very beginning of indenter 
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penetration, there was a linear relation between stiffness and indentation depth. With 

increasing indentation depth, stiffness deviated from the linear trend as seen from the 

representative curves in Figures 6-3(b), 6-3(c), 6-4(b) and 6-4(c). As mentioned in 

chapter 2.4.1.2, contact stiffness and penetration depth is not in linear relationship for 

non-uniform materials. The contact stiffness results suggest that the surface layers of 

FN and KM in acidic conditions may not be uniform and have different properties 

from the original material.  

The hardness and elastic modulus as a function of indentation depth for FN and 

KM are shown in Figure 6-5 and Figure 6-6, respectively. For nano-indentation 

testing, calculation errors are generally present in the first few hundred nm due to the 

indentation size effect arising from uncertainty of indentation tip area function, 

surface roughness of the specimens and others (Padama et al., 2003). In this study, 

hardness and elastic modulus of the first penetration depth of 1 µm were not reported 

for these reasons. The hardness and elastic modulus value at the maximum depth of 

10 µm for both FN and KM are shown in Table 6-2. The statistical comparison 

between acidic conditions is summarized in Table 6-3.  

Similar patterns of hardness and elastic modulus with indentation penetration 

depth were observed for both FN and KM in the acidic conditions with different 

calcium/phosphate levels. Hardness and elastic modulus value increased with the 

increasing indentation penetration depth. The magnitude of increase in hardness and 

elastic modulus for Group D, C and B was higher than that of Group A and Control 

group (Figure 6-5 and Figure 6-6). At the maximum penetration depth of 10 µm, the 

higher phosphate level group (Group D and C) showed significantly greater hardness 

and elastic modulus than the control group (Table 6-3). 
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Figure 6-3 Contact stiffness vs. displacement curves for FN 
(a) Acidic conditions, (b) Group A, (c) Group D 

*The solid line represents the linear extrapolation based on the initial linear part of the curve 

(a) 

(c) 

(b) 
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Figure 6-4 Contact stiffness vs. displacement curves for KM  
(a) Acidic conditions, (b) Group A, (c) Group D 

*The solid line represents the linear extrapolation based on the initial linear part of the curve 

(a) 

(c) 

(b) 
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Figure 6-5 Hardness (a) and elastic modulus (b) as a function of displacement for FN 
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Figure 6-6 Hardness (a) and elastic modulus (b) as a function of displacement for KM 
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Table 6-2 Hardness and elastic modulus of FN and KM (at displacement of 10 
µm) 
 

FN KM 
 Hardness 

(GPa) 
Elastic modulus

(GPa) 
Hardness 

(GPa) 
Elastic modulus

(GPa) 

Control group 0.053 (0.025) 1.730 (0.755) 0.079 (0.008) 3.591 (0.355) 

Group A 0.046 (0.012) 1.911 (0.420) 0.082 (0.018) 3.269 (0.457) 

Group B 0.075 (0.015) 4.256 (0.685) 0.110 (0.020) 5.966 (0.841) 

Group C 0.112 (0.026) 6.660 (0.997) 0.110 (0.022) 5.834 (0.770) 

Group D 0.240 (0.071) 12.747 (2.024) 0.176 (0.047) 10.567 (1.406) 

Standard deviations in parentheses 

 
 
 
Table 6-3 Statistical comparison of hardness and elastic modulus between acidic 
conditions (at displacement of 10µm) 
 
Materials Variables Difference 

 
Hardness Group D > Group C > Group B > Control group, Group A

 
FN 

Elastic 
modulus 
 

Group D > Group C > Group B > Control Group, Group A
 

Hardness Group D > Group C , Group B > Group A, Control group 
 

KM 

Elastic 
modulus 
 

Group D > Group C , Group B > Group A, Control group 
 

Results of Kruskal-Wallis/Mann-Whitney test# (p < 0.05) 

> indicates statistically significant difference in hardness and elastic modulus 
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6.3.2 FTIR-ATR 

FTIR spectra of FN and KM between 800 cm-1 and 1800 cm-1 are shown in 

Figure 6-7 and Figure 6-8. To clearly show the location of peaks, the Y-axis scale of 

peak height was slightly varied for different groups.  

In the spectra, two groups of peaks (corresponding to polycaboxylates and glass 

particles) were observed. As reviewed in chapter 2.4.3, the band assigned to 

symmetric and asymmetric stretch of COO- for metal polycarboxylate and 

carboxylate salts occur between 1400 cm-1 and 1620 cm-1. Si-O-Si asymmetric 

stretching and Si-O vibration band are within 900 cm-1 to 1200 cm-1, which are 

overlapped by phosphate stretching (Young, 2002; Deb and Nicholson, 1999). In this 

study, the aluminum polyacrylate (Al-PAA) band detected was at 1625~1630 cm-1 and 

1460 cm-1. For strontium/calcium polyacrylates (Sr-PAA and Ca-PAA), the band was 

at 1560 cm-1 and 1410 cm-1. The peak centered at 1060 cm-1 was assigned to silicate 

network or phosphate. The strong peak at 1630/1625, 1560 and 1060 cm-1 was used to 

interpret Al-PAA, Sr/Ca-PAA and silicate/phosphate as shown in Figure 6-7 and 

Figure 6-8. 

The variation of the band at 1060 cm-1 was significant and correlated well with 

environmental phosphate level. Compared to the weak band at 1060 cm-1 in control 

group, this peak was relatively higher with increasing environmental phosphate levels. 

This trend was observed for both FN and KM. The increased 1060 cm-1 peak in Group 

B, C and D may correlate to the increased phosphate level. 
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The peaks of polyacrylates also varied with environmental phosphate or calcium. 

When calcium was added (Group A), the peak height ratio of 1560 cm-1:1625 cm-1 

(Sr/Ca-PAA : Al-PAA) increased in FN and KM. The addition of environmental 

phosphate (Group D) increased the peak height of Sr-PAA (1560 cm-1) for FN and 

Al-PAA (1630 cm-1) for KM. 
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Figure 6-7 FTIR spectra of FN 

1060 15601625
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Figure 6-8 FTIR spectra of KM 

1060 15601630
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6.3.3 EDS 

Surface element compositions (atomic %) of FN and KM in acidic conditions of 

varying calcium/phosphate levels are reflected in Table 6-4 and Table 6-5. The main 

components of FN and KM, i.e. sodium (Na), aluminum (Al), silicon (Si), phosphorus 

(P), calcium (Ca) and strontium (Sr), were present. FN and KM also contained 

fluoride which was not measured due to technique limitation. 

Exposure to acidic conditions without additional calcium/phosphate (Control 

group) resulted in a surface with high Si, Al and Sr content for FN, and high Si, Al 

and Ca content for KM. 

When environmental calcium was present (Group A), the Ca content of KM 

increased significantly while FN only showed a lower increase in Ca content.  

When environmental phosphate was present (Group B, C and D), P was detected 

in both FN and KM. The P content in FN and KM surface increased with increasing 

environmental phosphate level. Sr content for FN and Ca content for KM were 

increased accordingly. 



Chapter 6 

 114

 

Table 6-4 Surface compositions (atomic %) of FN measured with EDS 

 Na (%) Al (%) Si (%) P (%) Ca (%) Sr (%) 

Control 
group 

1.49 
(0.20) 

30.38 
(0.73) 

64.53 
(1.38) * 0.81 

(0.10) 
2.78 

(0.50) 

Group A 
0.78 

(0.32) 
41.34 
(0.41) 

54.28 
(0.07) * 1.97 

(0.38) 
1.64 

(0.43) 

Group B 
1.03 

(0.08) 
16.04 
(0.35) 

75.05 
(0.39) 

4.69 
(0.40) 

1.10 
(0.07) 

2.06 
(0.31) 

Group C 
0.66 

(0.09) 
12.21 
(1.38) 

77.18 
(1.89) 

5.77 
(0.47) 

1.16 
(0.23) 

3.03 
(0.25) 

Group D 
0.80 

(0.12) 
15.99 
(0.58) 

67.79 
(1.05) 

10.86 
(0.82) 

0.87 
(0.31) 

3.70 
(0.25) 

Standard deviations in parentheses 

* stands for element concentration lower than the detection limits 
 

 

Table 6-5 Surface compositions (atomic %) of KM measured with EDS 

 Na (%) Al (%) Si (%) P (%) Ca (%) Sr (%) 

Control 
group 

7.23 
(0.54) 

20.09 
(0.20) 

59.17 
(0.47) * 13.52 

(0.28) * 

Group A 
4.87 

(0.86) 
22.60 
(0.88) 

51.08 
(1.15) * 21.45 

(0.54) * 

Group B 
4.89 

(0.23) 
7.00 

(0.34) 
40.80 
(0.50) 

4.42 
(1.04) 

42.89 
(0.38) * 

Group C 
5.02 

(0.61) 
11.14 
(0.21) 

43.15 
(0.29) 

5.63 
(0.48) 

35.06 
(0.23) * 

Group D 
4.27 

(0.09) 
8.95 

(0.32) 
37.20 
(0.98) 

6.48 
(0.59) 

43.10 
(0.73) * 

Standard deviations in parentheses 

* stands for element concentration lower than the detection limits 
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6.3.4 SEM 

The topographical changes in FN and KM conditioned in acidic conditions with 

varying calcium/phosphate levels are shown in Figure 6-9 and Figure 6-10. The 

occasional cracks observed in photomicrograph are largely the result of dehydration 

under vacuum. 

As can be seen in Figure 6-9 (a) and Figure 6-10 (a), FN and KM exposed to the 

acidic condition without additional calcium and phosphate (Control group) had 

relatively smooth surfaces interrupted by intermittent pores.  

With an addition of calcium (Group A) as shown in Figure 6-9 (b) and Figure 

6-10 (b), both FN and KM exhibited similar surface morphology to the control group. 

When phosphate was added (Group D) as shown in Figure 6-9 (e) and Figure 

6-10 (e), the surface of both FN and KM was covered by numerous small particles. 

These particles had irregular shape and varying particle size. The particles were in 

range of 5 µm for FN and larger for KM. A similar change, but to a lesser extent, was 

also noted in Group B and C shown in Figures 6-9 (c), (d) and Figures 6-10 (c), (d).  
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(a) Control group                         (b) Group A 

 

         

(c) Group B                             (d) Group C 

 

 
         (e) Group D 

 
Figure 6-9 SEM of FN 

 
(a) Control group, (b) Group A, (c) Group B, (d) Group C, (e) Group D 
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(a) Control group                         (b) Group A 
 

      

(c) Group B                             (d) Group C 
 

 

         (e) Group D 
 

Figure 6-10 SEM of KM 
 

(a) Control group, (b) Group A, (c) Group B, (d) Group C, (e) Group D 
 



Chapter 6 

 118

6.3.5 Surface profilometry 

The surface roughness (Ra) of both FN and KM as shown in Figure 6-11 and 

Table 6-6 increased when environmental phosphate was present (Group B, C and D). 

The increase in Ra for FN and KM was dependent on environmental phosphate level. 

Higher environmental phosphate level led to higher Ra of FN and KM (Table 6-7). On 

the other hand, the addition of calcium in acidic conditions (Group A) did not change 

the surface roughness of both FN and KM. 
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KM

 
 

Figure 6-11 Mean surface roughness values (Ra) for FN and KM 
*Vertival lines stand for standard deviations 

(µm) 
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Table 6-6 Mean surface roughness values (Ra) (µm) for FN and KM 

 FN KM 

Control group 0.53 (0.13) 0.45 (0.10) 

Group A 0.57 (0.11) 0.45 (0.09) 

Group B 0.80 (0.13) 0.66 (0.13) 

Group C 0.87 (0.15) 0.75 (0.10) 

Group D 0.98 (0.14) 0.83 (0.10) 

Standard deviations in parentheses 

 

Table 6-7 Statistical comparison of Ra (µm) between acidic conditions 

Materials Difference 
 

FN Group D > Group C, Group B > Group A, Control group 
 

KM Group D > Group C > Group B > Group A, Control group 
 

Results of one-way ANOVA/Scheff’s post-hoc test (p<0.05) 

> indicates statistically significant difference in Ra 

 

6.4 Discussion 

In Chapter 5, a surface reaction layer was reported under similar conditions. In 

this study, several surface analytical techniques were used to characterize the surface 

reaction layer. The depth resolution of FTIR-ATR was around 2~3 μm. SEM/EDS and 

profilometry provided surface information at submicrometer or micrometer scale. 

Nano-indentation testing gave mechanical properties of the surface of up to 10 μm. As 

observed in Chapter 5, the surface layer consisted of two zones with different 
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structural features. The control group and Group A showed only an inner zone with 

thickness of more than 10 µm while Group B, C and D showed an outer zone on top 

of the inner zone in the surface reaction layer (Figure 5-6 and Figure 5-10). Results 

from the control group and Group A were thus used to interpret the inner zone, while 

results from Group B, C and D reflected the characteristics of the outer zone. 

Based on the microstructure, chemical compositions and mechanical properties, 

the inner zone of the surface reaction layer may be described as a degradation zone 

due to acid erosion. As mentioned in Chapter 5, numerous voids corresponding to lost 

glass particles were observed in the inner zone from a cross-sectional view (Figure 

5-6 and Figure 5-10). The topography in this study further substantiated the structural 

feature of the inner zone (Figure 6-9 and Figure 6-10). FTIR spectra also showed 

strong polycarboxylates peaks and a weak glass particle band (Figure 6-7 and Figure 

6-8). Fukazawa et al. (1990) reported similar findings and pointed out that immersion 

in acids for extended time periods resulted in complete dissolution of glass particles 

and many pores were left. Element analysis by EDS revealed that the inner zone 

mainly consisted of Si, Al and Ca/Sr. Sr was absent in KM and Ca was of trace level 

in FN. This result was in accordance with previous reports on compositions of FN and 

KM (Smith, 1998). The inner zone was not uniform, according to the results of 

nano-indentation testing (Figure 6-3 and 6-4). Moreover, the inner zone generally 

exhibited low hardness and elastic modulus (Figure 6-5 and 6-6). This also supported 

the point that the inner zone was degraded and thus had inferior mechanical 



Chapter 6 

 121

properties. 

The outer zone was different in microstructure from the inner zone. On the 

cross-sectional view and the surface micrographs, the outer zone was composed of 

fine particles (Figure 5-6, Figure 5-10, Figure 6-9 and Figure 6-10). The surface 

roughness also increased (Table 6-6). It can be seen that the particles were irregular in 

shape and were distributed uniformly on the surface without forming agglomerates. 

These particles were about 5 μm in size for FN and 10 μm for KM. 

Element analysis by EDS showed that the outer zone consisted of P in addition to 

Si, Al, Sr/Ca. In FTIR spectra, the peaks assigned to phosphate and polycarboxylates 

were also strong. This suggested that the outer zone consist of both polycarboxylates 

and phosphate. Due to technique limitations, data on fluoride content in the outer zone 

was not possible.  

The presence of phosphate in the outer zone suggests that the outer zone may 

possess higher mechanical properties than the inner zone (Driessens, 1995; Morris et 

al., 1997). This was confirmed by hardness and elastic modulus data from 

nano-indentation testing. Hardness and elastic modulus of the outer zone were 

significantly higher than that of the inner zone (control group and Group A) during 

depth profiling.  

Additionally, the properties of the outer zone varied according to environmental 

phosphate level. With an increase in environmental phosphate level, more phosphate 

was observed in the outer zone (Table 6-4). This was also supported by increased 
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surface roughness with higher environmental phosphate (Table 6-7). The increased 

phosphate in the outer zone, thus, resulted in improved hardness and elastic modulus 

of the outer zone (Figure 6-5 and Figure 6-6). 

From this study, it was found that surface layers of different structure, 

physico-mechanical properties and chemical compositions were formed on GICs 

depending on environmental phosphate and pH. To further understand the interaction 

of GICs with environmental calcium/phosphate and pH, studies on the changes in ion 

concentrations of the surrounding environments are warranted.  

 

6.5 Conclusions 

In this study, a series of surface analytical techniques was employed to 

characterize the surface of HVGICs after interaction with environmental 

calcium/phosphate and pH. The results of this study showed that the inner zone of the 

surface reaction layer possessed low mechanical properties which resulted from acid 

degradation of matrices and glass particles in GICs. An outer zone which exhibited 

higher mechanical properties than the inner zone was also observed. Along with 

polycarboxylates, phosphate was involved in the formation of the outer zone. 
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Chapter 7 

Ion Release by GICs Exposed to Acidic Conditions: Effects 

of Environmental Calcium/Phosphate 
 

7.1 Introduction 

GICs are attractive to the dental profession due to their unique cariostatic 

properties. Compared with other direct filling materials, such as composite resins and 

amalgam, GICs has been reported to significantly reduce secondary caries in 

xerostomic patients (McComb et al., 2002; Haveman et al., 2003; Wood, 1993). Their 

cariostatic properties have been attributed to fluoride release by GICs (Forsten, 1998). 

Other ions released by GICs, such as calcium or strontium and phosphate, may also 

assist in the remineralization of decayed tooth (Smales, et al., 2005; Mazzaoui et al., 

2003).  

Ion release is an intrinsic property of GICs due to their essential compositions and 

structure (Wilson and McLean, 1988a). According to their sites in GICs, ions can be 

categorized into cement-forming and non-cement-forming ions. Cement-forming ions 

include calcium (Ca), strontium (Sr), aluminum (Al) and silicon (Si). Ca, Sr, and Al 

ions are bound to polycarboxylic acid chains forming hydrophilic matrix. Si ion is 

involved in the formation of the siliceous gel around glass particles and inorganic 

network penetrating in polycarboxylate matrices (Wilson, 1996; Wilson and McLean, 

1988). Additionally, sodium (Na) and fluorine (F) ions, so-called non-cement-forming 

http://www.ncbi.nlm.nih.gov.libproxy1.nus.edu.sg/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Mazzaoui+SA%22%5BAuthor%5D
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ions, attach to the matrix to balance charges locally and do not contribute to the 

cement formation. Once GICs have fully set, ion mobility becomes more constricted. 

In neutral aqueous conditions, the ions released are mainly non-cement-forming ions, 

notably F and Na ions, and cement-forming ions released are only at trace level. The 

release of non-cement-forming ions does not cause disintegration of GICs and thus 

will have no effect on the durability of GICs (Eisenburger et al., 2003; Wilson and 

Mclean, 1988b).  

The level of ions released by GICs is related closely to their ambient acidity. 

Under low pH conditions, there is a significant increase in fluoride release, which is 

due to the result of further degradation of glass particles by acids (Gandolfi et al., 

2005). This point is supported by a simultaneous increase in the release of 

matrix-forming ions in acidic conditions (Czarnecka et al., 2002). The level of ions 

released by GICs is also affected by their surrounding ionic environment. It has been 

shown that GICs released less fluoride in artificial saliva than in water, regardless of 

glass-ionomer type (Hayacibara et al., 2004; Levallois et al., 1988).  

In Chapter 5, it was observed that environmental phosphate improved hardness 

and elastic modulus of two HVGICs exposed to acidic conditions. The surface 

structure and compositions were also altered by environmental phosphate (Chapter 6). 

In this study, a hypothesis was put forward that environmental phosphate would affect 

the ion release by GICs in acidic conditions. The aims of this study were twofold: (1) 

to determine the ion/ligand release by these HVGICs in acidic conditions of varying 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Eisenburger+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Eisenburger+M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Gandolfi+MG%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Czarnecka+B%22%5BAuthor%5D
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environmental calcium and phosphate levels; (2) to evaluate effects of environmental 

calcium and phosphate on fluoride release profile of these HVGICs in acidic 

conditions.  

 

7.2 Materials and methods 

The same HVGICs (FN and KM) were investigated (Table 4-1). Specimens were 

prepared with customized Teflon rings (10 mm in diameter and 1 mm in thickness). 

All specimens were allowed to set in 100% humidity at 37 ºC for 1 hour before being 

conditioned in different acidic media. The thickness of specimens was measured with 

an electronic digital caliper (Mitutoyo, Japan) for calculation of surface area.  

To determine ions released by GICs, a total 15 specimens for each material were 

manufactured and randomly divided into five groups (n=3). Each specimen was put 

into a plastic bottle with 200 ml acidic storage solutions at 37 ºC. The storage 

solutions were the same to those used in Chapter 6 (Table 6-1). After 4 weeks, the 

storage solutions were analyzed for Al3+, Si4+, Ca2+, Sr2+, Na+ and PO4
3+

 by 

inductively coupled plasma optical emission spectrometry (ICP-OES), carboxyl group 

(RCOO-) by UV-Vis spectrometry and F- by ion selective electrode (ISE) 

potentiometry. The pH value of the storage media were measured with a pH electrode 

(Orion 91-0, USA). 

To obtain fluoride release profile, four storage solutions were selected (Control 

group, Group A, Group C and Group D). Group A contained only calcium, Group D 
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contained only phosphate, while Group C contained equal level of calcium and 

phosphate. Twenty specimens for each material were prepared and randomly divided 

into four groups (n=5). Each specimen was stored in a plastic bottle of 7 ml solution 

and transferred into fresh storage solutions every 24 hour for 7 days. The fluoride 

level of the storage solutions was measured with a fluoride electrode as mentioned 

below.  

The ICP-OES analysis was carried out with Optima 3000 (PerkinElmer, USA), 

which was controlled by ICP Winlab Software. The wavelength (nm) used was 396 

for Al3+, 315 for Ca2+, 460 for Sr2+, 251 for Si4+, 588 for Na+ and 213 for PO4
3-. 

Before measurement, the standard curve for each element was created. The sample 

solutions were acidified and filtered with 0.2 µm syringe filter. The ion concentration 

of sample solutions was expressed in unit of ppm. 

The carboxyl group was measured by an UV-Vis spectrometer (UVmini-1240, 

Shimadzu Corp., Japan) using standard one-wavelength quantitative method. The 

calibration curve was obtained using acidic solutions with known carboxyl group 

concentration. Each sample solution in the quartz cuvette was measured repeatedly 

three times and the mean value (mM) was recorded. 

Fluoride was determined using fluoride ISE (Accumet fluoride combination 

electrode, Fisher Scientific, UK) and an ion analyzer (Orion 370 PerpHect meters, 

Thermo, USA). Before measurement, each sample solution was mixed with the same 

amount of total ionic strength adjustment buffer (TISAB II) to adjust ionic strength 
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and pH. TISAB II was prepared based on the formula recommended by US 

environmental protection agency (Appendix B). The electrode was calibrated using 

fluoride standard solutions diluted with TISAB II (1:1). The calibration was repeated 

before measurement of each group of sample solutions. The electrode was immersed 

into sample solutions and the meter reading (ppm) was recorded after 15 min. 

Fluoride concentration was calculated and expressed in unit of μg/cm2. 

The concentration of ion/ligand released from FN and KM was compared 

between storage conditions using ANOVA/Scheffe’s post-hoc test (p<0.05). 

To evaluate effects of environmental calcium and phosphate on ion/ligand release 

from GICs, the storage media used in this study were assumed to be unsaturated and 

no phosphate precipitation occurred. The chemical equilibrium of phosphate in these 

acidic conditions was calculated using computer software MINEQL+ (Schecher and 

McAvoy, 1998). The software is a powerful modeling system to calculate chemical 

equilibrium in aqueous system and is widely used in aquatic chemistry. The 

parameters of the simulating system were equal to the actual experiment system in 

this study (37 ºC, 150 mM KCl and 50 mM acetic acids). pH was set as 3.30, which 

was the pH of the solutions after conditioning GIC samples. The levels of Sr2+/Ca2+ 

and PO4
3- were varied in range of 0~200 mM, which greatly exceeded the real 

concentration. 
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7.3 Results 

After 4 weeks, the pH values of sample solutions were all changed from 3.00 to 

3.25~3.37 (Table 7-1). Group B, C and D showed lower final pH than control group 

and Group A. When phosphate was added into acidic conditions (Group B, C and D), 

the pH change was less but independent of the environmental phosphate level. 

Table 7-1 pH of storage media after 4 weeks 

 FN KM 

Control group 3.36 (0.01) 3.35 (0.01) 

Group A 3.37 (0.01) 3.35 (0.00) 

Group B 3.28 (0.01) 3.25 (0.01) 

Group C 3.28 (0.01) 3.26 (0.00) 

Group D 3.27 (0.01) 3.24 (0.01) 

Standard deviations in parentheses 

* Initial pH of storage media was 3.00 

 

The ion/ligand release by FN and KM are shown in Figure 7-1, Figure 7-2, Table 

7-2 and Table 7-4. As FN is strontium based and KM is calcium based, Sr2+ release 

from FN and Ca2+ release from KM were reported. In consideration of calcium and 

phosphate present in the storage solutions before conditioning specimens, calcium and 

phosphate release were shown with ∆Ca2+ and ∆PO4
3-

, which were derived as follows: 

∆Ca2+ = [Ca2+]f ― [Ca2+]i and ∆PO4
3-

 = [PO4
3-]f ― [PO4

3-]i 

where, [Ca2+]f and [PO4
3-]f were the final ion concentration of storage solutions after 

immersion of GIC specimen; [Ca2+]i and [PO4
3-]i were the initial ion concentration of 
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storage solutions before immersion of GIC specimen. 

The substantial ion release from GICs in acidic environments as shown in Figure 

7-1, Figure 7-2, Table 7-2 and Table 7-4 supported the results of other studies 

(Fukazawa et al., 1987; Eisenburger et al., 2003). For both FN and KM, Group A 

showed similar levels of Al3+, Si4+, Sr2+/Ca2+, F-, Na+, RCOO- and ∆PO4
3- as control 

group. This suggests that environmental calcium has no significant effects on 

ion/ligand release by GICs in acidic conditions.  

When phosphate was present in acidic conditions (Group B, C and D), the 

ion/ligand released by FN and KM were slightly different. For FN, the concentration 

of Al3+, Si4+, Sr2+, F- and ∆PO4
3- was significantly lower than that of control group 

(Table 7-3). For KM, the level of Al3+, Si4+, ∆Ca2+, F-, ∆PO4
3- as well as Na+ was 

significantly lower than that of control group (Table 7-5). It was clearly shown that 

the presence of phosphate in acidic conditions retarded these ions release from GICs.  

With regard to phosphate release, negative values of ∆PO4
3- were observed for 

both FN and KM. The negative value means GICs may take up phosphate from the 

storage media. It was shown that when the environmental phosphate level was high, 

more environmental phosphate was taken up by GICs. 

In terms of RCOO- release, FN and KM showed the same trend. With increasing 

environmental phosphate level, RCOO- level dropped down and then rose up again. 

Results suggest that environmental phosphate may affect RCOO- release from GICs 

through more than one mechanism. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Eisenburger+M%22%5BAuthor%5D
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Figure 7-1 Ion/ligand release by FN 
* ∆PO4

3- represents phosphate release 
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Figure 7-2 Ion/ligand release by KM 

* ∆Ca2+ and ∆PO4
2+ represent calcium and phosphate release respectively 



Chapter 7 

 132

Table 7-2 Ion/ligand release by FN 
 
 Control 

group 
Group A Group B Group C Group D 

Al3+(ppm) 14.30 (0.70) 15.07 (0.76) 11.40 (0.66) 10.30 (0.35) 9.77 (0.65) 

Si4+(ppm) 8.55 (0.63) 9.25 (0.48) 7.03 (0.49) 6.38 (0.23) 6.60 (0.47) 

Sr2+(ppm) 57.87 (2.61) 62.17 (3.5) 47.20 (1.05) 43.47 (1.30) 39.93 (2.32) 

F-(ppm) 4.97 (0.06) 4.87 (0.21) 3.87 (0.06) 2.90 (0.10) 2.77 (0.12) 

Na+(ppm) 12.60 (0.26) 13.03 (0.55) 12.87 (0.21) 12.00 (0.20) 0.47 (12.23) 

RCOO-(mM) 1.68 (0.14) 1.99 (0.30) 1.33 (0.14) 1.09 (0.36) 1.85 (0.29) 

∆PO4
3-(ppm) 6.10 (0.26) 6.18 (0.08) 1.77 (1.20) -0.77 (0.35) -9.30 (0.69) 

Standard deviation in parentheses (n=3) 

* ∆PO4
3- represents phosphate release 

 
Table 7-3 Statistical comparison of ion/ligand release by FN between acidic 
storage media 
 

Variables Difference 

Al3+ Group A, Control group > Group B, Group C, Group D* 

Si4+ Group A, Control group > Group B, Group D, Group C* 

Sr2+ Group A, Control group > Group B, Group C, Group D  

Group B > Group D* 

F- Group A, Control group > Group B > Group C, Group D* 

Na+ No significant difference* 

RCOO- Group A > Control Group > Group B, Group C 

Group D > Group B, Group C# 

∆PO4
3- Group A, Control group > Group B > Group C > Group D* 

 
Results of one-way ANOVA/Scheff’s post-hoc test* and Kruskal-Wallis/Mann-Whitney test#  
(p < 0.05) 
> indicates statistically significant difference in concentration of ions/ligands 
∆PO4

3- represents phosphate release 
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Table 7-4 Ion/ligand release by KM 

 Control 
group 

Group A Group B Group C Group D 

Al3+(ppm) 12.30 (0.26) 12.40 (0.92) 8.05 (0.33) 6.97 (0.19) 6.09 (0.22) 

Si4+(ppm) 8.30 (0.33) 8.18 (0.72) 5.28 (0.02) 4.55 (0.09) 4.11 (0.16) 

∆Ca2+(ppm) 12.73 (0.51) 12.53 (2.02) 8.50 (1.00) 8.23 (1.50) 5.72 (0.23) 

F-(ppm) 7.07 (0.15) 6.63 (0.06) 4.83 (0.25) 2.87 (0.12) 2.37 (0.06) 

Na+(ppm) 20.33 (0.67) 20.77 (0.98) 18.20 (0.29) 17.93 (0.29) 17.10 (0.26) 

RCOO-(mM) 1.73 (0.18) 1.93 (0.06) 1.42 (0.09) 1.25 (0.32) 1.65 (0.22) 

∆PO4
3-(ppm) 3.68 (0.22) 3.79 (0.07) -1.43 (0.17) -4.47 (1.05) -12.70 (0.92)

Standard deviation in parentheses (n=3) 

∆Ca2+ and ∆PO4
2+ represent calcium and phosphate release respectively 

 
Table 7-5 Statistical comparison of ion/ligand release by KM between acidic 
storage media 
 

Variables Difference 

Al3+ Group A, Control group > Group B, Group C, Group D 

Group B > Group D 

Si4+ Control group, Group A > Group B, Group C, Group D 

Group B > Group D 

Sr2+ Group A, Control group > Group B, Group C, Group D  

F- Group A, Control group > Group B > Group C > Group D 

Na+ Group A, Control group > Group B, Group C, Group D 

RCOO- Group A, Control group > Group B, Group C 

Group D > Group C 

∆PO4
3- Group A, Control group > Group B > Group C > Group D 

Results of one-way ANOVA/Scheff’s post-hoc test* and Kruskal-Wallis/Mann-Whitney test# (p < 
0.05) 
> indicates statistically significant difference in concentration of ions/ligands 
∆Ca2+ and ∆PO4

3- represent calcium and phosphate release respectively 
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The kinetics of fluoride release are shown in Figure 7-3, Figure 7-4, Table 7-6 

amd Table 7-7, while the cumulative fluoride release are in Figure 7-5, Figure 7-6, 

Table 7-8 and Table 7-9. With regard to fluoride release profile, a slight difference 

between FN and KM was observed. For FN, fluoride release rate was the highest on 

the first day, then decreased and followed by a constant level (Figure 7-3). The 

fluoride release rate of KM was different and fluctuated during the 7-day period 

(Figure 7-4). When phosphate was present in the acidic solutions (Group C and Group 

D), both FN and KM released fluoride at a slower rate than those in control group. No 

significant difference in fluoride release rate was observed between control group and 

Group A containing only calcium. The adverse effect of environmental phosphate on 

fluoride release was observed as early as after 1 day immersion for KM and 2 days for 

FN (Table 7-10). In terms of cumulative fluoride release, the amount of fluoride 

release during the 7 days was significantly affected by environmental phosphate 

(Figure 7-5 and Figure 7-6). Both FN and KM released lesser fluoride in acidic 

conditions containing environmental phosphate when compared to in phosphate free 

acidic conditions. This is consistent with the 4-week results (Figure 7-1 and Figure 

7-2).  
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Figure 7-3 Kinetics of fluoride release by FN 

*Vertical lines represent standard deviations 

 
 
 
Table 7-6 Kinetics of fluoride release (µg•cm-1•day-1) by FN 
 

 Control group Group A Group C Group D 

Day 1 16.05 (1.51) 15.55 (1.21) 16.60 (1.90) 16.87 (7.24) 

Day 2 10.09 (0.17) 10.13 (0.42) 7.57 (0.17) 7.24 (0.25) 

Day 3 9.51 (0.49) 10.05 (0.50) 6.55 (0.68) 6.66 (0.31) 

Day 4 10.31 (0.66) 10.92 (0.64) 8.59 (0.34) 9.41 (0.34) 

Day 5 10.17 (0.57) 10.99 (0.77) 8.73 (0.51) 9.27 (0.18) 

Day 6 9.95 (0.38) 10.41 (0.66) 8.22 (0.43) 8.40 (0.15) 

Day 7 9.80 (0.33) 9.98 (0.42) 8.52 (0.21) 8.62 (0.18) 

Standard deviation in parentheses (n=5) 
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Figure 7-4 Kinetics of fluoride release by KM 

*Vertical lines represent standard deviations 

 
 
 
Table 7-7 Kinetics of fluoride release (µg•cm-1•day-1) by KM 
 

 Control group Group A Group C Group D 

Day 1 15.60 (0.90) 18.15 (1.98) 12.53 (0.48) 11.91 (0.54) 

Day 2 12.98 (0.47) 12.17 (0.30) 8.35 (0.17) 7.94 (0.24) 

Day 3 14.11 (0.39) 13.95 (0.28) 8.78 (0.43) 8.36 (0.27) 

Day 4 16.74 (0.60) 16.15 (0.74) 10.19 (0.31) 9.21 (0.29) 

Day 5 16.59 (0.28) 14.23 (0.26) 9.27 (0.21) 8.86 (0.46) 

Day 6 17.37 (0.37) 17.22 (0.77) 9.63 (0.43) 8.401 (0.30) 

Day 7 17.73 (0.36) 16.94 (0.65) 10.97 (0.36) 9.43 (0.32) 

Standard deviation in parentheses (n=5) 



Chapter 7 

 137

0

20

40

60

80

100

1 2 3 4 5 6 7 (days)

Control group
Group A
Group C
Group D

(µg•cm-2)

 
Figure 7-5 Cumulative fluoride release by FN 

*Vertical lines represent standard deviations 

 
 
 
Table 7-8 Cumulative fluoride release (µg•cm-1) by FN 
 

 Control group Group A Group C Group D 

Day 1 16.05 (1.51) 15.55 (1.21) 16.60 (1.90) 16.87 (7.24) 

Day 2 26.14 (1.60) 25.68 (1.62) 24.17 (1.99) 24.11 (0.63) 

Day 3 35.65 (1.81) 35.73 (2.09) 30.72 (1.59) 30.77 (0.65) 

Day 4 45.97 (2.17) 46.65 (2.62) 39.30 (1.82) 40.18 (0.81) 

Day 5 56.13 (2.27) 57.65 (3.33) 48.04 (1.97) 49.45 (0.85) 

Day 6 66.08 (2.40) 68.06 (3.96) 56.26 (1.98) 57.85 (0.94) 

Day 7 75.88 (2.64) 78.04 (4.33) 64.78 (2.03) 66.47 (0.98) 

Standard deviation in parentheses (n=5) 
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Figure 7-6 Cumulative fluoride release by KM 

*Vertical lines represent standard deviations 

 
 
 
Table 7-9 Cumulative fluoride release (µg•cm-1) by KM 
 

 Control group Group A Group C Group D 

Day 1 15.60 (0.90) 18.15 (1.98) 12.53 (0.48) 11.91 (0.54) 

Day 2 28.58 (0.87) 30.32 (2.25) 20.88 (0.57) 19.84 (0.48) 

Day 3 42.69 (0.89) 44.26 (2.11) 29.65 (0.98) 28.21 (0.58) 

Day 4 59.43 (1.44) 60.41 (1.60) 39.84 (1.22) 37.42 (0.82) 

Day 5 76.02 (1.55) 74.64 (1.56) 49.12 (1.11) 46.28 (1.19) 

Day 6 93.40 (1.83) 91.87 (1.58) 58.74 (1.52) 54.29 (1.42) 

Day 7 111.12 (2.17) 108.80 (1.76) 69.72 (1.56) 63.72 (1.70) 

Standard deviation in parentheses (n=5) 
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Table 7-10 Statistical comparison of fluoride release (daily) between acidic 
storage media 
 

Materials Time Difference 

Day 1 No significant difference* 

Day 2 Control group, Group A > Group B, Group D* 

Day 3 Control group, Group A > Group B, Group D* 

Day 4 Control group > Group B 
Group A > Group B, Group D* 

Day 5 Control group > Group B 
Group A > Group B, Group D* 

Day 6 Control group, Group A > Group B, Group D* 

FN 

Day 7- Control group, Group A > Group B, Group D* 

Day 1 Group A > Control group > Group B, Group D* 

Day 2 Control group >Group A > Group B, Group D* 

Day 3 Control group, Group A > Group B, Group D* 

Day 4 Control group, Group A > Group B > Group D# 

Day 5 Control group > Group A > Group B, Group D* 

Day 6 Control group, Group A > Group B > Group D* 

KM 

Day 7- Control group, Group A > Group B > Group D* 

 
Results of one-way ANOVA/Scheff’s post-hoc test* and Kruskal-Wallis/Mann-Whitney test#  
(p < 0.05) 
> indicates statistically significant difference in concentration of fluoride ion 
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The percentage of phosphate precipitations (SrHPO4 and CaHPO4) as a function 

of Sr2+/Ca2+ and PO4
3- level are reported in Figure 7-7 and Figure 7-8. The arrows 

indicate the highest PO4
3- level (2.4 mM) in storage media.  
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Figure 7-7 Percentage of SrHPO4 precipitations as a function of Sr2+ and PO4

3- 
level 
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Figure 7-8 Percentage of CaHPO4 precipitations as a function of Ca2+ and PO4

3- 
level 

 

As clearly seen from Figure 7-7 and Figure 7-8, no precipitation is possible when 

PO4
3- level is 2.4 mM. The storage medium after interaction with GICs was an 

2.4 mM 

2.4 mM 
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unsaturated solution of strontium/calcium phosphate in the current study. The results 

suggest that there is no phosphate precipitation in storage media before and after 

conditioning GIC specimens.  

 

7.4 Discussion 

ICP-OES has the ability to perform rapid multi-element analysis at trace level. 

This technique, however, is not available for some elements, such as O, C, H, N, 

halides and radioactive elements (Brundle et al., 1992). With the exception of F- and 

RCOO-, all ions/ligands were examined using ICP-OES in this study. RCOO- was 

measured using UV-Vis spectrometry at a wavelength of 205 nm as recommended by 

the manufacturer. A spectrum scan of storage solutions with a wavelength of 190~250 

nm was done to confirm the location of RCOO- peak. With regards to F- measurement, 

plastic containers were used for storage of sample solutions and TISAB II was also 

added into sample solutions to minimize fluoride measurement errors.  

It was found that environmental phosphate reduced the levels of ion/ligands (with 

the exception of RCOO-) released by GICs in acidic conditions. In general, GICs 

release more ions in low pH than in neutral situations. The increased ion release is the 

result of glass particle and matrix degraded by acids (Fukazawa et al., 1987; Smales et 

al., 2005). The lesser ion/ligands release when phosphate was present in the acidic 

conditions indicates that environmental phosphate may retard acid degradation of 

GICs. This was supported by the results from the previous SEM study. When 
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phosphate was present in storage media, the surface reaction layer was thinner than 

that in phosphate-free storage solutions (Chapter 5). The relatively smaller change in 

pH value of the sample solutions consisting of phosphate is consistent with this point. 

The smaller increase in solution pH suggests that less H+ hydrolysis of matrices and 

glass particles occurs in GICs.  

With regard to environmental calcium, the results of this study indicated that the 

addition of calcium to acidic conditions has no significant effects on ion/ligand 

release by GICs. It further supported the point that environmental calcium was not 

critical in the interaction between GICs and environmental calcium/phosphate and 

pH. 

Another significant finding of this study was that environmental phosphate level 

was decreased after interaction with GIC. Generally, the removal of anions and 

cations from a solution phase is the result of surface adsorption or bulk solution 

precipitation. The bulk precipitation process is less likely to be responsible for the 

decreased phosphate level due to the acidity of solutions in this study as shown in 

Figure 7-7 and Figure 7-8. In the current study, the changes of phosphate anion in 

storage media were most probably the result of surface adsorption on GICs. 

The extent of phosphate uptake by GICs appeared to be dependent on 

environmental phosphate level. When environmental phosphate concentration was 

higher, GICs took more phosphate from the surrounding environment. This concurs 

with our EDS results. A higher environmental phosphate led to higher phosphorus 
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content in the GIC surface (Chapter 6). The uptake of phosphate by GICs in acidic 

conditions may be caused by an ion exchange process.  

Most metallic ions in GICs, such as Al3+, Ca2+ and Sr2+, are complex ions and 

have a co-ordination number of six. These complex ions are generally covalently 

bound by carboxyl group, water molecule, fluoride or hydroxyl group (Hosoda, 1993) 

(Figure 7-9).  
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Figure 7-9 The possible molecular structures in set GICs 

 

These ligands can be interchanged with other surrounding ligands. At low pH, H+ 

will dissociate the covalent bond between ligands and central metal cations, thus, 

promoting the ligand exchange. Fluoride anion, hydroxyl and carboxyl groups may 

interchange with environmental phosphate due to their anionic nature.  

If environmental phosphate moved into GICs by ion exchange with OH-, the 

uptake of phosphate should be accompanied by a rise in pH value of sample solutions, 

due to OH- leaching out of GICs. The pH results, however, showed that sample 

solutions presenting with phosphate uptake had lower pH value than others. This 

implies that the exchange between OH- and PO4
3- had no significant effect on the 
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phosphate uptake process. In respect to fluoride anion, the fluoride released by GICs 

did not increase to accompany phosphate uptake. The result indicates that PO4
3-/F- 

exchange is also not responsible for phosphate uptake. The carboxyl group showed a 

dissimilar release profile from other matrix-forming ions, e.g. Al3+, Sr2+, Ca2+ and Si4+. 

With increasing environmental PO4
3- levels, a decrease of Al3+, Sr2+, Ca2+ and Si4+ 

release was observed, while RCOO- release was increased. This suggests that the 

increased RCOO- release observed with increasing environmental PO4
3- cannot be 

attributed to acid degradation of the GIC. The increased RCOO- was associated with 

decreased PO4
3- after conditioning GICs, which suggests that an ion exchange has 

occurred between carboxyl group and PO4
3-, i.e. PO4

3- uptake by GIC happened. 

As fluoride release is an important characteristic of GICs, the effect of 

environmental calcium and phosphate on the fluoride release profile was also 

examined. Considering the fact that most fluoride is released from GICs in the initial 

period (Dunne et al., 1996), a short-term fluoride release profile was studied. FN and 

KM showed substantial amount of fluoride release in all acidic conditions, but the 

amount and the rate of fluoride release were lowered by phosphate in acidic 

conditions. The decreased fluoride release was also due to the retardation of acid 

degradation of GICs by environmental phosphate. The effect of environmental 

phosphate on fluoride release started as soon as in Day 1 for KM and Day 2 for FN. 

The reduced fluoride release level may result in extended fluoride releasing 

characteristic. This may be of clinical relevance as a long and low level fluoride 
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release is preferred in vivo (Forsten, 1998). 

 

7.5 Conclusions 

This study investigated the effects of environmental phosphate/calcium on 

ion/ligand release by GICs in acidic conditions. The fluoride release profile in acidic 

conditions with varying calcium/phosphate levels was also examined. It was found 

that in acidic conditions, the ion/ligand release by GICs was substantially increased. 

With the exception of carboxyl group, matrix-forming ions/ligands released from 

GICs in acidic conditions were retarded by environmental phosphate. This is 

consistent with the beneficial effects of environmental phosphate on GICs observed in 

previous studies. It was additionally found that environmental phosphate was taken up 

by GICs. The phosphate uptake was environmental phosphate level dependent. This 

may be due to a ligand exchange between phosphate and carboxyl group. Fluoride 

release was reduced by environmental phosphate. The retardation effect of 

environmental phosphate may maintain a long-term and low-level fluoride release, 

thus, prolonging the cariostatic potential of glass-ionomer restoratives in vivo. 
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Chapter 8 

Effects of Environmental Calcium/Phosphate on OCA Wear 

and Shear Strength of GICs Subject to Acidic Challenge  
 

8.1 Introduction 

GICs are cariostatic, biocompatible and can adhere to tooth structure. 

Glass-ionomer restoratives are commonly used in deciduous teeth as alternatives to 

dental amalgam. In permanent teeth, they are mainly employed for restoring cervical 

lesions and with atraumatic restorative (ART), tunnel and sandwich techniques, due to 

their excellent bonding and moderate mechanical properties. GICs are also 

recommended for high caries risk patients (e.g. post-radiation therapy, xerostomia 

etc.), because of their cariostatic potential through fluoride release (Hu et al., 2002; 

McComb et al., 2002).  

The longevity of glass-ionomer restoratives varies widely among different 

clinical surveys. Reported failure rates range from 0.7% to 60% (Ostlund et al., 1992; 

Gao et al., 2003; Kilpatrick et al., 1995; Ho et al., 1999). With regards to failure 

modes of GICs in vivo, clinical studies have shown that bulk fracture and loss of 

anatomy form are the main reasons for failure of glass-ionomer restoratives in general 

practice (Mjör, 1997; Mandari et al., 2001, Burke et al., 2001). For xerostomic 

patients, the primary failure modes for GICs are loss of anatomy, marginal 

deterioration and erosion of material (McComb et al., 2002; Gao et al., 2003; Hu et 
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al., 2002).  

The degradation of glass-ionomer restoratives in vivo is a chemo-mechanical 

process. It has been shown that glass-ionomer restoratives suffer more bulk fracture 

when inserted in large conventional Class I and Class II cavities in stress-bearing 

areas (Smales et al., 1990; Qvist et al., 1997). In addition, it was found that 

glass-ionomer restoratives in contact free areas (CFA) were as worn as those in 

occlusal contact areas (OCA) (McKinney et al., 1987). These results suggest that both 

chemical and mechanical environments play an important role in degradation of 

glass-ionomer restoratives (Mair et al., 1996; Maeda et al., 1999). To improve clinical 

performance, GICs must have greater resistance to the chemo-mechanical degradation 

in vivo. 

More recently, McKenzie et al., (2003a, 2004) found that GICs conditioned in 

Coca-Cola had higher hardness and strength than those in other acidic drinks and 

were comparable to those in neutral media. They postulated that the phosphoric acid 

in Coca-Cola may contribute to this phenomenon. In our earlier studies, we found that 

GICs showed higher surface hardness and elastic modulus in acidic conditions when 

environmental phosphate level was high (Chapter 5).  

The purpose of this study was to determine the effects of environmental 

phosphate on clinically related mechanical properties of GICs, when exposed to acidic 

conditions. Due to the fact that loss of anatomy and fracture are the main causes for 

GIC restoration failure, this study investigated OCA wear resistance and shear 
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strength of two HVGICs. In this study, a simple reciprocating compression-sliding 

system was used. The wear process was simplified to two body wear without 

considerations of the exogenous third body. Despite these limitations, the derived 

results provide insight into the effects of environmental phosphate on GICs when 

challenged by acids. 

 

8.2 Materials and methods 

Capsulated Fuji IX Fast and KetacMolar were activated and mixed according to 

manufacturers’ instructions (Table 4-1). Shear strength specimens were made using 

stainless steel washers (12.0 mm in outer diameter, 5.0 mm in inner diameter and 1.0 

mm in thickness) and wear specimens were prepared using customized acrylic moulds 

with rectangular recess (8.0 mm long × 4.0 mm wide × 2.0 mm deep). The molds 

filled with the mixed materials and covered with acetate strips and glass slides. 

Pressure was applied gently to remove excess material. The specimens were allowed 

to set, kept in 100% humidity at 37 ºC for 1 hour, randomly divided into five groups 

and conditioned in acidic storage media (pH 3). The detail of storage media is listed in 

Table 6-1. After 4 weeks, the specimens were subjected to shear punch testing (n=8) 

or OCA wear testing (n=6) for shear strength and wear depth.  
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Shear punch testing was conducted using a custom designed micro-punch 

apparatus mounted on an Instron Micro-tester (Model 5848, Instron Corp, 

Massachusetts, USA) (Figure 8-1). Each specimen was measured with a digital 

vernier caliper (Mitutoyo, Tokyo, Japan) for thickness and then positioned in the 

apparatus with the holding washer. The specimen was restrained by tightening a screw 

clamp. To minimize frictional force, the entire experimental set-up was calibrated to 

ensure the punch and the punch hole in specimen jig were aligned. The testing was 

controlled by a computerized program (Merlin, Instron Corp.). A steel punch with a 

flat end of 2 mm diameter was used to create shear force and the testing was done at a 

crosshead speed of 1.5 mm/min. The maximum load was recorded and shear strength 

was subsequently computed using the following formula: 

Shear strength (MPa)
DT
W
π

=  

where W is the load to fracture (N); D is the diameter of the punch (mm); T is the 

thickness of the specimen (mm). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-1 Photograph and schematic presentation of the micro-punch apparatus 
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The OCA wear testing was achieved with a reciprocating compression-sliding 

wear instrument, which allowed specimens to move back and forth against counter 

wear body. This testing has been described in detail by Yap et al. (2001b) (Figure 8-2). 

The specimens were fixed on the sliding platform in holders with storage solutions as 

lubricating media. Flat-ended SS304 stainless steel of 1mm diameter polished to 1200 

grit with a series of sandpapers were used as abrading counter bodies. A constant 

stress of 20 MPa was applied and specimens were tested at a speed of 100 

cycles/minute. Wear depths (µm) were measured and recorded with a profilometer 

(Surftest SV-402, Japan) after 500, 1000, 2000 and 3000 wear cycles. Five 

measurements were performed at the center of each specimen and total 30 readings 

were obtained for each group. 

 

 

 

 

 

 

 

 

 
Figure 8-2 Photograph and schematic presentation of the wear instrumentation 
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All statistical analysis was carried out at significance level 0.05. One-way 

ANOVA and Scheffe’s post-hoc tests were used to determine storage medium 

differences in shear strength and wear depth. 

 

8.3 Results 

8.3.1 Wear depth 

The cumulative wear depth of FN and KM are shown in Figure 8-3, Figure 8-4 

and Table 8-1. As can be seen, the cumulative wear depth of FN and KM in all acidic 

conditions increased as a function of wear cycles. For both FN and KM, the increase 

in wear depth within the first 500 wear cycles was much higher than after 500 wear 

cycles. It can also be seen that the wear depth of FN and KM in acidic conditions was 

dependent on environmental phosphate levels. FN and KM both experienced the 

highest wear depth in the control group and Group A, where environmental phosphate 

was absent. With the addition of phosphate in acidic conditions (Group B, C and D), 

wear depth of FN and KM significantly decreased. With increasing environmental 

phosphate levels, the wear depth of FN and KM decreased. Exposure to the highest 

phosphate level (Group D) resulted in the lowest wear depth of FN and KM (Table 

8-2).  

 



Chapter 8 

 152

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000wear cycles

Control group Group A
Group B Group C
Group D

W
ea

r d
ep

th
 ( 

µm
)

 

 
Figure 8-3 Mean cumulative wear of FN in different acidic conditions 

*Vertical lines represent standard deviations 
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Figure 8-4 Mean cumulative wear of KM in different acidic conditions 
*Vertical lines represent standard deviations 
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Table 8-1 Cumulative wear depth (µm) of FN and KM in different acidic 
conditions  
 

Materials Wear cycles Control 
group 

Group A Group B Group C Group D

500 85.8 (7.3) 86.1 (7.7) 55.2 (8.5) 47.0 (5.6) 33.3 (6.5)

1000 87.0 (8.1) 87.4 (6.8) 56.9 (6.4) 49.4 (6.7) 35.9 (5.8)

2000 92.6 (7.6) 91.2 (7.8) 61.4 (7.4) 53.6 (8.3) 38.2 (7.2)

FN 

3000 93.5 (7.2) 93.3 (6.4) 64.4 (8.5) 55.3 (7.3) 40.4 (6.5)

500 85.3 (5.8) 83.4 (5.8) 51.4 (6.0) 44.3 (3.4) 30.5 (4.2)

1000 89.3 (6.1) 86.3 (6.9) 55.9 (7.5) 46.6 (2.7) 31.0 (3.8)

2000 95,2 (7.4) 89.5 (7.7) 59.9 (8.3) 47.4 (3.3) 33.1 (2.5)

KM 

3000 99.5 (6.3) 94.9 (8.3) 66.8 (9.2) 49.2 (3.6) 35.6 (4.7)

Standard deviation in parentheses (n=6) 

 
 
Table 8-2 Statistical comparison of wear depth between acidic conditions 
 

Materials Wear cycles Difference 

500 Control group, Group A > Group B > Group C > Group D* 

1000 Control group, Group A > Group B > Group C > Group D* 

2000 Control group, Group A > Group B > Group C > Group D* 

FN 

3000 Control group, Group A > Group B > Group C > Group D* 

500 Control group, Group A > Group B > Group C > Group D# 

1000 Control group, Group A > Group B > Group C > Group D# 

2000 Control group > Group A > Group B > Group C > Group D# 

KM 

3000 Control group > Group A > Group B > Group C > Group D# 

 
Results of one-way ANOVA/Scheff’s post-hoc test* and Kruskal-Wallis/Mann-Whitney test#  
(p < 0.05) 
> indicates statistically significant difference in wear depth 
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8.3.2 Shear strength 

The shear strength of FN and KM in the various acidic conditions are listed in 

Figure 8-5 and Table 8-3. Group D and Group C showed significantly higher shear 

strength than control group, while Group B did not. When only calcium was present 

in acidic conditions (Group A), a similar shear strength to control group was observed 

(Table 8-4). 
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Figure 8-5 Shear strength of FN and KM 

*vertical lines represent standard deviations 
 
 
Table 8-3 Shear strength (MPa) of FN and KM 
 

 FN KM 

Control group 53.87 (5.21) 63.09 (4.53) 

Group A 58.11 (5.31) 64.67 (7.28) 

Group B 60.15 (7.15) 67.87 (5.53) 

Group C 66.37 (4.85) 74.20 (7.87) 

Group D 68.01 (5.16) 84.00 (5.45) 

Standard deviations in parentheses 

 

(    )
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Table 8-4 Statistical comparison of shear strength between acidic conditions 
 

Materials Difference 
 

FN Group D > Group A, Control group 
Group C > Control group 
 

KM Group D > Group B, Group A, Control group 
Group C > Control group 
 

 
Results of one-way ANOVA/Scheff’s post-hoc test (p<0.05) 
> indicates statistically significant difference in shear strength 

 

These results suggest that environmental phosphate improves the wear resistance 

and shear strength of GICs in acidic conditions. The beneficial effects of 

environmental phosphate were dependent on the phosphate level, that is, the higher 

environmental phosphate level led to the greater wear resistance and shear strength of 

GICs when exposed to acids.  

 

8.4 Discussion 

Traditionally, conventional GICs are contraindicated in stress bearing occlusal 

restorations as they suffer bulk fracture and wear due to their insufficient strengths, 

poor wear resistance and sensitivity to acids. With improvements in the formulation, 

HVGICs present with increased strength and resistance to wear (Ellakuria et al., 2003; 

de Gee, 1999). HVGICs were designed as alternatives to amalgam and have been 

employed in occlusal areas with the ART technique as well as temporary filling and 
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deciduous tooth restorations.  

The wear of glass-ionomer restoratives in vivo is highly complex. Numerous in 

vitro wear testing have been carried out to predict the wear rate of materials under 

simulated intra-oral conditions. However, a total simulation of clinical behavior is 

impossible in vitro and no wear test has achieved this thus far (Turssi et al., 2002). In 

this study, a simple reciprocating compression-sliding system, which simulates 

occlusal contact area (OCA) wear in vivo, was used to evaluate wear property of 

HVGICs (Yap et al., 2001b). A controlled contact stress of 20 MPa was employed 

based on reported contact stress during mastication (Anderson, 1956). A stainless steel 

counter-body was used to produce a “plucking” wear, which has been observed in 

clinically worn composites (Abell et al., 1983). In the wear testing, acidic storage 

media were placed in specimen holder and acted as a lubricant. The degraded surface 

was removed during wear testing and the fresh surface was again exposed to the 

acidic environment. 

ISO recommends a compression strength testing for chemical-cured and a 

flexural strength testing for light-cured GIC materials (ISO 9917). The quality of the 

surface and edges of specimens are most critical to the strengths of the materials 

during the compression and flexural testing. Shear punch testing is an appropriate 

method to evaluate all dental materials, especially GICs (Nomoto et al., 2001). In vivo, 

restorations are placed in shear during the masticatory cycle. Moreover, shear strength 

obtained from shear punch testing correlates with strength from tensile testing. Shear 
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strength can be used to estimate tensile property, which is also frequently present 

during mastication (Guduru et al., 2005). The strength order of dental materials by 

shear strength testing is consistent with their clinical performance (Nomoto et al., 

2001). With regard to sample preparation for shear punch testing, the only 

requirement is that the two faces are flat and parallel, which is easily achieved. The 

quality of the specimen edges around the circumstance has no direct influence on the 

testing outcomes. The shear punch testing also has the advantage of saving material 

due to use of smaller specimens (Yap et al., 2003b). As suggested by Nomoto et al. 

(2001), the specimens were restrained tightly during the shear punch testing. The 

recess in the apparatus provides a snug-fit with the specimens and minimizes the 

bending of specimens. Thus the reliability and reproducibility of the shear punch 

testing is assured (Yap et al., 2003b). 

It has been reported that GICs had inferior wear resistance and strength when 

exposed to acids (de Gee, 1999; McKenzie et al., 2003a). Acids decompose the 

matrices and glass particles in GICs leading to degradation of the material (Fukazawa 

et al., 1987, 1990). Compared with the results of FN in neutral conditions using the 

same wear testing (Yap et al., 2003a), the results of this study (Control group) 

confirmed the negative effects of acids on GICs. It is noteworthy that, in this study, 

environmental calcium had no positive effects on the wear resistance and shear 

strength of GICs in acidic conditions. The results further supported the finding that 

environmental calcium had no significant effects on GICs in acidic conditions as 
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mentioned in previous studies (Chapter 5, 6 and 7).  

In the present study, it was found that the wear resistance and shear strength of 

FN and KM in acidic conditions were improved by environmental phosphate. The 

positive effects of environmental phosphate are consistent with our previous studies 

for other properties of GICs. 

In general, wear resistance of materials is directly determined by their surface 

energy, surface morphology and surface composition (Chattopadhyay, 2001). In our 

previous studies, we found that environmental phosphate altered the surface 

properties (hardness and elastic modulus, structure and compositions) of GICs when 

subjected to acidic conditions. The different wear results between acidic conditions 

with varying phosphate levels were therefore not surprising. Wear depth at different 

test intervals were in the following order: Control group and Group A > Group B > 

Group C > Group D. This is in accordance with the order of surface reaction layer 

thickness (Chapter 5). Findings suggest that the thickness of the surface reaction layer 

may be critical to the wear resistance of GICs in acid conditions. 

The decreased wear resistance with an increase in surface reaction layer thickness 

also implies that the surface reaction layer is more susceptible to OCA wear than the 

unaffected normal GICs. Wear depth of the first 500 wear cycles in this study was 

generally beyond the thickness of the surface reaction layer (Figure 5-5 and Figure 

5-9). Thus, differences in the wear rate between 500 cycles and 2000~3000 cycles can 

be used to predict the wear resistance of the surface reaction layer. It can be clearly 
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seen that the wear rate of the first 500 cycles was much higher than that for 

2000~3000 cycles (Figure 8-3 and Figure 8-4). This suggests further that the surface 

reaction layer had lower wear resistance than the unaffected normal structure. The 

inferior wear resistance of the surface reaction layer may arise from the increased 

porosity or small particles and decreased hardness due to acid degradation (Chapter 

6). 

Our previous studies showed that the structure, compositions and 

physico-mechanical properties of the surface reaction layer were different when 

environmental phosphate level was varied. Higher environmental phosphate level led 

to a thinner and harder surface reaction layer (Chapter 6). In general, for the same 

material, higher hardness is related to higher wear resistance (Chattopadhyay, 2001). 

Along with the varied thickness, the altered properties (microstructure, roughness, 

hardness and elastic modulus) of the surface reaction layer may also contribute to the 

differences in wear resistance of GICs. However, the wear results from this study 

were insufficient to provide direct evidence for this assumption, due to the dominant 

role of surface reaction layer thickness in the wear process.  

With regards to bulk mechanical property, shear strength of GICs in acidic 

conditions was also increased by environmental phosphate. The beneficial effects of 

environmental phosphate may be also due to the surface reaction layer as mentioned 

above. In the shear punching process, the sample is “punched out” by a shear linkage 

of microvoids in materials. Before the final catastrophic failure, the sample 
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experiences a combination of shear, bending and tension deformation (Lucas, 1983). 

Due to the sensitivity to microcrack like defects, strength is generally affected by 

material structure, surface treatment, testing methods and testing environment, etc 

(Kelly, 1995). It has been shown that chemical degradation will promote microcrack 

initiation in polymers, thus, accelerate the ultimate failure of materials under an 

applied load (Choi et al., 2005). In this study, the surface reaction layer arising from 

the combined effects of environmental pH and phosphate is characterized with 

increased porosity or small particles. It is therefore anticipated that a thicker surface 

reaction layer may lead to a decreased strength. The latter was supported by the shear 

strength results.  

Intra-oral pH is often decreased by intrinsic and extrinsic acids, such as gastric 

and dietary acids, and pH 3 is clinically realistic. It should be noted that the 

consumption of potentially erosive foodstuffs and beverages has increased nowadays, 

and this correlates closely to the prevalence of dental erosion (Lussi et al., 2004). 

Although clinical surveys have shown that a long duration of exposure to low 

intra-oral pH has the potential to promote degradation of glass-ionomer restoratives in 

vivo, it must be highlighted that the detrimental effects of acids resulting from a four 

week conditioning period in vitro may take months or years to occur in vivo. In 

addition, the in vitro accelerated wear testing and shear punch testing are unable to 

completely simulate the “clinical” conditions for GIC restorations. The results of this 

laboratory study, however, provide important information regarding the performance 
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of GIC restoratives when exposed to acidic and stress-bearing conditions in vivo. To 

minimize acid degradation of GICs and increase their longevity in vivo, the following 

are suggested: (1) reduce acid exposure; and (2) modify the local environment by 

introducing beneficial agents. It was found in this study that environmental phosphate 

can positively affect wear process and strength of GICs. Hence, we suggest that the 

creation of a local high phosphate environment of GICs may improve the clinical 

performance of GICs, especially when challenged by acids. This could be achieved by 

coating GICs with high phosphate containing varnishes or resins or espousing GIC 

restorations to high phosphate foams or gel using a tray. 

 

8.5 Conclusions 

In the current study, the effects of environmental phosphate on OCA wear and 

shear strength of GICs subject to acidic conditions were investigated. Within the 

limitations of this study, the wear and shear strength of HVGICs in acidic conditions 

varied significantly with environmental phosphate level. It was found that adding 

phosphate to acidic conditions improved wear resistance and shear strength for both 

FN and KM. This phenomenon was attributed to the surface reaction layer of GICs, 

which was dependent on phosphate level in acidic conditions. The results suggest that 

environmental phosphate may improve clinical performance of glass-ionomer 

restorations when challenged by acids. 
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Chapter 9 

General Conclusions, Proposed Mechanism and  

Future Perspectives  

 

This study investigated the interaction of glass-ionomer restoratives with 

environmental calcium/phosphate and pH. The effects of environmental 

calcium/phosphate and pH on surface properties and other clinically related properties 

were examined. Based on analysis of surface changes of GICs and ion release/uptake 

from GICs, possible underlying mechanism was explored and proposed.  

 

9.1 Results and general conclusions 

In the preliminary study (Chapter 4), the suitability of a depth-sensing 

micro-indentation testing for GICs was investigated and the results showed that this 

technique was efficient and effective for characterizing mechanical properties of GICs. 

In the preliminary study, the effects of environmental conditions (100% humidity, water, 

ionic media with pH 7, 5 and 3) on GICs were also investigated using the depth-sensing 

micro-indentation testing. It was found that hardness and elastic modulus of the tested 

GICs were dependent on those storage conditions. 

With regards to the influence of environmental calcium/phosphate and pH on the 

strontium based Fuji IX Fast and calcium based KetacMolar (Chapter 5), it was found 

that the effects of environmental calcium/phosphate on these two GICs were pH 
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dependent. The hardness, elastic modulus and surface structure did not change when pH 

were at 7 and 5, regardless of concentration of calcium and phosphate. However, at pH 3, 

hardness and elastic modulus of these GICs were influenced by the environmental 

phosphate level. An increased level of environmental phosphate led to higher hardness 

and elastic modulus. In general, a microscopic surface reaction layer was observed in 

specimens conditioned at pH 3 and it was thinner when the environmental phosphate 

level was higher.  

In Chapter 6, a series of surface analytical techniques were employed to characterize 

the surface reaction layer. It was found that this layer was composed of two distinct 

zones. The inner zone was porous and had low hardness and elastic modulus. It was 

suggested that this zone was the result of acid degradation of the matrix and glass phases 

in GICs. The outer zone contained small particles and showed higher hardness and 

elastic modulus than the inner zone. It was also found that storage in a solution with 

high concentration of phosphate led to an outer zone with greater mechanical properties 

and a thinner inner degradation zone.  

The ion/ligand release from GICs was investigated in Chapter 7. It was found that 

levels of cement-forming ions released from the tested GICs, e.g. Al3+, Ca2+, Sr2+, and 

Si4+, were decreased with the presence of phosphate in acidic conditions. The results 

confirmed the inhibition effect of environmental phosphate on acid degradation of GICs, 

as shown in Chapter 6. It was also found that environmental phosphate was taken up by 

GICs. The phosphate uptake was increased with increasing environmental phosphate 
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levels. Phosphate uptake may be the result of ligand exchange between environmental 

phosphate and intrinsic carboxyl group. 

With regard to clinically related properties (Chapter 8), wear resistance and shear 

strength of the tested GICs were improved when environmental phosphate was present 

in the pH 3 solutions. On the other hand, fluoride released from GICs under acidic 

conditions was slightly reduced by environmental phosphate. The improved clinically 

related properties suggest that the introduction of local phosphate to GICs may result in 

better clinical performance. This should be included in future investigations.  
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9.2 Proposed mechanism of interaction between GICs and 

environmental calcium/phosphate and pH 

Based on the results and conclusions mentioned above, a schematic representation 

of the proposed mechanism is shown in Figure 9-1. The mechanism of interaction of 

GIC with environmental calcium/phosphate and pH may be described using the 

following model. 

 

--- Hydrogen ions (H+) diffuse into GIC due to concentration gradient. The diffusion 

process is controlled by the GIC matrix and concentration of H+ at GIC surface 

(Fukazawa et al., 1990) (Figure 9-1a). 

 

--- As illustrated below, the hydrogen ions (H+) dissociate the cross-linking of 

polycarboxylate chains by exchanging with matrix-forming cations (Fukazawa et al., 

1990):  

(RCOO-)2M2+ + 2H+ ⇔  2RCOO-H+ + M2+ 

(M= metal cations, such as Ca2+, Sr2+ and Al3+; RCOO- = polycarboxylate anion) 

 

--- The metal cations (Ca2+/Sr2+ and Al3+) diffuse outwards due to the existing 

concentration gradients (Figure 9-1a). 

 

--- With the removal of cross-linking and metal cations, the GIC matrix is degraded and 
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glass particles are lost (Fano et al., 2001; Roulet, 1984; Fukazawa et al., 1987). 

Microstructure of severely degraded GIC is shown in Figure 9-1c. 

 

--- Meanwhile, phosphate anions (PO4
3-) are adsorbed on GIC surface via ligand 

exchange with carboxyl groups (Chapter 7: discussion).  

 

--- The phosphate anions (PO4
3-) adsorbed on the surface of GIC forms phosphate 

complexation with intrinsic metal cations (Figure 9-1b,d).  

 

--- The complexation of phosphate on the surface of GIC hinders the penetration of 

further H+, and also inhibits matrix-forming ion (Ca2+, Sr2+ and Al3+) from moving 

outwards (Figure 9-1b), thus, retards further dissolution of GIC and leads to a thinner 

inner zone of degraded GIC (Figure 9-1d). 

 

The results of this study suggest that an increase in the concentration of phosphate in 

its immediate surrounding would provide some protection to GIC, especially when the 

environment is acidic. An in depth understanding of the involved mechanisms is 

required before the clinical implications can be fully appreciated. 
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*PC: phosphate complexation 

Figure 9-1 Illustration of interaction of GIC with environmental phosphate and pH 

a. Diagram showing degradation of GIC 

b. Diagram showing the effect of environmental phosphate on degradation of GIC 

c. SEM photograph of degraded GIC 

d. SEM photograph of GIC exposed to acidic conditions with phosphate  
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9.3 Future perspectives 

Within the limitations of this study, it was found that environmental phosphate 

improved hardness, elastic modulus, wear resistance and shear strength of GICs under 

acidic conditions through surface modifications of GICs. Results of the current research 

suggest that the introduction of phosphate to glass-ionomer restoratives may improve 

their clinical performance, especially when challenged by acids. Further studies are 

warranted to clarify and confirm the findings of the present study. 

In the current study, the accelerated in vitro experiments were carried out to 

investigate the interaction of GICs with environmental calcium/phosphate and pH. The 

GIC specimens were continuously exposed to environmental phosphate under neutral or 

acidic conditions for a prolonged period of time. The intra-oral pH as reviewed in 

Chapter 2 may drop during or after intake foods and acidic beverage. The dropped 

intra-oral pH then rises due to the effect of saliva clearance. In future work, a pH cycle 

program can be employed to simulate the pH variation in oral environment. 

Comparisons between the effects of phosphate-containing and phosphate-free pH 

cycling on glass-ionomers could more precisely predict the environmental phosphate 

effect on GICs in vivo.  

In this study, the environmental phosphate levels (0 ~ 2.4 mM) employed were in 

the ranges found in saliva and most drinks. It was noted that increasing environmental 

phosphate level improved mechanical properties of GICs when challenged by acids. A 

wider range of phosphate levels should be investigated in future studies.  
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The two HVGICs tested in this study were either strontium or calcium based. These 

GICs were in capsule form, prepared according to manufacturers’ instructions and set by 

traditional acid-base reaction. To verify that the findings of this study are universal 

across all GICs, more types of GICs of different powder to liquid ratios and mixing 

requirements should be investigated in future.  

In this study, potassium orthophosphates (PO4)3- were used as environmental 

phosphate source. It was found that the adsorption and complexation of phosphate on 

GIC surface inhibited further degradation of GICs, thus, improving their mechanical 

properties. However, this adsorption/complexation process of environmental phosphate 

under current experimental conditions was controlled by environmental pH. In future 

works, the introduction of environmental phosphate to GICs independent of 

environmental pH should be investigated. The phosphate may be grafted to new 

molecules which have more affinity to GICs, such as 3,4-dihydroxyphenylalanine 

(DOPA)-containing polypeptide, casein phosphopeptides (CPP), polymerizable 

phosphates, etc., which have shown effective binding to hydroxyapatite and biofilm (Tay 

and Pashley, 2002; Rose, 2000). 

The adsorption/complexation process of environmental phosphate may also be 

enhanced through other approaches, such as varying the metal counterion. It was 

reported that fluoride uptake by GICs was significantly affected by the counterion type 

(Hadley et al., 2001). The knowledge of counterion effect on phosphate uptake by GICs, 

however, is limited and should be investigated further. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Tay+FR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Pashley+DH%22%5BAuthor%5D
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Although HVGICs have significantly superior properties than their earlier 

counterparts, in this study they still degrade when they were exposed to a low pH 

environment. Improvements in GIC compositions are still warranted to increase their 

acid resistance. Various types of phosphates have been incorporated into GICs. It was 

shown that GICs with low phosphate concentration in the glass component have 

extended setting / working time and slightly increased compressive strength of GICs 

(Griffin and Hill, 2000). In addition, incorporation of casein phosphopeptide – 

amorphous calcium phosphate (CPP-ACP) nanocomplexes into glass particles increased 

bond and compressive strength of GICs (Mazzaoui et al., 2003). However, the acid 

resistance of these experimental GICs is not known. The incorporation of phosphate into 

glass-ionomer components could potentially to improve GIC properties.  

According to results of this study, environmental phosphate improved acid 

resistance of GICs. Future studies could also focus on how to effectively introduce 

environmental phosphate to GIC restoratives. Introduction of phosphate in the forms of 

topical agents has the most potential and is feasible in the clinic. Investigations on the 

effects of different phosphate-containing topical agents, such as surface coating, varnish, 

foam, gel, and oral rinse, on GICs are also warranted. 
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Appendix A: Preparation of storage media of varying calcium/phosphate and pH  

 

Molecular mass and density: 

Calcium chloride dehydrate (CaCl2•2H2O)                     147.02 g/mol 

Potassium dihydro-orthophosphate (KH2PO4)                  136.09 g/mol 

Potassium chloride (KCl)                                   74.55 g/mol 

N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid 
(HEPES, C8H18O4N2S)                                    238.30 g/mol  

Acetic acid CH2COOH                                     60.05 g/mol 

Density of acetic acid                                       1.053 g/ml 

 

Make stock solution: 

1. Make 30 mM CaCl2•2H2O stock solution: 

Weigh 4.4106 g CaCl2•2H2O, dissolve in 1 L deionized water and store in a 

labeled bottle. 

2. Make 30 mM KH2PO4 stock solution: 

Weigh 4.0827 g KH2PO4, dissolve in 1 L deionized water and store in a labeled 

bottle. 

3. Make 40 mM HEPES stock solution: 

Weigh 9.523 g HEPES, dissolve in 1 L deionized water and store in a labeled 

bottle. 
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Preparation of storage media (in 1 L volumetric flask): 

1. Add 30 mM CaCl2•2H2O and 30 mM KH2PO4 stock solution as follows to 

achieve desired concentrations. 

 

Storage Media Add stock solution 
 

CaCl2•2H2O 
(mM) 

KH2PO4 

(mM) 
30 mM CaCl2•2H2O 

(ml) 
30 mM KH2PO4 

(ml) 
0 0 0 0 

2.4 0 80 0 
1.5 0.9 50 30 
1.2 1.2 40 40 
0 2.4 0 80 

 

2. Weight 11.1825 g KCl and add to flask. 

3. Add 500 ml of 40 mM HEPES stock solution for pH 7 storage media OR add 

2.851 ml of concentrated glacial acetic acid for pH 5 and 3 storage media. 

4. Fill flask with deionized water to 1 L and mix. 

5. Check pH of solution and add 1 M KOH in a drop-wise manner until the desired 

pH of 7.0, 5.0 or 3.0 is obtained. 
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Appendix B: Preparation of TISAB II 

(Refer to method 9214, US environmental protection agency, 1996)  

 

Reagents: 

1. Sodium hydroxide solution (5 M NaOH): Dissolve 200 g of NaOH in sufficient 

reagent water to make 1 L of solution. Store in a tightly sealed polyethylene 

bottle. 

2. Glacial acetic acid (CH3CO2) 

3. Sodium chloride (NaCl) 

4. 1,2-cyclohexanediaminetetraacetic acid (CDTA) 

5. Deionized water 

 

Preparation of TISAB: 

To approximately 500 ml of deionized water add 57.0 ml of glacial acetic acid, 

58.0 g of sodium chloride, and 4.00 g of CDTA. Stir to dissolve and cool to room 

temperature. Adjust the solution pH to between 5.0 and 5.5 with 5 M NaOH (about 

150 ml will be required). Transfer the solution to a 1000 ml volumetric flask and 

dilute to the mark with deionized water. Transfer the solution to a clean polyethylene 

bottle stored at 4 oC. 

 


