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Summary 

Major histocompatibility complex (MHC) molecules bind peptides of diverse 

sequences in order to generate maximal immunological protection by covering 

the spectrum of peptides that may be seen by a host over the course of its 

lifetime. However, in many circumstances the immune system malfunctions 

and incorrectly recognizes a self-peptide. This results in disease 

characterized by recognition and attack of self. Pemphigus vulgaris (PV) is an 

example for such autoimmune disorders. In such a situation, identifying 

disease-implicated alleles and their respective T cell epitope repertoire is 

valuable in the definition of qualities such as antigenicity and 

immunodominance, and is an essential preliminary step towards effective 

immunotherapeutical treatments. However, experimental determination of 

binding peptides for every disease-implicated allele is prohibitively expensive 

in terms of labour, time and cost; and is not feasible to studies involving large 

numbers of protein sequences.  

This thesis describes original findings from the application of 

bioinformatic tools to the study of peptide/MHC interactions and subsequent 

application to PV.  Several novel aspects are presented in this thesis. This is, 

to the author’s knowledge, the first study of its kind, where structural 

interaction parameters have been used for the analysis of MHC supertypes or 

superfamilies. Conserved interaction characteristics among different MHC 

supertypes have been discovered.  

The first study on the use of structural principles to discriminate 

between peptide binders and non-binders, for a number of disease-implicated 

and non-disease-implicated alleles, is presented.  By focusing on known 
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peptide binders, this bioinformatic approach can discriminate between alleles 

implicated in the disorder and those that are not. Insights into structural 

features that underlie the immune response provided by protective alleles for 

PV have also been obtained. 

A new docking protocol and a complementary scoring function, 

developed as part of this work, has been applied successfully for modeling the 

bound conformation of peptide ligands to both class I and class II molecules. 

High prediction accuracy of MHC-binding peptides was validated by existing 

experimental biochemical and functional data. This approach successfully 

identified peptide binders which lack conserved binding motifs. The first 

reported evidence on the possibility of multiple binding registers within a 

candidate class II binding peptide provides new insights to the binding 

specificities of class II alleles. The ability of a candidate peptide to bind a 

specific class II allele is affected by both the binding registers and flanking 

peptide residues.  

In the context of PV, the results of analysis reveal the possibility that 

the disease-implicated alleles DRB1*0402 and DQB1*0503 share similar 

specificities by binding peptides at different core recognition regions. The 

target antigen of PV, desmoglein-3 (Dsg3), is a 130-kDa transmembrane 

glycoprotein within the desmosomes of the spinous layer of the skin. Little is 

known about the function of Dsg3 in the normal structure and function of hair. 

Although it had been postulated that the protein plays a key role in providing 

cell adhesion between keratinocytes, few in vivo models exist that confirm 

their actual function. The discovery of multiple initial shared immunodominant 
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epitopes and intracellular specificities within the desmoglein-3 (Dsg3) self-

antigen shed new light into the pathology of PV.  

The study of peptide specificity through immunoinformatics facilitates 

the discovery of T cell epitopes and bears the potential to expedite the 

vaccine discovery process. Because MHC alleles are diverse in nature, with a 

spectrum of binding specificities to a restricted range of peptides, the 

methodology presented in this thesis is suitable for the analysis of alleles 

where experimental binding data is lacking. The immunoinformatics lessons 

will be useful for the study of sequence-structure-function relationships 

involved in the selection of specific antigenic peptides by the different MHC 

alleles and their implications for disease pathogenesis.  
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Chapter 1: Introduction  

Major histocompatibility complex (MHC) molecules play critical roles in 

adaptive immune responses. They bind a variety of small and medium-sized 

molecules including short peptide fragments and present them on the surface 

of antigen-presenting cells for recognition by T cell receptors. Two classes of 

MHC molecules are responsible for antigen presentation: class I and class II. 

MHC class I molecules are present in all nucleated cells except neurons, 

while MHC class II molecules are present in dendritic cells, endothelial cells, 

monocytes and B-cells for MHC. The presentation of MHC-bound peptides to 

T cell receptors (Lefranc and Lefranc, 2001) on the surface of T cells is 

responsible for T cell activation and stimulation of adaptive immune response. 

Hence, MHC-peptide binding studies are invaluable for designing vaccines 

and immunotherapeutic strategies for controlling allergic or autoimmune 

responses. 

Pemphigus vulgaris (PV) is a potentially life-threatening form of 

autoimmune blistering skin disorder due to loss of integrity of normal 

intercellular attachments within the epidermis and mucosal epithelium. The 

target antigen of PV, desmoglein (Dsg) 3, is a 130-kDa transmembrane 

glycoprotein that belongs to the cadherin superfamily of cell adhesion 

molecules (Amagai et al., 1991). In early disease (mucosal PV), patients 

demonstrate autoimmunity only to Dsg3 and develop mucosal blisters; while 

at the later stage (mucocutaneous PV), patients exhibit non-cross-reactive 

immunity to both Dsg3 and Dsg1 (Salato et al., 2005). Strong association of 

PV to the MHC class II alleles have been reported in the literature (Ahmed et 
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al., 1990, 1991; Scharf et al., 1989; Sinha et al., 1988). However, much 

remains unknown with regards to the exact nature of the interactions between 

Dsg3 derived peptides and PV-implicated alleles. Improved understanding of 

peptide binding to the disease-implicated alleles is important for elucidating its 

role in disease progression.  

Bioinformatic tools are now a standard methodology in facilitating T cell 

epitope discovery (Schirle et al., 2001; Yu et al., 2002, Srinivasan et al., 

2004). Computational methods for predicting MHC-binding peptides include 

procedures based on sequence motifs (Wucherpfennig et al., 1995), 

quantitative matrices (Parker et al., 1994; Davenport et al., 1995; Gulukota et 

al., 1997), decision trees (Savoie et al., 1999; Segal et al., 2001), artificial 

neural networks (ANNs) (Brusic et al., 1994, 1998), hidden Markov models 

(HMMs) (Mamitsuka, 1998) and support vector machines (SVMs) (Dönnes 

and Elofsson, 2002; Bhasin and Raghava, 2004; Bozic et al., 2005). Despite 

recent advances in sequence-based predictive techniques, effective 

computational models for MHC class II molecules are still lacking. This 

deficiency is attributed to the lack of training data as well as the presence of 

register shifts and polymorphisms in the binding registers. Up to now, few 

prediction techniques for MHC class II molecules have been developed using 

three-dimensional models due to complexities in development as the dual 

issues of model quality and discriminative technique must be addressed.  

1.1 Research issues investigated in this thesis 

There is a need to characterize disease-implicated antigens efficiently and 

speedily to gain information for a global perspective in experimental design. 
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As experimental determination of binding peptides for every disease-

implicated allele is prohibitively expensive in terms of labour, time and cost, 

bioinformatic analysis supports experimental studies by assisting in planning 

of critical experiments. The specific objectives of this thesis were to focus on 

alleles that have not been extensively studied. These include the following 

sub-projects: 

1. Build a database of (TCR/) peptide/MHC crystallographic 

structures. 

2. Identify common structural characteristics of peptide/MHC 

complexes using existing crystallographic data. 

3. Develop a fast and efficient protocol for docking peptide ligands to 

MHC receptors.  

4. Develop methodologies for effective discrimination of binding 

peptides from the background using three-dimensional models of 

peptide/MHC complexes. 

5. Application of research to analyze MHC molecules implicated in the 

autoimmune disorder pemphigus vulgaris (PV). 

1.2 Contributions of this thesis 

The author’s original contributions in this thesis include: 

1) extraction of crystallographic structures of (TCR/) peptide/MHC 

complexes from the Protein Data Bank (PDB) (Berman et al., 

2000). Interaction parameters between bound peptides and their 

corresponding receptors were computed to facilitate the 

characterization of peptide/MHC interface. The structures and 
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computed parameters are deposited into a new database termed 

MHC-Peptide Interaction Database version T (MPID-T). 

2) identification of the existence of different MHC supertype structural 

interaction characteristics using existing crystallographic structures.  

3) development of a new docking protocol to model the bound 

conformation of peptide ligands to both MHC class I and class II 

molecules. The predictive performance of the protocol was 

validated by existing experimental data.  

4) development of a complementary scoring scheme for functional 

prediction of MHC-binding peptides. This approach has been 

successfully applied to identify peptide binders which lack 

conserved binding motifs.  

5) identification of multiple binding registers within a candidate class II 

binding peptide, supporting existing evidence that the ability of a 

candidate peptide to bind a specific class II allele is affected by 

both the core and the flanking peptide residues. 

6) discrimination of PV-implicated alleles from non-implicated alleles 

using structural principles.  By focusing on known peptide binders, 

this bioinformatic approach successfully discriminated alleles 

implicated in PV from those that are not.  

7) recognition of multiple initial epitopes to be responsible for disease 

initiation and progression in PV. At the present time, much remains 

unknown with regards to disease progression in PV.  

8) identification of T cell epitope repertoire of Dsg3 glycoprotein for 

both DRB1*0402 and DQB1*0503. The predictive performance of 
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the protocol was validated by existing experimental Dsg3 binding 

data. At present, few Dsg3 epitopes for both alleles have been 

identified. 

9) discovery of similar specificities for binding peptides in DRB1*0402 

and DQB1*0503, but with different core recognition regions. 

1.3 A summary of this thesis 

This thesis is divided into eight chapters. Chapter 1 provides an introduction 

to the problems in identifying peptide epitopes in autoimmunity-implicated 

alleles with specific reference to PV, and the research issues investigated in 

this thesis. This is followed by a literature survey (Chapter 2) on MHC biology 

and diversity; the complexities involved in identifying T cell epitopes, and 

existing bioinformatic resources and applications that are available for the 

study of MHC molecules and prediction of T cell epitopes. 

Crystallographic structures of (TCR/) peptide/MHC complexes were 

extracted from the Protein Data Bank (PDB) (Berman et al., 2000) and 

deposited into a new database termed MHC-Peptide Interaction Database 

version T (MPID-T; Chapter 3). The collected crystallographic structures were 

systematically clustered into superfamilies and analyzed for conserved 

structural interaction characteristics.  

A new generic protocol for docking peptide ligands to MHC class I and 

class II receptors is described in Chapter 4. This procedure forms the basis 

for the prediction of peptides that will bind to specific MHC alleles and hence 

facilitate the design of peptide vaccines. The accuracy of the docking protocol 

was assessed against a large dataset of non-redundant peptide/MHC 
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complexes in which three-dimensional information is available. 

Chapter 5 describes the structural analysis of ten PV associated, non-

associated and protective MHC class II receptors (DR4: DRB1*0401, *0402, 

*0404, *0406, DR6 (also classified now as DR14): DRB1*1401, *1404, *1405, 

DQ2: DQB1*0201, *0202 and DQ5: DQB1*0503) in an attempt to understand 

the functional correlation between MHC class II alleles and PV. Nine 

previously identified epitopes capable of stimulating patient derived T cells, 

were docked into the binding groove of each model to analyze the structural 

aspects of allele-specific binding. The results of this study indicate that the 

perfect fitting of a binding register within the binding groove of MHC class II 

alleles may not guarantee perfect fitting of the entire peptide. In addition, the 

results also indicate that flanking residues outside the binding groove appear 

to play a critical role in peptide selection. The PV-implicated alleles 

DRB1*0402 and DQB1*0503 share similar binding specificities and no single 

epitope may be responsible for both disease initiation and propagation in PV. 

In addition, it is discovered that the protective alleles DQB1*0201, *0202 may 

be capable of binding to most peptides with greater affinity than PV 

susceptible alleles, allowing for efficient deletion of autoreactive T cells. 

Chapter 6 details the development of a complementary scoring function 

for functional prediction of MHC class II binding peptides. High prediction 

accuracy of MHC class II binding peptides was validated by experimental 

biochemical and functional data. This approach successfully identified peptide 

binders which lack conserved binding motifs. Further analysis of the binding 

characteristics of class II binding peptides revealed the possible existence of 

multiple binding registers within a candidate class II binding peptide, 
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suggesting recognition via flexible fitting may play a critical role in binding to 

class II alleles.  

The developed docking protocol and its complementary scoring 

functions served as the basis for further analysis of DRB1*0402- and 

DQB1*0503-specific T cell epitope repertoire of the Dsg3 autoantigen 

(Chapter 7). Interestingly, the T cell epitope repertoire of DRB1*0402 and 

DQB1*0503 exhibit extensive overlap, indicating the existence of multiple 

initial immunodominant epitopes responsible for both disease initiation and 

propagation in PV.  Further analysis on the high level of cross-reactivities 

between DRB1*0402 and DQB1*0503 revealed that both alleles share similar 

specificities by binding peptides at different binding registers. The inability of 

some Dsg3 peptides to be recognized by autoreactive cells may be at the 

level of T cell recognition rather than the level of epitope selection by MHC 

molecules as a result of clonal deletion or anergic response. 

Chapter 8 draws conclusions from the bioinformatic-based approach to 

peptide/MHC analysis and also discusses future directions. The work 

presented in this thesis has been published in a series of journal articles and 

book chapters including a review on state-of-the-art techniques for predicting 

immunogenic epitopes (Chapter 2); the development of an interaction 

database for (TCR/) peptide/MHC crystallographic structures (Chapter 3); 

Chapter 4 where the peptide/MHC docking protocol was developed; Chapter 

5 where the difference in structural organization of the binding grooves of ten 

PV associated, non-associated and protective alleles is discussed; Chapter 6 

where a scoring function for MHC class II allele was developed; Chapter 7 

where large-scale screening of Dsg3 epitopes for PV-implicated alleles was 

 7



performed.  In addition, several other research works have been published 

during the course of study. These include – a review on the application of 

HMM on computational biology, and the development of an automated 

comparative modeling server for small disulphide-bonded proteins. 
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Chapter 2: Literature Survey 

2.1 Introduction 

MHC molecules are cell surface glycoproteins that play a vital role in the 

adaptive immune responses (Rammensee et al., 1993). Two classes of MHC 

molecules (class I and II) are responsible for antigen presentation. MHC class 

I molecules are synthesized in the endoplasmic reticulum (ER) and are 

present on the surface of virtually all nucleated cells, except neurons, in 

human. Similarly, MHC class II molecules are also synthesized in the ER but 

are present only in specific antigen presenting cells such as dendritic cells, 

endothelial cells, monocytes and B-cells. In order to help stimulate immune 

responses against a large repertoire of possible pathogens, MHC receptors 

can bind to a wide variety of peptides. The interaction of peptide/MHC 

complexes with T cell receptors (Lefranc and Lefranc, 2001) on the surface of 

T cells is responsible for T cell activation and stimulation of adaptive immune 

response. Hence, knowledge of the structure and biosynthesis of MHC 

molecules is fundamental to understanding how T cells recognize foreign 

antigens. This chapter introduces the basics of MHC biology and diversity; its 

relevance in clinical medicine and the complexities involved in the 

identification of potential peptides that bind to specific MHC molecules.   

2.2 Discovery of the MHC 

The discovery of the MHC dates back to 1936 by Peter Gorer where he 

identified a blood group locus in mice and showed that blood type segregated 

with susceptibility and resistance to a transplantable tumor (Gorer, 1937). This 
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was the first case of individual identification of a histocompatibility locus. 

Subsequently, George Snell introduced the term histocompatibility (H) antigen 

to describe antigens provoking graft rejection and demonstrated that, of all the 

potential H antigens, differences at the H-2 locus provoked the strongest graft 

rejection seen among various mouse strains. The designation MHC was not 

introduced until the early 1970s, when it became known that systems 

genetically homologous to H-2 existed in many other vertebrates. 

2.3 Genetic organization of the MHC 

The MHC genes in human, termed human leukocyte antigen (HLA) are found 

on chromosome 6. Today, HLA is organized into three major genetic regions 

or loci designated class I, II and III. Class III genes primarily encode 

components of the serum complement system. Class I and class II loci, on the 

other hand, encode a number of highly polymorphic cell-surface proteins 

responsible for antigen presentation. The HLA class I locus is subdivided into 

HLA-A, -B, and -C sub-regions, each encoding class I α chain genes. The 

class II HLA locus, HLA-D, is sub-divided into at least six sub-regions, namely 

HLA-DR, -DQ, -DP, -DX, -DO, and -DZ. The class I and class II genes are 

highly polymorphic genes in the human genome; for some of these genes 

over 200 allelic variants have been identified. HLA specificities are identified 

by an identifier for locus and a number (e.g. A1, DR4, and DQ5) and the 

haplotypes are identified by individual specificities. Specificities which are 

defined by genomic analysis are names beginning with an identifier for the 

locus followed by a four digit code (e.g. A*0101, Cw*0401, and 

DRB1*0503). Despite considerable MHC polymorphism, a single individual 
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expresses a finite number of MHC alleles and is heterozygous for each MHC 

gene in humans. The work presented here focus on MHC molecules that are 

responsible for antigen presentation. Therefore, the use of MHC for the rest of 

the text is restricted to only the class I and class II genes.  

2.4 Structure of the MHC 

MHC class I and class II molecules assist in immune surveillance by 

presenting peptide fragments of potential antigens to circulating T cells. In 

general, all MHC molecules share certain structural characteristics that are 

critical for their role in peptide display and recognition by T cells. T cell 

recognition of antigen is said to be MHC restricted, as T cell receptors (TCRs) 

will only bind to fragments of antigen that are associated with products of the 

MHC. Each MHC molecule contains an extracellular peptide-binding cleft 

which is composed of paired α-helices resting on a floor consisting of an 

eight-stranded anti-parallel β-sheet. This portion of the MHC molecule binds 

antigenic peptides for display to T cells, and the TCRs interact with the 

displayed peptide and with the helices of the MHC molecules. The amino acid 

residues located in and around this cleft are highly polymorphic and they are 

responsible for the different peptide binding specificities among different MHC 

alleles. A non-polymorphic determinant on the MHC molecules acts as the 

binding site for the T cell co-receptor molecules CD4 and CD8. CD4 and CD8 

are expressed on distinct subpopulations of mature T cells and together with 

the antigen receptors, participate in the recognition of antigen. CD8 binds 

selectively to class I MHC molecules, and CD4 binds to class II MHC 

molecules. Hence, CD8+ T cells recognize only peptides displayed by class I 
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molecules, and CD4+ T cells recognize only peptides presented by class II 

molecules. Most CD8+ T cells function as cytotoxic T cells and CD4+ cells are 

helper cells. 

2.4.1 MHC class I molecules 

MHC class I molecules are ternary complexes composed of a heavy 

glycosylated transmembrane protein non-covalently linked to a smaller 

polypeptide β2-microglobulin (β2m). The complete molecule has four globular 

domains; three formed by the heavy chain (α1, α2, α3) and one by β2m as 

shown in Figure 1. Both the α1 and α2 domains adopt similar structure: starting 

from the N-terminus each region of the chain forms four anti-parallel β-strands 

followed by a helical region across the β-strands on one side of the β-sheet. 

The two domains associate in such a way that their β-sheets are hydrogen-

bonded to each other forming a platform of a continuous eight-stranded anti- 

parallel β-sheet. The β-sheet is relatively flat with a small propeller twist. The 

sides of this cleft are formed by two α-helices, one from α1 and one from α2. It 

is within this cleft that antigen fragments are held and presented to T cells. 

The α3 domain consists of a transmembrane segment and a short cytoplasmic 

tail that anchors the molecule in the membrane. 
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Figure 1 Schematic of MHC class I structure. (A) Top view of class I molecule (HLA-

A*0201) based on X-ray crystallographic structure. (B) Side view of the same 

molecule clearly showing the anatomy of the peptide binding cleft formed by α-

helices (red) sitting on a platform of a β-sheet (green). 

2.4.2 MHC class II molecules 

MHC class II molecules are also transmembrane glycoproteins, consisting of 

two polypeptide chains (α, β) held together by non-covalent interactions. 

Similar to class I MHC, the complete class II MHC molecule has four globular 

domains, two on each chain (α1, α2, β1, β2). The α1 and β1 domains mimic the 

class I α1 and α2 domains in forming a peptide binding groove bounded by two 

α-helices and a β-sheet floor (Figure 2). 
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Figure 2 Schematic of MHC class II structure. (A) Top view of MHC class II molecule 

(HLA-DQB1*0302) based on X-ray crystallographic structure. (B) Side view of the 

same molecule clearly showing the anatomy of the peptide binding cleft formed by α-

helices (red) sitting on a platform of a β-sheet (green).   

2.5 Function of the MHC 

2.5.1 MHC class I molecules 

The class I MHC-restricted antigen processing and presentation pathway 

provides a sophisticated surveillance mechanism aimed at detecting viral 

infections in cells. MHC class I molecules are synthesized in the endoplasmic 

reticulum (ER) and are present on the surface of virtually all nucleated cells, 

except neurons, in human. Their function is to bind peptides derived from 

endogenous antigens within the cell, transport them to the cell surface, and 

present the bound peptide ligands to cytotoxic T cells through the TCR and 
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CD8. Most class I peptide ligands are derived from proteins that are degraded 

by proteasomes. The proteasome has broad substate specificity and can 

generate a wide variety of peptides from cytosolic proteins. Exposure of cells 

to interferon (IFN)-γ induces the synthesis of three proteolytic proteasome 

subunits − low molecular weight proteins (LMP)-2, LMP-7, and multicatalytic 

endopeptidase complex (MECL)-1 − which are incorporated into an alternative 

form of proteasome, called immunoproteasome, displacing the constitutive 

subunits β1, β2, and β5, respectively (Palmowski et al., 2006). At the present 

time, much remains unknown regarding how the products of such 

endopeptidase activity are related to the final MHC class I ligands. One 

possibility is that the proteasomes directly produce peptides of appropriate 

size. Alternatively, the proteasomes may generate longer peptides that 

require further processing. It is also possible that two short non-continuous 

peptide fragment can be fused together to create the final class I ligand via 

post-translational protein splicing (Hanada et al., 2004). In any case, majority 

of these peptides are transported from the cytosol into the ER by the 

transporter associated with antigen processing (TAP) (Yewdell et al., 2003). 

TAP consists of two structurally related subunits, which interact to form a 

functional peptide-transporting complex. Before peptide translocation by TAP, 

peptides bind to the membrane-proximal, cytosolic surface of TAP1/TAP2 

complexes (Androlewicz et al., 1994). Hydrolysis of ATP results in peptide 

translocation into the ER lumen (Momburg and Hämmerling, 1998). Within the 

ER lumen, precursor peptides may be further trimmed by an ER-resident 

amino peptidase ERAAP (ER aminopeptidase associated with antigen 

processing) before loading onto MHC class I molecules (Hammer et al., 
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2005). The class I peptide/MHC complexes eventually exit the ER by 

association with B cell-associated protein Bap31 (Spiliotis et al., 2000). 

2.5.2 MHC class II molecules 

Similar to MHC class I molecules, MHC class II molecules are also 

synthesized in the ER. In addition to the polypeptide α and β chains, an 

invariant chain (Ii) is also produced within the ER, which associates with MHC 

class II molecules before they reach the cell surface (Cresswell, 1994). Unlike 

MHC class I expression, which encompasses most cells, class II MHC 

expression is limited to specific antigen presenting cells (APCs) such as 

dendritic cells, endothelial cells, monocytes and B-cells. They present 

exogenous peptide antigens to helper T cells through the TCR and CD4. 

Exogenous foreign antigen is processed through the MHC class II pathway. 

Antigen is internalized and degraded enzymatically in endosomes and 

lysosomes into peptide fragments. MHC class II molecules remain competent 

for peptide loading by binding fragments of Ii in the ER. These fragments 

remain bound while Ii targets the MHC class II molecule to a lysosomal-like 

compartment termed MHC class II compartment (MIIC) (Peters et al., 1995; 

Rudensky et al., 1994). Within the MIIC, the Ii is removed from MHC class II 

molecules by the combined action of proteolytic enzymes and HLA-DM 

molecule, and the peptides are able to bind to the available peptide binding 

clefts of the class II molecules. Newly loaded class II molecules are 

subsequently translocated to the surface of APCs where their interactions with 

helper T cells stimulate effector response by the production of cytokines. 
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2.6 Binding of peptides to MHC 

2.6.1 MHC class I molecules 

The binding of peptides to MHC class I molecules is a non-covalent 

interaction mediated by residues both in the peptides and in the clefts of the 

MHC molecules. Peptides of seven to fourteen residues bind to class I MHC 

molecules in an extended conformation. The amino-acid residues of a peptide 

may contain side-chains that fit into polymorphic cavities (or ‘pockets’) and 

bind to complementary amino acids in the MHC molecule. These residues are 

called anchor residues because they ‘anchor’ the peptide firmly in the MHC 

binding cleft and contribute most of the favorable interactions of the binding. 

There are typically two anchor residues at the second (or fifth) and final 

peptide position. The termini of the peptide are buried deep in the cleft and 

are bound by a set of conserved hydrogen bonds (Madden et al., 1992). 

Interestingly, this arrangement does not limit the length of the peptide. Longer 

peptides may zigzag (Madden et al., 1993) or bulge (Collins et al., 1995; Guo 

et al., 1992) to allow peptides of greater length to maintain the relative 

position of the termini, and peptides without the presence of canonical 

anchors have also been discovered to bind with high avidity to their respective 

MHC molecules (Chen et al., 1994; Jameson and Bevan, 1992; Ruppert et al., 

1993; Doytchinova et al., 2004a). The peptide-binding cleft can be subdivided 

into various pockets (A to F) (Garrett et al., 1989). The polymorphic residues 

that line the peptide-binding cleft determine the individual specificity of 

peptide/MHC interaction. 
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2.6.2 MHC class II molecules 

Unlike class I, where the allele-independent hydrogen bonding to the peptide 

is focused at the N- and C- termini, the class II MHC forms hydrogen bond 

along the entire length of the peptide with links to the atoms forming the main 

chain. The open nature of the class II binding cleft places no constraint on the 

length of the peptide, which can extend out of the binding cleft unlike class I 

ligand site. Thus, each class II molecule can accommodate peptides with a 

spectrum of lengths ranging from nine to thirty amino acid residues. Similar to 

class I molecules, the peptide-binding cleft of class II molecules can be 

subdivided into a series of pockets (1 to 9) (Stern and Wiley, 1994; Murthy 

and Stern, 1997). 

2.7 Relevance for clinical medicine 

Many common and severe diseases depend on the function of the cellular 

immune system and consequently on its mechanisms for specific recognition. 

Although this naturally applies to infectious diseases, this is also true for a 

number of autoimmune disorders and chronic inflammatory conditions such 

as rheumatic diseases, diabetes and multiple sclerosis. It is estimated that 

between 1–5% of all peptides can bind a particular MHC molecule (Brusic and 

Zeleznikow, 1999). Where infectious diseases are concerned, clear 

knowledge of allele specific disease-inducing peptides as relevant T cell 

epitopes provides a better platform for the construction of new vaccines; one 

can ascertain exactly which parts of a microorganism are recognized by the 

cellular immune system and specifically focus the production of vaccine on 
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those regions (Buus, 1999; Corradin and Demotz, 1997; Uebel and Tampe, 

1999; Ferrari et al., 2000).  

In many autoimmune disorders, better explanations have been 

provided for the associations between disease susceptibility and the 

histocompatibility antigen type carried by an individual (Singh, 2000). Detailed 

understanding of the binding specificities of relevant alleles implicated in 

disease facilitates the development of immunotherapeutic strategies for 

selectively diminishing or altering immune reactions that may a central role in 

autoimmune disorders. As strides have been made in identifying auto-

antigens capable of provoking disease, the use of immunogenic epitopes of 

these antigens to prevent or ameliorate disease has also been reported 

(Evavold et al., 1993; Bielekova and Martin, 2001).  

2.8 Complexities in identifying T cell epitopes 

The identification of T cell epitopes is beset with a number of inherent 

difficulties. Complexities to be addressed include high polymorphism of HLA 

alleles, as well as allele specificity of candidate peptides (Williams 2001). 

Within the human population there is a great diversity of HLA genes with more 

than 2745 known variants identified as of February 2007 

(http://www.anthonynolan.org.uk/HIG/). Binding studies show that each HLA 

allele has a unique spectrum of binding specificities to a restricted set of 

peptides and efficient peptide/MHC binding is required for immunogenicity 

(Sette et al., 1994). However, there is also evidence indicating efficient 

peptide/MHC binding does not guarantee immunogenicity (Feltkamp et al., 

1994). Thus, binding of antigenic peptides to specific MHC alleles is an 
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important rate-limiting step in T cell activation. Wet-lab verification of binding 

peptides for every allele is a time-consuming and costly process; and not 

applicable to studies involving large numbers of protein sequences 

(Doytchinova and Flower, 2005). There is presently a limited set of 

experimental data on HLA-binding peptides. For the majority of HLA variants 

experimental data do not exist at all. Furthermore, imprecision, errors, and 

biases are prevalent in existing experimental data. Computing approaches 

with tolerance for imprecision, uncertainty and partial truth are in great 

demand to accelerate the T cell epitope discovery process (Yu et al., 2002; 

Schirle et al., 2001). 

2.9 Bioinformatic resources for peptide/MHC interactions 

In recent years, bioinformatic tools modeling the immune system network 

have played an instrumental role in advancing peptide vaccine discovery, with 

reported successes in melanoma (Roberts et al., 2006), multiple sclerosis 

(Bourdette et al., 2005), malaria (Lopez et al., 2001) and anti-tumor vaccines 

(Knutson et al., 2001). The availability of general and specialized boutique 

databases have enabled the development of bioinformatic tools for the 

analysis and prediction of peptide/MHC interactions. The most important 

databases are discussed next with some of the implications they have for the 

study of peptide/MHC interactions. 
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2.9.1 General databases  

2.9.1.1 Swiss-Prot 

Swiss-Prot (Bairoch et al., 1998, 2004) is a protein sequence database that 

endeavors to provide high quality annotation through manual curation with 

minimum redundancy. As of February 2007, Swiss-Prot contains 257,964 

records totally 93,947,433 amino acids. Swiss-Prot records are deposited by 

biologist and further validated by domain experts. As a result of manual 

curation, the coverage of Swiss-Prot is not as wide as one would hope for. 

Therefore to counter this limitation, TrEMBL (Translated EMBL) was created 

as a computer-annotated supplement to Swiss-Prot (Bairoch and Apweiler, 

1998). This supplement consists of all translation of EMBL nucleotide 

sequences that are not available in Swiss-Prot. As of February 2007, TrEMBL 

consists of 3,745,801 records encompassing 1,218,084,224 amino acids.  

2.9.1.2 Protein Data Bank (PDB) 

PDB (http://www.rcsb.org/pdb/) (Berman et al., 2000) is the single worldwide 

archive of structural data of biological macromolecules. It contains structures 

of proteins, nucleic acids, and a few carbohydrates. The PDB assigns a four-

character identifier to each structure deposited. The first character is a 

number from 1–9. In many cases several entries correspond to one protein, 

either solved in different states of ligation, or in different crystal forms, or re-

solved using better crystals or more accurate data collection techniques. As of 

February 2007, PDB contains a total of 41,527 structures. 
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2.9.2 Specialized databases  

2.9.2.1 IMmunoGeneTics HLA (IMGT/HLA) Sequence Database 

The IMGT/HLA Sequence Database (http://www.ebi.ac.uk/imgt/hla/) is a 

specialist database for HLA sequences and includes the official sequences for 

the WHO HLA Nomenclature Committee for Factors of the HLA System. As of 

February 2007, the database contains 2,745 allele sequences as well as 

detailed information concerning the material from which the sequence was 

derived and data on the validation of the sequences. Additionally IMGT/HLA 

also publishes monthly HLA nomenclature updates both in journals and 

online.  

2.9.2.2 NCBI dbMHC 

NCBI dbMHC database (http://www.ncbi.nih.gov/mhc/MHC.cgi?cmd=init) was 

designed to provide a platform where the HLA community can submit, edit, 

view, and exchange MHC data. It currently consists of an interactive 

Alignment Viewer for HLA and related genes, an MHC microsatellite 

database, a sequence interpretation site for Sequencing Based Typing (SBT), 

and a Primer/Probe database. The MHC database is fully integrated with 

other NCBI resources, and provides links to the IMGT/HLA database.  

2.9.2.3 MHCPEP 

MHCPEP (http://wehih.wehi.edu.au/mhcpep/) is a manually curated database 

that contains more than 13,000 experimentally validated MHC-binding peptide 

sequences (Brusic et al., 1998a). Entries are compiled from published reports 
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and direct submissions of experimental data. Each record contains the 

peptide sequence, its MHC specificity and where available, experimental 

method, observed activity, binding affinity, source protein and anchor 

positions, as well as publication references.  

2.9.2.4 MHCBN 

MHCBN (http://bioinformatics.uams.edu/mirror/mhcbn/index.html) is a 

database of MHC binding and non-binding peptides compiled from published 

literature and existing databases (Bhasin et al., 2003). As of February 2007, 

the database contains 20,717 MHC binders and 4,022 MHC non-binders for 

over 400 MHC molecules. The database also contains other information such 

as TAP binding and non-binding peptides, as well as sequence and structure 

data of source proteins of peptides and MHC molecules. MHCBN also 

provides hypertext links to major databases including Swiss-Prot, PDB, 

IMGT/HLA, and PubMed, among others.  

2.9.2.5 AntiJen 

AntiJen (http://www.jenner.ac.uk/antijen) is a database containing 

experimentally determined quantitative binding data for MHC-binding ligands, 

T cell epitopes, and TAP-binding peptides, among others (Toseland et al., 

2005). The database also archives continuous quantitative data on a variety 

of immunological molecular interactions including thermodynamic and kinetic 

measures of peptide binding to TAP and MHC, peptide/MHC complexes 

binding to T cell receptors, antibodies binding to protein antigens and general 
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immunological protein-protein interactions. As of February 2007, the database 

contains over 24,000 entries. 

2.9.2.6 SYFPEITHI 

SYFPEITHI (http://www.syfpeithi.de) is a database for MHC class I and class 

II ligands and peptide motifs of humans and other species, such as apes, 

cattle, chicken, and mouse obtained from published data (Rammensee et al., 

1999). All motifs currently available are accessible as individual entries. 

Searches for MHC alleles, MHC motifs, natural ligands, T cell epitopes, 

source proteins/organisms and references are possible. The database 

includes hyperlinks to EMBL and PubMed as well as ligand predictions for a 

number of MHC alleles.  

2.10 Computational methods for predicting T cell epitopes 

Two main categories of specialized bioinformatic tools are available for 

prediction of MHC-binding peptides – methods based on identifying patterns 

in sequences of binding peptides, and those that employ three-dimensional 

(3D) structures to model peptide/MHC interactions. The first group includes 

procedures based on binding motifs, matrices, decision trees, artificial neural 

networks, hidden Markov models and support vector machines. In contrast, 

the second category corresponds to techniques with distinct theoretical 

lineage and includes the use of homology modeling, docking, 3D-QSAR and 

3D threading techniques. This section provides an overview of these 

methods, their strengths and their weaknesses. 
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2.10.1 Sequence-based approach  

2.10.1.1 Discovery of anchor residues and sequence motifs 

The earliest attempt to predict MHC-binding peptides started with the 

discovery that peptides binding to specific MHC alleles are functionally related 

and share residues with similar properties at various positions of their primary 

sequences. Class I and class II binding peptides contain residues with side-

chains that fit into polymorphic cavities (or ‘pockets’) and bind to 

complementary residues of specific MHC alleles. These residues are called 

anchor residues because they ‘anchor’ the peptides firmly at various positions 

in the MHC binding cleft (Falk et al., 1991a,b; Jardetzky et al., 1991; Hunt et 

al., 1992) and contribute to most of the binding interactions. This led to the 

definition of “peptide motif” (Falk et al., 1991b; Roetzschke et al., 1991) for an 

array of class I and class II alleles. Numerous research groups, including 

Zhang et al. (1993), Lipford et al. (1993), Sette et al. (1993), Sidney et al. 

(1994), Parker et al. (1994), Hammer et al. (1994), Rammensee et al. (1995), 

Meister et al. (1995), D’Amaro et al. (1995) and Rajapakse et al. (2006) 

developed computational tools that scan peptides that fit these motifs.  

It was later discovered that residues along other positions of a peptide 

also play a vital role to binding and sequence motifs alone are inadequate to 

account for the comprehensive binding ability of a candidate peptide (Chen et 

al., 1994; Jameson and Bevan, 1992; Ruppert et al., 1993; Doytchinova et al., 

2004a). Immunodominant peptides without the required binding motifs were 

identified (Scott et al., 1998) and not all motif-conforming peptides do bind to 

the respective MHC alleles (Martin et al., 2003). In an attempt to investigate 
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the role of motifs in binding, Ruppert et al. (1993) performed binding assays 

on peptides which are motif-positive for HLA-A*0201 and found that only 

about 30% of motif-conforming peptides were actual binders. In practice, 

binding motif models have proven to be both non-sensitive and non-specific 

(Martin et al., 2003). This approach fails to detect binders not conforming to 

existing motifs and includes non-binding sequences that fit the required 

patterns (Meister et al., 1995). However, despite these limitations, this 

approach is still a useful alternative to random guessing or use of a complete 

overlapping set of peptides for selection of candidate binders (Yu et al., 2002). 

2.10.1.2 Binding matrices 

Binding matrices represent an enhancement of simple motif models by 

correlating peptide residue positions to binding. This approach employs the 

use of tables containing l×20 coefficients where l corresponds to the length of 

the binding motif and 20 for each amino acid symbol (Davenport et al., 1995; 

Gulukota et al., 1997). Consensus scores are obtained by summing, 

multiplying or averaging the matrix coefficients and compared against a 

predetermined threshold. In general, matrices are constructed using amino 

acid frequencies at different position of known binders or quantitative MHC-

binding data. The former indicates the binding likelihood of a peptide 

sequence to the MHC molecule, while the later provides means of quantifying 

the peptide binding affinity. Examples of matrices derived from simple counting 

of amino acid frequencies at different position of known peptide binders 

include EpiMatrix (Schafer et al., 1998) and SYFPEITHI (Rammensee et al., 
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1999), while BIMAS (Parker et al., 1994) was developed by fitting of MHC-

binding data. 

More complex forms of matrix-based models have been developed to 

detect weak binding patterns and to account for noisy and collinear data. 

Reche et al. (2002) employed the use of position specific scoring matrices from 

a set of aligned binding peptides to predict binders to an array of MHC class I 

and II molecules. Peters et al. (2003) introduced the use of Stabilized Matrix 

Method (SMM) as predictor for HLA-A2 binding peptides. Nielsen et al. (2004) 

applied a Gibbs sampler to detect weak sequence motifs in class I and class II 

binding peptides. Rajapakse et al. (2005) utilized a multi-objective evolutional 

algorithm to identify a consensus motif for I-Ag7. Guan et al. (2003) and 

Doytchinova et al. (2002) employed the use of multivariate statistics to 

improve the predictive performance of their matrices. An additive equation 

was formulated to account for individual amino acid contributions at each 

position and interactions with neighboring amino acids. The matrix was 

subsequently solved through the use of partial least square regression.  

2.10.1.3 Decision trees 

Decision trees are rule-based models that classify patterns using a sequence 

of well-defined rules (Duda et al., 2001). Position-specific binding motifs are 

converted into rules and embedded within the nodes of a decision tree. The 

resulting tree structure indicates amino acid properties that are strongly 

correlated with physicochemical properties of binding peptides. Peptide 

sequences are threaded through a series of nodes and the result of all node-

to-node transitions are used to determine the outcome of prediction. Because 
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of its capability to elucidate both linear and non-linear problems, this approach 

has been adopted by several groups to identify higher-level rules for binding. 

Savoie et al. (1999) constructed a decision tree using the BONSAI program to 

investigate T cell preference and adverse motifs for HLA-A*0201 binding 

peptides. Segal et al. (2001) adopted a similar tree-structured technique to 

predict peptides binding to H2-Kb. An example of a decision tree network is 

shown in Figure 3. 

 

Figure 3 Subset of decision tree network employed by Segal et al. (2001). Each 

node represents grouping of preferential/non-preferential amino acid residues at 

various positions of H2-Kb binding peptides. Predicted class at each node (ellipses – 

internal; rectangles – terminal) is given by the 0 (non-binding) or 1 (binding) within 

each node. 

2.10.1.4 Artificial neural networks 

Artificial Neural Networks (ANNs) are connectionist models particularly well 

suited to perform classification and complex pattern recognition tasks 

(Zurada, 1999). ANNs can encode non-linear data and have been used 

extensively for prediction of peptide binding to both class I and class II alleles 
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(Brusic et al., 1994; Honeyman et al., 1998; Gulukota et al., 1997; Adams and 

Koziol, 1995; Milik et al., 1998; Buus et al., 2003; Nielsen et al., 2003). 

Peptide features are represented by amino acid descriptors such as 

composition, hydrophobicity, volume and charge. The descriptors are used to 

train an ANN for classifying peptides into binders and non-binders. An 

example of ANN architecture is illustrated in Figure 4. An investigation on the 

predictive performance of ANNs revealed that this approach gradually 

outperforms motifs, matrices and hidden Markov models (HMMs) with 

increasing peptide data (Yu et al., 2002). A major drawback of ANN is the 

requirement of a fixed input length. As such, a given ANN model can only 

predict binding peptides that are of the same length as those in the training 

dataset. This constraint restricts the ability of ANN to predict epitopes with 

length that differ from those used in the trained network.  

 

 

Figure 4 A three-layer ANN for predicting class I binding peptides by Brusic et al. 

(1994). The first layer represents input nodes with the number of nodes 

corresponding to the length of input peptide; the number of second (hidden) layer 

nodes equals to the ideal length of binding peptides; and a single output node 

predicts binding versus non-binding. 
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Various groups have developed hybrid versions of ANN for 

peptide/MHC prediction. Nielsen et al. (2003) described a combination of a 

series of neural networks using several sequence coding strategies including 

a hidden Markov model encoding to improve the predictive power of the 

system. Brusic et al. (1998b) integrates the strength of matrix models and 

evolutionary algorithm (EA) for processing ANN training set. New alignment 

matrices were selected by EA based on evolutionary principles. Each parent 

(matrix) produces two children consisting of an exact copy of itself and a 

mutant copy, and passes the child with the higher fitness value to the next 

generation. The highest scoring alignments from the final generation matrices 

were subsequently fed into ANN for training.  

2.10.1.5 Hidden Markov models 

Hidden Markov model (HMM) belongs to a type of probabilistic graphical 

models that have been successfully applied to a wide range of applications in 

statistical pattern recognition and classification (Rabiner, 1989). In order to 

overcome the potential limitations of ANNs, HMMs have been applied to 

predict peptides binding to MHC (Mamitsuka, 1998; Brusic et al., 2002). 

Similar to decision trees and ANNs, HMMs have the ability to cope with non-

linear data and are suitable for representing sequences having flexible 

lengths. Associated with each HMM is a series of discrete-state, time-

homologous, first-order Markov chain (MC) with suitable transition 

probabilities between states and an initial distribution. Each state consists of a 

discrete or continuous distribution over possible emissions or outputs. These 

outputs are generated when the particular state is visited or during transition 
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from state to state. Transitions between states follow a set of transition and 

emission probabilities. The transition probability is the probability of moving 

from one state to another via a connected edge, and the emission probability 

is the probability of emitting a particular symbol at a state. The sequences of 

states underlying the MC are hidden and cannot be observed, hence the 

name hidden Markov model. The probability of any sequence, given the 

model, is computed by multiplying the emission and transition probabilities 

along the path.  

 
A 

 
B 

 

Figure 5 HMM topologies adopted for peptide/MHC prediction by Mamitsuka, (1998). 

(A) A profile HMM, (B) A fully connected HMM. 

The use of HMM for peptide/MHC prediction was first reported in the 

literature (Mamitsuka, 1998) using two different HMM topologies: profile HMM 

and fully connected HMM. Profile HMMs (Figure 5a) are linear left-right 

models where the underlying directed graph is acyclic, with the exception of 

loops, hence supporting a partial order of the states. The profile HMM 

architecture (Durbin et al., 1998) consists of three classes of states: the match 

state, the insert state and the delete state; and two sets of parameters: 

transition probabilities, and emission probabilities. The match and insert 

 31



states always emit a symbol, whereas the delete states are silent states 

without emission probabilities. A fully connected HMM (Figure 5b) consists of 

states that are pairwise connected such that the underlying digraph is 

complete. There are no distinguished starting and terminating states and the 

transition matrix does not contain any zero entries with the exception of 

diagonal entries, which correspond to loops or self-transitions. Because there 

is no constraint on the structure of a fully connected HMM, this model permits 

the representation of more than one sequence pattern concealed in the 

training data. 

2.10.1.6 Support vector machines 

Support vector machines (SVM) are statistical learning methods based on the 

structural risk minimization principle (Han et al., 2004). Similar to decision 

tree, ANN and HMM, it has the ability to handle both linear and non-linear 

data. Every peptide sequence is represented by specific feature vector 

assembled from encoded representations of residue properties such as amino 

acid composition, hydrophobicity, polarity, charge, bulkiness and solvent 

accessibility. Parameters are trained by mapping input vectors into a high 

dimensional feature space and maximizing the margin between the binders 

and non-binders with an optimal separating hyperplane. SVM outperforms 

ANN and decision tree in the absence of large training dataset (Zhao et al., 

2003) and has been embraced by several groups including Dönnes and 

Elofsson (2002), Bhasin and Raghava (2004a) and Bozic et al. (2005) for 

predicting class I and class II binding peptides. Hybrid models based on ANN 
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and SVM have also been developed by Bhasin and Raghava (2004b) for 

consensus and combined prediction of T cell epitopes.  

2.10.2 Structure-based approach  

2.10.2.1 Protein threading 

Protein threading (Akutsu and Sim, 1999) or side-chain conformational search 

(Sezerman et al., 1996) involves computing an alignment between a target 

amino acid sequence and the spatial positions of a 3D structure. In the 

context of peptide/MHC modeling, this involves substituting the backbone 

coordinates of a source peptide (P1, P2 … Pn) that is bound to a MHC 

molecule of interest with the target peptide sequence (S1, S2 … Sn) by 

replacing Pi with Si. A search for the best side-chain conformations is usually 

performed, and a scoring scheme is subsequently applied to discriminate the 

binders from non-binders.  

Altuvia et al. (1995) demonstrated the use of protein threading to detect 

binding peptides not conforming to HLA-A*0201 binding motifs using the 

statistical pairwise potential table of Miyazawa and Jernigan (1985, 1996). 

This was subsequently extended to the analysis of peptides binding to an 

array of class I alleles (Altuvia et al., 1997; Schueler-Furman et al., 1998). 

This approach successfully identified peptides binding to MHC molecules with 

hydrophobic binding pockets but not to MHC molecules with hydrophilic, 

charged pockets. In order to circumvent the problem, Kangueane et al. (2000) 

introduced the use of knowledge-based rules to discriminate binders from 

non-binders based on the number of observed atomic clashes between the 

MHC and its bound peptide, and the number of solvent exposed hydrophobic 
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residues on the modeled peptide. The problem was later solved by Schueler-

Furman et al. (2000) through the use of a different pairwise potential table 

(Betancourt and Thirumalai, 1999) that described hydrophilic interactions 

more appropriately.  

2.10.2.2 Homology modeling 

Homology modeling (Swindells and Thornton, 1991; Sali and Blundell, 1993) 

employs the use of available homologous protein structure(s) to predict the 

unknown structure of a related amino acid sequence. In the context of 

peptide/MHC prediction, the aim is to model the bound conformation of a 

peptide sequence with an unknown structure given the 3D structure of other 

bound peptides to homologous MHC molecules. Hammer et al. (1995) 

constructed a series of synthetic peptide/HLA-DRB1*0402 models from HA 

peptide/HLA-DRB1*0101 crystallographic structure to identify specific patterns 

of peptide binding. Michielin et al. (2000) successfully developed a model of 

T1 TCR/PbCS/H2-Kd complex based on its homology with the 2C TCR, the 

A6 TCR/Tax/HLA-A2 complex, the 1934.4 TCR Vα chain, the 14.3.d TCR Vβ 

chain, and the H2-Kb ovalbumine peptide. Buoyed by the excellent results, 

Michielin et al. (2002) applied the methodology to identify critical residues of 

the A6 TCR that interacts with peptide/HLA-A2 complex. Rognan et al. (1999) 

and Logean et al. (2001) applied a similar two-step approach to construct the 

bound conformation of peptides to an array of class I alleles. Their modeling 

procedure begins by selecting peptide termini residues based on homology to 

the most similar MHC-bound peptide with available crystallographic structure. 
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The remaining residues were subsequently constructed by satisfaction of 

spatial restraints using a knowledge-based loop search procedure.  

2.10.2.3 Docking 

Computer-simulated ligand binding or docking is a powerful technique for 

investigating intermolecular interactions. In general, the purpose of docking 

simulation is two-fold – (i) to find the most probable translational, rotational, 

and conformational juxtaposition of a given ligand-receptor pair, and (ii) to 

evaluate the relative goodness-of-fit or how well a ligand can bind to the 

receptor. Several docking techniques have been developed to address the 

peptide/MHC combinatorial problem. Caflisch et al. (1992) developed a 

combinatorial buildup algorithm to dock the influenza matrix peptide 58-68 to 

HLA-A*0201. Rosenfeld et al. (1993, 1995) utilized a multiple copy algorithm 

to identify probable termini peptide conformations and constructed the 

intervening sequence using a loop closure algorithm. Molecular dynamics 

(MD) simulations have also been applied by various groups (Antes et al., 

2006; Lim et al., 1996; Wan et al., 2004; Tzakos et al., 2004; Zacharias and 

Springer, 2004) to simulate the interactions of MHC and its corresponding 

bound peptides. This approach simulates the motion of a molecule by 

computing the changes of the atomic coordinates as a function of time. The 

simulation begins with a static structure, usually corresponding to a low 

energy conformation of the molecule. At each successful step, the position 

and the velocities of the atoms are computed using previous coordinates, 

velocities and accelerations, until predetermined criteria such as energy 

minima are achieved. 
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2.10.2.4 3D-QSAR 

The three-dimensional quantitative structure-affinity relationship (3D-QSAR) 

approach employs the use of peptide structures (in the absence of MHC) to 

predict the affinity of peptides to MHC molecules. Zhihua et al. (2004) 

constructed a A*0201 3D-QSAR model to study the relationship between 3D 

structural parameters of the HLA-A*0201 binding peptide and the HLA-

A*0201/peptide binding affinities. Fickel and del Carpio (2000) applied the 

methodology to study the structural deviations of HLA-A24 complexes. An 

alternative discrimination scheme was also introduced by Doytchinova and 

coworkers that employed similarity indices to study peptides binding to an 

array of MHC molecules (Doytchinova and Flower, 2001; Guan et al., 2003; 

Doytchinova et al., 2004a; Doytchinova et al., 2005; Hattotuwagama et al., 

2005). 

2.11 Computational methods for predicting MHC supertypes 

The classification of MHC alleles into supertypes or superfamilies is important 

for the development of epitope-based vaccine (Sette et al. 2001, 2002). By 

clustering MHC alleles on the basis of their structural features and/or peptide 

binding specificities, promiscuous T cell epitopes that bind multiple MHC 

alleles can be identified. Such peptides are key targets for the design of 

vaccines and immunotherapies because they are applicable to higher 

proportions of human population. However, experimental determination of 

binding specificities for even a single MHC allele is an expensive, laborious 

and time consuming process; and not practical for the study of MHC 

 36



supertypes which involve large numbers of alleles (Doytchinova and Flower, 

2005).  

In silico, bioinformatics is emerging as an alternative and viable 

approach for MHC supertype classification. Two groups of clustering 

techniques can be recognized in the literature reviewed – methods based on 

peptide specificities, and those that classify MHC alleles using 3D structural 

features. This section provides an overview of existing strategies for MHC 

supertype classification. 

2.11.1 Clustering using peptide specificities  

A strategy for the development of epitope-based vaccines with wide 

population coverage is to identify HLA alleles that are present in most 

individuals from all major ethnic groups and ensuring that these alleles bind to 

at least one of the peptides in the vaccine. Accordingly, promiscuous peptides 

that bind more than one HLA allele are ideal for such purpose. By clustering 

MHC alleles on the basis of their peptide binding specificities, promiscuous T 

cell epitopes that are representative of large proportion of human population 

can be identified. Sturniolo et al. (1999) demonstrated the use of multiple 

quantitative matrices for predicting promiscuous peptides binding to HLA-DR 

alleles. Brusic et al. (2002) combined peptide and MHC interaction sequences 

with a HMM to predict peptide binding to the HLA-A2 supertype. Guan et al. 

(2003) employed the use of 2D-QSAR to investigate peptide specificities to 

four HLA-A3 alleles and formulated a refined HLA-A3 supertype motif. Lund et 

al. (2004) constructed weight matrices representing the specificities of several 

HLA-DR alleles as well as all HLA-A and -B alleles in the SYFPEITHI 
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database using a Gibbs sampling procedure. Distance matrices were 

clustered using the neighbour-joining method of Saitou and Nei (1987). This 

approach characterized HLA-A, -B and -DR alleles into five, seven and nine 

clusters respectively according to their peptide binding specificities.   

2.11.2 Clustering using MHC structural features  

An alternative approach for HLA supertype definition is to identify alleles with 

similar binding specificities from a structural view point. HLA alleles with 

similar binding specificities share common structural features within the 

peptide binding cleft. The binding clefts contain cavities (or anchor “pockets”) 

that correspond to primary and secondary anchor positions on the binding 

peptide. Doytchinova et al. (2004b, 2005) demonstrated that only one to three 

amino acids within these binding pockets are sufficient to classify an allele to 

a particular class I or class II supertype. HLA-A, -B, -C, -DR, -DQ, -DP alleles 

were subsequently grouped into three, three, two, five DRs, three DQs and 

four DPs clusters respectively. 

2.12 Modeling Issues 

The accuracy of a prediction model is highly dependent on the quantity and 

quality of available experimental data. This section discusses the issues 

related to peptide data which have implications for the selection and 

performance of prediction model. 
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2.12.1 Data Quantity  

The availability of known peptide binders to specific alleles has a direct impact 

on the choice and quality of prediction model. When little or no data are 

available, structure-based predictive techniques are preferred. However, the 

development of computational tools under this category is severely impeded 

by inherent complexities in terms of model building, data fitting and 

computational speed. As the number of known peptide binders increases, 

sequence-based predictive techniques become more useful predictors. SVM 

outperforms ANNs and decision trees using small training dataset of 36 

binders and 167 non-binders (Zhao et al., 2003). An investigation on the 

predictive performance of ANNs revealed that this approach gradually 

outperforms motifs, matrices and HMMs with increasing peptide data (Yu et 

al., 2002). ANN and HMM are the predictive methods of choice for MHC 

alleles with more than 100 known binders (Yu et al., 2002).  

2.12.2 Data Quality  

Noise and errors in the datasets have an adverse effect on the construction of 

useful predictive models. Brusic et al. (1997) investigated the impact of noise 

in datasets for constructing matrix-based models. They demonstrated that 5% 

of errors in a dataset will double the number of data points, relative to a ‘clean’ 

dataset, required to build a matrix-based model of a pre-set accuracy. On the 

contrary, the same magnitude of error does not significantly affect the 

performance of ANNs due to their ability to handle imperfect or incomplete 

data (Hammerstrom, 1993).   
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2.12.3 Data Bias  

Overfitting occurs when a predictive model adapts too well to the training data 

and includes random disturbances in the training set as being significant. As 

these disturbances do not reflect the underlying distribution, the performance 

of the machine learning techniques on the given dataset is affected. This 

overfitting problem is typically avoided by using a regularizer (Karplus, 1995) 

that replaces the observed amino acid distribution by its estimator. 

2.13 Summary 

 The functional responses of T cells are initiated by the recognition of 

peptide/MHC complexes on the surfaces of APCs. Two classes of 

MHC molecules, class I and class II, are responsible for antigen 

presentation to TCRs. 

 The human form of MHC genes, HLA are highly polymorphic with more 

than 2000 known variants identified at the present time.  

 Each HLA allele has a unique spectrum of binding specificities to a 

restricted set of peptides and an efficient peptide/MHC binding is 

required for immunogenicity. However, there is also evidence that 

indicates that efficient peptide/MHC binding does not guarantee 

immunogenicity (Feltkamp et al., 1994).  

 Detailed understanding of the binding specificities of relevant alleles 

implicated in disease facilitates the development of epitope-based 

vaccines and immunotherapeutic strategies. 

 The experimental determination of binding peptides for every allele is 

prohibitively expensive in terms of labour, time and cost.  
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 At present, there is a limited set of experimental data on HLA-binding 

peptides. For majority of HLA variants experimental data do not exist. 

 The availability of general and specialized boutique databases such as 

Swiss-Prot, PDB, MHCPEP, MHCBN, IMGT/HLA, NCBI dbMHC, and 

AntiJen, have facilitated the development of bioinformatic tools for the 

analysis and prediction of peptide/MHC interactions.  

 T cell epitope prediction tools help researchers identify allele-specific 

binding peptides and reduce the number of peptides to be synthesized 

and assayed.  

 MHC supertype classification tools facilitate the identification of alleles 

with similar structural features and/or peptide specificities. Such tools 

are important for the identification of promiscuous epitopes that can 

bind to multiple MHC alleles. 

 Bioinformatic tools for scanning for candidate T cell epitopes from 

protein antigens help researchers to identify regions with high 

concentrations of T cell epitopes or immunological ‘hot spots’ and focus 

upon relevant experiments.  

 Data availability has a direct impact on the choice and quality of 

prediction model. When experimental data is limited or absent, 

structure-based techniques are preferred. As the dataset increases, 

sequence-based predictive techniques become more useful predictors. 

 The accuracy of a predictive model is highly dependent on the 

availability of good quality data. Noise and errors in the datasets have 

an adverse effect on the construction of useful predictive models. 

 Overfitting may result in inaccurate modeling of a prediction tool. 
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Chapter 3: MHC-Peptide Interaction Database version 

T (MPID-T) 

3.1 Introduction  

The experimentally determined three-dimensional structures of 

TCR/peptide/MHC and peptide/MHC complexes are available in the PDB 

(Berman et al., 2000), with some interaction parameters reported as 

significant for peptide/MHC interactions (Kangueane et al., 2001). A 

preliminary peptide/MHC interaction database termed MPID (MHC-Peptide 

Interaction Database) was developed by Govindarajan et al. (2003) and 

consisted of 86 entries of classical peptide/MHC complexes with standard 

residues derived mainly from human and rodents. Thereafter, new structures 

have become available in the PDB. In this study, new crystallographic 

structures are collected and together with existing MPID records, the 

crystallographic structures and computed interaction parameters are stored in 

a new database termed MPID-T (MHC-Peptide Interaction Database version 

T).  

MPID-T is a curated structure-derived database containing interaction 

information on 187 peptide/MHC complexes (represented by 40 human, 

murine and rat alleles), and 16 TCR/peptide/MHC complexes (13 class I and 

3 class II alleles). The database is available at http://surya.bic.nus.edu.sg. 

Information for each MPID-T entry is classified into four main groups: MHC 

(allele, source, class), bound peptide (length, source, redundancy), computed 

interaction parameters (intermolecular hydrogen bonds, gap volume, gap 
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index, interface area), and links to related external databases, particularly to 

IMGT/3Dstructure-DB (Kaas et al., 2004) that provides detailed annotations 

and expertise on TCR and MHC sequences involved in the 3D structures, and 

IMGT peptide/MHC contact analysis IMGT Colliers de Perles for 

TCR/peptide/MHC and TCR/peptide/MHC entries (http://imgt.cines.fr) 

(Robinson et al., 2001). The ultimate purpose of MPID-T is to enhance the 

understanding of the binding mechanism underlying TCR/peptide/MHC and 

peptide/MHC interactions by mapping the TCR footprint on the MHC and its 

bound peptide, as this eventually determines T cell recognition and binding. 

3.2 Resource Description  

3.2.1 Capabilities  

MPID-T is a curated MySQL (http://www.mysql.com) database hosted on a 

UNIX server (IRIX 6.5, Apache 1.3.12). Currently, MPID-T contains only 

experimentally determined structures available in the PDB. For PDB entries 

with multiple molecular assemblies, the first TCR/peptide/MHC or 

peptide/MHC complex is stored as a single entity, for rapid visualization, 

characterization and comparison. Each structure is manually verified, 

classified and analyzed for intermolecular interactions (i) between the MHC 

and its corresponding bound peptide and (ii) between a TCR and its bound 

peptide/MHC complex where TCR structural information is available. Included 

in MPID-T are non-classical structures and complexes with non-standard 

residues, which have implications for vaccine design. The non-redundant set 

of peptides bound to a particular allele is selected using the most accurate 

and complete structures.  
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3.2.2 Definition of interaction parameters  

Specific interaction parameters have been identified as being significant for 

the characterization of peptide/MHC interface (Kangueane et al., 2001; 

Govindarajan et al., 2003) and may also be applied for describing the 

relatively large and variable interface between peptide/MHC and TCR. These 

descriptors can be computed from the three-dimensional coordinates of a 

peptide/MHC complex. These include (i) the number of intermolecular 

hydrogen bonds, (ii) the interface area between associating molecules, (iii) the 

gap volume and (iv) the gap index. Although the gap volume is computed as 

described by Kangueane et al. (2001), the accessible surface area (ASA) 

required for calculating the other three parameters, is now computed using 

Naccess program (http://wolf.bms.umist.ac.uk/naccess/). A brief outline of the 

MPID-T interaction parameters follows. 

3.2.2.1 Intermolecular hydrogen bonds 

The number of intermolecular hydrogen bonds between the bound peptide 

and MHC molecule was calculated using HBPLUS (McDonald and Thornton, 

1994) in which hydrogen bonds are defined in accordance to standard 

geometric criteria of maximum distances (D–A = 3.9 Ǻ, H–A = 2.5 Ǻ and S–S 

= 3.0 Ǻ) with minimum angles (D–H–A = 90°, H–A–AA = 90° and D–H–AA = 

90°), where participating atoms are represented as D for donor, A for 

acceptor, H for hydrogen, AA for acceptor antecedent and S for sulphur.  
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3.2.2.2 Gap volume 

The volume enclosed by the MHC molecule and its corresponding bound 

peptide is calculated using the SURFNET program (Laskowski, 1991). The 

algorithm places a series of spheres (maximum radius 5.00 Å) midway 

between the surfaces of each pair of subunit atoms, such that its surface is in 

contact with the surfaces of the atoms in the pair. The size of each sphere is 

reduced accordingly whenever it is intercepted by other atoms and 

subsequently discarded if it falls below a minimum allowed radius (1.00 Å). 

The gap volume between the two subunits is computed based on the volume 

enclosed by all the allowable gap-spheres. 

3.2.2.3 Gap index 

One essential feature in receptor-ligand binding is the electrostatic and 

geometric complementarity observed between associating molecules. In this 

study, we adopted the use of gap index (reviewed in Jones and Thornton, 

1996) as a means to evaluate complementarity of interacting interfaces 

between the bound peptide and HLA molecule expressed by equation 1.   

 
Gap volume between peptide/MHC (Å3) 

Interface ASA (Å2) (per complex) 
              Gap index (Å) = 

 (Equation 1) 

 
 
 
 
 

 45



 

Figure 6 Distribution of peptide/MHC complex in MPID-T based on peptide length 

shows predominance of 9-mer peptide/MHC complexes. 

 
 
 

 

Figure 7 Distribution of peptide/MHC complex in MPID-T based on MHC source 

contains the maximum of peptide/MHC complex structures from human source. 
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Figure 9 Distribution of rodent (murine and rat) MHC allele in MPID-T shows H2-Db 

(class I) and H2-Kb (class I) have the maximum peptide/MHC complex structures. 

 

Figure 8 Distribution of human MHC allele in MPID-T shows A*0201 (class I) and 

DRB1*0101 (class II) have the maximum peptide/MHC complex structures. 

 
 
 

 



Table 1 MHC class I dataset  

MHC 
Source 

PDB 
ID Allele Peptide 

Length Peptide Source Peptide Sequence MCI PCI Res. 
(Ǻ) 

Release 
Year 

Human         1DUY A*0201 8 Tax peptide LFGYPVYV A C 2.15 2000
Human 1W72 A*0101 9 Melanoma-Associated Antigen 1 

 
EADPTGHSY 

 
A C 2.15 2004 

Human        
          
          
        
         
          
         
          

        
          
          
         
          
          
          
        
          
          
        
         
          
         
          
          
    
    

1AKJ A*0201 9 HIV-1 RT ILKEPVHGV A C 2.65 1997
Human 1AO7 A*0201 9 HTLV-1 Tax LLFGYPVYV A C 2.60 1997
Human 1B0G A*0201 9 Human-peptide P0149

 
ALWGFFPVL

 
A C 2.60 1998

Human 1B0R A*0201 9 Influenza matrix
 

GILGFVFTL A C 2.90 1998
Human 1BD2 A*0201 9 HTLV-1 Tax LLFGYPVYV A C 2.50 1998
Human 1DUZ A*0201 9 HTLV-1 Tax LLFGYPVYV

 
A C 1.80 2000

Human 1EEY A*0201 9 Gp2 Peptide Variant ILSALVGIV A C 2.25 2003
Human 1EEZ A*0201 9 Gp2 Peptide Variant ILSALVGIL A C 2.30 2003
Human 1HHG A*0201 9 HIV-1 gp 120 TLTSCNTSV A C 2.60 1993 
Human 1HHI A*0201 9 Synthetic GILGFVFTL A 2.50C 1993
Human 1HHJ A*0201 9 Synthetic ILKEPVHGV A C 2.50 1993
Human 1HHK A*0201 9 Synthetic

 
LLFGYPVYV A C 2.50 1993

Human 1I1F A*0201 9 HIV-RT FLKEPVHGV A C 2.80 2000
Human 1I1Y A*0201 9 HIV-1RT YLKEPVHGV A C 2.20 2000
Human 1I7R A*0201 9 Synthetic FAPGFFPYL A C 2.20 2001
Human 1I7T A*0201 9 Synthetic ALWGVFPVL A C 2.80 2001
Human 1I7U A*0201 9 Synthetic ALWGFVPVL A 1.80C 2001
Human 1IM3 A*0201 9 HTLV-1 Tax LLFGYPVYV A C 2.20 2001
Human 1LP9 A*0201 9 Self peptide

 
ALWGFFPVL

 
A C 2.00 2003

Human 1OGA A*0201 9 Synthetic GILGFVFTL
 

A C 1.40 2003
Human 1QR1 A*0201 9 Gp2 Peptide IISAVVGIL A C 2.40 2000
Human 1QRN A*0201 9 Tax peptide P6A

 
LLFGYAVYV A C 2.80 1999

Human 1QSE A*0201 9 Tax peptide LLFGYPRYV A C 2.80 1999
Human 1QSF A*0201 9 Tax peptide LLFGYPVAV A C 2.80 1999
Human 1S9W A*0201 9 Ny-Eso-1 Peptide SLLMWITQC A C 2.20 2004
Human 1S9X A*0201 9 Ny-Eso-1 Peptide Analogue S9A SLLMWITQA A C 2.50 2004 
Human 1S9Y A*0201 9 Ny-Eso-1 Peptide Analogue S9S SLLMWITQS A C 2.30 2004 
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Human 1TVB A*0201 9 Melanocyte Protein Pmel 17 epitope ITDQVPFSV A C 1.80 2005 
Human 1TVH A*0201 9 Melanocyte Protein Pmel 17 epitope 

 
IMDQVPFSV 

 
A C 1.80 2005 

Human        
          
         
          
         
         
          
        
          
          
          
          

    
    
         
         

    

         
        
          

        

1JHT A*0201 9 Mart-1 ALGIGILTV A C 2.15 2001
Human 1P7Q A*0201 9 Pol Polyprotein

 
ILKEPVHGV A C 3.40 2003

Human 1JF1 A*0201 10 Mart-1 ELAGIGILTV A C 1.85 2001
Human 1I4F A*0201 10 MAGE-4 Antigen GVYDGREHTV

 
A C 1.40 2001

Human 1HHH A*0201 10 HBV nucleocapsid
 

FLPSDFFPSV A C 3.00 1993
Human 2CLR A*0201 10 Synthetic MLLSVPLLIG A C 2.00 1998
Human 1TMC A*6801 10

 
Synthetic EVAPPEYHRK

 
A C 2.30 1995

Human 1AGB B*0801 8 HIV-1 gag GGRKKYKL A C 2.20 1997
Human 1AGC B*0801 8 HIV-1 gag GGKKKYQL A C 2.10 1997
Human 1AGD B*0801 8 HIV-1 gag GGKKKYKL A C 2.05 1997
Human 1AGE B*0801 8 HIV-1 gag GGRKKYKL A C 2.30 1997
Human 1AGF B*0801 8 HIV-1 gag GGKKRYKL A C 2.20 1997
Human 1M05 B*0801 9 Ebna-3 Nuclear Protein FLRGRAYGL A E 1.90 2003 
Human 1MI5 B*0801 9 Epstein Barr Virus Peptide FLRGRAYGL A C 2.50 2003 
Human 1XR8 B*1501 9 Ebna-3 Nuclear Protein LEKARGSTY A C 2.30 2005 
Human 1XR9 B*1501 9 Ubiquitin-Conjugating Enzyme E2 E1 

 
ILGPPGSVY A C 1.79 2005 

Human 1HSA B*2705 9 N.A. ARAAAAAAA
 

A C 2.10 1992
Human 1JGE B*2705 9 Peptide M9 GRFAAAIAK A C 2.10 2002
Human 1OF2 B*2705 9 Vasoactive Intestinal Polypeptide Receptor RRKWRRWHL A C 2.20 2004 
Human 1OGT B*2705 9 Vasoactive Intestinal Polypeptide Receptor RRKWRRWHL A C 1.47 2004 
Human 1W0V B*2705 9 Butyrate Response Factor 2 RRLPIFSRL A C 2.27 2005 
Human 1K5N B*2709 9 Nonameric Model Peptide M9 GRFAAAIAK A C 1.09 2002 
Human 1UXW B*2709 9 Membrane Protein Lmp-2A/Lmp-2B RRRWRRLTV A C 1.71 2004 
Human 1W0W B*2709 9 Butyrate Response Factor 2 

 
RRLPIFSRL A C 2.10 2005 

Human 1JGD B*2709 10 Peptide S10R
 

RRLLRGHNQY
 

A C 1.90 2003
Human 1A1N B*3501 8 HIV-1 Nef VPLRPMTY A C 2.00 1998
Human 1A9E B*3501 9 EBV-Ebna3c LPPLDITPY A C 2.50 1998
Human 1QEW B*3501 9 Melanoma-Associated Antigen 3 

 
FLWGPRALV 

 
A C 2.20 2003 

Human 1A9B B*3501 9 EBNA-3C LPPLDITPY A C 3.20 1998
Human 1XH3 B*3501 14 Aa 4-17 of M-Csf LPAVVGLSPGEQEY A C 1.48 2004 
Human 1M6O B*4402 9 Hla Dpa*0201 Peptide EEFGRAFSF A C 1.60 2003 
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Human 1SYS B*4403 9 Sorting Nexin 5 EEPTVIKKY A C 2.40 2004 
Human 1N2R B*4403 9 Hla Dpa*0201 Peptide 

 
EEFGRAFSF A C 1.70 2004 

Human         
         
         
          
          

        
       
         
          
         
        
          
          
          
          
        
         
          

         
         
    
    

         

         
          

1SYV B*4405 9 Self Ligand EEFGRAFSF
 

A C 1.70 2004
Human 1E28 B*5101 8 HIV-1 Km2

 
TAFTIPSI A C 3.00 2000

Human 1E27 B*5101 9 HIV-1 Kml LPPVVAKEI A C 2.20 2000
Human 1A1O B*5301 9 HIV-1 Nef KPIVQYDNF A C 2.30 1998
Human 1A1M B*5301 9 HIV-2 gag TPYDINQML A C 2.30 1998
Human 1EFX Cw*0304 9 Importin alpha 2 GALVDPLLAL A C 3.00 2000 
Human 1QQD

 
Cw*0401 9 Synthetic QYDDAVYKL A 2.70C 1999

Human 1IM9 Cw*0401
 

9 Synthetic QYDDAVYKL A 2.80C 2001
Human 1MHE E*0101 9 Synthetic VMAPRTVLL A P 2.85 1999
Human 1KPR E*0103 9 Synthetic VMAPRTVLL

 
A P 2.80 2003

Human 1KTL E*0103 9 Peptide B27
 

VTAPRTLLL
 

A P 3.10 2003
Human 1YDP G*0101 9 Histone 2A RIIPRHLQL A P 1.90 2005
Murine 1JPG H2-Db 9 LCMV peptide FQPQNGQFI A C 2.20 2001
Murine 1FFP H2-Db 9 Gp33 Peptide SAVYNFATM A C 2.60 2002
Murine 1FG2 H2-Db 9 Gp33 Peptide KAVYNFATC A C 2.75 2000
Murine 1BZ9 H2-Db 9 Peptide P1027 FAPGVFPYM A P 2.80 1998
Murine 1CE6 H2-Db 9 SV nucleoprotein

 
FAPGNYPAL A 2.90C 1999

Murine 1FFN H2-Db 9 Gp33 Peptide KAVYNFATM A C 2.70 2002
Murine 1FFO H2-Db 9 Gp33 Peptide AAVYNFATM A C 2.65 2002
Murine 1HOC H-2Db 9 Influenza virus nucleoprotein 

 
ASNENMETM A C 2.40 1994 

Murine 1INQ H2-Db 9 H13A SSVVGVWYL
 

A C 2.20 2002
Murine 1JUF H2-Db 9 H13B SSVIGVWYL A C 2.00 2002
Murine 1S7U H2-Db 9 Lcmv- Derived Gp33 Index Peptide KAVYNFATM A C 2.20 2004 
Murine 1S7V H2-Db 9 Lcmv- Derived Gp33 Index Peptide KAVYNLATM A C 2.20 2004 
Murine 1S7W H2-Db 9 Lcmv- Derived Gp33 Index Peptide KALYNFATM A C 2.40 2004 
Murine 1S7X H2-Db 9 Lcmv- Derived Gp33 Index Peptide KAVFNFATM A C 2.41 2004 
Murine 1N5A H2-Db 9 Gp33 Derived From Lcmv 

 
KAVYNFATM A C 2.85 2003 

Murine 1QLF H2-Db 9 SV-nucleoprotein FAPSNYPAL A C 2.65 1999
Murine 1WBX H2-Db 10 Influenza A Peptide SQLKNNAKEI A C 1.90 2005 
Murine 1WBY H2-Db 10 Influenza A Peptide 

 
SSLENFRAYV A C 2.30 2005 

Murine 1DDH H2-Db 10 HIV-1 gp120 RGPGRAFVTI A P 3.10 1999
Murine 1N3N H2-Db 10 Mycobacterial Hsp60 Decameric Epitope SNLQNAASIA A I 3.00 2003
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Murine          
         

        
         
          
         
          
    
        
         
          
         

         
          
          
         

        
          
        

         
         
    

         
          

    

1JPF H2-Db 11 LCMV peptide SGVENPGGYCL
 

A C 2.18 2001
Murine 1BII H2-Dd 10 HIV-1 P18-100 RGPGRAFVTI A P 2.40 1998
Murine 1QO3 H2-Dd 10 HIV Envelope Glycoprotein 120 Peptide 

 
RGPGRAFVTI 

 
A P 2.30 2000 

Murine 1KJ3 H2-Kb 8 Naturally processed
 

KVITFIDL H P 2.30 2002
Murine 1FO0 H2-Kb 8 Natural peptide INFDFNTI H P 2.50 2000
Murine 1FZJ H2-Kb 8 VSV nucleoprotein

 
RGYVYQGL A P 1.90 2001

Murine 1FZK H2-Kb 9 SV nucleoprotein FAPGNYPAL A P 1.70 2001
Murine 1FZM H2-Kb 8 VSV nucleoprotein RGYVYQGL A P 1.80 2001
Murine 1BQH H2-Kb 8 Vesicular stomatitis virus 

 
RGYVYQGL 

 
A C 2.80 1998 

Murine 1G6R H2-Kb 8 Syir protein SIYRYYGL
 

H P 2.80 2000
Murine 1KJ2 H2-Kb 8 Naturally processed KVITFIDL H P 2.71 2002
Murine 1G7Q H2-Kb 8 mucin1,transmembrane

 
SAPDTRPA A P 1.60 2002

Murine 1KBG H2-Kb 8 VSV nucleoprotein RGYVYXGL H P 2.20 1999
Murine 1KPU H2-Kb 8 VSV8, Nucleocapsid Fragment 

 
RGYVYQGL A P 1.50 2003 

Murine 1LEG H2-Kb 8 Dev 8 EQYKFYSV A P 1.75 2002
Murine 1LEK H2-Kb 8 Dev 8 EQYKFYSV A P 2.15 2002
Murine 1LK2 H2-Kb 8 Synthetic

 
GNYSFYAL A P 1.35 2003

Murine 1MWA H2-Kb 8 Dev 8 EQYKFYSV H P 2.40 2002
Murine 1N59 H2-Kb 8 Gp33 Derived From Lcmv 

 
AVYNFATM 

 
A P 2.95 2003 

Murine 1T0M H2-Kb 8 Glycoprotein B SSIEFARL A P 2.00 2004
Murine 1T0N H2-Kb 8 Glycoprotein B

 
SSIEFARL

 
A P 1.80 2004

Murine 1VAC H2-Kb 8 Ovalbumin SIINFEKL A P 2.50 1996
Murine 1NAM H2-Kb 8 VSV Nucleoprotein Fragment RGYVYQGL H P 2.70 2003 
Murine 1NAN H2-Kb 8 Riken Cdna 2410004N11 

 
INFDFNTI H M 2.30 2003 

Murine 1OSZ H2-Kb 8 VSV nucleoprotein
 

RGYLYQGL A C 2.10 1999
Murine 2CKB H2-Kb 8 Dev 8 EQYKFYSV H P 3.20 1998
Murine 2MHA H2-Kb 8 Vesicular stomatitis virus RGYVYQGL A E 2.80 1993 
Murine 1KPV H2-Kb 9 SEV9, Nucleoprotein Fragment 

 
FAPGNYPAL A P 1.71 2003 

Murine 1FZO H2-Kb 9 SV nucleoprotein FAPGNYPAL A P 1.80 2001
Murine 1G7P H2-Kb 9 alpha-glucosidase p1 SRDHSRTPM A P 1.50 2002
Murine 1VAD H2-Kb 9 Yeast alpha glucosid SRDHSRTPM A P 2.50 1996 
Murine 1WBZ H2-Kb 9 Influenza A Peptide SSYRRPVGI A P 2.00 2005 
Murine 1S7R H2-Kb 9 Lcmv- Derived Gp33 Index Peptide KAVYNLATM A C 2.95 2004 
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Murine 1S7S H2-Kb 9 Lcmv- Derived Gp33 Index Peptide KALYNFATM A C 1.99 2004 
Murine 1S7T H2-Kb 9 Lcmv- Derived Gp33 Index Peptide KAVFNFATM A C 2.30 2004 
Murine    

         
         
        
          

        
          
         

1S7Q H2-Kb 9 Lcmv- Derived Gp33 Index Peptide 
 

KAVYNFATM A C 1.99 2004 
Murine 2VAA H2-Kb 9 VSV nucleoprotein

 
FAPGNYPAL A P 2.30 1996

Murine 2VAB H2-Kb 9 SV nucleoprotein FAPGNYPAL A P 2.50 1996
Murine 1LD9 H2-Ld 9 Synthetic YPNVNIHNF A 2.40C 1998
Murine 1LDP H2-Ld 9 Natural peptide APAAAAAAM H P 3.10 1998
Murine 1MHC H2-M3 10 Rat Nadh Dehydrogenase MYFINILTL A C 2.10 1996 
Murine 

 
1K8D Qa-2 9 60S Ribosomal Protein 

 
ILMEHIHKL A P 2.30 2001 

Rat 1KJM RT1.Aa 9 B6 Peptide AQFSASASR A P 2.35 2002
Rat 1ED3 RT1.Aa 13 Rat atapase ILPSSERLISNR

 
A C 2.55 2000

Rat 1KJV RT1-A1C 9 Peptide Npr NPRAMQALL A P 1.48 2002
 

MCI = MHC chain identifier, PCI = peptide chain identifier, Res = resolution, Release year = the year in which the entry was released 

by PDB.   
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Table 2 MHC class II dataset 
MHC 

Source 
PDB 

ID Allele Peptide 
Length 

  

Peptide Source Peptide Sequence MCI PCI Res. 
(Ǻ) 

Release 
Year 

Human 1S9V DQB1*0201 11 Alpha-I Gliadin      
         

       
       
    
    
         
         
         
         
    

      

       

       

         

    
    
    
          

       

       

       
        
    
    
    

LQPFPQPELPY A, B C 2.22 2004
Human 1JK8 DQB1*0302 14 Insulin B Peptide LVEALYLVCGERGG A, B C 2.4 2001
Human 1UVQ DQB1*0602 20 Hypocretin Peptide MNLPSTKVSWAAVGGGGSLV

 
A, B C 1.8 2004

Human 1AQD DRB1*0101 14 Endogeneous Peptide GSDWRFLRGYHQYA A, B C 2.45 1998
Human 1DLH DRB1*0101 13 Influenza Virus Peptide PKYVKQNTLKLAT A, B C 2.8 1994 
Human 1FYT DRB1*0101 13 Hemagglutinin Ha1 Peptide Chain 

 
PKYVKQNTLKLAT A, B C 2.6 2000 

Human 1HXY DRB1*0101 13 Hemagglutinin PKYVKQNTLKLAT A, B 2.6C 2001
Human 1JWM DRB1*0101 13 Ha Peptide PKYVKQNTLKLAT A, B 2.7C 2003
Human 1JWS DRB1*0101 13 Ha Peptide PKYVKQNTLKLAT A, B 2.6C 2003
Human 1JWU DRB1*0101 13 Ha Peptide PKYVKQNTLKLAT A, B 2.3C 2003
Human 1KG0 DRB1*0101 13 Hemagglutinin Ha Peptide PKYVKQNTLKLAT A, B D 2.65 2002 

Human 1KLG DRB1*0101 15 Triosephosphate Isomerase 
Peptide GELIGILNAAKVPAD A, B  C 2.4 2002

Human 1KLU DRB1*0101 15 Triosephosphate Isomerase 
Peptide GELIGTLNAAKVPAD A, B C 1.93 2002

Human 1LO5 DRB1*0101 13 Hemagglutinin Peptide PKYVKQNTLKLAT A, B  C 3.2 2002

Human 1PYW DRB1*0101 9 Influenza Virus Hemagglutinin 
Related Peptide FVKQNAXAL A, B C 2.1 2003

Human 1R5I DRB1*0101 13 Hemagglutinin Peptide PKYVKQNTLKLAT A, B C 2.6 2004 
Human 1SEB DRB1*0101 13 Endogeneous Peptide AAAAAAAAAAAAA A, B C 2.7 1996 
Human 1SJE DRB1*0101 15 Gag Polyprotein PEVIPMFSALSEGAT A, B C 2.45 2004 
Human 1SJH DRB1*0101 13 Gag Polyprotein PEVIPMFSALSEG A, B 2.25C 2004

Fragment Of Regulatory Protein 
Mig1 Human 1T5W DRB1*0101 13 AAYSDQATPLLLS A, B C 2.4 2004

Human 1T5X DRB1*0101 13 Fragment Of Regulatory Protein 
Mig1 

 

AAYSDQATPLLLS A, B C 2.5 2004

Human 1A6A DRB1*0301 15
 

Clip PVSKMRMATPLLMQA
 

A, B C 2.75 1998
Human 1D5M DRB1*0401 7 Peptide Inhibitor RAMXSX A, B D 2 2000
Human 1D5X DRB1*0401 5 Dipeptide Mimetic Inhibitor RXXX A, B D 2.45 2000 
Human 1D5Z DRB1*0401 6 Peptidomimetic Inhibitor RAXSX A, B D 2 2000 
Human 1D6E DRB1*0401 7 Peptidomimetic Inhibitor RXMASX A, B D 2.45 2000 
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Human 1J8H DRB1*0401 13 Hemagglutinin Ha1 Peptide Chain 
 

PKYVKQNTLKLAT A, B C 
 

2.4 2002 
Human 2SEB DRB1*0401 12 Collagen II Peptide AYMRADAAAGGA A, B E 2.5 1998
Human 1BX2 DRB1*1501 14 Human Myelin Basic Protein ENPVVHFFKNIVTP A, B C 2.6 1998 
Human 1FV1 DRB5*0101 20 Myelin Basic Protein NPVVHFFKNIVTPRTPPPSQ A, B C 1.9 2000

Human 1H15 DRB5*0101 14 Epstein Barr Vius (Ebv) DNA 
Polymerase GGVYHFVKKHVHES A, B C 3.1 2002

Human 1HQR DRB5*0101 10 Myelin Basic Protein VHFFKNIVTP A, B C 3.2 2001 
Murine 1D9K I- Ak 16 Conalbumin Peptide GNSHRGAIEWEGIESG C, D P 3.2 1999 

Murine 1ES0 I-A(G7) 14 Glutamic Acid Decarboxylase 
Peptide YEIAPVFVLLEYVT A, B B 2.6 2000

Murine 1LNU I-Ab 13 Ealpha3K Peptide FEAQKAKANKAVD A, B B 2.5 2002 
Murine 1MUJ I-Ab 15 Clip Peptide PVSKMRMATPLLMQA A, B C 2.15 2003 
Murine 1IAO I-Ad 13 Ovalbumin Peptide RGISQAVHAAHAE A, B B 2.6 1998 
Murine 2IAD I-Ad 14 Influenza Hemagglutinin Peptide GHATQGVTAASSHE A, B B 2.4 1998 
Murine 1F3J I-Ak 14 Gallus Gallus AMKRHGLDNYRGYS A, B P 3.1 2000 
Murine 1IAK I-Ak 13 Hen Eggwhite Lysozyme Peptide 

 
STDYGILQINSRW A, B P 1.9 1998 

Murine 1JL4 I-Ak 16 Ovotransferrin GNSHRGAIEWEGIESG A, B 4.3C 2001
Murine 1K2D I-Au 11 Myelin Basic Protein Peptide SRGGASQYRPS A, B P 2.2 2003 
Murine 1KT2 I-Ek 12 Moth Cytochrome C Peptide ADLIAYLKQATK A, B B 2.8 2002 
Murine 1KTD I-Ek 14 Pigeon Cytochrome C Peptide AADLIAYLKQASAK A, B B 2.4 2002 
Murine 1R5V I-Ek 13 Artificial Peptide ADLIAYPKAATKF A, B E 2.5 2004 
Murine 1R5W I-Ek 13 Artificial Peptide ADLIAYFKAATKF A, B E 2.9 2004

MCI = MHC chain identifier, PCI = peptide chain identifier, Res = resolution, Release year = the year in which the entry was released 

by PDB.   

 

 

 



A 

 

 

B 

 

 

Figure 10 Sample (a) input and (b) output web interface from MPID-T with user defined 

input parameters (MHC Class, Organism, Data redundancy, MHC allele, peptide length 

and output format).  
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3.2.2.4 Interface area 

The interface area refers to the accessible surface area (ASA) between the 

bound peptide and MHC molecule. It is defined as the change in solvent-

accessible surface area (∆ASA) on complexation from an unbound MHC 

molecule to a bound peptide/MHC complex state and is represented by the 

equation: 

 
ASA of MHC + ASA of peptide - ASA of peptide/MHC molecule 

2 
   (∆ASA) = 

(Equation 2) 

3.2.3 Implementation  

The web interface permits searching the molecular complexes stored in the 

database based on MHC allele or PDB information, as shown in Figure 10. 

Structural visualization of the T cell receptor/peptide/MHC complex, peptide/MHC 

complex, MHC or the bound peptide can be performed using freely available 

graphics applications such as RasMol (http://www.openrasmol.org) or Chime 

(http://www.mdlchime.com), whereas 3D alignment of structures (based on MHC 

class and peptide length) (May and Johnson, 1995) can be viewed using the 

Jmol molecular viewer (http://www.jmol.org) or a Chime-compatible web browser 

client. Each MPID-T entry bears a unique identifier, with sequence data 

hyperlinked to external databases that include IMGT/HLA (for the human MHC 

sequences) (Robinson et al., 2001), IMGT/3Dstructure-DB (for peptide/MHC and 

T cell receptor/peptide/MHC sequences and structures) (Kaas et al., 2004), 
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SYFPEITHI (for MHC ligands and peptide motifs) (Rammensee et al., 1999) and 

AntiJen (for experimental binding affinity) (Toseland et al., 2005). Related 

sequences and structures for the relevant protein chains can be accessed via the 

National Center for Biotechnology Information (NCBI) Structure database 

(http://www.ncbi.nlm.nih.gov/Structure) and bibliographic references from 

PubMed. Pre-computed schematic diagrams based on the plotting program 

LIGPLOT (Wallace et al., 1995) are provided to illustrate explicit peptide/MHC 

interactions. Consensus patterns among peptides of the same length or allele are 

also available in MPID-T generated using the program WebLogo (Crooks et al., 

2004). Other useful sources of information for researchers in vaccine design and 

immunology as referenced in Rammensee et al. (1999) are also provided under 

MHC resources on the MPID-T help page. 

3.3 Data Analysis  

For all supertypes investigated in this study, the gap index, which measures 

geometric and electrostatic complementation between the bound peptide and 

HLA molecule, inversely correlates with increasing interface area (Figures 11B, 

12B, 13B, 14B, and 15B). The implication is that complexes with larger interface 

area have better geometric and electrostatic complementarity (i.e. smaller gap 

index), resulting in the formation of more intermolecular hydrogen bonds (Figures 

11A, 12A, 13A, 14A, and 15A), which in turn contribute to the stability of the 

bound complexes. The mean Cα root mean square deviation (RMSD) of HLA 

class I peptides is 1.41 Ǻ (Table 3). The peptide N- and C-terminal residues are 
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highly conserved with mean Cα RMSD of 0.08 Ǻ and 0.09 Ǻ respectively.  A 

similar highly conserved backbone conformation is observed at the ends of the 

core peptide fragments in the binding cleft of DR1 molecules with mean Cα 

RMSD of 0.08 Å and 0.09 Å for the two peptide termini, respectively.  

3.3.1 HLA-A2  

The mean interface area for A2 is 846.3 ± 48.9 Ǻ2. On average, the number of 

intermolecular hydrogen bonds and gap index for A2 is 11.1 ± 1.9 and 0.9 ± 0.2 

respectively. Extensive hydrogen bonding is found in binding pockets A, B and F. 

No clear difference is observed in the number of intermolecular hydrogen bonds 

for 9-mer (11.0 ± 1.8) and 10-mer (11.8 ± 2.2) complexes. The gap index for 9-

mer and 10-mer complexes are 1.0 ± 0.2 and 0.8 ± 0.3 respectively. The results 

indicate that the interacting surfaces of 10-mer complexes are generally more 

complementary than 9-mer complexes. On average, the Cα RMSD of A2 

peptides is 1.72 Ǻ. The peptide N- and C-terminal residues are highly conserved 

with mean Cα RMSD of 0.05 Ǻ and 0.09 Ǻ respectively.   

3.3.2 HLA-B7  

The average number of intermolecular hydrogen bonds, gap index, and interface 

area for B7 are 14.3 ± 2.3, 1.0 ± 0.1, and 876.7 ± 72.4 Ǻ2 respectively. In 

general, 9-mer complexes (gap index = 0.9 ± 0.1) are more complementary than 

8-mer complexes (gap index = 1.0 ± 0.1) and intermolecular hydrogen bonds are 

well distributed throughout the entire complex. The corresponding numbers of 

 58



hydrogen bonds for 8-mer and 9-mer complexes are 15.6 ± 2.3 and 16.5 ± 2.7. 

Correlations between the number of intermolecular hydrogen bonds with gap 

volume (Figure 12C; r=-0.03) and gap index (Figure 12D; r=-0.07) are 

insignificant, indicating that the binding mechanism underlying peptide/B7 

interactions may be different from peptide/A2 interactions. In general, the Cα 

RMSD of B7 peptides is 1.04 Ǻ. As in A2, the peptide N- and C-terminal residues 

are highly conserved with mean Cα RMSD of 0.16 Ǻ and 0.08 Ǻ respectively.   

3.3.3 HLA-B27  

B27 has the largest average interface area (934.0 ± 136.0 Ǻ2) among all class I 

supertypes investigated in this study. In contrast to A2 and B44, the number of 

intermolecular hydrogen bonds inversely correlates with gap volume (Figure 13C; 

r=-0.22) and gap index (Figure 13D; r=-0.38). High concentrations of hydrogen 

bonds are observed in pockets A, B and F. More hydrogen bonds are formed at 

smaller gap index (higher geometric and electrostatic complementation) 

compared to the complexes of A2 and B44. The average Cα RMSD for B27 

peptides is 1.00 Ǻ. Again, the peptide N- and C-terminal residues are highly 

conserved with mean Cα RMSD of 0.07 Ǻ and 0.09 Ǻ respectively.   

3.3.4 HLA-B44  

The interaction characteristics of B44 are similar to A2 (Figure 14). 

Intermolecular hydrogen bonds are primarily concentrated in pockets A, B and F. 

On average, the number of intermolecular hydrogen bonds, interface area, gap 
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volume, and gap index is 12.3 ± 3.5, 892.6 ± 57.3, 891.0 ± 114.7, and 1.0 ± 0.1 

respectively. Correlations between the number of intermolecular hydrogen bonds 

with gap volume (Figure 14C; r=0.79) and gap index (Figure 14D; r=0.60) are 

strong, indicating that more hydrogen bonds are formed in B44 complexes as 

geometric and electrostatic complementarity decreases (i.e. gap index 

increases). The mean Cα RMSD of B44 peptides is 1.02 Ǻ. High conservation of 

the peptide N- and C-terminal residues is detected with mean Cα RMSD of 0.07 

Ǻ and 0.10 Ǻ respectively.   

3.3.5 HLA-DR1  

The mean number of intermolecular hydrogen bonds, interface area, gap volume, 

and gap index is 15.6 ± 2.0, 1079.9 ± 86.4, 1092.8 ± 129.3, and 1.0 ± 0.1 

respectively. In general, intermolecular hydrogen bonds are well distributed 

throughout the entire bound binding register. The number of intermolecular 

hydrogen bonds directly correlates with gap volume (Figure 15C; r=0.43) but 

correlation between the number of hydrogen bonds with gap index is insignificant 

(Figure 15D; r=-0.02). The mean Cα RMSD of DR1 binding registers is 0.60 Ǻ. 

Similar to class I peptides, the N- and C-terminal residues of the binding registers 

are highly conserved with mean Cα RMSD of 0.08 Ǻ and 0.09 Ǻ respectively.   

3.4 Discussion 

MPID-T is a manually curated specialist database for sequence-structure-

function information on peptide/MHC and TCR/peptide/MHC interactions. The 
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aim of developing MPID-T is to define structural descriptors for in-depth 

characterization of TCR/peptide/MHC and peptide/MHC interactions. Such 

descriptors should better reflect TCR/peptide/MHC and peptide/MHC interactions 

than just sequence alone. Together with other databases containing MHC- or 

antigen- related data such as AntiJen (which contains experimental binding 

affinities) (Toseland et al., 2005), MHCBN (which contains MHC binding and non-

binding peptide sequences) (Bhasin et al., 2003), FIMM (which contains fully 

referenced data on protein antigens, MHC, peptide/MHC and relevant disease 

associations) (Schönbach et al., 2000), MPID-T aim to facilitate the extraction of 

high-level relationships hidden within (TCR/) peptide/MHC interaction data by 

mapping the TCR footprint on the MHC and its bound peptide as this eventually 

determines T cell recognition and binding. Identification of such descriptors will 

enhance the understanding of the binding mechanism underlying 

TCR/peptide/MHC and peptide/MHC interactions and facilitate the development 

of algorithms (Kangueane et al., 2000) for predicting whether a peptide sequence 

can bind to a specific MHC allele and subsequently whether the bound 

peptide/MHC complex can evoke a response to TCR. Future developments will 

include computed data on additional structural parameters characterizing the 

TCR/peptide/MHC and peptide/MHC interaction region.  
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Figure 11 Graphs of different structural interaction parameters for HLA-A2 supertype 

and their respective correlation coefficients r investigated in this study: (A) Interface area 

vs. number of intermolecular hydrogen bonds; (B) Interface area vs. gap index; (C) Gap 

volume vs. number of intermolecular hydrogen bonds; and (D) Gap index vs. number of 

intermolecular hydrogen bonds.   
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Figure 12 Graphs of different structural interaction parameters for HLA-B7 supertype 

and their respective correlation coefficients r investigated in this study: (A) Interface area 

vs. number of intermolecular hydrogen bonds; (B) Interface area vs. gap index; (C) Gap 

volume vs. number of intermolecular hydrogen bonds; and (D) Gap index vs. number of 

intermolecular hydrogen bonds.   
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Figure 13 Graphs of different structural interaction parameters for HLA-B27 supertype 

and their respective correlation coefficients r investigated in this study: (A) Interface area 

vs. number of intermolecular hydrogen bonds; (B) Interface area vs. gap index; (C) Gap 

volume vs. number of intermolecular hydrogen bonds; and (D) Gap index vs. number of 

intermolecular hydrogen bonds. 
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Figure 14 Graphs of different structural interaction parameters for HLA-B44 supertype 

and their respective correlation coefficients r investigated in this study: (A) Interface area 

vs. number of intermolecular hydrogen bonds; (B) Interface area vs. gap index; (C) Gap 

volume vs. number of intermolecular hydrogen bonds; and (D) Gap index vs. number of 

intermolecular hydrogen bonds. 
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Figure 15 Graphs of different structural interaction parameters for HLA-DR1 supertype 

and their respective correlation coefficients r investigated in this study: (A) Interface area 

vs. number of intermolecular hydrogen bonds; (B) Interface area vs. gap index; (C) Gap 

volume vs. number of intermolecular hydrogen bonds; and (D) Gap index vs. number of 

intermolecular hydrogen bonds. 
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Table 3 Computed HLA structural interaction parameters investigated in this study. Three residues at the N- (“head”) and C- (“tail”) 

termini of the peptide within the MHC groove are compared. ‘#’ represents the templates used for comparing Cα RMSDs of the 

various supertypes. 

 
Cα RMSD Class     Supertype Allele PDB ID Interface 

Area 
Gap 

Volume 
Gap 

Index 
No. of  

H-bonds 
Peptide 
Length Head  Tail All

I            A2 A*0201 1AKJ 857.2 746.5 0.9 13 9 0.05 0.03 1.63
I            
            
            
            
            
            
            
            
            
            
            
            
            
            
           
            
            
            
            
            
            
            

A2 A*0201 1AO7 883.3 1038.3 1.2 10 9 0.03 0.10 1.86
I A2 A*0201 1B0G 860.2 441.3 0.5 12 9 0.05 0.09 1.44
I A2 A*0201 1BD2 874.2 813.6 0.9 11 9 0.02 0.13 1.82
I A2 A*0201 1DUY 717.7 1116.1 1.6 7 8 0.07 0.16 1.08
I A2 A*0201 1DUZ 863.0 1069.6 1.2 11 9 0.05 0.13 1.22
I A2 A*0201 1EEY 787.1 900.3 1.1 11 9 0.05 0.06 1.75
I A2 A*0201 1EEZ 829.8 704.2 0.9 9 9 0.05 0.17 1.79
I A2 A*0201 1HHG 765.8 1039.9 1.4 12 9 0.02 0.07 1.58
I A2 A*0201 1HHH 918.4 530.4 0.6 11 10 0.04 0.16 2.07
I A2 A*0201 1HHI 842.0 455.7 0.5 9 9 0.14 0.07 1.54
I A2 A*0201 1HHJ 847.9 827.4 1.0 14 9 0.06 0.08 1.65
I A2 A*0201 1HHK 865.5 1083.4 1.3 10 9 0.06 0.13 1.25
I A2 A*0201 1I1F 850.9 800.8 0.9 11 9 0.05 0.07 1.70
I A2 A*0201 1I1Y 877.9 745.0 0.9 13 9 0.06 0.03 1.77
I A2 A*0201 1I4F# 820.1 877.1 1.1 15 10 0.00 0.00 0.00
I A2 A*0201 1I7R 902.5 805.4 0.9 11 9 0.08 0.07 1.56
I A2 A*0201 1I7T 847.9 591.4 0.7 9 9 0.11 0.07 1.44
I A2 A*0201 1I7U 845.2 545.8 0.7 11 9 0.03 0.03 1.59
I A2 A*0201 1IM3 855.0 954.9 1.1 11 9 0.04 0.14 1.17
I A2 A*0201 1JF1 870.4 492.5 0.6 11 10 0.08 0.07 2.93
I A2 A*0201 1JHT 781.0 588.8 0.8 12 9 0.06 0.04 1.93
I A2 A*0201 1LP9 855.7 549.7 0.6 12 9 0.03 0.08 1.45
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I            
            
            
            
            
            
            
            
            
            
            
            
           
            
            
            
            
            
            
            
            
            
            
            
           
            
            
            
            
            
            
            
            
            

A2 A*0201 1OGA 856.0 539.5 0.6 12 9 0.06 0.10 1.45
I A2 A*0201 1P7Q 810.8 648.1 0.8 7 9 0.05 0.03 1.74
I A2 A*0201 1QR1 827.1 722.4 0.9 9 9 0.06 0.03 1.39
I A2 A*0201 1QRN 871.5 921.6 1.1 10 9 0.05 0.12 1.84
I A2 A*0201 1QSE 873.0 1097.7 1.3 11 9 0.04 0.18 1.82
I A2 A*0201 1QSF 828.6 959.5 1.2 10 9 0.07 0.11 1.80
I A2 A*0201 1S9W 904.9 933.9 1.0 13 9 0.05 0.06 2.03
I A2 A*0201 1S9X 872.3 933.1 1.1 12 9 0.03 0.06 2.04
I A2 A*0201 1S9Y 883.7 979.0 1.1 11 9 0.05 0.05 2.04
I A2 A*0201 1TVB 829.2 866.8 1.0 12 9 0.01 0.08 2.15
I A2 A*0201 1TVH 865.1 950.6 1.1 10 9 0.02 0.09 2.15
I A2 A*0201 2CLR 896.5 911.4 1.0 10 10 0.05 0.08 1.78
I B7 B*0801 1AGB# 820.8 881.7 1.1 15 8 0.00 0.00 0.00
I B7 B*0801 1AGC 812.5 688.1 0.9 18 8 0.14 0.09 0.35
I B7 B*0801 1AGD 819.7 816.1 1.0 16 8 0.14 0.03 0.32
I B7 B*0801 1AGE 812.3 920.6 1.1 15 8 0.14 0.05 0.32
I B7 B*0801 1AGF 860.0 765.4 0.9 14 8 0.07 0.03 0.32
I B7 B*0801 1M05 1000.6 897.4 0.9 18 9 0.21 0.04 1.34
I B7 B*0801 1MI5 1028.0 850.0 0.8 15 9 0.27 0.12 1.44
I B7 B*3501 1A1N 857.9 670.2 0.8 11 8 0.15 0.17 1.06
I B7 B*3501 1A9B 855.4 847.4 1.0 12 9 0.27 0.06 1.38
I B7 B*3501 1A9E 882.6 779.3 0.9 12 9 0.10 0.06 1.39
I B7 B*3501 1QEW 843.2 855.9 1.0 12 9 0.16 0.15 1.89
I B7 B*3501 1XH3 927.0 1198.5 1.3 13 14 0.11 0.11 1.67
I B27 B*1501 1XR8# 860.7 968.1 1.1 16 9 0.00 0.00 0.00
I B27 B*2705 1HSA 691.8 1148.4 1.7 14 9 0.02 0.12 1.06
I B27 B*2705 1OF2 1087.7 1015.5 0.9 17 9 0.04 0.08 0.67
I B27 B*2705 1W0V 1007.2 898.9 0.9 16 9 0.09 0.08 0.91
I B27 B*2705 1JGE 815.4 994.4 0.9 15 9 0.13 0.12 1.07
I B27 B*2705 1OGT 1096.0 849.3 0.8 21 9 0.02 0.03 0.58
I B27 B*2709 1UXW 1071.9 1116.8 1.0 18 9 0.04 0.09 1.13
I B27 B*2709 1W0W 999.9 968.1 1.0 18 9 0.14 0.11 0.94
I B27 B*2709 1JGD 979.7 994.4 1.0 23 10 0.06 0.09 1.56
I B27 B*2709 1K5N 780.7 879.9 1.1 19 9 0.13 0.07 1.10
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I B44 B*4402 1M6O# 937.3 903.2 1.0 16 9 0.00 0.00 0.00
I B44 B*4403 1SYS 941.9 1076.0 1.1 15 9 0.08 0.24 0.93
I B44 B*4403 1N2R 901.0 949.9 1.1 15 9 0.01 0.05 0.41
I B44 B*4405 1SYV 901.8 915.6 1.0 15 9 0.02 0.08 0.26
I B44 B*5101 1E27 865.2 809.0 0.9 8 9 0.15 0.01 1.91
I B44 B*5101 1E28 804.9 724.0 0.9 7 8 0.11 0.07 1.75
I B44 B*5301 1A1M 823.9 971.3 1.2 12 9 0.05 0.24 1.23
I B44 B*5301 1A1O 965.2 778.8 0.8 10 9 0.09 0.04 0.67
II DR1 DRB1*0101 1AQD# 1190.3 1182.7 1.0 18 14 0.00 0.00 0.00
II DR1 DRB1*0101 1DLH 1139.1 1081.7 1.0 17 13 0.15 0.13 0.61
II DR1 DRB1*0101 1FYT 1125.6 979.5 0.9 18 13 0.27 0.02 0.53
II DR1 DRB1*0101 1HXY 1110.6 1246.7 1.1 15 13 0.14 0.08 0.66
II DR1 DRB1*0101 1JWM 1129.6 1117.6 1.0 16 13 0.21 0.06 0.62
II DR1 DRB1*0101 1JWS 1122.9 1095.7 1.0 16 13 0.17 0.05 0.62
II DR1 DRB1*0101 1JWU 1114.0 1203.6 1.1 18 13 0.17 0.05 0.62
II DR1 DRB1*0101 1KG0 1120.8 1238.1 1.1 15 13 0.18 0.03 0.65
II DR1 DRB1*0101 1KLG 1124.8 1130.0 1.0 15 15 0.12 0.13 0.64
II DR1 DRB1*0101 1KLU 1093.4 1217.8 1.1 16 15 0.14 0.14 0.68
II DR1 DRB1*0101 1LO5

 
1119.1 978.3 0.9 13 13 0.15 0.13 0.62

II DR1 DRB1*0101 1R5I 1120.4 1054.9 0.9 19 13 0.08 0.09 0.73
II DR1 DRB1*0101 1SJE 1017.3 1084.0 1.1 16 15 0.07 0.04 0.67
II DR1 DRB1*0101 1SJH 993.0 1127.8 1.1 16 13 0.04 0.04 0.70
II DR1 DRB1*0101 1T5W 1067.7 792.4 0.7 13 13 0.25 0.05 0.15
II DR1 DRB1*0101 1T5X 1056.9 906.1 0.9 13 13 0.24 0.08 0.16
II DR1 DRB1*1501 1BX2 985.7 1269.3 1.3 15 14 0.12 0.12 0.94

 

 

 



Three types of interaction patterns for class I supertypes can be identified 

in this study: (i) the number of intermolecular hydrogen bonds directly correlates 

with gap index (Figures 11D and 14D); (ii) the number of intermolecular hydrogen 

bonds does not correlate with gap index (Figure 12D); and (iii) the number of 

intermolecular hydrogen bonds inversely correlates with the gap index (Figure 

13D). The mean number of intermolecular hydrogen bonds for these three 

groups are 11.2 ± 2.3, 14.3 ± 2.3, and 17.7 ± 2.6. Overall, the data indicate that 

there is a lack of any real correlationship in the scattergrams. 

For the first group (A2 and B44 supertypes), the majority of intermolecular 

hydrogen bonds are concentrated at both ends of the binding groove (in pockets 

A, B and F). More hydrogen bonds are observed with decreasing geometric and 

electrostatic complementarity (i.e. increasing gap index; Figures 11D and 14D). A 

possible explanation for these observations is that the overall geometric and 

electrostatic complementarities of these complexes are low and extensive 

hydrogen bonding in the binding pockets at both ends of the binding grooves are 

necessary to stabilize the complexes for this supertype. For the second group 

(B7 supertype), no clear relationship between intermolecular hydrogen bonds 

with gap index is observed. In general, the interaction mechanism employed by 

this supertype may be degenerative and a combination of non-covalent 

interactions (hydrogen bonds, hydrophobic and ionic interactions) may be 

involved in peptide selection. However, it is not clear to what extent the different 

interactive forces contribute to the net stability of complex. For the third group 

(B27 supertype), the number of intermolecular hydrogen bonds increases with 
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higher geometric and electrostatic complementarity (smaller gap index). This 

group also consists of the highest mean number of intermolecular hydrogen 

bonds. The results strongly indicate that the complexes formed by this group may 

be more stable, with higher overall geometric and electrostatic complementarity. 

High conservation of peptide termini residues is observed in all class I binding 

peptides. The mean Cα RMSD for N- and C- terminal residues is 0.08 Ǻ and 0.09 

Ǻ respectively.  This observation has been previously reported for HLA-Aw68 

(Guo et al., 1992) and confirmed by this analysis. A similar highly conserved 

backbone conformation is observed at the ends of the core peptide fragments in 

the binding cleft of DR1 molecules. The Cα RMSD values of the N- and C-termini 

reveal their relatively fixed locations within the groove across both classes of 

peptide/MHC complexes. 

Analysis for class II supertypes is currently restricted to DR1 due to the 

lack of sufficient crystallographic structures for other class II supertypes in the 

current Protein Databank (PDB). Although 6 DR4 crystallographic structures 

exist, majority of the ligands (PDB ID: 1D5M, 1D5X, 1D5Z, 1D6E) are primarily 

short inhibitor fragments, rendering the remaining dataset for this supertype too 

limited for statistically significant analysis. For DR1 supertype, another type of 

interaction pattern is observed. The number of intermolecular hydrogen bonds 

directly correlates with gap volume (Figure 15C) but no clear correlations with 

gap index can be seen (Figure 15D). It is possible that this supertype may 

employ a similar degenerative interaction mechanism as B7, and also engage 
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the use of an extensive hydrogen bonding network to hold longer or less 

complementary peptides together. 

The present analysis is difficult due to the limited number of peptide/HLA 

crystallographic structures in the current PDB. As the database grows, more 

alleles and supertypes will be analysed. Nonetheless, through the use of existing 

three-dimensional structures, the author has demonstrated that different HLA 

superfamilies employ the use of different binding mechanism for selectivity of 

antigenic peptides. By focusing solely on the use of experimental three-

dimensional structures, this analysis is supported and verified by existing data. 

The present analysis suggests that although similar interactions exist between 

MHCs and their corresponding bound peptides, their relative exploitation by the 

groups and geometry of the binding site will vary between alleles. 

3.4 Summary 

• In this work, a new database for sequence-structure-function information 

on (TCR/) peptide/MHC interactions, termed MHC-Peptide Interaction 

Database version T (MPID-T) has been developed to facilitate the analysis 

of (TCR/) peptide/MHC structural interaction characteristics.  

• MPID-T is a manually curated MySQL database containing experimentally 

determined structures of 187 peptide/MHC complexes and 16 

TCR/peptide/MHC complexes available in the PDB and precomputed 

interaction parameters including solvent accessibility, number of 

intermolecular hydrogen bonds, gap volume and gap index.  
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• Structural visualization of the T cell receptor/peptide/MHC complex, 

peptide/MHC complex, MHC or the bound peptide can be performed using 

freely available graphics applications such as Chime or RasMol, while 

structural alignment (based on MHC class and peptide length) can be 

viewed using the Jmol molecular viewer or a Chime-compatible web 

browser client.  

• Each MPID-T record is hyperlinked to external immunologic databases 

including IMGT/HLA, IMGT/3Dstructure-DB, SYFPEITHI, AntiJen, among 

others. Pre-computed schematic diagrams based on LIGPLOT program 

are provided to illustrate explicit peptide/MHC interactions. Consensus 

patterns among peptides of the same length or allele are generated using 

the program WebLogo. Other useful sources of information as referenced 

in Rammensee et al. (1999) are also provided under MHC resources on 

the MPID-T help page. 

• Four interaction parameters (intermolecular hydrogen bonds, interface 

area, gap volume, and gap index) previously identified as being significant 

for the characterization of peptide/MHC interface were applied for 

analyzing the binding characteristics of 5 HLA supertypes (A2, B7, B27, 

B44, and DR1). 

• For all supertypes investigated in this study, the gap index (geometric and 

electrostatic complementation between peptide and MHC) inversely 

correlates with increasing interface area. This implies that complexes with 

larger interface area have better geometric and electrostatic 
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complementarity, resulting in the formation of more intermolecular 

hydrogen bonds. 

• This is the first report on the existence of different interaction patterns in 

HLA supertypes which were identified using computed structural 

interaction parameters. Three types of interaction patterns for class I 

supertypes have been identified: (i) the number of intermolecular 

hydrogen bonds directly correlates with gap volume and gap index; (ii) the 

number of intermolecular hydrogen bonds does not correlate with both 

gap volume and gap index; and (iii) the number of intermolecular 

hydrogen bonds inversely correlates with gap volume and gap index.  

• The N- and C-terminal residues of class I peptides are highly conserved 

with mean Cα RMSD of 0.08 Ǻ and 0.09 Ǻ respectively.  A similar highly 

conserved backbone conformation is observed at the ends of the core 

peptide fragments in the binding cleft of DR1 molecules with mean Cα 

RMSD of 0.08 Å and 0.09 Å for the two peptide termini, respectively.  

• The present analysis suggests that the use of a standardized set of 

structural interaction rules may not be applicable for all HLA alleles as 

interaction characteristics vary across MHC supertypes. 
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Chapter 4: Modeling the structure of bound peptide 

ligands to MHC  

4.1 Introduction  

In recent years, protein structure prediction has been gaining prominence in the 

field of structural biology. A 3D model for a receptor-ligand complex of unknown 

structure can provide valuable insights in the study of structure-activity 

relationships. In the context of peptide/MHC complex, the availability of such 

models also allows detailed analysis of peptide/MHC interaction characteristics 

and the prediction of potential immunodominant epitopes at allele-specific level 

without the need of large experimental dataset for training. However, despite the 

many benefits of structure-based modeling, few peptide/MHC docking techniques 

have been developed due to higher complexity in development and longer 

computational time. To this end, the author reports the development of a highly 

accurate docking protocol for efficient and fast modeling of peptide/MHC 

complexes. The methodology presented here is applicable to the design of both 

sub-type specific vaccines as well as promiscuous peptide epitopes. 

4.2 Implementation  

4.2.1 Selection of probe residues  

The main problem in docking simulation is to enumerate the large number of 

possible combinations for two molecules to interact within an enclosed sampling 
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space. There are six degrees of global-rotational and translational freedom of 

one molecule relative to the other, as well as one internal dihedral rotation per 

rotational bond. Given four consecutive atoms Ai−2, Ai−1, Ai, and Ai+1, the dihedral 

angle is defined as the smallest angle between the planes π1 and π2, as shown 

in Figure 16. Variation of the dihedral angle is a consequence of rotation of the 

two outer bonds about the central bond. There are two freely rotatable backbone 

dihedral angles per amino acid residue in the protein chain: the phi-angle is a 

consequence of the rotation about the bond between N and Cα, and the psi-

angle is a consequence of the rotation about the bond between Cα and C. The 

peptide bond between N of one residue and C of the adjacent residue is not 

rotatable. There are two backbone dihedrals per amino acid, but the number of 

side chain dihedrals varies with the length of the side chain. Its value ranges from 

0, in the case of glycine, which has no sidechain, to 5 in the case of arginine. A 

full search on the conformational space increases with increasing molecule size 

and sampling space. As such, a key challenge in docking simulation is to 

minimize the conformational search space of ligand within the large sampling 

space enclosed by the receptor binding site.  
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Figure 16: π1 is the plane uniquely defined by the first three atoms Ai−2, Ai−1, and Ai. 

Similarly, π2 is the plane uniquely defined by the last three atoms Ai−1, and Ai, and Ai+1. 

The dihedral angle, θ, is defined as the smallest angle between these two planes.  

A possible approach is to identify suitable base or anchor fragments 

(referred to hereafter as the probes) for initiating docking simulations. A probe 

must satisfy two criteria: (i) the anchor must have sufficient contact with the 

receptor, and (ii) the structure of the anchor must be highly conserved. Probes 

that are too short in length will require the exploration of a larger search space 

and hence longer computational time, whilst probes that are too long may result 

in insufficient sampling of the receptor binding site. A systematic analysis of class 

I and class II peptide/MHC crystallographic structures (Chapter 5) revealed that 

the N- and C- termini residues of peptide binding registers are both highly 

conserved and in contact with the receptor binding pockets, thus offer a good 

starting point for docking simulation.  
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4.2.2 The peptide docking procedure  

Beginning with the sequence of the ligand for which the structure is to be 

generated (referred to hereafter as the target peptide), and the availability of the 

MHC receptor structure, our docking protocol (Figure 17) for peptide binding 

registers consists of the following steps: (i) rigid docking of probe residues; (ii) 

loop closure of central residues by satisfaction of spatial constraints; followed by 

(iii) ab initio refinements of the binding register. An additional step (iv) extension 

of flanking residues is applied for the modeling of class II peptide ligands.  

4.2.2.1 Rigid docking of probe residues 

A fast soft-interaction energy function (Fernández-Recio et al., 2002) is adopted 

to dock each probe to the respective ends of the MHC binding groove. This is 

performed using an Internal Coordinate Mechanics (ICM; Abagyan and Maxim, 

1999) global optimization algorithm; with flexible ligand interface side-chains and 

a grid map representation of the receptor energy localized to small cubic regions 

of 1.00Å radius from the backbone of each probe. Each probe performs a 

random walk within their respective grid map. At each step, the side-chain 

torsions were changed using a biased Monte Carlo procedure, which begins by 

randomly selecting a set of torsion angles in the probe and subsequently finding 

the local energy minimum about those angles. New conformations are adopted 

upon satisfaction of the Metropolis criteria with probability min(1,exp[-∆G/RT]), 

where R is the universal gas constant and T is the absolute temperature of the 

simulation. Loose restraints were imposed on the positional variables of the 
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ligand molecule to keep it close to the starting conformation. The stimulation 

temperature was set to 300K. The optimal energy function (Equation 3) used 

during stimulations consisted of the internal energy of the probe and the 

intermolecular energy based on the same optimized potential maps used in the 

docking step: 

 

solv 
el 

solv 
el 

E = EHvw + ECvw + 2.16E       + 2.53Ehb + 4.35Ehp + 0.20Esolv

(Equation 3) 

The internal energy included internal van der Waals interactions 

(hydrogen probe: EHvw; heavy atom probe: ECvw), electrostatic potential (E   
 ), 

hydrogen bonding (Ehb), hydrophobicity (Ehp) and solvation energy (Esolv) 

calculated with ECEPP/3 parameters, and the Coulomb electrostatic energy with 

a distance-dependent dielectric constant (e=4r). The configurational entropy of 

side-chains and the surface-based solvation energy were included in the final 

energy to select the best-refined solutions. 

4.2.2.2 Construction of loop 

In this stage, an initial conformation of the central loop is generated by 

satisfaction of spatial constraints (Sali and Blundell, 1993) based on the allowed 

subspace for backbone dihedrals in accordance with the conformations of 

peptides docked into the ends of the binding groove. This is performed in three-

steps: (i) Distance and dihedral angle restraints on the entire peptide sequence 

are derived from its alignment with the sequences of probes docked into the 
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binding groove. (ii) The restraints on spatial features of the unknown center 

residues are derived by extrapolation from the known 3D structures of probes in 

the alignment, expressed as probability density functions. Stereochemical 

restraints include bond distances, bond angles, planarity of peptide groups and 

side-chain rings, chiralities of Cα atoms and side-chains, van der Waals contact 

distances and the bond lengths, bond angles and dihedral angles of cysteine 

disulfide bridges. (iii) Spatial restraints on the unknown center residues are 

satisfied by optimization of the molecular probability density function using 

variable target function technique that applies the conjugate gradients algorithm 

to positions of all non-hydrogen atoms. 

4.2.2.3 Refinement of binding register 

To improve the accuracy of the initial model, partial refinement was performed for 

both the ligand backbone and side-chain, using ICM biased Monte Carlo 

procedure (Abagyan and Maxim, 1999). Initial stages of refinements attempt to 

overcome the penalty derived from the initial rigid docking of terminal residues by 

introducing partial flexibility to the ligand backbone. Restraints were imposed 

upon   the positional variables of the Cα atoms of probes to keep it close to the 

starting conformation. The energy function adopted for this refinement step is 

shown in Equation 4: 

 

E = Evw + Ehbonds + Etorsions + Eelectr + Esolv + Eentropy

(Equation 4) 
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The internal energy included internal van der Waals interactions (Evw), entropic 

energy (Eentropy), electrostatic potential (Eelectr), hydrogen bonding (Ehbonds), 

torsion energy (Etorsions) and solvation energy (Esolv). Refinements of ligand and 

receptor side-chain torsions in the vicinity of 4.00 Å from the receptor were 

performed upon the final backbone structure. 

 

 

Figure 17 Flowchart of docking procedure used in this work. 
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4.2.2.4 Construction of flanking residues 

At this stage, MHC class I ligand models have been fully constructed and the 

following task is applicable only to MHC class II ligands. Here, the only 

construction remaining is the flanking residues that extend out of the MHC class 

II binding groove. The conformations of the flanking peptide residues are 

generated by satisfying the spatial constraints in the allowed subspace for 

backbone dihedrals (Sali and Blundell, 1993), defined by the conformation of the 

bound core nonameric peptide docked into the binding groove. This is performed 

in three stages: (i) distance and dihedral angle restraints on the entire peptide 

sequence are derived from its alignment with the nonamer sequence in the 

binding groove; (ii) the restraints on spatial features of the flanking residues are 

derived by extrapolation from the known 3D structure of flanking residues in the 

alignment, expressed as probability density functions; and (iii) the spatial 

restraints on the flanking residues are then satisfied by optimization of the 

molecular probability density function using a variable target function technique 

that applies the conjugate gradients algorithm to positions of all non-hydrogen 

atoms. 

4.3 Results 

Evaluation of our docking procedure is performed systematically in the following 

three tests: (i) self-docking 40 test case complexes; (ii) cross-docking of 15 

solved peptides into templates of appropriate alleles; and (iii) validation against 

existing techniques.  
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4.3.1 Self-docking bound peptides to MHC molecules  

To validate our docking procedure, we first applied our technique to the 

rebuilding of 40 non-redundant MHC-peptide complexes by docking peptides 

extracted from peptide/MHC complexes back into their respective binding 

grooves. This initial experiment is an important first step for testing the capability 

of our technique to model peptides into their cognate MHC receptors. Peptides 

were separated from experimental structures and remodeled back into their own 

bound states. A correct docking result is defined as a complex with not more than 

2.50 Å Cα RMSD from the known experimental structure. The RMSD for the 

near-native solution ranges from 0.09 Å (complex 1G7Q) to 1.53 Å (complex 

1JF1, Figure 18). Our procedure generated 33 out of 40 non-redundant 

complexes (Table 4 and Figure 19) within a Cα RMSD of 1.00 Å.  

 

A B 

Figure 18 Comparison of the predicted and experimental structures of the ELAGIGILTV 

peptide in the 1JF1 complex (Table 2). The crystal structure (in red) and modeled 

structures (in green) are shown in (A) Cα trace representation, and (B) stick 

representation of all heavy atoms. 

 83



Table 4 Comparison of the position the bound peptide in the original crystal structure 

and after docking back into the MHC groove. RMSD values are calculated for the ligand 

interface Cα atoms of the lowest energy solution, superimposed onto the experimental 

structure. 

Class Allele PDB Res (Å) Length RMSD (Å) Sequence 
I HLA-A*0201 1DUZ 1.80 9 0.33 LLFGYPVYV 
I HLA-A*0201 1HHG 2.60 9 0.46 TLTSCNTSV 
I HLA-A*0201 1HHJ 2.50 9 0.87 ILKEPVHGV 
I HLA-A*0201 1HHH 3.00 10 1.10 FLPSDFFPSV 
I HLA-A*0201 1I1Y 2.20 9 0.70 YLKEPVHGV 
I HLA-A*0201 1I4F 1.40 10 0.49 GVYDGREHTV 
I HLA-A*0201 1I7R 2.20 9 0.59 FAPGFFPYL 
I HLA-A*0201 1I7U 1.80 9 0.32 ALWGFVPVL 
I HLA-A*0201 1JF1 1.85 10 1.53 ELAGIGILTV 
I HLA-A*0201 1JHT 2.15 9 0.54 ALGIGILTV 
I HLA-A*0201 1OGA 1.40 9 0.32 GILGFVFTL 
I HLA-A*0201 1QRN 2.80 9 0.46 LLFGYAVYV 
I HLA-A*0201 1QSE 2.80 9 0.26 LLFGYPRYV 
I HLA-A*0201 1QSF 2.80 9 0.54 LLFGYPVAV 
I HLA-A*6801 1TMC 2.30 10 0.52 EVAPPEYHRK 
I HLA-B*0801 1AGD 2.05 8 0.28 GGKKKYKL 
I HLA-B*0801 1AGF 2.20 8 0.66 GGKKRYKL 
I HLA-B*3501 1A1N 2.00 8 0.10 VPLRPMTY 
I HLA-B*3501 1A9E 2.50 9 1.09 LPPLDITPY 
I HLA-B*5101 1E27 2.20 9 1.27 LPPVVAKEI 
I HLA-B*5301 1A1M 2.30 9 0.59 TPYDINQML 
I HLA-B*5301 1A1O 2.30 9 0.78 KPIVQYDNF 
I H2-Db 1JPF 2.18 11 1.14 SGVENPGGYCL 
I H2-Db 1JPG 2.20 9 0.33 FQPQNGQFI 
I H2-Dd 1BII 2.40 10 1.49 RGPGRAFVTI 
I H2-Kb 1FZM 1.80 8 0.32 RGYVYQGL 
I H2-Kb 1FZO 1.80 9 0.40 FAPGNYPAL 
I H2-Kb 1G7P 1.50 9 0.97 SRDHSRTPM 
I H2-Kb 1G7Q 1.60 8 0.09 SAPDTRPA 
II HLA-DR1 1AQD 2.45 10 0.63 DWRFLRGYHQ 
II HLA-DR1 1AQD 2.45 10 1.08 DWRFLRGYHQ 
II HLA-DR2 1BX2 2.60 10 0.60 VVHFFKNIVT 
II HLA-DR2 1BX2 2.60 10 0.81 VVHFFKNIVT 
II HLA-DR2 1FV1 1.90 10 0.47 HFFKNIVTPR 
II HLA-DR2 1FV1 1.90 10 0.58 HFFKNIVTPR 
II HLA-DR3 1A6A 2.75 10 0.38 KMRMATPLLM 
II HLA-DR4 1J8H 2.40 10 0.59 KYVKQNTLKL 
II HLA-DR4 2SEB 2.50 10 0.43 YMRADAAAGG 
II HLA I-Ak 1IAK 1.90 10 0.42 TDYGILQINS 
II HLA-DQ8 1JK8 2.40 10 0.21 VEALYLVCGE 
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A / 1DUZ 

 

B / 1I4F C / 1OGA 

↑ ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↓ 
L L F G Y P V Y V   

↓ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓ 
G V Y D G R E H T V  

↓ ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↓ 
G I L G F V F T L 

   

D / 1I7R 

 

E / 1I7U F / 1JHT 

↑ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ 
F A P G F F P Y L 

↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ 
A L W G F V P V L 

↑ ↓ ↓ ↑ ↓ ↓ ↑ ↑ ↓ 
A L G I G I L T V

   

G / 2SEB 

 

H / 1J8H I / 1A6A 

↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↑ 
Y M R A D A A A G G 

↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓ 
K Y V K Q N T L K L 

↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓ 
K M R M A T P L L M

   

J / 1BX2 

 

K / 1BX2 L / 1AQD 

↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓ 
V V H F F K N I V T 

↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↑ ↓ 
V V H F F K N I V T 

↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ 
D W R F L R G Y H Q

Figure 19 Representations of selected lowest energy solutions in the binding grooves 

obtained after redocking the peptides into the respective MHC grooves in the first 

benchmarking test (Table 4). Experimental peptide structures are represented as bold 

dark lines and remodeled structures as thin grey lines, showing all heavy atoms for MHC 

Class I (A-F) and class II (G-L) complexes. The relative orientations of the peptide side 

chains with respect to the floor of the binding groove are indicated by arrows pointing 

either up (away from the groove) or down (towards the groove). 
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Table 5 Comparison between modeled peptides and relevant crystal structures after 

docking onto a single template. RMSD values calculated for the ligand interface Cα 

atoms of the lowest energy solution superimposed onto the experimental PDB structure 

are listed. 

 

Class Allele PDB Length Template RMSD (Å) Sequence 
I HLA-A*0201 1DUZ 9 1I4F 0.69 LLFGYPVYV 
I HLA-A*0201 1HHG 9 1I4F 0.58 TLTSCNTSV 
I HLA-A*0201 1HHJ 9 1I4F 0.73 ILKEPVHGV 
I HLA-A*0201 1HHH 10 1I4F 1.48 FLPSDFFPSV 
I HLA-A*0201 1I1Y 9 1I4F 0.77 YLKEPVHGV 
I HLA-A*0201 1I7R 9 1I4F 0.60 FAPGFFPYL 
I HLA-A*0201 1I7U 9 1I4F 0.70 ALWGFVPVL 
I HLA-A*0201 1JF1 10 1I4F 1.20 ELAGIGILTV 
I HLA-A*0201 1JHT 9 1I4F 1.09 ALGIGILTV 
I HLA-A*0201 1OGA 9 1I4F 0.38 GILGFVFTL 
I HLA-A*0201 1QRN 9 1I4F 0.81 LLFGYAVYV 
I HLA-A*0201 1QSE 9 1I4F 0.52 LLFGYPRYV 
I HLA-A*0201 1QSF 9 1I4F 0.57 LLFGYPVAV 
II HLA-DR2 1BX2 10 1FV1 1.22 VVHFFKNIVT 
II HLA-DR4 2SEB 10 1J8H 0.42 KYVKQNTLKL 

Table 6 Benchmarking of our MHC-peptide procedure with previously published studies 

in MHC class I peptide modeling. *RMSD of peptide Cα atoms obtained in our work from 

self- and cross-docking respectively. 

*RMSD (Å) Peptide 
Sequence Technique Reference Ref. Current  
TLTSCNTSV Simulated Annealing Rognan et al. (1999) 1.04 0.46, 0.58 
FLPSDFFPSV Simulated Annealing Rognan et al. (1999) 1.59 1.10, 1.48 
GILGFVFTL Simulated Annealing Rognan et al. (1999) 0.46 0.32, 0.38 
ILKEPVHGV Simulated Annealing Rognan et al. (1999) 0.87 0.87, 0.73 
LLFGYPVYV Simulated Annealing Rognan et al. (1999) 0.78 0.33, 0.69 
RGYVYQGL Combinatorial Algorithm Desmet et al. (2000) 0.56 0.32, 0.66 
FAPGNYPAL Multiple copy Algorithm Rosenfeld et al. (1993, 1995) 2.70 0.40, 0.90 
GILGFVFTL Multiple copy Algorithm Rosenfeld et al. (1993, 1995) 1.40 0.32, 0.38 
LLFGYPVYV Combinatorial Algorithm Sezerman et al. (1996) 1.40 0.33, 0.69 
ILKGPVHGV Combinatorial Algorithm Sezerman et al. (1996) 1.30 0.87, 0.73 
GILGFVFTL Combinatorial Algorithm Sezerman et al. (1996) 1.60 0.32, 0.38 
TLTSCNTSV Combinatorial Algorithm Sezerman et al. (1996) 2.20 0.46, 0.58 
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This preliminary experiment establishes the validity of our approach, using 

the three-step proposed procedure. Encouraged by these results, we next apply 

our procedure to a more practical problem in allele-specific vaccine design, that 

is, the modeling of peptide/MHC complexes resulting from multiple peptides 

binding to a single MHC allele template.  

4.3.2 Cross-docking peptides onto a single template  

We next applied our technique to the modeling of 15 non-redundant peptides (13 

class I and 2 class II) for which crystal structures are available into a single 

template. This stage of the testing is critical to determine the capability of our 

procedure to model unknown peptides onto available templates. Due to the 

deficiency of available class II crystal structures, only 2 class II peptides are 

tested in this stage. Our procedure constantly found a solution with RMSD below  

1.48 Å. Table 5 shows the results obtained from this experiment.  

4.3.3 Comparison with existing approaches  

In order to determine the validity and accuracy of our procedure, we benchmark 

our technique with four previously published studies involving MHC class I 

peptide modeling as detailed in Table 6. As there was no previously reported 

accuracy for MHC class II peptide modeling, no benchmarking could be 

performed on the modeled MHC class II peptides. It is notable that validation 

process by Rognan et al. (1999), Desmet et al. (2000) and Sezerman et al. 

(1996) involved remodeling peptides back into their original crystal structure. 
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Using this criterion, our procedure is either comparable or outperforms the three 

earlier studies (Rognan et al., 1999; Desmet et al., 2000; Sezerman et al., 1996) 

in terms of the Cα RMSD of the modeled peptides.  

4.4 Discussion 

Modeling the bound conformation of MHC-binding peptides is a complex problem 

in the field of immunology. In this chapter, a generic protocol for the modeling of 

both MHC class I and class II complexes has been developed. The proposed 

procedure forms a basis for the prediction of peptides that will bind to specific 

MHC alleles and hence vaccine design, based on computational immunological 

methods. To the best of the author’s knowledge, the current study presents one 

of the most accurate peptide/MHC flexible docking techniques to date. The 

docking procedure has been assessed against a large dataset of non-redundant 

peptide/MHC complexes in which three-dimensional information is available. Out 

of 40 peptides considered in this study (Table 4), we have consistently obtained 

a Cα RMSD below 1.00 Å for 33 peptides by remodeling peptide-bound MHC 

structures.  

The worst structure was generated from the remodeling of the bound 

peptide ELAGIGILTV from complex 1JF1 with Cα RMSD of 1.53 Å. The loop 

formed around residues 5 to 7 was erroneously predicted and this misplacement 

is a direct consequence of missing water molecules positioned around the loop in 

the template, which resulted in incorrect positioning of interacting residues. In the 

absence of explicit water molecules, the predicted conformation of our peptide is 

energetically more favorable than the crystal conformation. Nonetheless, our 
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procedure can correctly predict the conformation of residues that extends into the 

binding cleft and identify essential contacts with the MHC receptor as shown in 

Figure 18. While water molecules and other common biological ions such as 

phosphate and chloride may mediate peptide/MHC interactions, they were left 

out in our preliminary experiments in order to determine the generic prediction 

capability of our docking protocol using a single template for each allele since the 

significance and contributions of these molecules varies between different 

peptides and the respective alleles. It is possible that for some peptide/MHC 

complexes, appropriate addition of mediating molecules or considerations of 

solvent effects may lead to an improvement in prediction accuracy.  

The performance of our method, in terms of computational time, is highly 

efficient and requires approximately 11 minutes for the complete modeling of one 

peptide (with the first rigid-body docking step of ~3.5 minutes, loop closure of ~12 

seconds and the final refinement step of ~7 minutes) on a 4-CPU SGI Origin 

3200 workstation. Rapid flexible docking of target peptide into the receptor 

binding groove (with rigid backbone and flexible side chains) is possible by 

restraining the conformational spaces to be sampled in the early phase of our 

modeling protocol (please refer to section 6.2.2.1 Rigid docking of probe for 

details). Large scale modeling and scanning of potential MHC-binding sequences 

is possible through automation for all steps. Our docking procedure also proved 

to be capable of accurately modeling MHC-peptide complexes in the absence of 

essential anchor residues by exploiting the highly conserved backbone 

conformation of bound MHC class I and class II peptide termini.  
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4.5 Summary 

 This work reports on the development of an efficient and fast docking 

protocol for modeling the bound conformation of peptide ligands to MHC 

class I and class II molecules. To the best of the author’s knowledge, the 

current study presents one of the most accurate peptide/MHC flexible 

docking techniques to date. 

 High prediction accuracy was obtained in three tests: (i) self-docking 40 

test case complexes; (ii) cross-docking of 15 solved peptides into 

templates of appropriate alleles; and (iii) validation against existing 

techniques.  

 The methodology reported here also proved to be capable of accurate 

modeling of MHC-peptide complexes in the absence of essential anchor 

residues by exploiting the highly conserved backbone conformation of 

bound MHC class I and class II peptide termini. 

 This work demonstrates that structure-based predictive technique can be 

applied to the systematic functional analysis of MHC-binding peptides. 

This generic approach is applicable for the modeling of both MHC class I 

and class II complexes. The proposed procedure forms a basis for the 

prediction of peptides that will bind to specific MHC alleles and hence 

vaccine design, based on computational immunological methods.  
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Chapter 5: Analysis of PV associated and non-

associated alleles 

5.1 Introduction 

Pemphigus Vulgaris (PV) is a potentially life-threatening form of autoimmune 

blistering skin disorder due to the loss of integrity of normal intercellular 

attachments within the epidermis and mucosal epithelium. The disease is 

characterized by the presence of pathogenic autoantibodies directed against a 

130-kDa transmembrane glycoprotein, desmoglein-3 (Dsg3) (Amagai, 1994), 

within the desmosomes of the spinous layer of the skin. Although Dsg3 is thought 

to be important in maintaining cell-to-cell adhesion, there have been few in vivo 

models that confirm their actual function in the normal structure and function of 

hair (Koch et al., 1998). Strong association of PV to the major histocompatibility 

complex class II serotypes DR4 and DR6 has been reported in the literature 

(Ahmed et al., 1990, 1991; Scharf et al., 1989) with over 95% of PV patients 

possessing one or both of these alleles (Scharf et al., 1989).  Direct nucleotide 

sequence analysis of DR4 and DR6 subtypes revealed that susceptibility to PV is 

strongly linked to DRB1*0402 and DQB1*0503 molecular subtypes, respectively 

(Scharf et al., 1989; Sinha et al., 1988).   

This chapter aims to understand the functional correlation between MHC 

class II alleles and PV, from a structural interaction view point. Molecular 

modeling of ten PV associated and non-associated MHC class II receptors (DR4: 

DRB1*0401, *0402, *0404, *0406, DR6 (also classified now as DR14): 
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DRB1*1401, *1404, *1405, DQ2: DQB1*0201, *0202 and DQ5: DQB1*0503) 

were performed to explore the structural organization of the binding groove of 

these alleles. Nine previously identified epitopes, Dsg3 96-112, Dsg3 191-205, 

Dsg3 206-220, Dsg3 252-266, Dsg3 342-356, Dsg3 380-394, Dsg3 763-777, 

Dsg3 810-824 and Dsg3 963-977 (numbered in accordance with Swiss-Prot 

accession number P32926), capable of stimulating patient derived T cells, were 

selected. The binding of these peptides to the DR and DQ structural models were 

studied using the computational docking protocol discussed previously (Chapter 

7). This is, to the author’s knowledge, the first study of its kind, where structural 

principles have been used to discriminate between peptide binders and non-

binders, for a number of disease-implicated and non-disease-implicated alleles. 

In the light shed by these atomic models, the binding specificities of each allele to 

the various Dsg3 peptides are discussed. The results obtained in the study are 

able to discriminate between PV associated and non-associated alleles, 

consistent with the experimental results obtained by Veldman et al. (2003) and 

Sinha et al. (unpublished results for Dsg3 342-356, 810-824 and 963-977). 

Insights into structural features behind the immune response provided by 

protective alleles for PV have also been obtained by our structural 

immunoinformatics approach. 
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5.2 Materials and Methods 

5.2.1 Template search  

In this study, ten PV associated, closely related non-associated and protective 

MHC class II alleles DRB1*0401, *0402, *0404, *0406, *1401, *1404, *1405, 

DQB1*0201, *0202, and *0503 were selected for analysis. MHC sequence data 

were obtained from the IMGT-HLA database (http://www.ebi.ac.uk/imgt/hla/). The 

α chain of all DR alleles investigated in this study is the DRA1*0101 sequence, 

with the β chain from the allele sub-type. To identify potential structural templates 

available in the PDB for model building, a sequence similarity search was 

performed using BLAST (Altschul et al., 1990) running on the servers at NCBI 

(www.ncbi.nlm.nih.gov/blast/) and the highest quality templates were selected 

among the returned results. Among these, the crystal structures of HLA-DR4 

(PDB code 1D5Z) and HLA-DQ2 (PDB code 1S9V) were adopted as the 

structures of DRB1*0401 and DQB1*0201 respectively (100% sequence 

identity). The crystal structures of DRB1*0401 (PDB code 1D5Z), DQB1*0602 

(PDB code 1UVQ) and DQB1*0201 (PDB code 1S9V) were selected as 

templates for all other DR subtypes, DQB1*0503 and DQB1*0202 respectively 

(Table 7).  

5.2.2 Model building  

The program MODELLER (Sali and Blundell, 1993) was employed for 

comparative modeling of both DRB1 (*0402, *0404, *0406, *1401, *1404, *1405) 
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and DQB1 (*0202, *0503) subtypes. The models are constructed by optimally 

satisfying spatial constraints obtained from the alignment of the template 

structure with the target sequence and from the CHARMM-22 force field 

(MacKerell et al., 1998). The initial model was refined by assigning the rotameric 

states of essential side chains according to the corresponding crystal structure, 

followed by a short energy minimization (Abagyan et al., 1994) using the program 

Internal Coordinates Mechanics (ICM; Molsoft LLC, San Diego, CA) (Abagyan et 

al., 1999). 

5.2.3 Peptide set  

Nine previously identified epitopes Dsg3 96-112, 191-205, Dsg3 206-220, Dsg3 

252-266, Dsg3 342-356, Dsg3 380-394, Dsg3 763-777, Dsg3 810-824 and Dsg3 

963-977 that elicited primary proliferative T cell response in PV patients (Sinha et 

al., 1988, 1990; Veldman et al., 2003; Wucherpfennig et al., 1995; Hertl et al., 

1998) were selected for modeling studies. T cell response to eight of these 

peptides (Dsg3 191-205, Dsg3 206-220, Dsg3 252-266, Dsg3 342-356, Dsg3 

380-394, Dsg3 763-777, Dsg3 810-824 and Dsg3 963-977) has been reported in 

patients carrying DRB1*0402. Dsg3 96-112 has been reported to elicit T cell 

response in patients with DQB1*0503 but lacking DRB1*0402 (Veldman et al., 

2003). Of these Dsg3 191-205, Dsg3 342-356, Dsg3 810-824 and Dsg3 963-977 

were shown to directly bind to DRB1*0402 by competitive binding assays (Sinha 

et al., personal communications). Briefly, soluble HLA DRA1*0101/DRB1*0402 

were purified by DR-specific affinity chromatography and incubated with different 
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concentrations of experimental peptides (0-40 µM) in the presence of biotinylated 

class II-associated invariant-chain peptide (CLIP) (1 µM) for 2 hours. The MHC-

peptide complexes were then captured on a 96-well plate coated with anti-HLA-

DR (L243) (BD Pharmingen, San Diego, CA). The CLIP bound to the MHC 

molecules was directly assayed using Europium (Eu)-labeled streptavidin (Perkin 

Elmer, Boston, MA). The relative binding of peptides was subsequently 

determined by measuring the displacement of the CLIP at different peptide 

concentrations. 

Table 7 Sequence and structural similarity between the eight (DRB1*0402, *0404, 

*0406, *1401, *1404, *1405, DQB1*0202, and *0503) MHC structural models and their 

corresponding template structures (1D5Z: DRB1*0401, 1S9V: DQB1*0201, 1UVQ: 

DQB1*0602). Positives represent a measure of sequence similarity, accounting for 

identical and conservatively substituted residues.  Root mean square deviations (RMSD) 

values in Å are shown for the Cα atoms of both MHC chains and for the residues 

comprising the different peptide-binding pockets. 

Cα RMSD (Å) Sequence 
Identity Positives Allele Template Pockets α & β 

chains P1 P4 P6 P7 P9 
DRB1*0402 1D5Z 97.9% 99.0% 0.35 0.12 0.06 0.07 0.10 0.09 
DRB1*0404 1D5Z 99.0% 99.5% 0.31 0.15 0.10 0.06 0.07 0.18 
DRB1*0406 1D5Z 97.9% 98.4% 0.32 0.11 0.15 0.07 0.11 0.22 
DRB1*1401 1D5Z 94.1% 97.3% 0.25 0.11 0.09 0.02 0.09 0.18 
DRB1*1404 1D5Z 85.8% 89.5% 0.29 0.12 0.10 0.02 0.06 0.22 
DRB1*1405 1D5Z 81.0% 83.2% 0.24 0.11 0.07 0.02 0.08 0.07 
DQB1*0202 1S9V 98.0% 99.0% 0.57 0.16 0.09 0.04 0.15 0.05 
DQB1*0503 1UVQ 93.0% 96.0% 0.39 0.03 0.07 0.01 0.10 0.06 
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5.2.4 Peptide docking  

Analysis of binding motifs (www.syfpeithi.de) (Rammensee et al., 1999) and 

available crystal structures suggested a core region of nine amino acids as 

essential for binding. To represent the possibility that any core peptide 

sequences can be recognized by the binding groove of MHC class II alleles, a 

sliding window input of size nine as illustrated in Figure 20 was applied to 

generate all possible combinations of core nonamer peptides from each Dsg3 

peptide. This method can eliminate any bias in selecting core peptides based on 

sequence patterns alone. Each core peptide fragment is docked into the binding 

groove using the docking protocol described previously (Chapter 6). For each 

ligand, the best solution is obtained based on the following criteria: pattern of 

hydrogen bonding to the MHC molecule, pattern of hydrophobic burial of peptide 

side chains, and the absence of atomic clashes or repulsive contacts. 

 

Figure 20 Sliding window of width 9 applied to identify core residues of Dsg3 963-977 to 

be modeled into binding groove. 
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5.2.5 Definition of contact residues  

In this study, peptide/MHC residues were considered to be in contact if at least 

one pair of their non-hydrogen (“heavy”) atoms was found to be within 4.00 Å 

radius (Fischer and Marquesee, 2000). Intra-peptide interactions and intra-MHC 

interactions were not considered as they have minor influence on peptide/protein 

backbone structure. Any atom in the peptide and any atom in the MHC were 

considered to be experiencing atomic clash if their separation is below 2.00 Å 

(Samudrala and Moult, 1997) for non-hydrogen atoms and below 1.60 Å for 

atoms participating in hydrogen bonds (Wallace et al., 1995; Samanta et al., 

2002).  

5.2.6 Definition of binding pockets for MHC class II alleles   

Interactions between side-chains of bound peptide ligands and polymorphic 

cavities (or anchor “pockets”) in the binding site of MHC class II alleles are 

important in determining the peptide binding affinity and sequence specificity of 

MHC molecules and are defined according to the work of Stern et al. (Stern and 

Wiley, 1994; Murthy and Stern, 1997). 
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5.3 Results and Discussion 

5.3.1 Alleles comparisons   

5.3.1.1 DR4 PV 

The sequence identity between the DR4 alleles (excluding DRB1*0401) with their 

corresponding templates ranges from 97.9 to 99.0%, and the sequence similarity 

(representing identical and conservatively substituted residues) was between 

98.4 and 99.5% (Table 7). All five important peptide-binding pockets 1, 4, 6, 7 

and 9 show extremely high structural conservation at the Cα positions, 

suggesting that any peptide discrimination leading to epitope selection between 

the alleles is mainly due to the size and nature of the side chains of the pocket 

residues. In order to further isolate the true disease-relevant allele within a 

haplotype, we compared specific residues in the polymorphic pockets regarded 

as important in conferring specificity for antigen presentation (Figure 21). Pocket 

1, characterized by a Val/Gly β86 dimorphism, is the deepest cavity and thus, the 

most important anchor for peptide binding (Wucherpfennig et al., 1995). In 

addition, the functional specificity of DR4 molecules is also affected by 

polymorphisms at position β70, β71, β74, which contribute to pocket 4. Two 

negatively charged residues at position β70 and β71 that were previously 

suggested to influence peptide selectivity in PV patients (Hertl et al., 1998) could 

be found in DRB1*0402 (Asp β70 and Glu β71) but a positively charge Arg/Lys 

β71 was found in DRB1*0404, *0406 and *0401. Amino acid polymorphism can 
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also be observed at position β11 of pocket 6, β71 of pocket 7 and β37 of pocket 

9 respectively.  

5.3.1.2 DR6 PV 

Study of individual allele frequencies in DR6 PV patients revealed that the 

relevant disease susceptibility allele is DQB1*0503 instead of DR6 alleles (Sinha 

et al., personal communications). DQB1*0503 and the DR6 PV non-associated 

alleles investigated in this study show a significant degree of overlap in 

alignment, with 14 amino acid differences in areas of the binding cleft that could 

affect peptide binding. Clear differences in the amino acid sequences are 

observed at residue β86 of pocket 1, residues β13, β70, β71, β74, β78 of pocket 

4, residue β11 of pocket 6, residues β28, β30, β67, β71 of pocket 7 and residues 

β9, β37, β57, β60 of pocket 9. Similar to the DR4 alleles, all five important 

peptide-binding pockets 1, 4, 6, 7 and 9 in DBQ1*0503 and DR6 alleles 

demonstrate exceptionally high structural conservation at the Cα positions. A 

significant difference is that DQB1*0503 contains a negatively charged Asp β57 

that differs from the uncharged Ala β57 found in non-PV associated DRB1*1401 

and *1404. Also, at positions β70 and β71, DQB1*0503 does not contain 

negatively charged residues identified in DRB1*0402 that are critical for binding 

of self-antigens in DR4 PV patients. Instead, these positions were replaced by 

two small neutral hydrophobic residues (Gly β70 and Ala β71), suggesting that 

DRB1*0402 and DQB1*0503 may recognize different sets of PV epitopes under 

the influence of a different balance of intermolecular forces. Positions β70 and 
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β74 show charge reversal, in the non-PV associated DRB1*1401, *1404 and 

*1405 alleles while the negative charge at β71 alone is conserved, compared to 

DRB1*0402, making pocket 4 the single dominant factor discriminating between 

PV non-association and susceptibility.  

5.3.1.3 PV protective and susceptible alleles 

Differences in the amino acid sequences are observed at residue β86 of pocket 

1, residue β70, β71 of pocket 4, residues β28, β30, β47, β71 of pocket 7 and 

residues β37, β57 of pocket 9. Both protective alleles (DQB1*0201 and 

DQB1*0202) do not contain negatively charged residues at position β70 (pocket 

4) and β71 (pocket 7). Instead, these positions were replaced by two large and 

positively charged amino acids (Arg β70 and Lys β71). The functional 

specificities of PV protective and susceptible alleles are also affected by clear 

structural differences in the Cα positions of both α and β chains (Cα RMSD > 

0.57 Å) indicating that any differences in peptide discrimination between the 

alleles is due to a combination of both the backbone conformation as well as the 

size and nature of the side chains of the pocket residues.  
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                1........10........20........30........40........50........60........70 
DRB1*1401       GDTRPRFLEYSTSECHFFNGTERVRFLDRYFHHQEEFVRFDSDQGEYRAVTELGRPAAEHWNSQKDILER 
DRB1*1404       GDTRPRFLEYSTGECYFFNGTERVRFLDRYFYHQEEFVRFDSDQGEYRAVTELGRPAAEHWNSQKDILER 
DRB1*1405       GDTRPRFLEYSTSECHFFNGTERVRFLDRYFYHQEEFVRFDSDQGEYRAVTELGRPDAEYWNSQKDILER 
DRB1*0406       GDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEESVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQ 
DRB1*0404       GDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQ 
DRB1*0401       GDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYRAVTELGRPDAEYWNSQKDLLEQ 
DRB1*0402       GDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYRAVTELGRPDAEYWNSQKDILED 
DQB1*0201       --SPEDFVYQFKGMCYFTNGTERVRLVSRSIYNREEIVRFDSDVGEFRAVTLLGLPAAEYWNSQKDILER 
DQB1*0202       --SPEDFVYQFKGMCYFTNGTERVRLVSRSIYNREEIVRFDSDVGEFRAVTLLGLPAAEYWNSQKDILER 
DQB1*0503       --SPEDFVYQFKGLCYFTNGTERVRGVTRHIYNREEYVRFDSDVGVYRAVTPQGRPDAEYWNSQKEVLEG 
                  :   *:   .  *:* ******* : * ::::** ****** * :****  * * **:*****::** 
 
                71.......80........90........100.......110.......120.......130.......141  
DRB1*1401       ERAEVDTYCRHNYGVVESFQVQRRVHREVTVYPAK-------NLLVCSVNGPYPGSIEVRWFRNGQEEKT 
DRB1*1404       ERAEVDTYCRHNYGVVESFQVQRRVHREVTVYPAK-------NLLVCSVNGPYPGSIEVRWFRNGQEEKT 
DRB1*1405       ERAEVDTYCRHNYGVVESFQVQRRVVREVTVYPAK-------NLLVCSVNGPYPGSIEVRWFRNGQEEKT 
DRB1*0406       RRAEVDTYCRHNYGVVESFTVQRRVYPEVTVYPAKTQPLQHHNLLVCSVNGFYPGSIEVRWFRNGQEEKT 
DRB1*0404       RRAAVDTYCRHNYGVVESFTVQRRVYPEVTVYPAKTQPLQHHNLLVCSVNGFYPGSIEVRWFRNGQEEKT 
DRB1*0401       KRAAVDTYCRHNYGVGESFTVQRRVYPEVTVYPAKTQPLQHHNLLVCSVNGFYPGSIEVRWFRNGQEEKT 
DRB1*0402       ERAAVDTYCRHNYGVVESFTVQRRVYPEVTVYPAKTQPLQHHNLLVCSVNGFYPGSIEVRWFRNGQEEKT 
DQB1*0201       KRAAVDRVCRHNYQLELRTTLQRRVEPTVTISPSRTEALNHHNLLVCSVTDFYPAQIKVRWFRNDQEETA 
DQB1*0202       KRAAVDRVCRHNYQLELRTTLQRRVEPTVTISPSRTEALNHHNLLVCSVTDFYPAQIKVRWFRNGQEETA 
DQB1*0503       ARASVDRVCRHNYEVAYRGILQRRVEPTVTISPSRTEALNHHNLLICSVTDFYPSQIKVRWFRNDQEETA 
                 ** **  ***** :     :****   **: *::       ***:***.. **..*:******.***.: 
 
                141......150.......160.......170.......180.......190         
DRB1*1401       GVVSTGLIHNGDWTFQTLVMLETVPRSSEVYTCQVEHPSLTSPLTVEWRA 
DRB1*1404       GVVSTGLIHNGDWTFQTLVMLETVPRSSEVYTCQVEHPSLTSPLTVEWRA 
DRB1*1405       GVVSTGLIQNGDWTFQTLVMLETVPRSSEVYTCQVEHPSLTSPLTVEWRA 
DRB1*0406       GVVSTGLIQNGDWTFQTLVMLETVPRSGEVYTCQVEHPSLTSPLTVEWRA 
DRB1*0404       GVVSTGLIQNGDWTFQTLVMLETVPRSGEVYTCQVEHPSLTSPLTVEWRA 
DRB1*0401       GVVSTGLIQNGDWTFQTLVMLETVPRSGEVYTCQVEHPSLTSPLTVEWRA 
DRB1*0402       GVVSTGLIQNGDWTFQTLVMLETVPRSGEVYTCQVEHPSLTSPLTVEWRA 
DQB1*0201       GVVSTPLIRNGDWTFQILVMLEMTPQRGDVYTCHVEHPSLQSPITVEWRA 
DQB1*0202       GVVSTPLIRNGDWTFQILVMLEMTPQRGDVYTCHVEHPSLQSPITVEWRA 
DQB1*0503       GVVSTPLIRNGDWTFQILVMLEMTPQRGDVYTCHVEHPSLQSPITVEWRA 
                ***** **:******* ***** .*: .:****:****** **:****** 

                        

Figure 21 Multiple sequence alignment of the β chains of DR and DQ alleles. Pocket 

residues are shaded in black. 

 
 

5.3.2 Epitope comparisons  

5.3.2.1 DR4 PV 

Eight previously identified stimulatory Dsg3 epitopes (Dsg3 191-205, Dsg3 206-

220, Dsg3 252-266, Dsg3 342-356, Dsg3 380-394, Dsg3 763-777, Dsg3 810-824 

and Dsg3 963-977) for DRB1*0402 were docked into the binding groove of all 
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DR4 (DRB1*0401, *0402, *0404, *0406) alleles investigated in this study. 

Analysis of these Dsg3 peptide-bound alleles revealed that only one peptide 

conformation can fit perfectly into the binding cleft of DRB1*0402, and atomic 

clashes of these Dsg3 peptides are obtained for all other DR4 subtypes 

investigated in this study. Two epitopes (Dsg3 342-356 and Dsg3 810-824) have 

small residues (Ser/Cys) in pocket 1, suggesting that small residues at anchor 

positions may also result in high affinity binding with DR4 PV molecules, an 

observation previously documented for the influenza-associated I-Ad allele of 

mice (Scott et al., 1998). This finding supports the association of DRB1*0402 

with PV whereas other DR4 subtypes are non-associated, with the exception of 

DRB1*0406 that is reported to be associated in the Japanese population 

(Yamashina et al., 1998). As such, there is a possibility of the existence of other 

peptides relevant in the Japanese populations that bind to *0406 but are yet to be 

determined.  

5.3.2.2 DR6 PV 

Dsg3 96-112, a recently identified epitope in DR6 PV patients (Veldman et al., 

2003), fits perfectly into the binding groove of DQB1*0503 with two identified core 

sequences at residues 101-109 and residues 102-110. The identified 101-109 

core has four intermolecular hydrogen bonds compared to seven intermolecular 

hydrogen bonds in the core of 102-110. Perfect fitting of Dsg3 206-220, Dsg3 

252-266, Dsg3 342-356, Dsg3 810-824 and Dsg3 963-977 into the binding 

groove of DQB1*0503 is also obtained. Atomic clashes are obtained for Dsg3 
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191-205, Dsg3 380-394 and Dsg3 763-777 as well as all DR6 alleles investigated 

in this study. The proportion of DRB1*1401, *1404 and *1405 has been reported 

to be increased in PV probably due to linkage disequilibrium. The lack of binding 

of all stimulatory peptides investigated in this study to these alleles indicates that 

the HLA association in DR6 PV patients is more likely at the DQB1 locus 

(DQB1*0503 allele) and not the linked DRB1 loci (DRB1*1401, *1404 and 

*1405). Our data supports the notion that the reported associations of this 

disease with DRB1*1401, *1404, *1405 are due to linkage disequilibrium with the 

true disease associated allele (DQB1*0503). 

5.3.2.3 PV susceptible alleles 

Our docking simulations reveal strong evidence that DRB1*0402 and 

DQB1*0503 can bind to different sets of PV epitopes by recognizing different 

core peptide sequences in the binding groove (Table 8). Three PV epitopes 

(Dsg3 191-205, Dsg3 380-394 and Dsg3 763-77) can only bind to DRB1*0402, 

four PV epitopes (Dsg3 206-220, Dsg3 252-266, Dsg3 342-356 and Dsg3 810-

824) can bind to both alleles with different core peptide sequences (Figure 22), 

one PV epitope (Dsg3 963-977) can bind to both alleles with the same core 

peptide sequence, and one PV epitope (Dsg3 96-112) can only bind to 

DQB1*0503.  DRB1*0402 and DQB1*0503 may recognize the same Dsg3 

epitope at two unique sets of core sequences (which may be in close proximity) 

within the epitope itself. These findings are completely in accord with 

experimental data (Veldman et al., 2003).  
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5.3.2.4 PV protective alleles 

Our simulation results indicate that DQB1*0201 and DQB1*0202 can bind to 

multiple core sequences for the majority of PV epitopes investigated in this study. 

DQB1*0201 can bind one epitope (Dsg3 963-977) at two core regions, one 

epitope (Dsg3 206-220) at three core regions, three epitopes (Dsg3 191-205, 

252-266 and 342-356) at four core regions, and two epitopes (Dsg3 96-112 and 

810-824) at five core regions. DQB1*0202 can bind two epitopes (Dsg3 96-112 

and 963-977) at three core regions, two epitopes (Dsg3 342-356 and 810-824) at 

four core regions and one epitope (Dsg3 252-266) at five core regions. In 

contrast, the majority of PV epitopes (with the exception of Dsg3 96-112 and 

252-266) can bind to PV susceptible alleles DRB1*0402 and DQB1*0503 at a 

single core. This finding lends support to the hypothesis that the protective alleles 

DQB1*0201, *0202 may be capable of binding to most peptides with greater 

affinity than PV susceptible alleles, allowing for efficient deletion of autoreactive T 

cells (Gebe et al., 2002).         
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Figure 22 Dsg3 252-266 peptide (ECNIKVKDVNDNFPM) docked into the binding 

grooves of DQB1*0503 without any atomic clashes. The relevant binding register is 

underlined. (A) Side view of the molecular surface of the DQB1*0503 peptide-binding 

site is shown in orange with the binding pockets labeled and the Dsg3 252-266 peptide 

displayed as a CPK model. (B) As b, except from a top view. (C) Hydrogen bonds 

between Dsg3 252-266 and DQB1*0503 indicated by dashed lines. 

A 

B 

C 
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Table 8 Preferred core residues for PV associated alleles. Best fitting binding registers 

in the binding groove are underlined. 

No. Residues Allele Core peptide sequences 
DRB1*0402 - 

PFGIFVVDKNTGDINIT I 96-112 DQB1*0503 PFGIFVVDKNTGDINIT 
DRB1*0402 NSKIAFKIVSQEPAG II 191-205 DQB1*0503 — 
DRB1*0402 TPMFLLSRNTGEVRT III 206-220 DQB1*0503 TPMFLLSRNTGEVRT 
DRB1*0402 ECNIKVKDVNDNFPM 

ECNIKVKDVNDNFPM IV 252-266 
ECNIKVKDVNDQB1*0503 DNFPM 

V 342-356 DRB1*0402 SVKLSIAVKNKAEFH 
  DQB1*0503 SVKLSIAVKNKAEFH 

VI 380-394 DRB1*0402 GIAFRPASKTFTVQK 
  DQB1*0503 — 

VII 763-777 DRB1*0402 SGTMRTRHSTGGTNK 
  DQB1*0503 — 

VIII 810-824 DRB1*0402 NDCLLIYDNEGADAT 
  DQB1*0503 NDCLLIYDNEGADAT 

IX 963-977 DRB1*0402 ERVICPISSVPGNLA 
  DQB1*0503 ERVICPISSVPGNLA 

 

5.3.3 Role of flanking residues in peptide selection  

Our data demonstrates that the conformations of flanking peptide residues that 

extend beyond the binding groove are critical to peptide selection in MHC class II 

alleles. The core sequences of Dsg3 963-977 fit perfectly within the binding 

grooves of non-associated alleles DRB1*0401, *0404, and *1404 but poor 

contacts to the respective alleles at Phe α50 are obtained when the conformation 

of the N-terminal flanking residue Ile4 is taken into account. These results 

suggest that binding is determined by both the core and flanking segments while 

considering the overall interactions between each peptide and the respective 

alleles. 
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Table 9 Comparison of core peptides (numbering according to Table 8) from structural 

docking in the different binding pockets with the sequence-based binding motifs. ‘+’ 

indicates compliance of amino acid residues within the core (bold underlined) with the 

respective binding motifs defined by the groups of aVeldman et al. (2003) and bSinha 

(1990, personal communications) 

Core peptide residue positions 
as defined by binding motifs 

Peptide Sequence and 
positions in the bound 
conformation for DRB1*0402 

p1 p4 p6 p9 

No. Residues 

                 1 2 3 4 5 6 7 8 9  Va Sb V S V S V S 
II 191-205  NSKIA F K I V S Q E P A G +   +  +  + 
III 206-220    TPM F L L S R N T G E VRT +    + +  + 
IV 252-266   ECNI K V K D V N D N F PM     + +   
V 342-356   SVKL S I A V K N K A E FH    + + +  + 
VI 380-394    GIA F R P A S K T F T VQK +   +  +  + 
VII 763-777    SGT M R T R H S T G G TNK + + + + + +  + 
VIII 810-824     ND C L L I Y D N E G ADAT    +  +  + 
IX 963-977 ERVICP I S S V P G N L A + +  +    + 

   

5.3.4 Sequence Motifs  

Sequence-based epitope prediction relies on the identification of sequence motifs 

from available experimental data. The correlation of core peptide residues with 

binding motifs previously defined by Veldman et al. (2003) and Sinha et al. 

(unpublished results) is shown in Table 9, to understand to what extent 

sequence-based approaches will be valid with specific reference to PV.  The 

sequence conservation observed here is too low to warrant the generation of a 

consensus sequence pattern. 
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 Peptide VII (Dsg3 763-777) agrees well with the motifs from Veldman et 

al. (2003) and Sinha et al. (personal communications), while all other peptides 

show low to moderate compliance. Of the four positions compared, peptide IV 

(Dsg3 252-266) shows agreement only at position p6. For Dsg3 342-356 peptide, 

the core nonamer identified by our models is 346-354, which is register-shifted by 

one residue from the core of 347-355 reported by Veldman et al. (2003), and 

345-353 identified by Sinha et al. (personal communications), for the binding 

groove of *0402.  This shift is critical as residues p1 and p4 identified by us do 

not fit well into both binding motifs. Our modeling studies suggest that peptide 

position p4 need not be positively charged as indicated by Veldman et al. (2003), 

supporting the existence of a more degenerate motif by Sinha et al. (personal 

communications) at this position. In addition, p1 also appears to be more 

degenerate than previously suggested (Veldman et al., 2003), showing a 

preference for hydrophobic and large residues but can accommodate residues of 

other sizes as well. Hence for generating sequence patterns to design peptides 

for vaccine design, structural information is important (Schirle et al., 2001) and 

the exact peptide in the binding groove identified by our docking protocol will be 

most useful here. 

5.3.5 Disease progression in PV  

T cell response to a number of epitopes among PV patients has been reported in 

several studies (Sinha et al., 1988, 1990; Boeckmann et al., 2003; 

Wucherpfennig et al., 1995; Hertl et al., 1998). There may be disease 
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heterogeneity, meaning that clinically similar but distinct phenotypes could 

operate by alternate pathways, each with a different initial immunodominant 

epitope(s). The differential T cell reactivities among individual patients to 

individual peptides may also be a function of the disease stage or severity and 

correlate with mechanisms of disease progression. While there may be a limited 

set of epitopes present in patients in the early stages of the disease, epitope 

spreading can occur during disease progression, resulting in reactivity to 

previously innocuous epitopes. In addition, reactivities to multiple epitopes within 

individual patients were detected in two cases (Dsg3 191-205 and 342-356 for 

PV107; Dsg3 191-205, 810-824 and 963-977 for PV117). Autoantibodies against 

desmoglein 1 have also been reported in severe disease (Harman et al., 2000). 

One other incidence of multiple T cell reactivities within a PV patient has been 

previously reported (Wucherpfennig et al., 1995). These findings, together with 

our simulation results, lend further credence to the hypothesis that no single 

epitope is responsible for both disease initiation and propagation and are 

consistent with the expected and observed ability to generate multiple 

peptide/MHC complexes from a single target autoantigen.  

5.4 Summary 

 In this work, docking simulations at the binding site of PV associated and 

non-associated DR and DQ alleles have been performed to analyze the 

structural aspects of binding and allele-specificity for nine previously 

identified Dsg3 epitopes.  
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 The author has demonstrated the existence of best-fit core residues at 

different positions of each peptide (excepting Dsg3 96-112) into the 

binding groove of DRB1*0402 with no observed atomic clash penalties or 

bad contacts. In contrast, atomic clashes are experienced in all other PV 

non-associated DR4 alleles. This discrimination supports existing 

hypothesis with regards to the crucial role that DRB1*0402 plays in 

selecting specific self-peptides in DR4 PV.  

 This study indicates that DRB1*0402 and DQB1*0503 do not necessarily 

share the same core residues. It is possible that DRB1*0402, DQB1*0503 

and all other PV non-associated alleles may have different sets of binding 

specificities.  

 This study also indicates that perfect fitting of the core nonameric peptide 

residues within the binding groove of MHC class II alleles may not 

guarantee perfect fitting of the entire peptide, and flanking residues 

outside the binding groove may play a critical part in peptide selection.  

 Comparison of binding registers with existing binding motifs indicates that 

sequence-based methods are currently insufficient for the design of PV 

epitopes as there are both register shifts in the suggested motifs as well 

as polymorphism observed in the core residues in the binding groove.  

 The present analysis supports the hypothesis (Gebe et al., 2002) that the 

alleles DQB1*0201 and *0202 play a protective role by binding Dsg3 

peptides with greater affinity than the susceptible alleles, facilitating 

efficient deletion of autoreactive T cells.  
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 The current analysis supports existing evidence that no single epitope 

may be responsible for both disease initiation and propagation in PV, and 

it is valuable to identify all Dsg3 peptides that bind to the PV susceptible 

alleles.           
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Chapter 6: Functional prediction of MHC class II binding 

peptides  

6.1 Introduction  

MHC class II molecules play a critical role in immune responses. They bind short 

antigenic peptide fragments and present them on the surface of antigen-

presenting cells for recognition by the CD4+ helper T cells. T cell recognition of 

the peptide/MHC complex initiates a cascade of immunological events necessary 

for initiation and regulation of immune responses. These events are necessary 

for normal immune responses but may also be involved in the pathogenesis of 

autoimmune disorders (Klein et al., 2000; Flynn et al., 2004) and hypersensitivity 

reactions (Neeno et al., 1996; Krco et al., 2000). 

The HLA-DQ allele, DQ3.2β (DQA1*0301/DQB1*0302), commonly known 

as DQ8, is present in approximately 20% of the human population (Middleton et 

al., 2003). DQ3.2β is of particular interest in the study of allergenicity and 

autoimmunity because of its association to house dust mite allergy (Neeno et al., 

1996; Krco et al., 2000) and several human autoimmune disorders, including 

celiac disease (CD) (Sollid and Thorsby, 1993), insulin-dependent diabetes 

mellitus (IDDM) (Nepom and Kwok, 1998; Erlich et al., 1993), IDDM-associated 

periodontal disease (Faustman et al., 1991), and autoimmune polyendocrine 

syndrome type II (APS-II) (Robles et al., 2002). Some 70% of IDDM patients 

(Kwok et al., 1989) have DQ3.2β. Improved understanding of peptide binding to 

this molecule is important for elucidating the role of DQ3.2β in both autoimmunity 
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and allergies. Peptide-binding studies are invaluable for designing vaccines and 

immunotherapies for controlling allergic or autoimmune responses.  

Computational methods for the identification of peptides that bind to HLA-

DR molecules are relatively advanced (Brusic et al., 2004), while methods for 

prediction of peptide binding to HLA-DQ molecules have encountered limited 

success due to the paucity of peptides as training data for sequence-based 

techniques. Computational strategies for DQ3.2β binding peptides using 

sequence motifs (Godkin et al., 1997, 1998; Rammensee et al., 1999; Moustakas 

et al., 2000) have been used with varying degrees of success (Harfouch-

Hammoud et al., 1999) but an effective model for large-scale screening is still 

currently lacking. Up to now, few prediction techniques for HLA-DQ molecules 

have been developed using three-dimensional models as the dual issues of 

docking and scoring must be addressed (Ranganathan et al., 2005).  

In the previous chapter (Chapter 5), a new technique for rapid and 

accurate docking of binding registers to class I and class II alleles has been 

developed. This approach has been successfully applied to discriminate between 

alleles implicated in the autoimmune disorder, pemphigus vulgaris from non-

disease implicated and protective alleles (Chapter 7). However, despite the 

accuracy of our docking experiments, these results are qualitative rather than 

quantitative, as energy-based scoring was not considered. The earlier model, 

therefore, cannot be used for effective discrimination of peptide binding affinities 

(strong, moderate and weak binders from non-binders). This chapter reports the 

development of a scoring function to complement the docking protocol to 

 113



 

effectively identify MHC class II epitopes, 

analys

understand MHC clas

would be important for underst

and strategies for the desi

6.2 

6.2.1 Data

114

with the correct binding register. An 

is on the binding patterns of DQ3.2β peptides was performed to 

s II binding characteristics. The results of these analyzes 

anding the principles of self/non-self discrimination 

gn of epitope-based vaccines. 

Materials and Methods  

 

6.2.1.1 Crystallographic data 

The coordinates of DQ3.2β was extracted from the crystal structure of DQ3.2β–

insulin B9-23 complex, with PDB code 1JK8 (Lee et al., 2001). The structure was 

relaxed by conjugate gradient minimization, using the Internal Coordinate 

Mechanics (ICM) 3.0 package (Abagyan et al., 1994a).   

6.2.1.2 Experimental binding data 

Two sets of data are used in this study: (i) peptides with experimental IC50 values 

from biochemical studies and (ii) peptides with experimental T cell proliferation 

values from functional studies.  

Dataset I comprises 127 peptides (Table 10) with experimentally 

determined IC50 values (70 high-affinity, 13 medium-affinity and 23 low-affinity 

binders and 21 non-binders) derived from biochemical studies (Godkin et al., 

1998; Sidney et al., 2002; Suri et al., 2005). Largely for discussion 



Table 10 DQ3.2β specific peptides with experimentally determined IC50 values used in this study. For peptides with experimentally 

determined binding registers (#1-#87), the nonamer in the binding groove is underlined in bold font. 

No. Category Description Peptide IC50 (nM) Reference 
1 Training Set Thyroid per 632-645Y IDVWLGGLAENFLPY 39 Sidney et al. 2002 
2 Training Set Thyroid per 632-645Y analog IDVDLGGLAENFLPY 20 Sidney et al. 2002 
3 Training Set Thyroid per 632-645Y analog IDVYLGGLAENFLPY 52 Sidney et al. 2002 
4 Training Set Thyroid per 632-645Y analog IDVSLGGLAENFLPY 72 Sidney et al. 2002 
5 Training Set Thyroid per 632-645Y analog IDVLLGGLAENFLPY 119 Sidney et al. 2002 
6 Training Set Thyroid per 632-645Y analog IDVKLGGLAENFLPY 2028 Sidney et al. 2002 
7 Training Set Thyroid per 632-645Y analog IDVWSGGLAENFLPY 36 Sidney et al. 2002 
8 Training Set Thyroid per 632-645Y analog IDVWVGGLAENFLPY 44 Sidney et al. 2002 
9 Training Set Thyroid per 632-645Y analog IDVWYGGLAENFLPY 63 Sidney et al. 2002 

10 Training Set Thyroid per 632-645Y analog IDVWDGGLAENFLPY 83 Sidney et al. 2002 
11 Training Set Thyroid per 632-645Y analog IDVWKGGLAENFLPY 97 Sidney et al. 2002 
12 Training Set Thyroid per 632-645Y analog IDVWLDGLAENFLPY 100 Sidney et al. 2002 
13 Training Set Thyroid per 632-645Y analog IDVWLSGLAENFLPY 105 Sidney et al. 2002 
14 Training Set Thyroid per 632-645Y analog IDVWLYGLAENFLPY 126 Sidney et al. 2002 
15 Training Set Thyroid per 632-645Y analog IDVWLLGLAENFLPY 130 Sidney et al. 2002 
16 Training Set Thyroid per 632-645Y analog IDVWLKGLAENFLPY 325 Sidney et al. 2002 
17 Training Set Thyroid per 632-645Y analog IDVWLGLLAENFLPY 51 Sidney et al. 2002 
18 Training Set Thyroid per 632-645Y analog IDVWLGSLAENFLPY 78 Sidney et al. 2002 
19 Training Set Thyroid per 632-645Y analog IDVWLGDLAENFLPY 105 Sidney et al. 2002 
20 Training Set Thyroid per 632-645Y analog IDVWLGYLAENFLPY 325 Sidney et al. 2002 
21 Training Set Thyroid per 632-645Y analog IDVWLGGVAENFLPY 93 Sidney et al. 2002 
22 Training Set Thyroid per 632-645Y analog IDVWLGGYAENFLPY 139 Sidney et al. 2002 
23 Training Set IDVWLGGKAENFThyroid per 632-645Y analog LPY 177 Sidney et al. 2002 
24 Training Set IDVWLGGSAENFThyroid per 632-645Y analog LPY 217 Sidney et al. 2002 
25 Training Set Thyroid per 632-645Y analog IDVWLGGLDENFLPY 177 Sidney et al. 2002 
26 Training Set Thyroid per 632-645Y analog IDVWLGGLYENFLPY 195 Sidney et al. 2002 
27 Training Set Thyroid per 632-645Y analog IDVWLGGLSENFLPY 390 Sidney et al. 2002 
28 Training Set Thyroid per 632-645Y analog IDVWLGGLAYNFLPY 100 Sidney et al. 2002 
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29 Training Set Thyroid per 632-645Y analog IDVWLGGLALNFLPY 130 Sidney et al. 2002 
30 Training Set Thyroid per 632-645Y analog IDVWLGGLASNFLPY 355 Sidney et al. 2002 
31 Training Set Thyroid per 632-645Y analog IDVWLGGLAESFLPY 18 Sidney et al. 2002 
32 Training Set Thyroid per 632-645Y analog IDVWLGGLAELFLPY 23 Sidney et al. 2002 
33 Training Set Thyroid per 632-645Y analog IDVWLGGLAEYFLPY 25 Sidney et al. 2002 
34 Training Set Thyroid per 632-645Y analog IDVWLGGLAEKFLPY 31 Sidney et al. 2002 
35 Training Set Thyroid per 632-645Y analog IDVWLGGLAEDFLPY 34 Sidney et al. 2002 
36 Training Set Thyroid per 632-645Y analog IDVWLGGLAEQFLPY 35 Sidney et al. 2002 
37 Training Set Thyroid per 632-645Y analog IDVWLGGLAENDLPY 17 Sidney et al. 2002 
38 Training Set Thyroid per 632-645Y analog IDVWLGGLAENVLPY 23 Sidney et al. 2002 
39 Training Set Thyroid per 632-645Y analog IDVWLGGLAENYLPY 30 Sidney et al. 2002 
40 Training Set Thyroid per 632-645Y analog IDVWLGGLAENSLPY 35 Sidney et al. 2002 
41 Training Set Thyroid per 632-645Y analog IDVWLGGLAENKLPY 1677 Sidney et al. 2002 
42 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFDPY 25 Sidney et al. 2002 
43 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFSPY 54 Sidney et al. 2002 
44 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFYPY 58 Sidney et al. 2002 
45 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFKPY 75 Sidney et al. 2002 
46 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFVPY 77 Sidney et al. 2002 
47 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLDY 42 Sidney et al. 2002 
48 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLYY 108 Sidney et al. 2002 
49 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLLY 139 Sidney et al. 2002 
50 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLSY 195 Sidney et al. 2002 
51 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLKY 279 Sidney et al. 2002 
52 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLPD 26 Sidney et al. 2002 
53 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLPL 32 Sidney et al. 2002 
54 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLPF 50 Sidney et al. 2002 
55 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLPK 66 Sidney et al. 2002 
56 Training Set Thyroid per 632-645Y analog IDVWLGGLAENFLPS 70 Sidney et al. 2002 
57 Test Set 1 E25B protein 112-126 YQTIEENIKIFEEDA 800 Suri et al. 2005 
58 Test Set 1 E25B protein 112-126 analog YQTIEENIKIFKEDA 1000 Suri et al. 2005 
59 Test Set 1 E25B protein 112-126 analog YQTIEENIKIFEEKA 1700 Suri et al. 2005 
60 Test Set 1 E25B protein 112-126 analog YQTIEENIKIFEADA 1800 Suri et al. 2005 
61 Test Set 1 E25B protein 112-126 analog YQTIEENIKIFEAAA 2500 Suri et al. 2005 
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62 Test Set 1 E25B protein 112-126 analog YQTIEENIKIFAAAA 1700 Suri et al. 2005 
63 Test Set 1 E25B protein 112-126 analog YQTIKENIKIFEEDA 3800 Suri et al. 2005 
64 Test Set 1 TRAIL receptor 2 364-380 GRFTYQNAAAQPETGPG 1700 Suri et al. 2005 
65 Test Set 1 TRAIL receptor 2 364-380 analog GRFTYQNAAAQPATGPG 1000 Suri et al. 2005 
66 Test Set 1 TRAIL receptor 2 364-380 analog GRFTAQNAAAQPETGPG 1700 Suri et al. 2005 
67 Test Set 1 TRAIL receptor 2 364-380 analog GRFTKQNAAAQPETGPG 3700 Suri et al. 2005 
68 Test Set 1 TRAIL receptor 2 364-380 analog GRFTAQNAAAQPATGPG 3100 Suri et al. 2005 
69 Test Set 1 Nicastrin 65-78 ISGDTGVIHVVEKE 1000 Suri et al. 2005 
70 Test Set 1 Nicastrin 65-78 analog ISGKTGVIHVVEKE N.B. Suri et al. 2005 
71 Test Set 1 Nicastrin 65-78 analog ISGKTGVIHVVKKE N.B. Suri et al. 2005 
72 Test Set 1 Nicastrin 65-78 analog ISGDTGVIHVVAKE 4300 Suri et al. 2005 
73 Test Set 1 Nicastrin 65-78 analog ISGATGVIHVVEKE 2300 Suri et al. 2005 
74 Test Set 1 Superoxide dimutase 1 90-103 AGKDGVANVSIEDR 2000 Suri et al. 2005 
75 Test Set 1 Superoxide dimutase 1 90-103 analog AGKAGVANVSIEDR 1800 Suri et al. 2005 
76 Test Set 1 Superoxide dimutase 1 90-103 analog AGKDGVANASIEDR 2800 Suri et al. 2005 
77 Test Set 1 Superoxide dimutase 1 90-103 analog AGKDGVANVSIKDR N.B. Suri et al. 2005 
78 Test Set 1 Superoxide dimutase 1 90-103 analog AGKKGVANVSIKDR N.B. Suri et al. 2005 
79 Test Set 1 Superoxide dimutase 1 90-103 analog AGKDGVANKSIEDR N.B. Suri et al. 2005 
80 MHC II Eα 51-65 FDGDEIFHVDIETest Set 1 KSE 1000 Suri et al. 2005 
81 MHC II Eα 51-65 analog FDGDEIFHVDIKTest Set 1 KSE N.B. Suri et al. 2005 
82 Test Set 1 MHC II Eα 51-65 analog FDGKEIFHVDIKKSE N.B. Suri et al. 2005 
83 Test Set 1 MHC II Eα 51-65 analog FDGDEIFHKDIEKSE N.B. Suri et al. 2005 
84 Test Set 1 MHC II Eα 51-65 analog FDGKEIFHVDIEKSE 2800 Suri et al. 2005 
85 Test Set 1 MHC II Eα 51-65 analog FDGAEIFHVDIEKSE 2000 Suri et al. 2005 
86 Test Set 1 MHC II Eα 51-65 analog FDGDEIAHVDIEKSE 3300 Suri et al. 2005 
87 Test Set 1 MHC II Eα 51-65 analog FDGDEIFHADIEKSE 3100 Suri et al. 2005 
88 Test Set 1 A-gliadin 49-63 FPSQQPYLQLQPFPQ 20 Godkin et al. 1998 
89 Test Set 1 A-gliadin 207-221 YPLGQGSFRPSQQNP 100 Godkin et al. 1998 
90 Test Set 1 A-gliadin 77-91 SFPPQQPYPQPQPQY 370 Godkin et al. 1998 
91 Test Set 1 A-gliadin 30-44 FPGQQQQFPPQQPYP 600 Godkin et al. 1998 
92 Test Set 1 A-gliadin 196-210 PSSQFQQPLQQYPLG 10000 Godkin et al. 1998 
93 Test Set 1 A-gliadin 41-55 QPYPQPQPFPSQQPY 1120 Godkin et al. 1998 
94 Test Set 1 A-gliadin 56-70 LQLQPFPQPQPFPPL 20 Godkin et al. 1998 
95 Test Set 1 A-gliadin 227-241 VQPQQQLPQFEIRNL 73 Godkin et al. 1998 

 117



118

96 Test Set 1 A-gliadin 34-48 QQQFPPQQPYPQPQP 10000 Godkin et al. 1998 
97 Test Set 1 A-gliadin 201-215 QQPLQQYPLGQGSFR 2180 Godkin et al. 1998 
98 Test Set 1 HSV DMTPADALDDFDL 173 Sidney et al. 2002 
99 Test Set 1 CD20 249–262 analog   EEDIEIIPIQEEEY 21 Sidney et al. 2002 

100 Test Set 1 34P3A IARAKMFPAVAEK 541 Sidney et al. 2002 
101 Test Set 1 HA 255–271Y FESTGNLIAPEYGFKISY 62 Sidney et al. 2002 
102 Test Set 1 GAD 101–115 CDGERPTLAFLQDVM 69 Sidney et al. 2002 
103 Test Set 1 FceR 104–122 SQDLELSWNLNGLQADLSS 123 Sidney et al. 2002 
104 Test Set 1 Pf ABRA 487–506 DSNIMNSINNVMDEIDFFEK 171 Sidney et al. 2002 
105 Test Set 1 p21 51–66; C out LLDILDTAGLEEYSAMRD 202 Sidney et al. 2002 
106 Test Set 1 Lamba repressor 12–24 LEDARRLKAIYEK 717 Sidney et al. 2002 
107 Test Set 1 GAD65 253–265 IARFKMFPEVKEK 3712 Sidney et al. 2002 
108 Test Set 1 Artificial sequence AAAAAVAAEAY 48 Sidney et al. 2002 
109 Test Set 1 OVA 267-276 Y LTEWTSSNVMEERY 62 Sidney et al. 2002 
110 Test Set 1 IA-2 499-509 GVAGLLVALAV 95 Sidney et al. 2002 
111 Test Set 1 MHC Ia 46-63 EPRAPWIEQEGPEYW 519 Sidney et al. 2002 
112 Test Set 1 VP16 PPLYATGRLSQAQLMPSPPM 538 Sidney et al. 2002 
113 Test Set 1 IA-2 499–509 MSSGSFINISV 2470 Sidney et al. 2002 
114 Test Set 1 Artificial sequence (ROIV) YAHAAHAAHAAHAAHAA 2924 Sidney et al. 2002 
115 Test Set 1 Lol p1 101–120 APYHFDLSGHAFGSMAKKGE 3602 Sidney et al. 2002 
116 Test Set 1 CLIP 95-102 KPVSKMRMATPLLMQALP 650 Sidney et al. 2002 
117 Test Set 1 FceR 104–122 analog SQDLELSWNLNGLQAY 118 Sidney et al. 2002 
118 Test Set 1 MHC Ia 51–63 analog YPFIEQEGPEFFDQE 1156 Sidney et al. 2002 
119 Test Set 1 B2m 91–104 TPTEKDEYCARVNH > 10000 Sidney et al. 2002 
120 Test Set 1 ML LSR2 5–17 GVTYEIDLTNKN > 10000 Sidney et al. 2002 
121 Test Set 1 Insulin B 5–15 FVNQHLCGSHLVEAL > 10000 Sidney et al. 2002 
122 Test Set 1 Artificial sequence YARFQSQTTLKQKT > 10000 Sidney et al. 2002 
123 Test Set 1 Artificial sequence YARFQRQTTLKAAA > 10000 Sidney et al. 2002 
124 Test Set 1 Pf cp 379–396 truncated analog IEKKIAKMEKASY > 10000 Sidney et al. 2002 
125 Test Set 1 CLIP 96-114 KLPKPPKPVSKMRMATPLL > 10000 Sidney et al. 2002 
126 Test Set 1 Pf MSP-1 250-271 FGYRKPLDNIKDNVGKMEDYIKK > 10000 Sidney et al. 2002 
127 Test Set 1 DQa1 0501 16-30 YQSYGPSGQYTHEFD > 10000 Sidney et al. 2002 

 

 



purposes, peptides are classified into their experimental IC50 values (high-affinity 

binders: IC50 ≤ 500 nM, medium-affinity binders: 500 nM < IC50 ≤ 1500 nM, low-

affinity binders: 1500 < IC50 ≤ 5000 nM and non-binders: 5000 < IC50). In this 

dataset, 87 binding peptides had experimentally determined binding registers.  

Dataset II consists of 12 Dermatophagoides pternnyssinus (Der p) 

peptides with experimental T cell proliferation values from functional studies 

(Krco et al., 2000; Neeno et al., 1996), with seven peptides eliciting DQ3.2β-

restricted T cell proliferation.  

6.2.2 Model 

6.2.2.1 Peptide docking 

In this study, an overlapping sliding window of size nine is applied to each 

peptide to generate all combinations of nonameric core-regions to be modeled 

into the binding groove of DQ3.2β. Docking was performed using an extension of 

the protocol as described in Chapter 6: (i) pseudo-Brownian rigid body docking of 

peptide fragments to the ends of the binding groove, (ii) central loop closure by 

satisfaction of spatial constraints, (iii) refinement of the backbone and side-chain 

atoms of the core recognition residues and receptor contact regions and (iv) 

extension of flanking peptide residues by satisfaction of spatial constraints. The 

conformations of the flanking peptide residues are generated by satisfying the 

spatial constraints in the allowed subspace for backbone dihedrals (Sali and 

Blundell, 1993), defined by the conformation of the bound core nonameric 

peptide docked into the binding groove. In brief, this is performed in three stages: 
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(i) distance and dihedral angle restraints on the entire peptide sequence are 

derived from its alignment with the nonamer sequence in the binding groove; (ii) 

the restraints on spatial features of the flanking residues are derived by 

extrapolation from the known 3D structure of flanking residues (PDB code 1JK8) 

in the alignment, expressed as probability density functions; and (iii) the spatial 

restraints on the flanking residues are then satisfied by optimization of the 

molecular probability density function using a variable target function technique 

that applies the conjugate gradients algorithm to positions of all non-hydrogen 

atoms. 

6.2.2.2 Empirical free energy functions 

The scoring function presented in the study is based on the free energy potential 

in ICM3.0 package (Abagyan and Totrov, 1999). The binding free energy is 

computed as the difference between the energy of the solvated complex and the 

sum of the energy of the solvated receptor and that of the peptide ligand. The 

reference state chosen for the peptide is the fully relaxed conformation of the free 

peptide in water (Schapira et al., 1999). In all binding energy calculations, the 

protein and the ligand are separated after docking and their relaxed energies 

computed, following energy minimization in water. The binding free energy 

function (∆Gbind) is expressed as  

 

        ∆Gbind = α∆G H + β∆G S + γ∆GEL + C 

(Equation 5) 
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Here, ∆GH is the hydrophobic energy computed as the product of solvent 

accessible surface area (determined by rolling a sphere of 1.40 Å radius along 

the surface of the molecule) by the surface tension. ∆GS refers to the entropic 

contribution from the protein side-chains computed from the maximal burial 

entropies for each type of amino acid and their relative accessibilities. ∆GEL 

denotes the electrostatic term composed of coulombic interactions between 

receptor and ligand and the desolvation of partial charges transferred from an 

aqueous medium to a protein core environment, and is determined by the 

numeric solution of the Poisson equation using an implementation of the 

boundary element algorithm (Zauhar and Morgan, 1985; Bharadwaj et al., 1995; 

Schapira et al., 1999). An additional constant term C (or K;  Rognan et al., 1999) 

accounts for entropy change in the system due to the decrease of free molecular 

concentration and the loss of rotational/translational degrees of freedom upon 

binding (Schapira et al., 1999). In theory, C represents physical parameters 

which are independent on the data set used and there are great variations in its 

value among various research groups (reviewed in Janin, 1995). The coefficients 

(α, β, γ) assigned to each energy term were optimized in this study, to obtain the 

best separation of binders and non-binders in the peptide-DQ3.2β model. This 

partitioning scheme has been successfully adopted as a framework in many 

earlier studies (Krystek et al., 1993; Weng et al., 1996; Novotny et al., 1997; 

Froloff et al., 1997; Schapira et al., 1999) and consists of the most significant 

potentials contributing to protein-protein, protein-ligand and protein-peptide 

interactions. 
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6.2.2.3 Optimization of the scoring function 

Reported IC50 values, representing the concentration of ligand required to 

saturate half of the available binding sites of the protein (Bock and Gough, 2002), 

were assumed to be similar to equilibrium dissociation constants Kd as the 

concentration of the ligand in the unbound state is much lower than the 

equilibrium dissociation constant Kd of the ligand in the binding assay, so that 

∆Gbind ≈ -RT ln (IC50) (Rognan et al., 1999). ∆Gbind is usually reported in units of 

pKd (-log10(Kd)), where 1 pKd = -1.364 kcal/mol (Wang et al., 2002) or -5.708 

kJ/mol at 298.15 K. To improve the discriminative power of the scoring function, 

the coefficients of the different energy terms were recalibrated using standard 

least-square multivariate regression analyses of the training set (Wang et al., 

2002). This step was followed by 10-fold cross-validation (Bock and Gough, 2002) 

to assess to quality of the scoring function.. In k-fold cross-validation, k random, 

(approximately) equal-sized, disjoint partitions of the sample data are 

constructed, and a given model is trained on (k-1) partitions and tested on the 

excluded partition. The results are averaged after k such experiments, and the 

observed error rate may be taken as an estimate of the error rate expected upon 

generalization to new data. The predictive power of the models was assessed by 

the cross-validation coefficient q2 and the standard error of prediction spress. The 

robustness of the predictive model was further evaluated using evolutionary 

regression analysis (Wang et al., 2002), with different subsets representing 5-

fold, 4-fold, 3-fold and 2-fold cross-validation.   
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6.2.3 Training, testing and validation 

Peptide data obtained from biochemical studies with experimental IC50 values 

was divided into training and test datasets. Training of the DQ3.2β prediction 

model was performed by sampling (i) the bound conformations of binding 

peptides with experimentally determined registers that can be recognized by 

MHC, and (ii) the best conformations of non-binding peptides without any 

preferred register in the binding groove. The training set comprised 56 binding 

conformations with known registers and 30 non-binding conformations generated 

from 3 non-binding peptides (from Dataset I) without any binding registers. Two 

external sets of test data were used: (i) Test set 1: 68 peptides (the rest of 

Dataset I) with experimental IC50 values (16 high-affinity binders, 13 medium 

affinity binders, 21 low affinity binders and 18 non-binders) from biochemical 

studies and (ii) Test set 2: all peptides from Dataset II, with known T cell 

proliferation values.  

The predictive performance of our model was assessed using sensitivity 

(SE), specificity (SP) and receiver operating characteristic (ROC) analysis as 

described previously (Brusic et al., 2002). SE=TP/(TP+FN) and SP=TN/(TN+FP), 

indicate percentages of correctly predicted binders and non-binders, respectively. 

TP (true positives) stands for experimental binders with at least one predicted 

binding register and TN (true negatives) for experimental non-binders with no 

predicted binding register. FN (false negatives) denotes experimental binders 

predicted as non-binders and FP (false positives) represents experimental non-

binders predicted as binders. The accuracy of our predictions was assessed by 
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ROC analysis where the ROC curve is generated by plotting SE as a function of 

(1-SP) for various classification thresholds. The area under the ROC curve 

(AROC) provides a measure of overall prediction accuracy, AROC<70% for poor, 

AROC>80% for good and AROC>90% for excellent predictions (Brusic et al., 2002). 

We consider values of SP≥80% useful in practice and assessed SE for three 

values of SP (80%, 90% and 95%). 

6.3 Results  

The accuracy of the DQ3.2β prediction model was evaluated using (i) peptides 

with experimental IC50 values obtained from biochemical studies with 

experimental IC50 values and (ii) peptides with T cell proliferation values obtained 

from functional studies.  

Three threshold binding energy values were used to evaluate the 

accuracy of the DQ3.2β prediction model on Test set 1 – LMH (low-, medium-, 

high-affinity binders; AROC=0.88); MH (medium- and high-affinity binders; 

AROC=0.93) and H (high-affinity binders only; AROC=0.93). The results indicate 

that, overall, three-dimensional models are suitable for discriminating class II 

binding ligands from the background with good accuracy (AROC>0.80). The 

accuracy of our model relies on the scoring function derived from the training 

dataset of experimentally determined binders with known binding registers and 

non-binders with no binding registers. A scoring function based on the default 

ICM coefficients (α=β=γ=1; C=0) resulted in poor correlation (r2=0.43, s=2.91 

kJ/mol) to experimental data when tested with the novel peptide-DQ3.2β system. 

The discriminative power of our model improved significantly with better 
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correlation (r2=0.89, s=4.77 kJ/mol) after recalibration of the scoring function 

(Equation 5) by fitting to the training data, using multiple linear regression. The 

optimal scoring function, after 10-fold cross-validation (q2=0.85, spress=2.20 

kJ/mol) is: 

 

∆Gbind = 1.55∆GH + 4.08∆GS – 0.23∆GEL –7.12 

(Equation 6) 

The training set of 86 complexes in the current study is too large for the leave-

one-out cross-validation done by Rognan et al. (1999) on training datasets of five 

and 37 MHC-peptide complexes. At the same time, it is smaller than the training 

set of 200 complexes used by Wang et al. (2002) or the 2617 protein-ligand 

complexes studies by Bock and Gough (2002) for extensive cross-validation 

analyses. The higher standard error in the training set (s=4.77 kJ/mol=1.13 

kcal/mol=0.84 pKd) than the standard error after 10-fold cross-validation 

(spress=2.20 kJ/mol=0.52 kcal/mol=0.39 pKd), is attributable to the noise in binding 

energy values in the complete training set spanning three orders of magnitude as 

illustrated in Table 10 compared to the subsets in 10-fold cross-validation, with a 

subset size (N) of 78 or 91% of the training set. These values are lower than 

error values (1.47-1.62 pKd or 8.36-9.22 kJ/mol) reported by Wang et al. (2002), 

for a training set of 200 protein-ligand complexes, after several rounds of 

evolutionary regression analysis. Using a similar but limited evolutionary 

regression analysis approach, the robustness of our predictive model has been 
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estimated for 5-fold (N=69, q2=0.89, spress=2.47 kJ/mol=0.43 pKd), 4-fold (N=65, 

q2=0.86, spress=2.70 kJ/mol=0.47 pKd), 3-fold  (N=57, q2=0.87, spress=2.50 

kJ/mol=0.44 pKd) and 2-fold (N=43, q2=0.83 spress=3.29 kJ/mol=0.58 pKd) cross-

validation. The results indicate that despite a very slight increase in the error 

value for the 2-fold cross-validation, the cross-validation coefficient q2 and the 

standard error of prediction spress are stable, with mean values of q2=0.86 and 

spress=2.63 kJ/mol=0.46 pKd, and respective standard deviation values of 0.02 

and 0.41 kJ/mol=0.07 pKd. This iterative regression procedure thus validates the 

internal consistency of the scoring function in the current model, rendering it 

suitable for predictions on the test datasets.  

The sensitivity of our prediction model was determined on Test set 1 for 

three decision thresholds (Table 11) that define levels of specificities suitable for 

practical applications (Brusic et al., 2002).  SP=0.80 offers high-sensitivity 

predictions, whereas SP=0.95 results in very few false positives but fewer true 

positives.  The prediction results for our model were in accordance with expected 

binding patterns of DQ3.2β peptides and provided a sensitivity of 90% 

(SP=0.80). The sensitivity values decrease with higher levels of specificity 

(SP=0.90, SE=0.84 or SP=0.95, SE=0.81), while still correctly predicting more 

than half of the high-affinity binders in the worst case scenario (high-binders 

alone, SP=0.95, SE=0.63). The efficacy of our model in detecting binding 

registers was then evaluated with experimentally determined registers. Our 

external test data comprised 23 peptides from Test set 1, with known binding 

energy for each register (Suri et al., 2005). At a threshold of -30.82 kJ/mol 
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(SP=0.80, SE=0.75), our model accurately detected 87% (20/23) of the 

experimentally determined binding registers. We also correctly predicted the only 

experimentally determined register (4-12) for Der p 2 1-20 (Krco et al., 2000), 

from Test set 2.  

Next, the predictive performance of the optimized model was tested on the 

functional dataset of 12 peptides (Test set 2) with experimental T cell proliferation 

values using the decision thresholds defined above. The top five predictions (Der 

p 2 61-80, 51-70, 110-129, 101-120, 91-110) are experimental positives (Table 

12) with binding energy values of -34.52 kJ/mol or less (predicted high-binders 

for SE = 0.63, SP = 0.95). This is in agreement with existing studies that high-

affinity binders have a greater chance of stimulating T cell proliferation (Deng et 

al., 1997; Keogh et al. 2001) and this knowledge is crucial for peptide vaccine 

design. Peptide Der p 2 31-50, ranked #6, is a predicted high-affinity binder at 

threshold -33.59 kJ/mol (SE = 0.63, SP = 0.95). It is possible that Der p 2 31-50 

is either a high-affinity binder that failed to stimulate T cell proliferation (Deng et 

al., 1997; Keogh et al., 2001) or is a false positive in the prediction.  At this cut-

off, correct predictions number 5/7 (71%), with one false positive (14%) and two 

false negatives (28%). Peptide Der p 2 41-60, ranked #12 in our prediction, is 

possibly an outlier, as it failed to stimulate detectable T cell response in study of 

Neeno et al. (1996), despite a similar reported T cell stimulatory propensity as 

Der p 2 91-110; and deletion experiments confirm the criticality of only residues 

55-70 in the region 41-70 (Table 2 in Krco et al., 2000). For T cell proliferation pr- 
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Table 11 Sensitivity values and binding energy thresholds for prediction of peptide 

binding to DQ3.2β for the specificity levels of 0.80, 0.90 and 0.95. 

Specificity (SP)  Group Sensitivity (SE) Binding Energy Threshold 
(kJ/mol) 

LMH 0.90 -28.70 
MH 0.85 -29.10 

SP = 0.80 

H 0.75 -30.82 
LMH 0.84 -29.10 
MH 0.77 -30.50 

SP = 0.90 

H 0.75 -32.74 
LMH 0.81 -29.93 
MH 0.73 -32.12 

SP = 0.95 

H 0.63 -33.59 

Table 12 Predicted Dermatophagoides pternnyssinus (Der p 2) allergenic peptide 

sequences to DQ3.2β. The top 5 predictions are experimentally positive. ‘’ indicates 

non-immunostimulatory in the relevant experiments. ‘*’ indicates peptides that elicit T cell 

responses in one or both experimental studies. Values <3500 are not considered 

significant (Neeno et al., 1996). The experimentally determined binding register is shown 

in underlined bold type. 

T cell proliferation 
(∆ cpm) Peptide Sequence Krco et al. 

2000 
Neeno et al. 

1996 

Predicted 
Binding 
Energy 
(kJ/mol) 

Der p 2 61-80* LEVDVPGIDPNACHYMKCPL 24,381 5,455 -38.97 
Der p 2 51-70* KIEIKASIDGLEVDVPGIDP 49,958 <3,500 -38.60 
Der p 2 111-129* MGDDGVLACAIATHAKIRD  8,839 -37.00 
Der p 2 101-120* SENVVVTVKVMGDDGVLACA 54,256 <3,500 -35.26 
Der p 2 91-110* TWNVPKIAPKSENVVVTVKV 47,711 8,409 -34.52 
Der p 2 31-50 RGKPFQLEAVFEAVQNTKTA   -33.96 
Der p 2 1-20* DQVDVKDCANHEIKKVLVPG 36,389  -31.44 
Der p 2 11-30 HEIKKVLVPGCHGSEPCIIN   -31.40 
Der p 2 81-100 VKGQQYDIKYTWNVPKIAPK  <3,500 -31.35 
Der p 2 21-40 CHGSEPCIIHRGKPFQLEAV   -31.33 
Der p 2 71-90 HACHYMKCPLVKGQYDIDKY  <3,500 -30.71 
Der p 2 41-60* FEAVQNTKTAKIEIKASIDG 46,871  -26.49 
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edictions, the current model is suitable to screen for high-affinity binders at 

SP=0.95. 

6.4 Discussion  

6.4.1 Detection of epitopes that do not conform to binding motifs 

Consensus peptide-binding motifs for identifying potential immunodominant 

epitopes within autoantigenic proteins have been developed for many HLA class 

II molecules. However, earlier studies (Harfouch-Hammoud et al. 1999) reveal 

that these motifs do not correlate with binding to a specific allele. In Test set 1, 

63 out of 68 binding peptide sequences have amino acid residues that do not 

conform to available DQ3.2β binding motifs (Godkin et al., 1998; Rammensee et 

al., 1999) considering all relevant positions (P1, P4, P6, P7, P9). Table 13 lists 

17 LMH predictions from this dataset. A-gliadin 49-63 (#10), MHC Ia 46–63 (#14) 

and VP16 (#15) are classified negatives using existing DQ3.2β binding motifs. 

However, using our scoring function these T cell epitopes are easily identified, 

with A-gliadin 49-63 as a high affinity binder and the MHC Ia 46–63 and VP16 as 

medium affinity binders. This reaffirms our earlier observation that binding motifs 

may be inadequate for defining T cell epitopes and many other factors including 

the physicochemical composition of the peptide, (affecting the overall stability of 

the peptide/MHC complex) have to be considered in prediction systems for HLA-

binding peptides. 
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6.4.2 Detection of multiple registers in experimental binders 

Our results support the existence of multiple registers with different nonameric 

core regions within a candidate binding peptide that serve as recognition sites for 

MHC class II molecules (Figure 23). In particular, the results indicate that several 

binding registers (with different nonameric core recognition regions) exist within 

an MHC class II binding peptide, facilitating binding to DQ3.2β in several different 

conformations. 58% of binding peptides in Test set 1 exhibit two or more 

registers that can be docked to DQ3.2β with favorable binding energy values. 

Multiple registers occur predominantly in medium- and high-affinity binders, 

suggesting that recognition using flexible fitting may play a critical role in binding 

to MHC class II alleles as well as in T cell recognition and this knowledge should 

be taken into consideration in vaccine design. For example, two conformations of 

the high affinity binding peptide Pf ABRA 487–506 showed ∆G values less than 

the decision threshold -33.59 kJ/mol (SP = 0.95, SE = 0.63), with the 496–504 

register (shown in Table 13) being the preferred binding mode. 

It is possible that the open binding groove of DQ3.2β (and other class II 

alleles) accommodates peptides with differing pocket specificities and can 

recognize multiple regions within a single candidate peptide. Whilst not all 

binding registers may elicit T cell response, the existence of multiple registers 

within a candidate peptide (especially for high-affinity binders) can facilitate 

binding to a particular allele, enhancing T cell recognition, with the highest 

binding affinity register acting as the primary recognition region. It is also possible 

that a peptide may initially bind in one register and migrate laterally into another. 



 

Table 13 

0.95, SE = 0.81) from the conformation for th

DQ3.2
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Analysis of DQ3.2β binding motifs. Predicted binding registers of the top 17 DQ3.2β ligands/epitopes (Test set 1; SP = 

e lowest predicted binding energy (BE) values. Residues that conform to existing 

β peptide binding motifs (Godkin et al., 1998; Rammensee et al., 1999) are underlined. Predicted high-affinity, moderate 

affinity and low affinity binders are ligands 1-10, 11-16 and 17 respectively. 

Position  

         1   4  6 7  9  
Source BE (kJ/mol) IC50 (nM) Reference 

Binding 
Motif 

         T   D  R R  Q  
         S   V  V V  N    
         W   M  D D  G  
         K   A  A A  D  
         E   I  I I  P  
         D     Y Y  R  
         Q        E  
         F       
         L       
         M       

 

   

    L Q L Q P F P Q P Q P F P P L  A-gliadin 56-70 -41.01 20 Godkin et al., 1998 
      D M T P A D A L D D F D L  HSV -40.53 173 Sidney et al., 2002 
        A A A A A V A A E A Y  Artificial sequence -39.98 48 Sidney et al., 2002 
        G V A G L L V A L A V  IA-2 499-509 -36.16 95 Sidney et al., 2002 
D S N I M N S I N N V M D E I D F F E K  Pf ABRA 487–506 -36.01 171 Sidney et al., 2002 
      F E S T G N L I A P E Y G F K I S Y  HA 255–271Y -35.70 62 Sidney et al., 2002 
       Y P F I E Q E G P E F F D Q E  MHC Ia 51–63 analog -35.34 1156 Sidney et al., 2002 
     L L D I L D T A G L E E Y S A M R D  p21 51–66; C out -35.27 202 Sidney et al., 2002 
    Q P Y P Q P Q P F P S Q Q P Y  A-gliadin 41-55 -35.26 1120 Godkin et al., 1998 
     F P S Q Q P Y L Q L Q P F P Q  A-gliadin 49-63 -33.93 20 Godkin et al., 1998 
       C D G E R P T L A F L Q D V M  GAD 101–115 -33.57 69 Sidney et al., 2002 
        S F P P Q Q P Y P Q P Q P Q Y  A-gliadin 77-91 -33.35 370 Godkin et al., 1998 
   S Q D L E L S W N L N G L Q A D L S S  FceR 104–122 -32.89 123 Sidney et al., 2002 
      E P R A P W I E Q E G P E Y W  MHC Ia 46-63 -32.89 519 Sidney et al., 2002 
      P P L Y A T G R L S Q A Q L M P S P P M  VP16 -32.59 538 Sidney et al., 2002 
   S Q D L E L S W N L N G L Q A Y  FceR 104–122 analog -32.49 118 Sidney et al., 2002 

 
Ligands / 
Epitopes  

        I A R A K M F P A V A E K  34P3A -31.91 541 Sidney et al., 2002 
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Figure 23 Number of binding registers within predicted DQ3.2β binding peptides for 

Test set 1 (SE = 0.81, SP = 0.95). Medium- and high-affinity binders represent the 

highest proportion of binding peptides predicted to contain more than one binding 

register. 

Peptide vaccine development is advancing rapidly with recent successes 

in malaria (Lopez et al., 2001) and anti-tumor vaccines (Knutson et al., 2001). A 

key research area is to identify allele-specific candidate T cell epitopes suitable 

for designing vaccines and immunotherapies to control allergic or autoimmune 

responses. The task of identifying candidate class II binding ligands is a 

challenging process due to the open binding groove that can potentially 

accommodate multiple binding registers (Li et al., 2000; Seamons et al., 2003) 

and has wholly occupied the energies of researchers. A polynomial derived 

scoring matrix for DRB1*0401 of Southwood et al. (1998) and a genetic algorithm 

(Brusic et al., 1998) are excellent approaches. However, the nonameric core 

regions used for training predictive models were often preselected based on 

existing binding motifs, usually extracted from multiple sequence alignment and 
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not experimentally validated. Such methodologies exclude the prediction of other 

binding registers within a candidate class II binding ligand capable of eliciting a 

strong T cell response. Moreover, the possibility of the existence of multiple 

binding registers, particularly for high-affinity binders, suggests that all possible 

nonameric core regions within a candidate binding ligand must be carefully 

examined. For training computational models, the utilization of experimentally 

validated binding registers is preferred. 

Recently, Sinha et al. (unpublished results) discovered that DRB1*0402-

specific binding motifs are insufficient for the design of pemphigus vulgaris 

epitopes, due to the presence of register shifts as well as polymorphisms in the 

binding register. With increasing evidence suggesting the inadequacy of binding 

motifs in defining class II T cell epitopes, the current approach of predictive 

model building and virtual screening for vaccine candidates is independent of 

sequence motifs and takes into account the presence of multiple registers within 

class II ligands. In a wider context, the methodology presented here might be 

helpful in defining peptide antigenicity in a wide spectrum of human diseases 

including cancer pathologies as well as a range of diverse autoimmune disorders 

such as insulin-dependent diabetes mellitus, multiple sclerosis, rheumatoid 

arthritis, and pemphigus vulgaris. In this study, we have illustrated that it is 

possible to efficiently discriminate between categories of binders from non-

binders and predict the binding register of class II ligands with good accuracy. 

Our docking methodology, combined with a sensitive scoring function, provides a 
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set of sensitive and specific computational tools to facilitate systematic screening 

of peptides for immunotherapeutic applications. 

6.5 Summary 

 In this work, a scoring function has been developed as an extension of the 

docking protocol developed in Chapter 6 for functional prediction of MHC-

binding peptides.  

 High accuracy of predictions was obtained by validation with experimental 

biochemical and functional data. This approach successfully identified 

peptide binders which lack conserved binding motifs.  

 The present analysis reveal the possible existence of multiple binding 

registers within a candidate class II binding peptide, suggesting that 

recognition via flexible fitting may play a critical role in binding to class II 

alleles. 
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Chapter 7: Analysis of T cell epitope repertoire in Dsg3  

7.1 Introduction 

Pemphigus vulgaris (PV) is a severe autoimmune blistering skin disorder due to 

loss of integrity of normal intercellular attachments within the epidermis and 

mucosal epithelium. Strong association of PV to the major histocompatibility 

complex (MHC) class II alleles DRB1*0402 and DQB1*0503 have been reported 

in the literature (Carcassi et al., 1996; Delgado et al., 1997; Loiseau et al., 2000; 

Miyagawa et al., 1997, 1999; Nizeki et al., 1991; Scharf et al., 1988; Sinha et al., 

1988) with over 95% of PV patients possessing one or both of these alleles 

(Scharf et al., 1988; Sinha et al., 1988). The target antigen of PV, desmoglein 

(Dsg) 3, is a 130-kDa transmembrane glycoprotein that belongs to the cadherin 

superfamily of cell adhesion molecules (Amagai et al., 1991). In the early stage 

of disease, patients demonstrate autoimmunity only to Dsg3 and develop 

mucosal blisters; while at the later stage, patients exhibit non-cross-reactive 

immunity to both Dsg3 and Dsg1 (Salato et al., 2005). Despite several reports of 

T cell specificities for Dsg3 (Veldman et al., 2004; Hertl et al., 1998; Salato et al., 

2005; Wucherpfennig et al., 1995; Riechers et al., 1999), much remains unknown 

with regards to the role of T cells in the pathogenesis of PV.  

Bioinformatic tools are now commonly used to facilitate T cell epitope 

discovery (Schirle et al., 2001; Yu et al., 2002, Srinivasan et al., 2004). 

Computational methods for predicting MHC-binding peptides include procedures 

based on sequence motifs (Wucherpfennig et al., 1995), quantitative matrices 
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(Parker et al., 1994; Davenport et al., 1995; Gulukota et al., 1997), decision trees 

(Savoie et al., 1999; Segal et al., 2001), artificial neural networks (Brusic et al., 

1994, 1998), hidden Markov models (Mamitsuka, 1998) and support vector 

machines (Dönnes and Elofsson, 2002; Bhasin and Raghava, 2004; Bozic et al., 

2005). However, despite recent advances in sequence-based predictive 

techniques, effective models for DRB1*0402 and DQB1*0503 have been lacking, 

mainly due to the paucity of sufficient peptides as training data (Tong et al., 

2006a) as well as the presence of register shifts and polymorphisms in the 

binding registers. To date, few prediction techniques for MHC class II molecules 

have been developed using three-dimensional models since the dual issues of 

model quality and discriminative technique are still to be addressed 

(Ranganathan et al., 2005).  

Our strategy for prediction of T cell epitopes involves three-dimensional 

modeling of peptide/MHC complexes using a hybrid docking approach that 

integrates the strength of Monte Carlo simulations and homology modeling (Tong 

et al., 2004, 2006a,b). In an earlier study, we have successfully discriminated 

disease-implicated from non-disease implicated and protective alleles in PV 

based on structural interaction rules (Tong et al., 2006a). A complementary 

scoring function has now been developed for effective identification of 

DRB1*0402 and DQB1*0503 epitopes. We investigated the T cell epitope 

repertoire of the entire Dsg3 glycoprotein and show the existence of multiple 

extracellular and intracellular specificities within the Dsg3 self-antigen. Further 

analysis reveal that DRB1*0402 and DQB1*0503 share similar specificities by 
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binding peptides at different core recognition regions. These data impact our 

understanding of the mechanism of HLA mediated control of disease. 

7.2 Materials and Methods 

7.2.1 Template search 

MHC sequence data were obtained from IMGT-HLA database 

(http://www.ebi.ac.uk/imgt/hla/) (Robinson et al., 2003). To identify potential 

structural templates available in the Protein Data Bank (PDB) (Berman et al., 

2000) for model building, a sequence similarity search was performed using 

BLAST (Altschul et al., 1990) running on the servers at NCBI 

(www.ncbi.nlm.nih.gov/blast/) and the highest quality templates were selected 

among the returned results. The crystal structures of the highly conserved 

DRB1*0401 (99% similarity; PDB code 1D5Z) and DQB1*0602 (96% similarity; 

PDB code 1UVQ) were selected as templates for DRB1*0402 and DQB1*0503 

respectively.  

7.2.2 Model building 

The program MODELLER (Sali and Blundell, 1993) was employed for 

comparative modeling of both DRB1*0402 and DQB1*0503. The models are 

constructed by optimally satisfying spatial constraints obtained from the 

alignment of the template structure with the target sequence and from the 

CHARMM-22 force field (MacKerell et al., 1998). The structures were relaxed by 
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conjugate gradient minimization, using the Internal Coordinate Mechanics (ICM) 

3.0 package (Abagyan et al., 1994). 

7.2.3 Experimental binding data 

Two sets of data are used in this study: (i) peptides with experimental IC50 values 

from biochemical studies and (ii) peptides with experimental T cell proliferation 

values/responses from functional studies.  

Dataset I (Table 14) comprises 59 DRB1*0402-specific peptides derived 

from biochemical studies (20 high-affinity, 11 medium-affinity and 13 low-affinity 

binders and 15 non-binders). Peptides are classified based on their experimental 

IC50 values (high-affinity binders: IC50 ≤ 500 nM, medium-affinity binders: 500 nM 

< IC50 ≤ 1500 nM, low-affinity binders: 1500 < IC50 ≤ 5000 nM and non-binders: 

5000 < IC50).  

Table 14 DRB1*0402-specific peptides with experimental IC50 values used in this study. 

No. Allele Category Description Peptide IC50 (nM) Reference 

1 DRB1*0402 Training Set Dsg3 342-356 LNSKIAFKIVSQEPA 2600 Sinha et al. (unpublished) 

2 DRB1*0402 Training Set Dsg3 786-800 RNPIAKITSDYQATQ 4700 Sinha et al. (unpublished) 

3 DRB1*0402 Training Set Dsg3 810-824 PFGIFVVDKNTGDIN >40000 Sinha et al. (unpublished) 

4 DRB1*0402 Training Set Dsg3 67-81 SVKLSIAVKNKAEFH >40000 Sinha et al. (unpublished) 

5 DRB1*0402 Training Set Dsg3 846-860 MNFLDSYFSQKAFAC 8900 Sinha et al. (unpublished) 

6 DRB1*0402 Training Set Dsg3 963-977 NDCLLIYDNEGADAT >40000 Sinha et al. (unpublished) 

7 DRB1*0402 Training Set Dsg3 96-110 LDSLGPKFKKLAEIS >40000 Sinha et al. (unpublished) 

8 DRB1*0402 Training Set Dsg3 191-205 ERVICPISSVPGNLA 2700 Sinha et al. (unpublished) 

9 DRB1*0402 Test Set HADP analogue AAVAAAKAAAAAA 17 Marshall et al. (1994) 

10 DRB1*0402 Test Set HADP analogue AAWAAAKAAAAAA 2200 Marshall et al. (1994) 

11 DRB1*0402 Test Set HADP 7.18 AAYAAAKAAALAA 7000 Marshall et al. (1994) 

12 DRB1*0402 Test Set Myoglobin 110-122 AIIHVLHSRHPGD 1.9 Marshall et al. (1994) 

DRB1*0402 Test Set Myoglobin 67-79 TVLTALGAILKKK 640 Marshall et al. (1994) 

14 DRB1*0402 Test Set Myelin BP 90-102 HFFKNIVTPRTPA 61 Marshall et al. (1994) 

15 DRB1*0402 Test Set Tetanus toxoid 828-840 MQYIKANSKFIGI 900 Marshall et al. (1994) 

16 DRB1*0402 Test Set Pertussis Toxin 31-43 NVLDHLTGRSSQV 340 Marshall et al. (1994) 

13 
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17 DRB1*0402 Test Set Hemagglutinin 103-115  PDYASLRSLVASS 18 Marshall et al. (1994) 

18 DRB1*0402 Test Set Hemagglutinin 307-319  PKYVKQNTLKLAT 110 Marshall et al. (1994) 

19 DRB1*0402 Test Set M. leprae 65 kDa 416-428 TLLQAAPALDKLK 870 Marshall et al. (1994) 

20 DRB1*0402 Test Set HADP analogue AAFAAAKAAAAAA 47 Marshall et al. (1994) 

21 DRB1*0402 Test Set HADP analogue AALAAAKAAAAAA 2 Marshall et al. (1994) 

22 DRB1*0402 Test Set HADP analogue AASAASKAAAAAA 60000 Marshall et al. (1994) 

23 DRB1*0402 Test Set HADP 7.20 AAYAAAKAAAVAA 13000 Marshall et al. (1994) 

24 DRB1*0402 Test Set HADP 7.21 AAYAAAKAAASAA 4500 Marshall et al. (1994) 

25 DRB1*0402 Test Set HADP 7.44 AAYAAAKAEAAAA 3400 Marshall et al. (1994) 

26 DRB1*0402 Test Set HADP 18.7 AAYAAAKAAAAAA 1600 Marshall et al. (1994) 

27 DRB1*0402 Test Set HADP 7.25 AAYAAAKAAAGAA 5700 Marshall et al. (1994) 

28 DRB1*0402 Test Set HADP 7.45  AAYAAAKALAAAA 60 Marshall et al. (1994) 

29 DRB1*0402 Test Set HADP 7.50 AAYAAFKAAAAAA 460 Marshall et al. (1994) 

30 DRB1*0402 Test Set HADP 7.27 AAYAAKKAAAAAA 850 Marshall et al. (1994) 

31 DRB1*0402 Test Set HADP 7.30 AAYAALKAAAAAA 1900 Marshall et al. (1994) 

32 DRB1*0402 Test Set HADP 7.39 AAYAAQKAAAAAA 2700 Marshall et al. (1994) 

33 DRB1*0402 Test Set HADP 7.29 AAYAASKAAAAAA 5200 Marshall et al. (1994) 

34 DRB1*0402 Test Set Flu NP 383-395 SRYWAIRTRSGGI 13 Marshall et al. (1994) 

35 DRB1*0402 Test Set Matrix 18-30 GPLKAEIAQRLED 25000 Marshall et al. (1994) 

36 DRB1*0402 Test Set Tetanus toxoid 591-603 KIYSYFPSVISKV 9.2 Marshall et al. (1994) 

37 DRB1*0402 Test Set Haemagglutinin 23-35 GTLVKTITDDQIE 1200 Marshall et al. (1994) 

38 DRB1*0402 Test Set HADP 7.23 AAYAAAKAAARAA 4200 Marshall et al. (1994) 

39 DRB1*0402 Test Set HADP 7.46 AAYAAAKAFAAAA 200 Marshall et al. (1994) 

40 DRB1*0402 Test Set HADP 7.43 AAYAAAKAKAAAA 830 Marshall et al. (1994) 

41 DRB1*0402 Test Set HA Y307-319 YPKFVKQNTLKAA 2200 Harfouch-Hammoud et al. 
(1999) 

42 DRB1*0402 Test Set Hsp65 189-201 analogue EGMRFAKGYISGY 1000 Hammer et al. (1995) 

43 DRB1*0402 Test Set Designer peptide GFKYAAAAAA 6000 Hammer et al. (1995) 

44 DRB1*0402 Test Set Designer peptide GFKAAARAAA 9509 Hammer et al. (1995) 

45 DRB1*0402 Test Set Designer peptide GFKAAAHAAA 60000 Hammer et al. (1995) 

46 DRB1*0402 Test Set HLA-B GRLLRGHNQFAYDGK 5 Kirschmann et al. (1995) 

47 DRB1*0402 Test Set Synthetic peptide DTQFVRFDSDAASQR 600 Kirschmann et al. (1995) 

48 DRB1*0402 Test Set Apoliopoprotein TPDFIVPLTDLRIPS 70 Kirschmann et al. (1995) 

49 DRB1*0402 Test Set Actin peptide YPIEHGIVTNWDDM 4000 Kirschmann et al. (1995) 

50 DRB1*0402 Test Set Synthetic peptide EEFVVEFDLPGIK 100 Kirschmann et al. (1995) 

51 DRB1*0402 Test Set Synthetic peptide AEFVVEFDLPGIK 1000 Kirschmann et al. (1995) 

52 DRB1*0402 Test Set Synthetic peptide EAFVVEFDLPGIK 1000 Kirschmann et al. (1995) 

53 DRB1*0402 Test Set Synthetic peptide EEFAVEFDLPGIK 250 Kirschmann et al. (1995) 

54 DRB1*0402 Test Set Synthetic peptide EEFVAEFDLPGIK 250 Kirschmann et al. (1995) 

55 DRB1*0402 Test Set Synthetic peptide EEFVVAFDLPGIK 100 Kirschmann et al. (1995) 

56 DRB1*0402 Test Set Synthetic peptide EEFVVEADLPGIK 1000 Kirschmann et al. (1995) 

57 DRB1*0402 Test Set Synthetic peptide EEFVVEFALPGIK 400 Kirschmann et al. (1995) 

58 DRB1*0402 Test Set Synthetic peptide EEFVVEFDAPGIK 5500 Kirschmann et al. (1995) 

59 DRB1*0402 Test Set Synthetic peptide EEFVVEFDLAGIK 7000 Kirschmann et al. (1995) 
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Table 15 Dsg3 peptides with experimental T cell proliferation values/responses used in 

this study. 

No. Allele Category Description Peptide Reference 

1 DRB1*0402 Test Set Dsg3 342-358 SVKLSIAVKNKAEFHQS Veldman et al. (2004) 

2 DRB1*0402 Test Set Dsg3 376-392 NVREGIAFRPASKTFTV Veldman et al. (2004) 

3 DRB1*0402 Test Set Dsg3 205-221 GTPMFLLSRNTGEVRTL Veldman et al. (2004) 

4 DRB1*0402 Test Set Dsg3 380-396 GIAFRPASKTFTVQKGI Riechers et al. (1999) 

5 DRB1*0402 Test Set Dsg3 190-204 LNSKIAFKIVSQEPA Wucherpfennig et al. (1995) 

6 DRB1*0402 Test Set Dsg3 189-205 HLNSKIAFKIVSQEPAG Veldman et al. (2004) 

7 DRB1*0402 Test Set Dsg3 512-526 SARTLNNRYTGPYTF Wucherpfennig et al. (1995) 

8 DRB1*0402 Test Set Dsg3 78-94 QATQKITYRISGVGIDQ Wucherpfennig et al. (1995) 

9 DRB1*0402 Test Set Dsg3 78-93 QATQKITYRISGVGID Veldman et al. (2004) 

10 DRB1*0402 Test Set Dsg3 206-220 TPMFLLSRNTGEVRT Wucherpfennig et al. (1995) 

11 DRB1*0402 Test Set Dsg3 210-226 LLSRNTGEVRTLTNSL Veldman et al. (2004) 

12 DRB1*0402 Test Set Dsg3 251-265 CECNIKVKDVNDNFP Wucherpfennig et al. (1995) 

13 DRB1*0402 Test Set Dsg3 250-266 QCECNIKVKDVNDNFPM Veldman et al. (2004) 

14 DRB1*0402 Test Set Dsg3 483-499 VRVPDFNDNCPTAVLEK Veldman et al. (2004) 

15 DRB1*0402 Test Set Dsg3 762-776 QSGTMRTRHSTGGTN Wucherpfennig et al. (1995) 

16 DRB1*0402 Test Set Dsg3 161-177 IFMGEIEENSASNSLVM Hertl et al. (1998) 

17 DRB1*0402 Test Set Dsg3 96-112 PFGIFVVDKNTGDINIT Veldman et al. (2004) 

18 DRB1*0402 Test Set Dsg3 97-111 FGIFVVDKNTGDINI Wucherpfennig et al. (1995) 

19 DQB1*0503 Training Set Dsg3 342-358 LNSKIAFKIVSQEPA Veldman et al. (2004) 

20 DQB1*0503 Training Set Dsg3 376-392 RNPIAKITSDYQATQ Veldman et al. (2004) 

21 DQB1*0503 Training Set Dsg3 205-221 PFGIFVVDKNTGDIN Veldman et al. (2004) 

22 DQB1*0503 Training Set Dsg3 250-266 SVKLSIAVKNKAEFH Veldman et al. (2004) 

23 DQB1*0503 Training Set Dsg3 96-112 MNFLDSYFSQKAFAC Veldman et al. (2004) 

24 DQB1*0503 Training Set Dsg3 512-526 NDCLLIYDNEGADAT Wucherpfennig et al. (1995) 

25 DQB1*0503 Training Set Dsg3 97-111 LDSLGPKFKKLAEIS Wucherpfennig et al. (1995) 

26 DQB1*0503 Training Set Dsg3 78-93 ERVICPISSVPGNLA Wucherpfennig et al. (1995) 

27 DQB1*0503 Test Set Dsg3 189-205 HLNSKIAFKIVSQEPAG Veldman et al. (2004) 

28 DQB1*0503 Test Set Dsg3 762-786 QSGTMRTRHSTGGTN Wucherpfennig et al. (1995) 

29 DQB1*0503 Test Set Dsg3 190-204 LNSKIAFKIVSQEPA Wucherpfennig et al. (1995) 

30 DQB1*0503 Test Set Dsg3 206-220 TPMFLLSRNTGEVRT Wucherpfennig et al. (1995) 

31 DQB1*0503 Test Set Dsg3 251-265 CECNIKVKDVNDNFP Wucherpfennig et al. (1995) 

 
 

Dataset II (Table 15) consists of 18 DRB1*0402-specific Dsg3 peptides 

and 13 DQB1*0503-specific Dsg3 peptides with T cell proliferation 

values/responses (Veldman et al., 2004; Hertl et al., 1998; Wucherpfennig et al., 

1995).  
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7.2.4 Peptide docking 

A sliding window of size nine was applied to each peptide to generate all possible 

overlapping nonameric core-regions that can be modeled into the binding 

grooves of DRB1*0402 and DQB1*0503. Docking was performed using an 

extension of the protocol, illustrated in Chapter 6.  

7.2.5 Empirical free energy functions 

The scoring function presented in this study is based on the free energy potential 

in ICM3.0 package (Abagyan and Totrov, 1999). The binding free energy function 

is partitioned into three terms (Tong et al., 2006) expressed by the equation:  

 

   ∆G = α∆GH + β∆GS + γ∆GEL + C.   (1) 

 

∆GH is the hydrophobic energy computed as the product of solvent accessible 

surface area (determined by rolling a sphere of 1.40Å radius along the surface of 

the molecule) by the surface tension. ∆GS refers to the entropic contribution from 

the protein side-chains computed from the maximal burial entropies for each type 

of amino acid and their relative accessibilities. ∆GEL denotes the electrostatic 

term composed of coulombic interactions between receptor and ligand and the 

desolvation of partial charges transferred from an aqueous medium to a protein 

core environment, and is determined by the numeric solution of the Poisson 

equation using an implementation of the boundary element algorithm (Zauhar 

and Morgan, 1985; Bharadwaj et al., 1995; Schapira et al., 1999). The constant 
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term C accounts for entropy change in the system due to the decrease of free 

molecular concentration and the loss of rotational/translational degrees of 

freedom upon binding (reviewed in Janin, 1995).  

7.2.6 Training, testing and validation 

Two computational models are trained in this study – one model for the 

prediction of peptide binding to DRB1*0402 and the other for DQB1*0503.  

DRB1*0402-specific peptide data derived from biochemical studies with 

experimental IC50 values was divided into training and test sets. The training set 

comprised 8 (5 binding and 3 non-binding) Dsg3 sequences with experimentally 

determined binding registers (from Dataset I). Two external sets of test data were 

used: (i) Test set 1: 51 peptides with experimental IC50 values (20 high-affinity 

binders, 11 medium affinity binders, 9 low affinity binders and 11 non-binders) 

from biochemical studies, and (ii) Test set 2: all DRB1*0402-specific Dsg3 

peptides from Dataset II, with known T cell proliferation values.  

DQB1*0503 prediction model was trained using Dsg3 peptide data from 

functional studies in the absence of relevant biochemical data. The training set 

comprised 8 (5 stimulatory and 3 non-stimulatory) sequences from Dataset II. For 

each peptide sequence, T cell proliferation value (Wucherpfennig et al., 1995) is 

mapped to a theoretical IC50 value in accordance with expected binding patterns 

of Dsg3 binding peptides (Sinha et al., personal communications). The 

performance of the prediction model was subsequently evaluated on an external 

set of 5 peptides with known T cell proliferation values. 
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Coefficients (α, β, γ) and the constant term C in Equation 1 were derived 

using standard least-square multivariate regression analyses of the training set, 

followed by leave-one-out analysis to assess the quality of the scoring function 

(Rognan et al., 1999). For each model, the entire procedure is repeated 8 times 

to reduce noise in all computations, the results averaged and the observed error 

rate is used to estimate the expected error rate upon generalization to new data.  

The optimal scoring function selected from each cross-validation analysis 

was further assessed using sensitivity (SE), specificity (SP) and receiver 

operating characteristic (ROC) analysis (Tong et al., 2006). SE=TP/(TP+FN) and 

SP=TN/(TN+FP), indicate percentages of correctly predicted binders and non-

binders, respectively. TP (true positives) represents experimental binders with at 

least one predicted binding register and TN (true negatives) for experimental 

non-binders with no predicted binding register. FN (false negatives) denotes 

experimental binders predicted as non-binders and FP (false positives) 

represents experimental non-binders predicted as binders. The accuracy of our 

predictions was assessed by ROC analysis where the ROC curve is generated 

by plotting SE as a function of (1-SP) for various classification thresholds. The 

area under the ROC curve (AROC) provides a measure of overall prediction 

accuracy, AROC<70% for poor, AROC>80% for good and AROC>90% for excellent 

predictions (Tong et al., 2006b). In this study, we assessed SE for three values of 

SP (80%, 90% and 95%) that are considered useful in practice. All regression 

and validation results, including correlation coefficient (r2), standard deviation (s), 
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cross-validation coefficient (q2), standard error of prediction (spress), SE, SP, AROC, 

coefficients and constant terms in the scoring function, are recorded. 

7.3 Results and Discussion 

7.3.1 DRB1*0402 predictive model 

The DRB1*0402 (r2=0.90, s=1.20 kJ/mol, q2=0.82, spress=1.61 kJ/mol) model 

shows excellent predictivity. The accuracy of the prediction model was further 

evaluated using (i) peptides with experimental IC50 values obtained from 

biochemical studies and (ii) Dsg3 peptides with T cell proliferation values 

obtained from functional studies.  

Three threshold binding energy values (Table 16) that define levels of 

specificities suitable for practical applications (Tong et al., 2006b) were used to 

evaluate the accuracy of the DRB1*0402 prediction model on the biochemical 

dataset (Test set 1) – LMH (low-, medium-, high-affinity binders; AROC=0.93); MH 

(medium- and high-affinity binders; AROC=0.86) and H (high-affinity binders only; 

AROC=0.81). The results indicate that, overall, our DRB1*0402 peptide-binding 

models are highly accurate (AROC≥0.81). SP=0.80 offers high-sensitivity 

predictions, whereas SP=0.95 results in very few false positives but fewer true 

positives. The prediction results for our model were consistent with expected 

binding patterns of DRB1*0402 peptides and provided a sensitivity of 70% 

(SP=0.95) for DRB1*0402-binding peptides.  

Next, the predictive performance of the DRB1*0402 model was tested on 

the functional dataset of 18 peptides (Test set 2) with experimental T cell 
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proliferation values/responses using the decision thresholds defined above. All 

experimental positives (Table 17) are predicted with binding energy values of -

26.94 kJ/mol or less (SE = 0.70, SP = 0.95). Dsg3 512-526 (ranked #7) and 

Dsg3 78-93 (ranked #9) are predicted binders at threshold -26.94 kJ/mol (SE = 

0.70, SP = 0.95) that did not stimulate T cell responses in the relevant 

experiments (Veldman et al., 2004; Wucherpfennig et al., 1995). A noteworthy 

observation is that peptide Dsg3 78-93 (Wucherpfennig et al., 1995) is fully 

contained within Dsg3 78-94 (ranked #8), an experimental true positive identified 

in an independent study (Veldman et al., 2004). It is possible that these peptides 

are binders that led to clonal deletion or anergy of the peptide-specific T cells or 

are false positives in the prediction.  

 
Table 16 Sensitivity values and binding energy thresholds for DRB1*0402 peptide-

binding model at specificity levels 0.80, 0.90 and 0.95. 

Specificity (SP) 
Level 

Group Sensitivity 
(SE) 

Binding Energy Threshold 
(kJ/mol) 

LMH 0.78 -25.55 
MH 0.81 -25.79 

SP = 0.80 

H 0.65 -26.64 
LMH 0.75 -25.79 
MH 0.52 -26.94 

SP = 0.90 

H 0.30 -28.83 
LMH 0.70 -26.94 
MH 0.42 -27.72 

SP = 0.95 

H 0.25 -30.57 
 

 

 145



Table 17 Predicted Dsg3 peptide sequences to DRB1*0402. The top 5 predictions are 

experimentally positive. ‘’ indicates non-immunostimulatory in the relevant experiments. 

Rank Peptide Sequence Predicted BE 
(kJ/mol) References 

1 Dsg3 342-358 SVKLSIAVKNKAEFHQS -31.46 Veldman et al. (2004) 
2 Dsg3 376-392 NVREGIAFRPASKTFTV -30.47 Veldman et al. (2004) 
3 Dsg3 205-221 GTPMFLLSRNTGEVRTL -30.44 Veldman et al. (2004) 
4 Dsg3 380-396 GIAFRPASKTFTVQKGI -29.97 Riechers et al. (1999) 
5 Dsg3 190-204 LNSKIAFKIVSQEPA -29.74 Wucherpfennig et al. (1995) 
6 Dsg3 189-205 HLNSKIAFKIVSQEPAG -29.24 Veldman et al. (2004) 
7∗ Dsg3 512-526 SARTLNNRYTGPYTF -29.21 Wucherpfennig et al. (1995) 
8 Dsg3 78-94 QATQKITYRISGVGIDQ -28.37 Wucherpfennig et al. (1995) 
9∗ Dsg3 78-93 QATQKITYRISGVGID -28.30 Veldman et al. (2004) 
10 Dsg3 206-220 TPMFLLSRNTGEVRT -28.02 Wucherpfennig et al. (1995) 
11 Dsg3 210-226 LLSRNTGEVRTLTNSL -27.98 Veldman et al. (2004) 
12 Dsg3 251-265 CECNIKVKDVNDNFP -27.88 Wucherpfennig et al. (1995) 
13 Dsg3 250-266 QCECNIKVKDVNDNFPM -27.68 Veldman et al. (2004) 
14 Dsg3 483-499 VRVPDFNDNCPTAVLEK -27.48 Veldman et al. (2004) 
15 Dsg3 762-776 QSGTMRTRHSTGGTN -27.28 Wucherpfennig et al. (1995) 
16 Dsg3 161-177 IFMGEIEENSASNSLVM -27.09 Hertl et al. (1998) 
17 Dsg3 96-112 PFGIFVVDKNTGDINIT -27.09 Veldman et al. (2004) 
18∗ Dsg3 97-111 FGIFVVDKNTGDINI -26.58 Wucherpfennig et al. (1995) 

 

7.3.2 DQB1*0503 predictive model 

High predictivity is achieved for the DQB1*0503 (r2=0.95, s=1.20 kJ/mol) 

prediction model. The DQB1*0503 model outperforms the prediction models 

undertaken by Rognan et al. (1999) on training datasets of 5 HLA-A*0204 

(r2=0.85, spress=2.40 kJ/mol) and 37 HLA-2Kk (r2=0.78, spress=3.16 kJ/mol) peptide 

sequences. The cross-validation coefficient q2 and the standard error of 

prediction spress are stable, with q2=0.75 and spress=2.15 kJ/mol. This iterative 

regression procedure validates the internal consistency of the scoring function in 

the current model, rendering it suitable for predictions on the test dataset 

obtained from functional studies.  
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The accuracy of the DQB1*0503 prediction model was assessed on a 

dataset of 5 (4 stimulatory and 1 non-stimulatory peptides) Dsg3 peptides with 

known T cell proliferation values (Table 3). All DQB1*0503-specific Dsg3 

stimulatory peptides can be effectively discriminated from the background at the 

prediction threshold -26.65 kJ/mol. 

Table 18 Predicted Dsg3 peptide sequences to DQB1*0503. The top 4 predictions are 

experimentally positive. ‘’ indicates non-immunostimulatory in the relevant experiments. 

Rank Peptide Sequence 
Predicted 

BE 
(kJ/mol) 

References 

1 Dsg3 206-220 TPMFLLSRNTGEVRT -30.53 Wucherpfennig et al. (1995)
2 Dsg3 189-205 HLNSKIAFKIVSQEPAG -29.10 Wucherpfennig et al. (1995)
3 Dsg3 190-204 LNSKIAFKIVSQEPA -26.88 Wucherpfennig et al. (1995)
4 Dsg3 251-265 CECNIKVKDVNDNFP -26.65 Wucherpfennig et al. (1995)
5∗ Dsg3 762-786 QSGTMRTRHSTGGTNKDYADGAISM -22.42 Wucherpfennig et al. (1995) 

7.3.3 Disease Progression in PV 

A variety of studies have demonstrated that a limited set of epitopes may be 

present in early disease, and intra-molecular epitope spreading may occur during 

disease transition at the B-cell level (Salato et al., 2005). Our data support the 

existence of multiple immunodominant T cell epitopes that may be responsible 

for both disease initiation and propagation (refer Figures 23 and 24). These 

findings are in line with T cell proliferation data obtained from DR4 and DR6 PV 

patients (Sinha et al., 2006; Chow et al., 2006; Tong et al., 2006a; 

Wucherpfennig et al., 1995). Our analysis showed that the potential Dsg3 T cell 

epitope repertoire is evenly distributed throughout all 5 extracellular domains 

(ECDs) as well as the majority of the transmembrane region (Figures 23 and 24). 
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Many of these epitopes may not be generated via antigen processing events, or 

are subdominant or “cryptic”, which are not recognized during the initial immune 

response. It is possible that immune responses may be developed against these 

secondary epitopes at a later stage as a result of intracellular epitope spreading.  

7.3.4 DRB1*0402 and DQB1*0503 cross reactivity 

An in-depth analysis was performed to investigate the extent of overlap in the 

Dsg3 peptide-binding repertoires of DRB1*0402 and DQB1*0503. A panel of 936 

15mer Dsg3 sequences were generated using an overlapping sliding window of 

size 15 across the entire Dsg3 glycoprotein and modeled into the binding 

grooves of both DRB1*0402 and DQB1*0503 (refer Peptide Docking).  

Both the DRB1*0402 and DQB1*0503 alleles are particularly efficient in 

binding Dsg3-derived peptides. Furthermore, a significant level of cross-reactivity 

was observed between DRB1*0402 and DQB1*0503. Of the 936 overlapping 

15mer peptides derived from the entire Dsg3 glycoprotein investigated in this 

study, 539 (57%) were predicted high-affinity binders to both alleles at threshold -

26.64 kJ/mol. The computer simulation results are shown in Figures 23 and 24. It 

was noteworthy that three previously defined immunoreactive segments of the 

Dsg3 extracellular domains (ECD) (Dsg3 145-192, 240-303, and 570-614) (Lin et 

al., 1997) were also predicted by our models at this specific threshold. These 

observations are of particular interest in that both DRB1*0402 and DQB1*0503 

are strongly linked to PV (Lee et al., 2006), indicating that common or 

overlapping dominant epitopes may be responsible for inducing disease in DR4 
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and DR6 patients respectively. The inability of some Dsg3 peptides to be 

recognized by autoreactive cells may be at the level of T cell recognition rather 

than the level of epitope selection by MHC molecules. 

7.3.5 DRB1*0402 and DQB1*0503 peptide binding specificities 

The basis for the high degree of cross-reactivities between DRB1*0402 and 

DQB1*0503 was subjected to further analysis. Our data support the existence of 

multiple binding registers within a candidate binding peptide that serve as 

recognition sites for DRB1*0402 and DQB1*0503. Of 936 Dsg3-derived peptides, 

614 were predicted high-affinity binders with 76% displaying 2 or more registers 

that can be docked into the binding groove of DRB1*0402 (Figure 4). Similar 

results are obtained for DQB1*0503, with 673 predicted high-affinity binders and 

57% exhibiting 2 or more binding registers (Figure 26). DRB1*0402 and 

DQB1*0503 predicted consensus binding sequences number 539. A striking 

aspect of this analysis is that DRB1*0402 and DQB1*0503 were predicted to bind 

a large portion of these peptides (354/539 or 66%) at different binding registers. 

For example, the consensus binding peptide Dsg 205-221 showed ∆G values 

less than the decision threshold -26.64 kJ/mol, with the 209-217 and 207-215 

registers being the preferred binding modes for DRB1*0402 and DQB1*0503 

respectively. We propose that DRB1*0402 and DQB1*0503 share similar 

specificities by binding peptides at different binding registers.  
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Figure 24 Predicted DRB1*0402-specific T cell epitope repertoire within Dsg3 

glycoprotein at threshold of -26.64 kJ/mol (red line). 
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Figure 25 Predicted DQB1*0503-specific T cell epitope repertoire within Dsg3 

glycoprotein at threshold of -26.64 kJ/mol (red line). 
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Figure 26 Number of predicted binding registers within Dsg3 peptides to DRB1*0402 

and DQB1*0503. 

7.5 Summary 

• In this work, a scoring function has been developed as an extension of the 

docking protocol developed in Chapter 6 for functional prediction of 

peptides binding to DRB1*0402 and DQB1*0503.  

• High accuracy of predictions was obtained by validation with experimental 

binding and non-binding peptide sequences.  

• High degree of cross-reactivities between DRB1*0402 and DQB1*0503 

was obtained. Of the 936 15mer peptides generated from the entire Dsg3 

glycoprotein, 539 (57%) were predicted high-affinity binders to both alleles 

at threshold -26.64 kJ/mol. The results also indicate that DRB1*0402 and 
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DQB1*0503 share similar specificities by binding peptides at different 

binding registers. 

• The present analysis reveals the possible existence of multiple shared 

immunodominant epitopes within the Dsg3 glycoprotein, suggesting that 

no single epitope is responsible for both disease initiation and 

propagation. The inability of some Dsg3 peptides to be recognized by 

autoreactive cells may be at the level of T cell recognition rather than the 

level of epitope selection by MHC molecules. 

• These observations are of particular interest in that both DRB1*0402 and 

DQB1*0503 are strongly linked to PV, indicating that common or 

overlapping dominant epitopes may be responsible for inducing disease in 

DR4 and DR6 patients respectively. The inability of some Dsg3 peptides 

to be recognized by autoreactive cells may be at the level of T cell 

recognition rather than the level of epitope selection by MHC molecules. 
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Chapter 8: Conclusion 

This work began with an investigation of the use of bioinformatic-based 

approaches for the study of peptide/MHC interactions. Through the systematic 

application of bioinformatic resources and tools, the author has delved into the 

interaction characteristics of peptide/MHC complexes and its significance in the 

pathology of the autoimmune disorder PV. By the completion of this project, the 

author has advanced the knowledge of the use of bioinformatics in 

immunological research. The author now summarizes his conclusions. 

8.1 Database of (TCR/) peptide/MHC interaction parameters  

The interaction of peptide/MHC complexes with TCRs on the surface of T cells is 

responsible for T cell activation and stimulation of the adaptive immune 

response. In this context, in-depth understanding of the structural principles 

involved in the selection of specific antigenic peptides by different MHC alleles 

and subsequent recognition by TCRs is an important step towards effective 

development of epitope-based vaccines.  

Here, the author has described the development of a new database 

termed MHC-Peptide Interaction Database version T (MPID-T) to facilitate the 

analysis of TCR/peptide/MHC and peptide/MHC structural interaction 

characteristics. With a large repository of computed (TCR/) peptide/MHC 

interaction parameters, a high-level perspective of the general interaction 

patterns can be inferred. This present database relates to current knowledge of 
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the field and with the availability of more information in the future, it will provide a 

better understanding of the structural principles involved in the selection of 

antigenic peptides by the different MHC alleles. This generic classification 

approach may also be applied to the analysis of other families of ligand/receptor 

complexes. 

8.2 Analysis of MHC supertype interaction characteristics  

With the rapid growth of immunological data, there is a need to develop 

computational strategies for the classification of MHC alleles into supertypes to 

support research in the development of new generation peptide vaccines with 

wide population coverage (Doytchinova et al., 2004b, 2005). The analysis of 

MHC supertype interaction characteristics could draw more accurate inferences 

about MHC binding specificities and enhance our understanding of the 

relationship among different MHC alleles. 

This work reports the first analysis of HLA supertype interaction 

characteristics using four interaction parameters (interface area, intermolecular 

hydrogen bonds, gap volume, and gap index). The present analysis is difficult 

due to the limited number of peptide/HLA crystallographic structures in the 

current PDB. Nonetheless, we have demonstrated that different HLA alleles 

employ the use of different binding mechanism for selectivity of antigenic 

peptides in a supertype dependent manner. By focusing solely on the use of 

experimental three-dimensional structures, our analysis is supported and verified 

by existing data. In silico analysis of HLA supertype interaction characteristics 
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opens the way for more in-depth understanding of the binding mechanism 

involved in peptide selection and better characterization of HLA supertypes. This 

systematic approach for analyzing receptor/ligand interactions can serve as a 

model for other MHC supertypes and receptor/ligand systems where 3D 

information is available. 

8.3 Development of generic peptide/MHC docking protocol  

In recent years, bioinformatic tools modeling the immune system network are 

playing an increasingly important role in advancing epitope-based vaccine 

research. At the present time, experimental data for the majority of MHC alleles 

do not exist and there is a great need for computational strategies that are not 

constrained by the limited availability of large training datasets.  

This work reports on the development of an efficient and fast docking 

protocol for modeling the bound conformation of peptide ligands to MHC class I 

and class II molecules without the need for large training datasets. High 

prediction accuracy was obtained in three independent experiments: (i) self-

docking 40 test case complexes; (ii) cross-docking of 15 solved peptides into the 

templates of appropriate alleles; and (iii) validation against existing techniques.  

8.4 Analysis of PV related and non-related alleles  

PV is a severe autoimmune blistering skin disorder due to loss of integrity of 

normal intercellular attachments within the epidermis and mucosal epithelium. To 
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date, much remains unknown with regards to the functional correlation between 

MHC class II alleles and PV. 

In this work, the author describes the structural analysis of ten PV 

associated, non-associated and protective MHC class II receptors. Nine 

previously identified epitopes capable of stimulating patient derived T cells, were 

docked into the binding groove of each model to analyze the structural aspects of 

allele-specific binding. This study has addressed three important issues with 

regards to the pathology of PV: (i) DRB1*0402 and DQB1*0503 have different 

binding specificities and play a crucial role in DR4 and DR6 PV respectively; (ii) 

DQB1*0201 and *0202 play a protective role by binding Dsg3 peptides with 

greater affinity than the susceptible alleles, facilitating efficient deletion of 

autoreactive T cells; and (iii) no single epitope may be responsible for both 

disease initiation and propagation in PV.  

8.5 Development of functional prediction technique  

A new approach for predicting the binding affinities of MHC-binding peptides 

(Chapter 6) was developed to complement to the peptide/MHC docking protocol 

(Chapter 4). This approach has been successfully applied to screen peptide 

binders which lack conserved binding motifs. A systematic attempt to analyze 

MHC class II binding and non-binding peptides reveals the possibility of multiple 

registers within a candidate class II binding peptide. These results suggest that 

recognition via flexible fitting may play a critical role in binding to class II alleles. It 

is possible that the existence of multiple registers within a candidate peptide can 
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facilitate binding to a particular allele, with the highest binding affinity register 

acting as the primary recognition region. 

8.6 Analysis of T cell epitope repertoire in Dsg3  

Knowledge of the nature of peptide binding to PV-implicated class II alleles has 

advanced rapidly in the last years through experimental (Wucherpfennig et al., 

1995; Sinha et al., 1988, 1990; 2006; Veldman et al., 2004) and computational 

studies (Tong et al., 2006a). Because of the paucity of experimental peptide 

binding data, screening of PV epitopes has been based primarily on sequence 

motifs (Wucherpfennig et al., 1995; Veldman et al., 2004). However, Sinha et al. 

(unpublished results) recently discovered that DRB1*0402-specific binding motifs 

are insufficient for the design of PV epitopes, due to the presence of register 

shifts as well as polymorphisms in the binding register. With increasing evidence 

suggesting the inadequacy of binding motifs in defining class II T cell epitopes, 

the current approach of predictive model building and virtual screening for T cell 

epitope candidates is independent of sequence motifs with excellent predictivity 

trained using a limited dataset.  

The first report of a high degree of cross-reactivity between DRB1*0402 

and DQB1*0503 provides new insights into the pathology of PV, suggesting the 

possible existence of multiple shared immunodominant epitopes within the Dsg3 

glycoprotein. Both disease-implicated alleles DRB1*0402 and DQB1*0503 share 

similar specificities by binding peptides at different core recognition regions. 

These observations are of particular interest in that both DRB1*0402 and 
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DQB1*0503 are strongly linked to PV (Lee et al., 2006), indicating that common 

or overlapping dominant epitopes may be responsible for inducing disease in 

DR4 and DR6 patients respectively. The inability of some Dsg3 peptides to be 

recognized by autoreactive cells may be at the level of T cell recognition rather 

than the level of epitope selection by MHC molecules as a result of clonal 

deletion or anergic response.  

8.7 Overall conclusions 

This thesis reports pioneering work in the field of immunoinformatics through the 

use of 3D structural models. In summary, the following conclusions can be 

drawn: 

• The extremely high polymorphism of HLA alleles (Williams, 2001) has 

been a confounding factor in the study of HLA peptide binding 

specificities. Sequence-structure-function information is critical in 

understanding the principles governing peptide/MHC recognition and 

binding. In this context, the author introduced the use of structural 

interaction information to analyze high-level relationships hidden within 

peptide/HLA crystallographic structures and demonstrated the 

existence of different interaction characteristics among different MHC 

supertypes (Chapter 3). The result of this analysis paves the way for 

more accurate inferences about MHC binding specificities. 

• Through the systematic application of structural models for the analysis 

of PV-implicated and non-implicated alleles (Chapter 5), the author has 
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addressed three important issues with regards to the pathology of PV: 

(i) DRB1*0402 and DQB1*0503 have different binding specificities and 

play a crucial role in DR4 and DR6 PV respectively; (ii) DQB1*0201 

and *0202 play a protective role by binding Dsg3 peptides with greater 

affinity than the susceptible alleles, facilitating efficient deletion of 

autoreactive T cells; and (iii) no single epitope may be responsible for 

both disease initiation and propagation in PV.  

• Through systematic analysis of MHC class II binding and non-binding 

peptides, the author addressed the issue of degeneracy in peptide 

binding to MHC class II molecules by providing evidence on the 

possible existence of multiple registers within a candidate class II 

binding peptide (Chapter 6). This discovery provides new insights into 

the binding specificities of class II alleles, suggesting that recognition 

via flexible fitting may play a critical role in binding to class II alleles. 

Whilst not all binding registers may elicit T cell response, it is possible 

that the existence of multiple registers within a candidate peptide 

(especially for high-affinity binders) may facilitate binding to a particular 

allele, with the highest binding affinity register acting as the primary 

recognition region. 

• High level of cross-reactivities were detected between DRB1*0402 and 

DQB1*0503, suggesting the possible existence of multiple shared 

immunodominant epitopes within the Dsg3 self-antigen. It was 

noteworthy that both disease-implicated alleles share similar 
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specificities by binding peptides at different core recognition regions. 

These observations indicate that common or overlapping dominant 

epitopes may be responsible for inducing disease in DR4 and DR6 

patients respectively. The inability of some Dsg3 peptides to be 

recognized by autoreactive cells may be at the level of T cell 

recognition rather than the level of epitope selection by MHC 

molecules as a result of clonal deletion or anergic response.  

8.8 Future directions  

The work done in Chapter 3 paves the way for further development that will 

facilitate the extraction of high-level relationships hidden within 

TCR/peptide/MHC interaction data by mapping the TCR footprint on the MHC 

and its bound peptide. Preliminary work in this area has begun with the 

computation of interaction parameters for 16 TCR/peptide/MHC complexes. 

Future developments will also include computed data on additional structural 

parameters characterizing the TCR/peptide/MHC and peptide/MHC interaction 

region.  

The analysis covered in Chapter 3 has revealed the striking observation 

that peptide/HLA structural interaction patterns vary among different alleles and 

may be grouped in a supertype dependent manner. In general, the interaction 

patterns (gap index, gap volume, interface area, and the number of 

intermolecular hydrogen bonds) of peptide/MHC complexes are conserved at the 

supertype level but not across different superfamilies. While some studies 
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showed excellent results when applied to specific sets of alleles, the results 

presented here suggest that the use of a standardized set of structural interaction 

rules or free energy scoring functions to discriminate binding peptides may not be 

applicable for all MHC alleles as interaction characteristics vary across MHC 

supertypes. 

Although the current methodology focuses on the use of existing 

crystallographic data for analysis, the work may be extended to theoretical 

models for alleles without experimental structures. Such analysis will prove 

useful as the majority of MHC alleles have not been crystallized and much 

remains unknown with regards to the binding mechanisms underlying 

peptide/MHC interactions. The classification of MHC alleles into supertypes may 

be formulated according to peptide/MHC interaction characteristics and serve as 

an alternative to HLA supertype analysis using either sequence or receptor 

structure information alone. This will allow the finer selection of representative 

molecules that can effectively cover the HLA specificity space. 

The docking protocol covered in Chapters 4 to 7 provides a rapid way for 

accurate modeling of peptides binding to MHC. While water molecules and other 

common biological ions such as phosphate and chloride may mediate 

peptide/MHC interactions, they were left out in the current experiments due to 

complexities in modeling and contributions of these molecules vary between 

different peptides and the respective alleles. While the lack of placement of water 

molecules at the peptide/MHC interface has been used to account for errors in 

many predictions (Rognan et al., 1999), a recent study that incorporate water 

 162



molecules in docking simulations to predict the bound conformation of peptides 

binding to an array of MHC class I molecules led to poor binding prediction with 

average RMSD of modeled peptides between 1.50 to 2.47 Å from the original 

crystallographic structures (Bui et al., 2006). Future developments will explore 

strategies for accurate mapping of conserved water molecules and other ions 

into the MHC binding groove.   

The analysis covered in Chapters 5 and 7 serve as an essential 

preliminary step towards better understanding of the pathology of PV by focusing 

on its main (and sometimes sole) antigen Dsg3. A similar approach may be 

applied for the analysis of Dsg1 which may occur at the later stage of disease. 

This will also provide valuable insights into disease pathology and facilitates the 

fine profiling of the PV-associated T cell epitope repertoire in disease-implicated 

alleles. 
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