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Summary 

OPTIMIZING YARD CRANE OPERATIONS IN PORT 

CONTAIENR TERMINALS 

(SUMMARY) 

In modern business logistics, both the number of container ports and the competition 

among them have become prominent with the steady progress of containerization over the 

past 20 years, which makes the efficiency of port operation an important factor in 

succeeding in the fierce competition. 

 

This thesis focuses on one of the critical aspects of the container terminal operations, the 

scheduling of yard cranes. Despite the fact that the yard crane scheduling plays an 

important role in determining the over efficiency of the terminal operation, the related 

reports in the literature only studied the problem partially. Therefore a comprehensive 

study on the scheduling problem of yard cranes in port container terminals is highly 

desired. 

 

A simplified multiple yard crane scheduling problem, two yard crane scheduling problem, 

is first studied as a preliminary work. Based on that, the typical multiple yard crane 

scheduling problem is then intensively studied. Subsequently, the results is extended to 

two problems derived from the standard multiple yard crane scheduling problem, the 

scheduling of multiple yard cranes in terminals with buffer areas and the deployment of 

double rail mounted gantry cranes in yard truck based terminals. In the end a study on the 
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Summary 

simultaneous scheduling problem of quay crane and yard crane is presented. All these 

problems are successively formulated by mathematical models. Several solution 

techniques are developed to solve these problems. 

 

The results of the study indicates that compared to the widely used meta-heuristic 

algorithms, the relatively simple greedy heuristics algorithm is a more effective solution 

technique for solving the scheduling problem of the multiple yard crane system. Therefore 

it can be adopted by the container terminal operators to improve the efficiency of their 

operations. The influence of using buffer area in container terminals has also been 

examined in the study. The results suggests that the productivity of yard cranes could be 

enhanced and the loading operation at the yard area can be expedited at the expense of 

using more land space and more yard trucks. This result can be used by the terminal 

operators as a reference when deciding whether to use buffer areas in their terminals. The 

deployment strategy of the double rail mounted gantry crane system in yard truck based 

container terminals is also investigated. Using this system in traditional yard truck based 

container terminals can eliminate the interference of yard cranes. As a result the 

productivity of the cranes can be improved. The operational strategy of the double rail 

mounted gantry crane system proposed outperformed the SA algorithm through numerical 

experiments. A simultaneous scheduling of quay crane and yard crane was also 

successfully accomplished in the study. Being the first study of its kind, this study can be 

used to improve the overall performance of quay cranes and yard cranes. It can also work 

as one component of the wholly integrated container terminal operating system which is to 

be developed in the future research. 
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Chapter 1 Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

With the steady progress of world trade, marine transportation has experienced immense 

growth over the past 20 years. Container, as the foundation of the unit-load-concept, has 

achieved undoubted importance in international marine transportation. Today among the 

world’s seaborne cargo, more than 60% is transported in containers and this proportion is 

still growing. Figure 1.1 shows this containerization trend in the past decade. As a result, 

the number of container shipments has increased dramatically over the past decade, which 

causes higher demand for the throughput of container terminals and leads to intense 

competition among these terminals, especially the geographically close ones such as the 

port of Singapore and the Tanjung Pelepas port of Malaysia. To accommodate the 

increased demand and succeed in the fierce competition in the container logistics industry, 

the container terminal operators need to improve the efficiency of their port operations by 

means of implementing new management strategies and adopting advanced technologies.  

 

In general, after arrival at a container terminal, the containership is allocated to a berth 

equipped with quay cranes to load and unload containers. The unloaded inbound 

containers are distributed to the yard area by yard trucks and stacked in the container 

blocks by yard cranes. The outbound containers arriving by road or railway are handled in 
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Chapter 1 Introduction 

a converse way. Figure 1.2 illustrates the standard flow of containers in port container 

terminals. 

 

Figure 1.1 Containerization Trend: High Growth Rate of Container Turnover 
 (Steenken et al., 2004) 

 

 

Figure 1.2 Container Flow in a Port Container Terminals (Ng, 2005) 
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Chapter 1 Introduction 

1.2 RESEARCH OBJECTIVES AND SCOPE 

This thesis will present a comprehensive study on the multiple yard crane scheduling 

problem in which both the inter-crane interference constraint and the container loading 

sequence constraint are considered. A mathematical model will be developed for the 

formulation of the problem. Exact algorithms will be designed to solve small-scale 

problems while meta-heuristic algorithms as well as customized heuristic algorithms will 

be designed to solve large scale problems. The performance of all the algorithms will be 

examined through numerical experiments.  

 

A study on the scheduling problem of yard cranes in container terminals with buffer areas 

will also be presented in this thesis. An integer programming model will be proposed to 

formulate the problem. A heuristic algorithm based on greedy principle will also be 

developed as a solving technique to the model. Sample test problems will be generated to 

examine the effect on the yard crane operation time by reserving buffer areas in the 

stacking area.   

 

Double rail mounted gantry crane (DRMG) system is a new container handling 

technology which consists of two cranes of different size. Since the two cranes can pass 

each other during operations, the productivity of the system will be higher than the 

traditional type of crane system. This thesis will study the operation strategy of the DRMG 

system in yard truck based container terminals. A mathematical model will be developed 

for the problem formulation and a set of operation rules will be proposed to conduct the 
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DRMG scheduling.   

 

This thesis will also present a simultaneous study on the quay crane scheduling problem 

and yard crane scheduling problem. In the study, the work schedule of a quay crane will 

act as the container loading sequence requirement for the yard cranes serving the quay 

crane. An integer programming model will be developed to formulate the quay crane 

scheduling and the related yard crane scheduling. A simulated annealing algorithm will be 

designed to solve the proposed model. Different weights of quay crane operation time and 

yard crane operation time will be examined through numerical experiments.  

 

This thesis may provide a better way to conduct the scheduling of yard cranes in port 

container terminals. As a result the overall efficiency of the port operation can be 

enhanced. The study of reserving buffer areas in the stack area can also help the terminal 

operators to decide whether to use buffer areas in the yard or not. The study of DRMG 

system can be used as a reference in the future deployment of DRMG system in yard truck 

based container terminals. This thesis may also clarify the relationship between different 

weights of quay crane and yard crane operation time and the related quay crane and yard 

crane scheduling. Hence it could help the terminal operators to determine the proper work 

schedules of quay cranes and yard cranes to satisfy different time requirements.  

1.3 ORGANIZATION OF THE THESIS 

This thesis consists of eight chapters. 
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Chapter 1 Introduction 

Chapter 1 is the introductory chapter which provides the general background of the 

research and lays out the objective and scope of the research. 

 

Chapter 2 reviews the past research works related to this research as well as some 

mathematical techniques which will be used in conducting the research.  

 

Chapter 3 describes a mathematical model developed to formulate the two yard crane 

scheduling problem which is a simplified version of the multiple yard crane scheduling 

problem. In the problem, two yard cranes are working for one loading plan in two 

different blocks, free of inter-crane interference, at the same time. A simulated annealing 

revised algorithm is designed to solve the proposed model and the performance of the 

algorithm is tested through a series of numerical experiments. 

 

Chapter 4 extends the study in Chapter 3 to the general case of multiple yard crane 

scheduling problem in which the interference of cranes needs to be considered. An integer 

programming model is developed to formulate the problem and several heuristic 

algorithms are proposed to solve the problem. Computational experiments are conducted 

to measure the performance of the algorithms. 

 

Chapter 5 provides a study on scheduling multiple yard crane systems in port container 

terminals with buffer areas. The existence of buffer areas relaxes the loading sequence 

requirement of yard cranes and therefore affects the scheduling of yard cranes. A 

mathematical model is also developed for the problem formulation. The influence of 

buffer areas on the terminal operations is investigated through numerical experiments.  

5 



Chapter 1 Introduction 

 

Chapter 6 investigates the operational strategies of DRMG system in yard truck based 

container terminals. The deployment of the DRMG system will help to avoid the inter-

crane interference so that the productivity of yard cranes can be enhanced. The problem is 

formulated as an integer programming model. A heuristic approach is designed to conduct 

the scheduling of DRMG system.    

 

Chapter 7 proposes the concept of simultaneous scheduling of quay crane and yard crane. 

The quay crane scheduling problem and its related yard crane scheduling problem are 

studied at the same time so that a holistic view of the container terminal facility operation 

is achieved. An integer programming model is developed to model the proposed problem. 

A genetic algorithm is also designed as the solution technique. 

 

Chapter 8 provides a conclusion of this thesis. Contributions of the research and the 

recommendations for future study are also appended at the end. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 CONTAINER TERMINAL OPERATIONS 

In general port operations can be divided into two main parts: quayside operation and 

landside operation. The quayside operation consists of berth allocation, stowage planning 

and quay crane scheduling. The landside operation includes yard storage planning, internal 

transport planning and yard crane scheduling. Although much research has been 

conducted on the different aspects of port operations, yard crane scheduling, being one 

key component of port operations, has not been studied systemically. Therefore this thesis 

will present a comprehensive study on the yard crane scheduling problem. Since the 

different components of port operations are closely related to each other, an overview of 

the aforementioned quayside and landside operations is first introduced in the following 

section. 

2.1.1 Overview of Port Operations 

Before the arrival of a containership, the port operator must allocate a berth to the ship. To 

conduct the berth allocation, the operator needs to consider the technical data of the ship, 

the quay availability and the yard situation to choose an appropriate berth to the ship. 

Once a berth is allocated to the ship, the terminal operator will start the ship stowage 

planning process, in which, dedicated containers identified by numbers will be assigned to 

7 
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the respective slots in the ship. After constructing the stowage plan, the operators then can 

determine the number of quay cranes to serve the ship and the work schedule of each quay 

crane. Figure 2.1 shows the quay cranes in operation. 

 

Figure 2.1 Quay Cranes in Operations (Linn et al., 2003) 
 

At the same time the yard storage planning will also be carried out. In this process, a 

specific position in the yard characterized by the numbers of block, yard bay, slot and tier 

will be assigned to an inbound or outbound container. Based on the work schedule of quay 

cranes and the yard storage plan, the terminal operator then can develop the work 

schedules of yard cranes as well as the internal transport plan of yard trucks, which is used 

to transport containers between quay cranes and yard cranes. Figure 2.2 shows the yard 

cranes in a container terminal. 

 

Container terminals can be classified into two categories according to the nature of their 

operations, namely transshipment terminal and import-export terminal, also called gate 
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terminal. In transshipment terminals, usually several clusters of yard-bays will be reserved 

for the arrival of a vessel so that the inbound containers can be stacked in these clusters 

and transported to the connecting vessel later from there. In this operation, since the 

containers are located close to each other, the yard cranes need not to traverse much. 

However in import-export terminal, outbound containers are usually scattered in the 

container blocks in the stacking area. The yard cranes therefore need to traverse along the 

container blocks to reach the containers. Moreover, the containers picked up by the yard 

cranes must satisfy the work schedules of quay cranes, which makes the scheduling of 

yard crane in handling outbound containers a complicated problem that requires intensive 

study efforts of researchers.  In contrast an inbound container is normally stacked next to 

the previous one. The yard cranes do not need to traverse much along the container blocks 

to stack the inbound container, which makes the scheduling of yard cranes in handling 

inbound containers a relatively simple problem. Hence the scheduling problem of yard 

cranes in loading outbound containers in import-export terminals will be the focus of this 

thesis.  

 

Several researches have been conducted on the yard crane scheduling problem. The 

following section will provides a detailed report on the studies on the yard crane 

scheduling problem. 
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Figure 2.2 Yard Crane in a Container Terminal (Linn et al., 2003) 

2.1.2 Literature Review on Yard Crane Operations 

2.1.2.1 Single yard crane scheduling 

Since the yard crane scheduling problem is of great importance in determining the overall 

efficiency of container port operations, a number of studies have been conducted in this 

area.  

 

Kim and Kim (1999) proposed a mixed integer programming (MIP) model to formulate 

the routing problem of a single yard crane loading export containers out of the stack onto 

waiting yard trucks. Based on the MIP formulation, an optimizing algorithm was also 

developed. However the algorithm was only applied to small scale problems in the study.  

 

Narasimhan and Palekar (2002) proved that the above single yard crane routing problem is 

10 
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NP-complete in nature. A heuristic algorithm and an exact branch-and-bound algorithm 

for the problem were developed and tested by numerical experiments. The computational 

results showed that the exact algorithm is not practical for large scale problems due to 

intolerable computational time.  

 

To deal with the excessive computational time requirement, Kim and Kim (1999) 

proposed a beam search algorithm for the problem solution. The same authors (2003) 

compared the performance of the beam search algorithm and genetic algorithm on the 

problem. It was found through numerical experiments that the proposed beam search 

algorithm consistently outperformed a genetic algorithm.  

 

Kim et al. (2003) also studied the single yard crane scheduling problem from a different 

perspective by investigating the delay of yard trucks which need to be served by yard 

cranes. The loading sequence requirement is represented in terms of the delay cost of yard 

trucks. The performance of various sequencing methods on the proposed problem were 

tested through a simulation study.   

2.1.2.2 Multiple yard crane scheduling 

All the above studies focused on the single yard crane scheduling problem in which only 

one yard crane is used to serve one quay crane. However, because of the different 

technical performances between quay crane and yard crane (quay crane: 50-60 boxes/hr, 

yard crane: 20 moves/hr), two or even more yard cranes are deployed to serve one quay 

crane in many container terminals. Thus it is necessary to study the scheduling problem of 

11 
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multiple yard crane system to enhance the efficiency of yard crane operations.  

 

Recently, Kim et al. (2005) studied the load scheduling problem of two yard cranes in the 

same container block. In the study each yard crane was dedicated to one quay cranes. 

However it is possible to further increase the efficiency of yard crane operations if the two 

yard cranes are free to work for any of the two quay cranes.   

 

Ng (2005) studied the scheduling problem of multiple yard crane systems and proposed a 

heuristic algorithm to minimize the operation time. Nevertheless, the loading sequence 

requirement of the containers is not considered in the study.  

 

Despite the significance of the scheduling problem of multiple yard crane system in 

practical operation, only the aforementioned two studies are available in literature. 

Therefore in-depth studies on the scheduling problem of multiple yard crane system are 

highly desired.  In most import-export terminals, outbound containers are scattered in the 

container blocks. To fetch the appropriate containers satisfying the loading sequence 

requirement, the yard cranes need to traverse extensively along the container blocks. 

However, an inbound container is normally stacked next to the previous one. The yard 

cranes do not need to traverse much along the container blocks to stack the inbound 

container, which makes the scheduling of yard cranes in handling inbound containers a 

relatively simple problem. Therefore, only the scheduling problem of yard cranes in 

loading outbound containers will be considered in this thesis. 

 

DRMG system represents a new container handling technology in port container terminals. 

12 
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The only work regarding the operation of DRMG in literature is conducted by Kim et al. 

(2002). The authors carried out a simulation study on the operation rules of DRMG in an 

Automated Guided Vehicles (AGV) based container terminal. Hence a systemic study on 

the operation of DRMG system will be of significant meaning in the future deployment of 

the system. 

  

In practical operation, physical or virtual buffer areas will be reserved in the stacking area 

of some container terminals. The containers picked up by the yard cranes ahead of 

schedule then can be temporarily stored in the buffer areas till they can be handled by the 

quay cranes. Using such buffer areas will help to increase the utilization of the yard cranes 

and expedite the loading operation at the stacking area. Nevertheless no research has been 

conducted on the scheduling problem of yard cranes in container terminals with buffer 

areas. A study on this problem will be of practical importance in operating yard cranes in 

container terminals with buffer areas. 

2.1.3 Literature Review on Quay Crane Scheduling 

The work schedule of quay cranes usually serves as the guideline for the yard crane 

operations. Hence the scheduling of yard cranes will be significantly affected by the 

scheduling of quay cranes. Several researches have been done on the quay crane 

scheduling problem.  

 

Daganzo (1989) developed a MIP formulation for the quay crane scheduling problem. 

They used exact method to solve small-scale problems and proposed a heuristic procedure 
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for large-scale problems. One important issue in operating quay cranes, the interference 

problem of quay cranes, was not taken into account in this study.  

 

Lim et al. (2004) augmented the static QC scheduling problem for multiple container 

vessels by taking into account non-interference constraints. Dynamic programming 

algorithms, a probabilistic tabu search, and a squeaky wheel optimization heuristic were 

proposed in solving the problem. However, it is difficult to define a profit value associated 

with a crane-to-job assignment in practice.  

 

Kim and Park (2004) discussed the QC scheduling problem with non-interference 

constraints in which only single container vessel was considered. A branch-and-bound 

method and a heuristic algorithm called greedy randomized adaptive search procedure 

(GRASP) were designed for the proposed QC scheduling problem. 

 

Based on the earlier study of Daganzo, Park and Kim (2003) combined the quay crane 

deployment problem with the berth allocation problem. The combined problem was 

solved by a two-phase solution procedure. The study demonstrated that a detailed working 

schedule for each quay can be constructed after the preliminary solution of the berth 

allocation phase is determined. Only the static berth allocation problem, which assumes all 

the ships have arrived at the terminal before the berth allocation starts, is considered in the 

study.  

 

Bish (2003) studied a different combined problem which consisted of scheduling quay 

crane, dispatching yard trucks and determining the storage location for inbound containers 
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and developed a heuristic method to solve the proposed multiple-crane-constrained 

vehicle scheduling and location problem. The paper presented an integrated study on the 

three components of port operation, quay crane scheduling, internal transportation and 

yard storage planning, which could help to achieve better overall performance of the three 

components compared to studying the components separately.  

 

In spite of the fact that the operation of quay cranes is closely related to the operation of 

yard cranes, no simultaneous study on these two problems is available in literature. Hence 

a holistic study, which takes into account both the quay crane scheduling problem and the 

yard scheduling problem, is highly needed in research. 

2.2 META-HEURISTIC ALGORITHMS 

2.2.1 Genetic Algorithm 

Genetic algorithm (GA) is a directed random search techniques which is developed by 

Holland (1975) and presented in his book "Adaptation in Natural and Artificial Systems". 

The method is based on imitating the mechanism of natural genetics and natural species 

selection process. 

 

When applying GA to solve an optimization problem, first the solutions of the problem 

need to be encoded into chromosomes. Several encoding methods such as binary encoding, 

real-number encoding, etc., are generally adapted according to the nature of the problem. 
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To find the optimal solution of the problem, three genetic operators, crossover, mutation 

and selection, are used to explore the search space. Crossover is usually used to explore 

the search space beyond a local optimum while mutation is usually used to improve the 

preliminary solution. Selection is the process to choose promising chromosomes from the 

current generation as the parent chromosomes in next generation. Fig 2.3 provides the 

flowchart of the GA algorithm. 

2.2.2 Simulated Annealing Algorithm 

Simulated Annealing (SA) is first proposed by Kirkpatrick (1983) inspired by the physical 

process of the annealing of solids. In the natural annealing process, first the solid is heated 

up to a high temperature. At that temperature all the molecules of the material have high 

energies and randomly arrange themselves into a liquid state. Then the temperature 

decreases at a certain rate which will reduce the molecules' energies and their freedom to 

arrange themselves. Finally, the temperature goes down to such a level that all the 

molecules lose their freedom to arrange themselves then the material crystallizes. During 

the annealing, if the temperature decreases at a proper rate, the material can obtain a 

regular internal structure at the minimum energy state. But if the temperature goes down 

too fast, the irregularities and defects will appear in the solid and the system will be at a 

local minimum energy state.  
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Figure 2.3 An Illustration of the Process of Genetic Algorithm. 
 

In analogy to the annealing process, the feasible solutions of the optimization problem 

correspond to the states of the material, the objective function values computed at these 

solutions are represented by the energies of the states, the optimal solution to the problem 

can be viewed as the minimum energy state of the material and the suboptimal solutions 

correspond to the local minimum energy states. A flowchart of a typical SA algorithm is 

provided in figure 2.4. 

There are two driving issues for the SA algorithm, acceptance criterion for the new 

solutions and the temperature update scheme. Metropolis’ criterion is used as the 
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acceptance criterion for the new solutions. In this criterion, a random number r in [0, 1] is 

generated from a uniform distribution and let ∆ equal to the difference between the 

objective function values computed by the current solution and the new solution, then if  

Tr e−∆≤ , where T  represents the current temperature, the new solution will be accepted 

to replace the current solution, otherwise it will be rejected. 

As to the temperature update scheme, a number of rules have been proposed. A commonly 

used one is the geometric cooling rule. In this rule, the temperature will be updated as 

following, 

1 ,       0,1i iT cT i+ = = L  

where c is a constant smaller than but close to 1.  

2.2.3 Tabu-search Algorithm 

The tabu-search algorithm was developed independently by Glover (1986) and Hansen 

(1986) for solving combinatorial optimization problems. The algorithm is an iterative 

search approach characterized by the use of flexible memory. The three main components 

of a tabu-search algorithm are forbidding strategy, freeing strategy and short-term strategy 

(Glover (1989), Glover (1990)).  
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Figure 2.4 An Illustration of the Process of Simulated Annealing Algorithm. 
 

The forbidding strategy is used to prevent the cycling problem occurred in search process 

by forbidding certain searching moves. The tabu list is constructed by registering the 

previous moves. Ideally the tabu list should record all the moves in previous iterations. 

However this might require too much memory space and computational effort. In practical 

use of tabu-search algorithm, normally only the moves occur in previous n iterations are 

stored in the tabu list and are therefore forbidden in the searching process. A critical 

problem here is to determine a proper value of n, which is also called the tabu list length 

or tabu list size. If the value is too small, the probability of cycling is high, while if it is 
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too large, the search might be driven away from a good solution region before the region 

is completely explored. The freeing strategy controls which moves will be released from 

the tabu list. A first-in-first-out (FIFO) procedure is commonly used as the freeing strategy. 

In this procedure, once the tabu list is full each new move is written over the oldest move. 

The short term strategy, also called overall strategy, manages the interplay between the 

forbidding and freeing strategies. A flowchart of a standard tabu search algorithm is 

provided in figure 2.5.    

 

Figure 2.5 An Illustration of the Process of Tabu-Search Algorithm. 
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CHAPTER 3 

 SCHEDULING OF MULTIPLE YARD CRANE SYSTEMS (I)  

3.1 INTRODUCTION 

This chapter presents a preliminary work on the multiple yard crane scheduling (MYCS) 

problem. A simplified version of the MYCS problem, two yard crane system scheduling 

(TYCS) problem, is studied by confining each yard crane (YC) in its dedicated working 

range. The problem is formulated by a mathematical model and solved by a designed 

simulated annealing (SA) algorithm. The performance of the SA algorithm is also 

evaluated through numerical experiments. To ease the understanding of the problem 

formulation, a detailed description of the TYCS is provided in the following section.     

3.2 TWO YARD CRANE SCHEDULING PROBLEM 

Figure 3.1 briefly illustrates the loading operation in a container loading system using a 

two YC system. In the problem, the load plan of the quay crane (QC) and the container 

block plans are known beforehand. YC A and YC B are used to serve QC A at Block 1 and 

2 respectively. They will perform the loading jobs according to the load plan of QC A 

together.  
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Figure 3.1 A Layout of a Container Loading System 

 

Following is an example used to illustrate the problem. 

Table 3.1 Quay Crane Load Plan 
Sequence 1 2 3 4 5 6 

Container type A C B A C B 
Number of containers 20 18 22 24 30 26 

 
Table 3.2 Plan of Container Block 1 

Yard-bay number 1 2 3 4 5 6 7 8 9 10 
Container type A  B C  C A B  A 

Number of containers 8  15 10  15 8 12  4 
 

Table 3.3 Plan of Container Block 2 
Yard-bay number 1 2 3 4 5 6 7 8 9 10 

Container type  B  A C A   C B 
Number of containers  11  10 8 14   15 10 

 

Table 3.1 is a sample load plan of a quay crane which is also the loading sequence 

requirement of the containers. Table 3.2 and 3.3 are the container block plans which show 

where these containers are stacked in the container blocks. According to the load plan of 
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the quay crane, the YCs need to pick up 20 containers of type A together at first. One 

possible schedule of the two YCs could be YC A: 1(6) – 7(5); YC B: 4(4) – 6(5) (YC 1 

first visits Yard-bay 1 and pick up 6 containers there then visits yard-bay 7 and pick up 5 

containers. At the same time, YC 2 will visit Yard-bay 4 and 6 and pick up 4 and 5 

containers respectively). Alternative schedules could be YC 1: 1(5) – 10(4); YC 2 6(8) – 

4(3) and so on. After all the 20 containers of type A are picked up, the YCs then can start 

to work for sequence 2, picking up 18 containers of type C, and so on. It’s obvious that 

different schedules of YCs will lead to different finishing time of the loading process. 

 

The two decision factors in the problem are the yard-bay visiting sequences of the two 

YCs and the number of containers picked up at each visit. To decide the bay visiting 

sequences of the two YCs is actually to find the routing paths of the two YCs which can 

be represented on networks. Figure 3.2 is the sample network of YC A on which the 

numbers in each node are the bay numbers representing the location of the container bays. 

Thus to determine the bay visiting sequence of the YC is just to find a routing from node I 

to node F.     

 

Since the loading jobs are distributed among the two YCs, making their working schedule 

dependent on one another, the schedules of the two YCs need to be coordinated to 

minimize the overall loading time.  
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Figure 3.2 A Sample Network of the Routing of One YC 

3.3 MATHEMATICAL FORMULATION  

To simplify the mathematical model for the TYCS problem, three types of reasonable 

assumptions are first made. 

i. There is only one type of container stacked in one yard-bay, which is the common 

practice in allocating space in the stack area of container terminals. 

ii. The time required for an YC to load a container is assumed to be the same for all 

the containers despite the exact storage positions of individual containers.  

iii. YCs will not travel between two blocks during the loading process. 

 

To formulate the problem, a “sub-tour” (subsequence) is first defined as a sequence of 

containers that needs to be picked up together, which is according to load plan of the quay 

crane. A sub-tour represents a set of containers picked up by the YCs for one loading 

sequence of the quay crane. 
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The following notations are introduced to formulate the problem 

Parameters 

jN  the initial number of containers stacked at Yard-bay j in block 1 

jN ′  the initial number of containers stacked at Yard-bay j in block 2 

s   sub-tour number 

sr   the number of containers requested in Sub-tour s 

n   the number of sub-tours for the whole loading process 

m   the number of container types 

Ast   the loading time of YC A in Sub-tour s  

Bst   the loading time of YC B in Sub-tour s  

AsT   the ending time of Sub-tour s for YC A 

BsT   the ending time of Sub-tour s for YC B 

sc    the type of containers loaded in Sub-tour s 

( )B c  the set of yard-bay numbers which contains containers of type c and are served by 

YC A 

( )B c′  the set of yard-bay numbers which contains containers of type c and are served by 

YC B.  

( )S c  the set of sub-tour numbers, for which the container type is c 

AI   the initial location of YC A 

BI   the initial location of YC B 

25 



Chapter 3 Scheduling of Multiple Yard Crane Systems (I) 

AF   the final location of YC A 

BF   the final location of YC B 

 

Constants 

DT   the travel time for YC to move per the distance of a bay 

LT   the loading time of one container 

 

Decision variables 

s
ijz   =1 if YC A moves from Yard-bay i to j just before starting Sub-tour s 

=0 otherwise 

s
ijx   =1 if YC A moves from Yard-bay i to j during Sub-tour s 

=0 other wise 

s
ijw   =1 if YC B moves from Yard-bay i to j just before starting Sub-tour s 

=0 otherwise 

s
ijy   =1 if YC B moves from Yard-bay i to j during Sub-tour s 

       =0 otherwise 

s
jAr    the number of containers picked up at Yard-bay j during Sub-tour s by YC A 

s
jBr    the number of containers picked up at Yard-bay j during Sub-tour s by YC B 

 

Loading time in one sub-tour 

The loading time of YC A in Sub-tour s can be expressed by the following equation, the 

first two terms are the travel time before and during the sub-tour respectively and the 
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second two terms are the handling time of containers.  

1 1 1( ), ( ) ( ), ( ) , ( )
, ( )

ij ij ij ij
s s s s s

s

s s s s
As D D L jA L jA

i B c j B c i B c j B c i j B c
i j B c

t T i j z T i j x T r z T r x
− − +∈ ∈ ∈ ∈ ∈

∈

= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑ ∑ s s  

                                    (3.1) 

Similarly, equation (2) is the loading time of YC B in Sub-tour s   

1 1( ), ( ) ( ), ( ) , ( )
, ( )

ij ij ij ij
s s s s s

s

s s s s
Bs D D L jB L jB

i B c j B c i B c j B c i j B c
i j B c

t T i j w T i j y T r w T r y
− −′ ′ ′ ′ ′∈ ∈ ∈ ∈ ∈

′∈

= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑ ∑ s s  

                  (3.2) 

 

Ending time of Sub-tour 1 

Since Sub-tour 1 starts at time 0, the ending time of sub-tour 1 is the same as the loading 

time in the sub-tour, which can be represented as 

1

1 1 1
1

1 1 1
1

, ( ) , ( ) , ( )
, ( )

ij
A A

A D D L jA Lij ij iji I j B c i I j B c i j B c
i j B c

T T i j z T i j x T r z T r x
∈ ∈ ∈ ∈ ∈

∈

= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅ + ⋅∑ ∑ ∑ ∑ 1 1
jA ⋅                     

(3.3) 

1 1 1
1

1 1 1 1
1

, ( ) , ( ) , ( )
, ( )B B

B D D L jB Lij ij ij iji I j B c i I j B c i j B c
i j B c

T T i 1 1
jBj w T i j y T r w T r y

′ ′ ′∈ ∈ ∈ ∈ ∈
′∈

= ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅ + ⋅ ⋅∑ ∑ ∑ ∑                    

(3.4) 

Ending time relationship between two successive sub-tours 

It is further defined that 

1           0
( )

0           0
x

x
x

δ
>⎧

= ⎨ ≤⎩
                                                                                                    (3.5) 

1
1min( , )    ( ), ( )

ij

A s
s As Bs D sT T T T i j z i B c j B c+

∆ += − ⋅ − ⋅ ∈ ∈ s                                               (3.6) 

1
1min( , )     ( ), ( )

ij

B s
s As Bs D sT T T T i j w i B c j B c+

∆ +′ ′= − ⋅ − ⋅ ∈ ∈ s                                               (3.7) 

A
sT∆ ( B

sT∆ ) is the time YC A(B) can possible save in Sub-tour s+1 if it finishes the jobs in 
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Sub-tour s early than YC B(A). 

Thus the ending time of the two YCs in sub-tour s+1 can be formulated as follows, 

( 1) ( 1)( ) ( ) ( ) A
A s As Bs As Bs As Bs A s Bs AsT T T T T T T t T Tδ δ δ+ = − ⋅ + − ⋅ + − − ⋅ sT+ ∆

T+ ∆

                                (3.8) 

( 1) ( 1)( ) ( ) ( ) B
B s As Bs As Bs As Bs B s As Bs sT T T T T T T t T Tδ δ δ+ = − ⋅ + − ⋅ + − − ⋅                                 (3.9) 

 

Therefore the objective function can be interpreted in following equation, which is to 

minimize the later finishing time of the two YCs in the last sub-tour.  

 max( , )An BnMin T T                                                                                                             (3.10) 

Subject to 

1

1

, ( )
1

ij
Ai I j B c

z
∈ ∈

=∑                                                                                                                  (3.11) 

1

1

, ( )
1
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Bi I j B c

w
′∈ ∈

=∑                                                                                                                (3.12) 

1

( ),
1
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n A

n

i B c j F
z +

∈ ∈
=∑                                                                                                               (3.13) 

1
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1
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n B

n

i B c j F
w +

′∈ ∈
=∑                                                                                                              (3.14) 
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                      (3.15) 
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,
1      ( ) \{0},  S 0,    1, 2...s

ij s
i S j S

x S B c s n
∉ ∈

≥ ∀ ⊆ ≠ =∑                                                       (3.17) 

,
1       ( ) \{0},  S 0,    1, 2...s

ij s
i S j S

y S B c s
∉ ∈
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                                                    (3.18) 
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s s
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i B c k B c
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( ) 1     ( ),    1,2...

s s

s s
ji ki s

j B c k B c
w y i B c s
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+ ≤ ∈ =∑ ∑                                                          (3.27) 

, M is a big positive number. 

 

Constraints (3.11) to (3.16) are the flow conservation constraints. A feasible solution of 

one YC corresponds to a path from its source node to its terminal node: (3.11) and (3.12) 

are the outflow constraints at the source node; (3.13) and (3.14) are the inflow constraints 

at the terminal node: (3.15) and (3.16) are the flow conservation constraints for the other 

nodes. Constraints (3.17) and (3.18) are to ensure the connectivity of the solutions, which 

eliminate the isolated cycles form the solution set. Constraints (3.19) and (3.20) are to 

ensure that only when YC visits a bay can it pick up containers there, where M is a 

sufficient large number. Constraint (3.21) guarantee that the number of containers picked 

up in one sub-tour is equal to the number of containers requested by the load plan. 

Constraints (3.22) to (3.25) are to ensure that the total number of containers picked up at 
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Bay j is equal to the initial number of containers stored at Bay j. Constraints (3.26) and 

(3.27) are to ensure that the YC can only visit one bay at most once in one sub-tour which 

characterizes the optimal solution of the TYCS problem. 

3.4 SIMULATED ANNEALING ALGORITHM FOR TYCS PROBLEM 

It has been proven in literatures that the single YC scheduling problem is an NP-complete 

problem. Needless to say, the TYCS problem is also an NP-complete problem which 

makes exact algorithm not practical to solve the large scale cases. Hence, heuristic 

algorithms are required to solve the TYCS problem efficiently. In this study, simulated 

annealing (SA) algorithm, one of the commonly used meta-heuristics, are used to solve 

the proposed TYCS problem.  

3.4.1 Encoding Method 

To use SA algorithm in solving the TYCS problem, an encoding method to represent the 

feasible solutions is first introduced. The feasible solutions for the TYCS problem are 

coded into strings of integer numbers in this study. Each string consists of certain number 

of sections according to the number of sub-tours and each section includes four 

subsections, first two subsections indicating the bay visiting sequence of YC A and the 

number of containers picked up by it at each visit, last two subsections indicating the 

information of YC B. 

30 



Chapter 3 Scheduling of Multiple Yard Crane Systems (I) 

 

Figure 3.3 A Sample of Part of the Feasible Solution 
 

Figure 3.3 is an example of part of the feasible solution, which contains two sections 

corresponding to Sub-tour 1 (picking up 20 containers of type A) and Sub-tour 2 (picking 

up 18 containers of type C) respectively. In Section 1, the first two subsections mean that 

YC A will visit bays in the sequence of 1-7 and pick up 6 and 5 containers at each visit 

accordingly. While the last two subsections show that at the same time YC B will visit 

bays in the sequence of 4-6 and pick up 4 and 5 containers at each visit. After both the 

two YCs finish their work in Section 1, they will start to work for the Section 2. 

3.4.2 Generation Mechanism of Neighborhood Solution 

To implement the SA algorithm, we need to generate a sequence of iterations, of which 

each is composed of changing the current solution in a designed way to create a 

neighborhood solution. 

 

The Generation mechanism of neighborhood solution deployed here is as follows: A cut 

point is randomly chosen among the points between the first and the last string of 

sections then all the elements behind the cut point are regenerated according to the 

constraints. Figure 3.4 illustrates this process: A cut point is chosen after the Section 1, 

then all the sections after the cut point will be regenerated. 
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Figure 3.4 An Illustration of the Generation Mechanism of Neighborhood Solutions 

3.4.3 Acceptance Criterion for the Neighborhood Solution 

Once a neighborhood solution is generated, the following criterion is adopted to judge 

whether to accept it or not. 

Let 0( ) ( )f s f s∆ = −                                                                                                      (3.28) 

0s  represents the current solution and s  represents the neighborhood solution 

generated from current solution.  

( )f ∗  represents the objective function value computed from the solution . ( )∗

A random number r in [ )0,1  is generated from a uniform distribution and if  

iTr e−∆≤ ,  represents the current temperature                                                           (3.29) iT
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Then the neighborhood will be accepted as the current solution. If not, the current 

solution will remain unchanged. 

3.4.4 Temperature Updating Scheme 

The temperature updating scheme adopted here is first introduced by Lundy and Mees 

(1986), which outperforms the commonly used geometric updating scheme 

1 ,    0,1i iT cT i+ = = K                                                                                                      (3.30)  

in a preliminary numerical experiment. In this scheme the temperature is updated by the 

following formula: 

1 ,    1, , 1
1

i
i

i

TT i
Tβ+ = =

+
K K −                                                                                        (3.31) 

Where β  is the rate parameter in terms of the initial temperature, , stopping 

temperature, 

1T

KT  and iteration number, K . 

1

1( 1)
K

K

T T
K TT

β −
=

−
                                                                                                            (3.32) 

3.4.5 Stopping Criterion 

The stopping temperature, KT , and iteration number, K  are used to control the stoppage 

of the SA process.  
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3.5 NUMERICAL EXAMPLES 

3.5.1 Experiment Design 

To measure the performance of the proposed SA algorithm, 40 sample problems are first 

generated as follows, 

1) Generate the load plan of the quay crane: 

a) The total number of containers for each problem ranges from 200 to 600. 10 

sample problems are randomly generated for each interval of 100 (e.g. 200 – 

300, 300 – 400, …). 

b) For each sample problem, the containers are randomly classified into five 

types, namely A, B, C, D and E 

c) Each type is then further divided into 2 or 3 groups. 

d) The load plan of the quay crane is finally generated by joining these groups in 

a random sequence. 

2) Allocate the containers required by the quay crane in the stack area: Containers are 

randomly allocated in two container blocks, each of which consists of 25 yard-bays 

subjected to the constraint that only one type of container can be stacked in one yard-

bay    

 

Computer programs are written in C++ language to perform the numerical test of the SA 

algorithm. All the programs are executed on a DELL P IV (3.0GHz) PC and are 

completed within one minute. 

34 



Chapter 3 Scheduling of Multiple Yard Crane Systems (I) 

3.5.2 Solution Sensitivity to SA Parameters 

It is found through a preliminary test that 1,000,000 is a proper value of the initial 

temperature, . The tested value of stopping temperature, 1T KT  are 0.1, 0.5, 1, 2, 3, 4, 5 

and the tested value of iteration number, K  are 5,000, 10,000, 20,000, 50,000, 60,000. A 

sample problem is solved using different combinations of the two parameters so that the 

best combination could be found.  

 

Figure 3.5 illustrates the average loading time (ALT) obtained by SA algorithm with 

different combinations of parameters. Figure 3.6 illustrates the best results of loading 

time obtained by SA algorithm with different combinations of parameters.  

 

It is noted that KT =0.5 and K =50,000 is the best performed combination of SA 

parameters both in the average and best objective function value tests. Thus this set of 

parameters is used to solve the other sample problems and the results obtained are used 

to compare against the estimated lower bound. 
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Figure 3.5 The Average Loading Time for Different Values of Parameters 
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Figure 3.6 The Shortest Loading Time for Different Values of Parameters 
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3.5.3 Lower Bound Estimation and Results Comparison 

The minimum loading time of one container block can be calculated as follows, 

1(2) 1(2) 1(2)TIME Min travel time    Min handling time= +  

Where, 

1(2)TIME  is the minimum loading time of block 1 (2) 

1(2)Min travel time the total length of block 1 (2)DT= ×  

1(2)Min handling time the total  number of containers in block 1 (2)LT= ×  

Thus, the lower bound of the operation time ( ) of the whole container loading process 

can be obtained by taking the greater one of  and   

LBT

1TIME 2TIME

 

To evaluate the performance of the proposed SA algorithm, 40 sample problems are 

generated. The results obtained from SA ( ) are compared with the estimated lower 

bound, which is illustrated in table 3.4.  

SAT

 
Table 3.4 Performance of the SA Algorithm 

( ) / 100%SA LB LBT T T− ×  No. of containers 
Max Min Mean 

200-300 14.83% 8.19% 9.19% 
300-400 11.95% 5.79% 10.08% 
400-500 14.29% 6.22% 10.64% 
500-600 14.78% 6.67% 10.20% 

 

On average, the result obtained from simulated annealing algorithm is 10.03% worse 

than the estimated lower bound. Considering the bounds are estimated in a very loose 

way, the results of SA is quite satisfactory. It is also noted that the performance of the 

proposed SA algorithm is independent on the number of containers loaded. 
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3.6 SUMMARY 

In this chapter a simplified version of the MYCS problem, TYCS problem, is 

investigated. A mathematical formulation for the problem is provided. Also, a SA 

algorithm is proposed to solve the problem. In order to evaluate the performance of the 

SA algorithm, numerical experiments are performed with a number of generated test 

examples. The computational results show that the completion time found by the SA is 

on average 10.03% above the lower bound and the performance of the algorithm is 

irrelevant to the number of containers loaded. 
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CHAPTER 4 

SCHEDULING OF MULTIPLE YARD CRANE SYSTEMS (II)  

4.1 INTRODUCTION 

This chapter extends the study in the previous chapter to a more general case in which, 

multiple YCs are used to load a sequence of containers from one or more container blocks. 

An integer programming model is developed for the problem formulation. In the model, 

the work schedules of different YCs are decided simultaneously to minimize the loading 

time. It is noted that the YC scheduling problem is NP-complete by nature. This research 

develops a greedy heuristic and a Simulated Annealing algorithm to solve the proposed 

model. The performance of the two algorithms is illustrated through presented numerical 

examples. 

4.2 MULTIPLE YARD CRANE SCHEDULING PROBLEM 

In a multiple yard crane scheduling (MYCS) problem, several YCs will work at several 

container blocks to serve one QC. Figure 4.1 shows a typical container loading system 

using multiple YC systems in which YC 1, 2 and 3 are working at two blocks (Block 1 and 

2) to serve QC 1 at the same time. Hence they will perform the loading jobs according to 

the load plan of QC 1. The main character which distinguishes the MYCS problem from 

TYCS problem is that the YCs in MYCS problem are free to travel between the container 
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blocks. Following is an example used to illustrate the MYCS problem.  

 

Table 4.1 A Sample Load Plan 
Sequence 1 2 3 4 5 6 

Container type A C B A C B 
Number of containers 20 18 22 24 30 26 

 

Table 4.2 Sample container block plans 
Block Plan (Block 1) 

Yard-bay number 1 2 3 4 5 6 7 8 9 10 
Container type A  B C  C A B  A 

Number of containers 8  15 10  15 8 12  4 
 
Block Plan (Block 2) 

Yard-bay number 1 2 3 4 5 6 7 8 9 10 
Container type  B  A C A   C B 

Number of containers  11  10 8 14   15 10 
 

Table 4.1 provides a sample load plan of a QC which is also the requirement of container 

loading sequence for the YCs. Table 4.2 is the block plans of the two container blocks 

which show where these containers are stacked. According to the load plan of the QC, the 

YCs need to pick up 20 containers of type A together at the two blocks. When all the 20 

containers of type A are picked up, the YCs then will start to work for sequence 2, picking 

up 18 containers of type C, and so on. 
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Figure 4.1 A Layout of a Container Loading System. 

4.3 PROBLEM FORMULATION 

To simplify the mathematical model formulation, two reasonable assumptions are 

introduced. 

i. Only one type of container is stacked in one yard-bay, a common practice of allocating 

space in YC based container terminals. 

ii. Despite the exact storage positions of individual containers, the loading time for all the 

containers is assumed to be the same. 

 

An integer programming formulation is proposed to model the problem. A “sub-tour” 

(subsequence) is defined in the same way as in Chapter 3. This definition implies only 
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when the YCs finished all the loading jobs for one sub-tour can they start to work for the 

posterior sub-tour.  

 

The upper bound for the total loading time of the optimal YC scheduling is assumed to be 

known and this upper bound is partitioned into T time units. One time unit is defined as 

the time required for a yard crane traversing the distance of one yard-bay. The handling 

time of one container, HT , is taken to be a multiple of this time unit.  

 

As mentioned before, yard cranes may work at different container blocks. To facilitate the 

problem formulation, we join these blocks with some virtual yard-bays to get an integrated 

container block. The virtual yard-bays are generated in such a way that the time needed 

for a YC to traverse these yard-bays is the same as the time needed to travel from one 

container block to the other. Thus all the YCs will work on this merged block. All the B 

yard-bays in the merged block are renumbered 1 to B from left to right. Figure 4.2 

illustrates the joining process. 

 

Figure 4.2 An Illustration of Joining Two Blocks 
 

The K YCs are numbered 1 to K from left to right according to their initial location at 
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period 0. Since the YCs are of same size, so they cannot pass each other which implies 

that YC k can only move in the range limited by the locations of YC k-1 and k+1. 

 

The following notations are used to formulate the MYCS problem. 

, , ,

1    if Yard crane  finishes loading one container for 
     Sub-tour  at Yard-bay  at time 
0   otherwise   (a decision variable)

i j k t

k
X i j t

⎧
⎪= ⎨
⎪
⎩

, ,

1   if Yard crane  is at Yard-bay  at time 
   

0   otherwise   (a decision variable)j k t

k j t
Y

⎧
= ⎨
⎩

 

          the number of containers needed to pick up for Sub-tour  iN i  

          the number of containers stacked at Yard-bay  before the loading 

              process starts
jC j

 

B (i)    the set of yard-bays where the containers required by Sub-tour i are located 

            the number of sub-tours for the whole loading processS   

           the initial position of yard crane kI k       

           the final position of yard crane kF k  

The objective function is to minimize the loading time of the containers, which can be 

represented by the following equation, 

Minimize                                                                                                     (4.1) , , ,max( )i j k ttX

Subject to 

, , ,
1 1 1

   1, 2 ,
S K T

i j k t j
i k t

X C j B
= = =

= =∑∑∑ L                                                                            (4.2) 

, , ,
1 1 1

   1, 2 ,
B K T

i j k t i
j k t

X N i S
= = =

= =∑∑∑ L                                                                            (4.3) 
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1

, , , , , ,
( ) 1 1

(1 )   
K a

i s j k t i s i j k a
j B i s k t

X N M X
−

′ ′− −
∈ − = =

− ≤ −∑ ∑∑       

 2,3 ;  1, 2 1;  ( );  1, 2 ;  1, 2H Hi S s i j B i k K a T T T′ ′= = − ∈ = = + +L L L L

)

T

     (4.4) 

1

, , , , , ,
( ) 1 1

( 1    
K a

i s j k t i s i j k a
j B i s k t

X N M X
−

′ ′− −
∈ − = =

− ≥ −∑ ∑∑       

2,3 ;  1, 2 1;  ( );  1, 2 ;  1, 2H Hi S s i j B i k K a T T′ ′= = − ∈ = = + +L L L L

TL

TL

) 

TL

    (4.5) 

, , ,
1 1

1   1,2 , ;  1,2 ,
S B

i j k t
i j

X k K t
= =

≤ = =∑∑ L                                (4.6) 

1

, , , , , ,
1 1 1

(1 )   
HTS B

i j k t a i j k t
i j a

X M X
−

−
= = =

≤ −∑∑∑               

1, 2 , ;  1, 2 , ;  1, 2 , ;  1, 2 ,i S j B k K t= = = =L L L                       (4.7) 

, , , , ,
0

1 ( 1
HT

j k t a H i j k t
a

Y T M X−
=

− − ≥ −∑     

1, 2 , ;  1, 2 , ;  1, 2 , ;  1, 2 ,H Hi S j B k K t T T= = = = + +L L L             (4.8) 

, , , 1,(1 )    1,2 , ;  2,3 , ;  1,2 ,
B

b k t j k t
j b

M Y Y b B k K t−
=

− ≥ = = =∑ L L TL

TL

TL

−

−

K

                               (4.9) 

, ,
1

1   1,2, , ;  1,2 ,
B

j k t
j

Y k K t
=

= = =∑ L                                                                   (4.10) 

, ,
1

1   1, 2 , ;  1, 2 ,
K

j k t
k

Y j B t
=

≤ = =∑ L                                                                                        (4.11) 

1

, , 1 , ,
1

  1, 2 , ;  1,2 , ;  2,3 , 1
b

j k t b k t
j b

Y Y b B k K t T
+

−
= −

≥ = = =∑ L L L                                    (4.12) 

1

, , 1 , ,
1

  1, 2 , ;  1, 2 , ;  2,3 , 1
b

j k t b k t
j b

Y Y b B k K t T
+

+
= −

≥ = = =∑ L L L                                    (4.13) 

, ,1 1   1, 2 ,
kI kY k= = L                                                                                                    (4.14) 
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, ,1 1   1, 2 ,
kF kY k= = L K                                                                                                    (4.15) 

where M is a big positive number. 

 

Constraints (4.2) ensure the number of containers picked up during the whole loading 

process at one yard-bay equals to the initial number of containers stacked in that yard-bay. 

Constraints (4.3) ensure the number of containers picked up during one sub-tour equals to 

the number required by the load plan. Constraints (4.4) and (4.5) ensure that the YCs must 

finish the loading jobs for all the previous sub-tours before they can start to work for the 

next sub-tour. Constraints (4.6) ensure the YC can at most handle one container for one 

period. Constraints (4.7) ensure that the YC cannot finish any loading jobs during the time 

interval  to t-1 if it completes one loading job at period t. Constraints (4.8) ensure 

during loading one container the YC will stay at the container location throughout the 

operation. Constraints (4.9) ensure the movement of the YCs is free of inter-YC 

interference. Constraints (4.10) state that one YC can only be at one yard-bay during one 

period. Constraints (4.11) state that only one YC can be at one yard-bay in each period. 

Constraints (4.12) and (4.13) ensure that the YC can only move one yard-bay during one 

period. Constraints (4.14) and (4.15) state the initial and final positions of the K YCs.    

1Ht T− −

4.4 HEURISTIC APPROACHES 

4.4.1 A Greedy Heuristic 

A greedy heuristic is proposed in this section to solve the MYCS problem. For the sake of 
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brevity, a system of two YCs is used to illustrate this heuristic approach. The scheduling 

rules of this heuristic are as follows: 

Rule 1 

Both the two YCs will choose the containers in their nearest yard-bays, which satisfy 

the loading sequence requirement. 

Rule 2 

If the same yard-bay is identified to be the closest yard-bay to both YC 1 and YC 2 

and it is also the last yard-bay of containers for the current subtour, it will be assigned 

to the closer YC. In the case where two YCs are of equal distance to the yard-bay, the 

yard-bay will be assigned to one YC arbitrarily.  

Rule 3 

If the same yard-bay is identified to be the closest yard-bay to both YC 1 and YC 2 

and it is not the last yard-bay of containers for the current subtour, following five 

scenarios (see figure 4.3) are the only situations that can occur. 

For the purpose of clarity, the area between the two cranes is referred as the interior 

area, while the extreme sides of the two cranes are referred as YC 1 and YC 2’s 

exterior areas respectively illustrated in figure 4.4.  

 

Figure 4.4 Definition of the interior and exterior areas 
 

a) The closest yard-bay (Yard-bay a) is at the YC 2’s exterior area, and there is no 
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other yard-bay available at YC 1’s exterior area: YC 1 will pick up containers at 

Yard-bay a and YC 2 will pick up containers at Yard-bay b. 

b) The closest yard-bay (Yard-bay a) is at the YC 2’s exterior area, and there is a 

yard-bay (Yard-bay b) available at YC 1’s exterior area: YC 1 will pick up 

containers at Yard-bay b and YC 2 will pick up containers at Yard-bay a. 

c) The closest yard-bay (Yard-bay a) is at the interior area with YC 1 being the 

closer crane and there is no yard-bay available at YC 1’s exterior area: YC 1 will 

pick up containers at Yard-bay a and YC 2 will pick up containers at Yard-bay b. 

d) The closest yard-bay (Yard-bay a) is at the interior area with YC 1 being the 

closer crane and there is a yard-bay (Yard-bay b) available at YC 1’s exterior 

area: YC 1 will pick up containers at Yard-bay b and YC 2 will pick up 

containers at Yard-bay a. 

e) The closest yard-bay (Yard-bay a) is at the interior area with YC 1 and YC 2 

being of equal distance to it and there is a yard-bay (Yard-bay b) available at YC 

2’s exterior area: YC 1 will pick up containers at Yard-bay a and YC 2 will pick 

up containers at Yard-bay b. 

 

Rule 4 

In the case where there are two yard-bays of containers are equal distant to one YC, 

the YC will choose the yard-bay which is further from the other YC. 

Rule 5 

If there is no available container for an YC, it will stay still. 
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                                (a)                                                                   (b) 

                       

                           (c)                                                                    (d)    

 

                            (e) 

Figure 4.3 Position Relationships between YCs and Their Closest Containers 
 

4.4.2 Simulated Annealing Algorithm 

It is found through a previous research that a simulated annealing (SA) algorithm is an 

efficient method in solving the scheduling problem of the multiple YC system without 

inter-crane interference. Therefore we also apply the SA algorithm to solve the MYCS 

problem. 
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4.4.2.1 Solution representation 

To use SA algorithm in solving the MYCS problem, a method of encoding the feasible 

solutions is first introduced.  

 

The feasible solutions for the MYCS problem are represented by strings of integer 

numbers. Each string consists of several sections according to the number of sub-tours and 

each section includes four sectors, first two sectors indicating the visiting sequence of 

yard-bays of YC 1 and the number of containers picked up by it at each visit, last two 

sectors indicating the information of YC 2. 

 

Figure 4.5 A Sample Part of a Feasible Solution. 
 

Figure 4.5 is an example of part of the feasible solution, which contains two sections 

corresponding to Sub-tour 1 and Sub-tour 2 respectively. In Section 1, the first two sectors 

mean that YC 1 will visit yard-bays in the sequence of 1-7 and pick up 4 and 8 containers 

at each visit accordingly. While the last two sectors show that YC 2 will visit yard-bays in 

the sequence of 19-17 and pick up 4 containers at each visit. After both the two YCs finish 

their work in Section 1, they will start for work in Section 2. 
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4.4.2.2 Generation mechanism of neighborhood solution.  

To implement the SA algorithm on the MYCS problem, we need to generate a sequence of 

iterations, of which each is composed of changing the current solution in a designed way 

to create a neighborhood solution. The Generation mechanism of neighborhood solution 

employed here is the same as the method in previous chapter. 

4.4.2.3 Acceptance criterion for the neighborhood solution 

Once a neighborhood solution is generated, the following criterion is adopted to judge 

whether to accept it or not. 

Let 0( ) ( )f s f s∆ = −                                                                                                        (4.16) 

0s  represents the current solution and s  represents the neighborhood solution 

generated from current solution.  

( )f ∗  represents the objective function value computed from the solution . ( )∗

A random number r in [ )0,1  is generated from a uniform distribution and if  

iTr e−∆≤ ,  represents the current temperature                                                             (4.17) iT

Then the neighborhood will be accepted as the current solution. If not, the current solution 

will remain unchanged. 

4.4.2.4 Temperature updating scheme 

The temperature updating scheme adopted here is the same as the scheme used in previous 
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chapter. This scheme is shown to outperform the commonly used geometric updating 

scheme in a preliminary numerical experiment. 

1 ,    0,1i iT cT i+ = = K                                                                                                        (4.18) 

In this scheme the temperature is updated by the following formula:  

1 ,    1, , 1
1

i
i

i

TT i
Tβ+ = =

+
K K −                                                                                          (4.19) 

Where β  is the rate parameter in terms of the initial temperature, , stopping 

temperature, 

1T

KT  and iteration number, K . 

1

1( 1)
K

K

T T
K TT

β −
=

−
                                                                                                              (4.20) 

4.4.2.5 Stopping criterion 

The stopping temperature, KT , and iteration number, K  are used to control the stoppage 

of the SA process.  

4.4.3 Tabu Search Algorithm 

Tabu search (TS) algorithm is a commonly used solution technique to solve combinatorial 

optimization problems. It had been shown to be efficient in solving many difficult 

optimization problems in the literatures. Therefore, we also adopted this approach to solve 

the MYCS problem. 

 

The solution encoding method and the generation mechanism of neighborhood solution 
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used in the TS algorithm are the same as methods used in SA algorithm. To construct a 

tabu list, a move first is defined as the position of the cutting points chosen in generating 

neighborhood solutions. Then a number of moves are recorded in the tabu list.  

 

A first-in-first-out (FIFO) strategy is employed as the freeing strategy. In this procedure, 

once the tabu list is full each new move is written over the oldest move. The other way to 

free a move from the tabu list is controlled by the aspiration conditions. The aspiration 

conditions used here is that if a move generates a better solution than all the best solutions 

obtained so far, it will be accepted and freed from the tabu list. To determine a proper 

number of moves to be stored in the tabu list, which is also called tabu list length, a 

preliminary numerical experiment is conducted. Through the experiment, it is found that 

“three” is a proper length of the tabu list.  

4.5 NUMERICAL EXPERIMENTS 

4.5.1 Sensitivity Analysis of SA Parameters 

To use SA to solve the MYCS problem, a sensitivity analysis of SA parameters is 

conducted in advance. It is found though a rudimentary experiment that 10,000 is a proper 

value of the initial temperature . Then the other two parameters, iteration number K and 

stopping temperature 

1T

KT  are tested by solving sample problems. The tested values of the 

iteration number are 500, 1000, 1500, …, 5000 and the tested values of stopping 

temperature are 0.1, 1 and 10. 
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It is found that the SA algorithm is sensitive to the random seed of the C++ program. So 

the combinations of parameters using 10 different random seeds are tested. Figure 4.6 

illustrates the average loading time (ALT) obtained with corresponding values of 

parameters. Also, the best result obtained from different combination of parameter is 

illustrated in figure 4.7.  

 

It is noted that both the average and best loading time achieved the smallest value when 

the iteration number K = 1000 and KT  = 0.1. Therefore the pair of parameter set (  

=10,000, 

1T

KT  = 0.1, K = 1000) is chosen to compare with the designed greedy 

heuristic.

 

Figure 4.6 Average Loading Time for Different Values of Parameters ( = 10000) 1T
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Figure 4.7 The Shortest Loading Time for Different Values of Parameters  
 

4.5.2 Small-scale Problem Tests 

Ten small-scale test problems are first randomly generated. In these problems, the multiple 

YC system needs to pick up 6-10 containers of 2 different types in a container block of 10 

yard-bays in 3 sub-tours. The test problems are solved by CPLEX MIP algorithm of 

CPLEX running on a DELL PC with P IV 3.0 GHz CPU. It is noted that even for these 

small-scale problem, the computational time can be over 20 hours. Both the designed 

greedy heuristic and the SA algorithm are also used to solve these problems. The results 

obtained by the four solution techniques are compared with each other and are shown in 

figure 4.8. 
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Figure 4.8 Comparisons between the Results of the Greedy Heuristic, SA and TS 
(Small-scale Problem). 

4.5.3 Large-scale Problem Tests 

Ten large-scale test problems are also generated to compare the performance of the 

designed greedy heuristic against the SA and TS algorithm. In these problems, 450-550 

containers of 5 different types are randomly allocated in a container block of 45 yard-

bays. A multiple YC system of two YCs are used to handle these containers in 10 sub-

tours. It is almost impossible to use CPLEX to obtain the optimal solutions due to the 

excessive time. Therefore, only the results obtained from the greedy heuristic and the SA 

and TS algorithm are compared in figure 4.9.  In solving all the ten sample problems, the 

proposed greedy heuristic algorithm always achieves better solutions than the SA and TS 

algorithm.   
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Figure 4.9 Comparisons between the Results of the Greedy Heuristic, SA and TS 
(Large-scale Problem). 

 
It is noted the designed greedy heuristic outperforms both the SA and TS algorithm in 

solving both the small-scale and large-scale test problems. On average the results from 

the greedy heuristic is 8.9% better than the results from the SA algorithm and 14.2% 

better than the results form the TS algorithm.  

4.6 SUMMARY 

In this chapter, the prototype MYCS problem is investigated. In the problem both the 

container loading sequence constraints and the YC interference constraints are considered. 

An integer programming model is proposed to formulate the problem. Moreover a greedy 

heuristic, a simulated annealing algorithm and a tabu-search algorithm are designed to 

solve the proposed model. The performance of the three techniques has been tested 
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through both small-scale and large-scale numerical examples. The result shows that the 

designed greedy heuristic algorithm consistently outperforms the SA and TS algorithm. 
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CHAPTER 5 

SCHEDULING OF MULTIPLE YC SYSTEMS IN 

CONTAINER TERMINALS WITH BUFFER AREAS 

5.1 INTRODUCTION 

In the previous two chapters, the load scheduling problem of multiple YC system serving 

single QC in container terminals without buffer areas (MYCS problem) has been 

intensively studied. Since no buffer area is considered, YCs must therefore be scheduled 

to strictly follow the QC load schedule. In reality however, buffer areas are reserved in the 

stacking area for some container terminals. The containers picked up by the YCs ahead of 

schedule are temporarily stored in the buffer areas till they can be handled by the QCs. 

This special feature will help to increase the utilization of the YCs and expedite the 

loading operation at the stacking area. Buffer areas sometimes may not exist physically in 

the container terminals. Nevertheless, as long as containers are allowed to wait on the yard 

trucks at the wharf area, virtual buffer areas can be considered to exist in the terminals.  

 

This chapter addresses this derived scheduling problem of multiple YC systems in 

container terminals with buffer areas (MYCS-B). In the problem, several YCs are used to 

pick up a sequence of containers for a QC. The containers picked up ahead of the schedule 

can be stored at buffer areas until they can be handled by the QC. An integer programming 

model is developed for the problem formulation. Numerical examples are conducted to 
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compare the performances of the multiple YC systems in container terminals with and 

without buffer areas.  

5.2 PROBLEM DESCRIPTION 

Although the MYCS-B problem and MYCS problem share a lot of common aspects, the 

use of buffer areas affects the scheduling of YCs significantly. Figure 5.1 provides an 

illustration of using buffer areas in container terminals. 

 

Figure 5.1 An Illustration of Using Buffer Areas in Container Terminals 
 

 

In the MYCS-B problem, since there are some buffer areas available in the yard, an YC is 
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allowed to pick up containers for the following sequences even though not all the 

containers required by current sequence are picked up. Those containers which are picked 

up ahead of schedule will be kept in the buffer area temporarily. Considering the 

expensive land space in container terminals, the proportion of buffer area is usually very 

limited. Hence, to reduce the number of containers waiting at buffer areas, in practice 

operation only in the situation where there is no container of current sequence available 

within an YC’s working range, it is allowed to work for the following sequences ahead of 

schedule. The working range of an YC here is limited by its neighboring YCs. Figure 5.2 

illustrates the working range of an YC. In the figure, YC k-1 and YC k+1 are working at 

Yard-bay 4 and 15, respectively. The working range of YC k is from Yard-bay 5 to 14 in 

this case.   

 

Figure 5.2 An Illustration of the Working Range of an YC 
 

Following is an example to demonstrate the condition for an YC to work ahead of 

schedule. The current location of the YCs and containers is shown in Figure 5.3. Assume 

picking up 15 containers of Type A, is the current job of the QC and YC 1 is working at 

Yard-bay 12. As shown in the figure, there is no container of Type A available in the 

working range of YC 2.  In such a situation, YC 2 is allowed to work for the next job of 

the QC. 
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Figure 5.3 Location of the YCs and Containers 

5.3 MODEL FORMULATION 

To simplify the model formulation, two assumptions are first introduced. 

i. Only one type of container is stacked in one bay, which is a common practice of 

allocating space in container terminals. 

ii. Despite the exact storage positions of individual containers, the loading time for all the 

containers is assumed to be identical. 

 

An integer programming model is proposed for the formulation. As aforementioned, a 

“sub-tour” is defined as a sequence of containers that needs to be picked up together 

according to the QC load schedule. The upper bound for the total loading time of the 

optimal YC scheduling is also assumed to be known and this upper bound is partitioned 

into T time units. One time unit is defined as the time required for an YC to traverse one 

bay. The handling time of one container, HT , is taken to be a multiple of this time unit.  

The K YCs are numbered from 1 to K from left to right according to their initial location 

in the block. Since the YCs are of the same size, they cannot pass each other which 

implies that YC k can only move in the range limited by the locations of YC k-1 and k+1.  
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The following notations are used in formulating the MYCS-B problem, 

, , ,

1   if YC  finish loading one container for Sub-tour  at Yard-bay  at time 
0   otherwise   (a decision variable)i j k t

k i
X

⎧
= ⎨
⎩

, ,

1   if YC  is at Yard-bay  at time 
   

0   otherwise   (a decision variable)j k t

k j t
Y

⎧
= ⎨
⎩

j t

 

          the number of containers needed to be picked up for Sub-tour  iN i  

          the number of containers stacked at Yard-bay  before the loading process startjC j  

 ( )       the set of yard-bays where the containers required by Sub-tour  are locatedB i i  

            the number of sub-tours for the whole loading processS  

            the maximum number of sub-tours YCs can work ahead of schedule, if noϕ  

              containes for the current sub-tour is available in their working range  

           the initial position of YC kI k       

           the final position of YC kF k  

 

The objective function is to minimize the loading time, which can be represented by 

equation (5.1). 

Minimize                                                                                                     (5.1) , , ,max( )i j k ttX

Subject to 

, , ,
1 1 1

   1, 2 ,
n K T

i j k t j
i k t

X C j B
= = =

= =∑∑∑ L                                                                            (5.2) 

, , ,
1 1 1

   1, 2 ,
B K T

i j k t i
j k t

X N i
= = =

= =∑∑∑ L S                                                                            (5.3) 

1

, , , , , ,
( ) 1 1

(1 )           3, 4 ;  1,2 2;   
K a

i s j k t i s i j k a
j B i s k t

X N M X i S iϕ ϕ
ϕ

ϕ∗ ∗

−

− − − −
∈ − − = =

− ≤ − = = −∑ ∑∑ L L      
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                                     (5.4) 1, 2 1;  ( );  1, 2 ;  1, 2H Hs i j B i k K a T Tϕ ∗ ∗= − − ∈ = = + +L L TL

TL

1

, , , , , ,
( ) 1 1

( 1)          3, 4 ;  1, 2 2;  
K a

i s j k t i s i j k a
j B i s k t

X N M X i S iϕ ϕ
ϕ

ϕ∗ ∗

−

− − − −
∈ − − = =

− ≥ − = = −∑ ∑∑ L L       

 1, 2 1;  ( );  1, 2 ;  1, 2H Hs i j B i k K a T Tϕ ∗ ∗= − − ∈ = = + +L L                              (5.5) 

, 1, , 1, , , ,
(1 ) (1 ) (1 )      3, 4 ;  , ,  ( );j k t j k t j i s j k t

j j j
M Y M Y C M X i S j j j B∗

∗
′ ′′− + −

′ ′′< <

′ ′′− − − − + ≤ − = ∈ i∑ L       

 1, 2 2;  1, 2 -1;  ( );  1, 2 ;  1, 2H Hi s j B i k K t T T Tϕ ϕ ϕ= − = ∈ − = = + +L L L L

TL

TL

) 

TL

     (5.6) 

, , ,
1 1

1   1,2 , ;  1,2 ,
S B

i j k t
i j

X k K t
= =

≤ = =∑∑ L                                                               (5.7) 

1

, , , , , ,
1 1 1

(1 )   
HTS B

i j k t a i j k t
i j a

X M X
−

−
= = =

≤ −∑∑∑               

1, 2 , ;  1, 2 , ;  1, 2 , ;  1, 2 ,i S j B k K t= = = =L L L                                                    (5.8) 

, , , , ,
0

1 ( 1
HT

j k t a H i j k t
a

Y T M X−
=

− − ≥ −∑     

                                  (5.9) 1, 2 , ;  1, 2 , ;  1, 2 , ;  1, 2 ,H Hi S j B k K t T T= = = = + +L L L

, , , 1,(1 )    1,2 , ;  2,3 , ;  1,2 ,
B

b k t j k t
j b

M Y Y b B k K t−
=

− ≥ = = =∑ L L TL

TL

TL
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K

K

                            (5.10) 

, ,
1

1   1,2, , ;  1,2 ,
B

j k t
j

Y k K t
=

= = =∑ L                                                                   (5.11) 

, ,
1

1   1, 2 , ;  1, 2 ,
K

j k t
k

Y j B t
=

≤ = =∑ L                                                                                       (5.12) 

1

, , 1 , ,
1

  1, 2 , ;  1,2 , ;  1,2 ,
b

j k t b k t
j b

Y Y b B k K t
+

±
= −

≥ = = =∑ L L                                         (5.13) 

, ,1 1   1, 2 ,
kI kY k= = L                                                                                                    (5.14) 

, ,1 1   1, 2 ,
kF kY k= = L                                                                                                    (5.15) 
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where M is a big positive number. 

 

Constraints (5.2) ensure the number of containers picked up during the whole loading 

process at one bay equals to the initial number of containers stacked at that bay. 

Constraints (5.3) ensure the number of containers picked up during one sub-tour equals to 

the number which is required by the QC load schedule. Constraints (5.4) and (5.5) ensure 

that before the YCs can start to work on Sub-tour i, they must first finish loading all sub-

tours before Sub-tour i -ϕ . In the event that no containers of the current sub-tour are 

within an YC’s working range, Constraints (5.6) allow the YC to move on to a maximum 

of ϕ  more sub-tour. Constraints (5.7) ensure the YC can at most finish handling one 

container for one period. Constraints (5.8) ensure that the YC cannot finish any handling 

jobs during the time interval 1Ht T− −  to t-1 if it completes one handling job at period t. 

Constraints (5.9) ensure during the loading one container the YC will stay at the container 

location throughout the operation. Constraints (5.10) ensure the movement of the YCs is 

free of inter-YC interference. Constraints (5.11) state that one YC can only be at one bay 

during one period. Constraints (5.12) state that only one YC can be at one bay in each 

period. Constraints (5.13) ensure that the YC can at most move one yard-bay during one 

period. Constraints (5.14) and (5.15) state the initial and final positions of the K YCs.    

 

As mentioned, ϕ  is the maximum number of sub-tours YCs can work ahead of schedule, 

in the case no containers for the current sub-tour are available in their working range. For 

example, 

ϕ  = 1, YCs are allowed to work for the next sub-tour if no containers for the current sub-
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tour are available in their working range; 

ϕ  = 2, YCs are allowed to work for any of the next two sub-tours if no containers for the 

current sub-tour are available in their working range; 

 

One boundary value of ϕ  is 0. In this case, YCs are not allowed to work for following 

sub-tours even there is no containers for the current sub-tour available in their working 

range. Therefore, the MYCS-B problem becomes the previous studied MYCS problem. 

The other boundary value of ϕ  is i-1. In this case, YCs are free to work for any following 

sub-tours if there is no container for the current sub-tour available in their working range.  

 

In general, with a larger number of ϕ , YCs will have more freedom in the loading process, 

which  will shorten the  loading time and improve the utilization of YCs. On the other 

hand, a larger number of ϕ  will also lead to a greater number of containers picked up 

ahead of schedule, which requires larger buffer areas. To deal with this conflict, the 

terminal operators need to determine a proper value of ϕ , with which a higher utilization 

of YCs is achieved with an appropriate size of buffer areas. Based on empirical experience, 

1 is a prevailing value of ϕ  used by the terminal operators. In line with the practice 

operation, a heuristic algorithm for ϕ  = 1 is introduced in the following section. This 

algorithm can also be extended for other values of ϕ  with simple revisions.   
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5.4 A SCHEDULING HEURISTIC 

It is well-known that the single YC scheduling problem is an NP-complete problem. 

Needless to say, the MYCS-B problem is also an NP-complete problem which makes 

exact algorithms not practical in solving the large scale cases. Hence, a scheduling 

heuristic based on greedy principle is proposed for the solution of the MYCS-B problem. 

For the sake of brevity, a system of two YCs is used to illustrate this heuristic approach. It 

should be noted the scheduling heuristic is implemented on a container by container basis, 

which means that once an YC finishes picking up one container, it needs to identify which 

yard-bay to work at next.  

 

The scheduling rules of the proposed heuristic are as follows: 

 

Situation 1: Only one yard-bay which contains containers for the current sub-tour remains 

in the block. 

Rule 1 

The yard-bay, therefore, will be the nearest yard-bay to both YCs. This yard-bay will 

be assigned to the closer YC. The other YC will then work at the nearest bay which 

contains containers for the next sub-tour and the picked up containers will be carried 

to the buffer area by the yard trucks. In the case where two YCs are of equal distance 

to the yard-bay, the yard-bay will be assigned to one YC arbitrarily. 

 

Situation 2: More than one yard-bay which contains containers for the current sub-tour 
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remains in the block. 

Rule 2 

Both of the two YCs will pick up containers at their nearest yard-bays which contains 

containers for the current sub-tour. 

Rule 3 

If the same yard-bay is identified to be the closest one to both YC 1 and YC 2 and it 

is not the last yard-bay of containers for the current sub-tour, following five scenarios 

(Figure 5.4) are the only permitted situations. (Both Yard-bay a and b are the yard-

bays that contain containers for the current sub-tour) 

 

                        (a)                                                                                        (b) 

 

                        (c)                                                                                        (d)    

 

                        (e) 
Figure 5.4 Spatial Relationships between YCs and Their Closest Containers 
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For the purpose of clarity, the interior area and the exterior area of the YCs are defined in 

the same way as in Chapter 4.  

a) The closest yard-bay (Yard-bay a) is at the YC 2’s exterior area, and there is no 

other yard-bay available at YC 1’s exterior area: Yard-bay a will be assigned to 

YC 1 as the next yard-bay to work at and Yard-bay b will be assigned to YC 2. 

 

b) The closest yard-bay (Yard-bay a) is at the YC 2’s exterior area, and there is a 

yard-bay (Bard-bay b) available at YC 1’s exterior area: Yard-bay b will be 

assigned to YC 1 as the next yard-bay to work at and Yard-bay a will be assigned 

to YC 2 

 

c) The closest yard-bay (Yard-bay a) is at the interior area with YC 1 being the 

closer crane and there is no bay available at YC 1’s exterior area: Yard-bay a will 

be assigned to YC 1 as the next yard-bay to work at and Yard-bay b will be 

assigned to YC 2. 

 

d) The closest yard-bay (Yard-bay a) is at the interior area with YC 1 being the 

closer crane and there is a Yard-bay (Yard-bay b) available at YC 1’s exterior area: 

Yard-bay b will be assigned to YC 1 as the next yard-bay to work at and Yard-bay 

a will be assigned to YC 2 

 

e) The closest yard-bay (Yard-bay a) is at the interior area with YC 1 and YC 2 

being of equal distance to it and there is a yard-bay (Yard-bay b) available at YC 

2’s exterior area: Yard-bay a will be assigned to YC 1 as the next yard-bay to 
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work at and Yard-bay b will be assigned to YC 2. 

Rule 4 

In the case where there are two yard-bays of containers of equal distances to one YC, 

the YC will choose the yard-bay which is further from the other YC. 

Rule 5 

If there is no available container for an YC, it will stay still. 

5. 5 NUMERICAL EXPERIMENTS 

To measure the performance of the multiple YC systems with and without buffer areas, 

ten test problems are generated as follows: 

 

1) Generate the QC load schedule: 

a) The total number of containers for each problem is randomly chosen in the 

range of 300 to 450. 

b)  The containers are randomly classified into five types, namely A, B, C, D and 

E. 

c) Each type is then further divided into 2 or 3 groups. 

d) The QC load schedule is finally generated by joining these groups in a 

random sequence. 

 

2) Allocate the containers required by the QC in the stacking area: Containers are 

randomly allocated in a container block, which consists of 25 yard-bays, subjected to 
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the constraint that only one type of container can be stacked in a yard-bay. 

 

Both the multiple YC systems, consisting of two YCs, with and without a buffer area are 

tested on the generated sample problems. In the previous chapter a greedy heuristic and a 

SA algorithm were developed to solve the MYCS problem and the results show that the 

greedy heuristic algorithm consistently outperforms the SA algorithm. Hence the greedy 

heuristic algorithm is tested on the generated problems and the results are compared with 

the results of the MYCS-B. Figure 5.5 shows that by adopting the proposed scheduling 

heuristic, the result of MYCS-B outperforms the result of MYCS using the greedy 

heuristic algorithm in all the numerical experiments.      
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Figure 5.5 Comparisons between the Loading Time of MYCS-B and MYCS  
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Figure 5.6 Comparisons between the Idle Time of MYCS-B and MYCS 
 

 

During the loading process, there may not be any appropriate container available for an 

YC for a certain period of time. Hence the YC will stay still during that time. In the study, 

this period of time is called the idle time of the YC. The numerical results (in Figure 5.6) 

show that with the proposed scheduling heuristic, the total idle time of the YCs of the 

MYCS-B is significantly reduced compared to the idle time of the MYCS. This can be 

explained that adding buffer areas in a container terminal actually increases the degree of 

freedom of the YC operations by allowing YCs to work ahead of the QC load schedule. 

This reduces the probability of an YC to be idle in the case that no containers for the 

current sub-tour are available in its working range.   

 

The utilization rate of YCs is defined as the following equation (16), 

Loading time -  Total idle timeUtilization rate  100%
Loading time

= ×                                           (16) 

71 



Chapter 5 Scheduling of Multiple YC Systems in Container Terminals with Buffer Areas 

 

Table 5.1 shows the utilization rates of the YCs of both MYCS-B and MYCS. On average 

the utilization rate of YCs of MYCS-B is increased by 6% compared to the utilization rate 

of YCs of MYCS. 

Table 5.1 Utilization rate of YCs of MYCS-B and MYCS                  % 
 1 2 3 4 5 6 7 8 9 10 

MYCS  87.6 90.4 92.1 83.2 85.3 92.8 91.6 94.2 85.1 94.5
MYCS-B 94.2 99.0 97.5 90.9 90.8 94.5 99.9 99.6 93.1 95.3

5.6 SUMMARY 

Reserving buffer areas in container terminals where containers picked up ahead of the 

schedule can be kept temporarily will help to increase the efficiency of YC operations. In 

this chapter, an integer programming model has been developed to formulate the MYCS-

B scheduling problem. Moreover, a scheduling heuristic has been designed to solve the 

proposed problem. Numerical experiments show that adopting the designed scheduling 

heuristic the MYCS-B is capable of achieving a higher productivity in terms of needed 

loading time than MYCS, which will contribute to improve the overall efficiency of 

container terminal operation.  
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CHAPTER 6 

DEPLOYMENT STRATEGIES OF DOUBLE RAIL 

MOUNTED GANRY CRANE SYSTEMS IN YARD TRUCK 

BASED CONTAINER TERMINALS 

6.1 INTRODUCTION 

Double rail mounted gantry crane (DRMG) system is an emerging container handling 

equipment technology that was recently introduced in Europe. The system consists of two 

rail mounted gantry cranes of different height and width. Intuitively, this special feature 

will help to increase the productivity of the two cranes since they can pass each other 

during their movement along a container block. Following figure 6.1 is the DRMG system 

in real operations. 

 

Figure 6.1 A DRMG System in Operation (Steenken et al., 2004) 
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This chapter focuses on providing an efficient operation strategy for the DRMG systems 

to load outbound containers in the yard truck based container terminals. An integer 

programming model is developed to formulate the problem. A greedy heuristic algorithm 

and a simulated annealing (SA) algorithm are designed to solve the proposed problem. 

Computational experiments show that the greedy heuristic outperforms the SA algorithm. 

Since the greedy algorithm performs well and is easy to implement, it has a high potential 

to be used in scheduling DRMG systems in real operation.  

6.2 USING DRMG SYSTEMS IN YARD TRUCK BASED CONTAINER 

TERMINALS 

Figure 6.2 is the front view of a DRMG system. Although the DRMG system has been put 

into practice in the Port of Hamburg and it may have a significant influence on the future 

development of container terminals. Up to now, to the best of the author’s knowledge, the 

only report in literature regarding the operation of DRMG is conducted by Kim et al. 

(2002). In that paper, the authors conducted a simulation study on the operation rules of 

DRMG in an Automated Guided Vehicles (AGV) based container terminal.  

 

However, most container terminals are still using yard trucks as the prime movers to 

transport containers between stacking yards and berths. Unlike in Europe, the labor cost in 

these terminals is not that high, therefore building a fully automated container terminal 

might not be cost efficient to them. In these terminals, using DRMG system with 

traditional yard trucks could be a promising approach to enhance the operational 
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efficiency and enjoy the benefit of low labor costs. Hence, the operation problem of 

DMRG system in traditional yard truck based container terminals is highly desired. 

 

 

Figure 6.2 Front View of a DRMG System 
 

Figure 6.3 shows a yard truck based container handling system using DRMGs. In the 

figure, DRMG 1 loads the outbound containers in container block 1 to yard trucks for 

transportation to QC 1. At the same time, DRMG 2 unloads the inbound containers 

discharged by QC 2 from yard trucks for storage in block 2. As aforementioned, the 

operations on the inbound containers is relatively simple, therefore this chapter focuses on 

the loading operation of outbound containers, which is to determine the optimal work 

schedule of the two RMGs of DRMG 1 to minimize the container loading time. 
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Figure 6.3 A Yard Truck Based Container Handling System Using DRMGs 
 

The two decision factors in the problem are the yard-bay visiting sequences of the two 

RMGs of the DRMG system and the number of containers picked up at each yard-bay 

visit. Since the loading jobs are distributed among the two RMGs, making their working 

schedule dependent on one another, the schedules of the two RMGs need to be 

coordinated to minimize the overall loading time. For the sake of presentation, 

synchronizing the transport and loading activities of two RMGs of the DRMG system is 

called DRMG scheduling problem (DRS) in this study. 

 

Although the two RMGs of a DRMG are of different size and can pass each other, there 

still may be some interference between the operations of them. The following depicts the 

interferences that may occur.  
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1) The two RMGs cannot work at the same yard-bay at the same time. 

2) The small RMG cannot pass the large RMG when it’s loading a container. 

6.3 MATHEMATICAL FORMULATION 

To simplify the mathematical model for the DRS problem, two reasonable assumptions are 

made. 

i. There is only one type of container sacked in one yard-bay, the common practice in 

allocating space in the stack area of container terminals. 

ii. The loading time for all the containers is assumed to be the same despite the exact 

storage positions of individual containers.  

 

Similar modeling method is used to formulate the DRS problem. A “sub-tour” 

(subsequence) is also defined as a sequence of containers that needs to be picked up 

together, which is according to load plan of the QC. The upper bound for the total loading 

time of the optimal DRMG scheduling is assumed to be known and this upper bound is 

partitioned into T time unit. One time unit is defined as the time required for a RMG to 

travel the distance of a single yard-bay. The time required to handle a single container, HT , 

is taken to be a multiple of this time unit. The B yard-bays in the block are numbered 1 to 

B from top to down.  

 

The following notations are used to formulate the DRS problem. 
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, ,

1   if the large RMG finishes loading one container
    for Sub-tour  at Yard-bay  at time 
0  otherwise   (a decision variable)

i j tX i j t
⎧
⎪
⎨
⎪
⎩

=  

, ,

1   if the small RMG finishes loading one container 
    for Sub-tour  at Yard-bay  at time 
0  otherwise   (a decision variable)

i j tZ i j t
⎧
⎪
⎨
⎪
⎩

=  

,

1   if the large RMG is at Yard-bay  at time 
0   otherwise   (a decision variable)j t

j t
Y

⎧
= ⎨
⎩

 

,

1   if the small RMG is at Yard-bay  at time 
0   otherwise   (a decision variable)j t

j t
W

⎧
= ⎨
⎩

 

          the number of containers needed to pick up for Sub-tour  iN i  

          the number of containers stacked in Yard-bay  before the loading process startsjC j  

B(i)        the set of yard-bays where the containers required by Sub-tour i are located 

            the number of sub-tours for the whole loading processn  

The objective of the DRS problem is to minimize the loading time of the containers, 

which can be represented by the following equation, 

Minimize                                                                                            (6.1) , , , ,max( ,  )i j t i j ttX tZ

Subject to 

, , , ,
1 1

   1, 2, ,
n T

i j t i j t j
i t

X Z C j
= =

+ = =∑∑ L B                                                                       (6.2) 

, , , ,
1 1

   1, 2, ,
B T

i j t i j t i
j t

X Z N i
= =

+ = =∑∑ L n

)

T

                                                                       (6.3) 

1
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( ) 1
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a

i s j t i s j t i s i j a
j B i s t

X Z N M X
−

′− − −
∈ − =
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                                                              1, 2, 1;  [ ];  2,3, ,  2,3 ;s i j B i i n a′= − ∈ = =L L L    (6.4) 
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where M is a big positive number. 

 

Constraints (6.2) ensure the number of containers picked up during the whole loading 

process at one yard-bay equals to the initial number of containers stacked in that yard-bay. 

Constraints (6.3) ensure the number of containers picked up during one sub-tour equals to 

the number required by the load plan. Constraints (6.4) to (6.7) state that the RMGs must 

finish the loading jobs for all the previous sub-tours before they can start to work for the 

next sub-tour. Constraints (6.8) and (6.9) ensure the RMG can finish loading at most one 

container at one time period. Constraints 6.(10) and (6.11) state that the RMG cannot 

finish any handling jobs during the time interval 1Ht T− −  to t-1 if it completes one 

loading job at period t. Constraints (6.12) and (6.13) ensure that during the loading 
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process of one container the RMG must stay at the container location throughout the 

operation. Constraints (6.14) and (6.15) state that the two RMGs cannot load containers at 

the same yard-bay, at the same time. Constraints (6.16) ensure that the small RMG will 

not pass the large RMG when it is loading a container. Constraints (6.17) and (6.18) state 

that one RMG can only be at one yard-bay during one period. Constraints (6.19) to (6.22) 

ensure that the RMG can only move one yard-bay during one period.  

6.4 SCHEDULING HEURISTICS 

6.4.1 A Greedy Heuristic 

It is well-known that the single YC scheduling problem is an NP-complete problem. 

Needless to say, the DRS problem is also an NP-complete problem which makes exact 

algorithm not practical to solve the large scale cases. Hence, heuristic algorithms are 

required to solve the DRS problem efficiently. A greedy heuristic is proposed in this 

section to solve the DRMG scheduling problem. The scheduling rules of this heuristic are 

as follows: 

Rule 1 

Both the large RMG and small RMG will choose the containers at their closest yard-

bays. The containers also need to satisfy the loading sequence requirement and will 

not cause aforementioned interference. 

Rule 2 

If the two RMGs choose the container at the same yard-bay, the container will be 
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assigned to the small RMG and the large RMG then will choose the container at its 

second closest yard-bay. 

Rule 3 

        If there is no available container for a RMG, it will stay still. 

Rule 4 

In the case where two containers are of equal distances to one RMG, it will choose 

the container which is further from the other RMG. 

 

6.4.2 Simulated Annealing Algorithm 

Simulated annealing (SA) algorithm is also applied to solve the proposed DRS problem 

and the performance of the SA algorithm is compared with the greedy heuristic. The SA 

algorithm is implemented in the same way as the one in the precious chapter. For the sake 

of brevity, the details of the algorithm are not discussed here.  

6.5 NUMERICAL EXPERIMENTS 

6.5.1 Sensitivity Analysis of SA Parameters 

To use SA to solve the DRS problem, a sensitivity analysis of SA parameters is 

conducted in advance. It is found though a rudimentary experiment that 10,000 is a 

proper value of the initial temperature . Then the other two parameters, iteration 1T
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number K and stopping temperature KT  are tested by solving sample problems. The 

tested values of the iteration number are 500, 1000, 1500, …, 5000 and the tested values 

of stopping temperature are 0.1, 1 and 10. 

 

It is found that the SA algorithm is sensitive to the random seed of the C++ program. 

Hence we test the combination of parameters using different random seed and calculate 

the average of their performance. Figure 6.4 illustrates the average loading time obtained 

with corresponding values of parameters. 

 

Also, the best result obtained from different combination of parameter is illustrated in 

figure 6.5. It is noted that for the designed SA algorithm, the objective function achieves 

the smallest value when the iteration number K = 1000 and KT  = 0.1. Therefore the pair 

of parameter set (  =10,000, 1T KT  = 0.1, K = 1000) is chosen to compare with the greedy 

heuristic. 

 

Figure 6.4 Average Loading Time for Different Values of Parameters ( = 10,000) 1T
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Figure 6.5 The Shortest Loading Time for Different Values of Parameters ( = 10,000) 1T

6.5.2 Small-scale Problem Tests 

Ten small-scale test problems are first randomly generated. In these problems, the DRMG 

system needs to pick up 6-10 containers of 2 different types in a container block of 10 

yard-bays in 3 sub-tours. The test problems are solved by CPLEX MIP algorithm of 

CPLEX running on a DELL PC with P IV 3.0 GHz CPU. It is noted that even for these 

small-scale problem, the computational time can be over 10 hours. The designed greedy 

heuristic and the SA algorithm are also used to solve these problems. The results obtained 

by the three solution techniques are compared with each other and are shown in figure 6.6. 

In general, most of the results from the greedy heuristic and the SA algorithm are equal or 

close to the optimal solution.  
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Figure 6.6 Comparison between The Results of CPLEX, Greedy Heuristic and SA  
(small-scale problems) 

6.5.3 Large-scale Problem Tests 

Ten large-scale test problems are also generated to compare the performance of the 

designed greedy heuristic against the SA algorithm. In these problems, 450-550 

containers of 5 different types are randomly allocated in a container block of 45 yard-

bays. The DRMG system needs to handle these containers in 10 sub-tours.  It is almost 

impossible to use CPLEX to obtain the optimal solutions due to the excessive time. 

Therefore, only the results obtained from the greedy heuristic and the SA algorithm are 

shown in figure 6.7. It is noted the designed greedy heuristic outperforms the SA 

algorithm in solving all the ten problems. On average, the result from the greedy 

heuristic is 7.5% better than that from the SA algorithm. 
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Figure 6.7 Comparison between The Results of The Greedy Heuristic and SA  
(large-scale problems) 

 

6.6 SUMMARY 

 
DRMG is an emerging container handling technology which recently came into use in 

Hamburg recently. In this chapter, the scheduling problem of the DRMG system used in 

loading outbound containers has been studied. An integer programming model is 

developed to formulate the problem. A greedy heuristic and a SA algorithm, therefore, is 

designed to solve the problem. Both small-scale and large-scale test problems are 

generated to evaluate the performance of the designed greedy heuristics. The small-scale 

problem tests show that the results of both the algorithms are close to the optimal solution. 

The large-scale problem tests show that the greedy heuristic outperforms a simulated 
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annealing algorithm, which has been shown to perform well in solving similar scheduling 

problems. Since the greedy algorithm performs well and is easy to implement, it could be 

a promising operation strategy of DRMG systems in traditional yard truck based container 

terminals. 
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CHAPTER 7 

SIMULTANEOUS LOAD SCHEDULING OF QUAY CRANE 

AND YARD CRANE IN PORT CONTAINER TERMINALS 

7.1 INTRODUCTION 

The two main types of equipment in port container terminals are QCs and YCs. The 

scheduling problems of both types of equipment are important issues in port terminal 

operations and will significantly affect the overall efficiency of terminal operations. The 

scheduling problem of multiple YC systems alone has been intensively studied in the past 

chapters. Nevertheless due to the fact that the YC scheduling problem is closely related to 

QC scheduling problem, it will be meaningful to consider the two problems at the same 

time.  

 

 
This chapter proposes a load scheduling method which takes into account both the QC 

scheduling problem and the yard scheduling problem. A QC load schedule and its 

corresponding YC load schedule are constructed simultaneously so that a holistic 

consideration of the loading process is achieved.  A mathematical model is developed to 

formulate the simultaneous load scheduling problem of QC and YC. A genetic algorithm is 

designed for the problem solution. The best performing parameters of the algorithm are 

found through numerical experiments presented.  
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7.2 SIMULTANEOUS SCHEDULING OF QUAY CRANE AND YARD CRANE 

Loading outbound containers and discharging inbound containers are the two primary 

operations in port container terminals. In loading outbound containers, YCs will pick up 

the desired containers from container blocks and load them onto the yard trucks waiting 

aside. These yard trucks will then transport the containers to QCs, which will finally load 

the containers onto the containerships. The converse is true for the discharging of inbound 

containers.  

 

In real operation, the terminal operators usually will receive the information of the ship’s 

contents from the ship operator. The information includes the layout of the onboard 

containers, the list of containers needed to be discharged as well as the containers needed 

to be uploaded at the terminal. Based on the information, the terminal operators will 

conduct QC scheduling to determine the number of QCs to be assigned to the ship and the 

sequence of ship-bay that each QC will serve. After constructing the QC scheduling, the 

terminal operator then can develop YC scheduling which is to determine the job sequences 

of the YCs to serve the QC operations.  

 

Since both the QC scheduling and YC scheduling are key issues in container terminals, 

several studies have been conducted to acknowledge the great importance of the 

scheduling problem of QC and YC in determining the overall efficiency of container port 

operations. However, despite the fact that the QC scheduling problem and YC scheduling 

problem are closely related with each other, there has not been any attempt to study these 
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two problems simultaneously in the literature.     

7.2.1 QC Load Scheduling Problem 

Containers to be loaded in one terminal normally will be stacked in several ship-bays on 

the vessel. In practice, QCs will load the containers on a ship-bay by ship-bay basis. Once 

a QC completes all the loading jobs in one ship-bay, it will move to another ship-bay and 

perform the loading jobs there. Therefore, the goal of the QC scheduling problem is to 

determine the sequence of ship-bay that each QC will serve so that the loading time is 

minimized. In practice, it is common to divide a vessel into several working areas and 

each area is served by one QC. As a preliminary study on the simultaneous scheduling of 

QC and YC, only the load schedule of one QC is investigated in this chapter. Figure 7.1 

shows a plan view of a containership. The shadowed ship-bays in the figure are the ship-

bays where the containers will be stacked and hence are the ship-bays where the QC needs 

to work at. It can be easily seen that the QC scheduling problem here is a typical Traveling 

Salesman Problem (TSP). Hence a network model can be developed to formulate the QC 

scheduling problem. The feasible solutions of the QC scheduling problem can be 

represented by cycles on Figure 7.2, where the numbers on the arrows indicate the 

distance between each pair of nodes. 
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Figure 7.1 A Plan View of a Containership  
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Figure 7.2 A Sample Network of the QC Scheduling 

7.2.2 YC Load Scheduling Problem 

Once the QC load schedule is determined, YCs, which are assigned to the QC, need to 

load the containers from the stack area in the exact same order as specified by the QC load 

schedule.  As aforementioned, outbound containers are usually stored in a series of 

separated yard-bays in the container blocks, thus the YCs need to traverse the container 

blocks to fetch the required containers. The YC load scheduling problem here is to 

determine the sequence of yard-bays for each YC to visit and the number of containers to 

be picked up at each visiting yard-bay. In line with the practical operation, two YCs are 

used to serve one QC in this study. 

 The following example illustrates the YC load scheduling problem. The QC load schedule 

91 



Chapter 7 Simultaneous Load Scheduling of Quay Crane and Yard Crane in Port Container Terminals 

is given and shown in Table 7.1. Container type may refer to the destination or other 

attributes of the containers. In this study, to simplify the problem formulation, only one 

type of containers is assumed to be stored in one ship-bay. In the case where two or even 

more types of containers are stored in one ship-bay, the ship-bay can be split into several 

virtual ship-bays sharing the same position according to the number of container types. 

The container block map which shows the distribution of the required containers in the 

yard is shown in Table 7.2.  

Table 7.1 A Sample QC Load Schedule 
Sequence 1 2 3 4 5 6 

Ship-bay number 1 4 7 9 6 12 
Container type A C B A C B 

No. of containers 20 18 22 19 22 25 
 

 

Table 7.2 The Distribution of Containers in the Yard 
Yard-bay number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Container type A  B C  C A B C A  B A C B
No. of containers 8  15 10  15 8 12 8 13  11 10 7 9 

 

 

Two YCs, namely, YC 1 and YC 2 are assumed to work in the container block for the 

loading operation of the quay carne. According to the load schedule of the QC, the two 

YCs need to pick up 20 containers of Type A together first. One possible schedule of the 

two YCs could be YC 1: 1(6) – 7(5); YC 2: 10(4) – 13(5) (YC 1 first visits Yard-bay 1 and 

pick up 6 containers there then visits Yard-bay 7 and pick up 5 containers. Meanwhile YC 

2 will visit Yard-bay 10 and 13 and pick up 4 and 5 containers, respectively). Alternative 

schedules could be YC 1: 1(5) – 7(4); YC 2: 13(8) – 10(3) and so on. It should be noted 

that the YCs are of the same size and cannot pass each other. Therefore some of the 

schedules may not be feasible due to the non-interference constraint of the YCs. After all 

the 20 containers of Type A are picked up, the YCs then can start to work for sequence 2, 
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picking up 18 containers of Type C, and so on.  

It is obvious that different QC load schedules will lead to different YC schedules and 

subsequently lead to different loading times. Therefore it is meaningful to study the QC 

and the YC scheduling problems at the same time in order to synchronize the QC and YC 

operations. One important issue for achieving a simultaneous scheduling of QC and YC is 

to ensure that the containers picked up by the YCs are in the same order as the QC 

required, which is in fact the linkage between QC and YC operations.  

7.3 MATHEMATICAL PROGRAMMING FORMULATION 

To formulate the mathematical programming model for the proposed problem, following 

assumptions are first introduced. 

i.   Once the QC starts to work at a ship-bay, it will finish loading all the containers for the 

ship-bay before it moves to other ship-bays. This implies that the QC will work at one 

ship-bay exactly one time. 

ii. There is only one type of container stacked in one yard-bay, which is the common 

practice in allocating space in the stack area of container terminals. 

iii. The time required for an YC to load a container is assumed to be the same for all the 

containers despite the exact storage positions of individual containers.  

iv. The transportation time of containers from the YCs to the QC is assumed to be the 

same as the average transportation time. 

If the detailed transportation process of containers is considered, the problem will become 

much more complicated. Therefore as a preliminary research on the simultaneous 
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scheduling of QC and YC, this study will mainly focus on synchronizing the loading 

sequence of QC and YC.  

 

The upper bound for the total loading time of the optimal YC scheduling is also assumed 

to be known and this upper bound is partitioned into T time units. One time unit is defined 

as the time required for an YC traversing the distance of one yard-bay. The time required 

for a QC to traverse the distance of one ship-bay is also assumed to one time unit. The 

loading time of one container, HT , is taken to be a multiple of this time unit. The K YCs 

are numbered from 1 to K from left to right according to their initial location at Period 0. 

Since the YCs are of same size, so they cannot pass each other which implies that YC k 

can only move in the range limited by the locations of YC k-1 and k+1.  

 

To formulate the problem, a “sub-tour” is defined as a sequence of containers that needs to 

be picked up together by the YCs, which is according to the load schedule of QC. For 

example, the containers to be loaded by the QC to ship-bay i is defined as Sub-tour i. The 

following notations are used to formulate the problem. 

,

1   if the QC loads containers at Ship-bay  immmediately after loading container
        at Ship-bay 

0   otherwise   (a decision variable)
i j

j
W i

⎧
⎪= ⎨
⎪
⎩

 

, , ,

1   if YC  finishes loading one container for Sub-tour  at Yard-bay  at time 
0   otherwise   (a decision variable)i l k t

k i
X

⎧
= ⎨
⎩

l t

t

 

, ,

1   if YC  is at Yard-bay  at time 
   

0   otherwise   (a decision variable)l k t

k l
Y

⎧
= ⎨
⎩

 

           the set of ship-bays where the QC needs to work atΩ  
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,         the distance between Ship-bay  and Ship-bay i jD i j  

          the number of containers need to be loaded for Sub-tour  iN i  

          the number of containers stacked at Yard-bay  before the loading process startjC j  

B (i)       the set of yard-bays where the containers required by Sub-tour i are located 

            the number of sub-tours for the whole loading processS  

          the set of sub-toursΨ   

         the initial position of the QCQCI  

           the initial position of YC kI k       

           the final position of YC kF k  

1            the weight of the travel time of the QCα  

2            the weight of the loading time of the YCsα  

            auxiliary variableF  

The objective function is to minimize the summation of the weighted QC loading time and 

YC loading time. The QC loading time can be separated into two parts: (1) the handling 

time for the QC to load containers, and (2) the travel time for the QC to traverse along the 

track. Since the total number of containers to be loaded is known, the handling time of the 

QC becomes a constant, which makes the QC loading time only depending on the travel 

time. Therefore only the QC travel time needs to be considered. The objective function 

then can be represented by the following equation, in which the first term represents the 

weighted QC travel time and the second term represents the weighted YC loading time. 

Minimize 1 , ,
,

i j i j
i j

D W F2α α
∈Ω ∈Ω

+∑                                                                                      (7.1) 

Subject to 
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, ,1 1   1, 2 ,
kI kY k= = L                                                                                  (7.20) 

, ,1 1   1, 2 ,
kF kY k= = L                                                                                                   (7.21) 

, where M is a big positive number. 

 

Constraints (7.2) to (7.6) are the flow conservation constraints for the QC movement. A 

feasible solution of the QC is represented by a cycle on the corresponding network: 

Constraints (7.2) are the outflow constraints at the initial node. Constraints (7.3) are the 

inflow constraints at the final node. Constraints (7.4) and (7.5) are the inflow and outflow 

constraints for the other nodes respectively. Constraints (7.6) are to ensure the 

connectivity of the solutions, which eliminate the isolated cycles from the solution set. 

Constraints (7.7) state the definition of YC loading time, which is actually the makespan 

of the YC loading process. Constraints (7.8) and (7.9) ensure that the containers loaded by 

the YCs are in the same order as the QC required. Constraints (7.10) ensure the number of 
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containers picked up the YCs during the whole loading process at one yard-bay equals to 

the initial number of containers stacked at that yard-bay. Constraints (7.11) ensure the 

number of containers picked up the YCs during one sub-tour equals to the number which 

is required by the YC load schedule. Constraints (7.12) ensure an YC can at most finish 

loading one container for one period. Constraints (7.13) ensure that an YC cannot finish 

any loading jobs during the time interval 1Ht T− −  to t-1 if it completes one loading job at 

period t. Constraints (7.14) ensure during handling one container the YC will stay at the 

container location throughout the operation. Constraints (7.15) ensure the movement of 

the YCs is free of inter-YC interference. Constraints (7.16) state that one YC can only be 

at one yard-bay during one period. Constraints (7.17) state that only one YC can be at one 

yard-bay in each period. Constraints (7.18) and (7.19) ensure that the YCs can at most 

move one yard-bay during one period. Constraints (7.20) and (7.21) state the initial and 

final positions of the K YCs.    

7.4 SOLUTION TECHNIQUES 

Since the simple YC scheduling problem has been proven to be NP-complete. It is 

needless to say that the more complicated simultaneous QC and YC scheduling problem is 

also an NP-Complete problem, which makes exact algorithm impractical in solving the 

large-scale problems. Therefore the genetic algorithm is first adopted to solve the 

proposed problem. A problem-oriented QC and YC scheduling heuristic is also developed 

for the problem solution. For the sake of brevity, a system of two YCs is used to illustrate 

these heuristic approaches. 
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7.4.1 A Genetic Algorithm  

Genetic algorithm (GA) is the most commonly used meta-heuristic algorithm for solving 

intractable optimization problem. The solution representation, fitness evaluation, 

crossover operator and mutation operator of the GA are illustrated as follows. 

7.4.1.1 Solution representation 

To implement the GA algorithm, a method of encoding the feasible solutions is first 

introduced. The feasible solutions of the problem are represented by strings of integer 

numbers in this study. Each string consists of three sections. The first section is the load 

schedule of the QC and the last two sections are the corresponding load schedules of YC 

1 and YC 2, respectively. Figure 7.3 is a sample of the first section of a solution string, 

which indicates the QC will work at ship-bays in the sequence of 1→4→7→9→6→12. 

To satisfy the load schedule of the QC, the YCs need to load sub-tours in the same order. 

Figures 7.4 and 7.5 show parts of the second and third sections, respectively. Each 

section can be further divided into several segments according to the number of sub-tours. 

The shaded integers in one segment indicate the visiting sequence of yard-bays of an YC 

and the followed integers indicate the number of containers to be loaded by the YCs at 

these yard-bays. For example, for Sub-tour 1, YC 1 will visit yard-bay 1→7 and load 6 

and 5 containers at each visit accordingly. Meanwhile YC 2 will visit yard-bay 10→13 

and load 4 and 5 containers respectively.  

1 4 7 9 6 12 
 

Figure 7.3 First Section of a Sample Solution String 
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1 7 6 5 6 4 7 3 … 

Sub-tour 4 Sub-tour 1 

 

Figure 7.4 Parts of the Second Section of a Sample Solution String 
 

 

10 13 4 5 14 9 5 3 … 

Sub-tour 4 Sub-tour 1 

 

Figure 7.5 Parts of the Third Section of a Sample Solution String 

7.4.1.2 Fitness evaluation  

Objective function (1) is used to evaluate the fitness function of the solutions. All the 

solution strings of a population are sorted from small to large according to their objective 

function values, and then the reciprocals of their ranks (r) are used to calculate the 

relative fitness value of the strings with equation (7.21).  

1
1

i
i

i
i

rr
r

′=
∑

                                                                                                                     (7.21) 

7.4.1.3 Crossover Operator 

The position-based crossover operator is adopted in this study. The crossover operator is 

first executed on the first section of a solution string. The procedure of the operation is as 

following: 

Step 1: Choose two cut points randomly.  

Step 2: Copy the integers of Parent 1 between these two points to Offspring 1 according to 
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their initial position in Parent 1.  

Step 3: Delete the integers which have been copied in Step 2 from Parent 2. 

Step 4: Place the rest integers of Parent 2 to the empty positions of Offspring 1 according 

to their initial sequence in Parent 2.  

 

The following Figure 7.6 provides an example of the aforementioned crossover process. 

Once the first section of Offspring 1 is generated, the second and third sections of the 

offspring are generated by reordering the segments of the second and third sections of 

Parent 1 according to the first section of the offspring. Offspring 2 can be generated in the 

same way by switching the roll of Parent 1 and Parent 2. 

 

1 4 7 9 6 12 

12 4 7 9 1 6 

4 7 12 1 6 9 

Parent 1 

Offspring 1 

Parent 2 

 
 
 
 
 
 
 
 

Figure 7.6 An Illustration of the Crossover Operation 

7.4.1.4 Mutation Operator 

The procedure of the mutation operator is presented in the following: 

Step 1: A cut point is randomly chosen in the first section. 

Step 2: The integers of the first section after the cut point is reordered.  

Step 3: The segments of the second and third section are rearranged according to the 

updated first section.   
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7.4.1.5 Selection Method 

A selection method states how to choose new population from original population and 

offspring. The selection approach adopted here is based on enlarged sampling space. 

Figure 7.7 illustrates the procedure of this selection operation 

 

Figure 7.7 An Illustrates of the Selection Method 

7.4.2 QC and YC Scheduling Heuristic  

Besides the aforementioned genetic algorithm, a problem-oriented QC and YC 

scheduling heuristic (QYSH) is also developed to solve the proposed problem. The QC 

scheduling of QYSH is obtained by enumerating all the possible QC schedules. Based on 

each generated QC schedule, the scheduling of YC is then conducted using the following 

rules. 

Rule 1 

Both the two YCs will choose the containers in their nearest yard-bays, which satisfy 

the loading sequence requirement. 

Rule 2 
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If the same yard-bay is identified to be the closest yard-bay to both YC 1 and YC 2 

and it is also the last yard-bay of containers for the current sub-tour, it will be 

assigned to the closer YC. In the case where two YCs are of equal distance to the 

yard-bay, the yard-bay will be assigned to one YC arbitrarily.  

Rule 3 

If the same yard-bay is identified to be the closest yard-bay to both YC 1 and YC 2 

and it is not the last yard-bay of containers for the current sub-tour, following figure 

7.8 illustrates the nine scenarios that can occur and the scheduling rules of the YCs in 

these scenarios.  

 

 

 
Figure 7.8 An Illustration of the Rules to Choose Yard-bays 

 
In the above figure, A1 and B1 are the closest and second closest yard-bays to YC 1 

respectively. A2 and B2 are the closest and second closest yard-bays to YC 2 

respectively. The arrows indicate which yard-bays the YCs will choose. E.g. in (a), 
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YC 1 will choose yard-bay B1 (B2) and YC 2 will choose A1 (A2). 

Rule 4 

In the case where there are two yard-bays of containers are equal distant to one YC, 

the YC will choose the yard-bay which is further from the other YC. 

Rule 5 

If there is no available container for an YC, it will stay still. 

7.5 NUMERICAL EXPERIMENTS 

Numerical experiments are conducted to evaluate the performance of the two proposed 

solution methods. The relationship between the weights ( 1α  and 2α ) and their 

corresponding QC travel time and YC loading time are also investigated through the 

experiments. 

7.5.1 Experiment Design 

Ten sample problems are generated as follows: 

1) Generate the ship plan: 

a) Randomly choose the total number of containers to be loaded from 300 to 450.  

b) For each sample problem, the containers are randomly classified into five types, 

namely A, B, C, D and E. 

c) Each type is then further divided into 2 or 3 groups. 

d) Each group is randomly assigned to one ship-bay. 
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2) Allocate the containers in the stack area: Containers are randomly allocated in the 

container block, which consists of 45 yard-bays subject to the constraint that only one 

type of container can be stacked in one yard-bay.    

7.5.2 Sensitivity Analysis of the Parameters of the GA Algorithm 

It is well known that the performance of GA is sensitive to the parameters used. Thus 

computer codes programmed by C++ language are executed to find the best combination 

of GA parameters. It was found through a primary test that 200 is a proper value of 

population size and 500 generations are sufficient to make the average objective value 

converge to a stabilized value. The tested values of the crossover rate ( cp ) were 0.2, 0.4, 

0.6 and 0.8. The tested values of mutation rate ( mp ) were 0.1, 0.3, 0.5 and 0.7, subject to 

the constraint that the sum of cp  and mp  is not greater than one. In the case that the sum 

of cp  and mp  is less than one, new solution strings will be generated to fill up the 

vacancies in the next generation. 

 

It is noted that the results of the GA algorithm were sensitive to the random seed 

generated. To avoid this bias, both the average objective function values and the best 

objective function values were recorded over ten runs in order to find the best 

combination of parameters. Tables 7.3 and 7.4 illustrate the average objective function 

values and the best objective function values obtained by different combinations of  cp  

and  mp . According to the obtained results, cp = 0.4 and mp = 0.5 was chosen as the best 

performing combination of parameters. Figure 7.9 shows the trends of objective function 
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value, QC travel time and YC loading time in one experiment using the selected 

parameters. All these values converged and stabilized within 500 iterations.   

 
                                                             
Table 7.3 The Average Objective Function Value for Different Values of Parameters 

Pc    
Pm 0.2 0.4 0.6 0.8 

0.1 1928.1 1937 1928.4 1930.1 
0.3 1932.7 1930.9 1928.9  
0.5 1925.3 1921.8   
0.7 1928.3    

                     ( 1 2 1α α= = ) 
                                                           

Table 7.4 The Best Objective Function Value for Different Values of Parameters 
Pc    

Pm 0.2 0.4 0.6 0.8 

0.1 1907 1919 1907 1922 
0.3 1898 1909 1916  
0.5 1920 1890   
0.7 1919    

  ( 1 2 1α α= = ) 
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7.5.3 Performance Comparison between GA and QYSH  

Since cp = 0.4 and mp = 0.5 were chosen as the best performing combination of GA 

parameters, this set of parameters is also used to solve other generated test problems. The 

aforementioned QYSH method is also coded into computer programs and executed to 

obtain the problem solution. The comparison of the results obtained by these two 

methods is shown in figure 7.10. The results show that the QYSH method consistently 

outperforms the GA. On average the objective function value obtained by QYSH is 

14.9% lower than that obtained by GA. This suggests that the designed QYSH method 

could be a promising approach to conduct the simultaneous QC and YC scheduling. 

( 1 2 1α α= = ) 
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Figure 7.10 Comparison between QYSH and GA 

7.5.4 QC travel time and YC loading time  

Table 7.5 is the YC loading time and the QC travel time obtained by QYSH with 

107 



Chapter 7 Simultaneous Load Scheduling of Quay Crane and Yard Crane in Port Container Terminals 

different values of the weights, 1α  and 2α , which actually represent the importance of 

the QC operation and YC operation, respectively. The results showed that, consistent 

with intuition, in general the QC travel time decreased and the YC loading time increased 

with higher value of 1α while the QC travel time increased and YC loading time 

decreased with higher value of 2α . It was also noted that in some test problems, despite 

the changes of the weight, the QC travel time and YC loading time remain consistent. It 

is possible to speculate that this is due to the inherent characteristics of input information 

of the problems.  

 
Table 7.5 Relationship between the weights ( 1α  and 2α ) and QC travel time and YC 

loading time 
(YC: time unit; QC: hold) 

        Problem 
  

1α    
2α  

1 2 3 4 5 6 7 8 9 10 

QC 24 28 19 28 29 17 18 29 20 25 10 1 YC 1720 1540 1692 1881 1741 1600 1712 1745 1810 1620 
QC 39 38 37 57 29 42 34 40 47 36 1 1 YC 1678 1509 1660 1775 1741 1501 1659 1698 1770 1594 
QC 46 60 62 104 71 48 52 100 47 67 1 10 YC 1675 1504 1649 1746 1714 1499 1641 1683 1770 1547 

 
 

7.6 SUMMARY 

The operations of QC and YC are two key components of the container terminal 

operations. Although the two operations are closely related to each other, to the authors’ 

best knowledge, these two problems have not been simultaneously considered in one 

model in the literature. As the first study on simultaneous scheduling of QC and YC, this 
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chapter has developed an integer programming model to formulate the combined 

scheduling problem and also proposed the GA and the QYSH methods to solve the 

problem. The results obtained through numerical experiments showed that the problem-

oriented QYSH method significantly outperforms the GA and could be applied in real 

operation to conduct simultaneous QC and YC scheduling. The influence of the weights 

on the corresponding QC travel time and YC loading time was also investigated. The 

results showed that a higher weight will generally leads to a shorter operation time.  
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CHAPTER 8 

CONCLUSIONS 

8.1 CONCLUSIONS 

The goal of this thesis was to provide efficient strategies for operating multiple YC 

systems in port container terminals. First a simplified MYCS problem, TYCS problem, 

was examined, followed by a study on the typical MYCS problem. Subsequently, 

problems derived from the MYCS problem, MYCS-B problem and DRS problem, were 

investigated. Finally a simultaneous scheduling problem of QC and YC was studied. All 

these problems are formulated by mathematical models and successively solved by 

designed solution techniques.  

 

In the first part of the thesis, the proposed TYCS problem was studied. It is the first 

attempt in the literature to investigate the scheduling problem of multiple YC system 

under container loading sequence constraints. The problem was formulated by a 

mathematical model. A SA algorithm was developed to solve the proposed problem. A 

series of numerical experiments were designed to test the performance of the SA algorithm. 

To evaluate the algorithm, the computational results obtained from the algorithm are 

compared against the estimated lower bounds. The result showed that the proposed SA 

algorithm is an efficient approach in solving the TYCS problem.    

 

In the second part of the thesis, the typical MYCS problem was formulated by an integer 
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programming model. It is a innovative work on the MYCS problem. Both the precedence 

constraints and the interference constraints are considered in the problem formulation. 

Three different heuristic algorithms were developed to solve the proposed problem. The 

results showed that all the algorithms performed well in solving small scale problems and 

the greedy heuristic algorithm consistently outperforms the other two algorithms in 

solving large scale problems. The reason why meta-heuristic algorithms failed in 

achieving better solutions compared to a simple greedy heuristic algorithm probably lies 

in the complexity of the problem itself. Due to the complicated non-interference 

constraints and loading sequence requirement constraints, the capabilities of the meta-

heuristics to generate feasible solutions are significantly restricted. Therefore the solution 

space that the algorithms can explore is limited and as a result the quality of the solution 

of the solutions is reduced.  

 

The third part of the thesis treated the MYCS-B problem. It is also an original work on 

the scheduling problem of multiple YCs in container terminals with buffer areas. The 

problem was also formulated as an integer programming model. A similar greedy 

heuristic algorithm was applied to the problem. The results showed that the multiple YC 

system in the terminals with buffer areas outperformed that in the terminal without buffer 

areas and the idle time of the YCs was significantly reduced by using buffer areas. This is 

because adding buffer areas in a container terminal increases the degree of freedom of 

YC operations by allowing them to work ahead of the QC load schedule. This prevents 

an YC from idling in the case that no containers for the current sub-tour are available in 

its working range.   
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The fourth part of the thesis investigated the DRS problem. DRMG system is a new 

container handling technology which is able to avoid the inter-crane interference problem 

in YC operations. Although currently the DRMG systems are only used in the AGV 

based container terminals, it is promising to deploy this technology in the yard truck 

based terminals in the near future. Therefore a mathematical model is developed to 

formulate the scheduling problem of DRMG system in yard truck based terminals. An 

operational strategy of the DRMG system was also proposed and it was shown to 

outperform the SA algorithm through computational experiments.  

 

The last part of the thesis focused on the simultaneous scheduling problem of QC and 

YC. This is a novel study on the combined QC scheduling and YC scheduling problem. 

The problem was also formulated by an integer programming model and solved by a 

genetic algorithm. The results showed that, consistent with intuition, in general the YC 

operation time increased and the QC travel distance decreased with lower weight of YC 

operation while the YC operation time decreased and the QC travel distance increased 

with lower weight of QC operation.  

 

It should be noted that the multiple YC scheduling were restricted to the loading process 

in import-export terminals only in this study. For the discharging process, it is the 

common practice that an inbound container is usually stacked at a designated empty space 

next to the inbound container which arrives before it. Therefore the YC operations are 

performed quickly and relatively simply. However for the loading process, since the 

outbound containers are usually scattered in the container blocks in the stack area and the 

containers picked up by YCs must satisfy the job sequences of the QCs, the scheduling 
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problem of YCs, therefore, becomes much more complicated and needs intensive study. 

Hence only the load scheduling of YCs are studied in this thesis. 

8.2 RESEARCH CONTRIBUTIONS 

The main contributions of this study can be described as follows: 

i. A comprehensive literature review on the scheduling of YC has been made and the 

details of the operations in port container terminals have been documented. This can 

serve as a stepping-stone for future research in the field of container terminals 

operations. 

 

ii. The modeling approach used in this thesis can shed light on the mathematical 

formulation of other problems which share similar characteristic with the YC 

scheduling problem, especially the method proposed to formulate the interference and 

precedence constraints. 

 

iii. In this thesis, several solution techniques are developed to solve the YC scheduling 

problem. The results of the study on MYCS problem indicates that compared to the 

widely used meta-heuristic algorithms, the relatively simple greedy heuristics 

algorithm is a more effective solution technique for solving the scheduling problem of 

the multiple YC system. Therefore it can be adopted by the container terminal 

operators to improve the efficiency of their operations. 
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iv. The proposed solution methods have been coded into computer programs. These 

source codes of the algorithms can be adopted as the core component of the future 

software development. 

 

v. The influence of using buffer area in container terminals has also been examined in the 

study. By allocating some buffer areas inside the terminal, the productivity of YCs 

could be enhanced and the loading time at the stack side can be shortened at the 

expense of using more land space and more yard trucks. This result can be used by the 

terminal operators as a reference when deciding whether to use buffer areas in their 

terminals. 

 

vi. The deployment strategy of the DRMG system in yard truck based container terminals 

was also investigated. The use of DRMG system in traditional yard truck based 

container terminals can eliminate the interference of YCs. The operational strategy of 

the DRMG system proposed outperformed the SA algorithm through numerical 

experiments. The result of this research can help to guide the future deployment of 

DRMGs in yard truck based container terminals. 

 

vii. A simultaneous scheduling of QC and YC was also successfully accomplished in the 

study. Being the first study of its kind, this study can be used to improve the overall 

performance of QCs and YCs. It can also work as one component of the wholly 

integrated container terminal operating system which is to be developed in the future 

research. 
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8.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

i. In the proposed multiple YC scheduling problem, all the YCs are assumed to work for 

a single QC. It will be interesting to study the more complicated situation where 

multiple YCs are used to serve multiple QCs. The result of such a study could help to 

further increase the efficiency of both QCs and YCs.  

 

ii. In this thesis, the containers in the same slot of one container block are treated equally 

despite their exact positions in the slot. A more detailed study which takes into account 

the exact location of containers in determining the YC schedule could help to 

ameliorate the results obtained from the current research. 

 

iii. An integrated container terminal operation system which takes into account all the 

import aspects of the terminal operations will help the operators to eventually achieve 

a state-of-the-art operation. Two important components of the terminal operation, QC 

scheduling and YC scheduling have been studied simultaneously in the thesis. Future 

research can integrate the other components such as berth allocation and yard storage 

with the existing work presented in the thesis.  
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