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Summary

Protein interaction sites mediate protein interactions in all living organisms and play cru-

cial roles in drug design. Current methods for identifying interaction sites are limited by

the existing experimental approaches’ low throughput and by insufficient structural infor-

mation in protein-protein docking approaches. To break the bottleneck, this dissertation

aims to define and capture signature patterns at protein interaction sites using abundant

protein interaction data, together with their associated sequence data. We have originally

termed the discovered patterns at protein interaction sites as binding motif pairs, each of

which consists of two traditional protein motifs. This dissertation proposes two methods

for discovering binding motif pairs.

The first method is based on a fixed-point theorem. This idea reflects the biochemical

stabilities exhibited in protein-protein interactions, in which the stability is the resistance

to some transformation under some special points; that is, the points remain unchanged

after transformation by a function. We define a point of the function as a protein motif

pair. This transformation function is closely associated with a large protein-interaction

sequence dataset. The discovery of the fixed points, or the stable motif pairs, of the

function is an iterative process, undergoing a chain of changing but converging patterns.

The selection of the starting points for this function is difficult. We use an experi-

mentally determined protein complex dataset (a subset of the PDB) to help in identifying

meaningful starting points so that the biological evidence is enhanced and the computa-

tional complexity is greatly reduced. The consequent stable motif pairs are evaluated for
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statistical significance, using the unexpected frequency of occurrence of the motif pairs

in the interaction sequence dataset. The final stable and significant motif pairs are the

binding motif pairs in which we are interested.

The second method is based on our observation of the existence of frequently occurred

substructures in protein interaction networks, called interacting protein-group pairs. The

properties of such substructures reveal a common binding mechanism between the two

protein sets attributed to the all-versus-all interaction between the two sets. We found

that the problem of mining interacting protein groups can be transformed into the classic

problem of mining closed patterns, a problem extensively studied in data mining. Since

motifs can be derived from the sequences of a protein group by standard motif discovery

algorithms, a motif pair can be easily formed from an interacting protein group pair.

We demonstrate the effectiveness of both of these methods from various aspects,

including random experiments, systematic validations with some reference databases, lit-

erature validations, and detailed case studies. The evaluation results confirmed the high

efficiency and reliable effectiveness of our methods, which indicates a promising future for

the usefulness of the concept of binding motif pairs.
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Chapter 1

Introduction

Recent developments in biotechnology have changed our view of biological science sig-

nificantly. Biological data have traditionally been obtained through laborious laboratory

work producing small amounts of data, but this situation has changed dramatically in

recent decades. Increasing numbers of high-throughput biotechnologies which can easily

produce voluminous and high-dimensional data have emerged, examples being polymerase

chain reactions (PCR), a technology for sequencing (Mullis, 1990), and yeast two-hybrid, a

technique to assay protein-protein interactions (Uetz et al., 2000; Ito et al., 2001). These

huge amounts of data are far beyond the capability of biologists to analyze efficiently.

For example, the genome project produced gigabyte data, a dizzying amount even for

computer scientists.

This tremendous amount of data has brought up at least two challenges. The first

is the extrapolation of current unbalanced information. For example, protein sequences

are widely available nowadays, but their corresponding structures are often limited, as

they are constrained by current protein-structure-determining techniques which are far

behind the pace of sequencing techniques. Therefore, theoretical models or simulations of

biological processes can provide a preview of future experiments and may even reduce the

performance of some unnecessary experiments. The discipline of computational biology

has been developed from this background.
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Computational biology is the development of data-analytical and the-

oretical methods, mathematical modeling, and computational simulation

techniques and their application to the study of biological, behavioral, and

social systems (Huerta and et al., 2000).

The second challenge comes from the management and analysis of huge amounts of

data, especially by revealing the underlying knowledge or biological mechanisms in the

historic data. This has led to a new interdisciplinary field called bioinformatics, which is

mainly a combination of molecular biology and computer science. The term first appeared

in 1977.

Bioinformatics is the research, development, or application of computa-

tional tools and approaches for expanding the use of biological, medical,

behavioral, or health data, including those used to acquire, store, organize,

archive, analyze, or visualize such data.

Since bioinformatics emphasizes the study of ways to reveal underlying mechanisms

from huge amounts of data, it is necessarily related to another field called data mining,

or knowledge discovery in databases. A definition of data mining is that:

Data mining is the nontrivial extraction of implicit, previously unknown,

and potentially useful information from data (Han and Kamber, 2000).

Due to the complexity and enormity of biological data, bioinformatics brings new chal-

lenges and opportunities to traditional data mining techniques, such as pattern mining,

classification, clustering, the Hidden Markov Model (HMM), and expectation maximiza-

tion (EM).

With the rapid growth of biological data, many geneticists, physicists, and biochemists

have been trying to study simulation and modeling problems. Meanwhile, many math-

ematicians and statisticians have also been using biological data as their test bed. This

makes both computational biology and bioinformatics multidisciplinary. Although the

two fields are highly overlapped and can be referred to interchangeably in most cases,

computational biology emphasizes simulation and modeling, while bioinformatics empha-
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sizes data mining and data integration. The scope of this thesis is within the field of

bioinformatics.

1.1 Biology Background

1.1.1 From DNAs to Proteins

As computational biology and bioinformatics deal with data from the field of molecular

biology, this section presents a short introduction to that field.

The central dogma of molecular biology is the biological mechanism that transcribes

and translates Deoxyribonucleic acid (DNA) into proteins. DNA is a type of macro-

molecule in the cells of organisms that carries their genetic codes. It is a polymer assem-

bled from four kinds of nucleotides (abbreviated as A, T, G, and C). The four nucleotides

are assembled in the form of base pairs (A is with T and G is with C) in the long strands

of the DNA molecules, which have a double-helix structure. Therefore, DNA can be

represented as a sequence consisting of four characters from one particular direction.

Each DNA molecule has specified sub-structures in its strands, where the basic func-

tional unit of heredity is called a gene. Each gene can be transcribed independently into

one or more message ribonucleic acid (mRNA). Each transcribed mRNA has nucleotides

similar to its original DNA, except the T in the original DNA is replaced by a U. Fur-

thermore, mRNA becomes a single strand after transcription.

Each mRNA is translated into a protein, a basic functional unit in cells. The complete

set of genes in an organism is called a genome. Although the genome is identical in

different cells of the same organism, the expressed (transcribed and translated) set of

proteins varies from one cell to another, which leads to the diversity of cells. The set of

proteins in a cell is called a proteome (Wilkins et al., 1996).
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Proteins are the main focus of this dissertation. They are another kind of macro-

molecule found in the cells of organisms. A protein is a polymer of 20 kinds of amino

acids, or residues after polymerization. A protein has at least three levels of structure.

The primary structure of a protein is the sequence of its amino acids, namely, its pri-

mary sequence. The secondary structure is the sequence of its local folding units, such

as α helixes, β strands, and turns. The tertiary structure includes the three-dimensional

coordinates for all the atoms of every amino acid after the protein has folded from the

primary sequence to three-dimensional space. After folding, some parts of proteins are

exposed to the outside environment, and are thus called the protein’s surface (Connolly,

1983).

The surface atoms of a protein are directly related to its metabolic function. Since the

location of the surface atoms is determined by the protein’s primary sequence, it is not

surprising that similar protein sequences exhibit similar structures, and similar structures

generally lead to similar functions. However, this is not always true. Similar sequences

may have markedly divergent structures and similar structures may have totally different

functions, owing to the crucial changes caused by the mutated amino acids or structural

patches. On the other hand, totally different sequences may shape similar structures, or

completely different structures may perform the same functions.

1.1.2 Protein Interactions

The functions of a protein are achieved by its interaction with its partners, perhaps an-

other protein, a peptide, a DNA molecule, or a small compound molecule, usually called a

ligand. For example, protein-DNA interactions implement the central dogma of biological

systems. As another example, protein-protein interactions regulate signal transduction,

intercellular communication, and catalytic reactions. Protein-protein interactions may

also be related to some diseases, owing to deleterious aggregations during protein associ-

ation.
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In principle, protein-protein interactions accompany the formation of protein com-

plexes (Dziembowski and Seraphin, 2004), either in the form of permanent structures,

such as homo-dimers, or as transient structures, such as antigen-antibody complexes,

enzyme-substrates, or enzyme-inhibitor complexes. The formation of protein complexes

is achieved through a process called confirmation change, which is the structural change

in some regions of one protein to favor their counterpart. A protein is in a free state

before conformation change, and is in a bound state afterward. The bound state of a

protein often exists in a protein complex, either permanently or transiently, as mentioned

above.

Protein-protein interactions can be influenced by the environments inside cells. There-

fore, protein interaction networks of cells, consisting of all the interactions between the

proteins in the cells, may vary within the same organism. This, along with the diversity

of proteome, or expressed proteins, in cells, contributes to cell diversity. If we ignore

the chronological order and the location of the protein interactions, the set of protein

interactions in a species is termed the interactome of the species (Ito et al., 2001).

1.1.3 Protein Interaction Sites

Protein-protein interactions are mediated by short sequences of residues (amino acids),

usually 10-20 in length, not by the whole sequence (Sheu et al., 2005). These short

sequences dominate the conformation changes during protein association. The atoms in

the short sequence form the contact surfaces between interacting proteins, often referred

to as interfaces (Miller, 1990). The residues in the interfaces are termed interaction

sites (Evans and Levine, 1979). Generally, the residues in the interfaces contacting some

residues in the counterpart protein directly are referred to as binding sites (Rossmann

and Argos, 1978). The terms interaction sites and binding sites are sometimes used

interchangeably if their differences are unimportant.

Protein interaction sites have some distinct properties that distinguish them from
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other residues in protein surfaces. The residues at interaction sites are often highly fa-

vorable to the counterpart residues so that they can bind together (Keskin and Nussinov,

2005). The preferences include geometric complementarity, electrostatic compatibility,

and hydrophobic complementarity (Gabb et al., 1997). Some interaction sites even ex-

hibit obvious cavities, or pockets (Edelsbrunner et al., 1996), such as hinge-like scaffolds

in three-dimensional space.

Only limited types of protein interaction sites exist in nature. Many interaction

sites are similar to others in three-dimensional structures. It can be postulated that some

favorite combinations of hinges have been repeatedly applied during evolution (Keskin and

Nussinov, 2005). A set of similar interaction sites, or interfaces, is called an interaction

type (Aloy and Russell, 2004). By estimation, about 10,000 interaction types exist in

biological systems (Aloy and Russell, 2004).

1.1.4 A Challenge in the Post-Genome Era

Biotechnologies have played a crucial role in revealing the above biological units and

processes. What follows is a brief review of the current status of biotechnologies in

regard to the above issues. Researchers have sequenced many genomes, including the

human genome, using PCR techniques (Roberts et al., 2001). Gene expression can now

be assayed in vitro with microarray techniques (Schena et al., 1995), and a complete set of

representative protein structures is currently being determined by the protein structure

initiative, a project that is expected to finish in five years, with a single-unit cost of

US$5,000 and an annual output of 1000 structures (Terwilliger, 2004). Although many

other details other than sequences and structures exist, these involve problems of resources

and time rather than the bottleneck of biotechnologies. With emerging high-throughput

technologies for protein interactions, such as yeast two-hybrid (Uetz et al., 2000; Ito

et al., 2001), abundant interaction data are being produced. Current problems with data

in protein interactions involve quality rather than quantity.
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In comparison with other advances in biotechnology, the methods used to determine

protein-interaction sites, or protein interfaces, are still in the low-throughput stage. Chap-

ter Two of this work will present a more detailed review of this. As a result, only a small

number of interaction sites have so far been determined. It now seems reasonable to ex-

pect that it will take at least 20 years to determine all the interaction types using present

techniques (Aloy and Russell, 2004). Since interaction sites are crucial to many metabolic

processes and protein functions, they should be challenging objects of biotechnology re-

search in the post-genome era.

1.2 Binding Motif Pairs: Patterns at Protein Inter-

action Sites

Before the emergence of high-throughput experimental techniques, protein-protein dock-

ing methods, which predict complex structures based on the structures of individual

proteins, have dominated the prediction of interaction sites (Mendez et al., 2005). Once

again, Chapter Two will provide more details. Since only a small proportion of proteins

have a solved tertiary structure, more work should be carried out to make full use of ex-

isting information, such as determining protein complexes or binary protein interactions.

This is what motivates this work.

Our idea for this work originated with the observation that interaction sites are con-

served within the same protein-interaction types (Keskin et al., 2005). We propose a

novel pattern to represent such conservation, using the term binding motif pairs. A bind-

ing motif pair consists of two traditional motifs, where a motif, most likely corresponding

to some biological functions, represents a pattern on one side of interaction sites. It may

have multiple formats, such as regular expression, a position-weighted matrix (PWM),

profile, a Hidden Markov Model (HMM), or even a structure profile. A pair of motifs

usually both hold the same kind of format.

The concept of binding motif pairs includes certain features.
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• First, it is novel. Although the term motif pairs has appeared in a few publi-

cations (Spalholz et al., 1988), it has never been presented formally and applied

specifically to describe protein interaction sites or interfaces prior to our first pub-

lication involving it (Li et al., 2004).

• It is also general. A motif pair is a general concept about the pattern of a cluster

of similar interaction sites. The format of representations is not fixed, as mentioned

above. Motif pairs can be sequential or structural, although this dissertation does

not examine the structural motif pairs closely.

• It is, additionally, correlated between two binding motifs. Binding motif pairs are

patterns describing interaction sites by specifying the residue composition on the

whole interaction site. Our patterns emphasize more the correlation between the

two motifs, while our assumptions do not stress the individual composition of each

side. That is, every motif can be a part of interaction sites as long as they can

match a partner motif.

• Finally, the concept of binding motif pairs is the summarization of a set of inter-

action sites. Unlike traditional experimental and computational methods targeting

individual protein interaction sites or interfaces, motif pairs are essentially designed

to represent a cluster of interaction sites. Therefore, the motif pairs we have dis-

covered are able to predict novel interaction sites or protein interactions.

1.3 Organization and Main Contribution

This dissertation elaborates two distinct methods for discovering binding motif pairs from

different types of protein interaction data. These are the discovery of binding motif pairs

in the form of regular expressions from protein interaction sequence data and protein

complex structure data using a fixed point model, presented in Chapters Three and Four,

and the discovery of binding motif pairs in the form of blocks or matrices from only
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protein interaction sequence data, using maximal complete bipartite subgraphs, named

interacting protein group pairs, presented in Chapters Five and Six.

The organization of the dissertation and its principal contribution are outlined below.

1.3.1 Organization

In Chapter Two we will review the techniques for assaying protein interactions, including

the experimental methods and computational methods that determine protein interac-

tions, in order to clarify the data’s sources. We will also discuss the quality of the current

protein interaction data, since our work focuses on this. The remainder of the chapter

will conduct a detailed review of methods for determining protein-protein interaction sites,

thereby locating our research within the wider picture. It will first review experimental

methods, including X-ray crystallography, NMR spectroscopy, phage display, mutage-

nesis, and biochemical methods, as they are related to our validation methods. It will

then review computational methods, including protein-protein docking, such conservation

methods as homologous motif discovery, and classification methods which utilize existing

protein complexes or protein-interaction sequences. The significance and necessity of our

work will be unveiled through comparison with these mostly related works.

Chapter Three will introduce a fixed-point model for discovering binding motif pairs

from protein-interaction sequence data. This model is motivated by the stability of many

biological phenomena. The model defines a point as a motif pair consisting of two tradi-

tional protein motifs with regular expression formats. It proposes that a transformation

function upon any point, or motif pair, is closely related to a protein-interaction sequence

dataset. Motif pairs resistant to this transformation function are defined as stable mo-

tif pairs, which originate from other points and remain unchanged after some steps of

the transformation. The chapter will then discuss many interesting properties of this

transformation function and the algorithmic issues related to these properties.
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The approach taken by the fixed-point model is interesting and effective. However, it

does have some drawbacks. These include some difficulty in finding a complete solution

that identifies all fixed points under this transformation from a large interaction dataset

and the statistical significance of the stable motif pairs. We will address these two issues

and the results of our proposed solutions in Chapter Four.

To address the first issue we will describe a heuristic algorithm for finding a special

subset of such fixed points, or stable motif pairs. The starting motif pairs are generalized

efficiently from continuous interaction sites in a protein-complex dataset to obtain biolog-

ical support. To address the second issue we will introduce some statistical measurements

to evaluate the significance of stable motif pairs and single motifs.

The remainder of the chapter will report some experiments conducted on a yeast-

protein interaction dataset and a subset of the protein data bank (PDB), demonstrating

the effectiveness of the heuristic approach and the statistical measurements, and also,

especially, some random experiments demonstrating the various impacts of choosing dif-

ferent starting points to derive stable motif pairs. This part of the chapter will also

present a few literature validations to indicate the effectiveness of the model from another

direction.

Chapter Five will introduce another new model for the discovery of binding motif

pairs, using only protein-protein interaction sequence data. We developed this model from

the observation that many protein-interaction networks contain a type of substructure

with an all-versus-all or most-versus-most interaction between two protein sets, which we

term interacting protein group pairs.

The chapter will focus only on the all-versus-all relationship, which corresponds to

maximal complete bipartite subgraphs in graph theory. We try to transform the mining of

interacting protein group pairs from a protein-protein interaction network into the mining

of closed patterns, a problem studied extensively in data mining. More specifically, we

aim to reveal the correspondence between every interacting protein-group pair and a

closed-pattern pair in the adjacency matrix of the protein network, regarded as a graph.
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Chapter Six will apply the interacting protein group pairs, or maximal complete

bipartite subgraphs, to discover binding motif pairs, developing the hypothesis that the all-

versus-all interaction between a protein group pair indicates a common binding mechanism

between proteins in the pair which belong to the same interaction type, as mentioned

earlier. We extracted a motif from each protein group in the pair and then formed a

motif pair to represent the interaction sites shared by this interaction type.

Chapter Seven will summarize the research results presented in this dissertation, point

out how the two approaches could be improved, and suggest what future work in the field

should involve.

1.3.2 A Brief History

At the end of 2002, when I was considering research topics for my Ph.D. thesis, I was

attracted by one of the projects my colleague Chris Soon Heng Tan had initiated. He

intended to search for motif pairs with significant emerging values (Dong and Li, 1999).

As motif pairs are usually short, he was trying a brute-force approach, as published in Tan

et al. (2004).

The approach is vulnerable to longer motif pairs and has difficulty in identifying the

motifs’ natural length. We therefore turned to examining some natural interaction sites

with flexible-length in protein complexes, as we hypothesized that they could provide

clues for longer motif pairs.

I was soon able to formalize the interaction sites in protein complexes as maximal

contact segment pairs, and worked out the mining algorithm in February 2003. My col-

league provided encouragingly positive feedback to the segment pairs I had identified after

conducting some literature validation, which did encourage me greatly, as this was my

first research work. After a few months we obtained the first set of binding motif pairs

by generalizing the segment pairs with structure-similar mutants, and refined them on a
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protein-interaction dataset. PSB published our paper presenting some preliminary results

in January 2004 (Li et al., 2004).

Just before we submitted the PSB paper in July 2003, Dr. Ng, our laboratory head

and one of the paper’s co-authors, suggested that we conduct some random experiments

to demonstrate the statistical significance of the discovered patterns. We studied some

statistical measurements from September through December 2003 and found significant

differences between the measurements of our discovered patterns and random patterns.

We first submitted the paper to ISMB in January, 2004, and then in March 2004 to

Bioinformatics, which published it in February 2005 (Li and Li, 2005a).

The random experiments revealed that all random motif pairs converged into some

stable motif pairs after a few rounds of refinement (less than seven), which was puzzling.

Dr. Li suggested that this might be related to the fixed-point phenomenon in mathematics,

which is that under some transformation by a contract mapping function, every point will

go to a fixed point in the space. We then studied fixed-point theorems and proved that our

transformation function during refinement did satisfy the property of contract mapping.

Although the idea was first mentioned in the Bioinformatics paper (Li and Li, 2005a),

the formal description and discussion of the fixed point model was not published until the

TKDE paper, which we submitted in July 2004 and was published in August 2005 (Li

and Li, 2005b).

Although the fixed-point model was interesting and useful, it depended highly on a

limited amount of complex data. This had provided a strong motivation to find a purely

sequence-based approach since March 2004. By chance, I had observed an interesting

relationship in a protein interaction network in April 2004. It was an all-versus-all inter-

action between two protein sets, which I named an interacting protein group pair. I then

worked on the mining of these group pairs, starting from studies of their properties.

Many properties indicated that the problem is highly similar to the problem of mining

frequent patterns. We made an important transformation in August 2004 which led to the

solution of this problem. I subsequently examined the validations of these motif pairs by
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comparing them with other interaction sites, such as segment pairs and domains/domain

pairs, and achieved significant results in December 2004.

During the period when the validations were blocking me, in October 2004, Dr. Li

asked me to join his project researching mining generators and closed patterns. This

produced two papers, which I co-authored with Dr. Li and Professor Limsoon Wong, a

PODS paper (Li et al., 2005a) and an AAAI paper (Li et al., 2006b).

This research inspired Dr. Li and myself with the insight that the problem of mining

interacting protein group pairs could be transformed to the mining of closed patterns.

This problem transformation greatly improved the efficiency of the mining algorithm. We

summarized the theoretical and practical results of the approach into a paper, involving

mainly the validations, and submitted it to ISMB in 2005, ECCB in 2005, and finally

to Bioinformatics in August 2005. Thanks to the critical comments from the reviewers

during this long process, the paper became increasingly comprehensive and professional

from such biology perspectives as motivations, data sources, and results, and was finally

published in April 2006 (Li et al., 2006a).

While studying the concept of interacting protein groups, Donny Soh suggested that

the relationship is similar to maximal complete bipartite subgraphs in graph theory. We

then studied the relationship between interacting protein group pairs, maximal complete

bipartite subgraphs, and closed patterns. We found a correspondence between maximal

complete bipartite subgraphs and closed patterns, and our interacting protein group pairs

having no substantial difference with maximal complete bipartite subgraphs, in April

2005. In 2005 we submitted a paper addressing these theoretical issues to PKDD, which

published it that year (Li et al., 2005b).

The whole picture about the discovery of binding motif pairs using both approaches

finally became clear, which allowed this dissertation to be written. However, much work

remains to be done on both approaches, especially interacting protein group pairs.
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1.3.3 Main Contribution

We have made seven principal contributions to bioinformatics and data mining. These

are:

1. the conceptualization of binding motif pairs to represent the conserved patterns in

interaction sites at an interaction type.

2. the proposal of a fixed-point model and a definition of a simple transformation

function.

3. the proposal of a combined learning strategy to integrate the advantages of two

types of protein-interaction data.

4. the introduction of the concept of interacting protein-group pairs, with promising

applications in such other areas as protein-function predictions.

5. the theoretical association of two distinct problems, the maximal complete bipartite

subgraph listing problem and the closed pattern mining problem.

6. the proposal of a method to discover binding motif pairs using only protein-interaction

sequence data, which surmounted the barrier of proteins with no credible structures.

7. preliminary results about the relationship between binding motifs and domains.

1.4 Significance of the Study

The significance of the study covers, but is not limited to:

• its potential to predict or validate protein-protein interactions using our discovered

binding motif pairs.
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• its enhancement of our understanding of the mechanisms of protein-protein interac-

tions, and its potential to reveal more details about domain-domain interactions.

• its potential to narrow the search space in protein-protein docking.

• its provision of a promising future for drug design, with the discovered motif pairs

as potential drug targets.

• its potential to extend both models to the protein-DNA interaction problem.

• its potential to function as a library for such experiments as phage display (Smith,

1985a) by improving the hit ratio.

• other applications in biological processes involving binding behaviors.
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Chapter 2

Literature Review

We provide a literature review in this chapter which is closely related to the topics in

the dissertation. We first review the methods to produce protein-protein interaction

data, including the prior assumptions behind the methods and the appropriate usage of

the data, since our research mainly works on protein-protein interaction data and their

associated information.

Then, we describe the framework of the methods to determine protein interaction

sites, as our research work is in the domain. Our review aims to reveal the significance of

our work and to suggest approaches to validate our results.

2.1 Approaches to Determine Protein-Protein Inter-

actions

Protein-protein interactions can be assayed in-vivo/in-vitro or predicted in-silico. We

review the two aspects and summarize the current status of protein-protein interaction

data.
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Theoretically, any method to pinpoint protein interaction sites can be regarded as a

method to determine protein-protein interactions. In this section, we focus only on those

determining protein interactions but not specifying the detailed interaction sites.

2.1.1 Experimental Approaches

Traditionally, protein-protein interactions are determined in a low-throughput manner

with biological, biomedical and biophysical methods. Recently, they are advanced by high-

throughput methods with the capability to determine protein interactions in large scales

or even in proteome-wide scales. Consequently, formidable protein-protein interaction

data are produced.

Low-throughput methods

Protein-protein interactions are essentially assayed by biological methods. Many of them

are based on the affinity among two or more interacting proteins, which means: if we fix

one protein (or pick one up), the interacting partners will also be attached to the protein

owing to the affinity (either direct or indirect) with the protein. The method is called

co-immunoprecipitation if some antibodies are chosen to pick up proteins. The method

is called co-purification or affinity purification if some proteins are used as baits. It is

called column chromatography if a bait protein is immobilized to a column (Phizicky and

Fields, 1995), as all interacting (directly or indirectly) partners will also been attached in

the column. There are other affinity methods such as affinity precipitation, with similar

principles. Another large category of biological methods are based on genetical linkage

between interacting proteins, for instance, synthetic lethal screening (Bender and Pringle,

1991). In such methods, mutations are exerted on individual proteins or pairs of pro-

teins, and then, the changes of phenotype (functions) are monitored to determine the

interactions of the protein pairs.
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Protein-protein interaction can also be revealed by biochemical methods. For exam-

ple, cross-linking method (Muller et al., 2001; Vasilescu et al., 2004) links some special

atomic groups of proteins through cross-linking agents. If a protein interacts with other

proteins, the cross-linked sites of the protein may be changed and the interactions can

be inferred through the changed cross-linked sites. Obviously, the cross-linking method

is very specific and complicated.

Moreover, protein-protein interactions can be detected by biophysical methods, based

on mass or electronic properties of protein segments. Examples include mass spectrome-

try (Figeys et al., 2001), native gel, gel overlay and gradient centrifugation.

In summary, low-throughput methods are accurate and suitable to validate high-

throughput protein-protein interactions. However, they are usually highly specific (only

applicable to a small set of proteins), expensive, laborious, and inefficient.

High-throughput methods

To tackle the inefficiency in low-throughput methods, numerous high-throughput methods

have emerged in recent years. Among the methods, some detect physical interactions such

as yeast two-hybrid and phage display method, while others only infer functional linkages

(indirect interactions) among proteins such as affinity purification, protein microarray and

gene expressions.

1. Yeast Two-hybrid

Yeast two-hybrid is a widely applied high-throughput method first described by

Fields and Song (1989). In the method, two target proteins are fused separately with

two domains of a transcription factor (a DNA-binding domain and a transactivation

domain). If the two proteins interact with each other, the two domains will reunify

as a whole transcription factor to transcribe a report gene. The expression of the

report is then revealed visually. The method was applied to yeast genome separately
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Figure 2.1: The basic principle of phage display, figure revised from (Hoogenboom and

Chames, 2000).

by Uetz et al. (2000) and Ito et al. (2001). Besides those, it was applied in other

genomes such as C.elegans (Walhout et al., 2000) and H. pylori (Rain et al., 2001).

Although yeast two-hybrid methods are very efficient, they are inaccurate as can

be seen from the low-overlap between results from multiple experiments on the

same genome (von Mering et al., 2002). The low-overlap may be caused by the

transcription factor, which produced lots of false positive.

2. Phage Display

Phage display was first proposed by Smith (1985a) with a phage named M13, where

the phage or bacteriophage is a virus being able to infect and lyse certain bacteria.

The basic characteristic of a phage is the non-exclusion of external DNAs. When

an external DNA sequence is fused into the single strand DNA of the phage, the

phage will not exclude the DNA. Instead, it will express the external DNA into a

corresponding peptide or protein at the surface of the phage. The phenomenon is

often called phage display, as demonstrated in Figure 2.1. Through the phage dis-

play, a physical linkage is constructed between genetic codes and their corresponding

functions. The linkage is able to reproduce very fast via the host (bacteria) cellular

machinery which is infected by the phage.

Unlike yeast two-hybrid, which assays interactions between two proteins directly,

phage display method determines protein interactions in a more indirect way. The
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method immobilizes a full-length protein into a solid surface as a bait protein and

mixes it with a library consisting of phages which are fused with short sequences of

other proteins. If some short sequences bind to the bait protein, the corresponding

phages will be attached in the solid surface and the sequences will be identified

by sequencing techniques. The proteins containing the bound short sequences are

thought to bind the bait protein (Sidhu et al., 2003). The protein interactions are

thus determined.

For example, Tong et al. (2002) utilized the phage display method to predict in-

teractions between proteins containing SH3-domains and proteins containing SH3-

binding motifs. Most predicted interactions are confirmed by the yeast two-hybrid

method.

As an indirect method, the phage display method can never guarantee the accuracy

of the determination. The reason is the structure of an individual short sequence

(peptide) may be quite different with that of the corresponding part in the whole

protein.

3. Mass Spectrometry

Mass spectrometry is a technique to separate particles with respect to distinct

masses. This technique can be used to identify protein sequences. On sequence

identification, a protein is first cleaved into peptides with limited types of masses,

then, the whole sequence is recovered according to the composition of the mass spec-

trum. MALDI (Stults, 1995) is a popular method for protein cleaving and sequence

recovering.

Mass spectrometry can be applied to identify protein interactions, through the se-

quence identification in protein complexes (Figeys et al., 2001). Although mass

spectrometry can be applied independently to determine protein interactions, it is

often combined with other methods such as cross-linking (Vasilescu et al., 2004) and

affinity purification, to improve the confidence of determination.

4. Affinity Purification

The basic principle of affinity purification has been depicted previously in low-
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throughput methods. Recently, it was combined with mass spectrometry techniques

to reach high-throughput scales. Two methods, namely TAP1 (Puig et al., 2001;

Gavin et al., 2002) and HMS-PCI 2 (Ho et al., 2002) can purify protein complexes

and identify the component proteins efficiently. Both methods work in proteome-

wide manners and they greatly improve the purification techniques.

Although TAP and HMS-PCI produce high-throughput interaction data, they often

assume full interactions among components in protein complexes. Therefore, the

interactions they determined are functional interactions rather than physical ones.

5. Protein Microarray

Protein microarray works similarly to DNA microarray (for in-vitro gene expres-

sions), but the underlying principle is similar to affinity purification. Protein mi-

croarray is a matrix with each cell spotted with a particular protein. Proteins

that interact (directly or indirectly) with the spotted protein will be congregated

into a complex and attached in the cell. The complex are then detected automat-

ically (MacBeath and Schreiber, 2000). The interactions produced by the method

are apparently indirect ones (functional interactions).

6. Gene Expressions

Gene expression methods infer protein interactions from the tremendous amount of

gene expression data produced by DNA microarrays . The underlying principle is:

since the interacting proteins are often involved in common functions or pathway,

they should be expressed together generally. Hereby, we can predict protein inter-

actions based on the correlated mRNA expressions. If two proteins are co-expressed

in most cases, they are likely to be interacting partners (Ge et al., 2001).

1tandem-affinity purification
2high-throughput mass spectrometric protein complex identification
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2.1.2 Computational Approaches

Although it is getting more sophisticated to determine protein interactions with experi-

mental methods, computational methods take important roles all along for their inherent

advantages. Historically, computational methods predicted many high-confidence inter-

actions before the emergence of high-throughput experimental methods. Currently, com-

putational methods not only work as necessary supplements for experimental methods,

but also work as validation methods to remove false positive interactions generated by

high-throughput experiments.

Computational methods can be categorized using different angles. One particular

angle based on methodologies is: genome-based methods, homology methods, machine

learning methods and simulation methods.

Genome-based methods

Genome-based methods compare a series of genomes and exploit underlying patterns

among them. The properties examined in the genomes include occurrences, locations and

similarities of genes/proteins. We elaborate four typical genome-based methods in the

following.

1. Gene order

The method assumes that the genes of interacting proteins should hold the same

order among a set of genomes, i.e., the gene neighborhood of interacting proteins

should be conserved (Dandekar et al., 1998). The assumption may be generally

true for prokaryotic species such as bacteria, due to the simple rules at the start of

evolution, but may not be true for eukaryotic species. Moreover, the predicted in-

teractions should be functional linkages in pathways/processes, rather than physical

interactions.
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2. Gene fusion

The method assumes two proteins in one genome are likely to interact if they have

been fused into two domains of a protein in another genome (Marcotte et al., 1999).

The reason may be the protein interaction is a favorite association and thus is

reused as a basic unit by evolution. That is, interactions among domains in the

same proteins may be originated from the interactions among different proteins

containing these domains in the ancient era. The assumption is reasonable for both

prokaryotic and eukaryotic species, but the coverage of the method is a concern.

3. Phylogenetic profiles

The method assumes two proteins are likely to interact if their genes are either co-

presence or co-absence in all genomes. The reason is: since interacting proteins often

function together, they should appear or disappear simultaneously. The method can

be regarded as an extension to the gene order method where the location of genes

is extended to the co-occurrence of genes. After extension, the detection of such

phylogenetic profiles can be transformed to a clustering problem (Pellegrini et al.,

1999). Obviously, the interactions predicted by the method are functional linkage

rather than physical interactions since indirect interactions in pathways are also

present simultaneously.

4. Phylogenetic trees

The method assumes that two proteins are likely to interact if they are co-mutated

in all genomes, where the co-mutation means the mutation of one protein will trigger

the mutation of the other protein in the same genome to maintain the interactions.

This method can be regarded as a non-trivial extension to the phylogentic profile

method, where the co-presence requirement in the phylogentic profile method is

replaced by the co-mutation between protein sequences or protein regions (Pazos

et al., 1997). After extension, the co-mutation of two proteins can be obtained

through the correlation analysis between the similarity matrices of the two proteins

among all genomes (Pazos and Valencia, 2001).
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By analyzing the entire genome of different species, protein interactions (usually functional

linkages) can be predicted with high accuracy. However, protein interactions vary from

species to species, therefore, the genome-based methods are essentially weak to handle

the variations. Also, the low coverage of these methods is another concern.

Homologous methods

Unlike genome-based methods, which are essentially slow due to the expensive search of

multiple genomes, homologous methods infer protein interactions from homologous pro-

teins with known interaction behaviors. Hence, they will be more efficient. The principle

is: if a homologous protein of a target protein interacts with other proteins, the target

protein may also interact with these other proteins. The homology in the methods may be

estimated by sequences or structure similarities. With sequence similarities, they may be

evaluated globally between proteins as done interolog methods (Matthews et al., 2001), or

evaluated between some local regions as these regions dominate the protein interactions,

for example, domains, which are widely believed to conserve interaction behaviors (Sprin-

zak and Margalit, 2001; Wojcik and Schachter, 2001; Deng et al., 2002; Ng et al., 2003)

(we will review more details later in the chapter). In particular, we believe binding motifs

are the most specific regions to dominate protein interactions compared with domains.

Therefore, we discuss them and their interactions carefully in the dissertation.

Besides sequence similarities to infer protein interactions, structure similarities are

more suitable to infer protein interactions, as done in multimeric threading (Lu et al.,

2002). The rationale is that many similar interactions only hold among proteins with

similar structures but with quite divergent sequences.

Machine learning methods

Unlike genome-based methods and homology which either work on whole genomes or

homologous proteins, machine learning methods predict protein interactions by the pat-
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terns learned from known interaction data. Various machining learning techniques have

been applied so far. An association rule approach was presented to learn the frequent

co-occurred feature sets in interacting protein pairs (Oyama et al., 2002). A number

of support vector machine (SVM) methods (Joel and David, 2001) have been applied

to learn important segment pairs, to distinguish positive interaction pairs from negative

ones, provided that negative segments (peptides) or location of interaction sites are avail-

able. Neural networks have also been applied to the problem if time constraint is not

a concern but accuracy is highly required (Fariselli et al., 2002). Note that both SVM

and neural networks belong to classification methods, therefore, the reliability of negative

samples is essential. Besides these methods, there are other approaches such as Bayesian

networks (Jansen et al., 2003).

For all machine learning methods, the selection of features is crucial. The selected

features may be the whole sequences, sequence segments or structure patches. Other

biological information such as locations and functions may be utilized as features. On

the other hand, multiple interaction data sources can be utilized simultaneously, such as

binary interactions, protein complexes, individual structures and sequences.

Recently, network-based methods have been emerged in both data mining and bioin-

formatics communities. They search for the conserved or frequent patterns (called motifs)

hidden in the structures of either single genome-wide protein interaction network (Chen

et al., 2006) or a series of related protein interaction networks (Huan et al., 2004b). Their

discovered network motifs (Milo et al., 2002) or frequent subgraphs (Huan et al., 2004b)

are able to predict novel protein interactions (Albert and Albert, 2004) or validate protein

interactions generated via highly erroneous high-throughput experimental methods (Huan

et al., 2004b).

Simulation methods

Without checking historical data, protein interactions can be predicted from structures

of individual proteins by modeling and simulation methods, provided the structural data
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is available. The approach is referred as protein-protein docking (Smith and Sternberg,

2002), with more details depicted in the next section.

2.1.3 Characteristics of Protein-protein Interaction Data

From the review of the experimental and computational methods to determine protein

interactions, we can see that the essential difference between the protein interaction data

and other traditional data, especially typical machine learning data. These character-

istics of the protein interaction data are summarized as follows, which deserve careful

consideration.

• Negative data unavailable

Unlike other classification data, protein interaction experiments generally do not

specify negative data, because protein interactions are determined by circumstances,

which means non-interaction in one circumstance could not be extrapolated to the

nonexistence of interactions in another circumstance. This characteristic makes

some machine learning methods ineffective or even infeasible.

• Inaccurate

Even for experimental methods, especially for high-throughput methods, the pro-

duced interactions data are not guaranteed to be accurate. An example was pub-

lished in the two-hybrid method (Uetz et al., 2000; Ito et al., 2001), where only a few

overlaps exist between experiments with the same method on the same proteome.

This increases the difficulties for data mining methods such as classifications where

the quality of the data is crucial.

• Functional and physical interactions

The interaction data produced may be physical, functional or genetic. Consequently,

interaction properties should be well considered before analysis.
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• Large scale

Protein interaction data are often enormous, from thousands to millions. The large

scale data bring new challenges to data mining techniques which usually work on

small scale dataset especially on a small number of dimensions, compared with

protein interaction data.

• Information in multiple levels

Protein interaction data has multiple levels, including binary protein interaction

pairs, protein complexes without interaction details, or protein complexes with co-

ordinates and physicochemical properties. Besides, the associated information also

has multiple levels, such as primary sequences, structures, contained domains, lo-

cations and functions. All information may be related to interactions and may be

useful in the analysis.

2.2 Approaches to Determine Protein Interaction Sites

Protein interaction sites are short segments of resides which dominate protein-protein in-

teractions in the long stretches of protein sequences (Sheu et al., 2005). Interaction sites

are believed to consist of favorable structural scaffolds frequently reused by evolution (Ke-

skin et al., 2004), therefore, they are well conserved (Pazos et al., 1997; Keskin et al., 2005)

and reveal distinguishing characteristics such as accessibility distributions (Lo Conte et al.,

1999; Chakrabarti and Janin, 2002).

Protein interaction sites are believed to be regulated by complicated, weak and non-

covalent interactions such as Van Der Waals electrostatic forces and hydrophobic in-

teractions. The formation of interaction sites led to the bury of large protein surfaces

(1000-5000 Ȧ2) and the change of residue properties such as accessibility and hydropho-

bicity (Jones and Thornton, 1996).

To determine the complicated interaction sites, a handful of modern experimental

and computational methods from various fields have emerged. In this section, we review
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the major ones, focusing only on the composition of residues but ignoring the detailed

tertiary structures of the interaction sites.

2.2.1 Experimental Approaches

Recently, various techniques have been invented to determine interaction sites from multiple-

disciplines, such as biochemistry, biophysics and molecular biology. We describe each one

of them in the following.

Biochemical methods

Traditionally, biochemical methods were utilized to locate protein interaction sites. Mul-

tiple solvent crystal structure method (MSCS), a probe-based method, is an example. In

MSCS, the X-ray crystal structures of a target protein are solved in a variety of organic

solvents. Each type of solvent molecules simulates the side chain of a specific residue

and works as the probe for the corresponding interaction sites in the protein. The probe

distribution on the protein surface and the structures in different solvents provide the

clues to locate the interaction sites of the protein and to characterize the potential lig-

and types (Ringe, 1995; Mattos and Ringe, 1996). For instance, the method was applied

to analyze the interaction sites of elastase/inhibibitor complexes. Although the method

is effective in some cases, it needs to determine a series of crystallography structures,

which is essentially expensive. Furthermore, it can not guarantee the exact locations of

interaction sites in the absence of the interacting partners.

It is easy to see that MSCS depends on the differences of the structures upon dif-

ferent solvents, but the differences may not be large enough to be observed. To tackle

this problem, another method called chemical cross-linking relies directly on the complex

structures. It uses cross-linking reagents which build covalent links between some specific

reactive functional groups of proteins or protein complexes. The cross-linked complexes
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can be hydrolyzed by enzymes without breaking the interaction sites. Then, the inter-

action sites can be revealed comparatively from the mass spectrometric map (the mass

spectrum of hydrolyzed peptides) of the cross-linked complexes and that of the non-linked

complexes. For example, the method was applied to characterize the interaction sites of

Op18 and tubulin (Muller et al., 2001). It is easy to see that the method requires the

solubility and proteolysis of the target proteins and their complexes, which is not always

applicable.

X-ray crystallography

X-ray crystallography, based on x-ray diffraction, are suitable to measure atomic struc-

tures of particles due to the intense, monochromatic and short-waved (< 1nm) X-rays.

Recently, the technique has been widely used to solve the structures of protein complexes.

Protein interaction sites are consequently determined from the structures of protein com-

plex by examining the distance between inter-molecular residues (atoms).

Generally, x-ray crystallography contains four steps to solve the structures of protein

complexes.

Step 1: Purification of protein complexes Firstly, enough number of proteins are

formed and purified through DNA cloning and expression. Secondly, the purified

proteins are mixed and incubated to form target protein complexes. Finally, the

formed complexes are purified by removing individual proteins and other impurities.

Tandem affinity purification (TAP), as described before, is such a technique to purify

protein complexes efficiently (Rigaut et al., 1999; Puig et al., 2001).

Step 2: Crystallization of protein complexes In this step, crystals are formed from

high concentration of purified protein complexes after the solution is volatilized.

This step is very slow, varying from a couple of days to several months.
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Step 3: Measurements of protein complexes and collection of data The crystals

of protein complexes are cooled and mounted into the center of a diffractometer. A

transfer robot will locate the crystals at liquid nitrogen temperatures. A sensitive

CCD (charged coupled device) system is used to detect the scattered beams by the

crystals. The detected raw data is collected finally, which is called a X-ray spectrum.

Step 4: Analysis of data The X-ray spectrum is analyzed to get the model structure

of a protein complex. The constraints among atoms in the protein complex are

generated and solved with the help of corresponding sequence information. The

structure of the complex will be finalized with energy minimization refinement.

From above, we can see that the basic steps of protein complex determination are

similar to those of individual proteins except the purification step. However, the small

number of protein complexes having solved is much less than that of individual proteins

due to failures in the purification and crystallization. The failures are caused by the

dynamics of protein complexes especially in transient complexes and membrane-protein

complexes. By May 30, 2006, less than 1350 protein complexes have been deposited in

PDB, with a proportion < 5% out of 31223 solved structures by the X-ray crystallog-

raphy. However, comparing to other techniques to determine protein complexes, X-ray

crystallography is more productive due to the capability to tackle large molecules and the

possibility to automatize.

For example, a domain interaction was solved by X-ray crystallography, which exists

between two Cε3 domains in the Fc fragments of antibody lgE and the D1/D2 domain in

the α chain of its receptor FcεRI (Garman et al., 2000).

NMR

Nuclear magnetic resonance (NMR) is also able to solve the structures of particles through

the nuclear dynamics. This technique has been used to solve the structures of protein
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Figure 2.2: Hydrogen-deuterium exchange rate of antigen CYT C in free state and in

bound state with antibody E8 MAB, figure from (Paterson et al., 1990).

complexes by capturing the changes of parameters in NMR spectra cased by conformation

changes during the protein complex association. Moreover, NMR can determine protein

interaction sites before determining the whole structures of protein complexes. We depict

three typical NMR methods here.

1. Hydrogen-deuterium exchange

The method is based on the possible slowdown of hydrogen-deuterium exchange

rate in protein interaction sites when proteins are associated with other proteins in

isotope solvent D2O. If the rate changes are large enough to be detected by 2D NMR

spectra (Hoofnagle et al., 2003; Lanman and Prevelige, 2004), the corresponding

interaction sites can be postulated. The method was initially applied in 1990 to

study interaction sites between protein cytochrome c (CYT c, a horse antigen) and

protein E8 MAB (the antibody of CYT c) (Paterson et al., 1990). Figure 2.2 shows

the exchange rate of CYT C before and after bound to E8 MAB in D2O.

The method is very slow, taking more than 11 days in above example. It is only

applicable to kinetically stable complexes with observable difference on hydrogen-
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Figure 2.3: Chemical shifts in (15N ,1H)-HSQC spectra of proteinase avian ovomucoid

third domain when bound with bovine chymotrypsin Aα, figure from (Song and Markley,

2001).

deuterium exchange rates. Furthermore, the interaction sites may not be accurate

and may be different with those revealed by X-ray crystallography.

2. Chemical shift perturbation

The method is based on the conformation changes of side chains or backbones in pro-

tein association. The confirm changes cause parameter changes in the corresponding

NMR spectrum. The residues which have obvious parameter changes (called chem-

ical shifts) in the spectrum before and after associated with interacting partners are

determined as interaction sites (see Figure 2.3 for example). The method provides

a rapid approach to identify interaction residues without determining the three-

dimensional structure of the protein complex, provided sequences and the residue

assignments in the 2D spectra of the target proteins are known before hand. The

method has been applied in a handful of works (Swanson et al., 1995; McKay et al.,

1998; Song and Markley, 2001). However, its accuracy is still a problem owing to

the chemical shifts caused by uncertain factors (Takahashi et al., 2000).

3. Cross-saturation

The principle of the method is illustrated in Figure 2.4 (Nakanishi et al., 2002). The

target protein with interaction sites to be examined is uniformly labeled with 2H
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Figure 2.4: The principle of cross-saturation, figure from (Nakanishi et al., 2002).

and 15N and then is mixed with another unlabeled protein. The labeled (target)

protein should have lower proton density than the unlabeled protein. When a radio

frequency (RF) field irradiates non-selectively into the unlabeled protein, its pro-

tons will be saturated (from a lower energy level to a high energy level). Since the

proton density in the unlabeled protein is higher than that in the labeled protein,

the saturation will transfer to the labeled protein by cross-relaxation. If the pro-

ton density in the labeled protein is low enough, the cross-saturation will only be

limited at the interaction sites between the two proteins. Thus, the cross-saturated

interaction sites can be revealed by 2D HSQC spectra.

This method is recently applied to analyze the interaction sites between B domain

of protein A (FB) and Fc fragment of immunoglobubin(lg) G. The determined inter-

action sites match well with those revealed by X-ray crystallography. This method

is suitable to tackle protein complexes with large interface (Mr > 50, 000) and large

molecular weight (> 50kDa) (Takahashi et al., 2000; Shimada, 2005), but replies

on the unbalanced proton densities between the two interacting proteins. The in-

teraction sites of proteins with higher proton density can not be measured by this

method.

Despite of various NMR methods, the solved interaction sites are still very limited so

far (Wand and Englander, 1996; Nietlispach et al., 2004). The reason may be that NMR
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techniques can only handle soluble protein complexes with small molecular weight, which

is a considerable limitation.

Phage display

Unlike X-ray crystallography and NMR, which locate interaction sites directly from inter-

acting protein pairs (or complexes), bacteriophage (phage) display identifies interaction

sites in an indirect way. The basic principle of phage display to identify interaction sites

is the same as that to determine protein interactions, which was addressed previously in

Section 2.1.1.

With phage display, a protein is first immobilized into a column and the candidate

peptides (either from another protein or from a library) are screened. The binding pep-

tides, which passed the screening, correspond to the interaction sites or the variants. The

method has been applied to study affinity antibodies of antigens (Kretzschmar and von

Ruden, 2002), inhibitors or substrates of enzymes (Fernandez-Gacio et al., 2003), epitopes

(the energy contributors) or active sites (the functionally crucial sites) of interaction sites.

As mentioned, phage display can not locate interaction sites accurately from the in-

teracting proteins, because the mimic peptides may exhibit quite different structures with

the corresponding parts in the proteins. But phage display can tackle large interaction

sites in both extracellular and intracellular interactions, which can not be achieved eas-

ily by X-ray crystallography and NMR. Moreover, phage display can pinpoint the most

crucial residues and discover more affinity mutants for existing interaction sites.

Mutagenesis

Natural mutagenesis phenomena are the mutation of residues in proteins. Although they

were discovered some decades ago, they are rare and are difficult to control. Alanine

scanning mutagenesis was developed later (Cunningham and Wells, 1989), which replaces
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the residues with alanine one by one for the generality of alanine. The replaced residues

which cause significant reduction of binding affinity correspond to the interaction sites

for the irreplaceability (Cunningham and Wells, 1989). Another technique is called site-

directed mutagenesis, invented in 1985 (Smith, 1985b), which replaces a residue with

any other residues rather than only alanine. Site-directed mutagenesis not only identifies

interaction sites, but also points out the substitutions.

Application examples of mutagenesis include studying the active sites of enzymes (Wag-

ner and Benkovic, 1990) and analyzing the dynamics of interaction sites (Clemmons,

2001). Mutagenesis can also be combined with phage display or X-ray crystallography to

get a comprehensive view about interaction sites (Sidhu et al., 2003).

Summary of experimental approaches

Experiment methods have been developed separately but they function complementarily,

rather than competitively (Brunger, 1997). X-ray crystallography needs crystallizable

protein complexes with adequate molecular sizes, while NMR prefers soluble complexes

with small molecular weights [up to 50 kDa (Shimada, 2005)]. X-ray crystallography

provides detailed tertiary structures but NMR provides more information about molecular

dynamics. Similarly, phage display and mutagenesis often work together to identify the

affinity variants of interaction sites which are determined by X-ray crystallography or

NMR.

Although experimental methods are quite different from each other from technical

perspectives, they share some common issues. Most methods require highly concen-

trated and purified proteins or protein complexes (Kellogg DR, 2002), and only a few

of them work with impurities. Most methods need identification techniques such as label-

ing atoms (Kainosho, 1997). Finally, most methods involve post-analysis to the limited

data obtained from the experiments.
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In summary, the current experimental methods are still preliminary. Less than 2000

types of interaction sites are determined so far, with a proportion less than ∼ 20% out

of the total estimated ten thousand interaction types (Aloy and Russell, 2004). It would

take more than 20 years to acquire a full representative set according to the present rate

of experimental determination techniques (Dziembowski and Seraphin, 2004).

2.2.2 Computational Approaches

Since current experimental techniques to determine interaction sites are in low-throughput

manner, expensive and inefficient (thousand US dollars and several months per site), it

is valuable to predict interaction sites or protein complex structures using computational

methods. The predicted interaction sites can narrow down the search space for the ex-

pensive experimental methods, or work as putative interaction sites in applications such

as the docking-based drug design.

Taxonomy of computational methods

Computational methods can be categorized using different angles. By the data source they

depended on, computational methods can be categorized into complex-based, structure-

based, sequence-based and combined methods. The dependent data may be experimental

ones, or predicted ones, especially for structure data. More specifically, complex-based

methods mainly work on existing experimental protein complex data. Structure-based

methods work on individual protein structure data, both for experimental ones and pre-

dicted ones, as done in protein-protein docking (Halperin et al., 2002). Sequence-based

methods work only on high accumulated non-structure data such as protein binary in-

teraction data (Uetz et al., 2000; Ito et al., 2001) and their associated sequence data,

generated by high-throughput techniques. Combined methods work on multiple data

sources simultaneously, including our method based on the fixed point model (introduced

in Chapter 3 and Chapter 4).
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By the methodologies they used, computational methods can be roughly categorized

into simulation methods and knowledge-based methods. Simulation methods simulate or

model the protein-protein interactions and their interaction sites from biological, biochem-

ical or biophysical perspectives, usually only taking individual proteins into consideration,

as done by protein-protein docking. Knowledge-based methods learn from large set of his-

toric interaction data and induce rules for their interaction sites. They can be further

divided into classification methods and conservation methods, based on the requirements

of negative data. Classification methods search the discriminative features of interaction

sites such as linear or spatial characteristics from both positive and negative data. Since

negative data are not always credible and available, conservation methods search for con-

served patterns only from a set of related proteins or interactions, as done by homologous

methods and the methods in this dissertation. In the following description, we focus on

this categorization and if necessary, we also specify the data sources they mainly used.

Simulation methods: protein-protein docking

Docking is a typical simulation method, which predicts complex structures based on indi-

vidual structures. Traditional docking was developed some decades ago and contributed

to the drug industries greatly, through searching for small molecule-like compounds as

drugs (Halperin et al., 2002). Protein-protein docking was proposed in 1978 (Wodak and

Janin, 1978), to face the challenge of large and flat interfaces (from 800 to 5000 Ȧ2)

among proteins (Peters et al., 1996). The techniques were ignored for some time until

the launch of protein-protein docking benchmark databases (Chen et al., 2003) and crit-

ical assessment of predicted interactions (CAPRI) (Janin, 2001). Benchmark databases

consist of representatives of published complexes (Chen et al., 2003). Current version

(2.0) includes 72 unbound-unbound complexes and their component proteins (Mintseris

et al., 2005). CAPRI is a blind test, in which the target complexes are unpublished

and used to test the quality of predictions (Janin et al., 2003; Mendez et al., 2003). At

least 5 rounds have been undertaken and significant progress has been made according

to the report by Mendez et al. (2005). The report shows enzyme-inhibitor complexes
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and antigen-antibody complexes are predictable but transient complexes involved in sig-

nal transduction are extremely difficult to handle owing to the substantial conformation

change during association (Vajda and Camacho, 2004; Vajda, 2005).

Protein-protein docking simulates the confirmation change such as side-chain and

backbone movement (Ehrlich et al., 2005) in the contact surfaces (Connolly, 1983) when

proteins are associated into complexes. Most docking methods assume the final conforma-

tion change stops at the point of minimal free energy. Thus, the definition of free energy

is crucial for the docking methods. Shape complementarity is the major factor or even

the only factor (Peters et al., 1996) in the energy function due to the ubiquitous existence

in protein interfaces. Electrostatic complementarity is another contributor to free energy,

with less importance compared with shape complementarity (Heifetz et al., 2002). Bio-

chemical compatibility such as hydrophobic complementarity is one more factor in free

energy, as it is energetically favorable in binding (Berchanski et al., 2004). Note that these

factors are often combined in free energy functions, such as the geometric-electrostatic

combined factor in SCHem (Fernandez-Recio et al., 2002), the geometric-hydrophobic fac-

tor or the geometric-electrostatic-hydrophobic factor (Gabb et al., 1997; Chen and Weng,

2002) in ClusPro (Comeau et al., 2004).

The search of global minimal free energy for protein-protein docking is extremely

challenging owing to the huge search space caused by various flexibility. The search is

roughly categorized into four steps. In the first step, one protein is fixed and the other

protein is superimposed into the fixed protein to find the best docking position, evaluated

in each candidate position through translation and rotation. Most algorithms apply a

grid-body strategy at the step, without scaling and distortion of any part of the protein.

There are a couple of strategies to reduce the huge search space in this step, includ-

ing Monte Carlo Minimization sampling (MCM) as in RosettaDock (Schueler-Furman

et al., 2005), Fast Fourier transformation (FFT) (Katchalski-Katzir et al., 1992) as in

3DDock (Carter et al., 2005) and ClusPro (Comeau et al., 2004), Pseudo-Brownian dy-

namics as in ICM-DISCO (Fernandez-Recio et al., 2003), molecular dynamics as in HAD-

DOCK (Dominguez et al., 2003) and reduced model as in ATTACK (Zacharias, 2005). In
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the second step, the flexibility of side chains (such as torsion angles) is considered, as done

in 3DDOCK (Carter et al., 2005), ATTRACK (Zacharias, 2005), ClusPro (Comeau et al.,

2004), ICM-DISCO (Fernandez-Recio et al., 2003) and RosettaDock (Schueler-Furman

et al., 2005). A few of algorithms also consider backbone flexibility using techniques

such as principal component analysis as done in HADDOCK (Dominguez et al., 2003),

ZDOCK+RDOCK (Wiehe et al., 2005), PatchDock (Schneidman-Duhovny et al., 2005)

and ED-Hex (Mustard and Ritchie, 2005). Consequently, a series of solutions with differ-

ent local minimum are produced after the first two steps. These solutions are clustered

in the third step and representatives are selected. In the fourth step, re-evaluation is

conducted, to improve the ranks for nearly native solutions, for the mismatch between

highly ranked solutions and native solutions owing to the limitation of score functions

and search algorithms, as done in Berchanski et al. (2004), ICM-DISCO (Fernandez-

Recio et al., 2003) and Schem (Fernandez-Recio et al., 2002). Note that the search of

minimal free energies is influenced by the initial states, so unbound proteins are more

difficult to handle compared with bound proteins. Also note that in all steps, biological

information can be merged to aid the searching, such as binding sites (Carter et al., 2005),

mutagenesis data and chemical shift perturbation data (Dominguez et al., 2003).

Return back to the interaction site problem, without the guidance of binding sites in

the docking, the top-ranked interfaces in the final step are the predicted interaction sites;

with the guidance of binding sites, the following steps may be dominated by the binding

sites, thus the docking algorithms may not contribute remarkably to the prediction of

interaction sites.

Although protein-protein docking is the dominant approach to predict protein inter-

action sites, the number of current experimentally determined structures are much less

than that of sequences. Even using predicted structures, 40% proteins could not be mod-

eled for putative structures (Aloy et al., 2005). This leaves a critical gap in the docking

approach.
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Classification methods

Classification methods assume that the features (sequence or spatial patches) in proteins

distinguish positive protein interactions from negative protein interactions. Therefore,

they correspond to protein interaction sites. The assumption holds generally but not

always. The data sources used in classifications span protein sequences, structures and

complexes.

A crucial issue in classification is the encoding of features. There are mainly two

encoding methods. One encodes continuous residues with their associated physicochemical

properties in the primary sequences (Joel and David, 2001; Ofran and Rost, 2003; Yan

et al., 2004). The other encodes a central residue and several spatially nearest neighbors,

often named patches (Jones and Thornton, 1997; Zhou and Shan, 2001; Fariselli et al.,

2002). The latter encoding is more accurate because structures are more important for

interaction sites. Besides, the encoding of class labels in classification is another issue. It

is trivial to generate class labels for binary interactions, but it is non-trivial for protein

complexes. Usually, one property of the central residue in a patch is encoded as the class

label in protein complexes.

Support vector machine (SVM) (Joel and David, 2001) and neural network are two

traditional classification methods to predict interaction sites (Zhou and Shan, 2001;

Fariselli et al., 2002; Ofran and Rost, 2003). Recently, a two-stage method was pro-

posed. During the learning phase, both SVM and Bayesian network produce a model

for the encoded continuous residues. While prediction, SVM model is first applied to

predict a value, then Bayesian model is applied to predict the final value based on the

predicted values in SVM model, exploiting the fact that interfacial residues tend to form

clusters (Yan et al., 2004).

Although classification methods have many advantages, such as the suitability to

handle transient complexes which is tough in docking (Ofran and Rost, 2003), they have

several disadvantages. The first disadvantage is the unavailability and low quality of neg-

ative data. The second disadvantage is that many algorithms apply fixed-length windows
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to fit the basic requirement in classification, which conflicts the fact that many interaction

sites have variable lengths. The third disadvantage is the incomprehensibility owing to

the complicated encoding (Joel and David, 2001). The final disadvantage is the errors

caused by different bound states in the training and the prediction.

Conservation methods

Conservation methods assume interaction site are highly conserved (frequently occurred)

in proteomic data, including interface data, homologous protein data and protein in-

teraction data. Thus, the patterns of interaction sites are quite different from random

expectation and can be revealed even in the absence of negative proteomic data.

1. Analyzing the conserved patterns at protein interfaces

Interaction sites can be predicted by analyzing the characteristics such as residue

conservation levels and hydrophobicity distribution in existing protein interfaces.

Keskin et al. (2004) clustered the existing experimentally determined complexes

and found many conserved patterns at protein interfaces, such as distribution rules

of different conservation levels in the hot spot residues (the energy contributed

residues in interaction sites) Keskin et al. (2005). Ma et al. (2003) also found

similar rules and claimed that the hot spots can distinguish interfacial residues

from other surface residues by their structural conservation. As the characteristics

of hydrophobicity distribution in primary sequences, Gallet et al. (2000) analyzed

the existing protein complexes and found them could predict interaction sites.

Although these methods are reliable, the current protein complexes are very lim-

ited. Therefore, we should use other types of proteomic data which are abundantly

available, such as sequence data and binary interaction data.

2. Searching for motifs in homologous proteins

Homologous proteins share a common ancestor in the evolution process. They are



2.2. APPROACHES TO DETERMINE PROTEIN INTERACTION SITES 43

likely to inherit some important properties from the common ancestor such as fold-

ing and binding mechanisms. On the contrary, given a group of homologous proteins

[often obtained from biology evidences or estimated by sequence similarity (> 30%)],

the inherited properties can be recovered by searching the local conserved patterns

(called motifs) from the homologous proteins, which is often referred as motif dis-

covery.

Before searching for motifs, the prior knowledge within the homologous proteins

should be aware. There are three cases generally. In the first case, the locations

of motifs are known, but the detailed patterns are unknown, such as the binding

peptides of SH3 domains produced by phage display (Tong et al., 2002). EMO-

TIF (Nevill-Manning et al., 1998) is efficient to handle this case. In the second case,

the rough locations of motifs are known, but the detailed positions and patterns are

unknown, such as proteins containing a common domain. In the last case, no prior

knowledge except homology is known in the proteins.

Besides, the representations of motifs also influence the motif discovery. They

may vary from deterministic patterns to statistical patterns, including consensus

sequences in regular expressions, gapped alignments, blocks/weight matrices, tem-

plates/profiles, Bayesian networks and even HMM models (Brazma et al., 1998).

Motif discovery is a NP-hard problem, so the search methods are heuristic ones.

Most methods work on primary sequences and they can be roughly categorized into

pattern-driven, sequence-driven and combined methods. Pattern-driven methods

enumerate and test all possible motifs with a special format (often in pre-set ranges)

and output the ones with enough occurrences. For instance, MOTIF (Smith et al.,

1990) searches all frequent motifs with the format a1 − x(d1) − a2 − x(d2) − a3,

where a1, a2, a3 are residues on three fixed positions and d1 and d2 are constant

spacings (under pre-set ranges) between them; Pratt (Jonassen et al., 1995) searches

regular patterns with ambiguous positions and flexible spacings. Sequence-driven

methods restrict the candidate patterns to have at least some occurrences in the

group of sequences. For example, CULSTAL (Higgins and Sharp, 1988) searches
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multiple sequence alignments from a phylogenetic tree built from pairwise sequence

comparisons and hierarchical clustering. Combined methods integrate the strengths

of pattern-driven and sequence-driven methods. For example, PROTOMAT extends

and merges motifs found by MOTIF to form longer motifs, evaluating the extended

ones by their corresponding occurrences, namely, blocks (Henikoff and Heinikoff,

1991; Jonassen, 1997); TEIRESIAS merges motifs with common sub-motifs and

connects them with a graph based approach (Rigoutsos and Floratos, 1998). Lastly,

other approaches are also possible, for example, statistical models such as Hidden

Markov models (HMM) and expectation maximization (EM) models (Bailey and

Elkan, 1995).

Motifs can also be represented by the structure similarities (called structure mo-

tifs) searched from the homologous proteins/peptides (Leibowitz et al., 2001). The

problem of structural motif discovery is studied from various perspectives, such

as multiple structure alignment (Shatsky et al., 2004; Lupyan et al., 2005), struc-

ture classification (Hadley and Jones, 1999), frequent common substructure min-

ing (Leibowitz et al., 2001; Huan et al., 2004a; Yan et al., 2005), or spatial sequence

search (Jonassen et al., 2001), stimulated by the rapid growth of determined struc-

tures.

Motif discovery generally identifies only single motifs without specifying their inter-

acting patterns. To study the impacts in interaction sites, we can randomly pair

them and evaluate their correlation in a protein interaction dataset, which is done

by Wang et al. (2005) with an expectation maximization (EM) method. However,

neither sequence similarity search nor structure similarity search can guarantee the

discovered motifs are binding motifs at interaction sites, because binding and fold-

ing are often interrelated and they could not be distinguished only from homologous

proteins (Kumar et al., 2000). The discovered motifs are more likely to be folding

motifs rather than binding motifs because homologous proteins share more folding

regions than bindings regions. To identify the binding motifs, protein interaction

information should be taken into consideration in the early stage of learning.
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3. Inferring domain-domain interacting pairs

Protein interaction sites are very related to a biological concept known as domains,

which are well conserved regions in homologous proteins and believed to involve

many biological processes and functions. Many interaction sites completely reside

in a single domain. Therefore, inferring domain-domain interactions from protein

interactions have been widely studied in recent years, especially those between Pfam

domains (Sonnhammer et al., 1997).

We glimpse at some well-known works in this area. Experimentally, iPfam (Finn

et al., 2005) and 3DID (Stein et al., 2005) collect credible domain-domain interacting

pairs from structural database PDB. In particular, 3DID also covers domain pairs

within proteins, not limited to those between proteins. Computationally, Sprinzak

and Margalit (2001) extracted all domain pairs over-represented (having much larger

occurrence than expected) in protein interaction data and termed them as correlated

sequence-signatures initially; Wojcik and Schachter (2001) generated interacting do-

main pairs from protein cluster pairs with enough interactions, where the protein

clusters are formed by proteins with enough sequence similarities and common in-

teracting partners; Deng et al. (2002) used maximum-likelihood to infer interacting

domain pairs from a protein interaction dataset, by modeling domain pairs as ran-

dom variables and protein interactions as events; Ng et al. (2003) inferred domain

pairs with enough integrated scores, integrating evidences from multiple interaction

data.

Note that domains are usually very lengthy, in which most regions are related to

folding rather than binding. Therefore, interaction sites are only a crucial part of

domains. On the contrary, some interaction sites may not occur in any domain.

Therefore, many interaction sites can not be revealed through the study of domain-

domain interactions.
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2.3 Summary

In this chapter, we first reviewed the major methods to produce protein-protein interaction

data, including experimental and computational ones. This part of review manifested the

characteristics of the protein-protein interaction data especially the low quality in high-

throughput data. The characteristics increase the difficulty to predict protein interaction

sites from protein-protein interaction data. We then reviewed major experimental meth-

ods to determine interaction sites from various disciplines, including biochemical methods

such as solvent probing method and cross-linking, biophysical methods such as X-ray crys-

tallography and multiple magnetic resonance (NMR), biological methods such as phage

display and mutagenesis. Although experimental methods cooperate complementarily,

they have only solved < 20% types of interaction sites due to their inefficiency and expen-

siveness. Thus, computational methods have a very crucial role. Protein-protein docking

is the dominant computational method but it is constrained by the limited amounts of

protein structures. Classification methods are traditional machine learning methods but

they lack of credible negative data. Conservation methods are unable to distinguish bind-

ing patterns from folding patterns. Overall, current computational methods are far from

perfect. Therefore, it is valuable to develop novel computational methods in the near

future to improve the coverage, specificity and accuracy. Since protein interactions are

essentially related to interaction sites and the data are more and more widely available,

we aim to predict protein interaction sites from protein-protein interaction data. The

proposed methods will be explained in the remainder of the dissertation.
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Chapter 3

Using Fixed Points to Model

Binding Motif Pairs

3.1 Introduction

As discussed in previous chapters, it is appropriate to represent protein interaction sites

as binding motif pairs which consist of two traditional protein motifs rather than only

individual binding motifs. To reveal binding motif pairs at the large quantity of protein

interaction sites, we should make full use of large amounts of protein interaction data. For

this purpose, we propose a novel approach in this chapter. The motivation of our approach

comes from the study of correlated mutation (or co-evolution) in the evolution of protein

interactions (Pazos and Valencia, 2001). The co-evolution means that the mutations at

interaction sites in a interacting protein pair are interactively happening: if a residue

change incurred in one protein disrupts the interaction with its partner, some compen-

satory residue changes will also occur in its interacting partner to sustain the interaction,

otherwise, the interaction will be eliminated. For instance, co-evolution has long been

observed in well-known interacting protein pairs like dockerins and cohesins (Pages et al.,

1997), as well as insulin and its receptors (Fryxell, 1996).



CHAPTER 3. USING FIXED POINTS TO MODEL BINDING MOTIF PAIRS 48

The correlated mutations in evolution imply a chain of motif pairs. We can assume

that the binding motif pairs (recently survived motif pairs) should occur more frequently

than those ancient motif pairs, and should be more frequent than those non-binding motif

pairs. Also, the binding motif pairs should be more stable than others. Otherwise, they

would be mutated further. These assumptions are very close to the mathematical notion

of fixed point theorems which describes stability generally.

The fixed point theorems can be briefly described as: Let f be a function and x

be a point in its domain, if f (x) = x, then x is called a fixed point for f . A famous

fixed point theorem in modern mathematics, proposed by L. Brouwer in 1911, says that

any continuous function f : B → B, where B is a closed ball in Rn, has at least one

fixed point (Mohamed and William, 2001). An easy example of fixed points is x = 1 for

f (x) = 2x−1. Hence, the idea of fixed points is to find conditions under which a function

possesses a point that maps into itself.

An interesting instantiation of this mathematical notion is in life science: The DNA

of a cell can be split into two parts, then, they grow, in two separate cells, to become

the same DNA as the original one after self-replicating. In this example, the x is the

DNA, and the f (x) is the laws of physics and chemistry applied to the DNA. Recently,

an important discovery for fixed points was made by Meng et al. (2004) at protein type

level. The discovery is on genomic sequences of a gene family. This family of genes is

called C2H2 Zinc-Finger genes, consisting of 226 members. A characteristic of this gene

family is the frequent presence of tandem repeats. An interesting problem about these

genes is whether they can be translated into the same type of protein before and after

a frameshift. Twelve of them were found to be translated into the same type of protein

after frameshifts. This is a fixed point phenomenon, where the x is the protein type and

the function f (x) is the frameshift.

From the description of fixed point theorems, we can see that they may be suitable

to model the chain of motif pairs in the evolution of an interaction site. More specifically,

a point in this model is a protein motif pair consisting of two traditional protein motifs
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and a fixed point is a binding motif pair (termed as a stable motif pair from now on). To

transform every motif pair to become a stable motif pair, we propose a transformation

function to model the evolution of motif pairs.

The remainder of the chapter is organized as follows: In Section 3.2, we give a for-

mal description of the problem, including the basic notations used in this chapter. In

Section 3.3, we introduce a function fD that is closely related to a sequence dataset D of

protein interactions. The function will be used to transform protein motif pairs such that

they can become stable ones. In Section 3.4, we prove and discuss the properties of fD(X),

including the convergence property and the forest-like decomposition of its domain. We

conclude this chapter in Section 3.5.

3.2 Problem Statement under the Fixed Point Model

3.2.1 Basic Notations

Since a protein is a chain of amino acids, it can be mathematically represented by a

string of the abbreviations of the 20 standard amino acids, allowing repetitions. We use

Σ to denote the alphabet set of the 20 standard amino acids. All the amino acids are

denoted by lower-case letters in fixed point model; but proteins and amino acid patterns

are denoted by capital letters with mathematical calligraphic fonts. A protein P is defined

as a sequence (a string) of amino acids. For example, P can be a1a2 · · · av, where ai ∈ Σ

for i = 1, · · · , v. This P is also called a v-length protein. A segment of a protein P is a

substring of P where amino acids are connected continuously.

An amino acid pattern, also called a protein motif, is defined as a sequence (a string)

of subsets of Σ. Hence, a motif M can be written in the form A1A2 · · · Ak, where Ai ⊆ Σ

for i = 1, · · · , k.
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The following is an example protein motif that was found to be biologically important

in signal transduction (Sparks et al., 1996; Kay et al., 2000). This protein motif is

{p}Σ{l}{p}Σ{kr} that binds to the SH3 domain of the protein CrkA. The length of this

motif is 6; the second position of this motif is the whole alphabet set, meaning “don’t

care what is matched”. It can also be written as {p} ∗ {l}{p} ∗ {kr} in a traditional way

by replacing Σ with the sign “*”.

Definition 3.1. Let a motif M be A1A2 · · · Ak, where at least one A is not ∅. M is

defined to be contained in a protein P = a1a2 · · · av if there exists a k-length segment of

P, denoted ai+1ai+2 · · · ai+k for some i, such that ai+j ∈ Aj for all Aj, 1 ≤ j ≤ k, that

are not ∅. If a motif is a sequence of only empty sets, we define that there is no protein

containing such a motif.

A motif M contained in a protein P is denoted by M ⊆ P, and the segment

ai+1ai+2 · · · ai+k is said to match the motif M.

Next, we give definitions related to interactions. A pair of interacting proteins P1 and

P2 is called a protein pair PPr. This pair is denoted by the set of the two proteins, that

is, PPr = {P1,P2}. A motif pair, denoted MPr, is a set of two motifs. One of the most

important definitions used in this chapter is about the inclusion relationship between a

motif pair and a protein pair.

Definition 3.2. Let MPr = {M1,M2} be a motif pair and PPr = {P1,P2} be a protein

pair. MPr is contained in PPr, denoted MPr ⊆ PPr, if (1) M1 ⊆ P1 and M2 ⊆ P2, or

(2) M1 ⊆ P2 and M2 ⊆ P1.

Let two proteins: Pl = eanftw, Pr = wefc, and three motifs: M1 = {ard}{nc},

M2 = {e}{f }, and M3 = {ard}∅{nc}. Then the protein Pl contains the motif M1, i.e.

M1 ⊆ Pl. This is because there exists a 2-length segment an in Pl such that a ∈ {ard}

and n ∈ {nc}. Similarly, M2 ⊆ Pr. Hence, the motif pair {M1,M2} is contained in the

protein pair {Pl,Pr}.
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However, the motif M3 = {ard}∅{nc} is not contained in any of the two proteins be-

cause there does not exist any 3-length segment in Pl or Pr that can match M3. Therefore,

motif pairs {M1,M3} or {M2,M3} cannot be contained in the protein pair {Pl,Pr}.

But, if M3 is changed to M′
3 = {erd}∅{nc}, then both Pl and Pr contain M′

3. Note that

the empty set ∅ in M3 or M′
3 has the same semantic meaning as that of Σ in this case

(See Definition 1).

We denote a sequence dataset D of n protein pairs by {PPri ={P i
1,P i

2}, i= 1, . . . , n},

where P i
1 and P i

2 have interactions.

Definition 3.3. The support of a motif pair MPr = {M1,M2} in a protein sequence

dataset D is defined as the number of protein pairs in D that contain MPr, denoted by

|{PPri| PPri ∈ D , MPr ⊆ PPri}|.

3.2.2 Problem Statement

Let D be a sequence dataset of interacting protein pairs, the problem studied in this

chapter is to design a function fD that is closely related to D, and then to discover stable

motif pairs that are fixed points with regard to fD.

The domain of the function fD is the set of all possible motif pairs. Let us first discuss

the possibilities of single motifs. Recall that a motif is a sequence of subsets of Σ, denoted

by A1A2 · · · Ak, where Ai ⊆ Σ for i = 1, · · · , k. Hence, if k = 1, then the set of all possible

motifs is the power set of Σ, denoted POW(Σ). Then, possibilities of k-length motifs

A1A2 · · · Ak can be represented by the following set union:⋃
{A1 · · · Ak | Ai ∈ POW(Σ) for i = 1, · · · , k}

Since motif pairs are pairs of motifs, the set of all possible motif pairs has a much

larger size than the domain of single motifs. We use M to denote all possibilities of motif

pairs.
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Therefore, in a formal way, the problem can be described as follows. Let D be a

sequence dataset of protein pairs, our objective is to design a function

fD : M → M,

and to find those stable motif pairs X ∈ M such that

fD(X) = X

by using an efficient algorithm.

3.3 Transformation Function of the Fixed Point Model

Given a motif pair MPr = {M1,M2}, our proposed fD involves three steps to transform

MPr. In the first step, it discovers a subset of D such that for every protein pair PPr in

this subset, PPr contains the given motif pair MPr. We denote this subset by

sMPr
D = {PPr | PPr ∈ D, MPr ⊆ PPr}. (3.1)

In the second step, fD moves to extract a segment pair from every protein pair in sMPr
D .

Let Y = {Pl,Pr} ∈ sMPr
D , then MPr ⊆ Y. Therefore, there must exist: (1) A segment in

Pl that matches M1 and a segment in Pr that matches M2, or (2) A segment in Pr that

matches M1 and a segment in Pl that matches M2. If the both cases are true, we choose

either of them. In each case, we denote the segment that matches M1 by segment1, and

the segment that matches M2 by segment2. Observe that M1 and segment1 have the

same length, and so, for M2 and segment2. Suppose there are u protein pairs in sMPr
D ,

then we can get u number of segment1 and u number of segment2. Let the length of

segment1 be w. Then, the u segment1 can be represented as the following matrix [aij]
a11 a12 · · · a1w

a21 a22 · · · a2w

. . .

au1 au2 · · · auw





3.3. TRANSFORMATION FUNCTION OF THE FIXED POINT MODEL 53

This matrix is denoted by alnM1
s . It is called the alignment of M1 with regard to

sMPr
D in the bioinformatics literature. Similarly, we can represent those u segment2 as

another matrix, denoted by alnM2
s .

In the third step, our fD moves to find a consensus pattern from the matrix alnM1
s

and a consensus pattern from the matrix alnM2
s . In the matrix alnM1

s , for every column

j, denoted by [aij], i = 1, · · · , u, we choose those aij, whose population in this column is

larger than a threshold, to form a set denoted by Aj. If none of these aij satisfies the

condition, we set this position as ∅. Then, the sequence A1A2 · · · Aw, a motif, is called

the consensus pattern of M1. This consensus pattern is denoted by M′
1. Similarly, we

can find the consensus pattern M′
2 for M2. Then {M′

1,M′
2} is a transformed motif pair

for MPr = {M1,M2} by fD. Therefore, we can write fD({M1,M2}) = {M′
1,M′

2}.

The threshold for the amino acids’ population in a column is important for the con-

sensus pattern discovery. In this chapter, we use 20 percent, a percentage value, as the

threshold. That is, if the occurrence rate of an amino acid at a column is less than 20

percent, then we drop it, not allowing it to get into the consensus pattern. Absolute

support numbers are also possible for the threshold, but we explain later why percentage

thresholds are better than absolute ones.

The discussion above assumes that sMPr
D is non-empty. To let fD be well-defined, we

define the following extreme case for fD: Given a motif pair X = {M1,M2}, if sX
D = ∅,

we define fD(X) = {∅ · · · ∅, ∅ · · · ∅}, where the number of empty sets in the first sequence

is the length of M1, and the number of empty sets in the second sequence is the length

of M2. Note that if a motif pair X = {∅ · · · ∅, ∅ · · · ∅}, then fD(X) = X. Such a motif pair

is a trivial fixed point for fD.

Next, we use an example to show how fD proceeds. Let a motif pair X be {M1,M2},

where M1 = {a}{g}{g}{g}{iy} and M2 = {fv}{g}{ek}{ae}{ens}{il}{a}. Let D be a

sequence dataset of interacting protein pairs. Suppose sX
D contains the following seven

protein pairs
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{qqqagggiyy, eeifgkasiass}

{aafgkasiayy, sssagggyqy}

{yyagggiqqq, vxfgkasiakk}

{kksagggyssa, ggqvgeaeiaii}

{vvagggiyy, iiivgeaeiasss}

{qqqvgeaeiakk, yyyagggiqqq}

{qqqagggyqqq, qqqvgeenlayy}.

Then, alnM1
s —the segments from the seven protein pairs that matchM1—is the following

matrix:



1 2 3 4 5

a g g g i

a g g g y

a g g g i

a g g g y

a g g g i

a g g g i

a g g g y



The consensus pattern M′
1 for this matrix is

{a}{g}{g}{g}{iy}.

Observe that M′
1 is equal to M1. This is because that at the fifth column of this matrix,

both i and y occur more than 20 percent. Hence, they are kept in the consensus pattern.
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Similarly, alnM2
s —the segments that match M2—is the following matrix:

1 2 3 4 5 6 7

f g k a s i a

f g k a s i a

f g k a s i a

v g e a e i a

v g e a e i a

v g e a e i a

v g e e n l a


The consensus pattern M′

2 for this matrix is

{fv}{g}{ek}{a}{es}{i}{a}.

Note that M′
2 is not equal to M2. Also observe that the amino acids e, n, l at columns 4,

5, and 6 (in bold font), respectively, are dropped. Therefore, they do not appear in the

fourth, fifth, and sixth set of M′
2.

Since fD({M1,M2}) = {M1,M′
2}, X = {M1,M2} is not a fixed point of fD.

This example has illustrated that fD uses three steps—discovery of a subset of D,

extraction of segments from this subset, and discovery of consensus patterns—to transform

a given motif pair.

Table 3.1 gives an example showing the transformation from a starting motif pair to

a fixed point, where three rounds of transformations by fD are experienced before stable

status is reached.

3.4 Properties of the Transformation Function

This section presents some important properties of fD. In the first part, we prove the

convergence property of fD for every starting motif pair and also discuss the forest structure
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Table 3.1: A starting motif pair becomes a fixed point of our function fD after three rounds

of transformation

convergence motif pairs X |sX
D |

starting {ek} {g} {l} {l} , {k} {ek} {ek} Σ {g} {iv} 31

X(1) {ek} {g} {l} {l} , {k} {ek} {ek} {a} {g} {iv} 11

X(2) {ek} {g} {l} {l} , {k} {e } { k} {a} {g} { v} 10

Mfixed {ek} {g} {l} {l} , {k} {e } { k} {a} {g} { v} 10

of the domain of fD. In the second part, we discuss some specific properties of fD when

the consensus pattern threshold is set as percentage values or set as absolute numbers. In

the third part, we explain why using percentage thresholds is a better choice than using

absolute numbers for our fixed point theorems to model the binding in protein–protein

interactions.

3.4.1 Convergence Properties

Proposition 3.1. Given a motif pair Y and a sequence dataset D of interacting protein

pairs, let X = fD(Y) and X′ = fD(X), then sX′

D ⊆ sX
D .

Proof. If sX′

D = ∅, of course, sX′

D ⊆ sX
D . Next we prove this proposition for sX′

D 6= ∅.

Denote X = {M1,M2}, M1 = A1A2 · · · Av, M2 = B1B2 · · · Bw; X′ = {M′
1,M′

2},

M′
1 = A′

1A′
2 · · · A′

v, M′
2 = B′1B′2 · · · B′w. Because X is a motif pair resulting from Y after

a transformation by fD, then A′
i 6= ∅ and also A′

i ⊆ Ai for those i satisfying Ai 6= ∅.

Similarly, B′i 6= ∅ and also B′i ⊆ Bi for those i satisfying Bi 6= ∅. That is, if Ai 6= ∅

(respectively Bi 6= ∅), A′
i (respectively B′i) would never become an empty set under the

percentage thresholds such as 20 percent used in this chapter. (Note that this is not true

when X is an arbitrary motif pair. That is why we need to set X = fD(Y) for some Y.)
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Let PPr ∈ sX′

D , we prove PPr 6∈ D − sX
D . Assume PPr ∈ D − sX

D , then PPr 6⊇ X.

Therefore, for each two segments from PPr, they cannot match M1 and M2 at the same

time. Therefore, they furthermore cannot match M′
1 and M′

2 at the same time. This

is because A′
i ⊆ Ai for those i satisfying Ai 6= ∅, and B′i ⊆ Bi for those i satisfying

Bi 6= ∅. Here is a contradiction. Thus our assumption, that PPr ∈ D− sX
D , must be false.

Therefore, we can conclude that PPr ∈ sX
D .

This proposition is useful for efficiently computing sX′

D . By definition, sX′

D is a subset

of D in which every protein pair contains the motif pair X′. Therefore, a naive way to

compute sX′

D is to check whether every protein pair in D contains X′. Having the propo-

sition, this naive method becomes unnecessary because the check within sX
D is sufficient.

Since sX
D is much smaller than D, we can gain much efficiency.

Theorem 3.1. Let D be a sequence dataset of interacting protein pairs. Then for every

starting motif pair X, fD(X) converges to a fixed point XF . That is, there exists an

integer t0(≥ 1) such that f
(t0)

D (X) = XF , and fD(XF ) = XF , where f
(1)

D (X) represents

fD(X), f
(2)

D (X) represents fD(fD(X)), and f
(t+1)

D (X) represents fD(f
(t)

D (X)).

Proof. Denote X(0) = X, X(1) = f
(1)

D (X), · · ·, X(t) = f
(t)

D (X).

By Proposition 3.1, we know that sX(t+1)

D ⊆ sX(t)

D for every t ≥ 1. Since sX(1)

D is a limited

set, there must exist a t ≥ 1 such that sX(t)

D = sX(t+1)

D . Therefore, the consensus pattern

from sX(t)

D is equal to the consensus pattern from sX(t+1)

D . Because the consensus pattern

from sX(t)

D is represented as X(t+1), and the consensus pattern from sX(t+1)

D is represented

as X(t+2), we have X(t+1) = X(t+2). That is, fD(XF ) = XF , where XF = X(t+1), as

desired.

From this theorem, we can understand: (1) that every starting motif pair will converge

to a fixed point (likely an empty pattern) and (2) that different starting motif pairs may

converge to the same fixed point. Therefore, the domain of fD can be partitioned into non-

overlapping clusters with each cluster corresponding to one fixed point. More specifically,
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each cluster is a tree, as proved by the following proposition. Which trees are interesting

and biologically meaningful? In the next chapter, we provide a heuristics.

Proposition 3.2. The domain (search space) of fD is a forest, with each root node as a

fixed point (a stable motif pair).

Proof. We denote a motif pair X as a node. If an edge is set from all possible X to

fD(X), the search space can be viewed as a graph. Since fD(X) is a unique motif pair, the

out-degree of each node should be no more than one. Meanwhile, it is impossible to have

a circle in the graph. Assume X0,X1 . . .Xk,X0 is a circle. According to Proposition 3.1,

sX0
D ⊇ sX1

D . . . ⊇ sXt
D ⊇ sX0

D . Then sX0
D = sX1

D . . . = sXt
D = sX0

D . Therefore, X0 = X1 =

. . . = Xt. Hence, X0 is a fixed point. Thus it is impossible to have an out edge to X1.

Also, by Theorem 3.1, every motif pair can lead to a fixed point, with the out degree as

zero, which is the corresponding root of that tree.

3.4.2 Specific Properties

Recall that the definition of fD involves a step for consensus pattern discovery. To find

consensus patterns, we need a threshold to filter out those minor amino acids from the

alignments. As mentioned, we have two options to select the threshold: one is to use

percentage values as the threshold; the other is to use absolute numbers. We denote the

former approach as f(%,D), and the latter as f(π,D).

The following proposition shows that the stability of a fixed point of f(π,D) can be

transferred to its submotifs. Here, a motif M ′ is a submotif of motif M if M ′ is a segment

of M.

Proposition 3.3. Let a motif pair X = {M1,M2} be a fixed point of f(π,D), then every

of its submotif pairs X′ = {M′
1,M′

2} is a fixed point of f(π,D) as well, where M′
1 is a

submotif of M1, and M′
2 is a submotif of M2.
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Proof. Because X′ is a submotif pair of X, for ∀PPr ∈ sX
D , we have PPr ∈ sX′

D , i.e.

sX
D ⊆ sX′

D . Since X is a fixed point of f(π,D), ∀aij ∈ Ai either from M1 or from M2, its

population in sX
D must be above the threshold. Since every occurrence of aij in sX

D is

also an occurrence of aij in sX′

D , the occurrence of ∀aij in X′ is also above the threshold.

Therefore, X′ is also a fixed point of f(π,D).

Proposition 3.3 says that the fixed points of f(π,D) satisfies the famous Apriori-property (Agrawal

and Srikant, 1994) known in data mining field. That is, if a submotif pair of a motif pair

is not a fixed point, the motif pair is impossible to be a fixed point. Therefore, the mining

of fixed points of f(π,D) should be similar to those algorithms for mining frequent itemsets.

Note that Proposition 3.3 does not hold if we replace f(π,D) with f(%,D).

Proposition 3.4. Let X and Y be two equal-length stable motif pairs of f(π,D), where

X = {MX1,MX2}, Y = {MY1,MY2}, |MX1| = |MY1| and |MX2| = |MY2|. Then the

union motif pair X + Y = {MX1 +MY1,MX2 +MY2} is also a fixed point of f(π,D). The

union operation ′+′ of two motifs is defined as follows: suppose M = A1A2 · · · Ak, and

M ′ = A′
1A′

2 · · · A′
k, then M + M ′ = A′′

1A′′
2 . . .A′′

k, where A′′
i = Ai ∪ A′

i, 1 ≤ i ≤ k.

Proof. Observe that ∀PPr ∈ sX
D , then PPr ∈ sX+Y

D . Hence, we have sX
D ⊆ sX+Y

D . Similarly,

we can get sY
D ⊆ sX+Y

D . Since X and Y are fixed points of f(π,D), for ∀aij ∈ Ai either from

MX1 or from MX2, its support in sX
D is above the threshold. Since every occurrence of aij

in sX
D is also an occurrence of aij in sX+Y

D , the occurrence of ∀aij in X + Y is also above

the support threshold. Therefore, X + Y is also a fixed point.

Note that this proposition may not hold if f(π,D) replaced with f(%,D). This is because

the occurrence of the union motif pairs not only covers the occurrences of the two original

fixed points, but also covers some occurrences from new combinations. Therefore, it is

difficult to determine whether the occurrence rate is still above the percentage threshold.

Another interesting thing is that if X is not a fixed point, X + Y is not impossible to be

a fix point of f(π,D).
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Proposition 3.5. Let f(%,D) be the fD under the percentage threshold in the consensus

pattern discovery. Let a motif pair X = {M1,M2}, where M1 = A1A2 · · · Av, Ai ⊆ Σ,

for i = 1, · · · , v; M2 = B1B2 · · · Bw, Bj ⊆ Σ, for j = 1, · · · , w. If all Ai and Bj are

singleton sets, and sX
D 6= ∅, then X is a fixed point of f(%,D).

Proof. Denote Ai = {ai} for i = 1, · · · , v, and Bj = {bj} for j = 1, · · · , w. Suppose sX
D

contains m protein pairs PPri, i = 1, · · · , m. Then the segment from the protein pair PPri

for every i that matches M1 must be a1a2 · · · av; similarly, the segment from the protein

pair PPri for every i that matches M2 must be b1b2 · · · bw. Therefore, the two alignments

alnM1
s and alnM2

s are the following two special matrixes:
a1 a2 · · · av

a1 a2 · · · av

. . .

a1 a2 · · · av


and 

b1 b2 · · · bw

b1 b2 · · · bw

. . .

b1 b2 · · · bw


Then, the consensus pattern for alnM1

s and alnM2
s are {a1}{a2} · · · {av} and {b1}{b2} · · · {bw}

respectively, under percentage threshold, as the occurrence rate is 100 percent in this case.

Hence, we can see that X is a fixed point of f(%,D).

3.4.3 Discussions of Properties

In this subsection, we give a comparison between f(%,D) and f(π,D), and explain the reasons

that f(%,D) is better than f(π,D) for modeling the binding in protein–protein interactions.

First, let us examine the most likely lengths of fixed points derived by f(%,D) and f(π,D).

According to Proposition 3.3, for a long stable motif pair X of f(π,D), all submotif pairs of
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X are also fixed points of f(π,D). In extreme cases, those many 1-1 pairs are stable motif

pairs. In biology, they are called residue–reside interaction pairs (Glaser et al., 2001).

Though they may be fundamental components of some interaction sites, they may have

very high false positive rate. One way to solve this problem is to discover only those

maximal fixed points of f(π,D) which are similar to a well studied data mining concept

called maximal frequent patterns (Burdick et al., 2001; Grahne and Zhu, 2003). On the

other hand, both very short and very long motif pairs are unlikely to be fixed points of

f(%,D) due to the equal possibility for short motif pairs and rare possibility for long motif

pairs. This property of f(%,D) is very consistent with the observations in biology (Sheu

et al., 2005) that most interaction sites generally include more than 10 but less than 20

residues. In fact, the lengths of our discovered stable motif pairs of f(%,D) match very well

to those of real motif pairs.

Second, let us discuss the union (′+′) operation for f(%,D) and f(π,D). According to

Proposition 3.4, the union of any two equal-length fixed points of f(π,D) is also a fixed point

of f(π,D), but this flexibility does not hold for fixed points of f(%,D). In the real biology

circumstances, this union property does not usually hold for interaction sites either. For

example, a study on active sites (Doray and Kornfeld, 2001) shows only specially selected

amino acids (not arbitrarily united) are possible to compose an interaction site or an active

site. The union property of fixed points of f(π,D) also leads to another bad consequence:

the motif pairs with large set in all positions are more likely to be fixed points. In the

extreme case, the motif pairs which contain only full alphabet sets in each position are

most likely to be fixed points. It is obviously meaningless from a biology perspective.

However, f(%,D) does not produce such fixed points.

Hence, f(%,D) is better than f(π,D) for modeling the binding motif pairs in protein–

protein interactions, as it reflects more properties of the real interaction sites. However,

f(%,D) has the singleton problem as discussed in Proposition 3.5. By this proposition, every

segment pair from any protein pair of D is a fixed point of f(%,D). Hence, it seems that there

are many easy fixed points for f(%,D). Therefore, we need other statistical measurements

to remedy this, for example, using the support level or P-score of these fixed points in D
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or biological evidence as discussed in the Chapter 4 to filter out some easy ones. In the

remainder of the chapter, every fD refers to f(%,D).

3.5 Summary

Motivated from correlated mutations and stability for many biological phenomena, we

have proposed a fixed point model in this chapter to emulate the evolution of motif pairs

at protein interaction sites, where a point is defined as a protein motif pair consisting

of two traditional protein motifs and a fixed point (a stable motif pair) of this model is

defined as a binding motif pair. To transform every motif pair to a stable motif pair,

we proposed a mathematical function fD which is closely related to a sequence data of

interacting protein pairs. The transformation of a motif pair by fD involves three steps:

the discovery of a subset of D, the extraction of alignments from this subset, and the

discovery of two consensus patterns. We have proved that fD is a convergent function for

every starting motif pair, that is, mathematically, it is a chain of changing but converging

patterns from every unstable starting motif pair to a stable motif pair. In this chapter, we

have also discussed that f(%,D) is better than f(π,D) to model the evolution of motif pairs,

as it reflects more properties of the real interaction sites.

The discovery of all stable motif pairs from large amounts of protein-protein interac-

tion data is an interesting and challenging problem. But unfortunately, it is extremely

tough to find a complete solution. We will discuss it the next chapter and present a

heuristic approach.
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Chapter 4

Selection of Starting Motif Pairs and

Significance of Stable Motif Pairs

4.1 Motivation

In the last chapter, we propose a fixed point model to discover binding motif pairs at

protein interaction sites from a sequence dataset of interacting protein pairs. Although

the model is promising, it has several weaknesses: (1) Computational difficulties. From

Theorem 3.1, we know that every starting motif pair will converge to a stable motif pair

after a couple of transformations by the function fD we propose. Since the domain of the

function is enormous (shown in Section 3.2.2), it is a computational challenging problem

to work out stable motif pairs from large amounts of interacting protein sequence pairs;

and (2) The singleton problem. As described in Proposition 3.5, every segment pair in

an interacting protein pair is a stable motif pair of our proposed transformation function

fD. This is obviously against the biological law; and (3) Significance issues. We can not

guarantee all stable motif pairs of the fixed point model are statistically significant, some

of which may still be chance ones.
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To tackle the first weakness, we turn to work out only a subset of meaningful sta-

ble motif pairs since the complete solution is not available. Recall that there are two

types of protein interaction data: protein interaction sequence data and protein complex

structural data (refer to Chapter 1 and 2). Protein interaction sequence data are abun-

dantly produced by existing high-throughput interaction detection techniques, but they

are not accurate enough. On the other hand, protein complex structural data contains

the most reliable three-dimensional coordinate information about interacting proteins,

through which the exact locations of interaction sites can be figured out by calculating

the distances of amino acids between interacting proteins in the complexes. However, the

complex data is expensive and time-consuming to produce so that only a limited amount

of data is available. Hence, we propose a heuristic approach which makes use of both

types of data. We select good candidates for starting motif pairs which are guided from

the protein complex structural data, so that the resulting stable motif pairs can have good

biological significance.

A key idea in the heuristic approach is the detection of so-called maximal contact

segment pairs between two proteins residing in a complex, to present interaction sites

between the two proteins. First, all possible pairs of spatially contacting residues are

determined from the three-dimensional structure data of a protein complex. These contact

residues are extended to capture as many continuous contact residues as possible along

the two proteins, thus derived the maximal contact segment pairs. Computationally, the

derivation of maximal contact segment pairs is a challenging problem. We describe an

algorithm to discover them efficiently. Then, we generalize these maximal contact segment

pairs into starting motif pairs from a protein interaction sequence dataset, to search for

stable motif pairs through our transformation function from the interaction sequence

dataset. By this way, we can obtain high confidence to the discovered stable motif pairs

since they are stemmed from the biologically reliable protein complex structural data. The

heuristic approach reduces the formidable search space of interacting protein sequences

while providing some biological support for the motif pairs discovered. Indeed, many of

our motif pairs discovered this way can be confirmed by biological patterns reported in



4.2. STARTING MOTIF PAIRS FROM MAXIMAL CONTACT SEGMENT PAIRS 65

the literature, as shown in this chapter.

Although the heuristic approach is effective, the resulting stable motif pairs may still

be insignificant. To eliminate the problem and other two weaknesses, we introduce the

concept of significant motif pairs in this chapter to capture more information for binding

motif pairs, so that the chance motif pairs and insignificant singleton segment pairs can

be filtered out. We require the resulting stable motif pairs to be significant not only

for single motifs but more importantly for their co-occurrence as pairs. By significance,

we mean that their observations or supports should be much higher than their random

expectations. Thus, the final stable and significant motif pairs are modeled as binding

motif pairs in the fixed point model.

The remainder of this chapter is organized as follows: In Section 4.2, we describe

a heuristic approach which generates starting motif pairs from maximal contact segment

pairs. In Section 4.3, we depict the significance measurements to evaluate stable motif

pairs derived from the starting motif pairs. We review the overall algorithm and results

in Section 4.4. Then, we examine the results of the heuristic approach in details. We

conduct comprehensive random experiments and report them in Section 4.5. We perform

a series of literature validations to our discovered binding motif pairs and report them in

Section 4.6. We discuss the heuristic approach in Section 4.7 and summarize the chapter

in the final section.

4.2 Generating Starting Motif Pairs from Maximal

Contact Segment Pairs

4.2.1 Concept of Maximal Contact Segment Pairs

To define maximal contact segment pairs, we first clarify a basic concept, which is called

a contact site. Given a pair of proteins in a complex, a contact site is an elemental pair
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such as two residues or two atoms, each coming from one of the two proteins, which are

close enough in space. As a protein complex usually consists of multiple proteins, in this

study we consider all pairs of proteins in a protein complex to obtain all contact sites in

this step.

We define a contact site mathematically as follows: Suppose two proteins with 3-D

structural coordinates in (x , y , z ), Pa = {(ai, xai
, yai

, zai
), i = 1...m} and Pb = {(bj, xbj

, ybj
, zbj

), j =

1...n}. The pair (ai,bj) is a contact site if dist(ai,bj) ≤ ε, where ai and bj are the atom

id in the protein Pa and Pb respectively, and ε is an empirical threshold for the Eu-

clidean distance function dist(., .). Such a pair is denoted Contact(ai,bj), or equivalently

Contact(bj, ai).

Note that a contact site in the atom level directly implies a contact site in residue

level because each atom is a part of a unique residue. Hereafter, we will discuss contact

sites only at the residue level. Since two residues are said to be in contact if one of the

atoms in a residue is in contact with one atom in the other residue, it is possible for a

residue to be in contact with multiple residues.

Next, we extend the concept of contact sites to the concept of contact segment pairs,

aiming to search for large areas of contact sites in a pair of interacting proteins. Figure 4.1

shows our idea, depicting a typical scenario where segments of residues in one protein are

continuously in contact with segments of residues in the other protein. As an illustration,

the segment [a16, a17] in protein A of Figure 4.1 is in contact with the segment [d44,d46] in

protein D. That is, they are a contact segment pair. But the segment [a16, a17] in protein

A and the segment [d44,d47] in protein D are collectively not a contact segment pair.

Formally, the definition is: A contact segment pair is a segment pair ([ai1 , ai2 ], [bj1 ,bj2 ])

satisfying: (1) for ∀ai ∈ [ai1 , ai2 ], ∃bj ∈ [bj1 ,bj2 ] such that (ai,bj) is a contact site; (2)

for ∀bi ∈ [bj1 ,bj2 ], ∃ai ∈ [ai1 , ai2 ] such that (bj, ai) is a contact site, where ai1 , ai2 ,bj1 ,bj2

are residue ids in two proteins Pa and Pb. Such a pair of segments is sometimes denoted

Contact([ai1 , ai2 ], [bj1 ,bj2 ]).



4.2. STARTING MOTIF PAIRS FROM MAXIMAL CONTACT SEGMENT PAIRS 67

A16Chain A

Chain D

G17 S18 S19 Y20

G42V41 R43 A44 N45 M46 A47

Figure 4.1: An example of maximal contact segment pair taken from the pdb:1mbm com-

plex. The maximal contact segment pair is ([a16, a20], [d41, d47]) between chain A and

chain D with sequence (agssy, vgranma).

A maximal contact segment pair is then defined as a contact segment pair such

that no other contact segment pair can contain the both segments of this contact pair. In

above example, ([a16, a20], [d41,d47]) is a maximal contact segment pair.

4.2.2 Extracting Maximal Contact Segment Pairs from Protein

Complexes

The problem of extracting maximal contact segment pairs can be formally defined as

follows:
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Definition 4.1. Maximal Contact Segment Pair Problem: Given a pair of inter-

acting proteins Pa and Pb, suppose T = {(ai,bj)| Contact(ai,bj) with respect to the two

proteins Paand Pb}, the problem is how to find all possible maximal contact segment pairs

from T with their segment lengths all longer than a threshold.

A naive approach to solving this problem would require testing all possible segment

pairs. Suppose two proteins Pa and Pb have m and n residues respectively, then, the

proteins Pa and Pb will have m2 and n2 possible segments respectively. For each com-

bination, O(mn) time complexity would be required for the computation. So, the total

time complexity for such a naive approach will be O(m3 ∗ n3) per pair of proteins in each

complex. This is very expensive particularly when the protein complexes are large and

there are hundreds or thousands of protein complexes need to be examined. We present

a more efficient method to compute maximal contact segment pairs here.

Observe that for each residue, it may be in contact with multiple residues in the

opposite protein (see Figure 4.1). We introduce a concept named coverage to capture

this phenomenon; it will be shown later that this is a useful concept for improving the

efficiency of our discovery algorithm. The coverage of a residue ai, denoted Cov(ai), is

the set of all residues in the opposite protein that are in contact with this residue, namely

Cov(ai) = {bj|(ai,bj) ∈ T }. The coverage of a segment [ai1 , ai2 ], denoted Cov([ai1 , ai2 ]),

is the union of the coverage of all its residues, namely,

Cov([ai1 , ai2 ]) = ∪ai∈[ai1
,ai2

]Cov(ai).

The following proposition is useful in our algorithm to compute maximal contact

segment pairs efficiently.

Proposition 4.1. A segment pair ([ai1 , ai2 ], [bj1 ,bj2 ]) is a contact segment pair iff the cov-

erage of each of the two segments contains the other segment, i.e. Contact([ai1 , ai2 ], [bj1 ,bj2 ])

⇐⇒ (Cov([ai1 , ai2 ]) ⊇ [bj1 ,bj2 ]) ∧ (Cov([bj1 ,bj2 ]) ⊇ [ai1 , ai2 ]).

Proof. ⇒: We use contradiction to prove. Suppose Cov([ai1 , ai2 ]) ⊇ [bj1 ,bj2 ] is not

true, then there exists a bj ∈ [bj1 ,bj2 ] but this bj /∈ Cov([ai1 , ai2 ]). This means there
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is no ai ∈ [ai1 , ai2 ] in contact with bj. This contradicts the assumption. Therefore,

Cov([ai1 , ai2 ]) ⊇ [bj1 ,bj2 ]. We can prove Cov([bj1 ,bj2 ]) ⊇ [ai1 , ai2 ] in a symmetrical

manner.

⇐: If Cov([ai1 , ai2 ]) ⊇ [bj1 ,bj2 ], this means that for each bj ∈ [bj1 ,bj2 ], there exist

at least one contact site in [ai1 , ai2 ]. Similarly, the residues in the other segment have the

same property.

Our algorithm is a top-down recursive algorithm. At the initial step, each entire

protein in a pair is treated as a segment. A series of recursive breaking-down are then

performed to output maximal contact segment pairs, using the above proposition to de-

termine when to break-down a segment into several smaller segments and when to ter-

minate producing a new candidate segment pair. The details of our algorithm are as

follows:

Input: An initial segment pair [a1, am], and [b1,bn], and T = {(ai,bj)| Contact(ai,bj),

1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Output: A set of maximal contact segment pairs.

Preparation Step: Compute Cov(ai) and Cov(bj) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Initialization Step: Put the initial segment pair ([a1, am], [b1,bn]) into the candidate

list.

repeat

Segment Coverage Step: Remove the first segment pair from the candidate list, de-

noted ([xi1 , xi2 ], [yj1 , yj2 ]); Compute the coverage for Cov([xi1 , xi2 ]) ∩ [yj1 , yj2 ].

Splitting Step:

if (Cov([xi1 , xi2 ]) ∩ [yj1 , yj2 ]) == [yj1 , yj2 ] then

if (Cov([yj1 , yj2 ]) ∩ [xi1 , xi2 ]) == [xi1 , xi2 ] then

Output the segment pair.

else

Add ([yj1 , yj2 ], [xi1 , xi2 ]) into the candidate list.

end if
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else

Split Cov([xi1 , xi2 ]) ∩ [yj1 , yj2 ] into continuous sub-segments through a linear scan,

denoted [yk2t−1 , yk2t ], t = 1....w, where w is the resulting number of sub-segments.

Put each segment pair

([yk2t−1 , yk2t ], [xi1 , xi2 ]), t = 1...w, into the candidate list.

end if

until The candidate list is empty.

A detailed example is shown in Figure 4.2.
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Figure 4.2: An example of computing a contact segment pair which includes four steps.
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4.2.3 Generating Starting Motif Pairs

Directly using maximal contact segment pairs as starting motif pairs is not a smart choice.

Because these segment pairs are highly specific in corresponding species, they may not

occur in other interacting protein dataset D. So, we need to generalize these contact

segment pairs. We achieve this goal by using the principle proposed in Azarya-Sprinzak

et al. (1997). The principle says that even some residues in some positions are changed

to other residues, their structures are still unchanged. Since the structures maintain the

same, the interacting behavior is highly likely to maintain as well. Basically, we use local

alignment and consensus discovery to implement this generalization and to get satisfactory

starting motif pairs.

Given a maximal contact segment pair SPr and a protein interaction dataset D, the

generalization of SPr is as follows:

1. Find a subset of D, denoted sSPr
D = {PPr ∈ D | Local Alignment(SPr, PPr) ≥ λ},

where λ is an empirical threshold,

2. Discover the consensus pattern MPr from sSPr
D as in Section 3.3.

Thus, MPr is a generalized pattern for SPr. Then we use MPr as a starting point

to discover a stable motif pair. For instance, from the example maximal segment pair

(agssy, vgranma) mentioned in Section 4.2.1, we found 34 interactions for its sSPr
D from a

yeast interacting protein dataset D. From this cluster, we induced a consensus motif pair,

{{a}{g}{dgs}{gs}{ivy}, {fv}{g}{ek}{ae}{dens}{il}{a}}, which was then used as the

starting point to derive a stable motif pair {{a}{g}{g}{g}{iy}, {f}{v}{g}{ek}{a}{es}{i}{a}}

from the same D.
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4.3 Significance Measurements of Motif Pairs

We begin with definitions for the absolute support and statistical score of single motifs

and their efficient computation. Then we explain significant motif pairs and give efficient

methods to compute their significance indices.

4.3.1 Significance Measurements for Single Motifs

Before discussing the significance of motif pairs, we consider the component motifs, as

their significance is the prerequisite to make the whole pair significant.

Definition 4.2. [Support for a motif] The absolute support of a motif M in P =

{Pi|i = 1 . . . m} is the number of proteins in P that contain M, denoted by π(M, P) =

|{Pi ∈ P|M ⊆ Pi}|, or simply denoted by π(M).

The Z-score measurement is widely used to evaluate the significance of single mo-

tifs (Atteson, 1998). The Z-score of a motif M is defined as

zs(M, P) =
π(M, P)− exp(M, P)

σ(M, P)
(4.1)

where exp(M, P) is the expectation support forM in P, σ(M, P) is the standard deviation

for the random occurrence (support) of M in P. With Z-scores, we can distinguish

significant motifs from random ones. If the occurrence of a motif is far away from its

random expectation, this motif is considered to be statistically significant.

The exact computation of Z-scores is nontrivial. With the help of the software package

provided by Nicodeme et al. (2002), the expectation and deviation for a motif M =

A1A2 · · · Ak with respect to P can be calculated approximately as follows, where m is the
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number of proteins in P:

p(M) =
k∏

i=1

|Ai|
|Σ|

=

kQ
i=1

|Ai|

|Σk|

exp(M, P) = p(M) ∗
m∑

i=1

(|Pi| − k + 1)

= p(M) ∗ (
m∑

i=1

|Pi| −m ∗ (k − 1))

= p(M) ∗ (|P| −m ∗ (k − 1))

(4.2)

Nicodeme et al. (2002) also showed that for most motifs,

σ(M, P) ≈
√

exp(M, P) (4.3)

From formula (4.2) and (4.3), we can see that after one pass of pre-computation for

the number of residues in P and the number of proteins m, the expectation and standard

deviation of any motif can be calculated approximately in linear time with respect to the

number of positions in the motif, i.e. in O(k) time.

4.3.2 Significance Measurements for Motif Pairs

The significance measurements for motif pairs are more complicated that those of single

motifs. We first review the Definition 3.3 of the support of a motif pair and discuss several

candidate measurements directly related to it. Then we define the contributive support

of a motif pair and introduce the concept of P-scores, followed by their computational

issues.

Definition 4.3. [Support for a motif pair] The absolute support of a motif pair MPr =

{ML,MR} in D is defined as the number of interacting protein pairs in D that contain

MPr, denoted by π(MPr, D) = |{PPri ∈ D | MPr ⊆ PPri}| = |sMPr
D |.
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Emerging Significance

The significance of motif pairs can be measured straightforwardly by the ratio of frequency

in positive and negative dataset providing the negative data is available, which is often

referred as to emerging significance (Dong and Li, 1999).

Definition 4.4. [Emerging Significance] Suppose we have a dataset D consisting of

sequence pairs D={(P i
1,P i

2)|1 ≤ i ≤ n}, the frequency of a motif pair MPr with respect

to D is defined as: Freq(MPr,D) = π(MPr,D)
|D| . Suppose D is further divided into a positive

dataset DPos and a negative dataset DNeg. The emerging significance of MPr with

respect to DPos and DNeg is defined as: ratio(MPr, DPos, DNeg) = Freq(MPr,DPos)
Freq(MPr,DNeg)

.

As mentioned in Chapter 2, negative data are usually unavailable. In that case, we

can define it against the random expectations as follows:

Definition 4.5. [Emerging Significance against Randomness] The emerging sig-

nificance of a motif pair MPr = {ML,MR} in D against randomness is defined as the

ratio between the support of the motif pair and the production of the support of its two

component motifs, denoted by ratio(MPr, D) = π(MPr,D)
π(ML,P)∗π(MR,P)

.

We tried the first measurement and Tan et al. (2004) applied the second measurement

to evaluate the significance of motif pairs. Both measurements are insufficiently effective

to filter out insignificant singleton and random motif pairs. Therefore, we seek for more

efficient measurements.

P-scores

The problem of emerging significance is its reliance on the support of a motif pair. From

a biology perspective, we know that not every occurrence of a motif pair will result an

interaction. Hence, we define the contributive support of motif pairs to reflect the true

contributor of motif pairs for an interaction. Our definition of P-scores is based on the

concept.
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Definition 4.6. [Contributive support for a motif pair] The contributive support of

a motif pair MPr in D is the number of protein pairs in D whose interaction is partially

contributed by MPr, denoted by πc(MPr, D) = |{PPri ∈ D|MPr ⊆ PPri, MPr contributes PPri}|,

or simply denoted by πc(MPr).

The contribution in above definition means that the occurrence segments of the motif

pair are in the interaction sites if the structural data of protein complexes is available. If

the data is not available, contributive support is only a theoretical concept. Later on, we

will show how to estimate contributive support values based on a sequence dataset D of

interacting protein pairs and a set of motif pairs.

Corresponding to Z-scores (Atteson, 1998) to measure the significance of single motifs

with regard to P, we define P-scores to measure the significance of motif pairs. Given an

MPr = {ML,MR} and a protein interacting sequence dataset D,

ps(MPr, D) =
πc(MPr, D)

exp(MPr, D)
(4.4)

where exp(MPr, D) is expectation support of random co-occurrences of MPr in D.

Based on the Z-scores of single motifs and P-scores of motif pairs, now we define

significant motif pairs:

Definition 4.7. [Significant motif pairs] A motif pair MPr = {ML,MR} is signif-

icant in a protein interacting sequence dataset D and the corresponding protein set P if

zs(ML, P) ≥ τL, zs(MR, P) ≥ τR, and ps(MPr, D) ≥ τB, where τL ≥ 0, τR ≥ 0, τB ≥ 1 are

pre-set thresholds.

This definition emphasizes that the observations should be far away from the expec-

tation values.

Computation of P-scores

Computationally calculating P-scores is not straightforward because the accurate con-

tributive support is almost impossible to be obtained without wet-experimental examina-
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tion. So, we present an approximate solution. First, assume ML and MR are indepen-

dent, the expectation can be calculated as follows:

exp(MPr, D) = n ∗ π(ML)

m
∗ π(MR)

m
(4.5)

where m is the number of unique proteins in D. Therefore, the P-score can be re-written

as

ps(MPr, D) =
m2 ∗ πc(MPr)

n ∗ π(ML) ∗ π(MR)
(4.6)

Assume an interaction contains only one binding motif pair, then, the contribution of

a motif pair to a protein pair is influenced by other motif pairs. Given a sufficiently large

set of motif pairs SMPr, we can estimate the contributive support using the following

πc(MPr) = lim
|SMPr|→∞

n∑
i=1

ps(MPr,D)P
MPr′∈SMPr,MPr′⊆PPri

ps(MPr′,D)
δi(MPr)

δi(MPr) =

 1 if MPr ⊆ PPri

0 otherwise

(4.7)

It can be seen that for a motif pair, the supports of its two contained motifs are fixed

values in a given protein set P. So, when handling a large motif pair set SMPr, formula

(4.6) and (4.7) will consist of a large group of equations with two types of variables: the

P-scores and the contributive supports of the motif pairs.

To solve this group of equations, we explore the use of iterative programming. First

we set an identical initial value for the P-score of every motif pair. Then we use the

current P-scores to calculate the contributive support for all motif pairs by formula (4.7).

We can thereafter get new P-scores using formula (4.6) for each motif pair and start a

new round of calculation, until the changes of most variables are less than a threshold.

Given a set of motif pairs SMPr and a protein interacting sequence dataset D, the

convergence of P-scores for the motif pairs in SMPr is a problem. We use the overall

score difference between continuous rounds to evaluate the convergence, where the overall
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difference between the j-th and the (j − 1)-th iteration is calculated by an index ∆(j)

∆(j) =

2 ∗
∑

MPri∈SMPr

(ps(MPri, D)j − ps(MPri, D)j−1)
2∑

MPri∈SMPr

((ps(MPri, D)j)2 + (ps(MPri, D)j−1)2)
(4.8)

.

We observe that the P-scores of most motif pairs (> 90%) in the iterative process

are convergent, either monotonically increasing or monotonically decreasing. But we also

observe some motif pairs with non-monotonous P-scores. Therefore, the convergence is

not guaranteed, from both theoretical and practical aspects.

4.4 Algorithm and Results Overview

4.4.1 Overall Algorithm of the Fixed Point Model

The overall flow of our heuristic fixed point model with significance evaluation is summa-

rized as follows:

Input: A sequence dataset D of interacting protein pairs, a complex dataset T

Output: A set of stable and significant motif pairs (fixed points) SMPr

for all complex CPL in T do

for all protein pair Pa and Pb in CPL do

compute contact sites, and then find the set of maximal contact segment pairs SSPr;

end for

end for

for all maximal contact segment pair SPr in SSPr do

generalize SPr to produce a starting motif pair MPr

end for

for all starting motif pair MPr do

transform MPr to either a stable motif pair MPr′ or an emptyset by fD.
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end for

for all stable motif pair MPr′ do

filter those stable motif pairs MPr′ which are not significant

end for

4.4.2 Data and Parameters

We use two interaction datasets to test the algorithm: a sequence dataset of interacting

protein pairs collected by von Mering et al. (2002), and a protein complex dataset derived

from PDB (http://www.rcsb.org/pdb/). The sequence dataset consists of 78390 non-

redundant interactions, containing almost all the latest interacting protein pairs in yeast

genome produced by various experimental and high confident computational methods.

The protein complex dataset was generated from the PDB on the 9th of June, 2003,

containing 1533 entries that have at least two chains, by using online search tools in

the PDB-REPRDB (http://mbs.cbrc.jp/pdbreprdb-cgi//reprdb_query.pl). In this

complex dataset, the maximum pairwise sequence identity between any two complexes is

30% and each complex has a structure resolution of 2.0 or higher.

In the computation of contact residues in a complex, we set the distance threshold

as 5Å, that is, every residue/atom pair which have a distance less than 5Å is regarded

to be in contact. In the computation of maximal contact segment pairs, we required

that every contact segment should contain at least four residues. In the generation from

maximal contact segment pairs to starting motif pairs, we set different λ thresholds for

local alignment based on the segment lengths: λ was set strictly for short segments but

loosely for long segments. Actual λ values used in this study is referred to Figure 4.3.

After obtaining starting motif pairs from the complex dataset, we conducted the

transformation process to find stable motif pairs from the sequence dataset of interacting

protein pairs. For a motif pair MPr, to discover fD(MPr)—the consensus pattern—and

subsequently fD(· · · fD(fD(MPr))) until a stable state, we computed a latter cluster based
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Figure 4.3: The threshold for local alignment with respect to different segment lengths.

on its previous cluster instead of the whole dataset (according to Proposition 3.1). The

efficiency was therefore greatly improved.

After obtaining a set of stable motif pairs from the starting motif pairs and the

refinement, we filtered the insignificant ones. The thresholds for the significance indices

were set as: τL = 2, τR = 2, τB = 2. The computation of the supports and Z-scores are

straightforward according to our algorithm. However, the computation of the P-scores is

an iterative process. The initial P-score for every motif pair was set as 1.0 in this work.

We use ∆ defined in Equation 4.8 to evaluate the overall score difference between adjacent

iterations. If ∆ < 0.01, we stop the iterative process. For most sets of motif pairs, the

process could stop within four iterations.

4.4.3 Results Overview

In total, we discovered 535 binding (stable and significant) motif pairs from the sequence

dataset of interacting protein pairs using 1403 maximal contact segment pairs with the

significant threshold 2. Table 4.1 provides these results and other related results such as

the support information.

The program was tested on a our PC with a CPU clock rate of 3.0Ghz and 1.5Gb
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Table 4.1: The overall results of our fixed point model

Num of Num of Num of Num of Support of Support of

Contact Starting Stable Stable & Stable Stable &

Segment Motif Motif Significant Motif Motif Significant Motif

Pairs Pairs Pairs Pairs Pairs Pairs

1403 1222 913 535 122193 34122

Figure 4.4: The distribution of the P-scores (under log2) for our 535 stable and significant

motif pairs.

of main memory. In total, it spent 145 minutes on the machine, including 157 seconds

on extracting the contact sites, 9 seconds on computing the contact segment pairs, 41

minutes on generating the starting motif pairs, 6 minutes on deriving the stable motif

pairs, and 95 minutes on calculating the significance of the stable motif pairs.

The P-sore values of the 535 stable and significant motif pairs differ very much from

one another. Figure 4.4 shows the distribution of these P-scores (under log2 scale). It

can be seen that our algorithm can discover motif pairs with both high and low P-scores

(larger than a threshold).
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Figure 4.5: The distribution of the absolute support values and contributive support

values (under log2 scale) of our 535 stable and significant motif pairs.

Besides P-scores, another important information is the support. The distribution of

the support values (under log2 scale) of the 535 stable and significant motif pairs is

depicted in Figure 4.5. It can be seen that our algorithm preferred to discover motif pairs

with relatively low supports. This is an advantage to our algorithm as the support of

many real binding motif pairs is quite possible to be low in an incomplete dataset. The

distribution of the estimated contributive support values for our discovered motif pairs

exhibits almost the same shape as that of absolute support values, depicted in Figure 4.5.

To evaluate the lengths of our discovered motif pairs, we used information con-

tent (Tompa, 1999) as the index. Assume each residue has equal distribution, the in-
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formation content of a motif M = A1A2 · · · Ak can be computed by:

I(M) = k log10 |Σ| −
k∑

i=1

log10 |Ai| (4.9)

For a motif pair MPr = {ML, MR}, we define

I(MPr) = I(ML) + I(MR) (4.10)

So, the information content largely reflects the length of a motif. The distribution of the

information contents of the 535 motif pairs is shown in Figure 4.6. It can be seen that

most of the motif pairs have an information content between 10 and 20, except for very

few cases. Therefore, these motif pairs roughly have residues between 10 and 20.

Figure 4.6: The distribution of information content of our discovered stable and significant

motif pairs.

4.5 Effectiveness Comparison with Random Patterns

To demonstrate that our discovered stable and significant motif pairs are credible and

also to illustrate the generalization from our maximal contact segment to the starting

motif pairs makes benefits to the discovery, we conduct a comprehensive computational

comparison between our patterns and random patterns. These experiments include (1)
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Figure 4.7: The percentage of non-zero support motif pairs in our discovered stable motif

pairs and those in 10 sets of equal size of random motif pairs.

the comparison between our 913 stable motif pairs and 10 random sets each consisting of

913 random motif pairs; and (2) the comparison between our 1222 starting motif pairs

and 10 random sets each consisting of 1222 random starting motif pairs.

A random motif pair or a random segment pair is generated by substituting every

residue in our pattern with a random residue. Therefore, the random pattern has the

same length as ours. The distribution of the randomly generated residues follows the

same distribution of all the residues in the contact sites of our complex dataset. [In

fact, it has no significant difference between this distribution and that in the whole yeast

genome (Fariselli et al., 2002)].

First, we compare our 913 stable motif pairs with the 10 sets of random motif pairs

of equal size to see how much percentage of them are significant. We observed that

• About two-thirds of the random motif pairs have a zero-support in the interaction

dataset D, namely π(MPrrandom, D) = 0. However, for every MPr of our 913 stable

motif pairs, π(MPr, D) 6= 0 . Figure 4.7 shows the percentage of random patterns

having non-zero support for the 10 rounds of random experiments.



CHAPTER 4. STARTING MOTIF PAIRS AND SIGNIFICANCE OF MOTIF PAIRS 84

Figure 4.8: The percentage of significant motif pairs for our discovered stable motif pairs

and those for 10 sets of equal size of random motif pairs.

• Only about 5% of the random motif pairs are significant. However, 59% of our 913

stable motif pairs are significant. Complete results are shown in Figure 4.8.

• The total support of our stable and significant motif pairs is much larger than that

of significant random motif pairs, which is shown in Figure 4.9.

These results indicate that our discovered stable motif pairs are much more statisti-

cally significant than random patterns. Therefore, they are most likely to be potential

binding motif pairs.

Second, we substitute our 1222 starting motif pairs with random starting motif pairs to

see how much percentage of stable motif pairs can be discovered, and how much percentage

of stable and significant can be discovered. Such substitution is repeated for 10 times.

We observed that

• Our starting motif pairs can lead to 75% (913) of stable points, but those random

starting points in each round lead to < 33% of stable motif pairs. Complete results

are shown in Figure 4.10.
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Figure 4.9: The total support of our discovered stable and significant motif pairs and

those for 10 sets of equal size of random motif pairs.

Figure 4.10: The percentage of stable motif pairs derived from our starting motif pairs

and those derived from 10 sets of equal size of random starting motif pairs.
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Figure 4.11: The percentage of stable and significant motif pairs derived from our starting

motif pairs and those derived from 10 sets of equal size of random starting motif pairs.

• Our starting motif pairs can lead to ∼ 44% of stable and significant motif pairs, but

< 9% of those random starting points can lead to stable and significant motif pairs.

Figure 4.11 shows complete results.

From these comparisons, we conjecture that the generalization from maximal contact

segment pairs to our starting motif pairs is a useful method because it contributes much

more number of stable and significant motif pairs than the random method does.

From these various randomization experiments, we can see that the stable and signif-

icant motif pairs that we discovered are far way from random expectation, which benefits

from the choice of starting points. Therefore, it is reasonable that they provide much

information to find real binding motif pairs. This is also confirmed by our literature

searching results reported in the next section.

4.6 Literature Validation

To demonstrate the biological significance of our discovered patterns, ideally, they should

be validated by wet-experimental methods. Unfortunately, there are few well-known wet-
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experimental methods that can determine the two sides of binding motif pairs simulta-

neously. As reviewed in Chapter 2, current available technique such as phage display

(Smith, 1985a) and NMR (Takahashi et al., 2000) can only determine one side of the

interaction sites and produce protein–peptide/motif binding pairs or domain–motif inter-

acting pairs. As a result, there is still limited data about the interaction sites, mostly

spanning across various individual literature, without an integrative and comprehensive

database available, which makes our validation even harder.

Nevertheless, we still find some evidences to show the biological significance of our

discovered patterns. First, we check the coincidence of the individual motifs in our motif

pairs with the reported binding motifs determined by various wet-experimental methods.

For example, using key words ‘binding motif OR site AND mutagenesis’, we extracted

202 binding motifs from the abstracts of NCBI PUBMED; 89 of them have at least three

positions compatible to ours and 40% overall similarity. Of these 89 binding motif pairs, 42

motifs are highly similar to our discovered motifs, having at least four positions compatible

and 50% overall similarity. We show in Table 4.2 the top 5 matches in comparison with

mutagenesis. We show in Table 4.3 the top 5 matches in comparison with phage display

with key words ‘binding motif OR site AND phage display’.

Table 4.2: Motif coincidence with the mutagenesis method

Our Motif Mutagenesis Motif PMID of Mutagenesis Motif

{g}{s}{g}{k}{t} {g}*{g}{k}{t} 10464259

{a}{l}{e}{t}{s} {l}{e}{t}{s} 11435317

{p}{iv}{d}{l}{s} {p}{v}{d}{l}{s} 11373277

{l}{dn}{l}{l} {l}{l}{d}{l}{l} 11451993

{k}{de}{k}{ek} {k}{e}{k}{e} 10748065

Second, we check our discovered motif pairs with protein–peptide/motif binding pairs

determined mainly by phage display. First, we identify the individual motifs in our
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Table 4.3: Motif coincidence with the phage display method

Our Motif Phage Display Motif PMID of Phage

Display Motif

{g}{ly}{d}{iy}{iv} {y}{d}{y}{v} 11389136

{g}{iv}{g}{fi}{iv} {k}{v}{g}{i}{v} 12110480

{s}{dgh}{ek}{d} {i}{s}{h}{k}{d}{m}{q}{l}{g} 9373320

{g}{s}{g}{k}{t} {g}{h}{n}{g}{s}{g}{k}{s}{t}{l} {a}{k}{t}{i}{n} 12110480

{a}{iv}{a}{g} {e}{l}{s}{g}{g}{q}{m}{r}{r}{v}{a}{i}{a}{g}{v} 12110480

Table 4.4: The coincidence between our motif pairs and motif-actin binding pairs

Actobindin Motif Left Motif Confirmed Right Motif in Actin

{v}{th}{v}{k}{k}{v} {iv}{t}{iv}{k} {a}{ek}{iv}{fl}{g}{kr}

{v}{th}{v}{k}{k}{v} {iv}{ek}{k}{flv}{de} {ek}{il}{l}{p}

{v}{th}{v}{k}{k}{v} {ek}{iv}∅{ilv}{ek} {g}{k}{k}{il}{v}{s}

population of discovered motif pairs that match closely with a binding peptide/motif in

the literature. Then, for each of such matched motifs, we verify whether the motif on the

other side of the corresponding motif pairs can be found in the protein known to bind the

particular peptide/motif.

We describe three examples to explain the biological significance of our discovered mo-

tif pairs using this validation method. As the first example, Vancompernolle et al. (1991)

reported that protein actobindin contains an actin-binding motif {v}{th}{v}{k}{k}{v}.

From our discovered 913 stable motif pairs, we observed that there are three motif pairs

containing motifs that are similar to the actin-binding motif {v}{th}{v}{k}{k}{v}. The

left side and right side of the three motif pairs are listed in the second and third column of

Table 4.4 respectively. A more interesting observation is that the three right-side motifs

are all contained in the sequence of the protein actin or its associated proteins.
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The second example is shown in Table 4.5. Tumbarello et al. (2002) studied the

interaction sites of protein paxillin and its interacting proteins. The interaction site of

paxillin is in the form of {l}{d}*{l}{l}**{l}, shown in the first column of Table 4.5.

Our method discovered three similar motifs as shown in the second column of Table

4.5. The other side of the corresponding motif pairs is shown in the third column of the

table. All of them have been found to exist in the interacting proteins reported in the

literature (Tumbarello et al., 2002), which are shown in the last column of the table with

the matched segments.

Table 4.5: The coincidence between our discovered motif pairs and the interaction sites

between paxillin and its binding proteins

Paxillin Motif Left Motif Right Motif Confirmed Proteins

{l}{d}*{l}{l}**{l} {d}{il}{l}{il} {st}{d}{ek}{a} Vinculin,FAK

{l}{d}*{l}{l}**{l} {il}{dg}{iv}{l}{d} {d}{ek}{e}{g}{i} PYK2({d}{ek}{e}{g})

{l}{d}*{l}{l}**{l} {l}{fl}{v}{l}{k} {l}{fl}{v}{l}{k} Vinculin({l}{fl}{v}{l})

PYK2({l}{fl}{v}{l})

As the final example, Kay et al. (2000) had a study on the interaction of proline-

rich motifs in signaling proteins with their cognate domains. Four binding motifs [called

binding consensus sequences in (Kay et al., 2000)] are listed in the first column of Table

4.6. From our discovered binding motif pairs, we observed that there are four motif pairs

containing a motif that is similar to one of the four binding motifs. The four motif pairs

are listed in the second and third columns of Table 4.6. Another observation is that our

right-side motifs are all contained in the proteins in the last column of Table 4.6 which

are reported to bind to the corresponding binding motif in the first column (Kay et al.,

2000).

In the remainder of the section, we check our discovered motif pairs in more details

with domain–motif interacting pairs in the literature as they are our most similar patterns.
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Table 4.6: The coincidence between our motif pairs and peptide-protein binding pairs
Binding motif Left motif Right Motif Confirmed Binding Protein

{p}*{l}{p}*{kr} {p}{ek}*{p} {g}{v}{fi}{s} CRK A

{rkh}{p}{p}{ailvp}{p}{ailvp}{k}{p} {p}{iv}{ep}{iv}{a} {a}{a}{s}{fi} Cortactin

{r}{l}{p}*{l}{p} {p}{ek}*{p} {g}{v}{fi}{s} Synaptojanin I

{rkh}{p}{p}{ailvp}{p}{ailvp}{k}{p} {p}{iv}{dp}{p}{fv} {p}{iv}{dp}{p}{fv} Shank

Similarly, we identify the individual motifs in our population of discovered 535 stable and

significant motif pairs that match closely with a binding motif in the literature. Then,

for each of such matched motifs, we verify whether the motif on the other side of the

corresponding motif pairs can match in the domains known to bind the particular motif.

We give full details to see how they are discovered, where their origins are, and what the

biological significance is.

The first example motif pair is

MPrexample1 = {{l}{dn}{l}{l}, {ek}{lv}{g}{d}{g}}.

Its origin is located at the so-called pdb:3daa protein complex. Specifically, the motif

{l}{dn}{l}{l} is evolved from the segment lnll at the chain A of the pdb:3daa complex,

indexed from 147 to 150 residues in the chain A. The motif {ek}{lv}{g}{d}{g} is rooted

at the segment yqfgdg at the chain B of the pdb:3daa complex, indexed from 24 to 29

residues in the chain B. See Figure 4.12.

The segment pair, (lnll,yqfgdg) between chain A and chain B, is a maximal contact

segment pair. We use Figure 4.13, abstracted from Figure 4.12, to demonstrate it.

This maximal contact segment pair (lnll,yqfgdg) is then generalized to the following

starting motif pair MPrstart1

MPrstart1 = {{l}{dn}{l}{l}, {ek}{lv}{g}{d}{g}}

for the function fD. During the generalization, the residues in the segment pair may

be extended to their structure interchangeable residues (or be removed in the margins).

More specifically, the residue n is extended to residue d, the residue y is removed it is not
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Figure 4.12: Three-dimensional structure of an interaction site in the pdb:3daa protein

complex, a D-amino acid aminotransferase in species thermophilic bacterium ps3. Chain

A is in green color, Chain B is in blue color.

G29

L147Chain A

Chain B

Y24 D28G27F26Q25

L150L149N148

Figure 4.13: A maximal contact segment pair discovered from the pdb:3daa complex. A

line between Chain A and Chain B represents that the two corresponding amino acids are

close in distance.

conserved at this position, the residue q is replaced by e and k and the residue f is replaced

by l and v (Azarya-Sprinzak et al., 1997). After generalization, the overall structures of

the mutants are usually maintained even with the considerable changes of sequences, thus,

the interactions between the mutated segments are still expected to maintain1.

Interestingly, we found that f(MPrstart1) = MPrstart1 = MPrexample1. That is, this

starting motif pair MPrstart1 itself is a stable motif pair.

1As partial evidence, segment pair (ldll,evgdg) occurs at eight complexes (pdb:1jez, pdb:1k8c, pdb:1mi3,

pdb:1r38, pdb:1sm9, pdb:1ye4, pdb:1ye6, pdb:1z9a) in the current PDB database, moreover, the segment

ldll locates at the interaction sites of these eight complexes.
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We found that this stable motif pair MPrexample1 is statistically significant after ex-

amining its support level and P-score against random motif pairs. The support of motif

{l}{dn}{l}{l} is 265 in P, the support of motif {ek}{lv}{g}{d}{g} is 13 with respect to

the same protein set P. The support of MPrexample1 as a pair is 58 in the protein interac-

tion sequence data set D. The P-score of MPrexample1 as a pair is 6.15 with respect to the

data set D. Then, we generated 1000 random motif pairs according to MPrexample1, using

the method described in Section 4.5. For these 1000 random motif pairs, the average sup-

port of the random motifs corresponding to {l}{dn}{l}{l} is 32.91, the average support

of the random motifs corresponding to {ek}{lv}{g}{d}{g} is 4.41. The average support

for those 1000 motif pairs is 1.83 in the protein interaction sequence data set D. From

these results, we can see that MPrexample1 has occurrence much more than its random

expectation either in single motifs or in pairs. Hence, the stable motif pair MPrexample1 is

not a random result indeed.

We also found much biological significance of the motif pair MPrexample1. Doray and

Kornfeld (2001) found a protein motif MDK = {l}{l}{d}{l}{l}, a functional variant of

the {l}{l}{n}{l}{d} motif within the beta 1 subunit of AP-1, was biologically confirmed

to bind to the terminal domain of the clathrin heavy chain. From the sequence of this

terminal domain, we find that there exists a segment elgd near the end part of this domain.

Comparing these biological results and our computational results, we can see that

• MDK = {l}{l}{d}{l}{l} is similar to the left motif {l}{dn}{l}{l} of our motif pair

MPrexample1.

• The segment elgd matches well with our right motif {ek}{lv}{g}{d}{g} of MPrexample1.

The precise position of the segment elgd is from positions 462 to 465 at the end of the

globular terminal domain (from 1th to 479th) of clathrin heavy chain 1 of human.

• Besides, our left motif {l}{dn}{l}{l} is similar to {l}{l}{d}{l}{l} and {l}{l}{n}{l}{d}

both of which share the same functions.
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The second example motif pair is

MPrexample2 = {{g}{ly}{d}{iy}{iv}, {r}{g}{l}{g}{l}{v}{r}{f}{l}}.

Its origin is located at the so-called pdb:1ors protein complex (Jiang et al., 2003). Specif-

ically, the motif {g}{ly}{d}{iy}{iv} is evolved from the segment gydyf at the chain B of

the pdb:1ors complex, indexed from 99 to 103 residues. The motif {r}{g}{l}{g}{l}{v}{r}{f}

is rooted at the segment aglglfrl at the chain C of the pdb:1ors complex, indexed from

111 to 118 residues. See Figure 4.14.

Figure 4.14: Three-dimensional structure of an interaction site in the pdb:1ors protein

complex, a complex between the kvap potassium channel voltage sensor and an fab in

species mouse and E. Coli., where Chain B is in blue color, and Chain C is in green color.

The segment pair, (gydyf ,aglglfr) between chain B and chain C, is a maximal contact

segment pair. We use Figure 4.15, abstracted from Figure 4.14, to demonstrate it. The

maximal segment pair is then generalized to the following starting motif pair X,

X = {{g}{ly}{d}{fiy}{fiv}, {r}{g}{l}{g}{l}{v}{dr}{fi}}

for the function fD. After one step of transformation by fD, this starting motif pair X

becomes the fixed point MPrexample2, i.e. fD(X) = MPrexample2.

We found that this motif pair MPrexample2 is statistically significant after examining

its support level against random motif pairs. The support of motif {g}{ly}{d}{iy}{iv} is
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y102 f103d101y100g99

a111 g112 l113 g114 l115 f116 r117 l118

Chain B

Chain C

Figure 4.15: A maximal contact segment pair discovered from the pdb:1ors complex. A

line between Chain B and Chain C represents that the two corresponding amino acids are

close in distance.

15 in yeast protein set P, and the support of motif {r}{g}{l}{g}{l}{v}{r}{f} is 2 with

respect to the same protein set P. The support of MPrexample2 as a pair is 6 in the protein

interaction sequence dataset D. Then, we generated 1000 random motif pairs according to

MPrexample2, using the same method describe in Section 4.5. For these 1000 random motif

pairs, the average support of the random motifs corresponding to {g}{ly}{d}{iy}{iv} is

11.14, the support of every random motif corresponding to {r}{g}{l}{g}{l}{v}{r}{f} is

0. Consequently, the support for any of those 1000 motif pairs is also 0 in the protein

interaction sequence dataset D. From these results, we can see that MPrexample2 has

occurrence much more than its random expectation in single motifs or in pairs. Therefore,

the stable motif pair MPrexample2 is not a random result indeed.

We also found some biological significance of the motif pair MPrexample2. Pellicena and

Miller (2001) studied a protein motif MPM = {y}{d}{y}{v} within the protein p130Cas of

v-Src transformed cells. This motif was biologically confirmed to bind to the Src homology

2 (SH2) domain that is a protein domain with about 100 amino-acid residues in many

intracellular signal-transducing proteins (Russell et al., 1992). We had the following

observations after comparing these biological literature results with our computational

results:

• MPM = {y}{d}{y}{v} is similar to the left motif {g}{ly}{d}{iy}{iv} of our motif

pair MPrexample2.
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• The segment lvrf in the SH2 domain partially matches to our right motif

{r}{g}{l}{g}{l}{v}{r}{f}

of MPrexample2. The precise location of the segment lvrf is from positions 118

to 121 at the SH2 domain of the protein SH2A HUMAN , and from positions

139 to 142 at the SH2 domain of the protein SH2A MOUSE. At the left side

of the matched segments in the SH2 domain, there is a segment qgcy from 114

to 117 in SH2A HUMAN . The residue q at position 114 of this segment is a

structure interchangeable residue of r (Azarya-Sprinzak et al., 1997); the residue g

at position 115 exactly matches with the second residue in our motif; at position 116,

both residue c and l are hydrophobic residues that imply some structure similarity;

at position 117, both residue y and residue g are surface residues (charged/polar

residues). Similarly, we find a segment gcy from 136 to 138 in SH2A MOUSE.

Hereby, the right motif of MPrexample2 has five positions which are exact matches

and two positions which are compatible with the biological protein sequences (from

a domain of 92 residues).

• There are total 295 proteins containing SH2 domains, where the segment lvr occurs

in 139 of them. (This can be seen from the prosite: http://tw.expasy.org/

prosite/.) Moreover, the segment lvr locates near the most conserved region in the

domain, where the most conserved region is just between g—the second residue and

r—the last second residue. (See http://tw.expasy.org/cgi-bin/aligner?psa=

PS50001&color=1&maxinsert=10&linelen=0). This implies that the motif pair

we discovered is likely to be the most critical factor for the binding between the

{y}{d}{y}{v} motif in p130Cas and SH2 domain.

These literature validations indicate that the stable and significant motif pairs dis-

covered by our fixed-point based method would possess a strong biological meaning. An

important implication of this is that our discovered binding motif pairs are likely to be real

biological interaction sites. Therefore, this computational method would have a potential

guidance role to play for the identification of real biological interaction sites.
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4.7 Discussions

To tackle the computational difficulties in the fixed point model, we propose a heuristic

approach in this chapter. The approach can be regarded as an in-silico mutagenesis. In

both approaches, experimentally determined interaction sites are used as origins. They

are mutated and their binding affinities after mutations are examined. Consensus patterns

of affinity mutants are then summarized. In both approaches, the original interaction sites

are mutated either randomly or into structure-similar mutants. The difference is that the

binding affinities of mutants in mutagenesis are obtained directly through assays, while

the binding affinities of our motif pairs are evaluated as the stabilities or resistances upon

a transformation function.

In the heuristic approach, we use maximal contact segment pairs to represent in-

teraction sites in protein complexes. We require each residue in one segment having at

least one contact residue in the other segment. Biologically, it is unnecessary because

contact segment pairs are still valid even if a few residues among them are not in contact.

Computationally, however, our top-down recursive algorithm for finding maximal contact

segment pairs will no longer be valid without this constraint. Therefore, more work should

be carried out to explore the relaxation of this constraint while retaining the efficiency of

the algorithm, to reveal more significant binding motif pairs.

We call the maximal contact segment pairs with some relaxation as maximal gapped

contact segment pairs, while the previous ones are maximal continuous contact segment

pairs. To generate such gapped segment pairs, an extension strategy is possible. The

strategy is based on the principle that a maximal gapped contact segment pair most likely

contains some shorter maximal continuous contact segment pairs. Hereby, we can first

work out all maximal continuous contact segment pairs, using the algorithm described

in Section 4.2.2, then, extend them in both directions, examining whether the relaxed

constraints still hold, and stop until we fail to make further extensions.

The method to generate starting motif pairs using gapped maximal contact segment
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pairs is similar to that of maximal continuous contact segment pairs, except that all gaps

in the pairs are regarded as a ‘*’ character in the local alignment. The consensus searching

on the aligned sequence is carried out as before including the gapped positions, to capture

additional patterns.

In the heuristic approach, we examine the significance of the stable motif pairs by our

proposed measurements (Z-scores and P-scores). Alternatively, traditional measurements

like maximum-likelihood and expectation maximization can be applied to evaluate the

significance, as done by Wang et al. (2005) and Deng et al. (2002). However, they are

too complicated and time-consuming to be applied in our study. Hence, we propose our

own, to reduce the computing time while keeping the efficiency.

Another alternative to evaluate the significance is to compare our motif pairs with

the equal-length random patterns and to check the difference of occurrences in the same

dataset, as carried out in Section 4.5. However, the method is too computationally ex-

pensive since we need to go through a huge number of random patterns to guarantee that

the significance values are accurate.

Note that our measurements have several limitations. Recall that we assume each

interaction only contains one binding motif pair. In real circumstance, it is somewhat

simplified. In most cases, multiple binding motif pairs cooperate with each other to build

up a single interaction. Taking this into consideration, our computation will obviously

underestimate the values of the contributive supports. Another limitation of our mea-

surements is that we assume a large number of binding motif pairs before evaluating the

computation, which is not always available. As a result, the computation of significance

for a motif pair will be a little bit inaccurate.

4.8 Summary

Finally, we summarize this chapter. It is a computationally challenging problem to work

out a complete set of stable motif pairs from a large sequence dataset of interacting
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protein pairs for the fixed point model proposed in the previous chapter. To overcome the

computational difficulty, we present a heuristic approach that is guided by a biologically

reliable protein complex structural dataset. The key idea in the heuristic approach is

using maximal contact segment pairs to represent interaction sites in protein complexes

and generalizing the segment pairs into our crucial patterns—starting motif pairs that lead

to stable motif pairs by our transformation function. We have formulated the extraction

of maximal contact segment pairs from protein complexes as a novel computational search

and optimization problem, and have provided an efficient algorithm for the problem.

The stable motif pairs derived by the heuristic approach may still be insignificant.

To filter out insignificant ones, we present two measurements: Z-scores and P-scores, for

single motifs and motif pairs respectively. Z-scores are widely accepted measurements

but P-scores are novel measurement proposed by us. The significance of P-scores of motif

pairs is their unexpected contributive frequency in the same sequence dataset comprising

known interacting protein pairs. We have presented methods to compute them efficiently.

We have applied the heuristic approach to a huge real-life dataset and found many bi-

ologically interesting motif pairs. Our comprehensive comparison results have shown that

our discovered binding motif pairs are much more statistically significant than random

motif pairs, a result from the choice of starting motif pairs. We validate the discovered

binding motif pairs with binding patterns in literature which were determined by ex-

perimental methods, both for single motifs and motif pairs. The validations show good

matches between our motif pairs and protein/domain–motif interacting pairs reported in

the literature, which demonstrates the strength of our model.

Note that it is only a theory to use fixed points to model binding motif pairs. The

current satisfactory results may be caused by the starting of contact segment pairs in

protein complexes. It still needs further validations whether in general, the motif pairs

found by the fixed point theorem are real binding motif pairs.

As future work of this model, we intend to search for more effective methods to find

the general patterns for the fixed point model, or work on different functions fD to see
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whether it can be optimized in the modeling of binding motif pairs. On the other hand,

we are interested in collecting a comprehensive database about experimentally determined

interaction sites or interacting patterns and performing a systematic validation for our

discovered motif pairs. Meanwhile, we may also collaborate with biologists to confirm

some of our results using wet experiments.
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Chapter 5

Interacting Protein Group Pairs

5.1 Introduction

In Chapter 3 and Chapter 4, we present a fixed point model to discover binding motif pairs

from protein interaction sequence data and protein complex structural data. Although the

model is effective, it has several deficiencies: (1) The transformation function is crucial in

the model, but the current function fD is still too simple to emulate the real evolution; (2) It

is computationally difficult to find a complete solution even for the simple transformation

function fD; (3) The strategy proposed in Chapter 4 highly depends on the incomplete

protein complex structural data. Hence, we propose a new approach in this chapter.

The new approach discovers binding motif pairs only from protein interaction sequence

data. In the new approach, protein interactions in cells are modeled by a graph, namely

a protein interaction network (Schwikowski et al., 2000), in which a vertex is a protein

and an edge is the interaction between a protein pair. By observations, we find that there

exist many most-versus-most and even all-versus-all interaction subnetworks between two

groups of proteins in a protein interaction network. We term the latter that exhibit an all-

versus-all interaction as a pair of interacting protein groups. Such protein group pairs often
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imply some biological meanings such as shared functions or shared binding mechanisms

among proteins within the same groups due to the common interacting partners.

It is a challenging problem to discover all pairs of interacting protein groups from a

proteome-wide protein interaction network because the number of combinations of pro-

teins is exponential. From a graph theory perspective, interacting protein group pairs

are similar to maximal complete bipartite subgraphs which also represent a kind of full

connectivity between two vertices sets in a graph. The only difference between them is

that interacting protein group pairs may have inner interactions within protein groups but

maximal complete bipartite subgraphs strictly exclude such edges within the same vertices

sets in some studies. Even with the difference, the two problems have the same level of

time complexity through an easy transformation. Hereby, they are equivalent in complex-

ity since the transformation is not computationally dominant. Due to the equivalence,

several propositions about mining interacting protein groups can be obtained directly from

the studies of listing all maximal complete bipartite subgraphs in a graph (see Eppstein

(1994) for a review). For example, all pairs of interacting protein groups in a protein in-

teraction network can be enumerated in time O(α322αm), where α is the arboricity and m

is the number of proteins of the protein interaction network. Even though the algorithm

has a linear complexity to the number of proteins, it is not practical for large protein

interaction networks due to the large constant overhead (α can easily be around 10-20 in

practice) (Zaki and Ogihara, 1998).

Since there are very few algorithms that are efficient for all graphs in graph theory, we

study the problem practically from a data mining perspective. We interpret the adjacency

matrix of a protein interaction network into a transactional database and associate our

interacting protein groups with a data mining concept called closed patterns. Our main

contribution in this chapter is to find the enumerating all interacting protein group pairs of

a protein interaction network is equivalent to mining of closed patterns from the adjacency

matrix of the protein interaction network. Since the mining of closed patterns has been

extensively studied, there are many existing algorithms and implementations that can be

used to solve this problem (Bastide et al., 2000; Goethals and Zaki, 2003; Grahne and
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Zhu, 2003; Nicolas et al., 1999; Uno et al., 2004; Wang et al., 2003; Zaki and Hsiao, 2002).

The data structures of those algorithms are efficient and the mining speed is tremendously

fast in practice.

The rest of this chapter is organized as follows: In Sections 5.2 and 5.3, we provide the

basic definitions and implications about interacting protein groups and closed patterns.

In Section 5.4, we prove that there is a one-to-one correspondence between closed pattern

pairs and interacting protein group pairs for any simple protein interaction network. In

Section 5.6 and 5.6, we discuss some related works and conclude this chapter.

5.2 Definition of Interacting Protein Group Pairs

A protein interaction network G = 〈P, D〉, which is a graph, is comprised of a

set of proteins (vertices) P and a set of interactions (edges) D ⊆ P × P. Throughout

this chapter, we assume G is an undirected graph without any self-loop, called a simple

protein interaction network. In other words, we assume that (i) there is no interaction

(P ,P) ∈ D and (ii) for every (P ,Q) ∈ D, (P ,Q) can be replaced by (Q,P)—that is,

(P ,Q) is an unordered pair. Note that it is just to simplify the problem. A protein may

interact with itself in some cases, which forms a self-loop.

Two proteins P ,Q of a protein interaction network G are said to be adjacent if

(P ,Q) ∈ D—that is, there is an interaction between P and Q in G. The neighborhood

β(P) of a protein P in a protein interaction network G is the set of all proteins in G

that are adjacent to P—that is, β(P) = {Q | (Q,P) or (P ,Q) ∈ D}. The neighborhood

β(X) for a subset X of proteins in a protein interaction network G is the set of common

neighborhood of the proteins in X—that is, β(X) = ∩P∈Xβ(P). To make β(X) well-defined,

we define β(X) = P in case X = ∅.

If a protein interacts with all proteins in X, it must be in the neighborhood set β(X).

However, if a protein interacts with all proteins in β(X), it may not be in X. In this
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case, the subset X can be expanded by adding the protein P , while maintaining the

same neighborhood. Where to stop the expansion? We use the following definition of

interacting protein group pairs.

Definition 5.1. Let X, Y ⊆ P are two subset of proteins of G. If β(X) = Y and β(Y) = X,

then we call X and Y a pair of interacting protein groups.

If two protein groups X and Y are a pair of interacting protein groups, then every

protein in one set (X or Y) interacts with all proteins in the other set, and vice versa.

Also, a pair of interacting protein groups X and Y of G such that β(X) = Y and β(Y) = X

is maximal in the sense that there is no other pairs of interacting protein group X′ and

Y′ of G with X ⊆ X′ and Y ⊆ Y′ such that β(X′) = Y′ and β(Y′) = X′. To appreciate this

notion of maximality, we prove the proposition below.

Proposition 5.1. Let X and Y, X′ and Y′ be two interacting protein group pairs of G

such that X ⊆ X′ and Y ⊆ Y′. Then X = X′ and Y = Y′.

Proof. Suppose X and Y, X′ and Y′ are two interacting protein group pairs of G such that

X ⊆ X′ and Y ⊆ Y′. Since X ⊆ X′ and Y ⊆ Y′, we have β(X′) ⊆ β(X) and β(Y′) ⊆ β(Y).

Using the definition of interacting protein group pairs, we derive Y′ = β(X′) ⊆ β(X) = Y

and X′ = β(Y′) ⊆ β(Y) = X. Then X = X′ and Y = Y′ as desired.

Note that not every protein set is an interacting protein group because the partner

interacting protein group may not exist. Also note that not all interacting protein group

pairs are equally interesting. We would probably not be very interested in two groups

with a small size containing a single protein or just a few. In contrast, we would probably

be considerably more interested if one of the groups is large, or both of the groups are

large, to derive significant patterns from the groups. Hence, we can introduce the notion

of density on interacting protein group pairs.

Definition 5.2. A pair of interacting protein groups X and Y in a protein interaction

network G is said to be (τ1, τ2)-dense if |X| or |Y| is at least τ1, and the other is at least

τ2.
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Problem statement: Let a protein interaction network G = 〈P, D〉. The problem

is to find all pairs of frequent interacting protein groups X and Y that are (τ1, τ2)-dense,

where both τ1 and τ2 are positive integers.

5.3 Closed Patterns of Adjacency Matrices

The adjacency matrix of a protein interaction network is important in this study. Let

G be a simple protein interaction network with P = {P1,P2, . . . ,Pm}. The adjacency

matrix A of G is the m×m matrix defined by

A[i, j] =

 1 if (Pi,Pj) ∈ D

0 otherwise

Since G is a simple network (undirected without self-loop), A is a symmetric matrix

and every entry on the main diagonal is 0. Also, {Pj | A[k, j] = 1, 1 ≤ j ≤ m} = β(Pk) =

{Pj | A[j, k] = 1, 1 ≤ j ≤ m}.

The adjacency matrix of a protein interaction network can be interpreted into a

transactional database (DB) (Agrawal and Srikant, 1994). To define a DB, we first

define a transaction. Let I be a set of items. Then a transaction is defined as a subset

of I. For example, assume I to be all items in a supermarket, a transaction by a customer

is the items that the customer bought. A DB is a non-empty multi-set of transactions.

Each transaction T in a DB is assigned a unique identity id(T). A pattern is defined as

a set of items of I. A pattern may be or may not be contained in a transaction. Given a

DB and a pattern X, the number of transactions in DB containing X is called the support

of X, denoted πDB(X). We are often interested in patterns that occur sufficiently frequent

in a DB. Those patterns are called frequent patterns—that is, patterns X satisfying

πDB(X) ≥ τ , for a threshold τ > 0. So, by a pattern of a DB, we mean that it occurs in

DB at least once.
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Closed patterns are a type of interesting patterns in a DB. In the last few years,

the problem of efficiently mining closed patterns from a large DB has attracted a lot

of researchers in the data mining community (Bastide et al., 2000; Goethals and Zaki,

2003; Grahne and Zhu, 2003; Nicolas et al., 1999; Uno et al., 2004; Wang et al., 2003;

Zaki and Hsiao, 2002). Let I be a set of items, and DB be a transactional database

defined on I. For a pattern X ⊆ I, let fDB(X) = {T ∈ DB |X ⊆ T}—that is, fDB(X) are

all transactions in DB containing the pattern X. For a set of transactions DB′ ⊆ DB,

let g(DB′) =
⋂

T∈DB′ T =
⋂

DB′—that is, the set of items which are shared by all

transactions in DB′. Using these two functions, we can define the notion of closed

patterns. For a pattern X, CLDB(X) = g(fDB(X)) is called the closure of X. A pattern

X is said to be closed with respect to a transactional database DB iff CLDB(X) = X.

Let G be a protein interaction network with the protein set P = {P1,P2, . . . ,Pm}. If

each protein in P is defined as an item, then the neighborhood β(Pi) of Pi is a transaction.

Thus,

{β(P1), β(P2), . . . , β(Pm)}

is a DB. Such a special DB is denoted by DBG. The identity of a transaction in DBG

is defined as the protein itself—that is, id(β(Pi)) = Pi. Note that DBG has the same

number of items and transactions. Note also that Pi 6∈ β(Pi) since we assume G to be a

simple network (undirected without self-loop).

DBG can be represented as a binary square matrix. This binary matrix B is defined

by

B[i, j] =

 1 if Pj ∈ β(Pi)

0 otherwise

Since Pj ∈ β(Pi) iff (Pi,Pj) ∈ D, it can be seen that A = B. So, “a pattern of DBG” is

equivalent to “a pattern of the adjacency matrix of G”.

We define the occurrence set of a pattern X in DB as occDB(X) = {id(T) | T ∈

DB, X ⊆ T} = {id(T) | T ∈ fDB(X)}. It is straightforward to see that id(T) ∈ occDB(X)
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iff T ∈ fDB(X). There is a connection between the notion of occurrence sets and closed

patterns in any transaction database DB.

Proposition 5.2. Let C1 and C2 be two closed patterns of DB. Then C1 = C2 iff

occDB(C1) = occDB(C2).

Proof. The left-to-right direction is trivial. To prove the right-to-left direction, let us

suppose that occ(C1) = occ(C2). It is straightforward to see that id(T) ∈ occ(X) iff

T ∈ f(X). Then we get f(C1) = f(C2) from occ(C1) = occ(C2). Since C1 and C2 are

closed patterns of DB, it follows that C1 = g(f(C1)) = g(f(C2)) = C2, and finishes the

proof.

We discuss in the next section the relationships between the closed patterns of DBG

and the interacting protein groups of G.

5.4 Relationship between Interacting Protein Groups

and Closed Patterns

5.4.1 Relationships among Neighborhood, Occurrence Sets and

Closed Patterns

The occurrence set of a closed pattern C in DBG plays a key role in the interacting protein

group pairs of G. We introduce below some of its key properties.

There is a tight connection between the notions of neighborhood in a protein inter-

action network G and occurrence in the corresponding transactional database DBG.

Proposition 5.3. Given a protein interaction network G and a pattern X of DBG. Then

β(X) = occDBG(X).
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Proof. If P ∈ β(X), then P is adjacent to every protein in X. So, β(P) ⊇ X. Therefore,

β(P) is a transaction of DBG containing X. So, P ∈ occ(X).

If P ∈ occ(X), then P is adjacent to every protein in X. Therefore, P ∈ β(P ′) for

each P ′ ∈ X. That is, P ∈
⋂
P ′∈X β(P ′) = β(X).

There is also a nice connection between the notions of neighborhood in a protein

interaction network and that of closure of patterns in the corresponding transactional

database.

Proposition 5.4. Given a protein interaction network G and a pattern X of DBG. Then

β(β(X)) = CLDBG(X). Thus β ◦ β is a closure operation on patterns of DBG.

Proof. By Proposition 5.3, β(β(X)) = β(occ(X)) =
⋂

(P=id(T))∈occ(X)(β(id(T)) = T) =⋂
T∈f(X) T = g(f(X)) = CL(X).

The occurrence sets in DBG have a specific property, that is, they are all closed

patterns in DBG, with respect to the protein interaction network G.

Lemma 5.1. Let G be an undirected protein interaction network without self-loop. Let

C be a closed pattern of DBG. Then fDBG(occDBG(C)) = {β(P) | P ∈ C}.

Proof. As C is a closed pattern, by definition, then {P | P ∈ C} are all and only items

contained in every transaction of DBG that contains C. This is equivalent to that {P | P ∈

C} are all and only proteins of G that are adjacent to every protein in occ(C). This implies

that {β(P) | P ∈ C} are all and only transactions that contain occ(C). In other words,

f(occ(C)) = {β(P) | P ∈ C}.

Proposition 5.5. Let G be a protein interaction network and C a pattern of DBG. Then

occDBG(C) is a closed pattern of DBG.
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Proof. By Lemma 5.1, f(occ(C)) = {β(P) | P ∈ C}. So CL(occ(C)) = g(f(occ(C))) =⋂
f(occ(C)) =

⋂
P∈C β(P) = β(C). By Proposition 5.3, β(C) = occ(C). Thus occ(C) is a

closed pattern.

From Proposition 5.3 and 5.5, for every pattern C of DBG, β(C) is a close pattern

of DBG.

5.4.2 Number of Closed Patterns in Adjacency Matrices

Proposition 5.6. Let G be a protein interaction network and C a pattern of DBG. Then

C and its occurrence set has empty intersection. That is, occDBG(C) ∩ C = ∅.

Proof. Let P ∈ occ(C). Then P is adjacent to every protein in C. Since we assume G is a

protein interaction network without self-loop, P 6∈ C. Therefore, occDBG(C) ∩ C = ∅.

The above propositions above give rise to a couple of interesting corollaries below.

Corollary 5.1. Let G be a protein interaction network. Then the number of closed

patterns that appear at least once in DBG is even.

Proof. Suppose there are k closed patterns in DBG, denoted as C1, C2, ..., Ck. As per

Proposition 5.5, occ(C1), occ(C2), ..., occ(Ck) are all closed patterns of DBG. As per

Proposition 5.2, occ(Ci) is different from occ(Cj) iff Ci is different from Cj. So every

closed pattern can be paired with a distinct closed pattern by occ(·) in a bijective manner.

Furthermore, as per Proposition 5.6, no closed pattern is paired with itself. This is possible

only when the number k is even.

Corollary 5.2. Let G be a protein interaction network. Then the number of closed

patterns C, such that both C and occDBG(C) appear at least τ times in DBG, is even.
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Proof. As seen from the proof of Corollary 5.1, every closed pattern C of DBG can be

paired with occDBG(C), and the entire set of closed patterns can be partitioned into such

pairs. So a pair of closed patterns C and occDBG(C) either satisfy or do not satisfy the

condition that both C and occDBG(C) appear at least τ times in DBG. Therefore, the

number of closed patterns C, satisfying that both C and occDBG(C) appear at least τ

times in DBG, is even.

Note that this corollary does not imply the number of frequent closed patterns that

appear at least τ times in DBG is always even. A counter example is given below.

Example 5.1. Consider a DBG given by the following matrix:

P1 P2 P3 P4 P5

β(P1) 0 1 1 0 0

β(P2) 1 0 1 1 1

β(P3) 1 1 0 1 1

β(P4) 0 1 1 0 0

β(P5) 0 1 1 0 0

We list its closed patterns, their support, and their occ(·) counterpart patterns below:

support of X close pattern X Y = occ(X) support of Y

3 {P2,P3} {P1,P4,P5} 2

4 {P2} {P1,P3,P4,P5} 1

4 {P3} {P1,P2,P4,P5} 1

Suppose we take τ = 3. Then there are only 3 closed patterns—an odd number—that

occur at least τ times, viz. {P2,P3}, {P2}, and {P3}.



5.4. RELATIONSHIP BETWEEN PROTEIN GROUPS AND CLOSED PATTERNS 111

5.4.3 One-to-one Correspondence between Interacting Protein

Groups and Closed Patterns

Finally, we demonstrate our main result on the relationship with interacting protein group

pairs and closed patterns. In particular, we discover that every pair of a closed pattern C

and its occurrence set occDBG(C) yields a distinct pair of interacting protein groups of G.

Theorem 5.1. Let G be a simple protein interaction network (undirected without self-

loop). Let C be a closed pattern of DBG. Then C and occDBG(C) is a pair of interacting

protein groups of G.

Proof. By Proposition 5.6, C∩ occDBG(C) = ∅. By Proposition 5.3, we have occDBG(C) =

β(C). By Proposition 5.4, C = β(β(C)). By Proposition 5.3, we derive C = β(occDBG(C)).

Therefore, C and occDBG(C) is a pair of interacting protein groups.

Theorem 5.2. Let G be a simple protein interaction network (undirected without self-

loop). Let X and Y be a pair of interacting protein groups of G. Then, X and Y are both

a closed pattern of DBG, occDBG(X) = Y and occDBG(Y) = X.

Proof. Since X and Y is a pair of interacting protein groups of G, then β(X) = Y and

β(Y) = X. By Proposition 5.4, CL(X) = β(β(X)) = β(Y) = X. So, X is a closed pattern.

Similarly, we can get Y is a closed pattern. By Proposition 5.3, occ(X) = β(X) = Y and

occ(Y) = β(Y) = X, as required.

The above two theorems indicate that interacting protein group pairs of G are all

in the form of X and Y, where X and Y are both a closed pattern of DBG. Also, for

every closed pattern C of DBG, C and occDBG(C) is a pair of interacting protein groups of

G. So, there is a one-to-one correspondence between interacting protein group pairs and

closed pattern pairs.

We can also derive a corollary linking support threshold of DBG to the density of

interacting protein group pairs of G.
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Corollary 5.3. Let G be a simple protein interaction network (undirected without self-

loop). Then C and occDBG(C) is a (τ1, τ2)-dense interacting protein group pairs of G iff

C is a closed pattern such that C or occDBG(C) occurs at least τ1 times in DBG and the

other occur at least τ2 times in DBG.

The corollary above has the following important implication.

Theorem 5.3. Let G be a simple protein interaction network (undirected without self-

loop). Then C and occDBG(C) is a (τ1, τ2)-dense interacting protein group pair of G iff C

is a closed pattern such that C (occDBG(C)) occurs at least τ1 times in DBG and |C| ≥ τ2

(|occDBG(C)| ≥ τ2).

Proof. Suppose C and occDBG(C) is a (τ1, τ2)-dense pair of interacting protein groups of G.

By Theorem 5.2, C = occ(occ(C)). By definition of occ(·), π(occ(C)) = |occ(occ(C))| = |C|.

Substitute this into Corollary 5.3, we get C and occDBG(C) is a (τ1, τ2)-dense pair of

interacting protein groups of G iff C is a closed pattern such that C (occDBG(C)) occurs

at least τ1 times in DBG and |C| ≥ τ2 (|occDBG(C)| ≥ τ2) as desired.

Theorems 5.1 and 5.2 show that algorithms for mining closed patterns can be used to

extract interacting protein group pairs of undirected protein interaction networks without

self-loop. Such data mining algorithms are usually significantly more efficient at higher

support threshold. Thus Theorem 5.3 suggests an important optimization for mining

(τ1, τ2)-dense interacting protein group pairs. To wit, assuming τ1 > τ2, it suffices to mine

closed patterns at support threshold τ1, and then get the answer by filtering out those

patterns of length less than τ2.

5.5 Discussions

As proved in the last section, the mining of interacting protein groups can be transformed

into the mining of close patterns. We use efficient closed pattern mining algorithms such
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as FPCLOSE (Grahne and Zhu, 2003) or LCM (Uno et al., 2004) to achieve this goal.

First, we work out the set of closed patterns with respect to the large threshold. Then,

we compute the neighborhoods (occurrence sets) for those closed patterns with lengths no

smaller than the small threshold. To avoid duplications, we record the processed closed

patterns and their neighborhoods in a set and check the set whenever a new closed pattern

is processed.

Even with the above optimization, an interacting protein group pair may be traveled

twice. It is inefficient as one closed pattern implies the other. Moreover, many small

closed patterns need to be gone over before the larger ones are obtained, which is a waste

since the small ones will be filtered out finally. It is an interesting issue to prune the small

closed patterns earlier using the constraints on both closed patterns and their occurrence

sets. The close patterns which are impossible to extend some frequent interacting protein

group pairs can be pruned as early as possible. These issues are being studied by our

co-workers (Liu et al., 2006).

Recall that mining interacting protein group pairs is equivalent to listing all maximal

complete bipartite subgraphs (or maximal bipartite cliques in some literatures). There

are some recent works in the area. First, Makino and Uno (2004) investigated the problem

of enumerating all maximal bipartite cliques from a bipartite graph. Since their work is

limited to enumerating from only bipartite graphs while our work can work on any simple

protein interaction networks, ours is more general. Second, Zaki and Ogihara (1998)

observed that a transactional database DB can be represented by a bipartite graph G,

and also a relation that closed patterns (wrongly stated as maximal patterns in Zaki and

Ogihara (1998)) of DB one-to-one correspond to maximal bipartite clique of G. However,

our work is to convert a graph (a protein interaction network) G, including a bipartite

graph, into a special transactional database DBG, and then to discover all closed patterns

from DBG for enumerating all maximal bipartite subgraphs (interacting protein group

pairs) of G. Furthermore, the occurrence set of a closed pattern in Zaki’s work may not

be a closed pattern, but that of ours is always a closed pattern.
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The mining of maximal complete bipartite subgraphs is a model problem in graph

theory, so it has many applications in mathematics, electrical engineering, computer pro-

gramming, business administration, sociology, economics, marketing, biology, and net-

working and communications. The theoretical proof between maximal complete bipartite

subgraphs and closed patterns in this chapter can also benefit those applications. For

example, suppose there is a set of customers in a mobile communication network. Some

people have a wide range of contact, while others have few. Which groups of customers

(with a maximal number) have a full interaction with another group of customers? This

situation can be modeled by a graph where a mobile phone customer is a vertex and a

communication is an edge. Thus, a maximal bipartite subgraph of this graph corresponds

to two groups of customers between whom there exist a full communication. Another

similar example is studied in web mining (Andrei et al., 2000; Kumar et al., 1999; Mu-

rata, 2004) where web communities are modeled by bipartite cores. Using the results in

this chapter, these problems can all be solved efficiently by the mining of closed patterns.

5.6 Summary

Finally, we summarize the results achieved in this chapter. We have studied the problem

of listing all interacting protein group pairs from a protein interaction network. We

proved that this problem is equivalent to the mining of all closed patterns from the

adjacency matrix of the protein interaction network. More specifically, we prove, for a

simple protein interaction network G (undirected without self-loop): (i) that the number

of closed patterns in the adjacency matrix of G is even; (ii) that the number of the closed

patterns is precisely double the number of interacting protein group pairs of G; (iii) that

for every pair of interacting protein groups, there always exists a unique pair of closed

patterns that matches the two protein sets. Therefore, we can enumerate all interacting

protein group pairs using efficient algorithms for mining closed patterns, which have been

extensively studied in the data mining field. As the major focus, we demonstrate the

usage of interacting protein groups to discover binding motif pairs in the next chapter.
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Chapter 6

Binding Motif Pairs from Interacting

Protein Group Pairs

6.1 Introduction

In the previous chapter, we observe that there exist many interacting protein group pairs

in a protein interaction network that exhibit an all-versus-all interaction between two

groups in the pairs, we called them interacting protein group pairs. We demonstrated

that the mining of interacting protein group pairs from a protein interaction network can

be transformed into the mining of closed patterns in the adjacency matrix of the protein

interaction network. In this chapter, we show why and how those interacting protein

groups are applied to discover binding motif pairs at interaction sites on a proteome-wide

scale.

Figure 6.1 shows a typical example of such an interacting protein group pair from a

yeast interaction network (Schwikowski et al., 2000; Tong et al., 2002). The two protein

groups correspond to SH3 proteins and SH3-binding proteins. It reveals a binding pair

between SH3 domain and SH3-binding motifs. Generally, if a large enough subnetwork
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with most-versus-most or even all-versus-all interactions between two protein groups is

found in a protein network, a binding motif pair at interaction sites of the interacting

protein group pair can be discovered. That is because most proteins only contain a small

number of interaction sites (usually, 2 ∼ 6 for typical proteins (Liang et al., 1998)). Due to

the constraints of all-versus-all interactions between these two groups, it is expected that

there exists two groups of interaction sites from these two protein groups which interact

with each other for at least some occurrences. The interaction sites within the same group

should hold similar structures and possibly have a sequence motif as they have similar

interaction partners. These two groups of interaction sites and their corresponding motifs

can be easily identified using standard motif discovery methods from the sequence data

of the corresponding protein group. Then, a binding motif pair is formed, with which

to represent the corresponding interaction sites of the protein group pair. The principle

was also applied by Tan et al. (2006) to extract motif pairs from protein interaction

networks. They used a kind of multiple-versus-multiple relationship to extract their so-

called correlated motifs from the interaction networks.

More specifically, the binding motif pair from an interacting protein group pair is

the conserved pattern at the interaction sites of an interaction type. And most likely,

an interacting protein group pair belongs to such an interaction type. As mentioned in

Chapter 2, an interaction type is a set of conserved interaction sites sharing the common

binding mechanism (Aloy and Russell, 2004). Those conserved interaction sites are fa-

vorable interfacial scaffolds that have been repeatedly used in the evolution process by

proteins with different sequence, structure and function (Keskin et al., 2005; Keskin and

Nussinov, 2005). An example can be seen from cipa (PDB code 1aoh) and Dsred (PDB

code 1g7k)(See Figure 6.2(a)), two complexes which have similar interfaces between their

component chains A and B (Keskin et al., 2004), but which have dissimilar global struc-

tures and functions (See Figure 6.2(b)). Whenever the conserved pattern occurs in a

novel protein pair regardless of their homology, the two proteins are likely to interact—

this principle has been used by Tong et al. (2002) and Aytuna et al. (2005) to predict

protein interactions with an acceptable performance.
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Figure 6.1: An all-versus-all predicted interaction subnetwork (most are confirmed by

experiments) consisting of two groups of proteins, where one group contains six proteins

with SH3 domains and the other contains four proteins with SH3-binding motifs. The

data is from (Tong et al., 2002).

To assess the performance of the method using closed pattern mining and motif dis-

covery to discover binding motif pairs, we propose a systematic validation experiment on

comprehensive domain databases and domain–domain interaction databases. We compare

our single motifs with the domains in specific domain databases to study the relationship

between our motifs and domains. Even more importantly, we study the relationship be-

tween binding motif pairs and interacting domain pairs, by mapping our binding motif

pairs into domain–domain interacting pairs and analyzing the amount of overlaps between

our mapped domain pairs and those in domain–domain interaction databases.

The organization of the chapter is as follows. In Section 6.2, we describe the detailed

algorithm in addition to implementation issues. In Section 6.3, we depict the overall

results. In Section 6.4, we examine our results carefully by systematic validation exper-

iments. We report a case study in Section 6.5 and conclude this chapter in the final

section.
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Figure 6.2: The example of an interaction type, figure from (Keskin et al., 2004).

6.2 Generating Binding Motif Pairs from Interacting

Protein Group Pairs

6.2.1 Algorithm Issues

Our algorithm consists of two steps: The first step is to find all interacting protein group

pairs from a protein interaction network where this problem is transformed into the mining

of closed patterns using efficient algorithms such as FPCLOSE (Grahne and Zhu, 2003)

(see the previous chapter for details); The second step is to identify binding motif pairs

from those interacting protein group pairs.

Given a protein group and its associated sequences, we can get a motif (possibly with

flexible gaps) using standard motif discovery algorithms such as PROTOMAT (Henikoff

and Heinikoff, 1991) and MEME (Bailey and Elkan, 1995). So, we can easily obtain



6.2. GENERATING MOTIF PAIRS FROM PROTEIN GROUP PAIRS 119

a motif pair from a pair of interacting protein groups by executing the motif discovery

algorithm twice. In this chapter, we choose PROTOMAT (Henikoff and Heinikoff, 1991)

as the motif discovery algorithm because it is believed to be a good method to find local

conserved regions from a group of related proteins. PROTOMAT is also a key method

to construct BLOCKS database (Pietrokovski et al., 1996)—a comprehensive database of

highly conserved regions for homologous protein groups (domains).

The PROTOMAT method consists of two steps. In the first step, a modified version

of MOTIF program (Smith et al., 1990) looks for the presence of all spaced triplets (also

called motifs) in at least a subset of sequences from the given group of proteins. All

parameters required by the program can be determined automatically. In the second

step, a graph theory-based method called MOTOMAT (Henikoff and Heinikoff, 1991) is

used to determine the best set of blocks from this group of proteins. MOTOMAT works

in this way: (i) it merges overlapping candidate blocks which are alignments for the motifs

discovered by the MOTIF program; (ii) it refines the blocks by extending them in both

directions until similarity falls off, generating blocks with maximum scores; and (iii) it

determines the best set of blocks which are in the same order and do not overlap for a

critical number of sequences using well-known techniques in graph theory (Henikoff et al.,

1995).

6.2.2 Implementations

To assess the performance of our proposed method for mining binding motif pairs, we

performed several experiments on a PC with a CPU clock rate of 3.2GHz and 2GB of

main memory. As there are many physical protein interaction networks corresponding

to different species, here we take the simplest and most comprehensive yeast physical

interaction network as an example. The protein interaction network used in the exper-

iments was downloaded from DIP (database of interacting proteins) on Oct. 23, 2005,

consisting of 17511 experimentally determined interactions in Saccharomyces cerevisiae

(yeast) among 4959 proteins. We select 10640 physical interactions by excluding 6871
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interactions determined only by complex level experiments1. The adjacency matrix of the

protein interaction network is a transactional database with 4447 items and transactions,

with average transaction (neighborhood) size 4.79. To discover frequent closed patterns

from this database, we use FPClose* (Grahne and Zhu, 2003), a state-of-the-art algorithm

for mining closed pattern, for enumerating the interacting protein group pairs. Default

parameters are used for PROTOMAT (Henikoff and Heinikoff, 1991). To facilitate our

validations, we further term the motifs induced from closed patterns as left motifs (left

blocks), while the ones induced from the occurrence sets of the closed patterns as right

motifs (right blocks).

6.3 Results Overview

The results of protein groups (closed patterns) with respect to different support thresholds

are reported in Table 6.1 (5 is chosen as the final threshold), where the second column

shows the total number of frequent closed patterns whose support level is at least the

threshold number in the column one. The third column of this table shows the number

of closed patterns whose cardinality and support are both at least the support threshold;

all such closed patterns are termed qualified closed patterns. Only these qualified closed

patterns can be used to form interacting protein group pairs such that both groups meet

the thresholds. From the table, we can see:

• The number of all closed patterns (corresponding to those with the support threshold

of 1) is even. Moreover, the number of qualified closed patterns with cardinality no

less than any support level is also even, as expected from Corollary 5.2.

• The algorithm runs fast—the algorithm program can complete within 10 seconds for

all situations reported here. This indicates that enumerating all interacting protein

1immunoprecipitation, co-purification, tandem affinity purification (TAP), interaction adhesion assay,

genetic, electron microscopy, immunostaining, immunofluorescence, transient co-expression and mass

spectrometry
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group pairs from a large protein interaction network can be practically solved by

using algorithms for mining closed patterns.

• A so-called “many-few” property (Maslov and Sneppen, 2002) of protein interactions

is observed again in our experiment results. The “many-few” property says that:

a protein that interacts with a large number of proteins tends not to interact with

another protein which also interacts with a large number of proteins (Maslov and

Sneppen, 2002). In other words, highly connected proteins are separated by low-

connected proteins. This is most clearly seen in Table 6.1 at the higher support

thresholds. For example, at the support threshold 12, there are 4981 protein groups

that have full interactions with at least 12 proteins. But there are only 8 groups,

as seen in the third column of the table, that each contain at least 12 proteins and

that have full mutual interaction.

We choose τ = 5 (both τ1 and τ2), the average number of interactions per protein

in the yeast genome (Grigoriev, 2003), as the threshold for both protein groups in the

pairs. Under the threshold, the FPClose* algorithm outputs a total of 5349 non-redundant

pairs of interacting protein groups, by taking 4.35 seconds on our machine (including the

transformation). The mining based on the transformation idea is very efficient compared

with a naive search method which needs ∼ 33 minutes (455-fold more than the efficient

approach) to find all the protein groups. The implementation of the naive search contains

some optimization techniques.

The homology property within a group is an interesting issue. It can be estimated

simply by the sequence identity within the group—A value < 15% is often considered as

a good indicator for non-homology (Doolittle, 1981). We calculate all pairwise sequence

identities within a same protein group using CLUSTAL W package with default parame-

ters (Thompson et al., 1994). Then we use the average value of these pairwise sequence

identities as the sequence identity within the group. The distribution of the sequence

identities within the 10698 groups is shown in Figure 6.3. The expected value of the

sequence identities within the groups is 7.48%, with a standard deviation 1.33%. This is



CHAPTER 6. BINDING MOTIF PAIRS FROM PROTEIN GROUP PAIRS 122

Table 6.1: Closed patterns in a yeast protein physical interaction network

support threshold # of frequent closed patterns # of qualified closed patterns time in sec.

1 31642 31642 9.18

2 28771 26004 7.9

3 24316 20220 6.71

4 20747 15712 6.59

5 17377 10698 4.35

6 14390 6892 3.15

7 12001 4362 2.27

8 10066 2688 1.66

9 8465 1412 1.19

10 7155 538 0.87

11 6008 106 0.68

12 4981 8 0.62

13 4039 0 0.6

a good value indicating the non-homology within these groups. Therefore, these groups

and their underlying sequence motifs are unlikely to detect by standard methods based

on sequence homology (Sauder et al., 2000).

The PROTOMAT method outputs 5343 binding motif pairs from these 5349 pairs of

interacting protein groups by taking 3 hours. Of the protein groups 85% generate two

or three blocks. (Note that a group in BLOCKS contains 6.91 blocks on average.) Only

four left groups and two right groups failed to produce any valid motif, with a failure rate

< 0.2%. Totally, there are 11948 left blocks and 13004 right blocks. The average length

of these blocks is 11.05, with a standard deviation 5.06. Compared with BLOCKS where

the average length of blocks is 25.337 and the standard deviation is 12.897, our blocks are

more specific and match better with current knowledge about interaction sites, i.e., 10-20
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Figure 6.3: The distribution of the sequence identities within our 10698 groups.

residues in length (Sheu et al., 2005).

We treat the whole set of blocks generated by PROTOMAT from a protein group

rather than each individual block as a motif to reflect the cooperation among these blocks.

We expect that some interactions happen among the blocks from different sides of the

motif pair, but do not study the detailed interactions among these blocks in this chapter.

In our results, the average number of blocks per motif is 2.33, with a standard deviation

0.73, with details in Figure 6.4. The average number of proteins per motif is 7.01, with a

standard deviation 2.59, see Figure 6.5 for details.

Figure 6.4: The distribution of the block numbers within our 10698 groups.
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Figure 6.5: The distribution of the protein numbers within our 10698 motifs.

6.4 Validations

Currently, comprehensive databases for motif–motif interactions (binding motif pairs) are

hard to find but there are a handful of databases for domain–domain interactions such as

iPfam (Finn et al., 2005), 3did (Stein et al., 2005) and InterDom (Ng et al., 2003). Since

domains are known to involve in protein interactions and are closely related to motifs, we

compare our binding motif pairs with these domain pairs. The following two steps are

employed to illustrate the effectiveness of our algorithm.

• Compare all single motifs in our discovered binding motif pairs with all domains in

specific domain databases to obtain overall matches, i.e. to determine the number

of motifs that can be mapped to these domains and the overall correlation in the

portions that are mapped.

• Map our binding motif pairs into domain–domain interacting pairs to determine the

number of overlaps between our mapped domain pairs and those in the domain–

domain interaction database.
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Table 6.2: Databases used in our validation experiments

BLOCKS PRINTS Pfam iPfam

Version 14.0 37.0 16.0 18.0

Num. of domains 4944 1850 7677 2145

Num. of entries 24294 11170 7677 3045

6.4.1 Validations of Single Motifs

As our motifs are in the form of blocks, we need domain databases also in the form of

blocks for comparison. Currently, there are two major domain databases in the form of

blocks: BLOCKS (Pietrokovski et al., 1996) and PRINTS (Attwood and Beck, 1994).

Some information of these two domain databases are shown in the first two columns of

Table 6.2, where an entry corresponds to a block.

The comparison is conducted by a program called Local Alignment of Multiple Align-

ments (LAMA) (Pietrokovski, 1996) which is an effective tool to determine local simi-

larities between pairs of blocks. In the process, the method first transforms blocks into

position-specific scoring matrices (PSSMs) (Gribskov et al., 1987), which specify the pos-

sibilities for all residues in each column of the blocks. Then it utilizes Smith-Waterman

algorithm (Smith and Waterman, 1981) to determine the optimal local alignments for pairs

of PSSMs of the corresponding blocks, utilizing Pearson’s correlation coefficient (Pearson

and Lee, 1903) as a metric to measure the similarity between two columns. To estimate

the alignment scores with different lengths and to filter out the coincidental matches,

LAMA uses the Z-score as a significance measurement, where a Z-score between a pair

of PSSMs is defined as the number of standard deviations away from the mean score

generated by millions of shuffled blocks in the BLOCKS database.

In our study, we used the default threshold 5.6 for Z-score in LAMA to compare our

blocks with those in BLOCKS and PRINTS. If 95% of the positions of a block are in the

optimal alignment between this block and another block and the Z-score is no less than
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the threshold, we say there is a mapping from the former block to the latter one. If there

is a mapping from some blocks of a motif to some blocks of a domain, we say the motif

can be mapped to the domain. We have following results from this experiment:

• On average, each of our blocks maps to ∼ 3.08 blocks in the BLOCKS or PRINTS

databases. See more detailed report in the columns 2 and 3 of Table 6.3.

• The average correlation between the columns of our blocks and the columns from the

database in the optimal alignments is as high as 53.88%. See column 4 of Table 6.3

for details.

• Our motifs can be mapped to 4221 domains out of a total of 6794 domains in these

two databases, having a coverage of 62%. See Table 6.4. This result is interesting

as our blocks can only be mapped to 8582 blocks out of the total 35464 blocks in

these two databases, having a coverage < 24%. The interpretation from a biological

perspective is that most domains have about 40% of blocks as their interaction sites,

while others may be related to folding.

• Although only 59% (14620 out of 24952) of our blocks can be mapped to blocks

in BLOCKS and PRINTS, as high as 86% (9153 out of 10686) of motifs can be

mapped to domains in these two databases. See Table 6.5 for details.

Note that our groups and groups in BLOCKS and PRINTS are constructed in quite

different ways and their homology properties are also different. However, our comparison

results reveal high correlation between their resulted blocks. This correlation may origi-

nate from the common involvement of interactions for both our motifs and their domains.

This confirms the effectiveness of our method in some way.

6.4.2 Validations of Binding Motif Pairs

To assess whether our discovered binding motif pairs are indeed interaction sites, we

compare them with domain–domain interacting pairs. If our binding motif pairs represent
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Table 6.3: Statistics of mappings from our blocks to blocks in the BLOCKS and PRINTS

databases

# of # of mappings # of mappings Average

our blocks to BLOCKS blocks to PRINTS blocks correlation

Left blocks 11948 29357 8632 54.31

Right blocks 13004 30220 8738 53.42

Table 6.4: Statistics of blocks or domains in the BLOCKS or PRINTS databases that can

be mapped from our blocks or motifs

Mapped / total Mapped / total Mapped / total

# in BLOCKS # in PRINTS # in ANY

Blocks 6408 / 24294 2174/ 11170 8582 / 35464

Domains 3128 / 4944 1093/ 1850 4221 / 6794

Table 6.5: Statistics of blocks or motifs in our binding motif pairs that can be mapped to

blocks or domains in BLOCKS or PRINTS databases

total # # mapped # mapped # mapped

to BLOCKS to PRINTS to ANY

Blocks 24952 13859 8010 14620

Motifs 10686 8879 6464 9153
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interaction sites, they should be mapped to some domain–domain interacting pairs in

some databases. We choose iPfam (Finn et al., 2005) for this purpose. It consists of 3045

interacting pairs among 2145 Pfam domains derived from protein complexes in PDB.

The cross-links between our binding motif pairs and the domain–domain pairs in

iPfam is complicated. A reason is that the domain–domain pairs are represented by Pfam

entries. To find the cross-links, (1) we first map our motifs to domains (protein groups) in

the BLOCKS or PRINTS database, as shown in Section 6.4.1; (2) we then map a protein

group of BLOCKS to a protein group of InterPro (Apweiler et al., 2001) as there exists

a one-to-one mapping between an entry of BLOCKS and an entry of InterPro; (3) then

we use existing cross-links between protein groups of InterPro and domains of Pfam to

determine the cross-link between our motifs and Pfam domains. By this roadmap, we

can map our binding motif pairs into domain–domain pairs with Pfam domain entries.

Note that the association between PRINTS and Pfam is clear. Also note that the cross-

linking mapping between binding motif pairs and domain–domain pairs is not a one-to-one

mapping.

Using the above cross-link mapping, we compared our 5343 binding motif pairs with

the 3045 domain-domain pairs in the iPfam database, 47 binding motif pairs can be

mapped to 18 distinct domain pairs among 22 domains occurring in PDB complexes for

172 times (totally 105 distinct protein complexes).

Though the overlapping proportion seems modest, we assert that the result is signif-

icant because of the following:

• We read only interacting protein sequence pairs, while some predictions about in-

teraction sites can be confirmed by domain–domain interactions in PDB complexes.

• iPfam is a rather incomplete database, containing merely 3045 pairs among 2145

domains. Moreover, only 997 out of 4221 of our mapped domains are studied in

iPfam, as shown in Table 6.6.
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Table 6.6: Occurrences of our mapped domains in different databases

BLOCKS PRINTS Combined

BLOCKS/PRINTS domains 3128 1093 4221

Pfam domains 2305 144 2338

iPfam domains 975 87 997

• The binding motif pairs we discovered are taken only from the yeast genome while

iPfam covers a variety of species.

• Comparing with Interdom with 30037 putative interacting domain pairs (Ng et al.,

2003), our binding motif pairs can be mapped to 203 domain pairs, including 94

high-confidence ones.

6.5 A case study

The 5343 binding motif pairs that we discovered can be ranked according to their cor-

relation score in the mapping. Most of top-ranked binding motif pairs can be confirmed

by protein complexes. Here we report details of one such pair. Our purpose is to check

whether some block pairs in the motif pair can be aligned with a segment pair in a com-

plex containing the mapped domain pair, and then check whether the segment pair has

some contacts among their residues.

This motif pair is generated from the first pair of interacting protein groups. This

protein group pair generates three blocks on the left and one block on the right. The

first left block 1xxxxxxA contains 24 positions, while the right block 1xright contains 36

positions, as shown in Table 6.7.

Through the approach depicted in section 6.4.2, we map the block pair (1xxxxxxA,

1xright) into domain pair (PF01423,PF01423) in iPfam. Pfam database indicates that
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Table 6.7: Left block 1xxxxxxA aligning with the chain A and right block 1xright aligning

with the chain B of complex 1mgq, where capital letters are well aligned and lowercase

letters are skipped in the alignment

AC 1xxxxxxA; distance from previous block=(18,243)

BL LLE motif=[4,0,17] motomat=[1,80,-10] width=24 seqs=4

DIP:1330N ( 58) LRDGRMLFGVLRTFD QY A NLI LQD

DIP:2570N ( 206)TLEGRE I MIRNLSTE LL D ENLLRE

DIP:848N ( 19) LKNGE I I QGILTNVD NWM NLTLSN

DIP:883N ( 244)LQSGRR SKRDLSPEE QR R LQI RHA

pdb:1mgq A( 30) LKg dRE f r GVLk SFD Lh M NLvLn D

AC 1xright; distance from previous block=(6,52)

BL GNL motif=[3,0,17] motomat=[1,80,-10] width=36 seqs=5

DIP:1417N ( 12) IDK TI N QKVLI V LQS NRE FEG TLV GFD DFV NVI LED

DIP:1418N ( 53) LSD I I G KTVNVKLAS GLL YSG RLE S I D GFMNVALSS

DIP:1419N ( 22) LAKYKD SK I RVK LMGGKL VI G VLKGYD QLM NLV LDD

DIP:794N ( 7) FKTLVD QEVVVE LKNDI E I KG TLQ SVD QFL NLKLDN

DIP:903N ( 24) LKDYLN KRVV I I KVDGEC LI A SLN GFD KNT NLF I TN

pdb:1mgq A( 18) Lg n s LN S p Vi I KLKGDRE Fr G VLK SFD l h MNLV Ln D
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PF01423 is a LSM domain, and iPfam shows that one LSM domain interacts with another

LSM domain densely in 20 complexes such as pdb:1mgq, pdb:1h64. We take the complex

pdb:1mgq as an example to explain what we found. It has 7 chains each containing a LSM

domain. The three-dimensional structure of these 7 chains and their interactions can be

found in Figure 6.6 with reference (http://www.ebi.ac.uk/thornton-srv/databases/

cgi-bin/pdbsum/GetPage.pl?pdbcode=1mgq). We observed the following details:

• Our left block 1xxxxxxA can be well aligned at positions 30 to 53 within the LSM

domain of the chain A at the complex pdf1mgq, and our right block 1xright can be

well aligned at positions 18 to 53 of the chain B also within the LSM domain at the

same complex. See Table 6.7 for alignment details.

• The residue 47M (residue M at position 47) of the chain A interacts with residue

48N of the chain B in pdb:1mgq; another pair between residue 46H of the chain A

and residue 48N of the chain B is also spatially close. See Figure 6.7 for details about

the interactions between this segment pair (http://www.sanger.ac.uk/cgi-bin/

Pfam/detailed_interaction_view.pl?acc=PF01423&partner=PF01423&pdb=1mgq).

• The interaction pair (47M,48N) is well conserved in the complex pdb:1mgq—it

occurs in seven chain interactions out of a total of nine chain interactions. The

seven interactions are between chain A and chain B, between chain B and chain C,

. . . , and between chain G to chain A. Interestingly, this residue interaction located

in the middle of the domain is also highly conserved in other complexes containing

LSM domains, e.g. in the complex pdb:1h64.

6.6 Discussion and Summary

Our interacting protein group pairs are structurally similar to interacting domain profile

pairs proposed by Wojcik and Schachter (2001). But each of their domain profiles is the
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Figure 6.6: Three-dimensional structure of the pdb:1mgq complex.

summarization of a domain cluster, which is a set of domains sharing significant sequence

similarity and interacting with the same region of a certain protein. This approach replies

on protein-protein interactions with domain interaction annotations, which are not widely

available.

In our model, we require that pairs of interacting protein groups should always have

an all-versus-all relationship. This is a bit strict as it is vulnerable to handle incomplete

dataset. For the example in the Section 6.1, this strong requirement missed one SH3

protein as it binds to only three out of the four proteins in the other group (Tong et al.,

2002). Therefore, this strong requirement may miss many significant pairs, make the

discovered groups smaller, and may decrease the significance of the motifs. As a future

direction, we will consider most-versus-most relationship.

Other future works include new evaluation methods. For example, the predicted inter-

action sites in the blocks of binding motif pairs can be compared with known interaction

sites in some protein-protein interaction databases (Rain et al., 2001) or compared with

interaction sites in interface databases (Keskin et al., 2004). Also our binding motif pairs

can be compared with those learned from non-interacting protein pairs or from random
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Figure 6.7: Interactions between segment [30L, 53D] of the chain LSM A and segment

[18L,53D] of the chain LSM B in the pdb:1mgq complex (showing only the backbone).

protein pairs, to study their statistical significance, as shown in Section 4.5.

Finally, we summarize the main results achieved in the group based method. To

discover binding motif pairs only from the sequence data of interacting protein pairs,

we have proposed the new concept of interacting protein group pairs, where a protein

group may share a common interaction motif and a pair of protein groups may share a

binding motif pair at their interaction sites. We transformed the mining of interacting

protein groups into the mining of frequent closed patterns and then used standard motif

discovery algorithms onto these discovered interacting protein groups to generate binding

motif pairs in form of blocks. The high efficiency of this two-step approach is because of:

(1) In the discovery of interacting protein groups, we examine only interacting protein

pairs without checking their sequences, thereby dramatically reduce the complexity of

the problem; (2) By producing protein groups first, the discovery of interaction motifs

is greatly accelerated as we need not execute the NP-hard motif discovery algorithm on
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insignificant candidates of protein sets.

The systematic validation results of the discovered motif pairs indicate that our dis-

covered motifs have high correlation with domains in the existing domains databases.

Our discovered motif pairs can also be mapped into the domain–domain interacting pairs

in an experimentally validated domain–domain database with good matches. A few case

studies on the high-confidence motif pairs confirm that our method is effective.
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Chapter 7

Conclusions

As Chapter Two demonstrated, current techniques for determining protein interaction

sites, whether experimental or computational, are still at a preliminary stage. This dis-

sertation has rethought the problem and defined new patterns for the prediction of protein

interaction sites. Its hypothesis was that the correlation between the two sides of interac-

tion sites should be more important than the compositions on each side. We used binding

motif pairs to represent the correlated patterns of protein interaction sites and proposed

two different methods to discover them from various protein-protein interaction data.

Section 7.1 will summarize the two methods and the major results this dissertation

has achieved. Section 7.2 will point out the methods’ limitations. Future research issues

for motif pair discovery will be discussed at the end of this chapter.

7.1 Summary of Results

Chapters Three and Four proposed a fixed-point model for discovering binding motif

pairs from within protein-interaction sequence data and protein-complex structural data.

Chapter Three defined a point consisting of two traditional motifs and a transformation
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function closely related to a sequence dataset of interacting protein pairs. It concluded

that the function, especially with percent thresholds, is suitable for simulating the pattern

evolution in the interaction sites of protein-protein interactions.

Chapter Four proposed a heuristic method for reducing the huge amount of space in

the search for a complete set of fixed points. Its first step extracted continuous interaction

sites from protein complexes, formalized as maximal contact segment pairs, and then

generalized them to biologically significant starting points for the fixed-point model. To

evaluate the stable motif pairs, or fixed points, this had uncovered, the chapter proposed

P-scores as significance measurements, together with traditional Z-scores, to evaluate both

motif pairs and their single motifs, and presented an efficient method for computing the

measurements.

The remainder of the chapter reported the overall results of the heuristic fixed-point

model and confirmed the model’s effectiveness through random experiments and litera-

ture validations. Through a series of random experiments, the chapter showed that the

choice of maximal contact segment pairs and the choice of starting motif pairs led to the

statistical significance of the discovered stable motif pairs. Through a careful comparison

between these motif pairs and those in the literature, we illustrated that our motif pairs

are promising as real interaction sites.

Chapters Five and Six proposed another method for addressing the constraints of

limited amounts of complex data in the fixed-point model. The method discovered binding

motif pairs from a novel concept named interacting protein-group pairs, which reflects an

all-versus-all interaction between two protein groups from a protein-interaction network.

The all-versus-all interaction implies a shared binding mechanism within the groups.

Chapter Five also presented findings showing that the mining of interacting protein-

group pairs from a protein-interaction network is equivalent to the mining of closed pat-

terns from the adjacency matrix of the interaction network.

Chapter Six reported the carrying out of systematic validations between the discov-
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ered motif pairs and domain-domain interacting pairs. The validations revealed that

these motifs have high correlations with domains and the motif pairs match well with

experimentally examined domain-domain pairs. The results indicated that our method

based on interacting protein groups is an efficient technique for discovering patterns at

protein-interaction sites.

Overall, the two methods appear to be reasonable and promising. Various results

have confirmed the initial hypothesis.

7.2 Limitations

Although the fixed-point model combines different categories of protein interaction data,

the current solution is incomplete, highly dependant on the limited amount of protein

complex data. Moreover, the current transformation function may be too simple to emu-

late the real evolution in interaction sites.

Although the method based on interacting protein groups is theoretically complete

and makes full use of the abundant interacting-sequence data, the all-versus-all interac-

tions may not model protein groups with same binding mechanism perfectly and com-

pletely, because protein-protein interactions are regulated by complicated mechanisms

among multiple pockets or interaction sites, so all-versus-all interactions may not always

be achievable.

On the other hand, this method’s coverage is also a problem because of its strict

constraints, and some proteins may consequently not be covered by any protein group,

preventing the revelation of those proteins’ interaction sites. In addition, the biologi-

cal significance of the discovered protein groups should be carefully examined to avoid

spurious patterns caused by such imperfect experiments as TAP (Puig et al., 2001).

Since both methods have both limitations and advantages, a promising method should

be to combine their strengths. In the combined method, interacting protein groups would
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be identified first, then the fixed-point model would be applied to refine the motif pairs,

using a more comprehensive transformation function.

7.3 Further Research Issues

The two methods presented in this thesis constitute pioneering work in the research prob-

lem of discovering motif pairs, and suggest several worthwhile follow-up research projects

for the future.

One would involve the complete searching of fixed points. As Chapter Three showed,

even though the transformation function is in its simplest form, the search space remains

huge. We have left for the future this complicated problem of searching a full set of

fixed points under the current transformation function, or even under some other, more

advanced, transformation functions.

Another would involve the mining of most-versus-most relationships. As mentioned,

all-versus-all relationships may not accurately model interacting protein-group pairs. Most-

versus-most relationships seem likely to be more appropriate for modeling the protein

groups with common binding mechanisms, or interaction sites. Sim et al. (2006) called

the relationship quasi-bicliques, or quasi-bipartite. The mining of most-versus-most re-

lationships is much more computationally challenging and significant in data mining,

bioinformatics, and even in graph theory, as it supports many other fields, such as com-

munication networks and webs (Sim et al., 2006; Tan et al., 2006)

Yet another promising research direction would be the extension of the concept of

interacting protein groups. The concept of interacting protein groups can be extended

to achieve more biological significance, and for such applications as function prediction.

Moreover, we can check the biological significance of the generators, or key proteins in

closed patterns, in the interacting protein groups. The interacting protein groups can

additionally be extended to examine the significance of protein-DNA interaction networks.
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A fourth promising research direction would be the comparative study of the two

methods. Since each method is able to discover binding motif pairs from the same protein-

interaction data set, the results should be cross-examined for overlaps. Even when the

formats are different, motif pairs in the form of regular expressions can be transformed

into position-weight matrices if the amino acids in each position are treated equally. Thus,

the overall correlation can be evaluated through the local alignment of two motif pairs

using such tools as LAMA (Pietrokovski, 1996).

However, this method has obvious deficiencies in that our current fixed-point model

is an incomplete solution. Therefore, the comparison between the fixed-point model and

the model based on interacting protein groups is likely to lead to a poor coincidence rate.

Meanwhile, the all-versus-all model for interacting protein groups may also miss some

motif pairs, which causes further problems. Hence, the research for this dissertation did

not include the performing of such validations, leaving it to the future when complete

solutions are found for both methods.

A fifth area for possible future research involves the prediction of protein-protein

interactions from binding motif pairs. A major intention of motif pair discovery is to pre-

dict protein-protein interactions. However, it is not a trivial matter and these predictions

need many careful future considerations. These include the sufficient coverage of motif

pairs, a complicated binding model that includes whether a single motif pair or group of

motif pairs determines an interaction and how it or they do so, and the definition of the

occurrence of motif pairs. Aytuna et al. (2005) addressed some aspects of these issues.
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Appendices

Entrance for all the supplementary information

http://research.i2r.a-star.edu.sg/BindingMotifPairs

Data, source code of the fixed point model

http://sdmc.i2r.a-star.edu.sg/BindingMotifPairs/BioInformatics.htm

Data, source code and validation results of the method

based on interacting protein group pairs

http://research.i2r.a-star.edu.sg/BindingMotifPairs/resources/


