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Summary

The thesis is concerned with finding the limiting spectral distributions of three

classes of large dimensional random matrices.

The first class of matrices we considered are large dimensional Wigner type

random matrices taking the form An = (1/
√

n)WnTn, where Wn is a classical

Wigner matrix and Tn is a nonnegative definite matrix. By using the Stieltjes

transform method, we prove the convergence of the empirical spectral distributions

of the Wigner type matrices, derive some analytical properties possessed by the

limiting spectral distribution, and present calculation of the density function when

the matrix Tn has some given forms. We also present a moment method to prove

the existence of the limiting spectral distribution with explicit form of the limiting

moments.

The second class of matrices we considered is a general form of large dimensional

sample covariance matrices having the form Bn = (1/N)T
1/2
2n XnT1nX∗

nT
1/2
2n , where

T2n is nonnegative definite and T1n is Hermitian. Existing work on this class of

matrices is confined to the special cases where T1n is an identity matrix or T1n and

T2n are both diagonal matrices. The class of matrices have important applications

in many fields and so systematic investigations of their spectral properties are

valuable. In view of the important role played by the Stieltjes transform method

in the spectral analysis of random matrices, we investigated a way to manipulate

the Stieltjes transform method on the class of general sample covariance matrices so
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that systematic investigations of the spectral properties of this class of matrices can

be carried out with the aid of this powerful method. In the thesis, we accomplished

in proving the empirical spectral distributions of the general sample covariance

matrices converge weakly to a non-random limiting spectral distribution whose

Stieltjes transform is uniquely determined by a system of equations.

The third class of matrices we considered are large dimensional sparse random

matrices taking the form of the Hadamard products of a normalized sample covari-

ance matrix and a sparsing matrix. We prove the empirical spectral distributions

of this class of matrices converge weakly to the semicircle law. This result is con-

sistent with other findings in the field. Our main achievement is, by imposing

suitable conditions on the moments of the entries in the sparsing matrix instead

of letting them be just independent and identically distributed Bernoulli trials,

we present a new sparseness scheme of the matrices so that the sparsing factors

may not be of zero-one form nor homogeneous. We establish our proof by means

of the moment method. Based on our finding, we conjecture the result can be

generalized to consider the Hadamard products of a normalized sample covariance

matrices with some statistical correlation assumed and a sparsing matrix.

In summary, this thesis presents a collection of theoretical results which pro-

vide fundamental solutions to finding the limiting spectral distribution for three

important classes of random matrices and furnish elementary material for future

development of the spectral analysis of these three classes of matrices.
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Chapter 1

Introduction

The present thesis is devoted to limit theorems on eigenvalues of large dimen-

sional random matrices. The subject is widely known as random matrix theory,

which is concerned with statistical analysis of asymptotic properties of eigenvalues

and eigenvectors for high-dimensional random matrices. In the recent decades,

random matrix theory has attracted considerable interest in a variety of areas,

due to the high emergence rate of high-dimensional data in modern technological

developments and the rich mathematical essence contained in the theory.

Literature Review on Random Matrix Theory

The very beginning of random matrix theory dates back to the momentous work

of Wishart in 1928 (Wishart (1928)), which motivated the formation of multi-

variate statistical analysis. Wishart derived, for independent and identically dis-

tributed n-dimensional normal (or, Gaussian) random vectors x1, x2, · · · , xN , the

1
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precise expression of the joint probability density function of the random matrix

S = (1/N)
∑N

i=1 xix
∗
i . For the Wishart matrix, the joint probability density func-

tion of its ordered and unordered strictly positive eigenvalues as well as the density

function of its kth largest eigenvalue for any integer k were later found (Fisher

(1939), Hsu (1939), Girshick (1939), Roy (1939), Khatri (1964,1969) and Gao and

Smith (2000)). These results play a significant role in not only multivariate sta-

tistical analysis but also in applied areas like information theory, communications

engineering and many branches of physics.

Spectral analysis of large dimensional random matrices was initiated in the

area of nucleus physics by Wigner in the 1950’s. At that time, theoretical analysis

of low-lying excited states of complex nuclei achieved great success, but the same

analytical methods were not applicable for analyzing the highly excited states.

The reason was because the base of the methods, level assignments, cannot be

carried forward to the case when the order of magnitude of the levels becomes very

high. Indeed, in view of the considerable complexity of the systems, a reasonable

alternative way is to use statistical mechanics. In the searching for a suitable

statistical mechanics, Wigner initially considered statistical distributions for energy

levels of complex nuclei (Wigner (1951)) and later produced the idea of using

large random matrices to model statistical properties of the energy levels (Wigner

(1955)). In fact, system Hamiltonians can be reasonably represented by Hermitian

matrices and so naturally it was expected energy levels of complex nuclei, viewed as

a complex quantum system, can be described by eigenvalues of the matrices. There

is the underlying philosophy, explained clearly by Dyson in his famous work (Dyson
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(1962)) and well accepted in the field, that when physical systems are sufficiently

complex, their detailed structure can be renounced in which case statistical theory

describing their generic behavior can be used. In case of the complex nuclei, a

renouncement of their detailed structure means admitting, provided that there

is a large number of particles in a complex nucleus interacting with each other

according to unknown laws, all possible laws of interaction are equally probable.

Therefore the prescribed Hermitian matrices should be, in statistical alphabet, the

sample space of a Hermitian random matrix.

The random matrix Wigner investigated is n× n real symmetric matrix Wn =

[wij] whose entries on and above the diagonal are independent Gaussian random

variables with mean 0 and variance σ2 for non-diagonal entries and 2σ2 for the

diagonal ones. In physics, it is referred to as the Gaussian ensemble, in which case

its sample space is nominated. Note that since complex nuclei are very compli-

cated, the dimension n of the matrix Wn is very large. So in using Wn, or any

other random matrix suitably defined, to model complex nuclei, limiting statisti-

cal behavior as n → ∞ of the eigenvalues of Wn are considered appropriate for

describing generic properties of the energy levels of the nuclei. For the matrix Wn,

Wigner proved as n → ∞ the expected empirical spectral distribution (ESD) of

Wn/
√

n converges weakly to the semicircle law whose density function is given by

d

dx
Fsc,σ2(x) =





1
2πσ2

√
4σ2 − x2, |x| ≤ 2σ,

0, otherwise,

where for any n×n matrix An having real eigenvalues only, the empirical spectral

distribution (ESD), denoted by FAn(x), of An refers to the empirical distribution
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of its eigenvalues, i.e.

FAn(x) =
1

n

n∑

i=1

I(λi(An)≤x),

with λi(An), i = 1, · · · , n denoting the eigenvalues of An. The semicircle law

Fsc,σ2(x) is commonly referred to as the limiting spectral distribution (LSD) of

Wn. This convention of course applies to any prescribed matrix An.

Note that the LSDs describe distributions of the eigenvalues of random matrices

over their whole spectrum domains and so are said in the literature of physics to be

global spectral distributions of eigenvalues of random matrices. When a random

matrix is a full characterization of a real system, such as the sample covariance

matrices for channels in wireless communications, global spectral distribution con-

tains a great deal of information for understanding statistical properties of the

system. However, in physics, due to limitations imposed by the complexity of the

problems, random matrices can only be viewed as gross mutilations of real systems

(Dyson (1962) p.141). As a consequence, the so-called local spectral statistics pro-

vide more reliable results for physical problems. Classical problems of random

matrix theory in physics concern partition function of the eigenvalues, distribution

function of spacing between nearest-neighbor eigenvalues and correlation function

of k eigenvalues for any positive integer k. For Wigner’s Gaussian ensemble, these

problems as well as the joint density function of the eigenvalues were settled in

Thomas and Porter (1956) and Gurevich and Pevsner (1957), Rosenzweig and

Porter (1960), Mehta (1960), Mehta and Gaudin (1960) and Guadin (1961).

The achievement of Wigner and his colleagues convinced theoretical physicists
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that although a statistical mechanics of random matrices is mathematically de-

manding, it is indeed a solvable model for theoretical analysis of nucleus physics.

However, except the finding that the semicircle law does not show any similarity

to observed spectra of a real nucleus (Wigner (1967)), it was also noticed that the

definition of Wigner’s Gaussian ensemble has some arbitrary segment which is not

expected to be present in a real physical system (Rosenzweig and Porter (1960),

Dyson (1962), Bronk (1964)). Motivated by this weakness of Gaussian ensemble

and also the success achieved on random matrix based statistical mechanics, Dyson

contributed his very influential work in 1962 (Dyson(1962)).

Besides clarifying the underlying philosophy of random matrix theory in physics,

Dyson introduced three new ensembles of matrices which turned out to be the most

important component of the theory today. They are well known as the Gaussian

orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE) and the Gaus-

sian symplectic ensemble (GSE). Although Dyson started from the same point as

Wigner, that is, an ensemble of matrices represent an ensemble of systems, the

connection to the systems are not the same. Since what is needed is that the

eigenvalues of the matrices are distributed equally as the energy levels, Dyson

straightforwardly assumed that, for the GOE case for example, there is an N ×N

unitary matrix S with eigenvalues [exp(iθj)], j = 1, · · · , N , distributed around

the unit circle, with which his basic statistical hypothesis is just “the behavior of

n consecutive levels of an actual system, where n small compared with the total

number of levels, is statistically equivalent to the behavior in the ensemble E1 of

n consecutive angles θj on the unit circle, where n is small compared with N”
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(Dyson (1962) p.141). Here E1 just stands for the GOE. The connection of the

matrix S to the system, usually represented by its Hamiltonian, was left vague,

but an important point is the matrix type represents the system symmetries. For

example, the GOE represents a system invariance property under space rotations

or under time reversal and even spin. The GUE and GSE then respectively rep-

resent systems having odd spin, invariance property under time reversal, but no

rotational symmetry, and systems without invariance property under time reversal.

Also, for each of the three ensembles, Dyson calculated the joint density function

of the eigenvalues, the partition function, the level spacing distribution and the

level correlation function.

Nowadays, there are totally eleven different ensembles of matrices in the ran-

dom matrix theory of physics. Their definitions all obey the principle Dyson has

adopted, that is, matrix type should be consistent with the underlying physical

symmetries. For example, the chiral Gaussian orthogonal ensemble, the chiral

Gaussian unitary ensemble and the chiral Gaussian symplectic ensemble were

defined in accordance with the so-called chiral symmetry and its spontaneous

breaking. These symmetries characterize the spectrum of the quantum chromo-

dynamics Dirac operator, while the chiral ensembles are representing this oper-

ator (Verbaarschot and Wetting (2000)). The other five ensembles are the four

Oppermann-Altland-Zirnbaner ensembles for description of disordered supercon-

ductors (Oppermann (1990) and Altland and Zirnbauer (1996)) and the Ginibre

ensemble for the distribution of poles of S-matrices (Ginibre (1965)). Except for

Ginibre’s ensemble, all the other ten ensembles are of Hermitian nature. In fact,
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it was found in Zirnbauer(1996) that there is a one to one correspondence between

the ten Hermitian ensembles and the large families of Cartan’s symmetric spaces.

Random matrix theory is very fruitful in physics. As a solvable and reliable

model for theoretical analysis, it was deliberately used to solve a diversity of phys-

ical problems. Besides the description of energy levels of complex nuclei, there are

also its applications in the description of the Euclidean Dirac operator in QCD, the

description of universal conductance fluctuations, or more generally, in theoretical

nucleus physics, in low-lying energy theory of QCD, in the theory of disordered con-

ductance, in solid state physics theory, in mesoscopic physics theory, in quantum

chaos and in quantum gravity. Many powerful mathematical tools were exploited

and invented to deal with various kinds of matrix integrations. Among others,

it is worthy to mention the orthogonal polynomial method, the Riemann-Hilbert

method and the supersymmetric method. By means of them the classical problems

such as those mentioned for the Gaussian ensemble of Wigner were all systemati-

cally discovered and rediscovered for the various ensembles of matrices. A recent

significant result is on the distribution of the largest eigenvalue of the GOE, GUE

and GSE matrices (Tracy and Widom (1993,1994,1996)). A good reference list can

be found in the recent review work Forrester, Snaith and Verbaarschot (2003).

These results have surprisingly far-reaching implications and applications in ar-

eas other than physics. Encouraging findings have appeared, in an increasing num-

ber, in financial correlations (Laloux et al [51], Plerou et al (2001)), portfolio opti-

mization (Pafka and Kondor (2004), Potters, Bouchaud and Laloux (2005)), data

analysis (Achlioptas [1]) and RNA folding (Vernizzi and Orland (2005), Barash
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(2004)). And the most fascinating news should be the finding in number theory.

In this area, one of the most important unsolved problem is the Riemann hypoth-

esis, which says that all the non-trivial zeros of the Riemann zeta function lie on

a critical line in the complex plain z = 1/2 + iv. Now it has been shown, par-

tially but with quite a deal of evidence, these zeros demonstrate the same spectral

properties of the eigenvalues of the GUE matrices. Up to now, mathematically rig-

orous proof has been established for connecting the two-point correlation function

of the zeros of zeta functions of varieties over finite fields and the eigenvalues of the

GUE matrices (Sanak and Katz (1998)). Further advances are still looked forward

to. Nonetheless, great attention has been drawn from mathematicians in number

theory on employing random matrix theory to predict important quantities closely

related to the Riemann hypothesis (See references [52]-[61] in Forrester et al (2003)

and more recent works summarized in [101] of the present thesis).

The result on the largest eigenvalue of the GOE, GUE and GSE matrices also

have profound consequences in many other areas. These so-called Tracy-Widom

laws are found to describe simultaneously, in combinatorics the limit laws for the

length of the longest increasing subsequence in a random permutation, in many

growth processes the fluctuations about their limiting shape, in random tilings the

fluctuations about the limiting circle of the boundary between the temperature

zone and the polar zone in an Aztec diamond tiling, in queuing theory, the limiting

distribution of the departure time, appropriately normalized, of a customer k from

the last queue n in a series of n single-server queues with unlimited waiting space

and a first-in first-out service rule, and in statistics the asymptotic distribution of
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the largest eigenvalue of the Wigner matrix and the largest singular value of the

sample covariance matrix under the assumptions in the literature of probability

for these matrices (Tracy and Widom (2002), Soshnikov (1999, 2002)).

From the above review, it can be seen that random matrix theory developed in

physics has achieved marvellous success. Two important factors contribute to this

great success. first, the Gaussian assumption put on those ensembles constructed

in physics play a significant role. The assumption provides for all those ensembles

explicit expression of the joint density function of their eigenvalues and so makes

possible the discussions of very deep and fine statistical properties, such as the

correlation function of eigenvalues, be developed through calculating various ma-

trix integrals. However, there is one virtue mostly valued by every area about the

random matrix theory, that is, the so-called universality. Generally speaking, this

virtue means results in the random matrix theory obtained in the limit sense do not

depend on the specific distributions of the matrix elements. Thus to claim those

results derived under the Gaussian assumption on their random matrix models be-

have with universality, physicists examine further the validity of the same results

with a change of the so-called potentials governing the trace in the power part of

the exponential in the joint density function of the various Gaussian ensembles.

Arguments on this aspect are usually said to be universality theorems. However,

one can see these type arguments are not enough for asserting real universality.

Furthermore, one of the most serious problems demonstrated by the universality

theorems is sometimes with different choices of the potential different limit laws

emerge up, as were shown in many cases. For example, when the limit law for
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the largest eigenvalue of the GUE matrices is examined on its universality, it was

proved by finely tuning the potential new universality laws, other than the Tracy-

Widom law for the GUE, were obtained (Deift et al. (1999)). Thus the notion

of universality needs some more refinement works in the random matrix theory

of physics, since the density functions of the matrices do show their effect and

unfortunately there is no complete understanding, for a particular physical model,

on how many different consequences can possibly be found by choosing different

potentials on the density function. This breaking phenomenon of universality is

also a reminder that, in applied areas, if the Gaussian assumption does not hold,

then more attention should be put on the universality arguments. However, due

to the lack of statistical meaning of the potential, in case that the universality

problem is inquired, it is also hard to test in a statistical way whether the data at

hand are generated from the random matrix model specified by the potential.

Secondly, in the success of random matrix theory of physics, the various ensem-

bles constructed in the field play an essential role. The very appreciable quality

of these ensembles is they are intimately rooted in the very foundation of mathe-

matics of symmetric spaces. This accounts for at least partly today’s remarkable

connection of random matrix theory in main branches of pure mathematics. In

fact, physical ensembles were originally constructed to represent the symmetry

properties of certain physical operators. For some, if not all, of them, the global

distribution of their eigenvalues is already known. For instance, the eigenvalues of

GOE are distributed on the unit circle while the eigenvalues of the Ginibre ensem-

ble are distributed on the unit disc. Only local spectral statistics are of interest
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in the literature of physics. This, in many situations, is in contrast with the ne-

cessities of other applied areas. In applied areas, very often the needed random

matrix models are straightforwardly posted by actual world problems. They are

roughly known by their general properties such as their matrix forms and the the

existence of certain moments of their elements, but not on the distribution of their

eigenvalues. Rather, the distributions of their eigenvalues, or more generally, the

statistical properties of global spectral statistics, are of central interest. In these

cases, the random matrix models in physics are lacking in this regard.

In conclusion, developments of random matrix theory have been impressively

successful in physics and the success has brought new insights into many mathe-

matical problems arising from various branches of mathematics. The main impetus

of this achievement seems due to various matrix integrations that have played the

role of bridges connecting together originally independent problems. The success of

random matrix theory of physics shows that random matrices can be very powerful

and versatile tools to deal with the nowadays more and more complicated scientific

problems. However, the two most important factors contributing to this success

also induced some limitations on applying the theory to other applied areas. The

first limitation is more essential since it lies in the theoretical foundation of the

theory. That is, the various ensembles in the theory directly constructed for solving

physical problems by investigating local spectral behavior are not consistent with

most practically needed random matrices which take on certain forms implicitly

or explicitly determined by actual world problems. The other limitation is that, in

most results in the theory, the Gaussian assumption is crucial and the universality
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arguments are not enough. This results that once the Gaussian assumption failed,

the breaking phenomenon of the universality theorems and the difficulty of testing

the universality family specified by a potential will also lead an application to false

results. The limitations indicate that in applications of random matrix theory,

more attention should be put on using correct random matrix models.

To have a representative random matrix model is crucial to any application

of random matrix theory in applied areas. In some cases, this needs constructing

random matrix models suitable for the problems at hand. Then the stimulating

principle in physics of reflecting certain invariant properties of real systems can

be helpful. In some other cases, however, as the random matrix model has been

determined by the actual problem, to make effective use of random matrix theory

will mean to resort to the random matrix theory developed in probability the-

ory. This is another important area where spectral analysis of large dimensional

random matrices has gotten significant achievements. A distinctive property of

the random matrix theory in probability is the random matrices are all studied

under very general assumptions which usually express themselves as conditions on

existence of certain moments of the matrix elements. This quality clearly repre-

sents the universality virtue which is expected from the random matrix theory.

Moreover, the source of the various random matrices studied in the literature of

probability are either from classical statistical methods or straightforwardly from

practical problems. Thus they have a clear understanding in either statistics or

other applied areas. This helps the wide applications of the theory in a diversity of

applied areas. Indeed, in every area where statistical methods are of use, the ran-
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dom matrix theory in probability can find applications. A simple example below

shows an effective application of random matrix theory in probability in wireless

communications.

In wireless communications, an effective theory on performance of wireless chan-

nels is most extensively built on the following channel model:

y = Hx + n,

where x is the K-dimensional input vector, y is the N -dimensional output vector,

n is the N -dimensional noise vector. The N ×K matrix H is the so-called chan-

nel matrix and is random. This channel model has applications in many different

areas of wireless communications. In different applications H has different inter-

pretations and takes on different assumptions. In the simplest case, H consists of

independent and identically distributed (i.i.d.) entries. This case happens with,

for example, a single-user narrow-band channel with K and N antennas at trans-

mitter and receiver respectively or direct-sequence code-division multiple-access

(CDMA) channel not subject to fading. In many other cases, the entries of H are

not i.i.d. any more.

The wide use of random matrix theory in wireless communications is due to

the significant role played in the field by the singular values of the random chan-

nel matrix H, or equivalently, the eigenvalues of the random matrix H∗H. In

fact, fundamental performance measures like channel capacity and minimum mean-

square-error (MMSE) can be expressed as functionals of the eigenvalues of H∗H.

For example, assuming constraints Enn∗ = σ2
0I and Ex∗x ≤ KP , the channel
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capacity is expressed by

C =
1

N
E log det

(
I +

P

σ2
0

HH∗
)

= E
∫

log

(
1 +

P

σ2
0

λ

)
dFHH∗

(λ),

and the MMSE is expressed as

MMSE =
1

K
Etr

(
I +

P

σ2
0

H∗H

)−1

= E
∫ 1

1 + P
σ2
0
λ

dFH∗H(λ),

where FHH∗
(x) and FH∗H(x) denote respectively the ESD of HH∗ and H∗H.

When K and N are both large with their ratio approaching a positive constant,

say c, the limit of the channel capacity and the MMSE in the almost sure sense can

be derived from the known results on the so-called sample covariance matrix in the

random matrix theory of probability. In fact, assuming the simplest case that H

consists of i.i.d. entries with mean 0 and variance 1/N , by the result proven first

in Marcěnko and Pastur (1967), with probability one as K →∞ with K/N → c,

the ESD of H∗H converges weakly to the Marcěnko and Pastur law with density

function

d

dx
F c

M−P (x) =





1
2πxc

√
(x− a)(b− x), a < x < b,

0, otherwise,

and, if c > 1, an additional point mass of (1 − 1/c), where a = (1 − √
c)2 and

b = (1+
√

c)2. Using properties of weak convergence in classical probability theory,

this then indicates that the limit of the channel capacity and the MMSE should
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be given by

c
∫

log

(
1 +

P

σ2
0

λ

)
dF c

M−P (λ),

and

∫ 1

1 + P
σ2
0
λ

dF c
M−P (λ).

And indeed, the second one is true since the integrand is bounded and continuous,

but the first one needs further consideration since the log function is not bounded.

To make rigorous for the first one, a bound argument is needed on the largest

eigenvalue of the matrix H∗H. But in the random matrix theory, there is also

a known result proven in Yin, Bai and Krishnaiah (1988) that if and only if the

fourth moment of the entries of H is finite the largest eigenvalue of H∗H converges

almost surely to b = (1 +
√

c)2. Therefore, large number laws on the channel

capacity and the MMSE are thus established with the aids of random matrix

theory in probability. By calculating the two integrals above, one then knows

asymptotically the two performance measures important for the channel model.

For the precise results of these integrals and for more details on applications of

random matrix theory to wireless communications, see the monograph Tulino and

Verdú (2005).

To the satisfaction of engineers, we see that asymptotic results are obtained

with the aid of random matrix theory. For example, they have universality property

of not being sensitive to the distribution of the random matrix entries. In case of a

single-user multi-antenna link, this means the asymptotic results hold for any type

of fading statistics, and in case of the CDMA channel, this means restricting the
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CDMA waveforms to be binary valued incurs no loss in capacity asymptotically

(Tulino and Verdú (2005)). Also, since the asymptotic results are shown in the

almost sure sense, in experimental observations, one realization is sufficient to

obtain the convergence to the deterministic limit. Also, of practical interest is the

knowledge of the convergence rate of the channel capacity and the MMSE to their

limits and the distribution of fluctuations of the channel capacity and the MMSE

around their limits. These two problems can be fully solved by the central limit

theorems on analytical functionals of eigenvalues of sample covariance matrices

proven in Bai and Silverstein (2004). As was shown, the convergence rate is O(n−1)

and the fluctuations follow normal distribution with mean and variance explicitly

expressed. Therefore, we see how random matrix theory can help in applied areas.

In the following, when we say random matrix theory in probability we are re-

ferring to spectral analysis of large dimensional random matrices, but the classical

theory on the Wishart matrix of course is a big component of the whole theory

developed on random matrices in the literature of probability. The importance

of studying spectral properties of large random matrices for the development of

statistics was well stated in Bai and Silverstein (2004). That is, highly devel-

oped computational techniques make possible systematic collection, conservation

and computation of data of very high dimension, but classical statistical analysis

methods have limitations and weakness to deal with them. Sometimes the existing

statistical analysis methods simply do not apply to high dimensional data. For

instance, if significance test is considered for the difference of the means of two

k-dimensional populations based on two samples of sizes n1 and n2 taken respec-
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tively from the two populations, then classical statistical inference methods using

the T 2 statistic of Hotelling or the best linear discriminator of Fisher are undefined

whenever k > n1+n2−2 (Dempster (1958, 1960)). In this case, it is an unavoidable

task to develop statistical analysis methods relevant to high dimensional data.

On the other hand, although sometimes classical statistical methods can still be

carried out on high dimensional data, the outcomes may deviate from what should

be expected to be true. This phenomenon is relating to the underlying philoso-

phy of classical statistical methods. Generally speaking, classical limit theorems

fundamental to multivariate statistical inference are developed under a hypothesis

that the vector dimension is fixed and the sample size increases to infinity. This

hypothesis is also commonly said to be the hypothesis of large sample, since in prac-

tical experimental work requiring a multivariate inference technique, these limit

theorems are expected to behave well in the case that compared with the vector

dimension of the data, the sample size should be overwhelmingly large. However,

when the vector dimension is large, an overwhelmingly large sample size becomes

a tremendous magnitude and is unattainable in most situations. As a result, clas-

sical statistical methods in multivariate analysis are used when the hypothesis of

large sample is not satisfied. But, from the following example presented in Bai and

Silverstein (2004), it can be seen such use may induce very serious errors.

Consider a statistic constructed from the sample covariance matrix Sn. Here

Sn = (1/N)X∗
nXn, where Xn is N × n consisting of i.i.d. standard normal random

variables. Define statistic LN = ln det SN . This is an important statistic used

in classical multivariate statistical inference. Under the large sample hypothesis,



18

namely n is fixed and N tends to infinity,
√

N/nLN converges weakly to normal

distribution with mean 0 and variance 2. However, when the hypothesis is violated

with n/N → c ∈ (0, 1), using the results in Marcĕnko and Pastur (1967) and Yin,

Bai and Krishnaiah (1988), it can be seen (1/n)LN → d(c) ≡ (1−1/c) ln(1−c)−1 <

0 which implying
√

N/nLN → −∞. Thus, of course, in this case neglecting the

nature of high dimension of the data to use classical statistical inference method

based on asymptotic normality of
√

N/nLN will cause serious error. Indeed, such

performance loss of classical statistical methods on high dimensional data has been

examined early in Bai and Saranadasa (1996) and referred to as an effect of high

dimension. As stated in Bai and Silverstein (2004), the above example got an

solution on its asymptotic distribution as a by-product of the main result in the

paper, which will be reviewed in the sequel. Specifically, the normalized statistic

LN − nd(n/N) converges in distribution to a normal random variable with mean

1
2
ln(1 − c) and variance −2 ln(1 − c). The example thus exhibits both the need

and the value of spectral analysis of large dimensional random matrices.

Generalizations of Wigner’s matrix were the first tide in the developments of

random matrix theory in probability. As already noted in Wigner (1958), the

semicircle law is the LSD of a much more general symmetric random matrix model

which satisfies only that the entries on and above the diagonal are independent

and the entries have symmetric distribution function with variance σ2 for the non-

diagonal entries and 2σ2 for the diagonal ones and all higher moments uniformly

bounded. This claim motivated the interest of relaxing the conditions on the
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matrix to the most possible extent (Grenander (1963), Arnold (1967,1971)). In

the important review work on random matrix theory in probability Bai (1999), it

was shown two general assumptions can be used to define the matrix which mostly

extends the matrix of Wigner. Let Wn = [wij] be n × n whose entries on and

above the diagonal are i.i.d. complex random variables with a common mean and

variance σ2, or let Wn = [wij] be n × n Hermitian whose entries on and above

the diagonal are independent complex random variables with a common mean

satisfying the Lindeberg type condition for any δ > 0 as n →∞

1

δ2n2

∑

ij

E|wij|2I(|wij |>δ
√

n) → 0. (1.1)

Note that the second assumption is more general than the first one. It was shown

in Bai (1999) that, under either assumption, as n → ∞ with probability one the

ESD of 1√
n
Wn converges weakly to the semicircle law.

The convergence rate of the expected ESD of the normalized Wigner matrix

1√
n
Wn, under the first assumption above with the additional condition that fourth

moments uniformly bounded in n, was shown to be not slower than O(n−1/4) in

Bai (1993a). This problem is one of the toughest problems since the inception of

random matrix theory. Bai’s work developed a method of discussing convergence

rates of ESDs through establishing a Berry-Esseen type inequality in terms of the

Stieltjes transforms. The result was later improved in Bai, Miao and Tsay (1999)

by assuming a slightly milder condition but confirming the convergence rate of the

expected ESD and the convergence rate in the sense of in probability to be both

not slower than O(n−1/3). It can be expected further improvements in the future



20

since the conjectured ideal convergence rate can achieve O(n−1).

The limiting behavior of the largest eigenvalue of 1√
n
Wn is another important

aspect in the spectral analysis of large dimensional Wigner matrices. A sufficient

and necessary condition for the largest eigenvalue of 1√
n
Wn to converge almost

surely to a finite constant was given in Bai and Yin (1988b). The asymptotic

distribution of the largest eigenvalue of the Wigner matrix was recently solved in

Soshnikov (1999). As was shown, the limit laws for the largest eigenvalue of the

real and complex Wigner matrix are respectively the Tracy-Widom laws for GOE

and GUE.

Central limit theorems concerning analytic functionals of eigenvalues of the

Wigner matrix were shown recently in Bai and Yao (2005). The paper continued

the same type of arguments developed in the significant work Bai and Silverstein

(2004) on the sample covariance matrices. Mainly, let Fn(x) and F (x) denote

respectively the ESD of 1√
n
Wn and the semicircle law. Define the so-called spectral

empirical process as

Gn(f) = n
∫

f(x)[Fn(x)− F (x)]dx, f ∈ A,

where A is the set of functions analytic on an open set enclosing the support

of the semicircle law. Then it was shown the spectral empirical process is tight,

and under appropriate conditions on the moments of the entries of the Wigner

matrix, converges weakly to a Gaussian process. Central limit theorems concern-

ing [Gn(f1), · · · , Gn(fk)] are therefore consequences of the convergence of finite

dimensional distributions of the process.
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The random matrices most extensively investigated in the literature of proba-

bility are the so-called sample covariance type matrices. The pioneering work in

this aspect is Marcěnko and Pastur (1967). The random matrix they considered

takes the form An + X∗
nTnXn. Here An, Tn, Xn are independent of each other, An

is n×n Hermitian, Tn is n×n diagonal, and Xn is N×n consisting of i.i.d. random

variables. They proved under certain conditions the ESD of the matrix converges

weakly to a non-random limit. Their method was then original. Before their work,

the main methodology in the field was the moment method which proves the con-

vergence of ESDs by showing the convergence of their moments. However, they

adopted the method of proving the convergence of the ESDs through proving the

convergence of their Stieltjes transforms. Many later works studied the random

matrix An + X∗
nTnXn. Examples are Grenander and Silverstein (1977), Jonsson

(1982) and Wachter (1978).

Marcěnko and Pastur’s problem was later reconsidered in Silverstein and Bai

(1995) with milder conditions imposed on the underlying random variables. Under

the assumptions that Xn is consisting of i.i.d. random variables with mean 0 and

variance σ2, Tn is diagonal with, almost surely, its ESD converging weakly to a

probability distribution function (p.d.f.) and An is Hermitian with, almost surely,

its ESD converging vaguely to a non-random limit, it was shown with probability

one as n →∞ while N = N(n) with n/N → c > 0, the ESD of An +X∗
nTnXn con-

verges vaguely to a non-random limit whose Stieltjes transform satisfies a uniquely

solvable equation. The authors continued with and modified Marcěnko and Pas-

tur’s method. Note that in Marcěnko and Pastur (1967), the convergence of the
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Stieltjes transforms was shown by constructing a stochastic function involving a

parameter t and consequently the limit of the Stieltjes transforms was the solution

to a partial differential equation at t = 1. Silverstein and Bai’s method still relies

on showing the convergence of the Stieltjes transforms but, with the aids of funda-

mental matrix properties and classical probability theory, is more straightforward

while providing a clear understanding of the convergence process of the Stieltjes

transforms. Indeed, the method was later further developed by the authors to

investigate more complicated problems and nowadays the method is widely known

as the Stieltjes transform method.

The so-called sample covariance matrix in random matrix theory of probability

is, as we have indicated in our previous review, of the form Sn = (1/N)X∗
nXn, which

is the special case of the random matrix studied by Marcěnko and Pastur when

An = On×n and Tn = In×n. This explains why the LSD of the sample covariance

matrix is called the Marcěnko and Pastur law. A proof via the moment method

of the convergence of the ESD of Sn can be found in Bai (1999). In Bai (1999),

two assumptions on Sn were considered. One assumption is to require Xn to be

composed of i.i.d. entries with mean 0 and variance σ2. The other assumption is

to require Xn to be composed of independent entries with mean 0 and variance σ2

satisfying the following Lindeberg type condition for any δ > 0 as n →∞

1

δ2nN

∑

ij

E
(
|xij|2I(|xij |>δ

√
n)

)
→ 0. (1.2)

Under either assumption, it was shown as n → ∞ with n/N → c > 0 the k-

th moment of the ESD of Sn converges almost surely to the k-th moment of the
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Marcěnko and Pastur law. Since it is easy to check the Marcěnko and Pastur law

satisfies the Carleman condition which confirms it to be determined by its moments,

it then follows the ESD of Sn must converge to the Marcěnko and Pastur law. This

is indeed the main scheme of using the moment method to show the convergence

of ESDs and identify the LSD.

The convergence rate of the ESD of Sn to the Marcěnko and Pastur law was

established altogether with that for the Wigner matrix in Bai (1993b). As is

shown, the convergence rate of the expected ESD of Sn is not slower than O(n−1/4).

Further improvements are still looked forward to as the conjectured ideal rate is

still as fast as O(n−1).

Concerning the limiting behavior of the largest eigenvalue of Sn, as for the

Wigner matrix, results are known on both its almost sure convergence and its

asymptotic distribution. In fact, almost sure convergence has been shown for

both of the extreme eigenvalues, the largest and the smallest eigenvalues, of Sn.

Under the first assumption of Bai (1999) on Sn with an additional condition of

finite fourth moment of x11, it was shown in Yin, Bai and Krishnaiah (1988) that

the largest eigenvalue of Sn converges almost surely to σ2(1 +
√

c)2, the largest

number of the support of the Marcěnko and Pastur law. Later in Bai, Silverstein

and Yin (1988) it was confirmed further the condition of finite fourth moment is

also necessary for the convergence of the largest eigenvalue. The convergence of the

smallest eigenvalue of Sn was solved in Bai and Yin (1993). The result in this work

indeed established simultaneously the convergence of the largest eigenvalue and the

convergence of the smallest eigenvalue. Specifically, under the same condition as
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in the case of the largest eigenvalue, it was shown

−2
√

cσ2 ≤ lim inf
n→∞ λmin(Sn− σ2(1 + c)I) ≤ lim sup

n→∞
λmax(Sn− σ2(1 + c)I) ≤ 2

√
cσ2,

where of course λmin(·) and λmax(·) respectively denote the largest eigenvalue and

the smallest eigenvalue of the matrix (·). For the largest eigenvalue of Sn, its

asymptotic distribution is also known. Mainly, it was shown in Johnstone (2001)

that if Xn is consisting of i.i.d. standard normal random variables, then as n →∞

with n/N → c ≥ 1, the normalized largest eigenvalue (λmax(Sn)−µn)/σn converges

in distribution to the Tracy-Widom law for the GOE. Here the normalization con-

stants are µn = (
√

N − 1+
√

n)2 and σn = (
√

N − 1+
√

n)((N−1)−1/2 +n−1/2)1/3.

When the entries of Xn are i.i.d. complex standard normal, then the asymptotic

distribution becomes the Tracy-Widom law for the GUE. The normalized constants

will also need a slight modification.

Most of the known results on the sample covariance type matrices concern

random matrices taking the form Bn = (1/N)T 1/2
n X∗

nXnT
1/2
n , where Xn is N × n

consisting of i.i.d. random variables, Tn is n × n nonnegative definite, and Xn,

Tn are independent. This type random matrices are representative for a large

class of matrices which are of importance to multivariate statistical analysis. first,

the sample covariance matrix Sn is the special case of Bn when Tn = In. More

generally, when Tn is taken to be non-random while the entries in Xn are taken

to be i.i.d. with mean 0 and variance 1, the matrix Bn is the sample covariance

matrix of the N i.i.d. n-dimensional samples (1/
√

N)T 1/2
n ~x1, · · · , (1/

√
N)T 1/2

n ~xN

with mean vector zero and variance matrix Tn, where the vector ~xi denotes the
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i-th column of the matrix X∗
n. Then, the Wishart matrix and the F -matrix, both

crucially important to multivariate statistical methods, can be modelled by the

matrix Bn. In fact, a Wishart matrix is the special case of Sn when the entries

in Xn are i.i.d. normal random variables. The F -matrix is the special case of Bn

when Xn is taken to be composed of i.i.d. normal random variables while Tn is

taken to the inverse of another Wishart matrix independent of Xn. These account

for the wide applications of spectral analysis results on Bn in areas as diverse as

time series analysis, high-dimensional statistical inference methods, neural network

theory and wireless communications. Motivated by this prominent conceptual and

practical value of Bn, in random matrix theory in probability, spectral analysis

results on Bn are the most significant and matured.

The convergence of the ESD of the matrix Bn has been well studied in the field.

first, the result was established by using the moment method in Yin and Krishnaiah

(1983) and Yin (1986). The latter work was done under a more general condition

following the arguments developed in the former one. Specifically, it was shown

if Xn is consisting of i.i.d. entries with finite second moment, Tn is such that its

ESD with probability one converges weakly to a p.d.f. H, and certain additional

conditions hold, then with probability one the ESD of Bn converges weakly to a

non-random limiting distribution function. Due to the use of the moment method,

finding the limits of the moments of the ESD of Bn is the core of the arguments.

This involved a rather complicated combinatorial derivation, but the argument

bears then a value to combinatorics also. As is indicated in some works in wireless

communications, Müller and verdú (2001) for example, the moments of the LSD are
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useful in the real-time implementation of the linear MMSE detector to compute

the coefficients of the Yule-Walker equations. The additional conditions in Yin

(1986) require that the moments of H satisfy the Carleman condition and that the

moment of the ESD of Tn converges to that of H for every order. It was later shown

in Bai (1999), they can be avoided by applying the truncation and centralization

techniques to the ESD of Tn. Moreover, Bai (1999) also extended the result in the

sense that the convergence of the ESD of the matrix (1/N)X∗
nXnTn was proved,

where the matrix Tn is Hermitian. Note that when Tn is nonnegative definite, the

eigenvalues of the two matrices, Bn and (1/N)X∗
nXnTn, are exactly the same.

It turns out for better understanding of the spectral properties of the matrix

Bn very important is to develop a proof by using the Stieltjes transform method

to show the convergence of the ESD. This was obtained in Silverstein (1995), to

which Silverstein and Bai (1995) is an important related work. Silverstein (1995)

proved that if Xn is N×n consisting of i.i.d. entries with finite second moment, Tn

is nonnegative definite with its ESD almost surely converging weakly to a p.d.f. H

and Xn, Tn are independent, then with probability one as n →∞ while N = N(n)

with n/N → c > 0, the ESD of Bn converges weakly to a non-random p.d.f.. This

LSD is given by an equation to which its Stieltjes transform is the unique solution.

An important point is, via the equation, analytical properties of the LSD can be

derived. This is one advantage, but by no means all, of using the Stieltjes transform

method. Analytic properties of the LSD of Bn were derived in Silverstein and Choi

(1995). They mainly proved the LSD is continuously differentiable at any point

on the real line except the origin, the support of the LSD can be determined by
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checking a necessary and sufficient condition, inside the support the derivative of

the LSD is infinitely differentiable. Moreover, both the derivative and the condition

on the support of the LSD are qualitatively tractable from an equation taking the

form z(m) = −1/m + c
∫

t/(1 + tm)dH(t). These results are also useful for later

developments on the spectral analysis of the matrix Bn.

One of the most significant results for Bn is on limiting behavior of its eigen-

values outside the support of its LSD. These are established in Bai and Silverstein

(1998, 1999). Mainly, the earlier work proved that for any closed interval [a, b]

outside the support of its LSD, under appropriate conditions, with probability one

there will be no eigenvalues of Bn appearing in this interval. The limiting behavior

of the extreme eigenvalues of Bn can be followed from this result as a subsequence.

Formally, if the largest eigenvalue of Tn converges to the largest number of H,

then the largest eigenvalue of Bn converges to the largest number of the support

of its LSD. Furthermore, if the smallest eigenvalue of Tn converges to the smallest

number of the support of H, then in case of c ≤ 1 the smallest eigenvalue of Bn

converges to the smallest number of its LSD and in case of c > 1, the smallest

eigenvalue of Bn = (1/N)X∗
nTnXn converges to the smallest number in the support

of its LSD. Note the relation between Bn and Bn. They have the same nonzero

eigenvalues.

Bai and Silverstein (1999) went even farther. For any prescribed interval [a, b],

the result of Bai and Silverstein (1998) implies for all n large, [a, b] is a gap in

the spectrum of Bn. All eigenvalues of Bn must lie either to the left or to the

right of this gap. Then a natural question is to inquire the number of eigenvalues
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to one side of the gap Bn put. Using the criterion given in Silverstein and Choi

(1995) on how to determine the support of the LSD of Bn, a not so intuitive but

definitely true fact can be shown which says that to such a gap [a, b], there must

be a interval [a′, b′] which is the gap in the spectrum of Tn for all n large. Then

the main result of Bai and Silverstein (1999) is to show with probability one for

all n large the number of eigenvalues Bn put to one side of [a, b] is equal to that

of eigenvalues Tn put to the same side of [a′, b′]. There is only one exception with

this beautiful accordance between the spectrum of Bn and Tn, which happens with

the case when c[1−H{0}] > 1 and [a, b] lies in the intermediate segment between

the origin and the first positive number in the support of Bn’s LSD. But for any

other cases when c[1−H{0}] > 1 but [a, b] does not lie in this special segment, the

result is still true. Here H{0} denotes the point mass of H at zero. The reason of

the exception is very intuitive, since it can be computed F{0} = H{0} if and only

if c[1−H{0}] ≤ 1. This result is called the exact separation of the eigenvalues of

Bn.

Central limit theorems concerning certain functionals of the eigenvalues of Bn

were first derived in Jonsson (1982) relying on the assumption that the entries

of Xn are Gaussian random variables. In Bai and Silverstein (2004), a new way

of establishing this type results was developed for a set of analytic functionals.

Denote by FBn and F c,H respectively the ESD and the LSD of Bn. For any p.d.f.

F , denote by sF (z) its Stieltjes transform. Define Gn(x) = n[FBn(x) − F c,H(x)]

and Mn(z) = n[sF Bn (z) − sF c,H (z)]. Let C be a contour of the complex plane
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enclosing the interval

[lim inf
n

λmin(Tn)I(0,1)(c)(1−
√

c)2, lim sup
n

λmax(Tn)(1 +
√

c)2].

Assume that Xn is N × n consisting of i.i.d. entries with mean 0, variance 1 and

finite fourth moment, Tn, independent of Xn, is n × n non-random nonnegative

definite with uniformly bounded spectral norm whose ESD converges weakly to

a p.d.f. H. Then it was shown, viewed as a random two dimensional process on

the contour C, {Mn(z)} is tight. Furthermore, if the moments of the entries in

Xn have the same fourth moment as the standard normal (real or complex), then

{Mn(z)} converges weakly to a two dimensional Gaussian process. For any integer

k let f1, · · · , fk be functions analytic on an open interval containing the prescribed

interval. Then central limit theorem on

(∫
f1(x)dGn(x), · · · ,

∫
fk(x)dGn(x)

)

follow immediately, provided that the moments of entries of Xn satisfy the previous

condition.

The series of significant works of Bai and Silverstein (1998,1999, 2004) es-

tablished two most important aspects of results on spectral analysis of random

matrices of the form Bn. In view of the prominent value of the matrices, their

works are even more marvellous. The achievements are obtained with the aids of

the Stieltjes transforms of the ESDs of Bn, which offer a platform where classical

probability theory on independent random variables can be applied to earn an

optimal gain concerning the general assumptions underlying their random matrix

model. This indicates that thorough spectral properties of random matrices can
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be analyzed effectively by systematically manipulating the Stieltjes transforms of

ESDs.

There are many other random matrices studied in the random matrix theory

in probability. For example, the convergence of the ESDs of the Toeplitz, Hankel

and Markov matrices was shown in (Bryc, Dembo and Jiang (2006)) by using the

moment method. However, due to the complexity of the problem, the LSDs are

not known very much yet. The convergence of the ESD of the random matrix

which is n × n consisting of i.i.d. complex entries to the circle law has been well

known in the field. But the proof remains unknown until Girko (1984) provided

a partial solution to the problem. The problem was later proved in Bai (1997)

under the existence of the (4 + ε)th moment of the matrix entries and some other

smoothness conditions on their density function. In the monograph of Girko (1990),

Girko defined a random matrix model which turns out to be very useful in applied

areas. This random matrix is n × n Hermitian with independent entries on and

above diagonal, all entries have mean 0 but variance σ2
ij for the (i, j)-th entry. It

is assumed that the σ2
ij are uniformly bounded for all i, j and n and are such that

the function defined by

wn(x, y) = σ2
ij,

i

n
≤ x ≤ i + 1

n
,

j

n
≤ y ≤ j + 1

n

converges as n → ∞ to a bounded limit function w(x, y). It was shown as

n → ∞ the ESD of this random matrix converges weakly to a non-random

p.d.f. whose Stieltjes transform is the unique solution to a certain equation.

Other examples are random matrices with symmetry breaking structure C =
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I + (1/N)
∑

k=1 TkX
∗
kXk (Hoyle and Rattray (2003)) and information-plus-noise

type matrices Dn = (1/N)(Rn +σXn)∗(Rn +σXn) (Dozier and Silverstein (2004)).

Due to the richness of the context and the interest of the present thesis, we shall

not go deeper.

From the above review, it can be seen that random matrix theory in proba-

bility has gotten its success in mainly the following four aspects. The first aspect

concerns the convergence of the ESDs of random matrices. The second aspect

concerns the convergence rate of the ESDs. The third aspect concerns the limiting

behavior of extreme eigenvalues of random matrices, or more generally, the limit-

ing behavior of eigenvalues of random matrices outside the support of their LSDs.

The fourth aspect concerns central limit theorems for analytic functionals of eigen-

values of random matrices. Indeed, there is also the fifth aspect in the field which

concerns the limiting behavior of eigenvectors of random matrices. Results on

the Wigner matrix and the sample covariance matrix can respectively be found in

Girko, Kirsch and Kutzelnigg (1994) and Silverstein (1979,1981,1984,1989,1990).

These five aspects only occupy a small portion of what is expected in the spectral

analysis of large dimensional random matrices. As stated in Bai (1999), second

order convergence problems need to be developed to deepen these five aspects of

results whereas more other new random matrices need to be investigated.

For any random matrix, the first aspect of investigation summarized above is

the fundamental part. This aspect shows the convergence of ESDs, finds the LSDs

and studies important properties of the LSDs. The results can be used directly in

applied areas such as in the wireless communications to give good predictions of
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performance measures of channel models or to achieve real-time implementation

of the linear MMSE detector. Of course, spectral analysis of any random matrix

must be started from this fundamental stage of work. In the meanwhile, this stage

of work usually provides useful analytical tools to provide further investigation of

other spectral properties of the random matrix. We thus come to the main purpose

of the present thesis, to develop this fundamental stage of spectral analysis for the

following three classes of random matrices:

• Large dimensional Wigner type random matrices.

• Large dimensional general sample covariance type random matrices.

• Large dimensional sparse random matrices.

1.1 Large Dimensional Wigner Type Random Ma-

trices

1.1.1 The Problem

Generalizations of the Wigner matrices have attracted considerable interest since

the inception of random matrix theory. In the theory, Wigner matrices have more

important value than they have expressed in modelling complex nuclei. Almost

every aspect of spectral analysis is carried out first to the Wigner matrices. Their

foundational role has been recently further guaranteed by the establishment of

the so-called free central limit theory, which proves that the semicircle law is the
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counter part of the normal distribution in free probability. Most extensively investi-

gated asymptotic free random matrices are those relating to the Wigner matrices.

In fact, in order to understand better spectral properties of Hermitian matrices

which are not necessarily nonnegative definitive, generalizing the Wigner matrices

in some appropriate sense is necessary.

Generalizations of the Wigner matrices have been done in various aspects.

One important aspect is to show the semicircle law valid for some other random

matrices rather than the Wigner ones. Examples of such random matrices include,

for example, the normalized sample covariance matrices considered for the case

when the vector dimension and the sample size both tend to infinity but their

ratio tends to zero (Bai and Yin (1988)), or the sparse random matrices taking

the form of the Hadamard products of a normalized sample covariance matrix and

a sparsing matrix whose elements play the role of wearing down the correlation

existing among the entries of the normalized sample covariance matrix (Kohrunzhy

and Rodgers (1997, 1998)). These results revealed two important points to us. One

point is that it is the lack of statistical correlation among the entries of the Wigner

matrices that plays the essential role in the convergence to the semicircle law of

their empirical spectral distributions.

The other point is if different limiting spectral distributions, especially some

providing better predictions of the real system, are of interest, the generalization

must be considered in another aspect, that is, to permit some statistical correlation

structure to exist among the entries of the prescribed Hermitian matrix represent-

ing the Hamiltonian of the real system. This direction is indeed the motivation of
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the Wigner type random matrices dealt with in the present thesis.

1.1.2 The Objective

The Wigner type random matrices generalize the Wigner matrices by allowing the

entries in the matrices to possess a statistical correlation structure. This can be

conveniently achieved by expressing the Wigner type random matrices in the form

of (1/
√

n)T 1/2
n WnT 1/2

n , where Wn is n×n Wigner matrix and Tn is n×n nonnegative

definite, with Wn, Tn independent. Existing work on this class of random matrices

is only confined to the special case where the entries of Wn are assumed Gaussian

random variables (Monvel and Khorunzhy (1999)). In their work, Monvel and

Khorunzhy proved as n tends to infinity, the empirical spectral distributions of the

matrices will converge to a non-random limiting spectral distribution and under

appropriate conditions the spectral norms of the matrices will converge to the

upper endpoint of the support of the limiting spectral distribution. Although this

limiting spectral distribution was given by an equation determining its Stieltjes

transform, the result was indeed established through investigating a certain set of

mixture moments relating to the empirical spectral distributions of the matrices.

The main technical result in the paper is to construct appropriate bounds for

those mixture moments by means of an equality on evaluating the mathematical

expectation of a Gaussian random vector.

Concerning the universality property of random matrix theory, the Gaussian

assumption in Monvel and Kohrunzhy (1999) is redundant. In our work, we pro-
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pose to remove this redundant condition and to deal with the Wigner type matrices

in a very general sense. The method of Monvel and Kohrunzhy strictly depends

on the Gaussian assumption and so cannot be used anymore. We shall adopt both

the Stieltjes transform method and the moment method to show the convergence

of the ESD of the Wigner type random matrices, and based on the equation de-

termining the Stieltjes transform of the LSD, we shall also derive properties of the

LSD and their density functions.

1.1.3 Main Results

Let us introduce the following notation. Throughout the remainder of the present

thesis,, for any probability distribution function G, sG(z) denotes its Stieltjes trans-

form, SG denotes its support set; for any set E, Ec denotes its complement and IE

denotes the indicator function on E; for any probability distribution function G

and any Borel set E, G(E) denotes the measure of E with respect to the measure

generated by G on the real line R; R+ and R− denote respectively the positive half

real line and the negative half real line; C denotes the set of complex numbers,

C+ = {z ∈ C : Im(z) > 0} and C− = {z ∈ C : Im(z) < 0}.

By imposing conditions on moments of the entries of the matrices instead of

putting conditions on their distributions, we studied the Wigner type random ma-

trices in the following general sense.
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Definition 1.1.1. (Wigner type random matrix)

Let An = 1√
n
T 1/2

n WnT
1/2
n , where T 1/2

n is any Hermitian square root of Tn. Then

An is said to be a Wigner type random matrix if the following conditions are

satisfied.

(i) For n = 1, 2, · · · , Wn = (wij) is an n × n Hermitian matrix, wij ∈ C with

Ewij = 0 and E|wij|2 = 1, and {wij, i ≤ j} are independent satisfying condition

(1.1).

(ii) Tn is a Hermitian nonnegative definite random matrix whose empirical spec-

tral distribution function almost surely converges weakly to a non-random limiting

distribution function H as n →∞.

(iii) Wn and Tn are independent.

Remark 1. Although in Definition 1.1.1, we have assumed Ewij = 0 and

E|wij|2 = 1, the results in the next following can be easily extended over to the

general case when Ewij = µ and V ar(wij) = σ2. In fact, as far as the wij’s have a

common mean, by the second rank inequality of Lemma 2.1.1, we can show that

‖FAn − F Ãn‖ ≤ 1/n, where Ãn = 1√
n
T 1/2

n (Wn − EWn)T 1/2
n and FAn , F Ãn are

respectively the empirical spectral distributions of An, Ãn. Thus FAn and F Ãn

converge simultaneously to the same limiting distribution function and hence µ

does not show any effect on the results at all. However, the variance σ2 of the wij’s

does show effects. Nonetheless, σ−1An satisfies the assumptions in Definition 1.1.1

and so the next following results apply. Note that, supposing F σ−1An denotes the

empirical spectral distribution of σ−1An, then FAn(x) = F σ−1An(σ−1x). This im-



37

plies that, if F σ−1An converges weakly to F and FAn to Fσ, then Fσ(x) = F (σ−1x)

and their Stieltjes transforms satisfy sFσ(z) = σ−1sF (σ−1z). Thus from the results

for σ−1An we can straightforwardly infer the corresponding ones for An.

We first prove the convergence of the empirical spectral distribution of An by

using the Stieltjes transform method. So the limiting spectral distribution is nat-

urally characterized by its Stieltjes transform satisfying a system of equations.

Theorem 1.1.1. (LSD of Wigner type random matrices)

Let An be the Wigner type random matrix defined in Definition 1.1.1. Then

with probability 1, as n → ∞, the empirical spectral distribution function of An

converges weakly to a non-random probability distribution function F for which if

for any z ∈ C+





s(z) = −z−1 − z−1{p(z)}2

p(z) =
∫ t
−z−tp(z)

dH(t)

(1.1.1)

is viewed as a system of equations for the complex vector (s(z), p(z)), then the

Stieltjes transform of F , sF (z), together with another function g(z) analytic on

C+, will satisfy that (sF (z), g(z)) is the unique solution to (1.1.1) in the set

{(s(z), p(z)) : Ims(z) > 0, Imp(z) ≥ 0}.

Motivated by the work of Silverstein and Choi (1995) for the sample covariance

type random matrices, we use the equations in (1.1.1) to derive some analytic

properties of the limiting spectral distribution F for the Wigner type random
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matrices. We show that F is continuously differentiable at any point on the real line

away from the origin. We give a necessary and sufficient condition of determining

its support set.

We note that for any probability distribution H, if H((−∞, 0)) = 0, then it

can be constructed a sequence of diagonal matrices Tn with nonnegative diag-

onal entries such that F Tn (the empirical spectral distribution of Tn) converges

weakly to H as n tends to infinity. By Theorem 1.1.1, it follows that to H there

must correspond a probability distribution function F whose Stieltjes transform

sF (z) together with some function g(z) satisfy the two equations in (1.1.1). Let

us refer to F as the Wigner type limiting spectral distribution corresponding to H.

Theorem 1.1.2. (Fundamental properties of the LSD)

(1). (i) Suppose {Hk} is a sequence of probability distribution functions with

Hk((−∞, 0)) = 0 converging weakly to H. Let {Fk} and F be the Wigner type

limiting spectral distribution functions corresponding to {Hk} and H. Then Fk

converges weakly to F .

Suppose, in the remainder of the present theorem, H and F are as defined in

Definition 1.1.1 and Theorem 1.1.1.

(ii) F ({0}) = H({0}), which implies that F (x) = I{0}(x) if and only if H(t) =

I{0}(t), where I{0}(·) is the indicator function on the singleton set {0}.
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Suppose, in the remainder of the present theorem, H(t) 6= I{0}(t).

(2). For any x ∈ R+ ∪R−, as z ∈ C+ tends to x, g(z) and sF (z) converge. Let

g(x) and sF (x) denote their limits respectively. Then on R+ ∪R−, g(x) and sF (x)

are continuous and satisfy




sF (x) = −x−1 − x−1{g(x)}2,

g(x) =
∫

t/{−x− tg(x)}dH(t),

(1.1.2)

with Re(g(x))/x < 0 and
∫

t2/|x + tg(x)|2dH(t) ≤ 1.

Consequently, on R+ ∪ R−, F (x) is continuously differentiable with derivative

f(x) = −2Re(g(x))Im(g(x))/(πx). (1.1.3)

(3). (i) F is symmetric, i.e. F (x) = 1− F (−x) for any x ∈ R.

(ii) Let S̃F = {x ∈ R+ ∪ R− : f(x) > 0}. Then

S̃F = {x ∈ R+ ∪ R− : g =
∫

t/{−x− tg}dH(t) has a solution in C+}

and f(x) is analytic in S̃F .

(iii) For any x0 ∈ R+∪R−, x0 ∈ Sc
F if and only if there exists some δ0 > 0 such

that
∫

t2/|x + tg(x)|2dH(t) < 1 for any x ∈ (x0 − δ0, x0 + δ0), where SF denotes

the support of F and g(x) is defined in (2).

We also present a way to calculate the density function of the limiting spectral

distribution for two important classes of the matrices Tn, the sample covariance
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matrices and the inverse matrices of the sample covariance matrices.

Theorem 1.1.3. (Density function of the LSD)

(1) When H denotes the LSD of the inverse sample covariance matrices with

ratio index y′ ∈ (0, 1), then F has a density function

f1(x) =





−2g1

√
3g2

1 − 2g1/(xy′) + (1− 1/y′)/(πx), 0 < x2 < a1,

1
π
(4

3
y′ + 1)

√
7
3
, x = 0,

0, o.w.,

where

a1 =
(2y′2 + 5y′ − 1/4) +

√
32y′3 + 12y′2 + (3/2)y′ + 1/16

2y′(1− y′)3
,

and

g1 =
1

3xy′
+ (

−t +
√

∆

2
)

1
3 + (

−t−√∆

2
)

1
3 ,

with

t =
1

36x3y′3
(
1

3
+ 3x2y′(y′ +

1

2
)),

and

∆ =
1

432x4y′4
[1 + (2y′2 + 5y′ − 1

4
)x2 − y′(1− y′)3x4].

(2) When H denotes the LSD of the sample covariance matrices with ratio index

y > 0, then away from 0, F has a density function

f2(x) =





2
π

√
g2
1

x2

√
g2
1 + (1

2
+ 1

2y
)− 1

4y

√
x2

g2
1
, 0 < x2 < a2,

1
π|1−y|

√
1
2

+ 1
2y
− 1

2y
|1− y|, x = 0,

0, o.w.,
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where

a2 =
−2(1 + y)3 + 72y(1 + y) + 2(1 + y2 + 14y)3/2

27y
,

and

g2
1 = −1 + y

6y
+

√
1 + y2 + 14y

6y
cos

ϕ

3
,

with ϕ ∈ (0, π),

cos ϕ =
2(1 + y)3 − 72y(1 + y) + 27x2y

2(1 + y2 + 14y)3/2
.

When y > 1, F has an additional point mass 1− 1/y at the origin.

Finally, we use the moment method to prove the convergence of the empirical

spectral distribution of the Wigner type random matrix. Through a combinatorial

argument, we get the explicit expression of the moments of the limiting spectral

distribution.

Theorem 1.1.4. Under the assumptions of Definition 1.1.1, with probability

one, as n →∞, the empirical spectral distribution FAn converges weakly to a non-

random limiting distribution function F . In the case when H possesses moments

of all orders and for each positive integer p, the p-th moment of F Tn almost surely

converges to the p-th moment of H, the limiting spectral distribution F possesses

moments of all orders and if mk denotes the k-th moment of F , then m0 = 1 and

for l ≥ 1, m2l−1 = 0 and

m2l =
l−1∑

s=0

g2sg2(l−1−s), (1.1.4)
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where with αp denoting the pth moment of H(t), g0 = α1, for s ≥ 1, g2s is given

by

g2s =
s∑

q=1

∑
j1+j2+···+jq=s+1−q

j1+2j2+···+qjq=s

s!

q!j1!j2! · · · jq!
αq

1α
j1
2 αj2

3 · · ·αjq

q+1. (1.1.5)

Our results provide a theoretical foundation for further investigation of other

spectral properties of this class of random matrices. Compared with the large

dimensional sample covariance matrices, for which there have accumulated quite

significant some results, the Wigner type random matrices need more works to

reveal their many interesting spectral properties. It is of interest to consider, for

example, the previously mentioned problem, which contains the convergence of the

spectral norms of the matrices, that requires the limiting behavior of the eigen-

values of the matrices outside the support of the limiting spectral distribution, or

the usually requested result which proves central limit theorems concerning some

statistics of the matrices. Reading those derivations which have been developed

for the purpose of establishing these type results for the large sample covariance

matrices, we can expect that the derivations and analytic results we developed

in our work would be helpful when such considerations are devoted to the large

Wigner type random matrices.
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1.2 Large Dimensional General Sample Covari-

ance Matrices

1.2.1 The Problem and the Objective

The so-called general sample covariance matrices in the present thesis take the

form (1/N)T
1/2
2n X∗

nT1nXnT
1/2
2n . Note that if T1n is also assumed to be nonnegative

definite, then they generalize the matrices (1/N)T 1/2
n X∗

nXnT 1/2
n to the case where

statistical correlations are present for both the row vectors and the column vectors

of the matrix Xn. Nonetheless, for the general sample covariance matrices, we

propose to deal with the very general assumption that T1n is Hermitian and T2n is

nonnegative definite. Thus they are the very much generalizations of the matrices

(1/N)T 1/2
n X∗

nXnT 1/2
n . This also explains why we call them the general sample

covariance matrices. Applications of these general sample covariance matrices

cover all those of the matrices (1/N)T 1/2
n X∗

nXnT
1/2
n and, more important, include

many new matrices of considerable interest in statistical methods and applied

areas. Therefore, it is of significant value to develop spectral analysis for these

general sample covariance matrices.

Spectral analysis of this class of random matrices has been of interest for a

long period. To applied areas, only results on the special cases of diagonal T1n and

T2n have been accessible (Tulino and Verdú (2005)). A natural idea is to extend

those spectral analysis arguments developed on (1/N)T 1/2
n X∗

nXnT
1/2
n to the general

sample covariance matrices. However, this is not as so straightforward as a simple
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extension, especially when the fundamental stage of spectral analysis of showing

convergence of ESD is concerned.

Examining those results reviewed for the matrices (1/N)T 1/2
n X∗

nXnT 1/2
n , we can

find that while the Stieltjes transform method plays an essentially important role,

the idea of manipulating the Stieltjes transform method by taking the columns of

the matrix X∗
n as perturbations to the resolvent matrices ((1/N)T 1/2

n X∗
nXnT

1/2
n −

zI)−1 has run through all derivations. Here we remark that the Stieltjes transforms

of the empirical spectral distributions of the matrices are just given by the divided

by n trace of the resolvent matrices. For the matrices (1/N)T 1/2
n X∗

nXnT 1/2
n , this

idea is rather sensible since it provides quite some convenience, concerning find-

ing contributing terms in asymptotic discussions in order to catch promptly the

limiting behavior of the main relations involved in the derivations. But for the

general sample covariance matrices, it is not appropriate to follow the same way

to manipulate the Stieltjes transform method, otherwise it may happen either the

contributing terms are mixed together or the residual terms sum up to an uncon-

trollable level.

Therefore our objective is then to pursue a way suitable for the general sample

covariance matrices in which the Stieltjes transform method can be manipulated for

systematic investigations of the spectral properties of the general sample covariance

matrices. The starting point for us is to seek the limiting spectral distribution of

the general sample covariance matrices.
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1.2.2 Main Result

The general sample covariance matrices we propose to deal with are defined as

follows.

Definition 1.2.1. (General sample covariance matrix)

Let Bn = (1/N)T
1/2
2n XnT1nX

∗
nT

1/2
2n . Then Bn is said to be a general sample

covariance matrix if the following conditions are satisfied.

(i) Xn = [xij] is N × n consisting of independent complex random variables

with Exij = 0, E|xij|2 = 1 satisfying for each δ > 0, as n →∞,

1

δ2nN

∑

ij

E
(
|xij|2I(|xij |>δ

√
n)

)
→ 0. (1.2.1)

(ii) T1n is n× n Hermitian and T2n is N ×N Hermitian nonnegative definite.

(iii) With probability 1, as n → ∞, the empirical spectral distributions of T1n

and T2n, denoted by F T1n and F T2n, converge weakly to two probability functions

H1 and H2, respectively.

(iv) N = N(n) with n/N → c > 0.

(v) Xn, T1n, T2n are independent.

Under these assumptions, at the present stage, we proved as n tends to infin-

ity, the empirical spectral distributions of the general sample covariance matrices

converge weakly to a non-random limiting spectral distribution whose Stieljtes

transform is given by a system of equations.
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Theorem 1.2.1. (LSD of general sample covariance matrix)

Let Bn be the general sample covariance matrices defined in Definition 1.2.1.

Then with probability 1, as n → ∞, the empirical spectral distribution of Bn con-

verges weakly to some non-random probability distribution function F for which if

H1 ≡ 1[0,∞) or H2 ≡ 1[0,∞), then F ≡ 1[0,∞); otherwise if for each z ∈ C+,





s(z) = −z−1(1− c)− z−1c
∫ 1

1+q(z)x
dH1(x)

s(z) = −z−1
∫ 1

1+p(z)y
dH2(y)

s(z) = −z−1 − p(z)q(z)

(1.2.2)

is viewed as a system of equations for the complex vector (s(z), p(z), q(z)), then

the Stieltjes transform of F , denoted by sF (z), together with two other functions,

denoted by g1(z) and g2(z), both of which are analytic on C+, will satisfy that

(sF (z), g1(z), g2(z)) is the unique solution to (1.2.2) in the set

Ũ = {(s(z), p(z), q(z)) : Ims(z) > 0,

Im(zp(z)) > 0, Imq(z) > 0}. (1.2.3)

Regarding the previously stated project to develop a new way to make feasible

the application of the Stieltjes transform method, our accomplishment is to change

by taking the (i, j)th element of Xn as perturbations to the resolvent matrices

( 1
N

T
1
2
2nXnT1nX

∗
nT

1
2
2n − zI)−1. This change is rather natural but may sound trivial.

However, it is not the case because there arises the need of solving the difficulty

about how to develop methods in seeking the limiting spectral distribution. As a
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consequence, we presented a way to trace from simply the well known resolvent

identity to the final desirable system of equations which determine the limiting

spectral distribution but are not revealed to us in advance.

Furthermore, in the treatment of the general sample covariance matrices, we

also need to face different computational difficulties. In fact, since there is only one

nonnegative definite matrix Tn included, the matrix (1/N)T 1/2
n X∗

nXnT 1/2
n is also

nonnegative definite, in which case it is rather simple to get the bounds for quanti-

ties involving its resolvent matrix. However, the general sample covariance matrix

1
N

T
1
2
2nXnT1nX∗

nT
1
2
2n having the same eigenvalues as the matrix 1

N
T2nXnT1nX

∗
n, can

only be regarded as the product of a nonnegative definite matrix and a Hermitian

matrix. So in our treatment, we also have invented a new mathematical tool best

suited to computations involving the resolvent matrices of products of a nonnega-

tive definite matrix and a Hermitian matrix.

In conclusion, we presented an appropriate way of studying the Stieltjes trans-

forms of the empirical spectral distributions of the general sample covariance matri-

ces as well as an efficient approach of estimating quantities involving their resolvent

matrices. With the aid of these methods, we proved the convergence of the empir-

ical spectral distributions of the general sample covariance matrices and identified

the limiting spectral distribution through a system of equations determining its

Stieltjes transform. Based on the obtained results, further investigations of other

spectral properties of the general sample covariance matrices can be carried out

systematically by manipulating the Stieltjes transform method.
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1.3 Large Dimensional Sparse Random Matrices

1.3.1 Literature Review

Large sparse random matrices have important applications in many fields. The

motivations of using sparse random matrices are due to various aspects of consid-

erations. Mainly, however, sparse random matrices are natural choice of models

when the real systems cannot be observed completely or are not of full connectiv-

ity. Such situations occur very often in practical fields. For instances, in nuclear

physics, since the particles move in a very high velocity in a small range, many

exciting states in very short time cannot be observed; in neural network theory, the

number of neurons in one person’s brain is probably of several orders of magnitude

larger than that of the dendrites connected with one individual neuron (Grenan-

der and Silverstein (1977)). In general, whenever a real physical system cannot be

observed completely or is not of full connectivity, the random matrix describing

the states of the particles contained in the system or the interactions between the

particles in the system will have a large proportion of zero elements taking the

place of unobserved states or absent interactions.

Results on large sparse random matrices as well as their applications can be

found in various areas. For example, see Barry and Pace (1999) and Boley and

Goehring (2000) for results applied to linear algebra, Bekakos and Bartzi (1999)

and Grenander and Silverstein (1977) to neural networks, Botta and Wubs (1999)

and NeuB (2002) and Vassilevski (2002) to algorithms and computing, Mart,

Glover and Campos (2001) to finance modelling, McKenzie and Bell (2001) to
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electrical engineering, Naulin (2002) to Bio-interactions, and Stariolo, Curado and

Tamarit (1996) to theoretical physics.

Sparse random matrices can be properly expressed by the Hadamard products

of two matrices. In each Hadamard product, one matrix is chosen to represent

the physical nature of the system which the product is used to model, while the

other matrix is called a sparsing matrix since the entries in this matrix indeed play

the role of wearing down in some sense the magnitude of the entries in the other

matrix prescribed.

The specialization of either of the two matrices is under determination. For the

matrix other than the sparsing one, a common choice in literature is the sample co-

variance matrix suitably normalized. This is of course due to the highly attention

received by the class of sample covariance matrices in a variety of fields. We shall

therefore follow this convention. For the sparsing matrix, there are different def-

initions and assumptions appearing in the literature, whereas there can be found

a common attribute shared by their interpretations of the key concept sparseness

relating to sparse random matrices. This common attribute is just that the sparse-

ness nature of sparse random matrices is typically embodied by letting the entries

in the sparsing matrix be identically distributed random variables which take only

values 0 and 1 but take value 1 with a so small probability that the sum of these

probabilities per row or per column is of a smaller order of magnitude than the

sample size relating to the sample covariance matrix.

Among these works, Kohrunzhy and Rodgers (1997, 1998)) developed compar-

atively systematic analytic results for such sparse random matrices, namely, the
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Hadamard products of the normalized sample covariance matrix Bm (whose formal

definition will be specified later) and a sparsing matrix Dm = [dij] with the dij’s

satisfying the above described conditions and further pij = α
mβ , with 0 ≤ β ≤ 1 and

0 < α
mβ < 1. They showed for such defined sparse random matrices, in probability

their empirical spectral distributions converge weakly to the semicircle law. They

also explained that this phenomenon of convergence to the semicircle law is due

to the reason that the sparsing matrix (or dilute matrix in their terminology) has

asymptotically gotten rid of the correlations between the entries of the normalized

sample covariance matrix.

1.3.2 The Problem and the Objective

The sparseness described above is indeed a kind of zero-one and homogeneous

sparseness. Its nature indeed confines the potential of sparse random matrices

in applications. Thus we propose to extend the notion of sparseness to the case

of non-zero-one and non-homogeneous sparseness, i.e. the entries of the sparsing

matrices are not required to be identical distributed random variables anymore and

are allowed to take non-zero-one values. We shall then seek the limiting spectral

distribution for the sparse random matrices assumed such non-zero-one and non-

homogeneous sparseness.
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1.3.3 Main Result

We achieved our object by formulating the concept of sparseness in terms of the

moments of the entries of the sparsing matrix. It is conceivable such formulation

bypasses the problem of putting restrictions on the range of values taken by the

entries of the sparsing matrix in an artificial way, but leaves the right to the sparsing

factors themselves as long as their behavior does not violate the rule we put on

their moments. As a consequence, under the non-zero-one and non-homogeneous

sparseness assumption, the sparse random matrices provide many advantageous

variabilities in modelling real systems. For example, it may happen, but obviously

with small possibility, that some entries in the sparsing matrix take very big values

which amplify the magnitude of the corresponding entries of the normalized sample

covariance matrices. We have a detailed discussion on possible consequences of our

result useful and interesting for practical considerations in Section 5.3.

In more details, our conditions on the sparsing matrix are as follows. We use

the row (or column) sums of the second moments of the entries of the sparsing

matrix to represent the level of sparseness, i.e. we require such row (or column)

sums to be of similar order of magnitude with each other but to be of smaller order

of magnitude than the sample size. Then we require all higher moments of order

bigger than 2 of the entries of the sparsing matrix to be bounded uniformly by

constant multiples of the second moments of them. This requirement is reason-

able if we take into account of the basic rule concerning a sparsing matrix that its

entries should take big values with small probabilities. Our condition on the first
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moments of the entries of the sparsing matrix is such that as a certain parameter

varies in a closed interval, the restrictiveness level of the condition also varies. In

the weakest case, the condition is a consequence of that on the second moments

of the sparsing factors and so imposes nothing additional. In the strongest case,

the condition requires that the row (or column) sums of the first moments of the

sparsing factors are bounded by a constant multiple of the row (or column) sums

of their second moments. For such defined sparse random matrices, we proved

with probability one their empirical spectral distributions converge weakly to the

semicircle law.

Definition 1.3.1. (Sparsing matrix)

Let Dm = [dij] be m×m Hermitian matrix. Then Dm is said to be a sparsing

matrix if the following conditions are satisfied.

(D1) {dij : i ≤ j} are independent complex random variables.

(D2) maxj |∑m
i=1 pij − p| = o(p), where pij = E|d2

ij|.

(D3.1) For some δ ∈ [0, 1/2], there exists a constant C1 > 0 such that maxj
∑

i E|dij| ≤

C1m
δp1−δ.

(D3.2) For each k > 2 there is a constant Ck such that E|dij|k ≤ Ckpij.

Definition 1.3.2. (Normalized sample covariance matrix 1)

Let Bm = (1/
√

np)(Xm,nX
∗
m,n − nσ2Im), where Xm,n is m × n consisting of

1For definition commonly used, see Definition 5.3.1.
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independent complex random variables. Then Bm is said to a normalized sample

covariance matrix, for which the following conditions are assumed to be satisfied.

(X1) Exij = 0, E|xij|2 = σ2.

(X2.1) For any η > 0, 1
mn

∑
ij E|x2

ij|I[|xij| > η 4
√

np] → 0.

(X2.2) For any η > 0,
∑∞

u=1
1

mn

∑
ij E|x2

ij|I[|xij| > η 4
√

np] < ∞, where u may

be taken to be [p], m, or n.

(X3) For any η > 0, 1
m

∑m
i=1 P (|∑n

k=1(|xik|2 − σ2)dii| > η
√

np) → 0.

Definition 1.3.3. (Large sparse random matrices)

Let Ap = Bm ◦ Dm. Then Ap is said to be a sparse random matrix if the

following conditions are satisfied.

(i) The matrix Bm and the matrix Dm are respectively defined in Definitions

1.3.1 and 1.3.2.

(ii) The entries of Dm are independent of those of Xm,n.

(iii) p/n → 0 and p →∞.

(iv) Condition (D3.1) holds for δ = 1/2 and m/n → 0; or condition (D3.1)

holds for some δ ∈ (0, 1/2) and m ≤ Kn for some constant K; or condition (D3.1)

holds for δ = 0 and no restrictions between m and n.

Theorem 1.3.1. (LSD of large sparse random matrices)

Let Ap be the sparse random matrices defined in Definition 1.3.3. Then as

[p] →∞, the empirical spectral distributions of Ap converge weakly to the semicircle
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law Fsc,σ2(x) with scale parameter σ2, which is given by

d

dx
Fsc,σ2(x) =





1
2πσ4

√
4σ4 − x2, if |x| ≤ 2σ2,

0, otherwise.

(1.3.1)

The convergence is in probability if condition (X2.1) is assumed and the conver-

gence is in the sense of almost surely for [p] →∞ or m →∞ if condition (X2.2)

is assumed for u = [p] or u = m respectively.

In conclusion, the sparse random matrices discussed in our results form a very

general class which has included many interesting random matrices which cannot

be studied in the usual context of spectral analysis of large sparse random ma-

trices. Nevertheless, we conjecture the class can still be generalized further to

the Hadamard products of a normalized version of the sample covariance matrix

1
N

XTX∗ and a sparsing matrix with its conditions suitably adjusted.



Chapter 2

Methodologies

The present chapter is intended to elaborate two important methodologies in the

spectral analysis of large dimensional random matrices. They are widely known

as the moment method and the Stieltjes transform method. The many results we

reviewed in the previous chapter are all derived by means of these two methods. In

this chapter, we are aiming to discuss in more detail the manipulations of these two

methods in the investigation of spectral properties of large random matrices, par-

ticularly in establishing limiting spectral distributions for random matrices which

are closely related with the three classes of random matrices to be studied in the

present thesis.

2.1 Preliminary Notions and Tools

The empirical spectral distribution of a random matrix is obviously a key concept

in the spectral analysis of large random matrices. This notion is, in the present

55
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thesis, only defined for random matrices which possesses only real eigenvalues.

Definition 2.1.1. (Empirical spectral distribution)

Let An be an n × n matrix having real eigenvalues λ1, λ2, · · · , λn. Then the

empirical spectral distribution of An is defined as

FAn(x) =
1

n

n∑

i=1

I(λi≤x),

where I(·) denotes the indicator function of the set (·).

Definition 2.1.2. (Limiting spectral distribution)

If for a class of random matrices An, it is proven with probability one (or in prob-

ability) as n tends to infinity the empirical spectral distribution FAn converges

weakly to some distribution function F , then F is said to be the limiting spectral

distribution of the matrices An in the strong sense (or in the weak sense).

In the present thesis, we shall use the convention that for any matrix A having

real eigenvalues only, FA denotes its empirical spectral distribution and that unless

the opposite is stated, a limiting spectral distribution refers to a limiting spectral

distribution in the strong sense.

When the empirical spectral distributions of two matrices are being compared

to infer some information on the similarity of their limiting spectral distributions,

we shall need the following inequalities concerning the distance or difference be-

tween two empirical spectral distributions (See proofs in Bai (1999)).
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Lemma 2.1.1. (Rank inequality)

(1) Let A and B be two n× n Hermitian matrix. Then

‖FA − FB‖ ≤ 1

n
rank(A−B). (2.1.1)

(2) Let A and B be two n×N complex matrices. Then

‖FAA∗ − FBB∗‖ ≤ 1

n
rank(A−B). (2.1.2)

Here ‖ · ‖ denotes the maximum norm which is defined for any function f to be

‖f‖ = supx |f(x)|.

Lemma 2.1.2. (Difference inequality)

(1) Let A and B be two n× n Hermitian matrix. Then

L3(FA, FB) ≤ 1

n
tr(A−B)2. (2.1.3)

(2) Let A and B be two n×N complex matrices. Then

L(FAA∗ , FBB∗) ≤ 2

n2
tr((A−B)(A−B)∗)tr(AA∗ + BB∗). (2.1.4)

Here L(F, G) denotes the Levy distance between distribution functions F and G,

which is defined to be

L(F, G) = inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x + ε) + ε, for all x ∈ R}.
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The next several results are contained in most textbooks on probability theory.

Lemma 2.1.3. (Bernstein’s inequality)

Let x1, · · · , xn be independent random variables with Exi = 0, Ex2
i = σ2

i , |xi| ≤ b.

Then for any ε > 0,

P

(
|

n∑

i=1

xi| ≥ ε

)
≤ 2exp

{
− ε2

2(
∑

i σ
2
i + bε)

}
.

Lemma 2.1.4. (Burkholder’s inequality)

Let {Xk} be a complex martingale difference sequence with respect to the increasing

σ-field {Fk}. Then for p ≥ 2,

E|∑ Xk|p ≤ Kp

(
E

(∑
E(|Xk|2|Fk−1)

)p/2
+ E

∑ |Xk|p
)

.

Lemma 2.1.5. (Borel-Cantelli’s lemma)

If En is a sequence of events on probability space (Ω,F , P ) such that
∑

n P (En)

converges, then P (lim supn En) = 0.

Lemma 2.1.6. (Helly’s selection theorem)

For every sequence {Fn} of probability distribution functions there exists a subse-

quence {Fnk
} and a nondecreasing, right-continuous function F such that limk→∞ Fnk

(x) =

F (x) at all continuity points x of F .
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Lemma 2.1.7. (Corollary to Helly’s selection theorem)

If {µn} is a tight sequence of probability measures, and if each subsequence that

converges weakly all converges weakly to the probability measure µ, then {µn} con-

verges weakly to µ.

Suppose for any rectangular matrix A,
√

AA∗ denotes the matrix resulting from

replacing the eigenvalues in the spectral decomposition of AA∗ with their square

roots.

Lemma 2.1.8. (Lemma 2.3 in Silverstein and Bai (1995))

Let x1, x2, x3 be arbitrary non-negative numbers. For A, B, C square matrices of

the same size,

F
√

(ABC)(ABC)∗{(x1x2x3,∞)} ≤ F
√

AA∗{(x1,∞)}+ F
√

BB∗{(x2,∞)}

+F
√

CC∗{(x3,∞)}.

Lemma 2.1.9. (The resolvent identity)

Let A and B be two nonsingular matrices of the same type. Then the following

equality is called the resolvent identity:

A−1 −B−1 = A−1(B − A)B−1(or = B−1(B − A)A−1). (2.1.5)
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2.2 Moment Method

In the spectral analysis of large dimensional random matrices, the moment method

appeared more than ten years earlier than the Stieltjes transform method and has

played an important role in the field ever since Wigner firstly used this method

to prove the famous semicircle law in his ground-breaking work (Wigner (1955)).

This method studies the moments of empirical spectral distributions of a class of

large random matrices to study their spectral properties.

2.2.1 Use of the Moment Method

In most situations, the moment method is used to seek limiting spectral distribu-

tions and to prove limiting theorems on extreme eigenvalues. In this latter aspect,

by using the moment method, a necessary and sufficient condition to guarantee the

almost sure convergence of the largest eigenvalues of Wigner random matrices to

the largest number in the support of the semicircle law was proved in Bai and Yin

(1988b) (See also Bai (1999)). For sample covariance matrices 1
N

X∗
nXn, Yin, Bai

and Krishnaiah (1988) and Bai, Silverstein and Yin (1988) proved respectively the

existence of a finite fourth moment of the entries xij of the N×n matrix Xn, which

are also assumed to be independent and identically distributed random variables,

is sufficient and necessary for the largest eigenvalues of the sample covariance ma-

trices to converge almost surely to the largest number in the support of its limiting

spectral distribution, i.e. the Marcěnko-Pastur distribution. Previous or related

works on this problem are Geman (1980, 1986) and Bai and Yin (1986). The
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almost sure convergence of the smallest eigenvalues of the sample covariance ma-

trices was solved in Bai and Yin (1993). This result indeed proved altogether the

almost sure convergence of the largest and the smallest eigenvalues of the sample

covariance matrices through discussing moments of empirical spectral distributions

of the centralized matrices 1
N

X∗
nXn − (1 + c)I, where c = lim n

N
∈ (0, 1).

When the moment method is used to seek limiting spectral distributions, the

underlying theory foundation is the moment convergence theorem in probability

theory together with a condition known as Carleman’s condition.

Lemma 2.2.1. (Moment convergence theorem)

Suppose that the probability distribution function F is determined by its moments,

that the probability distribution function Fn has moments of all orders, and that

for every positive integer k, the kth moment of Fn converges to the kth moment of

F . Then Fn converges weakly to F .

There are various criteria in probability theory on deciding whether a proba-

bility distribution function is determined by its moments. One of these is given by

Carleman which says that if a probability distribution function F has moments of

all order, say {mk}∞k=1, then F is determined by its moments whenever

∞∑

k=1

m
− 1

2k
2k = +∞. (2.2.1)
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Suppose the limiting spectral distribution of random matrices An is pursued in

the strong sense (or in the weak sense) by means of the moment method. Then

with the moment convergence theorem, a feasible procedure is to show for each

k, the kth moment of FAn converges almost surely (or in probability) to a non-

random limit, which determines a non-random probability distribution function,

say F . The main difficulty lying in this procedure is to find those limits of the

moments of FAn . To conquer the difficulty, there needs usually a very complicated

combinatoric argument. This accounts for, but not completely, why the moment

method is not so preferable as the Stieltjes transform method.

2.2.2 Examples of Obtaining LSD’s by Using the Moment

Method

We shall introduce below some results on applying the moment method to seek the

limiting spectral distributions of the Wigner matrices and the sample covariance

matrices. Here we note that all these matrices are Hermitian matrices. Then we

can use the fact that if An is n × n Hermitian, then the kth moment of FAn is

equal to 1
n
tr(Ak

n).

Theorem 2.2.1. (LSD of the Wigner matrices)

Let Wn = [wij] be an n× n Hermitian random matrix. Assume that {wij : i ≤ j}

are independent random variables with Ewij = 0, E|wij|2 = σ2 satisfying condi-

tion (1.1). Then with probability one, as n → ∞, F
1√
n

Wn converges weakly to the
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semicircle law Fsc,σ(x) given by (1.3.1) with σ taking the place of σ2 therein.

Proof. Consider any sequence of numbers {am}∞m=1 such that as m → ∞,

am ↓ 0. Then for each fixed m, there exists nm such that whenever n ≥ nm,

1

a2
mn2

∑

ij

E|wij|21(|wij |>am
√

n) < am.

Let δn = am for n ∈ [nm, nm+1), m = 1, 2, · · · . Then as n →∞, δn ↓ 0 and

1

δ2
nn

2

∑

ij

E|wij|21(|wij |>δn
√

n) → 0. (2.2.2)

This means one can select a sequence δn ↓ 0 such that condition (1.1) remains

valid with δ replaced by δn.

The proof of the theorem can be done in the following procedure:

(a) Let W̃n = [w̃ij] with (i, i)th entry w̃ii = 0 and (i, j)th entry w̃ij = ŵij−Eŵij,

where ŵij = wij1(|wij |≤δn
√

n).

(b) By Lemmas 2.1.1-2.1.3, almost surely, L(F
1√
n

W̃n , F
1√
n

Wn) → 0. Hence with

probability one F
1√
n

W̃n and F
1√
n

Wn converge weakly to the same limiting distribu-

tion.

(c) The moment method can be applied to the matrix 1√
n
W̃n. Show that

E
1

n
tr(

1√
n

W̃n)k → mk =





0, k is odd ,

(2s)!σ2s

s!(s+1)!
, k = 2s,

(2.2.3)

and that

E

(
1

n
tr(

1√
n

W̃n)k − E
1

n
tr(

1√
n

W̃n)k

)4

= O(
1

n2
).
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By Lemma 2.1.5, almost surely,

1

n
tr(

1√
n

W̃n)k → mk.

(d) Check {mk} satisfies Carleman’s condition (2.2.1). 2

Theorem 2.2.2. (LSD of the sample covariance matrices)

Let Sn = 1
N

X∗
nXn, where Xn = [xij] is N × n consisting of independent random

variables with Exij = 0, E|xij|2 = σ2. Assume that as n →∞, n/N → c > 0 and

that for any δ > 0,

1

δ2nN

∑

ij

E|xij|2I(|xij |>δ
√

n) → 0. (2.2.4)

Then with probability one, as n → ∞, F Sn converges weakly to the Marcěnko-

Pastur distribution with ratio index c and scale parameter σ2, denoted by F c,σ2

M−P (x)

which has a point mass of 1− 1/c at the origin when c > 1 and a density function

d

dx
F c,σ2

M−P (x) =





1
2πxcσ2

√
(b− x)(x− a), if a ≤ x ≤ b,

0, otherwise,

(2.2.5)

where a = σ2(1−√c)2 and b = σ2(1 +
√

c)2.

Proof. Select a sequence δn ↓ 0 such that condition (2.2.4) remains true with

δ replaced by δn. By following the next steps, the theorem can be proven.

(a) Let X̃n = [x̃ij] with (i, j)th entry x̃ij = x̂ij−Ex̂ij, where x̂ij = xijI(|xij |≤δn
√

n).

Define S̃n = 1
N

X̃∗
nX̃n.

(b) By Lemmas 2.1.1-2.1.3, it can be shown with probability one, L(F Sn , F S̃n) →

0. This means S̃n has the same liming spectral distribution as Sn.
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(c) Apply the moment method to the matrix S̃n. Show that as n →∞,

E
1

n
tr(S̃n)k → ck = σ2k

k−1∑

r=0

cr

r + 1

(
k

r

) (
k − 1

r

)
, (2.2.6)

and

E
(

1

n
tr(S̃n)k − E

1

n
tr(S̃n)k

)4

= O(n−2).

By Lemma 2.1.5, almost surely 1
n
tr(S̃n)k → ck.

(d) Check that
∑∞

k=1 c
− 1

2k
2k = +∞. 2

Theorem 2.2.3. (LSD of the sample covariance matrices)

Assume that Xn is as defined in Theorem 2.2.2, that Tn is Hermitian, independent

of Xn and has a limiting spectral distribution H in the strong sense as n → ∞,

and that as n → ∞, n/N → c > 0. Then with probability one, as n → ∞, the

empirical spectral distribution of SnTn converges weakly to a non-random limiting

distribution.

The proof of this theorem needs the following result.

Lemma 2.2.1. (Lemma 2.11 of Bai (1999))

Let G0 be a connected graph with m vertices and h edges. To each vertex v =

(1, · · · ,m) there corresponds a positive integer nv, and to each edge ej = (v1, v2)

there corresponds a matrix Tj = [t
(j)
η,ζ ] of order nv1 × nv2. Let Ec and Enc denote

the sets of cutting edges (those edges whose removal causes the graph disconnected)

and non-cutting edges, respectively. Then there is a constant C, depending upon
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m and h only, such that

| ∑

i1,··· ,im

h∏

j=1

t
(j)
ifini(ej)ifend(ej)

| ≤ Cn
∏

ej∈Enc

‖Tj‖
∏

ej∈Ec

‖Tj‖0,

where n = max(n1, · · · , nm), ‖Tj‖ denotes the maximum singular value of Tj, and

‖Tj‖0 equals the product of the maximum dimension and the maximum absolute

value of the entries of Tj; in the summation iv runs over {1, · · · , nv}, fini(ej) and

fend(ej) denote the initial and end vertices of the edges ej.

Proof of Theorem 2.2.3. The proof of the theorem can be carried out by

following the next steps.

(a) Let T τ
n be the resulting matrix of replacing in the spectral decomposition

of Tn those eigenvalues whose absolute values are bigger than τ with 0. When

τ is a continuity point of H, F T τ
n converges weakly to a non-random limit, say

Hτ , with probability one. Then the theorem will follow if for all τ sufficiently

large (continuity points of H), the empirical spectral distribution of ST τ converges

weakly with probability one to a non-random limiting distribution function.

(b) Define X̃n and S̃n as previously. Then S̃nT
τ
n and SnT τ

n have the same

limiting spectral distribution.

(c) With the aid of Lemma 2.11 in Bai (1999), show that almost surely

1

n
tr(S̃nT τ

n )k → qk = σ2k
k∑

s=1

ck−s
∑

i1+i2+···+is=k+1−s
i1+2i2+···+sis=k

k!αi1
1 αi2

2 · · ·αis
s

s!i1!i2! · · · is! , (2.2.7)

where αm =
∫

tmdHτ (t).

(d) Check {qk} satisfies Carleman’s condition (2.2.1). 2
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All proofs outlined above can be seen in their detailed derivations in Bai (1999).

Concerning the result in Theorem 2.2.3, it is noteworthy to point out that Bai

(1999) for the first time improved the result on the LSD of large sample covari-

ance matrices 1
N

X∗
nXnTn proven in Yin and Krishnaiah (1983) and Yin (1986) for

the case of nonnegative definite matrices Tn to the case of Hermitian matrices Tn.

Lemma 2.11 in Bai (1999) has a proof given in Bai and Silverstein (2005PEACH).

The result in this lemma provides great help when the empirical spectral distribu-

tions of multiplications of random matrices are discussed through their moments.

We shall make use of this lemma in Section 3.5 to prove result for the Wigner type

random matrices by means of the moment method. There one can see how the

lemma is interpreted and used.

Moreover, in all the proofs, the most difficult part is hidden in step (c), where

the limits of moments of the empirical spectral distributions of the random matri-

ces are pursued. Detailed derivations of these moments can be found in Bai (1999)

or in for instance, Wigner (1955) and Yin (1986) etc. We shall carry out in detail

a similiar type of argument for the Wigner type random matrices in Section 3.5.

Further, although the treatment in (d) seems straightforward, the treatments in

(a) and (b) have somewhat been developed into a customary technique to adopt

before the moment method as well as the Stieltjes transform method are to be used.

This technique, known as the truncation and centralization technique, was early

invented in probability theory by Kolmogorov, and has been developed methodi-

cally by Bai in spectral analysis of large random matrices. The aim of using this

technique is to yield appropriate conditions on the underlying random variables to
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work with.

Note that the limiting spectral distribution of both the Wigner matrices and the

sample covariance matrices were originally obtained by using the moment method.

Other such examples are the well known Toeplitz, Hankel and Markov matrices.

Indeed, for these three classes of matrices which are of great interest in applications,

results are only available on the existence of their limiting spectral distributions

proven by the moment method, even basic properties of the limiting spectral dis-

tributions, such as whether it has a bounded support, are still unrevealed (Bryc,

Dembo and Jiang (2004)).

Proofs of Theorems 2.2.1-2.2.3 can also be obtained by means of the Stieltjes

transform method. This will be one part seen in the next section. In recent

decades, to somewhat extent, the Stieltjes transform method has progressively

taken the role played previously by the moment method in the spectral analysis of

large random matrices. In the next section, our focus is on applying the Stieltjes

transform method to seek limiting spectral distributions. We introduce the basic

theory and concepts related to the method.

2.3 Stieltjes Transform Method

In the present section, we shall introduce the other important method in the spec-

tral analysis of large dimensional random matrices: the Stieltjes transform method.

Compared with the moment method introduced in the previous section, the Stielt-

jes transform method is usually more preferable to researchers. This is mainly
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because the moment method is typically accompanied with a sophisticated ar-

gument of combinatoric in nature, which hinders derivations as well as scrutiny,

and results obtained using the moment method tend to be difficult for latent uti-

lizations, whereas the Stieltjes transform method usually yields more transparent

and far-reaching results which are advantageous for further investigations on other

considerations.

2.3.1 Fundamental Facts

We firstly introduce in details the basic concepts and facts related to the Stieltjes

transform method. The Stieltjes transform method studies the Stieltjes transforms

of the empirical spectral distributions of a class of random matrices to investigate

their spectral properties. Thus let us begin by introducing the definition of the

Stieltjes transforms.

Definition 2.3.1. (The Stieltjes transform)

Let F (x) be any function of bounded variation. Then the Stieltjes transform of

F (x) is defined as

sF (z) =
∫ 1

x− z
dF (x), (z ∈ C+ ≡ {z ∈ C : Imz > 0}). (2.3.1)

We have several remarks about this definition.

Remark 1. Since the integrand in (2.3.1) is bounded in absolute value by 1/v
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(v = Imz), the integral is always well defined. Due to the same reason, the defini-

tion applies equally well when z is considered in the set C− ≡ {z ∈ C : Imz < 0}.

As can be seen below, considering the Stieltjes transform on either C+ or C− will

be sufficient for discussing the corresponding function F (x) (See Theorems 2.3.1

and 2.3.3). Thus in the present thesis, unless the opposite is stated, the Stieltjes

transforms are defined on C+. However, in seldom cases, because of computational

necessity, we do use Stieltjes transforms on C−. In those cases, we shall clarify the

definition domain explicitly, thus no confusion will be caused.

Remark 2. Hereafter for any function F (x) having bounded variation, sF (z)

denotes its Stieltjes transform.

Remark 3. A straightforward derivation gives for any probability distribution

function F ,

lim
v→∞ ivsF (iv) = −1, lim

v→∞−ivsF (−iv) = −1,

and F{0} = lim
v↓0

(−ivsF (iv)),

where F{·} always denotes the measure of {·} talked with respect to the measure

generated on R by F .

The terminology of Stieltjes transform is closely related with the classical mo-

ment problem, for example, in discussing the solubility and determinateness of the

power moment problem. It has a variety of generalizations and hence various forms
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of inversion formulas correspondingly. For the case of the Stieltjes transforms of

bounded variation functions, we introduce the following inversion formula.

Theorem 2.3.1. (Inversion formula)

Let F (x) be any function of bounded variation. Then for any continuity points a,

b of F (x),

F (b)− F (a) = lim
v↓0

1

π

∫ b

a
ImsF (u + iv)du. (2.3.2)

Proof. Note that

1

π

∫ b

a
ImsF (u + iv)du =

1

π

∫ b

a

∫ v

(x− u)2 + v2
dF (x)du

=
1

π

∫ ∫ b

a

v

(x− u)2 + v2
dudF (x)

=
1

π

∫ {
arctan

(
b− x

v

)
− arctan

(
a− x

v

)}
dF (x),

in which as v ↓ 0,

arctan

(
b− x

v

)
− arctan

(
a− x

v

)
→ π

2

(
1{a}(x) + 1{b}(x)

)
+ π1{(a,b)}(x).

It follows, by the dominated convergence theorem, we get

lim
v↓0

1

π

∫ b

a
ImsF (u + iv)du = F (b)− F (a)− 1

2
(F{b} − F{a}) .

In the case when a and b are continuity points of F (x), we get (2.3.2) immediately.

2
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As a consequence of this theorem, the following result was stated in Bai (1993a)

and rigorously proved in Silverstein and Choi (1995).

Theorem 2.3.2. Let F (x) be any function of bounded variation. If at x0 ∈ R,

ImsF (x0) = limz∈C+→x0
ImsF (z) exists, then F (x) is differentiable at x0 with

derivative equal to 1
π

limv↓0 ImsF (x0 + iv).

From Theorem 2.3.1, we also have the following result.

Theorem 2.3.3. For any two functions of bounded variation, say F (x) and

G(x), F ≡ G if and only if sF (z) = sG(z) for all z ∈ C+.

This theorem tells explicitly that there is a one-to-one correspondence between

a function of bounded variation and its Stieltjes transform.

Note that in probability theory, the characteristic function is a powerful means

of studying weak convergence of distribution functions. This is due to the famously

known continuity theorem regarding probability distribution functions and their

characteristic functions. We shall next construct in parallel a continuity theorem

regarding probability distribution functions and their Stieltjes transforms. This

continuity theorem is the theory foundation of applying the Stieltjes transform

method to seek limiting spectral distributions in the field of random matrix the-

ory. We first present the continuity theorem regarding characteristic functions.

Theorem 2.3.4. (Theorem 26.3 in Billingsley (1995))

Let µn, µ be probability measures with characteristic functions φn, φ. A necessary
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and sufficient condition for µn to converge weakly to µ is that φn(t) → φ(t).

Theorem 2.3.5. (Continuity theorem for Stieltjes transforms)

Suppose that {Fn(x)} is a sequence of probability distribution functions and that

F (x) is a probability distribution function. Then Fn(x) converges weakly to F (x)

if and only if sFn(z) → sF (z) for all z ∈ C+.

Proof. The necessity part follows directly from the equivalence of the weak

convergence of probability distribution functions and the convergence of integrals

of bounded continuous functions. The sufficiency part is established as follows.

Write z = u + iv. Letting

pv(x) =
v

π[x2 + v2]
,

then pv(x) is the density function of the Cauchy distribution Cv(x) with scale

parameter v and by Definition 2.3.1,

1

π
ImsFn(u + iv) =

∫
pv(x− u)dFn(x).

This implies ImsFn(z), viewed as a function of the real part u of z, is indeed the

density function of the convolution of Fn(x) and Cv(x).

We shall use the property of characteristic functions for the convolution of

distribution functions. For that purpose, let ψnv(t), φn(t) and φv(t) be respectively

the characteristic functions of 1
π
ImsFn(z), Fn(x) and Cv(x). Let ψv(t) and φ(t)

denote the characteristic functions of 1
π
ImsF (z) (function of argument u) and F (x).

Then ψnv(t) = φn(t)φv(t). Similarly, ψv(t) = φ(t)φv(t). Note that φv(t) =
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e−v|t|. Thus we get φn(t) = ev|t|ψnv(t) and φ(t) = ev|t|ψ(t). By hypothesis,

1

π
ImsFn(z) → 1

π
ImsF (z),

and so ψnv(t) → ψv(t) and

φn(t) → φ(t).

By the continuity theorem for characteristic functions, it follows immediately Fn

converges weakly to F . We complete the proof of the theorem. 2

In applying the theorem, it should be noted that the limit of the Stieltjes

transforms of probability distribution functions may not be the Stieltjes transform

of a probability distribution function. That is, supposing for the sequence of

probability distribution functions {Fn(x)}, we know sFn(z) converges to some limit

s(z), then we need to determine whether s(z) is the Stieljtes transform of some

probability distribution function F to conclude {Fn} converges weakly, whose limit

is F then.

This problem can be dismissed when {Fn} is known to be a tight sequence.

Since in this case by Theorem 2.3.3 and the necessity part of Theorem 2.3.5, the

hypothesis that sFn(z) converges will imply that all weak convergent subsequences

of {Fn(x)} have the same limiting distribution function. Thus by Lemma 2.1.7, it

follows {Fn(x)} converges weakly. Again by the necessity part of Theorem 2.3.5, it

must follow also the weak limit of {Fn(x)} takes the limit of sFn(z) as its Stieltjes

transform. Our assertion thus is true.

However, in some other cases, we may not be able to check for a sequence of
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convergent Stieltjes transforms, whether the corresponding sequence of probability

distribution functions is tight. Thus we introduce the following result which will

generally be useful in these cases.

Theorem 2.3.6. (Continuity theorem for Stieltjes transforms)

Suppose {Fn(x)} is a sequence of probability distribution functions. If limn→∞ sFn(z) =

s(z) for all z ∈ C+, then there exists a probability distribution function F with

Stieltjes transform s(z) if and only if

lim
v→∞(ivs(iv)) = −1, (2.3.3)

in which case Fn converges weakly to F .

This theorem is a result proven in Geronimo and Hill (2002). Its proof depends

on mainly showing that s(z) ≡ limn→∞ sFn(z) satisfies the following criterion which

may be of interest on its own right. Note that for any sequence of probability dis-

tribution functions {Fn}, if limn→∞ sFn(z) exists for a subset of C+ possessing a

limit point in C+, then it must exist for every point in C+ and if we denote by

s(z) its limit then s(z) must be analytic function on C+.

Theorem 2.3.7. (A criterion for Stieltjes transforms)

Let s(z) be a function analytic on C+. Then there exists a probability distribution

function F with Stieltjes transform s(z) if and only is s(z) satisfies that Ims(z) > 0

for each z ∈ C+ and that (2.3.3) holds.



76

We shall not prove this result but refer the reader to Geronimo and Hill (2002)

for a proof. We now introduce a convenient form of Theorem 2.3.6.

Theorem 2.3.8. (Continuity theorem for Stieltjes transforms)

Suppose {Fn(x)} is a sequence of probability distribution functions. Let K ⊂ C+

be an infinite set with a limit point in C+. If limn→∞ sFn(z) = s(z) for all z ∈ K,

then there exists a probability distribution function F with Stieltjes transform s(z)

if and only if (2.3.3) holds, in which case Fn converges weakly to F .

2.3.2 Use of the Stieltjes Transform Method

The Stieltjes transform method is very useful in the spectral analysis of large

random matrices. Many works appearing in recent years show that thorough

investigations of the spectral properties of random matrices can be carried out

systematically by means of the Stieltjes transform method. The results we re-

viewed in section 1.2.1 on the sample covariance matrices Bn ≡ 1
N

T 1/2
n X∗

nXnT
1/2
n

are relevant examples. Under certain conditions on the eigenvalues of Tn, based

on showing that as the imaginary part of z converges to 0, the Stieltjes transforms

of the empirical spectral distributions of Bn converge at an appropriate rate uni-

formly with respect to the real part of z over certain intervals, it was shown with

probability one, for any closed interval outside the support of the limiting spectral

distribution of Bn, there will be no eigenvalues of Bn appearing in this interval for
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all n sufficiently large (Bai and Silverstein (1998)).

The exact separation result proved that under appropriate conditions, for any

interval J ⊂ R+ on which no eigenvalues of Tn appear for all n large, there exists

some interval I exists such that with probability one for all n large the number

of eigenvalues of Bn on one side of I matching up with those of Tn on the same

side of J (Bai and Slilverstein (1999)). The proof of this result is easier to obtain

when c = lim n
N

is sufficient small. Then with the aid of the Stieltjes transforms

to associate intervals in the complement of the support of the limiting spectral

distribution of Bn with intervals in the complement of the support of the limiting

spectral distribution of Tn, the proof of the exact separation for a general limiting

ratio c was obtained through strategically increasing the numbers of columns of

X∗
n while keeping track of the movements of the eigenvalues of the resulting new

matrices Bn.

By using the Stieltjes transforms of Gn(x) ≡ n(FBn(x)−F cn,Hn(x)), viewed as

a random two dimensional process defined on a contour C of the complex plane,

to prove its tightness and investigate its limiting behavior, a central limit theorem

was established for statistics (
∫

f1(x)dGn(x), · · · ,
∫

fk(x)dGn(x)), where the fj(x)

are functions analytic on a certain open interval enclosing the support of Gn(x) for

all n large with probability one (Bai and Silverstein (2004)). Here if F c,H denotes

the limiting spectral distribution of Bn, then F cn,Hn denotes its parallel with c, H

replaced with cn, Hn ≡ F Tn ; H being the limiting spectral distribution of Tn.

Nonetheless, the type of the foregoing results need to be preceded by an ac-

complishment of using the Stieltjes transform method to find the limiting spectral
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distribution. For the class of random matrices Bn ≡ 1
N

T 1/2
n X∗

nXnT
1/2
n , this work

was done in Silverstein (1995), to which an important related work was Silverstein

and Bai (1995). Their works will be introduced later in this section as examples of

applying the Stieltjes transform method to seek the limiting spectral distribution

for a certain class of random matrices. At the present position, we shall discuss

the main principles concerning this problem.

Consider n×n Hermitian random matrices An defined on the probability space

(Ω,F , P ). Then we have the following basic result.

Theorem 2.3.9. (Basic rule)

If for each z ∈ C+ with probability one sF An (z) converges to a non-random limit,

then with probability one FAn converges vaguely to a non-random limit F , whose

Stieltjes transform satisfies sF (z) = limn→∞ sF An (z). If it is further known FAn

is tight with probability one or s(z) satisfies the criterion in Theorem 2.3.7, then

FAn converges weakly to F with probability one.

Proof. Choose a sequence {zm}∞m=1 ⊂ C+ which possesses a limit point in

C+. For each zm, there exists a subspace Ωzm with P (Ωzm) = 1 such that for any

ω ∈ Ωzm ,

lim
n→∞ sF An (zm) = s(zm). (2.3.4)

Let Ω0 = ∩∞m=1Ωzm . Then P (Ω0) = 1 and for any ω ∈ Ω0, (2.3.4) holds for all zm.

For each ω ∈ Ω0 fixed, consider any two subsequences of FAn(ω), say F
A

n
(1)
i

(ω)
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and F
A

n
(2)
i

(ω)

, which converge vaguely to limits F (1)
ω and F (2)

ω respectively. For

ease of reference, let us write F ω

n
(1)
i

≡ F
A

n
(1)
i

(ω)

and F ω

n
(2)
i

≡ F
A

n
(2)
i

(ω)

. Then by the

equivalence between vague convergence of probability distribution functions and

the convergence of functions f(x), bounded continuous and vanishing as |x| → ∞,

we have for every z ∈ C+,

lim
i→∞

sF ω

n
(1)
i

(z) = s
F

(1)
ω

(z), lim
i→∞

sF ω

n
(2)
i

(z) = s
F

(2)
ω

(z). (2.3.5)

From (2.3.4), this means s
F

(1)
ω

(zm) = s
F

(2)
ω

(zm) = s(zm), for all zm.

Note that s
F

(1)
ω

(z) and s
F

(2)
ω

(z) are analytic functions on C+. By elementary

properties of analytic functions, it follows s
F

(1)
ω

(z) = s
F

(2)
ω

(z) for all z ∈ C+. This

implies by Theorem 2.3.3 F (1)
ω = F (2)

ω and hence the vague convergence of the

whole sequence {FAn(ω)}. Such vague limit, for each ω ∈ Ω0, can be denoted by

Fω. Then for any ω1, ω2 ∈ Ω0, (2.3.4) further implies sFω1
(zm) = sFω2

(zm) = s(zm),

for all zm. Hence, by the same reason, we get sFω1
(z) = sFω2

(z) for all z ∈ C+ and

hence Fω1 = Fω2 .

Thus we see for every ω ∈ Ω0, FAn converges vaguely with the limit not de-

pendent on ω. Therefore, we get with probability one, FAn converges vaguely

to a non-random limit, which if we denote by F , then obviously for any ω ∈ Ω0,

sF (z) = limn→∞ sF An (z), for every z ∈ C+. The second part in the theorem follows

trivially. This completes the proof of the theorem. 2
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2.3.3 Examples of Obtaining LSD’s by Using the Stieltjes

Transform Method

We first note that if An is n × n Hermitian matrix, then the Stieltjes transform

of the empirical spectral distribution of An is equal to 1
n
tr(An − zI)−1, where

(An− zI)−1 is known as the resolvent of An. Also, hereafter we use the convention

that on the complex plane, the square root function
√

(·) denotes the branch that

has positive imaginary part on C+. We first introduce a proof given in Bai (1999)

for the Wigner matrices.

Let Ak denote the resulting matrix by deleting from An the kth row and the kth

column. Let βk denote the kth column vector of An with its kth element removed.

Let αk denote the kth row vector of An with its kth element removed. Then if

An and Ak are both nonsingular, it can be shown by using the inverse formula for

partitioned matrices

A−1
n (k, k) =

1

akk − α ′
k A−1

k βk

, (2.3.6)

where A−1
n (k, k) denotes the (k, k)th element of A−1

n and akk the (k, k)th element

of An.

Theorem 2.3.10. (LSD of the Wigner matrices)

Let Wn = [wij] be n × n Hermitian consisting of independent and identically dis-

tributed random variables with Ewij = 0, E|wij|2 = σ2. Then with probability one,

F
1√
n

Wn converges weakly to the semicircle law Fsc,σ with scale parameter σ whose
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Stieltjes transform is given by

sFsc,σ(z) =
1

2σ2

(
−z +

√
z2 − 4σ2

)
, for every z ∈ C+.

Proof. (a) With the aid of Lemmas 2.1.1-2.1.3 as well as the law of large

numbers , it can be shown without loss of generality, we may assume in Wn, wii = 0

and wij ≤ C for i 6= j, where C is some positive constant.

(b) Apply the Stieltjes transform method to the matrix 1√
n
Wn. Denote by sn(z)

the Stieltjes transform of F
1√
n

Wn . Then

sn(z) =
1

n

n∑

k=1

1

−z − 1
n
α∗k(n

− 1
2 Wk − zIn−1)−1αk

=
1

n

n∑

k=1

1

−z − σ2sn(z) + εk

≡ − 1

z + σ2sn(z)
+ δn(z),

where Wk denotes the resulting matrix of removing from Wn its kth row and kth

column and αk the kth column of Wn with its kth element removed.

(c) Show that almost surely

max
1≤k≤n

|εk| ≡ max
1≤k≤n

|σ2sn(z)− 1

n
α∗k(

1√
n

Wk − zIn−1)
−1αk| → 0,

which implies

|δn(z)| = | 1
n

n∑

k=1

−εk

(−z − σ2sn(z) + εk)(−z − σ2sn(z))
|

≤ 1

v2
max
1≤k≤n

|εk|

→ 0.
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(d) By calculation,

sn(z) =
1

2σ2

(
−z − δn(z)σ2 +

√
(z − δn(z)σ2)2 − 4σ2

)
,

from which it follows almost surely,

sn(z) → s(z) =
1

2σ2

(
−z +

√
z2 − 4σ2

)
,

which is the Stieltjes transform1 of the semicircle law Fsc,σ2 . 2

Theorem 2.3.11. (LSD of the sample covariance type matrices)

Assume that

(i) Xn = [xij] be N × n consisting of independent and identically distributed

random variables with Exij = 0, V ar(xij) = 1.

(ii) Tn = diag(τ1, · · · , τN) is real and with probability one F Tn converges weakly

to a probability distribution function H as n →∞.

(iii) An is n× n Hermitian and with probability one FAn converges vaguely to

a non-random limit Fa as n →∞.

(iv) Xn, Tn and An are independent.

(v) As n →∞, N = N(n) →∞ with n/N → c > 0.

Let Bn = An + 1
N

X∗
nTnXn. Then with probability one, FBn converges vaguely

to a non-random distribution function F , whose Stieltjes transform sF (z) satisfies

for each z ∈ C+,

sF (z) = sFa

(
z −

∫ tdH(t)

1 + ctsF (z)

)
. (2.3.7)

1For z ∈ C−, replace the sign ‘+’ before the square root by ‘−’.
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Proof. (a) Without loss of generality, one may assume further |xij| ≤ ln n and

‖Tn‖ ≤ τ (τ is some positive constant).

(b) Write µn = 1
N

∑N
j=1

τj

1+ n
N

τjs
FBn (z)

. Then from the resolvent identity,

sF Bn (z)

= sF An (z − µn)− 1

n
tr{(An − (z − µn)I)−1(

1

N
X∗

nTnXn − µnI)(Bn − zI)−1}.

Thus it is conceivable, from Theorem 2.3.9, the result will follow once it is shown

the second term on the right-hand side of the foregoing relation tends to zero.

(c) Write X∗
n = [x1, x2, · · · , xN ] and B(j) = Bn − 1

N
τjxjx

∗
j , where xj is the jth

column of X∗
n. Then 1

N
X∗

nTnXn = 1
N

∑N
j=1 τjxjx

∗
j ,

1

n
tr{ 1

N
X∗

nTnXn(Bn − zI)−1(An − (z − µn)I)−1}

=
1

N

N∑

j=1

1
n
τjx

∗
j(B(j) − zI)−1(An − (z − µn)I)−1xj

1 + 1
N

τjx∗j(B(j) − zI)−1xj

=
1

N

N∑

j=1

τj

1 + n
N

τjsF Bn (z)

(1 + n
N

τjsF Bn (z)) 1
n
x∗j(B(j) − zI)−1(An − (z − µn)I)−1xj

1 + 1
N

τjx∗j(B(j) − zI)−1xj

.

It follows that

1

n
tr{(An − (z − µn)I)−1(

1

N
X∗

nTnXn − µnI)(Bn − zI)−1}

=
1

N

N∑

j=1

τj

1 + n
N

τjsF Bn (z)

×
(

(1 + n
N

τjsF Bn (z)) 1
n
x∗j(B(j) − zI)−1(An − (z − µn)I)−1xj

1 + 1
N

τjx∗j(B(j) − zI)−1xj

− 1

n
tr{(Bn − zI)−1(An − (z − µn)I)−1}

)

≡ 1

N

N∑

j=1

τjdj

1 + n
N

τjsF Bn (z)
.
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(d) Show that max1≤j≤N |dj| → 0, almost surely. 2

Remark 4. If in Theorem 2.3.11, with the other conditions unchanged but we

have V ar(xij) = σ2, then the Stieltjes transform of the limiting spectral distribu-

tion of Bn will satisfy

sF (z) = sFa

(
z − σ2

∫ tdH(t)

1 + cσ2tsF (z)

)
. (2.3.8)

In fact, for any Hermitian matrix An, we have sF An (z) = asF aAn (az), for any

constant a > 0. It follows sF An/σ2 (z) → σ2sF a(σ2z). Write B̃n = 1
σ2 Bn and denote

by F̃ its limiting spectral distribution. Then applying Theorem 2.3.11 to B̃n gives

sF̃ (z) = σ2sFa

(
σ2z − σ2

∫ tdH(t)

1 + ctsF̃ (z)

)
.

Again, Bn = σ2B̃n implies sF̃ (z) = σ2sF (σ2z). It follows (2.3.8) immediately.

Remark 5. Suppose in Theorem 2.3.11, V ar(xij) = σ2. If An = On and

Tn = In, then Bn reduces to the ordinary sample covariance matrix Sn = 1
N

X∗
nXn,

for which the limiting spectral distribution is known to be F c,σ2

M−P , the Marcěnko-

Pastur distribution with scale parameter σ and ratio parameter c. Then (2.3.8)

implies the Stieltjes transform2 of F c,σ2

M−P , denoted by s(z) simply, is given by for

z ∈ C+,

s(z) =
−z + (1− c)σ2 +

√
[z − (1 + c)σ2]2 − 4cσ4

2cσ2z
. (2.3.9)

2For z ∈ C−, replace the sign ‘+’ before the square root in the nominator by ‘−’.



85

To see this, we note that with sFa(z) = −1
z

and H{1} = 1, (2.3.8) gives us the

following equation:

cσ2z[s(z)]2 + [z − (1− c)σ2]s(z) + 1 = 0.

This equation has two solutions, but for z ∈ C+, only one of them satisfies the

condition in Theorem 2.3.7, which is just the one in (2.3.9).

Theorem 2.3.12. (LSD of the sample covariance matrices)

Assume that

(i) Xn = [xij] is N × n consisting of independent and identically distributed

random variables with Exij = 0, V ar(xij) = 1.

(ii) Tn is n × n Hermitian nonnegative definite and with probability one F Tn

converges weakly to a probability distribution function H as n →∞.

(iii) Xn, Tn are independent.

(iv) As n →∞, N = N(n) →∞ with n/N → c > 0.

Let Bn = 1
N

T 1/2
n X∗

nXnT 1/2
n . Then with probability one, FBn converges weakly

to a non-random distribution function F , whose Stieltjes transform sF (z) satisfies

s(z) =
∫ 1

t(1− c− czs(z))− z
dH(t) (2.3.10)

in the sense that, for each z ∈ C+, s(z) = sF (z) is the unique solution to (2.3.10)

in D ≡ {s(z) ∈ C+ : −z−1(1− c) + cs(z) ∈ C+}.
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Proof. Note that we have the relations

FBn =
(
1− n

N

)
I[0,∞) +

n

N
FBn ,

sF Bn (z) = −z−1
(
1− n

N

)
+

n

N
sF Bn (z),

where Bn = 1
N

XnTnX∗
n. Then FBn and FBn converge simultaneously. Let F be

the limiting spectral distribution of FBn . It suffices to show

sF (z) =
∫ 1

−z − zsF (z)t
dH(t). (2.3.11)

For notational convenience, write sn(z) = sF Bn (z) and sn(z) = sF Bn (z). The proof

can be obtained by following the next steps.

(a) Let X∗
n = [x1, x2, · · · , xN ], where xj denotes the jth column of X∗

n. Let

rj = 1√
N

T 1/2
n xj and B(j) = Bn − rjr

∗
j . Then Bn =

∑N
j=1 rjr

∗
j = B(j) + rjr

∗
j and by

the resolvent identity of Lemma 2.1.9

1

n
tr{Bn(Bn − zI)−1} =

1

n

N∑

j=1

r∗j (B(j) − zI)−1rj

1 + r∗j (B(j) − zI)−1rj

,

which implies

1

n
tr(Bn − zI)−1 = −z−1

(
1− N

n

)
− z−1 1

n

N∑

j=1

1

1 + r∗j (B(j) − zI)−1rj

,

and so

sn(z) = −z−1 1

N

N∑

j=1

1

1 + r∗j (B(j) − zI)−1rj

.

(b) Show that

1

n
tr{Bn(Bn − zI)−1(−zI − zsn(z)Tn)−1}

=
1

n

N∑

j=1

r∗j (B(j) − zI)−1(−zI − zsn(z)Tn)−1rj

1 + r∗j (B(j) − zI)−1rj

.
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(c) By the resolvent identity

1

n
tr(−zI − zsn(z)Tn)−1 − 1

n
tr(Bn − zI)−1

=
1

n
tr{(−zI − zsn(z)Tn)−1(Bn + zsn(z)Tn)(Bn − zI)−1}

=
1

n
tr{Bn(Bn − zI)−1(−zI − zsn(z)Tn)−1}

+zsn(z)
1

n
tr{Tn(Bn − zI)−1(−zI − zsn(z)Tn)−1}

≡ 1

n

N∑

j=1

εj

1 + r∗j (B(j) − zI)−1rj

,

where

εj ≡ r∗j (B(j) − zI)−1(−zI − zsn(z)Tn)−1rj

− 1

N
tr{Tn(Bn − zI)−1(−zI − zsn(z)Tn)−1}.

(d) Show that max1≤j≤N |εj| → 0 almost surely. Since | 1
1+r∗j (B(j)−zI)−1rj

| ≤ |z|
v

,

it follows then almost surely

1

n
tr(−zI − zsn(z)Tn)−1 − 1

n
tr(Bn − zI)−1 → 0.

(e) Based on the knowledge that the equation (2.3.10) has at most one solution

in the set D, by discussing any convergent subsequence of sn(z) must converge to

a point in D satisfying equation (2.3.10), it follows the convergence of the whole

sequence of {sn(z)} to a such limit. By Theorem 2.3.9, with a further result that

{FBn} is tight with probability one, the theorem is proven. 2

Now that we have proven the existence of the limiting spectral distribution, we

can proceed to investigate its analytic properties. The following result was proven
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in Silverstein and Choi (1995).

Theorem 2.3.13. (Analytic properties of the LSD)

Let F be the limiting spectral distribution obtained in Theorem 2.3.12. Then for

all x ∈ R, x 6= 0,

lim
z∈C+→x

sF (z) ≡ s0(x)exists.

The function s0(x) is continuous on R/{0}. Consequently, F has a continuous

derivative on R/{0} given by f(x) = 1
π
Ims0(x). The density f is analytic (pos-

sesses a power series expansion) for every x 6= 0 for which f(x) > 0. Moreover,

for these x, πf(x) is the imaginary part of the unique s ∈ D satisfying

x = −1

s
+ c

∫ tdH(t)

1 + ts
.

Now we consider the multivariate F -matrices as example to illustrate the use

of Theorems 2.3.11-2.3.13. Let us firstly introduce the definition of multivariate

F -matrices. Let Bn = SnV
−1
n with Sn = 1

N
X∗

nXn and Vn = 1
N ′Y

∗
n Yn. Assume that

Xn = [xij] is N × n consisting of independent standard normal random variables

and that Yn = [yij] is N ′ × n consisting of independent standard normal random

variables. Also assume that as n → ∞, N = N(n) → ∞ and N ′ = N ′(n) → ∞

with n/N → y > 0 and n/N ′ → y′ ∈ (0, 1). Then Bn is said to be a multivariate

F -matrix.
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By Theorem 2.3.11 for An = On and Tn = In, with probability one F Vn converge

weakly to the Marcěnko-Pastur distribution with ratio index y′ and scale parameter

1, which is simply denoted here by Fy′ . From (2.3.9) (see its footnote), for z ∈ C−,

the Stieltjes transform of Fy′ is given by

sy′(z) =
−z + 1− y′ −

√
(1 + y′ − z)2 − 4y′

2y′z
. (2.3.12)

Let Tn = V −1
n . Then we have with probability one F Tn(x) = F Vn{[ 1

x
,∞)}1(0,∞)(x)

and sF Tn (z) = −z−1−z−2sF Vn (z−1) for all n large. It follows that with probability

one, F Tn converges weakly to H(x) =
(
1− Fy′

(
1
x

))
1(0,∞)(x) and that for each

z ∈ C+ the Stiejtjes transform of H is given by

sH(z) =
z−2 − z−1(1 + y′) + z−1

√
(1 + y′ − z−1)2 − 4y′

2y′

=
1− z − zy′ +

√
(1 + z − zy′)2 − 4z

2y′z2
. (2.3.13)

Noting that Bn has the same eigenvalues as T 1/2
n SnT

1/2
n , by Theorem 2.3.12,

we have with probability 1, the limiting spectral distribution of the multivariate

F -matrices exists. More specifically, let Fy,y′ denote this limiting spectral distri-

bution. Then for each z ∈ C+, it follows that sFy,y′ (z) satisfies equation (2.3.10),

which can be equivalently written as

s(z) =
1

1− y − yzs(z)
sH

(
− 1

−z−1(1− y) + ys(z)

)
,

where sH(·) is given by (2.3.13) and −z−1(1 − y) + ysFy,y′ (z) ∈ C+. Using the

expression given by (2.3.13) yields

(y′z2 + yz)s2
Fy,y′

(z) + [z(1 + y′)− (1− y)]sFy,y′ (z) + 1 = 0,
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which gives two analytic solutions

s1,2(z) =
(1− y)− z(1 + y′)±

√
[z(1− y′) + (1− y)]2 − 4z

2z(y + y′z)
. (2.3.14)

Compute that

ivs1(iv) =
(1− y)− iv(1 + y′) +

√
[iv(1− y′) + (1− y)]2 − 4iv

2(y + iy′v)

=
(1−y)

v
− i(1 + y′) +

√
[i(1− y′) + (1−y)

v
]2 − 4i 1

v

2(y
v

+ iy′)
.

Letting v →∞, [i(1− y′) + (1−y)
v

]2 − 4i 1
v
→ −(1− y′)2. By our convention on the

square root function
√

(·) clarified at the beginning of this section,
√

[i(1− y′) + (1−y)
v

]2 − 4i 1
v
→

(1 − y′)i. It follows limv→∞ ivs1(iv) = −1. Similarly, we have limv→∞ ivs2(iv) =

− 1
y′ < −1. By Theorem 2.3.7, s2(z) cannot be the Stieltjes transform of any prob-

ability distribution function. Thus for each z ∈ C+, sFy,y′ (z) is given by s1(z).

However, it can be shown for for each z ∈ C−, sFy,y′ (z) is given by s2(z).

From Theorem 2.3.13, we can further consider the density of Fy,y′ . Then we

first calculate its possible point mass at the origin, which by Remark 3 in the

present section must be equal to

lim
v↓0

(−ivsFy,y′ (iv)) =
(1− y) + |1− y|

2y
.

Now for each x ∈ R/{0}, by Theorem 2.3.13,

d

dx
Fy,y′(x) = lim

v↓0
1

π
ImsFy,y′ (x + iv). (2.3.15)
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Since

lim
v↓0

Im

(
(1− y)− z(1 + y′)

2z(y + y′z)

)
= 0,

lim
v↓0

Im
(√

[z(1− y′) + (1− y)]2 − 4z
)

=





√
4x− [x(1− y′) + (1− y)]2, if [x(1− y′) + (1− y)]2 < 4x,

0, if [x(1− y′) + (1− y)]2 ≥ 4x,

we get for each x ∈ R/{0},

d

dx
Fy,y′(x) =





√
4x−[x(1−y′)+(1−y)]2

2πx(y+y′x)
, if [x(1− y′) + (1− y)]2 < 4x,

0, if [x(1− y′) + (1− y)]2 ≥ 4x.

(2.3.16)

Thus we obtained the density function of the limiting spectral distribution of mul-

tivariate F -matrices.

Remark 6. Given any z ∈ C+, since in the expression of s1(z) in (2.3.14)

if y = 0, then we get the Stieltjes transform of the limiting spectral distribution

of the matrices V −1
n , we may in this sense say that the limiting spectral distribu-

tion of the inverse matrices of the sample covariance matrices is a special case of

the limiting spectral distribution of the multivariate F -matrices. Similarly, taking

y′ = 0 in the expression of sFy,y′ (z) yields the Stieltjes transform of the Marcĕnko-

Pastur distribution with scale parameter 1 and ratio parameter y. So we are also

allowed to say the limiting spectral distribution of the sample covariance matrices

is a special case of the limiting spectral distribution of the multivariate F -matrices.

In the next chapter, we shall apply the Stieltjes transform method to the class
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of the Wigner type random matrices. We shall present in details our derivations of

the results introduced in Section 1.1.4, in which Theorem 1.1.3 is concerned with

the density function of the limiting spectral distribution in view that the results in

Theorems 1.1.1.and 1.1.2 furnish us respectively the existence and differentiability

of the limiting spectral distribution.



Chapter 3

Wigner Type Random Matrices

The present chapter is concerned with the limiting spectral distribution of the

Wigner type random matrices defined in Definition 1.1.1. Mainly, we shall concern

ourselves with the following results for the Wigner type random matrices:

• The almost sure existence of the limiting spectral distribution proven by

means of the Stieltjes transform method.

• Some analytic properties of the limiting spectral distribution.

• Calculating the density function of the limiting spectral distribution for two

important cases of given Tn.

• Moment method proof of the existence of the limiting spectral distribution.

The organization of this chapter is as follows. In Section 3.1, we prove some

preliminary results necessary for proving Theorem 1.1.1. In Section 3.2, we prove

Theorem 1.1.1 by means of the Stieltjes transform method. In Section 3.3, we

93
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derive the limiting spectral distribution possesses those analytic properties outlined

in Theorem 1.1.2. In Section 3.4, we demonstrate a method of calculating the

density of the limiting spectral distribution and compute the two density functions

given in Theorem 1.1.3. In Section 3.5, we present an alternative proof of the

existence of the limiting spectral distribution by using the moment method.

In the remainder of the thesis, K denotes a constant and may take on different

values from one appearance to the next; for any complex number z, Re(z) and

Im(z) denote respectively its real and imaginary part.

3.1 Preliminary Results.

This section is mainly devoted to deriving preliminary results necessary for proving

Theorem 1.1.1.

3.1.1 Two Basic Lemmas: Tightness and Unique Solvabil-

ity

Lemma 3.1.1. With probability one, {FAn} is a tight sequence.

Proof. From Lemma 2.1.8, we have for any two positive numbers x1 and x2,

FAn{λ : |λ| > x1x2} = F
√

AnA∗n{(x1x2,∞)}

≤ F

√
( 1√

n
Wn)2{(x1,∞)}+ 2F T

1/2
n {(√x2,∞)}

≤ F
1√
n

Wn{(−∞,−x1) ∪ (x1,∞)}+ 2F Tn{(x2,∞)}. (3.1.1)
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Under assumption (i) of Theorem 1.1.1, it is known F
1√
n

Wn converges almost surely

to the semicircle law (Bai (1999)). Thus with probability one, {F 1√
n

Wn} is tight.

Assumption (ii) guarantees F Tn is tight with probability one. Thus from (3.1.1),

we get with probability one, {FAn} is tight. 2

To implement the Stieltjes transform method, we need to show the unique solv-

ability of the system of equations (1.1.1) in Theorem 1.1.1, which is obviously a

consequence of the next result.

Lemma 3.1.2. For each z ∈ C+, equation

p(z) =
∫ t

−z − tp(z)
dH(t), (3.1.2)

has at most one solution in the set B ≡ {p ∈ C : Imp ≥ 0}.

Proof. It is clear p = 0 is the only solution to equation (3.1.2) in the case

H(t) = 1{0}(t). Now assume H(t) 6= 1{0}(t). For any z = z1 + iz2 with z2 > 0,

fixed. Let p = p1 + ip2 ∈ B satisfy equation (3.1.2). Then we have

p2 = z2

∫ t

|z + tp|2dH(t) + p2

∫ t2

|z + tp|2dH(t). (3.1.3)

Since z2 > 0 and H{0} < 1, the first term on the right hand side is positive. This

implies p2 > 0 and

∫ t2

|z + tp|2dH(t) < 1. (3.1.4)
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Suppose for the fixed z, there is another p̃ = p̃1 + ip̃2 ∈ B satisfying equation

(3.1.2). Then

p− p̃ =
∫ t2

(z + tp)(z + tp̃)
dH(t)(p− p̃). (3.1.5)

If p 6= p̃, by using Holder’s inequality and (3.1.4), we have

∫ t2

(z + tp)(z + tp̃)
dH(t)

< {
∫ t2

|z + tp|2dH(t)} 1
2{

∫ t2

|z + tp̃|2dH(t)} 1
2

< 1. (3.1.6)

It follows from (3.1.5) p = p̃. The proof is complete. 2

Note that Theorem 1.1.1 asserts the existence of a such function g(z) ∈ B sat-

isfying equation (3.1.2). The meaning of g(z) will be clear later, whereas some of

its basic properties can be derived from the equation.

Remark 1. If H(t) 6= 1{0}(t), then g(z) ∈ C+ for every z ∈ C+; otherwise,

g(z) ≡ 0. This is a consequence of the fact that if there exists some z∗ ∈ C+ such

that Img(z∗) = 0, then H(t) ≡ 1{0}(t). To see this, let g∗ = g(z∗). If Img(z∗) = 0,

then
∫

t/|z∗+ tg∗|2dH(t) = 0, which implies H(t) = 1{0}(t) since H{(−∞, 0)} = 0.
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3.1.2 Simplification of Assumptions by Using Truncation

and Centralization Technique

We shall see in the following, with the aid of the truncation and centralization

technique, in proving Theorem 1.1.1, we can assume three more conditions hold

without loss of generality. These three conditions are summarized as follows.

Note that it can be chosen a sequence of numbers δn such that δn → 0 as

n →∞ while condition (1.1) remains true with δ replaced by δn.

Assumption 3.1.1.

(i) There exists some constant τ such that supn ‖Tn‖ ≤ τ .

(ii) Ewij = 0, |wij| ≤ δn

√
n, 0 ≤ 1

δ2
nn2

∑
ij(1− E|wij|2) → 0 as n →∞.

(iii) The matrices Tn are non-random.

Consider condition (i) in Assumption 3.1.1. For any constant τ > 0, denote

by T̃n the resulting matrix of replacing in the spectral decomposition of Tn those

eigenvalues bigger than τ with 0. Then ‖T̃n‖ ≤ τ and

F T̃n(t) = 1(t > τ) + {F Tn(t) + 1− F Tn(τ)}1(0 ≤ t ≤ τ).

As τ is a continuity point of H(t), with probability one, F T̃n(t) converges weakly

to

Hτ (t) = 1(t > τ) + {H(t) + 1−H(τ)}1(0 ≤ t ≤ τ). (3.1.7)

For brevity, in the remainder, although we shall not clarify, the constant τ is always
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taken to be a continuity point of H.

Define Ãn = (1/
√

n)T̃ 1/2
n WnT̃

1/2
n . To have some intuition on the relationship

between F Ãn and FAn , we use Lemma 2.1.1 to see

‖FAn − F Ãn‖ ≤ 2
(
1− F Tn(τ)

)
→ 2 (1−H(τ)) , (3.1.8)

which tends to 0 as τ tends to infinity.

Suppose Theorem 1.1.1 holds for Ãn. If H has a bounded support, then if τ

is bigger than the largest value in the support of H, we have Hτ (t) = H(t) and

1−H(τ) = 0. From Lemma 3.1.2, gτ (z) are the same for all τ large. Hence sτ (z) are

the same for all τ large. From the inversion formula in Theorem 2.3.1, this implies

Fτ are the same for all τ large and hence are properly denoted by F . On the other

hand, from (3.1.8) we have for all τ large, with probability one lim supn→∞ ‖FAn−

F Ãn‖ = 0, which implies FAn and F Ãn converges simultaneously to the same limit,

i.e. F . Therefore, it follows when H has a bounded support, Theorem 1.1.1 must

also hold for An.

We proceed to consider the case when H has an unbounded support. Denote

by Fτ the limiting spectral distribution of F Ãn and sτ (z) the stieltjes transform

of Fτ . From Theorem 1.1.1, for each z ∈ C+, there is an associating function say

gτ (z) such that (sτ (z), gτ (z)) is the unique point in the set {(s(z), p(z)) : Ims(z) >

0, Imp(z) ≥ 0} satisfying the relations





sτ (z) = −z−1 − z−1[gτ (z)]2,

gτ (z) =
∫ t
−z−tgτ (z)

dHτ (t).

(3.1.9)

In this case, we firstly prove as τ tends to infinity, for every z ∈ C+, sτ (z) and
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gτ (z) converge, the vector of their limits satisfying (1.1.1).

Write gτ (z) = g1τ (z) + ig2τ (z) and z = z1 + iz2 in (3.1.9). Then we have

g2τ (z) = z2

∫ t

|z + tgτ (z)|2dHτ (t) + g2τ (z)
∫ t2

|z + tgτ (z)|2dHτ (t). (3.1.10)

Since in this case we must have H 6= 1[0,∞), as in the proof of Lemma 3.1.2, we

deduce that g2τ (z) > 0 and

∫
t2/|z + tgτ (z)|2dHτ (t) < 1. (3.1.11)

By Hölder’s inequality and the second equation in (3.1.9), it follows that |gτ (z)| <

1.

For any convergent subsequence {gτm(z)}, denote its limit by q(z). Then

Im(q(z)) ≥ 0. If Im(q(z)) = 0, since z2 > 0 is fixed, from (3.1.10) and (3.1.11), as

m →∞,

∫ t

|z + tgτm(z)|2dHτm(t) → 0. (3.1.12)

Further, by (3.1.9), it follows

g1τ (z) = −z1

∫ t

|z + tgτ (z)|2dHτ (t)− g1τ (z)
∫ t2

|z + tgτ (z)|2dHτ (t),

which implies

[1 +
∫ t2

|z + tgτ (z)|2dHτ (t)]g1τ (z) = −z1

∫ t

|z + tgτ (z)|2dHτ (t).

In view of (3.1.12), we get limm→∞ g1τm(z) = 0. This means if Im(q(z)) = 0, then

q(z) = 0. Turn back to consider (3.1.12). Noting the relationship between H(t)
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and Hτ (t), we have for all τm large

∫

0≤t≤M

t

|z + tgτm(z)|2dH(t) ≤
∫

0≤t≤τm

t

|z + tgτm(z)|2dH(t)

=
∫ t

|z + tgτm(z)|2dHτm(t) → 0. (3.1.13)

On the other hand, when 0 ≤ t ≤ M , 0 ≤ t/|z + tgτm(z)|2 ≤ M/z2
2 so that the

dominated convergence theorem (d.c.t.) is applicable. It follows

∫

0≤t≤M

t

|z + tgτm(z)|2dH(t) → 1

|z|2
∫

0≤t≤M
tdH(t).

Combining this with (3.1.13), we get
∫
0≤t≤M tdH(t) = 0. Therefore, H(0,M ] = 0.

Since M is arbitrary, we get H(0,∞) = 0, or equivalently, H{0} = 1. This

obviously contradicts the assumption that H has an unbounded support. Therefore

we assert that Im(q(z)) > 0.

Now we let τ = τm → ∞ in (3.1.9). Since | t
−z−tgτm (z)

| ≤ 1
g2τm (z)

→ 1
Im(q(z))

and thus is bounded, the dominated convergence theorem is applicable. Thus

from the second equation of (3.1.9), we get q(z) satisfies (3.1.2) for each z ∈ C+.

Note that {τm} is arbitrarily chosen. From Lemma 3.1.2, it follows that {gτ (z)}

converges, the limit satisfying equation (3.1.2), or equivalently, the second equation

in (1.1.1). From the first equation of (3.1.9), {sτ (z)} also converges. Denote the

limits of {sτ (z)} and {gτ (z)} by s(z) and g(z), respectively. Then (s(z), g(z))

satisfies (1.1.1).

Let sn(z) and s̃n(z) denote respectively the Stieltjes transforms of FAn and

F Ãn . To show Theorem 1.1.1 must also hold for An, by Theorem 2.3.9 and Lemma
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3.1.1, we only need show further sn(z) converges to s(z). We firstly show

lim sup
n→∞

|sn(z)− s̃n(z)| ≤ (
4

z2

+
2M

z2
2

)(1−H(τ)). (3.1.14)

From the proof of Lemma 3.1.1, we can choose M such that for all n,

max(FAn{λ : |λ| > M}, F Ãn{λ : |λ| > M}) < 1−H(τ).

It follows then

∫

|λ|>M

1

|λ− z|d{F
An(λ) + F Ãn(λ)} ≤ 2

z2

{1−H(τ)}.

Then, by integration by parts,

∫

|λ|≤M

1

λ− z
d{FAn(λ)− F Ãn(λ)}

= | 1

M − z
{FAn(M)− F Ãn(M)} − 1

−M − z
{FAn(−M)− F Ãn(−M)}

+
∫

|λ|≤M

1

(λ− z)2
{FAn(λ)− F Ãn(λ)}dλ|

≤ (
2

z2

+
2M

z2
2

)‖FAn − F Ãn‖.

Therefore,

|sn(z)− s̃n(z)| ≤ (
2

z2

+
2M

z2
2

)‖FAn − F Ãn‖+
2

z2

{1−H(τ)}.

From (3.1.8), (3.1.14) follows.

Using the triangular inequality, (3.1.14) and the fact lim s̃n(z) = sτ (z), we get

for any τ , lim supn→∞ |sn(z) − s(z)| ≤ ( 4
z2

+ 2M
z2
2

)(1 − H(τ)) + |sτ (z) − s(z)|. Let

τ → ∞. Since sτ (z) − s(z) → 0, it follows sn(z) → s(z) almost surely. Hence we

arrive at the conclusion that in proving Theorem 1.1.1 we may assume condition

(i) in Assumption 3.1.1 holds without generality.
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Now we consider condition (ii) in Assumption 3.1.1. Assume that now An

satisfies condition (i) in Assumption 3.1.1. Find sequence δn ↓ 0 so that condition

(1.1) still holds when δ is replaced by δn. Let ŵij = wijI[|wij| ≤ δn

√
n] and w̃ij =

ŵij −Eŵij. Define Ân and Ãn in parallel to An but with wij respectively replaced

by ŵij and w̃ij. Let E|w̃ij|2 = σ2
ij. Then it is straightforward to show σ2

ij ≤ 1 and

1
δ2
nn2

∑
ij(1 − σ2

ij) → 0. Thus Ãn satisfies conditions (i), (ii) in Assumption 3.1.1.

Suppose Theorem 1.1.1 holds for Ãn.

By the rank inequality in Lemma 2.1.1, we have

‖FAn − F Ân‖ ≤ 1

n
rank(Wn − Ŵn) ≤ 1

n

∑

ij

I[|wij| > δn

√
n].

Using Bernstein’s inequality in Lemma 2.1.3, noting that

1

n

∑

ij

P (|wij| > δn

√
n) ≤ 1

δ2
nn

2

∑

ij

E|wij|2I[|wij| > δn

√
n] → 0,

we have

P (
1

n

∑

ij

I[|wij| > δn

√
n] > ε)

≤ P (
∑

ij

{I[|wij| > δn

√
n]− P (|wij| > δn

√
n)} >

nε

2
)

≤ P (
∑

i≤j

{I[|wij| > δn

√
n]− P (|wij| > δn

√
n)} >

nε

4
)

≤ 2exp{− (nε
4

)2

2(nε
4

+ nε
2

)
}

≤ 2exp{−(
ε

24
)n}.

By Borel-Cantelli’s lemma in Lemma 2.1.5,, this implies with probability 1, 1
n

∑
ij I[|wij| >

δn

√
n] → 0 and so ‖FAn − F Ân‖ → 0.
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On the other hand, from Lemma 2.1.2 (the difference inequality), we have

L3(F Ân , F Ãn) ≤ 1

n
tr(Ân − Ãn)2

=
1

n2
tr(T 1/2

n (Ŵn − W̃n)Tn(Ŵn − W̃n)T 1/2
n )

≤ τ 2

n2

∑

ij

|Eŵij|2 =
τ 2

n2

∑

ij

|EwijI[|wij| > δn

√
n]|2

≤ τ 2

n2

∑

ij

E|wij|2I[|wij| > δn

√
n] → 0.

The above results assert that the empirical spectral distributions of Ãn and An

converge simultaneously to the same limit. Therefore Theorem 1.1.1 must also be

true for An. This guarantees in proving Theorem 1.1.1, without loss of generality,

we may assume further condition (ii) of Assumption 3.1.1 holds.

Consider condition (iii). Given any ω ∈ Ω, Tn ≡ Tn(ω) is non-random. Define

random matrix Aω
n ≡ 1√

n
T 1/2

n (ω)WnT 1/2
n (ω) in which the matrix Wn is random.

Assumption (ii) in Theorem 1.1.1 guarantees there is a subspace Ω0 with P (Ω0) = 1

such that for every ω ∈ Ω0, F Tn converges weakly to H. Suppose, for each ω ∈ Ω0,

Theorem 1.1.1 holds for Aω
n. Since H, the limiting spectral distribution of Tn(ω),

does not depend on the given ω, the limiting spectral distribution of Aω
n does not

depend on ω either and hence can be denoted by F . Then for each z ∈ C+,

EsF Aω
n (z) → sF (z), (3.1.15)

and by Lemma 3.2.2 of the present chapter,

E|sF Aω
n (z)− EsF Aω

n (z)|4 ≤ Kn−2,

where K is a constant depending only on τ and v = Im(z).
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Note that since Wn is independent of Tn, we have for any ω ∈ Ω

E(sF An (z)|Tn = Tn(ω)) = EsF Aω
n (z) (3.1.16)

and

E|sF An (z)− E(sF An (z)|Tn = Tn(ω))|4

= E
{
E

(
|sF An (z)− E(sF An (z)|Tn = Tn(ω))|4|Tn = Tn(ω)

)}

= E
(
E|sF Aω

n (z)− EsF Aω
n (z)|4

)

=
∫

Ω0

E|sF Aω
n (z)− EsF Aω

n (z)|4dP (ω)

≤ Kn−2. (3.1.17)

By (3.1.15), (3.1.16), and P (Ω0) = 1, E(sF An (z)|Tn = Tn(ω)) → sF (z) almost

surely. From (3.1.17), sF An (z)−E(sF An (z)|Tn = Tn(ω)) → 0 almost surely. Thus,

sF An (z) → sF (z) almost surely. That is, Theorem 1.1.1 must also hold for An.

Therefore, in proving Theorem 1.1.1, adding condition (iii) in Assumption 3.1.1

does not reduce the generality either.

3.2 Existence of the LSD: Proof of Theorem 1.1.1

by Using the Stieltjes Transform Method

As we have mentioned, by Theorem 2.3.9 and Lemma 3.1.1, to finish the proof of

Theorem 1.1.1, it suffices to show for each z ∈ C+, sn(z) converges almost surely

to a non-random limit satisfying the system of equations (1.1.1). The main target

of the present section is then with the aid of the Stieltjes transform method, to
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accomplish this task.

In this section, some basic properties of matrices will be used. These include

for any matrix B and vectors a and b such that a∗Bb is well defined, the inequality

|a∗Bb| ≤ ‖B‖(a∗a)1/2(b∗b)1/2, (3.2.1)

and for any invertible matrix A, the identity

(A + αβ∗)−1 = A−1 − A−1αβ∗A−1

1 + β∗A−1α
. (3.2.2)

Lemma 3.2.1. Let Gn(z) = (An − zI)−1, sn(z) = (1/n)trGn(z) and

gn(z) = (1/n)tr{TnGn(z)}. Then for all n and every z ∈ C+, |sn(z)| ≤ 1/v,

|gn(z)| ≤ τ/v and Imgn(z) ≥ 0.

Proof. Note that for any Hermitian matrix B, we have ‖(B − zI)−1‖ ≤ 1/v.

Thus obviously |sn(z)| ≤ 1/v. It can also be seen |gn(z)| ≤ ‖Tn‖‖Gn(z)‖ ≤ τ/v.

We now show Imgn(z) ≥ 0. Indeed, let Λ = diag((λ1 − z)−1, · · · , (λn − z)−1),

∆ = diag(µ1, · · · , µn), where λi and µi denote the eigenvalues of An and Tn,

respectively. Then there exist unitary matrices P and Q such that Gn(z) = P ∗ΛP

and Tn = Q∆Q∗. Let U = PQ. Then

gn(z) =
1

n
tr{∆U∗ΛU} =

1

n

n∑

i,j=1

|uij|2(λi − z)−1µj.

Thus

Imgn(z) =
1

n

n∑

i,j=1

|uij|2µj
v

|λi − z|2 ≥ 0.
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2

We next prove the following result, which is a consequence of Burkholder’s in-

equality in Lemma 2.1.4.

Now we introduce some notations. Throughout the remainder of this section,

we shall use v to denote the positive imaginary part of a complex number z ∈ C+.

We also denote T 1/2
n = [ξ1, · · · , ξn] with ξi the ith column of T 1/2

n . Then we have

An =
∑

i,j

(1/
√

n)wijξiξ
∗
j . (3.2.3)

For any i 6= j, define Aij and Bij by

An = Bij + (1/
√

n)wijξiξ
∗
j (3.2.4)

= Aij + (1/
√

n)wijξiξ
∗
j + (1/

√
n)wijξjξ

∗
i . (3.2.5)

For 1 ≤ i ≤ n, define Aii = An − (1/
√

n)wiiξiξ
∗
i .

Then Aij is the matrix obtained by taking out from An the component involving

wij and wij. Obviously, Aij is Hermitian so that, for any z ∈ C+, (Aij − zI)−1 al-

ways exists and ‖(Aij−zI)−1‖ ≤ 1/v. While, Bij is not Hermitian, but we can show

that (Bij − zI)−1 also exists and ‖(Bij − zI)−1‖ is also bounded. Indeed, from the

identity that for any nonsingular matrix A, det(A+ab∗) = det(A)(1+ b∗A−1a), we

have det(Bij − zI) = (1− cij) det(An− zI), where cij = (wij/
√

n)ξ∗j (An− zI)−1ξi.

Since |cij| ≤ δn(τ/v) → 0, (An − zI)−1 exists implying det(An − zI) 6= 0, we

get for all n large, det(Bij − zI) 6= 0 and so (Bij − zI)−1 exists. Further, from
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(Bij − zI)−1 = (Aij − zI)−1−n−1/2wij(Aij − zI)−1ξjξ
∗
i (Bij − zI)−1, it follows that

‖(Bij − zI)−1‖ ≤ 1/(v − δnτ) and thus is uniformly bounded for all n large.

Lemma 3.2.2. Under the assumptions in Theorem 1.1.1 and Assumption

3.1.1, with probability one, as n →∞,

sn(z)− Esn(z) → 0, (3.2.6)

gn(z)− Egn(z) → 0. (3.2.7)

Proof. Define the increasing σ-fields generated by {wij} as follows. For any

i ≤ j, write k =
∑i−1

l=1(n− l + 1) + (j − i + 1) and

Fk = σ{w11, · · · , w1n, w22, · · · , w2n, · · · , wii, · · · , wij}.

Further define F0 = {∅, Ω}. Then Fk is a sequence of increasing σ-field, 0 ≤ k ≤

n(n + 1)/2. Write m = n(n + 1)/2.

For each k (which is naturally related with a pair (i, j), define

Yk = (1/n)tr{(Aij − zI)−1 −Gn(z)},

where Aij and Gn(z) are respectively as defined in (3.2.5) and Lemma 3.2.1. Then

sn(z)− Esn(z) = −
m∑

k=1

(Ek − Ek−1)Yk

Further, by the resolvent identity, when i 6= j,

Yk =
1

n
√

n
wijξ

∗
j (Aij − zI)−1Gn(z)ξi +

1

n
√

n
w̄ijξ

∗
i (Aij − zI)−1Gn(z)ξj,
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and, when i = j, Yk = 1
n
√

n
wiiξ

∗
i (Aii − zI)−1Gn(z)ξi. From (3.2.1), in either case,

it holds |Yk| ≤ K|wij|/(n
√

n).

Denote by Ek(·) the conditional expectation with respect to the σ-field Fk.

Then we get

E[|(Ek − Ek−1)Yk|2|Fk−1] ≤ Ek−1|Yk|2 ≤ K

n3
,

E|(Ek − Ek−1)Yk|p ≤ 2pE|Yk|p ≤ K

np+1
. (3.2.8)

From Lemma 2.1.4, we get for any p ≥ 2,

E|sn(z)− Esn(z)|p

≤ K{E(
m∑

k=1

E[|(Ek − Ek−1)Yk|2|Fk−1])
p/2

+
m∑

k=1

E|(Ek − Ek−1)Yk|p}

≤ Kn−p/2,

from which (3.2.6) follows.

In parallel, define, when i 6= j,

Ỹk =
1

n
√

n
wijξ

∗
j (Aij − zI)−1TnGn(z)ξi +

1

n
√

n
w̄ijξ

∗
i (Aij − zI)−1TnGn(z)ξj,

and, when i = j, Yk = 1
n
√

n
wiiξ

∗
i (Aii − zI)−1TnGn(z)ξi. Then we have |Ỹk| ≤

K|wij|/(n
√

n), and gn(z)−Egn(z) = −∑m
k=1(Ek −Ek−1)Ỹk. Following similar ar-

gument, we can get (3.2.7). This completes the proof of Lemma 3.2.2. 2

It can be seen that sn(z) is the Stieltjes transform of the empirical spectral

distribution of An, FAn . Thus Lemma 3.2.2 ensures that we may achieve our fore-

stated target by showing for each z ∈ C+, the convergence of (Esn(z), Egn(z)) to
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a limit which satisfies the system of equations (1.1.1) in Theorem 1.1.1.

Lemma 3.2.3. Let Rn(z) = (−zI−gn(z)Tn)−1. Then under the assumptions

in Theorem 1.1.1 and Assumption 3.1.1, as n →∞,

E(
1

n
tr{ΦnAnGn(z)}) + E(gn(z)

1

n
tr{ΦnTnGn(z)}) → 0, (3.2.9)

where Φn may take In or TnRn(z).

Proof of Lemma 3.2.3. Define Gij(z) = (Aij−zI)−1, gij(z) = (1/n)tr{TnGij(z)},

Rij(z) = (−zI − gij(z)Tn)−1. For Φn = TnRn(z), define Φij = TnRij(z).

We have Imgn(z) ≥ 0 and Imgij(z) ≥ 0. It is thus easy to see ‖Φn‖ and ‖Φij‖

are both bounded by 1/v. We have

|gn(z)− gij(z)| ≤ K/(n
√

n)|wij|. (3.2.10)

Note that when Φn = TnRn(z), Φij − Φn = (gij(z)− gn(z))ΦijΦn. It follows that

‖Φij − Φn‖ ≤ K/(n
√

n)|wij|. (3.2.11)

By use of (3.2.3), we have

1

n
tr[ΦnAnGn(z)]

=
1

n

n∑

i=1

1√
n

wiiξ
∗
i Gn(z)Φnξi

+
1

n

∑

i6=j

1√
n

wijξ
∗
j Gn(z)Φnξi,

in which the first term is bounded in absolute value by Kδn, hence, its expectation

converges to 0. Note that for the case when Φn = In, this means in latter proof
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we only need to consider the expectation of the following term

1

n

∑

i 6=j

1√
n

wijξ
∗
j Gn(z)ξi. (3.2.12)

When Φn = TnRn(z), we write

1

n

∑

i6=j

1√
n

wijξ
∗
j Gn(z)Φnξi

=
1

n

∑

i6=j

1√
n

wijξ
∗
j Gn(z)Φijξi

+
1

n

∑

i6=j

1√
n

wijξ
∗
j Gn(z)(Φn − Φij)ξi. (3.2.13)

From (3.2.1) and (3.2.11), the second term on the right hand side of (3.2.13) is

bounded in absolute value by Kδ2
n, hence, its expectation converges to 0. Thus for

the case when Φn = TnRn(z), we only need to consider the expectation of the first

term in (3.2.13).

From (3.2.2), we have

1

n

∑

i6=j

1√
n

wijξ
∗
j Gn(z)Φijξi

=
1

n

∑

i6=j

{
1√
n
wijξ

∗
j (Aij − zI)−1Φijξi

1 + 1√
n
wijξ∗j (Bij − zI)−1ξi

−
1
n
|wij|2ξ∗j (Aij − zI)−1ξjξ

∗
i (Aij − zI)−1Φijξi

[1 + 1√
n
wijξ∗j (Bij − zI)−1ξi][1 + 1√

n
wijξ∗i (Aij − zI)−1ξj]

}.

For notational convenience, in the following we denote for each fixed pair i 6= j,

pkl = ξ∗l (Aij − zI)−1ξk, p̃kl = ξ∗l Gn(z)ξk,

bkl = ξ∗l (Bij − zI)−1ξk,

rkl = ξ∗l (Aij − zI)−1Φijξk, r̃kl = ξ∗l Gn(z)Φnξk. (3.2.14)

Here for brevity, also because i, j is fixed, we only use subscripts k and l to indicate

the kth and lth column of T 1/2
n involved in each term, the indices i and j omitted.
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Also, k and l may take values of i and j. By (3.2.1) and ξ∗kξk ≤ τ for any k, we

have |pkl|, |p̃kl|, |bkl|, |rkl| and |r̃kl| are all bounded.

Therefore, for the case when Φn = TnRn(z), with notations (3.2.14), we get

1

n

∑

i6=j

1√
n

wijξ
∗
j Gn(z)Φijξi

=
1

n

∑

i6=j

{
1√
n
wijrij

1 + 1√
n
wijbij

−
1
n
|wij|2pjjrii

[1 + 1√
n
wijbij][1 + 1√

n
wijpji]

}

= − 1

n2

∑

i 6=j

|wij|2pjjrii +
1

n

∑

i6=j

1√
n

wijrij

− 1

n2

∑

i 6=j

wij
2rijbij +

1

n2

∑

i6=j

1√
n
wij

3rijb
2
ij

1 + 1√
n
wijbij

+
1

n2

∑

i6=j

|wij|2pjjrii[
1√
n
wijbij + 1√

n
wijpji + 1

n
|wij|2bijpji]

[1 + 1√
n
wijbij][1 + 1√

n
wijpji]

. (3.2.15)

For the case when Φn = In, by replacing the rkl’s by pkl’s in (3.2.15), we obtain

the expression for the term (3.2.12).

Now we calculate the expectation of the terms involved for both cases. Since

wij is independent of pij and rij, it is easy to see

E(
1

n

∑

i6=j

1√
n

wijrij) = E(
1

n

∑

i6=j

1√
n

wijpij) = 0. (3.2.16)

From (3.2.2),

bij = pij −
1√
n
wijpjjpii

1 + 1√
n
wijpji

. (3.2.17)

Substitute this identity into the third term on the right-hand side of (3.2.15). We

get (excluding its menus sign)

1

n2

∑

i6=j

wij
2rijbij =

1

n2

∑

i6=j

wij
2rijpij − 1

n2

∑

i6=j

wij
2

1√
n
wijrijpjjpii

1 + 1√
n
wijpji

. (3.2.18)
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Since |pij|, |bij|, |rij| are bounded, |wij| ≤ δn

√
n, 1/|1 + (1/

√
n)wijbij| and

1/|1+(1/
√

n)wijpji| are also bounded. It follows that the absolute values of the last

two terms on the right-hand side of (3.2.15) and the second term on the right-hand

side of (3.2.18) are bounded by K(δn/n
2)

∑
i6=j |wij|2. Hence the expectations of

these terms are bounded by Kδn and thus converge to 0. Obviously, this argument

is still valid after the rkl’s are replaced by pkl’s in these terms. Then for the case

Φn = TnRn(z) we only need to consider the first terms in (3.2.15) and (3.2.18).

We get

E
1

n
tr{ΦnAnGn(z)}

= −E(
1

n2

∑

i6=j

|wij|2pjjrii)− E(
1

n2

∑

i 6=j

wij
2rijpij) + o(1). (3.2.19)

Similarly, for the case when Φn = In, we get

E
1

n
tr{ΦnAnGn(z)} = E

1

n
tr{AnGn(z)}

= −E(
1

n2

∑

i6=j

|wij|2pjjpii)− E(
1

n2

∑

i 6=j

wij
2p2

ij) + o(1). (3.2.20)

We need the following result to finish our proof.

Lemma 3.2.4. With the notations defined in (3.2.14), we have

E
∑

kl

|rkl|2 ≤ Kn and E
∑

kl

|pkl|2 ≤ Kn. (3.2.21)

Proof. From (3.2.1) and (3.2.11), we have

|ξ∗l (Aij − zI)−1(Φij − Φn)ξk| ≤ K

n
√

n
|wij|.
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From the resolvent identity (2.1.5), with notations (3.2.14), we have

|ξ∗l {(Aij − zI)−1 −Gn(z)}Φnξk|

= | 1√
n

wijpilr̃kj +
1√
n

w̄ijpjlr̃ki| ≤ K√
n
|wij|.

It follows that |rkl − r̃kl| ≤ K|wij|/
√

n and hence E|rkl − r̃kl|2 ≤ K/n. On the

other hand, we have
∑

kl |r̃kl|2 = tr{T 1/2
n Gn(z)ΦnTnΦ∗

n(An − zI)−1T 1/2
n } ≤ Kn.

Therefore, we get E
∑

kl |rkl|2 ≤ Kn.

Similarly, we have

|pkl − p̃kl| = | 1√
n

wijpilp̃kj +
1√
n

w̄ijpjlp̃ki| ≤ K√
n
|wij|, (3.2.22)

∑

kl

|p̃kl|2 = tr{T 1/2
n Gn(z)Tn(An − zI)−1T 1/2

n } ≤ Kn,

which gives E
∑

kl |pkl|2 ≤ Kn. The proof of Lemma 3.2.4 is finished.2

Now let us continue with our proof of Lemma 3.2.3. Note that wij is indepen-

dent of pkl and rkl. From lemma 3.2.4, we have

|E(
1

n2

∑

i6=j

w2
ijp

2
ij)| ≤

1

n2
E

∑

i6=j

|pij|2 ≤ K/n → 0,

and

|E(
1

n2

∑

i 6=j

w2
ijpijrij)| ≤ 1

n2
(E

∑

i 6=j

|pij|2)1/2(E
∑

i6=j

|rij|2)1/2 ≤ K/n → 0.

From (3.2.22), we have |pkl − p̃kl| ≤ Kδn. Then we get

| 1

n2

∑

i6=j

(pjjpii − p̃jj p̃ii)| ≤ Kδn.
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Note that

1

n2

∑

i6=j

p̃jj p̃ii = {gn(z)}2 − 1

n2

n∑

i=1

p̃2
ii,

in which the second term on the right-hand side is bounded in absolute value by

K/n. Therefore

|E 1

n2

∑

i6=j

|wij|2pjjpii − E{gn(z)}2|

≤ |E 1

n2

∑

i6=j

pjjpii − E{gn(z)}2|+ K
1

n2

∑

ij

(1− E|wij|2)

≤ Kδn → 0.

Thus we get, from (3.2.20),

E(
1

n
tr{AnGn(z)}+ {gn(z)}2) → 0.

This implies (3.2.9) holds for the case Φn = In.

Similarly, we have |rkl − r̃kl| ≤ Kδn and

1

n

n∑

i=1

r̃ii =
1

n
tr{ΦnTnGn(z)}.

Then we have

| 1

n2

∑

i6=j

(pjjrii − p̃jj r̃ii)| ≤ Kδn,

| 1

n2

∑

i6=j

(p̃jj r̃ii)− gn(z)
1

n
tr{ΦnTnGn(z)}| ≤ K

n
.

From (3.2.19), we get

|E(
1

n
tr{ΦnAnGn(z)}+ gn(z)

1

n
tr{ΦnTnGn(z)})| → 0.
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This shows (3.2.9) holds for the case when Φn = TnRn(z). We complete the proof

of Lemma 3.2.3 now. 2

Lemma 3.2.5. For each z ∈ C+, as n → ∞, (Esn(z), Egn(z)) converges to

a limit which satisfies the system of equations (1.1.1) in Theorem 1.1.1.

Proof. By Lemmas 3.1.2 and 3.2.1, we need only show that any conver-

gent subsequence {(Esni
(z), Egni

(z))} converges to a limit satisfying the system

of equations (1.1.1). With the resolvent identity (2.1.5), when Φn = In, (3.2.9)

gives us

E
(
zsn(z) + 1 + {gn(z)}2

)
→ 0, (3.2.23)

as n →∞. When Φn = TnRn(z), (3.2.9) gives us as n →∞.

E
(

1

n
tr{TnRn(z)} − gn(z)

)

= E
1

n
tr{TnRn(z)(An + gn(z)Tn)Gn(z)}

= E
(

1

n
tr{ΦnAnGn(z)}+ gn(z)

1

n
tr{ΦnTnGn(z)}

)

→ 0. (3.2.24)

Let (s(z), g(z)) denote the limit of {(Esni
(z), Egni

(z))}. Then note that |gn(z)| ≤

2τ/v. From (3.2.7) and the dominated convergence theorem, we have E{gni
(z)}2 →

g(z)2. By (3.2.23), this implies that zs(z)+1+{g(z)}2 = 0 and so we see (s(z), g(z))

satisfies the first equation in (1.1.1).
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We now prove

E
1

ni

tr{Tni
Rni

(z)} →
∫ t

−z − tg(z)
dH(t). (3.2.25)

Define Sn(z) = (−zI − Egn(z)Tn)−1. Then

|E 1

n
tr{TnRn(z)} − 1

n
tr{TnSn(z)}| ≤

(
τ

v

)2

E|gn(z)− Egn(z)| → 0.

Let fn(t) = t/(−z − tEgn(z)) and f(t) = t/(−z − tg(z)). Then ImEgn(z) ≥ 0,

Img(z) ≥ 0, and |g(z)| ≤ τ/v imply f(t) is bounded continuous and

|fni
(t)− f(t)| ≤ (τ 2/v2)|Egni

(z)− g(z)| → 0.

It follows

1

ni

tr{Tni
Sni

(z)} =
∫

fni
(t)dF Tni (t)

=
∫

(fni
(t)− f(t))dF Tni (t) +

∫
f(t)dF Tni (t)

→
∫

f(t)dH(t) =
∫ t

−z − tg(z)
dH(t).

Hence (3.2.25) is proved. By (3.2.24), it follows g(z) satisfies the second equation

in (1.1.1). As we have claimed at the beginning, this completes the proof. 2

Up to this point, we have indeed finished the proof of Theorem 1.1.1, since

Lemmas 3.2.2 and 3.2.5 together tell us for each z ∈ C+, with probability one,

(sn(z), gn(z)) converges to a non-random limit (s(z), g(z)) satisfying the system of

equations (1.1.1) in Theorem 1.1.1. By Lemma 3.2.1, s(z) must be the Stieltjes

transform of the limiting spectral distribution. While the meaning of the function

g(z) associating with the Stieltjes transform of the limiting spectral distribution is

also clear now.



117

3.3 Analytic Properties of the LSD: Proof of The-

orem 1.1.2

This section is devoted to the proof of Theorem 1.1.2. In the following, F denotes

the limiting spectral distribution of the Wigner type random matrices and sF (z)

denotes the Stieltjes transform of F . Then we have from the previous section





sF (z) = −z−1 − z−1{g(z)}2,

g(z) =
∫

t/{−z − tg(z)}dH(t),

(3.3.1)

Proof of Theorem 1.1.2–(1).

(i) By Theorem 2.3.5 and the first equation of (3.3.1), we only need to show for

any z ∈ C+, gk(z) converges to g(z). Here, gk(z), with Im(gk(z)) ≥ 0, is related

to the Stieltjes transform sFk
(z) of Fk through sFk

(z) = −z−1 − z−1{gk(z)}2 and

satisfies the equation

gk(z) =
∫

t/{−z − tgk(z)}dHk(t). (3.3.2)

By computing the imaginary part of the second equation of (3.3.1), one gets

∫
t2/{|z + tg(z)|2}dH(t) < 1.

From Hölder’s inequality, this implies |g(z)| < 1. Similarly, |gk(z)| < 1.

If H(t) = I{0}(t), then g(z) = 0. We show gk(z) → 0. Suppose not. Then,

since |gk(z)| < 1, there must exist some subsequence of {gk(z)} which converges

to some nonzero limit g0(z). Without loss of generality, we suppose gk(z) → g0(z).
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This implies that we can find M > 0 such that for all large k and t ≥ 0

|t/{z + tgk(z)}|

≤ (t/v)I(0,M ](t) + |1
z
| · | z

gk(z)
| · t

t− |z/gk(z)|I(M,∞)(t)

≤ (t/v)I[0,M ](t) + (M/v)I(M,∞)(t),

where v = Im(z). Thus, as Hk converges weakly to I{0}(t),

|gk(z)| ≤
∫

t2/|z + tgk(z)|dHk(t)

≤
∫
{(t/v)I[0,M ](t) + (M/v)I(M,∞)(t)}dHk(t)

→
∫
{(t/v)I[0,M ](t) + (M/v)I(M,∞)(t)}dH(t)

= 0.

It follows then, gk(z) → 0. Thus, gk(z) → g(z) holds for the case of H(t) = I{0}(t).

Now suppose H(t) 6= I{0}(t). We first prove that any convergent subsequence

of {gk(z)} does not converge to 0. For simplicity, by the way of contradiction,

suppose gk(z) → 0. From equation (3.3.2),

Im(gk(z))
(
1−

∫
t2/|z + tgk(z)|2dHk(t)

)
= v

∫
t/|z + tgk(z)|2dHk(t).

It follows then,
∫
(o,M ] t/|z + tgk(z)|2dHk(t) → 0, for any M > 0. By the dominated

convergence theorem, however,
∫
(o,M ] t/|z + tgk(z)|2dHk(t) →

∫
(o,M ] t

2dH(t)/|z|2.

Thus, H{(0,M ]} = 0 for any M > 0. This means H(t) = I{0}(t), a contradiction.

Therefore, any convergent subsequence of {gk(z)} does not converge to 0.

Consider any subsequence {kj}∞j=1 such that {gkj
(z)}∞j=1 → g̃(z). From the

preceding argument, g̃(z) 6= 0. Thus, there is M > 0 such that for all large j,
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|z/gkj
(z)| < M/2 and so |z/g̃(z)| < M/2. It follows that

|t/{−z − tgkj
(z)} − t/{−z − tg̃(z)}| ≤ (M/v)2|gkj

(z)− g̃(z)|

and that t/{−z − tg̃(z)} is bounded and continuous. Consequently,

∫
t/{−z − tgkj

(z)}dHkj
(t)−

∫
t{−z − tg̃(z)}dHkj

(t) → 0

∫
t/{−z − tg̃(z)}dHkj

(t) →
∫

t/{−z − tg̃(z)}dH(t)

so that g̃(z) =
∫

t/{−z − tg̃(z)}dH(t). Since, obviously, Im(g̃(z)) ≥ 0, by Lemma

3.1.2, we get g̃(z) = g(z). Thus, for the case when H(t) 6= I[0,∞)(t), gk(z) also

converges to g(z). This completes the proof of part (i) of Theorem 1.1.2 (1).

(ii) Recall the basic property of the Stieltjes transform that

F{0} = lim
a↓0
{−iasF (ia)} = 1 + lim

a↓0
{g(ia)}2.

Write g(ia) = g1(ia) + ig2(ia). From (3.3.1),

g1(ia) = −g1(ia)
∫

t2/|ia + tg(ia)|2dH(t).

This implies g1(ia) = 0. Thus {g(ia)}2 = −{g2(ia)}2 and

g2(ia) =
∫

t/{a + tg2(ia)}dH(t). (3.3.3)

We only need to show lima↓0{g2(ia)}2 = 1−H{0}.

Consider first the case of F{0} = 1. Then lima↓0 g2(ia) = 0. From (3.3.3), since

t ≥ 0, a > 0 and g2(ia) > 0, we have

g2(ia) ≥
∫

[0<t≤M ]
t/{a + Mg2(ia)}dH(t).
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Then as a ↓ 0,

∫

[0<t≤M ]
tdH(t) ≤ g2(ia){a + Mg2(ia)} → 0.

This implies, for any M > 0, H(0,M ] = 0. Then H(0,∞) = 0 and H{0} = 1. So

in this case we get F{0} = H{0}.

Now consider the case of F{0} < 1. Then lima↓0 g2(ia) > 0. From (3.3.3) and

the dominated convergence theorem, we have

lim
a↓0
{g2(ia)}2 =

∫

t>0
lim
a↓0

t

t + a/g2(ia)
dH(t) = 1−H{0}.

Thus we also get F{0} = H{0} in this case. Therefore, it always holds F{0} =

H{0}.

Proof of Theorem 1.1.2–(2).

From the above proof, we have |g(z)| < 1, for all ∀z ∈ C+. Thus for any x ∈

R+∪R−, we need only consider an arbitrarily chosen subsequence {zn} ⊂ C+ → x

such that {g(zn)} converges. Denote g(x) = lim g(zn). Write zn = z1n + iz2n,

g(zn) = g1(zn) + ig2(zn) and g(x) = g1(x) + ig2(x).

From the second equation of (3.3.1),

g(zn) =
∫ t

−zn − tg(zn)
dH(t). (3.3.4)

By calculating the imaginary part for both sides of (3.3.4), we get

∫ t2

|zn + tg(zn)|2dH(t) < 1. (3.3.5)

By Fatou’s lemma, it then follows

∫
lim inf
n→∞

t2

|zn + tg(zn)|2dH(t) ≤ lim inf
n→∞

∫ t2

|zn + tg(zn)|2dH(t) ≤ 1.
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Note

lim inf
n→∞

t2

|zn + tg(zn)|2 =
t2

|x + tg(x)|2 I(|x+tg(x)|>0) +∞ · I(|x+tg(x)|=0).

This implies H{t : x + tg(x) = 0} = 0 and hence

∫ t2

|x + tg(x)|2dH(t)

=
∫ t2

|x + tg(x)|2 I(|x+tg(x)|>0)dH(t)

≤ lim inf
n→∞

∫ t2

|zn + tg(zn)|2dH(t)

≤ 1. (3.3.6)

On the other hand, by computing the real part for both sides of (3.3.4), we get

∫ t

|zn + tg(zn)|2dH(t)

= −g1(zn)

z1n

(
1 +

∫ t2

|zn + tg(zn)|2dH(t)

)

≤ −2
g1(zn)

z1n

, (3.3.7)

so that

lim sup
n→∞

∫ t

|zn + tg(zn)|2dH(t) ≤ −2
g1(x)

x
. (3.3.8)

By Fatou’s lemma, it implies

∫ t

|x + tg(x)|2dH(t) ≤ lim inf
n→∞

∫ t

|zn + tg(zn)|2dH(t) ≤ −2
g1(x)

x
. (3.3.9)

Note

∫ (
t

−zn − tg(zn)
− t

−x− tg(x)

)
dH(t)

=
∫ t

(zn + tg(zn))(x + tg(x))
dH(t)(zn − x)

+
∫ t2

(zn + tg(zn))(x + tg(x))
dH(t)(g(zn)− g(x)), (3.3.10)
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in which by Hölder’s inequality and (3.3.5), (3.3.6),

|
∫ t2

(zn + tg(zn))(x + tg(x))
dH(t)|

≤
(∫ t2

|zn + tg(zn)|2dH(t)

)1/2 (∫ t2

|x + tg(x)|2dH(t)

)1/2

≤ 1,

by Hölder’s inequality and (3.3.8), (3.3.9)

lim sup
n→∞

|
∫ t

(zn + tg(zn))(x + tg(x))
dH(t)|

≤
(

lim sup
n→∞

∫ t

|zn + tg(zn)|2dH(t)

)1/2 (∫ t

|x + tg(x)|2dH(t)

)1/2

≤ −2
g1(x)

x
.

Let n →∞ in (3.3.10). Since zn → x and g(zn) → g(x), it follows

lim
n→∞

∫ t

−zn − tg(zn)
dH(t) =

∫ t

−x− tg(x)
dH(t).

This shows g(x) satisfies the second equation of (1.1.2) of Theorem 1.1.2, i.e. the

following equation

g(x) =
∫ t

−x− tg(x)
dH(t). (3.3.11)

Thus far it has been seen g(x) satisfies simultaneously equations (3.3.6), (3.3.9)

and (3.3.11). Further, we show for any x ∈ R+ ∪R−, there is at most one solution

g(x) satisfying simultaneously equations (3.3.6) and (3.3.11). We use the way of

contradiction. Let g(x) 6= g̃(x) both satisfy the two equations simultaneously. It

follows

g(x)− g̃(x) = (g(x)− g̃(x))
∫ t2

(x + tg(x))(x + tg̃(x))
dH(t). (3.3.12)
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But from Hölder’s inequality, g(x) 6= g̃(x) implies

|
∫ t2

(x + tg(x))(x + tg̃(x))
dH(t)|

< {
∫ t2

|x + tg(x)|2dH(t)}1/2{
∫ t2

|x + tg̃(x)|2dH(t)}1/2

≤ 1.

This, by (3.3.12) however, implies g(x) = g̃(x). Thus we arrive at a contradiction.

The contradiction asserts that any convergent subsequence {g(zn)} must converge

to the same limit, that is, the unique solution to equation (3.3.11) satisfying con-

dition (3.3.6).

Therefore, as z ∈ C+ → x, g(z) converges, and if its limit is denoted by g(x),

then g(x) is the unique solution to equation (3.3.11) satisfying condition (3.3.6).

Computing the real part for both sides of equation (3.3.11) gives immediately

g1(x)

(
1 +

∫ t2

|x + tg(x)|2dH(t)

)
= −x

∫ t

|x + tg(x)|2dH(t),

which implies g1(x)/x < 0, that is, Re(g(x))/x < 0. Further, by the first equation

of (3.3.1), it is trivial to see sF (z) also converges with the limit sF (x) satisfying

the first equation of (1.1.2) of Theorem 1.1.2.

We now show sF (x), g(x) are continuous on R+ ∪ R−. It is sufficient to show

the result for g(x). Consider any x0 ∈ R, x0 6= 0. For any given ε > 0, from

g(x0) = limz∈C+→x0
g(z), there exists δ > 0 such that when z ∈ C+ and |z−x0| ≤ δ,

|g(z) − g(x0)| < ε. Obviously, we can choose δ such that 0 /∈ (x0 − δ, x0 + δ).

Then for any x ∈ (x0 − δ, x0 + δ), g(x) = limz∈C+→x g(z). For the given ε, there

exists δx such that when z ∈ C+ and |z − x| ≤ δx, |g(z) − g(x)| < ε. Choose
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z ∈ C+ satisfying |z − x0| ≤ δ and |z − x| ≤ δx simultaneously, then we get

|g(x) − g(x0)| < 2ε, for all x ∈ (x0 − δ, x0 + δ). This means g(x) is continuous at

the arbitrarily chosen x0. Thus g(x) is continuous on R+∪R−. By Theorem 2.3.2,

the limiting spectral distribution F of the Wigner type random matrices possesses

a continuous derivative on R+ ∪ R− given by f(x) = −2Re(g(x))Im(g(x))/(πx).

Proof of Theorem 1.1.2–(3).

(i) To show F is symmetric, we only need to show for any z ∈ C+, sF (−z̄) =

−sF (z). This is because the inversion formula then implies for any 0 < a < b,

F (b)− F (a) =
1

π
lim
v↓0

∫ b

a
ImsF (u + iv)du

=
1

π
lim
v↓0

∫ −a

−b
ImsF (−u + iv)du

=
1

π
lim
v↓0

∫ −a

−b
Im{−sF (u + iv)}du

=
1

π
lim
v↓0

∫ −a

−b
ImsF (u + iv)du

= F (−a)− F (−b).

Let b →∞ on both sides of F (b)− F (a) = F (−a)− F (−b). Since F (b) → 1 and

F (−b) → 0, it then follows F (a) = 1− F (−a) for any a ∈ R, i.e. F is symmetric.

Now we show sF (−z̄) = −sF (z). Again, we first show g(−z̄) = −g(z). For any

z ∈ C+, we have

g(z) =
∫ t

−z − tg(z)
dH(t).

Simple operations of complex conjugate and multiplication by (−1) give

−g(z) =
∫ t

−(−z̄)− t(−g(z))
dH(t).
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Since −z̄ ∈ C+ and Im(−g(z)) ≥ 0, by Lemma 3.1.2, it then follows g(−z̄) =

−g(z). Thus,

sF (−z̄) = z̄−1 + z̄−1{g(−z̄)}2 = z̄−1 + z̄−1{−g(z)}2 = z−1 + z−1{g(z)}2 = −sF (z).

(ii) Note that f(x) > 0 (x 6= 0) if and only if Im(g(x)) > 0. Thus

S̃F = {x ∈ R+ ∪ R− : Im(g(x)) > 0}.

Further note that g(x) satisfies the equation g =
∫

t/{−x− tg}dH(t). It thus

follows

S̃F ⊆ {x ∈ R+ ∪ R− : g =
∫

t/{−x− tg}dH(t) has a solution in C+}.

On the other hand, for any x ∈ R+ ∪ R−, if g =
∫

t/{−x− tg}dH(t) has a

solution in C+, by Lemma 3.1.2 and the conclusion on g(x) shown in (2), this

solution must be g(x). So, Im(g(x)) > 0. Thus the converse relation also holds,

i.e.

S̃F ⊇ {x ∈ R+ ∪ R− : g =
∫

t/{−x− tg}dH(t) has a solution in C+}.

Now let us show the analyticity of f(x) on S̃F . That is, given any xo ∈ S̃F , f(x)

has a formal power series expansion near x0. Without loss of generality, assume

that x0 > 0. Note that S̃F is an open set due to the continuity of g(x). So it

can further be assumed that 0 /∈ (x0 − δ0, x0 + δ0) ⊂ S̃F , for some δ0 > 0. For

clarity of our following argument, recall that
√

(·) denotes the analytic branch of
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the complex square root function that has positive imaginary part in the upper

complex plane.

Following the same idea as Silverstein and Choi (1995), let us first construct

an function that plays the role of the inverse function of g(z) but not exactly equal

to it. Observe that for any z ∈ C+,

g(z) =
∫

t/{−z − tg(z)}dH(t) ⇔ z2 = −{z/g(z)}2
∫

t/{t + z/g(z)}dH(t).

Write φ(z) = −z/g(z). Then

z2 = −φ2(z)− φ3(z)
∫

1/{t− φ(z)}dH(t). (3.3.13)

Therefore, we define the following function:

q(φ) = −φ2 − φ3
∫ 1

t− φ
dH(t).

We can see that since q(φ) is analytic in C+, the composition function
√

q(φ) is

analytic in C+. Furthermore, as z ∈ D = {z = z1 + iz2 : z1 > 0, z2 > 0}, z2 ∈ C+

implying that
√

z2 = z and so from (3.3.13)

z =
√

q(φ(z)), for any z ∈ D. (3.3.14)

Let φ0 = −x0/g(x0). Then φ0 ∈ C+ and so limφ→φ0

√
q(φ) =

√
q(φ0). However,

since φ(z) → φ0 (as z ∈ C+ → x0), we have limz→x0

√
q(φ(z)) = limφ→φ0

√
q(φ). It

follows that x0 =
√

q(φ0). Similarly, we get

x =
√

q(φ(x)), for any x ∈ (x0 − δ0, x0 + δ0). (3.3.15)

Note that from g(x0) =
∫

t/{−x0 − tg(x0)}dH(t) and Im(g(x0)) > 0, we have

∫
t/(t− φ0)dH(t) = −x2

0/φ
2
0
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and, since
∫

t2/|x0 + tg(x0)|2dH(t) = 1,

∫
t2/(x0 + tg(x0))

2dH(t) 6= 1 ⇔
∫

t2/(t− φ0)
2dH(t) 6= x2

0/φ
2
0.

These give

q′(φ0) =
∫

t2/(t− φ0)
2dH(t) +

∫
t/(t− φ0)dH(t) 6= 0.

Thus,

d

dφ

√
q(φ)

∣∣∣∣∣
φ=φ0

6= 0.

Thus we can now use the inverse function theorem of complex analysis to

assert that there is a neighborhood U of φ0 and a neighborhood V of x0 such

that
√

q(φ) : U → V has an analytic inverse function. Let us denote this inverse

function by φ̂(z). Then (3.3.14) and (3.3.15) imply that

φ̂(z) = φ(z)(= −z/g(z)), for any z ∈ (D ∪ (x0 − δ0, x0 + δ0))) ∩ V .

It follows that g(z) has an analytic extension onto V . Thus near x0, g(z) can be

expanded into g(z) =
∑∞

n=0 an(z − x0)
n and hence

f(x) = − 2

π

∞∑

n=0

(
n∑

k=0

Re(ak)Im(an−k)

)
(x− x0)

n,

i.e. f(x) is analytic on S̃F . This completes the proof of (3)(ii).

Before we prove (3)(iii), let us show that g(z) is analytic in C+.

This is a consequence of that g(z) is continuous in C+. To see this, we note

that sF (z) is analytic in C+ implying {g(z)}2 is analytic in C+. Recall that the
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definition of an analytic function in an open set is only saying that the function is

differentiable in the set. From the following relation

g(z)− g(z0)

z − z0

{g(z) + g(z0)} =
{g(z)}2 − {g(z0)}2

z − z0

,

provided that the continuity of g(z) in C+ is shown, the analyticity of {g(z)}2 in

C+ then implies that of g(z) in C+. Here we also remind that the assumption

H 6= I[0,∞) guarantees g(z0) 6= 0.

Therefore, we need only prove g(z) is continuous in C+. Given any z0 ∈ C+,

choose δ > 0 such that B(z0, δ) = {z ∈ C : |z − z0| < δ} ⊂ C+. Then there

exists ε > 0 such that Im(z) > ε for any z ∈ B(z0, δ). Further note that

previously we have shown for any z ∈ C+,
∫

t2/|z + tg(z)|2dH(t) < 1. Denote

r0 = {∫ t2/|z0 + tg(z0)|2dH(t)}1/2. By Hölder’s inequality, we then get | ∫ t/[{z +

tg(z)}{z0+tg(z0)}]dH(t) < 1/ε and | ∫ t2/[{z+tg(z)}{z0+tg(z0)}]dH(t) < r0 < 1.

From

g(z)− g(z0) =
∫ t

{z + tg(z)}{z0 + tg(z0)}dH(t)(z − z0)

+
∫ t2

{z + tg(z)}{z0 + tg(z0)}dH(t)(g(z)− g(z0)),

it follows |g(z) − g(z0)| ≤ 1
ε(1−r0)

|z − z0| → 0. Thus g(z) is continuous at z0. We

conclude g(z) is analytic in C+.

Now let us extend the definition of g(z) to C−. This can be done by straightfor-

wardly reproving Theorem 1.1.1 for z ∈ C−. Examining the proof we can see that

with suitable adjustment all our arguments remain valid. In that case, we in paral-

lel get sF (z) associated with g(z) satisfy the system of equations in Theorem 1.1.1
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but only that Im(sF (z)) < 0 and Im(g(z)) ≤ 0 in accordance with Im(z) < 0.

Then for z ∈ C−, g(z) with Im(g(z)) ≤ 0 satisfies g(z) =
∫

t/{−z − tg(z)}dH(t).

Thus, g(z) =
∫

t/{−z̄ − tg(z)}dH(t). Note that z̄ ∈ C+ and Im(g(z)) ≥ 0. By

Lemma 3.1.2, we then get g(z̄) = g(z), for z ∈ C−.

In view of the analyticity of g(z) in C+, we assert that after extension g(z) is

analytic in C+ ∪ C−.

Further, the relation g(z) = g(z̄) implies that for any x ∈ R+ ∪ R−,

lim g(z) = g(x), as z ∈ C− → x,

where g(x) is defined in (2), i.e.

g(x) = lim g(z), as z ∈ C+ → x.

(iii) The sufficiency part is obvious. In fact, for any x ∈ (x0−δ0, x0+δ0), g(x) =

∫
t/{−x− tg(x)}dH(t) implies Im(g(x)) = Im(g(x))

∫
t2/|x+ tg(x)|2dH(t). Thus,

by the hypothesis of the sufficiency part, it follows that for any x ∈ (x0−δ0, x0+δ0),

Im(g(x)) = 0 and so f(x) = 0, where f(x) is the derivative of F (x). This implies

that for any δ < δ0, F ((x0 − δ, x0 + δ)) = 0 and so (x0 − δ, x0 + δ) ⊂ Sc
F , where

F ((x0− δ, x0 + δ)) denotes the measure of the interval (x0− δ, x0 + δ) with respect

to the measure specified by the distribution function F on the real line. Thus,

x0 ∈ Sc
F .
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Now let us prove the necessity part. Suppose x0 6= 0 and x0 ∈ Sc
F . Then,

since Sc
F is open, there exists δ > 0 such that 0 /∈ (x0 − δ, x0 + δ) ⊂ Sc

F . Define

B(x0, δ) = {z ∈ C : |z − x0| < δ}. Then SF (z) is analytic in B(x0, δ) and, for any

x ∈ (x0 − δ, x0 + δ), sF (x) =
∫

1/(λ− x)dF (λ), s′F (x) =
∫

1/(λ− x)2dF (λ). Thus,

for any x ∈ (x0 − δ, x0 + δ), g(x) ∈ R so that

lim
z∈C−

g(z) = lim
z∈C+

g(z) = g(x).

This implies that g(z) is continuous in B(x0, δ). Remember that since H 6= I[0,∞),

g(z) 6= 0, for any z 6= 0. Similar to our previous argument, by using the analyticity

of {g(z)}2, we then get g(z) is analytic in B(x0, δ). It is proper to define φ(z) =

−z/g(z). Then φ(z) is also analytic in B(x0, δ).

Let φ0 = φ(x0). We first show H is differentiable at φ0 with derivative zero. By

Lemma 2.3.2, this will follow once it is proven limφ∈C+→φ0
sH(φ) ∈ R. Note that

from g(z) =
∫

t/{−z − tg(z)}dH(t), we have sH(φ(z)) = z−1[g(z) + {g(z)}3]. In

view of the fact that limz→x0 sH(φ(z)) = −x−1
0 [g(x0)+{g(x0)}3] ∈ R, we only need

to show limφ∈C+→φ0
sH(φ) ∈ R = limz→x0 sH(φ(z)). This in turn follows once it is

proven φ′(x0) 6= 0. In fact, φ′(x0) 6= 0 guarantees we can use the inverse function

theorem of complex analysis to see that for any ε sufficiently small, there is η such

that for any φ ∈ B(φ0, η), there exists z ∈ B(x0, ε) such that φ = φ(z). Hence we

only need to show that φ′(x0) 6= 0.

Since g(z) is analytic in B(x0, δ0), φ′(x) = {g′(x) − g(x)/x}/[x{g(x)}2]. From

{g(x)}2 = −1 − xsF (x), we get −2g(x)g′(x) = sF (x) + xs′F (x). Since F is sym-



131

metric, it follows

sF (x) + xs′F (x) =
∫ λ

(λ− x)2
dF (λ)

=
∫ ∞

0

{
λ

(λ− x)2
− λ

(λ + x)2

}
dF (λ).

For λ > 0, if x > 0, |λ−x| < |λ+x| hence the integrand of the above last relation

is positive; similarly, if x < 0, the integrand is negative. Thus sF (x) + xs′F (x),

or equivalently, −2g(x)g′(x) has the same sign as x. Note that since it always

holds that Re(g(x))/x < 0, now that g(x) ∈ R, it holds that g(x)/x < 0. Thus,

g′(x) > 0. It follows that φ′(x) has the same sign as x for any x ∈ (x0−δ0, x0 +δ0).

So, φ′(x) 6= 0.

As claimed previously, this implies that H is differentiable at φ0 with derivative

zero. Note that the above argument applies equally well to any other point x ∈

(x0 − δ0, x0 + δ0). Thus, H has derivative 0 at φ(x), for any x ∈ (x0 − δ0, x0 + δ0).

Note that φ(z) is analytic in B(x0, δ0). By the open mapping theorem, {φ(x) : x ∈

(x0 − δ0, x0 + δ0)} is an open set and so contains the interval (φ0 − η0, φ0 + η0),

for any η0 sufficiently small. Hence we get (φ0 − η0, φ0 + η0) ⊂ Sc
H . Without

loss of generality, let η0 be small enough such that for any φ ∈ (φ0 − η0, φ0 + η0),

|t − φ| > d0 > 0, for any t ∈ SH . Further, from the continuity of the function

φ(x) in (x0 − δ0, x0 + δ0), there is ε0 such that for any x ∈ (x0 − ε0, x0 + ε0),

φ(x) ∈ (φ0 − η0, φ0 + η0).
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It follows that for any x ∈ (x0 − ε0, x0 + ε0)

| 1

x + tg(x)
| ≤ 1

d0|g(x)| ,

| t

x + tg(x)
| =

∣∣∣∣∣
1

g(x)

[
1− x

g(x)

1

t + x/g(x)

]∣∣∣∣∣

≤ 1

|g(x)|

[
1 +

|x|
d0|g(x)|

]
.

Note that

g(x)− g(x0)

x− x0

=
∫ t

{x + tg(x)}{x0 + tg(x0)}dH(t)

+
∫ t2

{x + tg(x)}{x0 + tg(x0)}dH(t)
g(x)− g(x0)

x− x0

.

Therefore, by the dominated convergence theorem,

g′(x0) =
∫

t/{x0 + tg(x0)}2dH(t) +
∫

t/{x0 + tg(x0)}2dH(t)g′(x0),

which implies, due to H 6= I[0,∞)(t),
∫

t2/{x0 + tg(x0)}2dH(t) < 1. Similarly, the

above argument applies to any x ∈ (x0 − δ0, x0 + δ0). Thus,

∫ t2

|x + tg(x)|2dH(t) < 1, for any x ∈ (x0 − δ0, x0 + δ0).

This completes the proof of Theorem 1.1.2 (3)(iii).

3.4 Density Function of the LSD: Proof of The-

orem 1.1.3

We shall in the present section mainly focus on calculating the density of the

limiting spectral distribution when the matrices Tn are given or more precisely

when their limiting spectral distribution is known.
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As is stated in the previous section, the density f(x) is positive at a point x

(x 6= 0) if and only if at x, the equation g =
∫

t/(−x− tg)dH(t) admits a unique

solution g = g1 + ig2 such that g2 > 0 and g1/x < 0, in which case f(x) = −2g1g2

πx
.

This indicates we can calculate the density function for given H through solving

the equation for a such solution.

Obviously, we cannot get an explicitly expressed density function for any arbi-

trarily given H. We are interested in the case when H denotes the limiting spectral

distribution of the multivariate F -matrices. Let Bn = SnV
−1
n be the multivariate

F -matrices we defined in Section 2.3.3, where we obtained their limiting spectral

distribution Fy,y′ and its Stieltjes transform. Recall that for each z ∈ C+,

sFy,y′ (z) =
(1− y)− z(1 + y′) +

√
[z(1− y′) + (1− y)]2 − 4z

2z(y + y′z)
. (3.4.1)

Setting y′ = 0, we get the Stieltjes transform of the limiting spectral distribution

of the sample covariance matrices Sn, which is written here as

sy(z) =
−z + 1− y +

√
(1 + y − z)2 − 4y

2yz
; (3.4.2)

and setting y = 0, we get the Stieltjes transform of the limiting spectral distribution

of the inverse matrices of the sample covariance matrices V −1
n , which is written here

as

sy′(z) =
1− z − zy′ +

√
(1 + z − zy′)2 − 4z

2y′z2
. (3.4.3)

Thus the limiting spectral distribution of the sample covariance matrices (their

inverse matrices) correspond to the special case of y′ = 0 (y = 0) of Fy,y′ .
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We first see when H = Fy,y′ , what form the equation g =
∫

t/(−x − tg)dH(t)

will take. If H = Fy,y′ , then the equation implies

−g2 − 1 = −x

g
sy,y′(−x

g
)

=
(1− y) + x

g
(1 + y′)±

√
[(1− y)− x

g
(1− y′)]2 + 4x

g
)

2(y − x
g
y′)

,

and then

2[−yg2 + y′xg + (y′ − 1)
x

g
− y]− [(1− y)− x

g
(1− y′)]

= ±
√

[(1− y)− x

g
(1− y′)]2 + 4

x

g
,

which can be organized into the following equation:

y2g5 − 2yy′xg4 + [y′2x2 + y(1 + y)]g3

+x[y − y′ − 2yy′]g2 + [y + y′(y′ − 1)x2]g − y′x = 0. (3.4.4)

Thus when the matrices Tn are taken to be the general multivariate F -matrices,

we are facing a quintic equation (degree 5 polynomial equation). However, if in

the equation we take y = 0, that is we take Tn to be the inverse matrices of the

sample covariance matrices, we get

y′xg3 − g2 + (y′ − 1)xg − 1 = 0; (3.4.5)

If we let y′ = 0, we get when Tn are taken to be the sample covariance matrices,

the equation becomes

yg4 + (1 + y)g2 + xg + 1 = 0. (3.4.6)

As is shown above, when the two special cases of the multivariate F -matrices

are considered instead, the equation g =
∫

t/(−x−tg)dH(t) reduces from a quintic
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equation to a cubic and a quartic equation. As is known now, the general degree 5

and above polynomial equations are not solvable by hand, whereas the cubic and

quartic equations can. Actually, we can see below, by discussing the solutions to

two cubic equations with real coefficients, Theorem 1.1.3 follows. That is, we also

do not need to solve a quartic equation. This is a result by separately setting the

real and imaginary part of the left hand side of (3.4.5) and (3.4.6) zero and then

reorganizing the obtained equations. Now we introduce the Cardano method for

solving a cubic equation.

Let x3 + px2 + qx + r = 0 be a cubic equation for x, where p, q, and r are

real. Replace x by y − p/3. Then we get y3 + sy + t = 0, where s = q − p/3 and

t = r − pq/3 + 2p3/27. Further replace y by u + v. Then we have a system of

equations for (u, v):





3uv = −s,

u3 + v3 = −t.

Solve this system for (u3, v3) to have u3, v3 = (−t ±
√

t2 + 4s3/27)/2. Denote by

∆ = t2 +4s3/27. Then u3, v3 = (−t±√∆)/2. If ∆ ≥ 0, (−t±√∆)/2 are real and

by letting [(−t±√∆)/2]1/3 denote the real cubic root of a real number, we have

u = (
−t +

√
∆

2
)1/3, or (

−t +
√

∆

2
)1/3(−1

2
± i

√
3

2
),

v = (
−t−√∆

2
)1/3, or (

−t−√∆

2
)1/3(−1

2
± i

√
3

2
).

Note that a solution to the system of equation for (u, v) needs to satisfy uv ∈ R.
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It follows that the three cubic roots for the original cubic equation are

x1 = −p/3 + (
−t +

√
∆

2
)1/3 + (

−t−√∆

2
)1/3,

x2 = −p/3− 1

2
[(
−t +

√
∆

2
)1/3 + (

−t−√∆

2
)1/3]

+ i

√
3

2
[(
−t +

√
∆

2
)1/3 − (

−t−√∆

2
)1/3],

x3 = −p/3− 1

2
[(
−t +

√
∆

2
)1/3 + (

−t−√∆

2
)1/3]

− i

√
3

2
[(
−t +

√
∆

2
)1/3 − (

−t−√∆

2
)1/3]. (3.4.7)

Here we define that for any real number c, c1/3 denotes its real cubic root. If ∆ < 0,

then |∆| = −∆ and

(−t±
√

∆)/2 = −t/2± i
√
|∆|/2 ≡ ρ(cos ϕ± i sin ϕ),

where ρ =
√

t2 −∆/2 =
√
−s3/27, and cos ϕ = −t/(2ρ). Then by letting ρ1/3

denote the real cubic root of ρ, we have

u = ρ
1
3 ei ϕ

3 , ρ
1
3 ei(ϕ

3
+ 2π

3
), ρ

1
3 ei(ϕ

3
+ 4π

3
),

v = ρ
1
3 ei(−ϕ

3
), ρ

1
3 ei(−ϕ

3
+ 4π

3
), ρ

1
3 ei(−ϕ

3
+ 2π

3
).

Then we get the three cubic roots to the original equation are

x1 = −p/3 + 2ρ1/3 cos
ϕ

3
,

x2 = −p/3 + 2ρ1/3 cos(
ϕ

3
+

2π

3
),

x3 = −p/3 + 2ρ1/3 cos(
ϕ

3
+

4π

3
). (3.4.8)

Note that in this case all three roots are real numbers. Also, it is a simple matter

to examine (3.4.7) and (3.4.8) coincide in the case ∆ = 0.
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Proof of Theorem 1.1.3. (1) Our task is to determine S and for each x ∈ S,

find the solution g = g1 + ig2 to (3.4.5) satisfying g2 > 0 and g1/x < 0. In (3.4.5),

write g = g1 + ig2. Then we get two equations:

y′(g3
1 − 3g1g

2
2)− x−1(g2

1 − g2
2) + (y′ − 1)g1 − x−1 = 0, (3.4.9)

y′(3g2
1g2 − g3

2)− x−12g1g2 + (y′ − 1)g2 = 0. (3.4.10)

From (3.4.10),

g2
2 = 3g2

1 −
2

xy′
g1 + (1− 1

y′
). (3.4.11)

Substitute (3.4.11) into (3.4.9). We get

g3
1 −

1

xy′
g2
1 + (

y′ − 1

4y′
+

1

4x2y′2
) +

1

8xy′2
= 0. (3.4.12)

Let g2
2 > 0. From (3.4.11), we have

3g2
1 −

2

xy′
g1 + (1− 1

y′
) > 0,

which gives

g1

x
<

1−
√

1 + 3x2y′(1− y′)

3x2y′
or

g1

x
>

1 +
√

1 + 3x2y′(1− y′)

3x2y′
.

Note that we need g1/x < 0. It follows that x ∈ S if and only if (3.4.12) has a

solution such that

g1

x
<

1−
√

1 + 3x2y′(1− y′)

3x2y′
. (3.4.13)

Using the Cardano method to solve (3.4.12), we have in this case,

p = − 1

xy′
, q =

y′ − 1

4y′
+

1

4x2y′2
, r =

1

8xy′2
.
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Then

s = q − p2

3
= − 1

12x2y′2
[1 + 3x2y′(1− y′)],

t =
2

27
p3 − 1

3
pq + r =

1

36x3y′3
(
1

3
+ 3x2y′(y′ +

1

2
)). (3.4.14)

We can see that s < 0 since 0 < y′ < 1. Let ∆ = t2 + 4s3/27. Then

t2 −∆ =
4

27
{ 1

12x2y′2
[1 + 3x2y′(1− y′)]}3. (3.4.15)

If at x, ∆ ≤ 0, then the three roots of (3.4.12) are

−p/3 + 2ρ1/3 cos
ϕ

3
,−p/3 + 2ρ1/3 cos(

ϕ

3
+

2π

3
),−p/3 + 2ρ1/3 cos(

ϕ

3
+

4π

3
),

where

ρ1/3 =
√
−s/3 =

√
1 + 3x2y′(1− y′)

6|x|y′ . (3.4.16)

Divided by x, the above three roots become

1

3x2y′
+

√
1 + 3x2y′(1− y′)

3|x|xy′
cos(α), (3.4.17)

where α = ϕ/3, ϕ/3 + 2π/3, and ϕ/3 + 4π/3. Since | cos(α)| ≤ 1, we have

1

3x2y′
+

√
1 + 3x2y′(1− y′)

3|x|xy′
cos(α) ≥ 1−

√
1 + 3x2y′(1− y′)

3x2y′
. (3.4.18)

This means if x 6= 0 such that ∆ ≤ 0, then (3.4.12) does not have a solution

satisfying (3.4.13). Indeed, as can be seen below, the solution exists for the case

when at x, ∆ > 0. This means the support set of the density function consists of

those x’s such that ∆ > 0. Note that

∆ =
1

432x4y′4
[1 + (2y′2 + 5y′ − 1

4
)x2 − y′(1− y′)3x4]. (3.4.19)
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Thus ∆ > 0 means

y′(1− y′)3x4 − (2y′2 + 5y′ − 1

4
)x2 − 1 < 0.

It follows that

0 < x2 <
(2y′2 + 5y′ − 1

4
) +

√
32y′3 + 12y′2 + 3

2
y′ + 1

16

2y′(1− y′)3
. (3.4.20)

When ∆ > 0, (3.4.12) has only one real root:

g1 =
1

3xy′
+ (

−t +
√

∆

2
)1/3 + (

−t−√∆

2
)1/3, (3.4.21)

t and ∆ given by (3.4.14) and (3.4.19). We can check when ∆ > 0, g1 satisfies

(3.4.13), or equivalently, when x > 0,

g1 < [1−
√

1 + 3x2y′(1− y′)]/(3xy′);

when x < 0,

g1 > [1−
√

1 + 3x2y′(1− y′)]/(3xy′).

Note that t2−∆ = −4s3/27 > 0. Thus |t| > √
∆. Also, note that t and x have the

same sign. Thus when x > 0, (−t +
√

∆)/2 and (−t−√∆)/2 are both negative.

By Hölder’s inequality, when ∆ > 0,

−(
−t +

√
∆

2
)1/3 − (

−t−√∆

2
)1/3 > 2

√
−s

3

=

√
1 + 3x2y′(1− y′)

3|x|y′ =

√
1 + 3x2y′(1− y′)

3xy′
,

and thus

g1 <
1

3xy′
−

√
1 + 3x2y′(1− y′)

3xy′
=

1−
√

1 + 3x2y′(1− y′)

3xy′
.
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When x < 0, t < 0, and thus (−t +
√

∆)/2 and (−t − √∆)/2 are both positive.

Similarly, by Hölder’s inequality, when ∆ > 0,

(
−t +

√
∆

2
)1/3 + (

−t−√∆

2
)1/3

>

√
1 + 3x2y′(1− y′)

3|x|y′ = −
√

1 + 3x2y′(1− y′)

3xy′
.

Thus

g1 >
1

3xy′
−

√
1 + 3x2y′(1− y′)

3xy′
=

1−
√

1 + 3x2y′(1− y′)

3xy′
.

That is, when at x, ∆ > 0, g1 given by (3.4.21), is the solution to (3.4.12) satisfying

(3.4.13). Therefore by substituting g1 given by (3.4.21) into (3.4.11), we obtain the

expression of the density function for points in the support set given by (3.4.20).

By using Taylor’s expansion, it can further be shown that

lim
x→0

g1(x)/x = −(2/3)y′ − 1/2, lim
x→0

g2(x) =
√

7/3

and so

lim
x→0

f(x) =
1

π
(
4

3
y′ + 1)

√
7

3
.

Thus we obtained the density function for the case when Tn are known to be the

inverse matrices of the sample covariance matrices.

To prove the next part in Theorem 1.1.3, we again start by writing g = g1 + ig2

in (3.4.6). Then we get

y([g2
1 − g2

2]
2 − 4g2

1g
2
2) + (1 + y)[g2

1 − g2
2] + xg1 + 1 = 0, (3.4.22)

y4g1g2[g
2
1 − g2

2] + 2(1 + y)g1g2 + xg2 = 0. (3.4.23)
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From (3.4.23),

g2
2 = g2

1 + (
1

2
+

1

2y
) +

x

4yg1

. (3.4.24)

Substitute (3.4.24) into (3.4.22). We have

g6
1 +

1 + y

2y
g4
1 +

(1− y)2

16y2
g2
1 −

x2

64y2
= 0. (3.4.25)

From (3.4.24), we have

g2 =

√
g2
1 + (

1

2
+

1

2y
) +

x

4yg1

. (3.4.26)

Thus g2 > 0 implies

g2
1 + (

1

2
+

1

2y
) > − x

4yg1

. (3.4.27)

Note that −x/g1 > 0. It follows

[g2
1 + (

1

2
+

1

2y
)]2 >

x2

16y2g2
1

,

or equivalently,

g6
1 + (1 +

1

y
)g4

1 +
1

4
(1 +

1

y
)2g2

1 −
x2

16y2
> 0. (3.4.28)

From (3.4.25),

x2

16y2
= 4g6

1 +
2(1 + y)

y
g4
1 +

(1− y)2

4y2
g2
1.

Substitute it into (3.4.28). We get

−3g6
1 −

1 + y

y
g4
1 +

1

y
g2
1 > 0, (3.4.29)



142

and thus

g4
1 +

1 + y

3y
g2
1 −

1

3y
< 0. (3.4.30)

It follows that

0 < g2
1 <

−(1 + y) +
√

1 + y2 + 14y

6y
. (3.4.31)

Thus we only need to determine for whichever x’s, (3.4.25) viewed as a cubic

equation for g2
1 has a solution satisfying (3.4.31) and find the solution for these x’s.

Then with p = 1+y
2y

, q = (1−y)2

16y2 , and r = − x2

64y2 , we have

s = q − p2

3
= −1 + y2 + 14y

48y2
,

t =
2

27
p3 − 1

3
pq + r =

1

(12y)3
[−2(1 + y)3 + 72y(1 + y)− 27x2y].

Let ∆ = t2 + 4s3/27. Then

t2 −∆ = −4s3

27
=

4

27
(
1 + y2 + 14y

48y2
)3 > 0.

Let’s first consider the case ∆ ≥ 0. Then t2 − ∆ > 0 implies |t| >
√

∆. Thus,

(−t +
√

∆)/2 and (−t −√∆)/2 have the same sign. From Hölder’s inequality, it

follows that |[(−t +
√

∆)/2]1/3 + [(−t − √∆)/2]1/3| ≥ √
1 + y2 + 14y/(6y). Note

that in this case, −(1 + y)/(6y) + [(−t +
√

∆)/2]1/3 + [(−t−√∆)/2]1/3 is the only

real solution to the equation (3.4.25) and as is shown above, it does not satisfy the

condition (3.4.31). That is, if at x, ∆ ≥ 0, then (3.4.22) does not have a pair of

solution (g1, g2) with g2 > 0 and g1/x < 0. However, as can be seen below, such a

pair of solution exists if and only if at x, ∆ < 0. Then by solving ∆ < 0, we get

the support set of the density function f(x). Since ∆ = t2 + 4s3/27, ∆ < 0 gives
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−2
√
−s3/27 < t < 2

√
−s3/27. Compute that 2

√
−s3/27 = 2(1+y2+14y)3/2

(12y)3
. Thus we

get

−2(1 + y)3 + 72y(1 + y)− 2(1 + y2 + 14y)3/2

27y
< x2

<
−2(1 + y)3 + 72y(1 + y) + 2(1 + y2 + 14y)3/2

27y
.

It can be computed

[−2(1 + y)3 + 72y(1 + y)]2 = 4(1 + y2 + 14y)3 − 27× 16y(1− y)4.

Since x2 > 0, we have

0 < x2 <
−2(1 + y)3 + 72y(1 + y) + 2(1 + y2 + 14y)3/2

27y
. (3.4.32)

This gives the support set of the density function. Now for these x, we find the

solution to (3.4.25) satisfying the condition (3.4.31). For ∆ < 0, ρ1/3 =
√
−s/3 =

√
1 + y2 + 14y/(12y). Thus the three solutions to (3.4.25) (viewed as a cubic

equation for g2
1) are

−1 + y

6y
+ 2ρ

1
3 cos α = −1 + y

6y
+

√
1 + y2 + 14y

6y
cos α, (3.4.33)

where α takes ϕ/3, ϕ/3 + 2π/3, and ϕ/3 + 4π/3. Here, ϕ is defined by

cos ϕ =
−t

2ρ
=

−t

2
√
−s3/27

=
2(1 + y)3 − 72y(1 + y) + 27x2y

2(1 + y2 + 14y)3/2
, (3.4.34)

and sin ϕ =
√
|∆|/(2ρ). Since sin ϕ > 0, we define ϕ ∈ (0, π). Noting that

| cos α| < 1, to find the one in the three solutions which satisfies (3.4.31), we only

need to consider whichever is positive. From (3.4.33), this is equivalent to deciding

which of ϕ/3, ϕ/3+2π/3, and ϕ/3+4π/3, satisfies cos α > (1+y)/
√

1 + y2 + 14y.
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Note that ϕ/3 + 2π/3 ∈ (2π/3, π). Then cos(ϕ/3 + 2π/3) is < 0 and obviously

does not satisfy the condition. We only need to consider ϕ/3 and ϕ/3 + 4π/3.

In the sequel, we will prove only ϕ/3 satisfies the condition. For that purpose,

consider the function c(y) = (1 + y)/
√

1 + y2 + 14y for y ∈ (0,∞). It is easy to

see c′(y) = 6(y − 1){√1 + y2 + 14y}−3/2. Thus c(y) achieves a minimum of 1/2 at

y = 1 and we get

(1 + y)/
√

1 + y2 + 14y ∈ (1/2, 1) = {cos(
θ

3
) : θ ∈ (0, π)}

for y ∈ (0,∞). Therefore we can choose a unique θ ∈ (0, π) so that cos(θ/3) =

(1 + y)/
√

1 + y2 + 14y. Then cos θ = 4 cos3(θ/3) − 3 cos(θ/3) = (1 + y)(1 + y2 −

34y)/(1 + y2 + 14y)3/2. Then from (3.4.34), since x2 > 0,

cos ϕ >
2(1 + y)3 − 72y(1 + y)

2(1 + y2 + 14y)3/2
= cos θ.

Since ϕ, θ ∈ (0, π) and cos(·) is decreasing on (0, π), we have ϕ < θ. Then 0 <

ϕ/3 < θ/3 < π and π < ϕ/3 + 4π/3 < θ/3 + 4π/3 < 2π. Due to the monotonicity

of cos(·) on (0, π) and (π, 2π), respectively, we have cos(ϕ/3) > cos(θ/3) and

cos(ϕ/3 + 4π/3) < cos(θ/3 + 4π/3). Thus cos(ϕ/3) > (1 + y)/
√

1 + y2 + 14y

is proved. To show cos(ϕ + 4π/3) < (1 + y)/
√

1 + y2 + 14y, we only need to

show cos(θ/3 + 4π/3) < cos(θ/3). However, this is a consequence of the fact that

cos(θ/3) = cos(2π − θ/3) and π < θ/3 + 4π/3 < 2π − θ/3 < 2π. Therefore, we

have proved that only ϕ/3 satisfies cos(ϕ/3) > (1 + y)/
√

1 + y2 + 14y and thus

g2
1 = −1 + y

6y
+

√
1 + y2 + 14y

6y
cos(

ϕ

3
), (3.4.35)

with ϕ ∈ (0, π) and cos ϕ given by (3.4.34) is the only solution to (3.4.25) satisfying
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(3.4.31). By substituting g2
1 into (3.4.26), we get g2. Since −g1/x > 0, we can write

−g1/x =
√

g2
1/x

2,

−2g1g2

πx
=

2

π

√
g2
1

x2
g2 =

2

π

√
g2
1

x2

√√√√g2
1 + (

1

2
+

1

2y
)− 1

4y

√
x2

g2
1

.

Thus we get the expression of the density function (1.1.4) for points in the support

set defined by (3.4.32).

We then calculate the limit of −2g1(x)g2(x)
πx

as x → 0. Note that as x → 0,

cos ϕ → cos θ and hence

cos
ϕ

3
→ cos

θ

3
=

1 + y√
1 + y2 + 14y

.

It follows that

4(cos2 ϕ

3
+ cos

ϕ

3
cos

θ

3
+ cos2 θ

3
)− 3 → 9(1− y)2

1 + y2 + 14y
.

Note that

1

x2
(cos ϕ− cos θ) =

27y

2(1 + y2 + 14y)3/2
,

1

x2
(cos

ϕ

3
− cos

θ

3
) =

1
x2 (cos ϕ− cos θ)

4(cos2 ϕ
3

+ cos ϕ
3

cos θ
3

+ cos2 θ
3
)− 3

→ 3y

2(1− y)2
√

1 + y2 + 14y
.

Then we get

g2
1(x)

x2
=

1

x2
(−1 + y

6y
+

√
1 + y2 + 14y

6y
cos θ

+

√
1 + y2 + 14y

6y
(cos ϕ− cos θ))

=

√
1 + y2 + 14y

6y

1

x2
(cos ϕ− cos θ)

→ 1

4(1− y)2
.
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It follows g1(x) → 0, g1(x)/x → −1/(2|1− y|) and hence

g2(x) →
√

1

2
+

1

2y
− 1

2y
|1− y|.

Thus we also obtained the density function given in (1.1.4) for the case when Tn

are known to be the sample covariance matrices. The proof of Theorem 1.1.3 is

complete. 2

3.5 Existence of the LSD: Proof of Theorem 1.1.4

by Using the Moment Method

In this section, we present a proof of using the moment method to establish

the almost sure weak convergence of the empirical spectral distributions of the

Wigner type random matrices. We prove Theorem 1.1.4 for the matrices An =

1√
n
T 1/2

n WnT 1/2
n defined in Definition 1.1.1.

3.5.1 Truncation and Centralization Treatment

Let us begin by applying the truncation and centralization technique to the ma-

trices Wn and Tn in order to do the proof under the additional conditions in

Assumption 3.1.1.

We first prove the condition that ‖Tn‖ ≤ τ can be added without reducing the

generality of the result. Define T τ
n to be the resulting matrix of replacing in the

spectral decomposition of Tn those eigenvalues bigger than τ with 0 and Aτ
n the

analog of An with the matrix Tn replaced by T τ
n . Then we have if τ is a continuity
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point of H(t), with probability one, F T̃n(t) converges weakly to Hτ (t) given by

(3.1.7).

Suppose that Theorem 1.1.4 is true for the matrix Aτ
n. Then let F τ denote the

limiting spectral distribution of Aτ
n. By Lemma 2.1.1, whenever τ is a continuity

point of H, with probability one

‖FAn − FAτ
n‖ ≤ 2

n
F Tn{(τ,∞)} → 1−H(τ), (3.5.1)

which tends to 0 as τ tends to infinity.

By the Helly selection theorem1, there exists a subsequence {F τm} and a non-

decreasing, right-continuous function F such that limm F τm(x) = F (x) at all con-

tinuity points x of F . Let D be the set of numbers which are continuity points of

F and all functions F τm . Since the discontinuity points of all these functions must

be countable, the set D is dense in R. By hypothesis and triangular inequality, we

have with probability one for every point x ∈ D,

lim sup
n→∞

|FAn(x)− F (x)|

≤ lim sup
n→∞

|FAn(x)− FAτm
n (x)|+ lim sup

n→∞
|FAτm

n (x)− F τm(x)|+ |F τm(x)− F (x)|

= (1−H(τm)) + |F τm(x)− F (x)|,

which tends to 0 as m →∞. Thus we get with probability one limn FAn(x) = F (x)

holds for every x ∈ D, i.e. there exists a subspace Ω∗ with P (Ω∗) = 1 such that

for any ω ∈ Ω∗, limn FAn(x) = F (x), for every x ∈ D. This implies, indeed,

for any ω ∈ Ω∗, limn FAn(x) = F (x), for every continuity point x of F . To see

1See Billingsley(1995) p.336 Theorem 25.9.
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this, we note that D is dense in the set of continuity points of F so that for each

continuity point x of F and each ε > 0, we can find two numbers in D, say x1

and x2, such that x1 < x < x2, F (x) − ε ≤ F (x1) ≤ F (x) ≤ F (x2) ≤ F (x) + ε.

Since, for any ω ∈ Ω∗, F (x1) = limn→∞ FAn(x1) ≤ lim infn→∞ FAn(x) and F (x2) =

limn→∞ FAn(x2) ≥ lim supn→∞ FAn(x), we get F (x) − ε ≤ lim infn→∞ FAn(x) ≤

lim supn→∞ FAn(x) ≤ F (x) + ε. Thus, for each ω ∈ Ω∗, FAn(x) converges to F (x)

for all continuity points of F . This implies with probability one {FAn} converges

vaguely to F . However, {FAn} is tight, hence indeed with probability one, {FAn}

converges weakly to F (x).

We can also show that F τ converges weakly to F . Indeed, the above proof si-

multaneously shows every subsequence of {F τ} contains a further weak convergent

subsequence and all weak convergent subsequences of {F τ} converge to the same

limit, hence by Theorem 25.10 and its corollary on p.336-337 of Billingsley (1995),

F τ converges weakly to F .

Note that it remains to show as H possesses moments of all orders and for each

positive integer p the pth moment of F Tn converges weakly to the pth moment

of H, the moments of F are given by (1.1.4) and (1.1.5) of Theorem 1.1.4. By

hypothesis, in view that Hτ possesses all moments and for each positive integer

p the pth moment of F T τ
n converges weakly to the pth moment of Hτ , the mo-

ments of F τ are given by the analogues of (1.1.4) and (1.1.5) with the function H

replaced by Hτ . Here we use the corollary to Theorem 25.12 on p.338 of Billings-

ley (1995) which states that for any positive integer r, if probability distribution

functions Gn converge weakly to G and supn

∫ |x|r+εdGn(x) < ∞ where ε > 0,
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then
∫ |x|rdG(x) < ∞ and

∫
xrdGn(x) → ∫

xrdG(x). We apply this result to the

probability distribution functions F τ and their weak limit F .

Let us denote by mτ
p the pth moment of F τ . We have since H possesses mo-

ments of all orders, for any positive integer m,
∫

tmdH(t) < ∞ and so
∫

tmdH(t)−
∫

tmdHτ (t) =
∫
t>τ tmdH(t) → 0, from which it follows for every order p, limτ mτ

p

exists and is given by (1.1.4) and (1.1.5). However, for every even p the existence

of limτ mτ
p implies that supτ mτ

p < ∞. Thus we obtain from the just stated result

that for every order p, the pth moment of F exists and is given by the limit limτ mτ
p.

Therefore, we proved Theorem 1.1.4 must be true for the matrix An provided that

it is true for the matrix Aτ
n. We conclude in proving Theorem 1.1.4, without loss

of generality, we may assume condition (i) of Assumption 3.1.1 to be true.

The truncation and centralization of the random variables in the matrix Wn

can be carried out the same way as in Section 3.1.2. By defining the matrices Ân

and Ãn, we get FAn and F Ãn converge to the same limit. Thus if Theorem 1.1.4

is true for the latter it must be equally true for the former. Thus it only remains

to show in proving Theorem 1.1.4, without loss of generality, we may assume Tn is

non-random.

For each ω ∈ Ω, similarly define the matrix Aω
n = 1√

n
T 1/2

n (ω)WnT 1/2
n (ω) as in

Section 3.1.2. By assumption (ii) of Theorem 1.1.4, let Ω0 still denote the subspace

with P (Ω0) = 1 such that for every ω ∈ Ω0, F Tn(ω) converges weakly to H. Then,

for any ω ∈ Ω0, by Theorem 3.5.1 of the present chapter, FAω
n converges weakly to
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a non-random limit F with

En−1tr(Aω
n)k → mk, (3.5.2)

where mk is the k-th moment of F and satisfies (3.5.5), (3.5.6), and by Theorem

3.5.11,

E(n−1tr(Aω
n)k − En−1tr(Aω

n)k)4 ≤ Kn−2,

where K depends only on τ and k.

Note that since Wn is independent of Tn, we have for any ω ∈ Ω

E(n−1tr(An)k|Tn = Tn(ω)) = En−1tr(Aω
n)k (3.5.3)

and

E|n−1tr(An)k − E(n−1tr(An)k|Tn = Tn(ω))|4

= E
{
E

(
|n−1tr(An)k − E(n−1tr(An)k|Tn = Tn(ω))|4|Tn = Tn(ω)

)}

= E
(
E|n−1tr(Aω

n)k − En−1tr(Aω
n)k|4

)

=
∫

Ω0

E|n−1tr(Aω
n)k − En−1tr(Aω

n)k|4dP (ω)

≤ Kn−2. (3.5.4)

Note that, because of P (Ω0) = 1, (3.5.2) and (3.5.3) imply E(n−1tr(An)k|Tn =

Tn(ω)) → mk, almost surely. By (3.5.4), n−1tr(An)k−E(n−1tr(An)k|Tn = Tn(ω)) →

0, almost surely. Thus, n−1tr(An)k → mk, almost surely. That is, Theorem 1.2.1

must also hold for An. Therefore, in proving Theorem 1.1.4, without loss of gen-

erality, we may also assume Tn to be non-random. In the sequel, we assume all

assumptions of Definition 1.1.1 and all conditions of Assumption 3.1.1 hold.
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3.5.2 Moment Method Proof: Preliminary Derivations

The preceding truncation and centralization treatment guarantees that Theorem

1.1.4 will follow once the following theorem is proved.

Theorem 3.5.1. Under assumptions (i)− (iii) of Definition 1.1.1 and condi-

tions (i)−(iii) of Assumption 3.1.1, with probability one, as n →∞, the empirical

spectral distribution FAn converges weakly to a non-random limiting distribution

function F which is determined by its moments. Moreover, if mk denotes the k-th

moment of F , then m0 = 1 and

mk =





0, k is odd,

∑l−1
s=0 g2sg2(l−1−s), k is even = 2l,

(3.5.5)

where with αp denoting the pth moment of H(t), g0 = α1, for s ≥ 1, g2s is given

by

g2s =
s∑

q=1

∑
j1+j2+···+jq=s+1−q

j1+2j2+···+qjq=s

s!

q!j1!j2! · · · jq!
αq

1α
j1
2 αj2

3 · · ·αjq

q+1. (3.5.6)

Carleman’s Condition

To see F is determined by its moments, we show {mk} satisfies Carleman’s condi-

tion. Note that by condition (ii) of Assumption 3.1.1, the moments of H satisfies

Carleman’s condition since (α2k)
− 1

2k ≥ τ−1. Next we show whenever the moments

of H satisfy Carleman’s condition, the moments mk given by (3.5.5) and (3.5.6)

also satisfy Carleman’s condition. By using the calculations of Yin and Krishnaiah
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(1983) p.502, we have

∑
j1+j2+···+jq=s+1−q

j1+2j2+···+qjq=s

(s− q + 1)!

j1!j2! · · · jq!

= the coefficient of xs term of (x + x2 + · · ·+ xq)s−q+1

≤ the coefficient of xs term of (x + x2 + · · · )s−q+1

= the coefficient of xs term of xs−q+1(1− x)−s+q−1

=
(s− 1)!

(s− q)!(q − 1)!
.

By Hölder’s inequality, since αm ≤ (α2s+1)
m

2s+1 and q+2j1 + · · ·+(q+1)jq = 2s+1,

it follows

g2s ≤ α2s+1

s∑

q=1

s!

q!(s− q + 1)!

∑
j1+j2+···+jq=s+1−q

j1+2j2+···+qjq=s

(s− q + 1)!

j1!j2! · · · jq!

≤ α2s+1

s∑

q=1

s!

q!(s− q + 1)!

(s− 1)!

(s− q)!(q − 1)!

= α2s+1
1

s + 1

s−1∑

v=0

Cv+1
s+1 Cv

s−1

≤ α2s+12
2s.

Thus

m2k ≤
k−1∑

s=0

α2s+1α2(k−s−1)+12
2(k−1) ≤ kα2k2

2(k−1).

We get with C = 2−13−1/6,

∞∑

k=1

m
− 1

2k
2k ≥ C

∑

k=1

(α2k)
− 1

2k = ∞.

Now that {mk} satisfies Carleman’s condition, Theorem 3.5.1 can be proven using

the moment method. We only need to show for each positive integer k, as n →∞,

the kth moment of FAn converges almost surely to mk.
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Construction of Graphs

For every positive integer k, write

Mk =
1

n
tr(Ak

n) = n−
k
2
−1

∑

i1,i2,··· ,i2k

(wi1i2wi3i4 · · ·wi2k−1i2k
)(ti2i3ti4i5 · · · ti2ki1).(3.5.7)

Then Mk is the kth moment of FAn .

For each sequence i1, i2, · · · , i2k, we construct a graph G as follows. We first

partition E = {1, 2, · · · , 2k} into several disjoint subsets, say, E1, E2, · · · , Em

according to the rule that any two indices u and v in the set E are assigned to

the same subset if and only if iu = iv. By this rule, if u and v belong to dif-

ferent subsets in the partition, then iu 6= iv. Thus, the total number of subsets

contained in the partition, i.e. m, should be the number of distinct values ap-

pearing in i1, i2, · · · , i2k. We can also order Ej by requiring the smallest number

of Ej is increasing in j. For ease of reference, a such partition will be written as

∆(i1, i2, · · · , i2k). To construct the graph describing the sequence, we first draw a

line and put m different vertices on it. For each 1 ≤ j ≤ m put at the jth vertex

on the line all of those iu with u ∈ Ej. Now for each 1 ≤ v ≤ k, draw an edge

pointing from i2v−1 to i2v corresponding to the variable wi2v−1i2v and we refer to

this edge as the vth w-edge; draw an edge pointing from i2v to i2v+1 corresponding

to the variable ti2vi2v+1 and we refer to this edge as the vth t-edge.

Let L be the set of all graphs G constructed in the above way. For each graph

G ∈ L, let us denote by GB its subgraph consisting of all its w-edges and all its

vertices and denote by GH its subgraph consisting of all its t-edges and all its

vertices. Let wGB
= wi1i2wi3i4 · · ·wi2k−1i2k

and tGH
= ti2i3ti4i5 · · · ti2ki1 . With these
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notation, we have

Mk = n−
k
2
−1

∑

G∈L
(wGB

)(tGH
). (3.5.8)

Let £ be the set of all graphs which contain no single w-edges. Since whenever a

graph G contains a single w-edge, the expectation of wGB
is equal to zero, we have

EMk = n−
k
2
−1

∑

G∈£

(EwGB
)(tGH

). (3.5.9)

Two Characteristic Numbers

For each graph G, let l be the number of non-coincident w-edges it contains. Let

Z(G) be the resulting graph obtained from gluing coincident w-edges in the graph

G into one edge. Then Z(G) contains l glued w-edges. If one glued w-edge satisfies

that once it is removed from Z(G), the resulting graph will not be connected any

more, then this glued w-edge is said to be a cutting edge. Note that the edges in

the original graph G form a closed path starting from i1 and terminating at i1 and

so removing any edge from G does not cause the graph connected. This guarantees

us removing any t-edge from Z(G) will not cause the graph disconnected. Thus

the number of cutting glued w-edges is just the total number of cutting edges in

Z(G) whose removal will cause the graph disconnected. Let r denote the number

of cutting w-edges contained in Z(G). We shall also refer to r as the number

of cutting non-coincident w-edges contained in G. Thus we have defined two

characteristic numbers for each graph G.
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Isomorphic Classes of Graphs

Suppose G′ and G′′ are two graphs constructed as above respectively for sequences

i′1, i
′
2, · · · , i′2k and i′′1, i

′′
2, · · · , i′′2k. Then G′ and G′′ are said to be isomorphic with

each other if and only if ∆(i′1, i
′
2, · · · , i′2k) = ∆(i′′1, i

′′
2, · · · , i′′2k). It can be seen if G′

and G′′ are isomorphic graphs, then except that the specific values taken by the

m vertices are different between the two graphs all the other properties of the two

graphs are the same. Therefore, the previously defined two characteristic numbers

l and r are indeed the same for all graphs in one isomorphic class.

With this definition, we may separate the graphs in £ into isomorphic classes

such that each class contains only isomorphic graphs and graphs in different classes

are not isomorphic with each other. One isomorphic class of graphs will be denoted

by G. Note that different isomorphic classes may possess the same characteristic

numbers l, r. On the other hand, it is easy to see for each isomorphic class obtained

from £, it must hold r ≤ l ≤ k/2. Thus in the following, we denote by G1 the set

of isomorphic classes whose characteristic numbers satisfy l < k/2, G2 the set of

isomorphic classes whose characteristic numbers satisfy r < l = k/2, and G3 the

set of isomorphic classes whose characteristic numbers satisfy r = l = k/2.

The definition of isomorphic graphs also enables us to obtain a representative

graph for each isomorphic class. Recall that all graphs in one isomorphic class

possess the same partition E1, E2, · · · , Em of the set {i1, i2, · · · , i2k}. When we

define a graph corresponding to a given sequence, we put at each of the m vertices

all those iu for u ∈ Ej and thus the value of the vertex is implicitly determined to
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be the common value taken by those iu. And as we have claimed, it is these values

assigned to the m-vertices that make the graphs differ from each other. To define

a representative graph for an isomorphic class, we express the m vertices by I1, I2,

· · · , Im whose values are not determined and only satisfy the restriction that they

should be m different integers taken from 1 to n.

In the following, let us use G(G) to denote the representative graph of an

isomorphic class G. We similarly define Z(G) to be the resulting graph obtained

by gluing coincident w-edges contained in G(G) into one edge. The vertices of

Z(G) are the same as G(G), i.e. I1, I2, · · · , Im. The meaning of
∑

I1,··· ,Im
refers to

taking summation over all possibilities of the values taken by the vertices I1, I2,

· · · , Im of G(G) satisfying the restriction mentioned in the preceding paragraph.

Two Preliminary Theorems

Theorem 3.5.2. For each G ∈ G1 or G2, as n →∞,

n−
k
2
−1

∑

G∈G
(EwGB

)(tGH
) → 0.

Proof. We apply Lemma 2.2.1 (Lemma 2.11 of Bai (1999)) to Z(G). It contains

totally k t-edges, each of which corresponds to the matrix Tn. It contains l glued

w-edges among which there are r are cutting edges. Suppose the l glued w-edges

are respectively composed of for 1 ≤ i ≤ l, µi w-edges of one direction and νi

w-edges of the other direction. Then the ith glued w-edge corresponds to matrix

B with (a, b) entry equal to E(wµi
abw̄

νi
ab). It is easy to see ‖B‖0 ≡ n max |B(a, b)| ≤
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(δn

√
n)µi+νi−2n. At the same time, noting that B is Hermitian, with n dimensional

vector u such that u∗u = 1 we have by Hölder’s inequality, ‖B‖ = maxu |u∗Bu| ≤

max |B(a, b)|∑a,b |ua||ub| ≤ (δn

√
n)µi+νi−2n.

It is legal to denote the totally l + k edges of Z(G) by e1, · · · , er the r cutting

glued w-edges, er+1, · · · , el the other l − r non-cutting glued w-edges, and el+1,

· · · , el+k the k t-edges. We adopt the functions fini(·) and fend(·) of any edge e to

represent respectively the initial vertex and the ending vertex of e. Then for each

ei with 1 ≤ i ≤ l + k, fini(ei) and fend(ei) should be from the vertices I1, I2, · · · ,

Im of Z(G).

By using Lemma 2.2.1, for G ∈ G1,

n−
k
2
−1| ∑

G∈G
(EwGB

)(tGH
)|

= n−
k
2
−1| ∑

I1,··· ,Im

l∏

i=1

E(wµi

fini(ei),fend(ei)
w̄νi

fini(ei),fend(ei)
)

l+k∏

i=l+1

tfini(ei),fend(ei)|

≤ n−
k
2
−1Cn

r∏

i=1

{(δn

√
n)µi+νi−2n}

l∏

i=r+1

{(δn

√
n)µi+νi−2n}

= Cδk−2l
n

→ 0, (3.5.10)

in which C is a constant which depends only on τ , m, l and k. Here we have also

used the fact ‖Tn‖ ≤ τ and
∑l

i=1(µi + νi) = k.

For G ∈ G2, since 2l = k and there is no single w-edge in each G ∈ G, each

non-coincident w-edge in G consists of exactly 2 w-edges. This results in for each

edge ei in Z(G), 1 ≤ i ≤ l, µi + νi = 2. Since r < l, there must be at least one

non-cutting w-edge contained in Z(G). Note that one cutting w-edge cannot be
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loop, but one non-cutting w-edge can. Therefore, we consider two cases in the

following.

If there is some non-cutting w-edge in Z(G) which is degenerate into a loop,

without loss of generality, we suppose el is one such edge. Then the matrix corre-

sponding to el becomes diagonal with (a, a)th entry B(a, a) = E(wµl
aaw̄

νl
aa) and its

spectral norm is bounded by (δn

√
n)µl+νl−2(= 1). There may be other degenerate

non-cutting w-edges, but since considering one of them is already enough for our

proof, we still use (δn

√
n)µi+νi−2n(= n) as the bound of the spectral norm of the

matrices corresponding to them. The validity of this treatment is obvious. Apply-

ing Lemma 2.2.1 in the same way as above, then besides that all (δn

√
n)µi+νi−2n is

replaced by n for 1 ≤ i ≤ l − 1, (δn

√
n)µl+νl−2n will be replaced by 1. Thus there

should be one n factor disappear from the second inequality of (3.5.10). It follows

in this case, noting 2l = k,

n−
k
2
−1| ∑

G∈G
(EwGB

)(tGH
)| ≤ Cn−1 → 0.

Otherwise, if in Z(G) there is no degenerate w-edge we arbitrarily select one

non-cutting w-edge. For simplicity and without loss of generality, we suppose the

selected edge is el. Then by Hölder’s inequality, we have

n−
k
2
−1| ∑

G∈G
(EwGB

)(tGH
)|

= n−
k
2
−1| ∑

fini(el),fend(el)

E(wµl

fini(el),fend(el)
w̄νl

fini(el),fend(el)
)

∑

{I1,··· ,Im}\{fini(el),fend(el)}

l−1∏

i=1

E(wµi

fini(ei),fend(ei)
w̄νi

fini(ei),fend(ei)
)

l+k∏

i=l+1

tfini(ei),fend(ei)|
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≤ n−
k
2
−1





∑

fini(el),fend(el)

|E(wµl

fini(el),fend(el)
w̄νl

fini(el),fend(el)
)|2





1/2





∑

fini(el),fend(el)

| ∑

{I1,··· ,Im}\{fini(el),fend(el)}

l−1∏

i=1

E(wµi

fini(ei),fend(ei)
w̄νi

fini(ei),fend(ei)
)

l+k∏

i=l+1

tfini(ei),fend(ei)|2




1/2

. (3.5.11)

Note that since µl + νl = 2, |E(wµl

fini(el),fend(el)
w̄νl

fini(el),fend(el)
)| ≤ 1. Thus





∑

fini(el),fend(el)

|E(wµi

fini(el),fend(el)
w̄νi

fini(el),fend(el)
)|2





1/2

≤ n.

For the other term appearing in the last inequality of (3.5.11), we introduce the

following definitions.

Denote by Z(G)\el the resulting graph of deleting from Z(G) the edge el. Note

that Z(G)\el contains all the m vertices of Z(G) including the two vertices fini(el),

fend(el) of el. Now we make a copy of Z(G)\el but we keep using only the two

vertices fini(el), fend(el) and change all other vertices Iu’s into Ju’s. However, the

copies of the edges ei’s will all be changed their notations into ẽi’s. Then we glue

the original Z(G)\el and its copy at their common vertices fini(el), fend(el) and

denote the resulting graph by Z0(G).

Let us consider the restriction on the values of the vertices of Z0(G). To make

explanations clear, let us now simply assume fini(el) = I1 and fend(el) = I2. Then

the vertices of Z0(G) consist of I1, I2, I3, · · · , Im, J3, · · · , Jm. These vertices

should take values satisfying the following restriction: vertices I1 and I2 never take

common values with each other and with all the left Iu’s and Ju’s, vertices I3,

· · · , Im cannot take common values among themselves, vertices J3, · · · , Jm cannot
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take common values among themselves, but there maybe some I-vertex taking a

common value with some J-vertex or vice versa.

According to the rule governing the values taken by vertices I1, I2, I3, · · · ,

Im, J3, · · · , Jm, we see in Z0(G) there are at least m and at most 2m − 2 non-

coincident vertices. For any integer m ≤ m′ ≤ 2m−2, denote by ℵ(m′) all possible

coincidence way between I3, · · · , Im and J3, · · · , Jm such that Z0(G) contains m′

non-coincident vertices and denote by L1, · · · , Lm′ these vertices.

With these definitions, we get from (3.5.11),

n−
k
2
−1| ∑

G∈G
(EwGB

)(tGH
)|

≤ n−
k
2
−1 × n×





∑

I1,··· ,Im,J3,··· ,Jm

l−1∏

i=1

E(wµi

fini(ei),fend(ei)
w̄νi

fini(ei),fend(ei)
)

l+k∏

i=l+1

tfini(ei),fend(ei)

l−1∏

i=1

E(wµi

fini(ẽi),fend(ẽi)
w̄νi

fini(ẽi),fend(ẽi)
)

l+k∏

i=l+1

tfini(ẽi),fend(ẽi)





1/2

= n−
k
2
−1 × n×





2m−2∑

m′=m

∑

ℵ(m′)

∑

L1,··· ,Lm′

l−1∏

i=1

E(wµi

fini(ei),fend(ei)
w̄νi

fini(ei),fend(ei)
)

l+k∏

i=l+1

tfini(ei),fend(ei)

l−1∏

i=1

E(wµi

fini(ẽi),fend(ẽi)
w̄νi

fini(ẽi),fend(ẽi)
)

l+k∏

i=l+1

tfini(ẽi),fend(ẽi)





1/2

(3.5.12)

It is clear Z0(G) contains 2(l + k − 1) edges. They are simply ei and ẽi for

i = 1, · · · , l−1, l+1, · · · , k+ l. We consider the case when all of I1, I2, I3, · · · , Im,

J3, · · · , Jm take distinct value from each other. In this case, it is clear since except

the two vertices I1 and I2, the original part and the copy part in Z0(G) have no

other coincident vertices, each ei and each ẽi for 1 ≤ i ≤ r are cutting edges of



161

Z0(G). Further for ei, (r + 1 ≤ i ≤ k + l and i 6= l), since before the edge el is

removal, ei is non-cutting in Z(G), now that we can find a path only through edges

in the copy part which connecting the vertices I1 and I2, ei is still non-cutting in

Z0(G). Due to the symmetry of the graph, each ẽi (r + 1 ≤ i ≤ k + l and i 6= l)

is also non-cutting in Z0(G). In the case where some I-vertex and J-vertex take

common values, we just note that no cutting edges may be added.

Concerning the matrix corresponding to each edge of Z0(G), we simply use the

same matrix for an original edge and its copy and such matrix has been defined

previously. Therefore, we are ready to use Lemma 2.2.1. Note that due to µi+νi =

2, ‖ · ‖0 and ‖ · ‖ are both bounded by n. Thus when we applying Lemma 2.2.1 to

Z0(G), noting l = k/2, the 2(l − 1) w-edge in it totally generate one factor nk−2,

while all the other t-edges generate constant factor τ 2k. Thus for each m′ and each

possible way in ℵ(m′), from Lemma 2.2.1, we get

| ∑

L1,··· ,Lm′

l−1∏

i=1

E(wµi

fini(ei),fend(ei)
w̄νi

fini(ei),fend(ei)
)

l+k∏

i=l+1

tfini(ei),fend(ei)

l−1∏

i=1

E(wµi

fini(ẽi),fend(ẽi)
w̄νi

fini(ẽi),fend(ẽi)
)

l+k∏

i=l+1

tfini(ẽi),fend(ẽi)|

≤ Cnnk−2

= Cnk−1.

By (3.5.12), it follows

n−
k
2
−1| ∑

G∈G
(EwGB

)(tGH
)| ≤ Cn−

k
2
−1 × n× (nk−1)1/2

≤ Cn−
1
2 .

This completes the proof of the theorem. 2
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Theorem 3.5.3. For each G ∈ G3, as n →∞,

n−
k
2
−1

∑

G∈G
(1− EwGB

)(tGH
) → 0.

Proof. For the representative graph G(G) of an isomorphic class G ∈ G3, we

first assert that each of its non-coincident w-edge must consist of two w-edges with

opposite directions. If there is one non-coincident w-edge consisting of two w-edges

of the same direction, there must be a path which connects the two vertices of this

edge in the graph without need of passing this edge. This means removing the

two w-edges included in a such non-coincident w-edge from G(G) will not cause

the graph disconnected and hence after gluing all the coincident w-edges in G(G),

the resulting graph Z(G) contains one non-cutting w-edge. This contradicts the

hypothesis G ∈ G3.

We still denote by ei for 1 ≤ i ≤ l (here l = k/2) the l cutting w-edge in Z(G)

and ei for l + 1 ≤ i ≤ k + l the k t-edges in Z(G). Then

1− EwGB

= 1−
l∏

i=1

E|wfini(ei),fend(ei)|2

=
l∑

j=1




j−1∏

i=1

E|wfini(ei),fend(ei)|2

 (1− E|wfini(ej),fend(ej)|2).



163

Therefore,

n−
k
2
−1

∑

G∈G
(1− EwGB

)(tGH
)

=
l∑

j=1

n−
k
2
−1

∑

I1,··· ,Im




j−1∏

i=1

E|wfini(ei),fend(ei)|2

 (1− E|wfini(ej),fend(ej)|2)

k+l∏

i=l+1

tfini(ei),fend(ei). (3.5.13)

Fix any j. We may want to apply Lemma 2.2.1 to the inner sum of the above

expression. According to the form of the summand, we define new matrices cor-

responding to the edges of Z(G). Let each edge ei with 1 ≤ i < j correspond to

the matrix B with (a, b)th entry B(a, b) = E|wab|2, the edge ej correspond to the

matrix B with (a, b)th entry Q(a, b) = 1 − E|wab|2, each edge ei with j < i ≤ l

correspond to the matrix R with (a, b)th entry R(a, b) = 1. Then it is easy to see

‖B‖0 ≤ n, ‖R‖0 ≤ n. However, ‖Q‖0 ≤ n max(1− E|wab|2) is not appropriate to

yield the result. Therefore, as we have done for the case of G ∈ G2, we again make

use of Hölder’s inequality. We obtain

| ∑

I1,··· ,Im




j−1∏

i=1

E|wfini(ei),fend(ei)|2

 (1− E|wfini(ej),fend(ej)|2)

k+l∏

i=l+1

tfini(ei),fend(ei)|

≤




∑

fini(ej),fend(ej)

(1− E|wfini(ej),fend(ej)|2)2





1/2





∑

fini(ej),fend(ej)

| ∑

{I1,··· ,Im}\{fini(ej),fend(ej)}




j−1∏

i=1

E|wfini(ei),fend(ei)|2



k+l∏

i=l+1

tfini(ei),fend(ei)|2




1/2

. (3.5.14)

The following calculations will be in parallel to those of (3.5.11) and (3.5.12). It
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is easy to see




∑

fini(ej),fend(ej)

(1− E|wfini(ej),fend(ej)|2)2





1/2

≤

∑

a,b

(1− E|wa,b|2)



1/2

= o(δnn). (3.5.15)

For the second square root term appearing in (3.5.14), define similarly Z(G)\ej

and its copy. Then similarly glue the original and copy parts together at their two

common vertices fini(ej), fend(ej) to get Z0(G). For simplicity and without loss of

generality, we now assume the two vertices fini(ej), fend(ej) of ej are just I1, I2 in

Z(G).

For any 1 ≤ j ≤ l fixed, we have defined for each edge ei with i 6= j and 1 ≤ i ≤

l + k of Z(G) the matrix corresponding to it. Therefore, for each edge of Z0(G),

its corresponding matrix is known by the rule that a copy edge ẽi corresponds to

a matrix equal to the matrix corresponding to the original edge ei.

Similarly denote by I1, I2, I3, · · · , Im, J3, · · · , Jm the vertices of Z0(G). Simi-

larly, for m ≤ m′ ≤ 2m− 2, let ℵ(m′) be all the possible coincidence way between

I3, · · · , Im, and J3, · · · , Jm such that Z0(G) possesses exactly m′ non-coincident

vertices L1, · · · , Lm′ .

However, the connectivity property of Z0(G) is not the same as the previous

case. In this case, due to the cutting nature of the removed edge ej, Z0(G) is

composed of two disjoint connected subgraphs. We may conveniently add one

edge to connect the two vertices I1, I2 left by ej and let this edge correspond to

the matrix R. The resulting graph will possess the same vertices as Z0(G) and one
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more new edge which is cutting corresponding to the matrix R.

We now yield

∑

fini(ej),fend(ej)

| ∑

{I1,··· ,Im}\{fini(ej),fend(ej)}




j−1∏

i=1

E|wfini(ei),fend(ei)|2



k+l∏

i=l+1

tfini(ei),fend(ei)|2

=
∑

I1,I2

| ∑

I3,··· ,Im




j−1∏

i=1

E|wfini(ei),fend(ei)|2



k+l∏

i=l+1

tfini(ei),fend(ei)|2

=
2m−2∑

m′=m

∑

ℵ(m′)

∑

L1,··· ,Lm′




j−1∏

i=1

E|wfini(ei),fend(ei)|2



k+l∏

i=l+1

tfini(ei),fend(ei)




j−1∏

i=1

E|wfini(ẽi),fend(ẽi)|2



k+l∏

i=l+1

tfini(ẽi),fend(ẽi).

To get estimate of the inner sum in the above relation, we apply Lemma 2.2.1

to the resulting graph of adding one edge to Z0(G). Then the inner sum can be

considered as a summation taken over all of the vertices of this graph while the

matrix corresponding to each edge of this graph depending on the form of the

summand has been defined in preceding illustrations on Z0(G) and the adding

edge. There are totally 2(l − 1) + 1 cutting edges each of which corresponds

to a matrix whose ‖ · ‖0 does not exceeding n and hence they totally generates

factor n2l−1 = nk−1. Therefore, the absolute value of the inner sum is bounded by

Cnnk−1 = Cnk. Combining this result with (3.5.15), in view of (3.5.14), we then

get for each fixed j, the absolute value of the inner sum of (3.5.13) is bounded by

C · o(δn)n
k
2
+1. It follows then

|n− k
2
−1

∑

G∈G
(1− EwGB

)(tGH
)| = o(δn) → 0.

The proof is complete. 2
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Theorems 3.5.2 and 3.5.3 imply that

EMk = n−
k
2
−1

∑

G∈G3

∑

G∈G
(tGH

) + o(1). (3.5.16)

Since when k is odd, G3 is empty, we get in this case EMk → 0. Now assume

k is even. To calculate the leading term on the right-hand, we need to give a

reclassifications of the isomorphic classes involved in G3.

Property of G(G) for G ∈ G3

We consider some basic properties of the representative graph G(G) of an iso-

morphic class G belonging to the set G3. first, we recall that in this case due to

r = l = k/2, every non-coincident w-edge of G(G) is cutting and so every non-

coincident w-edge of G(G) consists of exactly two w-edges of opposite directions.

For each G ∈ G3, denote by GH(G) the resulting graph of removing from

G(G) all its w-edges. Then GH(G) consists of exactly l + 1 disjoint subgraphs

each of which consists of only t-edges and does not contain cutting edge. In the

sequel, these l + 1 subgraphs will be said to be l + 1 blocks and denoted by

B0(G), · · · , Bl(G). For clarity, we give them a such order that if vj is the smallest

interger such that the vjth t-edge (i2vj
, i2vj+1) belongs to Bj(G) for 0 ≤ j ≤ l,

then 1 = v0 < v1 < · · · < vl. Consequently, for each Bj(G) with 1 ≤ j ≤ l, the

w-edge (i2vj−1, i2vj
) appears before all those edges in Bj(G) if we draw the edges

of the graph G(G) one by one begining at (i1, i2). Thus the w-edge (i2vj−1, i2vj
)

is also the one among all those w-edges connected with Bj(G) that appears the
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first. Therefore, for each 1 ≤ j ≤ l we call the w-edge (i2vj−1, i2vj
) as the initiating

w-edge of the block Bj(G).

For each block Bj(G) with 0 ≤ j ≤ l, there is associated a subset Uj of the

set {1, · · · , k} such that v belongs to Uj if and only if the vth t-edge (i2v, i2v+1)

belongs to Bj(G). Then U0, U1, · · · , Ul form a separation of {1, · · · , k} which for

brevity we denote by Υ(G). It can be seen the prescribed vj is the smallest number

of Uj. It can also be seen Uj describes the composition of each block Bj(G), i.e.

which many t-edges constitute the block.

For each of the l w-edges (i2vj−1, i2vj
) which initiate l blocks, there is one

and only one w-edge coincident with it. Thus let us suppose the coincident w-

edge of (i2vj−1, i2vj
) is (i2uj−1, i2uj

) with i2uj
= i2vj−1,i2uj−1 = i2vj

for 1 ≤ j ≤ l.

Then {v1, u1}, · · · , {vl, ul} form another separation of {1, · · · , k}. Let us write

this separation as ∆(G). We can indeed obtain ∆(G) in another way. That is,

partitioning {1, · · · , k} into l disjoint subsets, any pair of integers u and v with

1 ≤ u, v ≤ k belong to the same subset if and only if the uth w-edge and the vth

w-edge of G(G) are coincident with each other. Thus separation ∆(G) describes

the coincident way of the w-edges of G(G).

We now prove for each G ∈ G3, ∆(G) determines Υ(G). We first note that if

we view each block as a vertex, then the l w-edges and the l + 1 blocks form a

tree. This property dertermines that if one person walks along the edges of G(G)

then once he leaves a block through one w-edge, he can only reenter the block

through the w-edge coincident with the prescribed w-edge and he leaves the block

ultimately only through the w-edge coincident with the iniatiating w-edge of the
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block. With this understanding, we consider an arbitrary Bj(G) with 1 ≤ j ≤ l.

Its initiating w-edge is (i2vj−1, i2vj
) coincident with (i2uj−1, i2uj

), so the first and

last t-edge appearing in the block are respectrively (i2vj
, i2vj+1) and (i2uj−2, i2uj−1).

If one person enters this block and walks along the first edge of (i2vj
, i2vj+1), he

will leave the block through the w-edge (i2vj+1, i2vj+2). As stated, he reenter the

block only through the w-edge which is coincident with (i2vj+1, i2vj+2). Since we

have ∆(G), this coincident edge can be known. Then sequentially we know the

next t-edge in the block and the next w-edge along which he again leaves the block.

Based on ∆(G), the third t-edge in this block is then known. Continue this process

until we get the last t-edge (i2uj−2, i2uj−1) of the block. Since each t-edge in the

block must initiate one w-edge which leaves the block and each t-edge of the block

must at the same time be initiated by one w-edge which enters the block, by this

procedure we obtain the compostion Uj of Bj(G) for all 1 ≤ j ≤ l. As for the

block B0(G), once we know the composition of all the others, its composition U0

is naturally known.

As another consequence of the preceding proof, we can see each block is indeed

an Euler circuit, i.e. a person can walks along the edges of each block one by one

and return to his start point in the block. If the end vertices of all non-coincident

w-edges are not coincident with each other in G(G) (so there are totally 2l non-

coincideent vertices in the graph), then the number of non-coincident vertices of

each block is equal to that of the non-coincident w-edges connected with the block

and hence that of the t-edges constituting the block. In this case, the l + 1 Euler

circuits become l + 1 cycles. Or more precisely, in this case, the graph GH(G)



169

consists of exactly l + 1 cycles in this case. Here a cycle refers to a connected

graph which possesses the same number of edges and vertices. Intuitively, a cycle

is a circuit or a closed path touching every vertex exactly once.

Reclassification of Dominating Isomorphic Classes

Using ∆(G), we can separate all the isomorphic classes included in G3 into disjoint

subsets like this: any two isomorphic classes G1 and G2 are classified into the same

subset if and only if ∆(G1) = ∆(G2). In the sequel, a subset of G3 obtained from

this classification will be denoted by C.

Consider any two isomorphic classes G1 and G2 classified into a same subset C.

Then by definition, ∆(G1) = ∆(G2). From the previously shown result, it follows

then Υ(G1) = Υ(G2). Hence Bj(G1) and Bj(G2) have the same composition Uj for

each 0 ≤ j ≤ l. Therefore, the difference between Bj(G1) and Bj(G2) lies in the

vertices of them. Suppose we define the length of a block as the number of the

t-edges constituting it. Let yj be the length of Bj(G1) for 0 ≤ j ≤ l. Then there

are exactly yj non-coincident w-edges connected with Bj(G1), each of which has

exactly one end vertex which is the end vertices of two t-edges belonging to the

block. Denote these yj vertices of the yj w-edges by I
(j)
1 , · · · , I(j)

yj
. Then for each

0 ≤ j ≤ l, the difference between Bj(G) for G ∈ C lies in the coincidence way

among the yj vertices.

Among all the isomorphic classes G in one set C, there is one and only one

isomorphic class G for which G(G) contains exactly 2l non-coincident vertices and

the l + 1 blocks of GH(G) are l + 1 cycles. In the following, we shall call the



170

representative graph of such an isomorphic class as the representative graph of the

whole set C. For clarity, we shall change to denote by G(C) this representative

graph in the future. Similarly, we change to use notations GH(C), Bj(C) instead

of GH(G), Bj(G).

Characteristics of any set C can be obtained from its representative graph. We

first find the non-coincident w-edge in G(C) containing the first w-edge (i1, i2) and

then we remove it from the graph (remove both (i1, i2) and the w-edge coincident

with (i1, i2)). The resulting graph are disjoint two parts now. Let s be the number

of non-coincident w-edges included in the part which contains the cycle B1(C).

Then l−1−s is the number of non-coincident w-edges contained in the other part.

The ordered pair of characteristic numbers (s, l−1−s) enable us to investigate the

property of G(C) through separately considering the prescribed two parts. These

two parts have similar characteristics obviously. We focus on the part containing

the cycle B1(C). This part contains totally s non-coincident w-edges as claimed

and hence s + 1 cycles the total length of which are 2s + 1. Denote by q the

number of cycles of length 1. Recall that by viewing each cycle as a vertex, this

part is a tree containing s edges. This implies the maximum length of all cycles

contained in this part does not exceed q + 1. For 1 ≤ v ≤ q, let jv be the

number of cycles with length v + 1. Then we have q + j1 + · · · + jq = s + 1 and

q+2j1+3j2+· · ·+(q+1)jq = 2s+1. Or equivalently, the sequence of characteristic

numbers (s; q, j1, · · · , jq) satisfies the restiction that j1 + · · · + jq = s + 1− q and

j1 + 2j2 + · · · + qjq = s where 1 ≤ q ≤ s. In parallel, we may define a sequence
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of numbers (l − 1 − s; q′, j′1, · · · , j′q′) for the other part which satisfies a similar

restriction that j′1 + j′2 + · · ·+ j′q′ = l− s− q′ and j′1 + 2j′2 + · · ·+ q′j′q′ = l− 1− s.

In the following, let C
(

s;q,j1,··· ,jq

l−1−s;q′,j′1,··· ,j′
q′

)
be the collection of all sets C which corre-

sponds to the two sequences of numbers (s; q, j1, · · · , jq) and (l−1−s; q′, j′1, · · · , j′q′)

as a consequence of the preceding procedure. Define summations

∑

(s;q,j1,··· ,jq)

=
s∑

q=1

∑
j1+j2+···+jq=s+1−q

j1+2j2+···+qjq=s

,

and

∑

(l−1−s;q′,j′1,··· ,j′
q′ )

=
l−1−s∑

q′=1

∑

j′
1
+j′

2
+···+j′

q′=l−s−q′

j′
1
+2j′

2
+···+q′j′

q′=l−1−s

.

It follows

n−
k
2
−1

∑

G∈G3

∑

G∈G
(tGH

)

= n−k/2−1
l−1∑

s=0

∑

(s;q,j1,··· ,jq)

∑

(l−1−s;q′,j′1,··· ,j′
q′ )

∑

C∈C
(

s;q,j1,··· ,jq

l−1−s;q′,j′
1

,··· ,j′
q′

)
∑

G∈C

∑

G∈G
(tGH

).(3.5.17)

Preliminary Theorem

Theorem 3.5.4. For each C ∈ C
(

s;q,j1,··· ,jq

l−1−s;q′,j′1,··· ,j′
q′

)
, as n →∞,

n−
k
2
−1

∑

G∈C

∑

G∈G
(tGH

) =

(
(α1)

q
q∏

v=1

(αv+1)
jv

) 
(α1)

q′
q′∏

v=1

(αv+1)
j′v


 + o(1).
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Proof. If we reuse I
(j)
1 , · · · , I(j)

yj
to denote the vertices of Bj(C), then with the

understanding I
(j)
yj+1 ≡ I

(j)
1 , we can write

tGH
=

l∏

j=0

yj∏

v=1

t
I
(j)
v I

(j)
v+1

.

The total set of vertices of G(C) are given by

I
(0)
1 , I

(0)
2 , · · · , I(0)

y0
,

I
(1)
1 , I

(1)
2 , · · · , I(1)

y1
,

· · · , · · · , · · · , · · · ,

I
(l)
1 , I

(l)
2 , · · · , I(l)

yl
.

Note that y0 + y1 + · · · + yl = k is the total number of t-edges in G(C). These k

vertices can be expressed conformly by I1, I2, · · · , Ik, where for each 1 ≤ a ≤ k,

since a can be expressed by a =
∑j−1

u=0 yu + v for some 0 ≤ j ≤ l and 1 ≤ v ≤ yj,

we define Ia = I(j)
v . With these notations, for each 0 ≤ j ≤ l, letting b−1 = 0,

bj =
∑j

u=0 yu, we have
∏yj

v=1 t
I
(j)
v I

(j)
v+1

=
(∏bj−1

a=bj−1+1 tIaIa+1

)
tIbj

Ibj−1+1
so that

n−
k
2
−1

∑

G∈C

∑

G∈G
tGH

= n−
k
2
−1

res∑

I1,··· ,Ik

l∏

j=0








bj−1∏

a=bj−1+1

tIaIa+1


 tIbj

Ibj−1+1



 , (3.5.18)

where the summation is taken over all possible values of the vertices I1, I2, · · · , I2k

satisfying the restriction that if Vj ≡ {Ibj−1+1, · · · , Ibj
} for 0 ≤ j ≤ l, then for any

j1 6= j2, Vj1∩Vj2 = ∅. It is easy to see if the summation is taken over all possible val-

ues of the vertices I1, I2, · · · , Ik without imposing any restriction, then the value of

the right-hand side of (3.5.18) is equal to ((α1)
q ∏q

v=1(αv+1)
jv)

(
(α1)

q′ ∏q′
v=1(αv+1)

j′v
)
.

For any given values of the vertices I1, I2, · · · , Ik, correponding to all the t-

variables involved in the summand of the summation on the right-hand side of



173

(3.5.18), we may draw a k-edge graph. In the case where the given values of

the vertices satisfy the above stated restriction, the resulting graph is obviously

consisting of l + 1 disjoint blocks each of which is connected and does not contain

cutting edges. However, for other cases of given values, the resulting graph may

not have this property. Nonetheless, the set of the graphs drawn for all possible

given values of the vertices can be analyzed by defining isomorphic classes.

We now define these isomorphic classes. Given values of the vertices I1, I2,

· · · , Ik, or equivalently, given any graph defined above, define a partation of the

set {1, 2, · · · , k} into m subsets F1, F2, · · · , Fm according to the rule that for any

1 ≤ u, v ≤ k, u and v belong to the same subset if and only if Iu and Iv take

the same value. Without loss of generality, suppose the order of these m subsets

is given such that min Fi is increasing in i. Any two graphs are defined to be

isomorphic with each other if the partitions so defined for them are the same. An

isomorphic class is defined to be a set of isomorphic graphs which satisfies that

any graph outside the set cannot be isomorphic with the graphs included in the

set.

Due to the definition of isomorphic graphs, since the partitions corresponding

to the graphs in one isomorphic class must be the same, each isomorphic class

corresponds to a unique partition. Also, we should note that if in an isomorphic

class there is one graph satisfies the restriction specified by the summation on

the right-hand side of (3.5.18), then all graphs included in the class satisfy the

restriction. This suggests us putting a criterion on the partitions of the isomor-

phic classes to characterize whichever classes of graphs satisfy the restriction and
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whichever classes do not satisfy. For that purpose, let us denote E0 = {1, · · · , b0},

E1 = {b0 + 1, · · · , b1}, · · · , El = {bl−1 + 1, · · · , bl}, where the numbers bi for

0 ≤ i ≤ l were as defined above (3.5.18).

All those isomorphic classes of graphs satisfing that restriction can be identified

by using the following criterion on their separation: m ≥ l + 1 and there exists

integers 0 ≤ i0 < i1 < · · · < il = m such that {F1, · · · , Fi0} forms a partition of

E0, {Fi0+1, Fi0+2, · · · , Fi1} forms a partition of E1, · · · , {Fil−1+1, · · · , Fil} forms a

partition of El. The meaning of iv−iv−1 for each 1 ≤ v ≤ l with i−1 ≡ 1 is then the

number of non-coincident values taken by the vertices of the vth block. Therefore,

let F1 be the collection of all those isomorphic classes whose partitions satisfy the

restriction and F2 be the collection of all those isomorphic classes whose partitions

do not satisfy the restriction.

Denote by F and F respectively an arbitrary graph and an arbitrary isomorphic

class defined above. For each isomorphic class F , define its representative graph

by replacing the m vertices in an arbitrary graph selected from the class with J1,

· · · , Jm whose values are not determined and are only restricted to be m different

integers from the set {1, · · · , n}. Denote the representative graph of F by F (F).

Therefore,

(
(α1)

q
q∏

v=1

(αv+1)
jv

) 
(α1)

q′
q′∏

v=1

(αv+1)
j′v


− n−

k
2
−1

∑

G∈C

∑

G∈G
tGH

= n−
k
2
−1

∑

F∈F2

∑

J1,··· ,Jm

l∏

j=1








bj−1∏

a=bj−1+1

tIaIa+1


 tIbj

Ibj−1+1



 , (3.5.19)

where the summation
∑

J1,··· ,Jm
is taken over all possible values of J1, · · · , Jm which

should be m different integers from {1, · · · , n}, and for each a, Ia takes values from
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the set of values {J1, · · · , Jm}. Note that replacing the class F2 with F1 in (3.5.19)

yields the restricted summation on the right-hand side of (3.5.18). We next show

the value of (3.5.19) varnishes as n tends to infinity.

For each F ∈ F2, due to the property of the graphs defined above for the

summand on the right-hand side of (3.5.18), also due to the definition of F2, the

representative graph F , F (F), must be composed of at most l disjoint blocks each

of which is connected and does not contain any cutting edge. Let each edge of

F (F) correspond to the matrix Tn and then we add the least number of edges to

F (F) so that the disjoint parts of the graph are connected altogether and let each

of the added edge correspond to the matrix whose entries are all equal to one. Note

that since this treatment is equivalent with adding to the product of the summand

of (3.5.19) another several factors of 1, the summation value does not change. The

number of such added edges cannot exceed l − 1. Each added edge is cutting in

the resulting graph and the ‖ ·‖0 of its corresponding matrix is n. Thus by Lemma

2.2.1, for each F ∈ F2,

| ∑

J1,··· ,Jm

l∏

j=1








bj−1∏

a=bj−1+1

tIaIa+1


 tIbj

Ibj−1+1



 | ≤ Cnl.

Noting that l = k/2, in view of (3.5.19), we then get our result. 2

Thus we now face the problem of counting the number of C, which are subsets

of isomorphic classes belonging to G3, included in C
(

s;q,j1,··· ,jq

l−1−s;q′,j′1,··· ,j′
q′

)
. This can

be done by counting the number of their representative graphs. Given any such

representative graph G(C), by deleting from it the w-edge (i1, i2) and the w-edge
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coincident with (i1, i2), we can obtain two disjoint parts: one part contains s non-

coincident w-edges and s + 1 cycles which include q cycles of degree 1, jv cycles

of length v + 1 for 1 ≤ v ≤ q; one part contains l − 1 − s non-coincident w-edges

and l − s cycles which include q′ cycles of degree 1, j′v cycles of length v + 1 for

1 ≤ v ≤ q′. Let Ns;q,j1,··· ,jq be the number of all possible graphs of the part of

s non-coincident w-edges. Due to the symmetry of the two parts involved in one

respective graph G(C), the number of all possible graphs of the other part of l−1−s

non-coincident w-edges is Ns′;q′,j′1,··· ,j′
q′

where s′ = l− 1− s. By the rule of product

in enumerative combinatorics, the number of all possible representative graphs we

are concerning is given by Ns;q,j1,··· ,jq ×Ns′;q′,j′1,··· ,j′
q′
. In another word, the number

of all possible subsets C in C
(

s;q,j1,··· ,jq

l−1−s;q′,j′1,··· ,j′
q′

)
is given by Ns;q,j1,··· ,jq ×Ns′;q′,j′1,··· ,j′

q′
.

In the following, we need only calculate Ns;q,j1,··· ,jq and so in parallel we obtain also

Ns′;q′,j′1,··· ,j′
q′
.

3.5.3 Count of the Number of Graphs

The previous arguments guarantee us to finish the proof of Theorem 3.5.1, we need

only show the following theorem.

Theorem 3.5.5. For s ≥ 1,

Ns;q,j1,··· ,jq =
s!

q!j1!j2! · · · jq!
.
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Characterization of the Graphs Involved

Since the part of graph we now concern is preceded by the w-edge (i1, i2) and

contains totally s non-coincident w-edges, it is a circuit of 4s + 1 edges as shown

below:

i2
t−→ i3

w−→ i4
t−→ i5

w−→ · · · t−→ i4s+1
w−→ i4s+2

t−→ i4s+3(= i2). (3.5.20)

In our graph, this circuit is characterized by the following three conditions:

(i) The 2s w-edges in the circuit form s non-coincident w-edges each of which

consists of two w-edges of opposite directions and is cutting in the graph.

(ii) There are exactly 2s + 1 non-coincident vertices in the graph.

(iii) The resulting graph of removing all the s non-coincident w-edges consists of

s + 1 cycles including q cycles of length 1, jv cycles of length v + 1 for 1 ≤ v ≤ q.

The statement that a non-coincident w-edge is cutting means removing the two

w-edges included in this non-coincident w-edge will cause the graph disconnected.

Note that due to the property of a circuit, removing any single w-edge or any

single t-edge cannot make the graph disconnected. Thus any t-edge is not cutting

in the graph. This implies that the resulting graph of removing all of the s non-

coincident w-edges from the graph consists of s + 1 disjoint blocks each of which

is connected and does not contain any cutting edge. Condition (ii) guarantees

then each of the s + 1 blocks is a cycle which contains the same number of t-edges

and vertices. Let us prove this assertion. The condition implies that each non-

coincident w-edge possesses two vertices which are distinct from the vertices of any

other non-coincident w-edge and that the vertex composed of i2 = i4s+3, which is
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not connected with any w-edge at all by the definition of the circuit, is also distinct

from all the other 2s vertices in the graph. Denote by C0 the block containing this

special vertex. Consider any block other than C0. Suppose the block is connected

with v non-coincident w-edges. Then the number of the vertices possessed by

the block must be v now. On the other hand, since there are totally 2v w-edges

connected with the block while each t-edge in the block must be connected with

two w-edges connected with the block, we get there are exactly v t-edges in the

block. Since the block is connected, now that it contains the same number of edges

and vertices, it must be a cycle. Applying the same argument to C0 and noting

that the vertex composed of i2 = i4s+3 is also distinct from all other vertices in C0

and is naturally connected with two t-edges, we can see C0 is also a cycle. Define

the length of a cycle to be the number of edges included in it. Thus conditions (i)

and (ii) guarantees the validity of condition (iii).

Transformation Procedure

We now define a function f(·) on the cycles. For the heart cycle C0, we simply

define f(C0) = 0. Consider the other s cycles. Let the s non-coincident w-edges

in the graph are respectively composed of the w-edge (i2ua+1, i2ua+2) and the w-

edge (i2va+1, i2va+2) with ua < va for 1 ≤ a ≤ s. Also let u1 < u2 < · · · < us.

Then since each non-coincident w-edge is cutting, for each a there is a unique

cycle among the s cycles which contains the t-edge (i2ua+2, i2ua+3). We say the

w-edge (i2ua+1, i2ua+2) is the initiating w-edge of this cycle and give the value

a to this cycle as the value of the function f(·) on this cycle. Then we give
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notation J1, J2, · · · , Jq to the q loop cycles (cycles of length 1) according to

f(J1) < f(J2) < · · · < f(Jq) and notation C1, C2, · · · , Cs−q to the left s− q cycles

according to f(C1) < f(C2) < · · · < f(Cs−q). Thus the meaning of the value of

f(·) on a cycle is the occurence order of the cycle and we say the cycle Cb1 occurs

earlier than the cycle Cb2 whenever 1 ≤ b1 < b2 ≤ s− q.

If in the above for each 1 ≤ a ≤ s, we further define the vertex composed

of i2ua+2 = i2va+1 to be the end vertex of the non-coincident w-edge composed of

the w-edge (i2ua+1, i2ua+2) and the w-edge (i2va+1, i2va+2), then now we proceed to

define a function g(·) on the end vertices of the s non-coinicident w-edges. Due to

the nature of the graph, supposing one person starts a walk from the end vertex

composed of i2ua+2 = i2va+1 with his first step passing the t-edge (i2ua+2, i2ua+3),

then he can never return to this end vertex unless he meets a loop cycle at some-

where during his walk. But there is the possibility that he meets more than one

loop cycles during his walk. Now that we have defined notation Jv with 1 ≤ v ≤ q

for the loop cycles, for each 1 ≤ a ≤ s, we define the value of the function g(·) at

the end vertex composed of i2ua+2 = i2va+1 to be Jv if Jv is the last loop cycle he

meets during the prescribed walk before he returns to this end vertex for the first

time.

We apply the following procedure, called the transformation procedure, to the

graph of any given circuit of (3.5.20) satisfying conditions (i) − (iii). We first

shrink the q loop cycles into q vertices and still denote the resulting vertices by J1,

· · · , Jq. Note that among the total s non-coincident w-edges, there are exactly q

non-coincident w-edges containing the initiating w-edges of the q loop cycles. After
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the prescribed treatment to the q loop cycles, by our definition of end vertex, these

q non-coincident w-edges take J1, · · · , Jq as their end vertices. By definition, each

of the cycles C1, · · · , Cs−q possesses one end vertex of one of the other s− q non-

coincident w-edges. Cut at each of these s − q vertices and each time leave the

vertex only to the non-coincident w-edge. Glue all of those vertices in these s− q

vertices (now belonging only to the w-edges) on which the function g(·) takes the

same value Jv with the vertex Jv (resulting from the original loop cycle indexed

Jv). Carry out this treatment for every 1 ≤ v ≤ q. If for some v, there is no

vertices in these s− q vertices on which the function g(·) takes the value Jv, then

we just pass on to v + 1. For each cycle of C1, C2, · · · , Cs−q, join up the pair of

t-edges which have been cut off the middle end vertex between them to get one

t-edge possessing the same direction as the original two ones. Then every cycle of

C1, C2, · · · , Cs−q is again complete but with its length reduced by 1. As a final

step of the procedure, replace the two t-edges (i2, i3) and (i4s+2, i4s+3) in the heart

cycle C0 by one t-edge possessing the same direction. The procedure is finished.

Property of the Resulting Graph

The resulting graph of the prescribed procedure will possess the following charac-

teristics. Each w-edge takes one end vertex from J1, · · · , Jq and is still cutting in

the resulting graph. There are totally s− q + 1 cycles including jv cycles of length

v for 1 ≤ v ≤ q. The total length of these cycles is simply j1 + 2j2 + · · ·+ vjv = s.

Thus the resulting graph contains totally 2s w-edges and s t-edges. Moreover, the

procedure includes indeed s − q times of the same type of treatment as this: cut
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at one end vertex, then immediatedly complete the broken cycle and glue the end

vertex with its corresponding Jv vertex. Since each cut followed by a completion

of the broken cycle results in two circuits, the act of gluing the end vertex of the

w-edge with the Jv vertex is just to glue two circuits at one vertex. Since gluing

two circuits at one vertex still yields a circuit, the resulting graph of our produre

is also a circuit. This means no matter one person starts from which point of the

graph, by following the edges and their directions in the graph one by one, he can

return to his start point by passing every edge in the graph once and only once.

Determination of Resulting Circuit

Let us now obtain the following circuit from the resulting graph as a correspondence

to the original given circuit of (3.5.20) satisfying conditions (i)− (iii). We achieve

our purpose by supposing one person starts a walk passing every edge in the graph

once and only once and then using the order he finishes each edge as the order

of this edge appearing in the circuit. We let the w-edge resulting from (i3, i4) be

the first edge of his walk and also the first edge of the circuit. Then he comes

to one Jv vertex. If this Jv vertex is connected with only one non-coincident w-

edge in the graph, then his next step is clear and must be following the w-edge

coincident with the prescribed w-edge resulting from (i3, i4) to turn back to the

present cycle, which must be the cycle resulting from C0. Suppose the Jv vertex is

connected with, except the non-coincident w-edge containing the w-edge resulting

from (i3, i4), also d other non-coincident w-edges. Then these d non-coincident

w-edges are connected with d cycles. Suppose these d cycles are resulting from
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cycles Cb1 , Cb2 , · · · , Cbd
with b1 < b2 < · · · < bd. For each 1 ≤ j ≤ d, in view that

by removing from the graph the non-coincident w-edge connected with Jv and the

cycle resulting from Cbj
we get two disjoint components, we define the component

containing the cycle resulting from Cbj
as the jth outer branch of Jv. Due to the

cutting nature of each non-coincident w-edge, once this person takes one w-edge

into one of these d cycles, say the one resulting from Cbj
, then unless he completes

all the edges included in the jth outer branch of Jv, he cannot return to Jv. Also,

unless the person finishes all the edges included in these d outer branches of Jv

as well as the d non-coincident w-edges connected with Jv, he cannot ultimately

leave Jv. Recall that he can only ultimately leave Jv through taking the w-edge

coincident with the one along which he first reaches Jv. Thus by requiring the

person finishes the d outer branches following the rule that the earlier occurent be

finished also earlier, i.e. he finishes in turn the 1st, 2nd, · · · , dth outer branch

connected with Jv, it is now clear each time he returns to the vertex Jv, whichever

next w-edge he should take. Note that when he walks into a particular outer

branch, say the jth outer branch, if the cycle resulting from Cbj
contains more

than one edge, then after he walkes along one edge on the cycle, he will leave that

cycle to a new Jv′ vertex. Then the previously defined rule for the preceding Jv

vertex is well to be used here for Jv′ .

We now see by defining at each Jv vertex the previous rule on choice of the next

w-edge to take, the walking path of the person along the resulting graph is deter-

mined. Due to the nature of the graph, once the person walks into a cycle, his next

step is naturally clear, i.e. walks one step along the present t-edge and then leaves
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the cycle along one w-edge to some Jv vertex. During these two steps happening

after he arrives at a cycle, he need only follow the directions of the two edges

consecutively oriented from his standing point on the cycle. This means once he

walks into a cycle, his walking path is determined until he arrives at one Jv vertex.

Thus once we determine the rule on his choice of taking whichever next w-edge at

a Jv vertex, his walking path along the whole graph is determined. Therefore, it

is now proper to use this determined walking path as the correspondent circuit to

the given circuit of (3.5.20) satisfying conditions (i)− (iii).

Characterization of the Resulting Circuit

To describe the obtained circuit, we renew the index in the graph by following the

order the person passed each edge in the graph. So in the sequel, the vth edge in

the obtained circuit is simply the vth edge in the walk path of the person. With

this understanding, noting that the walk is a sequence of edges satisfying every two

w-edges are followed by one t-edge, for every 1 ≤ v ≤ s, we index the (2v − 1)th

w-edge (x2v−1, yv), the 2vth w-edge (x2v, yv), and the vth t-edge (x2v, x2v+1) with

i2v+1 ≡ i1. Using the new indices, we can write the circuit obtained from the

resulting graph as below:

x1
w−→ y1

w−→ x2
t−→ x3

w−→ · · · t−→ x2s−1
w−→ ys

w−→ x2s
t−→ x1. (3.5.21)

Reviving the property of the resulting graph, the circuit is characterized by the

following three conditions:

(i)′ The 2s w-edges in the circuit form s non-coincident w-edges each of which
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consists of two w-edges of opposite directions and is cutting in the graph.

(ii)′ There are s non-coincident vertices included in {x1, x2, · · · , x2s} and q non-

coincident vertices included in {y1, y2, · · · , ys}.

(iii)′ The s t-edges form s−q+1 cycles including jv cycles of length v for 1 ≤ v ≤ q.

Basic Facts of the Transformation Procedure

We first investigate some basic facts relating to the transformation procedure.

Suppose that U is an arbitrarily given circuit of (3.5.20) satisfying conditions

(i)− (iii) and G(U) is the graph of U and that after applying the transformation

procedure to G(U), the resulting circuit and its graph are respectively V and G(V ).

Consider the heart cycle C0 in G(U) and the cycle Q0 in G(V ) resulting from

C0. Suppose C0 is connected with totally d0 non-coincident w-edges in G(U).

Then there exist integers 1 = u1 < u2 < · · · < ud0 < 2s such that the d0 non-

coincident w-edges connected with C0 are respectively composed of (i2ua+1, i2ua+2)

and (i2va+1, i2va+2) with ua < va and i2ua+2 = i2va+1, for 1 ≤ a ≤ d0. Here for

each 1 ≤ a ≤ d0 − 1, va = ua+1 − 1, and vd0 = 2s. For ease of reference, we speak

the non-coincident w-edge composed of (i2ua+1, i2ua+2) and (i2va+1, i2va+2) to be the

ath stem edge of C0 and the graph of the edges (i2ua+1, i2ua+2), (i2ua+2, i2ua+3), · · · ,

(i2va+1, i2va+2) to be the ath branch of C0. Then the d0 + 1 t-edges included in C0

are respectively, (i2, i3), (i4s+2, i4s+3), and (i2va+2, i2va+3) for 1 ≤ a ≤ d0 − 1.

The first fact on the effect of the transformation procedure is: Let cm = 3
2
(vm−

um) + 1
2

for 1 ≤ m ≤ d0. Then for each 1 ≤ a ≤ d0, the ath branch of C0 is

transformed into from the
(∑a−1

m=1(cm + 1) + 1
)
th to the

(∑a−1
m=1(cm + 1) + ca

)
th
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edges in the resulting circuit V . The second fact is: For each 1 ≤ a ≤ d0 − 1,

the t-edge (i2va+2, i2va+3) of C0 is transformed into the
∑a

m=1(cm +1)th edge of the

resulting circuit V . Remember that by the procedure, the left two t-edges of C0,

(i2, i3) and (i4s+2, i4s+3), have been combined into the last edge in the resulting

circuit V .

The proof of the above two facts is a consequence of our definition of the Jv

vertex corresponding to the end vertex of a non-coincident w-edge as well as the

choice of the edge resulting from the w-edge (i3, i4) to be the first edge in the

resulting circuit V . By our definition of the value Jv taken by the function g(·)

on the end vertex of a non-coincident w-edge, say composed of (i2ua+1, i2ua+2) and

(i2va+1, i2va+2) with ua < va, i2ua+2 = i2va+1, Jv is the last loop cycle one person

meets during his walk long the (va − ua − 1) edges (i2ua+2, i2ua+3), (i2ua+3, i2ua+4),

· · · , (i2va , i2va+1). Based on this definition, we see the end vertices of all the non-

coincident w-edges included in the same branch of C0 correspond to Jv vertices

resulting from loop cycles only occurrent in this branch. Thus the images of the

d0 branches of C0 in the graph of the resulting circuit V should be connected only

by the cycle resulting from C0, i.e. Q0 in G(V ), and constitute respectively d0

branches of Q0 if we extend the above definition of branch to the graph G(V ).

We can compute for each 1 ≤ a ≤ d0, the number of w-edges included in the ath

branch of C0 is (va−ua +1) so that the number of non-coincident w-edge included

in this branch is 1
2
(va−ua +1) and hence that of the cycles included in this branch

is 1
2
(va − ua + 1). Thus after the transformation procedure, the image of the ath

branch of C0 will totally contain 3
2
(va−ua)+ 1

2
edges. Since (i3, i4), or equivalently
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(i2u1+1, i2u1+2), is chosen to be the first edge of V , the results stated in the two

facts follow.

Before we state our main result, we introduce another useful fact concerning

the effect of the transformation procedure. Let us define further the graph of the

edges (i2ua+2, i2ua+3), (i2ua+3, i2ua+4), · · · , (i2va , i2va+1) to be the ath outer branch

of C0. Note that the ath branch of C0 is then composed of the ath outer branch

as well as the ath stem edge of it. Then as a consequence of the previous two

facts, we have for each 1 ≤ a ≤ d0, the ath outer branch of C0 is transformed

into from the
(∑a−1

m=1(cm + 1) + 2
)
th to the

(∑a−1
m=1(cm + 1) + ca − 1

)
th edges in

the resulting circuit V . Let us denote this part of the circuit V by Ṽ (a).

Note that when an outer branch of the heart cycle is viewed as an independent

circuit, then this circuit is also of the type of circuit of (3.5.20) satisfying conditions

(i)−(iii) with suitable changes of the sequence of characteristic numbers and so the

transformation procedure can be applied to this circuit. Specifically, consider the

ath outer branch of C0 as a circuit and denote it by U (a). Suppose after applying

the transformation procedure to this circuit, the resulting circuit is denoted by

V (a). Then the relation between Ṽ (a) and V (a) is for 3 ≤ v ≤ (ca−2), the vth edge

of Ṽ (a) is the (v − 2)th edge of V (a) while the first two edges of Ṽ (a) become the

last two edges of V (a). This is the third fact we introduce.

To prove the asserted result, we need utilize further the rule concerning at each

Jv vertex in the resulting graph the occurence order of each non-coincident w-edge

connected with the vertex, which is proposed by us in the process of determining

the resulting circuit from the resulting graph of applying the transformation pro-
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cedure. By our defnition of the ath branch of C0, there is one cycle in this branch

which contains the two t-edges (i2ua+2, i2ua+3) and (i2va , i2va+1) with i2ua+2 = i2va+1.

Extend our definition of stem edges and branches to this cycle. Then the end ver-

tex of the ath stem edge of C0 possess the same value of Jv as the end vertex

of the last stem edge of this later mentioned cycle, say denoted by Cb for conve-

nience of reference. Then during the transformation procedure, the two t-edges

(i2ua+2, i2ua+3) and (i2va , i2va+1) contained in Cb should be combined into one edge.

Regarding the position of this resulting edge in the resulting graph G(V ), our rule

on the choice of the next w-edge at each vertex Jv guarantees that the resulting

edge is the
(∑a−1

m=1(cm + 1) + 3
)
th edge of the resulting circuit V , or in another

word, is the second edge of Ṽ (a). But this edge is the last edge of V (a), the assertion

follows.

We now proceed to prove for any given two different circuits of (3.5.20) satisfy-

ing conditions (i)− (iii), the obtained two circuits of (3.5.21) satisfying conditions

(i)′ − (iii)′ are also different. For ease of reference, we say the two given circuits

are U1 and U2, while the circuits obtained from them are correspondingly V1 and

V2. For the four circuits, we say the graphs of them are respectively G(U1), G(U2),

and G(V1), G(V2).

Theorem 3.5.6. Suppose the heart cycle in G(Ui) is denoted by C
(i)
0 for i = 1,

2.

(i) If the number of branches possessed by C
(1)
0 is not equal to that of the

branches possessed by C
(2)
0 or if there is some a such that the number of edges
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possessed by the ath branch of C
(1)
0 is not equal to that of the edges possessed by

the ath branch of C
(2)
0 , then V1 6= V2.

(2) If there is some a such that when the ath outer branch of C
(1)
0 and the ath

outer branch of C
(2)
0 are considered to be two circuits U

(a)
1 and U

(a)
2 , the result-

ing two circuits of applying the transformation procedure to U
(a)
1 and U

(a)
2 are not

equal, then V1 6= V2.

Proof. The first conclusion follows straightforwardly from the first two facts

previously shown. In terms of the conditions there, those two facts tell us if the

heart cycle in the graph of a given circuit U possesses those branches specified

there, then the
∑a

m=1(cm + 1)th (for 1 ≤ a ≤ d0 − 1) edges and the last edge of

the resulting circuit V form a circle in its graph. Thus (i) follows. The second

conclusion follows from the third fact. Denote by Ṽ
(a)
i the part of edges in the cir-

cuit Vi which are resulting from the ath outer branch of C
(i)
0 , i = 1, 2. Therefore,

according to the third fact proven previously, V
(a)
1 6= V

(a)
2 results that Ṽ

(a)
1 6= Ṽ

(a)
2

and hence obviously V1 6= V2. 2

Theorem 3.5.7. If U1 6= U2, then V1 6= V2.

Proof. Based on (i) of Theorem 3.5.6, we first compare the number of branches

possessed by the heart cycles C
(1)
0 and C

(2)
0 . If they do not have the same number

of branches, then we get our result, otherwise if there is some a such the ath branch

of C
(1)
0 does not have the same number of edges as the ath branch of C

(2)
0 , then we
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still get our result. Now suppose C
(1)
0 and C

(2)
0 have the same number of branches

and each branch of C
(1)
0 has the same number of edges as the corresponding branch

of C
(2)
0 . But since U1 6= U2, there must be some a such that the ath branch of C

(1)
0

is different from the ath branch of C
(2)
0 . Then by (ii) of Theorem 3.5.6, we need

only show that V
(a)
1 6= V

(a)
2 . Recall that V

(a)
1 and V

(a)
2 are the resulting circuits

of applying the transformation procedure to the circuits formed by the ath outer

branch of C
(1)
0 and the ath outer branch of C

(2)
0 , i.e. U

(a)
1 and U

(a)
2 . Then again we

compare the heart cycles in the graph of U
(a)
1 and U

(a)
2 . We compare the number

of branches and the number of edges each branch possesses. If these two steps of

comparations do not give any difference, then since U
(a)
1 6= U

(a)
2 due to choice of

a, we similarly proceed to find an integer a such that the ath branch of the heart

cycle in the graph of U
(a)
1 is different from the ath branch of the heart cycle in

the graph of U
(a)
2 . Again from (ii) of Theorem 3.5.6, to get our result, we need

only continue the preceding argument for the ath outer branch of the heart cycle

in the graph of U
(a)
1 and the ath outer branch of the heart cycle in the graph of

U
(a)
2 . Note that since the number of cycles in the graphs is finite, the conclusion

on the existence of two different branches in the previous treatment cannot hold

throughout the way. Therefore, there must be some where during the process, the

heart cycles being compared either possess different number of branches or possess

branches having different number of edges. Thus from (i) of Theorem 3.5.6, we

get our result. 2
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Recovery Procedure

We now prove for any given circuit of (3.5.21) satisfying conditions (i)′ − (iii)′,

there also corresponds a unique circuit of (3.5.20) satisfying conditions (i)− (iii).

This is achieved with the aid of a procedure which plays an inverse effect compared

with the previous transformation procedure. We shall then in the sequel refer to

this procedure as the recovery procedure.

Suppose V is an arbitrarily given circuit of (3.5.21) satisfying conditions (i)′−

(iii)′ and G(V ) is its graph. Let us denote by J1, J2, · · · , Jq the q non-coincident

vertices included in {y1, y2, · · · , ys}. For each 1 ≤ m ≤ q, suppose the vertex Jm is

connected with (dm + 1) non-coincident w-edges in the graph G(V ). Then we can

find integers 1 ≤ u1 < u2 < · · · < udm+1 ≤ s for which yu1 = yu2 = · · · = yudm+1
,

and the (dm + 1) non-coincident w-edges connected with Jm are respectively re-

sulting from (x2u1−1, yu1) coincident with (x2udm+1
, yudm+1

), and (x2ua , yua) coin-

cides with (x2ua+1−1, yua+1) for 1 ≤ a ≤ dm. We similarly define these (dm + 1)

non-coincident w-edges as in turn the 0th, the 1st, · · · , the dmth stem edge of Jm.

For 1 ≤ a ≤ dm, we define the graph of the edges (x2ua , yua), (x2ua , x2ua+1), · · · ,

(x2ua+1−1, yua+1) as the ath branch of Jm. We also define the 0th branch of Jm to

be the resulting graph obtained by removing from G(V ) all the other dm branches

of Jm. For each branch of Jm, we correspondingly define the resulting subgraph of

removing from the branch the stem edge of Jm to be an outer branch of Jm.

The recovery procedure is applied to the graph G(V ) as follows. We consecu-

tively carry out similar treatment to the q vertices J1, · · · , Jq. Thus suppose we
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are dealing with Jm for 1 ≤ m ≤ q, for which the above concepts of stem edges,

branches and outer branches are well defined. If dm = 0, we simply replace the ver-

tex Jm with a loop cycle of t-edge with a direction consistent with the two w-edges

connected with the original Jm vertex. If dm ≥ 1, then the first step of us is to cut

the graph at the vertex Jm into two components. We let one component consist

of only the 0th branch of Jm and be denoted by P1. We let the other component

consist of all the other dm branches of Jm and be denoted by P2. There needs

a consideration on which component pertains the vertex Jm. We let P2 keep the

vertex Jm but add one vertex to P1 to take the place which is previously taken

by the vertex Jm, i.e. to be one end vertex of the 0th stem edge of Jm in the

component P1. However, we shall not denote the added vertex by Jm anymore.

Now we split the first t-edge (x2u1 , x2u1+1) of P2 into two ones possessing the same

direction as the original one edge. Glue the added vertex of component P1 with

the splitting point of the split t-edge in component P2.

The resulting graph will possess the following properties: Each non-coincident

w-edge is still cutting in the graph; Since both the component P1 with one vertex

added and the component P2 are circuits, the resulting graph is still a circuit; The

0th branch of Jm has been combined into part of the 1st branch of Jm and there

remain dm branches we originally defined for Jm unchanged. For simplicity, let us

still use the terms of the 1st branch, · · · , the dmth branch to refer to these changed

and unchanged branches of Jm.

Continue our procedure in a similar way to the resulting graph. Cut the (re-

sulting) graph at Jm into two components. Let the component consisting of only
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the 1st branch of Jm be denoted by P1 and let the other component consisting of

the other (dm − 1) branches of Jm be denoted by P2. Similaryly, let P2 keep the

vertex Jm but add one vertex to P1. Split the first t-edge (x2u2 , x2u2+1) of P2 into

two ones with the same direction as the original one edge. Glue the added vertex

of P1 with the splitting point of P2. The resulting graph obviously pertains the

first two properties prescribed and it is not hard to see the third property for it

becomes: The 0th and the 1st branches of Jm have been combined into part of

the 2nd branch of Jm and there remain (dm− 1) branches we originally defined for

Jm unchanged. Let us still speak of the 2nd branch, · · · , the dmth branch of Jm.

Then similar treatment is applied to the resulting graph.

After such treatment is carried out consecutively for (dm−1) times, the resulting

graph will contain only the (dm − 1)th and the dmth branches of Jm, where the

(dm − 1)th branch of Jm of course refers to the combination of the component P1

yielded in the (dm − 2)th time of treatment and the originally defined (dm − 1)th

branch of Jm. Cut the resulting graph at Jm into two components, one component

P1 containing the (dm − 1)th branch of Jm and one component P2 containing the

dmth branch of Jm. Let P2 pertain Jm but add one vertex to P1 to take the place

of the vertex Jm. Split the t-edge (x2udm
, x2udm+1) of P2 into two edges of the same

direction as the original one edge. Glue the added vertex in P1 with the split point

in P2. Finally, we replace the vertex Jm in the resulting graph with a loop cycle

of t-edge possessing a direction consistent with the directions of the two w-edges

connected with the original vertex Jm. This completes our treatment to the vertex

Jm.
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Once the above treatment is carried out at each of the vertices J1, · · · , Jq, we

finish the recovery procedure by replacing the t-edge (x2s, x1) of the graph with

two t-edges with the same direction as (x2s, x1). This is because every cycle except

the one containing this t-edge must belong to the ath branch of Jm for some m and

some a ≥ 1, so every cycle except this particular cycle has experienced splitting

of its first t-edge into two edges when the above treatment is applied to all Jm

vertices.

We determine a circuit from the resulting graph by defining the t-edge, which is

the one of the two edges obtained by splitting (x2s, x1) pointing to x1, to be the first

edge. Then we let this circuit be denoted by U and be the correspondent circuit

to the given circuit V . To show U is a circuit of (3.5.20) satisfying conditions

(i)− (iii), we need only consider conditions (ii) and (iii). We added dm vertices in

the treatment of each Jm as well as one additional vertex to the cycle containing

the t-edge (x2s, x1) in the final step, so totally we added
∑q

m=1 dm+1 =
∑q

m=1(dm+

1)− q + 1 = s− q + 1 vertices during the procedure. Hence taking into account of

the existed s+q vertices in the original graph, the resulting graph totally possesses

2s+1 non-coincident vertices. Condition (ii) holds. Condition (iii) is also obvious.

Due to the procedure, each Jv vertex produces exactly one loop cycle and each of

the s− q + 1 cycles in the original graph is added one edge. Thus in the resulting

graph, there are q loop cycles and jv cycles of length v+1 for 1 ≤ v ≤ q. Therefore

from the given circuit V of (3.5.21) satisfying conditions (i)′ − (iii)′, by applying

the recovery procedure, we obtained one circuit U of (3.5.20) satisfying conditions

(i)− (iii).
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We now prove some basic facts on the effect of the recovery procedure. Denote

by Q0 the cycle in G(V ) which contains the t-edge (x2s, x1) and C0 the cycle in

G(U) which contains the two t-edges resulting from splitting the t-edge (x2s, x1).

Then C0 is indeed the image of Q0 resulting from applying the recovery procedure.

Suppose there are b0 non-coincident w-edges connected with Q0. Then we

can find integers 1 = u1 < u2 < · · · < ub0 < s for which the b0 non-coincident

w-edges connected with Q0 are respectively composed of (x2ua−1, yua) coincident

with (x2va , yva) with yua = yva for 1 ≤ a ≤ b0, where ua+1 = va+1 for 1 ≤ a ≤ b0−1

and vb0 = s. For each 1 ≤ a ≤ b0, define the non-coincident w-edge consisting of

(x2ua−1, yua) and (x2va , yva) to be the ath stem edge of Q0, the graph of (x2ua−1, yua),

(x2ua , yua), (x2ua , x2ua+1), · · · , (x2va−1, yva), (x2va , yva) to be the ath branch of Q0,

and the graph of (x2ua , yua), (x2ua , x2ua+1), (x2ua+1, yua+1), · · · , (x2(va−1), x2va−1),

(x2va−1, yva) to be the ath outer branch of Q0. Thus again, the ath outer branch is

the resulting graph of removing from the ath branch the a stem edge. Note that

the b0 t-edges of Q0 are respectively (x2va , x2va+1) for 1 ≤ a ≤ (b0−1) and (x2s, x1).

Note that if we view the ath outer branch of Q0 as a circuit V (a) starting

from the w-edge (x2ua+1, yua+1) and ending at the t-edge (x2ua , x2ua+1), then this

circuit is still of type (3.5.21) with a suitable changement of parameters. Thus the

recovery procedure can be applied to this circuit and we shall define the resulting

circuit by U (a).

We summarize the basic facts regarding the effect of the recovery procedure as

follows: Let cm = 4(vm − um) + 2. Then

(1) For any 1 ≤ a ≤ b0, after the recovery procedure the ath branch of Q0 is
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transformed into from the
(∑a−1

m=1(1 + cm) + 2
)
th to the (

∑a
m=1(1 + cm))th edges

in the graph G(U) of the resulting circuit U ;

(2) For any 1 ≤ a ≤ (b0−1), after the recovery procedure the t-edges (x2va , x2va+1)

of Q0 is transformed into the (
∑a

m=1(1 + cm) + 1)th edge of U , while the t-edge

(x2s, x1) of Q0 is split into repectively the first and the last edge of U ;

(3) The ath outer branch of Q0 is transformed into the circuit U (a).

We take a look at the proof of these results. From the recovery procedure, we

can see at each Jm vertex, the ath stem edge of it is glued with the cycle connected

with Jm through the (a + 1)th stem edge of it, while the last stem edge of it is

installed one loop cycle at one end. Hence the images of the b0 branches of Q0

must be disjoint components in G(U) forming b0 branches of the cycle C0 in G(U).

Due to the cutting nature of the non-coincident w-edges as well as the previous

choice of the first edge of the resulting circuit U , we then get the the first two

results outlined above. More specifically, it can be computed that the ath branch

of Q0 contains 3(va − ua) + 2 edges including (va − ua) non-coincident w-edges

so that after the recovery procedure the image of the ath branch of Q0 contains

totally 4(va − ua) + 2 edges. Noting that in the resulting graph, the image of the

1st branch of Q0 is preceded by one t-edge, the first two results follow. The third

result follows from the fact that by choosing the w-edge (x2ua+1, yua+1) and the

t-edge (x2ua , x2ua+1) to be respectively the first and last edge of the circuit of the

ath outer branch, the resulting circuit of applying the recovery procedure to the

circuit of the ath outer branch of Q0 is exactly the same as the part of circuit of U
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containing its from the
(∑a−1

m=1(1 + cm) + 3
)
th to the (

∑a
m=1(1 + cm)− 1)th edges.

Now we are ready to prove for any two different given circuits V1 and V2 of

(3.5.21), the resulting two circuits of applying the recovery procedure are also dif-

ferent.

Theorem 3.5.8 If V1 6= V2, then U1 6= U2.

Proof. Denote by Q
(i)
0 the parallel of Q0 with the given circuit replaced by Vi,

i = 1, 2. By the first two results above, we can see if Q
(1)
0 and Q

(2)
0 have different

number of branches or one pair of their branches, for instance say the ath branch

of Q
(1)
0 and the ath branch of Q

(2)
0 , have different number of edges, then we must

have U1 6= U2. Otherwise, since V1 6= V2 there must exist integer a such that the

ath branch of Q
(1)
0 is different from the ath branch of Q

(2)
0 . Based on the third

result above, U1 6= U2 follows if U
(a)
1 6= U

(a)
2 . Here U

(a)
i is the parallel of U (a)

above with the given circuit V replaced by Vi, i = 1, 2. However, we then look

for in the graphs of U
(a)
1 and U

(a)
2 the two cycles which play the role in parallel to

the cycles Q
(1)
0 and Q

(2)
0 . Then we again compare the number of branches as well

as the number of edges contained in each pair of corresponding branches of these

two cycles. If there is some difference found, then we arrive at our conclusion.

Otherwise, there must be another integer a such that the pair of the ath branches

of the two cycles being compared are different. Thus the above argument can be

developed similarly to the ath outer branches of these two cycles. Since the graph

has only finite cycles, the conclusion of the existence of an integer a such that the
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ath branches of the two cycles being compared are not the same cannot always

be addressed. Therefore, there must meet two cycles in comparation possessing

either different number of branches or branches containing different number of

edges. Hence the conclusion is proven. 2

Count of the Number of Circuits

Theorems 3.5.7 and 3.5.8 guarantee that the number of the circuits of (3.5.20)

satisfying conditions (i)−(iii) is exactly the same as that of the circuits of (3.5.21)

satisfying conditions (i)′ − (iii)′. The number of the latter set of circuits has been

shown in Yin and Krishnaiah (1983) to be s!
q!j1!···jq !

. Their method is to define a set

of sequences of numbers corresponding to the set of circuits of (3.5.21) satisfying

conditions (i)′ − (iii)′. Specifically, given any circuit, let it correspond to such a

sequence of numbers:

(1) The 1st number is 0;

(2) The 2nd, 4th, · · · , 2sth numbers are 1.

(3) If the t-edge (x2r, x2r+1) just completes a cycle of length v, then the (2r+1)th

number is −v, otherwise the (2r + 1)th number is 0.

Such a sequence of numbers can be expressed as

(0, 1, a1, 1, a2, · · · , 1, as), (3.5.22)

where among the s numbers ai’s, there are jv numbers equal to −v for 1 ≤ v ≤ q

while (q − 1) numbers equal to 0.

There is a one to one correspondence between the set of circuits of (3.5.21)
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satisfying conditions (i)′ − (iii)′ and the set of all sequences of (3.5.22) each of

which satisfies that all partial sums of it are nonnegative. We only need to see

for an arbitrarily given sequence of numbers defined above whose partial sums are

all nonnegative, there corresponds a unique circuit of (3.5.21) satisfying conditions

(i)′ − (iii)′.

Suppose the given sequence is (3.5.22). If an integer m1 is such that a1 = · · · =

am1−1 = 0 and am1 = −v1, then we let x2u−1 = x2u for m1− v1 +2 ≤ u ≤ m1 while

x2m1+1 = x2(m1+1−v1) and ym1+1 = ym1+1−v1 . Let us give an intuitive explanation

of this.

Draw two lines in parallel, say the X-line and the Y -line, and we put all x-

vertices on the X-line and all y-vertices on the Y -line. Suppose for each 1 ≤ u ≤ s,

we draw one up vertical edge pointing from yu to x2u, one horizontal edge pointing

from x2u to x2u+1, one down vertical edge pointing from x2u+1 to yu+1 and call

these three edges a unit of the graph. Then for the m1 1’s appearing before

am1 = −v1, we consecutively draw out the first m1 units of the graph and we let

the down vertical edge of the m1th unit coincide with the up vertical edge of the

(m1−v1+1)th unit and let all those adjacent vertical down and up edges appearing

between the prescribed two vertical edges coincide with each other.

Note that in the above, due to the restriction of nonnegative partial sums, we

have m1 − v1 ≥ 0. We totally drew out m1 units of the graph and used v1 of

them to form a circle of length v1 connected with v1 non-coincident w-edges each

of which consists of exactly two w-edges of the opposite directions. Hence there

are still (m1 − v1) free units in the graph.
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For the given sequence there must be another integer m2 such that am1+1 =

· · · = am2−1 = 0 and am2 = −v2. We proceed to draw out the next (m2−m1) units

of the graph. Plus the previous (m1−v1) free units, there are totally (m2−v1) free

units in the graph now. We shall never use those units which have been used to

form cycle before. Thus we just order the existed free units as from the 1st to the

(m2 − v1)th units, i.e. the later drawn (m2 −m1) units are arranged to follow the

(m1−v1)th unit left in the previous step. Then we let the down vertical edge of the

(m2− v1)th free unit coincide with the up vertical edge of the (m2− v1− v2 +1)th

free unit while let all adjacent vertical down and up edges appearing between

them coincide with each other. Note that in this process, due to the restriction of

nonnegative definite partial sums, we have m2− v1− v2 ≥ 0. After this step, there

are (m2 − v1 − v2) free units in the graph and there has appeared a new cycle of

length v2 which is connected with v2 non-coincident w-edges. Also, there can be

seen one non-coincident w-edge of this cycle has the same vertex on the Y -line as

the non-coincident w-edge consisting of (x2m1+1, ym1+1) and (x2(m1+1−v1), ym1+1−v1)

which belongs to the previous cycle.

Continue the above dealings until we come to the last negative integer which

must be as. Note that due to the restriction
∑s

m=1 am = −∑
v=1(vjv) = −s, the

number of free units at the moment, i.e. s +
∑s−1

m=1 am, is equal to −as. We may

simply complete the procedure by letting the down vertical edge of the last free unit

coincide with the up vertical edge of the first free unit as well as letting adjacent

vertical and up edges between them coincide with each other.

From the procedure, it can be seen with the occurence of each of first occurred
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s − q cycles, say a cycle with length v, there occurred (v − 1) non-coincident J-

vertices in the graph while with the occurrence of the last cycle, say of length v′,

there occurred v′ non-concident J-vertices, so there are totally
∑q

v=1(v−1)jv+1 = q

non-coincident J-vertices in the drawn graph. Thus, taking into account of the

number of the cycles as well as their length, we can see the drawn graph is indeed

the graph of a circuit of (3.5.21) satisfying conditions (i)′ − (iii)′.

Therefore, the number of circuits of (3.5.21) satisfying conditions (i)′ − (iii)′

is equal to the number of sequences of (3.5.22) with nonnegative partial sums.

However, to obtain the number of these sequences, we need the following result.

Theorem 3.5.9. (LEMMA of Yin and Krishnaiah (1983) p.503)

Suppose a1, · · · , ak are nonnegative integers such that
∑k

i=1 ai = −(k − 1). Then

(1) There exists a unique integer r, 1 ≤ r ≤ k, such that all partial sums of

(ar, 1, ar+1, 1, · · · , 1, ar+k−1)

are nonnegative.

(2) For any 1 ≤ r1 < r2 ≤ k,

(ar1 , 1, ar1+1, 1, · · · , 1, ar1+k−1) 6= (ar2 , 1, ar2+1, 1, · · · , 1, ar2+k−1).

Here the indices are the residue classes (mod k).

Proof. The proof of (1) can be found in their paper, while (2) is a consequence

of (1). We only give a proof of (2) then. We need only show that for any 1 < r ≤ k,

(a1, 1, a2, 1, · · · , 1, ak) 6= (ar, 1, ar+1, 1, · · · , 1, ar+k−1).
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Suppose not. Then there is some 0 < r1 ≤ k such that

(a1, 1, a2, 1, · · · , 1, ak) = (ar1 , 1, ar1+1, 1, · · · , 1, ar1+k−1).

Hence for each 1 ≤ i ≤ k, ai = ar1+i−1. From (1), there is a unique integer r0 such

that the sequence

(ar0 , 1, ar0+1, 1, · · · , 1, ar0+k−1)

have nonnegative partial sums. However, by hypothesis, it follows that

(ar0 , 1, ar0+1, 1, · · · , 1, ar0+k−1) = (ar1+r0−1, 1, ar1+r0 , 1, · · · , 1, ar1+r0+k−2).

Here the indices are the residue classes (mod k). Hence by the result of (1), there

must be some nonnegative integer m such that r1 + r0 − 1 = r0 + mk so that

m = r1−1
k

. But 0 < r1−1
k

< 1. Thus we reach a contradiction. 2

Now we count the number of sequences of (3.5.22) possessing nonnegative par-

tial sums. Note that whenever a sequence of

(a0, 1, a1, 1, a2, · · · , 1, as), (3.5.23)

where among the (s + 1) numbers ai’s, there are jv numbers equal to −v for

1 ≤ v ≤ q while q numbers equal to 0, has nonnegative partial sums, the first

number a0 must be equal to 0. Hence the number of sequences of (3.5.22) possessing

nonnegative partial sums is equal to the number of sequences of (3.5.23) possessing

nonnegative partial sums. Note that the total number of sequences of (3.5.23) is

obviously equal to (s+1)!
q!j1!···jq !

. By Theorem 3.5.9 (1) and (2), every (s + 1) sequences
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produce one and only one sequence with nonnegative partial sums, thus the number

of sequences of (3.5.23) and that of (3.5.22), with nonnegative partial sums is

s!
q!j1!···jq !

. Hence we also get the number of circuits of (3.5.21) satisfying conditions

(i)′ − (iii)′ is s!
q!j1!···jq !

. Up to this point, the proof of Theorem 3.5.5 is complete.

Theorems 3.5.4 and 3.5.5 together with relations (3.5.16) and (3.5.17) further

guarantee us to conclude the following result.

Theorem 3.5.10. For any positive integer k,

lim
n→∞EMk = mk,

where mk is given by (3.5.5) and (3.5.6) of Theorem 3.5.1.

Estimation of the Fourth Moment

Theorem 3.5.11. For any positive integer k,

E(Mk − EMk)
4 = O(n−2).

Proof. Note that EMk ∈ R. We may write by using the terminologies of

graphs,

E(Mk − EMk)
4 = n−2k−4

∑

∪4
`=1G(`)

4∏

`=1

(t
G

(`)
H

)E
4∏

`=1

(w
G

(`)
B

− Ew
G

(`)
B

).(3.5.24)
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Here for ` = 1, · · · , 4, G(`)’s are four graphs drawn independently 4 times for the

summand appearing in the expression (3.5.7) of Mk.

It is easy to see from the independency among the variables, if among the four

graphs there is one graph having no vertical edge coincident with some vertical

edge of the other three graphs or if there is single w-edges in ∪4
`=1G

(`), then the

summand of (3.5.24) is equal to zero. Hence in the sequel, we let GI denote the set

of graphs ∪4
`=1G

(`) where the four graphs are connected together and there is no

single w-edge existing in their union and let GII denote the set of graphs ∪4
`=1G

(`)

where the four graphs form two disjoint components each of which contains two

graphs connected together and contains no single w-edge. Denote by l the number

of non-coincident w-edges contained in ∪4
`=1G

(`) and r the number of cutting non-

coincident w-edges contained in ∪4
`=1G

(`). Then 2l ≤ 4k.

For either case of GI and GII , we use Lemma 2.2.1. For every non-coincident

w-edge consisting of µi edges of one direction and νi edgs of the other direction,

we let it correspond to the matrix B, whose (a, b)th entry is E(wµi
abw̄

νi
ab). For every

t-edge, we let it correspond to the matrix Tn. In the case of GII , we add one edge

to connect the two components and let the edge correspond to the matrix whose

entries are all equal to 1. Note that we still have any t-edge must be non-cutting.

Since ‖B‖0 and ‖B‖ have the same bound {(δn

√
n)µi+νi−2n} while ‖Tn‖ is bounded

by constant, similar to our previous calculations in proving Theorem 3.5.2, we get
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by Lemma 2.2.1,

|n−2k−4
∑

∪4
`=1

G(`)∈GI

4∏

`=1

(t
G

(`)
H

)E
4∏

`=1

(w
G

(`)
B

− Ew
G

(`)
B

)|

≤ n−2k−4Cn
l∏

i=1

[
(δn

√
n)µi+νi−2n

]

≤ Cδ4k−2l
n n−3,

and

|n−2k−4
∑

∪4
`=1

G(`)∈GII

4∏

`=1

(t
G

(`)
H

)E
4∏

`=1

(w
G

(`)
B

− Ew
G

(`)
B

)|

≤ n−2k−4Cn
l∏

i=1

[
(δn

√
n)µi+νi−2n

]
× n

≤ Cδ4k−2l
n n−2.

The proof of the theorem is complete. 2

By Borel-Cantelli’s lemma in Lemma 2.1.5, Theorems 3.5.10 and 3.5.11 together

imply as n → ∞, Mk converges almost surely to mk. Hence it follows Theorem

3.5.1 is proven. We finished the presentation of using the moment method to find

the limiting spectral distribution of the Wigner type random matrices.



Chapter 4

General Sample Covariance

Matrices

The present chapter is intended to develop a way of applying the Stieltjes transform

method appropriate for spectral analysis of the class of general sample covariance

matrices Bn = 1
N

T
1/2
2n XnT1nX

∗
nT

1/2
2n . We exemplified our procedure through strate-

gically finding the limiting spectral distribution for the class of matrices under the

general assumption that T1n is Hermitian and T2n is nonnegative definite, specific

definition of Bn formulated in Definition 1.2.1.

The organization of the chapter is as follows. In Section 4.1, we introduce in

details the way we develop the Stieltjes transform method for the matrices of our

concern. In Section 4.2, we prove the main mathematical tool used in the present

chapter, which is developed directly for dealing with the resolvent of products of

a Hermitian matrix and a nonnegative definite matrix. In Section 4.3, we prove

preliminary results needed for proving Theorem 1.2.1. In Section 4.4, we finish the

205
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proof of Theorem 1.2.1.

4.1 Manipulation of the Stieltjes Transform Method

In this section, after a brief discussion on the matrices we shall deal with, we

shall introduce in detail the way we apply the Stieltjes transform method to the

matrices.

4.1.1 A Brief Introduction on the Matrices

Let us introduce firstly the following two matrices: ∀n = (1/N)T2nXnT1nX∗
n and

An = (1/N)T1nX
∗
nT2nXn. The relationship between the three classes of matrices

Bn, ∀n and An is as follows.

The matrices Bn and ∀n have the same eigenvalues, so all the spectral prop-

erties of the two matrices are the same. In particular, their empirical spectral

distributions are the same, i.e. FBn = F ∀n . Therefore, the proof of Theorem 1.2.1

can be obtained by proving the result stated in the theorem holds for the matrix

∀n.

The nonzero eigenvalues of An are the same as those of ∀n, while the number

of zero eigenvalues of An equals the number of zero eigenvalues of ∀n plus n−N .

This implies

FAn(x) =
N

n
F ∀n(x) +

(
1− N

n

)
1[0,∞)(x), (4.1.1)
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and hence

sF An (z) =
N

n
sF∀n (z)− z−1

(
1− N

n

)
. (4.1.2)

Therefore FAn(x) and F ∀n(x) must converge simultaneously. Denote by F the

limiting distribution of FAn . Then F and F must satisfy

F (x) =
1

c
F (x) +

(
1− 1

c

)
1[0,∞)(x),

and

sF (z) =
1

c
sF (z)− z−1

(
1− 1

c

)
.

Moreover, we can formulate a limit theorem on FAn as follows.

Theorem 4.1.1. Let An = (1/N)T1nX∗
nT2nXn. Then under the assump-

tions of Theorem 1.2.1, with probability 1, the empirical spectral distribution of

An, denoted by FAn, converges weakly to some non-random probability distribution

function F for which if H1 ≡ 1[0,∞) or H2 ≡ 1[0,∞), then F ≡ 1[0,∞); otherwise if

for each z ∈ C+,





s(z) = −z−1(1− c−1)− z−1c−1
∫ 1

1+p(z)y
dH2(y)

s(z) = −z−1
∫ 1

1+q(z)x
dH1(x)

s(z) = −z−1 − c−1p(z)q(z)

(4.1.3)

is viewed as a system of equations for the complex vector (s(z), p(z), q(z)), then

the Stieltjes transform of F , denoted by sF (z), together with the two functions in

Theorem 1.2.1, g1(z) and g2(z), will satisfy that (sF (z), g1(z), g2(z)) is the unique
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solution to (4.1.3) in the set

U = {(s(z), p(z), q(z)) : Im(−z−1(1− c) + cs(z)) > 0,

Im(zp(z)) > 0, Imq(z) > 0}. (4.1.4)

With the aid of relations (4.1.1) and (4.1.2), Theorem 4.1.1 is a direct conse-

quence of Theorem 1.2.1 and vice versa. The main task of the following sections

in this chapter is then to prove Theorem 1.2.1 holds for the matrices ∀n. However,

during the process of seeking the limiting spectral distribution, no matter for ∀n

or for An, both of them will show their effects. We then introduce our procedure

to use the Stieltjes transform method on these two matrices.

4.1.2 The Stieltjes Transform Method

The basic rule relating to the Stieltjes transform method, i.e. Theorem 2.3.9, says

that provided the sequence of the empirical spectral distributions is tight with

probability one, to have the result asserted in Theorem 1.2.1, we only need to show

for each z ∈ C+, the Stieltjes transforms of the empirical spectral distributions of

the matrices converge almost surely to some non-random limit, which is determined

by the system of equations in the theorem.

It can be verified1 the Stieltjes transforms of F ∀n and FAn are respectively given

by (1/N)tr(∀n − zI)−1 and (1/n)tr(An − zI)−1. Then the matrices (∀n − zI)−1

and (An − zI)−1 are called the resolvent matrices. By using the resolvent identity

1A proof can be found in Section 4.2.
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in Lemma 2.1.9, we can obtain

1

N
tr(∀n − zI)−1 = −z−1 + z−1 1

N
tr{∀n(∀n − zI)−1},

1

n
tr(An − zI)−1 = −z−1 + z−1 1

n
tr{An(An − zI)−1}.

We can develop the Stieltjes transform method in this way. We firstly expand

the quantities, 1
N

tr{∀n(∀n−zI)−1} and 1
n
tr{An(An−zI)−1}, with respect to some

perturbation terms, whose presence and absence in these quantities do not affect

the properties of the resolvent matrices but will reveal some latent rule governing

the values of these quantities. The choice of such perturbations is quite important

in finding the limit of the Stieltjes transforms of interest. Different choices will

induce different limiting processes to occur, although the final limit should be the

same. For those sample covariance matrices (1/N)T 1/2
n X∗

nXnT 1/2
n , the columns of

the matrix X∗
n have been an ideal choice to develop systematic investigations on

large spectral properties of the matrices. However, as we have indicated in Section

1.2, the same choice is not so appropriate for the matrices Bn, or ∀n and An.

Therefore, we change to use the entries of the matrix Xn as perturbations. So our

procedure is to expand the preceding two quantities with respect to the entries xij

and apply the resolvent identity to each resolvent matrix involved in the expansion

with the comparing matrices chosen to be different from ∀n and An only by those

components dependent on xij.

Due to the complexity of the matrices, we need still to carry out the above

procedure for more generally evolved quantities. These are

Φ(k)
n (z) =

1

N
tr{A(k)

n (An − zI)−1}, Ψ(k)
n (z) =

1

N
tr{∀(k)

n (∀n − zI)−1}, (4.1.5)



210

where k is any positive integer for which

A(k)
n ≡ 1

N
T1nX

∗
nT k

2nXn, ∀(k)
n ≡ 1

N
T2nXnT k

1nX∗
n.

Thus we can see the quantities Φ(k)
n (z) and Ψ(k)

n (z) are closely related with the

Stieltjes transforms of F ∀n and FAn .

We then carry out the preceding procedure for Φ(k)
n (z) and Ψ(k)

n (z) as follows.

Let us use ei to denote the ith column of an N ×N identity matrix and fj the jth

column of an n × n identity matrix. Then we can express the matrix Xn in the

form

Xn =
∑

ij

xijeif
′
j ≡ Xij + xijeif

′
j, (4.1.6)

where in the summation i = 1, · · · , N , j = 1, · · · , n.

By using (4.1.6), we get

A(k)
n =

1

N

∑

ij

xijT1nX
∗
ijT

k
2neif

′
j +

1

N

∑

ij

|xij|2ξ(k)
ii T1nfjf

′
j, (4.1.7)

where ξ
(k)
ii = T k

2n[i, i], i.e. the ith diagonal element of T k
2n.

For each fixed pair (i, j), write for any m = 1, · · · , n, l = 1, · · · , N ,

ã
(k)
ml = f ′m(An − zI)−1T1nX

∗
ijT

k
2nel,

p̃ml = f ′m(An − zI)−1T1nfl.

Then by using (4.1.7), we get

Φ(k)
n (z) =

1

N2

∑

ij

xij ã
(k)
ji +

1

N2

∑

ij

|xij|2ξ(k)
ii p̃jj. (4.1.8)

In the above we finished expressing Φ(k)
n (z) into an expansion with respect to the

perturbations xij.
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Now we need to use the resolvent identity to the resolvent matrix (An − zI)−1

involved in (4.1.8). For that purpose, we obtain the comparing matrix with An

in this way. Let Aij ≡ (1/N)T1nX∗
ijT2nXij. Then Aij is the resulting matrix of

eliminating from An the component dependent on the perturbation term xij. The

difference between Aij from An is given by

An − Aij =
1

N
xijT1nX

∗
ijT2neif

′
j

+
1

N
xijT1nfje

′
iT2nXij +

1

N
|xij|2ξ(1)

ii T1nfjf
′
j. (4.1.9)

Use the resolvent identity to (An − zI)−1 − (Aij − zI)−1. Write further

pml = f ′m(Aij − zI)−1T1nfl,

â
(1)
ml = e′mT2nXij(Aij − zI)−1T1nfl,

a
(k)
ml = f ′m(Aij − zI)−1T1nX∗

ijT
k
2nel,

d
(k)
ii = e′iT2nXij(Aij − zI)−1T1nX∗

ijT
k
2nei.

It then follows

p̃jj = pjj − 1

N
xij ã

(1)
ji pjj − 1

N
x̄ij p̃jj â

(1)
ij −

1

N
|xij|2ξ(1)

ii p̃jjpjj, (4.1.10)

and

ã
(k)
ji = a

(k)
ji −

1

N
xij ã

(1)
ji a

(k)
ji −

1

N
x̄ij p̃jjd

(k)
ii − 1

N
|xij|2ξ(1)

ii p̃jja
(k)
ji . (4.1.11)

Relations (4.1.8), (4.1.10) and (4.1.11) constitute the foundation of our later ar-

guments which are to be developed in aiming to find the asymptotic behavior of

Φ(k)
n (z) and of course as a special case that of sF An (z).
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Let us now develop a similar treatment for the matrix ∀n. In this case, for each

positive integer k,

∀(k)
n ≡ 1

N

∑

ij

x̄ijT2nXijT
k
1nfje

′
i +

1

N

∑

ij

|xij|2ζ(k)
jj T2neie

′
i,

where ζ
(k)
jj = T k

1n[j, j]. It follows then, by writing

σ̃
(k)
ml = e′m(∀n − zI)−1T2nXijT

k
1nfl,

q̃ml = e′m(∀n − zI)−1T2nel,

we have

1

N
tr{∀(k)

n (∀n − zI)−1} =
1

N2

∑

ij

x̄ijσ̃
(k)
ij +

1

N2

∑

ij

|xij|2ζ(k)
jj q̃ii. (4.1.12)

Let ∀ij ≡ (1/N)T2nXijT
k
1nX∗

ij. Then

∀n − ∀ij =
1

N
xijT2neif

′
jT1nX

∗
ij

+
1

N
x̄ijT2nXijT1nfje

′
i +

1

N
|xij|2ζ(1)

jj T2neie
′
i. (4.1.13)

Write

σ
(k)
ml = e′m(∀ij − zI)−1T2nXijT

k
1nfl,

qml = e′m(∀ij − zI)−1T2nel,

b
(k)
ml = f ′mT1nX∗

ij(∀ij − zI)−1T2nXijT
k
1nfl,

σ̂
(1)
ml = f ′mT1nX

∗
ij(∀ij − zI)−1T2nel.

By the resolvent identity we get

q̃ii = qii − 1

N
xij q̃iiσ̂

(1)
ji −

1

N
x̄ijσ̃

(1)
ij qii − 1

N
|xij|2ζ(1)

jj q̃iiqii, (4.1.14)
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and

σ̃
(k)
ij = σ

(k)
ij − 1

N
xij q̃iib

(k)
jj −

1

N
x̄ijσ̃

(1)
ij σ

(k)
ij − 1

N
|xij|2ζ(1)

jj q̃iiσ
(k)
ij . (4.1.15)

The derivations in later sections are all devoted to establishing results to attain

the asymptotic behavior of relation (4.1.8) equipped with (4.1.10) and (4.1.11) and

that of relation (4.1.12) equipped with (4.1.14) and (4.1.15).

4.2 Mathematical Tools

In this section, we shall develop the main mathematical tools used in the remainder

of the present chapter. Let us begin by listing a collection of useful inequalities on

trace of matrices, which are well defined multiplications of two or more matrices.

Lemma 4.2.1.

(1) For rectangular matrices A, B,

|tr(AB)| ≤ {tr(AA∗)}1/2{tr(BB∗)}1/2.

(2) For Hermitian matrix A and nonnegative definite matrix B,

|tr(AB)| ≤ ‖A‖tr(B).

(3) For rectangular matrices A, B, C, D,

|tr(ABCD)| ≤ ‖A‖‖C‖{tr(BB∗)}1/2{tr(DD∗)}1/2.

(4) For Hermitian matrices A, B,

tr(AB)2 ≤ ‖A‖2tr(B2).
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(5) For rectangular matrix A and Hermitian matrix B,

tr(ABA∗)2 ≤ ‖B‖2tr(AA∗)2.

(6) For rectangular matrix A, complex vectors a and b,

|a∗Ab| ≤ ‖A‖(a∗a)1/2(b∗b)1/2.

Most of the derivations in the present chapter are based on the following the-

orem and its several consequences. For any m numbers a1, · · · , am, denote by

diag(a1, · · · , am) the diagonal matrix with diagonal elements a1, · · · , am. More-

over, if ai ≥ 0, for all i, and ∆ ≡ diag(a1, · · · , am), then ∆1/2 ≡diag(
√

a1, · · · ,
√

am).

Theorem 4.2.1. Let Bn be n×n Hermitian nonnegative definite whose spec-

tral decomposition is Bn= U∆U∗, where ∆= diag(µ1, µ2, · · · , µn) with µ1≥ µ2≥

· · ·≥ µn, and U is n×n unitary matrix. Let r = rank(Bn), ∆̃ = diag(µ1, µ2, · · · , µr),

and U = (U1, U2) with U1 consisting of the first r columns of U . Let Hn be n× n

Hermitian and z ∈ C+ with v = Imz > 0. Then for any positive integer k,

(BnHn − zIn)−kB1/2
n = B1/2

n [G(z)]k, (4.2.1)

where B1/2
n = U∆1/2U∗,

G(z) = U




G−1
11 (z) O

O O


 U∗,

with G11(z) = ∆̃1/2U∗
1 HnU1∆̃

1/2 − zIr.
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Proof. We first show (4.2.1) for k = 1. By using the formula



A B

O D




−1

=




A−1 −A−1BD−1

O D−1




valid in case of nonsingular sub-matrices A and D, we have

(∆U∗HnU − zIn)−1

=




∆̃U∗
1 HnU1 − zIr ∆̃U∗

1 HnU2

O −zIn−r




−1

=




(∆̃U∗
1 HnU1 − zIr)

−1 z−1(∆̃U∗
1 HnU1 − zIr)

−1∆̃U∗
1 HnU2

O −z−1In−r




=




∆̃1/2G−1
11 (z)∆̃−1/2 z−1∆̃1/2G−1

11 (z)∆̃1/2U∗
1 HnU2

O −z−1In−r


 . (4.2.2)

It follows that

(BnHn − zIn)−1B1/2
n

= U(∆U∗HnU − zIn)−1∆1/2U∗

= U




∆̃1/2G−1
11 (z) O

O O


 U∗ = U∆1/2




G−1
11 (z) O

O O


 U∗

= B1/2
n G(z).

Thus (4.2.1) holds for the case k = 1. For k ≥ 2, we use the induction method.

We have

(BnHn − zIn)−kB1/2
n = (BnHn − zIn)−1(BnHn − zIn)−k+1B1/2

n

= (BnHn − zIn)−1B1/2
n [G(z)]k−1

= B1/2
n [G(z)]k.
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Thus (4.2.1) is proved. 2

Corollary 4.2.1. Under the assumptions of Theorem 4.2.1, we have for any

a, b ∈ Cn and every z ∈ C+ with v ≡ Imz,

(1) |a∗(BnHn − zIn)−kBnb| ≤ 1

vk
(a∗Bna)1/2(b∗Bnb)1/2.

(2) |a∗(BnHn − zIn)−kb| ≤ 1

vk
|a∗b|+ k

vk+1
(a∗Bna)1/2(b∗HnBnHnb)

1/2.

(3) |a∗Bn(HnBn − zIn)−kb| ≤ 1

vk
(a∗Bna)1/2(b∗Bnb)1/2.

(4) |a∗(HnBn − zIn)−kb| ≤ 1

vk
|a∗b|+ k

vk+1
(a∗HnBnHna)1/2(b∗Bnb)

1/2.

Proof. Note that ‖G(z)‖ ≤ ‖G−1
11 (z)‖ ≤ 1/v. By using (6) of Lemma 4.2.1

and (4.2.1) of Theorem 4.2.1, we get

|a∗(BnHn − zIn)−kBnb| = |a∗B1/2
n [G(z)]kB1/2

n b|

≤ 1

vk
(a∗Bna)1/2(b∗Bnb)1/2.

Thus we proved (1). We prove (2) by induction. When k = 1, from the resolvent

identity (2.1.5),

(BnHn − zIn)−1 = −z−1In + z−1(BnHn − zIn)−1BnHn,

we get

|a∗(BnHn − zIn)−1b| = | − z−1a∗b + z−1a∗(BnHn − zIn)−1BnHnb|

≤ 1

v
|a∗b|+ 1

v2
(a∗Bna)1/2(b∗HnBnHnb)1/2,
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where we have used the result of (1). Thus (2) is true for k = 1. When k ≥ 2,

|a∗(BnHn − zIn)−kb|

≤ |a∗(BnHn − zIn)−k+1[−z−1In + z−1(BnHn − zIn)−1BnHn]b|

≤ 1

v
|a∗(BnHn − zIn)−k+1b|+ 1

v
|a∗(BnHn − zIn)−kBnHnb|

≤ 1

v

(
1

vk−1
|a∗b|+ k − 1

vk
(a∗Bna)1/2(b∗HnBnHnb)

1/2

)

+
1

vk+1
(a∗Bna)1/2(b∗HnBnHnb)

1/2

=
1

vk
|a∗b|+ k

vk+1
(a∗Bna)1/2(b∗HnBnHnb)1/2.

Therefore, (2) is proved. From (1) and (2), it is straightforward to derive (3) and

(4). 2

Corollary 4.2.2. Under the assumptions of Theorem 4.2.1, we have

tr(BnHn − zIn)−1 = tr(B1/2
n HnB

1/2
n − zIn)−1 = tr(HnBn − zIn)−1.

Proof. From (4.2.2),

tr(BnHn − zIn)−1 = tr(∆U∗HnU − zIn)−1

= tr(∆̃U∗
1 HnU1 − zIr)

−1 − z−1(n− r)

= tr{∆̃1/2G−1
11 (z)∆̃−1/2} − z−1(n− r)

= trG−1
11 (z)− z−1(n− r).

On the other hand,
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tr(B1/2
n HnB

1/2
n − zIn)−1 = tr(∆1/2U∗HnU∆1/2 − zIn)−1

= tr




G−1
11 (z) O

O −z−1In−r




= trG−1
11 (z)− z−1(n− r).

This completes the proof. 2

Now we apply the above results to the matrices An and ∀n. For An, take

Bn = (1/N)X∗
nT2nXn and Hn = T1n. Then Corollary 4.2.2 gives us

(1/n)tr(An − zIn)−1 = (1/n)tr(B1/2
n T1nB

1/2
n − zIn)−1.

But since Cn ≡ B1/2
n T1nB

1/2
n is Hermitian having the same eigenvalues as An,

1

n
tr(B1/2

n T1nB
1/2
n − zIn)−1 = sF Cn (z) = sF An (z).

It therefore follows

sF An (z) = (1/n)tr(An − zIn)−1.

Similar argument gives

sF∀n (z) = (1/N)tr(∀n − zIN)−1.

From the resolvent identity,

sF An (z) = −z−1 + z−1 1

n
tr{An(An − zIn)−1},
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sF∀n (z) = −z−1 + z−1 1

N
tr{∀n(∀n − zIN)−1}.

Using relation (4.1.2), we then get

tr{An(An − zIn)−1} = tr{∀n(∀n − zIN)−1}. (4.2.3)

As will be seen in later sections, Theorem 4.2.1 and its consequences provide us

special help in obtaining estimates for quantities involving the resolvent matrices

(∀n − zI)−1 and (An − zI)−1.

4.3 Preliminary Results

In the present section, we prove some preliminary results concerning the empirical

spectral distribution functions F ∀n and FAn and their Stieltjes transforms. The

purpose of these derivations is just to collect some basic facts needed for proving

Theorem 1.2.1. Let us denote throughout the section Sn = (1/N)X∗
nXn.

4.3.1 Preliminary Results: Part I

Lemma 4.3.1. For any M = M1M2M3 with M1 > 0, M2 > 0, M3 > 0,

F ∀n{(−∞,−M) ∪ (M,∞)} (4.3.1)

≤ 2F T2n{(M1,∞)}+ 2
n

N
F Sn{(M2,∞)}+

n

N
F
√

T 2
1n{(M3,∞)}.
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Proof. By Lemma 2.1.8, we have

F ∀n{(−∞,−M) ∪ (M,∞)}

= F
1
N

T
1/2
2n XnT1nX∗

nT
1/2
2n {(−∞,−M) ∪ (M,∞)}

= F

√
( 1

N
T

1/2
2n XnT1nX∗

nT
1/2
2n )2{(M,∞)}

≤ 2F T
1/2
2n {(

√
M1,∞)}+ F

√
( 1

N
XnT1nX∗

n)2{(M2M3,∞)}

= 2F T2n{(M1,∞)}+ F
1

N2 XnT1nX∗
nXnT1nX∗

n{(M2
2 M2

3 ,∞)}

= 2F T1n{(M1,∞)}+
n

N
F T1nSnT1nSn{(M2

2 M2
3 ,∞)}

= 2F T2n{(M1,∞)}+
n

N
F
√

(S
1/2
n T1nS

1/2
n )2{(M2M3,∞)}

≤ 2F T2n{(M1,∞)}+ 2
n

N
F Sn{(M2,∞)}+

n

N
F
√

T 2
1n{(M3,∞)}.

2

We can deduce two consequences from Lemma 4.3.1.

Lemma 4.3.2. With probability 1, {F ∀n} and {FAn} are tight sequences.

Proof. By Theorem 2.2.2, under assumption (i) of Theorem 1.2.1, F Sn almost

surely converges weakly to Marcěnko-Pastur’s law F c,1
M−P so that {F Sn} must be a

tight sequence with probability one. Again, assumption (iii) in Theorem 1.2.1 im-

plies that F T1n and F T2n are tight sequences. Hence from (4.3.1), with probability

one {F ∀n} is tight sequence. Note that

FAn{(−∞,−M) ∪ (M,∞)} =
N

n
F ∀n{(−∞,−M) ∪ (M,∞)}. (4.3.2)
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Thus with Probability one, {FAn} is also tight. 2

Another consequence of Lemma 4.3.1 is as follows.

Theorem 4.3.1. If H1 ≡ 1[0,∞) or H2 ≡ 1[0,∞), then with probability 1, F ∀n

and FAn converge weakly to 1[0,∞).

Proof. By (4.3.2), F ∀n and FAn converge weakly to 1[0,∞) simultaneously. We

need only show the theorem holds for F ∀n .

For any ε > 0 and M > 0, choose M1 = M2 =
√

M and M3 = ε/M in (4.3.1).

We get

F ∀n{(−∞,−ε) ∪ (ε,∞)}

≤ 2F T2n{(
√

M,∞)}+ 2
n

N
F Sn{(

√
M,∞)}+

n

N
F
√

T 2
1n{(ε/M,∞)}.

If H1 ≡ 1[0,∞), then with probability 1 for all ε > 0 and M > 0,

lim sup
n→∞

F
√

T 2
1n{( ε

M
,∞)} = 0.

Let
√

M →∞ only through continuity points of H2. It follows, by assumption (iii)

of Theorem 1.2.1 and the fact F Sn converges weakly to F c,1
M−P , with probability

one,

lim sup
n→∞

F ∀n{(−∞,−ε) ∪ (ε,∞)}

≤ lim
M→∞

(
2H2{(

√
M,∞)}+ 2cF c,1

M−P{(
√

M,∞)}
)

= 0.
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Since ε is arbitrarily chosen, this implies if H1 ≡ 1[0,∞), then F ∀n converges weakly

to 1[0,∞) with probability one.

On the other hand, by choosing M2 = M3 =
√

M and M1 = ε/M , we get

F ∀n{(−∞,−ε) ∪ (ε,∞)}

≤ 2F T2n{(ε/M,∞)}+ 2
n

N
F Sn{(

√
M,∞)}+

n

N
F
√

T 2
1n{(

√
M,∞)},

from which it follows if H2 ≡ 1[0,∞), then F ∀n converges weakly to 1[0,∞) with

probability one. This completes the proof. 2

In view of Theorem 4.3.1, throughout the remainder of the present chapter,

we assume H1 6= 1[0,∞) and H2 6= 1[0,∞). We now present a proof of the unique

solubility of the system of equations (1.2.2).

Lemma 4.3.3. When H1 6= 1[0,∞) and H2 6= 1[0,∞), for each z ∈ C+, there is

at most one vector (s(z), p(z), q(z)) satisfying the system of equations (1.2.2) with

Im(zp(z)) > 0, Imq(z) > 0.

Proof. From the three equations, it is easy to deduce

−zp(z)q(z)

= c
∫ q(z)x

1 + q(z)x
dH1(x) =

∫ yp(z)

1 + p(z)y
dH2(y).
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Since Im(zp(z)) > 0 and Imq(z) > 0 imply that p(z) 6= 0 and q(z) 6= 0, we get

zp(z) = −c
∫ x

1 + q(z)x
dH1(x), (4.3.3)

zq(z) = −
∫ y

1 + p(z)y
dH2(y). (4.3.4)

Thus we only need to show that if (p(z), q(z)) and (p̃(z), q̃(z)) both satisfy these

two equations with Im(zp(z)) > 0, Imq(z) > 0, Im(zp̃(z)) > 0, Imq̃(z) > 0,

then p(z) = p̃(z) and q(z) = q̃(z). Write z = z1 + iz2, p(z) = p1(z) + ip2(z),

q(z) = q1(z) + iq2(z). Then (4.3.3) and (4.3.4) give us

z1p1(z)− z2p2(z) = −c
∫ x(1 + q1(z)x)

|1 + q(z)x|2 dH1(x), (4.3.5)

z1p2(z) + z2p1(z) = c
∫ x2q2(z)

|1 + q(z)x|2dH1(x), (4.3.6)

z1q1(z)− z2q2(z) = −
∫ y(1 + p1(z)y)

|1 + p(z)y|2 dH2(y), (4.3.7)

z1q2(z) + z2q1(z) =
∫ y2p2(z)

|1 + p(z)y|2dH2(y). (4.3.8)

From (4.3.7) and (4.3.8),

(z2
1 + z2

2)q2(z) =
∫ yz2 + y2(z1p2(z) + z2p1(z))

|1 + p(z)y|2 dH2(y).

Substitute this relation into (4.3.6). It follows

(z2
1 + z2

2)(z1p2(z) + z2p1(z))

= c
∫ x2

|1 + q(z)x|2dH1(x)(z2
1 + z2

2)q2(z)

= cz2

∫ x2

|1 + q(z)x|2dH1(x)
∫ y

|1 + p(z)y|2dH2(y)

+c
∫ x2

|1 + q(z)x|2dH1(x)
∫ y2

|1 + p(z)y|2dH2(y)(z1p2(z) + z2p1(z)).

Note that Im(zp(z)) > 0 implies z1p2(z) + z2p1(z) > 0. By the facts that z2 > 0,

H1 6= 1[0,∞) and H2 6= 1[0,∞), the first term appearing on the right-hand side of the
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last equality in the above relation is positive. It follows

c
∫ x2

|1 + q(z)x|2dH1(x)
∫ y2

|1 + p(z)y|2dH2(y) < z2
1 + z2

2 = |z|2.

This inequality remains true when p(z) and q(z) are replaced by p̃(z) and q̃(z)

respectively.

We can compute that

z(p(z)− p̃(z)) = c
∫ x2

(1 + q(z)x)(1 + q̃(z)x)
dH1(x)(q(z)− q̃(z)),

and so

z2(q(z)− q̃(z))

=
∫ y2

(1 + p(z)y)(1 + p̃(z)y)
dH2(y)z(p(z)− p̃(z))

= c
∫ x2

(1 + q(z)x)(1 + q̃(z)x)
dH1(x)

∫ y2

(1 + p(z)y)(1 + p̃(z)y)
dH2(y)(q(z)− q̃(z)).

However,

|c
∫ x2

(1 + q(z)x)(1 + q̃(z)x)
dH1(x)

∫ y2

(1 + p(z)y)(1 + p̃(z)y)
dH2(y)|

≤
(
c

∫ x2

|1 + q(z)x|2dH1(x)
∫ y2

|1 + p(z)y|2dH2(y)

)1/2

(
c

∫ x2

|1 + q̃(z)x|2dH1(x)
∫ y2

|1 + p̃(z)y|2dH2(y)

)1/2

< |z|2.

Therefore, we must have q(z)− q̃(z) = 0 and then p(z)− p̃(z) = 0. This completes

the proof. 2
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4.3.2 Preliminary Results: Part II

Let us define two functions:

g1n(z) = (1/N)tr{(An − zI)−1T1n}, (4.3.9)

and

g2n(z) = (1/N)tr{(∀n − zI)−1T2n}. (4.3.10)

Their appearance is not accidental. Remember that in Theorem 1.2.1, we assert

there are two functions g1(z) and g2(z) associated with the limit sF (z) of the

Stieltjes transform sF∀n (z). In fact, g1(z) and g2(z) are just the almost sure limits

of g1n(z) and g2n(z) respectively. It is during discussion of the limiting behavior

of the two relations (4.1.8) and (4.1.12) that we shall first observe the appearance

of these two functions. In this part, for later use, we shall derive some elementary

properties concerning the Stieltjes transforms sF∀n (z), sF An (z) and the functions

g1n(z), g2n(z).

In the following, let us denote by λi(A) the i-th largest eigenvalue of any ma-

trix A having real eigenvalues, i.e. λ1(A) ≥ λ2(A) ≥ · · ·λn(A). Also, we shall

use the fact that for any r × r Hermitian matrix A, letting its first s× s principle

sub-matrix be As, then λi(As) ≥ λr−s+i(A) and so tr(As) ≥ ∑r
i=r−s+1 λi(A).

Lemma 4.3.4. Under the assumption that H2 6= 1[0,∞), for any z ∈ C+, with

probability 1

δ2z ≡ lim inf
n→∞ Img2n(z) > 0. (4.3.11)
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Proof. By Theorem 4.2.1,

g2n(z) =
1

N
tr{T 1/2

2n U




G11(z) O

O O


 U∗T 1/2

2n }, (4.3.12)

where U is N × N unitary such that U∗T2nU = ∆ = diag(λ1(T2n), · · · , λN(T2n)),

and G−1
11 (z) = (Cr − zIr)

−1, with Cr = 1
N

∆̃1/2U∗
1 XnT1nX∗

nU1∆̃
1/2, r = rank(T2n),

U1 consisting of the first r columns of U and ∆̃ being the diagonal matrix of the

r positive eigenvalues of T2n.

From (4.3.12), it follows g2n(z) = 1
N

tr{∆̃1/2G−1
11 (z)∆̃1/2}. Denote the eigenval-

ues of Cr by µ1, µ2, · · · , µr. Write z = u + iv. Define

Φr = diag

(
µ1 − u

(µ1 − u)2 + v2
, · · · ,

µr − u

(µr − u)2 + v2

)
,

Ψr = diag

(
v

(µ1 − u)2 + v2
, · · · ,

v

(µr − u)2 + v2

)
.

Then there exists a r × r unitary matrix Qr such that

G−1
11 (z) = (Cr − zIr)

−1 = QrΦrQ
∗
r + iQrΨrQ

∗
r.

Hence we get

Img2n(z) =
1

N
tr{∆̃1/2QrΨrQ

∗
r∆̃

1/2}.

For any constant M > 0, let

qM =
r∑

i=1

I(|µi|>M),

cM(z) =
v

2(M2 + u2) + v2
,

Er = diag(I(|µ1|≤M), · · · , I(|µr|≤M)).
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We have Ψr ≥ cM(z)Er. By the preceding claimed fact, we get

Img2n(z) ≥ cM(z)
1

N
tr{ErQ

∗
r∆̃Qr}

= cM(z)
1

N
tr{E2

rQ
∗
r∆̃Qr}

= cM(z)
1

N
tr{ErQ

∗
r∆̃QrEr}

= cM(z)
1

N
tr{Pr




Ir−qM
O

O O


 P ∗

r Q∗
r∆̃QrPr




Ir−qM
O

O O


 P ∗

r }

= cM(z)
1

N
tr{




Ir−qM
O

O O


 P ∗

r Q∗
r∆̃QrPr




Ir−qM
O

O O


}

≥ cM(z)
1

N

r∑

i=qM+1

λi(P
∗
r Q∗

r∆̃QrPr)

= cM(z)
1

N

r∑

i=qM+1

λi(∆̃)

> εcM(z)
1

N

r∑

i=qM+1

I(λi(∆̃)>ε)

= εcM(z)
1

N

(
r∑

i=1

I(λi(∆̃)>ε) − qM

)

= εcM(z)
1

N

(
N∑

i=1

I(λi(T2n)>ε) − qM

)

= εcM(z)
(
F T2n{(ε,∞)} − qM

N

)
.

It is easy to see

U∗ 1

N
T

1/2
2n XnT1nX

∗
nT

1/2
2n U =




Cr O

O O


 . (4.3.13)
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Then

qM

N
=

1

N

N∑

i=1

1
(|λi(

1
N

T
1/2
2n XnT1nX∗

nT
1/2
2n )|>M)

=
1

N

N∑

i=1

1(|λi(∀n)|>M)

= F ∀n{(−∞,−M) ∪ (M,∞)}.

It follows

Img2n(z) ≥ εcM(z)
(
F T2n{(ε,∞)} − F ∀n{(−∞,−M) ∪ (M,∞)}

)
. (4.3.14)

The assumption H2 6= 1[0,∞) implies that with probability one,

lim inf
ε↓0

lim inf
n→∞ F T2n{(ε,∞)} > 0.

While, by the tightness of {F ∀n},

lim sup
M→∞

lim sup
n→∞

F ∀n{(−∞,−M) ∪ (M,∞)} = 0.

Let Ω be the subspace with probability one such that for every ω ∈ Ω, both of the

above two relations hold. Then for each ω ∈ Ω fixed, we first choose ε > 0 such

that

lim inf
n→∞ F T2n{(ε,∞)} = ε′ > 0.

Then for this ε′ we choose M such that

lim sup
n→∞

F ∀n{(−∞,−M) ∪ (M,∞)} < ε′/2.

Therefore for the fixed ω, we have δ2z > εcM(z)ε′/2 > 0. The proof is complete. 2
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Lemma 4.3.5. Under the assumption that H1 6= 1[0,∞) and H2 6= 1[0,∞), for

any z ∈ C+, with probability 1

δ1z ≡ lim inf
n→∞ Im(zg1n(z)) > 0. (4.3.15)

Proof. To use Theorem 4.2.1, denote in this case

Bn ≡ (1/N)X∗
nT2nXn = U∆U∗,

G−1
11 (z) ≡ (∆̃1/2U∗

1 T1nU1∆̃
1/2 − zIr)

−1,

where U is n × n unitary, ∆ = diag(λ1(Bn), · · · , λn(Bn)), r = rank(Bn) and

∆̃ = diag(λ1(Bn), · · · , λr(Bn)). Then by the resolvent identity,

zg1n(z) = z
1

N
tr{(An − zI)−1T1n}

= − 1

N
trT1n +

1

N
tr{An(An − zI)−1T1n}

= − 1

N
trT1n +

1

N
tr{T1nB1/2

n U




G−1
11 (z) O

O O


 U∗B1/2

n T1n}

= − 1

N
trT1n +

1

N
tr{T1nU1∆̃

1/2G−1
11 (z)∆̃1/2U∗

1 T1n}.

Write Cr = ∆̃1/2U∗
1 T1nU1∆̃

1/2. Similarly define Φr and Ψr as in Lemma 4.3.4.

Then there exists a r × r unitary matrix Qr such that G−1
11 (z) = (Cr − zIr)

−1 =

QrΦrQ
∗
r + iQrΨrQ

∗
r. Hence we get

Im(zg1n(z)) =
1

N
tr{T1nU1∆̃

1/2QrΨrQ
∗
r∆̃

1/2U∗
1 T1n}.
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Again define cM(z), qM and Er as in the proof of Lemma 4.3.4, but of course

with the meaning interpreted within the present context. We then get

Im(zg1n(z)) ≥ cM(z)
1

N

r∑

i=qM+1

λi(∆̃
1/2U∗

1 T 2
1nU1∆̃

1/2)

> εcM(z)
1

N

(
n∑

i=1

I(λi(∆1/2U∗T 2
1nU∆1/2)>ε) − qM

)

= εcM(z)
1

N

(
n∑

i=1

I(λi(T 2
1nBn)>ε) − qM

)

= εcM(z)
n

N

(
F

1
N

T1nX∗
nT2nXnT1n{(ε,∞)} − qM

n

)
.

By the definition of qM , we obtain

qM

n
=

1

n

r∑

i=1

I(|λi(∆̃1/2U∗1 T1nU1∆̃1/2)|>M)

=
1

n

n∑

i=1

I(|λi(∆1/2U∗T1nU∆1/2)|>M)

=
1

n

n∑

i=1

I
(|λi(B

1/2
n T1nB

1/2
n )|>M)

=
1

n

n∑

i=1

I(|λi(An)|>M)

= FAn{(−∞,−M) ∪ (M,∞)}.

It follows

Im(zg1n(z)) ≥ εcM(z)
n

N

(
F

1
N

T1nX∗
nT2nXnT1n{(ε,∞)}

−FAn{(−∞,−M) ∪ (M,∞)}
)
. (4.3.16)

It can be shown under the assumption that H1 6= 1[0,∞) and H2 6= 1[0,∞),

lim inf
ε↓0

lim inf
n→∞ F

1
N

T1nX∗
nT2nXnT1n{(ε,∞)} > 0.

By following the same argument as used in proving Lemma 4.3.4, we then finish

the proof of Lemma 4.3.5. 2
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Lemma 4.3.6. For each n ≥ 1 and each ω ∈ Ω, sF An (z), sF∀n (z), g1n(z)

and g2n(z) are analytic functions on C+. Moreover, for any given z ∈ C+ with

Imz = v, |sF An (z)| ≤ 1/v, |sF∀n (z)| ≤ 1/v, |g2n(z)| ≤ τ/v, and |g1n(z)| ≤ τ
v

n
N

+

τ3

v2
1

N2 tr(X
∗
nXn), where τ is any constant bigger than the value of max(‖T1n‖, ‖T2n‖).

Proof. Write Bn = (1/N)X∗
nT2nXn and Hn = (1/N)XnT1nX∗

n. From Corollary

4.2.2,

sF An (z) =
1

n
tr(B1/2

n T1nB1/2
n − zIn)−1,

sF∀n (z) =
1

N
tr(T

1/2
2n HnT

1/2
2n − zIN)−1.

It follows immediately sF An (z) and sF∀n (z) are analytic on C+ with |sF An (z)| ≤

1/v, |sF∀n (z)| ≤ 1/v.

By Theorem 4.2.1,

|g2n(z)| = | 1
N

tr{T 1/2
2n G(z)T

1/2
2n }| ≤

τ

v
.

By Theorem 4.2.1, the resolvent identity (2.1.5) and (2) of Lemma 4.2.1,

|g1n(z)| = | − z−1 1

N
trT1n + z−1 1

N
tr{T1nB

1/2
n G(z)B1/2

n T1n}|

≤ τ

v

n

N
+

τ 3

v2

1

N2
tr(X∗

nXn).

In the above and in the sequel, whenever we use G(z), its meaning should be

interpreted according to the context where it is used. Thus below we need only

prove g1n(z) and g2n(z) are analytic on C+.

For any z, z0 ∈ C+ with v = Imz, v0 = Imz0, by Theorem 4.2.1 and Lemma
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4.2.1,

| 1
N

tr{(∀n − zI)−1(∀n − z0I)−2T2n}|

= | 1
N

tr{(∀n − zI)−1T
1/2
2n [G(z0)]

2T
1/2
2n }|

= | 1
N

tr{T 1/2
2n G(z)[G(z0)]

2T
1/2
2n }|

≤ τ

vv2
0

.

It follows from the resolvent identity, as z → z0,

g2n(z)− g2n(z0)

z − z0

=
1

N
tr{(∀n − zI)−1(∀n − z0I)−1T2n}

=
1

N
tr{(∀n − z0I)−2T2n}

+(z − z0)
1

N
tr{(∀n − zI)−1(∀n − z0I)−2T2n}

→ 1

N
tr{(∀n − z0I)−2T2n}.

Write Bn = (1/N)X∗
nT2nXn. From Theorem 4.2.1, we have

| 1
N

tr{An(An − zI)−1(An − z0I)−2T1n}|

= | 1
N

tr{T1nB
1/2
n G(z)[G(z0)]

2B1/2
n T1n}|

≤ nτ 3

vv2
0

1

N2
tr(X∗

nXn).

Hence by the resolvent identity as z → z0,

(z − z0)
1

N
tr{(An − zI)−1(An − z0I)−2T1n}

= −z−1(z − z0)
1

N
tr{(An − z0I)−2T1n}

+z−1(z − z0)
1

N
tr{An(An − zI)−1(An − z0I)−2T1n}

→ 0.
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It follows

g1n(z)− g1n(z0)

z − z0

=
1

N
tr{(An − zIn)−1(An − z0In)−1T1n}

→ 1

N
tr{(An − z0I)−2T1n}.

Thus g1n(z) and g2n(z) are analytic on C+. 2

Lemma 4.3.7. For any positive integer l,

1

N
tr{T l

1nAn(An − zI)−1} =
1

N
tr{∀(l+1)

n (∀n − zI)−1}, (4.3.17)

1

N
tr{(∀n − zI)−1∀nT

l
2n} =

1

N
tr{A(l+1)

n (An − zI)−1}, (4.3.18)

for all z ∈ C+.

Proof. Given any n ≥ 1 and ω ∈ Ω, the four functions involved in (4.3.17) and

(4.3.18) are analytic on C+. In fact, let δ = ‖(1/N)X∗
nXn‖ and τ be any positive

constant bigger than the value of max(‖T1n‖, ‖T2n‖). Consider z → z0, where z,

z0 ∈ C+ with v = Imz and v0 = Imz0.

By Theorem 4.2.1,

| 1
N

tr{T l
1nAn(An − zI)−1(An − z0I)−2}|

= | 1
N

tr{T l+1
1n B1/2

n G(z)[G(z0)]
2B1/2

n }|

≤ n

N

δτ l+2

vv2
0

.
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It follows

1
N

tr{T l
1nAn[(An − zI)−1 − (An − z0I)−1]}

z − z0

=
1

N
tr{T l

1nAn(An − zI)−1(An − z0)
−1}

=
1

N
tr{T l

1nAn(An − z0I)−2}

+(z − z0)
1

N
tr{T l

1nAn(An − zI)−1(An − z0I)−2}

→ 1

N
tr{T l

1nAn(An − z0I)−2}.

Thus (1/N)tr{T l
1nAn(An − zI)−1} is analytic on C+. Also,

| 1
N

tr{∀(l+1)
n (∀n − zI)−1(∀n − z0I)−2}|

= | 1

N2
tr{XnT

l+1
1n X∗

n(∀n − zI)−1(∀n − z0)
−2T2n|

= | 1

N2
tr{XnT

l+1
1n X∗

nT
1/2
2n G(z)[G(z0)]

2T
1/2
2n }|

≤ δτ l+2

vv2
0

implies

1
N

tr{∀(l+1)
n [(∀n − zI)−1 − (∀n − z0I)−1]}

z − z0

=
1

N
tr{∀(l+1)

n (∀n − zI)−1(∀n − z0I)−1}

=
1

N
tr{∀(l+1)

n (∀n − z0)
−2}

+(z − z0)
1

N
tr{∀(l+1)

n (∀n − zI)−1(∀n − z0I)−2}

→ 1

N
tr{∀(l+1)

n (∀n − z0I)−2}.
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Hence (1/N)tr{∀(l+1)
n (∀n − zI)−1} is analytic on C+. Similarly, by

| 1
N

tr{(∀n − zI)−1(∀n − z0)
−2∀nT

l
2n}|

= | 1

N2
tr{T 1/2

2n G(z)[G(z0)]
2T

1/2
2n XnT1nX

∗
nT l

2n}|

≤ δτ l+2

vv2
0

,

we get (1/N)tr{(∀n − zI)−1∀nT
l
2n} is analytic on C+, and by

| 1
N

tr{A(l+1)
n (An − zI)−1(An − z0I)−2}|

= | − z−1 1

N
tr{A(l+1)

n (An − z0I)−2}

+z−1 1

N
tr{A(l+1)

n An(An − zI)−1(An − z0I)−2}|,

in which

| 1
N

tr{A(l+1)
n An(An − zI)−1(An − z0I)−2}|

= | 1
N

tr{A(l+1)
n T1nB1/2

n G(z)[G(z0)]
2B1/2

n }|

≤ n

N

δ2τ l+4

vv2
0

,

we get (1/N)tr{A(l+1)
n (An − zI)−1} is analytic on C+.

By using similar arguments, from Theorem 4.2.1, we can compute that

| 1
N

tr{T l
1nAk+2

n (An − zI)−1}| ≤ nτ l

Nv
[τ 2δ]k+2,

| 1
N

tr{∀(l+1)
n ∀k+1

n (∀n − zI)−1}| ≤ τ l

v
[τ 2δ]k+2,

| 1
N

tr{A(l+1)
n Ak+1

n (An − zI)−1}| ≤ nτ l

Nv
[τ 2δ]k+2,

| 1
N

tr{(∀n − zI)−1∀k+2
n T l

2n}| ≤
τ l

v
[τ 2δ]k+2.

Now we introduce the following formula which is a consequence of the resolvent
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identity

(A− zI)−1 = −
k∑

j=0

z−j−1Aj + z−k−1Ak+1(A− zI)−1,

where the second term on the right-hand side can also be z−k−1(A − zI)−1Ak+1.

Using this formula yields the following equalities:

(1)
1

N
tr{T l

1nAn(An − zI)−1}

= −
k+1∑

j=1

z−j 1

N
tr{T l

1nA
j
n}+ z−k−1 1

N
tr{T l

1nAk+2
n (An − zI)−1},

(2)
1

N
tr{∀(l+1)

n (∀n − zI)−1}

= −
k+1∑

j=1

z−j 1

N
tr{∀(l+1)

n ∀j−1
n }+ z−k−1 1

N
tr{∀(l+1)

n ∀k+1
n (∀n − zI)−1},

(3)
1

N
tr{(∀n − zI)−1∀nT l

2n}

= −
k+1∑

j=1

z−j 1

N
tr{∀j

nT
l
2n}+ z−k−1 1

N
tr{(∀n − zI)−1∀k+2

n T l
2n},

(4)
1

N
tr{A(l+1)

n (An − zI)−1}

= −
k+1∑

j=1

z−j 1

N
tr{A(l+1)

n Aj−1
n }+ z−k−1 1

N
tr{A(l+1)

n Ak+1
n (An − zI)−1}.

It is easy to check for each integer j,

tr(T l
1nAj

n) = tr(∀(l+1)
n ∀j−1

n ), tr(∀j
nT

l
2n) = tr(A(l+1)

n Aj−1
n ).

It follows from (1)− (4) that

| 1
N

tr{T l
1nAn(An − zI)−1} − 1

N
tr{∀(l+1)

n (∀n − zI)−1}|

= |z−k−1|| 1
N

tr{T l
1nAk+2

n (An − zI)−1} − 1

N
tr{∀(l+1)

n ∀k+1
n (∀n − zI)−1}|

≤ (1 +
n

N
)τ l[

τ 2δ

v
]k+2,
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and

| 1
N

tr{(∀n − zI)−1∀nT
l
2n} −

1

N
tr{A(l+1)

n (An − zI)−1}|

= |z−k−1|| 1
N

tr{(∀n − zI)−1∀k+2
n T l

2n} −
1

N
tr{A(l+1)

n Ak+1
n (An − zI)−1}|

≤ (1 +
n

N
)τ l[

τ 2δ

v
]k+2,

which hold for every integer k ≥ 1. It therefore follows when z ∈ C+ is such that

Imz = v > τ 2δ, (4.3.17) and (4.3.18) hold. In view of the previously shown result

that the four functions involved in the two identities are all analytic on C+, we

conclude the two identities hold for all z ∈ C+. 2

The special case of l = 1 of Lemma 4.3.7 gives us the following result.

Corollary 4.3.1. For all z ∈ C+,

zg1n(z) = − 1

N
tr(T1n) +

1

N
tr{∀(2)

n (∀n − zI)−1}, (4.3.19)

zg2n(z) = − 1

N
tr(T2n) +

1

N
tr{A(2)

n (An − zI)−1}. (4.3.20)

4.4 Truncation and Centralization Treatment

The main target of the present section is to show the proof of Theorem 1.2.1

can be done with the conditions included in the following assumption added. Note

that we have automatically taken the assumption that H1 6= 1[0,∞) and H2 6= 1[0,∞).
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Assumption 4.4.1.

(i) ‖T1n‖ and ‖T2n‖ are uniformly bounded for n, where ‖ · ‖ denotes the spectral

norm of a matrix.

(ii) Exij = 0, E|xij|2 ≤ 1, |xij| ≤ δn

√
n, with δn → 0,

1

δ2
nnN

∑

ij

(1− E|xij|2) → 0,

as n →∞.

(iii) T1n and T2n are non-random.

To verify the first two conditions in Assumption 4.4.1, suppose Theorem 1.2.1

is true for those matrices which satisfy both assumptions (i)−(v) in Theorem 1.2.1

and conditions (i), (ii) in Assumption 4.4.1.

For any constant τ > 0, replace in the spectral decompositions of T1n and T2n,

those eigenvalues whose absolute values are bigger than τ with 0, and denote the

resulting matrices by T τ
1n and T τ

2n respectively. Then for every τ ∈ T , where T is

defined by

T ≡ {τ > 0 : τ is a continuity point of both H1 and H2

and −τ is a continuity point of H1}, (4.4.1)

it can be verified with probability one, F T τ
1n , F T τ

2n and F (T τ
1n)2 all converge weakly.

Denote their limits by Hτ
1 , Hτ

2 and H̃τ
1 respectively. Note that we have assumed

H1 6= 1[0,∞) and H2 6= 1[0,∞). It follows that for all τ ∈ T large, none of Hτ
1 , Hτ

2

and H̃τ
1 is equal to 1[0,∞).
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Further let x̃ij = x̂ij − Ex̂ij with x̂ij = xijI(|xij |≤δn
√

n), where δn ↓ 0 is chosen

such that condition (1.2.1) in Theorem 1.2.1 still holds with δ replaced with δn.

Let X̂n = [x̂ij] and X̃n = [x̃ij] with (i, j)th entry x̂ij and x̃ij respectively. Then it

can be verified that Ex̃ij = 0, |x̃ij| ≤ 2δn

√
n, E|x̃ij|2 ≤ 1 and

1

δ2
nnN

∑

ij

(1− E|x̃ij|2)

≤ 2

δ2
nnN

∑

ij

E|xij|2I(|xij |>δn
√

n)

→ 0

Also, 1
N2 tr(EX̂nEX̂∗

n)2 → 0 and 1
N3 tr(X̃

∗
nX̃n)2 → c + c2, almost surely.

Define ∀τ
n = 1

N
T τ

2nXnT
τ
1nX

∗
n, ∀̂τ

n = 1
N

T τ
2nX̂nT τ

1nX̂∗
n and ∀̃τ

n = 1
N

T τ
2nX̃nT

τ
1nX̃

∗
n.

Then ∀̃τ
n satisfies assumptions (i)− (v) in Theorem 1.2.1 and conditions (i), (ii) in

Assumption 4.4.1. By hypothesis, Theorem 1.2.1 is true for ∀̃τ
n.

By the rank inequality in Lemma 2.1.1 and Bernstein’s inequality in Lemma

2.1.3,

‖F ∀τ
n − F ∀̂τ

n‖ ≤ 2

N
rank(Xn − X̂n)

≤ 2

N

∑

ij

I(|xij |>δn
√

n) → 0, almost surely. (4.4.2)

By the difference inequality in Lemma 2.1.2,

L3(F ∀̂τ
n , F ∀̃τ

n)

≤ τ 2

N3
tr(X̂nT

τ
1nX̂

∗
n − X̃nT τ

1nX̃∗
n)2

≤ 2τ 4

N3
{4

(
tr(EX̂∗

nEX̂n)2
)1/2 (

tr(X̃∗
nX̃n)2

)1/2
+ tr(EX̂∗

nEX̂n)2}

→ 0, almost surely. (4.4.3)
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Combining (4.4.2) and (4.4.3) gives with probability one,

L(F ∀τ
n , F ∀̃τ

n) → 0. (4.4.4)

This implies with probability one, F ∀τ
n and F ∀̃τ

n converges weakly to the same limit.

In another word, Theorem 1.2.1 must also be true for the matrices ∀τ
n.

Denote by F τ the limiting spectral distribution of ∀τ
n. Then by Theorem 1.2.1,





sτ (z) = −z−1(1− c)− z−1c
∫ 1

1+gτ
2 (z)x

dHτ
1 (x),

sτ (z) = −z−1
∫ 1

1+gτ
1 (z)y

dHτ
2 (y),

sτ (z) = −z−1 − gτ
1 (z)gτ

2 (z),

(4.4.5)

where sτ (z) denotes the Stieltjes transform of F τ , gτ
1 (z) and gτ

2 (z) are the two

functions associated with sτ (z).

Let τ →∞ only through points in the set T . Then we have

lim inf
τ→∞ Imgτ

2 (z) > 0, lim inf
τ→∞ Im(zgτ

1 (z)) > 0. (4.4.6)

For the integrality, the proof of this fact will be presented later in the present

section. This implies, by the third equation in (4.4.5) and the fact |sτ (z)| ≤ 1
v
,

lim sup
τ→∞

|gτ
1 (z)| < ∞ and lim sup

τ→∞
|gτ

2 (z)| < ∞. (4.4.7)

Thus for a given z ∈ C+, {(sτ (z), gτ
1 (z), gτ

2 (z))} is bounded for all large τ ∈ T .

Consider any subsequence {(sτm
(z), gτm

1 (z), gτm
2 (z))} → (s(z), g1(z), g2(z)). Then

(4.4.6) implies that Im(zg1(z)) > 0 and Img2(z) > 0. Let y ≡ lim supτ→∞ |gτ
2 (z)|

lim infτ→∞ Imgτ
2 (z)

.

Then

lim sup
τ→∞

| 1

1 + gτ
2 (z)x

| ≤ y < ∞.
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By the dominated convergence theorem, it follows

lim
τm→∞

∫ 1

1 + gτm
2 (z)x

dH1(x) =
∫ 1

1 + g2(z)x
dH1(x). (4.4.8)

It can be verified

Hτ
1 (x) = 1(τ,∞)(x) + (H1(x) + 1−H1(τ))1[0,τ ](x)

+(H1(x)−H1(−τ))1[−τ,0)(x),

with Hτ
1 {0} = H1{0}+ H1{(−∞,−τ) ∪ (τ,∞)}, so that

|
∫ 1

1 + gτm
2 (z)x

(dHτm
1 (x)− dH1(x))|

= |(Hτm
1 {0} −H1{0}) +

∫

[−τm,0)∪(0,τm]

1

1 + gτm
2 (z)x

(dHτm
1 (x)− dH1(x))

−
∫

(−∞,−τm)∪(τm,∞)

1

1 + gτm
2 (z)x

dH1(x)|

= |H1{(−∞,−τm) ∪ (τm,∞)} −
∫

(−∞,−τm)∪(τm,∞)

1

1 + gτm
2 (z)x

dH1(x)|

= |
∫

(−∞,−τm)∪(τm,∞)

(
1− 1

1 + gτm
2 (z)x

)
dH1(x)|

≤ (1 + y)H1{(−∞,−τm) ∪ (τm,∞)}

→ 0. (4.4.9)

Combining (4.4.8) and (4.4.9) gives at once

lim
τm→∞

∫ 1

1 + gτm
2 (z)x

dHτm
1 (x) =

∫ 1

1 + g2(z)x
dH1(x). (4.4.10)

Now we prove, by the same type of argument,

lim
τm→∞

∫ 1

z + zgτm
1 (z)y

dHτm
2 (y) =

∫ 1

z + zg1(z)y
dH2(y). (4.4.11)

In this case, we have, since Im(zgτm
1 (z)) ≥ 0, | 1

z+zgτm
1 (z)y

| ≤ 1
v
, for y ∈ [0,∞) (recall

that Hτ
2 is supported on [0,∞)). Then by the dominated convergence theorem,

lim
τm→∞

∫ 1

z + zgτm
1 (z)y

dH2(y) =
∫ 1

z + zg1(z)y
dH2(y). (4.4.12)
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Again, it can be shown

Hτ
2 (y) = 1(τ,∞)(y) + (H2(y) + 1−H2(τ))1[0,τ ](y),

with Hτ
2 {0} −H2{0} = H2{(τ,∞)}, so that

|
∫ 1

z + zgτm
1 (z)y

(dHτm
2 (y)− dH2(y))|

= |
∫

(τm,∞)

(
1

z
− 1

z + zgτm
1 (z)y

)
dH2(y)|

≤ 2

v
H2{(τm,∞)}

→ 0. (4.4.13)

Combining (4.4.12) and (4.4.13) gives (4.4.11) immediately.

From the three equations of (4.4.5), (4.4.10) and (4.4.11), we see (s(z), g1(z), g2(z))

satisfies (1.2.2). Since it is the limit of an arbitrarily chosen convergent subsequence

and is a point in the set (1.2.3), by Lemma 4.3.3, we get

lim
τ→∞(sτ (z), gτ

1 (z), gτ
2 (z)) = (s(z), g1(z), g2(z)). (4.4.14)

By the rank inequality,

‖F ∀n − F ∀τ
n‖ ≤ 1

N
(rank(T1n − T τ

1n) + 2× rank(T2n − T τ
2n))

=
n

N
F T1n{(−∞,−τ) ∪ (τ,∞)}+ 2F T2n{(τ,∞)},

and so almost surely lim supτ→∞ lim supn→∞ ‖F ∀n − F ∀τ
n‖ = 0. Let

θM ≡ 2H2{(M 1
3 ,∞)}+ 2cFM−P{(M 1

3 ,∞)}

+cH1{(−∞,−M
1
3 ) ∪ (M

1
3 ,∞)}.
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Then as M → ∞, θM → 0. From Lemma 4.3.1 (taking M1 = M2 = M3 = M
1
3 ),

one gets almost surely

lim sup
n→∞

F ∀n{(−∞,−M) ∪ (M,∞)} ≤ θM ,

lim sup
τ→∞

lim sup
n→∞

F ∀τ
n{(−∞,−M) ∪ (M,∞)} ≤ θM .

It follows then, with the aid of integration by parts,

lim sup
τ→∞

lim sup
n→∞

|sF∀n (z)− sF∀τ
n (z)|

= lim sup
τ→∞

lim sup
n→∞

|
∫

[−M,M ]

1

x− z
d(F ∀n(x)− F ∀τ

n(x))

+
∫

(−∞,−M)∪(M,∞)

1

x− z
d(F ∀n(x)− F ∀τ

n(x))|

≤ lim sup
τ→∞

lim sup
n→∞

| 1

M − z
(F ∀n(M)− F ∀τ

n(M))

− 1

−M − z
(F ∀n(−M)− F ∀τ

n(−M))

+
∫

[−M,M ]

1

(x− z)2
(F ∀n(x)− F ∀τ

n(x))dx|+ 2

v
θM

≤
(

2

v
+

2M

v2

)
lim sup

τ→∞
lim sup

n→∞
‖F ∀n − F ∀τ

n‖+
2

v
θM

=
2

v
θM , for all M > 0.

Hence we get lim supτ→∞ lim supn→∞ |sF∀n (z)− sF∀τ
n (z)| = 0.

Finally, we obtain with probability one,

lim sup
n→∞

|sF∀n (z)− s(z)|

≤ lim sup
τ→∞

lim sup
n→∞

|sF∀n (z)− sF∀τ
n (z)|+ lim sup

τ→∞
lim sup

n→∞
|sF∀τ

n (z)− sτ (z)|

+ lim sup
τ→∞

|sτ (z)− s(z)|

= 0.

By Theorem 2.3.9, since we have shown (s(z), g1(z), g2(z)) satisfies (1.2.2), it then
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follows Theorem 1.2.1 holds for the matrix ∀n. Thus to show Theorem 1.2.1,

without loss of generality, we may assume conditions (i), (ii) of Assumption 4.4.1

hold.

Let us now consider condition (iii) in Assumption 4.4.1. Suppose Theorem

1.2.1 is true for all those matrices which satisfy, besides assumptions (i) − (v) in

Theorem 1.2.1, also condition (i)− (iii) in Assumption 4.4.1. Consider the matrix

∀n which satisfy assumptions (i)− (v) in the theorem and conditions (i)− (ii) in

Assumption 4.4.1.

By assumption (iii) of Theorem 1.2.1, there exists a subspace Ω0 ⊂ Ω with

P (Ω0) = 1 such that for each ω ∈ Ω0, F T1n(ω) → H1 and F T2n(ω) → H2. Define

∀ω
n =

1

N
T2n(ω)XnT1n(ω)X∗

n, for each ω ∈ Ω,

where for an arbitrarily given ω, T1n(ω) and T2n(ω) are the observation of the

matrices T1n and T2n at the basic element ω of the probability space Ω. By hy-

pothesis, for every ω ∈ Ω0, Theorem 1.2.1 holds for ∀ω
n. Then with probability one

F ∀ω
n converges weakly to a non-random limit whose Stieltjes transform satisfies

(1.2.2). Since H1 and H2 are the limits of F T1n(ω) and F T2n(ω) for every ω ∈ Ω0,

by Lemma 4.3.3 and the inversion formula of Theorem 2.3.1, for all ω ∈ Ω0, F ∀ω
n

converge to the same limit, which we now denote by F . It follows that

EsF∀ω
n (z) → sF (z), for any ω ∈ Ω0, (4.4.15)

and from Lemma 4.5.19 of the present chapter

E|sF∀ω
n (z)− EsF∀ω

n (z)|4 ≤ Kn−2+δ,
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where δ > 0 can be arbitrarily small, K is a constant depending only on δ, τ and

v = Im(z).

Note that since Xn is independent of T1n, T2n, we have for any ω ∈ Ω

E(sF∀n (z)|T1n = T1n(ω), T2n = T2n(ω)) = EsF∀ω
n (z) (4.4.16)

and

E|sF∀n (z)− E(sF∀n (z)|T1n = T1n(ω), T2n = T2n(ω))|4

= E
{
E

(
|sF∀n (z)− E(sF∀n (z)|T1n = T1n(ω), T2n = T2n(ω))|4

|T1n = T1n(ω), T2n = T2n(ω))}

= E
(
E|sF∀ω

n (z)− EsF∀ω
n (z)|4

)

=
∫

Ω0

E|sF∀ω
n (z)− EsF∀ω

n (z)|4dP (ω)

≤ Kn−2+δ. (4.4.17)

By (4.4.15), (4.4.16), and P (Ω0) = 1, E(sF∀n (z)|T1n = T1n(ω), T2n = T2n(ω)) →

sF (z) almost surely. From (4.4.17), sF∀n (z) − E(sF∀n (z)|T1n = T1n(ω), T2n =

T2n(ω)) → 0 almost surely. Thus, sF∀n (z) → sF (z) almost surely. That is, The-

orem 1.2.1 must hold for ∀n. Thus, to prove Theorem 1.2.1, without loss of gen-

erality, we may further assume condition (iii) of Assumption 4.4.1 holds. This

completes our verification of the sufficiency of Assumption 4.4.1.

At the end of the present section, we prove the following result, which has

played role in proving (4.4.6) and Lemma 4.3.5. Corresponding to ∀̃τ
n, let us define
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Ãτ
n = (1/N)T τ

1nX̃
∗
nT τ

2nX̃n. Let

g̃τ
1n(z) ≡ (1/N)tr{(Ãτ

n − zI)−1T τ
1n}, g̃τ

2n(z) ≡ 1

N
tr{(∀̃τ

n − zI)−1T τ
2n}.

Proposition 4.3.1. Under the assumption that H1 6= 1[0,∞) and H2 6= 1[0,∞),

(1) limε↓0 lim infn→∞ FDn{(ε,∞)} > 0, where Dn = (1/N)T1nX
∗
nT2nXnT1n.

(2) Let τ →∞ through points in the set T . Then for any z ∈ C+, with probability

1,

δ2z ≡ lim inf
τ→∞ lim inf

n→∞ Img̃τ
2n(z) > 0. (4.4.18)

δ1z ≡ lim inf
τ→∞ lim inf

n→∞ Im(zg̃τ
1n(z)) > 0. (4.4.19)

Proof. Let D̃n = (1/N)T1nX̃
∗
nT2nX̃nT1n. Then by the proof of (4.4.4), we

may in parallel obtain with probability one L(FDn , F D̃n) → 0. This implies with

probability one for any ε′ < ε,

lim inf
n→∞ FDn{(ε′,∞)} ≥ lim inf

n→∞ F D̃n{(ε,∞)},

which implies with probability one

lim
ε↓0

lim inf
n→∞ FDn{(ε,∞)} ≥ lim

ε↓0
lim inf
n→∞ F D̃n{(ε,∞)}.

By the symmetry of FDn and F D̃n , we then get with probability one,

lim
ε↓0

lim inf
n→∞ FDn{(ε,∞)} = lim

ε↓0
lim inf
n→∞ F D̃n{(ε,∞)}.

Moreover, if we define D̃τ
n = (1/N)T τ

1nX̃∗
nT τ

2nX̃nT τ
1n, then

lim inf
n→∞ F D̃n{(ε,∞)} ≥ lim inf

n→∞ F D̃τ
n{(ε,∞)}.
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Since we have asserted for all large τ ∈ T , none of the limiting spectral distributions

of F T τ
1n and F T τ

2n is equal to 1[0,∞). We therefore claim that in the proof of (1),

without loss of generality, we may assume there is a constant τ > 0 bigger than

the maximum of ‖T1n‖ and ‖T2n‖. It suffices, with this assumption, to show

limε↓0 lim infn→∞ F D̃n{(ε,∞)} > 0. Suppose not. Then there must exists some

subsequence {nm} on which {F D̃nm} converges weakly to 1[0,∞).

Now let us define hn(z) = 1+z 1
n
tr(D̃n−zI)−1. Then we must have hnm(z) → 0

for every z ∈ C+. By using the resolvent identity,

(iv)hn(iv) = − 1

n
trD̃n +

1

n
tr{D̃2

n(D̃n − ivI)−1},

in which almost surely (1/n)trD̃n →
∫

x2dH1(x)
∫

ydH2(y) and by Lemma 4.2.1(2)

| 1
n

tr{D̃2
n(D̃n − ivI)−1}| ≤ τ 6

vnN2
tr(X̃∗

nX̃n)2 → τ 6(1 + c)/v.

It follows for all large v, by the assumption H1 6= 1[0,∞) and H2 6= 1[0,∞),

−v lim inf
n→∞ Imhn(iv) = lim sup

n→∞
Re(ivhn(iv))

≤ −
∫

x2dH1(x)
∫

ydH2(y) + τ 6(1 + c)/v < 0.

Hence we get for all large v, lim infn→∞ Imhn(iv) > 0. This contradicts with the

previously claimed fact hnm(z) → 0 for every z ∈ C+. The proof of (1) is complete.

Let us proceed into the proof of (2). To show (4.4.18), we use (4.3.14). Then

we have

Img̃τ
2n(z) ≥ εcM(z)(F T τ

2n{(ε,∞)} − F ∀̃τ
n{(−∞,−M) ∪ (M,∞)}).
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From Lemma 4.3.1, choosing M1 = M2 = M3 = M1/3, we have

F ∀̃τ
n{(−∞,−M) ∪ (M,∞)}

≤ 2F T τ
2n{(M1/3,∞)}+ 2

n

N
F S̃n{(M1/3,∞)}+

n

N
F
√

(T τ
1n)2{(M1/3,∞)}

≤ 2F T2n{(M1/3,∞)}+ 2
n

N
F S̃n{(M1/3,∞)}+

n

N
F
√

(T1n)2{(M1/3,∞)}

≡ εn(M).

Hence with probability 1,

lim
M→∞

lim sup
τ→∞

lim sup
n→∞

F ∀̃τ
n{(−∞,−M) ∪ (M,∞)}

≤ lim
M→∞

lim sup
n→∞

εn(M)

→ 0.

Letting ε ↓ 0 only through continuity points of H2, noting that H2 6= 1[0,∞), we

have with probability 1,

lim
ε↓0

lim inf
τ→∞ lim inf

n→∞ F T τ
2n{(ε,∞)} = lim

ε↓0
lim inf

τ→∞ Hτ
2 {(ε,∞)}

= lim
ε↓0

H2{(ε,∞)} > 0.

Let Ω be the subspace with probability 1 such that for every ω ∈ Ω, both of the

above two relations hold. Then for each ω ∈ Ω fixed, we firstly choose ε > 0 such

that

lim inf
τ→∞ lim inf

n→∞ F T τ
2n{(ε,∞)} = ε′ > 0.

Then we choose M such that

lim sup
τ→∞

lim sup
n→∞

F ∀τ
n{(−∞,−M) ∪ (M,∞)} <

ε′

2
.
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It follows then

δ2z ≥ εcM(z)
(
lim inf

τ→∞ lim inf
n→∞ F T τ

2n{(ε,∞)}

− lim sup
n→∞

lim sup
n→∞

F ∀̃n{(−∞,−M) ∪ (M,∞)}
)

> εcM(z)
ε′

2
.

To show (4.4.19), we use (4.3.16). Then we get

Im(zg̃τ
1n(z))

≥ εcM(z)
n

N

(
F

1
N

T τ
1nX̃∗

nT τ
2nX̃nT τ

1n{(ε,∞)} − F Ãτ
n{(−∞,−M) ∪ (M,∞)}

)

From the proof of (1) in the present proposition,

lim
ε↓0

lim inf
τ→∞ lim inf

n→∞ F
1
N

T τ
1nX̃∗

nT τ
2nX̃nT τ

1n{(ε,∞)} > 0.

Thus by following the same argument, (4.4.19) is proved. 2

Finally, we need to point out that (4.4.6) is a consequence of (4.4.18) and

(4.4.19) in this proposition. However, to see this, we need to use one result in

the last section of the present chapter, i.e. Corollary 4.6.2. All results of the

last section are to be derived under the assumptions in both Theorem 1.2.1 and

Assumption 4.4.1, all of which are satisfied by the matrices ∀̃τ
n. Hence by Corollary

4.6.2, almost surely, g̃τ
1n(z) → gτ

1 (z) and g̃τ
2n(z) → gτ

2 (z). Therefore, (4.4.18) and

(4.4.19) yields (4.4.6).

Due to the work in the present section, in the next section, assuming Assump-

tion 4.4.1 to be true, we shall focus on constructing some useful bounds for the

quantities involved in relations (4.1.8) and (4.1.12).
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4.5 Construction of Bounds for Quantities In-

volved in the Main Relations

At the first place, we clarify all derivations in the present section will be done

under, besides assumptions (i) − (v) in Theorem 1.2.1, also conditions (i) − (iii)

in Assumption 4.4.1.

As we have indicated earlier, the asymptotic behaviors of relations (4.1.8) and

(4.1.12) will lead us to the answer of our question. In this section, we shall then

deal with constructing bounds appropriate for estimating those quantities involved

in these relations as well as in (4.1.10), (4.1.11) and (4.1.14), (4.1.15).

Let us begin by showing two basic results. The estimates they state are con-

ceivable. As for their proof, a solution can be obtained from the proof of Theorem

2.10 in Bai(1999). However, since in that work a stronger conclusion is pursued,

the proof needs a rather complicated combinatoric argument. Our result, focus-

ing on providing suitable bounds, can be established by using only the induction

method and some basic properties of matrices.

Lemma 4.5.8. For any integer ` ≥ 1, if ‖Tn‖ is bounded by τ , then there

exists a constant K depending only on τ and ` such that

|Etr(XnTnX∗
n)`| ≤ Kn1+`. (4.5.1)

Proof. By using the fact |Etr(A)| ≤ √
n{Etr(AA∗)}1/2 valid for n× n matrix
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A, we have for any `,

|Etr(XnTnX
∗
n)`| ≤ √

n{Etr(XnTnX
∗
n)2`}1/2,

which implies we need only show that the asserted result holds for every even `,

say ` = 2v. We first show for any positive integers a and v,

A(a, v) ≡ Etr([(XnX∗
n)Tn]v(X∗

nXn)a[Tn(X∗
nXn)]v) ≤ Kn1+a+2v. (4.5.2)

When v = 1, by using the fact |Etr(AB)| ≤ {Etr(AA∗)}1/2{Etr(BB∗)}1/2,

A(a, 1) = Etr((XnX
∗
n)aTn(X∗

nXn)2Tn)

≤ τ 2{Etr(X∗
nXn)2a}1/2{Etr(X∗

nXn)4}1/2

≤ Kna+3,

and hence (4.5.2) holds for all a when v = 1. By the way of induction, when v ≥ 2,

the same type of argument yields

A(a, v) = Etr((X∗
nXn)a[Tn(X∗

nXn)]v−1Tn(X∗
nXn)2[Tn(X∗

nXn)]v−1Tn)

≤ τ 2{A(2a, v − 1)}1/2{A(4, v − 1)}1/2

≤ Kn1+a+2v.

Thus (4.5.2) is proved. Note that when l = 2v,

Etr(XnTnX∗
n)2v = Etr(TnX∗

nXn)2v

≤ Etr(Tn[(X∗
nXn)Tn]v−1(X∗

nXn)Tn(X∗
nXn)[Tn(X∗

nXn)]v−1)

≤ τ 2A(2, v − 1) ≤ Kn1+2v.

Thus (4.5.1) is shown for the case when ` is even. 2
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A consequence of (4.5.1) is that for any positive integer l, there exists a constant

K depending only on τ , l, k such that

Etr(T k
1nX∗

nXnT
k
1n)l ≤ Kn1+l. (4.5.3)

To see this, simply notice that the left-hand term is Etr(XnT
2k
1nX∗

n)l.

Lemma 4.5.9. For any positive integer l, there exists a constant K depending

only on τ , l, k such that

Etr(T k
2n(XnT1nX∗

n)2T k
2n)l ≤ Kn1+2l. (4.5.4)

Proof. By the same type of argument as used in proving (4.5.1), we only need

to show (4.5.4) for the case of l = 2v. We first prove for all positive integers a and

v,

B(a, v) ≡ Etr((XnT1nX
∗
n)a[T 2k

2n (XnT1nX
∗
n)2]v[(XnT1nX

∗
n)2T 2k

2n ]v)

≤ Kn1+a+4v. (4.5.5)

We again use the method of induction. When v = 1, from (4.5.1), we have

B(a, 1) ≤ τ 4k{Etr(XnT1nX
∗
n)2a}1/2{Etr(XnT1nX∗

n)8}1/2

≤ Kn5+a = Kn1+a+4v.

Thus (4.5.5) holds for all a when v = 1. When v ≥ 2, by using (1) of Lemma 4.2.1,
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we have

B(a, v) = Etr((XnT1nX∗
n)a[T 2k

2n (XnT1nX∗
n)2]v−1T 2k

2n

(XnT1nX∗
n)4[T 2k

2n (XnT1nX∗
n)2]v−1T 2k

2n )

≤ τ 4k{B(2a, v − 1)}1/2{B(8, v − 1)}1/2

≤ Kn1+a+4v.

Thus (4.5.5) holds for all positive integers a and v.

Note that for l = 2v,

Etr(T k
2n(XnT1nX∗

n)2T k
2n)2v ≤ τ 4kB(4, v − 1) ≤ Kn1+4v = Kn1+2l.

This completes the proof. 2

The variables concerned in the next lemma will make their appearance fre-

quently in our latter arguments. For more convenient use, we regard the regular

rule about them.

Lemma 4.5.10. For each pair (i, j) and each positive integer k, let

α(i, j, k) = f ′jT
k
1nX

∗
ijXijT

k
1nfj, αjj(k) = f ′jT

k
1nX∗

nXnT k
1nfj.

Moreover, let

β(i, j, k) = e′iT
k
2nXijT1nX∗

ijXijT1nX
∗
ijT

k
2nei,

β̃(i, j, k) = e′iT
k
2nXijT1nX∗

nXnT1nX
∗
ijT

k
2nei,

β̂(i, j, k) = e′iT
k
2nXnT1nX∗

ijXijT1nX∗
nT k

2nei,

βii(k) = e′iT
k
2nXnT1nX∗

nXnT1nX
∗
nT k

2nei.
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Then there exists constant K depending only on τ and k but not on i and j such

that

(1) αjj(k) ≤ K(|xij|2 + α(i, j, k)).

(2) α(i, j, k) ≤ K(|xij|2 + αjj(k)).

(3) β̃(i, j, k) ≤ K(|xij|2α(i, j, 1) + β(i, j, k)),

(4) β̂(i, j, k) ≤ K(|xij|2α(i, j, 1) + β(i, j, k)),

(5) βii(k) ≤ K(|xij|4 + |xij|2α(i, j, 1) + β(i, j, k)),

(6) β(i, j, k) ≤ K(|xij|2α(i, j, 1) + β̃(i, j, k)),

(7) β̃(i, j, k) ≤ K(|xij|2αjj(1) + βii(k)),

(8) β(i, j, k) ≤ K(|xij|4 + |xij|2αjj(1) + βii(k)).

Proof. By using the expressions Xn = Xij + xijeif
′
j and X∗

n = X∗
ij + x̄ijfje

′
i,

the relations |xy| ≤ (x2 + y2) (x, y ∈ R), |a∗b| ≤ (a∗a)1/2(b∗b)1/2 (a, b complex

vectors),

|αjj(k)− α(i, j, k)|

≤ K(2|ζ(k)
jj ||xij||e′iXijT

k
1nfj|+ |ζ(k)

jj |2|xij|2)

≤ K(|xij||e′iXijT
k
1nfj|+ |xij|2)

≤ K(|xij|2 + |e′iXijT
k
1nfj|2)

≤ K(|xij|2 + f ′jT
k
1nX

∗
ijXijT

k
1nfj)

= K(|xij|2 + α(i, j, k)),
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which implies (1). Similarly, using the expressions Xij = Xn − xijeif
′
j and X∗

ij =

X∗
n − x̄ijfje

′
i gives (2).

The same type of arguments can be used to establish (3) − (8). For instance,

we have

|β̂(i, j, k)− β(i, j, k)|

≤ K(2|ξ(k)
ii ||xij||f ′jT1nX∗

ijXijT1nX∗
ijT

k
2nei|+ |ξ(k)

ii |2|xij|2f ′jT1nX
∗
ijXijT1nfj)

≤ K(|xij||f ′jT1nX∗
ijXijT1nX

∗
ijT

k
2nei|+ |xij|2f ′jT1nX∗

ijXijT1nfj)

≤ K(|xij|2f ′jT1nX∗
ijXijT1nfj + e′iT

k
2nXijT1nX

∗
ijXijT1nX

∗
ijT

k
2nei)

= K(|xij|2α(i, j, 1) + β(i, j, k)),

which implies (4) and

|β̃(i, j, k)− β(i, j, k)|

≤ K(|xij||e′iT k
2nXijT1nX∗

ijei||f ′jT1nX
∗
ijT

k
2nei|

+|xij|2|e′iT k
2nXijT1nfj||f ′jT1nX∗

ijT
k
2nei|)

≤ K(|xij|2|f ′jT1nX∗
ijT

k
2nei|2 + |e′iT k

2nXijT1nX∗
ijei|2)

≤ K(|xij|2α(i, j, 1) + β(i, j, k)),
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which implies (3). Further, we have

|βii(k)− β̃(i, j, k)|

≤ K(|xij||f ′jT1nX∗
nXnT1nX

∗
ijT

k
2nei|+ |xij|2f ′jT1nX∗

nXnT1nfj)

≤ K(|xij|2f ′jT1nX∗
nXnT1nfj + e′iT

k
2nXijT1nX

∗
nXnT1nX

∗
ijT

k
2nei)

= K(|xij|2αjj(1) + β̃(i, j, k))

≤ K(|xij|4 + |xij|2α(i, j, 1) + β̃(i, j, k)),

where in the last step we have used (1). This relation together with (3) imply (5).

With Xij = Xn − xijeif
′
j and X∗

ij = X∗
n − x̄ijfje

′
i, we have

|β(i, j, k)− β̃(i, j, k)|

≤ K(|xij||e′iT k
2nXijT1nX

∗
nei||f ′jT1nX∗

ijT
k
2nei|

+|xij|2|e′iT k
2nXijT1nfj|2)

≤ K(|xij|2f ′jT1nX∗
ijXijT1nfj + e′iT

k
2nXijT1nX

∗
nXnT1nX

∗
ijT

k
2nei)

= K(|xij|2α(i, j, 1) + β̃(i, j, k))

≤ K(|xij|4 + |xij|2αjj(1) + β̃(i, j, k))

and

|β̃(i, j, k)− βii(k)|

≤ K(|xij||f ′jT1nX∗
nXnT1nX

∗
nT k

2nei|+ |xij|2f ′jT1nX
∗
nXnT1nfj)

≤ K(|xij|2αjj(1) + βii(k)),

that is, (6) and (7) hold. Combining (6) and (7) gives (8). From the derivations,

we can see that K depends only on τ and k but not on i and j. 2
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Lemma 4.5.11. For each positive integer l, there exists a constant K depend-

ing on l, τ , k only, such that

(1)E
∑

j

[αjj(k)]l ≤ Kn1+l. (2)E
∑

i

[βii(k)]l ≤ Kn1+2l.

(3)E
∑

ij

[α(i, j, k)]l ≤ Kn2+l. (4)E
∑

ij

[β(i, j, k)]l ≤ Kn2+2l.

Proof. Note that for any Hermitian A = [aij],

∑

i

a2l
ii ≤

∑

i

[λi(A)]2l = tr(A2l),

since f(x) = x2l is convex. Therefore, from (4.5.3),

E
∑

j

[αjj(k)]l ≤ √
n{E ∑

j

[αjj(k)]2l}1/2

≤ √
n{Etr(T k

1nX∗
nXnT k

1n)2l}1/2

≤ Kn1+l.

Similarly, from (4.5.4),

E
∑

i

[βii(k)]l ≤
√

N{E ∑

i

[βii(k)]2l}1/2

≤
√

N{Etr(T k
2n(XnT1nX∗

n)2T k
2n)2l}1/2

≤ Kn1+2l.

Thus far we have proved (1) and (2). Further, by (2) and (8) in Lemma 4.5.10, we
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have

E
∑

ij

[α(i, j, k)]l

≤ KE
∑

ij

(|xij|2 + αjj(k))l

≤ KE
∑

ij

(|xij|2l + [αjj(k)]l)

≤ Kn2+l,

and

E
∑

ij

[β(i, j, k)]l

≤ KE
∑

ij

(|xij|4 + |xij|2αjj(1) + βii(k))l

≤ KE
∑

ij

(|xij|4l + |xij|2l[αjj(1)]l + [βii(k)]l)

≤ Kn2+2l.

Thus (3) and (4) are also proved. 2

In the following, we come to the main purpose of the present section, that is,

to define three types of bounds for use in later arguments. In the remainder of the

present section, we shall take k to be a fixed positive integer. Also, in the sequel,

we shall frequently use the fact that for any numbers al ≥ 0 (1 ≤ l ≤ L),

(
L∑

l=1

al

) p
2

≤ L
p
2
−1

L∑

l=1

a
p
2
l . (4.5.6)

The first type bound is as follows.
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Lemma 4.5.12. For each pair (i, j), define

B(i, j) =
√

n +
2∑

p=1

n−
p−1
2

(
[α(i, j, 1)]

p
2 + [α(i, j, k)]

p
2

)

+
2∑

p=1

n−p+ 1
2

(
[β(i, j, 1)]

p
2 + [β(i, j, k)]

p
2

)
. (4.5.7)

Then for any positive integer l, there exists a constant K depending only on τ , k

and l such that

E
∑

ij

[B(i, j)]
l
2 ≤ Kn2+ l

4 . (4.5.8)

Proof. By Hölder’s inequality, we only need to prove

E
∑

ij

[B(i, j)]l ≤ Kn2+ l
2 .

However, as an easy consequence of Lemma 4.5.11, we have

E
∑

ij

(
n−

p−1
2 [α(i, j, k)]

p
2

)l ≤ Kn2+ l
2 ,

and

E
∑

ij

(
n−p+ 1

2 [β(i, j, k)]
p
2

)l ≤ Kn2+ l
2 .

They give, by the fact in (4.5.6), immediately the result. 2

We now use the bound defined in (4.5.7) to estimate the quantities appearing

the those relations of our interest.
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Lemma 4.5.13. For the quantities ã
(k)
ji , a

(k)
ji , â

(1)
ij , p̃jj, pjj and d

(k)
ii appearing

the relations (4.1.8), (4.1.10) and (4.1.11), there exists constant K depending on

τ , v, k only such that

|ã(k)
ji | ≤ KB(i, j), |a(k)

ji | ≤ KB(i, j), |â(1)
ij | ≤ KB(i, j),

|p̃jj| ≤ KB(i, j)/
√

n, |pjj| ≤ KB(i, j)/
√

n,

|d(k)
ii | ≤ K

√
nB(i, j).

Proof. By using Lemma 4.2.1(6), Corollary 4.2.1(4) and Lemma 4.5.10,

|ã(k)
ji | ≤ 1

v
|f ′jT1nX∗

ijT
k
2nei|+ 1

Nv2
(f ′jT1nX

∗
nT2nXnT1nfj)

1/2

(e′iT
k
2nXijT1nX∗

nT2nXnT1nX
∗
ijT

k
2nei)

1/2

≤ K{[α(i, j, 1)]1/2 +
1

n
[αjj(1)]1/2[β̃(i, j, k)]1/2}

≤ K{[α(i, j, 1)]1/2 +
1√
n

αjj(1) +
1

n
√

n
β̃(i, j, k)}

≤ K{[α(i, j, 1)]1/2 +
1√
n

(|xij|2 + α(i, j, 1))

+
1

n
√

n
(|xij|2α(i, j, 1) + β(i, j, k))}

≤ K{δn

√
n + [α(i, j, 1)]1/2 +

1√
n

α(i, j, 1)

+
δ2
n√
n

α(i, j, 1) +
1

n
√

n
β(i, j, k)}

≤ K{√n + [α(i, j, 1)]1/2 +
1√
n

α(i, j, 1) +
1

n
√

n
β(i, j, k)}

≤ KB(i, j).

In the above, we also frequently use the basic fact, |xy| ≤ (|x|2 + |y|2)/2, valid for

any numbers x and y. The constant K appearing all the way thus takes different
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value in its different appearance. However, as claimed its values only depend on

τ , v and k.

The same type of arguments can be developed for all the other quantities in

the lemma. In details, for a
(k)
ji , we have

|a(k)
ji | ≤ 1

v
|f ′jT1nX

∗
ijT

k
2nei|+ 1

Nv2
(f ′jT1nX∗

ijT2nXijT1nfj)
1/2

(e′iT
k
2nXijT1nX

∗
ijT2nXijT1nX∗

ijT
k
2nei)

1/2

≤ τ k

v
[α(i, j, 1)]1/2 +

τ

Nv2
[α(i, j, 1)]1/2[β(i, j, k)]1/2

≤ K{[α(i, j, 1)]1/2 +
1

n
[α(i, j, 1)]1/2[β(i, j, k)]1/2}

≤ K{[α(i, j, 1)]1/2 +
1√
n

α(i, j, 1) +
1

n
√

n
β(i, j, k)}

≤ KB(i, j).

For â
(1)
ij ,

|â(1)
ij | ≤ 1

v
|e′iT2nXijT1nfj|+ 1

Nv2
(f ′jT1nX

∗
ijT2nXijT1nfj)

1/2

(e′iT2nXijT1nX∗
ijT2nXijT1nX

∗
ijT2nei)

1/2

≤ K{[α(i, j, 1)]1/2 +
1

N
[α(i, j, 1)]1/2[β(i, j, k)]1/2}

≤ K{[α(i, j, 1)]1/2 +
1√
n

α(i, j, 1) +
1

n
√

n
β(i, j, 1)}

≤ KB(i, j).
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For p̃jj,

|p̃jj| ≤ 1

v
|f ′jT1nfj|+ 1

Nv2
f ′jT1nX

∗
nT2nXnT1nfj

= K(1 +
1

n
αjj(1))

≤ K(1 +
1

n
(|xij|2 + α(i, j, 1)))

≤ K(1 +
1

n
α(i, j, 1))

≤ KB(i, j)/
√

n.

For pjj,

|pjj| ≤ 1

v
|f ′jT1nfj|+ 1

Nv2
f ′jT1nX

∗
ijT2nXijT1nfj

≤ K(1 +
1

n
α(i, j, 1))

≤ KB(i, j)/
√

n.

For d
(k)
ii ,

|d(k)
ii | ≤ 1

v
|e′iT2nXijT1nX

∗
ijT

k
2nei|+ 1

Nv2
(e′iT2nXijT1nX

∗
ijT2nXijT1nX∗

ijT2nei)
1/2

(e′iT
k
2nXijT1nX

∗
ijT2nXijT1nX

∗
ijT

k
2nei)

1/2

≤ K{[β(i, j, 1)]1/2 +
1

n
β(i, j, 1) +

1

n
β(i, j, k)}

≤ K
√

nB(i, j).

This completes the proof. 2

Lemma 4.5.14. For the quantities σ̃
(k)
ij , σ

(k)
ij , σ̂

(1)
ji , q̃ii, qii and b

(k)
jj appearing

the relations (4.1.12), (4.1.14) and (4.1.15), there exists constant K depending on
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τ , v, k only such that

|σ̃(k)
ij | ≤ KB(i, j), |σ(k)

ij | ≤ KB(i, j), |σ̂(1)
ji | ≤ KB(i, j),

|q̃ii| ≤ K ≤ KB(i, j)/
√

n, |qii| ≤ K ≤ KB(i, j)/
√

n,

|b(k)
jj | ≤ K

√
nB(i, j).

Proof. The proof is similar to that of the previous lemma. By using Lemma

4.2.1(6), Corollary 4.2.1(2) and Lemma 4.5.10, the absolute values of σ̃
(k)
ij and

σ
(k)
ij are both bounded by (τ/v)[α(i, j, k)]1/2 and hence by KB(i, j). The absolute

values of σ̂
(1)
ji is bounded by (τ/v)[α(i, j, 1)]1/2 and hence by KB(i, j). The absolute

values of q̃ii and qii are bounded by τ/v and hence by KB(i, j)/
√

n. Finally, for

b
(k)
jj ,

|b(k)
jj | ≤ 1

v
(f ′jT1nX∗

ijT2nXijT1nfj)
1/2(f ′jT

k
1nX∗

ijT2nXijT
k
1nfj)

1/2

≤ K(α(i, j, 1) + α(i, j, k))

≤ K
√

nB(i, j).

The proof is complete. 2

As a consequence of the above two lemmas, we have
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Lemma 4.5.15.

(1) |ã(k)
ji − a

(k)
ji | ≤ K

1

n
|xij|[B(i, j)]2,

(2) |σ̃(k)
ij − σ

(k)
ij | ≤ K

|xij|√
n

B(i, j) ≤ K
|xij|
n

[B(i, j)]2,

(3) |p̃jj − pjj| ≤ K
|xij|
n
√

n
[B(i, j)]2,

(4) |q̃ii − qii| ≤ K
|xij|
n

B(i, j) ≤ K
|xij|
n
√

n
[B(i, j)]2.

The estimates in the next lemmas are very helpful in our calculations.

Lemma 4.5.16. There exists a constant K depending only on τ , v, k such

that

(1) E
∑

ji

|a(k)
ji |2 ≤ Kn2, where a

(k)
ji ≡ f ′j(An − zI)−1T1nX∗

nT k
2nei;

(2) E
∑

ji

|ã(k)
ji |2 ≤ Kn2, where ã

(k)
ji ≡ f ′j(An − zI)−1T1nX∗

ijT
k
2nei;

(3) E
∑

ji

|a(k)
ji |2 ≤ Kn2, where a

(k)
ji ≡ f ′j(Aij − zI)−1T1nX

∗
ijT

k
2nei.

Proof. We first prove Etr{XnT1n(A∗
n − z̄I)−1(An − zI)−1T1nX∗

n} ≤ Kn2. Let

Bn = (1/N)X∗
nT2nXn. By Theorem 4.2.1 and Lemmas 4.2.1 and 4.5.8, we have

|Etr{XnT1nAn(An − zI)−1T1nX∗
n}|

= |Etr{XnT
2
1nB

1/2
n G(z)B1/2

n T1nX
∗
n}|

≤ 1

v
{Etr(XnT

2
1nBnT

2
1nX

∗
n)}1/2{Etr(XnT1nBnT1nX

∗
n)}1/2

≤ τ

v
{ 1

N
Etr(XnT

2
1nX

∗
n)2}1/2{ 1

N
Etr(XnT1nX∗

n)2}1/2

≤ Kn2
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and

Etr{XnT1n(A∗
n − z̄I)−1A∗

nAn(An − zI)−1T1nX
∗
n}

= Etr{XnT1nB1/2
n G(z)∗B1/2

n T 2
1nB1/2

n G(z)B1/2
n T1nX∗

n}

≤ τ 2Etr{B1/2
n T1nX∗

nXnT1nB
1/2
n G(z)∗BnG(z)}

≤ τ 2

v2
{Etr(B1/2

n T1nX∗
nXnT1nB1/2

n )2}1/2{Etr(B2
n)}1/2

=
τ 2

v2
{Etr(T1nX∗

nXnT1nBn)2}1/2{ 1

N2
Etr(X∗

nT2nXn)2}1/2

=
τ 2

v2
{ 1

N2
Etr((XnT1nX

∗
n)2T2n)2}1/2{ 1

N2
Etr((XnX

∗
n)T2n)2}1/2

≤ τ 4

v2
{ 1

N2
Etr(XnT1nX

∗
n)4}1/2{ 1

N2
Etr(X∗

nXn)2}1/2

≤ Kn2.

Note that from the resolvent identity (2.1.5),

|z|2tr{XnT1n(A∗
n − z̄I)−1(An − zI)−1T1nX∗

n}

= tr{XnT1n(I − (A∗
n − z̄I)−1A∗

n)(I − An(An − zI)−1)T1nX∗
n}

= tr(T1nX
∗
nXnT1n)− tr{XnT1nAn(An − zI)−1T1nX

∗
n}

−tr{XnT1n(A∗
n − zI)−1A∗

nT1nX∗
n}

+tr{XnT1n(A∗
n − zI)−1A∗

nAn(An − zI)−1T1nX∗
n}.

The asserted result is proved.

Now we proceed with our proof of the three inequalities in the lemma. For (1),
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we have

E
∑

ji

|a(k)
ji |2 = Etr{T k

2nXnT1n(A∗
n − z̄I)−1(An − zI)−1T1nX

∗
nT k

2n}

≤ τ 2kEtr{XnT1n(A∗
n − z̄I)−1(An − zI)−1T1nX

∗
n}

≤ Kn2.

For (2), we have

E
∑

ji

|ã(k)
ji − a

(k)
ji |2

= E
∑

ji

|xij|2(ξ(k)
ii )2|f ′(An − zI)−1T1nfj|2

≤ KE
∑

ji

|xij|2(1 +
1

n
α(i, j, 1))2

≤ K(n2 +
1

n2
E

∑

ij

[α(i, j, 1)]2)

≤ Kn2,

and hence (2) follows. To show (3), we use Lemma 4.5.15(1). It follows

E
∑

ji

|ã(k)
ji − a

(k)
ji |2 ≤ KE

∑

ji

1

N2
|xij|2[B(i, j)]4

≤ KE
∑

ji

1

N2
[B(i, j)]4

≤ Kn2.

Thus (3) is proved. 2

Lemma 4.5.17. There exists a constant K depending only on τ , v, k such
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that

(1) E
∑

ji

|σ(k)
ij |2 ≤ Kn2, where σ

(k)
ij ≡ e′i(∀n − zI)−1T2nXnT k

1nfj;

(2) E
∑

ji

|σ̃(k)
ij |2 ≤ Kn2, where σ̃

(k)
ij ≡ e′i(∀n − zI)−1T2nXijT

k
1nfj;

(3) E
∑

ji

|σ(k)
ij |2 ≤ Kn2, where σ

(k)
ij ≡ e′i(∀ij − zI)−1T2nXijT

k
1nfj.

Proof. By Theorem 4.2.1, taking Bn = T2n, we have

E
∑

ji

|σ(k)
ij |2 = Etr(T k

1nX∗
nT2n(∀∗n − z̄I)−1(∀n − zI)−1T2nXnT

k
1n)

= Etr(T k
1nX∗

nT
1/2
2n G(z)∗T2nG(z)T

1/2
2n XnT

k
1n)

≤ τ 2

v2
Etr(T k

1nX
∗
nXnT k

1n)

≤ τ 2+2k

v2
Etr(X∗

nXn)

≤ Kn2.

Since

|σ(k)
ij − σ̃

(k)
ij | = |xijζ

(k)
jj q̃ii| ≤ K|xij|,

E
∑

ij |σ(k)
ij −σ̃

(k)
ij |2 ≤ Kn2 and hence (2) follows. From Lemma 4.5.15(2), we obtain

(3).2

We now define the second type of bounds.

Lemma 4.5.18. Let

B1(i, j) =
√

n +
6∑

p=1

(
1√
n

)p−1

‖X∗
ijXij‖

p
2 .
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Then for each δ > 0 and each positive integer l, there exists constant K depending

on l and δ such that

E
∑

ij

[B1(i, j)]
l
2 ≤ Kn2+ l

4
+δ. (4.5.9)

Proof. Without loss of generality, we only need show that

E
∑

ij

[B1(i, j)]
l ≤ Kn2+ l

2
+δ. (4.5.10)

From the fact in (4.5.6), it suffices to show for each δ > 0 and each positive integer

l, there exists constant K depending on l and δ such that

E
∑

ij

‖X∗
ijXij‖ l

2 ≤ Kn2+ l
2
+δ. (4.5.11)

We first observe that for any positive integer m, there is a constant K depending

only on l and m such that

E‖X∗
nXn‖ l

2 = E{λmax((X
∗
nXn)ml)} 1

2m

≤ {Eλmax((X
∗
nXn)ml)} 1

2m ≤ {Etr(X∗
nXn)ml} 1

2m

≤ Kn
l
2
+ 1

2m .

This implies for each δ > 0 and each positive integer l, there exists constant K

depending on l and δ such that E‖X∗
nXn‖ l

2 ≤ Kn
l
2
+δ.

From the fact that ‖X∗
ijXij‖ ≤ ‖X∗

nXn‖ + 2|xij|‖X∗
nXn‖1/2 + |xij|2, it then
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follows

E
∑

ij

‖X∗
ijXij‖ l

2

≤ K


E

∑

ij

‖X∗
nXn‖ l

2 + (δn

√
n)

l
2 E

∑

ij

‖X∗
nXn‖ l

4 + (δn

√
n)l−2n2




≤ Kn2+ l
2
+δ.

Thus we get (4.5.10). 2

As an illustration of the use of this second bound, we use Burkholder’s inequal-

ity in Lemma 2.1.4 to derive the following result.

Lemma 4.5.19. For each positive integer k and each z ∈ C+, let Φ(k)
n (z) and

Ψ(k)
n (z) be defined as in section 4.1 (4.1.5) and let g1n(z), g2n(z) be defined as in

Section 4.3 (4.3.9) and (4.3.10). Further denote

φ(k)
n (z) = EΦ(k)

n (z), ψ(k)
n (z) = EΨ(k)

n (z).

Then with probability 1, as n →∞,

Φ(k)
n (z)− φ(k)

n (z) → 0, Ψ(k)
n (z)− ψ(k)

n (z) → 0, (4.5.12)

g1n(z)− Eg1n(z) → 0, g2n(z)− Eg2n(z) → 0. (4.5.13)

Proof. By Corollary 4.3.1, Φ(2)
n (z)− φ(2)

n (z) = z(g2n(z)−Eg2n(z)), Ψ(2)
n (z)−

ψ(2)
n (z) = z(g1n(z)− Eg1n(z)). This means we only need to show (4.5.12).

For each pair (i, j), let m = (i− 1)n + j and

Fm = σ({∪i−1
a=1σ(xa1, xa2, · · · , xan)} ∪ σ(xi1, · · · , xij)),



270

and let Em(·) denote the conditional expectation given the σ-field Fm. Further

let E0(·) denote the mathematical expectation of (·). Note that each pair (i, j)

corresponds to a unique m. Write

y(1)
m ≡ 1

N
tr{[(Aij − zI)−1 − (An − zI)−1]T k−1

1n },

y(2)
m ≡ 1

N
tr{[(∀ij − zI)−1 − (∀n − zI)−1]T k−1

2n }.

We first prove |y(l)
m | ≤ K

n3 |xij|[B1(i, j)]
3, for l = 1, 2.

By the resolvent identity, the assumption |xij| ≤ δn

√
n and Theorem 4.2.1, we

have

‖(An − zI)−1‖ ≤ 1

v
+

τ 2

v2
‖ 1

N
X∗

nXn‖

≤ K(1 +
1

N
‖X∗

ijXij‖+
1

N
|xij|‖X∗

ijXij‖ 1
2 +

1

N
|xij|2)

≤ K
1√
n
B1(i, j),

‖(Aij − zI)−1‖ ≤ K(1 +
1

N
‖X∗

ijXij‖) ≤ K
1√
n
B1(i, j),

and

‖(∀n − zI)−1T2n‖ ≤ τ

v
, ‖(∀ij − zI)−1T2n‖ ≤ τ

v
.

It follows

|y(1)
m | = | 1

N2
xijf

′
j(An − zI)−1T k−1

1n (Aij − zI)−1T1nX
∗
ijT2nei

+
1

N2
x̄ije

′
iT2nXij(An − zI)−1T k−1

1n (Aij − zI)−1T1nfj

+
1

N2
|xij|2ξ(1)

ii f ′j(An − zI)−1T k−1
1n (Aij − zI)−1T1nfj|

≤ K
(

1

n3
|xij|[B1(i, j)]

2‖X∗
ijXij‖1/2 +

1

n3
|xij|2[B1(i, j)]

2
)

≤ K
1

n3
|xij|[B1(i, j)]

3, (4.5.14)
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and

|y(2)
m | = | 1

N2
xijf

′
jT1nX

∗
ij(∀n − zI)−1T k−1

2n (∀ij − zI)−1T2nei

+
1

N2
x̄ije

′
i(∀n − zI)−1T k−1

2n (∀ij − zI)−1T2nXijT1nfj

+
1

N2
|xij|2ζ(1)

jj e′i(∀n − zI)−1T k−1
2n (∀ij − zI)−1T2nei| (4.5.15)

≤ K
(

1

n2
|xij|B1(i, j) +

1

n2
|xij|2

)

≤ K
1

n3
|xij|[B1(i, j)]

3.

Note that by Lemma 4.3.7,

Φ(k)
n (z)− φ(k)

n (z)

= z
(

1

N
tr{(∀n − zI)−1T k−1

2n } − E
1

N
tr{(∀n − zI)−1T k−1

2n }
)

= z
nN∑

m=1

(Em − Em−1)
1

N
tr{(∀n − zI)−1T k−1

2n }

= z
nN∑

m=1

(Em − Em−1)
1

N
tr{[(∀n − zI)−1 − (∀ij − zI)−1]T k−1

2n }

= −z
nN∑

m=1

(Em − Em−1)y
(2)
m ,

and

Ψ(k)
n (z)− ψ(k)

n (z)

= z
(

1

N
tr{(An − zI)−1T k−1

1n } − E
1

N
tr{(An − zI)−1T k−1

1n }
)

= −z
nN∑

m=1

(Em − Em−1)y
(1)
m .

By Burkholder’s inequality, using the facts, Em−1|(Em−Em−1)Z|2 ≤ 4Em−1|Z|2,
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E|(Em − Em−1)Z|p ≤ 2pE|Z|p, we get for any p ≥ 2,

E|Ψ(k)
n (z)− ψ(k)

n (z)|p

= |z|pE|
nN∑

m=1

(Em − Em−1)y
(1)
m |p

≤ K


E

(
nN∑

m=1

Em−1|y(1)
m |2

) p
2

+
nN∑

m=1

E|y(1)
m |p


 .

Replacing the y(1)
m on the right-hand side of this inequality with y(2)

m will give an

analogous result for E|Φ(k)
n (z)− φ(k)

n (z)|p.

By means of (4.5.9), it can be computed that

E

(
Nn∑

m=1

Em−1

(
1

n3
|xij|[B1(i, j)]

3
)2

)p/2

= E

(
Nn∑

m=1

1

n6
Em−1[B1(i, j)]

6

)p/2

≤ n−3p(Nn)p/2−1E
Nn∑

m=1

(Em−1[B1(i, j)]
6)p/2

≤ Kn−2p−2E
Nn∑

m=1

[B1(i, j)]
3p

≤ Kn−p/2+δ,

and

E
Nn∑

m=1

(
1

n3
|xij|[B1(i, j)]

3
)p

= n−3p
Nn∑

m=1

E|xij|pE[B1(i, j)]
3p

≤ Kδp−2
n n−

5
2
p−1E

Nn∑

m=1

[B1(i, j)]
3p

≤ Kn−p+1+δ.
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Hence we get for any p ≥ 2,

E|Φ(k)
n (z)− φ(k)

n (z)|p ≤ Kn−p/2+δ,

E|Ψ(k)
n (z)− ψ(k)

n (z)|p ≤ Kn−p/2+δ.

By Borel-Cantelli’s lemma, (4.5.12) follows. 2

We now define the third type of bound. However, this needs us define first the

matrix Γn(z) = −zI − zEg2n(z)T1n. By Lemmas 4.3.4 and 4.3.6, it can be proven

lim sup
n→∞

‖Γ−1
n (z)‖ ≤ τ

v2Eδ2z

, (4.5.16)

where δ2z ≡ lim infn→∞ Img2n(z). Note that Eδ2z > 0, since by Lemma 4.3.4,

δ2z is positive almost surely. To see (4.5.16), use the fact |g2n(z)| ≤ τ
v

and the

following derivation:

‖Γ−1
n (z)‖ =

1

|zEg2n(z)|‖(T1n +
1

Eg2n(z)
)−1‖

≤ 1

|zEg2n(z)|
1

|Im
(

1
Eg2n(z)

)
|

=
|Eg2n(z)|

|zImEg2n(z)|

≤ τ

v2ImEg2n(z)

and so by Fatou’s Lemma,

lim sup
n→∞

‖Γ−1
n (z)‖ ≤ τ

v2 lim infn→∞ ImEg2n(z)

≤ τ

v2E lim infn→∞ Img2n(z)

=
τ

v2Eδ2z

.

This result guarantees us to define the third type of bound as follows.
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Lemma 4.5.20. Let

B2(i, j) = B(i, j) + γ1/2(i, j) +
1√
n

γ(i, j),

where

γ(i, j) ≡ f ′jT
k+1
1n Γ−1

n (z)∗X∗
ijXijΓ

−1
n (z)T k+1

1n fj.

Then there exists constant K depending only on k, τ , v such that

E
∑

ij

[B2(i, j)]
l ≤ Kn2+ l

2 . (4.5.17)

Proof. Let

γjj ≡ f ′jT
k+1
1n Γ−1

n (z)∗X∗
nXnΓ−1

n (z)T k+1
1n fj.

Then by taking Tn to be Γ−1
n (z) in Lemma 4.5.8 and using the same argument as

we prove Lemma 4.5.11(1), it follows for every integer l ≥ 1,

E
∑

j

[γjj]
l ≤ Kn1+l.

Also by following the same procedure as for Lemma 4.5.10(2), we have

γ(i, j) ≤ K(|xij|2 + γjj),

so that E
∑

j[γ(i, j)]l ≤ Kn1+l. Now from (4.5.8), we straightforwardly get (4.5.17).

2

Up to this point, the aim of the present section has been achieved. At the end,

we complement some results which are of the same type as those in Lemma 4.5.13
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and 4.5.14. We shall consider some quantities which are closely related with those

therein. Let us introduce then

a
(k)
ji ≡ f ′j(An − zI)−1T1nX

∗
nT k

2nei, ˜̂a
(1)

ij ≡ e′iT2nXij(An − zI)−1T1nfj,

d̃
(k)
ii ≡ e′iT2nXij(An − zI)−1T1nX∗

ijT
k
2nei,

σ
(k)
ij ≡ e′i(∀n − zI)−1T2nXnT k

1nfj, ˜̂σ
(1)

ji ≡ f ′jT1nX∗
ij(∀n − zI)−1T2nei,

b̃
(k)
jj ≡ f ′jT1nX

∗
ij(∀n − zI)−1T2nXijT

k
1nfj.

Lemma 4.5.21. There exists constant K depending on τ , v, k only such that

|a(k)
ji | ≤ KB(i, j), |˜̂a(1)

ij | ≤ KB(i, j), |d̃(k)
ii | ≤ K

√
nB(i, j),

|σ(k)
ij | ≤ KB(i, j), |˜̂σ(1)

ji | ≤ KB(i, j), |b̃(k)
jj | ≤ K

√
nB(i, j).

Proof. By using Lemma 4.2.1(6), Corollary 4.2.1(4) and Lemma 4.5.10, for

a
(k)
ji ,

|a(k)
ji | ≤ 1

v
|f ′jT1nX∗

nT k
2nei|+ 1

Nv2
(f ′jT1nX∗

nT2nXnT1nfj)
1/2

(e′iT
k
2nXnT1nX∗

nT2nXnT1nX
∗
nT k

2nei)
1/2

≤ K{[αjj(1)]1/2 +
1

n
[αjj(1)]1/2[βii(k)]1/2}

≤ K{[αjj(1)]1/2 +
1√
n

αjj(1) +
1

n
√

n
βii(k)}

≤ K{(|xij|2 + α(i, j, 1))1/2 +
1√
n

(|xij|2 + α(i, j, 1))

+
1

n
√

n
(|xij|4 + |xij|2α(i, j, 1) + β(i, j, k))}

≤ K{√n + [α(i, j, 1)]1/2 +
1√
n

α(i, j, 1) +
1

n
√

n
β(i, j, k)}

≤ KB(i, j).
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For ˜̂a
(1)

ij ,

|˜̂a(1)

ij | ≤ 1

v
|e′iT2nXijT1nfj|+ 1

Nv2
(f ′jT1nX

∗
nT2nXnT1nfj)

1/2

(e′iT2nXijT1nX∗
nT2nXnT1nX

∗
ijT2nei)

1/2

≤ K{[α(i, j, 1)]1/2 +
1

n
[αjj(1)]1/2[β̃(i, j, 1)]1/2}

≤ K{[α(i, j, 1)]1/2 +
1√
n

(|xij|2 + α(i, j, 1))

+
1

n
√

n
(|xij|2α(i, j, 1) + β(i, j, 1))}

≤ K{√n + [α(i, j, 1)]1/2 +
1√
n

α(i, j, 1) +
1

n
√

n
β(i, j, 1)} ≤ KB(i, j).

For d̃
(k)
ii ,

|d̃(k)
ii | ≤ 1

v
|e′iT2nXijT1nX

∗
ijT

k
2nei|+ 1

Nv2
(e′iT2nXijT1nX

∗
nT2nXnT1nX∗

ijT2nei)
1/2

(e′iT
k
2nXijT1nX∗

nT2nXnT1nX∗
ijT

k
2nei)

1/2

≤ K{[β(i, j, 1)]1/2 +
1

n
β̃(i, j, 1) +

1

n
β̃(i, j, k)}

≤ K{[β(i, j, 1)]1/2 +
1

n
(|xij|2α(i, j, 1) + β(i, j, 1))

+
1

n
(|xij|2α(i, j, 1) + β(i, j, k))}

≤ {α(i, j, 1) + [β(i, j, 1)]1/2 +
1

n
β(i, j, 1) +

1

n
β(i, j, k)}

≤ K
√

nB(i, j).

By using Lemma 4.2.1(6), Corollary 4.2.1(1) and Lemma 4.5.10, for σ
(k)
ij ,

|σ(k)
ij | ≤ 1

v
[ξ

(1)
ii ]1/2(f ′jT

k
1nX

∗
nT2nXnT k

1nfj)
1/2 ≤ K[αjj(k)]1/2

≤ K(|xij|2 + α(i, j, k))1/2 ≤ K(
√

n + [α(i, j, k)]1/2)

≤ KB(i, j).
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For ˜̂σ
(1)

ji ,

|˜̂σ(1)

ji |) ≤ 1

v
[ξ

(1)
ii ]1/2(f ′jT1nX∗

ijT2nXijT1nfj)
1/2

≤ K[α(i, j, 1)]1/2 ≤ KB(i, j).

For b̃
(k)
jj ,

|b̃(k)
jj | ≤ 1

v
(f ′jT1nX∗

ijT2nXijT1nfj)
1/2(f ′jT

k
1nX∗

ijT2nXijT
k
1nfj)

1/2

≤ K(α(i, j, 1) + α(i, j, k)) ≤ K
√

nB(i, j).

This completes the proof. 2

Previously we have asserted from Theorem 2.3.9 and Lemma 4.3.2 that Theo-

rem 1.2.1 will follow if it is shown (sF∀n (z), g1n(z), g2n(z)) converges almost surely

to some non-random limit satisfying the system of equations (1.2.2). By Lemma

4.5.19 in the present section, however, since sF∀n (z) = −z−1 − z−1Ψ(1)
n (z), it suf-

fices to show (EsF∀n (z), Eg1n(z), Eg2n(z)) converges to some limit satisfying the

system of equations (1.2.2). This will then be the main task of the next section.

4.6 Proof of Theorem 1.2.1.

The results in the previous sections have furnished us all necessary preliminary

material needed for proving Theorem 1.2.1. The main task of the present sec-

tion is then to finish the proof of the theorem. However, we have noticed that

by Lemma 2.3.9 as well as Lemmas 4.3.2 and 4.5.19, it suffices to establish that

(EsF∀n (z), Eg1n(z), Eg2n(z)) converges to some limit satisfying the system of equa-

tions (1.2.2). This is exactly the place where the procedure we proposed in Section
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4.1 concerning manipulating the the Stieltjes transform method for the class of

large general sample covariance matrices (1/N)T
1/2
2n XnT1nX∗

nT
1/2
2n comes into play.

In Section 4.1, we emphasized the importance of the asymptotic behavior of

those relations regarding the quantities, i.e. Φ(k)
n (z) and Ψ(k)

n (z), which are closely

related with the Stieltjes transforms of F ∀n and FAn . These relations, namely,

(4.1.8) equipped with (4.1.10), (4.1.11) and (4.1.12) equipped with (4.1.14), (4.1.15),

will then be the primary main concern in the present section.

All derivations of the present section will again be done under all assumptions

in Theorem 1.2.1 and conditions in Assumption 4.4.1.

4.6.1 Asymptotic Behavior of the Main Relations

Using the bound defined in Lemma 4.5.12, also with the aid of the results sum-

marized in Lemmas 4.5.13-4.5.17, the asymptotic behavior of the above mentioned

relations is first attained in the following theorem.

Theorem 4.6.1. Given any positive integer k and any z ∈ C+, let ε(k)
n (z)

and ε(k)
n (z) be the residual terms in respectively,

φ(k)
n (z) =

(
1

N
tr(T k

2n)− φ(k+1)
n (z)

)
Eg1n(z) + ε(k)

n (z), (4.6.1)

and

ψ(k)
n (z) =

(
1

N
tr(T k

1n)− ψ(k+1)
n (z)

)
Eg2n(z) + ε(k)

n (z). (4.6.2)
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Then

(1) lim
n→∞ ε(k)

n (z) = 0. (2) lim
n→∞ ε(k)

n (z) = 0. (4.6.3)

Proof. By the proof of Lemma 4.5.19 and Hölder’s inequality, we have

lim
n→∞

(
E(Φ(k+1)

n (z)g1n(z))− φ(k+1)
n (z)Eg1n(z)

)
= 0, (4.6.4)

lim
n→∞

(
E(Ψ(k+1)

n (z)g2n(z))− ψ(k+1)
n (z)Eg2n(z)

)
= 0. (4.6.5)

They imply that we can prove (4.6.3) through proving

(1)′ lim
n→∞ ε̃(k)

n (z) = 0 and (2)′ lim
n→∞ ε̃(k)

n (z) = 0. (4.6.6)

Here ε̃(k)
n (z) and ε̃(k)

n (z) are the residual terms in

φ(k)
n (z) =

1

N
tr(T k

2n)Eg1n(z)− E
(
g1n(z)Φ(k+1)

n (z)
)

+ ε̃(k)
n (z),

and

ψ(k)
n (z) =

1

N
tr(T k

1n)Eg2n(z)− E
(
g2n(z)Ψ(k+1)

n (z)
)

+ ε̃(k)
n (z).

We now develop the proof of (4.6.6).

Proof of (4.6.6)(1)′. In this proof, we shall base our derivations on relation

(4.1.8) equipped with (4.1.10), (4.1.11). From (4.1.8), we see we only need prove

lim
n→∞E


 1

N2

∑

ij

xij ã
(k)
ji + g1n(z)Φ(k+1)

n (z)


 = 0, (4.6.7)

lim
n→∞E


 1

N2

∑

ij

|xij|2ξ(k)
ii p̃jj − 1

N
tr(T k

2n)g1n(z)


 = 0. (4.6.8)
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However, by (4.1.11), (4.6.7) is a consequence of the following facts:

E


 1

N2

∑

ij

xija
(k)
ji


 = 0, (4.6.9)

E


 1

N3

∑

ij

x2
ij ã

(1)
ji a

(k)
ji


 = o(

1√
n

), (4.6.10)

E


 1

N3

∑

ij

x2
ijx̄ijξ

(1)
ii p̃jja

(k)
ji


 = o(

1√
n

), (4.6.11)

E


 1

N3

∑

ij

|xij|2p̃jjd
(k)
ii


 = E

(
g1n(z)Φ(k+1)

n (z)
)

+ o(1). (4.6.12)

Now let us show these asymptotic relations successively. Since xij is indepen-

dent of a
(k)
ji , (4.6.9) follows immediately. By Lemmas 4.5.13 and 4.5.16 and Hölder’s

inequality, we have

|E

 1

N3

∑

ij

x2
ij ã

(1)
ji a

(k)
ji


 |

≤ 1

N3


E

∑

ij

|xij|4|a(k)
ji |2




1/2 
E

∑

ij

|ã(1)
ji |2




1/2

≤ K
1

n2


δ2

nnE
∑

ij

|a(k)
ji |2




1/2

≤ K
δn√
n

= o(
1√
n

),
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and

|E

 1

N3

∑

ij

x2
ijx̄ijξ

(1)
ii p̃jja

(k)
ji


 |

≤ K
1

n3
√

n
E

∑

ij

|xij|3B(i, j)|a(k)
ji |

≤ K
δn

n3


E

∑

ij

[B(i, j)]2




1/2 
E

∑

ij

|a(k)
ji |2




1/2

≤ K
δn√
n

= o(
1√
n

).

Thus (4.6.10) and (4.6.11) are also proved.

To show (4.6.12), we define d
(k)
ii = e′iT2nXn(An− zI)−1T1nX

∗
nT k

2nei. It is easy to

see

E
1

N3

∑

ij

p̃jjd
(k)
ii = E

(
g1n(z)Φ(k+1)

n (z)
)
. (4.6.13)

Now we estimate, recalling d̃
(k)
ii ≡ e′iT2nXij(An − zI)−1T1nX∗

ijT
k
2nei, the difference

d
(k)
ii − d

(k)
ii ≡ (d

(k)
ii − d̃

(k)
ii )− (d

(k)
ii − d̃

(k)
ii ).

By their definition and the resolvent identity with (4.1.9), we have

d
(k)
ii − d̃

(k)
ii = xijξ

(1)
ii a

(k)
ji + x̄ijξ

(k)
ii

˜̂a
(1)

ij ,
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and

d
(k)
ii − d̃

(k)
ii

=
1

N
xije

′
iT2nXij(Aij − zI)−1T1nX

∗
ijT2neif

′
j(An − zI)−1T1nX∗

ijT
k
2nei

+
1

N
x̄ije

′
iT2nXij(Aij − zI)−1T1nfje

′
iT2nXij(An − zI)−1T1nX∗

ijT
k
2nei

+
1

N
|xij|2ξ(1)

ii e′iT2nXij(Aij − zI)−1T1nfjf
′
j(An − zI)−1T1nX∗

ijT
k
2nei

=
1

N
xijd

(1)
ii ã

(k)
ji +

1

N
x̄ij â

(1)
ij d̃

(k)
ii +

1

N
|xij|2ξ(1)

ii â
(1)
ij ã

(k)
ji .

Using the estimates given in Lemmas 4.5.13 and 4.5.20, it follows then

|d(k)
ii − d̃

(k)
ii | ≤ K|xij|B(i, j),

|d(k)
ii − d̃

(k)
ii |

≤ K

(
1√
n
|xij|[B(i, j)]2 +

1√
n
|xij|[B(i, j)]2 +

1

n
|xij|2[B(i, j)]2

)

≤ K
1√
n
|xij|[B(i, j)]2,

and hence

|d(k)
ii − d

(k)
ii | ≤ K

1√
n
|xij|[B(i, j)]2. (4.6.14)

We then write

E
1

N3

∑

ij

|xij|2p̃jjd
(k)
ii

= E
1

N3

∑

ij

p̃jjd
(k)
ii − E

1

N3

∑

ij

p̃jj(d
(k)
ii − d

(k)
ii )

−E
1

N3

∑

ij

(p̃jj − pjj)d
(k)
ii − 1

N3

∑

ij

(1− E|xij|2)E(pjjd
(k)
ii ),

+E
1

N3

∑

ij

|xij|2(p̃jj − pjj)d
(k)
ii . (4.6.15)
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By the estimate given in Lemma 4.5.13 for d
(k)
ii and the estimate given in Lemma

4.5.15(3) for the difference |p̃jj − pjj|, we have

|E 1

N3

∑

ij

|xij|2(p̃jj − pjj)d
(k)
ii |

≤ K
1

n4
E

∑

ij

|xij|3[B(i, j)]3

≤ Kδn

= o(1), (4.6.16)

and

|E 1

N3

∑

ij

(p̃jj − pjj)d
(k)
ii |

≤ K
1

n4
E

∑

ij

|xij|[B(i, j)]3

≤ K/
√

n. (4.6.17)

Similarly by (4.6.14), we have

|E 1

N3

∑

ij

p̃jj(d
(k)
ii − d

(k)
ii )| ≤ K

1

n4
E

∑

ij

|xij|[B(i, j)]3 ≤ K
1√
n

. (4.6.18)

By Hölder’s inequality and the estimates given in Lemma 4.5.13,

| 1

N3

∑

ij

(1− E|xij|2)E(pjjd
(k)
ii )|

≤ 1

N3

∑

ij

(1− E|xij|2)E[B(i, j)]2

≤ K


 1

nN

∑

ij

(1− E|xij|2)2




1/2 
 1

n4
E

∑

ij

[B(i, j)]4




1/2

≤ K


 1

nN

∑

ij

(1− E|xij|2)



1/2

→ 0. (4.6.19)
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In view of (4.6.15), combining the results in (4.6.13), (4.6.16)-(4.6.19) shows (4.6.12).

Thus the proof of (4.6.7) is complete. To finish the proof of (4.6.6)(1)′, we still

need to prove (4.6.8). We next show (4.6.8).

By using the same type of arguments as we used above, we have

E| 1

N2

∑

ij

|xij|2ξ(k)
ii (p̃jj − pjj)| ≤ K

1

n3
√

n
E

∑

ij

|xij|3[B(i, j)]2 ≤ Kδn → 0,

E| 1

N2

∑

ij

ξ
(k)
ii (pjj − p̃jj)| ≤ K

1

n3
√

n
E

∑

ij

|xij|[B(i, j)]2 ≤ K
1√
n

,

|E 1

N2

∑

ij

(1− |xij|2)ξ(k)
ii pjj|

≤ K
1

n2
√

n

∑

ij

(1− E|xij|2)EB(i, j)

≤ K
1

n
√

n


∑

ij

(1− E|xij|2)2




1/2 
E

∑

ij

[B(i, j)]2




1/2

≤ K


∑

ij

(1− E|xij|2)



1/2

→ 0,

and

E
1

N2

∑

ij

ξ
(k)
ii p̃jj = E

(
1

N
tr(T k

2n)g1n(z)
)

.

Therefore we get

E
1

N2

∑

ij

|xij|2ξ(k)
ii p̃jj

= E
1

N2

∑

ij

ξ
(k)
ii p̃jj + E

1

N2

∑

ij

ξ
(k)
ii (pjj − p̃jj)

−E
1

N2

∑

ij

(1− |xij|2)ξ(k)
ii pjj + E

1

N2

∑

ij

|xij|2ξ(k)
ii (p̃jj − pjj)

= E
(

1

N
tr(T k

2n)g1n(z)
)

+ o(1).

Thus (4.6.8) is also proved. The proof of (1)′ is complete.
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Proof of (4.6.6)(2)′. Similarly, we shall derive the result from relation (4.1.12)

equipped with (4.1.14) and (4.1.15).

From (4.1.12) we need only prove

lim
n→∞E


 1

N2

∑

ij

x̄ijσ̃
(k)
ij + g2n(z)Ψ(k+1)

n (z)


 = 0, (4.6.20)

lim
n→∞E


 1

N2

∑

ij

|xij|2ζ(k)
jj q̃ii − 1

N
tr(T k

1n)g2n(z)


 = 0. (4.6.21)

By (4.1.15), we prove (4.6.20) by proving

E


 1

N2

∑

ij

x̄ijσ
(k)
ij


 = 0, (4.6.22)

E


 1

N3

∑

ij

x̄2
ijσ̃

(1)
ij σ

(k)
ij


 = o(

1√
n

), (4.6.23)

E


 1

N3

∑

ij

xijx̄
2
ijζ

(1)
jj q̃iiσ

(k)
ij


 = o(

1√
n

), (4.6.24)

E


 1

N3

∑

ij

|xij|2q̃iib
(k)
jj


 = E

(
g2n(z)Ψ(k+1)

n (z)
)

+ o(1). (4.6.25)

The result in (4.6.22) is again a consequence of the fact that xij is independent of

σ
(k)
ij . Also, from Hölder’s inequality and Lemmas 4.5.14 and 4.5.17, we have

|E 1

N3

∑

ij

x̄2
ijσ̃

(1)
ij σ

(k)
ij |

≤ 1

N3


E

∑

ij

|xij|4|σ(k)
ij |2




1/2 
E

∑

ij

|σ̃(1)
ij |2




1/2

= o(
1√
n

),
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and

|E 1

N3

∑

ij

xijx̄
2
ijζ

(1)
jj q̃iiσ

(k)
ij |

≤ K
δn

n
√

n


E

∑

ij

|σ(k)
ij |2




1/2

= o(
1√
n

).

Thus (4.6.23) and (4.6.24) are proved.

To show (4.6.25), we define b
(k)
jj = f ′jT1nX

∗
n(∀n − zI)−1T2nXnT

k
1nfj. Then

1

N3

∑

ij

q̃iib
(k)
jj = g2n(z)Ψ(k+1)

n (z). (4.6.26)

Recall that b̃
(k)
jj = f ′jT1nX

∗
ij(∀n − zI)−1T2nXijT

k
1nfj. It can be calculated

b
(k)
jj − b̃

(k)
jj = x̄ijζ

(1)
jj σ

(k)
ij + xijζ

(k)
jj

˜̂σ
(1)

ji ,

b
(k)
jj − b̃

(k)
jj =

1

N
x̄ijb

(1)
jj σ̃

(k)
ij +

1

N
xijσ̂

(1)
ji b̃

(k)
jj +

1

N
|xij|2ζ(1)

ii σ̂
(1)
ji σ̃

(k)
ij .

Using the estimates given in Lemma 4.3.14, we get

|b(k)
jj − b̃

(k)
jj | ≤ K|xij|B(i, j) ≤ K

1√
n
|xij|[B(i, j)]2,

|b(k)
jj − b̃

(k)
jj | ≤ K

1√
n
|xij|[B(i, j)]2,

and so

|b(k)
jj − b

(k)
jj | ≤ K

1√
n
|xij|[B(i, j)]2. (4.6.27)
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We then write

E
1

N3

∑

ij

|xij|2q̃iib
(k)
jj

= E
1

N3

∑

ij

q̃iib
(k)
jj + E

1

N3

∑

ij

q̃ii(b
(k)
jj − b

(k)
jj )

−E
1

N3

∑

ij

(q̃ii − qii)b
(k)
jj −

1

N3

∑

ij

(1− E|xij|2)E(qiib
(k)
jj )

+E
1

N3

∑

ij

|xij|2(q̃ii − qii)b
(k)
jj . (4.6.28)

By the estimate given in Lemma 4.5.14 for b
(k)
jj and the estimate given in Lemma

4.5.15(4) for the difference q̃ii − qii, we have

|E 1

N3

∑

ij

|xij|2(q̃ii − qii)b
(k)
jj |

≤ K
1

n3
√

n
E

∑

ij

|xij|3[B(i, j)]2

≤ Kδn → 0, (4.6.29)

and

|E 1

N3

∑

ij

(q̃ii − qii)b
(k)
jj |

≤ K
1

n3
√

n
E

∑

ij

|xij|[B(i, j)]2

≤ K/
√

n. (4.6.30)

Similarly, from (4.6.27), we get

1

N3
|E ∑

ij

q̃ii(b
(k)
jj − b̃

(k)
jj )|

≤ K
1

n3
√

n
E

∑

ij

|xij|[B(i, j)]2

≤ K
1√
n

. (4.6.31)
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By Hölder’s inequality and Lemma 4.5.14, we further have

| 1

N3

∑

ij

(1− |xij|2)E(qiib
(k)
jj )|

≤ K


 1

nN

∑

ij

(1− E|xij|2)2




1/2 
 1

n3
E

∑

ij

[B(i, j)]2




1/2

≤ K


 1

n2

∑

ij

(1− E|xij|)



1/2

→ 0. (4.6.32)

In view of (4.6.28), the results in (4.6.26), (4.6.29)-(4.6.32) give (4.6.25). Hence

the proof of (4.6.20) is complete.

Now we show (4.6.21). By using the same type of arguments, we have

|E 1

N2

∑

ij

|xij|2ζ(k)
jj (q̃ii − qii)| ≤ K

1

N3
E

∑

ij

|xij|3B(i, j) ≤ Kδn → 0,

|E 1

N2

∑

ij

(1− |xij|2)ζ(k)
jj qii| ≤ K

1

N2

∑

ij

(1− E|xij|2) → 0,

|E 1

N2

∑

ij

ζ
(k)
jj (qii − q̃ii)| ≤ K

1

N3
E

∑

ij

|xij|B(i, j) ≤ K
1√
n

,

and

1

N2

∑

ij

ζ
(k)
jj q̃ii =

(
1

N
tr(T k

1n)g2n(z)
)

.

Therefore, we get

E
1

N2

∑

ij

|xij|2ζ(k)
jj q̃ii

= E
1

N2

∑

ij

ζ
(k)
jj q̃ii + E

1

N2

∑

ij

ζ
(k)
jj (qii − q̃ii)− E

1

N2

∑

ij

(1− E|xij|2)ζ(k)
jj qii

+E
1

N2

∑

ij

|xij|2ζ(k)
jj (q̃ii − qii)

= E
(

1

N
tr(T k

1n)g2n(z)
)

+ o(1).
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Thus (4.6.21) is proved. The proof of (4.6.6)(2)′ is also complete. This completes

the proof of Theorem 4.6.1.2

We now take a look at the special case of k = 1 of Theorem 4.6.1. In this case,

we note that by Corollary 4.3.1,

−zEg1n(z) =
1

N
tr(T1n)− ψ(2)

n (z),

−zEg2n(z) =
1

N
tr(T2n)− φ(2)

n (z).

On the other hand, we have by definition

ψ(1)
n (z) = 1 + zEsF∀n (z). (4.6.33)

φ(1)
n (z) =

n

N
+ z

n

N
EsF An (z), (4.6.34)

Thus in case of k = 1, further with Lemma 4.5.19, Theorem 4.6.1 gives us the

following result.

Corollary 4.6.1. For any z ∈ C+,

lim
n→∞(EsF An (z) + z−1 +

N

n
Eg1n(z)Eg2n(z)) = 0,

lim
n→∞(EsF∀n (z) + z−1 + Eg1n(z)Eg2n(z)) = 0,

and almost surely,

lim
n→∞(sF An (z) + z−1 +

N

n
g1n(z)g2n(z)) = 0,

lim
n→∞(sF∀n (z) + z−1 + g1n(z)g2n(z)) = 0.
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4.6.2 Understanding the Asymptotic Results Established

Recall that the proof of Theorem 1.2.1 lies in proving (EsF∀n (z), Eg1n(z), Eg2n(z))

converges to some limit satisfying the system of equations (1.2.2). However, since

by Lemma 4.3.6, the whole sequence is tight, and by Lemma 4.3.3, the system of

equations has no more than one solution, this in turn lies in proving the result for

any convergent subsequence. Therefore, we consider (EsF∀nm (z), Eg1nm(z), Eg2nm(z))

with limit (s(z), g1(z), g2(z)). Our present concern is to explore the asymptotic re-

sults in Theorem 4.6.1 to get some understanding of the limit (s(z), g1(z), g2(z)).

Theorem 4.6.1 indeed established two recursive relations for us. Note that

Lemmas 4.3.4 and 4.3.5 imply g1(z) 6= 0 and g2(z) 6= 0. This means, in (4.6.1) and

(4.6.2), if φ(k)
nm

(z) (ψ(k)
nm

(z)) converges then φ(k+1)
nm

(z) (ψ(k+1)
nm

(z)) must also converge.

However, by (4.2.3) in Section 4.2, we have

φ(1)
nm

(z) = ψ(1)
nm

(z) = 1 + zEsF∀n (z) → 1 + zs(z),

It therefore follows for each k, φ(k)
nm

(z) and ψ(k)
nm

(z) converge with their limits, say

denoted by φk(z) and ψk(z), satisfying

φ1(z) = ψ1(z) = 1 + zs(z), (4.6.35)

ψk+1(z) = c
∫

xkdH1(x)− g−1
2 (z)ψk(z). (4.6.36)

φk+1(z) =
∫

ykdH2(y)− g−1
1 (z)φk(z). (4.6.37)

The two recursive relations in (4.6.36) and (4.6.37) with initial values given

by (4.6.35) are the results provided by Theorem 4.6.1, or more pertinent, by the

procedure of applying the Stieltjes transform method in Section 4.1. We shall in
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the following get from them new directions to the final answer of the problem, that

is, to finding the equations uniquely determining the limit (s(z), g1(z), g2(z)).

first, also obviously, we get from Corollary 4.6.1,

s(z) = −z−1 − g1(z)g2(z). (4.6.38)

Then, by the two iterative relations, let us roughly deduce that

ψk(z) = c
∫

xkdH1(x)g2(z)− ψk+1(z)g2(z)

= c
∫

xkdH1(x)g2(z)− c
∫

xk+1dH1(x)(g2(z))2 + ψk+2(z)(g2(z))2

=
∞∑

m=1

(−1)m−1(g2(z))mc
∫

xk+m−1dH1(x)

= c
∫

xk
∞∑

m=1

(−1)m−1(xg2(z))m−1g2(z)dH1(x)

= c
∫ xkg2(z)

1 + xg2(z)
dH1(x), (4.6.39)

and similarly,

φk(z) =
∞∑

m=1

(−1)m−1(g1(z))m
∫

yk+m−1dH2(y)

=
∫ ykg1(z)

1 + yg1(z)
dH2(y). (4.6.40)

Letting k = 1 in the above two equalities gives

ψ1(z) = c
∫ xg2(z)

1 + xg2(z)
dH1(x) = φ1(z) =

∫ yg1(z)

1 + yg1(z)
dH2(y). (4.6.41)

From (4.6.35), it therefore follows

s(z) = −z−1 + z−1ψ1(z)

= −z−1(1− c)− z−1c
∫ 1

1 + g2(z)x
dH1(x), (4.6.42)

= −z−1 + z−1φ1(z)

= −z−1
∫ 1

1 + g1(z)y
dH2(y). (4.6.43)
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It can be seen (4.6.38), (4.6.42) and (4.6.43) show that (s(z), g1(z), g2(z)) sat-

isfies the system of equations in (1.2.2). Thus we arrives at our target claimed.

However, the above argument is not rigorous. To make the result rigorously hold,

we need to prove (4.6.39) and (4.6.40) to be true in the strict sense. Thus we are

now led to this new direction to complete our proof of Theorem 1.2.1.

4.6.3 Proof of Theorem 1.2.1

As discussed above, we shall in the following prove (4.6.39) and (4.6.40). For that

purpose, write Rn(z) = −zI − zEg1n(z)T2n and Γn(z) = −z − zEg2n(z)T1n. Then

it is conceivable the proof of (4.6.39) and (4.6.40) can be obtained by showing

φ(k)
n (z)− 1

N
tr{−zEg1n(z)T k

2nR−1
n (z)} → 0,

and

ψ(k)
n (z)− 1

N
tr{−zEg2n(z)T k

1nΓ−1
n (z)} → 0.

Let us now give some new notations for better understanding of the problem.

Define for each nonnegative integer k,

g
(k)
1n (z) =

1

N
tr{(An − zI)−1T k

1n},

g
(k)
2n (z) =

1

N
tr{(∀n − zI)−1T k

2n}.

Then for k = 1, g
(k)
1n (z) and g

(k)
2n (z) will coincide with g1n(z) and g2n(z) respectively.
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By Lemma 4.3.7, using the trivial fact A(A− zI)−1 = I + z(A− zI)−1,

g
(k)
1n (z) = −z−1 1

N
tr(T k

1n) + z−1Ψ(k+1)
n (z), (4.6.44)

g
(k)
2n (z) = −z−1 1

N
tr(T k

2n) + z−1Φ(k+1)
n (z). (4.6.45)

Simultaneously, we have

−zEg1n(z)T2nR
−1
n (z) = I + zR−1

n (z),

−zEg2n(z)T1nΓ−1
n (z) = I + zΓ−1

n (z),

which imply

1

N
tr{−zEg1n(z)T k

2nR−1
n (z)} =

1

N
tr(T k−1

2n ) + z
1

N
tr{T k−1

2n R−1
n (z)},(4.6.46)

1

N
tr{−zEg2n(z)T k

1nΓ−1
n (z)} =

1

N
tr(T k−1

1n ) + z
1

N
tr{T k−1

1n Γ−1
n (z)}.(4.6.47)

In view of (4.6.44)-(4.6.47), we get

φ(k)
n (z)− 1

N
tr{−zEg1n(z)T k

2nR−1
n (z)}

= z
(
Eg

(k−1)
2n (z)− 1

N
tr(T k−1

2n R−1
n (z))

)
, (4.6.48)

and

ψ(k)
n (z)− 1

N
tr{−zEg2n(z)T k

1nΓ−1
n (z)}

= z
(
Eg

(k−1)
1n (z)− 1

N
tr(Γ−1

n (z)T k−1
1n )

)
. (4.6.49)

The advantage of introducing g
(k)
1n (z) and g

(k)
2n (z) is that we can apply the resol-

vent identity to the right-hand terms appearing in the above two equalities. Note

that Rn(z)T2n = T2nRn(z) implies R−1
n (z)T k

2n = T k
2nR−1

n (z) for all k (and similarly,
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Γ−1
n (z)T k

1n = T k
1nΓ−1

n (z)). Applying the resolvent identity, we can get

1

N
tr(R−1

n (z)T k
2n)− Eg

(k)
2n (z)

= E
1

N
tr{(∀n − zI)−1∀nR−1

n (z)T k
2n}

+zEg1n(z)E
1

N
tr{(∀n − zI)−1R−1

n (z)T k+1
2n }, (4.6.50)

and

1

N
tr(Γ−1

n (z)T k
1n)− Eg

(k)
1n (z)

= E
1

N
tr{An(An − zI)−1Γ−1

n (z)T k
1n}

+zEg2n(z)E
1

N
tr{(An − zI)−1Γ−1

n (z)T k+1
1n }. (4.6.51)

Hence, at this stage, we can see (4.6.39) and (4.6.40) is a consequence of the

following theorem.

Theorem 4.6.2. For each nonnegative integer k, let

θ(k)
n (z) = E

1

N
tr{(∀n − zI)−1∀nR−1

n (z)T k
2n}

+zEg1n(z)E
1

N
tr{(∀n − zI)−1R−1

n (z)T k+1
2n },

and

ϑ(k)
n (z) = E

1

N
tr{An(An − zI)−1Γ−1

n (z)T k
1n}

+zEg2n(z)E
1

N
tr{(An − zI)−1Γ−1

n (z)T k+1
1n }.

Then

(1) lim
n→∞ θ(k)

n (z) = 0. (2) lim
n→∞ϑ(k)

n (z) = 0. (4.6.52)
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Proof. We first note that from the proof of Lemmas 4.3.4 and 4.3.5, one can see

that Im(zg1n(z) ≥ 0 and Img2n(z) ≥ 0 always hold. It follows that ‖R−1
n (z)‖ ≤ 1

v

and, as we proved in (4.5.16) before Lemma 4.5.20, lim supn ‖Γ−1
n (z)‖ ≤ τ

v2Eδ2z
,

where δ2z ≡ lim infn→∞ Img2n(z). So ‖R−1
n (z)‖ and ‖Γ−1

n (z)‖ are both uniformly

bounded for all n large.

Let us now start with the proof of (4.6.52)(1). Write

∀n =
1

N

∑

ij

x̄ijT2nXijT1nfje
′
i +

1

N

∑

ij

|xij|2ζ(1)
jj T2neie

′
i.

Then

1

N
tr{(∀n − zI)−1∀nR−1

n (z)T k
2n}

=
1

N2

∑

ij

x̄ije
′
iR

−1
n (z)T k

2n(∀n − zI)−1T2nXijT1nfj

+
1

N2

∑

ij

ζ
(1)
jj |xij|2e′iR−1

n (z)T k
2n(∀n − zI)−1T2nei. (4.6.53)

By Corollary 4.3.1, we first show

E
1

N2

∑

ij

x̄ije
′
iR

−1
n (z)T k

2n(∀n − zI)−1T2nXijT1nfj

= −ψ(2)
n (z)E

1

N
tr{(∀n − zI)−1R−1

n (z)T k+1
2n }+ o(1). (4.6.54)

By using the resolvent identity together with the equality of ∀n − ∀ij given in
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(4.1.13), we get

E
1

N2

∑

ij

x̄ije
′
iR

−1
n (z)T k

2n(∀n − zI)−1T2nXijT1nfj

= E
1

N2

∑

ij

x̄ije
′
iR

−1
n (z)T k

2n(∀ij − zI)−1T2nXijT1nfj

−E
1

N3

∑

ij

|xij|2(e′iR−1
n (z)T k

2n(∀n − zI)−1T2nei)× b
(1)
jj

−E
1

N3

∑

ij

x̄2
ij(e

′
iR

−1
n (z)T k

2n(∀n − zI)−1T2nXijT1nfj)× σ
(1)
ij

−E
1

N3

∑

ij

ζ
(1)
jj xijx̄

2
ij(e

′
iR

−1
n (z)T k

2n(∀n − zI)−1T2nei)× σ
(1)
ij , (4.6.55)

where the notations b
(1)
jj and σ

(1)
ij are as defined in Section 4.1.

It is easy to see

E
1

N2

∑

ij

x̄ije
′
iR

−1
n (z)T k

2n(∀ij − zI)−1T2nXijT1nfj = 0. (4.6.56)

By using Theorem 4.2.1 and the fact ‖Γ−1
n (z)‖ is bounded, we have

|e′iR−1
n (z)T k

2n(∀n − zI)−1T2nXijT1nfj| ≤ KB(i, j), (4.6.57)

and

|e′iR−1
n (z)T k

2n(∀n − zI)−1T2nei| ≤ K. (4.6.58)

It follows that, using Lemma 4.5.17 and Holder’s inequality,

|E 1

N3

∑

ij

ζ
(1)
jj xijx̄

2
ij(e

′
iR

−1
n (z)T k

2n(∀n − zI)−1T2nei)× σ
(1)
ij |

≤ 1

N3
E

∑

ij

|xij|3|σ(1)
ij | ≤ K

δn

n2
√

n
E

∑

ij

|σ(1)
ij |

≤ K
δn√
n

,



297

and

|E 1

N3

∑

ij

x̄2
ij(e

′
iR

−1
n (z)T k

2n(∀n − zI)−1T2nXijT1nfj)× σ
(1)
ij |

≤ K
1

N3

∑

ij

|xij|2[B(i, j)]|σ(1)
ij |

≤ K
1

N3


E

∑

ij

[B(i, j)]2




1/2 
E

∑

ij

|σ(1)
ij |2




1/2

≤ K
1√
n

.

Hence from (4.6.55), to show (4.6.54), it suffices to show

E
1

N3

∑

ij

|xij|2e′iR−1
n (z)T k

2n(∀n − zI)−1T2neib
(1)
jj

= ψ(2)
n (z)E

1

N
tr{(∀n − zI)−1R−1

n (z)T k+1
2n }+ o(1). (4.6.59)

Then we write

E
1

N3

∑

ij

|xij|2e′iR−1
n (z)T k

2n(∀n − zI)−1T2neib
(1)
jj

= E
1

N3

∑

ij

e′iR
−1
n (z)T k

2n(∀n − zI)−1T2neib
(1)
jj

+E
1

N3

∑

ij

e′iR
−1
n (z)T k

2n(∀n − zI)−1T2nei(b
(1)
jj − b

(1)
jj )

+E
1

N3

∑

ij

e′iR
−1
n (z)T k

2n{(∀ij − zI)−1 − (∀n − zI)−1}T2neib
(1)
jj

−E
1

N3

∑

ij

(1− E|xij|2)E(e′iR
−1
n (z)T k

2n(∀ij − zI)−1T2neib
(1)
jj )

−E
1

N3

∑

ij

|xij|2e′iR−1
n (z)T k

2n{(∀ij − zI)−1 − (∀n − zI)−1}T2neib
(1)
jj .(4.6.60)

Note that by the proof Lemma 4.5.19 as well as the fact R−1
n (z)T2n = T2nR−1

n (z),

E
1

N3

∑

ij

e′iR
−1
n (z)T k

2n(∀n − zI)−1T2neib
(1)
jj

= E
(
Ψ(2)

n (z)
1

N
tr{(∀n − zI)−1T2nR−1

n (z)T k
2n}

)

= ψ(2)
n (z)E

1

N
tr{(∀n − zI)−1R−1

n (z)T k+1
2n }+ o(1). (4.6.61)
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By using the estimate given in (4.6.58) and the estimate of b
(1)
jj in Lemma 4.5.14,

we have

| 1

N3

∑

ij

(1− E|xij|2)E(e′iR
−1
n (z)T k

2n(∀ij − zI)−1T2neib
(1)
jj )|

≤ K
1

n2
√

n

∑

ij

(1− E|xij|2)EB(i, j)

≤ K


 1

nN

∑

ij

(1− E|xij|2)2




1/2 
 1

n3
E

∑

ij

[B(i, j)]2




1/2

≤ K


 1

nN

∑

ij

(1− E|xij|)2




1/2

→ 0. (4.6.62)

By using the estimate given in (4.6.58) and the estimate on |b(1)
jj − b

(1)
jj | in (4.6.27),

we get

E
1

N3

∑

ij

|e′iR−1
n (z)T k

2n(∀n − zI)−1T2nei||b(1)
jj − b

(1)
jj |

≤ K
1

n3
√

n
E

∑

ij

|xij|[B(i, j)]2

≤ K/
√

n. (4.6.63)

Further, there is constant K depending only on τ , v and k such that

|e′iR−1
n (z)T k

2n(∀ij − zI)−1(∀n − ∀ij)(∀n − zI)−1T2nei|

≤ 1

N
|xij||e′iR−1

n (z)T k
2n(∀ij − zI)−1T2neif

′
jT1nX∗

ij(∀n − zI)−1T2nei|

+
1

N
|xij||e′iR−1

n (z)T k
2n(∀ij − zI)−1T2nXijT1nfje

′
i(∀n − zI)−1T2nei|

+
τ

N
|xij|2|e′iR−1

n (z)T k
2n(∀ij − zI)−1T2neie

′
i(∀n − zI)−1T2nei|

≤ K
1

N
|xij|B(i, j). (4.6.64)

Together with the estimate of |b(1)
jj | ≤ K

√
nB(i, j) given in Lemma 4.5.14, this
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implies

E
1

N3

∑

ij

|xij|2|e′iR−1
n (z)T k

2n{(∀ij − zI)−1 − (∀n − zI)−1}T2nei||b(1)
jj |

≤ K
1

n3
√

n
E

∑

ij

|xij|3[B(i, j)]2

≤ Kδn, (4.6.65)

and

E
1

N3

∑

ij

|e′iR−1
n (z)T k

2n{(∀ij − zI)−1 − (∀n − zI)−1}T2nei||b(1)
jj |

≤ K
1

n3
√

n
E

∑

ij

|xij|[B(i, j)]2

≤ K/
√

n. (4.6.66)

Combining (4.6.61)-(4.6.63), (4.6.65)-(4.6.66) gives us, in view of (4.6.60), imme-

diately (4.6.59). Therefore, the proof of (4.6.54) is complete.

In the following, to finish the proof of (4.6.52)(1), we prove

E
1

N2

∑

ij

ζ
(1)
jj |xij|2e′iR−1

n (z)T k
2n(∀n − zI)−1T2nei

=
1

N
tr(T1n)E

1

N
tr{(∀n − zI)−1R−1

n (z)T k+1
2n }+ o(1). (4.6.67)

By using (4.6.64), we have

|E 1

N2

∑

ij

ζ
(1)
jj |xij|2e′iR−1

n (z)T k
2n{(∀ij − zI)−1 − (∀n − zI)−1}T2nei|

≤ K
1

n3

∑

ij

|xij|3B(i, j)

≤ Kδn,
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and

|E 1

N2

∑

ij

ζ
(1)
jj e′iR

−1
n (z)T k

2n{(∀ij − zI)−1 − (∀n − zI)−1}T2nei|

≤ K
1

n3

∑

ij

|xij|B(i, j)

≤ K/
√

n.

Note that the estimate in (4.6.58) remains true with the matrix (∀n−zI)−1 replaced

by (∀ij − zI)−1. It follows then

| 1

N2

∑

ij

ζ
(1)
jj (1− E|xij|2)E(e′iR

−1
n (z)T k

2n(∀ij − zI)−1T2nei)|

≤ K
1

nN

∑

ij

(1− E|xij|2)

→ 0.

With these results, (4.6.67) follows from the following fact

E
1

N2

∑

ij

ζ
(1)
jj e′iR

−1
n (z)T k

2n(∀n − zI)−1T2nei

=
1

N
tr(T1n)E

1

N
tr{(∀n − zI)−1R−1

n (z)T k+1
2n }.

Note that from Corollary 4.3.1,

−zg1n(z) =
1

N
tr(T1n)−Ψ(2)

n (z).

Therefore, (4.6.54) and (4.6.67) together complete the proof of (4.6.52)(1).

We now proceed into the proof of (4.6.52)(2). Write

An =
1

N

∑

ij

x̄ijT1nfje
′
iT2nXij +

1

N

∑

ij

|xij|2ξ(1)
ii T1nfjf

′
j.

For notational convenience, write

Λ(k)
n (z) = (An − zI)−1Γ−1

n (z)T k
1n and Λ

(k)
ij (z) = (Aij − zI)−1Γ−1

n (z)T k
1n.
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Then

1

N
tr{An(An − zI)−1Γ−1

n (z)T k
1n}

=
1

N2

∑

ij

x̄ije
′
iT2nXijΛ

(k+1)
n (z)fj +

1

N2

∑

ij

|xij|2ξ(1)
ii f ′jΛ

(k+1)
n (z)fj.

To develop the following derivations, we need to use the bound defined in

Lemma 4.5.20 to prove some preliminary results which are in parallel with those

we proved in Lemmas 4.5.13, 4.5.15 and 4.5.16. Since their proofs demand nothing

new, we shall not prove them in details. These results are outlined below.

Proposition 4.6.1. There is a constant K depending only on τ , v and k such

that

(a) E
∑

ij

|â(k)
ij |2 ≤ Kn2,

(b) |e′iT2nXijΛ
(k+1)
n (z)fj| ≤ KB2(i, j).

(c) |e′iT2nXijΛ
(k+1)
ij (z)fj| ≤ KB2(i, j).

(d) |f ′jΛ(k+1)
n (z)fj| ≤ K

1√
n
B2(i, j).

(e) |f ′jΛ(k+1)
ij (z)fj| ≤ K

1√
n
B2(i, j).

(f) |f ′j{Λ(k+1)
ij (z)− Λ(k+1)

n (z)}fj| ≤ K
|xij|
n
√

n
[B2(i, j)]

2.

(g) |e′iT2nXij{Λ(k+1)
ij (z)− Λ(k+1)

n (z)}fj| ≤ K
|xij|
n

[B2(i, j)]
2.

By Corollary 4.3.1, −zEg2n(z) = 1
N

tr(T2n) − φ(2)
n (z). Thus (4.6.52)(2) is a
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consequence of the following two facts:

E
1

N2

∑

ij

x̄ije
′
iT2nXijΛ

(k+1)
n (z)fj → −φ(2)

n (z)E
1

N
trΛ(k+1)

n (z), (4.6.68)

E
1

N2

∑

ij

|xij|2ξ(1)
ii f ′jΛ

(k+1)
n (z)fj → 1

N
tr(T2n)E

1

N
trΛ(k+1)

n (z). (4.6.69)

We first show (4.6.68). Using the resolvent identity together with the equality

of An − Aij in (4.1.9) gives

E
1

N2

∑

ij

x̄ije
′
iT2nXijΛ

(k+1)
n (z)fj

= E
1

N2

∑

ij

x̄ij(e
′
iT2nXijΛ

(k+1)
ij (z)fj)− E

1

N3

∑

ij

|xij|2d(1)
ii (f ′jΛ

(k+1)
n (z)fj)

−E
1

N3

∑

ij

x̄2
ij â

(1)
ij (e′iT2nXijΛ

(k+1)
n (z)fj)

−E
1

N3

∑

ij

xijx̄
2
ijξ

(1)
ii â

(1)
ij (f ′jΛ

(k+1)
n (z)fj).

Again, the first term on the right-hand side is equal to 0. Recall that â
(1)
ij =

e′iT2nXij(Aij − zI)−1T1nfj is independent of xij. Thus from Hölder’s inequality

and Proposition 4.6.1(a), (b) and (d), it follows

|E 1

N3

∑

ij

x̄2
ij â

(1)
ij (e′iT2nXijΛ

(k+1)
n (z)fj)|

≤ K
1

n3

∑

ij

|xij|2|â(1)
ij |B2(i, j)

≤ K
1

n3


E

∑

ij

[B2(i, j)]
2




1/2 
E

∑

ij

|â(1)
ij |2




1/2

≤ K/
√

n,

and

|E 1

N3

∑

ij

xijx̄
2
ijξ

(1)
ii â

(1)
ij (f ′jΛ

(k+1)
n (z)fj)|

≤ K
1

n3
E

∑

ij

|â(1)
ij |B2(i, j)

≤ K/
√

n.
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Hence (4.6.68) is a consequence of

E
1

N3

∑

ij

|xij|2d(1)
ii (f ′jΛ

(k+1)
n (z)fj) → φ(2)

n (z)E
1

N
trΛ(k+1)

n (z). (4.6.70)

We write

E
1

N3

∑

ij

|xij|2d(1)
ii (f ′jΛ

(k+1)
n (z)fj)

= E
1

N3

∑

ij

d
(1)
ii (f ′jΛ

(k+1)
n (z)fj) + E

1

N3

∑

ij

(d
(1)
ii − d

(1)
ii )(f ′jΛ

(k+1)
n (z)fj)

+E
1

N3

∑

ij

d
(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj)

− 1

N3

∑

ij

(1− E|xij|2)E(d
(1)
ii f ′jΛ

(k+1)
ij (z)fj)

−E
1

N3

∑

ij

|xij|2d(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj). (4.6.71)

By definition and the proof of Lemma 4.5.19, we have

E
1

N3

∑

ij

d
(1)
ii (f ′jΛ

(k+1)
n (z)fj)

= E
(
Φ(2)

n (z)
1

N
trΛ(k+1)

n (z)
)

= φ(2)
n (z)E

1

N
trΛ(k+1)

n (z) + o(1). (4.6.72)

By Hölder’s inequality, using Proposition 4.6.1(e) as well as the estimate in Lemma

4.5.13 that |d(1)
ii | ≤ K

√
nB(i, j) ≤ K

√
nB2(i, j),

| 1

N3

∑

ij

(1− E|xij|2)E(d
(1)
ii f ′jΛ

(k+1)
ij (z)fj)|

≤ K


 1

nN

∑

ij

(1− E|xij|2)2




1/2 
 1

n4
E

∑

ij

[B2(i, j)]
4




1/2

≤ K


 1

nN

∑

ij

(1− E|xij|2)



1/2

→ 0. (4.6.73)
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By Proposition 4.6.1(f),

|E 1

N3

∑

ij

|xij|2d(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj)|

≤ K
1

n4
E

∑

ij

|xij|3[B2(i, j)]
3

≤ Kδn, (4.6.74)

and

|E 1

N3

∑

ij

d
(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj)|

≤ K
1

n4
E

∑

ij

|xij|[B2(i, j)]
3

≤ K/
√

n. (4.6.75)

By Proposition 4.6.1(d) as well as the estimate on |d(1)
ii − d

(1)
ii | in (4.6.14),

|E 1

N3

∑

ij

(d
(1)
ii − d

(1)
ii )(f ′jΛ

(k+1)
n (z)fj)|

≤ K
1

n4
E

∑

ij

|xij|[B2(i, j)]
3

≤ K/
√

n. (4.6.76)

Combining results (4.6.72)-(4.6.76) gives (4.6.70). Hence we finished the proof of

(4.6.68). We next show (4.6.69).
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Similarly, we write

E
1

N2

∑

ij

|xij|2ξ(1)
ii f ′jΛ

(k+1)
n (z)fj

= E
1

N2

∑

ij

ξ
(1)
ii f ′jΛ

(k+1)
n (z)fj

+E
1

N2

∑

ij

ξ
(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj)

− 1

N2

∑

ij

ξ
(1)
ii (1− E|xij|2)E(f ′jΛ

(k+1)
ij (z)fj)

−E
1

N2

∑

ij

|xij|2ξ(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj). (4.6.77)

By definition,

E
1

N2

∑

ij

ξ
(1)
ii f ′jΛ

(k+1)
n (z)fj =

1

N
tr(T2n)E

1

N
trΛ(k+1)

n (z). (4.6.78)

By Hölder’s inequality and Proposition 4.6.1(e),

| 1

N2

∑

ij

ξ
(1)
ii (1− E|xij|2)E(f ′jΛ

(k+1)
ij (z)fj)|

≤ K


 1

nN

∑

ij

(1− E|xij|2)2




1/2 
 1

n3
E

∑

ij

[B2(i, j)]
2




1/2

≤ K


 1

nN

∑

ij

(1− E|xij|2)



1/2

→ 0. (4.6.79)

By Proposition 4.6.1(f), we get

|E 1

N2

∑

ij

|xij|2ξ(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj)|

≤ K
1

n3
√

n
E

∑

ij

|xij|3[B2(i, j)]
2

≤ Kδn, (4.6.80)
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and

|E 1

N2

∑

ij

ξ
(1)
ii (f ′jΛ

(k+1)
ij (z)fj − f ′jΛ

(k+1)
n (z)fj)|

≤ K
1

n3
√

n
E

∑

ij

|xij|[B2(i, j)]
2

≤ K/
√

n. (4.6.81)

In view of (4.6.77), the results in (4.6.78)-(4.6.81) imply (4.6.69). Thus (4.6.52)(2)

is also proved. Up to this point, the proof of Theorem 4.6.2 is complete. 2

As intended, the results in Theorem 4.6.2 fulfilled our tasks we proposed at

the beginning of this section. This can be seen from the following two important

consequences derived from it.

Corollary 4.6.2. For each z ∈ C+, almost surely, (sF∀n (z), g1n(z), g2n(z))

converges to some non-random limit (s(z), g1(z), g2(z)) satisfying the system of

equations (1.2.2) in the sense that it is the unique solution to (1.2.2) in the set

(1.2.3).

Proof. By Lemmas 4.5.19, 4.3.3-4.3.5, to show (EsF∀n (z), Eg1n(z), Eg2n(z))

converges to some limit satisfying the system (1.2.2) is already sufficient. By

Lemma 4.3.6, consider any convergent sequence (EsF∀nm (z), Eg1nm(z), Eg2nm(z)),

whose limit is denoted by (s(z), g1(z), g2(z)). From Corollary 4.6.1, we have

s(z) = −z−1 − g1(z)g2(z). (4.6.82)
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By (4.6.48) and (4.6.49), we have

φ(k)
n (z) + zEg1n(z)

1

N
tr(R−1

n (z)T k
2n) = −zθ(k−1)

n (z) → 0, (4.6.83)

ψ(k)
n (z) + zEg2n(z)

1

N
tr(Γ−1

n (z)T k
1n) = −zϑ(k−1)

n (z) → 0. (4.6.84)

Let

f1n(y) =
yk

−z − zEg1n(z)y
, f1(y) =

yk

−z − zEg1(z)y
,

f2n(x) =
xk

−z − zEg2n(z)x
, f2(x) =

xk

−z − zEg2(z)x
.

Due to Im(zg1n(z)) ≥ 0 and Im(zg1(z)) > 0, it is easy to see for y ∈ [0, τ ],

|f1n(y)| ≤ τk

v
, |f1(y)| ≤ τk

v
and f1(y) is bounded continuous function. At the same

time, using the same type of argument as we used to prove (4.5.16) before Lemma

4.5.20 in Section 4.5, we can prove for x ∈ [−τ, τ ], lim supn |f2n(x)| ≤ τk+1

v2Eδ2z
,

|f2(x)| ≤ τk+1

v2Eδ2z
and f2(x) is bounded continuous function. Further, it can be

verified that

|f1n(y)− f1(y)| ≤ τ k+1

v2
|z||Eg1n(z)− g1(z)|,

and

|f2n(x)− f2(x)| ≤ τ k+3

v3(Eδ2z)

|Eg2n(z)− Eg2(z)|
EImg2n(z)

,

so that as nm →∞

sup
y∈[0,τ ]

|f1nm(y)− f1(y)| → 0, (4.6.85)

sup
x∈[−τ,τ ]

|f2nm(x)− f2(x)| → 0. (4.6.86)
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It follows, by (4.6.85) and assumption (iii) in Theorem 1.2.1, that

| 1
N

tr(T k
2nm

R−1
nm

(z))−
∫

f1(y)dH2(y)|

= |
∫

f1nm(y)dF T2nm (y)−
∫

f1(y)dH2(y)|

≤ |
∫

(f1nm(y)− f1(y))dF T2nm (y)|+ |
∫

f1(y)dF T2nm (y)−
∫

f1(y)dH2(y)|

→ 0,

and hence

1

N
tr(T k

2nm
R−1

nm
(z)) →

∫
f1(y)dH2(y).

Similarly, (4.6.86) together with assumption (iii) give us

1

N
tr(T k

1nm
Γ−1

nm
(z)) → c

∫
f2(x)dH1(x).

Therefore, from (4.6.83) and (4.6.84), we get

φ(k)
nm

(z) →
∫ g1(z)yk

1 + g1(z)y
dH2(y), (4.6.87)

ψ(k)
nm

(z) → c
∫ g2(z)xk

1 + g2(z)x
dH1(x). (4.6.88)

In case of k = 1, we get (4.6.41) and hence (4.6.42) and (4.6.43). Therefore, the

limit (s(z), g1(z), g2(z)) satisfies the system of equations (1.2.2). The corollary fol-

lows. 2

Corollary 4.6.3. Given any positive integer k, for every z ∈ C+, almost



309

surely,

Φ(k)
n (z) →

∫ g1(z)yk

1 + g1(z)y
dH2(y), (4.6.89)

Ψ(k)
n (z) → c

∫ g2(z)xk

1 + g2(z)x
dH1(x), (4.6.90)

g
(k)
1n (z) → c

∫ xk

−z − zg2(z)x
dH1(x), (4.6.91)

g
(k)
2n (z) →

∫ yk

−z − zg1(z)y
dH2(y). (4.6.92)

Proof. In view of the relationship between Φ(k)
n (z), Ψ(k)

n (z) and g
(k)
1n (z), g

(k)
2n (z)

in (4.6.44) and (4.6.45), we need only show (4.6.89) and (4.6.90).

Now that Eg1n(z) → g1(z) and Eg2n(z) → g2(z), we have

1

N
tr(T k

2nR−1
n (z)) →

∫
f1(y)dH2(y),

and

1

N
tr(T k

1nΓ−1
n (z)) → c

∫
f2(x)dH1(x).

By (4.6.83) and (4.6.84), we then get (4.6.89) and (4.6.90). By Lemma 4.5.19, the

corollary follows. 2



Chapter 5

Sparse Random Matrices

The main concern of the present chapter is to prove the semicircle law for the class

of large sparse random matrices which can be expressed as the Hadamard products

Ap of a normalized sample covariance matrix Bm and a sparsing matrix Dm. The

definitions of these matrices were formulated in Definitions 1.3.1-1.3.3. Our object

in the present chapter is then to use the moment method to prove Theorem 1.3.1.

The organization of the chapter is as follows. In the first section, as a prelim-

inary preparation, we the truncation and centralization technique to simply the

underlying matrices. In the second section, we prove the semicircle law for the

matrices after simplification. We have introduced in Section 1.3 the main idea

underlying our assumptions on the matrices, but due to consideration of the orga-

nization of contents, we did not explain in details there their possible effects. So in

the last section, we give a detailed discussion on the implications of our conditions.

310
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5.1 Truncation and Centralization Treatment

The aim of applying the truncation and centralization technique is again to possess

more convenient conditions for later arguments. This procedure regarding the

matrices of the present concern will involve two steps:

Step 1. Replace the diagonal elements of the Hadamard products Ap by zeros;

Step 2. Truncate and centralize the elements of the matrix Xm,n.

5.1.1 Removal of the Diagonal Elements of Ap.

For any ε > 0, denote by Âp the matrix obtained from Ap by replacing the diag-

onal elements of Ap whose absolute values are greater than ε with 0 and denote

by Ãp the matrix obtained from Ap by replacing all diagonal elements of Ap with 0.

Proposition 5.1.1. Under the assumptions of Theorem 1.3.1,

L3(F Âp , F Ãp) ≤ ε2,

and almost surely,

‖F Âp − FAp‖ → 0.

Proof. The first conclusion is a trivial consequence of the difference inequality

in Lemma 2.1.2. As for the second conclusion, we use the rank inequality in Lemma

2.1.1 which gives

‖F Âp − FAp‖ ≤ 1

m

m∑

i=1

I(| 1√
np

∑n

k=1
(|xik|2−σ2)dii|>ε).
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By condition (X3) in Definition 1.3.2, we have

m∑

i=1

P (| 1√
np

n∑

k=1

(|xik|2 − σ2)dii| > ε) = o(m).

Using Bernstein’s inequality in Lemma 2.1.3, it then follows for any constant η > 0

there exists some constant b > 0 such that

P (‖F Âp − FAp‖ ≥ η) ≤ P (
m∑

i=1

I(| 1√
np

∑n

k=1
(|xik|2−σ2)dii|>ε) ≥ ηm)

≤ 2e−bm.

By Borel-Cantelli’s lemma in Lemma 2.1.5, we therefore get the second conclusion

in the proposition holds. This complete the proof. 2

Combining the two conclusions in Proposition 5.1.1 gives us with probability

one L(FAp , F Ãp) → 0, which implies without loss of generality, we may assume the

diagonal elements of Ap are zero. Hence, in the sequel, we conveniently assume

dii = 0 for all i = 1, · · · ,m.

5.1.2 Truncation and Centralization of the Entries of Xm,n.

Select a sequence of numbers ηn ↓ 0 such that conditions (X2.1), (X2.2) still hold

with η replaced with ηn. Then correspondingly, we get

1

mnη2
n

∑

ij

E|xij|2I(|xij| > ηn
4
√

np) → 0.

∞∑

u=1

1

mnη2
n

∑

ij

E|xij|2I[|xij| > ηn
4
√

np] < ∞,

where still u takes [p], m or n.
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Let x̃ij = xijI(|xij |≤ηn 4
√

np)−ExijI(|xij |≤ηn 4
√

np) and x̂ij = xij−x̃ij. Define B̃m with

(i, j)th entry B̃[i, j] = 1√
np

∑n
k=1 x̃ik

¯̃xjk (i 6= j), and denote by Ãp the Hadamard

product of B̃m with Dm.

Proposition 5.1.2. Under condition (X2.1) in Definition 1.3.2 and the other

assumptions of Theorem 1.3.1, in probability

L(F Ãp , FAp) → 0.

If condition (X2.1) is strengthened to (X2.2), then almost surely

L(F Ãp , FAp) → 0, as u →∞,

where u = [p], m, or n in accordance with the choice of u in condition (X2.2).

Proof. By the Difference inequality,

L3(F Ãp , FAp) ≤ 1

m
tr[(Bm − B̃m) ◦Dm]2

=
1

mnp

∑

i6=j

∣∣∣∣
n∑

k=1

(xikx̄jk − x̃ik
¯̃xjk)dij

∣∣∣∣
2

.

But we have

E


 1

mnp

∑

i6=j

∣∣∣∣
n∑

k=1

(xikx̄jk − x̃ik
¯̃xjk)dij

∣∣∣∣
2



=
1

mnp

∑

i6=j

n∑

k=1

E|xikx̄jk − x̃ik
¯̃xjk)|2E|d2

ij|

≤ 8σ2

mnp

m∑

j=1

n∑

k=1

E|x̂jk|2
m∑

i=1

pij

≤ 16σ2

mn

m∑

j=1

n∑

k=1

E|xjk|2I[|xjk| > ηn
4
√

np],
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where in the last step we have used condition (D2) in Definition 1.3.1, which can

be easily shown remaining true after the removal of the diagonal elements of Dm.

Thus we can see that if condition (X2.1) is assumed, then the right-hand side

of the above inequality converges to 0 and hence the first conclusion of the present

proposition follows.

However, if condition (X2.1) is strengthened to (X2.2), then we have

∞∑

u=1

16σ2

mn

∑

ij

E|xij|2I(|xij| > ηn
4
√

np) < ∞,

thus it follows almost surely

L3(F Ãp , FAp) → 0,

as u →∞, where u takes [p], m or n in accordance with the choice of u in condition

(X2.2). The proof of the proposition is complete. 2

Proposition 5.1.3. Under the assumptions of Theorem 1.3.1, letting σ2
ij ≡

E|x̃ij|2, then for any i, j, σ2
ij ≤ σ2 and 1

mn

∑
ij σ2

ij → σ2.

Proof. The first conclusion is trivial. The second conclusion is a consequence

of condition (X2.1) and the following fact:

0 ≤ σ2 − 1

mn

∑

ij

σ2
ij ≤

2

mn

∑

ij

E|xij|2I(|xij| > ηn
4
√

np) → 0.

Based on the above three propositions, in proving Theorem 1.3.1, we may as-

sume further the conditions included in the following assumption holds.
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Assumption 5.1.1. (i) dii = 0.

(ii) Exij = 0, |xij| ≤ ηn
4
√

np, E|xij|2 ≤ σ2 and σ2 − 1
mn

∑
ij E|xij|2 → 0.

Thus in the following section, we shall apply the moment method under both

the assumptions in Theorem 1.3.1 and the conditions in Assumption 1.3.1.

5.2 Proof of Theorem 1.3.1 by Moment Method

In this section, under both those assumptions of Theorem 1.3.1 and those of As-

sumption 5.1.1, we shall deduce that, with probability one, the empirical spectral

distributions of Ap, FAp , converge weakly to the semicircle law Fsc,σ2 . Note that

the statement in Theorem 1.3.1 that the convergence is in the sense of in prob-

ability (almost surely) if condition (X2.1) ((X2.2)) is assumed has been proven

during the procedure of simplifying our matrices.

We use the moment method introduced in Section 2.2. Denote by Mk and mk

respectively the kth moments of FAp and Fsc,σ2(x). It is easy to calculate

mk =





σ4s(2s)!
s!(s+1)!

, if k = 2s,

0, if k = 2s + 1.

Since m2k ≤ σ4k22k, thus {mk}∞k=1 satisfies Carleman’s condition. Based on the

moment convergence theorem in Lemma 2.2.1, to show Theorem 1.3.1, we need

only show that for each k, almost surely Mk → mk. However, by Borel-Cantelli’s
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lemma in Lemma 2.1.5, this is obviously a consequence of the following two results:

(I) E(Mk) = mk + o(1),

(II) E|Mk − EMk|4 = O(
1

m2
).

5.2.1 Graphs and Their Isomorphic Classes

For any indices 1 ≤ i1, · · · , ik ≤ m, 1 ≤ j1, · · · , jk ≤ n, write

i = (i1, · · · , ik), j = (j1, · · · , jk).

Taking the convention that ik+1 ≡ i1, define index set

I = {(i, j) : 1 ≤ iv ≤ m, 1 ≤ jv ≤ n,

with iv 6= iv+1 , for each 1 ≤ v ≤ k}.

Using the above notations, we can express

Mk =
1

mnk/2pk/2

∑

(i,j)∈I
d(i,j)X(i,j),

where

d(i,j) = di1i2 · · · diki1 ,

X(i,j) = xi1j1xi2j1xi2j2xi3j2 · · · xikjk−1
xikjk

xi1jk
.

For each pair (i, j) = ((i1, · · · , ik), (j1, · · · , jk)) ∈ I, construct a graph G(i, j)

by plotting the iv’s and jv’s on two parallel straight lines respectively, and then

drawing k down edges (iv, jv) from iv to jv, k up edges (jv, iv+1) from jv to iv+1,

and another k horizontal edges (iv, iv+1) from iv to iv+1. A down edge (iv, jv)
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corresponds to the variable xivjv , an up edge (jv, iv+1) corresponds to the variable

xiv+1jv , and a horizontal edge (iv, iv+1) corresponds to the variable diviv+1 .

A so defined graph thus corresponds to the product of the variables corre-

sponding to the edges making up this graph. We shall call the subgraph of

horizontal edges and their vertices of G(i, j) the roof of G(i, j) and denote it as

G(i, j) and call the subgraph of vertical edges and their vertices of G(i, j) the

base of G(i, j) and denote it as G(i, j). By noting that the roof of G(i, j) de-

pends on i only, we may simplify the notation of roofs as G(i). For any two pairs

(i, j) = ((i1, · · · , ik), (j1, · · · , jk)) and (i′, j′) = ((i′1, · · · , i′k), (j
′
1, · · · , j′k)), the two

graphs G(i, j) and G(i′, j′) are said to be isomorphic if for any 1 ≤ a1, a2, b1, b2 ≤ k,

ia1 = ia2 , jb1 = jb2 if and only if i′a1
= i′a2

, j′b1 = j′b2 . All graphs are classified into

isomorphic classes. An isomorphic class is denoted by G. Similarly, two roofs G(i)

and G(i′) are said to be isomorphic if for any 1 ≤ a1, a2 ≤ k, ia1 = ia2 if and only

if i′a1
= i′a2

. An isomorphic roof class is denoted by G. For a given i, two graphs

G(i, j) and G(i, j′) are said to be isomorphic given i if for any 1 ≤ b1, b2 ≤ k,

jb1 = jb2 if and only if j′b1 = j′b2 . An isomorphic class given i is denoted by G(i).

These definitions enable us to write further

Mk =
1

mnk/2pk/2

∑

i,j

dG(i)XG(i,j)

=
1

mnk/2pk/2

∑

G

∑

G(i,j)∈G
dG(i)XG(i,j). (5.2.1)

It follows

E(Mk) =
1

mnk/2pk/2

∑

G

∑

G(i,j)∈G
EdG(i)EXG(i,j). (5.2.2)
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Note that when G(i, j) contains a single vertical edge, EXG(i,j) = 0. Thus we

may assume in the following each graph appearing in the summation of EMk does

not contain single vertical edges. Also note that from the definition of the set I,

each graph also does not contain any loops of horizontal edges.

Let us denote by l, r, s respectively the numbers of non-coincident vertical

edges, non-coincident iv vertices and non-coincident jv vertices contained in a

graph. It is obvious these numbers must be the same for isomorphic graphs.

Further, notice that for each isomorphic class G, there is a unique graph G(i, j)

satisfying

i1 = 1, iv+1 ≤ max{i1, · · · , iv}+ 1,

j1 = 1, jv+1 ≤ max{j1, · · · , jv}+ 1,

which will be called the canonical (or representative) graph of G. We can further

define a number q as follows.

Suppose that G is an isomorphic class having the index r, the number of non-

coincident i-vertices in its canonical graph, G(i, j). Then since G(i), the roof of

G(i, j), is a connected graph, we can select a tree which contains all the r vertices

of G(i) and exactly r − 1 edges. Excluding the r − 1 edges in G1(i), we have

k− (r− 1) edges left in G(i). Then the remaining k− (r− 1) edges together with

all of the vertices of G(i) form another subgraph of G(i), which will be denoted

by G2(i). The remainder subgraph G2(i) may not be connected. Then with the

understanding that each isolated vertex is considered as a connected block, the

number q is defined to be the number of connected blocks contained in G2(i).
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From the definition of isomorphic class, it is easy to see we may use q for all the

other graphs in this isomorphic class.

5.2.2 Preliminary Results

Denote by G(l, r, s, q) the collection of isomorphic classes with the indices l, r, s

and q. Then we have the following two propositions, which will be useful for esti-

mating the terms involved in EMk.

Proposition 5.2.1. Under the conditions in Theorem 1.3.1 and Assumption

5.1.1, for any G ∈ G(l, r, s, q), there is a constant K such that

∑

G(i)∈G
E|dG(i)| ≤ Km1+δ(q−1)pr−1−δ(q−1), (5.2.3)

and

∑

G(i)∈G
Ifixed

E|dG(i)| ≤ Kmδ(q−1)pr−1−δ(q−1), (5.2.4)

where I is an arbitrarily selected non-coincident i-vertex of G(i) while K does not

depend on I.

Proof. It is straightforward to see (5.2.3) is a consequence of (5.2.4). We thus

need only prove (5.2.4). Since G(i) is connected, there must exist q − 1 edges in

G1(i) which make the q blocks of G2(i) connected. From the definition of G1(i),

these q − 1 edges are single in G(i) and, together with their vertices, cannot form

any cycles. We shall call them bridge edges. Suppose the (q − 1) bridge edges are

(ib1 , ib1+1), (ib2 , ib2+1), · · · , (ibq−1 , ibq−1+1);



320

the other r − q edges in G1(i) are

(ia1 , ia1+1), (ia2 , ia2+1), · · · , (iar−q , iar−q+1);

the k − r + 1 edges in G2(i) are

(ic1 , ic1+1), (ic2 , ic2+1), · · · , (ick−r+1
, ick−r+1+1).

(Note that q may be equal to 1 so that there are no bridge edges at all, but it is

easy to see the proof that follows is still valid). Then by Hölder’s inequality, we

have

∑

G(i)∈G
Ifixed

E|dG(i)|

= E
∑

G(i)∈G
Ifixed

q−1∏

u=1

|dibu ibu+1
|

r−q∏

v=1

|diav iav+1|
k−r+1∏

w=1

|dicw icw+1|

≤


E

∑

G(i)∈G
Ifixed

q−1∏

u=1

|dibu ibu+1
|

r−q∏

v=1

|diav iav+1|2



1/2


E

∑

G(i)∈G
Ifixed

q−1∏

u=1

|dibu ibu+1
|

k−r+1∏

w=1

|dicw icw+1|2



1/2

≤ Kmδ(q−1)pr−1−δ(q−1).

To get this inequality, we have used the following two results. Namely, by assump-

tions (D2), (D3.1) and (D3.2),

E
∑

G(i)∈G
Ifixed

q−1∏

u=1

|dibu ibu+1
|

r−q∏

v=1

|diav iav+1|2

=
∑

G(i)∈G
Ifixed

q−1∏

u=1

E|dibu ibu+1
|

r−q∏

v=1

E|diav iav+1|2

≤ K(mδp1−δ)q−1pr−q

= Kmδ(q−1)pr−1−δ(q−1)
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and further by the fact that the pij’s are uniformly bounded,

E
∑

G(i)∈G
Ifixed

q−1∏

u=1

|dibu ibu+1
|

k−r+1∏

w=1

|dicw icw+1|2

=
∑

G(i)∈G
Ifixed

q−1∏

u=1

E|dibu ibu+1
|E

k−r+1∏

w=1

|dicw icw+1|2

≤ Kmδ(q−1)pr−1−δ(q−1).

This completes the proof of the proposition. 2

Note that since each graph does not contain single vertical edge, we have l ≤ k.

Since each graph does not contain any loops of horizontal edges, we further have

l ≥ 2s. And as a basic property of connected graph, we have r + s ≤ l + 1. To

estimate the integer q, we need the following proposition.

Proposition 5.2.2. Let l, s, q be defined as above. Then

l − 2s ≥ q − 1. (5.2.5)

Proof. Since G(i) contains no loops, it follows that each j-vertex is connected

with at least two non-coincident vertical edges and hence that l − 2s ≥ 0, which

implies (5.2.5) for the case of q = 1. Now assume q > 1. Then we have q − 1

bridge edges. If (iv, iv+1) is a bridge edge, then we call the vertex jv its supporting

vertex, while the edges (iv, jv), (jv, iv+1) its supporting edges.

Denote the s non-coincident j-vertices by J1, J2, · · · , Js. For each 1 ≤ a ≤ s,

denote by la the number of non-coincident vertical edges connected with Ja. Then

obviously l = l1 + l2 + · · ·+ ls. Note that each non-coincident j-vertex is composed
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of at least two j-vertices coincident with each other. For each 1 ≤ a ≤ s, denote

by ta the number of bridge edges supported by Ja. Here, of course, ta is the

total number of bridge edges whose supporting j-vertex is from those coincident

j-vertices constituting Ja. Then q− 1 = t1 + t2 + · · ·+ ts. To prove l− 2s ≥ q− 1,

it is sufficient to prove for each 1 ≤ a ≤ s, la ≥ ta + 2.

If ta = 0, then la ≥ ta + 2 follows simply from the previously stated fact that

each j-vertex is connected with at least two non-coincident vertical edges. Now

assume ta ≥ 1. In view of the property that bridge edges together with their

vertices do not form any cycles and may be disconnected among themselves, we

shall consider two cases, when the ta bridge edges (together with their vertices)

form exactly one tree and when they form more than one trees disjoint with each

other. For the first case, since each supporting edge connected with Ja must take

one vertex of the tree, there are exactly ta + 1 non-coincident supporting edges

connected with Ja. The same reasoning shows that for the second case, there

are at least ta + 2 non-coincident supporting edges connected with Ja and hence

la ≥ ta + 2.

To complete the proof of the proposition, we need only proceed with the proof of

the first case. In this case, the tree formed by the ta bridge edges possesses (ta +1)

vertices. Arbitrarily select two vertices of the tree. Then these two vertices are

joined up by one path composed of only bridge edges from the tree. We assert

that there cannot be any edge of G(i), which does not belong to the tree, taking

the two vertices as its two end points. To see this, by the way of contradiction,

we suppose one such edge exists. Then this edge and the prescribed path form a
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cycle and consequently we see that this edge must not belong to G1(i) and that

the cycle belong to the graph consisting of G2(i) and all bridge edges. Denote this

later mentioned graph by G3(i). It follows that removing any edge of the path from

G3(i) does not cause the graph disconnected and so any edge arbitrarily selected

from the bridge edges forming the path is not cutting in G3(i). However, by the

definition of bridge edges, G3(i) is a connected graph and each of the (q−1) bridge

edges should be cutting in the graph. Thus we reach a contradiction and so we

conclude our assertion is true.

Now arbitrarily select one vertex of degree one in the tree. Then the supporting

edge connecting this vertex and Ja must be single among supporting edges and

so must be coincident with one non-supporting vertical edge. Note that this non-

supporting vertical edge may be a down edge and also may be an up edge. We

first consider the case when this vertical edge is a down edge, say (iv, jv). Then iv

is coincident with the vertex we selected which has degree one in the tree and jv

is one of the coincident j-vertices constituting Ja. Note that since (iv, jv) is non-

supporting, (iv, iv+1) is not a bridge edge. Note that iv 6= iv+1. By the preceding

argument, iv+1 cannot be coincident with any of the other ta vertices of the tree

either. This implies the up vertical edge (jv, iv+1) cannot be coincident with any

of the (ta + 1) non-coincident supporting edges connected with Ja. Therefore if

follows la ≥ ta + 2. For the other case when the vertical edge is an up edge, say

(jv, iv+1), similar argument can be used to conclude that the anterior down edge

(iv, jv) cannot be coincident with any of the (ta + 1) non-coincident supporting

edges connected with Ja. The proof of the proposition is complete. 2
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5.2.3 Convergence of the Expectation: Proof of (I)

From Proposition 5.2.1, it follows for each G ∈ G(l, r, s, q),

1

mnk/2pk/2
| ∑

G(i,j)∈G
EdG(i)EXG(i,j)|

≤ 1

mnk/2pk/2

∑

G(i)∈G
|EdG(i)|

∑

G(i,j)∈G(i)

|EXG(i,j)|

≤ 1

mnk/2pk/2
Km1+δ(q−1)pr−1−δ(q−1)ns(ηn

4
√

np)2k−2l

= Kη2(k−l)
n mδ(q−1)ns−l/2pr−l/2−1−δ(q−1)

= Kη2(k−l)
n (m/n)δ(q−1)(p/n)

l
2
−s−δ(q−1)pr+s−l−1. (5.2.6)

Based on above relation, we separate the terms involved in EMk into three

parts, i.e. let S1 be the sum of terms with l < k, S2 be the sum of terms with

l = k, but either r + s < l + 1 or l > 2s, and S3 be the sum of terms with l = k,

r + s = l+1, l = 2s, and hence from Proposition 5.2.2, q = 1. Noting the relations

between the numbers l, r, s analyzed previously, we have

EMk = S1 + S2 + S3.

We first prove S1 → 0 and S2 → 0. Note that under assumption (iv) of

THEOREM 1.3.1, (m/n)δ(q−1) is bounded, while from Proposition 5.2.2, l/2− s−

δ(q − 1) is always nonnegative. Thus we get

|S1| = o((m/n)δ(q−1)(p/n)
l
2
−s−δ(q−1)pr+s−l−1) = o(1).

Moreover, when δ(q − 1) = 0, by the fact either k > 2s or r + s < k + 1, we have

|S2| = O((p/n)
k
2
−spr+s−k−1) = o(1),
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When δ ∈ (0, 1/2) and q > 1, by the fact k/2 > s + δ(q − 1), we have

|S2| = O((p/n)
k
2
−s−δ(q−1)) = o(1).

When δ = 1/2 and q > 1, since m/n → 0, we still have

|S2| = O((m/n)
1
2
(q−1)) = o(1).

Note that when k is odd, no terms involved in the summation of EMk belong

to S3 and hence we must have

EMk → 0.

In the following we only need to evaluate S3 for the case k is even, by definition

of S3, k = 2s.

We first note that r + s = k + 1 implies that there cannot be cycles of non-

coincident vertical edges in the base of the graph. Also note that l = k implies

that each non-coincident vertical edge must consist of exactly two vertical edges. It

follows that each down (up) edge must coincide with one and only one up (down)

edge because the coincidence of a down edge (up) with another down (up) edge

would imply that the non-coincident edges of the base contain a cycle. Therefore,

if we denote the non-coincident vertical edges by {(u1, v1), · · · , (uk, vk)}, then

EXG(i,j) =
k∏

j=1

σ2
ujvj

and hence for each isomorphic class G ∈ G(2s, s + 1, s, 1) (all isomorphic classes

involved in S3 belong to G(2s, s + 1, s, 1)), we have

∑

G(i,j)∈G
EdG(i)EXG(i,j) =

∑

G(i,j)∈G
EdG(i)

k∏

j=1

σ2
ujvj

.
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Now we show that

1

m(np)s

∑

G(i,j)∈G
EdG(i)

k∏

j=1

σ2
ujvj

=
1

m(np)s

∑

G(i,j)∈G
EdG(i)σ

2k + o(1).

(5.2.7)

By (ii) of Assumption 5.1.1 and (5.2.4) of Proposition 5.2.1 for the case q = 1, we

have

0 ≤ 1

m(np)s

∑

G(i,j)∈G
|EdG(i)|[σ2k −

k∏

j=1

σ2
ujvj

]

≤ 1

m(np)s

∑

G(i,j)∈G
|EdG(i)|

k∑

`=1

[σ2(k−`)(σ2 − σ2
u`v`

)
`−1∏

j=1

σ2
ujvj

]

≤ 1

m(np)s

∑

G(i,j)∈G
|EdG(i)|

k∑

`=1

[σ2(k−1)(σ2 − σ2
u`v`

)]

≤ σ2(k−1)

mnps

∑

G(i)∈G
|EdG(i)|

k∑

`=1

∑
v`

(σ2 − σ2
u`v`

)

≤
k∑

`=1

Kσ2(k−1)

mn

∑
v`

∑
u`

(σ2 − σ2
u`v`

) → 0,

from which (5.2.7) follows.

For a graph corresponding to a term in S3, we claim that each horizontal edge

(v1, v2) must coincide with a horizontal edge (v2, v1). In fact, suppose (i`, i`+1) is the

first appearance of (v1, v2), i.e. i` = v1, i`+1 = v2 and v2 is not in {i1, · · · , i`}. We

claim that j` is not in {j1, · · · , j`−1}. Otherwise, assuming j` is coincident with

ja with a < `, then ia, ia+1 and i`+1 are three non-coincident i-vertices so that

(ia, ja), (ja, ia+1) and (j`, i`+1) are three non-coincident vertical edges. It follows

that there are at least three non-coincident vertical edges connected with the non-

coincident j-vertex which contains ja, j`. This obviously violates the assumption

k = 2s. As a consequence of the assertion, both of the two vertical edges (i`, j`)
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i` = iν+1 = v1 i`+1 = iν = v2
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Figure 3.1 (v1, v2) coincides with (v2, v1)

and (j`, i`+1) are single up to the vertex i`+1. In the future development of the

graph, there must be one down edge (iν , jν) coincident with the single up-edge

(j`, i`+1), that is, iν = i`+1 = v2 and jν = j`. Then the next up edge (jν , iν+1) must

coincide with (i`, j`) since, otherwise, the vertex jν = j` will be connected with at

least 3 non-coincident vertical edges. Thus iν+1 = i` = v1 and so the horizontal

edge (i`, i`+1) = (v1, v2) coincides with the horizontal edge (iν , iν+1) = (v2, v1) (see

Figure 3.1). In view that the total number of non-coincident i-vertices contained in

G(i) is r = s+1, we conclude that the non-coincident horizontal edges of G(i) form

a tree of s edges, each edge consisting of exactly two horizontal edges of converse

directions.

It follows

EdG(i) =
s∏

`=1

pa`,b`
,

where (a`, b`), 1 ≤ ` ≤ s, denote the edges of the tree of non-coincident horizontal
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edges. By (5.2.7) and condition (D2), we have

1

m(np)s

∑

G(i,j)∈G
EdG(i)EXG(i,j)

=
σ2k

mps

∑

G(i)∈G

s∏

`=1

pa`,b`
+ o(1)

= σ2k + o(1).

Therefore, to evaluate EMk, what remains is to count the number of isomorphic

classes in G(2s, s+1, s, 1). Note that for the graphs defined earlier, one only needs

to arrange the vertical edges since the positions of the horizontal edges will then

be automatically determined by the positions of the i-vertices. When one draws

the graph edge by edge, starting from i1, an edge is called an innovation if it is the

first appearance of a non-coincident edge and called a Type 3 edge otherwise. As

we have shown in the previous paragraph, for a graph corresponding to a term in

S3, a down innovation must be followed by an up innovation and a down edge of

Type 3 must be followed by an up edge of Type 3. Thus, we only need to arrange

the s down innovations and the s down edges of Type 3. Define a` = 1 if the `-th

down edge is an innovation and = −1 otherwise. Before any Type 3 edge, there

must be a single innovation. That is, for every ` ≤ k, we should have

a1 + · · ·+ a` ≥ 0.

Thus, the number of isomorphic classes in G(2s, s + 1, s, 1) is the number of se-

quences of s ones and s minus ones subject to the nonnegative partial sum require-

ment. By the reflection theorem, it is easy to show the number of such sequences
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is
(

2s

s

)
−

(
2s

s− 1

)
=

(2s)!

s!(s + 1)!
.

Conclusion (I) is proved.

5.2.4 Estimation of the Fourth Moment: Proof of (II)

Since Mk is real, we may write

E|Mk − EMk|4 = E(Mk − EMk)
4

=
1

m4n2kp2k

∑
i`,j`

1≤`≤4

E(
4∏

`=1

[dG(i`)
XG(i`,j`) − EdG(i`)

EXG(i`,j`)],

where G(i`, j`) is the graph defined by (i`, j`) in the way given in the proof of part

(I).

If G(i`, j`) has no edges coincident with edges of the other three, then the

corresponding term in the summation is zero by independence. Furthermore, the

term is also zero if
⋃4

`=1 G(i`, j`) contains a single vertical edge. Hence we only

need to consider the following two cases:

(1) The four graphs are connected together through edges.

(2)
⋃4

`=1 G(i`, j`) consists of two separated pieces, each of which is composed of

two graphs connected together. Split E|Mk − EMk|4 = SI + SII according to the

two cases. Denote the collection of graphs in case (1) by C1 and similarly denote

the collection of graphs in case (2) by C2.

In case (1), the graph G =
⋃4

`=1 G(i`, j`) has a connected roof. Let r, s, and l

be, respectively, the numbers of non-coincident i-vertices, non-coincident j-vertices

and non-coincident vertical edges contained in G. And similarly, we can define
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the number q. Then, similar to the estimation of EMk, under the conditions in

Theorem 1.3.1 and Assumption 5.1.1, we have

|SI | ≤ 16

m4n2kp2k

∑

G∈C1
E(

4∏

`=1

|dG(i`)
||XG(i`,j`)|)

≤ K

m4n2kp2k

∑

r,s,l,q

mδ(q−1)pr−1−δ(q−1)(ηn
4
√

np)(8k−2l)ns

≤ Km−3
∑

r,s,l,q

η8k−2l
n (m/n)δ(q−1)(p/n)

1
2
−s−δ(q−1)pr+s−l−1 = O(m−3),

where we have used Proposition 5.2.1 and the facts l ≤ 4k, r + s ≤ l + 1 and

l − 2s ≥ q − 1.

To estimate SII , one only need to note that for each piece of the roof subgraph,

one factor m is obtained. Then, totally, we get one more m and hence

SII = O(m−2).

Combining the above, (II) is proved. Consequently, the proof of Theorem 1.3.1 is

complete.

Using the same approach as in proving (II), one can easily show that

E|Mk − EMk|2µ = O(m−µ),

for any fixed integer µ. This result will be useful when the a.s. convergence is

considered for n →∞.

5.3 Discussion

In this chapter, with the aid of the moment method, we have accomplished prov-

ing the empirical spectral distributions of a class of large sparse random matrices
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converge to the semicircle law. The result generalized to a large extent known

works on the spectral analysis of large sparse random matrices. The main accom-

plishment is a new formulation of the sparsing matrix, whose non-zero-one and

non-homogeneous nature provides a new and more relevant understanding of the

sparseness relating to a certain class of random matrices. As a consequence, the

result can be useful in more circumstances where sparse random matrices play

their effects.

The conclusion of semicircle law for our matrices is consistent with findings ap-

pearing in other works. Indeed, the phenomenon can be traced back to the basic

behavior of the normalized sample covariance matrices. So let us introduce the

formally referred definition of the normalized sample covariance matrices (Bai and

Yin (1988a)).

Definition 5.3.1. Let Bm = (1/
√

mn)(Xm,nX
∗
m,n − nσ2Im), where Xm,n is

m× n consisting of independent and identically distributed complex random vari-

ables with Ex11 = 0, E|x11|2 = σ2 and E|x11|4 < ∞. Then Bm is said to be a

normalized sample covariance matrix.

For such defined normalized sample covariance matrix, Bai and Yin (1988a)

showed as m → ∞ and m/n → 0, with probability one FBm converges weakly to

the semicircle law. Noticing that when E|x11|4 < ∞ and m is fixed, the matrix

(1/
√

n)(Xm,nX∗
m,n−nσ2Im) tends to a Gaussian matrix, with Wigner’s pioneering

result on the semicircle law for Gaussian matrix, the result is thus conceivable.
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In our context, the definition of normalized sample covariance matrix has been

adjusted to suit the sparse nature of the Hadamard products. More specifically,

the place of m in the square root of the denominator of Bm of Definition 5.1.1

has been taken place by the sparseness level p of Definition 1.3.2. Thus when the

sparsing matrix Dm is taken to be the special case of dij = 1 for all i,j, then p = m

and the condition m/n → 0 in Bai and Yin (1988) coincides with the condition

p/n → 0 we have assumed. So our result covers Bai and Yin’s result and is more

general than theirs.

Furthermore, since Bernoulli trials satisfy our conditions on the sparsing ma-

trix, those sparse matrices for which the sparsing factors are chosen to be Bernoulli

trials are included in the class of sparse matrices of our concern. A typical exam-

ple is the result in Kohrunzhy and Rodgers (1997). We can check easily that if

their conditions on the matrices are satisfied, then our conditions are all satisfied.

Specifically, if P (dii 6= 0) = 0) then condition (X3) is automatically true. If there

is a positive and increasing function ϕ(x) defined on R+ such that

Qn ≡ 1

mn

∑

ij

E|x2
ij|ϕ(|xij|)I[|xij| > η 4

√
np] → 0, (5.3.1)

then condition (X2.1) holds. Letting ϕ(x) = x4(2ν−1) with 1
2
≤ ν < 1, (5.3.1)

reduces to condition (2.4) of Kohrunzhy and Rodgers (1997), if we change their

notation as pij = P (dij = 1) = p/m with p = n2ν−1 and m/n → c ∈ (0,∞). Thus

Theorem 1.3.1 covers Kohrunzhy and Rodgers (1997) as a special case for all ν’s

in the interval [1/2, 1). Furthermore, it can be seen if Qn → 0 with a suitable rate
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such that

∞∑

u=1

Qn/ϕ(η 4
√

np) < ∞, (5.3.2)

then condition (X2.2) is satisfied. Indeed, under their assumptions, ϕ(x) =

x4(2ν−1), with (1+
√

5)/4 < ν < 1, makes (5.3.2) hold. Then for these ν’s Theorem

1.3.1 states the a.s. convergence holds and hence is stronger than the conclusion

of i.p. convergence proven by Kohrunzhy and Rodgers (1997).

Concerning our conditions and results, we have the following several remarks

which are expected to give some useful interpretations.

Remark 1. Condition (D3.2) implies that pij are uniformly bounded. In fact,

pij = E|dij|2 ≤ (E|dij|4)1/2 ≤ C4.

Combining this fact with condition (D2), we see p ≤ Km, for some constant

K > 0.

In view of the relation between p and m, we notice that if condition (D3.1) holds

for some δ0 ∈ [0, 1/2], then it must hold for every δ ≥ δ0, δ ∈ [0, 1/2]. Therefore,

we clarify here when we say that condition (D3.1) holds for some δ ∈ [0, 1/2] we

are referring to δ as the smallest value in [0, 1/2] for which condition (D3.1) holds.

With this understanding of the parameter δ, we can see in the case of δ = 1/2,

condition (D3.1) is a direct consequence of Hölder’s inequality and condition (D2),

i.e. no additional assumption is imposed on the first moments of the sparsing
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factors.

Remark 2. A new contribution of Theorem 1.3.1 is to allow the sparsing

factors dij’s to be very non-homogenous. Consider the following example. Let

Dm = [dij] be symmetric. Let m = kL with L fixed, and let for all (` − 1)k <

i, j ≤ `k with ` ≤ L,

P (dij = 1) = p/k = 1− P (dij = 0),

and for all other indices i, j, dij ≡ 0. Then conditions (D1), (D2), (D3.1) and

(D3.2) are true whenever p ≤ k.

Remark 3. In the case of δ = 0, condition (D3.1) seems not to allow the dij’s

to take large values. In fact, it is not the case. For example, consider

dij = c−1|zij|I(|zij| > c)

where zij are i.i.d. N(0, 1) subject to the condition dij = dji and c is a positive

constant uniquely solving the equation Ez2
ijI(|zij| > c) = c2p/m. Then obviously

dij can take very large values, and Dm is symmetric with

m∑

i=1

pij = c−2
m∑

i=1

Ez2
ijI(|zij| > c) = p,

i.e. conditions (D1) and (D2) are satisfied. It is trivial to see c−1E|zij|I(|zij |>c) <

c−2E|zij|2I(|zij |>c), that is, E|dij| < E|dij|2. Thus condition (C3.1) holds for δ = 0.

Now we show condition (D3.2) holds if p/m → 0. In fact, we can see that if



335

p/m → 0, then c →∞ and consequently for any positive integer k,

Ezk
ijI(|zij| > c) ' 2ck−1ϕ(c),

where the notation “'” is used to represent the relation that the two quantities

on its two sides have a ratio which tends to 1 as c →∞, while ϕ(·) is the density

function of standard normal variables. It follows

E|dij|2 = c−2E|zij|2I(|zij |>c) ' 2c−1ϕ(c),

and for integer k > 2

E|dij|k = c−kE|zij|kI(|zij| > c) ' 2c−1φ(c).

Thus condition (D3.2) holds.

Remark 4. However, if condition (D3.1) is assumed for δ = 0, then it does

happen that the dij’s are not allowed to take small values with large probabilities.

For example,

dij =
√

p/m, with probability 1.

Then obviously (D3.1) can only hold for δ = 1/2.

Remark 5. Condition (D3.2) assuming that higher moments of dij are not

larger than a multiple of their second moments is not seriously restrictive because

the dij’s are usually small random variables. Moreover, this condition still al-

lows the first moments of dij’s to be much larger than their second moments, e.g.
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dij = c
√

p/m|zij| where zij are i.i.d. random variables and c makes Ed2
ij = p/m.

Remark 6. Note that p may not be an integer and it may increase very slowly

as n increases. Thus, the limit for p → ∞ may not be true for a.s. convergence.

So, we consider the limit when the integer part of p tends to infinity. However, if

we consider the convergence in probability, Theorem 1.3.1 is true for p →∞.

Remark 7. From the proof given in the previous sections, one can see that

the almost sure convergence is true for m → ∞ in all places except the part for

the truncation on the entries of Xm,n which was guaranteed by condition (X2.2).

Thus, if condition (X2.2) holds for u = m, then the almost sure convergence is

true in the sense of m → ∞. Sometimes, it may be of interest to consider the

almost sure convergence in the sense of n → ∞. Examining the proof, one can

find that to guarantee the almost sure convergence for n →∞, the truncation on

the entries of Dm and the removal of diagonal elements require m/ log n →∞; the

truncation on the entries of Xm,n require condition (X2.2) to be true for u = n. As

we have claimed at the end of the previous section, one may modify the conclusion

of (II) as

E|Mk − EMk|2µ = O(m−µ)

for any fixed integer µ. Thus, if m ≥ nε for some positive constant ε, then the

almost sure convergence for the ESD after the truncation and centralization is true

for n → ∞. Therefore, the conclusion of Theorem 1.3.1 can be strengthened to
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the almost sure convergence as n →∞ under the additional assumptions that, for

some small positive constant ε, m ≥ nε and condition (X2.2) holds for u = n.

Remark 8. Conditions (D2) and (D3.2) imply that p ≤ Km, that is, the

order of p cannot be larger than m. In the theorem, it is assumed that p/n → 0,

that is, p also has a lower order than n. This is essential. However, the relation

between m and n can be arbitrary if condition (D3.1) holds for δ = 0.

It should be useful to remind that the statement “the relation between m and

n can be arbitrary” only says that there are examples with m/n → ∞ as well

as examples with m/n → 0, for which the result in Theorem 1.3.1 is applicable

equally well. For example, if the dij’s (subject to the condition dij = dji) are

the Bernoulli trials defined by P (dij = 1) = p/m = 1 − P (dij = 0) for any i,

j, then E|dij| = E|dij|2 = E|dij|k for any k > 2. This implies conditions (D1),

(D2), (D3.1)(with δ = 0) and (D3.2) always hold. But no matter m/n → 0,

m/n ≤ K < ∞, or m/n → ∞, Theorem 1.3.1 always holds provided that p ≤ m

abd p/n → 0.

It may be of interest whether our conditions put on the relation between m

and n for the case of δ 6= 0 are arguable. Nevertheless, based on the following

two examples, we take the point that they are necessary for the validity of the

semicircle law for the general class of matrices we considered. We firstly present

an example to show that when condition (D3.1) is assumed for δ = 1/2, to ensure

the convergence of the semicircle law of FAp , it is necessary to require m/n → 0.
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Example 5.3.1. Let Dm = [dij] be consisting of dii = 0 and dij =
√

p/m

for i 6= j. Let Xm,n = [xij] be consisting of independent, identically distributed

standard normal random variables. Now assume m/n → c > 0 and p/n → 0.

Then conditions (D2), (D3.1) and (D3.2) hold. Specifically, 1/2 is the smallest

parameter in [0, 1/2] such that condition (D3.1) is satisfied by Ap.

Consider the k-th moment of FAp . Using the definitions we gave in proving

Proposition 3.1, for any isomorphic class G whose canonical graph possesses r non-

coincident i-vertices and s non-coincident j-vertices and does not contain loops of

horizontal edges, we have

SG =
1

mnk/2pk/2

∑

G(i,j)∈G
EdG(i)EXG(i,j)

= KGm−1n−k/2p−k/2(p/m)k/2mrns + o(1)

= KGmr+s−k−1(n/m)s−k/2 + o(1),

where KG = EXG(i,j). It is easy to see that

SG →





0, if r + s < k + 1,

KGck/2−s, if r + s = k + 1.

Note that when r + s = k + 1, since r + s ≤ l + 1 where l is the number of non-

coincident vertical edges contained in the canonical graph of G, it follows l ≥ k.

If l > k, then there must exist single vertical edge and hence KG = 0. Otherwise,

l = k, then every non-coincident vertical edge is composed of exactly 2 vertical

edges of opposite directions and hence KG = 1. Therefore, noticing the restriction
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that, since there are no loops of horizontal edges, every non-coincident j-vertex

must be connected with at least 2 non-coincident vertical edges, we get

EMk → mk =

[ k
2
]∑

s=1

ck/2−sµs,

where µs is the number of isomorphic classes whose canonical graphs satisfy the

following condition: Each canonical graph contains exactly s non-coincident j-

vertices and (k + 1 − s) non-coincident i-vertices; Each canonical graph contains

exactly k non-coincident vertical edges each of which consists of two edges of

opposite directions; Each canonical graph possesses the property that, supposing

one person starts a walk along its edges, then whenever a down-edge leads to a

new non-coincident j-vertex the next up-edge must lead to a new i-vertex.

To estimate the limit mk, let us observe further

(
m

n

)k/2

× EMk

= m−1n−k
res∑

i1,··· ,ik

∑

j1,··· ,jk

E(xi1j1xi2j1xi2j2xi3,j2 · · · xikjk
xi1jk

), (5.3.3)

≤ Em−1tr
(

1

n
Xm,nX

∗
m,n

)k

where the summation
∑res

i1,··· ,ik is taken over all possible values of i1, · · · , ik satisfying

the restriction that i1 6= i2, i2 6= i3, · · · , ik 6= i1. Thus it follows, by Theorem 2.5 of

Bai(1999), ck/2mk is bounded by the kth moment of the Marcěnko-Pastur law with

ratio index c and scale index 1. Thus {mk}∞k=1 satisfies the Carleman condition.1

1Note that there is a one-to-one correspondence between G and its base and that the base of

G must be a canonical graph defined in deriving the Marcěnko-Pastur law. Thus, we indeed have

µs ≤ 1
k + 1− s

(
k

s

)(
k − 1
s− 1

)
.
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Using (5.3.3), one can easily show that

E(Mk − EMk)
2µ = O(m−2µ).

Therefore, with probability one, FAp converges to a non-random limiting distribu-

tion, say F . It is easy to verify that when k = 3, we have s = 1 and r = 3 so that

i1 6= i2 6= i3 and j1 = j2 = j3, i.e. there is exactly one contributing isomorphic

class G. Thus,

m3 =
√

c.

Since the third moment of F is not 0, F is not the semicircle law. That is, we

have shown with probability one, FAp converges weakly but the limiting spectral

distribution is not the semicircle law. 2

For the case δ ∈ (0, 1/2), we present the following example to show the condi-

tion m/n is bounded is also necessary for the convergence to the semicircle law.

Example 5.3.2. Let Dm = [dij] be defined the same as in Example 5.3.1.

We assume the same conditions m/n → c > 0 and p/n → 0. Now we define

D̃h = Dm ⊗ Ih and B̃h = 1√
np

(
Xmh,nX∗

mh,n − σ2nImh

)
, where “⊗” denotes the

Kronecker product of matrices, h = [mη] with η > 0 and Xmh,n is mh×n consisting

of independent and identically distributed standard normal random variables.

Let Ãp = B̃h ◦ D̃h. Then Ãp = diag[A1,m, · · · , Ah,m] where

Ai,m = Bii ◦Dm, i = 1, · · · , h
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and Bii is the i-th m×m major sub-matrix of B̃h.

Note that A1,m, · · · , Ah,m are independent with the same distribution as Ap de-

fined in Example 5.3.1. Denote by M̃k, Mi,k and Mk, respectively, the kth moment

of Ãp, the kth moment of Ai,m and the kth moment of Ap. Then it follows EMi,k =

EMk and E(Mi,k−EMi,k)
2µ = E(Mk−EMk)

2µ. Since F Ãp = 1
h

∑h
i=1 FAi,m so that

M̃k = 1
h

∑h
i=1 Mi,k, we get EM̃k = EMk and E(M̃k − EM̃k)

2µ ≤ E(Mk − EMk)
2µ.

By the results we proved in Example 5.3.1, it follows with probability one, F Ãp

converges weakly but the limiting spectral distribution is not the semicircle law.

Let us now check the validity of the assumptions of Theorem 1.3.1 for Ãp.

Conditions (D1), (D2) and (D3, 2) hold for Ãp automatically by definition. We

now show that for any δ ∈ (0, 1/2) by choosing η > 0 such that 2δ(1 + η) = 1,

condition (D3, 1) is satisfied by Ãp for the given δ. To see this, note that the

dimension of Ãp is mh and we have

∑

i

Edij ≤ √
mp ≤

√
m

(mh)δ
(mh)δp1−δ ≤ C1(mh)δp1−δ.

By requiring p = O(log m), we further can see for any δ0 < δ,

(
∑

i

Edij)/
(
(mh)δ0p1−δ0

)
≥ 1

2
m

1
2
(1−δ0/δ)pδ0− 1

2 →∞,

which confirms δ is the smallest parameter in (0, 1/2) such that condition (D3.1)

is satisfied by Ãp. Noticing that mh/n →∞, we see Ãp satisfies all assumptions of

Theorem 1.3.1 except only the condition that in case of δ ∈ (0, 1/2) the ratio be-

tween the vector dimension and the sample size should be bounded. We achieved

our target. 2
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The class of sparse random matrices presently studied are Hadamard products

of the sparsing matrix with sample covariance matrices. Future development may

concern the Hadamard products with other interesting random matrices. A rele-

vant case in point is given by the sample covariance matrices with some correlation

structure assumed among the entries of the matrix Xm,n. Investigations can also

be given to alternative definition of the sparsing matrix, which has been formulated

in the present thesis in terms of the moments of its entries. Especially, when there

are important physical factors affecting the systems modelled by the matrices, the

definition of the sparsing matrix needs to take into account of their effects. Exam-

ples on this concern are still not available, whereas the consideration is of interest

in practical field. For instance, in wireless communications, the Hadamard product

of a sample covariance matrix and an appropriately defined sparsing matrix can

be used as the channel matrix for a channel which strategically allocate different

powers to different users.
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