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SUMMARY 
 

Schedule disturbances are common and inevitable in the process of precast production. 

Not only is it necessary for the precaster to repair existing production schedule to 

accommodate these unexpected changes, it is also critical that the precaster and the 

contractor reach agreement on a new delivery schedule. However, the current practice 

of rescheduling is rudimentary in terms of computer support and depends largely on 

human experience. Without a proper exploration of the possibilities to resolve the 

schedule disturbances, both parties are likely to adopt overly conservative 

assumptions to optimize their own interests. A more beneficial approach would be to 

incorporate specific requirements from both parties and support negotiation through 

computer-aided approaches to the generation of a range of alternatives meeting these 

requirements.  

This research has proposed and developed a coordinated production reactive 

scheduling model for this purpose. The fundamental basis of the model involves the 

formulation of the precast production rescheduling problem as a multiobjective 

optimization problem, in a way that includes the objectives from both the precaster 

and the contractor. A multiobjective genetic algorithm is applied in the global search 

procedure for a rich set of alternative repaired schedules. This search exploits the use 

of a solution representation that gives the best sequence and the corresponding 

heuristics needed to resolve the disturbances. The results from several examples in a 

case study have demonstrated the utility of the procedure developed, principally in 

automating the generation of alternative schedules that involve different degrees of 

trade-off between the objectives. Unlike the commonly adopted approach to solve 

multiobjective optimization problems, this has been achieved without the need to 
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pre-determine weights for the objectives. Comparisons between several GA-centric 

optimization techniques show that a variation of non-dominated sorting genetic 

algorithm with the elitist strategy proposed in this research is more consistent in 

locating non-dominated solutions along the Pareto front regardless of different mold 

utilization levels in production schedules. 

As a further enhancement to the proposed model, a local search process is 

implemented to conduct incremental exploration of the search space in specific areas 

identified by either the precaster or the contractor. The basic idea is to improve 

existing repaired schedules iteratively by searching for alternatives with specific 

characteristics in the neighborhoods of solutions on the Pareto front. This capability 

would be useful when minimal adjustments are needed for the alternatives generated 

by the global search in the first phase. The encouraging results obtained from the case 

study suggest that the proposed Min-Max Conflicts heuristic is capable of finding 

specific schedules by exploiting domain knowledge associated with specific 

constraints; furthermore, the local search can be completed within a reasonable 

amount of computational time. Together, the alternative schedules generated by the 

global search procedure as well as the specific schedules from the local search 

procedure provide the precaster and the contractor useful insight into the trade-offs 

between their objectives as they negotiate a new delivery schedule. 

 

Keywords: rescheduling, schedule coordination, multiobjective optimization, genetic 

algorithms, local search, precast production.
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CHAPTER 1 

INTRODUCTION 
 

The public housing program in Singapore has featured the use of a significant 

proportion of precast building components in order to meet cost, schedule and quality 

goals. Although the production of precast components takes place in a controlled 

factory environment, a high frequency of schedule disturbances is still inevitable in 

the production process, especially those that originate from the construction site. This 

makes frequent rescheduling necessary in order to repair the current schedule to 

accommodate changes and keep the production process going smoothly. However, 

current rescheduling practices in precast factories are fairly basic in nature and very 

much based on experience. Coordination in handling schedule disturbances and 

rescheduling between the precast factory and the construction site is also a challenge 

for the parties involved in the precast supply chain since they are independent entities. 

Currently, there has been little research work in the area of precast planning and 

scheduling that addresses these problems. Therefore, the focus of current research is 

on (1) modeling the precast production rescheduling problem, and (2) adopting 

appropriate methods to solve the problem effectively and facilitate coordination of 

schedules between the parties involved. 

The subsequent sections provide some background information including the 

development of the local precast industry and the stages in the construction supply 

chain for precast construction, and highlight the importance of schedule coordination 

in the use of precast building components in construction. Production planning and 

control processes employed in precast factories, the nature of schedule disturbances 

encountered and common features in the rescheduling practice are detailed. 
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1.1 The Precast Industry in Singapore 

Precast building components range from smaller items like concrete planks, beams 

and slabs, to larger and more voluminous items like bathrooms, staircases and water 

storage tanks. Unlike cast in-situ building members, precast components are made 

with molds at a centralized facility. They are then transported to the construction site 

for erection and assembly. Over the last few decades, precast fabrication has gained 

wide recognition and application through developments in design, material, 

manufacturing and erection technologies, and helped the construction industry 

achieve great savings in construction cost. Precast fabrication is of special interest in 

Singapore, where there is both a significant national public housing building program 

and a constant drive to improve on the design, quality and buildability of public 

housing units (Chan et al. 1999). 

The idea of using precast fabrication in Singapore was first mooted back in 1963, 

because of the need to complete a contract for ten blocks of standard ten-storey 

3-room flats in a short time (Lee 1989). Precast fabrication for buildings took off only 

in the early 80s when the Housing and Development Board (HDB) introduced 

large-scale industrialization in its public housing program (CIDB Construction 

Productivity Taskforce, 1992). It was logical for the HDB to use prefabrication in its 

building programme as most of the requirements and structural dimensions for many 

of its housing unit designs had been standardized. Since then, precast fabrication has 

been used extensively in both construction and upgrading of public housing by the 

HDB. 

The application of precast fabrication has also been identified as one form of 

buildable design. Buildable design is about ease of construction and characterized by 



Chapter 1  Introduction 

 3

simplicity, standardization, and combination of related components together into a 

single element that may be prefabricated in the factory and installed on site. It was 

introduced by the Construction Industry Development Board (CIDB) in 1991, and is 

continued being promoted extensively by the Building and Construction Authority 

(BCA). It is developed in the face of increasing construction costs, as well as the 

necessity of solving the problem of low productivity and heavy dependence on 

unskilled foreign workers in the local construction industry. With the use of modular 

coordination and standardization of elements in the early years, buildable design is 

more recently achieved through the greater use of prefabrication especially in public 

housing and transport infrastructure projects (Chionh 1999). The promotion of 

buildable designs has also led to the local precast sector developing strong capabilities 

in design and fabrication, especially in the areas of detailed connections and aesthetics. 

This development in turn has made precast fabrication a viable option for private 

property projects in recent years (Tan 2003). The demand for precast fabrication in 

Singapore, both in public and private sector works, is good as the construction 

industry increasingly adopts the concept of buildable designs. 

 

 

1.2 Schedule Coordination for Precast Production 

The organization of the construction team changes somewhat because of a decision to 

adopt precast construction technology in a project. Decision coordination between the 

parties involved in the precast supply chain becomes an important practical issue. 

 

1.2.1 Precast Supply Chain 

The precast supply chain is short compared to that in other industrial manufacturing 
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sectors. The main parties involved in the precast supply chain include the contractor, 

the precaster, and the delivery supplier. Figure 1.1 shows key activities of these parties, 

as well as the information and material flow within the precast supply chain. When 

precast fabrication is adopted, the process of construction work is modified to include 

the following activities: 

(1) The production of precast components;  

(2) The transportation of precast components;  

(3) The erection and assembly of precast components; and  

(4) The connection of erected components.  

All of the parties involved have to work closely on the design, fabrication, transport, 

and erection of precast building components. 

Within the activities of the precast supply chain, the precaster and the contractor are 

the two primary parties involved. The precaster is responsible for producing precast 

components with off-site automation and will also arrange transportation of these 

components to the construction site. The contractor is responsible for subsequent 

operations within the site, such as erection, assembly, and connection of these 

components. Generally, the pace of precast production should keep up with the progress 

of construction on-site. Otherwise, delays in the production of some components may 

have repercussions on the production of other components and ultimately compromise 

the progress of construction. Therefore, cooperation and collaboration between the 

precaster and the contractor is important in the area of efficient logistics and production 

scheduling. Although the construction schedule dictates the precast production 

schedule, there remains a lot of scope for better coordination between these two 

schedules in order to promote a win-win situation for the contractor-precaster 

relationship. 
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Figure 1.1 Precast supply chain 

 

1.2.2 Schedule Coordination Practices 

Schedule coordination involves consultation and negotiation between the precaster 

and the contractor throughout the precast production process. The most tangible 

outcome of this coordination is the delivery schedule, which consists of specific 

delivery quantities and due dates for the precast components. Events ranging from a 

change in design specifications, quantities, due dates for erection to resource 

availability are typically encountered in the course of the project. Both the precaster 

and the contractor customarily add lead times and inventory buffers as insurance 

against uncertain events. Should the impact of such events exceed the ability of these 

mechanisms to cope, a review of the production and construction schedules by the 
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respective parties, and possibly, even a requirement of rescheduling the production 

becomes necessary. New quantities and due dates for the delivery of precast 

components have to be negotiated between the precaster and the contractor. 

However, production in precast factories is typically set up in a central location and 

organized in a manner that is similar to a manufacturing production assembly, which 

is different from the traditional manner in which production in the construction 

industry is carried out. Consequently, the way in which the production schedule is 

generated by the precaster is also different from that employed by the contractor for 

the construction schedule. The precast production scheduling involves resource 

allocation over time for the manufacture of precast elements, whilst the construction 

project scheduling allocates resources at specified times to tasks which together 

complete a project. These differences present difficulties for the precaster and the 

contractor in the coordination of their respective schedules. 

Moreover, the precast factory typically operates as an independent business entity or a 

highly autonomous unit within a large parent company related to the contractor. 

Coordination between them may become harder when it has to be carried out across 

organizational lines. These two parties have their own concerns for the project, as well 

as goals that may conflict between one and another, leading to different emphasis 

during schedule coordination. For example, the contractors often express unhappiness 

with occurrences of late deliveries by the precasters, whilst the precasters blame the 

late deliveries on inaccurate demand schedules, slow revision of designs and 

communication of updates and changes, as well as last-minute requests by the 

contractors. Such diametrically opposed viewpoints for the cause of delivery delays 

make it difficult for both parties to negotiate and arrive at mutually beneficial 



Chapter 1  Introduction 

 7

schedules. Furthermore, each side may adopt overly conservative assumptions in the 

negotiation process for a new delivery schedule in order to protect their own interests.  

Rather than protecting individual self-interest to the fullest extent, it might be more 

beneficial for both parties to share scheduling information, mutually explore various 

possibilities, resolve conflicting demands and come up with the best possible 

compromise in the delivery schedule. 

 

 

1.3 Rescheduling Practices in Precast Factories 

Before considering the question of how to improve schedule coordination for precast 

production, it is necessary to look into the production planning, scheduling and 

rescheduling practices employed in precast factories. 

 

1.3.1 Production Planning and Control Processes 

In general, the precast factory tries to ensure both the timely delivery of required 

elements to the construction site and the most efficient utilization of factory resources. 

The planning and control processes in the precast factory include the following key 

activities: 

(1) Planning and Scheduling: These two activities are closely linked to each other, and 

are carried out for each project. Planning deals with resource availability, plant and 

mold layout, as well as crew organization. It is often considered as a “higher” level 

problem because it acts the parameters that influence how scheduling is carried out, in 

particular the numbers of different molds available to the project. Thus, scheduling 

decides on when and what elements are to be produced on the available molds (Hu 
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2000). 

(2) Production Rescheduling: This activity recurs throughout the duration of precast 

production for a project. Rescheduling is necessary during actual work progress 

because of variations and uncertainties that might affect the existing production 

schedule. The production scheduler keeps track of the actual production process, 

detects problems caused by unexpected events, initiates the rescheduling process, and 

negotiates with the contractor for new delivery quantities and due dates. 

(3) Information Transfer: It is necessary to exchange production and schedule 

information between the parties involved in the precast supply chain. On the one hand, 

information transfer within the factory occurs between different departments, such as 

the casting department, the molds fitter and the reinforcement shop. On the other hand, 

the precaster will also be in communication with the contractor and the delivery 

supplier. Efficient information exchange facilitates decision coordination among 

different parties involved in precast production.  

The literature on production scheduling research refers to two types of scheduling – 

predictive scheduling (off-line) and reactive scheduling (on-line), as shown in Figure 

1.2. Predictive scheduling predicts/forecasts the planned start and completion times of 

job operations based on deterministic inputs for processing times, sequencing order, 

availability of resources, and demand. Reactive scheduling is viewed as continuous 

adaptation and improvement of the pre-computed predictive schedule in order to keep 

it in line with unfolding and often unanticipated events. (Sabuncuoglu and Bayiz 

2000). 
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Figure 1.2 Planning and control processes for precast production 

 
1.3.2 Occurrence of Schedule Disturbances 

The generation of a precast production schedule prior to execution is based on several 

key inputs, such as the demand schedule for different precast components and the 

available capacity of various resources. Although these inputs are assumed to be 

known deterministically when the production schedules are decided, they are likely to 

change during actual project performance. Changes in the details of the delivery 

schedule or the availability of resources may force production schedules to change 

when available resources are overcommitted. 

There are several common causes for schedule disturbances. As shown in Figure 1.3, 
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these causes are categorized as either “in-house factors” or “external factors” based on 

whether it is within the control of the precast factory or not. The in-house factors 

mainly include variations in different kinds of resources, such as production space, 

storage space, casting molds, skilled workers, raw materials, gantry crane, etc. Such 

factors generally result in a changed resource constraint for precast production. The 

external factors are associated with parties outside the precast factory, and include 

demand changes by the contractor, design changes by the architect, or increased 

demand from a new business opportunity. In this research, it is assumed that the 

external factors are more significant in generating schedule disturbances than the 

internal factors within the factory itself. Planning for the production of the precast 

elements in the precast factory starts before the beginning of actual site construction 

work. As such, the high-level resource plan and low-level production schedule are 

based on a baseline master schedule of the project. Amendments to the blueprints,  

 

Figure 1.3 “External” and “In-house” causes for schedule disturbances 
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specifications, and the construction sequence of the project during the course of 

construction will disrupt the original production schedule. Schedule disturbances 

caused by these amendments are unpredictable, and the impact of such disturbances is 

exacerbated without timely exchange of relevant information between the precaster 

and the contractor. 

Not all of the disturbances mentioned require adjusting the existing production 

schedule. For example, the precaster can ignore a new business opportunity if it is too 

costly to accommodate the required increase in existing production. On the other hand, 

local precasters take the rejection of their components because of poor quality 

seriously since such incidents not only cause a loss of profits but also affect the 

reputation of the precaster. 

 

1.3.3 Features of Rescheduling Practices 

The practice of local precasters is to create a rolling production schedule over a 

planning horizon. The rolling schedule is revised and updated weekly or biweekly to 

accommodate various types of schedule disturbances. How disturbances are resolved 

and the orders in which these are done are largely decided by the personnel in the 

factory based on their previous experience. However, the outcome could be merely 

“satisficing”, solving the immediate problem but causing subsequent further 

disturbances that cost more to resolve. 

The precaster and the contractor have to reach agreement on a new delivery schedule 

after rescheduling. Different alternatives for revised production schedules form the 

basis of negotiation between these two parties. Ideally, both the precaster and the 

contractor ought to carry out this negotiation in a cooperative manner by taking into 
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account objectives such as timely delivery, reasonable inventory levels, efficient 

resource utilization levels, and so on. Unfortunately, these objectives may often 

conflict between one and another. Since rescheduling is performed concurrently with 

the production process, the time for obtaining a new schedule is short. Each party is 

therefore likely to explore only limited options for the revised schedule due to this 

time pressure, and these options may have been generated by adopting overly 

conservative assumptions that seek to optimize their own objectives. Such a 

circumstance will prevent both parties from having a common understanding of the 

problem and appreciating the differences and conflicts that stem from their respective 

decisions. Moreover, it will shift the focus of negotiation from the balance of 

trade-offs between different alternative delivery schedules to the relative importance 

of the objectives of the respective parties. The process of negotiation may prove 

tedious when the parties involved cannot agree on one of the limited options and 

additional time is required to generate other alternatives. 

It would be more beneficial if the negotiations are supported by the inclusion of a 

range of alternative schedules that explore the various trade-offs between different 

objectives. It is probably too time-consuming and onerous to generate this range of 

alternatives manually, so some form of computer-aided procedure will be necessary. 

 

 

1.4 Current Research in Precast Planning and Scheduling 

The wider adoption of precast building components has motivated much research 

interest in methods for precast production, including the planning and scheduling 

aspects. Warszawski (1984) first proposed a mathematical model for the production 



Chapter 1  Introduction 

 13

planning of precast components in the make-to-stock manufacturing system. 

Subsequent models for the same general problem went beyond traditional operation 

research techniques and applied other computer intensive methods to solve the 

problem. For example, Dawood and his colleagues developed a simulation-based 

model that integrated demand forecasting, production planning and stock forecasting 

for the precast industry (Dawood and Neale 1993; Dawood 1994, 1995 and 1996; 

Dawood and Smith 1996). Chan and Hu (2000, 2001, and 2002a) developed a flow 

shop sequencing model for the specialized precast production scheduling with genetic 

algorithms (GAs). Chan and Hu (2002b) also adopted a constraint programming (CP) 

approach to solve the comprehensive precast production scheduling by incorporating 

the constraints encountered in practice. Leu and Hwang (2001 and 2002) proposed a 

GA-based flow shop scheduling model to obtain optimal resource-constrained 

schedules for repetitive precast production. Comparison of the results obtained from 

these models with those obtained typically from the use of heuristic rules showed the 

benefits of these models for the precast planning and scheduling problem. 

However, these models are predictive scheduling models that determine the schedule 

using deterministic inputs before actual production commences. Such schedules are 

vulnerable to schedule disturbances because of the nature of the precast production 

process noted earlier. To date, there has not been much research addressing the 

problems of schedule revision and coordination for precast production although these 

are important in practice. There is a need to extend the research on production 

scheduling in the precast industry to include rescheduling during the execution of 

previously planned schedules. 
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1.5 Research Objectives and Scope 

This research will focus on the rescheduling problem for precast production. The 

research scope includes: 

(1) Identifying the factors contributing to the occurrence of disturbances in precast 

construction and the heuristics used to repair the production schedule; 

(2) Identifying the key constraints involved in the rescheduling process for precast 

production, and the criteria used by the precaster and the contractor to evaluate 

alternative schedules; 

(3) Formulating the precast production rescheduling problem and proposing a 

rescheduling model for precast production;  

(4) Developing optimization procedures for the model; 

(5) Validating the feasibility of the proposed methods and evaluating their 

effectiveness. 

The primary objective of this research is to develop a coordinated production reactive 

scheduling model (CPRSM) for the precast production process. The research scope 

includes work to: 

(1) Develop a repair-based method for precast production rescheduling. It is 

impractical and potentially disruptive to generate new schedules from scratch each 

time a disturbance occurs. The main reason is because of the use of a rolling 

planning horizon when generating schedules. This kind of approach is therefore 

not much favored in practice as the new schedule can differ considerably from the 

current schedule in use. Furthermore, many other decisions like assignment of 

personal, delivery of raw material and subsequent processing of the jobs in other 

facilities may be severely disrupted. This phenomenon is commonly referred to as 

shop floor nervousness. Therefore, repairing existing schedules to handle the 
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disturbances is a more attractive alternative. The repair-based method for precast 

production rescheduling reassigns the production of precast elements involved in 

schedule disturbances with available resources, while trying to maintain most of 

the originally scheduled production of precast elements unchanged simultaneously. 

The new production schedule will deviate less from the old schedule, and results 

in less shop floor disruption and nervousness. In this research, the schedule repair 

action is achieved by deciding the best sequence of disturbance resolution and 

selecting the best heuristic to solve each disturbance. 

(2) Generate alternative schedules along a Pareto optimal front to facilitate schedule 

coordination. This is achieved by formulating the rescheduling problem as a 

multiobjective optimization problem. The model can simultaneously search for 

repaired schedules representing different degrees of trade-off between the 

objectives of the precaster and the contractor. A multiobjective optimization 

approach for the exploration of trade-offs between conflicting objectives avoids 

the debate as to the “correct” choice of the weights for these objectives. The 

search algorithm for the identification of Pareto optimal solutions is based on the 

GA.  

(3) Develop a local search process to conduct incremental exploration in specific 

areas identified by the parties involved. The local search process can improve 

existing schedules by incorporating specific requirements from either the precaster 

or the contractor, and is complementary to the search process described in (2). 

 

 

1.6 Research Methodology 

The research methodology consisted of interviews with industry professionals, 
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literature review, model development, and verification of the rescheduling 

methodology with cases. 

In this research, a review of the literature on precast production scheduling research 

first revealed that, among researchers the problem of rescheduling/reactive scheduling 

had received less attention than predictive scheduling, although rescheduling occurred 

frequently in practice. It became clear that including the concept of rescheduling in 

existing precast production planning and scheduling models would be the next logical 

step in the development of computer-based production planning and scheduling 

models. 

With this research objective, interviews with industry professionals were then 

conducted to: (i) understand the current practice in precast production rescheduling; 

(ii) determine the objectives and constraints used in repairing actual schedules; and 

(iii) map the process involved in schedule coordination and the factors that could 

cause a disruption in the precast supply chain. 

Based on the information obtained from the interviews with industry professionals, it 

was realized that multiple conflicting objectives were involved in the actual precast 

rescheduling process. A true multiobjective optimization model was therefore 

necessary in the model development. This would improve the current practice of 

weighting criteria to form a single objective. As a global search and optimization 

technique, GAs were identified as an appropriate method to solve the precast 

production rescheduling problem with multiobjective optimization, and find good 

candidates for repaired schedules. Further feedback from the industry also identified 

the need for a concept to find schedules with particular characteristics and a 

corresponding local search procedure. Some local search techniques were developed 
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for use in the search procedure based on the mechanism of iterative improvement. The 

end result was a coordinated production reactive scheduling model for precast 

production that incorporated these two search procedures. 

Finally, the model was tested on several case studies in order to verify the feasibility 

and practicability of these two search procedures. The first set of cases illustrated the 

efficiency and effectiveness of the GA-based algorithms in generating schedules along 

a Pareto front under different mold utilization levels. The second set of cases 

demonstrated the capability of the local search techniques in finding such particular 

schedules with specific constraints. 

 

1.7 Thesis Organization 

This thesis is organized into seven chapters, beginning with this chapter. Chapter Two 

reviews the previous research on precast planning and scheduling models. Reactive 

scheduling, multiobjective optimization, as well as techniques available to solve these 

two problems are also briefly introduced. The chapter also includes a review of the 

single and multi-objective genetic algorithms, particularly their application to 

scheduling problems. 

Chapter Three describes the development of the proposed coordinated production 

reactive scheduling model (CPRSM), including the mathematical formulation of 

variables, constraints and objectives considered, and functions for each key process 

within the model. 

Chapter Four describes key issues of GAs in multiobjective search, some 

well-established multiobjective GAs and elitist strategies proposed in this research, 
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and demonstrate the application of GAs in the global search procedure. 

Chapter Five verifies the implementation of GAs in generating alternative repaired 

schedules along a Pareto front in three examples with different levels of mold 

utilization rate. The performances of several selected GA-based algorithms are 

compared. 

Chapter Six describes the local search process for an incremental exploration of 

schedules through the incorporation of specific constraints. The proposed local search 

techniques are tested with two examples to illustrate the iterative repair mechanism. 

Chapter Seven concludes the thesis with a summary of the main contributions of the 

research, its limitations and suggestions for future study.
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CHAPTER 2 

LITERATURE REVIEW 
 

This chapter first reviews previous research on planning and scheduling models for 

precast production. Since the present research aims to develop a reactive scheduling 

model for precast production, two research fields: i) the reactive scheduling problem 

and existing approaches; and ii) the multiobjective optimization problem and related 

methods, are then reviewed. Finally, genetic algorithms (GAs) are introduced with an 

emphasis on their application in the field of scheduling problems with multiobjective 

optimization, as the GA is the basis of the search approach adopted in the research.  

 

 

2.1 Planning and Scheduling for Precast Production 

The wider use of precast building components has motivated the interests of many 

researchers in the precast industry. Their works range from generating resource plans 

and detailed schedules for precast production to developing integrated information 

systems to aid and facilitate decision-making and coordination in the precast 

production process, especially for planning and scheduling. 

Several planning and scheduling models for the precast industry have been proposed 

from the mid of 1980’s. With applications of inventory control methods and heuristic 

rules in the early years, precast planning and scheduling problems are more recently 

solved with many advanced techniques in computer science, information technology 

and decision science in these models. With the help of these advanced techniques, the 

problem modeling has reflected the precast production process more practically. 
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Moreover, these techniques become feasible and reliable to find better solutions to the 

precast planning and scheduling problem. Some planning and scheduling models that 

have been developed are reviewed as follows:  

(1) Mathematical models  

Warszawski and Ishai (1982) proposed a long-range planning model for the 

prefabrication industry, which includes determinations of the optimal location and 

capacity of prefabrication plants from the perspective of a national economy. After 

that, Warszawski (1984) developed another model for the short range planning in 

prefabrication plants. This model was proposed as a classical optimization problem to 

decide the minimum cost assignment of precast elements to molds in the plant by 

applying the inventory slope theory. It provided schedules for two production series, 

namely short (specific orders) and long (continuous demand for standard elements) by 

considering some constraints encountered in practice. These early studies have 

concentrated on the application of mathematical models on the planning and 

scheduling problem with a make-to-stock manufacturing system. Although the 

proposed mathematical models for the short range planning represented production 

operations in a prefabrication plant to some extent, not all necessary constraints were 

identified (Hu 2000). One of the reasons is that large number of parameters would 

increase computational difficulty in finding an optimal solution for the mathematical 

model. 

(2) Capacity planning model  

In order to help production mangers make better planning decisions, Dawood and 

Neale (1993) developed a capacity planning model for the precast industry. The model 

is a “finite rough-cut” capacity planning system that develops a twelve-month 
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capacity plan using a backward scheduling technique. Being incorporated the demand 

and stock forecasting, this model was developed as an integrated production 

management system for the precast industry (Dawood 1994, 1995 and 1996; Dawood 

and Smith 1996). Simulation technology was applied in the model to automate the 

planning process and predict the effect of several schedule strategies that are basically 

heuristic rules for product selection and plant allocation. The capacity planning model 

went beyond the use of standard stock control models in the precast industry. Due to 

the rule-driven nature and its ability to mimic the decision making of a human planner, 

the simulation approach was concluded to be able to complement human knowledge 

through eliciting scheduling knowledge under different circumstances. However, the 

model was developed with the aim of evaluating alternative planning options before 

actual production commences as indicated in the literature, and based on sinusoidally 

varying demands. Therefore, the model cannot realistically reflect the real conditions 

in the precast plant and is incapable of real-time scheduling of production driven by 

contracts. 

(3) Production simulation models 

Production in precast factories that is organized with different contracts is full of 

random factors in practice, such as differences in individual component size and shape, 

variations in site progress and randomness in production times. Some researchers 

applied simulation technologies to analyze difficulties of precast production under 

such circumstance. Halpin and Riggs (1992) developed a CYCLONE model for the 

precasting process. The system studied changes in task durations, crane availability, 

rate of supplying concrete and crew size for precasting. Vern and Gunal (1998) 

proposed a simulation model that is capable of capturing various random elements 

and facilitating the analysis of complicated what-if scenarios for precast production. 
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Balbontín-Bravo (1998) also applied simulation to analyze the optimization of precast 

production in a workshop and obtain working alternatives to improve productivity. 

However, these simulation models only serve as an early warning system, which can 

help production managers find out bottlenecks in the precast production process and 

adjust resource allocation to increase productivity before the production process 

commences. 

(4) Processing scheduling models 

The production in precast factories is organized and carried out similarly to that in 

other manufacturing industries. This similarity opens an opportunity of applying 

production process scheduling models to the precast industry, which have been widely 

applied to the manufacturing systems (Baker 1974). Chan and Hu (1998) first 

identified that the flow shop scheduling model was most relevant to operational 

conditions for precast factories in Singapore. Thereupon, Chan and Hu (2000, 2001 

and 2002a) proposed a flow shop sequencing model (FSSM) for the specialized 

production method applied in local precast factories. With this production method, the 

total process of precast element producing is broken into several activities that are 

performed by different crews with specialized tools and work methods (Warszawski 

1990). The traditional makespan and the more practical tardiness penalty objectives 

were minimized separately, as well as simultaneously using a weighted approach. The 

GA and classical heuristic rules were applied in the model to generate production 

schedules. From the experiments conducted, a conclusion was highlighted that the GA 

can obtain good schedules by giving a family of solutions that are at least as good as 

those produced by heuristic rules. Almost at the same period, Leu and Hwang (2001 

and 2002) developed another flow shop precast scheduling model. A GA-based 

searching technique was also adopted in the model to provide the optimal or 
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near-optimal combination of production sequences, resource utilization and minimum 

makespan in consideration of resource constraints. Results of these flow shop 

scheduling models indicated that the flow shop process is suitable for modeling 

precast production, and the GA-based search is efficient and flexible for solving the 

problem. GAs therefore become a feasible option for solving the precast rescheduling 

problem studied in this research. 

(5) Constrained scheduling model 

Except for the specialized production method, there is another work organization 

known as the comprehensive production method (Warszawski 1990). With this 

method, a same crew performs all activities of the precast production until the product 

is finished. Chan and Hu (2002b) proposed a constrained precast scheduling model 

(CPSM) for the comprehensive precast production. Their model was formulated by 

incorporating several key constraints and objectives considered in real practice. A 

capacity-based backward scheduling earliest due date (EDD) rule and a constraint 

programming (CP) approach were developed to solve the model. Even though it 

incorporates many problem-derived constraints, comparisons of results by the CP and 

commonly used heuristic rules showed that the CP is computationally efficient. In order 

to improve the CP approach, Hu (2000) proposed a hybrid GA-CP approach to solve 

the CPSM, in which the GA was used to determine high-level control parameters or a 

sequence of tasks that directs the CP in its search for detailed scheduling solutions. 

One of the significances of the CPSM is that it is a natural way of representing the 

scheduling problem for the comprehensive precast production. Compared to the 

above-mentioned models, this model highlighted the more practical issue of 

constructing “optimal” production schedules in the face of many real constraints in 

practice. In the precast production rescheduling process, these constraints also should 
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be considered since any constraint applied in the initial scheduling process must also 

be observed in rescheduling. 

(6) Information system models 

The precast industry suffers from poor information transfer and management. This 

phenomenon has caused extra burden on the industry resulting from inaccurate 

planning and inefficient utilization of resource. Therefore, information technologies 

has the potential to modernize the industry in the field of planning and scheduling by 

making the information transfer quicker and more efficient, as well as better 

cooperation and collaboration among the parties involved. Dawood (1999) introduced 

an integrated intelligent computer-based information system for the precast industry. 

The framework of this proposed information system consisted of two portions: i) use 

of information technology in different phases and tasks of manufacturing process; and 

ii) integration of these phases and tasks through the use of digitally stored data and 

data transfer. Chan et al. (1999) proposed an object-oriented design of a collaborative 

precast scheduling system. It addressed a specific type of distributed problem solving 

that enables the sharing and exchange of related information. The system comprised 

two subsystems corresponding to two key functions during the scheduling process, 

which are (i) handling the static database management, and (ii) communicating and 

processing messages. These research works in the development of information 

systems highlighted the characteristic of dynamic for the precast production process, 

the importance of information flow therein, and the necessity of coordination both 

inside the factory and with outside parties. 

In summary, the research in the precast planning and scheduling problem has made 

progress in modeling the corresponding process, developing artificial intelligent based 

approaches such as the GA and CP to generate better solutions, and facilitating 
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decision making with the help of information systems. However, most of these models 

only deal with predictive scheduling for precast production, which focus on 

generating production schedules before actual production commences. To date, there 

has not such research addressing the precast production rescheduling problem 

although rescheduling is a practical issue, and is important in the light of unexpected 

changes due to construction site events. Therefore, the present research work will 

focus on the issue of schedule disturbances and look into the rescheduling problem for 

precast production to complement the earlier predictive scheduling models. 

 

 

2.2 Reactive Scheduling 

Scheduling exists in a wide variety of domains, such as production scheduling, project 

scheduling, employee shift scheduling, school timetable scheduling, etc. All of them 

are faced with a certain number of uncertainties in reality. Therefore, scheduling 

problems are complicated due to dynamic environments, where rescheduling in 

response to changes is critical. Due to the shortage of research in precast rescheduling 

and similarities between the production process in precast factories and assembly 

lines in the chemical and electronic industries, it is necessary to review the research of 

reactive scheduling/rescheduling in these manufacturing industries and extend it to the 

area of precast production. 

 

2.2.1 Overview  

Generally, the scheduling process is an attempt to utilized limited resources in a 

manner as efficient as possible, as well as simultaneously satisfying several 

domain-specific constraints (Noronha and Sarma 1991). However, real production 
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scheduling problems are dynamic in nature as Graves (1981) stated, “A frequent 

comment heard in many scheduling shops is that there is no scheduling problem but 

rather a rescheduling problem”. Therefore, there are two classes of scheduling 

problems, which are predictive and reactive scheduling (Suresh and Chaudhuri 1993). 

They may be seen as complementary activities (Smith 1994). 

Predictive scheduling is also called static scheduling in the literatures. Being 

considered to operate “off-line” before the system starts operation, predictive 

scheduling generates a solution for all available jobs within the entire planning 

horizon. It is specified by addressing the problem with deterministic inputs, such as 

processing times and resource availability. However, this schedule is subject to 

changes due to external and internal events e.g. delayed or shortened execution of an 

operation, machine breakdown or an additional high priority order.  

On the other hand, reactive scheduling is called dynamic scheduling, real-time 

scheduling or rescheduling (Sun and Xue 2001). Reactive scheduling, which be 

conducted “on-line”, can be broadly defined as the reactive part of the system 

monitoring the execution of the pre-determined schedule and coping with unexpected 

events. The main alternatives to the revision of a schedule in the presence of real time 

feedback are either to incorporate the new information by completely regenerating the 

original schedule from scratch, or by “repairing” the previous schedule in some way 

(Dorn et al. 1996). The first approach might be better capable of maintaining optimal 

solutions in principle, but such solutions may be rarely achievable in practice and 

computation times are likely to be prohibitive. Furthermore, frequent schedule 

regeneration can result in increased costs attributable to what has been termed “shop 

floor nervousness” (Raheja and Subramaniam 2002). Thus, most approaches to 
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reactive scheduling are based on infrequent regeneration of a basic predictive 

schedule. It is then maintained continuity by serving as a nominal reference for the 

identification and specification of schedule changes as it is progressively modified.  

 

2.2.2 Approaches in Reactive Scheduling 

The character and content of the scheduling research have always kept pace with 

theoretical developments in operations research and computer science areas. A variety 

of techniques and approaches applied in reactive scheduling has been reported in 

these years.  

Mathematical programming such as linear programming, integer programming and 

later multiple objective programming, as well as search techniques such as branch and 

bound and heuristic rules, are implemented widely in the scheduling research. 

However, the scope for these conventional approaches is limited due to complexity of 

the scheduling environment. Prohibitive computing times with these approaches are 

not applicable in industrial practice. Much of the research using these approaches in 

turn involves highly simplified versions of the actual problem, which can only model 

a fragment of the scheduling knowledge existing in practice. Therefore, scheduling 

models with these conventional approaches lack the level of fidelity and adaptability 

to changes (Szelke and Márkus 1995). Furthermore, the static nature of these 

approaches is not suitable to the dynamic nature of most real-time scheduling 

environments.  

Over the last two decades, developments in artificial intelligence (AI) technologies 

paved the way for a host of new approaches to tackle the reactive scheduling problem. 

AI uses symbol-processing computer programs to strive for human-like performances. 
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AI-based approaches offer the well-known advantages of symbolic systems, which are 

easy to understand and perform like human experts.  

Knowledge-based approaches provide the major AI approaches to production 

scheduling in particular. The fundamental characteristic of this kind of approaches is 

employing domain specific problems solving information to derive good schedules 

with reasoning, which is easily understood and accepted by the human user. Several 

knowledge structures have been described in the literature, such as rules, 

frames/schema, procedural nets, scripts, etc. Rules, expressed as if-then statements, 

figure prominently as knowledge for use within production rescheduling 

knowledge-based systems (Subramanyam and Askin 1986, O’Grady and Lee 1989; 

Tsukiyama et al. 1992; Li and Shaw 1996 and 1998; etc.).  

With the perspective of scheduling as a constraint-driven process has lately become 

more and more dominant, the constraint-based reasoning is frequently employed for 

rescheduling (Kjenstad 1998). These constraint-based systems use constraints to 

measure the quality of candidate schedules and to prune alternative assignments 

during the scheduling/rescheduling process. Among them, ISIS developed by Fox and 

Smith (1984) and OPIS proposed by Smith et al. (1990, 1994) which is the successor 

of the ISIS are the most well known systems. 

Multi-agents in a distributed artificial intelligence (DAI) environment have been 

widely reported in the works of the reactive scheduling problem, for instance, Szelke 

and Markus (1995), Tsukada and Shin (1998), Pendharkar (1999), Tranvouez et al. 

(2001), Chun and Wong (2003), etc. In DAI-based approaches, the reactive 

scheduling is achieved using multiagents, which possesses the knowledge pertaining 

to schedule repair. These independent intelligent agents coordinate their knowledge 
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and solve sub-problems while working toward a common goal for rescheduling. The 

human scheduler can also act as one of the intelligent agents and become actively 

involved in the decision process. 

Other advanced artificial intelligent techniques, such as neural networks and genetic 

algorithms, have also been widely applied in solving the reactive scheduling problem. 

These techniques generally use biological performance in problem solving that start 

with the neuron or other basic building blocks and exploit these blocks to achieve 

intelligent behavior (Brown et al. 1995). The importance of production rescheduling 

and the promise of improved performance using these approaches have encouraged a 

number of researchers to investigate methods from this area, such as Garetti and 

Taisch (1995), Fang and Xi (1997), Kim et al. (1998), Bierwirth and Mattfeld (1999), 

Rovithakis et al. (2001), Nishimura et al. (2001), and Madureira et al. (2002), etc. 

These studies indicate that these techniques can offer excellent potential for adapting 

scheduling algorithms to changing conditions, and can be successfully combined with 

each other to enhance the search for good solutions in reactive scheduling. 

Reviews of the AI-based approaches and systems in reactive scheduling have been 

provided by Suresh and Chaudhuri (1993), Szelke and Kerr (1994), Brown et al. 

(1995), Kjenstad (1998), Sabuncuoglu and Bayiz (2000), Raheja and Subramaniam 

(2002), etc. Artificial intelligence techniques have been identified as efficient methods 

to tackle the combinatorial exploration in the reactive scheduling problem. They can 

provide a large body of tools and techniques such as informed search methods, 

sophisticated knowledge representation schemes and high-level programming 

environments. 
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2.3 Multiobjective Optimization Problems 

As discussed earlier in Chapter 1, the rescheduling problem for precast production is 

indeed a multiobjective optimization problem. Therefore, basic concepts and 

approaches for the multiobjective optimization problem are reviewed in this section. 

 

2.3.1 Basic Concepts and Terminologies 

Multiobjective optimization problems (MOPs) also called multicriteria optimization, 

multiperformance or vector optimization problems. This class of problems can be 

defined as the problem of finding (Osyczka 1985): “[…] a vector of decision 

variables which satisfies constraints and optimizes a vector function whose elements 

represent the objective functions. These functions form a mathematical description of 

performance criteria which are usually in conflict with each other. Hence, the term 

‘optimize’ means finding such a solution which would give the values of all the 

objective functions acceptable to the decision maker.” Without loss of generality, the 

mathematical formulation of a minimization MOP is presented as follows: 
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where, x is the vector of decision variables, y is the objective vector, X is the decision 

space, and Y is the objective space.  

The performance measure of multiple objectives is not as straightforward as that of a 

single objective. At times when there are multiple conflicting objectives involved in 

the problem, it is not possible to optimize several objectives simultaneously. The 

concept of dominance is used to compare the performance of different solutions with 
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multiple objectives. Suppose a bi-objective minimization problem shown in Figure 

2.1, five points, namely from A to E, are plotted in the objective space. As shown in 

the Figure 2.1, it is difficult to judge which is superior among points A, B and C, 

because none of these points is better than the others with respect to both criteria. 

Since there is no point that is better than these three points along both dimensions, 

points A, B and C are called non-dominated or non-inferior points for the problem 

considered. On the other hand, point D is bettered by point B and point E is bettered 

by point D in both criteria. Therefore, points D and E are known as dominated points, 

and both dominated by points A, B and C. 

Based on the concept of dominance, a decision vector x* is Pareto optimal if there 

exists no feasible vector x which would decrease some criterion without causing a 

simultaneous increase in at least one other criterion (Coello et al. 2002). Therefore, 

rather than a single solution, the “optimum” for the MOP is usually a set of equally 

efficient, non-inferior or non-dominated solutions, known as Pareto optimal set. The 

plot of the objective functions whose nondominated vectors are in the Pareto optimal 

set is called Pareto front. 

 

Figure 2.1 Illustration of domination in multiobjective optimization 
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2.3.2 Multiobjective Optimization Methods 

In this section, a few commonly used classical methods for handling the MOP are 

reviewed first, which are different from the methods based on the evolutionary 

algorithm reviewed later. 

(1) Classical methods 

Classical multiobjective optimization methods have been existed for at least four 

decades. Most of these methods suggest a way to convert a multiobjective 

optimization problem into a single objective optimization problem. Detailed reviews 

of these classical methods for the MOP are available in (Steuer 1986). Some 

representatives of this class of methods are the weighted sum method (Zadeh 1963), 

the ε-constraint method (Marglin 1967), the weighted metric method (Zeleny 1973), 

the goal attainment method (Gembicki 1974), the multiattribute utility method 

(Keeney and Raiffa 1976), the goal programming method (Goicoechea et al. 1982), 

the lexicographic method (Rao 1984), etc. There are a number of difficulties 

accompanying these classical optimization methods (Deb 2001): 

(i) Only one Pareto optimal solution is expected to be found in one simulation run. In 

order to obtain an approximation of the Pareto optimal set, several optimization 

runs are required but it may cause high computation overhead. 

(ii) Some methods may be sensitive to the shape of the Pareto front. For example, not 

all Pareto optimal solutions can be found by some methods in nonconvex MOPs. 

(iii) All methods require some problem knowledge, such as suitable weight vectors 

and target values. However, such problem knowledge may not be available. 

(2) Evolutionary algorithm based methods 

The field of search and optimization has changed over the last few years by the 
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introduction of a number of non-classical, unorthodox and stochastic search and 

optimization algorithms. Of these, evolutionary algorithms (EAs), which mimic 

evolutionary principles of the nature to drive the search towards optimal solutions, 

seem to be especially suited to multiobjective optimization. It is because they are able 

to capture multiple Pareto optimal solutions in a single simulation run and may 

exploits similarities of the solutions by recombination. Some researchers suggest that 

the multiobjective search and optimization might be a problem area where EAs do 

better than other blind search strategies (Fonseca and Fleming 1995; 

Valenzuela-Rendón and Uresti-Charre 1997).  

The need for finding multiple trade-off solutions in one single simulation run was 

suggested and worked out by Schaffer in 1984. However, no attention had been paid 

to multiobjective optimization for almost half a decade after Schaffer’s study until 

Goldberg suggested a multiobjective evolutionary algorithm using the concept of 

domination in 1989. Since then a number of researchers have been motivated from his 

work and developed different implementations of multiobjective evolutionary 

algorithms (MOEAs). Of these, Hajela and Lin’s weight-based approach (1992), 

Fonseca and Fleming’s multi-objective GA (MOGA) (1993), Srinivas and Deb’s 

non-dominated sorting GA (NSGA) (1994), and Horn, Nafploitis and Goldberg’s 

niched Pareto-GA (NPGA) (1994) were tested for different real-world problems to 

demonstrate that the Pareto-based MOEAs can be reliably used to find and maintain 

multiple trade-off solutions. Almost at the same time, a number of other researchers 

also suggested different ways to use an EA to solve multiobjective optimization 

problems, such as Kursawe’s diploidy approach (1991), Osyczka and Kundu’s 

distance-based GA (1995), and Ishibuchi and Murata’s multiobjective genetic local 

search algorithm (1996). Comprehensive reviews and comparison studies on these 
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multiobjective evolutionary algorithms have been provided by Horn (1997), Zitzler 

and Thiele (1999), Zitzler et al. (2000), Coello (2000 and 2001), Van Veldhuizen and 

Lamont (2000); Carlyle et al. (2001), Deb (2001); Coello et al. (2002), Collette and 

Siarry (2003), etc. 

 

 

2.4 Genetic Algorithms and Applications to Scheduling 

Due to its successful applications in both the multiobjective optimization and the 

reactive scheduling problem, the basic mechanism of genetic algorithms (GAs) is 

reviewed in this section. It is followed by their application to scheduling problems, 

especially with multiobjective optimization. 

 

2.4.1 Overview of GAs 

As the name suggests, the processes observed in natural evolution inspired genetic 

algorithms. The GA is an example of a search procedure that uses random choice as a 

tool to guide an exploitative search through a coding of parameter space (Tam et al. 

2001). In the parameter space, a new set of artificial creatures is created using bits and 

pieces of the fittest of the old. An occasional new part is tried for good measure. 

While randomized, GAs are no simple random walk but efficiently exploit historical 

information to speculate on new search points with expected improved performance.  

Genetic algorithms are different from many normal optimization and search 

procedures in four ways (Goldberg 1989): 

(1) GAs work with a coding of parameter set, not the parameters themselves, 

(2) GAs search from a population of points, not a single point, 
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(3) GAs use payoff (objective function) information, not derivatives or other auxiliary 

knowledge, and 

(4) GAs use probabilistic transition rules, not deterministic rules. 

These four differences contribute to genetic algorithms’ robustness and resulting 

advantages over other more commonly used techniques (Dandy and Engelhardt 2001). 

Therefore, as powerful and broadly applicable stochastic search and optimization 

techniques, GAs are perhaps one of the most widely known types of evolutionary 

computation methods today which results in a fresh body of research and applications. 

 

2.4.2 Multiobjective Genetic Algorithms 

By working with a population, GAs have a built-in advantage of being able to work 

with multiobjective optimization problems. Indeed, a set of solutions is sought with 

multiobjective optimization, whilst the GA population can delivery several solutions 

of the efficient set (Yapo 1996). According to different fitness assignment strategies, 

there are three broad ways for GAs of working with multiobjective optimization 

(Fonseca and Fleming 1995, Zitzler and Thiele 1999), they are: 

(1) Aggregation approaches: For this kind of approaches, the objectives are combined 

into a scalar function. There are numerous ways of aggregating the problem, such 

as objectives weighing, distance function and min-max formulation, etc. Then the 

single objective problem is solved by a traditional GA to produce one single 

solution. 

(2) Population-based non-Pareto approaches: These approaches treat objectives 

separately as a move toward finding multiple non-dominated solutions with a 

single GA run. As a typical example, the vector evaluated genetic algorithm 

(VEGA) proposed by Schaffer (1984 and 1985) divides the population into as 
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many sub-groups as the number of objectives. Each sub-group is then assigned the 

task of optimizing one objective function. The individuals that perform well in 

each sub-group are selected for generating the next set of possible solutions.  

(3) Pareto-based approaches: These approaches rank the performance of individuals 

based on the concept of Pareto optimality, striving to guarantee equal probability 

of reproduction to all non-dominated solutions. Compared to non-Pareto 

approaches that are often sensitive to the nonconvex trade-off surfaces, the 

Pareto-based approaches do not raise such issue. MOGA, NSGA, and NPGA are 

all representatives in this class of approaches. For example, MOGA proposed by 

Fonseca and Fleming (1993) ranks the individual corresponding to the number of 

individuals in the current population by which it is dominated. NSGA proposed by 

Srinivas and Deb (1994) is developed from the ranking mechanism proposed by 

Goldberg (1989). The ranking process is executed front wise by assigning the 

individuals in each non-dominated front a same dummy fitness value. 

 

2.4.3 Applications to Scheduling Problems 

GAs are so efficient that they can find the optimal or near-optimal solution in a 

reasonable time even for the traditional NP-complete problems. Being referred to as 

NP-hard, the scheduling problems that are optimized with a single objective have 

already been solved by GAs in a vast number of studies. GAs have shown 

characteristics of domain independence, robustness and flexibility in solving such 

problems. In recent years, GAs have been widely applied to scheduling problems with 

multiobjective optimization in several specific fields.  

(1) Production scheduling problems: For example, Shaw and Fleming (1996, 1997) 

solved a production scheduling problem in a ready meals factory by MOGA with 
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optimization of makespan and tardiness penalty simultaneously. Li and Man (1998) 

applied MOGA to solve an extensive earliness/tardiness production scheduling and 

planning problem with lot-size consideration and capacity balance. Sankar et al. 

(2003) applied the GA to generate a nearer-to-optimum production schedule with two 

contradictory objectives of the flexible manufacturing system.  

(2) Process scheduling problems: Being a major application area, various kinds of 

multiobjective GAs have been applied in solving process scheduling problems. For 

example, Murata et al. (1996) and Ishibuchi and Murata (1998) solved the flow shop 

scheduling problem by hybridizing a GA with a linear combination of weights with a 

local search procedure, in which the weights are randomly generated at the time of 

performing recombination. Todd and Sen (1997) applied a multiple criteria GA in 

solving the job shop scheduling problem to optimize the makespan and the average 

job time simultaneously. Bagchi (1999, 2001) adopted NSGA and a variation of 

NSGA using elitism to solve both flow shop scheduling and job shop scheduling 

problems. Brizuela et al. (2001) and Brizuela and Aceves (2003) applied NSGA to 

solve a three-objective flow shop scheduling with different types of selection, 

crossover and mutation. Other applications can be found in Tamaki et al. (1999), Cui 

et al. (2001), Talbi et al. (2001), Chang et al. (2002), etc.  

(3) Machine scheduling problems: Cochran et al. (2000) proposed a two-stage 

multi-population genetic algorithm (MPGA) to solve a parallel machine scheduling 

problem with three objectives. Results of MPGA were compared with those of the 

multiobjective genetic local search algorithm proposed by Murata et al. (1996). 

Carlyle et al. (2001) also compared these two algorithms in solving the bi-objective 

parallel machine scheduling problems. 
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(4) Real-time scheduling problems: Montana et al. (1998) solved large-scale real-time 

scheduling problems with a weighted sum GA. Two examples were considered, which 

are a field service scheduling problem with seven cost objectives and a military land 

move scheduling problem with two objectives. Oh and Wu (2004) solved a real-time 

task scheduling problem in the microprocessor system with GAs, which considers two 

criteria independently by using a vector-valued cost function. Rangsaritratsamee et al. 

(2004) applied the genetic local search algorithm in the proposed dynamic 

rescheduling methodology that uses multiobjective performance measures. 

(5) Other scheduling problems: Except for the above applications, GAs are also 

applied in the scheduling problems in other domains. Some of these works are the 

time-tabling problem (Paechter et al. 1998), the telephone operator scheduling 

problem (Yoshimura and Nakano 1998), the nurse scheduling problem (Jan et al. 

2000), the pavement maintenance programming problem (Fwa et al. 2000), the 

earthmoving operations problem (Marzouk and Moselhi 2004), the project time-cost 

optimization problem (Zheng et al. 2004), etc.  

The results obtained by these works indicate that GAs are effective in handling a 

variety of objectives available in scheduling problems, as well as fast and promising 

in providing a set of non-dominated solutions for these problems. 

 

 

2.5 Summary 

Previous literature review enables us to draw some conclusions and consequently 

identify several issues that this research attempts to address: 
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Firstly, most of the developed precast production planning and scheduling models did 

not consider the rescheduling problem. Production schedules generated by these 

models are vulnerable and lack the capability of accommodating different kinds of 

schedule disturbances identified in this research. It is necessary to extend the research 

in precast planning and scheduling to cover the topic of how to respond to these 

disturbances and resolve them efficiently. 

Secondly, advanced developments in computer sciences, information technology and 

decision sciences have become available to precisely model and find better solutions 

to the precast production scheduling problem. Similarities between the production 

process in precast factories and assembly lines in other manufacturing industries open 

a possibility of transferring research findings and practical experiences of scheduling 

between these two processes. Therefore, the precast production rescheduling problem 

is an area of research where formal optimization models can be beneficially 

employed. 

Thirdly, reactive scheduling is also called rescheduling, dynamic scheduling, and 

“on-line” scheduling in the literatures. Artificial intelligence techniques have achieved 

promising results in this field of research. Among them, GAs have attracted attentions 

as an effective method. The reason is that GAs are easy to implement and fast to run, 

and therefore can be taken into consideration as a “reasoning” methodology for 

reactive scheduling in live environment. Furthermore, GAs have also been 

successfully applied in several precast scheduling models, and the results of these 

models showed that GAs are computationally simple yet powerful in search for 

optimal solutions. All of these make GAs stand for one of the most promising 

techniques in solving the rescheduling problem for precast production. 
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Finally, compromises and trade-offs are realized to be continually necessary in the 

scheduling process due to multiple conflicting objectives involved in reality. It is just 

the situation for the precast production rescheduling problem studied in this research. 

Hence, it becomes increasingly unrealistic to concentrate on a tool that optimizes only 

one objective and provides only one solution. Flexible scheduling methods that can 

deal with these multiple, often-conflicting objectives simultaneously and provide a set 

of Pareto optimal solutions without pre-determined weights for each objective are 

required. Therefore, multiobjective genetic algorithms that can meet these 

requirements appear to be well suited in this research. 
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CHAPTER 3 

PRECAST PRODUCTION RESCHEDULING 
 

In this chapter, a coordinated production reactive scheduling model (CPRSM) is 

proposed. The model supports four key elements of the precast production 

rescheduling process, namely disturbance detection, global search with multiobjective 

optimization, local search with specific constraints, and ranking of outcomes for 

negotiation. A computer program that implements these rescheduling elements has 

been developed to demonstrate the operation of the CPRSM. 

 

 

3.1 Precast Production Rescheduling Problem  

The underlying production process for the precast production scheduling and 

rescheduling problems is the same. The rescheduling problem only occurs when the 

existing production schedule has to be modified due to the occurrence of schedule 

disturbance. Therefore, the precast production scheduling and rescheduling problems 

share the same production schedule representation, production constraints and the 

objectives to be optimized. Characteristics of the production process adopted in local 

precast factories, as well as constraints and objectives considered for production 

scheduling/rescheduling are described firstly in this section. This is followed by a 

mathematical formulation of the precast production rescheduling problem addressed 

in this research. 

 

3.1.1 Overview of Precast Production Process 

Production in local precast factories is typically set up as a make-to-order
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manufacturing system based on a comprehensive work organization, wherein the 

same team of workers performs all operations necessary to produce precast elements 

on stationary molds. Due to the prevalence of heterogeneous elements in projects, the 

factory generally allocates resources and arranges production for each individual 

project. Each project needs several different types of precast elements, in which 

several types of similar elements with minor variations are organized as an element 

group. Production of the element group is organized around a corresponding group of 

molds that may consist of several similar mold types. A mold changeover among these 

types of molds is needed to shift from the production of one element type to another 

within the same element group. Such a changeover can be accomplished within the 

same day except for very complicated cases. Figure 3.1 illustrates the relationship 

between the precast elements and the molds. 

 

 

 

 

 

Figure 3.1 Relationship between elements and molds 
(Adapted from Chan and Hu 2002b) 

 

When a new project comes in, the precaster first classifies precast elements and 

groups them by type. The number of molds in each group is determined by 

considering the production capacity of the molds, the volume and timing of the 

delivery requirements, and the budget allocated by the factory. The production of 
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different element groups is carried out in one or more production lines with a layout 

such as depicted in Figure 3.2. Typically, the production process in a precast factory 

consists of the following sequence of activities: 

(1) Preparing and handling materials required – mixing concrete in a mixer, and 

assembling the reinforcement mesh; 

(2) Setting of molds – cleaning, oiling of mold surfaces, and fastening of side frames; 

(3) Placing of reinforcements, fixtures, electrical conduits and inserts; 

(4) Casting – pouring, compacting, and leveling of concrete; 

(5) Curing through an artificial or natural air curing process; 

(6) Demolding – stripping the side frame and taking out the components; 

(7) Finishing, patching and repairing components; and 

(8) Lifting the components with a mobile crane, and placing them in the stockyard to 

achieve the required strength; they may then be transported to the construction 

site. 

 

Figure 3.2 Layout of production line in a precast factory 
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3.1.2 Production Constraints 

Production rescheduling has to satisfy a variety of constraints encountered in practice, 

including delivery constraints, capacity constraints for different resources, functional 

constraints, etc.; these are described further below: 

(1) Delivery constraints: This kind of constraint specifies the due date, quantity and 

element type required to be delivered to the construction site. Meeting delivery 

schedules is a key concern of production scheduling and rescheduling.  

(2) Capacity constraints: These constraints specify the limits of resources used within 

the production process. For example, molds are critical resources as casting is a key 

activity in precast production. Rescheduling the production of an element involves 

reassigning its production to an available mold within the production schedule. The 

availability of suitable molds that can produce the element, as well as the mold 

production capacity that means how many elements a mold can produce per day, will 

restrict the choices available during rescheduling. The high cost of land and the bulky 

nature of most precast elements also make the precast factory pay more attention to 

the storage space than other manufacturing industries. Although the precaster does 

keep a minimum number of elements as a buffer against unexpected events, the total 

number of precast elements for a project kept in the storage yard cannot be too large.  

(3) Functional constraints: This kind of constraint specifies details of the basic 

working procedures required for the production of completed precast elements. For 

example, a minimum lead time between production and delivery must be observed for 

the curing of precast elements to attain approximately 70% of their 28-day strength 

under controlled curing conditions. 
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3.1.3 Optimizing Objectives  

Besides the various constraints discussed above, rescheduling for precast production 

must also take into account several different objectives. Apart from the overall 

objective of profit, the precaster and the contractor may have other specific objectives 

associated with production, delivery, storage, resources, and quality control, as shown 

in Table 3.1.  

Table 3.1 Multiple optimizing objectives for precast production rescheduling 

Category Precast Factory Construction Site 

Production/ 
Construction 

 Minimize production time  
 Avoid interruption in the production 

process 

 Timely installation of precast 
components 

Delivery 
 Timely and correct delivery of 

components to the site 
 Timely and correct delivery of 

components from the factory 
 Avoid site congestion 

Storage  Minimize inventory in the yard  Minimize inventory on-site 

Resource 

 Maximize utilization of resources, 
such as molds, workers, cranes, etc. 

 Minimize resource shift, such as 
mold changeovers, personnel shift, 
etc. 

 Maximize utilization of resources, 
such as crane, workers, etc. 

Quality 
Control 

 Maximize production quality  
 Minimize rework 

 Maximize precast products quality 
 Maximize quality of installation  

 

However, some of these objectives conflict between one and another. For example, 

from the viewpoint of the precaster, long runs of a particular element type keep the 

number of mold changeovers down and improve mold utilization rates. Unfortunately, 

it may increase the inventory of this element type and result in missing due dates for 

other elements. Emphasis on meeting due dates alone may result in many mold 

changeovers and drive up related costs, which can be considerable if the cost of lost 

production time is included. From the viewpoint of the contractor, storage of critical 

precast elements on-site can safeguard against the failure of the precaster in providing 
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timely deliveries, and ensure smooth and continuous hoisting operations. However, 

storing on the construction site increases the risk of damage to the precast components, 

and may not be practical on congested sites. Moreover, the preferences of the 

precaster and the contractor for these objectives can be different under different 

circumstances. For example, the contractor may care more about timely delivery in 

order to ensure timely installation of these components on-site and avoid site 

congestion. On the other hand, the precaster may want the best utilization of 

manufacturing facilities among different concurrent projects. This research recognizes 

that different objectives may exist in the rescheduling process, and the precast 

production rescheduling problem is indeed a multiobjective optimization problem. 

 

3.1.4 Mathematical Formulation 

The mathematical formulation of the precast production rescheduling problem follows 

that developed by Chan and Hu (2002b) for the precast production scheduling 

problem as the same underlying production process is involved. This mathematical 

formulation represents the precast scheduling/rescheduling problem for the 

comprehensive precast production and incorporates the different constraints 

encountered in practice. The essential difference with Chan and Hu (2002b) lies in the 

new search procedures and search representations adopted when rescheduling is 

attempted. 

3.1.4.1 Decision variables and parameters 

In general, the production schedule of precast building components can be thought of 

as a specification of which element is to be produced using a particular mold on a 

specific day. Let m = 1, 2, …, M denote the serial number of molds, t = 1, 2, …, T 

denote the workdays in the planning horizon, and e = 1, 2, …, E denote the element 
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types to be produced. With this notation, the production schedule can be presented as 

shown in Table 3.2. In order to facilitate mathematical formulation and calculation, a 

set of classical binary valued variables xt,m,e with a domain of {0, 1} is used to 

represent the schedule. Therefore, xt,m,e = 1 means that mold m is assigned to produce 

element type e on day t, whilst xt,m,e = 0 represents the opposite. The parameters that 

are used in defining the constraints and objectives of the rescheduling problem are 

defined in Table 3.3. The values of these parameters are set up for each precast 

production rescheduling problem. 

Table 3.2 Production schedule representation 

Days (t) Molds(m) 
1 2 … T-1 T 

1 1 1 … 1 1 
2 2 2 … 1 1 
… … … … … … 
M E-1 E-1 … E E 

Table 3.3 Parameters considered for the rescheduling problem 

Parameters Description 
T Length of the scheduling period in days, t=0,1,2,…,T; 
M Maximal number of molds included in the schedule, m=1,2,…,M;  
E Number of element types to be produced in the scheduling period, 

e=1,2,…,E; 
S0,e Initial stock of element type e at the beginning of the scheduling period; 
St,e Number of element type e in stock on day t; 
Se Maximum allowable storage level of element type e; 
Se

’ Minimum buffer storage level of element type e; 
Rt,e Number of element type e required to be delivered on day t; 
Dt,e Number of element type e delivered on day t; 
Te

’ Delivery day for element type e; 
TN Normal production days; obtained by subtracting non-working days from 

T; 

eL  Minimum required lead time between production and delivery for element 
type e; 

Le Lead time between production and delivery of element type e; 
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3.1.4.2 Constraints 

The constraints considered in this research are formulated as follows: 

(1) Mold capacity constraint: The elements that can be produced by each mold are 

restricted to those that belong to the same element group with only minor variations 

among different types within the group. Each mold is assumed to produce at most one 

element per day in the comprehensive mode of precast production (Equation 3.1). The 

maximum production capacity per day can not exceed the total number of molds 

(Equation 3.2). 
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(2) Minimum lead time constraint: A minimum lead time for each element type is 

assumed in order to attain required concrete strength before delivering to the 

construction site. The length of lead time can be varied with different element types 

under different curing conditions. 

eallLL ee          ≥  (3.3) 

(3) Non-production constraint: It is assumed that there is no production on Sundays 

and public holidays, while lead times can span Sundays and public holidays. 
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(4) Delivery constraint: It specifies requirements of delivering precast elements to the 

construction site in a given day. Both the required quantity and due date should be met, 

otherwise a penalty would be incurred (Equation 3.5). Hence, the sum of the initial 

stock and the total production of any element before each delivery date should meet 
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the number of elements required to be delivered (Equation 3.6). 
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(5) Inventory constraint: The stock levels for each element type are assumed to be 

kept within a band between the minimum buffer required and the maximum inventory 

limit: 

eallSDxSS e

T

t
et

T

t

M

m
emtee ≤−+≤ ∑∑∑

== = 1
,

1 1
,,,0

'  (3.7) 

Depending on whether the requirement that the constraint be satisfied is absolute or 

not, these constraints are categorized as either hard or soft in this research. Hard 

constraints, which must always be satisfied, include the mold capacity constraint, the 

minimum lead time constraint and the non-production constraint. On the other hand, 

the delivery constraint and the inventory constraint are soft constraints, which can be 

relaxed when necessary but would incur a penalty if they are not met. 

3.1.4.3 Objectives 

Based on different circumstances in the rescheduling process for precast production, 

the precaster and the contractor will have different objectives and preferences towards 

these objectives in problem solving. Here, two objectives are highlighted in this 

research.  

(1) Minimizing late delivery, i.e. minimizing the sum of element units that are 

delivered beyond their required due date: 
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(2) Minimizing the sum of ‘out-of-band’ element units to maintain inventory levels 

within a prescribed band. Tight space constraints both on-site and in the factory, 

severely limit the number of units that can be produced ahead of the schedule. On the 

other hand, the precaster needs to keep production somewhat ahead of the promised 

delivery schedule as a buffer against the changes of site conditions. 
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These two objectives are highlighted for the precast production rescheduling problem 

as they are very commonly considered in the rescheduling process and they obviously 

conflict. The first objective of minimizing late deliveries reflects the interest of the 

contractor, whilst the second objective of minimizing the sum of ‘out-of-band’ 

element units for inventory levels reflects the concern of the precaster. 

 

 

3.2 Coordinated Production Reactive Scheduling Model 

A coordinated production reactive scheduling model (CPRSM) is proposed in this 

research. The CPRSM is developed to support production rescheduling in precast 

factories and facilitate schedule coordination between the precaster and the contractor. 

 

3.2.1 Model Overview 

The CPRSM includes the following four modules for precast production rescheduling, 

namely disturbance detection, global search with multiobjective optimization, local 

search with specific constraints, and ranking of outcomes for negotiation, as shown in 

Figure 3.3. With these four sub-processes, rescheduling for precast production begins 
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with an occurrence of new schedule disturbances. Details for each module are 

discussed in the following sections. 

 

Figure 3.3 Framework of the coordinated production reactive scheduling model 

 

3.2.2 Disturbance Detection 

In the proposed CPRSM, the module for disturbance detection is first evoked by 

events that will cause schedule disturbances to the existing production schedule. 

Detailed disturbance information need to be collected, which includes the identity, 

quantity, due date and time of scheduled production of the precast components 

involved in disturbances. Schedule disturbances are caused by changes in delivery 

quantities, delivery due dates, element specifications, or number of workdays 
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available. Each type of schedule disturbance is represented differently. In order to 

better illustrate this, a 10-day production schedule for a single mold is presented. The 

schedule arrays before and after disturbance detection are shown in Figure 3.4. The 

disturbance information is represented in Table 3.4. 

 

Figure 3.4 Illustration of schedule array and disturbances 

Table 3.4 Characteristics representation of schedule disturbances 

Disturbance 
No. 

Element 
type Quantity Scheduled 

day 
Original 
due date

New due 
date Type 

1 E2 1 -- -- Day 2 Change in quantity due to poor quality 

2 E1 2 Day 2 to 3 Day 8 Day 5 Change in delivery due date due to 
progress on-site 

3 E3 2 Day 5 to 6 Day 9 Day 9 Change in design specification 

4 E2 1 Day 8 Day 10 Day 10 Change in workday due to crane 
breakdown 

 

3.2.2.1 Change in quantities 

A change in production quantity of any element could be either an increase or a 

decrease of the demand required. However, it is assumed that the need to increase 

production is of more concern to the precaster and triggers a necessity for 

rescheduling. The need to increase production for certain elements usually results 

from causes, such as replacing elements rejected due to quality defects, amendments 
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to the design by the architect or the structural engineer, or as a result of new orders. 

Representing this kind of disturbances is straightforward. An example of such a 

disturbance is “Disturbance 1” in Figure 3.4, which is not scheduled in the original 

schedule array. In this instance, one piece of element E2 has to be produced to 

compensate for a rejected piece due to a quality problem and its due date for delivery 

is day 2, as indicated in Table 3.4. 

3.2.2.2 Change in due dates 

The precast production schedule is closely related to the pace of construction on-site. 

Any change in site progress is likely to cause a schedule disturbance by changing the 

due dates of delivery to the construction site. On the one hand, the due date could be 

advanced because the construction progress is better than anticipated in the project 

schedule. On the other hand, the due date could also be delayed due to stoppage or 

delay of work on-site caused by unanticipated events. The disturbance is represented 

by noting the affected elements and the new due date. As shown in Figure 3.4 and 

Table 3.4, the second disturbance involves two pieces of element E1 that were 

originally planned to be produced on days 2 and 3. The due date for these two 

elements is changed from day 8 to day 5 since progress on-site is ahead of the original 

project schedule. The productions of these two elements are then removed from the 

original schedule array. It makes the relevant production space available in the new 

schedule array. 

3.2.2.3 Change in element specification 

This kind of disturbance is often caused by design changes as the construction project 

progresses. The precaster has to take some time to modify the mold to suit the new 

design. Consequently, the mold can not be used to cast new elements and its 
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production capacity is lost during this modification period. This, in turn, makes the 

number of available workdays within the planning horizon decrease. The schedule 

disturbance indicates the precast elements that are affected during the period of mold 

modification. Their delivery dates are kept unchanged. For example, disturbance No.3 

in Table 3.4 shows that the mold requires modification for two days from day 5 to day 

6. As shown in Figure 3.4, two pieces of element E3 that were originally scheduled to 

be produced during these two days have to be rescheduled, and the due date is kept as 

day 9.  

3.2.2.4 Change in workdays 

These disturbances occur as a result of a change in the availability of resources in the 

precast factory, and include the breakdown of the crane, problem with cleanliness of 

the molds, and shortage of skilled workers or raw materials. Troubleshooting and 

solving such problems need time, resulting in a loss of workdays. This kind of 

disturbance is represented in the same way as a disturbance due to a change in 

specification. The disturbance information identifies the elements produced in the 

affected workdays with their original due dates. The number of available workdays 

within the planning horizon is also decreased. The fourth disturbance shown in Figure 

3.4 and Table 3.4 involves a crane breakdown in day 8, which causes the production 

of E2 to be rescheduled with the original due date on day 10. Consequently, the 

schedule array is reduced by 3 days corresponding to days 5-6 involved in 

Disturbance 3 and day 8 involved in Disturbance 4. 

 

3.2.3 Global Search with Multiobjective Optimization 

Following disturbance detection, the global search module in the CPRSM starts to 

perform rescheduling considering the different constraints and optimization objectives. 
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The functions of the global search module include (1) determination of the resolution 

priority for schedule disturbances along with the corresponding heuristics, and (2) 

generation of alternative repaired schedules that are non-dominated with respect to the 

quantitative evaluation criteria employed.  

3.2.3.1 Rescheduling heuristics for precast operations 

Precast elements involved in the schedule disturbances are first removed from the 

existing schedule and put into a list to be rescheduled. Rescheduling is performed 

with the use of heuristics in actual practice. However, repair actions are likely to cause 

further disturbances if these disturbances are solved with the wrong heuristics or in 

the wrong sequence. Therefore, it is necessary to consider not only how to resolve the 

disturbances but also the order in which the disturbances are to be resolved as both of 

them have a bearing on the desirability of the final repaired schedule. 

There are several heuristics used by the precaster to repair the production schedule. 

This research considers some basic heuristics and hybrid strategies resulting from the 

combination of the basic heuristics. Figure 3.5 illustrates the operations of these 

heuristics. 

(1) Right Shifting (RS): This heuristic strategy resolves disturbances by simply 

“pushing” the existing production forward in time until the disturbance is resolved. It 

is frequently employed in situations when a resource become temporarily unavailable, 

such as when the crane breaks down or the mold has to be cleaned. 

(2) Left Shifting (LS: This is a strategy similar to RS, and it shifts an operation 

backwards in time. It is particularly useful when a hard constraint that previously 

prohibits the commencement of operation is softened or removed. However, there is 

the problem of high inventory levels if this heuristic is applied. 
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(3) Opportunistic Insertion (OI): This strategy makes use of idle days in the schedule 

to accommodate a disturbance, possibly including breaking it into smaller parts and 

fitting these smaller parts into the schedule in an opportunistic first fit manner. The 

efficiency of this heuristic rule largely depends on the initial utilization level of the 

production facilities. 

(4) Deterministic Insertion (DI): This strategy is similar to opportunistic insertion but 

the disturbances have priority over scheduled production and displace them from the 

schedule. The affected scheduled elements are rescheduled using OI. 

(5) As-soon-as-possible (ASAP)/Backward Scheduling (BS): The earliest time and the 

latest time that an operation could be scheduled to start are two important concepts in 

scheduling problems. Based on these two concepts, two methods of scheduling can be 

distinguished, namely ASAP and BS. The ASAP method reschedules the affected 

operations based on the earliest start time (EST). It would improve the utilization of 

resource and prevent late deliveries. On the other hand, using the BS method causes 

the operation to start at the latest start time (LST). This method could lower the 

inventory level since the elements are manufactured as close to the delivery date as 

possible. 

(6) Sub-contracting: Outsourcing production to other operators is another option to 

resolve disturbances, especially when the precast factory is already producing at its 

peak capacity or it is more economically beneficial to do so 

In precast production, several molds are assigned to produce the same group of 

elements with minimum changeover. Therefore, using the above heuristics, the 

disturbances are resolved by assigning elements to any one of the molds within the 

same group that are capable of producing the elements. 
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Figure 3.5 Illustration of heuristic strategies for schedule repair 
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3.2.3.2 Evaluation and generation of alternatives  

Rather than relying solely on the subjective preferences of the decision makers, the 

desirability of schedule repair outcomes is evaluated using quantifiable objectives that 

are meaningful to the interests of the precaster and the contractor. The global search 

module focuses on generating alternative repaired schedules that simultaneously 

optimize the two objectives of minimizing late deliveries and maintaining inventory 

levels formulated in Equations (3.8) and (3.9). 

The solving procedure for multiobjective optimization problems is not straightforward. 

Unlike the case of problems optimized with a single objective, this class of problems 

usually has no unique, optimal solution. Instead, there is a set of non-dominated 

solutions known as the Pareto optimal set for the multiobjective optimization problem. 

According to the multiple criteria considered, these solutions are not better than their 

peers as an increase in any one of these objectives may decrease the other objectives 

and vice versa. This set of non-dominated solutions describes trade-offs available for 

the objectives considered. 

In solving a multiobjective optimization problem, two conceptually distinct types of 

problem difficulty can be identified in the literature: searching and decision making. 

The first aspect refers to the optimization process in which the feasible set is sampled 

for Pareto optimal solutions. The second aspect addresses the problem of selecting a 

suitable compromise solution from this set of Pareto optimal solutions. Based on how 

the searching and decision making processes are combined, the different ways of 

solving multiobjective optimization problems can be classified into three categories 

(Hwang and Masud 1979; Horn 1997; Fonseca and Fleming 1998; and Van 

Veldhuizen and Lamont 2000): 



Chapter 3  Precast Production Rescheduling 

 59

(1) A prior articulation of preferences: The decision maker expresses preference 

information prior to optimization in terms of a unique aggregating function, which 

combines individual objectives into a single utility value and makes the problem 

into single objective one. 

(2) A posterior articulation of preferences: Searching is performed without any 

preference information given. Later the decision maker is presented with a set of 

candidate non-dominated solutions and chooses the compromise solution from 

this set depending on his preferences. 

(3) Progressive/interactive articulation of preferences: Decision making and searching 

occur in interleaved steps. At each step, the decision maker supplies partial 

preference information to guide the search, which in turn generates alternatives 

according to the information received. 

If the preference factor among the objectives is known for a specific problem, the 

prior preference articulation to the multiobjective optimization procedure is adopted. 

It is only required to form a composite objective function such as a weighted sum of 

objectives, where a weight for an objective is proportional to the preference factor 

assigned to this particular objective. Then, a search is conducted for one particular 

trade-off solution for this specific preference combination. However, such preference 

information may not be easily available as preferences may involve other 

considerations that are often non-technical, qualitative and experience-driven. This 

requires an analysis of all the higher level information of the problem. It would be 

even more difficult in the absence of any knowledge of the problem. Unless a reliable 

and accurate preference vector is available, the optimal solution obtained by the prior 

preference articulation is highly subjective and dependent on a particular decision 

maker. By contrast, if a set of trade-off solutions is available, the decision maker can 
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evaluate the pros and cons of each of these solutions based on all such non-technical 

and qualitative considerations, and compare them to make a choice with the posterior 

preference articulation.  

In view of the discussion above, this research adopts the procedure with posterior 

preference articulation. Since the precaster and the contractor are usually not sure of 

the exact trade-off relationship between the conflicting objectives for the rescheduling 

problem, it is better to make the effort to find the set of trade-off solutions by 

considering all objectives. With reference to the solving procedure depicted in Figure 

3.6, the global search module is employed to search for multiple repaired schedules; 

these represent different trade-offs between the two objectives considered. After a 

well-distributed set of trade-off solutions is found, the precaster and the contractor can 

use higher-level information to choose one of these solutions. 

 

Figure 3.6 Schematic of solving procedure for multiobjective optimization 
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3.2.4 Local Search with Specific Constraints 

Further alternative schedules are needed if the precaster and the contractor want to 

make minimal adjustments to the repaired schedules provided by the global search 

module. Furthermore, no algorithm is guaranteed to find all non-dominated solutions 

along the Pareto front. This implies a requirement to conduct incremental exploration 

of the search space in particular areas identified by the decision makers. This 

capability can enhance the usefulness of multiobjective optimization and is required 

in actual applications. A local search module is included in the CPRSM to explore the  

neighborhoods of available repaired schedules and obtain schedules that meet specific 

constraints imposed by either the precaster or the contractor. 

3.2.4.1 Specific constraints and error functions 

In the global search module discussed above, alternative repaired schedules are 

evaluated with two conflicting objectives, namely FD and FI, in terms of all element 

types within the production schedule. The precaster or the contractor may impose 

specific requirements on repaired schedules after reviewing these alternatives. Based 

on the Pareto front of the two objectives for all element types, the specific 

requirements considered in this research can be a setting of target values or value 

ranges on these two objectives for a certain element type. These requirements are 

treated as constraints with their degrees of satisfaction encoded as error functions. For 

example, if the target of total unit number of element E1 for late delivery is set as A 

and the number for the current schedule is B, the error function of this constraint is 

represented by ( )BAmax −,0 , whereby 0 signifies full satisfaction of the constraint, 

and other non-negative values reflect the degree to which the constraint is violated. 

Since these specific constraints are all measured in terms of the number of element 

units, all of their corresponding error functions can be aggregated directly into an 
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objective function for the local search module. The quality of a schedule is therefore 

explicitly measured by the objective function as its value represents the total degree of 

constraint violation for the schedule with respect to all the specific requirements. 

3.2.4.2 Iterative repair process 

Iterative repair techniques perform a kind of local search to improve a given schedule 

that is possibly flawed. This can easily be implemented as a single, general purpose 

technique applicable to both predictive and reactive scheduling (Kjenstad 1998). 

Iterative repair techniques also have other advantages over constructive techniques in 

the incremental exploration considered in the local search module. Firstly, the 

rescheduling problem may become overconstrained with specific constraints, but this 

may not be known in advance by the decision maker. When the problem is 

over-constrained, a constructive method must exhaust all possibilities before it can 

infer that constraints must be relaxed. In contrast, the repair-based methods attempt to 

iteratively improve solutions regardless of whether the problem is over-constrained or 

not and terminate with a set of assignments that is as close to a solution as could be 

derived in the time allotted (Zweben et al. 1994). Secondly, the “global” constraints 

and optimization criteria can be easily evaluated since the repair methods search 

through a space of complete schedules, unlike the situation in constructive methods 

where the global criteria can only be approximately evaluated with a partial schedule. 

For the iterative repair procedure adopted in this research, a schedule obtained from 

the global search module is selected as the initial solution, and then changed by 

simple inexpensive modifications. The efficacy of these changes is evaluated by the 

objective function of the sum of deviations from the specific constraints imposed. If 

the new schedule is an improvement, it is used in the next iteration, and if it is better 
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than any previous solution, it is stored as the best solution so far. The search may 

terminate when an acceptable schedule is found, when a predefined amount of search 

is completed or by user interruption. If the search starting with a schedule fails to find 

the specific schedule, the iterative repair process could run a number of times with 

other starting solutions. Figure 3.7 provides a general framework for the iterative 

repair process developed in the local search module. 

 

3.2.5 Ranking of Outcomes for Negotiation  

The alternative repaired schedules generated by both the global search and the local 

search modules provide valuable options for the precaster and the contractor to 

consider. They can express their preference for these repaired schedules and reach a 

compromise solution. This is not discussed in detail since the focus of this research is 

on the search for alternative repaired schedules. 

With these four sub-processes, the CPRSM is proposed and developed as an 

integrated system to handle schedule disturbances in precast production and facilitate 

schedule coordination between the precaster and the contractor. Playing an important 

role in searching alternative repaired schedules, the global search module and the 

local search module are elaborated respectively in the following chapters.  
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Figure 3.7 Iterative repair process with specific constraints 



 

 65

CHAPTER 4 

MULTIOBJECTIVE GENETIC ALGORITHMS FOR 
GLOBAL SEARCH  

 

The core of the proposed coordinated production reactive scheduling model is the 

global search module, which focuses on generating alternative repaired schedules 

considering multiple conflicting objectives. The implementation of multiobjective 

genetic algorithms in global search is described in this chapter, which includes 

chromosome representation, genetic operators, fitness assignment and sharing, and the 

elitist strategy employed. 

 

 

4.1 Basic Mechanisms of Genetic Algorithms 

As the name suggests, the genetic algorithm (GA) is a search algorithm based on the 

mechanics of natural selection and natural genetics. It combines survival of the fittest 

among string structures with a structured yet randomized information exchange to 

form search algorithms with some of the innovative flair of human search (Goldberg 

1989). 

The most important construct in the GA is the chromosome (Figure 4.1), which is 

essentially a candidate solution to the problem. The chromosome is made up of blocks 

of cells called genes. Each gene encodes a particular character of the candidate 

solution with a possible value termed as an allele. The site indicating the position of a 

gene held in the chromosome is called its locus.  

In typical GAs, a group of random chromosomes forms a population of initial 
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Figure 4.1 GA chromosome 

 

candidate solutions. These chromosomes reproduce through consecutive iterations, 

called generations. In each generation, the quality of each chromosome is evaluated 

based on how well it satisfies a predefined objective function. A fitness is then 

assigned to each chromosome with respect to its objective function value, which 

represents how “fit” it is in relation to other chromosomes in the population. Within 

this population, fitter chromosomes will have higher chances of being selected to 

participate in the generation of new solutions. After a selection procedure for parent 

chromosomes, new offspring are generated from these parents using genetic operators, 

such as crossover and mutation. As populations move from one generation to another, 

it is hoped that better and better solutions will evolve until the cycle stops on reaching 

a stopping criterion. Following the crucial steps of deciding upon a suitable 

chromosomal representation for the problem and determining the objective function 

for fitness evaluation, the GA optimization process is carried out as follows (Davis 

1991): 

(1) Initialize a pool of solutions known as the parent pool; 

(2) Determine the fitness of each solution in the parent pool with respect to the 

problem specific objective function; 

(3) Select parent solutions for the creation of the next generation with a probability 

relative to their fitness; 

(4) Create offspring solutions by means of genetic operators on the selected parent 
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solutions; 

(5) Form a new parent pool for the new generation, namely through population 

replacement; 

(6) Check whether the stopping criteria are met or not. If not, go back to step (2); 

otherwise, stop the search and return the best solution. 

There are three main genetic operators in genetic algorithms, namely selection, 

crossover and mutation, which are usually used to create the next generation. These 

operators provide means of weeding out poor solutions and generating better solutions 

through the subsequent iterations. Furthermore, these simple operators make GAs 

computationally simple to implement; in spite of their apparent simplicity, GAs have 

proven to be effective in tackling a variety of optimization problems. 

Selection is usually the first operator that is applied to an existing population to create 

offspring. Being an artificial version of natural selection, the essential idea is to select 

“better-than-average” solutions from the existing population and insert multiple 

copies of these solutions in the mating pool in a probabilistic manner. The selection 

operator may be implemented in a number of ways. The most common way is to 

create a biased roulette wheel where each individual in the current population has a 

slot on the roulette wheel sized in proportion to its fitness value. Thus, those 

individuals with a greater fitness value are expected to receive more chances of 

contributing their genes to the population in the new generation than those with a 

lesser fitness value. 

The power of GA derives from the crossover operation, where a randomized exchange 

of genetic material is executed with a possibility that “good” solutions can generate 

“better” ones (Goldberg 1989). Crossover takes building blocks from two individuals 
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and combines them into new offspring. It is hoped that by doing so, new individuals 

will be created whose fitness exceeds that of either parent. A simple single-point 

crossover may proceed in the following steps as depicted in Figure 4.2. Firstly, 

members of newly reproduced strings in the mating pool are picked at random. 

Secondly, each pair of strings exchanges part of its chromosome across a point chosen 

uniformly at random along the length of the chromosome string. The mechanics of 

crossover are simple; nonetheless, the combined effect of selection and the structured, 

though randomized, information exchange through crossover gives GAs much of their 

power (Man et al. 1999). 

Mutation is another process essential for evolution. It operates on a single 

chromosome and produces a new genotype by making a random change to values of 

one or more genes in the chromosome string. When used sparingly with selection and 

crossover, mutation is an insurance policy against premature loss of important options. 

Furthermore, it helps push the search effort into different search spaces by introducing 

new allele values into the string structure, thus creating new possibilities that might 

not have been present in the initial pool of solutions. However, in order to avoid the 

disruption of good solutions, the probability of mutation is often kept very low. Figure 

4.2 illustrates the mutation process.  

 

 

 

Figure 4.2 Illustrations of crossover and mutation



Chapter 4  Multiobjective Genetic Algorithms for Global Search 

 69

4.2 Genetic Algorithms for Multiobjective Optimization 

A multiobjective genetic algorithm employs the same operations as the conventional 

single-objective genetic algorithm, but is required to evolve a set of solutions that is 

Pareto optimal. There are several ways for a multiobjective genetic algorithm to 

search for Pareto optimal solutions. A brief summary of the key issues in 

multiobjective search by GAs is given first, followed by a detailed introduction of the 

main features and computational procedures of several multiobjective genetic 

algorithms applied in this research. 

 

4.2.1 Key Issues in Multiobjective Search 

In a single objective optimization problem, the superiority of one solution to another 

can be easily determined by comparing their objective function values. There exists a 

single identifiable value that is superior to all other objective function values. This is 

not the case for a multiobjective optimization problem, since it is not possible to 

optimize several objectives simultaneously at times when there are conflicting 

objectives involved. Any two solutions x(1) and x(2) for such problem can have one of 

two possibilities, which are one dominating the other or neither dominating the other. 

A solution x(1) is said to dominate the other solution x(2) if both the following 

conditions are true (Deb 2001): (i) The solution x(1) is no worse than x(2) in all 

objectives; and (ii) The solution x(1) is strictly better than x(2) in at least one objective. 

If there exists no feasible solution x(2) dominates x(1), then x(1) is said to be a 

non-dominated or Pareto optimal solution. Therefore, based on the concept of Pareto 

dominance, a multiobjective optimization problem has a family of non-dominated 

solutions known as the Pareto optimal set, in which none of these solutions is better 

than others for all the objectives considered.  
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Genetic algorithms appear to be well suited for multiobjective optimization problems 

due to the ability of finding multiple solutions simultaneously in each run (Carlyle et 

al. 2001). Therefore, research on multiobjective genetic algorithms have focused on 

the ability to emphasize all non-dominated solutions equally and preserving a diverse 

set of these solutions in the population at each generation. It may lead the population 

to converge and form a Pareto front with a good spread after some generations. 

Modifications, such as Pareto-based fitness assignment and sharing, have been 

developed to accomplish this based on the evaluation of fitness of each solution. 

In contrast to single objective optimization, where the objective function and the 

fitness function are often identical, multiobjective optimization problems require that 

both fitness assignment and selection must allow for the existence of several 

objectives. Several approaches have been developed, these include: 

(1) Selection by switching objectives (Schaffer 1984 and 1985; Kursawe 1991), i.e., 

an individual is selected based on a different objective, such as one of the multiple 

objectives and a specific order of these objectives;  

(2) Selection with parameter variation (Hajela and Lin 1992; Ishibuchi and Murata 

1996), i.e., an individual is selected based on a single objective function by 

aggregating the multiple objectives with systematically varied parameters in the 

same run; 

(3) Pareto-based selection (Goldberg 1989; Fonseca and Fleming 1993; Horn et al. 

1994; Srinivas and Deb 1994), i.e., an individual is selected based on the concept 

of Pareto dominance. 

The first two classes of selection techniques may have a bias towards “extreme” 

solutions and be sensitive to non-convex Pareto optimal front (Horn 1997, Van 

Veldhuizen 1999). In contrast, the class of Pareto-based techniques is capable of 
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finding any Pareto optimal solution as these techniques use the concept of Pareto 

dominance to calculate an individual’s fitness relative to the whole population. 

Therefore, Pareto-based techniques seem to be the most popular in the field of 

evolutionary multiobjective optimization (Van Veldhuizen and Lamont 1998). 

Although all non-dominated individuals in the population are emphasized 

simultaneously with Pareto-based techniques, it does not guarantee that the Pareto 

optimal set can be uniformly sampled because of the phenomenon known as genetic 

drift (De Jong 1975); i.e., when presented with multiple equivalent optima, finite 

populations tend to converge to only one of these. This is attributed to stochastic 

errors in the selection process. Fitness sharing, proposed by Goldberg and Richardson 

(1987), is the most frequently used technique to maintain a diverse population. It has 

been applied in many research works, e.g. Hajela and Lin (1992); Fonseca and 

Fleming (1993); Horn et al. (1994); Srinivas and Deb (1994); Todd and Sen (1997); 

and Zydallis et al. (2001). Fitness sharing is based on the idea that individuals in a 

particular niche have to share available resources, and aims to promote the formation 

and maintenance of stable niches (Zitzler 1999). In this method, the population is 

divided into different niches according to the similarity of individuals either in 

phenotype (the decoded parameter space or objective space) or in genotype (the gene 

space). Through degrading fitness values of similar solutions, the use of fitness 

sharing helps mitigate unbridled head-to-head competition between widely disparate 

points in the search space. 

 

4.2.2 Weighted Sum Genetic Algorithm 

The weighted sum genetic algorithm is representative of the aggregation approach to 

solve multiobjective optimization problems. It combines all the objective functions 
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into a single one using different weighting coefficients (weights) for each component 

objective function. It means that a multiobjective optimization problem is transformed 

into a scalar optimization problem. The weight is usually taken to represent the 

relative importance of the individual objectives. Each combination of weights yields a 

traditional simple genetic algorithm (SGA), which solves a single objective problem 

with the basic procedure described earlier. Since the results of solving an optimization 

problem using a weighted sum objective function can vary significantly as weights 

change, and very little is usually known about how to choose the weights for a 

particular problem in a priori manner, it is necessary to solve the same problem with 

many different weight combinations. Therefore, it can be used to find multiple 

non-dominated solutions by repeating the search procedure with varying weights. This 

combination technique has been widely applied in different fields of research 

probably due to its simplicity although it has its shortcomings. 

 

4.2.3 Non-dominated Sorting Genetic Algorithm (NSGA) 

Non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994) is 

representative of the class of Pareto-based approaches. The idea behind NSGA is that 

a fitness assignment scheme is used to emphasize non-dominated solutions and a 

sharing strategy is used to maintain diversity in the population. Figure 4.3 shows a 

flowchart depicting the NSGA. The efficiency of NSGA lies in the way that multiple 

objectives are reduced to a dummy fitness function using a non-dominated sorting 

procedure. With this approach, any number of objectives can be solved, and both 

maximization and minimization problems can be handled (Coello 2000). Moreover, 

sharing in the decision parameter value space ensures a better distribution of 

individuals and allows multiple equivalent solutions to exist. 
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Figure 4.3 Flowchart of the non-dominated sorting genetic algorithm (NSGA) 
 

4.2.3.1 Fitness assignment  

The first step in NSGA is to sort the population into a number of mutually exclusive 

non-dominated sets (fronts). There are many approaches that have been suggested for 

finding the non-dominated set of solutions from a given population of solutions, all of 

which have different computational complexities. For example, the step-by-step 

procedure for a naïve and basic approach of finding the non-dominated set 'P  in a 

given population P of size N is as follows (Deb 2001): 
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Step1: Set the solution counter i = 1 and create an empty non-dominated set 'P . 

Step 2: For solution Pj∈  (but ij ≠ ), check if solution j dominates solution i using 

the two aforementioned conditions in Section 4.2.1; if yes, go to Step 4. 

Step 3: If more solutions are left in P, increment j by one and go to Step 2; otherwise, 

set {}iPP ∪'=' . 

Step 4: Increment i by one. If Ni ≤ , go to Step 2; otherwise stop and declare 'P  as 

the non-dominated set. 

Once the classification task is done, it is clear that all solutions in the first 

non-dominated set are equally important, and represent the best in terms of their 

closeness to the true Pareto optimal front in the population. The solutions in the 

second non-dominated set are the second best in the population, and so on. 

Following the classification of the population, fitness assignment in NSGA begins 

with the first non-dominated front. Every solution of the first non-dominated front is 

first assigned with the same dummy fitness value (i.e. equal to the population size) to 

provide equal reproductive potential to all of these individuals. In order to preserve 

diversity among solutions in the first non-dominated front, the initially assigned 

fitness of each solution is then shared based on the number of its neighboring 

solutions in the front. Next, the individuals in the first non-dominated front are 

removed from the current population temporarily, and the same procedure is carried 

out on the second front of non-dominated individuals. These second front solutions 

are assigned a new dummy fitness value, which is kept smaller than the minimum 

shared fitness value in the first front. This makes sure that no solution in the first front 

has a shared fitness worse than the assigned fitness of any solution in the second front. 

Thereafter, the sharing procedure is again performed on the solutions of the second 

non-dominated front. This process is continued until all solutions in the population are 
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assigned a fitness value, whereupon the population can undergo reproduction.  

4.2.3.2 Fitness sharing 

Fitness sharing is an important issue in NSGA. A sharing function is used on each 

front to determine the degradation of an individual’s fitness due to a neighbor that is 

at some distance from it, as measured in some “similarity space” (Deb and Goldberg 

1989).  

Firstly, the sharing function Sh(dij) is defined in terms of dij -- a metric indicative of 

the distance between individuals i and j, and σshare -- the sharing radius that controls 

the extent of sharing allowed: 
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The sharing function takes a value in [0, 1], depending on the value of dij and σshare. 

Any j which has a distance greater than σshare from i contributes nothing to the sharing 

function value. Then, a niche count nci for individual i is formulated as the sum of all 

sharing function values between i and all members (including itself) belonging to the 

same front as follows: 
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where n is the number of solutions in a particular front. The niche count provides an 

estimate of the extent of crowding near solution i. Finally, the shared fitness of an 

individual i is equal to its old fitness divided by its niche count. 

In the calculation of the sharing function ( )ijdSh , a normalized Euclidian distance 

that measures the phenotype distance between individuals i and j in the same 
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non-dominated front is adopted. It can be calculated as follows: 
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where K is the number of decision variables for the problem. The parameter u
kx  and 

l
kx  are the upper and lower bounds of variable kx corresponding to the value ranges 

for each gene in the chromosome. Choosing an appropriate value for σshare is another 

important issue with the sharing function approach. Given normalized distance values 

are used, Deb and Goldberg (1989) proposed that this parameter could be determined 

using: 

Kshare q
5.0

≈σ  (4.4) 

where K is same as that used in Equation (4.3), and q is the number of equispaced 

niches in the search space. Therefore, the calculation of σshare depends on the choice of 

q with this equation. If the q chosen to calculate σshare is larger than the actual number 

of optima in the search space, the sharing function approach tends to form more 

niches than the function can allow. This may lead to finding a number of suboptimal 

solutions in addition to the optimal solutions. On the other hand, if the chosen q 

underestimates the actual number of optima in the search space, not all optima may be 

found by the sharing function approach. Thus, Srinivas and Deb (1994) suggested that 

a q = 5 to 10 may be tried in most applications where an exact number of optima is 

not known a priori. 

4.2.3.3 Algorithm of fitness assignment and sharing 

Considering a set of N population members, the algorithm for the fitness assignment 

procedure adopted in this research follows that described for NSGA in Deb (2001) 
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and Prasad and Park (2004): 

Step 1: Choose sharing radius σshare and a small positive number ε, and initialize Fmin 

= N + ε.  

Step 2: Classify population P according to non-domination: 

Step 2a: Set all non-dominated sets ( )K,2,1=jPj  as empty sets and the 

non-dominated front counter 1=j . 

Step 2b: Find the non-dominated set 'P  of population P. 

Step 2c: Update 'PPj =  and '\ PPP = ; set 'P = Ø. 

Step 2d: If P ≠ Ø, increase j by one and go to Step 2b. Otherwise, stop and 

declare all non-dominated fronts jP , for ρj ,,2,1= K ; 

Step 3: Set the non-dominated front counter 1=j , for each jPq∈  

Step 3a: Assign dummy fitness ( ) ε−= minFF q
j . 

Step 3b: Calculate the sharing function value ( )'qqdSh  with jPq ∈'  using 

Equation (4.1). 

Step 3c: Calculate the niche count qnc  using Equation (4.2) among solutions of 

Pj only. 

Step 3d: Calculate the shared fitness ( ) ( )
q

q
j

q
j ncFF /' = . 

Step 4: ( )( )j
q

j PqFF ∈= :min '
min  and set 1+= jj . 

Step 5: If ρ≤j , go to Step3; otherwise, the process is complete. 

 

4.2.4 NSGA with Proposed Elitist Strategies 

NSGA is somewhat lacking in both on-line performance (rapid convergence to good 

solutions) and off-line performance (superior quality of the final solution) (Bagchi 
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2001). One key reason is that NSGA does not preserve good solutions found from one 

generation to the next generation. Since chance is involved, good solutions lost in one 

generation may or may not reappear in the future. Therefore, the use of elitist 

strategies is proposed in this study to improve the performance of the original NSGA 

in solving the multiobjective precast production rescheduling problem. 

4.2.4.1 Overview of elitist strategies 

De Jong (1975) suggested the use of an elitist policy in the single objective genetic 

algorithm in order to prevent losing the best individuals due to sampling effects or 

operator disruption. The elitist policy always includes the best individuals of the 

current population into the next population. In the context of multiobjective 

optimization, the meaning of elite solutions is different from that in single objective 

optimization. A set of solutions that belongs to the best non-dominated front in each 

generation are considered elite individuals; all these solutions are equally important. 

Thus, the size of the elite set grows with each generation and can become significant 

compared to the size of the population, especially when the Pareto optimal set can 

admit an infinite number of solutions. This substantially complicates the incorporation 

of elitism in multiobjective optimization, especially in the appropriate selection of 

elite individuals. The use of elitism in evolutionary multiobjective optimization is still 

a subject of research (Laumanns et al. 2001). 

Currently, there are several elitist strategies described in the literature. The first 

strategy is to copy the best individuals from the current generation to the next 

generation directly. The objective vectors of these individuals are either 

non-dominated with respect to all the objectives considered (Tamaki et al. 1994) or 

optimizing one of these objectives (Anderson and Lawrence 1996; Todd and Sen 
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1997). The second strategy is to choose better individuals with a comparison between 

the offspring individuals and the parent individuals to form the population of next 

generation. Such a comparison can be performed between the offspring and their 

corresponding parent only (Rudolph 1998) or between the offspring population and 

the parent population (Bagshi 1999; Deb et al. 2000). The third strategy, different 

from the first two strategies, maintains an external elite set of individuals that are 

non-dominated among all the solutions generated so far. In each iteration, the external 

set is updated and some non-dominated solutions in the set are selected to fill up a 

certain percentage of the new population or the parent population (Ishibuchi and 

Murata 1996; Murata et al. 1996; Parks and Miller 1998; Zitzler and Thiele 1998; and 

Knowles and Corne 2000). The members picked from the external set for insertion are 

either selected at random or according to some criteria, such as the period that an 

individual has stayed in the set.  

4.2.4.2 Proposed elitist strategies for global search 

The elitist strategy adopted in this study maintains an external archive of elite 

individuals. After the population of the new generation has been evaluated, this 

archive is updated with new generated non-dominated solutions. In order to prevent 

the archive size from growing too large with the passing of generations, only 

individuals that are not identical with the existing archived solutions in the phenotypic 

space (decoded decision values) are archived. Given K is the number of decision 

variables, individual i is dissimilar to individual j if  

⎩
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Then, a fixed proportion (pe%) of the new population will be selected from the 

archive. In the early stages of a run, the number of solutions in the archive may be 

less than the number to make up the required proportion of the new population, so all 

the archived solutions are inserted into the new population. Once the archive size 

exceeds the required proportion of population, then pe% of the new population is 

chosen from the archive. The remainder of the new population is generated by 

applying crossover and mutation to the selected parent solutions from the current 

population and new non-dominated solutions will be generated through this process. 

Figure 4.4 shows a flowchart depicting the NSGA with the proposed elitist strategy. 

There are options in the way that elite solutions in the archive are chosen for inclusion 

into the new population; two selection methods are chosen for investigation in this 

research.  

(1) Random selection: Non-dominated solutions in the elite archive are selected 

randomly to make up the fixed proportion of the new generation. This selection 

method is widely found in the literature describing elitist strategies. 

(2) Clustering selection: Instead of having an identical objective value for 

single-objective optimization, non-dominated solutions in the elite archive may have 

different objective vectors in the precast rescheduling problem with multiobjective 

optimization. It is possible to cluster the different solutions based on their objective 

vectors. There may be an uneven distribution of elite solutions such that those in a 

particular cluster outnumber those in other clusters. The issue with using random 

selection (without consideration of clusters) is that non-dominated solutions in small 

clusters would have much less chance to be selected than those in larger clusters 

which may form an overwhelming majority in the elite population. Clustering seemed 
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like a good way of preserving diversity in the search population, and to inhibit bias in 

the evolutionary search. With clustering selection, elite solutions with different 

objective function vectors have equal opportunities to survive from one generation to 

the next generation. Given an external elite archive P of size N , the following 

describes the steps in selecting 'N  individuals from this archive with clustering 

selection algorithm: 

Step 1: Make individuals with the same objective function vector in the P  to a 

distinct cluster; then declare all clusters iC with a size of iN  

( cNi ,,2,1 K= ). 

Step 2: Let uN  equal to the quotient of 
cN

N ' ; set the cluster counter 1=i  and the 

counter for the number of selected individual 0=j . 

Step 3: If ui NN ≥ , randomly select uN  different individuals in iC  and update 

uNjj += ; otherwise, select all iN  individuals in iC  and update 

iNjj += .  

Step 4: Set 1+= ii  and remove the selected individuals from iC . 

Step 5: If cNi ≤ , go to Step 3; otherwise, go to Step 6. 

Step 6: If 'Nj < , randomly select jN −'  different individuals left in all iC  

( cNi ,,2,1 K= ); otherwise, the selection process is complete. 

In this study, NSGA-ESI stands for the variation of NSGA with the elitist strategy 

using random selection, whilst NSGA-ESII represents the variation of NSGA with the 

elitist strategy using clustering selection. 
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Figure 4.4 Flowchart of the NSGA with proposed elitist strategy 

 

 

4.3 Implementation of GAs in Global Search 

The basic mechanisms of GAs and the four algorithms, namely the weighted sum GA, 

NSGA, NSGA-ESI and NSGA-ESII, have already been described. The following 
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sections discuss program implementation details in connection with the application of 

these algorithms in multiobjective optimization. 

 

4.3.1 Chromosome Representation 

The choice of representation conditions all the subsequent steps in the implementation 

of GAs (Gen and Cheng 1997). A good representation should correctly describe the 

candidate solutions, facilitate constraint handling, and simplify the encoding/decoding 

of the chromosome. In this research, GAs are applied to decide not only how to 

resolve the disturbances with heuristic strategies, but also the order in which the 

disturbances are to be resolved. A custom chromosome structure is designed to encode 

the schedule repair decisions. The chromosome consists of equal numbers of D-genes 

(disturbance genes) and H-genes (heuristics genes); each set occupying half of the 

chromosome. Each disturbance to be resolved is represented by a pair of D and 

H-genes. The length of the chromosome is therefore equal to the number of decision 

variables, which is twice the number of disturbances to be resolved. 

The D-genes are encoded with random numbers that serve as sort keys that determine 

the resolution priority of the disturbances. The index of each D-gene in the 

chromosome string also refers to a data structure that stores information on the 

disturbance, such as the element type, quantity and due date for delivery. The random 

keys representation (Bean 1994) encodes a solution with random numbers from a 

specified range and is suitable for problems in which precedence relationships are 

emphasized. Such a representation overcomes the issue of two feasible solutions not 

always resulting in a feasible offspring solution. For instance, if permutation encoding 

was adopted instead, the D-genes might look like [1 3 5 4 2], as shown in Figure 4.5. 

In this alterative representation, a disturbance is represented by a gene with a 
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particular value, whilst the position of this gene related to other genes indicated the 

resolution order for the disturbance. Under a crossover between the third and fourth 

gene with another chromosome [4 1 5 2 3], the offspring are [1 3 5 2 3] and [4 1 5 4 2]. 

It is obvious that the offspring are illegal since they contain more than one occurrence 

of a disturbance and leave out another disturbance entirely. On the other hand, the 

random key representation handles this by using random values as gene values, and 

these values are used as sort keys to determine the sequencing priority. As shown in 

Figure 4.5, suppose the two parent chromosomes mentioned above are represented 

with random numbers as [24 566 83 285 192] and [230 579 897 156 428]. With the 

same crossover, offspring are [24 566 83 156 428] and [230 579 897 285 192]. 

Translated to permutation representation, this gives the two disturbance resolution 

orders [1 3 4 5 2] and [5 1 4 2 3]. Thus, the problem of illegal offspring is eliminated.  

On the other hand, the ordinal value of the heuristic used to resolve a disturbance is 

encoded in direct representation in the H-genes. For example, an allele value of 1 

means that heuristic H1 will be used to resolve the corresponding disturbance. 

 

Figure 4.5 Illustration of random representation 
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4.3.2 Decoding 

Upon decoding the chromosome, the sequence of resolving disturbances is 

determined by sorting the disturbances in increasing order of their D-gene values. The 

heuristics used are obtained from the corresponding H-gene. Therefore, for the 

chromosome shown in Figure 4.6, the sequence of resolving disturbances is 

D5 D1 D2 D4 D3, which is determined by sorting the disturbances in 

increasing order of the gene values. D5 is resolved using heuristic H2, D1 with 

heuristic H4, and so on. 

 

Note: The sequence of resolution priority and corresponding heuristics  
used are D5(H2) D1(H4) D2(H3) D4(H1) D3(H6) 

Figure 4.6 Chromosome representations and decoding 

 

4.3.3 Objective Functions 

In this study, two objectives are selected for evaluating the quality of repaired 

schedules, namely FD and FI. FD is the sum of element units that are delivered late and 

FI is the sum of element units that are out of a prescribed band for the inventory levels. 

FD and FI are calculated using Equations (3.8) and (3.9) respectively. 

For the weighted sum genetic algorithm, these two objectives are combined in a 

straightforward way into a single objective F, by taking product of FD and FI with 

weight [ ]1,0∈r . The new objective function is represented as follows: 
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ID FrrFF )1(min −+=  (4.6) 

 

4.3.4 Relation among chromosomes, schedules and objective functions 

In the schedule repair problem, there is a two-layer mapping relationship between 

chromosomes and their objective function values. As illustrated in Figure 4.7, 

different repaired schedules are generated by repairing the existing schedule using the 

information decoded from the D- and H-genes in the chromosomes to obtain the 

priority of disturbance resolution and the corresponding heuristics. Then, these 

repaired schedules are evaluated on each of the two measures, FD and FI. The quality 

of each schedule is represented as a vector containing the two objective values. This 

two-level mapping scheme from chromosome to objective function vector is more 

complicated than the usual one-to-one mapping relationship. For example, different 

chromosomes that encode different combinations of priority for disturbance resolution 

and corresponding heuristics can result in the same repaired schedule, and different 

schedules may have the same values for the two objective functions. 

1
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Figure 4.7 Relationship for chromosomes, schedules and objective functions 
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4.3.5 Genetic Operators 

With the adoption of the random keys representation, traditional crossover and 

mutation operators can be used without modification on chromosomes. In this study, a 

two-point crossover is used, in which the parent individuals are split at two places in 

the chromosome string; whilst the mutation operator replaces the current value of the 

chosen gene with a value selected randomly from the allowable range based on a 

uniform probability distribution. 

 

4.3.6 Software Used for the Study 

In this study, the weighted sum GA was developed with PGAPack (Levine 1996). 

PGAPack is a parallel genetic algorithm library that provides most of the capabilities 

needed for coding GA applications in an integrated, seamless and portable manner. 

The NSGA, NSGA-ESI and NSGA-ESII were developed based on source code 

distributed by the Kanpur Genetic Algorithms Laboratory 

(http://www.iitk.ac.in/kangal/codes.shtml). All the code development was done in C 

language under the Windows operating system. 
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CHAPTER 5 

GLOBAL SEARCH FOR REPAIRED 
SCHEDULES – CASE STUDY 

 

Three test cases with different mold utilization rates were constructed from data 

obtained from the survey of precast factories. They were used to test the feasibility 

and applicability of several multiobjective genetic algorithms proposed in this 

research – the weighted sum genetic algorithm, non-dominated sorting genetic 

algorithm (NSGA) and two variations of NSGA with different elitist strategies, 

namely NSGA-ESI and NSGA-ESII.  

 

 

5.1 Illustrative Test Cases 

The utilization level of molds for precast production was an important consideration 

in the construction of the test cases. The utilization level is defined as the ratio of the 

total number of units required to be produced to the total number of available 

production capacity within the planning horizon. With a higher utilization level in the 

production schedule, it would become less flexible in accommodating disturbances 

with the available molds. This, in turn, may increase the level of difficulty in finding 

alternative repaired schedules. The utilization rate used reflects that observed in the 

local precast industry and ranged from a lower limit of 0.60 to the maximum of 0.90. 

It was decided that a utilization level above 0.9 would make it impractical to 

accommodate disturbances. Utilization rates of 0.60, 0.75 and 0.90 respectively were 

used in the test cases to represent situations of low (L-U), medium (M-U) and high 

(H-U) level of utilization rate.  
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Three examples have been constructed based on field data obtained from the survey 

of local precast factories. Each example involves a schedule for the precast items of a 

project over a time span of four weeks. The schedules involve three types of elements 

(E1, E2 and E3) produced by four molds (M1, M2, M3, and M4). These four molds 

belong to one group, and all three element types are produced by any of the molds 

with changeover accomplished within one day. The detailed site demand for each 

element type, as well as corresponding production schedules determined by manual 

calculation is shown in Appendixes. The minimum lead time for all elements is 

assumed to be 2 days. Other parameter values used in these examples like the total 

demand, initial stock levels, lower and upper bounds for inventory levels of each 

element type are shown in Table 5.1.  

Table 5.1 Problem parameters 

Element 
type 

Total 
demand 
(Low) 

Total 
demand 

(Medium) 

Total 
demand 
(High) 

Initial 
Stock* 

Upper 
stock 
limit*  

Lower 
stock 
limit* 

E1 31 37 45 6 10 4 
E2 8 9 7 2 3 1 
E3 31 37 45 6 10 4 

Note: *--These parameters are the same for the three examples. 
 

Now consider the following events occurring: 

(1) The site rejected one piece of E2 because of a quality problem; hence, an 

additional piece of E2 has to be produced for delivery on Day 4; 

(2) The contractor informs the precast factory to advance the due date for delivering 

some elements since actual progress on-site is better than that anticipated in the 

earlier schedule. The new delivery schedule proposed by the site is as follows: (i) 

The requirement for six pieces of E1 and E3 to be delivered on Day 30 is now 

changed to three pieces of each element type on Day 21 and Day 25; and (ii) The 
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two pieces of E2 earlier planned to be delivered on Day 28 is now scheduled for 

Day 25.  

Therefore, there are six schedule disturbances caused by these events that are 

identified to be solved within the planning horizon, as shown in Table 5.2. 

Table 5.2 Characteristics of schedule disturbances 

Disturbance Element 
Type Quantity Original 

Due Date 
New 

Due Date Types of Disturbance 

D1 E2 1 -- Day 4 Change in quantity; 
quality problem 

D2 E1 3 Day 30 Day 21 Change in due date due to 
site progress 

D3 E3 3 Day 30 Day 21 Change in due date due to 
site progress 

D4 E2 2 Day 28 Day 25 Change in due date due to 
site progress 

D5 E1 3 Day 30 Day 25 Change in due date due to 
site progress 

D6 E3 3 Day 30 Day 25 Change in due date due to 
site progress 

 

Insertion has been selected as a basic repair action in the case study. Since the three 

element types can be produced by any of the molds, insertion is based on the multiple 

mold approach in which all four molds (M1, M2, M3, and M4) can be used to resolve 

a disturbance. The search for the point of insertion into the original schedule can be 

carried out in a number of ways depending on choices made on many factors:  

(i) The search sequence used (either in a parallel manner across all mold schedules 

simultaneously or in a serial manner for each mold schedule);  

(ii) The direction of search (starting either from the beginning or the end of the mold 

schedules); and 

(iii) The manner of insertion (opportunistic or deterministic insertion).  

With different combinations of these search characteristics, six insertion-based 
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heuristic strategies have been developed to resolve schedule disturbances in the study. 

In addition, sub-contracting was also considered as a seventh heuristic in the 

experiments. It means that the precaster will subcontract elements involved in the 

disturbance with the result that there is no repair action needed to accommodate the 

disturbance in the current schedule. The representation and description of repairing 

actions for these heuristic strategies are summarized in Table 5.3. 

Table 5.3 Heuristics representation 

Heuristic Symbolic code Description of repair actions 

H1 S/ASAP/OI Opportunistic insertion applied in a serial manner across 
molds and from the beginning of schedules 

H2 S/BS/OI Opportunistic insertion applied in a serial manner across 
molds and from the end of schedules 

H3 S/ASAP/DI Deterministic insertion on specific days, whilst affected 
initial productions are resolved by H1 

H4 P/ASAP/OI Opportunistic insertion applied in a parallel manner 
across molds and from the beginning of schedules  

H5 P/BS/OI Opportunistic insertion applied in a parallel manner 
across molds and from the end of schedules 

H6 P/ASAP/DI Deterministic insertion on specific days, whilst affected 
initial productions are resolved by H4 

H7 Sub-contracting No repair action 

Note: S—Serial; P—Parallel; ASAP—As-soon-as-possible; BS—Backward scheduling; 
OI—Opportunistic insertion; DI—Deterministic insertion.  

 

 

5.2 Performance Measurement 

Appropriate performance metrics must be selected to enable meaningful comparison 

of these algorithms. Many metrics in the literature of the multiobjective optimization 

evolutionary algorithms measure performance in the phenotype domain by comparing 

the solution set generated by the algorithm with the true Pareto front for the problem. 

However, no single metric can entirely capture total performance for these algorithms, 

because some of them measure algorithm effectiveness while others measure 
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efficiency (Coello et al. 2002). Before introducing the performance metrics selected, 

the following notation is used to define the various solution sets generated by the 

algorithms in this study: 

(1) The solution set obtained at the final iteration of the algorithms is denoted by 

PFcurrent. 

(2) The optimal trade-off surface is denoted by PFtrue. Due to the fact that the true 

Pareto front is generally not known for real-world problems, PFtrue refers to the 

“best” Pareto front found so far by any of the selected algorithms in this study.  

The following two performance metrics described by Van Veldhuizen (1999) in the 

phenotype domain have been selected to compare the performance of these GA-based 

algorithms. They will be calculated after all the experiments have been performed. 

(1) Error Ratio (ER): it reflects the proportion of vectors in PFcurrent that are not 

members of PFtrue. With a solution set having n vectors, it is mathematically 

defined as: 
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The lower the ER, the more vectors in PFcurrent are also members of PFtrue.  

(2) Generational Distance (GD): it measures how “far” PFcurrent found by the 

algorithm is from PFtrue. The definition of GD is:  

n
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             (5.2) 

where di is the distance between solution i in PFcurrent and the closest solution that 

belongs to PFtrue, and n is the number of vectors in PFcurrent. The farther the 

solution set is from PFtrue, the greater is the generational distance. 
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5.3 GA Parameters  

Several parameters, such as population size (Npop), number of generations (Ngen), 

crossover probability (pc), mutation probability (pm), sharing radius (σshare) and elite 

proportion (pe) are considered to affect the performance of GAs. The optimal values 

for these parameters can not be ascertained by applying fixed rules; in fact, optimal 

GA parameters are known to be notoriously difficult to determine (Myers 2001). In 

this study, these values were determined by fine tuning default values over several 

runs of GAs on a trial example. 

Ten separate runs were conducted for each set of these parameters with a different 

seed for the random number generator that is equally distributed between 0.1 and 1.0. 

Convergence is reached when the GA run attains a benchmark. This benchmark is 

obtained by selecting the “best” Pareto front obtained so far. Therefore, the number of 

times out of the ten runs where the solution sets converge to this front is noted. 

Table 5.4 summarizes the performance of a set of experiments at the end of 70 

generations. From the experiments, it was found that σshare has an impact on the 

NSGA performance, as the experiments converged better with σshare equaling to 

0.4172 (for q=10) than others in principle. With this sharing radius determined, the 

results show that NSGA performed well under the population size of 400. With a 

mutation probability of 1%, the experiments returned the highest frequency of 

convergence irrespective of whether the crossover probability is 30% or 40%. Since 

two variations of NSGA, namely NSGA-ESI and NSGA-ESII, use elitist strategies, 

the elitist proportion is another important parameter considered in this study. Based on 

the parameters determined for the basic version of NSGA, trials were conducted with 

different values of the elitist proportion. There was no apparent improvement for 
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values of the elitist proportion higher than 10%. From the results of these experiments, 

it was decided to use the values shown in Table 5.5 for the GA parameters in the 

subsequent experiments. 

Table 5.4 Frequency of convergence with different GA parameters 

Npop 300 400 500 

pc (%) 30 40 50 30 40 50 30 40 50 

pm (%) 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 

0.4372 
(q=5) 6 9 9 7 10 7 8 9 9 7 9 4 9 8 8 8 9 8 

0.4127 
(q=10) 8 8 8 5 8 7 9 10 9 10 9 8 8 10 9 9 9 10 σshare 

0.3990 
(q=15) 8 6 8 10 6 6 10 8 9 9 6 8 9 9 9 10 7 9 

Table 5.5 GA parameters used in case study 

Parameters Values 
Population size , Npop 400 
Number of generation, Ngen 70 
Crossover probability, pc 0.40# 
Mutation probability, pm 0.01 
Sharing radius, σshare (q=10) 0.4127 
Elite proportion, pe 10% 

Note: #--In the weighted sum GA, pc=0.7. 
 

 

5.4 Results and Discussion  

As discussed in the previous chapter, four GA-based algorithms, which are the 

weighted sum GA, NSGA, NSGA-ESI and NSGA-ESII, were selected to generate the 

alternative repaired schedules with the two conflicting objectives. Among these four 

algorithms, the weighted sum GA differs with the latter three Pareto-based algorithms 

in terms of generating a single non-dominated solution each time with a varied weight 

combination. Therefore, the experiments using the weighted sum algorithm were 
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conducted for the three test cases to compare against the other three algorithms in 

terms of the non-dominated solution sets found. 

An exhaustive search involving increasing values of the weight (r) for the weighted 

sum approach was done. The value of r was varied in steps of 0.05 between 0 and 1. 

In order to avoid stochastic error, 5 runs were made for each r value to search the 

corresponding optimal solution. With 21 weight combinations considered in the study, 

105 runs were made for each of the three examples using the weighted sum algorithm. 

All the optimal solutions found with the different weight combinations generated a 

solution set for this algorithm. On the other hand, the other three Pareto-based 

evolutionary algorithms, namely NSGA, NSGA-ESI and NSGA-ESII, were also 

applied to the three examples. For each combination of algorithm and example, 10 

separate runs of the GA were made, each starting with a different random number 

seed equally distributed between 0.1 and 1.0. The results of these experiments are 

discussed in the following sections. 

 

5.4.1 The L-U example 

Based on the complete set of experiments involving the L-U example, four 

non-dominated solutions were found in the set of PFtrue, namely the points (0, 7), (1, 

4), (3, 3) and (4, 2) in the objective function space.  

The results of the weighted sum GA are shown in Figure 5.1. Except for two extreme 

values with respect to two objectives FD and FI when r equals to 0 and 1 respectively, 

the solutions found with varied r from 0.05 to 0.95 are shown in the figure. The 

non-dominated solution set found by the weighted sum GA consists of three solutions: 

solution (4, 2) was obtained for value of r from 0.05 to 0.4; solution (1, 4) was 
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obtained for value of r from 0.4 to 0.75; and solution (0, 7) was obtained for value of 

r from 0.75 to 0.95. PFtrue is also depicted in Figure 5.1; it is seen that the 

non-dominated solution (3, 3) has not been found by the algorithm. It could be the 

reason that this solution is in the “concave” portion of the trade-off surface; no 

solution point (3, 3) was ever found by any experiment with the weighted sum 

algorithm. It is known that a weighted sum GA will miss points on the concave 

portions of the trade-off curve.  

 

Figure 5.1 PFcurrent found with the weighted sum GA for the L-U example 
 

The solution sets (PFcurrent) generated by NSGA in the last iteration for the L-U 

example are displayed in Figure 5.2. The solution sets generated by NSGA-ESI and 

NSGA-ESII are the same as those generated by NSGA, which are not shown here. All 

four non-dominated solutions in PFtrue were found by these three algorithms. Table 

5.6 shows the performance metrics for the different runs involving the NSGA, 

NSGA-ESI and NSGA-ESII runs. It shows that every run of NSGA and NSGA-ESII 

successfully found PFtrue for the L-U example. On the other hand, 3 out of 10 

NSGA-ESI runs could only find three of the four non-dominated solutions [(0, 7), (1, 
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4) and (3, 3)] and consistently missed the solution (4, 2). 

In summary, the convergence frequency was 10 for both NSGA and NSGA-ESII, and 

7 for NSGA-ESI, as shown in Figure 5.3. Among the three Pareto-based algorithms, 

NSGA and NSGA-ESII performed better than NSGA-ESI for the L-U example. In 

contrast to the weighted sum algorithm, these findings also suggest that these 

Pareto-based algorithms (1) performed better in generating multiple non-dominated 

solutions from a single run, and (2) was able to find non-dominated solutions even in 

the nonconvex portions of the trade-off surface.  
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*: All of the 10 runs found PFtrue.  
Same for PFcurrent found with NSGA -ESI and NSGA-ESII for the L-U example. 

Figure 5.2 PFcurrent found with NSGA for the L-U example 

 

Figure 5.3 Frequency of convergence and solutions found for the L-U example 
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Table 5.6 Performances of NSGA, NSGA-ESI and NSGA-ESII for the L-U Example  

 

 

 

 

 

 

 

 

 

 

 

Table 5.6 Performances of NSGA, NSGA-ESI and NSGA-ESII for the L-U Example (Cont.) 
 

 

 

 

 

 

 

 

NSGA NSGA-ESI 
Run 

PFcurrent ER GD Computing 
time (sec.) PFcurrent ER GD Computing 

time (sec.) 
1 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.6 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 8.0 
2 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.4 (0, 7)  (1, 4)  (3, 3) 0 0.00 8.0 
3 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.5 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 7.9 
4 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.8 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 7.9 
5 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.6 (0, 7)  (1, 4)  (3, 3) 0 0.00 7.8 
6 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.3 (0, 7)  (1, 4)  (3, 3) 0 0.00 8.1 
7 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 5.0 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 7.8 
8 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.8 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 7.9 
9 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.8 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 7.9 

10 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 4.5 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 7.8 
Ave.  0 0.00 4.6  0 0.00 7.9 

NSGA-ESII 
Run 

PFcurrent ER GD Computing 
time (sec.) 

1 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.2 
2 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.3 
3 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.1 
4 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.2 
5 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.1 
6 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.1 
7 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.2 
8 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.2 
9 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.0 

10 (0, 7)  (1, 4)  (3, 3)  (4, 2) 0 0.00 10.1 
Ave.  0 0.00 10.2 
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5.4.2 The M-U example 

The experiments with the different algorithms on the M-U example fielded three 

non-dominated solutions in the objective function space, namely (0, 16), (1, 12) and 

(3, 7); these points constitute PFtrue for the M-U example.  

The results for the weighted sum GA are shown in Figure 5.3. The non-dominated 

solution set found by this algorithm is identical to PFtrue. Solution (3, 7) was obtained 

with settings of r from 0.05 to 0.7; solution (1, 12) was obtained with settings of r 

from 0.75 and 0.8; and solution (0, 16) was obtained with settings of r from 0.8 to 

0.95. Solutions (1, 12) and (0, 16) were both obtained when r equals to 0.8. 

 

Figure 5.3 PFcurrent found with the weighted sum GA for the M-U example 
 

The solution sets found by the 10 NSGA runs on the M-U example are shown in 

Figure 5.4. The performance metrics for these different runs are shown in Table 5.7. 

Only 4 out of 10 runs (No. 1, 4, 5 and 9) converged to PFtrue. The other 6 runs fielded 

the Pareto fronts that are not as good as the one defined by PFtrue; there involved 
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points like (0, 18), (0, 17) and (1, 13), which are dominated by points in PFtrue. 

The solution sets generated by the 10 NSGA-ESI runs for the M-U example are 

shown in Figure5.5. There were seven runs that converged to PFtrue. Although the 

other three runs (No. 1, 2 and 4) found 3 non-dominated solutions in their PFcurrent, 

non-zero values for their GD and ER (Table 5.7) show that these fronts contained 

some solutions that are not members in PFtrue. They are solution (0, 17) generated in 

the first and fourth run and solution (3, 8) generated in the second run.  

The solution sets generated by the 10 NSGA-ESII runs for the M-U example are 

shown in Figure 5.6. The performance statistics for these solution sets in terms of ER 

and GD are provided in Table 5.7. All of the 10 NSGA-ESII runs found PFtrue, and no 

other non-member solutions were found in the Pareto front returned by any of the 

runs.  
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*: Runs 1, 4, 5 and 9 converged to PFtrue, while the other six runs did not. 

Figure 5.4 PFcurrent found with NSGA for the M-U example 
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*: Runs 1, 2 and 4 did not converge to PFtrue, while the other seven runs converged to PFtrue. 

Figure 5.5 PFcurrent found with NSGA-ESI for the M-U example 
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*: All of the 10 runs converged to PFtrue. 

Figure 5.6 PFcurrent found with NSGA-ESII for the M-U example 

 

Figure 5.7 summarizes the frequency of convergence to PFtrue with these 

Pareto-based algorithms for the M-U example. The frequency values improved in 
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successive, from NSGA to NSGA-ESI, and then to NSGA-ESII. Although the average 

computing time for NSGA-ESII (10.6 seconds) is more than that for NSGA and 

NSGA-ESI (4.6 and 7.9 seconds respectively), the former is more consistent across 

the 10 runs in generating PFtrue. These results suggest that the elitist strategies 

proposed improved the performance of NSGA by keeping good solutions throughout 

the entire search process for the M-U example. Moreover, the elitist strategy with 

clustering selection appears to perform better than that with random selection. 

Although the weighted sum GA also obtained the exact PFtrue, it took more effort (105 

runs) and more computing times (27 seconds) than the Pareto-based algorithms. 

 

Figure 5.7 Frequency of convergence and solutions found for the M-U example 

 

5.4.3 The H-U example 

The experiments with the H-U example fielded four non-dominated solutions (8, 24), 

(10, 19), (12, 15) and (14, 13) as members of PFtrue.  

The results for the weighted sum GA are shown in Figure 5.8. The non-dominated 

solutions found by this algorithm are identical to those in PFtrue. Solution (14, 13) was 

obtained with settings of r from 0.05 to 0.5; solution (12, 15) was obtained with 

settings of r from 0.55 to 0.65; solution (10, 19) was obtained with settings of r 

equaling to 0.7; and solution (8, 24) was obtained with settings of r from 0.75 to 0.95.  
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Table 5.7 Performances of NSGA, NSGA-ESI and NSGA-ESII for the M-U Example  

 

 

 

 

 

 

 

 

 

 

 

Table 5.7 Performances of NSGA, NSGA-ESI and NSGA-ESII for the M-U Example (Cont.) 
 

 

 

 

 

 

 

 

 

NSGA NSGA-ESI 
Run 

PFcurrent ER GD Computing 
time (sec.) PFcurrent ER GD Computing 

time (sec.) 
1 (0, 16)  (1, 12)  (3, 7) 0 0.00 4.4 (0, 17)  (1, 12)  (3, 7) 1/3 0.33 7.9 
2 (0, 17)  (3, 7) 1/2 0.50 5.2 (0, 16)  (1, 12)  (3, 8) 1/3 0.33 7.9 
3 (0, 16)  (1, 13)  (3, 7) 1/3 0.33 5.1 (0, 16)  (1, 12)  (3, 7) 0 0.00 7.9 
4 (0, 16)  (1, 12)  (3, 7) 0 0.00 4.4 (0, 17)  (1, 12)  (3, 7) 1/3 0.33 7.9 
5 (0, 16)  (1, 12)  (3, 7) 0 0.00 4.3 (0, 16)  (1, 12)  (3, 7) 0 0.00 7.9 
6 (0, 17)  (1, 12)  (3, 7) 1/3 0.33 4.6 (0, 16)  (1, 12)  (3, 7) 0 0.00 7.9 
7 (0, 17)  (1, 12)  (3, 7) 1/3 0.33 4.8 (0, 16)  (1, 12)  (3, 7) 0 0.00 8.0 
8 (0, 17)  (1, 12)  (3, 7) 1/3 0.33 4.6 (0, 16)  (1, 12)  (3, 7) 0 0.00 8.0 
9 (0, 16)  (1, 12)  (3, 7) 0 0.00 4.5 (0, 16)  (1, 12)  (3, 7) 0 0.00 7.9 

10 (0, 18)  (1, 12)  (3, 7) 1/3 0.67 4.3 (0, 16)  (1, 12)  (3, 7) 0 0.00 7.9 
Ave.  0.22 0.25 4.6  0.10 0.10 7.9 

NSGA-ESII 
Run 

PFcurrent ER GD Computing 
time (sec.) 

1 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.7 
2 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.5 
3 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.6 
4 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.6 
5 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.5 
6 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.6 
7 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.6 
8 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.7 
9 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.7 

10 (0, 16)  (1, 12)  (3, 7) 0 0.00 10.6 
Ave.  0 0.00 10.6 
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The solutions (12, 15) and (14, 13) have the same objective value when r is set to 0.5, 

but the former was not found within the 5 runs with this value of r. Although it has 

subsequently found with other r values, this indicates a potential risk of missing 

certain points with this kind of weighted sum approach. 

 

Figure 5.8 PFcurrent found with the weighted sum GA for the H-U example 

 

As shown in Figure 5.9, only two solutions (8, 24) and (10, 20) were found with the 

10 NSGA runs for the H-U example. None of these NSGA runs successfully 

converged to the full set of PFtrue. Based on the performance metrics for these runs 

shown in Table 5.8, although the values of ER and GD for 9 out of the 10 runs were 

zero, the solution set from each of these runs had only one non-dominated solution (8, 

24). However, the second run did produce a solution set with two solutions, one of 

which, (10, 20) is adjacent to the non-dominated solution (10, 19). 

Besides the non-dominated solution (8, 24), the 10 NSGA-ESI runs also returned 

another two nondominated solutions in PFtrue – (10, 19) and (14, 13), as shown in 

Figure 5.10. However, they were found only once in the first run. Moreover, solution 
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(12, 15) was not found in any of the runs. The performance metrics presented in Table 

5.8 show that 7 out of the 10 NSGA-ESI runs generated the solution sets with more 

than one solution. However, non-zero values of the GD and ER for these fronts 

indicate that some solutions found are not members of PFtrue, such as solutions (10, 

20), (12, 18) and (13, 18). 
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*: Run 2 found two points (8, 24) and (10, 20) in PFcurrent,  

The other nine runs only found one point (8, 24) in their PFcurrent. 

Figure 5.9 PFcurrent found with NSGA for the H-U example 
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*: None of the ten runs converged to PFtrue.  

            Three nondominated solutions (8, 24), (10, 19) and (14, 13) were all found only in Run 1. 

Figure 5.10 PFcurrent found with NSGA-ESI for the H-U example
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The solution sets generated by the 10 NSGA-ESII runs for the H-U example are 

shown in Figure 5.11. The performance metrics for the different NSGA-ESII runs are 

shown in Table 5.8. There are half of the 10 runs that converged to PFtrue. Among the 

other 5 runs that did not converge to PFtrue, the run (No. 6) only generated one 

non-dominated solution (8, 24) in its PFcurrent, whilst the other four runs (No. 2, 4, 7 

and 10) found 3 or 4 solutions in their solution sets. Although some points in the latter 

four solution sets are not members of PFtrue, such as (10, 20) and (12, 16), these 

solutions sets were closer to PFtrue than those generated by NSGA-ESI in terms of the 

GD values.  
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*: Runs 1, 3, 5, 8 and 9 converged to PFtrue. 

Figure 5.11 PFcurrent found with NSGA-ESII for the H-U example 

 

Figure 5.12 shows that no matter which algorithm is used, (8, 24) was the most 

frequently found solution among the four non-dominated solutions in PFtrue. The 

frequency of convergence for NSGA, NSGA-ESI and NSGA-ESII was 0, 0 and 5 

respectively. Although the performance of these three algorithms in the H-U example 
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is not as good as in the M-U and L-U examples, NSGA-ESII did do much better than 

NSGA and NSGA-ESI in the H-U example. Moreover, a single run of NSGA-ESII 

requires only 12.5 seconds averagely. 
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Figure 5.12 Frequency of convergence and solutions found for the L-U example 

 

Based on the case study discussed above, GAs have proven to be capable of finding 

alternative repair strategies using different resolution priority for disturbances and 

appropriate heuristics to obtain alternative repaired schedules along a Pareto front. 

These alternatives not only provide insight of trade-offs in the rescheduling problem, 

but also act as valuable options for negotiation between the precaster and the 

contractor. However, there may still be circumstances that few 

adjustments/improvements are needed for these repaired schedules provided by the 

global search. It is desirable to continue the search for solutions satisfying particular 

constraints imposed by the decision makers. Therefore, a local search module, which 

is evoked under such circumstances, will be presented in the next chapter. 
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Table 5.8 Performances of NSGA, NSGA-ESI and NSGA-ESII for the H-U Example  

 

 

 

 

 

 

 

 

 

 

 

Table 5.8 Performances of NSGA, NSGA-ESI and NSGA-ESII for the H-U Example (Cont.) 
 

 

 

 

 

 

 

 

 

NSGA NSGA-ESI 
Run 

PFcurrent ER GD Computing 
time (sec.) PFcurrent ER GD Computing 

time (sec.) 
1 (8, 24) 0 0.00 4.8 (8, 24) (10, 19) (12, 18) (14, 13) 1/4 0.75 9.9 
2 (8, 24) 0 0.00 4.5 (8, 24) 0 0.00 10.1 
3 (8, 24) 0 0.00 4.7 (8, 24)  (10, 20) 1/2 0.50 10.0 
4 (8, 24) 0 0.00 4.5 (8, 24) 0 0.00 10.1 
5 (8, 24) 0 0.00 4.6 (8, 24)  (10, 20) 1/2 0.50 10.3 
6 (8, 24) 0 0.00 4.4 (8, 24)  (10, 20)  (13, 18) 2/3 1.11 10.1 
7 (8, 24)  (10, 20) 1/2 0.50 4.8 (8, 24)  (10, 20) 1/2 0.50 10.1 
8 (8, 24) 0 0.00 4.9 (8, 24)  (10, 20) 1/2 0.50 10.0 
9 (8, 24) 0 0.00 4.6 (8, 24)  (10, 20) 1/2 0.50 10.1 

10 (8, 24) 0 0.00 4.1 (8, 24) 0 0.00 10.2 
Ave.  0.05 0.05 4.6  0.39 0.44 10.1 

NSGA-ESII 
Run 

PFcurrent ER GD Computing 
time (sec.) 

1 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.6 
2 (8, 24) (10, 20) (12, 16) 2/3 0.47 12.3 
3 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.3 
4 (8, 24) (10, 20) (12, 15) 1/3 0.33 12.8 
5 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.1 
6 (8, 24) 0 0.00 13.2 
7 (8, 24) (10, 20) (12, 16) (14, 13) 2/4 0.35 12.8 
8 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.8 
9 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.2 

10 (8, 24) (10, 20) (12, 16) 2/3 0.47 12.3 
Ave.  0.22 0.16 12.5 
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CHAPTER 6 

LOCAL SEARCH WITH SPECIFIC CONSTRAINTS 
 

In this chapter, the local search module of the proposed CPRSM is introduced. The 

local search module attempts to find a schedule that satisfies specific requirements 

imposed by either the precaster or the contractor. This is done by iteratively exploring 

the neighborhoods of available repaired schedules generated by the global search. 

Two local search algorithms are tested to implement the proposed local search 

mechanism, and the results of these tests are discussed in this chapter. 

 

 

6.1 Overview of Local Search 

Local search is a generally applicable approach for tackling combinatorial search and 

optimization problems. It has been successful in finding high quality solutions to a 

large number of hard combinatorial problems in a reasonable amount of 

computational time. 

Generally speaking, a local search algorithm is based on the iterative exploration of 

neighborhoods of the current solution in order to improve it by some modification. 

Such modifications are predefined by a neighborhood structure (N), which results in a 

solution that differs only slightly from its originator. One can say that a neighboring 

solution is within the vicinity of its originator. An objective function (F) is needed for 

the local search in order to assess the quality of the solutions; this in turn drives the 

search towards good solutions in the search space (S). It is expected that a 

neighboring solution produces an objective function value that is of similar quality to 
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the original solution because they share a majority of solution characteristics. Since 

the chance to find an improved solution within a neighborhood is much higher than 

that in less correlated areas of the search space, local search algorithms concentrate 

the search within neighborhoods. Therefore, the local search only explore parts of a 

given search space as opposed to methods based on exhaustive search (Phan 2000). 

Various problem specific local search algorithms have been developed based on the 

idea of neighborhoods. Finding efficient neighborhood structures that lead to 

high-quality performance can be viewed as one of the challenges of implementing 

local search. Following Aarts and Lenstra (1997) and Stützle (1999), a neighborhood 

structure can be defined as follows: 

Let S be the set of feasible solutions for the problem, a neighborhood 

structure is a function N : S  2S that assigns to every s ∈S a set of 

neighbors N(s)⊆S. N(s) is also called the neighborhood of s.  

Typically, a neighborhood structure is not defined explicitly by enumerating the set of 

possible neighbors, but rather is defined implicitly by possible local changes that may 

be applied to a solution. The choice of an appropriate neighborhood structure often 

has to be done in a problem specific way. No general rules are available and each 

situation has to be considered separately. There are some considerations on desirable 

features of neighborhoods that should be addressed (Mattfeld 1996): 

(1) Correlation: A neighbor solution should be highly correlated to its originator. 

Ideally, a neighborhood N(s) of s locates a neighboring solution s’ that has similar 

characteristics as s. 

(2) Improvement: Moving from a current solution s to its neighboring solutions, there 

should be a good chance of improving the originator in terms of the objective 



Chapter 6  Local Search with Specific Constraints 

 111

function value. 

(3) Connectivity: It is desirable that there is a finite sequence of moves (worsening 

ones included) leading from an arbitrary solution to a global optimal one; 

otherwise, promising areas of the search space may be excluded from the search.  

(4) Size: The average size of the neighborhood N(s) should be within reasonable 

bounds. On the one hand, a large neighborhood size may make the search for an 

improved neighboring solution become computationally prohibitive. On the other 

hand, a small number of neighbors may make it harder to find interesting solutions 

and risks a premature step with a poor quality solution.  

Some of these considerations may conflict with each other and cannot be resolved 

theoretically. In order to develop appropriate neighborhood definitions, practical 

experience with applications and problem specific knowledge are needed. 

A basic version of local search is iterative improvement. The general procedure of the 

iterative improvement algorithm that solves a minimization problem is shown in 

Figure 6.1. It starts with some initial solutions generated randomly or by some 

constructive heuristics, and searches its neighborhood for an improved solution 

according to the prescribed objective function. If such an improved solution is found, 

it replaces the current solution and the search continues; otherwise, the algorithm 

returns the current solution, which is then locally optimal. Iterative improvement can 

use either the first-improvement or best-improvement rule in determining which 

neighboring solution replaces the current one. In first-improvement, the current 

solution is replaced by the first improved solution found by the neighborhood search; 

whilst the current solution is replaced by the best improved solution in its 

neighborhood with best-improvement. Therefore, as the example of the simple 

iterative improvement algorithm shows, any local search algorithm has three basic 
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steps: (1) generation of a start solution; (2) generation of a neighboring solution; and 

(3) calculation and comparison of objective function values. 

 

procedure Iterative Improvement ( Ss∈ ) 
);(utionInitialSol:=s  

begin 
repeat  

);(modify ' ss =  
if ))()'(( sFsF <  
then ': ss =  

until )()'(:)(' sFsFsNs ≥∈∀   
return s 

end                 

Figure 6.1 Algorithmic skeleton of iterative improvement  

 

6.2 Implementation of Local Search with Specific Constraints 

The following sections discuss the implementation of local search in the proposed 

CPRSM, which includes the specification of constraints, the definition of an objective 

function and a neighborhood structure, the source of initial solutions, and the 

development of an efficient method for exploring the neighborhood. 

 

6.2.1 Specific Constraints 

As a result of the global search process with multiobjective optimization, multiple 

repaired schedules along a Pareto front have been identified. These schedules 

represent different degrees of trade-off between two conflicting objectives, namely FD 

and FI, for the production schedule. Associated with these schedules is the 

information on circumstances that lead to the schedule decision. That is, with identical 

values of the two objective functions, the schedules could be different in detail. For 

example, the L-U example tested in Chapter 5 is supposed to have three options for 
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the repaired schedules with the objective function vector of (1, 4). As shown in Table 

6.1, each of these schedules has 1 unit of element that can not be delivered on time, 

but this element can be either E1, E2 or E3. In practice, it is possible that the global 

search only generates the first two kinds of the repaired schedules in the table. 

However, the decision maker may wish to find a schedule that satisfies the specific 

requirements in the third case. This requires an incremental exploration with the aim 

of finding the particular schedule with these specific requirements imposed. 

Table 6.1 Different circumstances for repaired schedules 

 FD FI 
 E1 E2 E3 Total E1 E2 E3 Total 

1 1 0 0 1 2 2 0 4 
2 0 1 0 1 1 2 1 4 
3 0 0 1 1 1 2 1 4 

 

Therefore, delivery and inventory levels, which are subject to optimization in the 

global search module, are treated as constraints in the local search module. Such 

objectives of deliveries and inventory levels as formulated in Equations (3.8) and (3.9) 

are modified so that specific numerical targets as specified by the precaster or the 

contractor are included. For example, the specific constraints on delivery and 

inventory level for the element type e can be formulated as follows: 

(1) Specific constraint on delivery: 

),0(max)(

)(
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 (6.1) 

The parameters L
eD  and U

eD  are the lower and upper bounds for number of 

element units that are delivered beyond their due dates. 

(2) Specific constraint on inventory level: 
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The parameters L
eS  and U

eS  are the lower and upper bounds for the number of 

element units that are out of a prescribed band of the inventory level. 

When the values for the lower and upper bounds are equal, these constraints are 

expressed as equalities. 

 

6.2.2 Objective Function  

The addition of specific constraints in local search suggests trying to meet these 

constraints by modifying solutions that do not necessarily meet them. In order to 

guide the iterative repair process towards the particular one that can satisfy all these 

constraints, an appropriate objective function needs to be formulated. 

In this research, an “error” function is first defined for each constraint to give an 

indication on how much the constraint is violated. That is, the error function returns 

the absolute distance of the current configuration to the specific target imposed. The 

objective function is then formulated as the sum of all the error functions for the 

specific constraints. Since the constraint violations considered in this research are all 

measured in terms of the number of element units involved, their corresponding error 

functions can be summed up directly without normalization. Therefore, the lower the 

objective function value of a solution, the greater the degree of satisfaction of the 

specific constraints imposed.  

Given a set of C specific constraints, the objective function for the local search LF  is 

formulated as follows: 
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∑
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i

error
iL fF

1  (6.3) 

where error
if  represents the error function of the i-th constraint. Rather than 

minimizing the number of constraints that are not satisfied, this formulation of the 

objective function in terms of the number of element units involved in constraint 

violations makes the local search process more responsive to the degree of violation. 

Information on the degree of satisfaction for each of the constraints can be used to 

decide on the repair actions. 

 

6.2.3 Initial Solutions 

Repaired schedules generated by the global search module provide the initial 

solutions for the local search process. These schedules are not only complete as they 

involve all the precast components considered within the planning horizon, but also 

highly correlated to the specific schedule since they are all non-dominated according 

to the two objectives considered in the global search process. However, they may fail 

to meet specific constraints imposed during the local search phase.  

A straightforward extension of local search, namely the multi-start local search (Aarts 

and Lenstra 1997; Congram et al. 2002), is adopted in this research to overcome a 

major drawback of local search, namely that it may stop at local optima that are of 

poor quality. This approach calls for running the search a number of times using 

different starting solutions. Therefore, the diversity of quality of the schedules 

generated by the global search, measured in terms of their deviations from the 

requirements imposed during the local search process, is desirable in the multi-start 

approach. When the search starts with a particular schedule fails in generating the 

specific schedule, another search can be initiated with a different schedule, thus 
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increasing the probability of success in finding the specific schedule. 

 

6.2.4 Neighborhood Structure 

For many combinatorial optimization problems whose solutions can be represented as 

sequences, partitions, or assignments, some type of k-exchange neighborhood 

structure (k ≥ 2) is usually adopted, since it is both effective and easy to search. The 

k-exchange neighborhood contains all solutions that can be obtained by exchanging k 

elements in the sequence, partition, or assignment. Verifying local optimality for a 

k-exchange neighborhood requires ( )knΩ  time, where n is the total number of 

variables. As k increases, the computational effort required to search the 

neighborhood grows quickly, so that selecting larger values of k is often impractical.  

In the scheduling problem, the simplest choice for the k value is 2, in which any two 

jobs irrespective of whether they are adjacent are exchanged. This kind of 

neighborhood structure is also called the swap neighborhood (Congram et al. 2002). 

For example, consider the sequence (A, B, C, D, E, F, G, H) in a schedule problem 

where there are eight jobs labeled from A to H. Thus, (A, F, C, D, E, B, G, H) is a 

neighbor by exchanging jobs B and F. This simplest form of neighborhood structure is 

adopted in this research. 

As depicted in Figure 6.2, a two-dimensional integer array S is applied to represent 

the production schedule for precast building components. The rows represent molds 

numbered from 1 to M, and the columns represent workdays from 1 to T. The domain 

of the array {0, 1, 2, …, E} is the set of precast element types to be produced. The 

element tmS  of the array therefore represents information on the production of mold 

m on day t: 0 denotes that the mold is idle, whereas other non-zero values denote the 
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production of a particular element type. Thus, the swap neighborhood is defined as the 

exchange of two elements tmS  and ''tmS  ( 'and' ttmm ≠≠ ) in the schedule array S, 

each of which represents the production of a different element type. An example of 

the swap neighborhood of the schedule array S is shown in Figure 6.2. 

M
ol

ds
 (m

)

 

Figure 6.2 The swap neighborhood of the production schedule 

 

6.2.5 Search Heuristics 

How a given schedule is repaired certainly influences the efficiency of the iterative 

improvement technique. Repair methods differ in the amount of domain knowledge 

they exploit to modify a solution. One can consider a repair method as a 

generate-and-test process, where the generator takes as input a schedule and suggests 

possible modifications, and the tester then selects and performs one of the suggested 

modifications (Zweben et al. 1993). Thus, knowledge can be exploited in both the 

generator and the tester. For example, the generator incorporates constraint knowledge 

to greatly restrict the possible targets to be considered. In contrast, once a task is 

selected for repair, the tester selects the best modification that minimizes the number 

of remaining constraint violations. However, using knowledge is not free as 

computational overhead is incurred to evaluate and use repair knowledge. More 



Chapter 6  Local Search with Specific Constraints 

 118

informed methods also tend to be more expensive. The following section describes 

some search heuristics used in this research. 

6.2.5.1 Random search heuristic 

In this heuristic, the pair of productions in the schedule that needs to be exchanged is 

decided at random. The new generated schedule is evaluated, and if no improvement 

is found, another modification is tried. Some experiments have shown that one can 

find good solutions with random techniques. Its success may be due to its simplicity 

since it does not require deep computational reasoning, nor a thorough search of all 

branches of the search tree (Dorn et al. 1996). The steps of the search procedure with 

the random search heuristic are described below: 

Step 1: Given a set of constraints Cj and corresponding error functions error
jf  

),,2,1( ρK=j , and the objective function LF ; select an initial schedule S0.  

Step 2: Set 0SS ← . 

Step 3: Search a neighboring schedule )(' SNS ∈  by randomly exchanging a pair of 

production tmS  and ''tmS  ( 'and' ttmm ≠≠ ) in S, and calculate the 

objective function value )( 'SFL . 

Step 4: If )(<)( ' SFSF LL , set '← SS ; otherwise, go to Step 5. 

Step 5: Check whether it meets any of the stopping criteria or not: (i) 0)( =SFL  and 

(ii) a computing time bound is reached. If yes, stop the search and provide the 

current schedule S as the final solution; otherwise, go to Step 3. 

6.2.5.2 Max-Min Conflicts heuristic  

It seems reasonable that a successful iterative improvement technique applies a 

mixture of random and knowledge-based decisions to search the neighborhoods. The 
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Min-Conflicts heuristic (Minton et al. 1990) tries to repair the greatest constraint 

conflict. A system using Min-Conflicts exploits lookahead, which is quite effective at 

choosing the best repair. The original Min-Conflicts heuristic is as follows: 

Given: A set of variables, a set of binary constraints, and an assignment 

specifying a value for each variable; two variables conflict if their values violate a 

constraint; 

Procedure: Select a variable that is in conflict, and assign it a value that 

minimizes the number of conflicts. (Break ties randomly.) 

The Min-Conflicts heuristic could be combined with other heuristics. For example, 

some researchers have considered a variation that uses “Max-Conflicts” as a variable 

ordering heuristic in conjunction with the Min-Conflicts value ordering heuristic 

(Zweben et al. 1994; Codognet and Diaz 2001). Instead of picking a variable 

randomly from the set of variables in conflict, the “Max-Conflicts” variation will 

randomly choose from the variables with the most-conflicts. The Min-Conflicts 

heuristic then selects the repair that minimizes the number of conflicts. This variation 

of Min-Conflicts heuristic is adapted in this research for the local search module, and 

is called the Max-Min Conflicts heuristic in the following sections. 

The local search procedure with the Max-Min Conflicts heuristic is shown in Figure 

6.3. The steps of the search procedure are described below: 

Step 1: Given a set of constraints Cj and corresponding error functions error
jf  

),,2,1( ρK=j , and the objective function LF ; select an initial schedule S0.  

Step 2: Set 0SS ← . 

Step 3: For each element type ),,2,1( Ee K∈ , sum up all the constraint violations 

that it is involved with: 
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Step 3a: Set the element type counter 1=e  and the sum of constraint violations 

for each element type 0)( =e
LF . 

Step 3b: Set the constraint counter 1=j . 

Step 3c: If element type e is involved in constraint jC , let error
j

e
L

e
L fFF += )()( ; 

then increment j by one. 

Step 3d: If ρ≤j , go to Step 3c; otherwise, increment e by one and go to Step 

3e. 

Step 3e: If Ee ≤ , go to Step 3b; otherwise, return the sum of constraint 

violations for each element type ),,2,1(,)( EeF e
L K= . 

Step 4: Identify the “culprit” element type k if )),,2,1(:(max )()( EeFF e
L

k
L K∈= . 

(Break ties randomly). 

Step 5: Search all the neighboring schedules )(' SNS ∈  by exchanging every 

possible pairs of productions in S which satisfy kS tm =  and kS t'm' ≠  

( 'and' ttmm ≠≠ ), and calculate the objective function value )( 'SFL . 

Step 6: If )()(:)( '' SFSFSNS LL <∈∃ , select the best neighboring schedule '
bestS  

for ))(':)((min)( '' SNSSFSF LbestL ∈=  and set '
bestSS ← ; otherwise, go to 

Step 7. 

Step 7: Check whether it meets any of the stopping criteria or not: (i) 0)( =SFL  and 

(ii) a computing time bound is reached. If yes, stop the search and provide the 

current schedule S as the final solution; otherwise, go to Step 3. 
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Figure 6.3 Search procedure of the Max-Min Conflicts heuristic 

 

 

6.3 Case Study  

6.3.1 Illustrative Examples 

Two cases were tested in this study to verify the feasibility and applicability of the 

proposed local search algorithms. They were based on a particular NSGA run for the 

L-U example in the previous case study involving the global search module. In this 

NSGA run, alternative repaired schedules along the Pareto front provided several 
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options for the decision making. Detailed information associated with these schedules 

is shown in Table 6.2. Table 6.3 shows the details of the two cases used in this part of 

the study. Each case involving a particular schedule needs to be met by using local 

search. These two schedules provide one more option for the non-dominated 

schedules with the objective function vectors of (0, 7) and (4, 2) respectively. 

Table 6.2 Information for available repaired schedules 

Number of units delivered late Number of units out of the 
prescribed inventory band No. of 

options 
E1 E2 E3 Total E1 E2 E3 Total 

1 0 0 0 0 3 3 1 7 
2 1 0 0 1 2 2 0 4 
3 0 1 0 1 1 2 1 4 
4 0 0 1 1 1 2 1 4 
5 0 2 1 3 2 1 0 3 
6 1 2 0 3 1 1 1 3 
7 1 2 1 4 1 1 0 2 
8 2 2 0 4 0 1 1 2 

 

Table 6.3 Specific constraints considered in two cases 

Specific Requirements Constraints 
Case 1 Case 2 

The number of units delivered late    
In total for all element types =0 =4 

Element type E1 =0 =0 
Element type E2 =0 =2 
Element type E3 =0 =2 

The number of units out of the prescribed inventory band   
In total for all element types =7 =2 

Element type E1 =3  
Element type E2 =1  
Element type E3 =3  

 

Two search heuristics, namely the random search heuristic and the Max-Min Conflicts 

heuristic, were applied to search these two specific schedules. Eight repaired 

schedules were randomly selected from the solution set generated by the NSGA run as 

the initial solutions for the local search; each of them represents the available options 
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described in Table 6.2. For each combination of search heuristic and example, eight 

groups of experiments were executed by starting with each of the repaired schedules. 

Each group of experiments with the same initial solution consisted of three separate 

runs. All the experiments ran until (1) there were no outstanding constraint violations, 

i.e. an objective function value of 0; or (2) a 150-second CPU time bound was 

reached. All the experiments were implemented using MS Visual C++ on a MS 

Windows platform. 

 

6.3.2 Results and Discussion 

The results of the experiments performed on these two examples are discussed in the 

following sections. 

6.3.2.1 Case 1 

The search results by the random search heuristic and the Max-Min Conflicts heuristic 

with the eight selected initial solutions are shown in Figures 6.4 and 6.5 respectively. 

These figures display the step-by-step improvement in the objective function value 

with every acceptable modification to the current schedule against the CPU time. 

Information on the performance of the experiments starting with different initial 

solutions is shown in Table 6.4, such as the frequency of finding the specific schedule, 

the best and worst objective function value of the schedules found, and the fewest 

computing time and corresponding repair steps used to find the specific schedule. 

For the random search heuristic, the experiments starting with seven out of the eight 

initial solutions found the specified schedule satisfying all the constraints imposed in 

Case 1 in at least one out of the three runs. As indicated in Table 6.4, the frequency of 

finding the specified schedule in the experiments with the initial solutions No. 5, 6 
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and 8 was 1, the experiments with the initial solution No.1 was 2, and the experiments 

with the initial solutions No. 2, 3 and 4 was 3. On the other hand, the experiments 

starting with the seventh initial solution did not find the specified one within the 

computing time bound of 150 seconds. The three runs generated the schedules with an 

objective function value ranging from 2 to 3. Therefore, the results show that the 

performance of the random search heuristic was highly variable not only in the 

experiments with different initial solutions, but also in the runs with the same initial 

solution. In contrast, except for the two runs involving the seventh initial solution, all 

the other runs with the Max-Min Conflicts heuristic successfully generated the 

specified schedule with an objective function value of 0. The results of the 

experiments with the Max-Min Conflicts heuristic show that this heuristic was 

consistent in generating the specified schedule considered in Case 1. 

Table 6.4 Performance of search heuristics for Case 1  

Random search heuristic Max-Min Conflicts heuristic Initial 
solution Final obj. Final obj. 

No Obj. 
value 

Fre.*
Best Worst 

(if any)

Repair 
steps+ 

Computing 
times+ 

(Seconds) 
Fre.* 

Best Worst 
(if any) 

Repair 
steps+ 

Computing 
times+ 

(Seconds) 

1 4 2 0 1 4 82.48 3 0 -- 2 0.08 
2 6 3 0 -- 6 31.26 3 0 -- 3 0.11 
3 6 3 0 -- 6 74.36 3 0 -- 3 0.11 
4 6 3 0 -- 6 69.70 3 0 -- 3 0.10 
5 7 1 0 2 7 147.71 3 0 -- 3 0.11 
6 7 1 0 3 4 76.76 3 0 -- 4 0.16 
7 9 0 2 3 -- -- 1 0 1 5 0.24 
8 9 1 0 2 8 102.17 3 0 -- 4 0.18 
 Sum# 14     22     

Note: * – The number out of the three runs made with the same initial solution that found the 
specified schedule. 

+ – The number of repair steps and computing time of the run that found the specified 
schedule in the least computing time. 

# –  The number of all the runs with each heuristic that found the specified schedule. 
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Therefore, over the 24 runs for each heuristic, the convergence frequency (Table 6.4) 

for the Max-Min Conflict heuristic (22) is much higher than that for the random 

search heuristic (14). In terms of computing time and repair steps used to find the 

specified schedule with the same initial solution, the results show that the Max-Min 

Conflicts heuristic was superior to the random search heuristic. For example, for the 

second initial solution, the former only required 3 repair steps and 0.11 seconds to 

find the specified schedule in the best case, whilst the latter required 6 repair steps and 

31.26 seconds. 
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(1) Initial solution 1 
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(3) Initial solution 3 
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(5) Initial solution 5 
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(7) Initial solution 7 
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(2) Initial solution 2 
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(4) Initial solution 4 
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(6) Initial solution 6 
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(8) Initial solution 8

 

Figure 6.4 Results of the random search heuristic for Case 1 



Chapter 6  Local Search with Specific Constraints 

 127

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Run 1

Run 2

Run 3

 
(1) Initial solution 1 

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Run 1

Run 2

Run 3  
(3) Initial solution 3 

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Run 1

Run 2

Run 3

 
(5) Initial solution 5 
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(7) Initial solution 7 
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(2) Initial solution 2 
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(4) Initial solution 4 
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(6) Initial solution 6 
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(8) Initial solution 8 

 

Figure 6.5 Results of the Max-Min Conflicts heuristic for Case 1
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6.3.2.2 Case 2 

Figures 6.6 and 6.7 display the search results with the eight initial solutions by the 

random search heuristic and the Max-Min Conflicts heuristic respectively. Table 6.5 

shows the statistics on the performance of the heuristics in these experiments.  

For the random search heuristic, the experiment involving the first five initial 

solutions generated the specified schedule considered in Case 2 in all the three runs, 

whilst the experiments starting with the sixth and eighth initial solutions converged to 

the specified one in one and two out of the three runs respectively. All of the 

schedules generated by the unsuccessful runs have an objective function of 1. 

Moreover, the random search heuristic failed to find the specified schedule starting 

with the seventh initial solution. All the three runs generated a schedule with an 

objective value of 1 at the end of 150 seconds. In contrast, all of the 24 runs with the 

Max-Min Conflicts heuristic successfully generated the specified schedule for the 

initial solutions tried. 

These two heuristics required the same number of repair steps in generating the 

specified schedule with the initial solutions No. 3 and 5; however, the Max-Min 

Conflicts heuristic required fewer steps than the random search heuristic in the 

experiments involving other initial solutions. Moreover, the Max-Min Conflicts 

heuristic used less than 0.2 seconds to find the specified schedule in the experiments 

involving different initial solutions, whilst the random search heuristic used a 

computing time ranging from 4.17 to 80.84 seconds even in the fastest runs. Therefore, 

the results of experiments for Case 2 again show that the Max-Min Conflicts heuristic 

performed much better than the random search heuristic. 
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Table 6.5 Performance of search heuristics for Case 2  

Random search heuristic Max-Min Conflicts heuristic Initial 
solution Final obj. Final obj. 

No Obj. 
value 

Fre.*
Best Worst 

(if any)

Repair 
steps+ 

Computing 
times+ 

(Seconds) 
Fre.* 

Best Worst 
(if any) 

Repair 
steps+ 

Computing 
times+ 

(Seconds) 

1 9 3 0 -- 8 64.57 3 0 -- 5 0.18 
2 5 3 0 -- 4 31.47 3 0 -- 3 0.09 
3 7 3 0 -- 4 50.78 3 0 -- 4 0.13 
4 5 3 0 -- 4 26.90 3 0 -- 3 0.10 
5 2 3 0 -- 2 4.17 3 0 -- 2 0.07 
6 4 1 0 1 4 64.49 3 0 -- 3 0.09 
7 2 0 1 -- -- -- 3 0 -- 1 0.04 
8 4 2 0 1 4 80.84 3 0 -- 2 0.08 
 Sum# 18     24     

Note: * – The number out of the three runs made with the same initial solution that found the 
specified schedule. 

+ – The number of repair steps and computing time of the run that found the specified 
schedule in the least computing time. 

# – The number of all the runs with each heuristic that found the specified schedule. 
 

6.3.2.3 Summary 

In summary, the results indicate that the Max-Min Conflicts heuristic performed better 

than the random search heuristic in both cases. It is apparent that the computing time 

for finding specified schedules with the Max-Min Conflicts heuristic was much less 

than with the random search heuristic. This is attributed to the difference between the 

ways these two approaches use in searching among the neighbors. Since 

neighborhoods are restricted to the element types involved in the greatest constraint 

violation for the Max-Min Conflicts heuristic, there are fewer candidate modifications 

to explore on average than for the random search heuristic. The Max-Min Conflicts 

heuristic searches all the possible neighbors deterministically and always selects the 

best modification operator with the minimal constraint violation. In contrast, it takes 

time to find an acceptable modification within a large neighborhood with the random 

search approach as its search is random. Furthermore, the modification is accepted no 

matter how much/little improvement it makes to the objective function value. This 
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also explains why the number of repair steps taken by the Min-Max Conflicts 

heuristic is less than that in the random search heuristic for the same initial solution. 

Consequently, it is computationally less expensive to perform this form of lookahead 

for the problem considered in the local search module. 



Chapter 6  Local Search with Specific Constraints 

 131

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Run 1

Run 2

Run 3

 
(1) Initial solution 1 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

Run 1

Run 2

Run 3

 
(3) Initial solution 3 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

Run 1

Run 2

Run 3

 
(5) Initial solution 5 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Run 1

Run 2

Run 3

 
(7) Initial solution 7 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

Run 1

Run 2

Run 3

 
(2) Initial solution 2 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Run 1

Run 2

Run 3

 
(4) Initial solution 4 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

Run 1

Run 2

Run 3

 
(7) Initial solution 7 

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Run 1

Run 2

Run 3

 
(8) Initial solution 8

 

Figure 6.6 Results of the random search heuristic for Case 2
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Figure 6.7 Results of the Max-Min Conflicts heuristic for Case 2 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 
 

In this chapter, the work carried out in this research and the results obtained are first 

summarized; this is followed by a discussion of the limitations of the current research 

and recommendations for future research work. 

 

 

7.1 Conclusions 

The main contribution of this research is to develop a reactive scheduling model for 

precast production to complement earlier models that did predictive scheduling. This 

model recognizes the existence of schedule disturbances and the need to adapt the 

existing schedule in a practical way. This is achieved by using a repair-based strategy. 

The research also identifies effective global and local search methods to effect the 

repair-based strategy. In global search, the generation of alternative repaired schedules 

along the Pareto front using NSGA can be improved by including the elitist strategy, 

especially with the clustering selection that was created in the course of this research. 

This innovation helps to improve diversity of solutions along the Pareto front. On the 

other hand, the effectiveness and efficiency of local search can be improved by using 

the Min-Max Conflicts heuristic introduced in this research. This heuristic is capable 

of finding particular schedules with desired characteristics by exploiting domain 

knowledge associated with the specific constraints imposed on the local search. More 

specific conclusions about the model and search methods are highlighted in the 

following sections. 
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7.1.1 Development of a Coordinated Production Reactive Scheduling 

Model  

A coordinated production reactive scheduling model (CPRSM) has been proposed in 

this research to address the need for repairing the current production schedule when 

disturbances arrive. This proposed CPRSM is based on a mathematical formulation of 

the precast production rescheduling problem, as well as an algorithmic solution 

procedure that incorporate advanced AI methods. It consists of four key elements for 

rescheduling, namely disturbance detection, global search with multiobjective 

optimization, local search with specific constraints, and ranking of outcomes for 

negotiation. 

In the global search module, the precast production rescheduling problem is 

formulated as a true multiobjective optimization problem with quantitative evaluation 

criteria meaningful to both the precaster and the contractor. As the core of the 

proposed CPRSM, this module (1) repairs the existing schedule by resolving schedule 

disturbances with proper sequence and suitable heuristics, and (2) provides alternative 

repaired schedules that represent different degrees of trade-off between the multiple 

objectives considered. This module offers a more methodical and systematic approach 

of rescheduling production compared to that used by precasters in actual practice. 

The local search module is developed to enhance the proposed CPRSM in case 

minimal adjustments are needed for the alternatives provided by the global search 

module. A local search mechanism is proposed, in which the schedules satisfying 

specific constraints imposed by either the precaster or the contractor are obtained by 

exploring the neighborhoods of available repaired schedules on the Pareto front. The 

local search module is useful in actual practice as it acts as a complementary search 
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process in the proposed CPRSM.  

These two search processes provide a comprehensive means of searching for 

alternative repaired schedules in the rescheduling problem. These schedules form a 

valuable basis for the negotiation of a new delivery schedule between the precaster 

and the contractor. It is hoped that a final compromise solution can be found among 

the alternatives returned by the rescheduling process. 

 

7.1.2 Generation of Repaired Schedules along a Pareto Front 

Several multiobjective genetic algorithms were applied to generate alternative 

repaired schedules along a Pareto front defined by the multiple objectives considered 

in the global search module. The selected algorithms include the weighted sum 

genetic algorithm, non-dominated sorting genetic algorithm (NSGA) and two 

variations of NSGA incorporating different elitist strategies, namely NSGA-ESI and 

NSGA-ESII. 

Three examples involving production schedules for precast building components were 

used to test the algorithms in the case study. These represent low, medium and high 

levels of mold utilization rates in the precast factory. The weighted sum genetic 

algorithm, in which varying values of the weights for the objectives were considered, 

is straightforward in application for the purpose of generating non-dominated 

solutions. However, this kind of algorithm has some shortcomings compared to the 

other three Pareto-based algorithms. The most significant disadvantage of this kind of 

algorithm is its sensitivity to the shape of the trade-off surface. The trial revealed that 

a non-dominated solution in the concave potion of the trade-off surface could not be 

found by the weighted sum GA in the L-U example. Although this algorithm 
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generated the optimal Pareto front in the M-U and H-U examples, it required more 

effort and computing time to do so. In contrast, the results for the three Pareto-based 

algorithms show that they are efficient in generating more than one non-dominated 

solution in their solution sets without the need for varying weights for the objectives. 

Moreover, the shape of the trade-off surface does not affect the ability of these 

algorithms in finding the non-dominated solutions no matter whether the surface is 

convex or non-convex. 

The computational results of NSGA, NSGA-ESI and NSGA-ESII show that the 

performance of these Pareto-based algorithms was affected significantly with an 

increase in the utilization rate of the molds. However, the solution sets produced by 

NSGA-ESII were better than those obtained by NSGA and NSGA-ESI for all the 

examples. More significantly in the H-U example, half of the 10 NSGA-ESII runs 

converged to the optimal Pareto front, whilst none of the NSGA-ESI and NSGA runs 

were able to do so. The results indicate that the proposed elitist strategy is able to 

improve the performance of NSGA. 

 

7.1.3 Exploration of Schedules with Specific Constraints 

A local search process has been developed to support the incremental exploration for 

specific schedules. This local search uses the degree of satisfaction of specific 

constraints as the objective function. Starting with the alternative repaired schedules 

generated in the global search module, the local search process adopts the simplest 

form of a 2-exchange neighborhood structure and iteratively accepts modifications 

that improve the value of the objective function until the stopping criteria is met. Two 

search heuristics, namely the random search heuristic and the Max-Min Conflicts 

heuristic, were tried out in the search. A fundamental difference between these two 
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heuristics is the way in which the domain knowledge of specific constraints is applied 

in searching the neighborhood and accepting schedule changes. Experiments with 

these two heuristics were conducted on two cases. The results show that the Max-Min 

Conflicts heuristic performed better than the random search heuristic. Starting with 

the same initial solution, the Max-Min Conflicts heuristic was consistent in 

successfully finding the specified schedules, and required fewer repair steps and 

computing time than the random search heuristic. 

 

 

7.2 Limitations of the Research  

This research focused on generating alternative repaired schedules as a result of 

schedule disturbances. A reactive scheduling model for precast production has been 

developed and approved feasible. However, several limitations still exist in the 

proposed model. 

Firstly, it is assumed that the number of molds (the critical resource considered in the 

model) is known in advance and remains constant during the planning horizon. 

However, this might not be the case in practice, since optimizing the mold groups and 

mold numbers are real concerns for the precaster. Besides the molds, other important 

resources such as the gantry crane, skilled workers and production space, are also 

assumed to be always available and enough to implement the production schedule. 

However, incorporating constraints related to the availability and capacity of these 

resources would make the proposed reactive scheduling model closer to the actual 

situation.  

Secondly, in order to facilitate schedule coordination between the precaster and the 
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contractor, the present research focuses on optimizing two objectives simultaneously 

in the global search module. Although these two objectives represent the respective 

concerns of the precaster and the contractor, either party may consider other 

evaluation criteria in reality.  

Thirdly, the scope of this research does not include the issue of how to rank 

alternative repaired schedules presented and reach a final compromise between the 

precaster and the contractor. This issue is necessary since the final aim of schedule 

coordination is to agree on a compromise schedule between these two parties before 

the precast production continues.  

Fourthly, this research focuses on production rescheduling in precast factories. In 

reality, the contractor is also likely to review the construction schedule, and possibly, 

even adjust the construction schedule in the event of disruptions. Moreover, the values 

for a time buffer and a minimal inventory buffer need to be investigated. If these 

buffers are set too large, it would be wasteful; on the other hand, if these buffers are set 

too small, flexibility in responding to schedule disturbances is reduced.  

Finally, the emphases of this research are the modeling of the rescheduling problem 

and the development of appropriate methods to solve it. Development of input and 

output interfaces that facilitate real life application in the rescheduling process is not 

considered in the present research. 

 

 

7.3 Recommendations for Future Research 

Based on the above discussions, the following issues are recommended for future 
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research work. 

Firstly, development of a high-level resource replanning module is suggested to 

complement the proposed production rescheduling model. It could be used to consider 

issues, such as adjustment of quantities for different resources, resource assignment 

between different projects carried out in the factory, etc. Therefore, besides 

constraints on molds considered in this research, constraints related to other important 

resources (e.g. gantry crane and skilled workers) and related costs can be considered 

in the future development of the model. 

Secondly, in order to meet the requirements of decision makers under different 

circumstances, more objective/evaluation functions can be included in the model. 

Practical considerations, such as the utilization level for different resources, the mold 

changeover cost, and the makespan for the production, are suggested for inclusion in 

future development. 

Thirdly, an outcome ranking mechanism is recommended by incorporating 

negotiation techniques based on game theory. The precaster and the contractor can 

reach a “win-win” solution from alternatives presented by appropriately expressing 

their preferences with quantitative methods, such as converting their preferences into 

a real number with a suitable value function and plotting indifference curves for 

various degrees of the preferences. 

Fourthly, a study of how the contractor responds to schedule disturbances is suggested 

for future research work. For example, if the adjustment of the construction schedule 

can not be done, the contractor can be more flexible in dealing with unexpected 

events by adjusting the time buffer between the delivery schedule and the construction 

schedule, as well as increasing the inventory buffer for precast components on the 
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site.  

Finally, a friendly user interface would be beneficial to the application of the model in 

the industry. The input interface can facilitate users in entering the required data, such 

as disturbance characteristics, specific constraints, decision preferences, etc. The 

output interface can present a number of different alternative repaired schedules as 

generic Gantt charts and tables for easy reference. 
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Table A.1 Site demands for the L-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 T 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T  

E1     5      5     5     5    5     6  31 
E2        3          3          2    8 
E3     5      5     5     5    5     6  31 

Table A.2 Original production schedule of the L-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T 

M1  E1 E1 E1 E1    E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1    
M2     E2   E2  E1 E1   E1  E2 E2     E1          
M3    E3 E3   E2  E3 E3   E3 E3  E2    E3  E3         
M4   E3 E3 E3    E3 E3 E3   E3 E3 E3  E3 E3  E3 E3 E3 E3 E3 E3      

Table A.3 One repaired production schedule of the L-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T 

M1  E1 E1 E1 E1    E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1         
M2  E2   E2   E2  E1 E1   E1   E1 E1 E1  E2 E1 E1         
M3    E3 E3   E2  E3 E3   E3 E3 E3 E2 E3 E3  E3 E2 E3         
M4   E3 E3 E3    E3 E3 E3   E3 E3 E3  E3 E3  E3 E3 E3         
 
Notes: 1. Priority of disturbance resolution and corresponding heuristics are D6(H2)->D5(H5)->D4(H5)->D2(H2)->D1(H4)->D3(H2). 

 2. The repaired production schedule has an objective vector of (1, 4). 
 
 Sundays and public holidays E1 Disturbances E1 Relocation of disturbances in the repaired schedule  
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Table B.1 Site demands for the M-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 T 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T  

E1     7      6     6     6    6     6  37 
E2        3          3          3    9 
E3     7      6     6     6    6     6  37 

Table B.2 Production schedule of the M-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T 

M1  E1 E1 E1 E1   E1 E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1 E1 E1 E1      
M2    E2   E1 E1  E2 E2 E2  E1 E1   E1 E1   E1 E1 E1        
M3       E1  E3 E3 E3 E3  E3    E2 E2  E3 E3 E3 E3 E3 E3      
M4  E3 E3 E3 E3  E3 E3 E3 E3 E3 E3  E3 E3 E3 E3  E2  E3 E3 E3 E3 E3 E3      

Table B.3 One repaired production schedule of the M-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T 

M1  E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1 E2        
M2  E1  E2   E1 E1 E2 E2 E2 E2  E1 E1 E3 E1 E1 E1  E1 E1 E1         
M3       E1  E3 E3 E3 E3  E3 E2 E3 E3 E2 E3  E3 E3 E3         
M4  E3 E3 E3 E3  E3 E3 E3 E3 E3 E3  E3 E3 E3  E3 E3  E3 E3 E3         
 
Notes: 1. Priority of disturbance resolution and corresponding heuristics are D1(H5)->D2(H1)->D5(H2)->D6(H5)->D3(H5)->D3(H5). 

 2. The repaired production schedule has an objective vector of (1, 12). 
 
 Sundays and public holidays E1 Disturbances E1 Relocation of disturbances in the repaired schedule  
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Table C.1 Site demands for the H-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 T 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T  

E1     8      7     8     8    8     6  45 
E2        2          3          2    7 
E3     8      7     8     8    8     6  45 

Table C.2 Production schedule of the H-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T 

M1   E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1 E1 E1 E1      
M2  E1 E1 E1 E1  E2 E2 E2 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E2  E1 E1      
M3  E3 E3 E3 E3   E3 E3 E3 E3 E3  E3 E3 E3 E3 E3 E2  E3 E3 E3 E3 E1 E3      
M4   E3 E3 E3   E3 E3 E3 E3 E3  E3 E3 E3 E3 E3 E3  E3 E3 E3 E3 E3 E3      

Table C.3 One repaired production schedule of the H-U example 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T 

M1  E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E1         
M2  E2 E1 E1 E1  E2 E2 E2 E1 E1 E1  E1 E1 E1 E1 E1 E1  E1 E1 E2         
M3  E3 E3 E3 E3  E1 E3 E3 E3 E3 E3  E3 E3 E3 E3 E3 E2  E3 E3 E3         
M4   E3 E3 E3  E1 E3 E3 E3 E3 E3  E3 E3 E3 E3 E3 E3  E3 E3 E1         
 
Notes: 1. Priority of disturbance resolution and corresponding heuristics are D6(H7)->D1(H3)->D4(H5)->D3(H7)->D5(H5)->D2(H7). 

 2. The repaired production schedule has an objective vector of (10, 19). 
 
 Sundays and public holidays E1 Disturbances E1 Relocation of disturbances in the repaired schedule  
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