

COORDINATED RESCHEDULING OF
PRECAST PRODUCTION

ZENG ZHEN

NATIONAL UNIVERSITY OF SINGAPORE

2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48629955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COORDINATED RESCHEDULING OF
PRECAST PRODUCTION

ZENG ZHEN

(B.Eng., M. Eng.)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CIVIL ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2006

I

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude, first and foremost, to my supervisor,

Associate Professor Chan Weng Tat, for his patient, generous and constructive

guidance, continuous inspirations and encouragements in the course of this study.

I am fortunate to be a research student in the Department of Civil Engineering,

National University of Singapore (NUS). Thanks to the remarkable people and

outstanding academic environment of NUS and Singapore, my experience as a

research student at NUS has been pleasurable and fruitful.

I am also grateful to Mr. Ong Ting Guan, Project Manager; and Ms. Loh Li Hwa,

Construction Engineer of the Construction Technology Pte Ltd; and Ms. Tan Meow

Cheng Debbie, General Manager of the Eastern Pretech Pte Ltd for several interviews,

plant visits and invaluable suggestions in the course of my study.

Finally, I would like to express my heartiest gratitude to my family in China for their

sacrifice, understanding and support over these years; and my husband Pan Heng for

these years we spent together in Singapore.

 II

TABLE OF CONTENTS

Acknowledgements --- I

Table of Contents -- II

Summary ---V

List of Tables-- VII

List of Figures --- IX

CHAPTER 1 INTRODUCTION -- 1

1.1 The Precast Industry in Singapore -- 2
1.2 Schedule Coordination for Precast Production-- 3

1.2.1 Precast Supply Chain -- 3
1.2.2 Schedule Coordination Practices--- 5

1.3 Rescheduling Practices in Precast Factories--- 7
1.3.1 Production Planning and Control Processes -------------------------------------- 7
1.3.2 Occurrence of Schedule Disturbances--- 9
1.3.3 Features of Rescheduling Practices ---11

1.4 Current Research in Precast Planning and Scheduling------------------------------12
1.5 Research Objectives and Scope --14
1.6 Research Methodology--15
1.7 Thesis Organization ---17

CHAPTER 2 LITERATURE REVIEW --19

2.1 Planning and Scheduling for Precast Production ------------------------------------19
2.2 Reactive Scheduling---25

2.2.1 Overview ---25
2.2.2 Approaches in Reactive Scheduling --27

2.3 Multiobjective Optimization Problems ---30
2.3.1 Basic Concepts and Terminologies ---30
2.3.2 Multiobjective Optimization Methods ---32

2.4 Genetic Algorithms and Applications to Scheduling --------------------------------34
2.4.1 Overview of GAs--34
2.4.2 Multiobjective Genetic Algorithms ---35
2.4.3 Applications to Scheduling Problems --36

2.5 Summary --38

CHAPTER 3 PRECAST PRODUCTION RESCHEDULING -----------------------41

3.1 Precast Production Rescheduling Problem ---41
3.1.1 Overview of Precast Production Process---41
3.1.2 Production Constraints ---44
3.1.3 Optimizing Objectives--45

 III

3.1.4 Mathematical Formulation---46
3.2 Coordinated Production Reactive Scheduling Model -------------------------------50

3.2.1 Model Overview --50
3.2.2 Disturbance Detection --51
3.2.3 Global Search with Multiobjective Optimization-------------------------------54
3.2.4 Local Search with Specific Constraints --61
3.2.5 Ranking of Outcomes for Negotiation ---63

CHAPTER 4 MULTIOBJECTIVE GENETIC ALGORITHMS FOR
GLOBAL SEARCH---65

4.1 Basic Mechanisms of Genetic Algorithms--65
4.2 Genetic Algorithms for Multiobjective Optimization -------------------------------69

4.2.1 Key Issues in Multiobjective Search ---69
4.2.2 Weighted Sum Genetic Algorithm --71
4.2.3 Non-dominated Sorting Genetic Algorithm (NSGA)---------------------------72
4.2.4 NSGA with Proposed Elitist Strategies---77

4.3 Implementation of GAs in Global Search --82
4.3.1 Chromosome Representation --83
4.3.2 Decoding ---85
4.3.3 Objective Functions---85
4.3.4 Relation among chromosomes, schedules and objective functions-----------86
4.3.5 Genetic Operators ---87
4.3.6 Software Used for the Study---87

CHAPTER 5 GLOBAL SEARCH FOR REPAIRED SCHEDULES – CASE
STUDY ---88

5.1 Illustrative Test Cases ---88
5.2 Performance Measurement ---91
5.3 GA Parameters ---93
5.4 Results and Discussion--94

5.4.1 The L-U example--95
5.4.2 The M-U example---99
5.4.3 The H-U example --- 102

CHAPTER 6 LOCAL SEARCH WITH SPECIFIC CONSTRAINTS ----------- 109

6.1 Overview of Local Search -- 109
6.2 Implementation of Local Search with Specific Constraints ---------------------- 112

6.2.1 Specific Constraints--- 112
6.2.2 Objective Function-- 114
6.2.3 Initial Solutions-- 115
6.2.4 Neighborhood Structure-- 116
6.2.5 Search Heuristics-- 117

6.3 Case Study -- 121
6.3.1 Illustrative Examples --- 121
6.3.2 Results and Discussion --- 123

 IV

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS ------------------- 133

7.1 Conclusions--- 133
7.1.1 Development of a Coordinated Production Reactive Scheduling Model -- 134
7.1.2 Generation of Repaired Schedules along a Pareto Front -------------------- 135
7.1.3 Exploration of Schedules with Specific Constraints-------------------------- 136

7.2 Limitations of the Research -- 137
7.3 Recommendations for Future Research--- 138

REFERENCES--- 141

APPENDIX I Data and Schedules for the L-U Example ---------------------------- 153

APPENDIX II Data and Schedules for the M-U Example -------------------------- 155

APPENDIX III Data and Schedules for the H-U Example-------------------------- 157

 V

SUMMARY

Schedule disturbances are common and inevitable in the process of precast production.

Not only is it necessary for the precaster to repair existing production schedule to

accommodate these unexpected changes, it is also critical that the precaster and the

contractor reach agreement on a new delivery schedule. However, the current practice

of rescheduling is rudimentary in terms of computer support and depends largely on

human experience. Without a proper exploration of the possibilities to resolve the

schedule disturbances, both parties are likely to adopt overly conservative

assumptions to optimize their own interests. A more beneficial approach would be to

incorporate specific requirements from both parties and support negotiation through

computer-aided approaches to the generation of a range of alternatives meeting these

requirements.

This research has proposed and developed a coordinated production reactive

scheduling model for this purpose. The fundamental basis of the model involves the

formulation of the precast production rescheduling problem as a multiobjective

optimization problem, in a way that includes the objectives from both the precaster

and the contractor. A multiobjective genetic algorithm is applied in the global search

procedure for a rich set of alternative repaired schedules. This search exploits the use

of a solution representation that gives the best sequence and the corresponding

heuristics needed to resolve the disturbances. The results from several examples in a

case study have demonstrated the utility of the procedure developed, principally in

automating the generation of alternative schedules that involve different degrees of

trade-off between the objectives. Unlike the commonly adopted approach to solve

multiobjective optimization problems, this has been achieved without the need to

 VI

pre-determine weights for the objectives. Comparisons between several GA-centric

optimization techniques show that a variation of non-dominated sorting genetic

algorithm with the elitist strategy proposed in this research is more consistent in

locating non-dominated solutions along the Pareto front regardless of different mold

utilization levels in production schedules.

As a further enhancement to the proposed model, a local search process is

implemented to conduct incremental exploration of the search space in specific areas

identified by either the precaster or the contractor. The basic idea is to improve

existing repaired schedules iteratively by searching for alternatives with specific

characteristics in the neighborhoods of solutions on the Pareto front. This capability

would be useful when minimal adjustments are needed for the alternatives generated

by the global search in the first phase. The encouraging results obtained from the case

study suggest that the proposed Min-Max Conflicts heuristic is capable of finding

specific schedules by exploiting domain knowledge associated with specific

constraints; furthermore, the local search can be completed within a reasonable

amount of computational time. Together, the alternative schedules generated by the

global search procedure as well as the specific schedules from the local search

procedure provide the precaster and the contractor useful insight into the trade-offs

between their objectives as they negotiate a new delivery schedule.

Keywords: rescheduling, schedule coordination, multiobjective optimization, genetic

algorithms, local search, precast production.

 VII

LIST OF TABLES

Table 3.1 Multiple optimizing objectives for precast production rescheduling --------45

Table 3.2 Production schedule representation --47

Table 3.3 Parameters considered for the rescheduling problem--------------------------47

Table 3.4 Characteristics representation of schedule disturbances ----------------------52

Table 5.1 Problem parameters --89

Table 5.2 Characteristics of schedule disturbances --90

Table 5.3 Heuristics representation --91

Table 5.4 Frequency of convergence with different GA parameters --------------------94

Table 5.5 GA parameters used in case study ---94

Table 5.6 Performances of NSGA, NSGA-ESI and NSGA-ESII
for the L-U Example---98

Table 5.7 Performances of NSGA, NSGA-ESI and NSGA-ESII
for the M-U Example -- 103

Table 5.8 Performances of NSGA, NSGA-ESI and NSGA-ESII
for the H-U Example -- 108

Table 6.1 Different circumstances for repaired schedules ------------------------------ 113

Table 6.2 Information for available repaired schedules --------------------------------- 122

Table 6.3 Specific constraints considered in two cases --------------------------------- 122

Table 6.4 Performance of search heuristics for Case 1---------------------------------- 124

Table 6.5 Performance of search heuristics for Case 2---------------------------------- 129

Table A.1 Site demands for the L-U example -- 154

Table A.2 Original production schedule of the L-U example -------------------------- 154

Table A.3 One repaired production schedule of the L-U example--------------------- 154

Table B.1 Site demands for the M-U example --- 156

Table B.2 Production schedule of the M-U example ------------------------------------ 156

 VIII

Table B.3 One repaired production schedule of the M-U example -------------------- 156

Table C.1 Site demands for the H-U example-- 158

Table C.2 Production schedule of the H-U example------------------------------------- 158

Table C.3 One repaired production schedule of the H-U example -------------------- 158

 IX

LIST OF FIGURES

Figure 1.1 Precast supply chain --- 5

Figure 1.2 Planning and control processes for precast production ----------------------- 9

Figure 1.3 “External” and “In-house” causes for schedule disturbances ---------------10

Figure 2.1 Illustration of domination in multiobjective optimization -------------------31

Figure 3.1 Relationship between elements and molds ------------------------------------42

Figure 3.2 Layout of production line in a precast factory --------------------------------43

Figure 3.3 Framework of the coordinated production reactive scheduling model-----51

Figure 3.4 Illustration of schedule array and disturbances--------------------------------52

Figure 3.5 Illustration of heuristic strategies for schedule repair ------------------------57

Figure 3.7 Iterative repair process with specific constraints------------------------------64

Figure 4.1 GA chromosome --66

Figure 4.2 Illustrations of crossover and mutation---68

Figure 4.3 Flowchart of the non-dominated sorting genetic algorithm (NSGA) ------73

Figure 4.4 Flowchart of the NSGA with proposed elitist strategy-----------------------82

Figure 4.5 Illustration of random representation---84

Figure 4.6 Chromosome representations and decoding -----------------------------------85

Figure 4.7 Relationship for chromosomes, schedules and objective functions --------86

Figure 5.1 PFcurrent found with the weighted sum GA for the L-U example------------96

Figure 5.2 PFcurrent found with NSGA for the L-U example------------------------------97

Figure 5.3 PFcurrent found with the weighted sum GA for the M-U example -----------99

Figure 5.4 PFcurrent found with NSGA for the M-U example--------------------------- 100

Figure 5.5 PFcurrent found with NSGA-ESI for the M-U example --------------------- 101

Figure 5.6 PFcurrent found with NSGA-ESII for the M-U example -------------------- 101

 X

Figure 5.7 Frequency of convergence and solutions found for the M-U example--- 102

Figure 5.8 PFcurrent found with the weighted sum GA for the H-U example --------- 104

Figure 5.9 PFcurrent found with NSGA for the H-U example --------------------------- 105

Figure 5.10 PFcurrent found with NSGA-ESI for the H-U example -------------------- 105

Figure 5.11 PFcurrent found with NSGA-ESII for the H-U example ------------------- 106

Figure 5.12 Frequency of convergence and solutions found for the L-U example -- 107

Figure 6.1 Algorithmic skeleton of iterative improvement ----------------------------- 112

Figure 6.2 The swap neighborhood of the production schedule ----------------------- 117

Figure 6.3 Search procedure of the Max-Min Conflicts heuristic --------------------- 121

Figure 6.4 Results of the random search heuristic for Case 1 -------------------------- 126

Figure 6.5 Results of the Max-Min Conflicts heuristic for Case 1 -------------------- 127

Figure 6.6 Results of the random search heuristic for Case 2 -------------------------- 131

Figure 6.7 Results of the Max-Min Conflicts heuristic for Case 2 -------------------- 132

 1

CHAPTER 1

INTRODUCTION

The public housing program in Singapore has featured the use of a significant

proportion of precast building components in order to meet cost, schedule and quality

goals. Although the production of precast components takes place in a controlled

factory environment, a high frequency of schedule disturbances is still inevitable in

the production process, especially those that originate from the construction site. This

makes frequent rescheduling necessary in order to repair the current schedule to

accommodate changes and keep the production process going smoothly. However,

current rescheduling practices in precast factories are fairly basic in nature and very

much based on experience. Coordination in handling schedule disturbances and

rescheduling between the precast factory and the construction site is also a challenge

for the parties involved in the precast supply chain since they are independent entities.

Currently, there has been little research work in the area of precast planning and

scheduling that addresses these problems. Therefore, the focus of current research is

on (1) modeling the precast production rescheduling problem, and (2) adopting

appropriate methods to solve the problem effectively and facilitate coordination of

schedules between the parties involved.

The subsequent sections provide some background information including the

development of the local precast industry and the stages in the construction supply

chain for precast construction, and highlight the importance of schedule coordination

in the use of precast building components in construction. Production planning and

control processes employed in precast factories, the nature of schedule disturbances

encountered and common features in the rescheduling practice are detailed.

Chapter 1 Introduction

 2

1.1 The Precast Industry in Singapore

Precast building components range from smaller items like concrete planks, beams

and slabs, to larger and more voluminous items like bathrooms, staircases and water

storage tanks. Unlike cast in-situ building members, precast components are made

with molds at a centralized facility. They are then transported to the construction site

for erection and assembly. Over the last few decades, precast fabrication has gained

wide recognition and application through developments in design, material,

manufacturing and erection technologies, and helped the construction industry

achieve great savings in construction cost. Precast fabrication is of special interest in

Singapore, where there is both a significant national public housing building program

and a constant drive to improve on the design, quality and buildability of public

housing units (Chan et al. 1999).

The idea of using precast fabrication in Singapore was first mooted back in 1963,

because of the need to complete a contract for ten blocks of standard ten-storey

3-room flats in a short time (Lee 1989). Precast fabrication for buildings took off only

in the early 80s when the Housing and Development Board (HDB) introduced

large-scale industrialization in its public housing program (CIDB Construction

Productivity Taskforce, 1992). It was logical for the HDB to use prefabrication in its

building programme as most of the requirements and structural dimensions for many

of its housing unit designs had been standardized. Since then, precast fabrication has

been used extensively in both construction and upgrading of public housing by the

HDB.

The application of precast fabrication has also been identified as one form of

buildable design. Buildable design is about ease of construction and characterized by

Chapter 1 Introduction

 3

simplicity, standardization, and combination of related components together into a

single element that may be prefabricated in the factory and installed on site. It was

introduced by the Construction Industry Development Board (CIDB) in 1991, and is

continued being promoted extensively by the Building and Construction Authority

(BCA). It is developed in the face of increasing construction costs, as well as the

necessity of solving the problem of low productivity and heavy dependence on

unskilled foreign workers in the local construction industry. With the use of modular

coordination and standardization of elements in the early years, buildable design is

more recently achieved through the greater use of prefabrication especially in public

housing and transport infrastructure projects (Chionh 1999). The promotion of

buildable designs has also led to the local precast sector developing strong capabilities

in design and fabrication, especially in the areas of detailed connections and aesthetics.

This development in turn has made precast fabrication a viable option for private

property projects in recent years (Tan 2003). The demand for precast fabrication in

Singapore, both in public and private sector works, is good as the construction

industry increasingly adopts the concept of buildable designs.

1.2 Schedule Coordination for Precast Production

The organization of the construction team changes somewhat because of a decision to

adopt precast construction technology in a project. Decision coordination between the

parties involved in the precast supply chain becomes an important practical issue.

1.2.1 Precast Supply Chain

The precast supply chain is short compared to that in other industrial manufacturing

Chapter 1 Introduction

 4

sectors. The main parties involved in the precast supply chain include the contractor,

the precaster, and the delivery supplier. Figure 1.1 shows key activities of these parties,

as well as the information and material flow within the precast supply chain. When

precast fabrication is adopted, the process of construction work is modified to include

the following activities:

(1) The production of precast components;

(2) The transportation of precast components;

(3) The erection and assembly of precast components; and

(4) The connection of erected components.

All of the parties involved have to work closely on the design, fabrication, transport,

and erection of precast building components.

Within the activities of the precast supply chain, the precaster and the contractor are

the two primary parties involved. The precaster is responsible for producing precast

components with off-site automation and will also arrange transportation of these

components to the construction site. The contractor is responsible for subsequent

operations within the site, such as erection, assembly, and connection of these

components. Generally, the pace of precast production should keep up with the progress

of construction on-site. Otherwise, delays in the production of some components may

have repercussions on the production of other components and ultimately compromise

the progress of construction. Therefore, cooperation and collaboration between the

precaster and the contractor is important in the area of efficient logistics and production

scheduling. Although the construction schedule dictates the precast production

schedule, there remains a lot of scope for better coordination between these two

schedules in order to promote a win-win situation for the contractor-precaster

relationship.

Chapter 1 Introduction

 5

Other related parties,
e.g. architect, material

suppliers, etc.

Information flowMaterial flow

Precast Supply Chain

P
re

ca
st

 F
ac

to
ry

Fabrication

D
el

iv
er

y
S

up
pl

ie
r

Storage in
yard

Transport

Storage in site

InstallationC
on

st
ru

ct
io

n
Si

te

Figure 1.1 Precast supply chain

1.2.2 Schedule Coordination Practices

Schedule coordination involves consultation and negotiation between the precaster

and the contractor throughout the precast production process. The most tangible

outcome of this coordination is the delivery schedule, which consists of specific

delivery quantities and due dates for the precast components. Events ranging from a

change in design specifications, quantities, due dates for erection to resource

availability are typically encountered in the course of the project. Both the precaster

and the contractor customarily add lead times and inventory buffers as insurance

against uncertain events. Should the impact of such events exceed the ability of these

mechanisms to cope, a review of the production and construction schedules by the

Chapter 1 Introduction

 6

respective parties, and possibly, even a requirement of rescheduling the production

becomes necessary. New quantities and due dates for the delivery of precast

components have to be negotiated between the precaster and the contractor.

However, production in precast factories is typically set up in a central location and

organized in a manner that is similar to a manufacturing production assembly, which

is different from the traditional manner in which production in the construction

industry is carried out. Consequently, the way in which the production schedule is

generated by the precaster is also different from that employed by the contractor for

the construction schedule. The precast production scheduling involves resource

allocation over time for the manufacture of precast elements, whilst the construction

project scheduling allocates resources at specified times to tasks which together

complete a project. These differences present difficulties for the precaster and the

contractor in the coordination of their respective schedules.

Moreover, the precast factory typically operates as an independent business entity or a

highly autonomous unit within a large parent company related to the contractor.

Coordination between them may become harder when it has to be carried out across

organizational lines. These two parties have their own concerns for the project, as well

as goals that may conflict between one and another, leading to different emphasis

during schedule coordination. For example, the contractors often express unhappiness

with occurrences of late deliveries by the precasters, whilst the precasters blame the

late deliveries on inaccurate demand schedules, slow revision of designs and

communication of updates and changes, as well as last-minute requests by the

contractors. Such diametrically opposed viewpoints for the cause of delivery delays

make it difficult for both parties to negotiate and arrive at mutually beneficial

Chapter 1 Introduction

 7

schedules. Furthermore, each side may adopt overly conservative assumptions in the

negotiation process for a new delivery schedule in order to protect their own interests.

Rather than protecting individual self-interest to the fullest extent, it might be more

beneficial for both parties to share scheduling information, mutually explore various

possibilities, resolve conflicting demands and come up with the best possible

compromise in the delivery schedule.

1.3 Rescheduling Practices in Precast Factories

Before considering the question of how to improve schedule coordination for precast

production, it is necessary to look into the production planning, scheduling and

rescheduling practices employed in precast factories.

1.3.1 Production Planning and Control Processes

In general, the precast factory tries to ensure both the timely delivery of required

elements to the construction site and the most efficient utilization of factory resources.

The planning and control processes in the precast factory include the following key

activities:

(1) Planning and Scheduling: These two activities are closely linked to each other, and

are carried out for each project. Planning deals with resource availability, plant and

mold layout, as well as crew organization. It is often considered as a “higher” level

problem because it acts the parameters that influence how scheduling is carried out, in

particular the numbers of different molds available to the project. Thus, scheduling

decides on when and what elements are to be produced on the available molds (Hu

Chapter 1 Introduction

 8

2000).

(2) Production Rescheduling: This activity recurs throughout the duration of precast

production for a project. Rescheduling is necessary during actual work progress

because of variations and uncertainties that might affect the existing production

schedule. The production scheduler keeps track of the actual production process,

detects problems caused by unexpected events, initiates the rescheduling process, and

negotiates with the contractor for new delivery quantities and due dates.

(3) Information Transfer: It is necessary to exchange production and schedule

information between the parties involved in the precast supply chain. On the one hand,

information transfer within the factory occurs between different departments, such as

the casting department, the molds fitter and the reinforcement shop. On the other hand,

the precaster will also be in communication with the contractor and the delivery

supplier. Efficient information exchange facilitates decision coordination among

different parties involved in precast production.

The literature on production scheduling research refers to two types of scheduling –

predictive scheduling (off-line) and reactive scheduling (on-line), as shown in Figure

1.2. Predictive scheduling predicts/forecasts the planned start and completion times of

job operations based on deterministic inputs for processing times, sequencing order,

availability of resources, and demand. Reactive scheduling is viewed as continuous

adaptation and improvement of the pre-computed predictive schedule in order to keep

it in line with unfolding and often unanticipated events. (Sabuncuoglu and Bayiz

2000).

Chapter 1 Introduction

 9

Low-level scheduling
(initial schedule)

Keep track of production and
record components already
processed or in processing

Perform rescheduling and
generate a revised schedule

Predictive
(off-line)

Reactive
(on-line)

High-level planning
(resource plan, layout, crew

organization, etc.)

Occurrence of unexpected
events

Production
finish?

Start

End

No

Yes

Schedule infromation
Resource capacity

Construction schedule
Delivery schedule

Decision objectives
etc.

Figure 1.2 Planning and control processes for precast production

1.3.2 Occurrence of Schedule Disturbances

The generation of a precast production schedule prior to execution is based on several

key inputs, such as the demand schedule for different precast components and the

available capacity of various resources. Although these inputs are assumed to be

known deterministically when the production schedules are decided, they are likely to

change during actual project performance. Changes in the details of the delivery

schedule or the availability of resources may force production schedules to change

when available resources are overcommitted.

There are several common causes for schedule disturbances. As shown in Figure 1.3,

Chapter 1 Introduction

 10

these causes are categorized as either “in-house factors” or “external factors” based on

whether it is within the control of the precast factory or not. The in-house factors

mainly include variations in different kinds of resources, such as production space,

storage space, casting molds, skilled workers, raw materials, gantry crane, etc. Such

factors generally result in a changed resource constraint for precast production. The

external factors are associated with parties outside the precast factory, and include

demand changes by the contractor, design changes by the architect, or increased

demand from a new business opportunity. In this research, it is assumed that the

external factors are more significant in generating schedule disturbances than the

internal factors within the factory itself. Planning for the production of the precast

elements in the precast factory starts before the beginning of actual site construction

work. As such, the high-level resource plan and low-level production schedule are

based on a baseline master schedule of the project. Amendments to the blueprints,

Figure 1.3 “External” and “In-house” causes for schedule disturbances

Chapter 1 Introduction

 11

specifications, and the construction sequence of the project during the course of

construction will disrupt the original production schedule. Schedule disturbances

caused by these amendments are unpredictable, and the impact of such disturbances is

exacerbated without timely exchange of relevant information between the precaster

and the contractor.

Not all of the disturbances mentioned require adjusting the existing production

schedule. For example, the precaster can ignore a new business opportunity if it is too

costly to accommodate the required increase in existing production. On the other hand,

local precasters take the rejection of their components because of poor quality

seriously since such incidents not only cause a loss of profits but also affect the

reputation of the precaster.

1.3.3 Features of Rescheduling Practices

The practice of local precasters is to create a rolling production schedule over a

planning horizon. The rolling schedule is revised and updated weekly or biweekly to

accommodate various types of schedule disturbances. How disturbances are resolved

and the orders in which these are done are largely decided by the personnel in the

factory based on their previous experience. However, the outcome could be merely

“satisficing”, solving the immediate problem but causing subsequent further

disturbances that cost more to resolve.

The precaster and the contractor have to reach agreement on a new delivery schedule

after rescheduling. Different alternatives for revised production schedules form the

basis of negotiation between these two parties. Ideally, both the precaster and the

contractor ought to carry out this negotiation in a cooperative manner by taking into

Chapter 1 Introduction

 12

account objectives such as timely delivery, reasonable inventory levels, efficient

resource utilization levels, and so on. Unfortunately, these objectives may often

conflict between one and another. Since rescheduling is performed concurrently with

the production process, the time for obtaining a new schedule is short. Each party is

therefore likely to explore only limited options for the revised schedule due to this

time pressure, and these options may have been generated by adopting overly

conservative assumptions that seek to optimize their own objectives. Such a

circumstance will prevent both parties from having a common understanding of the

problem and appreciating the differences and conflicts that stem from their respective

decisions. Moreover, it will shift the focus of negotiation from the balance of

trade-offs between different alternative delivery schedules to the relative importance

of the objectives of the respective parties. The process of negotiation may prove

tedious when the parties involved cannot agree on one of the limited options and

additional time is required to generate other alternatives.

It would be more beneficial if the negotiations are supported by the inclusion of a

range of alternative schedules that explore the various trade-offs between different

objectives. It is probably too time-consuming and onerous to generate this range of

alternatives manually, so some form of computer-aided procedure will be necessary.

1.4 Current Research in Precast Planning and Scheduling

The wider adoption of precast building components has motivated much research

interest in methods for precast production, including the planning and scheduling

aspects. Warszawski (1984) first proposed a mathematical model for the production

Chapter 1 Introduction

 13

planning of precast components in the make-to-stock manufacturing system.

Subsequent models for the same general problem went beyond traditional operation

research techniques and applied other computer intensive methods to solve the

problem. For example, Dawood and his colleagues developed a simulation-based

model that integrated demand forecasting, production planning and stock forecasting

for the precast industry (Dawood and Neale 1993; Dawood 1994, 1995 and 1996;

Dawood and Smith 1996). Chan and Hu (2000, 2001, and 2002a) developed a flow

shop sequencing model for the specialized precast production scheduling with genetic

algorithms (GAs). Chan and Hu (2002b) also adopted a constraint programming (CP)

approach to solve the comprehensive precast production scheduling by incorporating

the constraints encountered in practice. Leu and Hwang (2001 and 2002) proposed a

GA-based flow shop scheduling model to obtain optimal resource-constrained

schedules for repetitive precast production. Comparison of the results obtained from

these models with those obtained typically from the use of heuristic rules showed the

benefits of these models for the precast planning and scheduling problem.

However, these models are predictive scheduling models that determine the schedule

using deterministic inputs before actual production commences. Such schedules are

vulnerable to schedule disturbances because of the nature of the precast production

process noted earlier. To date, there has not been much research addressing the

problems of schedule revision and coordination for precast production although these

are important in practice. There is a need to extend the research on production

scheduling in the precast industry to include rescheduling during the execution of

previously planned schedules.

Chapter 1 Introduction

 14

1.5 Research Objectives and Scope

This research will focus on the rescheduling problem for precast production. The

research scope includes:

(1) Identifying the factors contributing to the occurrence of disturbances in precast

construction and the heuristics used to repair the production schedule;

(2) Identifying the key constraints involved in the rescheduling process for precast

production, and the criteria used by the precaster and the contractor to evaluate

alternative schedules;

(3) Formulating the precast production rescheduling problem and proposing a

rescheduling model for precast production;

(4) Developing optimization procedures for the model;

(5) Validating the feasibility of the proposed methods and evaluating their

effectiveness.

The primary objective of this research is to develop a coordinated production reactive

scheduling model (CPRSM) for the precast production process. The research scope

includes work to:

(1) Develop a repair-based method for precast production rescheduling. It is

impractical and potentially disruptive to generate new schedules from scratch each

time a disturbance occurs. The main reason is because of the use of a rolling

planning horizon when generating schedules. This kind of approach is therefore

not much favored in practice as the new schedule can differ considerably from the

current schedule in use. Furthermore, many other decisions like assignment of

personal, delivery of raw material and subsequent processing of the jobs in other

facilities may be severely disrupted. This phenomenon is commonly referred to as

shop floor nervousness. Therefore, repairing existing schedules to handle the

Chapter 1 Introduction

 15

disturbances is a more attractive alternative. The repair-based method for precast

production rescheduling reassigns the production of precast elements involved in

schedule disturbances with available resources, while trying to maintain most of

the originally scheduled production of precast elements unchanged simultaneously.

The new production schedule will deviate less from the old schedule, and results

in less shop floor disruption and nervousness. In this research, the schedule repair

action is achieved by deciding the best sequence of disturbance resolution and

selecting the best heuristic to solve each disturbance.

(2) Generate alternative schedules along a Pareto optimal front to facilitate schedule

coordination. This is achieved by formulating the rescheduling problem as a

multiobjective optimization problem. The model can simultaneously search for

repaired schedules representing different degrees of trade-off between the

objectives of the precaster and the contractor. A multiobjective optimization

approach for the exploration of trade-offs between conflicting objectives avoids

the debate as to the “correct” choice of the weights for these objectives. The

search algorithm for the identification of Pareto optimal solutions is based on the

GA.

(3) Develop a local search process to conduct incremental exploration in specific

areas identified by the parties involved. The local search process can improve

existing schedules by incorporating specific requirements from either the precaster

or the contractor, and is complementary to the search process described in (2).

1.6 Research Methodology

The research methodology consisted of interviews with industry professionals,

Chapter 1 Introduction

 16

literature review, model development, and verification of the rescheduling

methodology with cases.

In this research, a review of the literature on precast production scheduling research

first revealed that, among researchers the problem of rescheduling/reactive scheduling

had received less attention than predictive scheduling, although rescheduling occurred

frequently in practice. It became clear that including the concept of rescheduling in

existing precast production planning and scheduling models would be the next logical

step in the development of computer-based production planning and scheduling

models.

With this research objective, interviews with industry professionals were then

conducted to: (i) understand the current practice in precast production rescheduling;

(ii) determine the objectives and constraints used in repairing actual schedules; and

(iii) map the process involved in schedule coordination and the factors that could

cause a disruption in the precast supply chain.

Based on the information obtained from the interviews with industry professionals, it

was realized that multiple conflicting objectives were involved in the actual precast

rescheduling process. A true multiobjective optimization model was therefore

necessary in the model development. This would improve the current practice of

weighting criteria to form a single objective. As a global search and optimization

technique, GAs were identified as an appropriate method to solve the precast

production rescheduling problem with multiobjective optimization, and find good

candidates for repaired schedules. Further feedback from the industry also identified

the need for a concept to find schedules with particular characteristics and a

corresponding local search procedure. Some local search techniques were developed

Chapter 1 Introduction

 17

for use in the search procedure based on the mechanism of iterative improvement. The

end result was a coordinated production reactive scheduling model for precast

production that incorporated these two search procedures.

Finally, the model was tested on several case studies in order to verify the feasibility

and practicability of these two search procedures. The first set of cases illustrated the

efficiency and effectiveness of the GA-based algorithms in generating schedules along

a Pareto front under different mold utilization levels. The second set of cases

demonstrated the capability of the local search techniques in finding such particular

schedules with specific constraints.

1.7 Thesis Organization

This thesis is organized into seven chapters, beginning with this chapter. Chapter Two

reviews the previous research on precast planning and scheduling models. Reactive

scheduling, multiobjective optimization, as well as techniques available to solve these

two problems are also briefly introduced. The chapter also includes a review of the

single and multi-objective genetic algorithms, particularly their application to

scheduling problems.

Chapter Three describes the development of the proposed coordinated production

reactive scheduling model (CPRSM), including the mathematical formulation of

variables, constraints and objectives considered, and functions for each key process

within the model.

Chapter Four describes key issues of GAs in multiobjective search, some

well-established multiobjective GAs and elitist strategies proposed in this research,

Chapter 1 Introduction

 18

and demonstrate the application of GAs in the global search procedure.

Chapter Five verifies the implementation of GAs in generating alternative repaired

schedules along a Pareto front in three examples with different levels of mold

utilization rate. The performances of several selected GA-based algorithms are

compared.

Chapter Six describes the local search process for an incremental exploration of

schedules through the incorporation of specific constraints. The proposed local search

techniques are tested with two examples to illustrate the iterative repair mechanism.

Chapter Seven concludes the thesis with a summary of the main contributions of the

research, its limitations and suggestions for future study.

 19

CHAPTER 2

LITERATURE REVIEW

This chapter first reviews previous research on planning and scheduling models for

precast production. Since the present research aims to develop a reactive scheduling

model for precast production, two research fields: i) the reactive scheduling problem

and existing approaches; and ii) the multiobjective optimization problem and related

methods, are then reviewed. Finally, genetic algorithms (GAs) are introduced with an

emphasis on their application in the field of scheduling problems with multiobjective

optimization, as the GA is the basis of the search approach adopted in the research.

2.1 Planning and Scheduling for Precast Production

The wider use of precast building components has motivated the interests of many

researchers in the precast industry. Their works range from generating resource plans

and detailed schedules for precast production to developing integrated information

systems to aid and facilitate decision-making and coordination in the precast

production process, especially for planning and scheduling.

Several planning and scheduling models for the precast industry have been proposed

from the mid of 1980’s. With applications of inventory control methods and heuristic

rules in the early years, precast planning and scheduling problems are more recently

solved with many advanced techniques in computer science, information technology

and decision science in these models. With the help of these advanced techniques, the

problem modeling has reflected the precast production process more practically.

Chapter 2 Literature Review

 20

Moreover, these techniques become feasible and reliable to find better solutions to the

precast planning and scheduling problem. Some planning and scheduling models that

have been developed are reviewed as follows:

(1) Mathematical models

Warszawski and Ishai (1982) proposed a long-range planning model for the

prefabrication industry, which includes determinations of the optimal location and

capacity of prefabrication plants from the perspective of a national economy. After

that, Warszawski (1984) developed another model for the short range planning in

prefabrication plants. This model was proposed as a classical optimization problem to

decide the minimum cost assignment of precast elements to molds in the plant by

applying the inventory slope theory. It provided schedules for two production series,

namely short (specific orders) and long (continuous demand for standard elements) by

considering some constraints encountered in practice. These early studies have

concentrated on the application of mathematical models on the planning and

scheduling problem with a make-to-stock manufacturing system. Although the

proposed mathematical models for the short range planning represented production

operations in a prefabrication plant to some extent, not all necessary constraints were

identified (Hu 2000). One of the reasons is that large number of parameters would

increase computational difficulty in finding an optimal solution for the mathematical

model.

(2) Capacity planning model

In order to help production mangers make better planning decisions, Dawood and

Neale (1993) developed a capacity planning model for the precast industry. The model

is a “finite rough-cut” capacity planning system that develops a twelve-month

Chapter 2 Literature Review

 21

capacity plan using a backward scheduling technique. Being incorporated the demand

and stock forecasting, this model was developed as an integrated production

management system for the precast industry (Dawood 1994, 1995 and 1996; Dawood

and Smith 1996). Simulation technology was applied in the model to automate the

planning process and predict the effect of several schedule strategies that are basically

heuristic rules for product selection and plant allocation. The capacity planning model

went beyond the use of standard stock control models in the precast industry. Due to

the rule-driven nature and its ability to mimic the decision making of a human planner,

the simulation approach was concluded to be able to complement human knowledge

through eliciting scheduling knowledge under different circumstances. However, the

model was developed with the aim of evaluating alternative planning options before

actual production commences as indicated in the literature, and based on sinusoidally

varying demands. Therefore, the model cannot realistically reflect the real conditions

in the precast plant and is incapable of real-time scheduling of production driven by

contracts.

(3) Production simulation models

Production in precast factories that is organized with different contracts is full of

random factors in practice, such as differences in individual component size and shape,

variations in site progress and randomness in production times. Some researchers

applied simulation technologies to analyze difficulties of precast production under

such circumstance. Halpin and Riggs (1992) developed a CYCLONE model for the

precasting process. The system studied changes in task durations, crane availability,

rate of supplying concrete and crew size for precasting. Vern and Gunal (1998)

proposed a simulation model that is capable of capturing various random elements

and facilitating the analysis of complicated what-if scenarios for precast production.

Chapter 2 Literature Review

 22

Balbontín-Bravo (1998) also applied simulation to analyze the optimization of precast

production in a workshop and obtain working alternatives to improve productivity.

However, these simulation models only serve as an early warning system, which can

help production managers find out bottlenecks in the precast production process and

adjust resource allocation to increase productivity before the production process

commences.

(4) Processing scheduling models

The production in precast factories is organized and carried out similarly to that in

other manufacturing industries. This similarity opens an opportunity of applying

production process scheduling models to the precast industry, which have been widely

applied to the manufacturing systems (Baker 1974). Chan and Hu (1998) first

identified that the flow shop scheduling model was most relevant to operational

conditions for precast factories in Singapore. Thereupon, Chan and Hu (2000, 2001

and 2002a) proposed a flow shop sequencing model (FSSM) for the specialized

production method applied in local precast factories. With this production method, the

total process of precast element producing is broken into several activities that are

performed by different crews with specialized tools and work methods (Warszawski

1990). The traditional makespan and the more practical tardiness penalty objectives

were minimized separately, as well as simultaneously using a weighted approach. The

GA and classical heuristic rules were applied in the model to generate production

schedules. From the experiments conducted, a conclusion was highlighted that the GA

can obtain good schedules by giving a family of solutions that are at least as good as

those produced by heuristic rules. Almost at the same period, Leu and Hwang (2001

and 2002) developed another flow shop precast scheduling model. A GA-based

searching technique was also adopted in the model to provide the optimal or

Chapter 2 Literature Review

 23

near-optimal combination of production sequences, resource utilization and minimum

makespan in consideration of resource constraints. Results of these flow shop

scheduling models indicated that the flow shop process is suitable for modeling

precast production, and the GA-based search is efficient and flexible for solving the

problem. GAs therefore become a feasible option for solving the precast rescheduling

problem studied in this research.

(5) Constrained scheduling model

Except for the specialized production method, there is another work organization

known as the comprehensive production method (Warszawski 1990). With this

method, a same crew performs all activities of the precast production until the product

is finished. Chan and Hu (2002b) proposed a constrained precast scheduling model

(CPSM) for the comprehensive precast production. Their model was formulated by

incorporating several key constraints and objectives considered in real practice. A

capacity-based backward scheduling earliest due date (EDD) rule and a constraint

programming (CP) approach were developed to solve the model. Even though it

incorporates many problem-derived constraints, comparisons of results by the CP and

commonly used heuristic rules showed that the CP is computationally efficient. In order

to improve the CP approach, Hu (2000) proposed a hybrid GA-CP approach to solve

the CPSM, in which the GA was used to determine high-level control parameters or a

sequence of tasks that directs the CP in its search for detailed scheduling solutions.

One of the significances of the CPSM is that it is a natural way of representing the

scheduling problem for the comprehensive precast production. Compared to the

above-mentioned models, this model highlighted the more practical issue of

constructing “optimal” production schedules in the face of many real constraints in

practice. In the precast production rescheduling process, these constraints also should

Chapter 2 Literature Review

 24

be considered since any constraint applied in the initial scheduling process must also

be observed in rescheduling.

(6) Information system models

The precast industry suffers from poor information transfer and management. This

phenomenon has caused extra burden on the industry resulting from inaccurate

planning and inefficient utilization of resource. Therefore, information technologies

has the potential to modernize the industry in the field of planning and scheduling by

making the information transfer quicker and more efficient, as well as better

cooperation and collaboration among the parties involved. Dawood (1999) introduced

an integrated intelligent computer-based information system for the precast industry.

The framework of this proposed information system consisted of two portions: i) use

of information technology in different phases and tasks of manufacturing process; and

ii) integration of these phases and tasks through the use of digitally stored data and

data transfer. Chan et al. (1999) proposed an object-oriented design of a collaborative

precast scheduling system. It addressed a specific type of distributed problem solving

that enables the sharing and exchange of related information. The system comprised

two subsystems corresponding to two key functions during the scheduling process,

which are (i) handling the static database management, and (ii) communicating and

processing messages. These research works in the development of information

systems highlighted the characteristic of dynamic for the precast production process,

the importance of information flow therein, and the necessity of coordination both

inside the factory and with outside parties.

In summary, the research in the precast planning and scheduling problem has made

progress in modeling the corresponding process, developing artificial intelligent based

approaches such as the GA and CP to generate better solutions, and facilitating

Chapter 2 Literature Review

 25

decision making with the help of information systems. However, most of these models

only deal with predictive scheduling for precast production, which focus on

generating production schedules before actual production commences. To date, there

has not such research addressing the precast production rescheduling problem

although rescheduling is a practical issue, and is important in the light of unexpected

changes due to construction site events. Therefore, the present research work will

focus on the issue of schedule disturbances and look into the rescheduling problem for

precast production to complement the earlier predictive scheduling models.

2.2 Reactive Scheduling

Scheduling exists in a wide variety of domains, such as production scheduling, project

scheduling, employee shift scheduling, school timetable scheduling, etc. All of them

are faced with a certain number of uncertainties in reality. Therefore, scheduling

problems are complicated due to dynamic environments, where rescheduling in

response to changes is critical. Due to the shortage of research in precast rescheduling

and similarities between the production process in precast factories and assembly

lines in the chemical and electronic industries, it is necessary to review the research of

reactive scheduling/rescheduling in these manufacturing industries and extend it to the

area of precast production.

2.2.1 Overview

Generally, the scheduling process is an attempt to utilized limited resources in a

manner as efficient as possible, as well as simultaneously satisfying several

domain-specific constraints (Noronha and Sarma 1991). However, real production

Chapter 2 Literature Review

 26

scheduling problems are dynamic in nature as Graves (1981) stated, “A frequent

comment heard in many scheduling shops is that there is no scheduling problem but

rather a rescheduling problem”. Therefore, there are two classes of scheduling

problems, which are predictive and reactive scheduling (Suresh and Chaudhuri 1993).

They may be seen as complementary activities (Smith 1994).

Predictive scheduling is also called static scheduling in the literatures. Being

considered to operate “off-line” before the system starts operation, predictive

scheduling generates a solution for all available jobs within the entire planning

horizon. It is specified by addressing the problem with deterministic inputs, such as

processing times and resource availability. However, this schedule is subject to

changes due to external and internal events e.g. delayed or shortened execution of an

operation, machine breakdown or an additional high priority order.

On the other hand, reactive scheduling is called dynamic scheduling, real-time

scheduling or rescheduling (Sun and Xue 2001). Reactive scheduling, which be

conducted “on-line”, can be broadly defined as the reactive part of the system

monitoring the execution of the pre-determined schedule and coping with unexpected

events. The main alternatives to the revision of a schedule in the presence of real time

feedback are either to incorporate the new information by completely regenerating the

original schedule from scratch, or by “repairing” the previous schedule in some way

(Dorn et al. 1996). The first approach might be better capable of maintaining optimal

solutions in principle, but such solutions may be rarely achievable in practice and

computation times are likely to be prohibitive. Furthermore, frequent schedule

regeneration can result in increased costs attributable to what has been termed “shop

floor nervousness” (Raheja and Subramaniam 2002). Thus, most approaches to

Chapter 2 Literature Review

 27

reactive scheduling are based on infrequent regeneration of a basic predictive

schedule. It is then maintained continuity by serving as a nominal reference for the

identification and specification of schedule changes as it is progressively modified.

2.2.2 Approaches in Reactive Scheduling

The character and content of the scheduling research have always kept pace with

theoretical developments in operations research and computer science areas. A variety

of techniques and approaches applied in reactive scheduling has been reported in

these years.

Mathematical programming such as linear programming, integer programming and

later multiple objective programming, as well as search techniques such as branch and

bound and heuristic rules, are implemented widely in the scheduling research.

However, the scope for these conventional approaches is limited due to complexity of

the scheduling environment. Prohibitive computing times with these approaches are

not applicable in industrial practice. Much of the research using these approaches in

turn involves highly simplified versions of the actual problem, which can only model

a fragment of the scheduling knowledge existing in practice. Therefore, scheduling

models with these conventional approaches lack the level of fidelity and adaptability

to changes (Szelke and Márkus 1995). Furthermore, the static nature of these

approaches is not suitable to the dynamic nature of most real-time scheduling

environments.

Over the last two decades, developments in artificial intelligence (AI) technologies

paved the way for a host of new approaches to tackle the reactive scheduling problem.

AI uses symbol-processing computer programs to strive for human-like performances.

Chapter 2 Literature Review

 28

AI-based approaches offer the well-known advantages of symbolic systems, which are

easy to understand and perform like human experts.

Knowledge-based approaches provide the major AI approaches to production

scheduling in particular. The fundamental characteristic of this kind of approaches is

employing domain specific problems solving information to derive good schedules

with reasoning, which is easily understood and accepted by the human user. Several

knowledge structures have been described in the literature, such as rules,

frames/schema, procedural nets, scripts, etc. Rules, expressed as if-then statements,

figure prominently as knowledge for use within production rescheduling

knowledge-based systems (Subramanyam and Askin 1986, O’Grady and Lee 1989;

Tsukiyama et al. 1992; Li and Shaw 1996 and 1998; etc.).

With the perspective of scheduling as a constraint-driven process has lately become

more and more dominant, the constraint-based reasoning is frequently employed for

rescheduling (Kjenstad 1998). These constraint-based systems use constraints to

measure the quality of candidate schedules and to prune alternative assignments

during the scheduling/rescheduling process. Among them, ISIS developed by Fox and

Smith (1984) and OPIS proposed by Smith et al. (1990, 1994) which is the successor

of the ISIS are the most well known systems.

Multi-agents in a distributed artificial intelligence (DAI) environment have been

widely reported in the works of the reactive scheduling problem, for instance, Szelke

and Markus (1995), Tsukada and Shin (1998), Pendharkar (1999), Tranvouez et al.

(2001), Chun and Wong (2003), etc. In DAI-based approaches, the reactive

scheduling is achieved using multiagents, which possesses the knowledge pertaining

to schedule repair. These independent intelligent agents coordinate their knowledge

Chapter 2 Literature Review

 29

and solve sub-problems while working toward a common goal for rescheduling. The

human scheduler can also act as one of the intelligent agents and become actively

involved in the decision process.

Other advanced artificial intelligent techniques, such as neural networks and genetic

algorithms, have also been widely applied in solving the reactive scheduling problem.

These techniques generally use biological performance in problem solving that start

with the neuron or other basic building blocks and exploit these blocks to achieve

intelligent behavior (Brown et al. 1995). The importance of production rescheduling

and the promise of improved performance using these approaches have encouraged a

number of researchers to investigate methods from this area, such as Garetti and

Taisch (1995), Fang and Xi (1997), Kim et al. (1998), Bierwirth and Mattfeld (1999),

Rovithakis et al. (2001), Nishimura et al. (2001), and Madureira et al. (2002), etc.

These studies indicate that these techniques can offer excellent potential for adapting

scheduling algorithms to changing conditions, and can be successfully combined with

each other to enhance the search for good solutions in reactive scheduling.

Reviews of the AI-based approaches and systems in reactive scheduling have been

provided by Suresh and Chaudhuri (1993), Szelke and Kerr (1994), Brown et al.

(1995), Kjenstad (1998), Sabuncuoglu and Bayiz (2000), Raheja and Subramaniam

(2002), etc. Artificial intelligence techniques have been identified as efficient methods

to tackle the combinatorial exploration in the reactive scheduling problem. They can

provide a large body of tools and techniques such as informed search methods,

sophisticated knowledge representation schemes and high-level programming

environments.

Chapter 2 Literature Review

 30

2.3 Multiobjective Optimization Problems

As discussed earlier in Chapter 1, the rescheduling problem for precast production is

indeed a multiobjective optimization problem. Therefore, basic concepts and

approaches for the multiobjective optimization problem are reviewed in this section.

2.3.1 Basic Concepts and Terminologies

Multiobjective optimization problems (MOPs) also called multicriteria optimization,

multiperformance or vector optimization problems. This class of problems can be

defined as the problem of finding (Osyczka 1985): “[…] a vector of decision

variables which satisfies constraints and optimizes a vector function whose elements

represent the objective functions. These functions form a mathematical description of

performance criteria which are usually in conflict with each other. Hence, the term

‘optimize’ means finding such a solution which would give the values of all the

objective functions acceptable to the decision maker.” Without loss of generality, the

mathematical formulation of a minimization MOP is presented as follows:

() () () (){ }
() () () (){ }
() () () (){ }
{ }
{ } Yyyyy

Xxxxxwhere
xhxhxhxh

xgxgxgxgtosubject
xfxfxfxfyMin

m

n

k

j

m

∈=
∈=

==

≥=
==

,,,
,,,

0,,,

0,,,
,,,

21

21

21

21

21

K

K

K

K

K

 (2.1)

where, x is the vector of decision variables, y is the objective vector, X is the decision

space, and Y is the objective space.

The performance measure of multiple objectives is not as straightforward as that of a

single objective. At times when there are multiple conflicting objectives involved in

the problem, it is not possible to optimize several objectives simultaneously. The

concept of dominance is used to compare the performance of different solutions with

Chapter 2 Literature Review

 31

multiple objectives. Suppose a bi-objective minimization problem shown in Figure

2.1, five points, namely from A to E, are plotted in the objective space. As shown in

the Figure 2.1, it is difficult to judge which is superior among points A, B and C,

because none of these points is better than the others with respect to both criteria.

Since there is no point that is better than these three points along both dimensions,

points A, B and C are called non-dominated or non-inferior points for the problem

considered. On the other hand, point D is bettered by point B and point E is bettered

by point D in both criteria. Therefore, points D and E are known as dominated points,

and both dominated by points A, B and C.

Based on the concept of dominance, a decision vector x* is Pareto optimal if there

exists no feasible vector x which would decrease some criterion without causing a

simultaneous increase in at least one other criterion (Coello et al. 2002). Therefore,

rather than a single solution, the “optimum” for the MOP is usually a set of equally

efficient, non-inferior or non-dominated solutions, known as Pareto optimal set. The

plot of the objective functions whose nondominated vectors are in the Pareto optimal

set is called Pareto front.

Figure 2.1 Illustration of domination in multiobjective optimization

Chapter 2 Literature Review

 32

2.3.2 Multiobjective Optimization Methods

In this section, a few commonly used classical methods for handling the MOP are

reviewed first, which are different from the methods based on the evolutionary

algorithm reviewed later.

(1) Classical methods

Classical multiobjective optimization methods have been existed for at least four

decades. Most of these methods suggest a way to convert a multiobjective

optimization problem into a single objective optimization problem. Detailed reviews

of these classical methods for the MOP are available in (Steuer 1986). Some

representatives of this class of methods are the weighted sum method (Zadeh 1963),

the ε-constraint method (Marglin 1967), the weighted metric method (Zeleny 1973),

the goal attainment method (Gembicki 1974), the multiattribute utility method

(Keeney and Raiffa 1976), the goal programming method (Goicoechea et al. 1982),

the lexicographic method (Rao 1984), etc. There are a number of difficulties

accompanying these classical optimization methods (Deb 2001):

(i) Only one Pareto optimal solution is expected to be found in one simulation run. In

order to obtain an approximation of the Pareto optimal set, several optimization

runs are required but it may cause high computation overhead.

(ii) Some methods may be sensitive to the shape of the Pareto front. For example, not

all Pareto optimal solutions can be found by some methods in nonconvex MOPs.

(iii) All methods require some problem knowledge, such as suitable weight vectors

and target values. However, such problem knowledge may not be available.

(2) Evolutionary algorithm based methods

The field of search and optimization has changed over the last few years by the

Chapter 2 Literature Review

 33

introduction of a number of non-classical, unorthodox and stochastic search and

optimization algorithms. Of these, evolutionary algorithms (EAs), which mimic

evolutionary principles of the nature to drive the search towards optimal solutions,

seem to be especially suited to multiobjective optimization. It is because they are able

to capture multiple Pareto optimal solutions in a single simulation run and may

exploits similarities of the solutions by recombination. Some researchers suggest that

the multiobjective search and optimization might be a problem area where EAs do

better than other blind search strategies (Fonseca and Fleming 1995;

Valenzuela-Rendón and Uresti-Charre 1997).

The need for finding multiple trade-off solutions in one single simulation run was

suggested and worked out by Schaffer in 1984. However, no attention had been paid

to multiobjective optimization for almost half a decade after Schaffer’s study until

Goldberg suggested a multiobjective evolutionary algorithm using the concept of

domination in 1989. Since then a number of researchers have been motivated from his

work and developed different implementations of multiobjective evolutionary

algorithms (MOEAs). Of these, Hajela and Lin’s weight-based approach (1992),

Fonseca and Fleming’s multi-objective GA (MOGA) (1993), Srinivas and Deb’s

non-dominated sorting GA (NSGA) (1994), and Horn, Nafploitis and Goldberg’s

niched Pareto-GA (NPGA) (1994) were tested for different real-world problems to

demonstrate that the Pareto-based MOEAs can be reliably used to find and maintain

multiple trade-off solutions. Almost at the same time, a number of other researchers

also suggested different ways to use an EA to solve multiobjective optimization

problems, such as Kursawe’s diploidy approach (1991), Osyczka and Kundu’s

distance-based GA (1995), and Ishibuchi and Murata’s multiobjective genetic local

search algorithm (1996). Comprehensive reviews and comparison studies on these

Chapter 2 Literature Review

 34

multiobjective evolutionary algorithms have been provided by Horn (1997), Zitzler

and Thiele (1999), Zitzler et al. (2000), Coello (2000 and 2001), Van Veldhuizen and

Lamont (2000); Carlyle et al. (2001), Deb (2001); Coello et al. (2002), Collette and

Siarry (2003), etc.

2.4 Genetic Algorithms and Applications to Scheduling

Due to its successful applications in both the multiobjective optimization and the

reactive scheduling problem, the basic mechanism of genetic algorithms (GAs) is

reviewed in this section. It is followed by their application to scheduling problems,

especially with multiobjective optimization.

2.4.1 Overview of GAs

As the name suggests, the processes observed in natural evolution inspired genetic

algorithms. The GA is an example of a search procedure that uses random choice as a

tool to guide an exploitative search through a coding of parameter space (Tam et al.

2001). In the parameter space, a new set of artificial creatures is created using bits and

pieces of the fittest of the old. An occasional new part is tried for good measure.

While randomized, GAs are no simple random walk but efficiently exploit historical

information to speculate on new search points with expected improved performance.

Genetic algorithms are different from many normal optimization and search

procedures in four ways (Goldberg 1989):

(1) GAs work with a coding of parameter set, not the parameters themselves,

(2) GAs search from a population of points, not a single point,

Chapter 2 Literature Review

 35

(3) GAs use payoff (objective function) information, not derivatives or other auxiliary

knowledge, and

(4) GAs use probabilistic transition rules, not deterministic rules.

These four differences contribute to genetic algorithms’ robustness and resulting

advantages over other more commonly used techniques (Dandy and Engelhardt 2001).

Therefore, as powerful and broadly applicable stochastic search and optimization

techniques, GAs are perhaps one of the most widely known types of evolutionary

computation methods today which results in a fresh body of research and applications.

2.4.2 Multiobjective Genetic Algorithms

By working with a population, GAs have a built-in advantage of being able to work

with multiobjective optimization problems. Indeed, a set of solutions is sought with

multiobjective optimization, whilst the GA population can delivery several solutions

of the efficient set (Yapo 1996). According to different fitness assignment strategies,

there are three broad ways for GAs of working with multiobjective optimization

(Fonseca and Fleming 1995, Zitzler and Thiele 1999), they are:

(1) Aggregation approaches: For this kind of approaches, the objectives are combined

into a scalar function. There are numerous ways of aggregating the problem, such

as objectives weighing, distance function and min-max formulation, etc. Then the

single objective problem is solved by a traditional GA to produce one single

solution.

(2) Population-based non-Pareto approaches: These approaches treat objectives

separately as a move toward finding multiple non-dominated solutions with a

single GA run. As a typical example, the vector evaluated genetic algorithm

(VEGA) proposed by Schaffer (1984 and 1985) divides the population into as

Chapter 2 Literature Review

 36

many sub-groups as the number of objectives. Each sub-group is then assigned the

task of optimizing one objective function. The individuals that perform well in

each sub-group are selected for generating the next set of possible solutions.

(3) Pareto-based approaches: These approaches rank the performance of individuals

based on the concept of Pareto optimality, striving to guarantee equal probability

of reproduction to all non-dominated solutions. Compared to non-Pareto

approaches that are often sensitive to the nonconvex trade-off surfaces, the

Pareto-based approaches do not raise such issue. MOGA, NSGA, and NPGA are

all representatives in this class of approaches. For example, MOGA proposed by

Fonseca and Fleming (1993) ranks the individual corresponding to the number of

individuals in the current population by which it is dominated. NSGA proposed by

Srinivas and Deb (1994) is developed from the ranking mechanism proposed by

Goldberg (1989). The ranking process is executed front wise by assigning the

individuals in each non-dominated front a same dummy fitness value.

2.4.3 Applications to Scheduling Problems

GAs are so efficient that they can find the optimal or near-optimal solution in a

reasonable time even for the traditional NP-complete problems. Being referred to as

NP-hard, the scheduling problems that are optimized with a single objective have

already been solved by GAs in a vast number of studies. GAs have shown

characteristics of domain independence, robustness and flexibility in solving such

problems. In recent years, GAs have been widely applied to scheduling problems with

multiobjective optimization in several specific fields.

(1) Production scheduling problems: For example, Shaw and Fleming (1996, 1997)

solved a production scheduling problem in a ready meals factory by MOGA with

Chapter 2 Literature Review

 37

optimization of makespan and tardiness penalty simultaneously. Li and Man (1998)

applied MOGA to solve an extensive earliness/tardiness production scheduling and

planning problem with lot-size consideration and capacity balance. Sankar et al.

(2003) applied the GA to generate a nearer-to-optimum production schedule with two

contradictory objectives of the flexible manufacturing system.

(2) Process scheduling problems: Being a major application area, various kinds of

multiobjective GAs have been applied in solving process scheduling problems. For

example, Murata et al. (1996) and Ishibuchi and Murata (1998) solved the flow shop

scheduling problem by hybridizing a GA with a linear combination of weights with a

local search procedure, in which the weights are randomly generated at the time of

performing recombination. Todd and Sen (1997) applied a multiple criteria GA in

solving the job shop scheduling problem to optimize the makespan and the average

job time simultaneously. Bagchi (1999, 2001) adopted NSGA and a variation of

NSGA using elitism to solve both flow shop scheduling and job shop scheduling

problems. Brizuela et al. (2001) and Brizuela and Aceves (2003) applied NSGA to

solve a three-objective flow shop scheduling with different types of selection,

crossover and mutation. Other applications can be found in Tamaki et al. (1999), Cui

et al. (2001), Talbi et al. (2001), Chang et al. (2002), etc.

(3) Machine scheduling problems: Cochran et al. (2000) proposed a two-stage

multi-population genetic algorithm (MPGA) to solve a parallel machine scheduling

problem with three objectives. Results of MPGA were compared with those of the

multiobjective genetic local search algorithm proposed by Murata et al. (1996).

Carlyle et al. (2001) also compared these two algorithms in solving the bi-objective

parallel machine scheduling problems.

Chapter 2 Literature Review

 38

(4) Real-time scheduling problems: Montana et al. (1998) solved large-scale real-time

scheduling problems with a weighted sum GA. Two examples were considered, which

are a field service scheduling problem with seven cost objectives and a military land

move scheduling problem with two objectives. Oh and Wu (2004) solved a real-time

task scheduling problem in the microprocessor system with GAs, which considers two

criteria independently by using a vector-valued cost function. Rangsaritratsamee et al.

(2004) applied the genetic local search algorithm in the proposed dynamic

rescheduling methodology that uses multiobjective performance measures.

(5) Other scheduling problems: Except for the above applications, GAs are also

applied in the scheduling problems in other domains. Some of these works are the

time-tabling problem (Paechter et al. 1998), the telephone operator scheduling

problem (Yoshimura and Nakano 1998), the nurse scheduling problem (Jan et al.

2000), the pavement maintenance programming problem (Fwa et al. 2000), the

earthmoving operations problem (Marzouk and Moselhi 2004), the project time-cost

optimization problem (Zheng et al. 2004), etc.

The results obtained by these works indicate that GAs are effective in handling a

variety of objectives available in scheduling problems, as well as fast and promising

in providing a set of non-dominated solutions for these problems.

2.5 Summary

Previous literature review enables us to draw some conclusions and consequently

identify several issues that this research attempts to address:

Chapter 2 Literature Review

 39

Firstly, most of the developed precast production planning and scheduling models did

not consider the rescheduling problem. Production schedules generated by these

models are vulnerable and lack the capability of accommodating different kinds of

schedule disturbances identified in this research. It is necessary to extend the research

in precast planning and scheduling to cover the topic of how to respond to these

disturbances and resolve them efficiently.

Secondly, advanced developments in computer sciences, information technology and

decision sciences have become available to precisely model and find better solutions

to the precast production scheduling problem. Similarities between the production

process in precast factories and assembly lines in other manufacturing industries open

a possibility of transferring research findings and practical experiences of scheduling

between these two processes. Therefore, the precast production rescheduling problem

is an area of research where formal optimization models can be beneficially

employed.

Thirdly, reactive scheduling is also called rescheduling, dynamic scheduling, and

“on-line” scheduling in the literatures. Artificial intelligence techniques have achieved

promising results in this field of research. Among them, GAs have attracted attentions

as an effective method. The reason is that GAs are easy to implement and fast to run,

and therefore can be taken into consideration as a “reasoning” methodology for

reactive scheduling in live environment. Furthermore, GAs have also been

successfully applied in several precast scheduling models, and the results of these

models showed that GAs are computationally simple yet powerful in search for

optimal solutions. All of these make GAs stand for one of the most promising

techniques in solving the rescheduling problem for precast production.

Chapter 2 Literature Review

 40

Finally, compromises and trade-offs are realized to be continually necessary in the

scheduling process due to multiple conflicting objectives involved in reality. It is just

the situation for the precast production rescheduling problem studied in this research.

Hence, it becomes increasingly unrealistic to concentrate on a tool that optimizes only

one objective and provides only one solution. Flexible scheduling methods that can

deal with these multiple, often-conflicting objectives simultaneously and provide a set

of Pareto optimal solutions without pre-determined weights for each objective are

required. Therefore, multiobjective genetic algorithms that can meet these

requirements appear to be well suited in this research.

 41

CHAPTER 3

PRECAST PRODUCTION RESCHEDULING

In this chapter, a coordinated production reactive scheduling model (CPRSM) is

proposed. The model supports four key elements of the precast production

rescheduling process, namely disturbance detection, global search with multiobjective

optimization, local search with specific constraints, and ranking of outcomes for

negotiation. A computer program that implements these rescheduling elements has

been developed to demonstrate the operation of the CPRSM.

3.1 Precast Production Rescheduling Problem

The underlying production process for the precast production scheduling and

rescheduling problems is the same. The rescheduling problem only occurs when the

existing production schedule has to be modified due to the occurrence of schedule

disturbance. Therefore, the precast production scheduling and rescheduling problems

share the same production schedule representation, production constraints and the

objectives to be optimized. Characteristics of the production process adopted in local

precast factories, as well as constraints and objectives considered for production

scheduling/rescheduling are described firstly in this section. This is followed by a

mathematical formulation of the precast production rescheduling problem addressed

in this research.

3.1.1 Overview of Precast Production Process

Production in local precast factories is typically set up as a make-to-order

Chapter 3 Precast Production Rescheduling

 42

manufacturing system based on a comprehensive work organization, wherein the

same team of workers performs all operations necessary to produce precast elements

on stationary molds. Due to the prevalence of heterogeneous elements in projects, the

factory generally allocates resources and arranges production for each individual

project. Each project needs several different types of precast elements, in which

several types of similar elements with minor variations are organized as an element

group. Production of the element group is organized around a corresponding group of

molds that may consist of several similar mold types. A mold changeover among these

types of molds is needed to shift from the production of one element type to another

within the same element group. Such a changeover can be accomplished within the

same day except for very complicated cases. Figure 3.1 illustrates the relationship

between the precast elements and the molds.

Figure 3.1 Relationship between elements and molds
(Adapted from Chan and Hu 2002b)

When a new project comes in, the precaster first classifies precast elements and

groups them by type. The number of molds in each group is determined by

considering the production capacity of the molds, the volume and timing of the

delivery requirements, and the budget allocated by the factory. The production of

Chapter 3 Precast Production Rescheduling

 43

different element groups is carried out in one or more production lines with a layout

such as depicted in Figure 3.2. Typically, the production process in a precast factory

consists of the following sequence of activities:

(1) Preparing and handling materials required – mixing concrete in a mixer, and

assembling the reinforcement mesh;

(2) Setting of molds – cleaning, oiling of mold surfaces, and fastening of side frames;

(3) Placing of reinforcements, fixtures, electrical conduits and inserts;

(4) Casting – pouring, compacting, and leveling of concrete;

(5) Curing through an artificial or natural air curing process;

(6) Demolding – stripping the side frame and taking out the components;

(7) Finishing, patching and repairing components; and

(8) Lifting the components with a mobile crane, and placing them in the stockyard to

achieve the required strength; they may then be transported to the construction

site.

Figure 3.2 Layout of production line in a precast factory

Chapter 3 Precast Production Rescheduling

 44

3.1.2 Production Constraints

Production rescheduling has to satisfy a variety of constraints encountered in practice,

including delivery constraints, capacity constraints for different resources, functional

constraints, etc.; these are described further below:

(1) Delivery constraints: This kind of constraint specifies the due date, quantity and

element type required to be delivered to the construction site. Meeting delivery

schedules is a key concern of production scheduling and rescheduling.

(2) Capacity constraints: These constraints specify the limits of resources used within

the production process. For example, molds are critical resources as casting is a key

activity in precast production. Rescheduling the production of an element involves

reassigning its production to an available mold within the production schedule. The

availability of suitable molds that can produce the element, as well as the mold

production capacity that means how many elements a mold can produce per day, will

restrict the choices available during rescheduling. The high cost of land and the bulky

nature of most precast elements also make the precast factory pay more attention to

the storage space than other manufacturing industries. Although the precaster does

keep a minimum number of elements as a buffer against unexpected events, the total

number of precast elements for a project kept in the storage yard cannot be too large.

(3) Functional constraints: This kind of constraint specifies details of the basic

working procedures required for the production of completed precast elements. For

example, a minimum lead time between production and delivery must be observed for

the curing of precast elements to attain approximately 70% of their 28-day strength

under controlled curing conditions.

Chapter 3 Precast Production Rescheduling

 45

3.1.3 Optimizing Objectives

Besides the various constraints discussed above, rescheduling for precast production

must also take into account several different objectives. Apart from the overall

objective of profit, the precaster and the contractor may have other specific objectives

associated with production, delivery, storage, resources, and quality control, as shown

in Table 3.1.

Table 3.1 Multiple optimizing objectives for precast production rescheduling

Category Precast Factory Construction Site

Production/
Construction

 Minimize production time
 Avoid interruption in the production

process

 Timely installation of precast
components

Delivery
 Timely and correct delivery of

components to the site
 Timely and correct delivery of

components from the factory
 Avoid site congestion

Storage Minimize inventory in the yard Minimize inventory on-site

Resource

 Maximize utilization of resources,
such as molds, workers, cranes, etc.

 Minimize resource shift, such as
mold changeovers, personnel shift,
etc.

 Maximize utilization of resources,
such as crane, workers, etc.

Quality
Control

 Maximize production quality
 Minimize rework

 Maximize precast products quality
 Maximize quality of installation

However, some of these objectives conflict between one and another. For example,

from the viewpoint of the precaster, long runs of a particular element type keep the

number of mold changeovers down and improve mold utilization rates. Unfortunately,

it may increase the inventory of this element type and result in missing due dates for

other elements. Emphasis on meeting due dates alone may result in many mold

changeovers and drive up related costs, which can be considerable if the cost of lost

production time is included. From the viewpoint of the contractor, storage of critical

precast elements on-site can safeguard against the failure of the precaster in providing

Chapter 3 Precast Production Rescheduling

 46

timely deliveries, and ensure smooth and continuous hoisting operations. However,

storing on the construction site increases the risk of damage to the precast components,

and may not be practical on congested sites. Moreover, the preferences of the

precaster and the contractor for these objectives can be different under different

circumstances. For example, the contractor may care more about timely delivery in

order to ensure timely installation of these components on-site and avoid site

congestion. On the other hand, the precaster may want the best utilization of

manufacturing facilities among different concurrent projects. This research recognizes

that different objectives may exist in the rescheduling process, and the precast

production rescheduling problem is indeed a multiobjective optimization problem.

3.1.4 Mathematical Formulation

The mathematical formulation of the precast production rescheduling problem follows

that developed by Chan and Hu (2002b) for the precast production scheduling

problem as the same underlying production process is involved. This mathematical

formulation represents the precast scheduling/rescheduling problem for the

comprehensive precast production and incorporates the different constraints

encountered in practice. The essential difference with Chan and Hu (2002b) lies in the

new search procedures and search representations adopted when rescheduling is

attempted.

3.1.4.1 Decision variables and parameters

In general, the production schedule of precast building components can be thought of

as a specification of which element is to be produced using a particular mold on a

specific day. Let m = 1, 2, …, M denote the serial number of molds, t = 1, 2, …, T

denote the workdays in the planning horizon, and e = 1, 2, …, E denote the element

Chapter 3 Precast Production Rescheduling

 47

types to be produced. With this notation, the production schedule can be presented as

shown in Table 3.2. In order to facilitate mathematical formulation and calculation, a

set of classical binary valued variables xt,m,e with a domain of {0, 1} is used to

represent the schedule. Therefore, xt,m,e = 1 means that mold m is assigned to produce

element type e on day t, whilst xt,m,e = 0 represents the opposite. The parameters that

are used in defining the constraints and objectives of the rescheduling problem are

defined in Table 3.3. The values of these parameters are set up for each precast

production rescheduling problem.

Table 3.2 Production schedule representation

Days (t) Molds(m)
1 2 … T-1 T

1 1 1 … 1 1
2 2 2 … 1 1
… … … … … …
M E-1 E-1 … E E

Table 3.3 Parameters considered for the rescheduling problem

Parameters Description
T Length of the scheduling period in days, t=0,1,2,…,T;
M Maximal number of molds included in the schedule, m=1,2,…,M;
E Number of element types to be produced in the scheduling period,

e=1,2,…,E;
S0,e Initial stock of element type e at the beginning of the scheduling period;
St,e Number of element type e in stock on day t;
Se Maximum allowable storage level of element type e;
Se

’ Minimum buffer storage level of element type e;
Rt,e Number of element type e required to be delivered on day t;
Dt,e Number of element type e delivered on day t;
Te

’ Delivery day for element type e;
TN Normal production days; obtained by subtracting non-working days from

T;

eL Minimum required lead time between production and delivery for element
type e;

Le Lead time between production and delivery of element type e;

Chapter 3 Precast Production Rescheduling

 48

3.1.4.2 Constraints

The constraints considered in this research are formulated as follows:

(1) Mold capacity constraint: The elements that can be produced by each mold are

restricted to those that belong to the same element group with only minor variations

among different types within the group. Each mold is assumed to produce at most one

element per day in the comprehensive mode of precast production (Equation 3.1). The

maximum production capacity per day can not exceed the total number of molds

(Equation 3.2).

tmallx
E

e
emt , 1

1
,, ≤∑

=

 (3.1)

tallMx
M

m

E

e
emt

1 1
,, ≤∑∑

= =

 (3.2)

(2) Minimum lead time constraint: A minimum lead time for each element type is

assumed in order to attain required concrete strength before delivering to the

construction site. The length of lead time can be varied with different element types

under different curing conditions.

eallLL ee ≥ (3.3)

(3) Non-production constraint: It is assumed that there is no production on Sundays

and public holidays, while lead times can span Sundays and public holidays.

holidayspublicandsundaystx emt ∈= 0,,

(3.4)

(4) Delivery constraint: It specifies requirements of delivering precast elements to the

construction site in a given day. Both the required quantity and due date should be met,

otherwise a penalty would be incurred (Equation 3.5). Hence, the sum of the initial

stock and the total production of any element before each delivery date should meet

Chapter 3 Precast Production Rescheduling

 49

the number of elements required to be delivered (Equation 3.6).

et,allRD etet ,, ≤ (3.5)

 e allRxS
ee T

t
et

T

t

M

m
emte

''

1
,

1 1
,,,0 ∑∑∑

== =

≥+ (3.6)

(5) Inventory constraint: The stock levels for each element type are assumed to be

kept within a band between the minimum buffer required and the maximum inventory

limit:

eallSDxSS e

T

t
et

T

t

M

m
emtee ≤−+≤ ∑∑∑

== = 1
,

1 1
,,,0

' (3.7)

Depending on whether the requirement that the constraint be satisfied is absolute or

not, these constraints are categorized as either hard or soft in this research. Hard

constraints, which must always be satisfied, include the mold capacity constraint, the

minimum lead time constraint and the non-production constraint. On the other hand,

the delivery constraint and the inventory constraint are soft constraints, which can be

relaxed when necessary but would incur a penalty if they are not met.

3.1.4.3 Objectives

Based on different circumstances in the rescheduling process for precast production,

the precaster and the contractor will have different objectives and preferences towards

these objectives in problem solving. Here, two objectives are highlighted in this

research.

(1) Minimizing late delivery, i.e. minimizing the sum of element units that are

delivered beyond their required due date:

),0max()(

)(

,,,,

1
,,

1

etetetet

E

e
etet

T

t
D

DRDRwhere

DRF

−=−

−=

+

=

+

=
∑∑ (3.8)

Chapter 3 Precast Production Rescheduling

 50

(2) Minimizing the sum of ‘out-of-band’ element units to maintain inventory levels

within a prescribed band. Tight space constraints both on-site and in the factory,

severely limit the number of units that can be produced ahead of the schedule. On the

other hand, the precaster needs to keep production somewhat ahead of the promised

delivery schedule as a buffer against the changes of site conditions.

),0(max)(),,0(max)(

})(){(

,
'

,
'

,,

1
,

'
,

1

eteeteeeteet

E

e
eteeet

T

t
I

SSSSSSSSwhere

SSSSF

−=−−=−

−+−=

++

=

++

=
∑∑ (3.9)

These two objectives are highlighted for the precast production rescheduling problem

as they are very commonly considered in the rescheduling process and they obviously

conflict. The first objective of minimizing late deliveries reflects the interest of the

contractor, whilst the second objective of minimizing the sum of ‘out-of-band’

element units for inventory levels reflects the concern of the precaster.

3.2 Coordinated Production Reactive Scheduling Model

A coordinated production reactive scheduling model (CPRSM) is proposed in this

research. The CPRSM is developed to support production rescheduling in precast

factories and facilitate schedule coordination between the precaster and the contractor.

3.2.1 Model Overview

The CPRSM includes the following four modules for precast production rescheduling,

namely disturbance detection, global search with multiobjective optimization, local

search with specific constraints, and ranking of outcomes for negotiation, as shown in

Figure 3.3. With these four sub-processes, rescheduling for precast production begins

Chapter 3 Precast Production Rescheduling

 51

with an occurrence of new schedule disturbances. Details for each module are

discussed in the following sections.

Figure 3.3 Framework of the coordinated production reactive scheduling model

3.2.2 Disturbance Detection

In the proposed CPRSM, the module for disturbance detection is first evoked by

events that will cause schedule disturbances to the existing production schedule.

Detailed disturbance information need to be collected, which includes the identity,

quantity, due date and time of scheduled production of the precast components

involved in disturbances. Schedule disturbances are caused by changes in delivery

quantities, delivery due dates, element specifications, or number of workdays

Chapter 3 Precast Production Rescheduling

 52

available. Each type of schedule disturbance is represented differently. In order to

better illustrate this, a 10-day production schedule for a single mold is presented. The

schedule arrays before and after disturbance detection are shown in Figure 3.4. The

disturbance information is represented in Table 3.4.

Figure 3.4 Illustration of schedule array and disturbances

Table 3.4 Characteristics representation of schedule disturbances

Disturbance
No.

Element
type Quantity Scheduled

day
Original
due date

New due
date Type

1 E2 1 -- -- Day 2 Change in quantity due to poor quality

2 E1 2 Day 2 to 3 Day 8 Day 5 Change in delivery due date due to
progress on-site

3 E3 2 Day 5 to 6 Day 9 Day 9 Change in design specification

4 E2 1 Day 8 Day 10 Day 10 Change in workday due to crane
breakdown

3.2.2.1 Change in quantities

A change in production quantity of any element could be either an increase or a

decrease of the demand required. However, it is assumed that the need to increase

production is of more concern to the precaster and triggers a necessity for

rescheduling. The need to increase production for certain elements usually results

from causes, such as replacing elements rejected due to quality defects, amendments

Chapter 3 Precast Production Rescheduling

 53

to the design by the architect or the structural engineer, or as a result of new orders.

Representing this kind of disturbances is straightforward. An example of such a

disturbance is “Disturbance 1” in Figure 3.4, which is not scheduled in the original

schedule array. In this instance, one piece of element E2 has to be produced to

compensate for a rejected piece due to a quality problem and its due date for delivery

is day 2, as indicated in Table 3.4.

3.2.2.2 Change in due dates

The precast production schedule is closely related to the pace of construction on-site.

Any change in site progress is likely to cause a schedule disturbance by changing the

due dates of delivery to the construction site. On the one hand, the due date could be

advanced because the construction progress is better than anticipated in the project

schedule. On the other hand, the due date could also be delayed due to stoppage or

delay of work on-site caused by unanticipated events. The disturbance is represented

by noting the affected elements and the new due date. As shown in Figure 3.4 and

Table 3.4, the second disturbance involves two pieces of element E1 that were

originally planned to be produced on days 2 and 3. The due date for these two

elements is changed from day 8 to day 5 since progress on-site is ahead of the original

project schedule. The productions of these two elements are then removed from the

original schedule array. It makes the relevant production space available in the new

schedule array.

3.2.2.3 Change in element specification

This kind of disturbance is often caused by design changes as the construction project

progresses. The precaster has to take some time to modify the mold to suit the new

design. Consequently, the mold can not be used to cast new elements and its

Chapter 3 Precast Production Rescheduling

 54

production capacity is lost during this modification period. This, in turn, makes the

number of available workdays within the planning horizon decrease. The schedule

disturbance indicates the precast elements that are affected during the period of mold

modification. Their delivery dates are kept unchanged. For example, disturbance No.3

in Table 3.4 shows that the mold requires modification for two days from day 5 to day

6. As shown in Figure 3.4, two pieces of element E3 that were originally scheduled to

be produced during these two days have to be rescheduled, and the due date is kept as

day 9.

3.2.2.4 Change in workdays

These disturbances occur as a result of a change in the availability of resources in the

precast factory, and include the breakdown of the crane, problem with cleanliness of

the molds, and shortage of skilled workers or raw materials. Troubleshooting and

solving such problems need time, resulting in a loss of workdays. This kind of

disturbance is represented in the same way as a disturbance due to a change in

specification. The disturbance information identifies the elements produced in the

affected workdays with their original due dates. The number of available workdays

within the planning horizon is also decreased. The fourth disturbance shown in Figure

3.4 and Table 3.4 involves a crane breakdown in day 8, which causes the production

of E2 to be rescheduled with the original due date on day 10. Consequently, the

schedule array is reduced by 3 days corresponding to days 5-6 involved in

Disturbance 3 and day 8 involved in Disturbance 4.

3.2.3 Global Search with Multiobjective Optimization

Following disturbance detection, the global search module in the CPRSM starts to

perform rescheduling considering the different constraints and optimization objectives.

Chapter 3 Precast Production Rescheduling

 55

The functions of the global search module include (1) determination of the resolution

priority for schedule disturbances along with the corresponding heuristics, and (2)

generation of alternative repaired schedules that are non-dominated with respect to the

quantitative evaluation criteria employed.

3.2.3.1 Rescheduling heuristics for precast operations

Precast elements involved in the schedule disturbances are first removed from the

existing schedule and put into a list to be rescheduled. Rescheduling is performed

with the use of heuristics in actual practice. However, repair actions are likely to cause

further disturbances if these disturbances are solved with the wrong heuristics or in

the wrong sequence. Therefore, it is necessary to consider not only how to resolve the

disturbances but also the order in which the disturbances are to be resolved as both of

them have a bearing on the desirability of the final repaired schedule.

There are several heuristics used by the precaster to repair the production schedule.

This research considers some basic heuristics and hybrid strategies resulting from the

combination of the basic heuristics. Figure 3.5 illustrates the operations of these

heuristics.

(1) Right Shifting (RS): This heuristic strategy resolves disturbances by simply

“pushing” the existing production forward in time until the disturbance is resolved. It

is frequently employed in situations when a resource become temporarily unavailable,

such as when the crane breaks down or the mold has to be cleaned.

(2) Left Shifting (LS: This is a strategy similar to RS, and it shifts an operation

backwards in time. It is particularly useful when a hard constraint that previously

prohibits the commencement of operation is softened or removed. However, there is

the problem of high inventory levels if this heuristic is applied.

Chapter 3 Precast Production Rescheduling

 56

(3) Opportunistic Insertion (OI): This strategy makes use of idle days in the schedule

to accommodate a disturbance, possibly including breaking it into smaller parts and

fitting these smaller parts into the schedule in an opportunistic first fit manner. The

efficiency of this heuristic rule largely depends on the initial utilization level of the

production facilities.

(4) Deterministic Insertion (DI): This strategy is similar to opportunistic insertion but

the disturbances have priority over scheduled production and displace them from the

schedule. The affected scheduled elements are rescheduled using OI.

(5) As-soon-as-possible (ASAP)/Backward Scheduling (BS): The earliest time and the

latest time that an operation could be scheduled to start are two important concepts in

scheduling problems. Based on these two concepts, two methods of scheduling can be

distinguished, namely ASAP and BS. The ASAP method reschedules the affected

operations based on the earliest start time (EST). It would improve the utilization of

resource and prevent late deliveries. On the other hand, using the BS method causes

the operation to start at the latest start time (LST). This method could lower the

inventory level since the elements are manufactured as close to the delivery date as

possible.

(6) Sub-contracting: Outsourcing production to other operators is another option to

resolve disturbances, especially when the precast factory is already producing at its

peak capacity or it is more economically beneficial to do so

In precast production, several molds are assigned to produce the same group of

elements with minimum changeover. Therefore, using the above heuristics, the

disturbances are resolved by assigning elements to any one of the molds within the

same group that are capable of producing the elements.

 57

Figure 3.5 Illustration of heuristic strategies for schedule repair

Chapter 3 Precast Production Rescheduling

 58

3.2.3.2 Evaluation and generation of alternatives

Rather than relying solely on the subjective preferences of the decision makers, the

desirability of schedule repair outcomes is evaluated using quantifiable objectives that

are meaningful to the interests of the precaster and the contractor. The global search

module focuses on generating alternative repaired schedules that simultaneously

optimize the two objectives of minimizing late deliveries and maintaining inventory

levels formulated in Equations (3.8) and (3.9).

The solving procedure for multiobjective optimization problems is not straightforward.

Unlike the case of problems optimized with a single objective, this class of problems

usually has no unique, optimal solution. Instead, there is a set of non-dominated

solutions known as the Pareto optimal set for the multiobjective optimization problem.

According to the multiple criteria considered, these solutions are not better than their

peers as an increase in any one of these objectives may decrease the other objectives

and vice versa. This set of non-dominated solutions describes trade-offs available for

the objectives considered.

In solving a multiobjective optimization problem, two conceptually distinct types of

problem difficulty can be identified in the literature: searching and decision making.

The first aspect refers to the optimization process in which the feasible set is sampled

for Pareto optimal solutions. The second aspect addresses the problem of selecting a

suitable compromise solution from this set of Pareto optimal solutions. Based on how

the searching and decision making processes are combined, the different ways of

solving multiobjective optimization problems can be classified into three categories

(Hwang and Masud 1979; Horn 1997; Fonseca and Fleming 1998; and Van

Veldhuizen and Lamont 2000):

Chapter 3 Precast Production Rescheduling

 59

(1) A prior articulation of preferences: The decision maker expresses preference

information prior to optimization in terms of a unique aggregating function, which

combines individual objectives into a single utility value and makes the problem

into single objective one.

(2) A posterior articulation of preferences: Searching is performed without any

preference information given. Later the decision maker is presented with a set of

candidate non-dominated solutions and chooses the compromise solution from

this set depending on his preferences.

(3) Progressive/interactive articulation of preferences: Decision making and searching

occur in interleaved steps. At each step, the decision maker supplies partial

preference information to guide the search, which in turn generates alternatives

according to the information received.

If the preference factor among the objectives is known for a specific problem, the

prior preference articulation to the multiobjective optimization procedure is adopted.

It is only required to form a composite objective function such as a weighted sum of

objectives, where a weight for an objective is proportional to the preference factor

assigned to this particular objective. Then, a search is conducted for one particular

trade-off solution for this specific preference combination. However, such preference

information may not be easily available as preferences may involve other

considerations that are often non-technical, qualitative and experience-driven. This

requires an analysis of all the higher level information of the problem. It would be

even more difficult in the absence of any knowledge of the problem. Unless a reliable

and accurate preference vector is available, the optimal solution obtained by the prior

preference articulation is highly subjective and dependent on a particular decision

maker. By contrast, if a set of trade-off solutions is available, the decision maker can

Chapter 3 Precast Production Rescheduling

 60

evaluate the pros and cons of each of these solutions based on all such non-technical

and qualitative considerations, and compare them to make a choice with the posterior

preference articulation.

In view of the discussion above, this research adopts the procedure with posterior

preference articulation. Since the precaster and the contractor are usually not sure of

the exact trade-off relationship between the conflicting objectives for the rescheduling

problem, it is better to make the effort to find the set of trade-off solutions by

considering all objectives. With reference to the solving procedure depicted in Figure

3.6, the global search module is employed to search for multiple repaired schedules;

these represent different trade-offs between the two objectives considered. After a

well-distributed set of trade-off solutions is found, the precaster and the contractor can

use higher-level information to choose one of these solutions.

Figure 3.6 Schematic of solving procedure for multiobjective optimization

Chapter 3 Precast Production Rescheduling

 61

3.2.4 Local Search with Specific Constraints

Further alternative schedules are needed if the precaster and the contractor want to

make minimal adjustments to the repaired schedules provided by the global search

module. Furthermore, no algorithm is guaranteed to find all non-dominated solutions

along the Pareto front. This implies a requirement to conduct incremental exploration

of the search space in particular areas identified by the decision makers. This

capability can enhance the usefulness of multiobjective optimization and is required

in actual applications. A local search module is included in the CPRSM to explore the

neighborhoods of available repaired schedules and obtain schedules that meet specific

constraints imposed by either the precaster or the contractor.

3.2.4.1 Specific constraints and error functions

In the global search module discussed above, alternative repaired schedules are

evaluated with two conflicting objectives, namely FD and FI, in terms of all element

types within the production schedule. The precaster or the contractor may impose

specific requirements on repaired schedules after reviewing these alternatives. Based

on the Pareto front of the two objectives for all element types, the specific

requirements considered in this research can be a setting of target values or value

ranges on these two objectives for a certain element type. These requirements are

treated as constraints with their degrees of satisfaction encoded as error functions. For

example, if the target of total unit number of element E1 for late delivery is set as A

and the number for the current schedule is B, the error function of this constraint is

represented by ()BAmax −,0 , whereby 0 signifies full satisfaction of the constraint,

and other non-negative values reflect the degree to which the constraint is violated.

Since these specific constraints are all measured in terms of the number of element

units, all of their corresponding error functions can be aggregated directly into an

Chapter 3 Precast Production Rescheduling

 62

objective function for the local search module. The quality of a schedule is therefore

explicitly measured by the objective function as its value represents the total degree of

constraint violation for the schedule with respect to all the specific requirements.

3.2.4.2 Iterative repair process

Iterative repair techniques perform a kind of local search to improve a given schedule

that is possibly flawed. This can easily be implemented as a single, general purpose

technique applicable to both predictive and reactive scheduling (Kjenstad 1998).

Iterative repair techniques also have other advantages over constructive techniques in

the incremental exploration considered in the local search module. Firstly, the

rescheduling problem may become overconstrained with specific constraints, but this

may not be known in advance by the decision maker. When the problem is

over-constrained, a constructive method must exhaust all possibilities before it can

infer that constraints must be relaxed. In contrast, the repair-based methods attempt to

iteratively improve solutions regardless of whether the problem is over-constrained or

not and terminate with a set of assignments that is as close to a solution as could be

derived in the time allotted (Zweben et al. 1994). Secondly, the “global” constraints

and optimization criteria can be easily evaluated since the repair methods search

through a space of complete schedules, unlike the situation in constructive methods

where the global criteria can only be approximately evaluated with a partial schedule.

For the iterative repair procedure adopted in this research, a schedule obtained from

the global search module is selected as the initial solution, and then changed by

simple inexpensive modifications. The efficacy of these changes is evaluated by the

objective function of the sum of deviations from the specific constraints imposed. If

the new schedule is an improvement, it is used in the next iteration, and if it is better

Chapter 3 Precast Production Rescheduling

 63

than any previous solution, it is stored as the best solution so far. The search may

terminate when an acceptable schedule is found, when a predefined amount of search

is completed or by user interruption. If the search starting with a schedule fails to find

the specific schedule, the iterative repair process could run a number of times with

other starting solutions. Figure 3.7 provides a general framework for the iterative

repair process developed in the local search module.

3.2.5 Ranking of Outcomes for Negotiation

The alternative repaired schedules generated by both the global search and the local

search modules provide valuable options for the precaster and the contractor to

consider. They can express their preference for these repaired schedules and reach a

compromise solution. This is not discussed in detail since the focus of this research is

on the search for alternative repaired schedules.

With these four sub-processes, the CPRSM is proposed and developed as an

integrated system to handle schedule disturbances in precast production and facilitate

schedule coordination between the precaster and the contractor. Playing an important

role in searching alternative repaired schedules, the global search module and the

local search module are elaborated respectively in the following chapters.

Chapter 3 Precast Production Rescheduling

 64

Figure 3.7 Iterative repair process with specific constraints

 65

CHAPTER 4

MULTIOBJECTIVE GENETIC ALGORITHMS FOR
GLOBAL SEARCH

The core of the proposed coordinated production reactive scheduling model is the

global search module, which focuses on generating alternative repaired schedules

considering multiple conflicting objectives. The implementation of multiobjective

genetic algorithms in global search is described in this chapter, which includes

chromosome representation, genetic operators, fitness assignment and sharing, and the

elitist strategy employed.

4.1 Basic Mechanisms of Genetic Algorithms

As the name suggests, the genetic algorithm (GA) is a search algorithm based on the

mechanics of natural selection and natural genetics. It combines survival of the fittest

among string structures with a structured yet randomized information exchange to

form search algorithms with some of the innovative flair of human search (Goldberg

1989).

The most important construct in the GA is the chromosome (Figure 4.1), which is

essentially a candidate solution to the problem. The chromosome is made up of blocks

of cells called genes. Each gene encodes a particular character of the candidate

solution with a possible value termed as an allele. The site indicating the position of a

gene held in the chromosome is called its locus.

In typical GAs, a group of random chromosomes forms a population of initial

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 66

Figure 4.1 GA chromosome

candidate solutions. These chromosomes reproduce through consecutive iterations,

called generations. In each generation, the quality of each chromosome is evaluated

based on how well it satisfies a predefined objective function. A fitness is then

assigned to each chromosome with respect to its objective function value, which

represents how “fit” it is in relation to other chromosomes in the population. Within

this population, fitter chromosomes will have higher chances of being selected to

participate in the generation of new solutions. After a selection procedure for parent

chromosomes, new offspring are generated from these parents using genetic operators,

such as crossover and mutation. As populations move from one generation to another,

it is hoped that better and better solutions will evolve until the cycle stops on reaching

a stopping criterion. Following the crucial steps of deciding upon a suitable

chromosomal representation for the problem and determining the objective function

for fitness evaluation, the GA optimization process is carried out as follows (Davis

1991):

(1) Initialize a pool of solutions known as the parent pool;

(2) Determine the fitness of each solution in the parent pool with respect to the

problem specific objective function;

(3) Select parent solutions for the creation of the next generation with a probability

relative to their fitness;

(4) Create offspring solutions by means of genetic operators on the selected parent

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 67

solutions;

(5) Form a new parent pool for the new generation, namely through population

replacement;

(6) Check whether the stopping criteria are met or not. If not, go back to step (2);

otherwise, stop the search and return the best solution.

There are three main genetic operators in genetic algorithms, namely selection,

crossover and mutation, which are usually used to create the next generation. These

operators provide means of weeding out poor solutions and generating better solutions

through the subsequent iterations. Furthermore, these simple operators make GAs

computationally simple to implement; in spite of their apparent simplicity, GAs have

proven to be effective in tackling a variety of optimization problems.

Selection is usually the first operator that is applied to an existing population to create

offspring. Being an artificial version of natural selection, the essential idea is to select

“better-than-average” solutions from the existing population and insert multiple

copies of these solutions in the mating pool in a probabilistic manner. The selection

operator may be implemented in a number of ways. The most common way is to

create a biased roulette wheel where each individual in the current population has a

slot on the roulette wheel sized in proportion to its fitness value. Thus, those

individuals with a greater fitness value are expected to receive more chances of

contributing their genes to the population in the new generation than those with a

lesser fitness value.

The power of GA derives from the crossover operation, where a randomized exchange

of genetic material is executed with a possibility that “good” solutions can generate

“better” ones (Goldberg 1989). Crossover takes building blocks from two individuals

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 68

and combines them into new offspring. It is hoped that by doing so, new individuals

will be created whose fitness exceeds that of either parent. A simple single-point

crossover may proceed in the following steps as depicted in Figure 4.2. Firstly,

members of newly reproduced strings in the mating pool are picked at random.

Secondly, each pair of strings exchanges part of its chromosome across a point chosen

uniformly at random along the length of the chromosome string. The mechanics of

crossover are simple; nonetheless, the combined effect of selection and the structured,

though randomized, information exchange through crossover gives GAs much of their

power (Man et al. 1999).

Mutation is another process essential for evolution. It operates on a single

chromosome and produces a new genotype by making a random change to values of

one or more genes in the chromosome string. When used sparingly with selection and

crossover, mutation is an insurance policy against premature loss of important options.

Furthermore, it helps push the search effort into different search spaces by introducing

new allele values into the string structure, thus creating new possibilities that might

not have been present in the initial pool of solutions. However, in order to avoid the

disruption of good solutions, the probability of mutation is often kept very low. Figure

4.2 illustrates the mutation process.

Figure 4.2 Illustrations of crossover and mutation

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 69

4.2 Genetic Algorithms for Multiobjective Optimization

A multiobjective genetic algorithm employs the same operations as the conventional

single-objective genetic algorithm, but is required to evolve a set of solutions that is

Pareto optimal. There are several ways for a multiobjective genetic algorithm to

search for Pareto optimal solutions. A brief summary of the key issues in

multiobjective search by GAs is given first, followed by a detailed introduction of the

main features and computational procedures of several multiobjective genetic

algorithms applied in this research.

4.2.1 Key Issues in Multiobjective Search

In a single objective optimization problem, the superiority of one solution to another

can be easily determined by comparing their objective function values. There exists a

single identifiable value that is superior to all other objective function values. This is

not the case for a multiobjective optimization problem, since it is not possible to

optimize several objectives simultaneously at times when there are conflicting

objectives involved. Any two solutions x(1) and x(2) for such problem can have one of

two possibilities, which are one dominating the other or neither dominating the other.

A solution x(1) is said to dominate the other solution x(2) if both the following

conditions are true (Deb 2001): (i) The solution x(1) is no worse than x(2) in all

objectives; and (ii) The solution x(1) is strictly better than x(2) in at least one objective.

If there exists no feasible solution x(2) dominates x(1), then x(1) is said to be a

non-dominated or Pareto optimal solution. Therefore, based on the concept of Pareto

dominance, a multiobjective optimization problem has a family of non-dominated

solutions known as the Pareto optimal set, in which none of these solutions is better

than others for all the objectives considered.

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 70

Genetic algorithms appear to be well suited for multiobjective optimization problems

due to the ability of finding multiple solutions simultaneously in each run (Carlyle et

al. 2001). Therefore, research on multiobjective genetic algorithms have focused on

the ability to emphasize all non-dominated solutions equally and preserving a diverse

set of these solutions in the population at each generation. It may lead the population

to converge and form a Pareto front with a good spread after some generations.

Modifications, such as Pareto-based fitness assignment and sharing, have been

developed to accomplish this based on the evaluation of fitness of each solution.

In contrast to single objective optimization, where the objective function and the

fitness function are often identical, multiobjective optimization problems require that

both fitness assignment and selection must allow for the existence of several

objectives. Several approaches have been developed, these include:

(1) Selection by switching objectives (Schaffer 1984 and 1985; Kursawe 1991), i.e.,

an individual is selected based on a different objective, such as one of the multiple

objectives and a specific order of these objectives;

(2) Selection with parameter variation (Hajela and Lin 1992; Ishibuchi and Murata

1996), i.e., an individual is selected based on a single objective function by

aggregating the multiple objectives with systematically varied parameters in the

same run;

(3) Pareto-based selection (Goldberg 1989; Fonseca and Fleming 1993; Horn et al.

1994; Srinivas and Deb 1994), i.e., an individual is selected based on the concept

of Pareto dominance.

The first two classes of selection techniques may have a bias towards “extreme”

solutions and be sensitive to non-convex Pareto optimal front (Horn 1997, Van

Veldhuizen 1999). In contrast, the class of Pareto-based techniques is capable of

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 71

finding any Pareto optimal solution as these techniques use the concept of Pareto

dominance to calculate an individual’s fitness relative to the whole population.

Therefore, Pareto-based techniques seem to be the most popular in the field of

evolutionary multiobjective optimization (Van Veldhuizen and Lamont 1998).

Although all non-dominated individuals in the population are emphasized

simultaneously with Pareto-based techniques, it does not guarantee that the Pareto

optimal set can be uniformly sampled because of the phenomenon known as genetic

drift (De Jong 1975); i.e., when presented with multiple equivalent optima, finite

populations tend to converge to only one of these. This is attributed to stochastic

errors in the selection process. Fitness sharing, proposed by Goldberg and Richardson

(1987), is the most frequently used technique to maintain a diverse population. It has

been applied in many research works, e.g. Hajela and Lin (1992); Fonseca and

Fleming (1993); Horn et al. (1994); Srinivas and Deb (1994); Todd and Sen (1997);

and Zydallis et al. (2001). Fitness sharing is based on the idea that individuals in a

particular niche have to share available resources, and aims to promote the formation

and maintenance of stable niches (Zitzler 1999). In this method, the population is

divided into different niches according to the similarity of individuals either in

phenotype (the decoded parameter space or objective space) or in genotype (the gene

space). Through degrading fitness values of similar solutions, the use of fitness

sharing helps mitigate unbridled head-to-head competition between widely disparate

points in the search space.

4.2.2 Weighted Sum Genetic Algorithm

The weighted sum genetic algorithm is representative of the aggregation approach to

solve multiobjective optimization problems. It combines all the objective functions

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 72

into a single one using different weighting coefficients (weights) for each component

objective function. It means that a multiobjective optimization problem is transformed

into a scalar optimization problem. The weight is usually taken to represent the

relative importance of the individual objectives. Each combination of weights yields a

traditional simple genetic algorithm (SGA), which solves a single objective problem

with the basic procedure described earlier. Since the results of solving an optimization

problem using a weighted sum objective function can vary significantly as weights

change, and very little is usually known about how to choose the weights for a

particular problem in a priori manner, it is necessary to solve the same problem with

many different weight combinations. Therefore, it can be used to find multiple

non-dominated solutions by repeating the search procedure with varying weights. This

combination technique has been widely applied in different fields of research

probably due to its simplicity although it has its shortcomings.

4.2.3 Non-dominated Sorting Genetic Algorithm (NSGA)

Non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994) is

representative of the class of Pareto-based approaches. The idea behind NSGA is that

a fitness assignment scheme is used to emphasize non-dominated solutions and a

sharing strategy is used to maintain diversity in the population. Figure 4.3 shows a

flowchart depicting the NSGA. The efficiency of NSGA lies in the way that multiple

objectives are reduced to a dummy fitness function using a non-dominated sorting

procedure. With this approach, any number of objectives can be solved, and both

maximization and minimization problems can be handled (Coello 2000). Moreover,

sharing in the decision parameter value space ensures a better distribution of

individuals and allows multiple equivalent solutions to exist.

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 73

YES

YES

START

Initialize
population

GEN=0

FRONT = 1

Population
Classified?

Reproduce
according to
shared fitness

Crossover

Mutation

Identify Non-
dominated
individuals

Assign a dummy
fitness

Share fitness on
the current front

FRONT = FRONT +1

GEN = GEN +1

STOP

NO

NO
Termination

condition reached?

Figure 4.3 Flowchart of the non-dominated sorting genetic algorithm (NSGA)

4.2.3.1 Fitness assignment

The first step in NSGA is to sort the population into a number of mutually exclusive

non-dominated sets (fronts). There are many approaches that have been suggested for

finding the non-dominated set of solutions from a given population of solutions, all of

which have different computational complexities. For example, the step-by-step

procedure for a naïve and basic approach of finding the non-dominated set 'P in a

given population P of size N is as follows (Deb 2001):

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 74

Step1: Set the solution counter i = 1 and create an empty non-dominated set 'P .

Step 2: For solution Pj∈ (but ij ≠), check if solution j dominates solution i using

the two aforementioned conditions in Section 4.2.1; if yes, go to Step 4.

Step 3: If more solutions are left in P, increment j by one and go to Step 2; otherwise,

set {}iPP ∪'=' .

Step 4: Increment i by one. If Ni ≤ , go to Step 2; otherwise stop and declare 'P as

the non-dominated set.

Once the classification task is done, it is clear that all solutions in the first

non-dominated set are equally important, and represent the best in terms of their

closeness to the true Pareto optimal front in the population. The solutions in the

second non-dominated set are the second best in the population, and so on.

Following the classification of the population, fitness assignment in NSGA begins

with the first non-dominated front. Every solution of the first non-dominated front is

first assigned with the same dummy fitness value (i.e. equal to the population size) to

provide equal reproductive potential to all of these individuals. In order to preserve

diversity among solutions in the first non-dominated front, the initially assigned

fitness of each solution is then shared based on the number of its neighboring

solutions in the front. Next, the individuals in the first non-dominated front are

removed from the current population temporarily, and the same procedure is carried

out on the second front of non-dominated individuals. These second front solutions

are assigned a new dummy fitness value, which is kept smaller than the minimum

shared fitness value in the first front. This makes sure that no solution in the first front

has a shared fitness worse than the assigned fitness of any solution in the second front.

Thereafter, the sharing procedure is again performed on the solutions of the second

non-dominated front. This process is continued until all solutions in the population are

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 75

assigned a fitness value, whereupon the population can undergo reproduction.

4.2.3.2 Fitness sharing

Fitness sharing is an important issue in NSGA. A sharing function is used on each

front to determine the degradation of an individual’s fitness due to a neighbor that is

at some distance from it, as measured in some “similarity space” (Deb and Goldberg

1989).

Firstly, the sharing function Sh(dij) is defined in terms of dij -- a metric indicative of

the distance between individuals i and j, and σshare -- the sharing radius that controls

the extent of sharing allowed:

()
⎪
⎩

⎪
⎨

⎧
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

otherwise

dif
d

dSh shareij
share

ij

ij

0

1
2

σ
σ

 (4.1)

The sharing function takes a value in [0, 1], depending on the value of dij and σshare.

Any j which has a distance greater than σshare from i contributes nothing to the sharing

function value. Then, a niche count nci for individual i is formulated as the sum of all

sharing function values between i and all members (including itself) belonging to the

same front as follows:

()∑
=

=
n

j
iji dShnc

1

 (4.2)

where n is the number of solutions in a particular front. The niche count provides an

estimate of the extent of crowding near solution i. Finally, the shared fitness of an

individual i is equal to its old fitness divided by its niche count.

In the calculation of the sharing function ()ijdSh , a normalized Euclidian distance

that measures the phenotype distance between individuals i and j in the same

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 76

non-dominated front is adopted. It can be calculated as follows:

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
K

k
l
k

u
k

j
k

i
k

ij xx
xx

d
1

2)()(

 (4.3)

where K is the number of decision variables for the problem. The parameter u
kx and

l
kx are the upper and lower bounds of variable kx corresponding to the value ranges

for each gene in the chromosome. Choosing an appropriate value for σshare is another

important issue with the sharing function approach. Given normalized distance values

are used, Deb and Goldberg (1989) proposed that this parameter could be determined

using:

Kshare q
5.0

≈σ (4.4)

where K is same as that used in Equation (4.3), and q is the number of equispaced

niches in the search space. Therefore, the calculation of σshare depends on the choice of

q with this equation. If the q chosen to calculate σshare is larger than the actual number

of optima in the search space, the sharing function approach tends to form more

niches than the function can allow. This may lead to finding a number of suboptimal

solutions in addition to the optimal solutions. On the other hand, if the chosen q

underestimates the actual number of optima in the search space, not all optima may be

found by the sharing function approach. Thus, Srinivas and Deb (1994) suggested that

a q = 5 to 10 may be tried in most applications where an exact number of optima is

not known a priori.

4.2.3.3 Algorithm of fitness assignment and sharing

Considering a set of N population members, the algorithm for the fitness assignment

procedure adopted in this research follows that described for NSGA in Deb (2001)

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 77

and Prasad and Park (2004):

Step 1: Choose sharing radius σshare and a small positive number ε, and initialize Fmin

= N + ε.

Step 2: Classify population P according to non-domination:

Step 2a: Set all non-dominated sets ()K,2,1=jPj as empty sets and the

non-dominated front counter 1=j .

Step 2b: Find the non-dominated set 'P of population P.

Step 2c: Update 'PPj = and '\ PPP = ; set 'P = Ø.

Step 2d: If P ≠ Ø, increase j by one and go to Step 2b. Otherwise, stop and

declare all non-dominated fronts jP , for ρj ,,2,1= K ;

Step 3: Set the non-dominated front counter 1=j , for each jPq∈

Step 3a: Assign dummy fitness () ε−= minFF q
j .

Step 3b: Calculate the sharing function value ()'qqdSh with jPq ∈' using

Equation (4.1).

Step 3c: Calculate the niche count qnc using Equation (4.2) among solutions of

Pj only.

Step 3d: Calculate the shared fitness () ()
q

q
j

q
j ncFF /' = .

Step 4: ()()j
q

j PqFF ∈= :min '
min and set 1+= jj .

Step 5: If ρ≤j , go to Step3; otherwise, the process is complete.

4.2.4 NSGA with Proposed Elitist Strategies

NSGA is somewhat lacking in both on-line performance (rapid convergence to good

solutions) and off-line performance (superior quality of the final solution) (Bagchi

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 78

2001). One key reason is that NSGA does not preserve good solutions found from one

generation to the next generation. Since chance is involved, good solutions lost in one

generation may or may not reappear in the future. Therefore, the use of elitist

strategies is proposed in this study to improve the performance of the original NSGA

in solving the multiobjective precast production rescheduling problem.

4.2.4.1 Overview of elitist strategies

De Jong (1975) suggested the use of an elitist policy in the single objective genetic

algorithm in order to prevent losing the best individuals due to sampling effects or

operator disruption. The elitist policy always includes the best individuals of the

current population into the next population. In the context of multiobjective

optimization, the meaning of elite solutions is different from that in single objective

optimization. A set of solutions that belongs to the best non-dominated front in each

generation are considered elite individuals; all these solutions are equally important.

Thus, the size of the elite set grows with each generation and can become significant

compared to the size of the population, especially when the Pareto optimal set can

admit an infinite number of solutions. This substantially complicates the incorporation

of elitism in multiobjective optimization, especially in the appropriate selection of

elite individuals. The use of elitism in evolutionary multiobjective optimization is still

a subject of research (Laumanns et al. 2001).

Currently, there are several elitist strategies described in the literature. The first

strategy is to copy the best individuals from the current generation to the next

generation directly. The objective vectors of these individuals are either

non-dominated with respect to all the objectives considered (Tamaki et al. 1994) or

optimizing one of these objectives (Anderson and Lawrence 1996; Todd and Sen

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 79

1997). The second strategy is to choose better individuals with a comparison between

the offspring individuals and the parent individuals to form the population of next

generation. Such a comparison can be performed between the offspring and their

corresponding parent only (Rudolph 1998) or between the offspring population and

the parent population (Bagshi 1999; Deb et al. 2000). The third strategy, different

from the first two strategies, maintains an external elite set of individuals that are

non-dominated among all the solutions generated so far. In each iteration, the external

set is updated and some non-dominated solutions in the set are selected to fill up a

certain percentage of the new population or the parent population (Ishibuchi and

Murata 1996; Murata et al. 1996; Parks and Miller 1998; Zitzler and Thiele 1998; and

Knowles and Corne 2000). The members picked from the external set for insertion are

either selected at random or according to some criteria, such as the period that an

individual has stayed in the set.

4.2.4.2 Proposed elitist strategies for global search

The elitist strategy adopted in this study maintains an external archive of elite

individuals. After the population of the new generation has been evaluated, this

archive is updated with new generated non-dominated solutions. In order to prevent

the archive size from growing too large with the passing of generations, only

individuals that are not identical with the existing archived solutions in the phenotypic

space (decoded decision values) are archived. Given K is the number of decision

variables, individual i is dissimilar to individual j if

⎩
⎨
⎧ =

=

<∑
=

otherwise
xxif

swhere

Ks

j
k

i
k

k

K

k
k

0
1)()(

1 (4.5)

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 80

Then, a fixed proportion (pe%) of the new population will be selected from the

archive. In the early stages of a run, the number of solutions in the archive may be

less than the number to make up the required proportion of the new population, so all

the archived solutions are inserted into the new population. Once the archive size

exceeds the required proportion of population, then pe% of the new population is

chosen from the archive. The remainder of the new population is generated by

applying crossover and mutation to the selected parent solutions from the current

population and new non-dominated solutions will be generated through this process.

Figure 4.4 shows a flowchart depicting the NSGA with the proposed elitist strategy.

There are options in the way that elite solutions in the archive are chosen for inclusion

into the new population; two selection methods are chosen for investigation in this

research.

(1) Random selection: Non-dominated solutions in the elite archive are selected

randomly to make up the fixed proportion of the new generation. This selection

method is widely found in the literature describing elitist strategies.

(2) Clustering selection: Instead of having an identical objective value for

single-objective optimization, non-dominated solutions in the elite archive may have

different objective vectors in the precast rescheduling problem with multiobjective

optimization. It is possible to cluster the different solutions based on their objective

vectors. There may be an uneven distribution of elite solutions such that those in a

particular cluster outnumber those in other clusters. The issue with using random

selection (without consideration of clusters) is that non-dominated solutions in small

clusters would have much less chance to be selected than those in larger clusters

which may form an overwhelming majority in the elite population. Clustering seemed

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 81

like a good way of preserving diversity in the search population, and to inhibit bias in

the evolutionary search. With clustering selection, elite solutions with different

objective function vectors have equal opportunities to survive from one generation to

the next generation. Given an external elite archive P of size N , the following

describes the steps in selecting 'N individuals from this archive with clustering

selection algorithm:

Step 1: Make individuals with the same objective function vector in the P to a

distinct cluster; then declare all clusters iC with a size of iN

(cNi ,,2,1 K=).

Step 2: Let uN equal to the quotient of
cN

N ' ; set the cluster counter 1=i and the

counter for the number of selected individual 0=j .

Step 3: If ui NN ≥ , randomly select uN different individuals in iC and update

uNjj += ; otherwise, select all iN individuals in iC and update

iNjj += .

Step 4: Set 1+= ii and remove the selected individuals from iC .

Step 5: If cNi ≤ , go to Step 3; otherwise, go to Step 6.

Step 6: If 'Nj < , randomly select jN −' different individuals left in all iC

(cNi ,,2,1 K=); otherwise, the selection process is complete.

In this study, NSGA-ESI stands for the variation of NSGA with the elitist strategy

using random selection, whilst NSGA-ESII represents the variation of NSGA with the

elitist strategy using clustering selection.

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 82

YES

NO

YES

START

Initialize
population

GEN=0

FRONT = 1

Population
classified?

Reproduce
according to

shared fitness

Fitness
assignment
front-wise

FRONT =
FRONT +1

GEN = GEN +1

STOP

Update non-
dominated

archive

Fill up the population of
new generation by

copying selected elites

Termination
condition reached?

NO

Number of
elites?

> pe% of
pop. size

<= pe% of
pop. size

Select (e% of
pop. size) of

elites in archive

Select all elites
in the archive

 Generate the left population
of new generation with

genetic operators

Figure 4.4 Flowchart of the NSGA with proposed elitist strategy

4.3 Implementation of GAs in Global Search

The basic mechanisms of GAs and the four algorithms, namely the weighted sum GA,

NSGA, NSGA-ESI and NSGA-ESII, have already been described. The following

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 83

sections discuss program implementation details in connection with the application of

these algorithms in multiobjective optimization.

4.3.1 Chromosome Representation

The choice of representation conditions all the subsequent steps in the implementation

of GAs (Gen and Cheng 1997). A good representation should correctly describe the

candidate solutions, facilitate constraint handling, and simplify the encoding/decoding

of the chromosome. In this research, GAs are applied to decide not only how to

resolve the disturbances with heuristic strategies, but also the order in which the

disturbances are to be resolved. A custom chromosome structure is designed to encode

the schedule repair decisions. The chromosome consists of equal numbers of D-genes

(disturbance genes) and H-genes (heuristics genes); each set occupying half of the

chromosome. Each disturbance to be resolved is represented by a pair of D and

H-genes. The length of the chromosome is therefore equal to the number of decision

variables, which is twice the number of disturbances to be resolved.

The D-genes are encoded with random numbers that serve as sort keys that determine

the resolution priority of the disturbances. The index of each D-gene in the

chromosome string also refers to a data structure that stores information on the

disturbance, such as the element type, quantity and due date for delivery. The random

keys representation (Bean 1994) encodes a solution with random numbers from a

specified range and is suitable for problems in which precedence relationships are

emphasized. Such a representation overcomes the issue of two feasible solutions not

always resulting in a feasible offspring solution. For instance, if permutation encoding

was adopted instead, the D-genes might look like [1 3 5 4 2], as shown in Figure 4.5.

In this alterative representation, a disturbance is represented by a gene with a

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 84

particular value, whilst the position of this gene related to other genes indicated the

resolution order for the disturbance. Under a crossover between the third and fourth

gene with another chromosome [4 1 5 2 3], the offspring are [1 3 5 2 3] and [4 1 5 4 2].

It is obvious that the offspring are illegal since they contain more than one occurrence

of a disturbance and leave out another disturbance entirely. On the other hand, the

random key representation handles this by using random values as gene values, and

these values are used as sort keys to determine the sequencing priority. As shown in

Figure 4.5, suppose the two parent chromosomes mentioned above are represented

with random numbers as [24 566 83 285 192] and [230 579 897 156 428]. With the

same crossover, offspring are [24 566 83 156 428] and [230 579 897 285 192].

Translated to permutation representation, this gives the two disturbance resolution

orders [1 3 4 5 2] and [5 1 4 2 3]. Thus, the problem of illegal offspring is eliminated.

On the other hand, the ordinal value of the heuristic used to resolve a disturbance is

encoded in direct representation in the H-genes. For example, an allele value of 1

means that heuristic H1 will be used to resolve the corresponding disturbance.

Figure 4.5 Illustration of random representation

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 85

4.3.2 Decoding

Upon decoding the chromosome, the sequence of resolving disturbances is

determined by sorting the disturbances in increasing order of their D-gene values. The

heuristics used are obtained from the corresponding H-gene. Therefore, for the

chromosome shown in Figure 4.6, the sequence of resolving disturbances is

D5 D1 D2 D4 D3, which is determined by sorting the disturbances in

increasing order of the gene values. D5 is resolved using heuristic H2, D1 with

heuristic H4, and so on.

Note: The sequence of resolution priority and corresponding heuristics
used are D5(H2) D1(H4) D2(H3) D4(H1) D3(H6)

Figure 4.6 Chromosome representations and decoding

4.3.3 Objective Functions

In this study, two objectives are selected for evaluating the quality of repaired

schedules, namely FD and FI. FD is the sum of element units that are delivered late and

FI is the sum of element units that are out of a prescribed band for the inventory levels.

FD and FI are calculated using Equations (3.8) and (3.9) respectively.

For the weighted sum genetic algorithm, these two objectives are combined in a

straightforward way into a single objective F, by taking product of FD and FI with

weight []1,0∈r . The new objective function is represented as follows:

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 86

ID FrrFF)1(min −+= (4.6)

4.3.4 Relation among chromosomes, schedules and objective functions

In the schedule repair problem, there is a two-layer mapping relationship between

chromosomes and their objective function values. As illustrated in Figure 4.7,

different repaired schedules are generated by repairing the existing schedule using the

information decoded from the D- and H-genes in the chromosomes to obtain the

priority of disturbance resolution and the corresponding heuristics. Then, these

repaired schedules are evaluated on each of the two measures, FD and FI. The quality

of each schedule is represented as a vector containing the two objective values. This

two-level mapping scheme from chromosome to objective function vector is more

complicated than the usual one-to-one mapping relationship. For example, different

chromosomes that encode different combinations of priority for disturbance resolution

and corresponding heuristics can result in the same repaired schedule, and different

schedules may have the same values for the two objective functions.

1

1

2 3 4 5 ... n

2 ... m

1 ... kObjective
function vectors

Schedules

Chromosomes

Figure 4.7 Relationship for chromosomes, schedules and objective functions

Chapter 4 Multiobjective Genetic Algorithms for Global Search

 87

4.3.5 Genetic Operators

With the adoption of the random keys representation, traditional crossover and

mutation operators can be used without modification on chromosomes. In this study, a

two-point crossover is used, in which the parent individuals are split at two places in

the chromosome string; whilst the mutation operator replaces the current value of the

chosen gene with a value selected randomly from the allowable range based on a

uniform probability distribution.

4.3.6 Software Used for the Study

In this study, the weighted sum GA was developed with PGAPack (Levine 1996).

PGAPack is a parallel genetic algorithm library that provides most of the capabilities

needed for coding GA applications in an integrated, seamless and portable manner.

The NSGA, NSGA-ESI and NSGA-ESII were developed based on source code

distributed by the Kanpur Genetic Algorithms Laboratory

(http://www.iitk.ac.in/kangal/codes.shtml). All the code development was done in C

language under the Windows operating system.

 88

CHAPTER 5

GLOBAL SEARCH FOR REPAIRED
SCHEDULES – CASE STUDY

Three test cases with different mold utilization rates were constructed from data

obtained from the survey of precast factories. They were used to test the feasibility

and applicability of several multiobjective genetic algorithms proposed in this

research – the weighted sum genetic algorithm, non-dominated sorting genetic

algorithm (NSGA) and two variations of NSGA with different elitist strategies,

namely NSGA-ESI and NSGA-ESII.

5.1 Illustrative Test Cases

The utilization level of molds for precast production was an important consideration

in the construction of the test cases. The utilization level is defined as the ratio of the

total number of units required to be produced to the total number of available

production capacity within the planning horizon. With a higher utilization level in the

production schedule, it would become less flexible in accommodating disturbances

with the available molds. This, in turn, may increase the level of difficulty in finding

alternative repaired schedules. The utilization rate used reflects that observed in the

local precast industry and ranged from a lower limit of 0.60 to the maximum of 0.90.

It was decided that a utilization level above 0.9 would make it impractical to

accommodate disturbances. Utilization rates of 0.60, 0.75 and 0.90 respectively were

used in the test cases to represent situations of low (L-U), medium (M-U) and high

(H-U) level of utilization rate.

Chapter 5 Global Search for Repaired Schedules – Case Study

 89

Three examples have been constructed based on field data obtained from the survey

of local precast factories. Each example involves a schedule for the precast items of a

project over a time span of four weeks. The schedules involve three types of elements

(E1, E2 and E3) produced by four molds (M1, M2, M3, and M4). These four molds

belong to one group, and all three element types are produced by any of the molds

with changeover accomplished within one day. The detailed site demand for each

element type, as well as corresponding production schedules determined by manual

calculation is shown in Appendixes. The minimum lead time for all elements is

assumed to be 2 days. Other parameter values used in these examples like the total

demand, initial stock levels, lower and upper bounds for inventory levels of each

element type are shown in Table 5.1.

Table 5.1 Problem parameters

Element
type

Total
demand
(Low)

Total
demand

(Medium)

Total
demand
(High)

Initial
Stock*

Upper
stock
limit*

Lower
stock
limit*

E1 31 37 45 6 10 4
E2 8 9 7 2 3 1
E3 31 37 45 6 10 4

Note: *--These parameters are the same for the three examples.

Now consider the following events occurring:

(1) The site rejected one piece of E2 because of a quality problem; hence, an

additional piece of E2 has to be produced for delivery on Day 4;

(2) The contractor informs the precast factory to advance the due date for delivering

some elements since actual progress on-site is better than that anticipated in the

earlier schedule. The new delivery schedule proposed by the site is as follows: (i)

The requirement for six pieces of E1 and E3 to be delivered on Day 30 is now

changed to three pieces of each element type on Day 21 and Day 25; and (ii) The

Chapter 5 Global Search for Repaired Schedules – Case Study

 90

two pieces of E2 earlier planned to be delivered on Day 28 is now scheduled for

Day 25.

Therefore, there are six schedule disturbances caused by these events that are

identified to be solved within the planning horizon, as shown in Table 5.2.

Table 5.2 Characteristics of schedule disturbances

Disturbance Element
Type Quantity Original

Due Date
New

Due Date Types of Disturbance

D1 E2 1 -- Day 4 Change in quantity;
quality problem

D2 E1 3 Day 30 Day 21 Change in due date due to
site progress

D3 E3 3 Day 30 Day 21 Change in due date due to
site progress

D4 E2 2 Day 28 Day 25 Change in due date due to
site progress

D5 E1 3 Day 30 Day 25 Change in due date due to
site progress

D6 E3 3 Day 30 Day 25 Change in due date due to
site progress

Insertion has been selected as a basic repair action in the case study. Since the three

element types can be produced by any of the molds, insertion is based on the multiple

mold approach in which all four molds (M1, M2, M3, and M4) can be used to resolve

a disturbance. The search for the point of insertion into the original schedule can be

carried out in a number of ways depending on choices made on many factors:

(i) The search sequence used (either in a parallel manner across all mold schedules

simultaneously or in a serial manner for each mold schedule);

(ii) The direction of search (starting either from the beginning or the end of the mold

schedules); and

(iii) The manner of insertion (opportunistic or deterministic insertion).

With different combinations of these search characteristics, six insertion-based

Chapter 5 Global Search for Repaired Schedules – Case Study

 91

heuristic strategies have been developed to resolve schedule disturbances in the study.

In addition, sub-contracting was also considered as a seventh heuristic in the

experiments. It means that the precaster will subcontract elements involved in the

disturbance with the result that there is no repair action needed to accommodate the

disturbance in the current schedule. The representation and description of repairing

actions for these heuristic strategies are summarized in Table 5.3.

Table 5.3 Heuristics representation

Heuristic Symbolic code Description of repair actions

H1 S/ASAP/OI Opportunistic insertion applied in a serial manner across
molds and from the beginning of schedules

H2 S/BS/OI Opportunistic insertion applied in a serial manner across
molds and from the end of schedules

H3 S/ASAP/DI Deterministic insertion on specific days, whilst affected
initial productions are resolved by H1

H4 P/ASAP/OI Opportunistic insertion applied in a parallel manner
across molds and from the beginning of schedules

H5 P/BS/OI Opportunistic insertion applied in a parallel manner
across molds and from the end of schedules

H6 P/ASAP/DI Deterministic insertion on specific days, whilst affected
initial productions are resolved by H4

H7 Sub-contracting No repair action

Note: S—Serial; P—Parallel; ASAP—As-soon-as-possible; BS—Backward scheduling;
OI—Opportunistic insertion; DI—Deterministic insertion.

5.2 Performance Measurement

Appropriate performance metrics must be selected to enable meaningful comparison

of these algorithms. Many metrics in the literature of the multiobjective optimization

evolutionary algorithms measure performance in the phenotype domain by comparing

the solution set generated by the algorithm with the true Pareto front for the problem.

However, no single metric can entirely capture total performance for these algorithms,

because some of them measure algorithm effectiveness while others measure

Chapter 5 Global Search for Repaired Schedules – Case Study

 92

efficiency (Coello et al. 2002). Before introducing the performance metrics selected,

the following notation is used to define the various solution sets generated by the

algorithms in this study:

(1) The solution set obtained at the final iteration of the algorithms is denoted by

PFcurrent.

(2) The optimal trade-off surface is denoted by PFtrue. Due to the fact that the true

Pareto front is generally not known for real-world problems, PFtrue refers to the

“best” Pareto front found so far by any of the selected algorithms in this study.

The following two performance metrics described by Van Veldhuizen (1999) in the

phenotype domain have been selected to compare the performance of these GA-based

algorithms. They will be calculated after all the experiments have been performed.

(1) Error Ratio (ER): it reflects the proportion of vectors in PFcurrent that are not

members of PFtrue. With a solution set having n vectors, it is mathematically

defined as:

⎩
⎨
⎧ ∈=

=

= ∑ =

otherwise
PFniivectorif

ewhere

n
e

ER

true
i

n

i i

1
),,1(,0

1

K
 (5.1)

The lower the ER, the more vectors in PFcurrent are also members of PFtrue.

(2) Generational Distance (GD): it measures how “far” PFcurrent found by the

algorithm is from PFtrue. The definition of GD is:

n

d
GD

n

i
i∑

== 1

2

 (5.2)

where di is the distance between solution i in PFcurrent and the closest solution that

belongs to PFtrue, and n is the number of vectors in PFcurrent. The farther the

solution set is from PFtrue, the greater is the generational distance.

Chapter 5 Global Search for Repaired Schedules – Case Study

 93

5.3 GA Parameters

Several parameters, such as population size (Npop), number of generations (Ngen),

crossover probability (pc), mutation probability (pm), sharing radius (σshare) and elite

proportion (pe) are considered to affect the performance of GAs. The optimal values

for these parameters can not be ascertained by applying fixed rules; in fact, optimal

GA parameters are known to be notoriously difficult to determine (Myers 2001). In

this study, these values were determined by fine tuning default values over several

runs of GAs on a trial example.

Ten separate runs were conducted for each set of these parameters with a different

seed for the random number generator that is equally distributed between 0.1 and 1.0.

Convergence is reached when the GA run attains a benchmark. This benchmark is

obtained by selecting the “best” Pareto front obtained so far. Therefore, the number of

times out of the ten runs where the solution sets converge to this front is noted.

Table 5.4 summarizes the performance of a set of experiments at the end of 70

generations. From the experiments, it was found that σshare has an impact on the

NSGA performance, as the experiments converged better with σshare equaling to

0.4172 (for q=10) than others in principle. With this sharing radius determined, the

results show that NSGA performed well under the population size of 400. With a

mutation probability of 1%, the experiments returned the highest frequency of

convergence irrespective of whether the crossover probability is 30% or 40%. Since

two variations of NSGA, namely NSGA-ESI and NSGA-ESII, use elitist strategies,

the elitist proportion is another important parameter considered in this study. Based on

the parameters determined for the basic version of NSGA, trials were conducted with

different values of the elitist proportion. There was no apparent improvement for

Chapter 5 Global Search for Repaired Schedules – Case Study

 94

values of the elitist proportion higher than 10%. From the results of these experiments,

it was decided to use the values shown in Table 5.5 for the GA parameters in the

subsequent experiments.

Table 5.4 Frequency of convergence with different GA parameters

Npop 300 400 500

pc (%) 30 40 50 30 40 50 30 40 50

pm (%) 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1 0.5 1

0.4372
(q=5) 6 9 9 7 10 7 8 9 9 7 9 4 9 8 8 8 9 8

0.4127
(q=10) 8 8 8 5 8 7 9 10 9 10 9 8 8 10 9 9 9 10 σshare

0.3990
(q=15) 8 6 8 10 6 6 10 8 9 9 6 8 9 9 9 10 7 9

Table 5.5 GA parameters used in case study

Parameters Values
Population size , Npop 400
Number of generation, Ngen 70
Crossover probability, pc 0.40#
Mutation probability, pm 0.01
Sharing radius, σshare (q=10) 0.4127
Elite proportion, pe 10%

Note: #--In the weighted sum GA, pc=0.7.

5.4 Results and Discussion

As discussed in the previous chapter, four GA-based algorithms, which are the

weighted sum GA, NSGA, NSGA-ESI and NSGA-ESII, were selected to generate the

alternative repaired schedules with the two conflicting objectives. Among these four

algorithms, the weighted sum GA differs with the latter three Pareto-based algorithms

in terms of generating a single non-dominated solution each time with a varied weight

combination. Therefore, the experiments using the weighted sum algorithm were

Chapter 5 Global Search for Repaired Schedules – Case Study

 95

conducted for the three test cases to compare against the other three algorithms in

terms of the non-dominated solution sets found.

An exhaustive search involving increasing values of the weight (r) for the weighted

sum approach was done. The value of r was varied in steps of 0.05 between 0 and 1.

In order to avoid stochastic error, 5 runs were made for each r value to search the

corresponding optimal solution. With 21 weight combinations considered in the study,

105 runs were made for each of the three examples using the weighted sum algorithm.

All the optimal solutions found with the different weight combinations generated a

solution set for this algorithm. On the other hand, the other three Pareto-based

evolutionary algorithms, namely NSGA, NSGA-ESI and NSGA-ESII, were also

applied to the three examples. For each combination of algorithm and example, 10

separate runs of the GA were made, each starting with a different random number

seed equally distributed between 0.1 and 1.0. The results of these experiments are

discussed in the following sections.

5.4.1 The L-U example

Based on the complete set of experiments involving the L-U example, four

non-dominated solutions were found in the set of PFtrue, namely the points (0, 7), (1,

4), (3, 3) and (4, 2) in the objective function space.

The results of the weighted sum GA are shown in Figure 5.1. Except for two extreme

values with respect to two objectives FD and FI when r equals to 0 and 1 respectively,

the solutions found with varied r from 0.05 to 0.95 are shown in the figure. The

non-dominated solution set found by the weighted sum GA consists of three solutions:

solution (4, 2) was obtained for value of r from 0.05 to 0.4; solution (1, 4) was

Chapter 5 Global Search for Repaired Schedules – Case Study

 96

obtained for value of r from 0.4 to 0.75; and solution (0, 7) was obtained for value of

r from 0.75 to 0.95. PFtrue is also depicted in Figure 5.1; it is seen that the

non-dominated solution (3, 3) has not been found by the algorithm. It could be the

reason that this solution is in the “concave” portion of the trade-off surface; no

solution point (3, 3) was ever found by any experiment with the weighted sum

algorithm. It is known that a weighted sum GA will miss points on the concave

portions of the trade-off curve.

Figure 5.1 PFcurrent found with the weighted sum GA for the L-U example

The solution sets (PFcurrent) generated by NSGA in the last iteration for the L-U

example are displayed in Figure 5.2. The solution sets generated by NSGA-ESI and

NSGA-ESII are the same as those generated by NSGA, which are not shown here. All

four non-dominated solutions in PFtrue were found by these three algorithms. Table

5.6 shows the performance metrics for the different runs involving the NSGA,

NSGA-ESI and NSGA-ESII runs. It shows that every run of NSGA and NSGA-ESII

successfully found PFtrue for the L-U example. On the other hand, 3 out of 10

NSGA-ESI runs could only find three of the four non-dominated solutions [(0, 7), (1,

Chapter 5 Global Search for Repaired Schedules – Case Study

 97

4) and (3, 3)] and consistently missed the solution (4, 2).

In summary, the convergence frequency was 10 for both NSGA and NSGA-ESII, and

7 for NSGA-ESI, as shown in Figure 5.3. Among the three Pareto-based algorithms,

NSGA and NSGA-ESII performed better than NSGA-ESI for the L-U example. In

contrast to the weighted sum algorithm, these findings also suggest that these

Pareto-based algorithms (1) performed better in generating multiple non-dominated

solutions from a single run, and (2) was able to find non-dominated solutions even in

the nonconvex portions of the trade-off surface.

(4, 2)

(3, 3)

(1, 4)

(0, 7)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5
F D : Number of elements for late delivery

F I
: N

um
be

r o
f e

le
m

en
ts

 fo
r "

ou
t-o

f-b
an

d"
 in

ve
nt

or
y 1 2

3 4
5 6
7 8
9 10

*: All of the 10 runs found PFtrue.
Same for PFcurrent found with NSGA -ESI and NSGA-ESII for the L-U example.

Figure 5.2 PFcurrent found with NSGA for the L-U example

Figure 5.3 Frequency of convergence and solutions found for the L-U example

 98

Table 5.6 Performances of NSGA, NSGA-ESI and NSGA-ESII for the L-U Example

Table 5.6 Performances of NSGA, NSGA-ESI and NSGA-ESII for the L-U Example (Cont.)

NSGA NSGA-ESI
Run

PFcurrent ER GD Computing
time (sec.) PFcurrent ER GD Computing

time (sec.)
1 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.6 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 8.0
2 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.4 (0, 7) (1, 4) (3, 3) 0 0.00 8.0
3 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.5 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 7.9
4 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.8 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 7.9
5 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.6 (0, 7) (1, 4) (3, 3) 0 0.00 7.8
6 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.3 (0, 7) (1, 4) (3, 3) 0 0.00 8.1
7 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 5.0 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 7.8
8 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.8 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 7.9
9 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.8 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 7.9

10 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 4.5 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 7.8
Ave. 0 0.00 4.6 0 0.00 7.9

NSGA-ESII
Run

PFcurrent ER GD Computing
time (sec.)

1 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.2
2 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.3
3 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.1
4 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.2
5 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.1
6 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.1
7 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.2
8 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.2
9 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.0

10 (0, 7) (1, 4) (3, 3) (4, 2) 0 0.00 10.1
Ave. 0 0.00 10.2

Chapter 5 Global Search for Repaired Schedules – Case Study

 99

5.4.2 The M-U example

The experiments with the different algorithms on the M-U example fielded three

non-dominated solutions in the objective function space, namely (0, 16), (1, 12) and

(3, 7); these points constitute PFtrue for the M-U example.

The results for the weighted sum GA are shown in Figure 5.3. The non-dominated

solution set found by this algorithm is identical to PFtrue. Solution (3, 7) was obtained

with settings of r from 0.05 to 0.7; solution (1, 12) was obtained with settings of r

from 0.75 and 0.8; and solution (0, 16) was obtained with settings of r from 0.8 to

0.95. Solutions (1, 12) and (0, 16) were both obtained when r equals to 0.8.

Figure 5.3 PFcurrent found with the weighted sum GA for the M-U example

The solution sets found by the 10 NSGA runs on the M-U example are shown in

Figure 5.4. The performance metrics for these different runs are shown in Table 5.7.

Only 4 out of 10 runs (No. 1, 4, 5 and 9) converged to PFtrue. The other 6 runs fielded

the Pareto fronts that are not as good as the one defined by PFtrue; there involved

Chapter 5 Global Search for Repaired Schedules – Case Study

 100

points like (0, 18), (0, 17) and (1, 13), which are dominated by points in PFtrue.

The solution sets generated by the 10 NSGA-ESI runs for the M-U example are

shown in Figure5.5. There were seven runs that converged to PFtrue. Although the

other three runs (No. 1, 2 and 4) found 3 non-dominated solutions in their PFcurrent,

non-zero values for their GD and ER (Table 5.7) show that these fronts contained

some solutions that are not members in PFtrue. They are solution (0, 17) generated in

the first and fourth run and solution (3, 8) generated in the second run.

The solution sets generated by the 10 NSGA-ESII runs for the M-U example are

shown in Figure 5.6. The performance statistics for these solution sets in terms of ER

and GD are provided in Table 5.7. All of the 10 NSGA-ESII runs found PFtrue, and no

other non-member solutions were found in the Pareto front returned by any of the

runs.

(1, 13)

(3, 7)

(0, 17)
(0, 16)

(0, 18)

(1, 12)

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5
F D : Number of elements for late delivery

F I
: N

um
be

r o
f e

le
m

en
ts

 fo
r "

ou
t-o

f-b
an

d"
 in

ve
nt

or
y 1 2

3 4
5 6
7 8
9 10

*: Runs 1, 4, 5 and 9 converged to PFtrue, while the other six runs did not.

Figure 5.4 PFcurrent found with NSGA for the M-U example

Chapter 5 Global Search for Repaired Schedules – Case Study

 101

(3, 8)

(0, 17)
(0, 16)

(1, 12)

(3, 7)

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5
F D : Number of elements for late delivery

F I
: N

um
be

r o
f e

le
m

en
ts

 fo
r "

ou
t-o

f-b
an

d"
 in

ve
nt

or
y 1 2

3 4
5 6
7 8
9 10

*: Runs 1, 2 and 4 did not converge to PFtrue, while the other seven runs converged to PFtrue.

Figure 5.5 PFcurrent found with NSGA-ESI for the M-U example

(3, 7)

(1, 12)

(0, 16)

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5
F D : Number of elements for late delivery

F I
: N

um
be

r o
f e

le
m

en
ts

 fo
r "

ou
t-o

f-b
an

d"
 in

ve
nt

or
y 1 2

3 4
5 6
7 8
9 10

*: All of the 10 runs converged to PFtrue.

Figure 5.6 PFcurrent found with NSGA-ESII for the M-U example

Figure 5.7 summarizes the frequency of convergence to PFtrue with these

Pareto-based algorithms for the M-U example. The frequency values improved in

Chapter 5 Global Search for Repaired Schedules – Case Study

 102

successive, from NSGA to NSGA-ESI, and then to NSGA-ESII. Although the average

computing time for NSGA-ESII (10.6 seconds) is more than that for NSGA and

NSGA-ESI (4.6 and 7.9 seconds respectively), the former is more consistent across

the 10 runs in generating PFtrue. These results suggest that the elitist strategies

proposed improved the performance of NSGA by keeping good solutions throughout

the entire search process for the M-U example. Moreover, the elitist strategy with

clustering selection appears to perform better than that with random selection.

Although the weighted sum GA also obtained the exact PFtrue, it took more effort (105

runs) and more computing times (27 seconds) than the Pareto-based algorithms.

Figure 5.7 Frequency of convergence and solutions found for the M-U example

5.4.3 The H-U example

The experiments with the H-U example fielded four non-dominated solutions (8, 24),

(10, 19), (12, 15) and (14, 13) as members of PFtrue.

The results for the weighted sum GA are shown in Figure 5.8. The non-dominated

solutions found by this algorithm are identical to those in PFtrue. Solution (14, 13) was

obtained with settings of r from 0.05 to 0.5; solution (12, 15) was obtained with

settings of r from 0.55 to 0.65; solution (10, 19) was obtained with settings of r

equaling to 0.7; and solution (8, 24) was obtained with settings of r from 0.75 to 0.95.

 103

Table 5.7 Performances of NSGA, NSGA-ESI and NSGA-ESII for the M-U Example

Table 5.7 Performances of NSGA, NSGA-ESI and NSGA-ESII for the M-U Example (Cont.)

NSGA NSGA-ESI
Run

PFcurrent ER GD Computing
time (sec.) PFcurrent ER GD Computing

time (sec.)
1 (0, 16) (1, 12) (3, 7) 0 0.00 4.4 (0, 17) (1, 12) (3, 7) 1/3 0.33 7.9
2 (0, 17) (3, 7) 1/2 0.50 5.2 (0, 16) (1, 12) (3, 8) 1/3 0.33 7.9
3 (0, 16) (1, 13) (3, 7) 1/3 0.33 5.1 (0, 16) (1, 12) (3, 7) 0 0.00 7.9
4 (0, 16) (1, 12) (3, 7) 0 0.00 4.4 (0, 17) (1, 12) (3, 7) 1/3 0.33 7.9
5 (0, 16) (1, 12) (3, 7) 0 0.00 4.3 (0, 16) (1, 12) (3, 7) 0 0.00 7.9
6 (0, 17) (1, 12) (3, 7) 1/3 0.33 4.6 (0, 16) (1, 12) (3, 7) 0 0.00 7.9
7 (0, 17) (1, 12) (3, 7) 1/3 0.33 4.8 (0, 16) (1, 12) (3, 7) 0 0.00 8.0
8 (0, 17) (1, 12) (3, 7) 1/3 0.33 4.6 (0, 16) (1, 12) (3, 7) 0 0.00 8.0
9 (0, 16) (1, 12) (3, 7) 0 0.00 4.5 (0, 16) (1, 12) (3, 7) 0 0.00 7.9

10 (0, 18) (1, 12) (3, 7) 1/3 0.67 4.3 (0, 16) (1, 12) (3, 7) 0 0.00 7.9
Ave. 0.22 0.25 4.6 0.10 0.10 7.9

NSGA-ESII
Run

PFcurrent ER GD Computing
time (sec.)

1 (0, 16) (1, 12) (3, 7) 0 0.00 10.7
2 (0, 16) (1, 12) (3, 7) 0 0.00 10.5
3 (0, 16) (1, 12) (3, 7) 0 0.00 10.6
4 (0, 16) (1, 12) (3, 7) 0 0.00 10.6
5 (0, 16) (1, 12) (3, 7) 0 0.00 10.5
6 (0, 16) (1, 12) (3, 7) 0 0.00 10.6
7 (0, 16) (1, 12) (3, 7) 0 0.00 10.6
8 (0, 16) (1, 12) (3, 7) 0 0.00 10.7
9 (0, 16) (1, 12) (3, 7) 0 0.00 10.7

10 (0, 16) (1, 12) (3, 7) 0 0.00 10.6
Ave. 0 0.00 10.6

Chapter 5 Global Search for Repaired Schedules – Case Study

 104

The solutions (12, 15) and (14, 13) have the same objective value when r is set to 0.5,

but the former was not found within the 5 runs with this value of r. Although it has

subsequently found with other r values, this indicates a potential risk of missing

certain points with this kind of weighted sum approach.

Figure 5.8 PFcurrent found with the weighted sum GA for the H-U example

As shown in Figure 5.9, only two solutions (8, 24) and (10, 20) were found with the

10 NSGA runs for the H-U example. None of these NSGA runs successfully

converged to the full set of PFtrue. Based on the performance metrics for these runs

shown in Table 5.8, although the values of ER and GD for 9 out of the 10 runs were

zero, the solution set from each of these runs had only one non-dominated solution (8,

24). However, the second run did produce a solution set with two solutions, one of

which, (10, 20) is adjacent to the non-dominated solution (10, 19).

Besides the non-dominated solution (8, 24), the 10 NSGA-ESI runs also returned

another two nondominated solutions in PFtrue – (10, 19) and (14, 13), as shown in

Figure 5.10. However, they were found only once in the first run. Moreover, solution

Chapter 5 Global Search for Repaired Schedules – Case Study

 105

(12, 15) was not found in any of the runs. The performance metrics presented in Table

5.8 show that 7 out of the 10 NSGA-ESI runs generated the solution sets with more

than one solution. However, non-zero values of the GD and ER for these fronts

indicate that some solutions found are not members of PFtrue, such as solutions (10,

20), (12, 18) and (13, 18).

(10, 20)

(8, 24)

0

4

8

12

16

20

24

28

0 2 4 6 8 10 12 14 16
F D : Number of elements for late delivery

F I
: N

um
be

r o
f e

le
m

en
ts

 fo
r "

ou
t-o

f-b
an

d"
 in

ve
nt

or
y

1 2
3 4
5 6
7 8
9 10

*: Run 2 found two points (8, 24) and (10, 20) in PFcurrent,

The other nine runs only found one point (8, 24) in their PFcurrent.

Figure 5.9 PFcurrent found with NSGA for the H-U example

(14, 13)

(8, 24)

(10, 19)
(12, 18) (13, 18)

(10, 20)

0

4

8

12

16

20

24

28

0 2 4 6 8 10 12 14 16
F D : Number of elements for late delivery

F I
: N

um
be

r o
f e

le
m

en
ts

 fo
r "

ou
t-o

f-b
an

d"
 in

ve
nt

or
y

1 2
3 4
5 6
7 8
9 10

*: None of the ten runs converged to PFtrue.

 Three nondominated solutions (8, 24), (10, 19) and (14, 13) were all found only in Run 1.

Figure 5.10 PFcurrent found with NSGA-ESI for the H-U example

Chapter 5 Global Search for Repaired Schedules – Case Study

 106

The solution sets generated by the 10 NSGA-ESII runs for the H-U example are

shown in Figure 5.11. The performance metrics for the different NSGA-ESII runs are

shown in Table 5.8. There are half of the 10 runs that converged to PFtrue. Among the

other 5 runs that did not converge to PFtrue, the run (No. 6) only generated one

non-dominated solution (8, 24) in its PFcurrent, whilst the other four runs (No. 2, 4, 7

and 10) found 3 or 4 solutions in their solution sets. Although some points in the latter

four solution sets are not members of PFtrue, such as (10, 20) and (12, 16), these

solutions sets were closer to PFtrue than those generated by NSGA-ESI in terms of the

GD values.

(14, 13)

(8, 24)

(10, 19)

(12, 15)

(10, 20)

(12, 16)

0

4

8

12

16

20

24

28

0 2 4 6 8 10 12 14 16
F D : Number of elements for late delivery

F I
: N

um
be

r o
f e

le
m

en
ts

 fo
r "

ou
t-o

f-b
an

d"
 in

ve
nt

or
y

1 2
3 4
5 6
7 8
9 10

*: Runs 1, 3, 5, 8 and 9 converged to PFtrue.

Figure 5.11 PFcurrent found with NSGA-ESII for the H-U example

Figure 5.12 shows that no matter which algorithm is used, (8, 24) was the most

frequently found solution among the four non-dominated solutions in PFtrue. The

frequency of convergence for NSGA, NSGA-ESI and NSGA-ESII was 0, 0 and 5

respectively. Although the performance of these three algorithms in the H-U example

Chapter 5 Global Search for Repaired Schedules – Case Study

 107

is not as good as in the M-U and L-U examples, NSGA-ESII did do much better than

NSGA and NSGA-ESI in the H-U example. Moreover, a single run of NSGA-ESII

requires only 12.5 seconds averagely.

Fr
eq

ue
nc

y

Figure 5.12 Frequency of convergence and solutions found for the L-U example

Based on the case study discussed above, GAs have proven to be capable of finding

alternative repair strategies using different resolution priority for disturbances and

appropriate heuristics to obtain alternative repaired schedules along a Pareto front.

These alternatives not only provide insight of trade-offs in the rescheduling problem,

but also act as valuable options for negotiation between the precaster and the

contractor. However, there may still be circumstances that few

adjustments/improvements are needed for these repaired schedules provided by the

global search. It is desirable to continue the search for solutions satisfying particular

constraints imposed by the decision makers. Therefore, a local search module, which

is evoked under such circumstances, will be presented in the next chapter.

 108

Table 5.8 Performances of NSGA, NSGA-ESI and NSGA-ESII for the H-U Example

Table 5.8 Performances of NSGA, NSGA-ESI and NSGA-ESII for the H-U Example (Cont.)

NSGA NSGA-ESI
Run

PFcurrent ER GD Computing
time (sec.) PFcurrent ER GD Computing

time (sec.)
1 (8, 24) 0 0.00 4.8 (8, 24) (10, 19) (12, 18) (14, 13) 1/4 0.75 9.9
2 (8, 24) 0 0.00 4.5 (8, 24) 0 0.00 10.1
3 (8, 24) 0 0.00 4.7 (8, 24) (10, 20) 1/2 0.50 10.0
4 (8, 24) 0 0.00 4.5 (8, 24) 0 0.00 10.1
5 (8, 24) 0 0.00 4.6 (8, 24) (10, 20) 1/2 0.50 10.3
6 (8, 24) 0 0.00 4.4 (8, 24) (10, 20) (13, 18) 2/3 1.11 10.1
7 (8, 24) (10, 20) 1/2 0.50 4.8 (8, 24) (10, 20) 1/2 0.50 10.1
8 (8, 24) 0 0.00 4.9 (8, 24) (10, 20) 1/2 0.50 10.0
9 (8, 24) 0 0.00 4.6 (8, 24) (10, 20) 1/2 0.50 10.1

10 (8, 24) 0 0.00 4.1 (8, 24) 0 0.00 10.2
Ave. 0.05 0.05 4.6 0.39 0.44 10.1

NSGA-ESII
Run

PFcurrent ER GD Computing
time (sec.)

1 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.6
2 (8, 24) (10, 20) (12, 16) 2/3 0.47 12.3
3 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.3
4 (8, 24) (10, 20) (12, 15) 1/3 0.33 12.8
5 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.1
6 (8, 24) 0 0.00 13.2
7 (8, 24) (10, 20) (12, 16) (14, 13) 2/4 0.35 12.8
8 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.8
9 (8, 24) (10, 19) (12, 15) (14, 13) 0 0.00 12.2

10 (8, 24) (10, 20) (12, 16) 2/3 0.47 12.3
Ave. 0.22 0.16 12.5

 109

CHAPTER 6

LOCAL SEARCH WITH SPECIFIC CONSTRAINTS

In this chapter, the local search module of the proposed CPRSM is introduced. The

local search module attempts to find a schedule that satisfies specific requirements

imposed by either the precaster or the contractor. This is done by iteratively exploring

the neighborhoods of available repaired schedules generated by the global search.

Two local search algorithms are tested to implement the proposed local search

mechanism, and the results of these tests are discussed in this chapter.

6.1 Overview of Local Search

Local search is a generally applicable approach for tackling combinatorial search and

optimization problems. It has been successful in finding high quality solutions to a

large number of hard combinatorial problems in a reasonable amount of

computational time.

Generally speaking, a local search algorithm is based on the iterative exploration of

neighborhoods of the current solution in order to improve it by some modification.

Such modifications are predefined by a neighborhood structure (N), which results in a

solution that differs only slightly from its originator. One can say that a neighboring

solution is within the vicinity of its originator. An objective function (F) is needed for

the local search in order to assess the quality of the solutions; this in turn drives the

search towards good solutions in the search space (S). It is expected that a

neighboring solution produces an objective function value that is of similar quality to

Chapter 6 Local Search with Specific Constraints

 110

the original solution because they share a majority of solution characteristics. Since

the chance to find an improved solution within a neighborhood is much higher than

that in less correlated areas of the search space, local search algorithms concentrate

the search within neighborhoods. Therefore, the local search only explore parts of a

given search space as opposed to methods based on exhaustive search (Phan 2000).

Various problem specific local search algorithms have been developed based on the

idea of neighborhoods. Finding efficient neighborhood structures that lead to

high-quality performance can be viewed as one of the challenges of implementing

local search. Following Aarts and Lenstra (1997) and Stützle (1999), a neighborhood

structure can be defined as follows:

Let S be the set of feasible solutions for the problem, a neighborhood

structure is a function N : S 2S that assigns to every s ∈S a set of

neighbors N(s)⊆S. N(s) is also called the neighborhood of s.

Typically, a neighborhood structure is not defined explicitly by enumerating the set of

possible neighbors, but rather is defined implicitly by possible local changes that may

be applied to a solution. The choice of an appropriate neighborhood structure often

has to be done in a problem specific way. No general rules are available and each

situation has to be considered separately. There are some considerations on desirable

features of neighborhoods that should be addressed (Mattfeld 1996):

(1) Correlation: A neighbor solution should be highly correlated to its originator.

Ideally, a neighborhood N(s) of s locates a neighboring solution s’ that has similar

characteristics as s.

(2) Improvement: Moving from a current solution s to its neighboring solutions, there

should be a good chance of improving the originator in terms of the objective

Chapter 6 Local Search with Specific Constraints

 111

function value.

(3) Connectivity: It is desirable that there is a finite sequence of moves (worsening

ones included) leading from an arbitrary solution to a global optimal one;

otherwise, promising areas of the search space may be excluded from the search.

(4) Size: The average size of the neighborhood N(s) should be within reasonable

bounds. On the one hand, a large neighborhood size may make the search for an

improved neighboring solution become computationally prohibitive. On the other

hand, a small number of neighbors may make it harder to find interesting solutions

and risks a premature step with a poor quality solution.

Some of these considerations may conflict with each other and cannot be resolved

theoretically. In order to develop appropriate neighborhood definitions, practical

experience with applications and problem specific knowledge are needed.

A basic version of local search is iterative improvement. The general procedure of the

iterative improvement algorithm that solves a minimization problem is shown in

Figure 6.1. It starts with some initial solutions generated randomly or by some

constructive heuristics, and searches its neighborhood for an improved solution

according to the prescribed objective function. If such an improved solution is found,

it replaces the current solution and the search continues; otherwise, the algorithm

returns the current solution, which is then locally optimal. Iterative improvement can

use either the first-improvement or best-improvement rule in determining which

neighboring solution replaces the current one. In first-improvement, the current

solution is replaced by the first improved solution found by the neighborhood search;

whilst the current solution is replaced by the best improved solution in its

neighborhood with best-improvement. Therefore, as the example of the simple

iterative improvement algorithm shows, any local search algorithm has three basic

Chapter 6 Local Search with Specific Constraints

 112

steps: (1) generation of a start solution; (2) generation of a neighboring solution; and

(3) calculation and comparison of objective function values.

procedure Iterative Improvement (Ss∈)
);(utionInitialSol:=s

begin
repeat

);(modify ' ss =
if))()'((sFsF <
then ': ss =

until)()'(:)(' sFsFsNs ≥∈∀
return s

end

Figure 6.1 Algorithmic skeleton of iterative improvement

6.2 Implementation of Local Search with Specific Constraints

The following sections discuss the implementation of local search in the proposed

CPRSM, which includes the specification of constraints, the definition of an objective

function and a neighborhood structure, the source of initial solutions, and the

development of an efficient method for exploring the neighborhood.

6.2.1 Specific Constraints

As a result of the global search process with multiobjective optimization, multiple

repaired schedules along a Pareto front have been identified. These schedules

represent different degrees of trade-off between two conflicting objectives, namely FD

and FI, for the production schedule. Associated with these schedules is the

information on circumstances that lead to the schedule decision. That is, with identical

values of the two objective functions, the schedules could be different in detail. For

example, the L-U example tested in Chapter 5 is supposed to have three options for

Chapter 6 Local Search with Specific Constraints

 113

the repaired schedules with the objective function vector of (1, 4). As shown in Table

6.1, each of these schedules has 1 unit of element that can not be delivered on time,

but this element can be either E1, E2 or E3. In practice, it is possible that the global

search only generates the first two kinds of the repaired schedules in the table.

However, the decision maker may wish to find a schedule that satisfies the specific

requirements in the third case. This requires an incremental exploration with the aim

of finding the particular schedule with these specific requirements imposed.

Table 6.1 Different circumstances for repaired schedules

 FD FI
 E1 E2 E3 Total E1 E2 E3 Total

1 1 0 0 1 2 2 0 4
2 0 1 0 1 1 2 1 4
3 0 0 1 1 1 2 1 4

Therefore, delivery and inventory levels, which are subject to optimization in the

global search module, are treated as constraints in the local search module. Such

objectives of deliveries and inventory levels as formulated in Equations (3.8) and (3.9)

are modified so that specific numerical targets as specified by the precaster or the

contractor are included. For example, the specific constraints on delivery and

inventory level for the element type e can be formulated as follows:

(1) Specific constraint on delivery:

),0(max)(

)(

,,,,

1
,,

etetetet

U
e

T

t
etet

L
e

DRDRwhere

DDRD

−=−

≤−≤

+

=

+∑
 (6.1)

The parameters L
eD and U

eD are the lower and upper bounds for number of

element units that are delivered beyond their due dates.

(2) Specific constraint on inventory level:

Chapter 6 Local Search with Specific Constraints

 114

),0(max)(),,0(max)(

})(){(

,
'

,
'

,,

1
,

'
,

eteeteeeteet

U
e

T

t
eteeet

L
e

SSSSSSSSwhere

SSSSSS

−=−−=−

≤−+−≤

++

=

++∑ (6.2)

The parameters L
eS and U

eS are the lower and upper bounds for the number of

element units that are out of a prescribed band of the inventory level.

When the values for the lower and upper bounds are equal, these constraints are

expressed as equalities.

6.2.2 Objective Function

The addition of specific constraints in local search suggests trying to meet these

constraints by modifying solutions that do not necessarily meet them. In order to

guide the iterative repair process towards the particular one that can satisfy all these

constraints, an appropriate objective function needs to be formulated.

In this research, an “error” function is first defined for each constraint to give an

indication on how much the constraint is violated. That is, the error function returns

the absolute distance of the current configuration to the specific target imposed. The

objective function is then formulated as the sum of all the error functions for the

specific constraints. Since the constraint violations considered in this research are all

measured in terms of the number of element units involved, their corresponding error

functions can be summed up directly without normalization. Therefore, the lower the

objective function value of a solution, the greater the degree of satisfaction of the

specific constraints imposed.

Given a set of C specific constraints, the objective function for the local search LF is

formulated as follows:

Chapter 6 Local Search with Specific Constraints

 115

∑
=

=
C

i

error
iL fF

1 (6.3)

where error
if represents the error function of the i-th constraint. Rather than

minimizing the number of constraints that are not satisfied, this formulation of the

objective function in terms of the number of element units involved in constraint

violations makes the local search process more responsive to the degree of violation.

Information on the degree of satisfaction for each of the constraints can be used to

decide on the repair actions.

6.2.3 Initial Solutions

Repaired schedules generated by the global search module provide the initial

solutions for the local search process. These schedules are not only complete as they

involve all the precast components considered within the planning horizon, but also

highly correlated to the specific schedule since they are all non-dominated according

to the two objectives considered in the global search process. However, they may fail

to meet specific constraints imposed during the local search phase.

A straightforward extension of local search, namely the multi-start local search (Aarts

and Lenstra 1997; Congram et al. 2002), is adopted in this research to overcome a

major drawback of local search, namely that it may stop at local optima that are of

poor quality. This approach calls for running the search a number of times using

different starting solutions. Therefore, the diversity of quality of the schedules

generated by the global search, measured in terms of their deviations from the

requirements imposed during the local search process, is desirable in the multi-start

approach. When the search starts with a particular schedule fails in generating the

specific schedule, another search can be initiated with a different schedule, thus

Chapter 6 Local Search with Specific Constraints

 116

increasing the probability of success in finding the specific schedule.

6.2.4 Neighborhood Structure

For many combinatorial optimization problems whose solutions can be represented as

sequences, partitions, or assignments, some type of k-exchange neighborhood

structure (k ≥ 2) is usually adopted, since it is both effective and easy to search. The

k-exchange neighborhood contains all solutions that can be obtained by exchanging k

elements in the sequence, partition, or assignment. Verifying local optimality for a

k-exchange neighborhood requires ()knΩ time, where n is the total number of

variables. As k increases, the computational effort required to search the

neighborhood grows quickly, so that selecting larger values of k is often impractical.

In the scheduling problem, the simplest choice for the k value is 2, in which any two

jobs irrespective of whether they are adjacent are exchanged. This kind of

neighborhood structure is also called the swap neighborhood (Congram et al. 2002).

For example, consider the sequence (A, B, C, D, E, F, G, H) in a schedule problem

where there are eight jobs labeled from A to H. Thus, (A, F, C, D, E, B, G, H) is a

neighbor by exchanging jobs B and F. This simplest form of neighborhood structure is

adopted in this research.

As depicted in Figure 6.2, a two-dimensional integer array S is applied to represent

the production schedule for precast building components. The rows represent molds

numbered from 1 to M, and the columns represent workdays from 1 to T. The domain

of the array {0, 1, 2, …, E} is the set of precast element types to be produced. The

element tmS of the array therefore represents information on the production of mold

m on day t: 0 denotes that the mold is idle, whereas other non-zero values denote the

Chapter 6 Local Search with Specific Constraints

 117

production of a particular element type. Thus, the swap neighborhood is defined as the

exchange of two elements tmS and ''tmS ('and' ttmm ≠≠) in the schedule array S,

each of which represents the production of a different element type. An example of

the swap neighborhood of the schedule array S is shown in Figure 6.2.

M
ol

ds
 (m

)

Figure 6.2 The swap neighborhood of the production schedule

6.2.5 Search Heuristics

How a given schedule is repaired certainly influences the efficiency of the iterative

improvement technique. Repair methods differ in the amount of domain knowledge

they exploit to modify a solution. One can consider a repair method as a

generate-and-test process, where the generator takes as input a schedule and suggests

possible modifications, and the tester then selects and performs one of the suggested

modifications (Zweben et al. 1993). Thus, knowledge can be exploited in both the

generator and the tester. For example, the generator incorporates constraint knowledge

to greatly restrict the possible targets to be considered. In contrast, once a task is

selected for repair, the tester selects the best modification that minimizes the number

of remaining constraint violations. However, using knowledge is not free as

computational overhead is incurred to evaluate and use repair knowledge. More

Chapter 6 Local Search with Specific Constraints

 118

informed methods also tend to be more expensive. The following section describes

some search heuristics used in this research.

6.2.5.1 Random search heuristic

In this heuristic, the pair of productions in the schedule that needs to be exchanged is

decided at random. The new generated schedule is evaluated, and if no improvement

is found, another modification is tried. Some experiments have shown that one can

find good solutions with random techniques. Its success may be due to its simplicity

since it does not require deep computational reasoning, nor a thorough search of all

branches of the search tree (Dorn et al. 1996). The steps of the search procedure with

the random search heuristic are described below:

Step 1: Given a set of constraints Cj and corresponding error functions error
jf

),,2,1(ρK=j , and the objective function LF ; select an initial schedule S0.

Step 2: Set 0SS ← .

Step 3: Search a neighboring schedule)(' SNS ∈ by randomly exchanging a pair of

production tmS and ''tmS ('and' ttmm ≠≠) in S, and calculate the

objective function value)('SFL .

Step 4: If)(<)(' SFSF LL , set '← SS ; otherwise, go to Step 5.

Step 5: Check whether it meets any of the stopping criteria or not: (i) 0)(=SFL and

(ii) a computing time bound is reached. If yes, stop the search and provide the

current schedule S as the final solution; otherwise, go to Step 3.

6.2.5.2 Max-Min Conflicts heuristic

It seems reasonable that a successful iterative improvement technique applies a

mixture of random and knowledge-based decisions to search the neighborhoods. The

Chapter 6 Local Search with Specific Constraints

 119

Min-Conflicts heuristic (Minton et al. 1990) tries to repair the greatest constraint

conflict. A system using Min-Conflicts exploits lookahead, which is quite effective at

choosing the best repair. The original Min-Conflicts heuristic is as follows:

Given: A set of variables, a set of binary constraints, and an assignment

specifying a value for each variable; two variables conflict if their values violate a

constraint;

Procedure: Select a variable that is in conflict, and assign it a value that

minimizes the number of conflicts. (Break ties randomly.)

The Min-Conflicts heuristic could be combined with other heuristics. For example,

some researchers have considered a variation that uses “Max-Conflicts” as a variable

ordering heuristic in conjunction with the Min-Conflicts value ordering heuristic

(Zweben et al. 1994; Codognet and Diaz 2001). Instead of picking a variable

randomly from the set of variables in conflict, the “Max-Conflicts” variation will

randomly choose from the variables with the most-conflicts. The Min-Conflicts

heuristic then selects the repair that minimizes the number of conflicts. This variation

of Min-Conflicts heuristic is adapted in this research for the local search module, and

is called the Max-Min Conflicts heuristic in the following sections.

The local search procedure with the Max-Min Conflicts heuristic is shown in Figure

6.3. The steps of the search procedure are described below:

Step 1: Given a set of constraints Cj and corresponding error functions error
jf

),,2,1(ρK=j , and the objective function LF ; select an initial schedule S0.

Step 2: Set 0SS ← .

Step 3: For each element type),,2,1(Ee K∈ , sum up all the constraint violations

that it is involved with:

Chapter 6 Local Search with Specific Constraints

 120

Step 3a: Set the element type counter 1=e and the sum of constraint violations

for each element type 0)(=e
LF .

Step 3b: Set the constraint counter 1=j .

Step 3c: If element type e is involved in constraint jC , let error
j

e
L

e
L fFF +=)()(;

then increment j by one.

Step 3d: If ρ≤j , go to Step 3c; otherwise, increment e by one and go to Step

3e.

Step 3e: If Ee ≤ , go to Step 3b; otherwise, return the sum of constraint

violations for each element type),,2,1(,)(EeF e
L K= .

Step 4: Identify the “culprit” element type k if)),,2,1(:(max)()(EeFF e
L

k
L K∈= .

(Break ties randomly).

Step 5: Search all the neighboring schedules)(' SNS ∈ by exchanging every

possible pairs of productions in S which satisfy kS tm = and kS t'm' ≠

('and' ttmm ≠≠), and calculate the objective function value)('SFL .

Step 6: If)()(:)('' SFSFSNS LL <∈∃ , select the best neighboring schedule '
bestS

for))(':)((min)('' SNSSFSF LbestL ∈= and set '
bestSS ← ; otherwise, go to

Step 7.

Step 7: Check whether it meets any of the stopping criteria or not: (i) 0)(=SFL and

(ii) a computing time bound is reached. If yes, stop the search and provide the

current schedule S as the final solution; otherwise, go to Step 3.

Chapter 6 Local Search with Specific Constraints

 121

No

Yes

No

Current Schedule S

Return S

Search all neighbors
satisfying Smt=k and Sm't' ≠k

Sum up all the
constraints violations for

each element type

Any improved
schedule?

Identify the element type k
with the maximal

constraints violations

Favoring the neighbor S’ with
the fewest constraint

violations for the schedule

START

Yes

Replace S with S’

Stopping
Criteria?

END

M
ax-C

onflicts
S

election
M

in-C
onflicts

Selection

Figure 6.3 Search procedure of the Max-Min Conflicts heuristic

6.3 Case Study

6.3.1 Illustrative Examples

Two cases were tested in this study to verify the feasibility and applicability of the

proposed local search algorithms. They were based on a particular NSGA run for the

L-U example in the previous case study involving the global search module. In this

NSGA run, alternative repaired schedules along the Pareto front provided several

Chapter 6 Local Search with Specific Constraints

 122

options for the decision making. Detailed information associated with these schedules

is shown in Table 6.2. Table 6.3 shows the details of the two cases used in this part of

the study. Each case involving a particular schedule needs to be met by using local

search. These two schedules provide one more option for the non-dominated

schedules with the objective function vectors of (0, 7) and (4, 2) respectively.

Table 6.2 Information for available repaired schedules

Number of units delivered late Number of units out of the
prescribed inventory band No. of

options
E1 E2 E3 Total E1 E2 E3 Total

1 0 0 0 0 3 3 1 7
2 1 0 0 1 2 2 0 4
3 0 1 0 1 1 2 1 4
4 0 0 1 1 1 2 1 4
5 0 2 1 3 2 1 0 3
6 1 2 0 3 1 1 1 3
7 1 2 1 4 1 1 0 2
8 2 2 0 4 0 1 1 2

Table 6.3 Specific constraints considered in two cases

Specific Requirements Constraints
Case 1 Case 2

The number of units delivered late
In total for all element types =0 =4

Element type E1 =0 =0
Element type E2 =0 =2
Element type E3 =0 =2

The number of units out of the prescribed inventory band
In total for all element types =7 =2

Element type E1 =3
Element type E2 =1
Element type E3 =3

Two search heuristics, namely the random search heuristic and the Max-Min Conflicts

heuristic, were applied to search these two specific schedules. Eight repaired

schedules were randomly selected from the solution set generated by the NSGA run as

the initial solutions for the local search; each of them represents the available options

Chapter 6 Local Search with Specific Constraints

 123

described in Table 6.2. For each combination of search heuristic and example, eight

groups of experiments were executed by starting with each of the repaired schedules.

Each group of experiments with the same initial solution consisted of three separate

runs. All the experiments ran until (1) there were no outstanding constraint violations,

i.e. an objective function value of 0; or (2) a 150-second CPU time bound was

reached. All the experiments were implemented using MS Visual C++ on a MS

Windows platform.

6.3.2 Results and Discussion

The results of the experiments performed on these two examples are discussed in the

following sections.

6.3.2.1 Case 1

The search results by the random search heuristic and the Max-Min Conflicts heuristic

with the eight selected initial solutions are shown in Figures 6.4 and 6.5 respectively.

These figures display the step-by-step improvement in the objective function value

with every acceptable modification to the current schedule against the CPU time.

Information on the performance of the experiments starting with different initial

solutions is shown in Table 6.4, such as the frequency of finding the specific schedule,

the best and worst objective function value of the schedules found, and the fewest

computing time and corresponding repair steps used to find the specific schedule.

For the random search heuristic, the experiments starting with seven out of the eight

initial solutions found the specified schedule satisfying all the constraints imposed in

Case 1 in at least one out of the three runs. As indicated in Table 6.4, the frequency of

finding the specified schedule in the experiments with the initial solutions No. 5, 6

Chapter 6 Local Search with Specific Constraints

 124

and 8 was 1, the experiments with the initial solution No.1 was 2, and the experiments

with the initial solutions No. 2, 3 and 4 was 3. On the other hand, the experiments

starting with the seventh initial solution did not find the specified one within the

computing time bound of 150 seconds. The three runs generated the schedules with an

objective function value ranging from 2 to 3. Therefore, the results show that the

performance of the random search heuristic was highly variable not only in the

experiments with different initial solutions, but also in the runs with the same initial

solution. In contrast, except for the two runs involving the seventh initial solution, all

the other runs with the Max-Min Conflicts heuristic successfully generated the

specified schedule with an objective function value of 0. The results of the

experiments with the Max-Min Conflicts heuristic show that this heuristic was

consistent in generating the specified schedule considered in Case 1.

Table 6.4 Performance of search heuristics for Case 1

Random search heuristic Max-Min Conflicts heuristic Initial
solution Final obj. Final obj.

No Obj.
value

Fre.*
Best Worst

(if any)

Repair
steps+

Computing
times+

(Seconds)
Fre.*

Best Worst
(if any)

Repair
steps+

Computing
times+

(Seconds)

1 4 2 0 1 4 82.48 3 0 -- 2 0.08
2 6 3 0 -- 6 31.26 3 0 -- 3 0.11
3 6 3 0 -- 6 74.36 3 0 -- 3 0.11
4 6 3 0 -- 6 69.70 3 0 -- 3 0.10
5 7 1 0 2 7 147.71 3 0 -- 3 0.11
6 7 1 0 3 4 76.76 3 0 -- 4 0.16
7 9 0 2 3 -- -- 1 0 1 5 0.24
8 9 1 0 2 8 102.17 3 0 -- 4 0.18
 Sum# 14 22

Note: * – The number out of the three runs made with the same initial solution that found the
specified schedule.

+ – The number of repair steps and computing time of the run that found the specified
schedule in the least computing time.

– The number of all the runs with each heuristic that found the specified schedule.

Chapter 6 Local Search with Specific Constraints

 125

Therefore, over the 24 runs for each heuristic, the convergence frequency (Table 6.4)

for the Max-Min Conflict heuristic (22) is much higher than that for the random

search heuristic (14). In terms of computing time and repair steps used to find the

specified schedule with the same initial solution, the results show that the Max-Min

Conflicts heuristic was superior to the random search heuristic. For example, for the

second initial solution, the former only required 3 repair steps and 0.11 seconds to

find the specified schedule in the best case, whilst the latter required 6 repair steps and

31.26 seconds.

Chapter 6 Local Search with Specific Constraints

 126

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(1) Initial solution 1

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(3) Initial solution 3

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(5) Initial solution 5

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(7) Initial solution 7

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(2) Initial solution 2

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(4) Initial solution 4

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(6) Initial solution 6

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(8) Initial solution 8

Figure 6.4 Results of the random search heuristic for Case 1

Chapter 6 Local Search with Specific Constraints

 127

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(1) Initial solution 1

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3
(3) Initial solution 3

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(5) Initial solution 5

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(7) Initial solution 7

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(2) Initial solution 2

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(4) Initial solution 4

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(6) Initial solution 6

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(8) Initial solution 8

Figure 6.5 Results of the Max-Min Conflicts heuristic for Case 1

Chapter 6 Local Search with Specific Constraints

 128

6.3.2.2 Case 2

Figures 6.6 and 6.7 display the search results with the eight initial solutions by the

random search heuristic and the Max-Min Conflicts heuristic respectively. Table 6.5

shows the statistics on the performance of the heuristics in these experiments.

For the random search heuristic, the experiment involving the first five initial

solutions generated the specified schedule considered in Case 2 in all the three runs,

whilst the experiments starting with the sixth and eighth initial solutions converged to

the specified one in one and two out of the three runs respectively. All of the

schedules generated by the unsuccessful runs have an objective function of 1.

Moreover, the random search heuristic failed to find the specified schedule starting

with the seventh initial solution. All the three runs generated a schedule with an

objective value of 1 at the end of 150 seconds. In contrast, all of the 24 runs with the

Max-Min Conflicts heuristic successfully generated the specified schedule for the

initial solutions tried.

These two heuristics required the same number of repair steps in generating the

specified schedule with the initial solutions No. 3 and 5; however, the Max-Min

Conflicts heuristic required fewer steps than the random search heuristic in the

experiments involving other initial solutions. Moreover, the Max-Min Conflicts

heuristic used less than 0.2 seconds to find the specified schedule in the experiments

involving different initial solutions, whilst the random search heuristic used a

computing time ranging from 4.17 to 80.84 seconds even in the fastest runs. Therefore,

the results of experiments for Case 2 again show that the Max-Min Conflicts heuristic

performed much better than the random search heuristic.

Chapter 6 Local Search with Specific Constraints

 129

Table 6.5 Performance of search heuristics for Case 2

Random search heuristic Max-Min Conflicts heuristic Initial
solution Final obj. Final obj.

No Obj.
value

Fre.*
Best Worst

(if any)

Repair
steps+

Computing
times+

(Seconds)
Fre.*

Best Worst
(if any)

Repair
steps+

Computing
times+

(Seconds)

1 9 3 0 -- 8 64.57 3 0 -- 5 0.18
2 5 3 0 -- 4 31.47 3 0 -- 3 0.09
3 7 3 0 -- 4 50.78 3 0 -- 4 0.13
4 5 3 0 -- 4 26.90 3 0 -- 3 0.10
5 2 3 0 -- 2 4.17 3 0 -- 2 0.07
6 4 1 0 1 4 64.49 3 0 -- 3 0.09
7 2 0 1 -- -- -- 3 0 -- 1 0.04
8 4 2 0 1 4 80.84 3 0 -- 2 0.08
 Sum# 18 24

Note: * – The number out of the three runs made with the same initial solution that found the
specified schedule.

+ – The number of repair steps and computing time of the run that found the specified
schedule in the least computing time.

– The number of all the runs with each heuristic that found the specified schedule.

6.3.2.3 Summary

In summary, the results indicate that the Max-Min Conflicts heuristic performed better

than the random search heuristic in both cases. It is apparent that the computing time

for finding specified schedules with the Max-Min Conflicts heuristic was much less

than with the random search heuristic. This is attributed to the difference between the

ways these two approaches use in searching among the neighbors. Since

neighborhoods are restricted to the element types involved in the greatest constraint

violation for the Max-Min Conflicts heuristic, there are fewer candidate modifications

to explore on average than for the random search heuristic. The Max-Min Conflicts

heuristic searches all the possible neighbors deterministically and always selects the

best modification operator with the minimal constraint violation. In contrast, it takes

time to find an acceptable modification within a large neighborhood with the random

search approach as its search is random. Furthermore, the modification is accepted no

matter how much/little improvement it makes to the objective function value. This

Chapter 6 Local Search with Specific Constraints

 130

also explains why the number of repair steps taken by the Min-Max Conflicts

heuristic is less than that in the random search heuristic for the same initial solution.

Consequently, it is computationally less expensive to perform this form of lookahead

for the problem considered in the local search module.

Chapter 6 Local Search with Specific Constraints

 131

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(1) Initial solution 1

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Run 1

Run 2

Run 3

(3) Initial solution 3

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Run 1

Run 2

Run 3

(5) Initial solution 5

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(7) Initial solution 7

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Run 1

Run 2

Run 3

(2) Initial solution 2

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(4) Initial solution 4

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
V

al
ue

Run 1

Run 2

Run 3

(7) Initial solution 7

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(8) Initial solution 8

Figure 6.6 Results of the random search heuristic for Case 2

Chapter 6 Local Search with Specific Constraints

 132

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(1) Initial solution 1

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(3) Initial solution 3

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(5) Initial solution 5

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(7) Initial solution 7

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(2) Initial solution 2

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(4) Initial solution 4

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(6) Initial solution 6

0

1

2

3

4

5

6

7

8

9

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Computing time (Sec.)

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Run 1

Run 2

Run 3

(8) Initial solution 8

Figure 6.7 Results of the Max-Min Conflicts heuristic for Case 2

 133

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the work carried out in this research and the results obtained are first

summarized; this is followed by a discussion of the limitations of the current research

and recommendations for future research work.

7.1 Conclusions

The main contribution of this research is to develop a reactive scheduling model for

precast production to complement earlier models that did predictive scheduling. This

model recognizes the existence of schedule disturbances and the need to adapt the

existing schedule in a practical way. This is achieved by using a repair-based strategy.

The research also identifies effective global and local search methods to effect the

repair-based strategy. In global search, the generation of alternative repaired schedules

along the Pareto front using NSGA can be improved by including the elitist strategy,

especially with the clustering selection that was created in the course of this research.

This innovation helps to improve diversity of solutions along the Pareto front. On the

other hand, the effectiveness and efficiency of local search can be improved by using

the Min-Max Conflicts heuristic introduced in this research. This heuristic is capable

of finding particular schedules with desired characteristics by exploiting domain

knowledge associated with the specific constraints imposed on the local search. More

specific conclusions about the model and search methods are highlighted in the

following sections.

Chapter 7 Conclusions and Recommendations

 134

7.1.1 Development of a Coordinated Production Reactive Scheduling

Model

A coordinated production reactive scheduling model (CPRSM) has been proposed in

this research to address the need for repairing the current production schedule when

disturbances arrive. This proposed CPRSM is based on a mathematical formulation of

the precast production rescheduling problem, as well as an algorithmic solution

procedure that incorporate advanced AI methods. It consists of four key elements for

rescheduling, namely disturbance detection, global search with multiobjective

optimization, local search with specific constraints, and ranking of outcomes for

negotiation.

In the global search module, the precast production rescheduling problem is

formulated as a true multiobjective optimization problem with quantitative evaluation

criteria meaningful to both the precaster and the contractor. As the core of the

proposed CPRSM, this module (1) repairs the existing schedule by resolving schedule

disturbances with proper sequence and suitable heuristics, and (2) provides alternative

repaired schedules that represent different degrees of trade-off between the multiple

objectives considered. This module offers a more methodical and systematic approach

of rescheduling production compared to that used by precasters in actual practice.

The local search module is developed to enhance the proposed CPRSM in case

minimal adjustments are needed for the alternatives provided by the global search

module. A local search mechanism is proposed, in which the schedules satisfying

specific constraints imposed by either the precaster or the contractor are obtained by

exploring the neighborhoods of available repaired schedules on the Pareto front. The

local search module is useful in actual practice as it acts as a complementary search

Chapter 7 Conclusions and Recommendations

 135

process in the proposed CPRSM.

These two search processes provide a comprehensive means of searching for

alternative repaired schedules in the rescheduling problem. These schedules form a

valuable basis for the negotiation of a new delivery schedule between the precaster

and the contractor. It is hoped that a final compromise solution can be found among

the alternatives returned by the rescheduling process.

7.1.2 Generation of Repaired Schedules along a Pareto Front

Several multiobjective genetic algorithms were applied to generate alternative

repaired schedules along a Pareto front defined by the multiple objectives considered

in the global search module. The selected algorithms include the weighted sum

genetic algorithm, non-dominated sorting genetic algorithm (NSGA) and two

variations of NSGA incorporating different elitist strategies, namely NSGA-ESI and

NSGA-ESII.

Three examples involving production schedules for precast building components were

used to test the algorithms in the case study. These represent low, medium and high

levels of mold utilization rates in the precast factory. The weighted sum genetic

algorithm, in which varying values of the weights for the objectives were considered,

is straightforward in application for the purpose of generating non-dominated

solutions. However, this kind of algorithm has some shortcomings compared to the

other three Pareto-based algorithms. The most significant disadvantage of this kind of

algorithm is its sensitivity to the shape of the trade-off surface. The trial revealed that

a non-dominated solution in the concave potion of the trade-off surface could not be

found by the weighted sum GA in the L-U example. Although this algorithm

Chapter 7 Conclusions and Recommendations

 136

generated the optimal Pareto front in the M-U and H-U examples, it required more

effort and computing time to do so. In contrast, the results for the three Pareto-based

algorithms show that they are efficient in generating more than one non-dominated

solution in their solution sets without the need for varying weights for the objectives.

Moreover, the shape of the trade-off surface does not affect the ability of these

algorithms in finding the non-dominated solutions no matter whether the surface is

convex or non-convex.

The computational results of NSGA, NSGA-ESI and NSGA-ESII show that the

performance of these Pareto-based algorithms was affected significantly with an

increase in the utilization rate of the molds. However, the solution sets produced by

NSGA-ESII were better than those obtained by NSGA and NSGA-ESI for all the

examples. More significantly in the H-U example, half of the 10 NSGA-ESII runs

converged to the optimal Pareto front, whilst none of the NSGA-ESI and NSGA runs

were able to do so. The results indicate that the proposed elitist strategy is able to

improve the performance of NSGA.

7.1.3 Exploration of Schedules with Specific Constraints

A local search process has been developed to support the incremental exploration for

specific schedules. This local search uses the degree of satisfaction of specific

constraints as the objective function. Starting with the alternative repaired schedules

generated in the global search module, the local search process adopts the simplest

form of a 2-exchange neighborhood structure and iteratively accepts modifications

that improve the value of the objective function until the stopping criteria is met. Two

search heuristics, namely the random search heuristic and the Max-Min Conflicts

heuristic, were tried out in the search. A fundamental difference between these two

Chapter 7 Conclusions and Recommendations

 137

heuristics is the way in which the domain knowledge of specific constraints is applied

in searching the neighborhood and accepting schedule changes. Experiments with

these two heuristics were conducted on two cases. The results show that the Max-Min

Conflicts heuristic performed better than the random search heuristic. Starting with

the same initial solution, the Max-Min Conflicts heuristic was consistent in

successfully finding the specified schedules, and required fewer repair steps and

computing time than the random search heuristic.

7.2 Limitations of the Research

This research focused on generating alternative repaired schedules as a result of

schedule disturbances. A reactive scheduling model for precast production has been

developed and approved feasible. However, several limitations still exist in the

proposed model.

Firstly, it is assumed that the number of molds (the critical resource considered in the

model) is known in advance and remains constant during the planning horizon.

However, this might not be the case in practice, since optimizing the mold groups and

mold numbers are real concerns for the precaster. Besides the molds, other important

resources such as the gantry crane, skilled workers and production space, are also

assumed to be always available and enough to implement the production schedule.

However, incorporating constraints related to the availability and capacity of these

resources would make the proposed reactive scheduling model closer to the actual

situation.

Secondly, in order to facilitate schedule coordination between the precaster and the

Chapter 7 Conclusions and Recommendations

 138

contractor, the present research focuses on optimizing two objectives simultaneously

in the global search module. Although these two objectives represent the respective

concerns of the precaster and the contractor, either party may consider other

evaluation criteria in reality.

Thirdly, the scope of this research does not include the issue of how to rank

alternative repaired schedules presented and reach a final compromise between the

precaster and the contractor. This issue is necessary since the final aim of schedule

coordination is to agree on a compromise schedule between these two parties before

the precast production continues.

Fourthly, this research focuses on production rescheduling in precast factories. In

reality, the contractor is also likely to review the construction schedule, and possibly,

even adjust the construction schedule in the event of disruptions. Moreover, the values

for a time buffer and a minimal inventory buffer need to be investigated. If these

buffers are set too large, it would be wasteful; on the other hand, if these buffers are set

too small, flexibility in responding to schedule disturbances is reduced.

Finally, the emphases of this research are the modeling of the rescheduling problem

and the development of appropriate methods to solve it. Development of input and

output interfaces that facilitate real life application in the rescheduling process is not

considered in the present research.

7.3 Recommendations for Future Research

Based on the above discussions, the following issues are recommended for future

Chapter 7 Conclusions and Recommendations

 139

research work.

Firstly, development of a high-level resource replanning module is suggested to

complement the proposed production rescheduling model. It could be used to consider

issues, such as adjustment of quantities for different resources, resource assignment

between different projects carried out in the factory, etc. Therefore, besides

constraints on molds considered in this research, constraints related to other important

resources (e.g. gantry crane and skilled workers) and related costs can be considered

in the future development of the model.

Secondly, in order to meet the requirements of decision makers under different

circumstances, more objective/evaluation functions can be included in the model.

Practical considerations, such as the utilization level for different resources, the mold

changeover cost, and the makespan for the production, are suggested for inclusion in

future development.

Thirdly, an outcome ranking mechanism is recommended by incorporating

negotiation techniques based on game theory. The precaster and the contractor can

reach a “win-win” solution from alternatives presented by appropriately expressing

their preferences with quantitative methods, such as converting their preferences into

a real number with a suitable value function and plotting indifference curves for

various degrees of the preferences.

Fourthly, a study of how the contractor responds to schedule disturbances is suggested

for future research work. For example, if the adjustment of the construction schedule

can not be done, the contractor can be more flexible in dealing with unexpected

events by adjusting the time buffer between the delivery schedule and the construction

schedule, as well as increasing the inventory buffer for precast components on the

Chapter 7 Conclusions and Recommendations

 140

site.

Finally, a friendly user interface would be beneficial to the application of the model in

the industry. The input interface can facilitate users in entering the required data, such

as disturbance characteristics, specific constraints, decision preferences, etc. The

output interface can present a number of different alternative repaired schedules as

generic Gantt charts and tables for easy reference.

 141

REFERENCES

Aarts, E. H. L. and Lenstra, J. K. (1997). Introduction. In Aarts, E. and Lenstra, J. K.
(Eds.), Local Search in Combinatorial Optimization. pp. 1-17. New York: Wiley.

Anderson, M. B. and Lawrence, W. R. (1996). Launch conditions and aerodynamic
data extraction by an elitist pareto genetic algorithm. In AIAA Atmospheric Flight
Mechanics Conference, San Diego, California. AIAA Paper 96-3361.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S. and Uzsoy, R. (2005). Executing
production schedules in the face of uncertainties: a review and some future
directions. European Journal of Operational Research, 161(1), pp. 86-110.

Bagchi, T. P. (1999). Multiobjective Scheduling by Genetic Algorithms. Boston:
Kluwer Academic Publishers.

Bagchi, T. P. (2001). Pareto-optimal solutions for multi-objective production
scheduling problems. In Zitzler, E. et al. (Eds.), Proceedings of the First
International Conference on Evolutionary Multi-Criterion Optimization (EMO
2001), pp. 458-471. Springer-Verlag. Lecture Notes in Computer Science No.
1993.

Baker, K. (1974). Introduction to Sequencing and Scheduling. New York: John Wiley
& Sons.

Balbontín-Bravo, E. (1998). Simulation of large precast operations. In Proceedings of
the 1998 Winter Simulation Conference, Vol.2, pp. 1311-1317.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA Journal on Computing, 6(2), pp. 154-160.

Bierwirth, C. and Mattfeld, D. C. (1999). Production scheduling and rescheduling
with genetic algorithms. Evolutionary Computation, 7(1), pp. 1-17.

Brizuela, C. and Aceves, R. (2003). Experimental genetic operators analysis for the
multi-objective permutation flowshop. In Fonseca, C. M. et al. (Eds.), Proceedings
of the Second International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2003), pp. 578-592. Springer-Verlag. Lecture Notes in
Computer Science No. 2632.

Brizuela, C., Sannomiya, N., and Zhao, Y. (2001). Multi-objective flow-shop:
preliminary results. In Zitzler, E. et al. (Eds.), Proceedings of the First
International Conference on Evolutionary Multi-Criterion Optimization (EMO
2001), pp. 443-457. Springer-Verlag. Lecture Notes in Computer Science No.
1993.

Brown, D. E., Marin, J. A., and Scherer, W. T. (1995). A survey of intelligent
scheduling systems. In Brown, D. E. and Scherer, W. T. (Eds.), Intelligent
Scheduling Systems, pp. 1-40. Boston: Kluwer Academic Publishers.

References

 142

Carlyle, W. M., Kim, B., Fowler, J. W., and Gel, E. S. (2001). Comparison of multiple
objective genetic algorithms for parallel machine scheduling problems. In Zitzler,
E. et al. (Eds.), Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001), pp. 472-485. Springer-Verlag. Lecture
Notes in Computer Science No. 1993.

Chan, W. T. and Hu, H. (1998). Process scheduling using genetic algorithms for
construction industry. In Proceedings of the 3rd International Conference on
Management, CHEP and Springer-verlag, 25-28 July 1998, Shanghai, China.

Chan, W. T. and Hu, H. (2000). Precast production scheduling with genetic algorithms.
In Proceedings of Congress on Evolutionary Computation 2000, pp.1087-1094,
IEEE Press, 16-19 July 2000, San Diego, USA.

Chan, W. T. and Hu, H. (2001). An application of genetic algorithms to precast
production scheduling. Computers and Structures, Vol.79, pp.1605-1616.

Chan, W. T. and Hu, H. (2002a). Production scheduling for precast plants using a flow
shop sequencing model. Journal of Computing in Civil Engineering, 16(3), pp.
165-174.

Chan, W. T. and Hu, H. (2002b). Constraint programming approach to precast
production scheduling. Journal of Construction Engineering and Management,
128(6), pp. 513-521.

Chan, W. T., Chua, D. K. H., and Xiong, L. (1999). Collaborative scheduling over the
internet. Computer-Aided Civil and Infrastructure Engineering, Vol. 14, pp. 15-24.

Chionh, C. K. (1999). The role of HDB in preparing Singapore’s construction industry
for the challenges of the new millennium. In Construction Industry Development in
the New Millennium: Proceedings of the 2nd International Conference on
Construction Industry Development, and the 1st Conference of CIB TG 29 on
Construction in Developing Countries, 27-29 October, The Pan Pacific, Singapore.

Chun, H. W. and Wong, R. Y. M. (2003). N* - an agent-based negotiation algorithm
for dynamic scheduling and rescheduling. Advanced Engineering Informatics,
17(1), pp. 1-22.

CIDB Construction Productivity Taskforce (1992). Raising Singapore's Construction
Pproductivity: CIDB Construction Productivity Taskforce Report 1992. Singapore:
Construction Industry Development Board.

Codognet, P. and Diaz, D. (2001). Yet another local search method for constraint
solving. In Steinhöfel, K. (Ed.), Proceedings of the 1st International Symposium on
Stochastic Algorithms: Foundations and Applications, pp. 73-90. Berlin: Springer
Verlag. Lecture Notes in Computer Science No. 2246.

Coello, C. A. C. (2000). An updated survey of GA-based multiobjective optimization
techniques. ACM Computing Surveys, 32(2), pp. 109-143.

References

 143

Coello, C. A. C. (2001). A short tutorial on evolutionary multiobjective optimization.
In Zitzler, E. et al. (Eds.), Proceedings of the First International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2001), pp. 21-40.
Springer-Verlag. Lecture Notes in Computer Science No. 1993.

Coello, C. A. C., Van Veldhuizen, D. A., and Lamont, G. B. (2002). Evolutionary
Algorithms for Solving Multi-objective Problems. New York: Kluwer Academic.

Collette, Y. and Siarry, P. (2003). Mutiobjective Optimization : Principles and Case
Studies. Berlin; New York: Springer.

Cochran, J. K., Horng, S. M., and Fowler, J. W. (2000). A multi-population genetic
algorithm to solve multi-objective scheduling problems for parallel machines.
Working Paper.

Congram, R. K., Potts, C. N., and van de Velde, S. L. (2002). An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
Informs Journal on Computing, 14(1), pp. 52-67.

Cui, X., Li, M., and Fang, T. (2001). Study of population diversity of multiobjective
evolutionary algorithm based on immune and entropy principles. In Proceedings of
the Congress on Evolutionary Computation 2001, Vol. 2, pp. 1316-1321.
Piscataway, New Jersey, IEEE.

Dandy, G. C. and Engelhardt, M. (2001). Optimal scheduling of water pipe
replacement using genetic algorithms. Journal of Water Resource Plan
management, 127(4), pp. 214-223.

Davis, L. (1991). Handbook of Genetic Algorithms, New York: Van Nostrand
Reinhold.

Dawood, N. (1994). Developing a production management modeling approach for
precast concrete building products. Construction Management and Economics,
Vol.12, pp. 393-412.

Dawood, N. (1995). An integrated knowledge-based/simulation approach to
production planning: an application to the pre-cast industry. Construction
Management and Economics, Vol.13, pp. 53-64.

Dawood, N. (1996). A simulation model for eliciting scheduling knowledge: an
application to the precast manufacturing process. Advances in Engineering
Software, 25(2-3), pp. 215-223.

Dawood, N. (1999). A proposed system for integrating design and production in the
precast building industry. International Journal of Construction Information
Technology, 7(1), pp.73-83.

Dawood, N. and Neale, R. H. (1993). A capacity planning Model for precast concrete
building products. Building and Environment, 28(1), pp. 81-95.

References

 144

Dawood, N. and Smith, M. (1996). Validation of an automated capacity planning in
the concrete building materials industry using an industrial case study. Building
and Environment, 31(2), pp. 129-144.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. New
York: John Wiley & Sons.

Deb, K., Agrawal, S., Pratab, A. and Meyarivan, T. (2000). A fast elitist
non-dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. In Schoenauer, M. et al. (Eds.), Proceedings of the Parallel Problem
Solving from Nature VI Conference, pp. 849-858, Paris, France. Springer. Lecture
Notes in Computer Science No. 1917.

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species formation
in genetic function optimization. In Schaffer, J. D. (Ed.), Proceedings of the Third
International Conference on Genetic Algorithms, San Mateo, CA, pp. 42-50.
Morgan Kaufmann.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. Ph. D. Thesis. University of Michigan.

Dorn, J., Girsch, M., Skele, G., and Slany, W. (1996). Comparison of iterative
improvement techniques for schedule optimization. European Journal of
Operational Research, Vol. 94, pp. 349-361.

Fang, J. and Xi, Y. G. (1997). A rolling horizon job shop rescheduling strategy in the
dynamic environment. International Journal of Advanced Manufacturing
Technology, Vol.13, pp. 227-232.

Fonseca, C. M. and Fleming, P. J. (1993). Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization. In Forest, S. (Ed.),
Proceedings of the Fifth International Conference on Genetic Algorithms, San
Mateo, CA, pp.416-423. Morgan Kaufmann.

Fonseca, C. M. and Fleming, P. J. (1995). An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1), pp. 1-16.

Fonseca, C. M. and Fleming, P. J. (1998). Multiobjective optimization and multiple
constraint handling with evolutionary algorithms: I. A unified formulation. IEEE
Transaction on Systems, Man and Cybernetics, Part A. 28(1). pp. 26-37.

Fox, M. S. and Smith, S. F. (1984). ISIS—a knowledge based system for factory
scheduling. Expert Systems, Vol. 1, pp. 25-49.

Fwa, T. F., Chan, W. T., and Hoque, K. Z. (2000). Multiobjective optimization for
pavement maintenance programming. Journal of Transportation Engineering,
126(5), pp. 367-374.

Garetti, M. and Taisch, M. (1995). Using neural networks for reactive scheduling. In
Kerr, R. and Szelke, E. (Eds.), Artificial Intelligence in Reactive Scheduling, pp.
146-155. London: Chapman and Hall.

References

 145

Gembicki, F. W. (1974). Vector Optimization for Control with Performance and
Parameter Sensitivity Indices. Ph. D thesis, Case Western Reserve University,
Cleveland, Ohio.

Gen, M. and Cheng, R. (1997). Genetic Algorithms and Engineering Design. New
York: John Wiley & Sons.

Goicoechea, A., Hansen, D. R., and Duckstein, L. (1982). Multiobjective Analysis
with Engineering and Business Applications. New York: John Wiley and Sons.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning, Reading: Addison-Wesley.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for
multimodal function optimization. In Grefenstette, J. J. (Ed.), Genetic Algorithms
and their Applications: Proceedings of the Second International Conference on
Genetic Algorithms, Hillsdale, NJ, pp. 41-49. Lawrence Erlbaum.

Graves, S. C. (1981). A review of production scheduling. Operations Research, 29(4),
pp. 646-675.

Hajela, P. and Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal
design. Structural Optimization. Vol.4, pp. 99-107.

Halpin, D. W. and Riggs, L. S. (1992). Planning and Analysis of Construction
Operations. New York: Wiley.

Horn, J. (1997). Multicriteria decision making. In Bäck, T. et al. (Eds.), Handbook of
Evolutionary Computation, pp. F1.9:1-15. Bristol: Institute of Physics Publishing
and New York: Oxford University Press.

Horn, J., Nafpliotis, N., and Goldberg, D. E. (1994). A niched pareto genetic
algorithm for multiobjective optimization. IEEE World Congress on
Computational Intelligence, Vol.1, pp. 82-87.

Hu, H. (2000). Production Scheduling for Precast Plants. Ph.D. thesis. National
University of Singapore.

Hwang, C. L. and Masud, A. S. M. (1979). Multiple Objective Decision Making –
Methods and Applications: a State-of-the-art Survey. Berlin: Springer-Verlag.

Ishibuchi, H. and Murata, T. (1996). Multi-objective genetic local search algorithm. In
Proceedings of 1996 IEEE International Conference on Evolutionary Computation,
pp. 119-124. Piscataway, New Jersey. IEEE.

Ishibuchi, H. and Murata, T. (1998). Multi-objective genetic local search algorithm
and its application to flowshop scheduling. IEEE Transactions on Systems, Man
and Cybernetics, 28(3), pp. 392-403.

Jan, A., Yamanoto, M., and Ohuchi, A. (2000). Evolutionary algorithms for nurse
scheduling problem. In 2000 Congress on Evolutionary Computation, Vol.1, pp.
196-203. Piscataway, New Jersey. IEEE.

References

 146

Keeney, R. L. and H. Raiffa (1976). Decisions with Multiple Objectives: Preferences
and Value Trade-offs. New York: John Wiley and Sons.

Kim, C. O., Min, H. S., and Yin, Y. (1998). Integration of inductive learning and
neural networks for multi-objective FMS scheduling. International Journal of
Production Research, 36(9), pp. 2497-2509.

Kjenstad, D. (1998). Coordinated Supply Chain Scheduling. Ph. D. Thesis.
Norwegian University of Science and Technology, Trondheim, Norway.

Knowles, J. D. and Corne, D. W. (2000). Approximating the non-dominated front
using the Pareto archived evolution strategy. Evolutionary Computation, 8(2), pp.
149-172.

Kursawe, F. (1991). A variant of evolution strategies for vector optimization. In
Schwefel, H. P. and Manner, R. (Eds.), Parallel Problem Solving from Nature. 1st
Workshop, PPSN 1, pp. 193-197, Dortmund, Germany: Springer-Verlag. Lecture
Notes in Computer Science No. 496.

Laumanns, M., Zitzler, E., and Thiele, L. (2001). On the effects of archiving, elitism,
and density based selection in evolutionary multi-objective optimization. In Zitzler,
E. et al. (Eds.), Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001), pp. 181-196. Springer-Verlag. Lecture
Notes in Computer Science No. 1993.

Lee, T. W. (1989). Planning of Precast Component Production. B. Sc. Thesis.
National University of Singapore, Singapore.

Leu, S. S., and Hwang, S. T. (2001). Optimal repetitive scheduling model with
shareable resource constraint. Journal of Construction Engineering and
Management, 127(4), pp. 270-280.

Leu, S. S., and Hwang, S. T. (2002). GA-based resource-constrained flow-shop
scheduling model for mixed precast production. Automation in Construction, Vol.
11, pp. 439-452.

Levine, D. (1996). Users Guide to the PGAPack Parallel Genetic Algorithm Library.
Argonne, Illinois: Argonne National Laboratory.

Li, Y. and Man, K. F. (1998). Scheduling and planning problem in manufacturing
systems with multiobjective genetic algorithm. In Proceedings of 24th Annual
Conference of the IEEE, IECON '98, Vol. 1, pp. 274 -279.

Li, E. Y. C. and Shaw, W. H. (1996). Flow-time performance of modified scheduling
heuristics in a dynamic rescheduling environment. Computers and Industrial
Engineering, 30(1-2), pp. 213-216.

Li, E. Y. C. and Shaw, W. H. (1998). Simulation modeling of a dynamic job shop
rescheduling with machine availability constraints. Computers and Industrial
Engineering, 35(1-2), pp. 117-120.

References

 147

Madureira, A., Ramos, C., and do Carmo Silva, S. D. (2002). A coordination
mechanism for real world scheduling problems using genetic algorithms. In
Proceedings of the 2002 Congress on Evolutionary Computation, Vol. 1, pp.
175-180.

Man, K. F., Tang, K. S., and Kwong, S. (1999). Genetic Algorithms: Concepts and
Designs. London; New York: Springer.

Marglin, S. (1967). Public Investment Criteria. Cambridge, Massachusetts: MIT
Press.

Marzouk, M. and Moselhi, O. (2004). Multiobjective optimization of earthmoving
operations. Journal of Construction Engineering and Management, 130(1), pp.
105-113.

Mattfeld, D. C. (1996). Evolutionary Search and the Job Shop: Investigations on
Genetic Algorithms for Production Scheduling. Heidelberg: Physica-Verlag.

Minton, S., Johnston, M., Philips, A., and Laird, P. (1990). Solving large-scale
constraint satisfaction and scheduling problems using a heuristic repair method. In
Proceedings of the 8th National Conference on Artificial Intelligence, pp. 17-24.
Boston, Massachusetts: AAAI Press / The MIT Press.

Montana, D., Brinn, M., Moore, S., and Bidwell, G. (1998). Genetic algorithms for
complex real-time scheduling. In Proceedings of the 1998 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 2213-2218. La Jolla, California.
IEEE.

Murata, T., Ishibuchi, H., and Tanaka, H. (1996). Multi-objective genetic algorithm
and its applications to flowshop scheduling. Computers and Industrial Engineering,
30(4), pp. 957–968.

Nishimura, E., Imai, A., and Papadimitriou, S. (2001). Berth allocation planning in the
public berth system by genetic algorithms. European Journal of Operational
Research, Vol. 131, pp. 282-292.

Noronha, S. J. and Sarma, V. V. S. (1991). Knowledge-based approaches for
scheduling problems: a survey. IEEE Transactions on Knowledge and Data
Engineering, 3(2), pp. 160-171.

O’Grady, P. J. and Lee, K. H. (1989). An intelligent cell control system for automated
manufacturing. In Kusiak, A. (Ed.), Knowledge-based Systems in Manufacturing,
pp. 151-172. London: Taylor & Francis.

Oh, J. and Wu, C. (2004). Genetic-algorithm-based real-time task scheduling with
multiple goals. Journal of Systems and Software, 17(3), pp. 245-258.

Osyczka, A. (1985). Multicriteria optimization for engineering design. In J. S. Gero
(Ed.), Design Optimization, pp. 193-227. Orlando, Fla.: Academic Press.

References

 148

Osyczka, A. and Kundu, H. (1995). A new method to solve generalized multicriteria
optimization problems using the simple genetic algorithm. Structural Optimization,
Vol. 10, pp. 94-99.

Paechter, B., Rankin, R., Cumming, A., and Fogarty, T. C. (1998). Timetabling the
classes of an entire university with an evolutionary algorithm. In Eiben, A. E. et al.
(Eds.), Parallel Problem Solving From Nature – PPSN V, pp. 865-874, Amsterdam,
Holland. Springer-Verlag. Lecture Notes in Computer Science No. 1498.

Parks, G. T. and Miller, I. (1998). Selective breeding in a multiobjective genetic
algorithm. In Eiben, A. E. et al. (Eds.), Parallel Problem Solving from Nature –
PPSN V, pp. 250-259. Berlin: Springer.

Pendharkar, P. C. (1999). A computational study on design and performance issues of
multi-agent intelligent systems for dynamic scheduling environments. Expert
Systems with Applications, 16(2), pp. 121-133.

Phan, H. T. (2000). Constraint Propagation in Flexible Manufacturing. New York:
Springer.

Prasad, T. D. and Park, N. S. (2004). Multiobjective genetic algorithms for design of
water distribution networks. Journal of Water Resources Planning and
Management, 130(1), pp.73-82.

Raheja, A. S. and Subramaniam, V. (2002). Reactive recovery of job shop schedules –
a review. International Journal of Advanced Manufacturing Technology, Vol. 19,
pp. 756-763.

Rangsaritratsamee, R., Jr. Ferrell, W. G., and Kurz, M. B. (2004). Dynamic
rescheduling that simultaneously considers efficiency and stability. Computers and
Industrial Engineering, Vol. 46, pp. 1–15.

Rao, S. S. (1984). Optimization: Theory and Applications. New York: Wiley.

Rovithakis, G. A., Perrakis, S. E., and Christodoulou, M. A. (2001). Application of a
neural network scheduler on a real manufacturing system. IEEE Transactions on
Control Systems Technology, 9(2), pp. 261-270.

Rudolph, G. (1998). On a multi-objective evolutionary algorithm and its convergence
to the Pareto set. In Fogel, D. B. (Ed.), Proceedings of the 1998 International
Conference on Evolutionary Computation, pp. 511-516. Piscataway, New Jersey.
IEEE.

Sabuncuoglu, I. and Bayız, M. (2000). Analysis of reactive scheduling problems in a
job shop environment. European Journal of Operational Research, 126(3), pp.
567-586.

Sankar, S. S., Ponnanbalam, S. G. and Rajendran, C. (2003). A multiobjective genetic
algorithm for scheduling a flexible manufacturing system. International Journal of
Advanced Manufacturing Technology, 22(3-4), pp. 229-236.

References

 149

Schaffer, J. D. (1984). Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms, Ph. D. Thesis. Vanderbilt University, Nashville, Tennessee.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic
algorithms. In Genetic Algorithms and Their Applications: Proceedings of the First
International Conference on Genetic Algorithms, pp. 93-100, Lawrence Erlbaum.

Shaw, K. J. and Fleming, P. J. (1996). An initial study of practical multi-objective
production scheduling using genetic algorithms. In Proceedings of the
International Conference on Control’96, University of Exeter, UK.

Shaw, K.J. and Fleming, P.J. (1997). Including real-life problem preferences in
genetic algorithms to improve optimization of production schedules. In
Proceedings of Genetic Algorithms in Engineering Systems: Innovations and
Applications, pp. 239-244.

Smith, S.F. (1994). OPIS: A methodology and architecture for reactive scheduling. In
Zweben, M. and Fox, M. S. (Eds.), Intelligent Scheduling, pp. 29-66. California:
Morgan Kaufmann Publishers.

Smith, S.F., Ow, P.S., Potvin, J.Y., Muscettola, N., and Matthy, D. (1990). An integral
framework for generating and revising factory schedules. Journal of the
Operational Research Society, 41(6), pp. 539-552.

Srinivas, N. and Deb, K. (1994). Multiobjective optimization using non-dominated
sorting in genetic algorithms. Evolutionary Computation, 2(3), pp.221-248.

Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation, and
Application. New York: John Wiley.

Stützle, T. G. (1999). Local Search Algorithms for Combinatorial Problems: Analysis,
Improvements, and New Applications. Sankt Augustin, German: Infix.

Subramanyam, S. and Askin, G. (1986). An expert system approach to scheduling in
flexible manufacturing systems. In Kusiak, A. (Ed.), Flexible Manufacturing
Systems: Methods and Studies, pp. 243-256. Amsterdam: Elsevier Science
Publishers.

Sun, J. and Xue, D. (2001). A dynamic reactive scheduling mechanism for responding
to changes of production orders and manufacturing resources. Computers in
Industry, 46(2), pp. 189-207.

Suresh, V. and Chaudhuri, D. (1993). Dynamic scheduling – a survey of research.
International Journal of Production Economics, 32(1), pp. 53-63.

Szelke, E., and Kerr, R.M. (1994). Knowledge-based reactive scheduling. Production
Planning and Control, Vol. 5, pp. 124–145.

Szelke, E., and Markus, G. (1995). A blackboard based perspective of reactive
scheduling. In Kerr, R. and Szelke, E. (Eds.), Artificial Intelligence in Reactive
Scheduling, pp. 60–77. London: Chapman and Hall.

References

 150

Talbi, E. G., Rahoual, M., Mabed, M. H., and Dhaenens, C. (2001). A hybrid
evolutionary approach for multicriteria optimization problems: application to the
flow shop. In Zitzler, E. et al. (Eds.), First International Conference on
Evolutionary Multi-Criterion Optimization, pp. 416-428. Springer-Verlag. Lecture
Notes in Computer Science No. 1993.

Tam, C. M., Tong, T.K.L., and Chan, W.K.W. (2001). Genetic algorithm for
optimizing supply locations around tower crane. Journal of Construction
Engineering and Management, 127(4), pp. 315-321.

Tamaki, H., Mori, M., Araki, M., Mishima, Y., and Ogai, H. (1994). Multi-criteria
optimization by genetic algorithms: A case of scheduling in hot rolling process. In
Fushimi, M. and Tone, K. (Eds.), Proceedings of APORS’94, Singapore, pp.
374-381. World Scientific Publishing.

Tamaki, H., Nishino, E., and Abe, S. (1999). A genetic algorithm approach to
multi-objective scheduling problems with earliness and tardiness penalties. In 1999
Congress on Evolutionary Computation, pp. 46-52, Washington, D. C. IEEE.

Tan, D. (2003). Prefabrication getting popular in Singapore. PREFAB Architecture,
Issue No. 1, pp. 8-10.

Todd, D. S. and Sen, P. (1997). A multiple criteria genetic algorithm for containership
loading. In Bäck, T. (Ed.), Proceedings of the Seventh International Conference on
Genetic Algorithms, San Francisco, CA, pp. 674-681. Morgan Kaufmann.

Tranvouez, E., Ferrarini, A., and Espinasse, B. A. (2001). A multiagent modelling and
simulation of workshop disruptions management by cooperative rescheduling
strategies. In Giambiasi, N. and Frydman, C. (Eds.), Proceedings of Simulation in
Industry 2001, pp. 917-924.

Tsukada, T. K. and Shin, K. G. (1998). Distributed tool sharing in flexible
manufacturing systems. IEEE Transactions on Robotics and Automation, 14(3), pp.
379-389.

Tsukiyama, M., Mori, K., and Fukuda, T. (1992). Dynamic scheduling by using
scheduling editor and distributed decision maker. In IFAC Information Control
Problems in Manufacturing Technology, pp. 73-78.

Valenzuela-Rendón, M. and Uresti-Charre, E. (1997). A non-generational genetic
algorithm for multiobjective optimization. In Bäck, T. (Ed.), Proceedings of the
Seventh International Conference on Genetic Algorithms, San Francisco, CA, pp.
658-665. Morgan Kaufmann.

Van Veldhuizen, D. A. (1999). Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations. Ph. D. Thesis. Department of
Electrical and Computer Engineering, Graduate School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, Ohio.

References

 151

Van Veldhuizen, D. A. and Lamont, G. B. (1998). Multiobjective evolutionary
algorithm research: A history and analysis. Technical Report TR-98-03.
Department of Electrical and Computer Engineering, Graduate School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

Van Veldhuizen, D. A. and Lamont, G. B. (2000). Multiobjective evolutionary
algorithms: Analyzing the State-of-the-Art. Evolutionary Computation, 7(3),
pp.1-26.

Vern, K. and Gunal, A. (1998). The use of simulation for construction elements
manufacturing. In Proceedings of the 1998 Winter Simulation Conference, Vol.2,
pp. 1273-1277.

Warszawski, A. (1984). Production planning in prefabrication plant. Building and
Environment, 19(2), pp. 139-147.

Warszawski, A. (1990). Industrialization and Robotics in Building. New York: Harper
& Row.

Warszawski, A. and Ishai, E. (1982). Long range planning of prefabrication industry
in a national economy. Building and Environment, 17(1), pp. 47-54.

Yapo, P. O. (1996). A Multiobjective Global Optimisation Algorithm with Applications
to Calibration of Hydrologic Models. Ph. D thesis. University of Arizona, Tucson.

Yoshimura, K. and Nakano, R. (1998). Genetic algorithms for information operator
scheduling. In Fogel, D. B. (Ed.), Proceedings of the 1998 International
Conference on Evolutionary Computation, pp. 277-282. Piscataway, New Jersey.
IEEE.

Zadeh, L. A. (1963). Optimality and Nonscalar-Valued Performance Criteria. IEEE
Transactions on Automatic Control, AC-8(1):59-60.

Zeleny, M. (1973). Compromise programming. In J. Cochrane and Zeleny, M. (Eds.),
Multiple Criteria Decision Making, pp. 262-301. Columbia, South Carolina:
University of South Carolina Press.

Zheng, D. X. M., Ng, S. T. and Kumaraswamy, M. M. (2004). Applying a genetic
algorithm-based multiobjective approach for time-cost optimization. Journal of
Construction Engineering and Management, 130(2), pp. 168-176.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. Aachen: Shaker.

Zitzler, E. and Thiele, L. (1998). An evolutionary algorithm for multiobjective
optimization: the strength Pareto Approach. Technical Report 43, Zürich,
Switzerland: Computer Engineering and Networks Laboratory, Swiss Federal
Institute of Technology.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4), pp.257-271.

References

 152

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolutionary
algorithms: empirical results. Evolutionary Computation, 8(2), pp. 173-195.

Zweben, M., Daun, B., Davis, E., and Deale, M. (1994). Scheduling and rescheduling
with iterative repair. In Zweben, M. and Fox, M. S. (Eds.), Intelligent Scheduling,
pp. 241-256. San Francisco, CA: Morgan Kaufmann.

Zweben, M., Davis, E., Daun, B., and Deale, M. J. (1993). Scheduling and
rescheduling with iterative repair. IEEE Transactions on Systems, Man, and
Cybernetics, 23(6), pp.1588-1596.

Zydallis, J. B., Van Veldhuizen, D. A., and Lamont, G. B. (2001). A statistical
comparison of multiobjective evolutionary algorithms including the MOMGA-II.
In Zitzler, E. et al. (Eds.), Proceedings of the First International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2001), pp. 226-240.
Springer-Verlag. Lecture Notes in Computer Science No. 1993.

 153

APPENDIX I

Data and Schedules for the L-U Example

 154

Table A.1 Site demands for the L-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 T
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

E1 5 5 5 5 5 6 31
E2 3 3 2 8
E3 5 5 5 5 5 6 31

Table A.2 Original production schedule of the L-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

M1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1
M2 E2 E2 E1 E1 E1 E2 E2 E1
M3 E3 E3 E2 E3 E3 E3 E3 E2 E3 E3
M4 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3

Table A.3 One repaired production schedule of the L-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

M1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1
M2 E2 E2 E2 E1 E1 E1 E1 E1 E1 E2 E1 E1
M3 E3 E3 E2 E3 E3 E3 E3 E3 E2 E3 E3 E3 E2 E3
M4 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3

Notes: 1. Priority of disturbance resolution and corresponding heuristics are D6(H2)->D5(H5)->D4(H5)->D2(H2)->D1(H4)->D3(H2).

 2. The repaired production schedule has an objective vector of (1, 4).

 Sundays and public holidays E1 Disturbances E1 Relocation of disturbances in the repaired schedule

 155

APPENDIX II

Data and Schedules for the M-U Example

 156

Table B.1 Site demands for the M-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 T
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

E1 7 6 6 6 6 6 37
E2 3 3 3 9
E3 7 6 6 6 6 6 37

Table B.2 Production schedule of the M-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

M1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1
M2 E2 E1 E1 E2 E2 E2 E1 E1 E1 E1 E1 E1 E1
M3 E1 E3 E3 E3 E3 E3 E2 E2 E3 E3 E3 E3 E3 E3
M4 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E2 E3 E3 E3 E3 E3 E3

Table B.3 One repaired production schedule of the M-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

M1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E2
M2 E1 E2 E1 E1 E2 E2 E2 E2 E1 E1 E3 E1 E1 E1 E1 E1 E1
M3 E1 E3 E3 E3 E3 E3 E2 E3 E3 E2 E3 E3 E3 E3
M4 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3

Notes: 1. Priority of disturbance resolution and corresponding heuristics are D1(H5)->D2(H1)->D5(H2)->D6(H5)->D3(H5)->D3(H5).

 2. The repaired production schedule has an objective vector of (1, 12).

 Sundays and public holidays E1 Disturbances E1 Relocation of disturbances in the repaired schedule

 157

APPENDIX III

Data and Schedules for the H-U Example

 158

Table C.1 Site demands for the H-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 T
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

E1 8 7 8 8 8 6 45
E2 2 3 2 7
E3 8 7 8 8 8 6 45

Table C.2 Production schedule of the H-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

M1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1
M2 E1 E1 E1 E1 E2 E2 E2 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E2 E1 E1
M3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E2 E3 E3 E3 E3 E1 E3
M4 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3

Table C.3 One repaired production schedule of the H-U example

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T

M1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1
M2 E2 E1 E1 E1 E2 E2 E2 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E1 E2
M3 E3 E3 E3 E3 E1 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E2 E3 E3 E3
M4 E3 E3 E3 E1 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E3 E1

Notes: 1. Priority of disturbance resolution and corresponding heuristics are D6(H7)->D1(H3)->D4(H5)->D3(H7)->D5(H5)->D2(H7).

 2. The repaired production schedule has an objective vector of (10, 19).

 Sundays and public holidays E1 Disturbances E1 Relocation of disturbances in the repaired schedule

 159

