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Summary 
 Drug development aims at finding therapeutic compounds that possess 

desirable pharmacodynamic and pharmacokinetic properties and low toxicological 

profiles. Historically, inappropriate pharmacokinetic properties and side-effects have 

been the primary reasons for the failure of drug candidates in later stages of 

development. Thus tools for predicting pharmacokinetic and toxicological properties 

in early design stages are needed for fast elimination of compounds with undesirable 

properties so that development effort can be focused on the most promising 

candidates. As part of the effort for developing such tools, computational methods 

have been explored for predicting various pharmacokinetic and toxicological 

properties of pharmaceutical compounds. In particular, quantitative structure 

pharmacokinetic relationship (QSPkR) and qualitative structure pharmacokinetic 

relationship (qSPkR) methods have shown promising potential for performing these 

tasks by statistically analyzing the correlation between chemical structures and a 

specific pharmacokinetic, or toxicological (ADMET) property to derive statistical 

models or rules for predicting whether a drug candidate possesses a specific property 

or for predicting the activity level of the drug candidate.  

 Previously, QSPkR/qSPkR models were frequently built using datasets with a 

limited number of related compounds and by using linear statistical methods. Hence 

they may not be suitable for the prediction of ADMET properties of diverse groups of 

compounds and also ADMET properties that are controlled by multiple mechanisms. 

Thus it is of interest to examine the potential of using a larger number and more 

diverse groups of compounds and non-linear machine learning methods in improving 

the quality of QSPkR/qSPkR models. In this work, machine learning methods, such as 

support vector machines, support vector regression, and general regression neural 
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network, consensus modeling methods, larger number and more diverse groups of 

compounds, as well as compounds with known human ADMET data were used to 

develop QSPkR/qSPkR models for various ADMET properties. A novel method for 

identification of relevant physicochemical and structural properties of a compound 

from non-linear QSPkR/qSPkR models, which are traditionally regarded as black 

boxes, is also introduced.  

 The results show that the quality of QSPkR/qSPkR models can be improved 

by using the methods discussed in this work. The prediction capabilities of 

QSPkR/qSPkR models developed in this work for human intestinal absorption, p-

glycoprotein substrates, blood-brain barrier penetration, human serum albumin 

binding, milk-plasma ratio, cytochrome isoenzymes substrates and inhibitors, total 

body clearance, and genotoxicity are higher than those developed in earlier studies. In 

addition, machine learning methods were found to be useful for developing qSPkR 

models for torsade de pointes, a rare but serious adverse drug reaction, which has not 

been sufficiently explored in earlier studies.  
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CHAPTER 1: INTRODUCTION 1

Chapter 1 

Introduction 

  

 In Silico methods are increasingly employed to reduce the time and cost 

needed for evaluating the pharmacokinetics and toxicity of drug candidates. The most 

common In Silico methods are traditional linear statistical methods such as multiple 

linear regression. Recently, non-linear machine learning methods such as artificial 

neural networks and support vector machines have been evaluated for their 

usefulness for the prediction of pharmacokinetics and toxicological properties 

because of their success in many diverse fields such as data mining, image and speech 

recognition, and process control. The first section (section 1.1) of this chapter gives 

an overview of the application of in silico methods for pharmacokinetics and toxicity 

prediction. The motivation for this work and an outline of the structure of this 

document is given in the next two sections of this chapter (sections 1.2, 1.3). 

 

1.1 Application of in silico methods for pharmacokinetics and 

toxicity prediction 

1.1.1 Drug discovery process 

 Modern drug discovery efforts have primarily been based on the search and 

optimization of compounds that possess specific pharmacodynamic and 

pharmacokinetic properties, and on the test of their potential toxicological and side 

effects (Caldwell et al. 1995; Drews 2000; Park et al. 2000). Pharmacodynamics is 

the study of the biochemical and physiological effects of drugs and their mechanisms 
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of action (Hardman et al. 2002). For a drug to be effective, it must have optimal 

pharmacodynamic properties so that it can inhibit a disease process, correct the 

imbalances and brings about the normal functioning of the body. Pharmacokinetics is 

the study of the time course of a drug within the body and incorporates the processes 

of absorption, distribution, metabolism and excretion, which together with 

toxicological properties are referred to as ADMET properties (Smith et al. 2001b). A 

drug must have optimal pharmacokinetic properties so as to achieve sufficient 

concentration at target site while possibly limiting its distribution elsewhere so as to 

produce desired therapeutic action with minimum side effects.  

 The drug discovery process is typically a lengthy and costly process. The 

average time required for a drug to proceed from initial design effort to market 

approval is 13 years and the estimated average development cost of a new drug is 

US$802 million, with the preclinical phase and clinical phase costing US$335 million 

and US$467 million respectively (DiMasi et al. 2003). Traditionally, pharmacokinetic 

and toxicological properties of drug candidates have primarily been evaluated during 

later design stages, particularly in the expensive animal tests and clinical trials  (van 

de Waterbeemd et al. 2003). According to a recent report, approximately 40% of all 

drug failures during the clinical phase, excluding failures of anti-infectives, is due to 

poor pharmacokinetics (7%) or unacceptable toxicity (33%). If anti-infectives are 

considered, the percentage increases to approximately 60% with 39% and 21% due to 

poor pharmacokinetics and unacceptable toxicity respectively (Kubinyi 2003). To 

reduce the cost and time of drug development, there has been a paradigm shift such 

that ADMET properties are now considered and evaluated in increasingly earlier 

stages of drug discovery process. Thus methods for predicting these ADMET 

properties, particularly in the early design stages, are useful for facilitating drug 

 



CHAPTER 1: INTRODUCTION 3

development and drug safety evaluation (Drews 2000; Ekins et al. 2000b; White 

2000). 

 

1.1.2 Application of quantitative structure pharmacokinetics relationship 

(QSPkR) and qualitative structure pharmacokinetics relationship (qSPkR) 

models in ADMET prediction 

 As part of an effort to accelerate and reduce the cost of drug discovery 

processes, computational methods have been explored for predicting compounds that 

possess specific pharmacodynamic, pharmacokinetic or toxicological 

property (Katritzky et al. 1997; Manallack et al. 1999; van de Waterbeemd et al. 2003; 

Hansch et al. 2004). In particular, statistical learning methods have shown promising 

potential for performing these tasks by statistically analyzing the structural and 

physicochemical features of the compounds known to possess a particular property to 

derive explicit or hidden statistical models or rules for predicting the activity or 

property of new compounds (Manallack et al. 1999; Burbidge et al. 2001; Trotter et al. 

2003).  

 The development of QSPkR models have been instrumental for the early 

testing of ADMET properties of drug candidates. Hansch is one of the pioneers in 

exploring the usefulness of QSPkR models (Hansch 1972). His work on the use of the 

partition coefficient, log P, to model drug metabolism has generated a significant 

interest in applying QSPkR models for prediction of other ADMET properties. The 

initial QSPkR models were usually built from small congeneric groups of compounds 

with known in vivo ADMET data (Hansch 1972; Seydel et al. 1981; Toon et al. 1983; 

Markin et al. 1988). The results of these studies suggested that QSPkR models are 

potentially useful for the prediction of ADMET properties. However, the small 
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amount of available in vivo ADMET data limits the widespread development of 

QSPkR models. Subsequently, the development of combinatorial chemistry and high-

throughput screening using in vitro assays enable large numbers of closely related 

compounds to be rapidly synthesized and screened for their ADMET properties. This 

creates a wealth of in vitro ADMET data, which enables the evaluation of in silico 

methods, thereby increasing the confidence in the results obtained when these 

methods are applied to scarce human data (Clark et al. 2003).  

  QSPkR/qSPkR models have now been built for a number of ADMET 

properties. These include cellular permeability (van de Waterbeembd et al. 1996), 

intestinal absorption (Stenberg et al. 2000), bioavailability (Mandagere et al. 2003), 

active transport processes (Ekins et al. 2000c) and skin permeability (Abraham et al. 

1999), blood-brain barrier penetration (Ecker et al. 2004), milk-plasma ratio (Meskin 

et al. 1985), serum protein binding (Toon et al. 1983), volume of distribution (Toon et 

al. 1983), P450 isoenzyme substrates and inhibitors (Koymans et al. 1992; Ekins et al. 

1999a), first pass (Watari et al. 1988), total clearance (Toon et al. 1983), renal 

clearance (Toon et al. 1983), half-life (Markin et al. 1988), genotoxicity (Mosier et al. 

2003), carcinogenicity (Benigni et al. 2000), mutagenicity (Benigni et al. 2000), and 

QT prolongation (Muzikant et al. 2002). Table 1.1 and Table 1.2 give a list of some of 

these QSPkR/qSPkR models. There are many applications of these QSPkR/qSPkR 

models. Some qSPkR models, such as the Lipinski’s rule of five (Lipinski et al. 1997), 

are useful as computational filters for the high-throughput screening of chemical 

libraries for potential drug leads with acceptable ADMET properties. QSPkR/qSPkR 

models that identify pharmacophoric models of metabolic enzymes are useful in the 

rational design of drug candidates to avoid potential drug-drug interactions (Ekins et 

al. 2000a). Those models that estimate the pharmacokinetics behavior in humans, 
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such as the bioavailability (Mandagere et al. 2003) and milk-plasma 

ratio (Agatonovic-Kustrin et al. 2002), are useful for determining the appropriate 

starting dose during the clinical phase or to evaluate the potential risk to the infant.  



 

Table 1.1 Performance of classification-based statistical learning methods for predicting compounds of specific pharmacokinetic or 
toxicological property. 
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Reported prediction 

accuracy 

Property Method Molecular descriptors Number of 

compounds in 

training set 

Validation method a

SE (%) SP (%) Q (%)

Reference 

LDA TOPS-MODE 82 Validation set (127) 95.5 76.5 92.9  (Pérez et al. 2004) 

C-SAR Simple physicochemical parameters 977 Training set (977) 97.0 81.7 95.7  (Zmuidinavicius et al. 

2003) 

PNN Log P, MR, TOP 76 Validation set (10) 100.0 50.0 80.0  (Niwa 2003) 

Human intestinal 

absorption (HIA)

 

SVM Simple molecular properties, molecular 

connectivity and shape, E-state, Q-C, 

GEO 

196 5 fold CV (196) 90.0 80.7 86.7  (Xue et al. 2004b) 

ORMUCS Log P, structural 232 Validation set (40) - - 60.0  (Yoshida et al. 2000) Bioavailability 

 Adaptive fuzzy 

partition 

CON, information, TOP, E-state, 

physicochemical, ELE 

352 Validation set (75) - - 64.0  (Pintore et al. 2003) 

P-gp substrate SVM Simple molecular properties, molecular 

connectivity and shape, E-state, Q-C, 

GEO 

142 Validation set (25) 84.2 66.7 80.0  (Xue et al. 2004c) 

 



 

MLR Daylight, thermodynamic, spatial, 

structural, TOP, charge 

48 Validation set (150) 81.0 95.8 88.0  (Lobell et al. 2003a) 

Discrimination 

function analysis 

TOP, substructures, GEO, Q-C 28 LOO (28) 100.0 91.7 96.4  (Basak et al. 1996) 

PLS Log P, PSA, E-state 58 Validation set (181) 85.7 46.7 66.3  (Subramanian et al. 2003) 

PLS-DA ADME screen, geometry, topology, 

VAMP electronic parameters, VAMP 

energy parameters, Sybyl surface areas

1696 Validation set (82) 90.0 92.0 91.0  (Adenot et al. 2004) 

SUBSTRUCT Substructures 8678 10 fold CV (8678) 83.3 71.2 76.3  (Engkvist et al. 2003) 

Bayesian neural 

network 

CON, log P, ISIS fingerprint >73000 Validation set (84) 94.7 73.9 83.3  (Ajay et al. 1999) 

PCA VolSurf 110 Validation set (120) 90.9 64.8 71.7  (Crivori et al. 2000) 

Structural 172 Validation set (304) 78.9 60.4 76.0  (Trotter et al. 2001) 

VolSurf 238 Validation set (238) 91.8 68.5 86.6  (Trotter et al. 2003) 

BBB penetration

 

SVM 

 

MW, lipophilicity, H-bond 274 Validation set (50) 82.7 80.2 81.5  (Doniger et al. 2002) 

CYP3A4 

inhibitor 

PLS CATS, TOP, ELE, count, structural, 

atom types 

311 Validation set 1 (50) 

Validation set 2 (10) 

93.1 

100.0 

85.7 

66.7 

90.0 

90.0 

 (Zuegge et al. 2002) 
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ANN Unity fingerprint 218 Validation set (72) 91.7 88.9 90.3  (Molnar et al. 2002) 

Consensus SVM DRAGON 602 Validation set (100) 92.0 97.3 96.0  (Yap et al. 2005a) 

Consensus 

recursive 

partitioning 

TOP, E-state, physicochemical, 

fragment keys, 1D similarity scores 

100 Validation set (51) 100 76.0 80.0  (Susnow et al. 2003) CYP2D6 

inhibitor 

 

Consensus SVM DRAGON 602 Validation set (100) 90.0 95.0 94.0  (Yap et al. 2005a) 

CYP2C9 

inhibitor 

Consensus SVM DRAGON 602 Validation set (100) 88.9 96.3 95.0  (Yap et al. 2005a) 

CYP2D6 

substrate 

Consensus SVM DRAGON 602 Validation set (100) 98.2 90.9 95.0  (Yap et al. 2005a) 

CYP3A4 

substrate 

Consensus SVM DRAGON 602 Validation set (100) 96.6 94.4 95.0  (Yap et al. 2005a) 

CYP2C9 

substrate 

Consensus SVM DRAGON 602 Validation set (100) 85.7 98.8 97.0  (Yap et al. 2005a) 

KNN TOP, GEO, ELE, PSA 120 Validation set (20) 66.7 92.9 85.0  (Mosier et al. 2003) Genotoxic  

 Consensus KNN TOP, GEO, ELE, Q-C, CPSA, H-bond, 

nitrogen-specific 

334 3 fold CV (334) 69.3 74.1 72.2  (Mattioni et al. 2003) 
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Consensus model 

(KNN, LDA, PNN) 

TOP, GEO, ELE, CPSA, H-bond 227 3 fold CV (227) 73.8 84.3 81.2  (He et al. 2003) 

SVM Simple molecular properties, molecular 

connectivity and shape, E-state, Q-C, 

GEO 

577 Validation set (123) 77.8 92.7 89.4  (Li et al. 2005a) 

Torsade de 

pointes causing 

compound 

SVM LSER 271 Validation set (78) 97.4 84.6 91.0  (Yap et al. 2004) 
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Abbreviations: C-SAR - classification structure-activity relations; ORMUCS – ordered multicategorical classification method using the simplex technique; 
PLS-DA – partial least squares-discriminant analysis; TOPS-MODE – topological substructural molecular design; MR – molar refractivity; TOP – 
topological; E-state – electrotopological state indices; Q-C – quantum-chemical; GEO – geometrical; CON – constitutional; ELE – electronic; PSA – polar 
surface area; MW – molecular weight; H-bond – hydrogen bonding capabilities; CPSA – charged polar surface area; LSER – linear solvation energy 
relationship; CV – cross validation 
a – number in parenthesis denotes the number of compounds used for model validation. 

 



 

Table 1.2 Performance of regression-based statistical learning methods for predicting compounds of specific pharmacokinetic or toxicological 
property. 
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Property Activity Method Molecular descriptors Validation methoda Reported prediction statistics Reference 

LSER Training set (38) 

Validation set (131) 

r2=0.82, q2=0.77, SE=15, F=53 

RMSE=14, MAE=11 

 (Zhao et al. 2001) MLR 

 

Physicochemical, structural fragment Training set (417) 

Validation set (50) 

r2=0.79, SE=12.34, F=38.83 

r2=0.79, SE=12.32 

 (Klopman et al. 

2002) 

Sigmoidal PSA Training set (20) r2=0.94, RMSE=9.2%  (Palm et al. 1997) 

Log P, molecular size, H-bond, counts Training set (16) 

Validation set (63) 

r2=0.55, q2=0.45 

RMSE=28.6 

 (Oprea et al. 

1999) 

PLS 

 

Atom type Training set (169) r2=0.921, q2=0.787  (Sun 2004) 

TOP, ELE, GEO, CPSA, H-bond Training set (67) 

Validation set (10) 

RMSE=0.4, MAE=6.7 

RMSE=16.0, MAE=11.0 

 (Wessel et al. 

1998) 

CON, TOP, chemical, GEO, Q-C Training set (67) 

Validation set (10) 

RMSE=0.590 

r2=0.802, RMSE=0.425 

 (Agatonovic-

Kustrin et al. 

2001) 

HIA 

 

%FA 

 

ANN 

 

TOP Training set (396) 

Validation set (185) 

r2=0.92, RMSE=9.1, MAE=7.3 

r2=0.80, RMSE=11.8, MAE=9.8 

 (Votano et al. 

2004) 

 



 

GRNN Log P, MR, TOP Training set (67) 

Validation set (10) 

RMSE=6.5 

RMSE=22.8 

 (Niwa 2003) 

FA CART Structural Training set (899) 

Validation set 1 (362) 

Validation set 2 (67) 

Validation set 3 (90) 

Validation set 4 (37) 

AAE=0.120 

AAE=0.169 

AAE=0.170 

AAE=0.200 

AAE=0.140 

 (Bai et al. 2004) 

MolSurf Training set (13) 

Validation set (7) 

r2=0.903, q2=0.685, RMSE=0.523 

RMSE=0.488 

 (Norinder et al. 

1999) 

PLS 

 

TOP Training set (13) 

Validation set (7) 

r2=0.903, q2=0.818, RMSE=0.523 

RMSE=0.413 

 (Norinder et al. 

2001) 

logit(%FA) 

 

SVR Log P, MR, E-state Training set 

Validation set 

RMSE=0.445, MAE=0.404 

RMSE=0.372, MAE=0.290 

 (Norinder 2003) 

Regression Substructure counts Training set (591) 

2000 runs of 80/20

splits (591) 

 r

r2=0.71, q2=0.63, RMSE=17.92 

2=0.58, RMSE=20.40 

 (Andrews et al. 

2000) 

Bioavailability

 

%F 

 

MLR Bulk properties, solubility parameters, Training set (159) r2=0.352, q2=0.254  (Turner et al. 
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Q-C, CON, TOP Validation set (10) r2=0.72 2003a) 

ANN CON, TOP, chemical, GEO, Q-C, bulk 

properties, solubility parameters 

Training set (137) 

Validation set (15) 

r2=0.736, RMSE=19.21 

r2=0.680, RMSE=20.47 

 (Turner et al. 

2004a) 

CODES neural 

network 

CODES Training set (28) q2=0.90  (Dorronsoro et al. 

2004) 

P-gp inhibitor log(1/EC50) PLS SIBAR Training set (100) r2=0.731, q2=0.661  (Klein et al. 2002) 

MW, log P Training set (20) r2=0.691, SE=0.439, F=40.23  (Young et al. 

1988) 

LSER Training set (57) r2=0.907, SE=0.197, F=99.2  (Abraham et al. 

1994) 

Solvation energy Training set (55) r2=0.672, SE=0.41, F=108.3  (Lombardo et al. 

1996) 

MW, log P Training set (33) r2=0.897, SE=0.126, F=131.1  (Kaliszan et al. 

1996) 

H-bond Training set (20) r2=0.723, SE=0.0012, F=46.93  (Segarra et al. 

1999) 

BBB 

penetration 

 

logBB 

 

MLR 

 

PSA Training set (45) r2=0.841, F=229  (Kelder et al. 
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1999) 

PSA, log P Training set (55) 

Validation set 1 (5) 

Validation set 2 (5) 

r2=0.787, SE=0.354, F=95.8 

MAE=0.14 

MAE=0.24 

 (Clark 1999) 

PSA Training set (45) r2=0.95  (Ertl et al. 2000) 

Solvation free energy Training set (55) 

Validation set 1 (7) 

Validation set 2 (5) 

Validation set 3 (25) 

r2=0.72, SE=0.37 

MAE=0.16 

MAE=0.14 

MAE=0.37 

 (Keserü et al. 

2001) 

MW, molecular lipoaffinity Training set (55) 

Validation set (11) 

r2=0.790, q2=0.763, SE=0.35, F=97.7 

r2=0.838, SE=0.30 

 (Liu et al. 2001) 

LSER Training set 1 (148) 

2 fold CV (148) 

5 runs of 80/20 splits

(148) 

 r

r2=0.745, q2=0.711, SE=0.343, F=69 

r2=0.718, SE=0.381 

2=0.733, SE=0.356 

 (Platts et al. 2001) 

Hydrogen bonding, molecular volume, 

solvent-accessible surface area 

Training set (76) r2=0.94, SE=0.173, F=311.307  (Kaznessis et al. 

2001) 

 



 

Spatial, structural, thermodynamic Training set (59) 

Validation set (12) 

Validation set (21) 

r2=0.757, q2=0.701, SE=0.408, F=42.135 

RMSE=0.29 

RMSE=0.50 

 (Hou et al. 2002) 

E-state Training set (102) 

Validation set (20) 

5 fold CV (102) 

r2=0.66, q2=0.62, SE=0.45, F=62.4 

RMSE=0.38, MAE=0.32 

RMSE=0.47, MAE=0.38 

 (Rose et al. 2002) 

Solute aqueous dissolution and 

solvation, solute-membrane interaction, 

general intramolecular solute 

Training set (56) 

Validation set (7) 

r2=0.845, q2=0.795 

RMSE=0.449, MAE=0.398 

 (Iyer et al. 2002) 

Daylight, thermodynamic, spatial, 

structural, TOP, charge 

Training set (48) 

Validation set (17) 

r2=0.837, q2=0.786, MAE=0.26, SE=0.19

r2=0.68, MAE=0.41 

 (Lobell et al. 

2003a) 

Hydrophobicity, hydrophilicity, 

molecular bulkiness 

Training set (78) 

Validation set 1 (13) 

Validation set 2 (22) 

r2=0.767, q2=0.736, SE=0.364, F=81.5 

r2=0.88, RMSE=0.26, MAE=0.16 

r2=0.61, RMSE=0.48, MAE=0.39 

 (Hou et al. 2003) 

4D molecular similarity measures Training set (104) 

Validation set (46) 

r2=0.69, q2=0.64 

r2=0.56 

 (Pan et al. 2004) 

Physicochemical, GEO, structural, TOP Training set (88) r2=0.864, q2=0.847, SE=0.392, F=60.98  (Narayanan et al. 
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Validation set 1 (13) 

Validation set 2 (15) 

RMSE=0.558, MAE=0.407 

RMSE=0.533, MAE=0.437 

2005) 

Least-median-

of-squares 

regression 

 Training set (86) r2=0.89, RMSE=0.31  (Cheng et al. 

2002) 

Log P, H-bond, PSA Training set (61) 

Validation set 1 (14) 

Validation set 2 (25) 

r2=0.730, q2=0.688, RMSE=0.424 

r2=0.576, RMSE=0.628 

r2=0.616, RMSE=0.789 

 (Feher et al. 

2000) 

PCR 

 

Atomic contributions to van der Waals 

surface area, log P, MR, partial charge 

Training set (75) r2=0.83, q2=0.73, RMSE=0.32  (Labute 2000) 

MolSurf Training set (28) 

Validation set 1 (28) 

Validation set 2 (6) 

r2=0.862, q2=0.782, RMSE=0.288 

RMSE=0.353 

RMSE=0.473 

 (Norinder et al. 

1998) 

TOP, molecular volume, MW, CON, 

H-bond 

Training set (58) 

Validation set 1 (12) 

Validation set 2 (22) 

r2=0.850, q2=0.752, SE=0.318, F=102 

RMSE=0.235 

RMSE=0.408 

 (Luco 1999) 

PLS 

 

TOP Training set (28) r2=0.751, q2=0.696, RMSE=0.368  (Norinder et al. 
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Validation set (30) RMSE=0.375 2001) 

Log P, MW, MR, molar volume, H-

bond 

Training set (19) 

Validation set (37) 

r2=0.905, q2=0.791, RMSE=0.287 

RMSE=0.338 

 (Osterberg et al. 

2001) 

VolSurf Training set (79) r2=0.78, q2=0.65  (Ooms et al. 

2002) 

Log P, PSA, E-state Training set (58) 

Validation set (39) 

r2=0.846, RMSE=0.308, MAE=0.232 

r2=0.617, RMSE=0.413, MAE=0.499 

 (Subramanian et 

al. 2003) 

Atom type Training set (57) 

Validation set (13) 

r2=0.910, RMSE=0.502 

RMSE=0.326 

 (Sun 2004) 

CODES neural 

network 

CODES Training set (36) q2=0.88  (Dorronsoro et al. 

2004) 

Bayesian 

neural net 

Property-based, TOP indices, CIMI, 

atomic charges 

Training set (106) r2=0.76, q2=0.65, SE=0.54  (Winkler et al. 

2004) 

GRNN DRAGON Validation set (30) r2=0.701, RMSE=0.361  (Yap et al. 2005b) 

SVR Log P, MR, E-state Training set 

Validation set 

RMSE=0.242, MAE=0.200 

RMSE=0.439, MAE=0.298 

 (Norinder 2003) 

HSA binding log Khsa MLR E-state Training set (84) r2=0.77, q2=0.70, SE=0.29, F=43  (Hall et al. 2004) 
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10% CV (84) 

Validation set (10) 

r2=0.68 

r2=0.74, RMSE=0.32, MAE=0.31 

 

ELE, TOP, information-content, 

spatial, structural, thermodynamic 

Training set (84) 

Validation set (10) 

r2=0.78, q2=0.73 

r2=0.88 

 (Colmenarejo et 

al. 2001) 

GRNN DRAGON Validation set (18) r2=0.851, RMSE=0.202  (Yap et al. 2005b) 

  

SVR CON, TOP, GEO, electrostatic, Q-C Training set (84) 

Validation set (10) 

r2=0.94, RMSE=0.124 

r2=0.89, RMSE=0.222 

 (Xue et al. 2004a) 

log((1-fu)/fu) MLR Log P Training set (226) 

Validation set (94) 

r2=0.68, MAE=0.45 

r2=0.51, MAE=0.53 

 (Lobell et al. 

2003b) 

%fb Non-linear 

regression 

Log P Training set 1 (84) 

Training set 2 (44) 

Validation set (23) 

r2=0.803, MAE=0.104 

r2=0.786, MAE=0.055 

r2=0.830 

 (Yamazaki et al. 

2004) 

Protein 

binding 

 

fb ANN Atom and functional group counts, 

connectivity index differences, 

connectivity index quotients, charge 

indices, vertex counts, ramifications, 

Wiener number, MW, Log P 

Validation set (6) r2=0.745  (Turner et al. 

2004b) 
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ANN CON, TOP, molecular connectivity, 

GEO, Q-C, physicochemical, liquid 

properties 

Training set (123) r2=0.61, RMSE=0.781  (Agatonovic-

Kustrin et al. 

2002) 

Milk-plasma 

ratio 

 

M/P 

 

GRNN DRAGON Validation set (20) r2=0.677, RMSE=0.454  (Yap et al. 2005b) 

KNN TOP, physical properties, partial 

charge, pharmacophore feature, 

potential energy 

Training set (32) 

Validation set (6) 

q2=0.77 

r2=0.94 

 (Ng et al. 2004) 

ANN Atom and functional group counts, 

connectivity index differences, 

connectivity index quotients, charge 

indices, vertex counts, ramifications, 

Wiener number, MW, Log P 

Validation set (6) r2=0.731  (Turner et al. 

2004b) 

Total clearance

 

CLtot

 

GRNN Lipophilicity, ionization, molecular 

size, H-bond 

Training set (23) r2=0.775, q2=0.731  (Karalis et al. 

2003) 

Abbreviations: FA – fraction absorbed; F – bioavailability; BB – ratio of concentration of drug in brain to concentration of drug in blood; Khsa – binding 
affinity of drug to human serum albumin; fu – fraction of drug unbound in plasma; fb – fraction of drug bound in plasma; CART – classification regression 
tree; PCR – principal component regression; SIBAR – similarity based structure activity relationship; CIMI – chemically intuitive molecular index; 
3DMoRSE – 3D molecule representation of structures based on electron diffraction; ATS – Moreau-Broto autocorrelation; GETAWAY - geometry, 
topology, and atom-weights assembly; RDF – radial distribution function; WHIM – weighted holistic invariant molecular descriptors 
a – number in parenthesis denotes the number of compounds used for model validation. 
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1.1.3 In silico methods 

 There are a number of in silico methods that have been used to develop 

QSPkR/qSPkR models. Traditional statistical methods, such multiple linear regression 

and partial least squares, have been widely adopted for the development of 

QSPkR/qSPkR models because they can be easily used and the derived models can be 

easily interpreted. These methods are highly successful in developing QSPkR/qSPkR 

models by using small groups of congeneric compounds, which can be used in the 

modification of drug leads by identifying important physicochemical and structural 

properties which affect the ADMET properties. Studies have been conducted to apply 

these methods to develop QSPkR/qSPkR models by using larger and more diverse 

groups of compounds. The derived QSPkR/qSPkR models usually have lower 

prediction accuracies than those of QSPkR/qSPkR models developed by using small 

groups of congeneric compounds (Herman et al. 1994). This suggests that multiple 

mechanisms are involved in determining the ADMET properties of diverse groups of 

compounds and thus recent studies have explored methods based on non-linear 

relationships, such as machine learning methods, for constructing QSPkR/qSPkR 

models (Smith et al. 2001a).  

 Machine learning is the study of computer prediction, classification or analysis 

algorithms that improve automatically through experience (Mitchell 1997). Machine 

learning methods have been successfully used in many diverse fields with numerous 

applications such as pharmacodynamic properties prediction (Czerminski et al. 2001; 

Livingstone et al. 2003), protein function prediction (Cai et al. 2003), medical 

decision making (Veropoulos 2001), spam categorization (Drucker et al. 1999), 

detection of oil spills (Kubat et al. 1998), and speech recognition (Nuttakorn et al. 

2001). A reason for the widespread adoption of machine learning methods in different 
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fields is that they do not make any assumption about the nature of the relationship 

between the property to be predicted and the factors affecting that property. This 

enables complex relationships to be modeled accurately and thus improves the 

prediction accuracies of these models.  

 ‘Traditional’ machine learning methods, such as artificial neural networks and 

decision trees, have been explored for the development of QSPkR/qSPkR models for 

a number of ADMET properties. These include human intestinal absorption (Wessel 

et al. 1998; Bai et al. 2004; Wegner et al. 2004), bioavailability (Yoshida et al. 2000; 

Pintore et al. 2003; Turner et al. 2004a), blood-brain barrier penetration (Ajay et al. 

1999; Winkler et al. 2004), milk-plasma ratio (Agatonovic-Kustrin et al. 2002), serum 

protein binding (Gobburu et al. 1995; Turner et al. 2004b), volume of 

distribution (Gobburu et al. 1995; Turner et al. 2004b), P450 isoenzyme substrates 

and inhibitors  (Molnar et al. 2002; Susnow et al. 2003; Balakin et al. 2004), total 

clearance (Turner et al. 2004b), and genotoxicity (Maran et al. 2003; Mattioni et al. 

2003). The prediction or classification accuracies of these QSPkR/qSPkR models are 

usually better than those of QSPkR/qSPkR models developed by using traditional 

statistical methods (Manallack et al. 1999; Svetnik et al. 2005).  
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1.2 Motivation 

 There are three main objectives of this work. The first is to improve the 

quality of previous QSPkR/qSPkR models for ADMET prediction. In this work, four 

strategies will be used to achieve this objective. The first strategy is to apply newer 

machine learning methods, such as support vector machine (SVM), support vector 

regression (SVR), and general regression neural network (GRNN), for the 

development of QSPkR/qSPkR models. These methods have shown promising 

potential for predicting pharmacodynamic properties of drugs (Burbidge et al. 2001; 

Czerminski et al. 2001; Mosier et al. 2002; Huang et al. 2003) and it is of interest to 

compare these newer methods with ‘traditional’ machine learning methods, such as 

artificial neural networks and decision trees, for the prediction of ADMET properties. 

The second strategy is to employ consensus modeling to combine different 

QSPkR/qSPkR models. There may be several QSPkR/qSPkR models for prediction of 

a single ADMET property that are developed by using different in silico methods or 

different descriptors. Thus it is of interest to determine if combining these models into 

a consensus model will improve the overall prediction accuracies for the ADMET 

property. The third strategy is to use a larger number and more diverse groups of 

compounds for developing QSPkR/qSPkR models. Some of the previous 

QSPkR/qSPkR models were built using datasets with a limited number of related 

compounds and thus may are not suitable for prediction of ADMET properties of 

diverse groups of compounds. The last strategy is to use compounds with known 

human ADMET data for developing QSPkR/qSPkR models. The large number of 

QSPkR/qSPkR models developed by using in vitro or animal ADMET data has 

helped to improve the in silico methods and descriptors for developing QSPkR/qSPkR 

models. However, there are large, non-systemic variations of ADMET properties 
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across species for individual compounds and thus these previous QSPkR/qSPkR 

models may not be suitable for prediction of human ADMET properties. 

 The second objective is to improve on the interpretability of QSPkR models 

developed by machine learning methods. A common problem with these QSPkR 

models is that they are often complex with multiple parameters and weights. Thus it is 

difficult to determine which physicochemical and structural properties of a compound 

are important in determining its ADMET properties. Hence it will be useful to have a 

method which can identify the important physicochemical and structural properties. 

 The last objective of this work is to construct qSPkR models for important 

ADMET properties which have not received sufficient attention. An example of such 

ADMET properties is the potential of drug candidates to cause torsade de pointes, 

which is a rare but serious adverse drug reaction. 
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1.3 Thesis structure 

 A QSPkR/qSPkR model consists of three main components: (1) ADMET data, 

(2) physicochemical and structural descriptions of a compound, and (3) a statistical 

learning technique to correlate the first two components. In chapter 2, these three 

components are described and the methods used in this work for developing 

QSPkR/qSPkR models are given. Methods that are used for checking the validity and 

usefulness of QSPkR/qSPkR models are also described. 

 A new machine learning library, YMLL, and a Microsoft Windows software, 

PHAKISO, is introduced in chapter 3. YMLL contains algorithms that are essential 

for performing a QSPkR/qSPkR experiment. PHAKISO provides a graphical user 

interface to the algorithms in YMLL so that a QSPkR/qSPkR model can be developed 

and validated easily with just a few mouse clicks. Both YMLL and PHAKISO are 

available freely on the PHAKISO website (http://www.phakiso.com) for non-

commercial uses. 

 The prediction of absorption-related processes, in particular, human intestinal 

absorption, and p-glycoprotein substrates, is presented in chapter 4. SVM was used to 

develop classification systems for identifying compounds that are absorbable by 

human intestine and compounds that are substrates of the p-glycoprotein transporter. 

The effect of recursive feature elimination (RFE), a method for identifying relevant 

descriptors, on the classification accuracies of the SVM classification systems is 

discussed. Analysis of the RFE-selected descriptors and comparison with other 

classification studies are also presented.  

 Chapter 5 describes the prediction of a few important distribution processes, 

such as blood-brain barrier penetration, human serum albumin binding and milk-

plasma ratio by using GRNN. The prediction accuracies of the GRNN-developed 
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models were compared with those of QSPkR models developed by using MLR and 

MLFN. A new method for interpreting GRNN-developed QSPkR models, which 

enables relevant physicochemical and structural properties of a compound to be 

identified, is also introduced. 

 The use of consensus SVM model strategy to improve the prediction 

accuracies of substrates and inhibitors of three cytochrome P450 isoenzymes, 3A4, 

2D6 and 2C9 is presented in chapter 6. Physicochemical and structural properties of 

compounds that are important for the identification of substrates and inhibitors and 

factors that may affect the prediction accuracies are discussed.  

 Chapter 7 describes three machine learning approaches for the prediction of 

total clearance. Several different sets of descriptors are compared for their usefulness 

in modeling total clearance. Important physicochemical and structural properties of a 

compound are also identified by using the new method that is introduced in Chapter 5.  

 Chapter 8 describes two important drug toxicities: genotoxicity and torsade de 

pointes. The classification accuracies of the qSPkR models for prediction of genotoxic 

potential and torsade-causing potential of compounds developed by using SVM and 

other classification methods are presented. The possible reasons for misclassification 

of some compounds are also discussed. 

 Chapter 9 summarizes the major findings and contributions of this work to the 

progress of using machine learning approaches for pharmacokinetics and toxicity 

predictions. Limitations of the present work and possible areas for future studies are 

also discussed. 
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Chapter 2 

Quantitative/Qualitative Structure Pharmacokinetics 

Relationship (QSPkR/qSPkR) 

 

 A QSPkR/qSPkR model consists of three main components: (1) ADMET data 

(section 2.2), (2) physicochemical and structural descriptions of a compound (section 

2.3), and (3) a statistical learning technique to correlate the first two components 

(section 2.4). In this chapter, these three components are described and the methods 

used in this work for developing QSPkR/qSPkR models are given. Methods that are 

used for checking the validity and usefulness of QSPkR/qSPkR models are also 

described (section 2.5). 

 

2.1 Introduction 

 A QSPkR/qSPkR model is a mathematical model which approximates the 

relationship between an ADMET property of a compound and its structure-derived 

physicochemical and structural features (Johnson et al. 1990). The two main 

objectives of QSPkR/qSPkR modeling are to allow prediction of the ADMET 

properties of a not yet biologically tested, but chemically characterized compound and 

to extract clues as to which molecular characteristics of a compound are important for 

the ADMET properties. In this work, the term “QSPkR model” is used to refer to 

quantitative models (regression problems), and the term “qSPkR model” will be used 

to refer to qualitative models (classification problems). 
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Figure 2.1 Flowchart showing the various processes during the development of a 
QSPkR/qSPkR model. 
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 Figure 2.1 shows a basic scheme for developing a QSPkR/qSPkR model. The 

initial step is the collection of relevant ADMET data and the elimination of low 

quality data that are likely to affect the quality of the model. The next step is the 

selection of representative compounds into a training set and a validation set to 

calibrate and evaluate the QSPkR/qSPkR model respectively. Molecular descriptors 

are then computed for representing the physicochemical and structural properties of 

the compounds studied and those that are redundant or contained little information are 

removed prior to the modeling process. A machine learning method is then used to 

develop a model that relates the ADMET property to the physicochemical and 

structural properties of the compounds. During a modeling process, optimization of 

the essential parameters of the machine learning methods and the selection of relevant 

descriptor subsets are conducted simultaneously. The optimum set of parameters and 

descriptor subset are used to construct a final QSPkR/qSPkR model, which is 

subsequently subjected to various validation methods to ensure that it is valid and 

useful. 
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2.2 Dataset 

2.2.1 Quality analysis 

 The development of reliable QSPkR/qSPkR models depends on the 

availability of high quality ADMET data that have low experimental errors (Cronin et 

al. 2003). Ideally, these ADMET properties should be measured by a single protocol 

so that different compounds can be reliably compared with each other. However, 

human ADMET data have been determined only for a limited number of compounds 

and these data are rarely determined by the same protocol. Thus data selection has 

been primarily based on such considerations as the comparison of the data of the 

compounds commonly studied by different protocols, and the incorporation of 

additional experimental information. 

 In this work, several methods are adopted to ensure that interlaboratory 

variations in experimental protocols do not significantly affect the quality of the 

training sets. The sources for the ADMET data for each compound were investigated 

to ensure that there were no wide variations in experimental protocol from those of 

the majority of the compounds in the training set. Compounds that were investigated 

in more than one source are used to estimate the quality of each source. It is assumed 

that sources which give ADMET data that are closer to the median of the values from 

the different sources are more accurate. In classification problems, the most common 

range of the ADMET data for the compounds investigated in more than one source 

was used to select compounds for the different classes (Susnow et al. 2003). 
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2.2.2 Statistical molecular design 

2.2.2.1 Introduction 

 The use of an external independent validation set, which has been collected 

independently of the training set, is widely regarded as the best way to assess the 

quality of a QSPkR/qSPkR model (Wold et al. 1995) (details on model validation will 

be described in section 2.5). However, it is usually difficult to find additional sources 

of ADMET data to construct an independent validation set and thus the typical 

method is to split the original dataset into two different sets, a training set for 

developing the QSPkR/qSPkR model and a validation set for evaluating the model 

performance (Gramatica et al. 2004). The training set should contain compounds of 

diverse structures that can adequately represent all of the compounds that possess a 

particular ADMET property  (Rajer-Kanduc et al. 2003; Schultz et al. 2003). The 

validation set also needs to be sufficiently diverse and representative of the 

compounds studied in order to accurately assess the accuracies of the QSPkR/qSPkR 

models (Rajer-Kanduc et al. 2003; Schultz et al. 2003).  

 There are a number of approaches for creating diverse training sets and 

representative validation sets from the datasets, which are given in Table 2.1. These 

include random selection, cluster-based methods, dissimilarity-based methods, cell-

based methods, stochastic techniques, statistical experimental designs and neural 

networks (Daszykowski et al. 2002; Leach et al. 2003). Studies have shown that 

dissimilarity-based methods, such as Kennard and Stone algorithm and removal-until-

done algorithm, are more effective than other algorithms in selecting diverse training 

sets and representative validation sets for developing and validating QSPkR/qSPkR 

models (Snarey et al. 1997; Rajer-Kanduc et al. 2003). Thus these two methods are 

used in this work to select training and validation sets.  
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Table 2.1 Methods for selecting training and validation sets 
Cluster-based methods 

Hierarchical Non-hierarchical 

Single linkage (Leach et al. 2003) 

Complete linkage (Leach et al. 2003) 

Group average (Leach et al. 2003) 

Wards method (Leach et al. 2003) 

Centroid method (Leach et al. 2003) 

Median method (Leach et al. 2003) 

K-means (Forgy 1965) 

Jarvis-Patrick clustering (Jarvis et al. 1973) 

DBSCAN (Ester et al. 1996) 

OPTICS (Ankrest et al. 1999) 

DENCLUE (Han et al. 2001) 

Dissimilarity-based methods 

MaxSum (Snarey et al. 1997)  

Kennard and Stone algorithm (Kennard et al. 

1969) 

Removal-until-done  (Hobohm et al. 1992) 

Sphere exclusion (Hudson et al. 1996) 

OptiSim (Clark 1997) 

IcePick (Mount et al. 1999) 

Minimum spanning tree error 

function (Waldman et al. 2000) 

Cell-based methods 

Cummins algorithm (Cummins et al. 1996) 

Menard algorithm (Menard et al. 1998) 

Uniform cell coverage (Lam et al. 2002) 

Stochastic techniques 

Techniques using Monte Carlo sampling (Agrafiotis 1996; Hassan et al. 1996) 

Techniques using genetic algorithms (Sheridan et al. 2000; Gillet et al. 2002) 

Statistical experimental designs 

D-optimal design (Mitchell 1974) 

Factorial design (Box et al. 1978) 

Others 

Random selection 

Kohonen’s self-organizing map 

Informative design (Miller et al. 2002) 
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2.2.2.2 Kennard and Stone algorithm 

 Two compounds with the largest Euclidean distance apart were initially 

selected for the training set. The remaining compounds for the training set were 

selected by maximizing the minimum distances between the compounds in the 

training set and the rest of the compounds in the dataset. This selection process 

continues until the desired number of compounds was selected for the training set. 

The remaining compounds in the dataset will be used as the validation set (Kennard et 

al. 1969). 

 

2.2.2.3 Removal-until-done algorithm 

 Compounds are sequentially removed from the dataset in pairs and placed in 

the training and validation sets until a defined similarity threshold or desired number 

of compounds was selected for the validation set. The selection of the compounds to 

be removed was based on their distribution in the chemical space. Here, chemical 

space is defined by the structural and chemical descriptors used to represent a 

compound and each descriptor value is a point in a multidimensional space. Each 

compound occupies a particular location in this chemical space. All possible pairs of 

the compounds in the dataset were generated and a similarity score was computed for 

each pair. These pairs were then ranked in terms of their similarity scores, based on 

which compounds of similar structural and chemical features were evenly assigned 

into the training and validation sets. For those compounds without enough structurally 

and chemically similar counterparts, they were assigned to the training set. 
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2.2.3 Diversity and representativity of datasets 

 The diversity of a dataset can be estimated by a diversity index (DI) which is 

the average value of the similarity between all of the pairs of compounds in that 

dataset (Perez 2005): 
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where sim(i,j) is a measure of the similarity between compound i and j, and n is the 

number of compounds in a dataset. The diversity of a dataset increases with 

decreasing DI. The similarity between two compound i and j is commonly described 

by the Tanimoto coefficient (Potter et al. 1998; Willett et al. 1998; Molnar et al. 

2002): 
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where p is the number of descriptors of the compounds in the dataset. The mean 

maximum Tanimoto coefficient of the compounds in dataset A and those in dataset B 

can be used as a representativity index (RI) to measure the extent to which dataset B 

is representative of dataset A. Dataset B is more representative of dataset A if the RI 

value between dataset A and B is higher. 

 

2.3 Molecular descriptors 

2.3.1 Types 

 A descriptor is “the final result of a logical and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a 
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compound into an useful number or the result of some standardized 

experiment” (Todeschini et al. 2000). There are currently over 3,700 types of 

descriptors, which are classified into three broad categories: 1-, 2- and 3-D descriptors 

that encode chemical composition, topology, and 3D shape and functionality 

respectively  (Todeschini et al. 2000; Farnum et al. 2003). A descriptor can be simple, 

like molecular volume, which encode only one feature of a compound, or can be 

complex, like 3D-MoRSE, which encode multiple physicochemical and structural 

properties of a compound. Several computer programs have been developed for 

deriving molecular descriptors of a compound. Examples of the most popularly used 

and internet accessible programs are DRAGON (Todeschini et al. 2005), Molconn-

Z (Hall et al.), JOELib (Wegner 2005), and MODEL (Li et al. 2005b). Table 2.2 

below lists some of the common types of descriptors used in QSPkR/qSPkR studies.  

 

Table 2.2 Common descriptors used in QSPkR/qSPkR studies 
Constitutional Hydrophobic 

Functional groups 

Molecular weight  

Simple counts e.g. number of atoms, bonds, rings 

Topological 

Aromaticity indices (Randic 1975) 

Hansch substituent constant (Fujita et al. 1964) 

Log D 

Log P 

Steric 

Charton steric parameter (Charton 1975) 

Molar refractivity (Pauling et al. 1945) 

Parachor (McGowan 1963) 

Taft steric parameter (Taft 1952) 

Quantum chemical (Karelson et al. 1996) 

Atom-pairs (Carhart et al. 1985) 

Balaban index (Balaban 1986)  

BCUT (Pearlman et al. 1999) 

Information content indices (Basak et al. 1983) 

Kappa shape indices (Kier 1997) 

Kier and Hall connectivity indices (Kier et al. 

1986) 

Kier flexibility index (Kier 1990) 

Kier shape indices (Kier 1990) 

Charges 

HOMO and LUMO energies 
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Molecular walk counts (Rücker et al. 1993) 

Randic indices (Randic 1991) 

Wiener index (Nikolic et al. 1995) 

Geometric 

Orbital electron densities 

Superdelocalizabilities 

Atom-atom polarizabilities 

Molecular polarizabilites 

Dipole moments and polarity indices 

Energies 

Combination 

Gravitation index (Katritzky et al. 1996) 

Molecular surface area 

Molecular volume (Higo et al. 1989) 

Shadow indices (Rohrbaugh et al. 1987) 

Solvent accessible molecular surface area 

Electrostatic 

Charged polar surface area (Stanton et al. 1990) 

Galvez topological charge indices (Galvez et al. 

1994) 

Hydrogen bonding capacities 

Maximum and minimum partial 

charges (Kirpichenok et al. 1987) 

Molecular polarizabilities (Dewar et al. 1984) 

Fingerprints 

Daylight (Craig et al. 2005) 

MDL keys (Durant et al. 2002) 

UNITY (Patterson et al. 1996) 

3D-MoRSE (Schuur et al. 1996) 

Electrotopological state indices (Kier et al. 

1999) 

GETAWAY (Consonni et al. 2002) 

LSER  (Platts et al. 1999) 

MolSurf (Sjoberg 1997) 

Moreau-Broto topological 

autocorrelation (Moreau et al. 1980) 

Randic molecular profiles (Randic 1995) 

RDF (Hemmer et al. 1999) 

VolSurf (Cruciani et al. 2000b) 

WHIM (Bravi et al. 1997) 

 

 In this work, descriptors were computed from the 3D structure of the 

compounds. The 2D structure of each of the compounds studied was generated by 

using DS ViewerPro 5.0 (Accelrys 2005), which was subsequently converted into 3D 

structure by using CONCORD (Pearlman). The 3D structure of each compound was 

manually inspected to ensure that the chirality of each chiral compound is properly 

represented after the CONCORD’s transformation. All salts and elements, such as 

sodium or calcium, were removed prior to descriptor calculation. 
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2.3.2 Scaling 

 Molecular descriptors are usually scaled before they are used for 

QSPkR/qSPkR modeling. This is to ensure that all descriptors have equal potential to 

affect the QSPkR/qSPkR model (Livingstone 1995b). There are four main types of 

descriptor scaling: autoscaling (Livingstone 1995a), range scaling (Livingstone 

1995a), feature weighting (Livingstone 1995a) and Pareto scaling (Eriksson et al. 

2001a). Autoscaling and range scaling are the two most common types of descriptor 

scaling methods used in QSPkR/qSPkR modeling. 

 

2.3.2.1 Autoscaling 

 In autoscaling, the mean is subtracted from the descriptor values and the 

resultant values are divided by the standard deviation: 

 ' ij j
ij

j

X X
X

σ
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=        (2.3) 

where  is the new scaled value for descriptor j of compound i and '
ijX jX  and jσ  are 

the mean and standard deviation of descriptor j respectively. The autoscaled 

descriptors have a mean of zero and a standard deviation of one. The advantage of 

autoscaling is that it is less susceptible to effects of compounds with extreme values 

because they are mean centred. In addition, variance of one is useful in variance-

related methods since they each contribute one unit of variance to the overall variance 

of a dataset. 
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2.3.2.2 Range scaling (Normalization) 

 In range scaling, the minimum value of the descriptor is subtracted from the 

descriptor values and the resultant values are divided by the range: 
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where Xj,min and Xj,max are the minimum and maximum value of descriptor j 

respectively. The range-scaled descriptors have a minimum and maximum value of -1 

and 1 respectively. Range scaling can be carried out over any preferred range by 

multiplication of the range-scaled values by a factor. The disadvantage of range 

scaling is that it is dependent on the minimum and maximum values of the descriptors, 

which makes it very sensitive to outliers. 

 

2.3.3 Selection 

 The purpose of descriptor selection is to remove descriptors irrelevant or 

negligible to an ADMET property of the compounds, so as to improve computation 

speed, performance and interpretability of predictive models. Irrelevant and redundant 

descriptors are removed either by using a filter or a wrapper approach or a 

combination of these approaches. The filter approach is independent of the in silico 

method and is frequently used to remove redundant descriptors or descriptors of low 

information content. Descriptors are chosen or removed based on one or more of the 

following considerations: prior knowledge of factors affecting a particular ADMET 

property, the properties of the descriptors (e.g. variance), the correlation between 

different descriptors, and the distribution of the descriptor values in different data 

classes. In the wrapper approach, a descriptor selection algorithm is incorporated into 

an in silico classification method (Guyon et al. 2003).  
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 In many cases, it is difficult to uniquely select an optimum set of descriptors 

due to the high redundancy and overlapping of many descriptors (Gramatica et al. 

2004). Separate sets of descriptors containing different members of redundant 

descriptor classes have been found to give similar prediction accuracies (Izrailev et al. 

2004). The interpretation of the prediction results in these cases should be more 

appropriately conducted at the descriptor class level where redundant and overlapping 

descriptors are grouped into one class. Table 2.3 gives a list of the common descriptor 

selection methods used in QSPkR/qSPkR studies.  

 

Table 2.3 Common descriptor selection methods used in QSPkR studies 
Filter methods Wrapper methods 

Remove descriptors with low variance 

Remove highly correlated descriptors 

CORCHOP (Livingstone et al. 1989) 

Decision tree (Cardie 1993) 

FOCUS (Almuallim et al. 1994) 

LVF (Brassard et al. 1996) 

RELIEF (Kononenko 1994) 

Discrimination scores (Guyon et al. 2002) 

Information gain (Liu 2004) 

Mutual information (Liu 2004) 

χ2-test (Liu 2004) 

Odds ratio (Liu 2004) 

GSS coefficient (Liu 2004) 

Forward selection (Xu et al. 2001) 

Backward elimination (Xu et al. 2001) 

Stepwise regression (Xu et al. 2001) 

Branch and bound (Narendra et al. 1977) 

Floating search (Pudil et al. 1994) 

Adaptive floating search (Somol et al. 1999) 

Oscillating search (Somol et al. 2000) 

Tabu search (Glover 1989) 

Simulated annealing (Sutter et al. 1993) 

Genetic algorithm (Siedlecki et al. 1989) 

Recursive feature elimination (Guyon et al. 

2002) 
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2.3.3.2 Genetic algorithm-based descriptor selection 

 The scheme for the genetic algorithm-based descriptor selection method used 

in this work is shown in Figure 2.2. It comprises of four phases: initialization, 

evaluation, exploitation and exploration. The initialization phase involves 

constructing an initial population of 50 randomly selected descriptor subsets. During 

the evaluation phase, each descriptor subset is evaluated by calculating its fitness 

score, which indicates the relevance of a descriptor subset to the ADMET property. In 

the exploitation phase, the descriptor subsets were first ranked by their fitness value. 

The higher ranked descriptor subsets were given a higher probability of being chosen 

for reproduction. The top 40 selected descriptor subsets were then used to replace the 

40 lowest ranking descriptor subsets in the population. These 40 new descriptor 

subsets, together with the 10 highest ranked descriptor subsets in the current 

generation, form a new generation of descriptor subsets. In the last phase, which is the 

exploration phase, the 40 new descriptor subsets were subjected to one point 

crossover and mutation to increase the diversity of the population. In the mutation 

process, descriptors might be randomly added to or deleted from a descriptor subset. 

After the exploration phase, the genetic algorithm returns to the evaluation phase and 

the cycle repeats until at least 100 generations have passed and the highest ranked 

descriptor subset remains the same for 20 generations. The highest ranked descriptor 

subset was used to construct the final QSPkR/qSPkR model.  
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Figure 2.2 Schematic diagram of the genetic algorithm-based descriptor selection 
method 

 

 

2.3.3.3 Recursive feature elimination (RFE) 

 It has been suggested that the ranking criterion for descriptor selection can be 

formulated from the variation in an objective function upon removing each 

descriptor (Kohavi et al. 1997). In order to improve the efficiency of support vector 

machine (SVM) training, this objective function is represented by a cost function J for 
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the i-th descriptor and it is computed by using the training set only. When the i-th 

descriptor is removed or its weight wi is reduced to zero, the variation of the cost 

function DJ(i) is given by 
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The case of Dwi = wi - 0 corresponds to the removal of descriptor i.  

 Guyon et al have used RFE to reduce the descriptors of a linear SVM 

classification system for cancer detection from gene selection data (Guyon et al. 

2002). In the corresponding linear SVM classifier, the cost function is  

 21
2

TJ = −w α l        (2.6) 

where l is an m dimensional identity vector (m is the number of compounds in the 

training set). Therefore DJ(i) = (1/2) wi
2 and wi

2 can be used as a descriptor ranking 

criterion. Yu et al have used RFE to reduce the descriptors of a non-linear SVM 

classification system of polynomial kernels for prediction of drug activity (Yu et al. 

2003). However, because of the diversity and complexity of the compounds to be 

classed, the use of linear and polynomial kernels may not always be sufficient for 

accurate prediction of various pharmaceutical and biological properties. Thus, in this 

work, SVM classification systems of Gaussian kernels were used. In this case, the 

cost function to be minimized, under the constraints 0 ≤ α k ≤ C and , is 0=∑ k
k

k yα

 T1
2

J = −α Hα α 1T        (2.7) 

where H is the matrix with elements y i y j exp(-||xi - xj|| 2/(2σ2)). 

 To compute the variation in the cost function upon removal of input 

component i, the parameters αs were kept unchanged and the matrix H was re-

computed. The resulting ranking coefficient is 
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 T T1 1( ) ( )
2 2

DJ i i= − −α Hα α H α      (2.8) 

where H(-i) is the matrix computed by using the same method as that of matrix H but 

with its i-th component removed. One or more of the descriptors with the smallest 

DJ(i) can thus be eliminated.  

 

2.4 Machine learning methods 

2.4.1 Methods for classification problems 

2.4.1.1 Support vector machine (SVM) 

 SVM is based on the structural risk minimization principle from statistical 

learning theory (Vapnik 1995; Burges 1998; Evgeniou et al. 2001). A compound is 

represented by a vector xi
 which is its molecular descriptors. In linearly separable 

cases, SVM constructs a hyperplane which separates two data classes of compounds 

with a maximum margin. This is accomplished by finding another vector w and a 

parameter b that minimizes 2w  and satisfies the following conditions: 

  Class 1 (D+)    (2.9) 1,  for 1i b y⋅ + ≥ + = +w x  i

 i  Class 2 (D–)    (2.10) 1,  for 1i b y⋅ + ≤ − = −w x

where yi is the data class index of compound i, w is a vector normal to the hyperplane, 

/b w  is the perpendicular distance from the hyperplane to the origin and 2w  is the 

Euclidean norm of w. After the determination of w and b, a given compound with 

vector x can be classified by: 

        (2.11) ˆ [( ) ]y sign b= ⋅w x +
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 In non-linearly separable cases, SVM maps the vectors into a higher 

dimensional feature space using a kernel function K(xi, xj). Table 2.4 below lists three 

different types of kernel functions which are commonly used. The Gaussian radial 

basis function kernel has been extensively used in a number of different studies with 

good results (Burbidge et al. 2001; Czerminski et al. 2001; Trotter et al. 2001). 

 

Table 2.4 Commonly used kernel functions 
Kernel Equation 

Polynomial ( )( , ) 1
p

i j i jK = ⋅ +x x x x  

Gaussian radial basis function 2 2/ 2( , ) j i

i jK e σ− −= x xx x  

Sigmoidal ( )( , ) tanhi j i jK κ δ= ⋅ −x x x x  

 

Linear support vector machine is applied to this feature space and then the decision 

function is given by:  

       (2.12) 0

1

ˆ ( ( , )
l

i i i
i

y sign y K bα
=

= ∑ x x )+

where l is the number of support vectors and the coefficients αi
0 and b are determined 

by maximizing the following Langrangian expression:  

 
1 1 1

1 ( , )
2

l l l

i i j i j
i i j

y y Kα α α
= = =

−∑ ∑∑ x xi j      (2.13) 

under the following conditions:  

 0 i Cα≤ ≤         (2.14) 

1
0

l

i i
i

yα
=

=∑         (2.15) 

where C is a penalty for training errors. A positive or negative value from equation 

(2.12) indicates that the compound with vector x belongs to the positive (D+) or 
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negative data class (D–) respectively. Figure 2.3 below shows a schematic diagram 

illustrating the process of the prediction of compounds with a particular ADMET 

property from its structure by using SVM. 

 

Figure 2.3 Schematic diagram illustrating the process of the prediction of compounds 
with a particular ADMET property from its structure by using SVM method. A,B: 
feature vectors of compounds with the property; E,F: feature vectors of compounds 
without the property; feature vector (hj, pj, vj,…) represents such structural and 
physicochemical properties as hydrophobicity, volume, polarizability, etc. 
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2.4.1.2 Probabilistic neural network (PNN) 

 PNN was introduced by Specht in 1990 (Specht 1990) and is a form of neural 

network designed for classification through the use of Bayes’ optimal decision rule: 

        (2.16) ( ) ( )i i i j j jh c f h c f>x x

where hi and hj are the prior probabilities, ci and cj are the costs of misclassification 

and fi(x) and fj(x) are the probability density function for data class i and j respectively. 

A given compound with vector x is classified into data class i if the product of all the 

three terms is greater for data class i than for any other data class j not equal to i. In 

most applications, the prior probabilities and costs of misclassifications are treated as 

being equal. The probability density function for each data class for a univariate case 

can be estimated by the Parzen’s nonparametric estimator (Parzen 1962): 

 
1

1( ) ( )
n

i

i

x xg x W
nσ σ=

−
= ∑       (2.17) 

where n is the sample size, σ is a scaling parameter which defines the width of the 

bell curve that surrounds each compound, W(d) is a weight function which has its 

largest value at d = 0 and (x – xi) is the distance between a given compound and a 

compound in the training set. The Parzen’s nonparametric estimator was later 

expanded by Cacoullos (Cacoullos 1966) for the multivariate case. 

 ,1 1,
1

11 1

1( , , ) ( , , )
n

p p ii
p

ip p

x xx x
g x x W

nσ σ σ σ=

−−
= ∑…

…
…    (2.18) 

The Gaussian function is frequently used as the weight function because it is well 

behaved, easily calculated and satisfies the conditions required by Parzen’s estimator. 

Thus the probability density function for the multivariate case becomes 

 
2

,

1 1

1( ) exp( )
pn

j j i

i j j

x x
g

n σ= =

⎛ ⎞−
= − ⎜⎜

⎝ ⎠
∑ ∑x ⎟⎟      (2.19) 
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To simplify the equation, a single σ that is common to all the descriptors (single-

sigma model) can be used instead of an individual σ for each descriptor (multi-sigma 

model). Single-sigma models could be computed faster and can produce reasonable 

models when all the descriptors are of approximately equal importance. However, 

multi-sigma models are more general than single-sigma model and are useful when 

descriptors are of different nature and importance (Masters 1995). 

 PNN can be implemented as a neural network (Masters 1995), which is shown 

in Figure 2.4. The network architecture of a PNN is determined by the number of 

compounds and descriptors in the training set. There are 4 layers in a PNN. The input 

layer provides input values to all neurons in the pattern layer and has as many neurons 

as the number of descriptors in the training set. The number of pattern neurons is 

determined by the total number of compounds in the training set. Each pattern neuron 

computes a distance measure between the input compound and the training compound 

represented by that neuron and then subjects the distance measure to the Parzen’s 

nonparameteric estimator. The summation layer has a neuron for each data class and 

the neurons sum all the pattern neurons’ output corresponding to members of that 

summation neuron’s data class to obtain the estimated probability density function for 

that data class. The single neuron in the output layer then determines the final data 

class of the input compound by comparing all the probability density functions from 

the summation neurons and choosing the data class with the highest value for the 

probability density function. 
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Figure 2.4 PNN architecture. 
 

2

,

1
exp( )

p
j j i

j j

x x
D

σ=

⎛ ⎞−
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

1

1( )
n

i
g D

n =

= ∑x

1 2, nx x x…
 

 

2.4.1.3 k nearest neighbour (kNN) 

kNN is a basic instance-based method and was introduced by Fix and 

Hodges (Fix et al. 1951). kNN measures the Euclidean distance between a given 

compound with vector x and each compound in the training set with individual vector 

xi  (Fix et al. 1951; Johnson et al. 1982). The Euclidean distances for the vector pairs 

are calculated using the following formula: 

 2
iD = −x x        (2.20) 

A total of k number of training compounds nearest to the given compound is used to 

determine its data class: 

1

ˆ arg max ( , )
k

v V i
i

y δ∈
=

= ∑ v y       (2.21) 
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where δ(a,b)=1 if a=b and δ(a,b)=0 if a≠b, argmax is the maximum of the function, V 

is a finite set of data classes. k is usually an odd number to prevent ambiguity in the 

estimation of . ŷ

2.4.1.4 C4.5 decision tree (DT) 

 C4.5 DT is a branch-test-based classifier (Quinlan 1993). A branch in a 

decision tree corresponds to a group of data classes and a leaf represents a specific 

data class. A decision node specifies a test to be conducted on a single descriptor 

value, with one branch and its subsequent data classes as possible outcomes of the test. 

A given compound with vector x is classified by starting at the root of the tree and 

moving through the tree until a leaf is encountered. At each non-leaf decision node, a 

test is conducted and the classification process proceeds to the branch selected by the 

test. Upon reaching the destination leaf, the data class of the given compound is 

predicted to be that associated with the leaf.  

 The algorithm is a recursive greedy heuristic that selects descriptors for 

membership within the tree. It uses recursive partitioning to examine every descriptor 

of the compounds in the training set and rank them according to their ability to 

partition the remaining compounds, thereby constructing a decision tree. Whether or 

not a descriptor is included within the tree is based on the value of its information 

gain. As a statistical property, information gain measures how well the descriptor 

separate training cases into subsets in which the data class is homogeneous. For 

descriptors with continuous values, a threshold value had to be established within 

each descriptor so that it could partition the training cases into subsets. These 

threshold values for each descriptor were established by rank ordering the values 

within each descriptor from lowest to highest and repeatedly calculating the 

information gain using the arithmetical midpoint between all successive values within 
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the rank order. The midpoint value with the highest information gain was selected as 

the threshold value for the descriptor. That descriptor with the highest information 

gain (information being the most useful for classification) was then selected for 

inclusion in the DT. The algorithm continued to build the tree in this manner until it 

accounted for all training cases. Ties between descriptors that were equal in terms of 

information gain were broken randomly  (Carnahan et al. 2003). 

 

2.4.2 Methods for regression problems 

2.4.2.1 Support vector regression (SVR) 

 The theoretical background of SVR is similar to that of SVM (Smola et al.; 

Vapnik 1995; Yuan et al. 2004). In SVR, the kernel function is used to map the 

vectors into a higher dimensional feature space and linear regression is then 

conducted in this space. The optimal regression function can be represented by: 

       (2.22) *

1

ˆ ( ) ( , )
l

i
i

y Kα α
=

= −∑ x x b+

where ŷ represents the predicted value of an ADMET property, and the coefficients α, 

α* and bias b are determined by maximizing the following Langrangian expression:  

 * * * *

1 1 , 1

1( ) ( ) ( )( )( ,
2

n n n

i i i i i i i j j i j
i i i j

y xε α α α α α α α α
= = =

− + + + − + +∑ ∑ ∑ )x

0

 (2.23) 

under the following conditions:  

         (2.24) *0 ,i i Cα α≤ ≤

 *

1

( )
n

i i
i

α α
=

+ =∑        (2.25) 
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2.4.2.2 General regression neural network (GRNN) 

 GRNN is a modification of PNN for regression problems (Specht 1991). For 

GRNN, the predicted value of the ADMET property is the most probable value, 

which is given by 

 
( , )

ˆ
( , )

yf y dy
y

f y dy

∞

−∞
∞

−∞

= ∫
∫

x

x
       (2.26) 

where f(x,y) is the joint density and can be estimated by using Parzen’s nonparametric 

estimator (equation (2.17) or (2.18)). Substituting Parzen’s nonparametric estimator 

for f(x,y) and performing the integrations leads to the fundamental equation of GRNN. 

 1

1

exp( ( , ))
ˆ

exp( ( , ))

n

i i
i

n

i
i

y D
y

D

=

=

−
=

−

∑

∑

x x

x x
      (2.27) 

where  

 
2

,

1
( , )

p
j j i

i
j j

x x
D

σ=

⎛ ⎞−
= ⎜⎜

⎝ ⎠
∑x x ⎟⎟       (2.28) 

 The network architecture of a GRNN is similar to that of a PNN except that its 

summation layer has two neurons that calculate the numerator and denominator of 

equation (2.27). The single neuron in the output layer then performs a division of the 

two summation neurons to obtain the predicted ADMET value of the given compound. 
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2.4.2.3 k nearest neighbour (kNN) 

 kNN can be modified for regression problems by replacing equation (2.21) 

with the following equation: 

 1ˆ

k

i
i

y
y

k
==
∑

        (2.29) 

The predicted ADMET value of the given compound is the average of the ADMET 

values of its k nearest neighbours. Unlike kNN that is used for classification problems, 

k need not be an odd number in this case.  

2.4.3 Optimization of the parameters of machine learning methods 

 Different machine learning methods have different types of parameters that 

must be optimized. In this work, SVM and SVR are trained by using a Gaussian 

kernel function which has an adjustable parameter σ. For PNN and GRNN, the only 

parameter to be optimized is a scaling parameter, σ. In kNN, the optimum number of 

nearest neighbours, k, needs to be derived for each training set.  

 Optimization of the parameter for each of these statistical learning methods is 

conducted by scanning the parameter through a range of values. The set of parameters 

that produces the best QSPkR/qSPkR model, which is determined by using cross-

validation methods, such as 5-fold cross-validation, 10-fold cross-validation or a 

modeling testing set, is used to construct a final QSPkR/qSPkR model which is then 

further validated to ensure that it is valid and useful for the ADMET property (see 

section 2.5).   
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2.5 Model validation 

2.5.1 Performance evaluation of a QSPkR/qSPkR model 

 One of the objectives of QSPkR/qSPkR modeling is to allow prediction of the 

ADMET properties of compounds which have not been biologically tested. Thus it is 

important to determine the ability of the developed QSPkR/qSPkR model to predict 

the ADMET properties of compounds that are not present in the training set. There 

are two methods which are commonly used to determine the predictive capability of a 

QSPkR/qSPkR model (Wold et al. 1995). The first method is the use of cross-

validation, which includes leave-one-out (LOO) and k-fold cross-validation. In LOO, 

a compound is left out of the training set and the remaining compounds are used to 

train the machine learning method. The derived QSPkR/qSPkR model is then used to 

predict the ADMET property of the left-out compound. This process is repeated until 

every compound in the training set has been left out once. In k-fold cross-validation, 

the training set was randomly divided into k mutually exclusive subsets of 

approximately equal size. k-minus-one of the subsets were combined to form a 

modeling training set for developing a QSPkR/qSPkR model. The remaining subset 

was used as a modeling testing set to assess the predictive capability of the 

QSPkR/qSPkR model. This process was repeated until k QSPkR/qSPkR models were 

developed and each subset had been used as a modeling testing set once. 

 There are reports of the lack of correlation between cross-validation methods 

and the prediction capability of a QSPkR/qSPkR model (Golbraikh et al. 2002; Kozak 

et al. 2003; Reunanen 2003; Olsson et al. 2004). Moreover, cross-validation methods 

have a tendency of underestimating the prediction capability of a QSPkR/qSPkR 

model, especially if important molecular features are present in only a minority of the 

compounds in the training set (Mosier et al. 2002; Hawkins et al. 2004). Thus a model 
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having low cross-validation results can still be quite predictive (Mosier et al. 2002). 

This lead to some studies which suggests that an independent validation set may 

provide a more reliable estimate of the prediction capability of a QSPkR/qSPkR 

model (Wold et al. 1995; Golbraikh et al. 2002). Despite these disadvantages, cross-

validation methods are still useful for assessing QSPkR/qSPkR models during 

optimization of parameters of machine learning methods and during descriptor 

selection. 

 A validation set should ideally be obtained independently of the training set. 

However, validation sets are usually constructed by using statistical molecular design 

(section 2.2.2) because of the limited availability of high-quality ADMET data. 

Regardless of the method used to obtain a validation set, a good validation set should 

be representative of the training set so that it can properly assess the prediction 

capabilities of the QSPkR/qSPkR model (Tropsha et al. 2003). 

 

2.5.1.1 Methods for measuring predictive capability of qSPkR models 

 The following statistics are usually calculated to determine the predictive 

capability of a qSPkR model.  

 TPSensitivity (SE) = 100%
TP+FN

×      (2.30) 

 TNSpecificity (SP) = 100%
TN+FP

×      (2.31) 

 TP+TNOverall accuracy (Q) = 100%
TP+FN+TN+FP

×    (2.32) 

 
( )( )( )( )

TP TN FN FPMCC
TP FN TP FP TN FN TN FP

× − ×
=

+ + + +
  (2.33) 
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where MCC is the Matthews correlation coefficient (Matthews 1975), TP is number 

of the true positives, TN is the number of true negatives, FP is number of the false 

positives and FN is the number of false negatives. Sensitivity (SE) and specificity (SP) 

are the classification accuracies of a qSPkR model for the positive and negative data 

classes respectively. Overall accuracy (Q) is the classification accuracy of the qSPkR 

model for both positive and negative data classes. The shortcoming of the overall 

accuracy is that an imbalance in the data classes may result in a high overall accuracy 

even if either sensitivity or specificity is low. For example, a qSPkR model which has 

a sensitivity of 100% and specificity of 0% will have an overall accuracy of 90% for a 

validation set that have 9 times more compounds of the positive data class than 

compounds of the negative data class. Thus MCC, which is a weighted measure, is 

increasingly being used to measure the predictive capability of qSPkR models. A 

MCC value of 1 indicates that the qSPkR model can predict the data classes of 

unknown compounds perfectly, a MCC value of 0 is expected for a qSPkR model that 

is not better than random guessing, and a MCC value of -1 indicates total 

disagreement between the predicted data classes and the actual data classes. For the 

above example, MCC will give a value of 0, which is a more accurate representation 

of the predictive capability of the model. 

 

2.5.1.2 Methods for measuring predictive capability of QSPkR models 

 The following statistics are commonly calculated to determine the predictive 

capability of a QSPkR model. 
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( )2

1

ˆ
Mean square error (MSE)
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   (2.35) 

 1

ˆ
Mean absolute error (MAE)
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   (2.36) 
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   (2.37) 

 

ˆ
log

Average-fold error 10

y
y

n

∑
=      (2.38) 

The r2 value measures the explained variance between the predicted and actual 

ADMET values. The fold-error of a compound measures the degree of overprediction 

or underprediction for a compound and is useful for identifying chemical structures 

which are not well-represented by the QSPkR model. The average-fold error avoids 

the cases in which poor overpredictions are cancelled by equally poor 

underpredictions. A QSPkR model that predicts a ADMET property perfectly gives an 

average-fold error of 1 and a model with an average-fold error of less than 2 is 

considered to be a successful one (Obach et al. 1997). 

 

2.5.2 Overfitting 

 It is not sufficient for a QSPkR/qSPkR model to have good predictive 

capability. A second requirement for a good quality QSPkR/qSPkR model is that it 

must not suffer from overfitting. There are two main types of overfitting: (1) using a 

model that is more flexible than it needs to be and (2) using a model that includes 
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irrelevant descriptors (Hawkins 2004). There are various methods that can be used to 

prevent or to check for these two types of overfitting. 

 A number of different QSPkR/qSPkR models can be developed using machine 

learning methods of varying complexities. The QSPkR/qSPkR model with the best 

balance between complexity of the machine learning method used and its predictive 

capability is the one that is most suitable for predicting the ADMET property of 

interest. This method prevents the use of a QSPkR/qSPkR model that is more flexible 

than is necessary.  

 A frequently used method for checking whether a QSPkR/qSPkR model is 

overfitted is to compare its prediction capability determined by using cross-validation 

methods with those determined by using independent validation sets (Hawkins 2004). 

Even though cross-validation methods tend to give a pessimistic estimate of the 

predictive capability of a QSPkR/qSPkR model, a model that is not overfitted should 

not have large differences in the estimates of its predictive capability from cross-

validation methods and independent validation sets.  

 Y-randomization is commonly used to determine the probability of chance 

correlation during descriptor selection (Manly 1997; Leardia et al. 1998). In 

classification problems, a portion of D+ compounds in the training set is randomly 

exchanged with D– compounds in the training set, creating new training sets with 

false D+ and D– compounds. For regression problems, the ADMET properties of all 

the compounds in the training set are randomly rearranged. The machine learning 

method is trained using this scrambled training set. The randomization is repeated a 

number of times and prediction capabilities of the new scrambled QSPkR/qSPkR 

model from each run are compared to that of the original QSPkR/qSPkR model. If the 

scrambled training set gives significantly lower prediction capabilities than the 
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original training set, it can be concluded that the original QSPkR/qSPkR model was 

relevant and unlikely to arise as a result of chance correlation. 

 In order to determine whether the selected descriptors of the original 

QSPkR/qSPkR model include those irrelevant for the prediction of an ADMET 

property, different groups of QSPkR/qSPkR models, each containing different 

number of descriptors, can be generated by using the descriptor selection method. 

Each group contains a fixed number of QSPkR/qSPkR models having the same 

number of descriptors. The prediction capabilities of the QSPkR/qSPkR models in 

each group are determined and the average prediction capabilities of all the groups are 

compared and used to determine the optimal number of descriptors for the particular 

ADMET property. If the optimal number of descriptors coincide with the number of 

descriptors in the original QSPkR/qSPkR model, the original model is unlikely to 

contain irrelevant descriptors.  

 

2.5.3 Functional dependence study of QSPkR models 

 A functional dependence study can provide insights on the type of molecular 

characteristics that are important for a particular ADMET property and how changes 

in these molecular characteristics affect the ADMET property. This information is 

useful for guiding structural changes during computer-aided drug design so that the 

desired ADMET property can be obtained. It is also useful for validating a QSPkR 

model. A valid QSPkR model should be consistent with previous findings of 

important factors that affect the ADMET property. 

 For QSPkR models developed from linear modeling methods, the descriptors 

are either positively or negatively correlated to ADMET properties in a linear 

relationship. In contrast, descriptors in models developed by using machine learning 
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methods correlate to ADMET properties in a non-linear relationship. Thus these 

models can potentially provide more information about the relationships between 

descriptors and ADMET properties.  

 The relationships between descriptors and ADMET properties can be obtained 

by using functional dependence plots where the value of a single descriptor is varied 

through its range, while all other descriptors are held constant at a certain 

value (Wessel et al. 1998). However, QSPkR models usually contain descriptors that 

are correlated with one another and these intercorrelations can drastically alter the 

shape of a functional dependence plot if the values of the descriptors that are held 

constant are changed (Andrea et al. 1991). In addition, descriptors may encode 

multiple physicochemical and structural aspects of the molecule. This makes it 

difficult to determine the relationship between a specific molecular characteristic and 

an ADMET property.  

 In this work, principal component analysis (PCA) is used to overcome both 

problems. PCA can extract dominant patterns in the descriptor subsets and group 

similar descriptors under a single principal component (PC). Different PCs encode 

different molecular characteristics and the orthogonality among the PCs can be 

exploited to determine the correlation between a molecular characteristic and an 

ADMET property without the influence of other molecular characteristics. A 

descriptor may belong to multiple PCs and the explained variations of a descriptor in 

each PC can be used to determine its level of contribution in the PCs (Eriksson et al. 

2001b). Artificial testing sets are created to determine the relationship between the 

PCs and ADMET property. Each artificial testing set contains 1000 artificial 

compounds and initially used PCs as descriptors. The PC to be evaluated is varied 

uniformly from -5 to 5 while all of the other PCs are assigned a value of zero. The 
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loadings derived from PCA are then used to transform the PCs back to the original 

molecular descriptors. Artificial compounds with molecular descriptors outside the 

range of the corresponding descriptor in the training set are removed to prevent 

extrapolation of the model. The values of the ADMET property of the remaining 

artificial compounds are predicted by using the developed QSPkR models. Functional 

dependence plots of the ADMET property against the PCs can then be used to find the 

trends between various molecular characteristics and the ADMET property. In this 

work, PCA and the transformation of the PCs back to the original molecular 

descriptors were carried out using the software PHAKISO. 
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Chapter 3 

Machine Learning Library 

 

 A new machine learning library, YMLL (section 3.2), and a Microsoft 

Windows software, PHAKISO (section 3.3), is introduced in this chapter. YMLL 

contains algorithms that are essential for performing a QSPkR/qSPkR experiment. 

PHAKISO provides a graphical user interface to the algorithms in YMLL so that a 

QSPkR/qSPkR model can be developed and validated easily with just a few mouse 

clicks. Both YMLL and PHAKISO are available freely on the PHAKISO website 

(http://www.phakiso.com) for non-commercial uses. 

 

3.1 Introduction 

 One of the fundamental requirements for the conduct of an in silico 

QSPkR/qSPkR experiment is the availability of appropriate software. A good 

software for QSPkR/qSPkR experiments should possess the following features: 

1. Ease of data entry. 

2. Containing several common statistical molecular design algorithms so that 

appropriate training and testing sets can be obtained from the original 

datasets. 

3. Containing several common machine learning methods so that the best 

machine learning method for developing QSPkR/qSPkR model of a 

particular ADMET property can be determined.  

 

http://www.phakiso.com/


CHAPTER 3: MACHINE LEARNING LIBRARY 59

4. Containing several common descriptor selection methods so that a relevant 

descriptor subset for a particular ADMET property can be determined. 

5. Containing several common methods to validate QSPkR/qSPkR models to 

ensure that the models are valid and useful.  

 When this work was started, there is no freely available QSPkR/qSPkR 

software except a few machine learning freeware available. Two such machine 

learning software are Torch (Collobert et al. 2002) and Weka (Witten et al. 2005). 

Torch is a machine learning library, written in C++, which is under a Berkeley 

Software Distribution (BSD) licence. Its objective is to apply machine learning 

algorithms for both static and dynamic problems. There are four important concepts in 

Torch: DataSet, Machine, Trainer, Measurer. The DataSet produces one training 

example which is given to a Machine to compute an output by using the Measurer. 

The Trainer will use the output for tuning the Machine.  

 Weka is a collection of machine learning algorithms for data mining tasks 

written in Java. It contains tools for data pre-processing, classification, regression, 

clustering, association rules, and visualization. Weka is open source software issued 

under the GNU General Public License. Weka is organized in a hierarchy of packages. 

Each package contains a collection of related classes. There are packages for core 

components, associations, attribute selection, classifiers, clusterers, estimators, filters, 

experiments and graphical user interface. 

 Both Torch and Weka have several disadvantages which make them 

unsuitable for conducting QSPkR/qSPkR experiments. In Torch, there are no 

graphical user interface or pre-compiled programs, thus it is not easily usable without 

additional programming. In addition, Torch only contains a limited number of 

machines learning methods. Algorithms for statistical molecular design are not 
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available for both Torch and Weka. Both software also have a limited number of 

descriptor selection methods, especially wrapper methods, and have a limited number 

of methods to measure prediction capabilities of QSPkR/qSPkR models. Hence 

modifications to the two software are needed in order to use them for QSPkR/qSPkR 

experiments. However, there are two difficulties in modifying the two software. 

Firstly, the design and naming of Torch’s C++ classes are different from the usual 

QSPkR terminologies, which create a steep learning curve in using the library. 

Secondly, both software are continuously being improved by their original authors 

and thus any modifications may become obsolete and become unusable in the newer 

versions. Hence a new software specifically for conducting QSPkR/qSPkR 

experiments is needed. 

 In this work, a machine learning library, YMLL, and a Microsoft Windows 

software, PHAKISO, were designed and created from scratch to enable 

QSPkR/qSPkR experiments to be conducted easily. Both YMLL and PHAKISO were 

coded in C++. Most of the algorithms in YMLL were implemented based on 

algorithms that were provided in the literatures. The remaining algorithms were 

implemented by either translation of existing freely available source codes to C++ or 

creating C++ wrappers around the existing freely available source codes. Table 3.1 

lists the different types of machine learning algorithms that were implemented in 

YMLL, Torch and Weka 
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Table 3.1 Types of machine learning algorithms in YMLL, Torch and Weka 
YMLL Torch Weka 

1. Multiple linear regression 

for classification problems 

2. Logistic regression 

3. Partial least squares for 

classification problems 

4. Linear discriminant analysis 

5. C4.5 decision tree 

6. C4.5 decision rules 

7. k nearest neighbour 

8. AnnieNN for classification 

problems 

9. TorchMLP for classification 

problems 

10. Feedforward 

backpropagation neural 

network for classification 

problems 

11. Probabilistic neural 

network 

12. Master’s probabilistic 

neural network 

13. SVMStar 

14. SVMlight

15. LibSVM 

16. SVMTorch 

17. Multiple linear regression 

18. Principal component 

regression 

1. Bayes classifier 

2. MLP 

3. Speech MLP 

4. K-Means 

5. MAP Diagonal GMM 

6. MAP HMM 

7. Speech HMM 

8. Simple decoder speech 

HMM 

9. KNN 

10. Parzen machine 

11. SVM classification 

12. SVM regression 

13. Weighted sum machine 

1. AODE 

2. BayesNet 

3. ComplementNaiveBayes 

4. NaiveBayes 

5. NaiveBayesMultinomial 

6. NaiveBayesSimple 

7. NaiveBayesUpdateable 

8. LeastMedSq 

9. LinearRegression 

10. Logistic 

11. MultilayerPerceptron 

12. PaceRegression 

13. RBFNetwork 

14. SMO 

15. SMOreg 

16. SimpleLinearRegression 

17. SimpleLogistic 

18. VotedPerceptron 

19. Winnow 

20. IB1 

21. IBk 

22. KStar 

23. LBR 

24. LWL 

25. AdaBoostM1 

26. AdditiveRegression 

27. AttributeSelectedClassifier 

28. Bagging 
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19. Partial least squares 

20. Continuum power 

regression 

21. Continuum regression 

22. AnnieNN 

23. TorchMLP 

24. Feedforward 

backpropagation neural 

network 

25. General regression neural 

network 

26. Master’s general regression 

neural network 

27. SVMlight for regression 

problems 

28. LibSVM for regression 

problems 

29. SVMTorch for regression 

problems 

29. ClassificationViaRegression 

30. CostSensitiveClassifier 

31. CVParameterSelection 

32. Decorate 

33. FilterClassifier 

34. Grading 

35. LogitBoost 

36. MetaCost 

37. MultiBoostAB 

38. MultiClassClassifier 

39. MultiScheme 

40. OrdinalClassClassifier 

41. RacedIncrementalLogitBoost 

42. RandomCommittee 

43. RegressionByDiscretization 

44. Stacking 

45. StackingC 

46. ThresholdSelector 

47. Vote 

48. FLR 

49. HyperPipes 

50. VFI 

51. ADTree 

52. DecisionStump 

53. Id3 

54. J48 

55. LMT 

56. M5P 

57. NBTree 

58. RandomForest 
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59. RandomTree 

60. REPTree 

61. UserClassifier 

62. ConjunctiveRule 

63. DecisionTable 

64. NNge 

65. OneR 

66. PART 

67. M5Rules 

68. Prism 

69 Ridor 

70. JRip 

71. ZeroR 

 

 The source codes for both YMLL and PHAKISO are currently not available 

because of certain proprietary algorithms that were developed by the Bioinformatics 

and Drug Design (BIDD) group. However, the code and documentation of the header 

files, precompiled libraries of YMLL for various systems and the executable for 

PHAKISO are available freely on the PHAKISO website (http://www.phakiso.com) 

for non-commercial uses. In addition, certain parts of the source codes will be made 

available in the next release of YMLL and PHAKISO to aid in the development of 

additional algorithms by other programmers. The following sections describe the 

design and main features of YMLL and PHAKISO. A more detailed explanation of 

the usage of both YMLL and PHAKISO is provided on the PHAKISO website. 

 

 

http://www.phakiso.com/
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3.2 YMLL Organization 

3.2.1 Overview 

 YMLL contains different modules which interact with one another to develop 

a QSPkR/qSPkR model. The modules in YMLL are Dataset, DataLoad, DataSave, 

DatasetSplit, DatasetCluster, DiversityMetric, Outlier, Machine, DescriptorFilter, 

DescriptorSelection, Scale, DistanceMeasurer, PerformanceMeasurer, Reporter, 

ObjectiveFunction and Trainer. Each module defines a standard interface to interact 

with other modules. The standardization of a module’s interface enables different 

algorithms in the same module to work seamlessly with those in other modules and 

allow new algorithms to be easily added. The relationships between the different 

modules are shown in Figure 3.1. For example, to conduct a simple QSPkR/qSPkR 

experiment, we simply link the Dataset, DataLoad, Machine, and Reporter modules 

together. These modules will load a dataset into memory and pass to a machine 

learning algorithm to develop a QSPkR/qSPkR model. The prediction capability of 

the QSPkR/qSPkR model is then gauged and reported to the user. The programmer 

can choose different algorithms from the four different modules and the different 

algorithms are guaranteed to work with one another since they have to conform to the 

standard interface that is defined by their module.  
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Figure 3.1 Relationships between the different modules in YMLL. An arrow from 
module A to module B indicates that module A is required by module B. 
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3.2.2 Dataset, DataLoad, DataSave, DiversityMetric, DatasetSplit, 

DatasetCluster, and Outlier 

 The Dataset module is the most important in YMLL. Its main purpose is to 

store ADMET properties and descriptors of different compounds and to provide this 

information to other modules. The Dataset module also contains useful functions for 

merging of different datasets, removing of a portion of the dataset, changing of 
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descriptor set, removing of a portion of the descriptors and removing of compounds 

with the same descriptor values in the dataset. 

 DataLoad and DataSave modules contain multiple algorithms which enables 

information to be loaded from and saved to a variety of file formats, which includes 

comma-separated value (CSV) files, Microsoft Excel files, extensible markup 

language (XML) files, SVMlight (Joachims 1999) files, Torch (Collobert et al. 2002) 

files, and Weka (Witten et al. 2005) files. 

 A DiversityMetric module is available to compute the diversity of the dataset. 

Three popular diversity measures are provided: mean intermolecular 

dissimilarity (Perez 2005), average nearest neighbours (Agrafiotis et al. 1999) and 

cumulative property distribution (Agrafiotis 2001).  

 The aim of the DatasetSplit module is to divide a dataset into smaller portions. 

These smaller datasets can be used as training sets to train the machine learning 

method, or as testing sets to aid in the optimization of the descriptor subsets or 

machine learning parameters, or as validation sets to assess the prediction capability 

of the final QSPkR/qSPkR models. Currently, the dataset can be divided using simple 

methods like random selection and select every N compound, or using various 

statistical molecular design algorithms like Kennard and Stone  (Kennard et al. 1969), 

sphere exclusion (Hudson et al. 1996), removal-until-done  (Hobohm et al. 1992), and 

D-optimal design (Mitchell 1974), or using cross-validation methods like leave-one-

out, k fold cross-validation, and bootstrap.  

 The DatasetCluster module can be used to separate the dataset into different 

clusters based on either hierarchical or non-hierarchical methods. Hierarchical 

methods include single linkage, complete linkage, group average, Wards, centroid and 
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median (Leach et al. 2003). Non-hierarchical methods include k-means (Forgy 1965) 

and a method proposed by Butina (Butina 1999). 

 The Outlier module is used to detect and remove outliers from a dataset. 

Presently, there is an algorithm proposed by Hadi (Hadi 1992), and three other 

algorithms proposed by Lu et al (Lu et al. 2003). 

 

3.2.3 Machine 

 The Machine module contains various machine learning algorithms for both 

classification and regression problems. For classification problems, these include 

Bayes linear discriminant analysis (Tabachnick et al. 2000), logistic 

regression (Tabachnick et al. 2000), C4.5 decision tree (Quinlan 1993), C4.5 decision 

rules (Quinlan 1993), k nearest neighbours (Fix et al. 1951), probabilistic neural 

networks (Specht 1990), and support vector machine (Vapnik 1995). The C4.5 

decision tree and C4.5 decision rules is a translation of the original Quinlan source 

codes from C to C++. Two different versions of probabilistic neural networks were 

provided. One is the implementation based on the algorithm that is provided in the 

literature and the other is a C++ wrapper for the source codes provided by 

Masters (Masters 1995). There are three four different versions of the support vector 

machine. The first is SVMStar, which is developed by the BIDD group and the rest 

are C++ wrappers for SVMlight (Joachims 1999), LibSVM (Chang et al. 2001) and 

SVMTorch (Collobert et al. 2002). 

 For regression problems, there are multiple linear regression (Tabachnick et al. 

2000), principal component regression (Tabachnick et al. 2000), partial least 

squares (Geladi et al. 1986), continuum regression (de Jong et al. 2001), feedforward 

backpropagation neural network (Welstead 1994), general regression neural 
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network (Specht 1991) and support vector regression (Vapnik 1995). There are three 

different versions of feedforward backpropagation neural network. One is an 

implementation based on the algorithm that is provided in the literature and the other 

two are C++ wrappers for Annie (Shankar et al. 2004) and TorchMLP (Collobert et al. 

2002).. There are two versions of the general regression neural network. The first is 

the implementation based on the algorithm that is provided in the literature and the 

second is a C++ wrapper for the source codes provided by Masters (Masters 1995). 

There are three different version of support vector regression. These are basically C++ 

wrappers for SVMlight (Joachims 1999), LibSVM (Chang et al. 2001) and 

SVMTorch (Collobert et al. 2002). 

 

3.2.4 DescriptorFilter, DescriptorSelection, Scale 

 The DescriptorFilter and DescriptorSelection modules, which are used for 

descriptor selection, contain filter and wrapper algorithms respectively. For filter 

methods, there are CORCHOP (Livingstone et al. 1989), discrimination score (Guyon 

et al. 2002) and RELIEFF (Kononenko 1994). For wrapper methods, there are 

forward selection (Xu et al. 2001), backward elimination (Xu et al. 2001), stepwise 

regression (Xu et al. 2001), sequential floating forward selection (Pudil et al. 1994), 

generalized simulated annealing (Sutter et al. 1993), reverse elimination method of 

tabu search (Glover 1989), genetic algorithm (Siedlecki et al. 1989) and recursive 

feature elimination (Guyon et al. 2002). These wrapper methods are commonly used 

to select relevant descriptors (Sutter et al. 1993; Kohavi et al. 1997; Xu et al. 2001; 

Molina et al. 2002; Guyon et al. 2003). However, most of these algorithms were not 

present in Torch or Weka. Thus the implementation of these algorithms in YMLL is 

necessary to facilitate the development of relevant QSPkR/qSPkR models. All the 
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implementations of the wrapper methods are based on algorithms that were described 

in the literature. The genetic algorithm wrapper method is implemented with the help 

of GALib (Wall 2005).  

 A Scale module is also provided to enable ease of scaling of descriptors. The 

types of scaling methods that are available includes autoscaling, range scaling from 0 

to 1, range scaling from -1 to 1, natural logarithm scaling, logarithm base 10 scaling, 

mean scaling and variance scaling. 

 

3.2.5 DistanceMeasurer 

 The DistanceMeasurer module measures the distance or similarity 

(dissimilarity) between two compounds. Available distance metrics include Euclidean 

distance (Willett et al. 1998), Manhattan distance (Willett et al. 1998), Soergel 

distance (Willett et al. 1998), Gaussian distance (Zaknich 1999), Quadratic 

distance (Zaknich 1999), Tophat distance (Zaknich 1999) and Triangular 

distance (Zaknich 1999). Algorithms for similarity measures include Tanimoto 

coefficient (Willett et al. 1998), Dice coefficient (Willett et al. 1998), Cosine 

coefficient (Willett et al. 1998) and Pearson correlation coefficient (Weisstein). 

 

3.2.6 PerformanceMeasurer and Reporter 

 The purpose of the PerformanceMeasurer module is to compute various 

statistics for assessing the prediction capability of QSPkR/qSPkR models. Statistics 

that can be computed for classification problems include sensitivity, specificity, 

concordance, absolute error rate, relative error rate, Matthews correlation 

coefficient (Matthews 1975) and Cohen Kappa coefficient (Chohan et al. 2005). For 
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regression problems, the following statistics can be calculated: correlation coefficient, 

coefficient of determination, adjusted coefficient of determination, mean absolute 

error, mean square error, root mean square error, Spearman rho coefficient, standard 

deviation, F statistics and average fold error (Obach et al. 1997). 

 The Reporter module is used to provide a report of the prediction capability of 

the QSPkR/qSPkR models to either the screen or to a file. 

 

3.2.7 Trainer and ObjectiveFunction 

 The Trainer module is used for optimizing of the parameters for a machine 

learning method. Currently, the module can only optimize machine learning methods 

with a single parameter. 

 The ObjectiveFunction module is used to provide performance evaluation of a 

QSPkR/qSPkR model to the DescriptorSelection module or the Trainer module.  

 

 



CHAPTER 3: MACHINE LEARNING LIBRARY 71

3.3 PHAKISO 

3.3.1 Introduction 

 PHAKISO is a Microsoft Windows software, which uses the YMLL library, 

for performing QSPkR/qSPkR experiments. The aim of PHAKISO is to streamline 

the development of QSPkR/qSPkR models by offering a graphical user interface 

(GUI), which is shown in Figure 3.2, to the algorithms that are implemented in the 

YMLL library. This enables researchers to easily transform their data to a 

QSPkR/qSPkR model with just a few mouse clicks. 

 

Figure 3.2 Main window of PHAKISO 
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3.3.2 Features 

 Table 3.2 lists the standard features of PHAKISO, which are the GUI versions 

of the algorithms in YMLL library. Table 3.3 lists some additional features of 

PHAKISO which are not found in the YMLL library. 

 

Table 3.2 Standard features of PHAKISO 
Measurement of dataset diversity 

Determination of compound clusters in dataset 

Determination of outliers in dataset 

Statistical molecular design 

Y-randomization of dataset 

Scaling of descriptors 

Objective descriptor selection 

Subjective descriptor selection 

Construction of a QSPkR/qSPkR model 

Optimization of parameters for machine learning methods 

Assess prediction capability of QSPkR/qSPkR models on other datasets 

Validation of QSPkR/qSPkR models 

 

Table 3.3 Additional features of PHAKISO 
Display information on descriptors (mean, standard deviation, minimum and maximum values, etc) 

Automatic filling in of values for descriptors with missing values 

Principal component analysis 

 

3.3.3 Organization 

 All the features of PHAKISO are organized into a few menu headings: 

‘Dataset’, ‘Descriptors’, ‘Train’, ‘Trainers’, ‘Predict’, ‘Validation’, and ‘Options’. 

Some of the menu headings are initially disabled and will only be activated when the 
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features under the menu heading becomes available. For example, the ‘Predict’ menu 

will only be activated when a QSPkR/qSPkR model has been developed.  

 

3.3.3.1 ‘Dataset’ menu 

 The ‘Dataset’ menu contains algorithms for diversity measurement, finding 

clusters of compounds in the dataset, removal of duplicate compounds, removal of 

outlier compounds, statistical molecular design, y-randomization and calculating basic 

statistics for the dataset.  

 

3.3.3.2 ‘Descriptor’ menu 

 The ‘Descriptor’ menu contains algorithms for adding and removing 

descriptors, calculating correlation among the descriptors, calculating basic statistics 

for the descriptors, filling in of missing descriptor values, principal component 

analysis, scaling of the descriptors, objective descriptor selection and subjective 

descriptor selection. 

 

3.3.3.3 ‘Train’ menu 

 The ‘Train’ menu contains all the machine learning methods which are 

available for developing a QSPkR/qSPkR model from a training set. Once a 

QSPkR/qSPkR models has been developed, the ‘Predict’ menu will be activated.  
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3.3.3.4 ‘Trainers’ menu 

 The ‘Trainers’ menu contains algorithms for determining the optimum 

parameter values for the machine learning methods. Currently, the algorithms are only 

able to optimize a single parameter for the machine learning methods.  

 

3.3.3.5 ‘Predict’ menu 

 The ‘Predict’ menu contains algorithms for assessing the prediction capability 

of the developed QSPkR/qSPkR models. The QSPkR/qSPkR models can be used to 

predict the target property of compounds in the training set, testing set or a validation 

set.  

 

3.3.3.6 ‘Validation’ menu 

 The ‘Validation’ menu contains algorithms for validating the developed 

QSPkR/qSPkR models. The models can be validated by using cross-validation, 

bootstrapping, validation set or y-randomization.  

 

3.3.3.7 ‘Options’ menu 

 The ‘Options’ menu is used to adjust the parameters for all the machine 

learning methods. General settings such as the verbosity of the software can also be 

changed. 
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Chapter 4 

Prediction of Drug Absorption 

 

  The prediction of absorption-related processes, in particular, human 

intestinal absorption (section 4.1), and p-glycoprotein substrates (section 4.2), is 

presented in this chapter. SVM was used to develop classification systems for 

identifying compounds that are absorbable by human intestine and compounds that 

are substrates of the p-glycoprotein transporter. The effect of recursive feature 

elimination (RFE), a method for identifying relevant descriptors, on the classification 

accuracies of the SVM classification systems is discussed (sections 4.1.3.1 and 4.2.3). 

Analysis of the RFE-selected descriptors and comparison with other classification 

studies are also presented (sections 4.1.3.2, 4.1.3.3 and 4.2.3). 

 

4.1 Human intestinal absorption (HIA) 

4.1.1 Introduction 

 Absorption is defined as the process by which unchanged drug proceeds from 

site of administration to site of measurement within the body. The oral route is the 

most convenient and widely used method of drug administration. Thus it is of interest 

during drug discovery to identify compounds that are suitable for this route of 

delivery. Drug absorption from the gastrointestinal (GI) tract is complex process. It 

primarily involves passive transport with a small portion of compounds being 

absorbed by active transport through various transporters (Pelkonen et al. 2001). A 

large number of factors, which can be classified into three categories, i.e. 
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physicochemical, physiological, and formulation related, affect GI absorption. Since 

formulation related factors are usually optimized experimentally while physiological 

factors cannot be controlled, prediction interests are centered on the extent of 

absorption as a function of physicochemical properties of the compounds (Boobis et 

al. 2002). 

 qSPkR models have been developed to determine compounds absorbable 

(HIA+) or nonabsorbable (HIA-) by human intestine. The overall accuracies of these 

ranged from 80.0% to 95.7% (Bergstrom et al. 2003; Niwa 2003; Zmuidinavicius et 

al. 2003; Pérez et al. 2004). These models employ a variety of molecular descriptors 

to characterize structural and physicochemical properties of molecules. Some of these 

descriptors were initially developed for the construction of quantitative structure 

activity relationship (QSAR) and quantitative structure property relationship (QSPR) 

of structurally related compounds. Thus these descriptors may not be universally 

applicable for other compounds or for the prediction of other properties. For instance, 

descriptors for the QSAR of relatively small sets of related compounds are not 

applicable for the analysis of chemical diversity (Bayada et al. 1999). The use of 

descriptors unrelated to a particular type of properties or biological activity will 

generate noise in a machine learning system, which may affect the prediction 

accuracy of that system (Bayada et al. 1999). In some cases, it is difficult to manually 

select descriptors useful for a particular property. Thus methods capable of automatic 

selection of molecular descriptors are desirable. The redundancy in molecular 

descriptors can be partially reduced by means of feature selection methods. It is thus 

of interest to examine whether feature selection methods can be explored for 

automatic selection of molecular descriptors and for improvement of the prediction 

accuracy of ADMET properties by machine learning method.  
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 In this work, recursive feature elimination (RFE) is used as a feature selection 

method to automatically select molecular descriptors for support vector machine 

(SVM) prediction of HIA. The computed results are compared to those of earlier 

studies to examine whether our selected descriptors are capable of giving similar or 

better classification performance with respect to those derived from a preselected set 

of descriptors.  

 

4.1.2 Methods 

4.1.2.1 Selection of datasets 

 A “measured absorption rate” of 70% is used as the criterion for dividing 

compounds into HIA+ and HIA- classes (Zhao et al. 2001; Abraham et al. 2002). A 

total of 131 HIA+ and 65 HIA- compounds are collected. In general, a relatively 

smaller number of compounds with low intestinal absorption is specifically reported 

in the literature (Klopman et al. 2002). Thus, the number of known HIA+ compounds 

is expected to be significantly larger than those of HIA- compounds. 

 

4.1.2.2 Molecular descriptors 

 The molecular descriptors used in this work are selected from those commonly 

used in the literature (Todeschini et al. 2000). There are a total of 159 descriptors, 

given in Table 4.1, which can be divided into five classes based on their properties. 

These classes are simple molecular properties, molecular connectivity and shape, 

electrotopological state, quantum chemical properties, and geometrical properties. 
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Table 4.1 Molecular descriptors and their classes used for human intestinal 
absorption property predictiona. 

Descriptor class Number of 

descriptors 

in class 

Descriptors 

Simple molecular 

properties  

18 Molecular weight, Number of ring structures, number of rotatable 

bonds, number of H-bond donors, number of H-bond acceptors, 

Element counts 

Molecular 

connectivity and 

shape 

28 Molecular connectivity indices, Valence molecular connectivity 

indices, Molecular shape Kappa indices, Kappa alpha indices, 

Flexibility index 

Electrotopological 

state  

84 Electrotopological state indices and Atom type electrotopological 

state indices 

Quantum chemical 

properties 

 

13 Atomic charge on the most positively charged H atom, Largest 

negative charge on a non-H atom, Polarizability index, Hydrogen 

bond acceptor basicity (covalent HBAB), Hydrogen bond donor 

acidity (covalent HBDA), Molecular dipole moment, Absolute 

hardness, Softness, Ionization potential, Electron affinity, Chemical 

potential, Electronegativity index, Electrophilicity index 

Geometrical 

properties 

 

 

16 Molecular size vectors (distance of the longest separated atom pairs, 

combined distance of the longest separated three atoms, combined 

distance of the longest separated four atoms), Molecular van der 

Waals volume, Solvent accessible surface area, Molecular surface 

area, van der Waals surface area, Polar molecular surface area, Sum 

of solvent accessible surface areas of positively charged atoms, Sum 

of solvent accessible surface areas of negatively charged atoms, Sum 

of charge weighted solvent accessible surface areas of positively 

charged atoms, Sum of charge weighted solvent accessible surface 

areas of negatively charged atoms, Sum of van der Waals surface 

areas of positively charged atoms, Sum of van der Waals surface 

areas of negatively charged atoms, Sum of charge weighted van der 

Waals surface areas of positively charged atoms, Sum of charge 

weighted van der Waals surface areas of negatively charged atoms 

a The total number of descriptors is 159. 
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 There are 18 descriptors in the class of simple molecular properties, 28 

descriptors in the class of molecular connectivity and shape, 84 descriptors in the 

class of electrotopological state, 13 descriptors in the class of quantum chemical 

properties, and 16 descriptors in the class of geometrical properties. These descriptors 

are computed using our own designed molecular descriptor computing program. 

 

4.1.2.3 Computation procedure 

 The computation procedure used in this work is outlined as follows: The SVM 

classification system was trained by using a Gaussian kernel function. The training 

was conducted by sequential variation of the parameter σ in the special region against 

the whole training set. The prediction accuracy of this SVM system during the 

training process was evaluated by means of 5-fold cross-validation. In the first step, 

for a fixed σ, the SVM classifier is trained by using the complete set of descriptors. 

The second step is to compute the ranking criterion score DJ(i) for each descriptor in 

the current set by using equation (2.8). All of the computed DJ(i) values are 

subsequently ranked in descending order. The third step is to remove the m 

descriptors with smallest criterion scores. In this work, m was chosen to be 5, similar 

to that used in earlier studies (Yu et al. 2003). In the fourth step, the SVM 

classification system is retrained by using the remaining set of descriptors, and the 

corresponding prediction accuracy is computed by means of 5-fold cross-validation. 

The first to fourth steps are then repeated for other values of σ. After the completion 

of these procedures, the set of descriptors and parameter σ that give the best 

prediction accuracy are selected. 
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4.1.3 Results and discussion 

4.1.3.1 Effect of feature selection on classification accuracy 

 The prediction accuracies of SVM classification systems using the RFE 

method (termed as SVM+RFE) and those without using RFE (termed as SVM) were 

evaluated by means of 5-fold cross-validation method. The computed sensitivity (SE) 

and specificity (SP) for each fold and the average accuracies of HIA+ and HIA- 

compounds as well as the overall prediction accuracy (Q) and Matthews correlation 

coefficient (MCC) are given in Table 4.2.  

 

Table 4.2 SVM and SVM+RFE prediction accuracy of human intestinal absorption 
(HIA+) and nonabsorption (HIA-) of compounds by using 5-fold cross-validation. 

HIA+ HIA- Method Cross-

validation TP FN SE (%) TN FP SP (%) 

Q 

(%) 

MCC 

1 22 5 81.5 7 5 58.3 74.4 0.40 

2 18 3 85.7 8 3 72.7 81.3 0.58 

3 37 3 92.5 7 5 58.3 84.6 0.54 

4 16 4 80.0 7 8 46.7 65.7 0.28 

5 18 5 78.3 12 3 80.0 79.0 0.57 

SVM 

Average   83.4   63.2 77.0 0.48 

1 22 5 81.5 10 2 83.3 82.1 0.61 

2 20 1 95.2 11 0 100.0 96.9 0.93 

3 35 5 87.5 8 4 66.7 82.7 0.53 

4 18 2 90.0 10 5 66.7 80.0 0.59 

5 22 1 95.7 13 2 86.7 92.1 0.83 

RFE  + 

SVM 

Average   90.0   80.7 86.7 0.70 

 

 The average accuracy for the SVM prediction of HIA+ and HIA- compounds 

is 83.4% and 63.2% respectively. By using RFE, the total number of descriptors is 
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significantly reduced from 159 to 27. The average accuracies for the prediction of 

HIA are substantially improved by using the reduced set of descriptors. These are 

90.0% and 80.7% for HIA+ and HIA- compounds respectively. Our study seems to 

suggest that RFE is useful for removing redundant descriptors, which helps to 

increase the computational efficiency of statistical learning system. RFE is also 

capable of improving the accuracy of SVM classification of HIA behavior of 

compounds. 

 

4.1.3.2 Comparison with other classification studies 

 The effect of feature selection on classification performance can be further 

evaluated by comparison with other classification studies of the same systems that use 

preselected descriptors. Direct comparison between our results and those from other 

studies may not be appropriate because of differences in the use of dataset, descriptors, 

evaluation, and classification methods. Nonetheless, a tentative comparison may 

provide some crude estimate regarding the approximate level of accuracy of our 

method with respect to those obtained by other studies that used more selective 

descriptors. 

 The reported accuracies of HIA+ predictions are 77%-87% by using 

partitioned total surface models (Bergstrom et al. 2003), 80% by using neural network 

methods together with 2D topological descriptors (Niwa 2003), and 97% by using 

structure activity relationship (SAR) models together with physicochemical and 

structural descriptors (Zmuidinavicius et al. 2003). The reported accuracy for HIA- 

prediction is 85% by using SAR models (Zmuidinavicius et al. 2003). Our prediction 

accuracy of 90.0% for HIA+ and 80.7% for HIA- by using SVM+RFE is thus 

comparable to the results from these methods that use selective sets of descriptors.  
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4.1.3.3 RFE selected molecular descriptors 

 Table 4.3 gives the descriptor classes of the RFE-method-selected descriptors. 

These descriptors along with their descriptor types are given in Table 4.4. It is found 

that hydrogen bonding and size are the dominant factors involved in the 

characterization of HIA property. This finding is consistent with the Lipinski’s rule of 

five (Lipinski et al. 1997). In addition, hydrophobic and electrostatic interactions are 

also found to be important. 

 

Table 4.3 Descriptor classes selected by the RFE method. 
Descriptor class Number of descriptors in 

descriptor class 

Percentage in each class (%) 

Electrostatic 4 14.8 

Hydrogen bond acceptors 3 11.1 

Hydrogen bond donors 6 22.2 

Hydrophobic 6 22.2 

Size 8 29.6 

 

Table 4.4 Molecular descriptors in the reduced set selected by the RFE method 
No Descriptors Description Type 

1 S(1) Atom-type H Estate sum for -OH Electrotopological state 

2 S(5) Atom-type H Estate sum for > NH Electrotopological state 

3 S(10) Atom-type H Estate sum for :CH: (sp2, 

aromatic) 

Electrotopological state 

4 S(13) Atom-type H Estate sum for CH n 

(unsaturated) 

Electrotopological state 

5 S(16) Atom-type Estate sum for -CH 3 Electrotopological state 

6 S(20) Atom-type Estate sum for =CH- Electrotopological state 

7 S(25) Atom-type Estate sum for =C< Electrotopological state 
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8 S(26) Atom-type Estate sum for : C:- Electrotopological state 

9 S(31) Atom-type Estate sum for >NH Electrotopological state 

10 S(34)  Atom-type H Estate sum for =N-  Electrotopological state 

11 S(35) Atom-type Estate sum for :N: Electrotopological state 

12 S(39)  Atom-type H Estate sum for –OH  Electrotopological state 

13 S(40)  Atom-type H Estate sum for =O  Electrotopological state 

14 2χ Simple molecular connectivity Chi 

indices for path order 02  

Connectivity and shape 

 

15 3χC Simple molecular connectivity Chi 

indices for cluster  

Connectivity and shape 

 

16 5χCH Simple molecular connectivity Chi 

indices for cycle of 5 atoms 

Connectivity and shape 

 

17 6χCH Simple molecular connectivity Chi 

indices for cycle of 6 atoms 

Connectivity and shape 

 

18 3χv
C Valence molecular connectivity Chi 

indices for cluster 

Connectivity and shape 

 

19 5χv
CH valence molecular connectivity Chi 

indices for cycle of 5 atoms 

Connectivity and shape 

 

20 6χv
CH valence molecular connectivity Chi 

indices for cycle of 6 atoms 

Connectivity and shape 

 

21 πi Polarizability index Quantum chemical properties 

22 εa  Hydrogen bond donor acidity (covalent 

HBDA)  

Quantum chemical properties 

23 A  Electron affinity  Quantum chemical properties 

24 dis3  Length vectors (longest distance, longest 

third atom, 4th atom)  

Geometrical properties  

25 Sanc Sum of solvent accessible surface areas of 

negatively charged atoms 

Geometrical properties 

26 Sancw Sum of charge weighted solvent 

accessible surface areas of negatively 

Geometrical properties 
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charged atoms 

27 Ndonr Number of H-bond donors Simple molecular properties 

 

 The RFE selected descriptors describe polar properties, molecular size, cluster 

connectivity, and various +N–, –OH, and =O electrotopological properties, which are 

likely to be important for describing passive transport across membranes. These 

descriptors are primarily uncorrelated to each other. The majority of the descriptors 

removed by the RFE method, particularly those of electrotopological state, 

geometrical, and quantum chemical properties, were found to have at least a 

correlation coefficient of 0.7 to some of the descriptors selected. The rest of the RFE 

removed descriptors are mostly simple molecular properties (such as molecular 

weight, the number of specific types of atoms, and the number of rings), geometrical 

properties (such as molecular volume and surface areas), and connectivity properties 

(such as index for clusters and paths). These descriptors are not selected because they 

may not contain as much information as the current descriptor subset for describing 

the penetration of a compound through the intestinal membrane. For instance, 

Lipinski’s rule of five (Lipinski et al. 1997) states that molecular weight is important 

for the prediction of drug absorption through the intestine. One reason why molecular 

weight was not selected by the RFE method in this study may be because it does not 

contain as much information as the current descriptor subset for describing the 

penetration of a compound through the intestinal membrane. Thus descriptors such as 

molecular connectivity and length vectors, which encode the shape and size of a 

molecule and have some degree of correlation with molecular weight, were included 

instead. 
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4.1.4 Conclusion 

 Statistical-learning methods have been developed for facilitating the prediction 

of pharmacokinetic and toxicological properties of compounds. These methods 

employ a variety of molecular descriptors to characterize structural and 

physicochemical properties of molecules. Some of these descriptors are specifically 

designed for the study of a particular type of properties or compounds, and their use 

for other properties or compounds might generate noise and affect the prediction 

accuracy of a statistical learning system. In this work, a feature selection method, RFE, 

is used to automatically select molecular descriptors for SVM prediction of HIA. RFE 

significantly reduces the number of descriptors need to develop a qSPkR model for 

HIA, thereby increasing the computational speed for their classification. The SVM 

prediction accuracies of HIA are substantially increased by RFE. These prediction 

accuracies are comparable to those of earlier studies derived from a selective set of 

descriptors. Our study suggests that molecular feature selection is useful for 

improving the speed and, in some cases, the accuracy of statistical learning methods 

for the prediction of pharmacokinetic and toxicological properties of chemical agents.  
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4.2 P-glycoprotein (P-gp) substrates 

4.2.1 Introduction 

 P-gp, encoded by the highly conserved multidrug resistant (MDR) genes, is an 

ATP-dependent drug efflux pump which can transport a diverse range of structurally 

and functionally unrelated substrates across the plasma membrane (van Veen et al. 

1998; Schmitt et al. 2002). Over expression of this protein may result in multidrug 

resistance and is a major cause of the failure of cancer chemotherapy (Gottesman et al. 

1996; Ambudkar et al. 1999) and diminished efficacy of antibiotics and antiviral 

compounds (Kim et al. 1998; Delph 2000). Two approaches have been explored to 

circumvent MDR. One is the design of P-gp inhibitors (Klopman et al. 1997; Bakken 

et al. 2000) and another is to identify and eliminate drug candidates that are substrates 

of P-gp in early stage of drug discovery (Bain et al. 1997; Litman et al. 1997; Seelig 

1998; Penzotti et al. 2002). Methods that facilitate the identification of P-gp substrates 

and inhibitors in a cost efficient and fast-speed manner are therefore useful for 

facilitating drug discovery. 

 Efforts have been directed at the development of computational methods for 

P-gp substrate prediction (Bain et al. 1997; Litman et al. 1997; Seelig 1998; Penzotti 

et al. 2002). Molecular mechanism of P-gp mediated transport is not well understood 

and the high-resolution structure of P-gp is unavailable (van Veen et al. 1998; Schmitt 

et al. 2002). Thus prediction methods are primarily based on statistical models 

derived from identification of structure-activity relationships (Bain et al. 1997; 

Litman et al. 1997), structural recognition elements (Seelig 1998), and multiple 

pharmacophores (Penzotti et al. 2002). In particular, the multiple-pharmacophore 

model showed promising capability of P-gp substrate prediction for a large variety of 
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compounds that conform to the known pharmacophores (Penzotti et al. 2002), 

achieving a prediction accuracy of 63 % for a set of 195 compounds. Not all of the 

pharmaceutically important substrates, agonists and antagonists have available 

pharmacophore models. Therefore methods that extend the prediction range beyond 

those compounds covered by known pharmacophore models are desired.  

 This work explored the use of SVM as a potential tool for the prediction of P-

gp substrates. Known P-gp substrates and non-substrates were used for training and 

testing a SVM classification system for recognition of physicochemical features of P-

gp substrates. Through this learning-by-examples process, the trained SVM system 

can then be used for classifying a chemical compound as either a substrate or a non-

substrate of P-gp. The classification accuracy of this system was evaluated by using 

two methods, an independent set of compounds and 5-fold cross-validation, and it is 

compared to the 5-fold cross-validation prediction accuracies derived from three other 

machine learning methods using the same sets of data and molecular descriptors, so as 

to objectively examine whether SVM is useful for P-gp substrate prediction. 

 

4.2.2 Methods 

4.2.2.1 Selection of substrates and non-substrates of P-gp 

 P-gp substrates were collected from the literature (Seelig 1998; Penzotti et al. 

2002). Non-substrates of P-gp are those specifically described as not transportable by 

P-gp. A total of 116 substrates and 85 non-substrates of P-gp were collected. These 

compounds were further separated into training and testing sets by two different 

methods. The first method is an independent validation set to evaluate the 

classification accuracy. The second method is 5-fold cross-validation. 
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 In the first method, these compounds were separated into three sets: training, 

testing and independent validation set. The training set is used by SVM to develop a 

statistical model. The testing set is used by SVM to optimize the parameters of SVM 

classification algorithm and the independent validation set is used for assessing the 

classification accuracy of the model. These compounds were divided into the three 

sets by using the removal-until-done method (section 2.2.2.3). 

 

4.2.2.2 Molecular descriptors 

 This study used the same set of 159 molecular descriptors as the HIA study 

(section 4.1.2.2). Redundant and un-related descriptors are further reduced by using 

RFE method with the same computation procedure as the HIA study (section 4.1.2.3). 

 

4.2.2.3 Other statistical classification systems 

 To objectively examine whether SVM is useful for P-gp substrate prediction, 

prediction accuracies of the trained SVM system were compared with those derived 

from three other classification methods by using 5-fold cross-validation. These 

methods are k nearest neighbour (kNN), probabilistic neural network (PNN) and C4.5 

decision tree (DT).  

 

4.2.3 Results and discussion 

 SVM prediction of both substrates and non-substrates of P-gp was evaluated 

by means of independent validation set and 5-fold cross-validation. The results of 

these two methods are given in Table 4.5 and Table 4.6 respectively. The accuracy for 

the prediction of P-gp substrate using 5-fold cross-validation is 81.2% and that by 
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using independent validation set is 84.2% respective. Thus both methods appear to 

give consistent assessment about the prediction accuracy. This suggests that the 

trained SVM system is unlikely to overfit. 

 

Table 4.5 SVM prediction accuracy for the substrates and non-substrates of P-gp by 
using independent validation sets.  

Testing set Independent validation set 

Substrates Nonsubstrates Substrates Nonsubstrates 

Training set 

TP FN TN FP TP FN SE (%) TN FP SP (%) 

74 68 22 0 12 0 16 3 84.2 4 2 66.7 

 

Table 4.6 SVM prediction accuracy of the substrates and non-substrates of P-
glycoprotein by using 5-fold cross-validation. 

Substrates Non-substrates Cross-

validation TP FN SE (%) TN FP SP (%) 

Q (%) 

1 17 7 70.8 12 4 75.0 72.5 

2 15 2 88.2 11 5 68.8 78.8 

3 30 8 78.9 13 1 92.9 82.7 

4 15 4 78.9 15 3 83.3 81.1 

5 16 2 88.9 16 5 76.2 82.1 

Average   81.2   79.2 79.4 

Standard error   7.5   9.2 4.2 

 

 A direct comparison with results from previous study is inappropriate because 

of differences in the use of dataset, molecular descriptors and classification methods. 

A tentative comparison suggests that our prediction accuracy for P-gp substrates is 

substantially improved with respect to the value of 63% derived from the ensemble 

pharmacophore model (Penzotti et al. 2002). 
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 The prediction accuracy for non-substrates of P-gp is 79.2% using 5-fold 

cross-validation and 66.7% using independent validation set. The substantially lower 

accuracy derived from the independent validation set likely arises because of the 

small number of P-gp non-substrates in the set. Another factor is the inadequate 

sampling of the chemical space covered by non-substrates of P-gp. It is likely that the 

85 non-substrates collected in this work only represent a portion of all possible classes 

of non-substrates of P-gp. Protein non-substrates are rarely described in the literature, 

thus additional efforts are needed to enable the collection of this information. 

 SVM classification results were further compared to those from other machine 

learning methods like kNN, PNN, and C4.5 DT to determine whether it is possible to 

use a simpler model for the prediction of P-gp substrates and non-substrates. The 

same sets of data and descriptors are used in these computations. The results are 

shown in Table 4.7 and it is found that the accuracy from SVM classification system 

is slightly better than those from other classification methods. This suggests that the 

SVM classification system developed in this study is not more flexible than is 

necessary and thus is unlikely to have overfitting problems. 

 

Table 4.7 Comparison of the prediction accuracy of the substrates and non-substrates 
of P-glycoprotein from different classification methods by using 5-fold cross-
validation. 

Method SE (%) SP (%) Q (%) 

kNN 79.2 61.6 70.8 

PNN 77.3 71.4 74.4 

C4.5 DT 74.6 69.9 71.5 

SVM 81.2 79.2 79.4 
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 SVM typically uses a portion of the training set as support vectors for 

classification. In contrast, kNN and PNN use the whole training set for classification. 

Our own studies suggest that the number of support vectors of SVM is in the range of 

40-70% of the training set. Thus the classification speed of SVM is usually 30-60% 

faster than that of kNN and PNN. On the other hand, the classification speed of SVM 

is slower than that of decision tree methods which conduct tests on descriptors to 

reach a decision leaf. 

 In the independent validation set, there are three and two incorrectly classified 

substrates and non-substrates of P-gp respectively, which are shown in Figure 4.1. 

The three P-gp substrates are catharantine, depredil and yohimbine, and the two non-

substrates of P-gp are NSC364080 and NSC630357.  
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Figure 4.1 Structures of misclassified compounds in independent validation set. 
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 Table 4.8 gives the molecular descriptors selected from the feature selection 

method RFE. Those from the class of topological descriptor constitute the largest 

percentage of the descriptors selected. This is consistent with the findings from the 

classification of MDR compounds, many of which are P-gp substrates, by using 

structure-based descriptors and linear discriminant analysis, which showed that 60% 

of the molecular descriptors important for MDR are topological in nature (Bakken et 

al. 2000). A QSAR study of MDR compounds also identified several pharmacophores, 

e.g., a generic form of C-C-X-C-C with X=N, NH, or O (preferably a tertiary 

nitrogen), as a key structural element for MDR (Klopman et al. 1997). These 
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pharmacophores are primarily determined by electrotopological features and bond 

connectivity. In addition to the large percentage of electrotopological descriptors, 

RFE method also selected three molecular connectivity descriptors, which seems to 

correlate with the features of the pharmacophores identified from the QSAR study of 

MDR compounds. 

 

Table 4.8 Molecular descriptors selected from the feature selection method for 
classification of P-gp substrates and non-substrates. 

No Descriptors Description Class 

1 Ncocl Count of Cl atoms Simple molecular properties 

2 Ndonr Number of H-bond donors Simple molecular properties 

3 5χCH Simple molecular connectivity Chi 

indices for cycle of 5 atoms 

Connectivity and shape 

4 3χv
P Valence molecular connectivity Chi 

indices for path order 3 

Connectivity and shape 

5 5χv
CH valence molecular connectivity Chi 

indices for cycle of 5 atoms 

Connectivity and shape 

6 Scar Sum of Estate indices of carbon atoms Geometrical properties 

7 dis2 Length vector (longest third atom) Geometrical properties 

8 Sapcw Sum of charge weighted solvent 

accessible surface areas of positively 

charged atoms 

Geometrical properties 

9 S(1) Atom-type H Estate sum for -OH Electrotopological state 

10 S(9) Atom-type H Estate sum for =CH- (sp2) Electrotopological state 

11 S(12) Atom-type H Estate sum for CHn 

(Saturated) 

Electrotopological state 

12 S(13) Atom-type H Estate sum for CH n 

(unsaturated) 

Electrotopological state 

13 S(16) Atom-type Estate sum for -CH 3 Electrotopological state 
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14 S(18) Atom-type Estate sum for >CH 2 Electrotopological state 

15 S(20) Atom-type Estate sum for =CH- Electrotopological state 

16 S(21) Atom-type Estate sum for : CH : 

(aromatic) 

Electrotopological state 

17 S(25) Atom-type Estate sum for =C< Electrotopological state 

18 S(36) Atom-type Estate sum for >N- Electrotopological state 

19 πi Polarizability index Quantum chemical properties 

20 q+ Atomic charge on the most positively 

charged H atom 

Quantum chemical properties 

21 μ Molecular dipole moment Quantum chemical properties 

22 ω Electrophilicity index Quantum chemical properties 

 

 The rest of the RFE selected descriptors are from the quantum chemical class 

and simple molecular property class. The selected quantum chemical descriptors 

determine polarizability, molecular dipole moment, electrophilicity, and the atomic 

charge of the positively charged hydrogen atoms in a molecule. The selected simple 

molecular property descriptors give the number of hydrogen bond donors and that of 

Cl atoms. With the exception of the last descriptor, the MolSurf counterparts of these 

quantum chemical and simple molecular property descriptors have used for the 

prediction of P-gp-interacting drugs by means of multivariate statistics 

method (Österberg et al. 2000). Based on structural comparison, it has been found that 

the number of electron donors and hydrogen bond acceptor groups are important 

elements for P-gp substrate recognition (Seelig 1998). An analysis of multiple 

pharmacophores of P-gp substrates has identified hydrophobe, hydrogen bond donor 

and acceptor as important elements for P-gp substrates (Penzotti et al. 2002). Thus 

these studies consistently suggested the importance of the selected quantum chemical 
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features and hydrogen-bond property for prediction of P-gp substrates and non-

substrates. 

 The other RFE selected descriptor, the count of Cl atoms, has not been 

specifically used in other P-gp substrate studies. One possible reason is that the 

molecules used in those studies do not contain a Cl atom, thus it is unnecessary to 

introduce this descriptor in those studies. In this work, the descriptor for hydrogen 

bond acceptor was not selected by RFE, which has been found to be an important 

element for P-gp substrates in other studies (Seelig 1998; Penzotti et al. 2002). One 

likely reason for the exclusion of this descriptor is that it has a high level of 

redundancy with the relevant features covered by the quantum chemical descriptors 

such as electrophilicity, polarizability and molecular dipole moment when they are 

combined with the hydrogen bond donor descriptor. 

 

4.2.4 Conclusion 

 SVM is a potentially useful computational method for facilitating the 

prediction of P-gp substrates. The SVM model developed in this work gave a 

prediction accuracy for P-gp substrates that is substantially improved against that 

obtained from the multiple-pharmacophore model. The prediction accuracy for 

nonsubstrates of P-gp is slightly better than those obtained from other statistical 

classification methods, including kNN, PNN, and C4.5 decision tree, that use the 

same sets of data and molecular descriptors. Prediction accuracy may be further 

improved by consideration of factors such as hydrogen bonding, active transport, and 

relationship with pharmacodynamic properties. 
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Chapter 5 

Prediction of Drug Distribution 

 

 This chapter describes the prediction of a few important distribution processes, 

such as blood-brain barrier penetration, human serum albumin binding and milk-

plasma ratio by using GRNN. The prediction accuracies of the GRNN-developed 

models were compared with those of QSPkR models developed by using MLR and 

MLFN. A new method for interpreting GRNN-developed QSPkR models, which 

enables relevant physicochemical and structural properties of a compound to be 

identified, is also introduced. 

 

5.1 Introduction 

 Optimization of pharmacokinetic as well as the pharmacodynamic properties 

of a drug candidate is an important consideration in drug design process (Eddershaw 

et al. 2000; van de Waterbeemd et al. 2003). One important aspect of 

pharmacokinetic properties of a drug candidate is its distribution in the human body. 

A drug is required to achieve sufficient concentration at target site while possibly 

limiting its distribution elsewhere so as to produce desired therapeutic action with 

minimum side effects (Butina et al. 2002). Traditionally, the distribution properties of 

a drug candidate are obtained via in vivo and in vitro studies, which tend to be time-

consuming and costly. Therefore, QSPkR modeling has recently been explored for 

predicting the distribution properties of drug candidates (Ekins et al. 2000c) in an 

effort to eliminate undesirable compounds in a fast and cost-effective manner.  
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 The most common modeling methods for obtaining QSPkR models are linear 

methods such as multiple linear regression (MLR) (Geladi et al. 1986). These 

methods can be easily used and the derived models can be easily interpreted. However 

multiple mechanisms may be involved in determining a particular pharmacokinetic 

property. A variety of factors may interact in complex ways to affect the 

pharmacokinetic property of a compound. Therefore methods based only on linear 

relationships may not always be the most efficient approach for constructing a QSPkR 

model. Thus non-linear methods such as multi-layer feedforward neural networks 

(MLFN) (Wythoff 1993) and general regression neural network (GRNN) (Specht 

1991) have increasingly been used for construction of QSPkR models.  

 GRNN has been explored for QSPkR modeling of human intestinal 

absorption (Niwa 2003) as well as for developing QSAR and QSPR of chemical 

compounds (Mosier et al. 2002). The prediction capability of GRNN has been found 

to be comparable to those of conventional non-linear methods such as MLFN but the 

former requires fewer descriptors (Mosier et al. 2002). Thus GRNN is expected to be 

equally useful for developing QSPkR models of other pharmacokinetic properties. 

This work is intended to test this feasibility by applying GRNN for developing 

QSPkR models of three distribution properties, blood-brain barrier (BBB) penetration, 

binding to human serum albumin (HSA) and milk-plasma (M/P) distribution. The 

performances of the GRNN-developed models were compared with those developed 

by using MLR and MLFN to determine whether GRNN produces more predictive 

QSPkR models.  

 The BBB exists at the choroids plexus and at the tissue capillary membranes 

between the blood and brain fluid, and BBB penetration is necessary for central 

nervous system (CNS) drugs (Hardman et al. 2002). Examples of these drugs are 
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antipsychotics, antiepileptics and antidepressants. For drugs not directed at targets in 

the brain, BBB penetration is undesirable because of potential CNS-related side 

effects. For example, the first generation antihistamines are known to penetrate the 

BBB leading to drowsiness (Meltzer 1990). The second generation antihistamines 

have a significantly reduced BBB penetration capability and are thus less likely to 

cause drowsiness (Kaliner 1992). One method for assessing the effects of a compound 

in the brain is to determine its concentration in the brain. This concentration can be 

calculated from the brain-blood (BB) ratio which is the concentration of this 

compound in the brain divided by that in the blood. Thus the BB ratio is an important 

pharmacokinetic property and a number of QSPkR models of BB ratio have been 

developed (Young et al. 1988; van de Waterbeemd et al. 1992; Abraham et al. 1994; 

Lombardo et al. 1996; Norinder et al. 1998; Clark 1999; Kelder et al. 1999; Luco 

1999; Feher et al. 2000; Kaznessis et al. 2001; Keserü et al. 2001; Liu et al. 2001; 

Platts et al. 2001; Iyer et al. 2002; Hou et al. 2003), the majority of which were 

developed by using MLR and the computed r2 values are in the range between 0.723-

0.941. 

 Most drugs bind to serum proteins and such binding regulates drug 

distribution and subsequently its effect (Colmenarejo 2003). Albumin is the most 

abundant of all serum proteins and is the most common drug-binding protein in the 

circulatory system. Because of the important role of albumin-binding in regulation of 

drug distribution, QSPkR models for predicting the extent of albumin-binding have 

been developed (Gobburu et al. 1995; Colmenarejo et al. 2001; Kratochwil et al. 2002; 

Hall et al. 2003; Turner et al. 2003b), the majority of which were developed by using 

MLR and a congeneric series of compounds. In a study of a diverse set of 94 drugs 

and drug-like compounds, two QSPkR models developed by using MLR gave 
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computed r2 values of 0.88 and 0.82 respectively on a separate testing 

set (Colmenarejo et al. 2001). 

 Breast milk is the best form of nutrition available to a newborn infant. Certain 

drugs administered to a nursing mother may be distributed into breast milk and thus 

transferred into the infant. The concentration of drug present in the breast milk can be 

used as an indicator of breast feed risk. The ratio of drug concentration in milk and 

plasma (M/P ratio) is the most widely used quantity for describing drug concentration 

in breast milk (Begg et al. 1993). However, the M/P ratio is seldom determined 

during clinical trials or after the drug has entered the market. In addition, M/P ratios 

were often obtained from studies involving a small number of women. This may lead 

to significant variations in the reported M/P ratio for a drug and makes it difficult for 

clinicians to advise women on the safety of breast-feeding. Methods for estimating the 

M/P ratios of drugs have been developed by using various modeling methods (Wilson 

1981; Meskin et al. 1985; Fleishaker et al. 1987; Atkinson et al. 1990; Agatonovic-

Kustrin et al. 2000; Agatonovic-Kustrin et al. 2002). In a recent study (Agatonovic-

Kustrin et al. 2002), MLFN was used to train and test on 123 diverse compounds. The 

computed r2 and mean square error (MSE) values from this model are 0.61 and 0.814 

respectively. 

 

5.2 Methods 

5.2.1 MLFN algorithm 

 The algorithm of MLFN has been extensively described in 

literatures (Wythoff 1993; Erb 1995; Hudson et al. 1995). Thus only a brief 

description is given here. MLFN is composed of an input layer, a variable number of 
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hidden layers and an output layer. The input and output layers contain neurons 

representing the descriptors and response value respectively. In a fully connected 

MLFN, each neuron in the input layer sends its value to all neurons in the first hidden 

layer. Each neuron in the hidden layers receives inputs from all neurons in the 

previous layer and computes a weighted sum of the inputs. The neuron output is 

determined by passing the weighted sum through a transfer function, which is usually 

a linear or sigmoidal function. The single neuron in the output layer determines the 

predicted response value by computing a weighted sum of the outputs of all neurons 

in the last hidden layer. Weights for the connections between neurons in adjacent 

layers are initially randomly assigned. These weights are then refined via a backward 

propagation of error process during training of the MLFN. In this study, MLFN were 

performed using the YMLL library (section 3.2) and had a single hidden layer with 

ten neurons. 

 

5.2.2 Molecular descriptors 

 A total of 1497 1D, 2D and 3D molecular descriptors were computed by using 

DRAGON (Todeschini et al. 2003). These descriptors, which can be divided into 18 

classes, include 47 constitutional descriptors, 70 geometrical descriptors, 266 

topological descriptors, 150 RDF descriptors (Hemmer et al. 1999), 21 molecular 

walk counts (Rücker et al. 1993), 160 3D-MoRSE descriptors (Schuur et al. 1996), 64 

BCUT descriptors (Pearlman et al. 1999), 99 WHIM descriptors (Bravi et al. 1997), 

21 Galvez topological charge indices (Galvez et al. 1994), 197 GETAWAY 

descriptors (Consonni et al. 2002), 96 2D autocorrelations, 121 functional groups, 14 

charge descriptors, 120 atom-centred descriptors, 4 aromaticity indices (Randic 1975), 
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3 empirical descriptors, 41 Randic molecular profiles (Randic 1995) and 3 molecular 

properties. 

 

5.2.3 Datasets 

 The BBB penetration dataset contains 175 compounds with experimental log 

BB values collected from various literature sources (Luco 1999; Kaznessis et al. 2001; 

Platts et al. 2001; Hou et al. 2003). Twelve compounds were identified as outliers by 

previous studies (Abraham et al. 1994; Lombardo et al. 1996; Clark 1999; Luco 1999; 

Kaznessis et al. 2001; Liu et al. 2001; Platts et al. 2001) and were removed from the 

dataset. The DRAGON software was unable to compute the descriptors of four 

compounds, argon, krypton, neon and xenon, and thus these compounds were also 

removed from the dataset. The final dataset of 159 compounds were divided into a 

training set of 129 compounds and a validation set of 30 compounds. 

 The HSA binding dataset was composed of 94 compounds with HSA binding 

constants, log Khsa, and was obtained from Colmenarejo et al (Colmenarejo et al. 

2001). One compound, ebselen, was removed from the original dataset as its 

descriptors cannot be computed by the DRAGON software. These compounds were 

divided into a training set and a validation set of 75 and 18 compounds respectively. 

 The M/P distribution dataset consists of 123 compounds used in the 

Agatonovic-Kustrin’s study (Agatonovic-Kustrin et al. 2002). An erroneous 

compound, norfluexetine, was identified and removed from the original dataset. The 

remaining compounds were split into a training set and validation set of 102 and 20 

compounds respectively. 

 Kennard and Stone algorithm (section 2.2.2.2), which has been found to be 

useful for constructing representative training and validation sets from a dataset (Wu 
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et al. 1996; Zuegge et al. 2002; Rajer-Kanduc et al. 2003), was used in this work. In 

computing the Euclidean distance for the algorithm, principal component analysis 

(PCA) was used to select principal components (PC) whose eigenvalues were larger 

than one. The Euclidean distance was then calculated from the retained PCs. The 

selection process continues until approximately 80% ∼ 85% of the compounds were 

selected for the training set. The remaining 15% ∼ 20% of the compounds in the 

dataset were used as the validation set. 

 

5.2.4 Descriptor selection 

 The first step involves the removal of all irrelevant descriptors such as 

constant descriptors and near-constant descriptors that have the same value for more 

than 80% of the compounds. All the remaining descriptors were autoscaled using 

equation (2.3). Genetic algorithm (section 2.3.3.2) was then used to further remove 

descriptors of low information content. In the mutation process of the genetic 

algorithm, descriptors may be randomly added to or deleted from a descriptor subset, 

subjected to an overall minimum and maximum of 3 and 10 descriptors respectively 

for each descriptor subset. At the end of the genetic algorithm-based descriptor 

selection process, the highest ranked subset was retained. As genetic algorithm is a 

heuristic method, the selection of relevant descriptor subset was repeated 10 times to 

improve the chances of finding the optimum descriptor subset. The best descriptor 

subset from these 10 runs was used to construct the QSPkR model.  

 In the descriptor selection process, the original training set was divided by 

using Kennard and Stone algorithm into a modeling training set and a modeling 

testing set by a 4:1 ratio. The modeling training set was used for constructing the 

QSPkR models in the genetic algorithm. The testing set was used to evaluate the 
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trained systems so that no overtrained systems are selected. The following cost 

function (Wessel et al. 1998; Mosier et al. 2002) was used as the fitness function 

during genetic algorithm optimization: 

 0.4train train testCost MSE MSE MSE= + × −     (5.1) 

where MSEtrain and MSEtest are the mean square error of the modeling training set and 

testing set respectively and were calculated using the equation (2.35). 

 

5.2.5 Model validation 

 Y-randomization was used to determine the probability of chance correlation 

during descriptor selection (Manly 1997; Leardia et al. 1998). The distribution 

properties of all the compounds in the modeling training set were first randomly 

rearranged. Descriptor selection using genetic algorithm was then used to find the 

optimum descriptor subset for the scrambled data and the cost of this descriptor subset 

was measured. The scrambling of the distribution properties and descriptor selection 

was repeated for 30 times. If the cost of all of the scrambled QSPkR models were 

significantly worse than the cost of the original QSPkR model, it can be concluded 

that the original QSPkR model was relevant and unlikely to arise as a result of chance 

correlation. 

 The validation set, not used in the derivation of the QSPkR models, was used 

to estimate the prediction capability of the final QSPkR models. Leave-one-out (LOO) 

and 10-fold cross-validation were not used for this purpose in this work because there 

are reports of the lack of correlation between cross-validation methods and the 

prediction capability of a QSAR model (Golbraikh et al. 2002; Kozak et al. 2003; 

Reunanen 2003; Olsson et al. 2004). In addition, cross-validation methods have a 

tendency to underestimate the prediction capability of a QSAR model, especially if 

 



CHAPTER 5: DISTRIBUTION 104

important molecular features are present in only a minority of the compounds in the 

training set (Mosier et al. 2002; Hawkins et al. 2004). Thus a model having low cross-

validation results can still be quite predictive (Mosier et al. 2002). 

 

5.2.6 Interpretation of GRNN-developed models 

 In multi-sigma GRNN-developed models, the contribution of each descriptor 

on the distribution property of a compound can be estimated from its σ value. Those 

descriptors with smaller σ values give higher contributions. From equation (2.27), it 

can be seen that the change in the distribution property is proportional to 1/σ2. A 

functional dependence study was also done using the procedures described in section 

2.5.3.  

 

5.3 Results and discussion 

5.3.1 BBB penetration 

 A seven-descriptor subset was selected by the descriptor selection algorithm as 

the optimum set for GRNN model of BBB penetration, which is given in Table 5.1. 

Absolute pairwise correlation between the seven descriptors ranged from 0.032 to 

0.561 with an absolute mean correlation of 0.287. For both MLR and MLFN, a nine-

descriptor subset was obtained by the descriptor selection algorithm. The minimum 

costs of 30 scrambled QSPkR models developed using GRNN, MLR and MLFN were 

0.375 (Mean: 0.430, SD: 0.033), 0.300 (Mean: 0.356, SD: 0.027) and 0.338 (Mean: 

0.391, SD: 0.021) respectively. These were significantly larger than the cost of the 

original GRNN-, MLR- and MLFN-developed models, which were 0.042, 0.180 and 
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0.109 respectively. Thus y-randomization showed that the original QSPkR models 

were relevant and unlikely to arise from chance correlation. The prediction results of 

the QSPkR models, given in Table 5.2, show that the QSPkR model developed using 

GRNN was the best model. 

 

Table 5.1 Descriptors selected for BBB GRNN model. 
Range Descriptor Type Sigma 

Min Max 

Explanation 

Ms Constitutional 0.22 1.50 6.94 Mean electrotopological state 

RBN Constitutional 0.48 0 21 Number of rotatable bonds 

piPC08 Topological 1.33 0.0 2682.2 Molecular multiple path count of order 

08 

GATS5e 2D 

autocorrelations 

0.68 0.00 2.54 Geary autocorrelation - lag 5 / weighted 

by atomic Sanderson electronegativities

SPAM Geometrical 0.32 0.30 0.72 Average span R 

E1p WHIM 0.68 0.20 0.89 1st component accessibility directional 

WHIM index / weighted by atomic 

polarizabilities 

R2v GETAWAY 0.66 0.10 1.14 R autocorrelation of lag 2 / weighted by 

atomic van der Waals volumes 

 

Table 5.2 Predictive capabilities of BBB QSPkR models on independent validation 
set. 

Method r2 Rs
 a MSE 

GRNN 0.701 0.825 0.130 

MLR 0.649 0.782 0.154 

MLFN 0.662 0.802 0.147 

a Spearman rho coefficient 
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 The ranking of the descriptors in the GRNN-developed model, which is 

determined by the individual sigma values, is in the following decreasing order: Ms, 

SPAM, RBN, R2v, GATS5e, E1p and piPC08. The frequency at which individual 

descriptors were selected during the ten genetic algorithm descriptor selection runs 

can be used to determine the relevance of the descriptors for the QSPkR model. 

During the ten genetic algorithm descriptor selections, Ms, RBN and SPAM were 

selected in 50%, 40% and 30% of the GRNN models respectively. Although R2v, 

GATS5e and E1p were not selected by the other nine GRNN models, other similar 

GETAWAY, 2D autocorrelations and WHIM descriptors which are correlated with 

R2v, GATS5e and E1p respectively were selected in five, three and two other GRNN 

models respectively. Only piPC08 had no similar descriptors in other models. Thus 

the majority of the descriptors in the GRNN model were selected more than once by 

the genetic algorithm descriptor selection method and hence these descriptors were 

likely to be important for the prediction of BBB penetration. The artificial testing sets 

prediction results for the first 4 principal components (PCs) of these seven descriptors 

are shown in Figure 5.1. Plots for the fifth to seventh PCs are not shown as they 

explained less than 17% of the total variance of the descriptors and thus likely to 

contain noise rather than useful information. 

 Explained variations of the descriptors showed that the first PC was primarily 

determined by SPAM, with some contributions from R2v, piPC08, Ms and GATS5e. 

SPAM is used to describe long chain molecules and is determined by the size and 

flexibility of a molecule. R2v encodes both molecular structure and van der Waals 

volume of a molecule. piPC08 belongs to the molecular path count type of descriptors, 

which are a useful measure of molecular size and complexity (Todeschini et al. 2000). 

Ms is an electrotopological state descriptor that encodes the electronic and topological 
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information of a molecule. GATS5e encodes both molecular structure and the group 

electronegativity of molecular substituents. The presence of these five descriptors in  

Figure 5.1 Plots of log BB against the various PCs of BBB descriptor subset of 
GRNN. 
a 

 

b 

 

c 

 

d 

 

 

the first PC suggests that the first PC is a measure of molecular size. The artificial 

testing sets show that BBB penetration generally increases with decreasing molecular 

size (Figure 5.1a). This is consistent with the findings that small molecular size is 

necessary for good BBB penetration (Pardridge 1998). On the other hand, this figure 

also suggests that large molecules have better BBB penetration than molecules of 

intermediate size. This finding is consistent with the results from other studies which 
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showed that increasing molecular volume seems to be correlated with increasing BBB 

penetration (Kaznessis et al. 2001; Platts et al. 2001).  

 E1p was the main contributor to the second PC and encodes information about 

the size, shape, symmetry, atom distribution and polarizability of a molecule (Bravi et 

al. 1997). As E1p encodes multiple characteristics of a molecule, it is not possible to 

clearly determine a relationship between a specific characteristic of a molecule and its 

BBB penetration. However, studies had consistently found the importance of 

size (Pardridge 1998; Kaznessis et al. 2001; Platts et al. 2001), shape (Ooms et al. 

2002; Lobell et al. 2003a) and polarizability (Platts et al. 2001; Abraham 2004) of a 

molecule in determining the log BB of a molecule. 

 The third PC was formed mainly by RBN, and to a lesser extent, by piPC08. 

RBN is related to the flexibility of a molecule. The complex role of molecular 

flexibility in membrane permeation has been found by two studies. One found a 

positive correlation between flexibility and permeation (Iyer et al. 2002) while the 

other found a negative correlation (Veber et al. 2002). This seems to suggest that 

flexibility is an important factor in BBB penetration but its precise effects are 

dependent on the presence of other molecular characteristics. Using the artificial 

testing sets, it was found that compounds with 5 or 6 rotatable bonds had the lowest 

log BB values (Figure 5.1c).  

 The fourth PC was determined primarily by GATS5e and partially by Ms. As 

molecular size was described by the first PC, the fourth PC probably represented the 

electronegativity of a molecule. Electronegativity affects pKa of a compound and thus 

influences molecular charge at physiological pH. This is consistent with findings 

implicating molecular charge in the extent of BBB penetration (Lobell et al. 2003a). 
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5.3.2 HSA binding 

 Table 5.3 shows the optimum descriptor subset of the GRNN model of HSA 

binding. The descriptor subset contained only six descriptors compared to the 10-

descriptor subset of MLR and eight-descriptor subset of MLFN. The absolute 

minimum, maximum and mean of the pairwise correlation between the six descriptors 

of the GRNN model are 0.012, 0.291 and 0.117 respectively. All of the scrambled 

QSPkR models produced during y-randomization had significantly larger costs than 

that of the corresponding original QSPkR models. The minimum cost of 30 scrambled 

QSPkR models for GRNN, MLR and MLFN were 0.234 (Mean: 0.344, SD: 0.048), 

1.374 (Mean: 1.681, SD: 0.151) and 0.258 (Mean: 0.300, SD: 0.023) respectively and 

the cost for the corresponding original QSPkR models were 0.029, 0.053 and 0.050 

respectively. Hence it is unlikely that the original QSPkR models were a result of 

chance correlation. Results of the validation set, given in Table 5.4, shows that the 

GRNN-developed model had a better prediction capability than that of the models 

developed by using MLR or MLFN. 

 Among the six descriptors, only Mor20p and GATS8e were selected in some 

of the other nine GRNN models. However, when similar and correlated descriptors 

were considered, Mor20p, GATS8e, C-040 and H-050 were present in 50%, 50%, 

40% and 40% of the GRNN models respectively. Only RDF040m and SRW07 were 

not selected in other nine GRNN models. The plots of log Khsa against the first four 

PCs, obtained using the artificial testing sets, are shown in Figure 5.2. The last two 

PC accounted for less than 21% of the total variance of the descriptors and are not 

shown. 
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Table 5.3 Descriptors selected for HSA GRNN model. 
Range Descriptor Type Sigma 

Min Max 

Explanation 

SRW07 Molecular walk 

counts 

1.389 0 518 Self-returning walk count of order 07 

GATS8e 2D 

autocorrelations 

0.500 0.00 4.26 Geary autocorrelation - lag 8 / weighted 

by atomic Sanderson electronegativities

RDF040m RDF 1.297 0.24 23.51 Radial Distribution Function - 4.0 / 

weighted by atomic masses 

Mor20p 3D-MoRSE 1.157 -0.45 2.23 3D-MoRSE - signal 20 / weighted by 

atomic polarizabilities 

C-040 Atom-centred 

fragments 

0.902 0 4 R-C(=X)-X / R-C#X / X-=C=X 

H-050 Atom-centred 

fragments 

0.568 0 7 H attached to heteroatom 

 

Table 5.4 Predictive capabilities of HSA QSPkR models on independent validation 
set. 

Method r2 Rs
 a MSE 

GRNN 0.851 0.825 0.041 

MLR 0.770 0.822 0.079 

MLFN 0.749 0.851 0.089 
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Figure 5.2 Plots of log Khsa against the various PCs of HSA descriptor subset of 
GRNN. 
a 

 

b 

 

c 

 

d 

 

 

 The first PC was determined mainly by H-050 and to a lesser extent by C-040. 

H-050 is related to hydrogen bond donating ability of a molecule while C-040 

encodes information on hydrogen bond acceptors. Results from the artificial testing 

set suggest that binding affinity to HSA generally decreases with increasing hydrogen 

bonding ability of a molecule (Figure 5.2a). This is consistent with the findings of a 

HSA QSPkR model of beta-lactams (Hall et al. 2003).  

 Mor20p was the main contributor to the second PC. It is a representation of 

the 3D structure of a molecule and encodes information about the polarizability of a 
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molecule. Hence, in addition to hydrogen bonding, the binding affinity to HSA may 

also be affected by the polarizability of a molecule. 

 The third PC was primarily contributed by SRW07 and RDF040m. SRW07 is 

related to molecular branching and size and in general to the molecular complexity of 

e group electronegativity of molecular substituents. 

ts 

the graph. RDF040m provides information about interatomic distances in the entire 

molecule and also other useful information such as bond distances, ring types, planar 

and non-planar systems, atom types and molecular weight. Thus, the third PC 

probably is a measure of the shape of a molecule. Shape of a molecule has also been 

identified as an important descriptor in other HSA binding studies (Colmenarejo et al. 

2001; Kratochwil et al. 2002). 

 Most of the variances in GATS8e were explained by the fourth PC. GATS8e 

contains information about th

Various QSAR models have identified charge distribution in a molecule (Kratochwil 

et al. 2002), electrostatic interactions (Colmenarejo 2003), and presence and electron 

accessibility of certain molecular substituents (Colmenarejo 2003) as important 

elements for HSA binding. Thus these studies consistently suggested the importance 

of electronic descriptors such as electronegativity in the prediction of HSA binding. 

 The ranking of the descriptors in the GRNN-developed model, in decreasing 

order, is GATS8e, H-050, C-040, Mor20p, RDF040m and SRW07. This sugges

electronic properties are more important factors in determining the binding affinity to 

HSA than the shape of the molecule. This is consistent with findings that HSA can 

bind to a large variety of compounds with different shapes and sizes (Colmenarejo 

2003). Lipophilic descriptors such as log P, which had been identified as an important 

factor for HSA binding in a number of studies (Colmenarejo et al. 2001; Kratochwil 

et al. 2002; Colmenarejo 2003), were absent from the current GRNN-developed 
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model. It is possible that descriptors such as log P do not contain as much information 

as the current descriptor subset for describing molecule-protein 

interactions (Agatonovic-Kustrin et al. 2002). Thus descriptors such as Mor20p and 

RDF040m which encode multiple characteristics of a molecule and have some degree 

of correlation with lipophilicity were included instead. 

 

5.3.3 Milk-Plasma Distribution 

 Genetic algorithm descriptor selection found an optimum descriptor subset of 

d  of the M/P distribution, which is given in Table 

.5. Th

seven escriptors for GRNN model

5 ese seven descriptors had an absolute minimum, maximum and mean pairwise 

correlation of 0.030, 0.476 and 0.169 respectively. A 10- and an eight-descriptor 

subset were found for MLR and MLFN respectively. The minimum cost of 30 

scrambled QSPkR models for GRNN, MLR and MLFN were 1.582 (Mean: 2.080, SD: 

0.407), 1.372 (Mean: 1.659, SD: 0.160) and 1.209 (Mean: 1.659, SD: 0.140) 

respectively. These were significantly larger than the cost of the corresponding 

original QSPkR models, which were 0.358, 0.985 and 0.412 respectively. Hence y-

randomization showed that the original QSPkR models were relevant and unlikely to 

be a result of chance correlation. Table 5.6 shows the testing results of the QSPkR 

models by using the independent validation set. Among the three modeling methods, 

GRNN was the only one that produced a model with reasonable predictive ability. 

Both models developed by MLR and MLFN had computed r2 values of less than 0.5. 

This suggests that GRNN is more suitable than either MLR or MLFN for developing 

QSPkR models of M/P distribution. 
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Table 5.5 Descriptors selected for M/P GRNN model. 
Range Descriptor Type Sigma 

Min Max 

Explanation 

TIE Topological 0.750 4.54 495.50 E-state topological parameter 

GATS3e 2D 

autocorrelations 

0.650 0.46 1.79 Geary autocorrelation - lag 3 / weighted 

by atomic Sanderson electronegativities

HOMT Aromaticity 

indices 

0.220 -28.20 20.43 HOMA total 

Mor23m 3D-MoRSE 1.661 -0.94 1.36 3D-MoRSE - signal 23 / weighted by 

atomic masses 

Mor06p 3D-MoRSE 1.120 -2.39 2.80 3D-MoRSE - signal 06 / weighted by 

atomic polarizabilities 

HATS5e GETAWAY 0.138 0.00 1.12 Leverage-weighted autocorrelation of 

lag 5 / weighted by atomic Sanderson 

electronegativities 

R4u GETAWAY 0.650 0.33 2.99 R autocorrelation of lag 4 / unweighted 

 

Table 5.6 Predictive capabilities of M/P QSPkR models on independent validation 
set. 

Method r2 Rs
 a MSE 

GRNN 0.677 0.769 0.206 

MLR 0.224 0.460 0.647 

MLFN 0.201 0.408 0.587 

 

 The descriptors TIE, GATS3e, HOMT, Mor23m, Mor06p, HATS5e, and R4u, 

or their similar and correlated counterparts were selected in 20%, 50%, 60%, 30%, 

40%, 30% and 20% of the GRNN models respectively. Seven PCs are generated by 

the PCA of the descriptor subset of the GRNN-developed model. Only the first 5 PCs 

were significant. The plots of M/P ratios against these PCs, obtained from the 

artificial testing sets, are given in Figure 5.3. The sixth and seventh PCs were 
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responsible for less than 12% of the total variance and thus are not shown. The shapes 

of the plots are more complicated than those in Figure 5.1 and Figure 5.2, suggesting 

the tr drugs  pl  i multiple 

sm

 

Figure 5.3 Plots of M/P ratio against the various PCs of M/P descriptor subset of 

a b 

 

 

d 

that ansfer of  from asma nto breast milk may involve 

mechani s. 

 

GRNN. 

  

c 
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e 

 
 

 The first PC was contributed by Mor23m, R4u and TIE. Mor23m is a 

representation of the three-dimensional structure of a molecule and encodes 

information about atomic masses in a molecule. R4u and TIE encode the 3D and 2D 

structure of a molecule respectively. GATS3e, Mor06p and HATS5e were grouped 

together in the second PC. Both GATS3e and HATS5e encode molecular structure 

and the group electronegativity of molecular substituents. Mor06p is a representation 

of the three-dimensional structure of a molecule and encodes information about the 

polarizability of a molecule. The third PC

TIE. HOMT encodes information about the  

molecule and was involved in the fourth PC

mainly by Mor06p.  

 The information encoded by the curren

grouped into electronic factors such as 

properties and molecular charge and steric

hese factors have also been found by other studies to be important for the prediction 

f M/P ratios (Atkinson et al. 1990; Begg et al. 1992; Agatonovic-Kustrin et al. 2000; 

gatonovic-Kustrin et al. 2002). The sigma values of the descriptors suggest 

 was determined primarily by HATS5e and 

degree of electron delocalization in the

 with R4u. The fifth PC was contributed 

t descriptor subset can be broadly 

π electrons distribution, charge-transfer 

 factors like molecular shape and size. 

T

o

A
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electronic properties w re more important than steric factors in determining M/P 

ratios. 

 

5.3.4 General considerations 

 In the present study, the prediction capabilities of the GRNN-, MLR- MLFN-

developed models were assessed by using independent validation sets. It is important 

that the results for the independent validation sets truly reflect the generalization 

bility of the QSPkR models. It has been suggested that both training and validation 

d overlapping among the chemical descriptors, while Parzen’s 

e

a

sets should be diverse and the validation sets should be representative of the training 

sets (Rajer-Kanduc et al. 2003; Schultz et al. 2003). The diversity index (DI) of the 

training and validation sets used in the present study are 0.321 and 0.405, 0.135 and 

0.341, and 0.220 and 0.309 for BBB penetration, HSA binding and M/P distribution 

respectively. This suggests that the training and validation sets used in this work are 

sufficiently diverse. The representativity index (RI) between each of the training sets 

and its corresponding validation sets are 0.752, 0.590, and 0.645 for BBB penetration, 

HSA binding and M/P distribution respectively. These RI values suggest that the 

validation sets are representative of the training sets. 

 The GRNN models developed in this study may not be the optimum because 

of the correlations an

nonparametric estimator (Equation (2.18)) normally requires that these descriptors are 

statistically independent. However, various studies have shown that descriptor 

correlation does not drastically affect the predictive ability of a GRNN model (Currit 

2002; Mosier et al. 2002; Mosier et al. 2003; Niwa 2003). In one study, good 

predictive results were obtained even with pairwise correlation between descriptors of 

up to 0.94 (Currit 2002). The maximum pairwise correlation between descriptors for 
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the BBB penetration, HSA binding and milk-plasma distribution study is 0.561, 0.291 

and 0.476 respectively. Thus intercorrelation among the descriptors is not expected to 

gnificantly affect the predictive ability of the GRNN models generated in this study. 

However, intercorrelation among the descriptors may increase the complexity of the 

GRNN models by obscuring models consisting of fewer or more interpretable 

descriptors (Mosier et al. 2003). This problem can be partially alleviated by using PCs 

instead of individual descriptors for the explanation of the QSPkR model. The 

grouping of similar descriptors in a single PC enables the explanation of the GRNN 

models to be made in terms of simple molecular characteristics instead of the more 

abstract molecular descriptors. 

 The CPU time needed for developing GRNN models is faster than that of 

MLFN but slower than that of MLR. During the prediction process, GRNN-developed 

models require substantially higher memory and CPU time than models developed by 

using MLR and MLFN, especially when large training sets are involved. This is 

because GRNN uses every compound in the training set to facilitate the prediction of 

the property of new compounds. Such a problem can be alleviated by the use of 

parallel computing algorithms. 

 

si
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5.4 Conclusion 

us unlikely to overfit. Most of the non-linear methods 

 Future development of 

tors that can be easily translated back to the molecular structure will further 

enhance the interpretability of GRNN developed models. 

 

 Results from this work suggest that GRNN is a potentially useful method for 

developing QSPkR models from a diverse set of drug data. QSPkR models developed 

using GRNN for three drug distribution properties – BBB penetration, HSA binding, 

and M/P distribution – were tested and compared with those developed by using a 

linear method, MLR, and a non-linear method, MLFN. All the GRNN-developed 

models showed better prediction capability than the corresponding MLR- or MLFN-

developed models. This suggests that the GRNN-developed models are not more 

flexible than is necessary and th

including neural networks are incapable of providing explicit relationships between 

the predicted properties and the molecular features of the compounds. The use of 

multi-sigma GRNN models and PCA may be helpful for partially solving this 

problem. The individual values for each descriptor provide a useful hint about its 

contribution to the distribution properties. PCA, when coupled with specially 

designed artificial testing sets, may provide a rough guide for the influence of 

molecular characteristics on drug distribution properties.

descrip
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Chapter 6 

P ction of Drug Metabolism and Elimination, Part I: 

 

 The use of consensus SVM model strategy to improve the prediction 

accuracies of substrates and inhibitors of three cytochrome P450 isoenzymes, 3A4, 

2D6 and 2C9 is presented in this chapter. Physicochemical and structural properties 

of compounds that are important for the identification of substrates and inhibitors 

and factors that may affect the prediction accuracies are discussed. 

 

6.1 Introduction 

redi

Classification Methods 

 Drug metabolism is a process whereby a drug is modified by a metabolizing 

enzyme, and these processes play important roles in pharmacokinetics and therapeutic 

actions of drugs (van de Waterbeemd et al. 2003). For instance, lipophilic drugs need 

to be metabolized to hydrophilic metabolites so that they can be readily 

excreted (Smith et al. 1997a). Although the primary site of drug metabolism is in the 

liver, metabolism can also occur in the intestines, blood and other tissues. 

Profiles of drug metabolism has increasingly become an important 

consideration in early stages of drug development because of the profound effect of 

metabolism on such important drug properties as metabolic stability, drug-drug 

interactions and drug toxicity (Li 2001; van de Waterbeemd et al. 2003). Lower 

metabolic stability of a drug generally reduces its efficacy as it becomes more 

difficult to reach an adequate therapeutic concentration at a target site. Whereas 
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higher metabolic stability of a drug may lead to harmful effect because of the 

prolonged half-life (Keseru 2001). A significant portion of adverse drug reactions has 

inhibition or induction of its metabolic enzyme by 

another drug (Ekins et al. 2001; Molnar et al. 2002). Drug metabolism is also known 

to produce metabolites more toxic than their parent compound (Li et al. 1995). 

There are mainly two phases in drug metabolism processes. The first involves 

phase I enzymes responsible for drug oxidation, reduction or hydrolysis. The second 

involves phase II enzymes responsible for drug conjugation of the phase I metabolite 

with a water-solubilizing endogenous moiety (Long et al. 2003). The cytochrome 

P450 isoenzymes are responsible for most of the phase I metabolism processes (Smith 

et al. 1997a; de Groot et al. 2002), with CYP3A4, CYP2D6 and CYP2C9 mediating 

ly 70% of all phase I metabolism (Lewis et al. 2002). CYP3A4 

 substrates 

contain

been attributed to drug-drug interactions that involve the interference of the normal 

metabolism of a drug due to the 

the metabolism of near

is responsible for the metabolism of over 50% of drugs (Smith et al. 1997a; Smith et 

al. 1997b; Zuegge et al. 2002) and its ability to metabolize a wide variety of drugs of 

varying molecular weight and physicochemical properties is attributed to its relatively 

large active site that facilitates weak hydrophobic interactions with its 

substrates (Smith et al. 1997a; Smith et al. 1997b; Long et al. 2003). CYP2D6 is a 

polymorphic enzyme primarily responsible for the metabolism of

ing a basic nitrogen (Langowski et al. 2002), which includes antiarrhythmics, 

antidepressants and beta-blockers (Susnow et al. 2003). Its metabolism activity is in 

many cases facilitated by an ion pair interaction between an aspartic acid residue at 

the active site and a protonated nitrogen atom of the substrate (Langowski et al. 2002). 

CYP2C9 is primarily involved in the metabolism of many polar drugs that are ionized 

at physiological pH, such as ibuprofen, naproxen, diclofenac and 
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sulphaphenazole (Smith et al. 1997b; Ekins et al. 2000a). Most of the substrates of 

CYP2C9 contain an aromatic group, and drug-enzyme interaction has been attributed 

to the π-π interactions between the aromatic groups of the substrate and specific 

residue at the binding site (Langowski et al. 2002) and hydrogen bonding (de Groot et 

al. 2002). Therefore, prediction of inhibitors, substrates and inducers of these P450 

isoenzymes is important for analysis of drug metabolism and for developing efficient 

tools for screening drugs of appropriate metabolism profiles.  

 Several computer prediction systems have been developed by using statistical 

learning methods for identification of inhibitors of specific P450 isoenzymes. Zuegge 

et al (Zuegge et al. 2002) developed a filter for predicting CYP3A4 inhibition by 

using a linear partial least square-based approach, which gives an accuracy of 93% for 

29 inhibitors and 86% for 21 non-inhibitors. Another filter for prediction of CYP3A4 

inhibition was developed by Molnar and Keseru (Molnar et al. 2002) by using neural 

networks, which gives an accuracy of 91.7% for 36 inhibitors and 88.9% for 36 non-

inhibitors respectively. A consensus filter for predicting CYP2D6 inhibitors was 

developed by Susnow and Dixon (Susnow et al. 2003) using recursive partitioning, 

which gives an accuracy of 100% for 10 inhibitors and 76% for 41 non-inhibitors. 

Ekin et al (Ekins et al. 2003) also used recursive partitioning to develop filters for 

predicting CYP3A4 and CYP2D6 inhibitors, which gives a Spearman’s ρ value of 

0.48 and 0.61 for a test set of 98 compounds respectively. The success of these 

methods raises an interest in the exploration of other statistical learning methods that 

have been used in a variety of drug studies (Trotter et al. 2001; Doniger et al. 2002; 

Cai et al. 2003). 

The aim of this work is to explore the use of support vector machine (SVM) 

for facilitating the prediction of substrates and non-substrates, and inhibitors and non-
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inhibitors of P450 isoenzymes. A genetic algorithm-based descriptor selection 

method (Gao et al. 2002; Frohlich et al. 2003) is used to select relevant molecular 

descriptors for SVM classification of the substrates and inhibitors of P450 isoenzymes. 

Because of the high number of redundant and overlapping descriptors, many sets of 

descriptors, which describe similar overall physicochemical properties but are derived 

from slightly different algorithms and parameters, can be selected by this genetic 

algorithm (GA) with different random seed. Consensus modeling strategy has been 

trodu

 

in ced for developing prediction systems based on multiple descriptor 

sets (Gramatica et al. 2004). In this work, this strategy was applied to the 

development of consensus SVM (CSVM) classification systems for the prediction of 

inhibitors and substrates of P450 isoenzymes by using multiple descriptor sets 

generated from GA of different seeds. 

 Our method was first applied to the prediction of the inhibitors of CYP3A4 

and CYP2D6 by using a substantially higher number of inhibitors and non-inhibitors 

than those in earlier studies (Molnar et al. 2002; Zuegge et al. 2002; Susnow et al. 

2003), which serves as a test of the capability of our method. It was then used for the 

prediction of the inhibitors of CYP2C9 and substrates of CYP3A4, CYP2D6 and 

CYP2C9. The relevance of the selected descriptors by the CSVM methods to drug 

interactions with P450 isoenzymes is discussed. 

 

6.2 Methods 

6.2.1 Datasets 

Inhibitors and substrates of CYP3A4, CYP2D6 and CYP2C9 P450 

isoenzymes were collected from various sources (Lacy et al. 2002; Rendic 2002; 
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Flockhart 2003; MICROMEDEX 2003a). In order to ensure that interlaboratory 

variations in experimental protocols do not significantly affect the quality of the data 

sets, the most common range of Ki values for the compounds investigated in more 

than one sources was used to select compounds as inhibitors or substrates (Susnow et 

al. 2003). The generated datasets are composed of 241 inhibitors and 368 substrates 

for CYP3A4, 180 inhibitors and 198 substrates for CYP2D6, and 167 inhibitors and 

144 substrates for CYP2C9. Non-inhibitors and non-substrates are seldom described 

in the literature and few of these compounds are specified in a known chemical 

database. For instance, a comprehensive search of the literature sources (Lacy et al. 

2002; Rendic 2002; Flockhart 2003; MICROMEDEX 2003a) identified only seven 

non-inhibitors and six non-substrates for CYP3A4, nine non-inhibitors and eight non-

substrates for CYP2D6, and eight non-inhibitors and seven non-substrates for 

k, this method was used to generate 

on-inhibitors or non-substrates of the P450 isoenzymes. From this procedure, 461 

non-inhibitors and 334 non-substrates for CYP3A4, 522 non-inhibitors and 504 non-

substrates for CYP2D6, and 535 non-inhibitors and 558 non-substrates for CYP2C9 

e ubstrates and inhibitors of an isoenzyme were denoted as belonging 

the 

CYP2C9. In an earlier study of the prediction of CYP3A4 inhibitors (Molnar et al. 

2002), non-inhibitors of the enzyme were selected from those well-studied 

compounds that are known inhibitors/substrates/agonists of proteins other than that 

enzyme and there is no report that any of these is an inhibitor of that enzyme. Such a 

method is based on the assumption that, as they have been well studied, if these 

compounds have not been reported to be inhibitors or substrates of a specific enzyme, 

it is highly likely that they are not. In this wor

n

were g nerated. S

to positive class (D+) and non-substrates and non-inhibitors of the isoenzyme 

were denoted as belonging to the negative class (D-) of the isoenzyme. 
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 Representative training and validation sets were constructed from the datasets 

by using the removal-until-done method (section 2.2.2.3). The number of compounds 

in the training and validation sets for the inhibitors or substrates of each of these 

enzymes are given in Table 6.1. 

 

Table 6.1 Number of compounds in the training, independent validation, modeling 

P450 isoenzymes. 

training set testing set 

training and modeling testing sets for the inhibitors/substrates of different cytochrome 

Training set Validation set Modeling Modeling Dataset CYP 

D+a D-b D+a D-b D+a D-b D+a D-b

3A4 216 386 25 75 196 306 20 80 

2D6 160 442 20 80 143 359 17 83 

Inhibitors / 

non-inhibitors 

2C9 149 453 18 82 134 368 15 85 

3A4 312 290 56 44 256 246 56 44 

2D6 169 433 29 71 149 353 20 80 

Substrates / 

non-substrates 

2C9 130 472 14 86 121 381 9 91 

a Inhibitors or substrates 

 

 Prediction accuracy of statistical learning systems is known to be strongly 

affected by the diversity of samples used in the training set (Rajer-Kanduc et al. 2003; 

Schultz et al. 2003). Independent validation sets have frequently been used for 

evaluating the predictive performance of these classification systems, and these need 

also to be diverse and representative of the samples studied in order to accurately 

assess the capabilities of the prediction systems (Rajer-Kanduc et al. 2003; Schultz et 

al. 2003). The diversity index (DI) of the six training sets and six validation sets are in 

the range between 0.001 and 0.005 and between 0.002 and 0.020 respectively. The 

low DI value of the D+ compounds and D- compounds for all of th

b Non-inhibitors or non-substrates 

e training and 

 



CHAPTER 6: METABOLISM AND ELIMINATION, PART I 126

validation sets suggest that these datasets are sufficiently diverse. The representativity 

index (RI) value between each of the training sets and its corresponding validation set 

is in the range between 0.446 and 0.511, which suggests that these validation sets are 

representative of their corresponding training sets and these validation sets are 

itable for assessing the systems developed in this work. 

6 olecul uct scr

 This study used the same set of 1497 DRAGON descriptors as the 

distribution study (section 5.2.2). Moreover, an additional set of 105 

electrotopo e descriptors  et . 1999) and 5 linear solvation energy 

relationship desc rs (Platts et al. 1999) were com d usin ur n 

developed code. Our code has bee sted a nu r o pounds used in earlier 

s re t cur pu  desc tors

 

.2.3 Descriptor selection 

su

 

.2.2 M ar str ures and de iptors 

 molecular 

logical stat (Kier  al

ripto pute by g o ow

n te on mbe f com

tudies to ensu he ac acy of the com ted rip . 

6

 A GA (section 2.3.3.2) was used to remove descriptors irrelevant to the 

prediction of CYP450 inhibitors and substrates. The retained descriptors from this 

process were used for representing the compounds studied in this work. All of the 

descriptors in the training set were first normalized in the range of -1 to 1 by using 

equation (2.4) before applying the GA-based descriptor selection method. At the end 

of the GA-based descriptor selection process, the highest ranked descriptor subset was 

used to construct the final SVM classification system.  

 In the descriptor selection process, ranking of the different descriptor subsets 

can be determined by using either 10-fold cross-validation, 5-fold cross-validation or 
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a modeling testing set. Our analysis of the 30 P450 isoenzyme SVM classification 

systems derived from each of these cross-validation methods showed that the 

modeling testing method gives the best performance, and thus this validation method 

was used in all of the descriptor selection processes in this study. The modeling 

testing set was derived by dividing the original training set into a modeling training 

t and modeling testing set of 502 and 100 compounds respectively by using the 

removal-until-done method (section 2.2.2.3). The modeling training and modeling 

testing sets for the inhibitors or substrate of each of these enzymes are given in Table 

6.1 above. The modeling training set was used for constructing the SVM classification 

systems in the GA. Matthews correlation coefficient (MCC) (equation (2.33)) was 

used as the fitness function for GA optimization. 

 

Two types of CSVM methods were used. The first is a ‘positive majority’ 

consensus SVM classification system (PM-CSVM), which classifies a compound as 

D+ if the majority of its SVM classification systems classify the compound as 

D+ (Eriksson et al. 2003). A PM-CSVM requires an odd number of SVM 

classification systems to prevent ambiguity in its prediction. The second is a ‘positive 

probability’ consensus SVM classification system (PP-CSVM), which explicitly 

computes the probability for a compound to be D+ using the following 

formulas (McDowell et al. 2002): 

se

6.2.4 CSVM methods 

 

 1 1

1 1

Pr( | )
(1 ) ( 1) Pr( |

i i i
i i

i i i i i

S P
S Pα α α

+ − −
− + − +

− −

=
− + + − ×

Pr( | )
)

S P α+ +

   (6.1) 

 1 1

1 1

Pr( | ) (1 )Pr( | )
( 1) Pr( | )i i

i i i i i

S P
S P
α

α α α

+ +

− + − +
− −

× −
− + − ×

   (6.2) i i iS P+ − −=
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where Pr( | )i iS P+  is the posterior probability that a compound is D+ given the 

classification result from SVM classification system i and iα
+  and iα

− is the sensitivity 

i D+

D- respectively. In the absence of the knowledge about the ratio of D+ to D- 

tentatively set at 0.5. Sensitivity and specificity of SVM classification system i were 

all optimized SVM classification systems for consensus modeling. The first method is 

(SE) and specificity (SP) of SVM classification system i respectively. Equation (6.1) 

or (6.2) was used when SVM classification system  classifies the compound as  or 

compounds in the population, the prior probability of a compound to be D+ is 

estimated by using the validation method of the descriptor selection process. 

 There are two methods for using GA-based descriptor selection process to find 

to perform a single run of GA-based descriptor selection and record all the SVM 

ification systems in the final population that have a certain level of accuracy. The 

orm multiple runs of GA-based descriptor selection using 

selection process was repeated for 101 times, 

producing a pool of SVM classification systems. SVM classification systems were 

randomly selected, with replacement, from the pool of SVM classification systems to 

m nine classes of CSVMs, each containing 11, 21, 31, 41, 51, 61, 71, 81 or 91 

SVM classification systems. This random selection of SVM classification systems 

class

second method is to perf

different random seeds and select the best SVM classification system from each run 

for consensus modeling. The current study uses the second method to obtain SVM 

classification systems for consensus modeling because our analysis of the two 

methods showed that the top few SVM classification systems from the first method 

tends to be similar to one another whereas SVM classification systems from the 

second method tends to be more diverse.   

 To determine an appropriate number of SVM classification systems for the 

CSVM methods, the descriptor 

for
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from the pool of SVM classification systems and construction of CSVMs were 

repeated 1000 times. Our analysis of these nine CSVMs classes showed that the best 

accuracies for the two types of CSVM methods were obtained when at least 81 SVM 

off at higher number of SVM classification systems. Thus, 81 SVM classification 

are used for developing CSVMs for all the datasets in this work. 

 

classification systems were used to develop CSVMs, and the accuracies roughly level 

systems appear to be the optimum number of systems for constructing CSVMs, which 

.3 R6 esults 

 The SVM classification system with the best cross-validation accuracies was 

selected from the 81 SVM classification systems as the “best-trained” single SVM 

classification system. This selection method has been used by other studies that used 

GA as the descriptor selection method (Sutherland et al. 2003b). A PM-CSVM and a 

PP-CSVM were constructed by using the 81 SVM classification systems. The 

prediction accuracies of these three systems were determined by using the 

independent validation set, which are given in Table 6.2.  
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Table 6.2 Accuracies of the “best-trained” single SVM classification systems, PM-

inhibitors by using the independent validation sets. 
CSVM and PP-CSVM for the prediction of CYP3A4 and CYP2D6 inhibitors/non-

CYP Classification system TP FN TN FP SE SP Q MCC 

“Best-trained” single SVM 

classification system 

20 5 72 3 80.0 96.0 92.0 0.782 3A4 

PM-CSVM 21 4 75 0 84.0 100.0 96.0 0.893 

PP-CSVM 23 2 73 2 92.0 97.3 96.0 0.893 

ed” single SVM 

classification system 

15 5 77 3 75 96.3 92.0 0.742 “Best-train2D6 

PM-CSVM 16 4 78 2 80.0 97.5 94.0 0.807 

PP-CSVM 18 2 76 4 90.0 95.0 94.0 0.821 

  

 It is found that both CSVM methods give better accuracies than that of the 

“best-trained” single SVM classification system. Moreover, PP-CSVM gives similar 

sensitivities and slightly better specificities, while PM-CSVM gives slightly lower 

sensitivities and slightly better specificities than those of earlier classification systems 

r prediction of inhibitors of CYP3A4 (Molnar et al. 2002; Zuegge et al. 2002) and 

CYP2D6 (Susnow et al. 2003). Thus PP-CSVM appears to be more useful than PM-

CSVM for predicting inhibitors and substrates of P450 isoenzymes. 

 The accuracies of PP-CSVM for the prediction of inhibitors of CYP2C9 and 

substrates of CYP3A4, CYP2D6 and CYP2C9 are given in Table 6.3. The prediction 

accuracies of these CSVMs are at a similar level as those of the inhibitors of CYP3A4 

and CYP2D6, which suggest that these CSVM methods, particularly PP-CSVM, are 

generally useful for predicting both the inhibitors and substrates of different P450 

isoenzymes. 

fo
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Table 6.3 Accuracies of PP-CSVM for the prediction of CYP2C9 inhibitors/non-
inhibitors and CYP3A4, CYP2D6, and CYP2C9 substrates/non-substrates by using 
the independent validation sets. 

Dataset FN  %)  (%) MCYP TP TN FP SE (%) SP ( Q  CC 

Inhibitors / non-

inhibitors 

2C9 16 2 79 3 88.9 96.3 95.0 0.835 

3A4 55 1 40 4 98.2 90.9 95.0 0.899 

2D6 28 tes 

2C9 

1  96 4 5.0 0.

Substrates / non-

a

12 2 85 1 85.7 98.8 97.0 0.872 

67 4 .6 94. 9  884 substr

 

6 D

6.4.1 ediction accuracie

 ence between the sp icities of th cu  C s h  

stems from earlier studies may be due to the difference in the number 

 

hich uses a more 

.4 iscussion 

Overall pr s 

The differ ecif e rrent SVM and t ose of

classification sy

and diversity of D- compounds used for training the classification systems. In our 

work, the number of D- compounds in the training set ranges from 290 to 472, 

whereas earlier classification systems were developed by using 41 to 145 D- 

compounds. Statistical learning methods require a large number of compounds for 

development of classification systems. In addition, diversity of the training sets has 

been shown to affect the applicability domain of qSPkR models (Dimitrov et al. 2005).

Therefore it is not surprising that the methods of the current work, w

diverse and larger number of D- compounds, give higher specificities than those of 

earlier studies. Another possible reason for the improved specificities is the use of 

SVM, which has been found to be consistently superior to other classification 

methods in most classification problems (Burbidge et al. 2001; Czerminski et al. 2001; 

Meyer et al. 2003).  
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 For all of the datasets, with the exception of the CYP3A4 substrates/non-

substrates dataset, the number of D- compounds is always higher than the number of 

D+ s to predict 

unknown compounds as D-, resulting in higher number of false negatives. However, 

previous studies suggest that SVM are n sig ntly cted unb d 

d ai et al 3; sm n 2 ), eci han 0 

compounds of each class in ing set (Han et al.

in this work contains at least 130 compounds of each class in the training set and thus 

n set is not expected to significantly affect the predictive ability of 

the SVM classification systems. 

 compounds. This may create a bias of the SVM classification system

ot nifica  affe  by alance

atasets (C . 200 Les an 004 esp ally if there are more t 80-10

 the train  2004). All of the datasets used 

the u balanced data

 

6.4.2 Evaluation of prediction performance 

 The results of our SVM systems were compared with those of several 

statistical learning methods including multiple linear regression (MLR), partial least 

squares (PLS), logistic regression (LR), C4.5 decision tree (DT) and k nearest 

neighbour (kNN). GA was used to determine the optimum descriptor subsets for each 

of these classification methods by using 30 different random seeds, from which 30 

separate classification models were generated for each method. The prediction 

accuracies of these classification models were determined by using the independent 

validation set. Table 6.4 gives the results for CYP3A4 substrates/non-substrates. The 

accuracies for the other P450 isoenzymes datasets are similar and thus are not given 

here. It was found that the SVM classification systems give the highest prediction 

accuracies than those of other methods. 
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T .4 Average accuracies of different statistical learning classification systems 

validation sets. 
a a a a

able 6
for the prediction of CYP3A4 substrates/non-substrates by using independent 

Classification method SE (%) SP (%) Q (%) MCC

MLR 86.1 (3.9) 71.4 (4.4) 79.6 (2.9) 0.586 (0.060) 

LR 83.8 (3.9) 71.0 (5.1) 78.1 (3.0) 0.555 (0.063) 

PLS 79.9 (5.8) 72.5 (5.2) 76.7 (3.7) 0.528 (0.073) 

C4.5 DT 75.5 (6.8) 66.4 (6.7) 71.5 (4.3) 0.423 (0.087) 

kNN 92.4 (2.0) 82.6 (3.4) 88.1 (1.7) 0.759 (0.034)  

SVM 98.0 (1.4) 85.3 (3.1) 92.4 (1.2) 0.849 (0.024) 

a

 

 To determine whether t

 Numbers in parenthesis are the standard deviations. 

he selected descriptors of the SVM classification 

stems include those irrelevant for the prediction of the inhibitors or substrates of the 

respective enzymes, 10 groups of classification systems were generated by using the 

GA-based descriptor selection method. These groups are SVM100, SVM200, SVM300, 

400 500 600 700 800 900 1000

tain irrelevant descriptors. Similar 

sy

SVM , SVM , SVM , SVM , SVM , SVM , and SVM , in which the 

subscript denotes the number of descriptors used. Each group contains 30 SVM 

classification systems. The prediction accuracies of these SVM classification systems 

were determined by using the independent validation sets. Table 6.5 gives the results 

for the CYP3A4 substrates/non-substrates, which shows that prediction accuracies 

begin to decrease when more than 400 descriptors are used in a SVM classification 

system. This suggests that the maximum number of relevant descriptors for the 

CYP3A4 substrates/non-substrates dataset is around 400. Because the original 81 

SVM classification systems for the CYP3A4 substrates/non-substrates dataset contain 

214 to 402 descriptors, our results seem to suggest that the original 81 SVM 

classification systems are unlikely to con
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conclusions are also made for the rest of the P450 isoenzymes datasets based on our 

computational studies. 

 

Table 6.5 Average accurac  grou M cla  sy  
prediction of CYP3A4 substrates/non-substrates by using independent validation sets. 

umber of 

tors 

SE (% SP Q

ies of 10 ps of SV ssification stems for the

N

descrip

)a (%)a  (%)a MCCa

100 93.0 (3 80.4 87 0.1)  (4.4) .5 (2.7) .747 (0.054) 

200 96.7 (2 83.0 90 0

92.6 (1.9) 0.853 (0.037) 

400 98.0 (1.3) 82.4 (3.4) 91.1 (1.6) 0.825 (0.032) 

611 

900 99.9 (0.3) 45.7 (2.4) 76.1 (1.0) 0.565 (0.017) 

.0)  (3.3) .7 (1.9) .814 (0.039) 

300 98.0 (1.6) 85.6 (3.6) 

500 98.2 (1.0) 80.9 (3.1) 90.6 (1.4) 0.815 (0.028) 

600 98.6 (0.8) 74.5 (3.3) 88.0 (1.5) 0.769 (0.028) 

700 99.3 (0.9) 66.4 (5.4) 84.8 (2.3) 0.715 (0.040) 

800 100.0 (0.0) 51.5 (3.1) 78.7 (1.4) 0. (0.024) 

1000 100.0 (0.0) 37.3 (3.2) 72.4 (1.4) 0.500 (0.026) 

a Numbers in parenthesis are the standard deviations. 
 

 It has been shown that chance correlations may occur during descriptor 

selection especially if the number of descriptors available for selection is 

large (Topliss et al. 1979; Jouan-Rimbaud et al. 1996). Y-randomization (section 

2.5.2) has been frequently used to determine the probability of chance correlation 

during descriptor selection processes (Manly 1997; Leardia et al. 1998). In this work, 

y-randomization was repeated for 81 times. The average Matthews correlation 

coefficient of these scrambled SVM classification systems derived by using the 

independent validation sets were found to be in the range between 0.189 and 0.288, 

which are significantly lower than those of the original SVM classification systems, 

which are in the range between 0.783 and 0.852. This suggests that the original SVM 

 



CHAPTER 6: METABOLISM AND ELIMINATION, PART I 135

classification systems are relevant and unlikely to arise as a result of chance 

correlation. 

 A frequently used method for checking whether a prediction system is 

vali thods ose det  by us ependent ation 

sets 2004). Because descriptor selection was performed by using the 

modeling testing sets as the cross-validation method, an overfitted classification 

system ch higher o  

sets th r the inde alidatio s show  6.6, the prediction 

accuracies of the SVM  based o deling t  and n 

indepe t validatio e simila uggests SVM n 

systems in this work are unlikely to overfit. 

 

overfitted is to compare the prediction accuracies determined by using cross-

dation me

 (Hawkins 

with th ermined ing ind valid

 is expected to have mu  prediction accuracy for the m deling testing

an fo pendent v n sets. A n in Table

 systems n the mo esting sets those based o

nden n sets ar r. This s  that the  classificatio
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Table 6.6 Comparison of the average accuracies of SVM classification systems for 

testing sets a
the prediction of inhibitors/substrates of different P450 isoenzymes by using modeling 

nd independent validation sets. 
Modeling testing seta Independent validation setaDataset CYP 

SE 

(%) 

SP 

(%) 

Q 

(%) 

MCC SE 

(%) 

SP 

(%) 

Q 

(%) 

MCC 

3A4 76.5 

(6.2) 

98.8 

(1.3) 

94.3 

(0.8) 

0.817 

(0.026) 

82.1 

(4.5) 

97.9 

(1.5) 

93.9 

(1.3) 

0.835 

(0.036) 

2D6 79.1 98.5 95.2 0.828 79.3 96.7 93.2 0.783 

Inhibitors / non-

inhibitors 

2C9 81.9 

(4.7) 

98.8 

(1.0) 

96.3 

(0.6) 

0.851 

(0.025) 

86.4 

(5.0) 

97.3 

(1.3) 

95.3 

(1.1) 

0.842 

(0.039) 

3A4 96.3 

(1.5) 

86.7 

(2.7) 

92.1 

(0.8) 

0.841 

(0.015) 

98.0 

(1.3) 

85.2 

(3.0) 

92.4 

(1.3) 

0.849 

(0.026) 

(7.3) (1.4) (0.8) (0.028) (5.4) (1.6) (1.7) (0.054) 

2D6 84.6 98.9 96.0 

Substrates / non-

substrates 

(5.0) (1.3) (0.6) 

0.874 

(0.018) 

86.9 

(4.7) 

96.9 

(1.5) 

94.0 

(1.7) 

0.852 

(0.043) 

2C9 77.0 

(8.2) 

98.9 

(1.0) 

97.0 

(0.8) 

0.810 

(0.047) 

72.3 

(7.9) 

99.2 

(0.9) 

95.4 

(1.1) 

0.801 

(0.051) 

a Numbers in parenthesis are the standard deviations. 
 

6.4.3 The selected descriptors 

 The majority of the selected descriptors in our SVM classification systems are 

composite descriptors, which can be divided into three groups: 3D-MoRSE, RDF and 

Randic molecular profiles. 3D-MoRSE descriptors, which are representations of the 

3D structure of a molecule and encode features such as molecular weight, van der 

Waals volume, electronegativities and polarizabilities, have been used for the 

classification of dopamine D1 and D2 agonists and modeling the binding of steroids 

to corticosteroid binding globulin (Schuur et al. 1996). RDF descriptors provide 

information about bond lengths, ring types, planar and nonplanar systems, atom types, 
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and molecular weight and have been used for pharmacokinetic studies (Wegner et al. 

2004). Randic molecular profiles measure interactions between atoms in a molecule 

and encode information on molecular shape, which is an important factor in ligand-

enzyme interactions. Bec  sh and mical complementarily between a ligand 

a  ar o for d me ng, no ri ha  

t ses of 3D d to h ro fo on h h  

electronegativities, polarizabilities and shape of a molecule, are frequently selected by 

the descriptor selection process. 

 Because composite d to nc ul p oc c  

s ts he ec it ffic ex fr he sc  

i n about whic c o r characteristics are imp   

inhibitors and substrates of these P450 isoenzym ss, it is possible to r 

some information from non-composite descriptors. As many descriptors are 

overlapping and some o  ed t, it is mor ro  t u  

nd discuss their contribution to the 

inhibitor/substrates predictions at the class level. Table 6.7 gives the classes of non-

s  our computations. It is found that shape is the 

omina

ause ape  che

nd an enzyme

hree clas

e imp rtant 

escrip

 ligan

rs, w

-enzy

ich p

 bindi

vide in

 it is 

rmati

t surp

 on 

sing t

ydrop

t these

obicity,

escrip rs e ode m tiple hysic hemi al and

tructural aspec

nformatio

 of t  mol

h spe

ule, 

ific m

is di

lecula

ult to tract om t se de

ortant

riptors

for the

es. Nonethele  infe

f them are r undan e app priate o gro p them

into classes of descriptors of similar properties a

compo ite descriptors selected by

d nt factor involved in ligand-P450 isoenzyme interaction. This is not surprising 

because shape complementarity is important for ligand-protein interactions. In 

addition to the shape descriptors, electrostatic and hydrophobic interactions are found 

to be the dominant forces involved in ligand-P450 isoenzyme interaction. Descriptors 

that describe hydrogen bonding, also appear to be important for the ligand-P450 

isoenzyme interactions, which is consistent with the findings that hydrogen bonds are 

involved in the ligand-P450 isoenzyme interactions (de Groot et al. 2002). 
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Table 6.7 Important descriptor classes selected for the prediction of 

Dataset CYP Electrostatic 

(%) 

Hydrogen 

bond 

acceptors 

Hydrogen 

bond 

donors 

Hydrophobic 

(%) 

Shape 

(%) 

Size (%)
inhibitors/substrates of different P450 isoenzymes. 

(%) (%) 

3A4 20.4 3.6 3.3 8.8 56.8 7.1 

2D6 20.5 2.4 2.5 10.0 57.1 7.5 non-inhibitors 

2C9 20.1 2.0 2.9 8.8 59.0 7.2 

3A4 21.0 

Inhibitors / 

2.8 1.9 9.5 57.2 7.5 Substrates / 

2D6 18.9 3.1 3.5 8.5 59.7 6.3 non-substrates 

2C9 19.1 3.5 3.0 9.4 58.2 6.8 

 

selected descriptors, S, nHAcc, nHDon, MLOGP, MW, and SPH. These descriptors 

bond acceptor, hydrogen bond donor and hydrophobicity, and size and shape of the 

MLOGP is the Moriguchi Log P (Moriguchi et al. 1992), MW is the molecular weight 

compounds of all the various datasets are given in 

 It is also possible to roughly distinguish between D+ and D- compounds and 

to roughly distinguish between inhibitors and substrates from the values of six 

are representative of the four dominant interaction forces, electrostatic, hydrogen 

compounds respectively. S is the combined dipolarity/polarizability, nHAcc and 

nHDon, are the number of acceptor and donor atoms for hydrogen bonds respectively, 

and SPH is the spherosity. The average values of these four descriptors for D+ and D- 

are generally larger in size, less spherical in shape, more hydrophobic and have more 

hydrogen bonding sites than non-substrates. Inhibitors of CYP3A4 are generally less 

donors and acceptors. Substrates of CYP2D6 are generally smaller in size, more 

hydrophobic than non-substrates and contain one hydrogen bond donor. There are 

Table 6.8. Substrates of CYP3A4 

hydrophobic than substrates but are larger in size and contained more hydrogen bond 
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only minor differences between inhibitors and substrates of CYP2D6, which suggest 

that there is c r o ra C  

Substrates of CYP2C9 g ally ar  hydrophobic than inhibitors of CYP2C9 

but are smaller in size and have lesser hydrogen bonding capacity. 

 

iff ces in  values escrip portant for distinguish between 
om nds. 

verage a

onside able overlap

ener

 between t

e more

he inhibit rs and subst tes of YP2D6.

Table 6.8 D
D+ and D- c

eren
pou

 the of d tors im

A valueDataset CYP scriptoDe r 

D+ D- 

S 2.56 4)  (1.1  (1.2 2.36 2) 

n c 6.47 5)  (2.6

nHDon 2.27 (2.44) 1.23 (1.40) 

MLogP 1.83 (2.02) 1.96 (2.06) 

MW 417 (185) 313 (116) 

3A4 

HAc  (4.0 4.59 4) 

SPH 0.77 (0.13) 0.77 (0.13) 

S 2.17 (1.00) 2.52 (1.20) 

nHAcc 4.57 (2.70) 5.47 (3.48) 

nHDon 1.57 (1.81) 1.59 (1.92) 

2D6 

SPH 0.78 (0.13) 0.77 (0.13) 

S 2.56 (1.21) 2.39 (1.15) 

MLogP 2.54 (1.76) 1.70 (2.09) 

MW 355 (125) 346 (159) 

nHAcc 5.31 (2.65) 5.21 (3.50) 

nHDon 1.49 (1.52) 1.62 (1.99) 

2C9 

SPH 0.76 (0.13) 0.78 (0.13) 

S 2.56 (1.15) 2.29 (1.17) 

MLogP 1.78 (2.11) 1.96 (2.02) 

MW 351 (123) 348 (159) 

-

inhibitors 

Inhibitors / non

nHAcc 5.53 (3.45) 4.91 (3.14) 

Substrates / non-

substrates 

3A4 

nHDon 1.72 (1.99) 1.44 (1.75) 
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MLogP 2.20 (1.99) 1.60 (2.06) 

MW 379 (157) 315 (137) 

SPH 0.76 (0.13) 0.78 (0.13)  

S 2.19 (1.08) 2.53 (1.18) 

nHAcc 4.10 (2.13) 5.68 (3.58) 

nHDon 1.15 (1.22) 1.76 (2.07) 

M 319.6 (9 166) 

2D6 

SPH 0.7 4) 0.77 3) 

MLogP 2.51 (1.74) 1.68 (2.11) 

W 9.8) 360 (

8 (0.1  (0.1

S 2.52 (1.26) 2.41 (1.14) 

nHAcc 4.69 (2.52) 5.38 (3.48) 

nHDon 1.03 (1.14) 1.73 (2.01) 

MLogP 2.05 (2.04) 1.88 (2.05) 

MW 326 (112) 354 (160) 

2C9 

SPH 0.75 (0.14) 0.78 (0.13) 

a Numbers in parenthesis are the standard deviations. 
 

 CYP3A4 has a relatively large active site that facilitates weak hydrophobic 

interactions with its substrates (Smi . 1997a; Sm 1997b al. 

2003). A pharmacophoric model of the substrates suggests that there are four 

important features: two hydrogen bond acceptor, one hydrogen bond donor and one 

hydrophobic region  et al. 1999b). Some of the descriptor classes frequently 

selected by the SVM classification systems for the prediction of substrates and non-

substrates of CYP3A4 are related to rophobicity gen bo ity 

of the molecule. Examples of descr  in these class  ARR, the 

aromatic ratio, aaCH and aasC, which are electrotopological descriptors for carbons in 

arom differences in the distribution of 

intermolecular forces between inhibitors and substrates of CYP3A4 suggest that the 

th et al ith et al. ; Long et 

(Ekins

 the hyd  and hydro nding abil

iptors es include which is 

atic rings, nHAcc and nHDon. The 
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inhibitors have less electrostatic an ophobic int nd m en 

bonding at the binding site than the substrates. 

 The pharmacophoric model for substrates of CYP2D6 consists of a basic 

nitrogen atom and a flat hydrophobic region (Ekins et  

2002). Some of the frequently se

systems for predicting substrates and non-substrates of CYP2D6 matc el. 

Examples of descriptors in these c s include MA ch is al 

electrotopological positive variation topological descriptor and is related to the 

electrophilicity of the molecule, nN, which is the number of nitrogen atoms, and BLI, 

which is the Kier benzene-likeness These descr es are ed 

by the SVM classification systems for predicting inhibitors and non-inhibitors of 

CYP2D6. However, differences in the distribution of intermolecular for en 

inhibitors of CYP2D6 suggest that the inhibitors may have increased electrostatic and 

ydrophobic interactions at the active site. This is consistent with the findings from 

harma

d hydr eractions a ore hydrog

 al. 2001; Langowski et al.

lected descriptor classes by SVM classification 

h this mod

lasse XDP, whi the maxim

index. iptor class also select

ces betwe

h

p cophoric studies of inhibitors of CYP2D6 which suggests that the inhibitors 

have an additional region in which functional groups with lone pairs enhance 

inhibitory potency and a region for hydrophobic groups (Ekins et al. 2001). 

 Descriptors encoding aromaticity, polarity and hydrogen bond donors are 

frequently selected by SVM classification systems for predicting substrates and non-

substrates of CYP2C9. These include aasC, which is the electrotopological state atom 

index for aromatic carbons, MAXDN, which is the maximal electrotopological 

negative variation topological descriptor and is related to the nucleophilicity of the 

molecule, and nHDon. These selected descriptors are consistent with the findings that 

the substrates of CYP2C9 are primarily polar compounds that contains an aromatic 

group and that drug-CYP2C9 interaction is mediated by both hydrogen bonding (de 
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Groot et al. 2002) and π-π interactions at the binding site (Langowski et al. 2002). 

The differences in the distribution of intermolecular forces between inhibitors and 

6.4.4 Potential training errors and misclassified compounds 

 In this work, non-inhibitors and non-substrates were selected from those 

without a report identifying them as an inhibitor or a substrate. There is also a certain 

level of overlapping between non-inhibitors of different CYP subtypes, between non-

and substrates of a particular CYP subtype. A potential problem with this method is 

that a small number of true inhibitors or substrates may be selected as non-inhibitors 

or non-substrates (false negatives). The extent of training errors caused by false 

negatives can be roughly estimated by using experimentally confirmed non-

confirmed non-inhibitors/non-substrates. In the CYP3A4 substrate/non-substrate 

validation set, only irbesartan is a known non-substrate (MICROMEDEX 2003a). In 

the CYP2C9 inhibitor/non-inhibitor validation set, only reboxetine is experimentally 

determined to be a non-inhibitor (MICROMEDEX 2003a). In the CYP2D6 

substrate/non-substrate validation set, only nilvadipine is a known non-

substrate (MICROMEDEX 2003a). In the CYP2D6 inhibitor/non-inhibitor validation 

set, only gatifloxacin is a known non-inhibitor (MICROMEDEX 2003a). All of these 

compounds, except irbesartan, were correctly predicted by the CSVMs to be non-

inhibitors/non-substrates. These results, together with the reported high accuracies of 

the SVM classification systems for other systems (Sorich et al. 2003; Xue et al. 

substrates of CYP2C9 suggest that the inhibitors have fewer hydrogen bonds but 

increased electrostatic interactions at the active site than the substrates. 

 

inhibitors and non-substrates of a specific CYP subtype, and between non-inhibitors 

inhibitors/non-substrates. However, there is only a limited number of experimentally 
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2004c), suggest that by using SVM (Vapnik 1995), the training errors caused by false 

negatives can be kept at a minimum. 

 Table 6.9 gives the list of compounds misclassified by more than 50% of the 

SVM classification systems for each dataset. A possible reason for the 

isclassification of some of these compounds is that some descriptor subsets may be 

inadequate to properly describe these compounds. Examples of these compounds are 

carbamazepine, chlorphenamine, cinnarizine, doxepin, methadone, olanzapine and 

zuclopenthixol, which contain two aromatic rings separated by an atom and irbesartan 

and lorsartan, which contain a highly polar tetrazole ring. Among the misclassified 

non-inhibitors or non-substrates, only irbesartan is a known non-

substrate (MICROMEDEX 2003a). Oxomemazine is a known inducer and 

flurithromycin is a known inhibitor of CYP3A4 (Rendic 2002). Thus it may be 

possible that both oxomemazine and flurithromycin are actually false negatives as 

more than 60% of the CYP3A4 inhibitors in the dataset are both CYP3A4 inhibitors 

and substrates. Similarly, doxepin, which is a known CYP2D6 substrate (Rendic 

2002), may also be a false negative as nearly 50% of the CYP2D6 substrates are both 

CYP2D6 substrates and inhibitors. 

m

 

6.4.5 Comparison of the two CSVM systems 

 The results from our studies show that PP-CSVM gives slightly better 

accuracies than PM-CSVM. This is because individual SVM classification systems in 

PP-CSVM are ranked according to their accuracies and SVM classification systems 

with better accuracies have more influence on the final classification of a compound.  
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Table 6.9 List of misclassified compounds in this worka. 
Dataset CYP Misclassified compounds 

3A4 Pilocarpine (D+) 

Cyclophosphamide (D+) 

Stiripentol (D+) 

Olanzapine (D+) 

2D6 Lobeline (D+) 

Propafenone (D+) 

Reboxetine (D+) 

Doxepin (D-) 

Isoconazole (D-) 

Inhibitors / non-inhibitors 

Sulconazole (D+) 

2C9 Stiripentol (D+) 

Isoconazole (D-) 

Sulconazole (D+) 

3A4 Chlorphenamine (D+) 

Flurithromycin (D-) 

Oxomemazine (D-) 

Pargyline (D-) 

Pentazocine (D-) 

Irbesartan (D-) 

Sulindac (D-) 

2D6 Carbam

Substrates / non-substrates 

azepine (D+) 

Cinnarizine (D+) 

Zuclopenthixol (D+) 

peridone (D-) Dom

Emedastine (D-) 

2C9 Cinnarizine (D+) 

Losartan (D+) 

Methadone (D+) 

a All of the compounds misclassified by more than 50% of the 81 classification systems are
included 
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This is different from PM-CSVM where all individual SVM classification systems, 

r ccuracies, co ute e  final classification of a 

compound. Thus it is expected that PP-CSV ing the contribution from 

SVM classification systems with lower accu  better or at least equal 

accuracies as PM-CSVM. 

 There are two potential problems wit he first is that the prior 

probability, which was tentatively set at 0.5, m s be the most appropriate 

value for representing the ratio of D+ to D- nds in the population. This 

problem can be partially solved by using a large number of individual SVM 

classification systems to construct a CSVM so luence of prior probability 

on the final classification result is reduced. In this study,  

c ere obtained n whe ility was varied from 

0.05 to 0.95 when 81 SVM classification syste t the CSVM. The 

second problem is the difficulty in determining itivities and specificities 

of the individual SVM classification systems, which are required by equations (6.1) 

and (6.2). In the present study, sensitivities an  of the SVM classification 

systems were estimated by using the modeling testing set and have a mean absolute 

difference of 2.0% and 3.4% respectivel  derived by using the 

independent validation set. If sensitivities a f the individual SVM 

classification systems derived from the independent validation set are used in PP-

CSVM, the resultant CSVMs are f  to gi her accuracies, suggesting 

a possible need for a more accurate estim erformance of some SVM 

classification systems. 

egardless of their a ntrib qually to the

M, by reduc
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ay not alway
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6.5 Conclusion 

 Results from this work are consistent with earlier studies which suggest that 

consensus classification systems give better predictive performance than single 

classification systems. All of the PP-CSVMs for predicting inhibitors/substrates of the 

three P450 isoenzymes, CYP3A4, CYP2D6 and CYP2C9, show high prediction 

accuracies, with improved specificities compared to earlier studies. A potential 

problem of this work is that the selection criteria for non-inhibitors and non-substrates 

may result in a small number of false negatives. However, the use of SVM in this 

work can help to achieve a balance between training errors and prediction accuracies. 

The accuracies of the SVM classification systems may also be improved by the 

addition of a correction factor to the SVM decision function. The present CSVMs are 

only suitable for distinguishing between inhibitors and non-inhibitors or substrates 

and non-substrates. With the availability of more detailed experimental data, it is 

possible to use multi-class SVM (Angulo et al. 2003) for classification of non-

inhibitors, weak inhibitors and strong inhibitors or SVM regression (Smola et al.) for 

quantitative prediction of the Ki values of inhibitors. Our computational results 

suggest PP-CSVM is better than PM-CSVM for constructing CSVMs for classifying 

inhibitors and substrates of various P450 isoenzymes. Thus CSVMs, particularly PP-

CSVM, are potentially useful for developing filters for prediction of inhibitors and 

substrates of P450 isoenzymes. 
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Chapter 7 

Prediction of Drug Metabolism and Elimination, Part II: 

rug elimination and can be used to determine the 

dosing rate and steady-state concentration of a drug (Toutain et al. 2004). Thus it is 

important to predict the CLtot value of drug leads during drug discovery so that 

compounds with acceptable metabolic stability can be identified and those with poor 

bioavailability can be eliminated.  

Regression Methods 

 

 This chapter describes three machine learning approaches for the prediction 

of total clearance. Several different sets of descriptors are compared for their 

usefulness in modeling total clearance. Important physicochemical and structural 

properties of a compound are also identified by using the new method that is 

introduced in Chapter 5. 

 

7.1 Introduction 

 Drug clearance is measured by a quantity, total clearance (CLtot), which is a 

proportionality constant describing the relationship between a substance’s rate of 

transfer, in amount per unit time, and its concentration, in an appropriate reference 

fluid (Wilkinson 1981). Drug clearance occurs by perfusion of blood to the organs of 

extraction, which are generally the liver and the kidney (Smith et al. 2001b). The 

CLtot value of a drug is an important pharmacokinetic parameter because it is directly 

related to bioavailability and d
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 Traditionally, the CLtot value of a drug candidate is obtained via in vivo and in 

vitro studies (Naritomi et al. 2001; Zuegge et al. 2001; Wajima et al. 2003a; Wajima 

 explored for predicting the CLtot value of drug 

candidates (Karalis et al. 2002; Karalis et al. 2003; Turner et al. 2003b; Ng et al. 2004; 

Turner et al. 2004b) in an effort to eliminate undesirable compounds in a fast and 

cost-effective manner. An initial partial least squares (PLS) study conducted by 

Karalis et al (Karalis et al. 2002) using 272 structurally unrelated compounds failed to 

find any correlation between CLtot and a large variety of molecular descriptors used in 

that study. Karalis et al (Karalis et al. 2003) then developed a partial least square 

(PLS) model and non-linear regression model for CLtot by using 23 cephalosporins. 

The r2 and q2 values of the PLS-developed model are 0.775 and 0.731, while the r2 

r regression model is 0.804. These two studies suggest that 

ultipl

2

2

2

N) and PLS. The kNN-developed QSPkR model 

gives a q2 value of 0.77 for a training set of 38 antimicrobial compounds and a r2 

et al. 2003b), which tends to be time-consuming and costly. Therefore, QSPkR 

modeling has recently been

value of the non-linea

m e mechanisms may be involved in CLtot and thus linear methods may not 

always be suitable for constructing QSPkR models for CLtot. Another study for the 

prediction of CLtot was done by Turner et al (Turner et al. 2003b) who used artificial 

neural network (ANN), which gives a r  value of 0.982 for a training set of 16 

cephalosporins and a r  value of 0.998 for a validation set of 4 cephalosporins. 

Subsequently, Turner et al (Turner et al. 2004b) used a larger training set of 56 

compounds to develop an ANN-based QSPkR model, which gives a r  value of 0.731 

for a validation set of 6 compounds. These results suggest that non-linear methods 

may be useful for developing models for CLtot prediction of structurally unrelated 

compounds. Two QSPkR models for CLtot were developed by Ng et al (Ng et al. 2004) 

by using k nearest neighbour (kN
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value of 0.94 for a validation set of 6 antimicrobial compounds. There are 68% of the 

44 compounds having predicted CLtot within twofold of actual values. For the PLS-

developed QSPkR model, there are only 50% of the 44 compounds having predicted 

CLtot within twofold of actual values and the q2 value of this model is 0.09 for the 

training set and its r2 value is 0.35 for the validation set. These results are consistent 

with the study of Turner (Turner et al. 2004b) and further confirm the usefulness of 

non-linear methods for developing QSPkR models for predicting CLtot. All of the 

previous QSPkR models for predicting CLtot have primarily been developed and 

tested by using a relatively small number of compounds (<70), which is significantly 

smaller in number and diversity than the number of compounds with known CLtot data. 

Thus it is of interest to evaluate the prediction capabilities of QSPkR models that are 

developed by using much larger and more diverse datasets.    

 This work is intended to evaluate the capability of several statistical learning 

methods for predicting CLtot by using 503 compounds found from a comprehensive 

literature search, which is substantially larger in number and more diverse in structure 

than those used in earlier studies. The methods used include general regression neural 

network (GRNN), support vector regression (SVR) and kNN. Different descriptor sets, 

which encode different combination of the structural and physiochemical properties of 

a compound, were also compared for their usefulness for constructing QSPkR models 

to predict CLtot. Consensus modeling strategy has been introduced for developing 

prediction systems based on multiple models (Mosier et al. 2003; Asikainen et al. 

2004). In this work, this strategy was also applied to the development of consensus 

QSPkR (cQSPkR) models for the prediction of CLtot by using QSPkR models 

generated from different statistical learning methods. 
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7.2 Method 

 Compounds with known human CL

7.2.1 Dataset 

g

s which do not permit 

to describe the structural and 

hysico-chemical properties of the compounds. The first set (DS-MIXED) contains a 

tot values were selected from several 

sources including Micromedex (MICROMEDEX 2003b), a classic pharmacology 

textbook (Hardman et al. 2002) and a number of publications (Ito et al. 1998; Obach 

1999; Naritomi et al. 2001; Turner et al. 2003b; Wajima et al. 2003a; N  et al. 2004; 

Turner et al. 2004b). In order to ensure that experimental variations in determining 

CLtot do not significantly affect the quality of our data sets, only CLtot values obtained 

from healthy adult males and from intravenous administration were used for 

constructing the dataset. In addition, a number of compounds were excluded because 

they are known to possess certain molecular characteristic

reliable calculations of the molecular descriptors used in this study (Karalis et al. 

2002). Examples of these compounds are quaternary ammonium compounds, 

molecules with complex chemical structures like amphotericin-B, aminoglycosides, 

vancomycin, and compounds containing one or more metal atoms. A total of 503 

compounds were selected from this process and these were used as the dataset for this 

work. The CLtot value for each of these compounds was log-transformed (logCLtot) to 

normalize the data and to reduce unequal error variances (Neter et al. 1996). 

Representative training set and validation set were constructed from our dataset by 

using the removal-until-done method (section 2.2.2.3). 

 

7.2.2 Molecular structures and descriptors 

 Six different sets of descriptors were used 

p
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number of commonly used descriptors, including 21 constitutional descriptors, six 

geometrical descriptors, 72 topological descriptors and 108 electrotopological state 

descriptors (Kier et al. 1999). The second set (DS-3DMoRSE) includes 224 3D-

tot of the compounds, so as to 

prove computation speed, performance and interpretability of predictive models. 

elevant descriptors such as constant 

MoRSE descriptors (Schuur et al. 1996), which are representations of the 3D structure 

of a molecule and encode features such as molecular weight, van der Waals volume, 

electronegativities and polarizabilities. The third set (DS-ATS) is composed of 209 

Moreau-Broto topological autocorrelation (ATS) descriptors (Moreau et al. 1980), 

which describes how molecular properties such as polarizability, charge, 

electronegativity, are distributed along the topological structure. The fourth set (DS-

GETAWAY) consists of 340 GETAWAY descriptors (Consonni et al. 2002), which 

encodes both molecular structure and chemical information such as atomic mass, 

polarizability, van der Waals volume and electronegativity. The fifth set (DS-RDF) 

contains 203 RDF descriptors (Hemmer et al. 1999), which provides information 

about interatomic distances in the entire molecule and also other useful information 

such as bond distances, ring types, planar and non-planar systems, atom types and 

molecular weight. The last set (DS-WHIM) includes 126 WHIM descriptors (Bravi et 

al. 1997), which encodes information about the size, shape, symmetry, atom 

distribution and polarizability of a molecule. All of the descriptors were computed 

from the 3D structure of each compound using MODEL (Li et al. 2005b). 

 Objective feature selection is applied to all of the six sets of descriptors to 

remove descriptors irrelevant or redundant to the CL

im

The first step involves the removal of all irr

descriptors. Redundant descriptors were then eliminated by removing one of the two 

descriptors with pairwise correlation coefficient of greater than 0.90 (Wessel et al. 
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1998; Mosier et al. 2002). The final number of descriptors for each descriptor set is 

84, 109, 142, 155, 111 and 44 for DS-MIXED, DS-3DMoRSE, DS-ATS, DS-

GETAWAY, DS-RDF, and DS-WHIM, respectively. All of the remaining descriptors 

in each descriptor set were autoscaled to a mean value of zero and a variance of one 

(equation (2.3)) to ensure that all descriptors have equal potential to affect the QSPkR 

model (Livingstone 1995b). 

 

7.2.3 Optimization of the parameters of GRNN, SVR and kNN 

 Optimization of the parameters for GRNN, SVR and kNN was conducted by 

scanning the parameter value through a range from 1 to 30. The predictive capability 

of the QSPkR model developed from a particular parameter value can be determined 

by using cross-validation methods, such as 5-fold cross-validation, 10-fold cross-

validation and modeling testing set. Our cytochrome P450 study has shown that the 

use of a modeling testing set gives the best performance for assessing the predictive 

capability of a model (section 6.2.3). Thus this validation method was used to select 

the optimum parameter for each statistical learning method in this study. The 

following function was used to measure the predictive capability of a QSPkR 

model (Wessel et al. 1998; Mosier et al. 2002): 

 F train train testMAE MAE MAE= + −      (7.1) 

  

where MAEtrain and MAEtest are the mean absolute error of the modeling training set 

and modeling testing set respectively. The modeling testing set was derived by 

dividing the original training set into a modeling training set and modeling testing set 

of 303 and 95 compounds respectively by using the removal-until-done method 

(section 2.2.2.3). 
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7.2.4 cQSPkR method 

 In this work, consensus QSPkR (cQSPkR) models were developed by 

combining QSPkR models generated from different statistical learning methods. 

cQSPkR models compute the predicted CLtot of a compound by averaging the 

predicted CLtot of that compound from the different QSPkR models (Sutherland et al. 

2003b). 

 

7.2.5 Evaluation of QSPkR models 

 The validation set, not used in the derivation of the QSPkR models, was used 

to estimate the prediction capability of the QSPkR models. The fold-error for each 

compound and the percentage of compounds in the validation set where the fold-error 

is less than two or three were calculated. The predictive capability of the QSPkR 

models can be measured by the Spearman rank correlation coefficient (Rs) and 

average-fold error (Obach et al. 1997). Rs is used to assess the ability of the QSPkR 

models to rank compounds based on their CLtot. The average-fold error is the 

geometric mean of the ratio of predicted and actual values, and QSPkR models that 

predicts CLtot perfectly gives a value of 1 and a model with an average-fold error of 

less than 2 is considered to be a successful one (Obach et al. 1997). The predicted 

gCLtot values of the compounds were colo nverted back to CLtot prior to the calculation 

of fold-errors and average-fold errors. A functional dependence study was also done 

using the procedures described in section 2.5.3. 

 

 



CHAPTER 7: METABOLISM AND ELIMINATION, PART II 154

7.3 Results and discussion 

7.3.1 Dataset analysis 

 The diversity index (DI) of the training set and validation set used in this study 

and those of several reference datasets are given in Table 7.1.  

 

Table 7.1 Diversity indices of the datasets used in this and other studies. 
Dataset Number of 

compounds 

Diversity 

index 

Training set 398 0.067 Datasets used in 

this work Validation set 105 0.068 

Satellite structures (Oprea et al. 2001) 8 0.076 

FDA approved drugs 1121 0.069 

Highly diverse 

datasets 

NCI Diversity set (NCI/NIH) 1804 0.124 

Penicillins 59 0.452 

Cephalosporins 73 0.568 datasets 

Fluoroquinolones 39 0.579 

Estrogen receptor ligands (Sutherland et al. 

2003a) 

1009 0.274 

Congeneric 

Benzodiazepine receptor ligands (Sutherland 

et al. 2003a) 

405 0.314 

 

Dihydrofolate reductase (DHFR) 

inhibitors (Sutherland et al. 2003a) 

756 0.384 

QSAR, QSPR 

datasets 

Cyclooxygenase 2 (COX2) 

inhibitors (Sutherland et al. 2003a)

467 0.584 

 

 It is found that the DI values of the training set and validation set is very small, 

as low as 0.067, which is at the level of those of highly diverse datasets. For 

comparison, the DI values of datasets containing congeneric compounds are typically 
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greater than 0.452, and those of the compounds used in QSAR and QSPR studies are 

typically in the range of 0.274 to 0.584. This suggests that the training set and 

validation set are sufficiently diverse. The representativity index (RI) value between 

sessing the predictive 

apability of the QSPkR models developed in this work. 

y 

using the dataset of 503 compounds to identify outliers and clusters. Two principal 

c s ed which is able to explain 73.2  the total variance 

in the descriptors. Com are able to explain 

the variance respectively. Figure 7.1 shows a score plot of the compounds in the 

training set and validation set by using the first two PCs. Score plots are useful for 

c he dis f compounds in the chemical space between two datasets 

and to identify clusters of compounds and single comp ds that be 

outliers (Wold et al.  et al. 2006). There are no distinct clusters in 

the training set and validation set. The validation set is evenly distributed throughout 

the score space of entativ s of the ion 

set. Four compounds, alendronic acid, clodronic acid, foscarnet and zoledronic acid, 

were found to be ty of compound  are loca  the 

bottom right of the ds that are farther away from the 

majority of compounds are cefoperazone, cefpiramide and tezosentan, which are 

ace, and carbimide and borocaptate, which are 

the training set and validation set is 0.881, which suggests that the validation set is 

representative of the training set and thus is suitable for as

c

 Principal component analysis (PCA) (Wold et al.  pe1987) was rformed b

omponents (PC ) were deriv % of

ponents one and two 60.9% and 12.3% of 

omparing t tribution o

oun may 

 1987; Doddareddy

 the training set, confirming the repres enes validat

farther away from the majori

 score space. Other compoun

s and ted at

located at the left of the score sp

located at the right and top right of the score space respectively. There seems to be no 

evidence to suggest that these compounds are outliers. Thus they are retained in the 

training set and validation set. 
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Figure 7.1 Score plot of the first two principal components for training set and 
validation set. 

 

 

 may partially neglect some important features.  

7.3.2 Analysis of descriptor sets 

 The computed Rs values and average-fold errors of the QSPkR models 

developed by using different descriptor sets are shown in Table 7.2. Comparison of 

the QSPkR models based on the six descriptor sets shows that models based on the 

DS-MIXED descriptor set generally give higher Rs values and lower average-fold 

errors than those based on other descriptors sets. This suggests that models based on 

the DS-MIXED descriptor set are more useful and it may be advantageous to use a 

variety of descriptors for prediction of pharmacokinetic properties than to use a 

specialized descriptor set which
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 The descriptors in the six descriptor sets were combined to form a new 

descriptor set (DS-ALL). The G-ALL, S-ALL and K-ALL models developed by using 

DS-ALL have higher predictive capabilities compared to models developed by using 

individual descriptor sets. This suggests that all of the three statistical learning 

methods are able to extract useful information from the different descriptor sets and to 

effectively combine them to develop more predictive QSPkR models. 

 

Table 7.2 Average-fold errors of QSPkR models developed by using different 
statistical learning methods and different descriptors setsa. 

Statistical 

learning 

methods 

Model Descriptor set Optimum 

parameter 

Rs Average-fold 

error 

G-MIXED DS-MIXED 2 0.636 1.73 

G-3DMoRSE DS-3DMoRSE 3 0.540 1.75 

G-ATS DS-ATS 3 0.448 1.86 

G-GETAWAY DS-GETAWAY 3 0.520 1.80 

G-RDF DS-RDF 3 0.558 1.80 

G-WHIM DS-WHIM 2 0.302 1.96 

GRNN 

G-ALL DS-ALL 7 0.633 1.63 

IXED 3 0.558 1.73 S-MIXED DS-MSVR 

S-3DMoRS 3DMoRSE 4 0.518 1.81 

S-GETAWAY DS-GETAWAY 8 0.564 1.78 

S-RDF DS-RDF 4 0.607 1.76 

S-WHIM DS-WHIM 5 0.346 1.95 

S-ALL DS-ALL 13 0.643 1.66 

K-MIXED DS-MIXED 2 0.523 2.00 

E DS-

S-ATS DS-ATS 7 0.548 1.74 

K-3DMoRSE DS-3DMoRSE 2 0.360 2.23 

kNN 

K-ATS DS-ATS 3 0.406 2.03 
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K-GETAWAY DS-GETAWAY 2 0.522 2.00 

K-RDF DS-RDF 3 0.447 1.98 

P-MIXED DS-MIXED 17 0.528 1.89 

K-WHIM DS-WHIM 3 0.392 2.01 

K-ALL DS-ALL 2 0.513 1.90 

P-3DMoRSE DS-3DMoRSE 8 0.377 2.26 

P-ATS DS-ATS 7 0.562 

PLS 

2.09 

P-GETAWAY DS-GETAWAY 10 0.474 1.92 

0.282 2.10 

P-ALL DS-ALL 5 0.559 1.96 

P-RDF DS-RDF 6 0.468 1.99 

P-WHIM DS-WHIM 28 

a The average-fold errors were assessed by using the validation set. 
 

7.3.3 Predicti  o  cQSPk  models

 Table 7.2 above shows the predictive capabilities o  QSPkR dels 

developed by using GRNN, SVR a  PLS was used as a reference QSPkR 

method for comparison of the predictive capabilities of the different models. The 

results for the corresponding PLS-developed QSPkR odels o given able 

7 ll of the G d SV ed QSPkR models have average-fold errors 

less than 2 while kNN-developed models have average-fold errors near 2, which are 

similar to those of PLS-developed models. GRNN- and SVR-developed QSPkR 

models were also found to generally give higher R  values than the corresponding 

kNN- and PLS-developed models. This suggests that both GRNN and SVR are more 

useful than either kNN or PLS for developing QSPkR models ug clea  and 

b RNN- an velo  are not m  flexibl  is necessary and 

thus unlikely to overfit.  

ve capability f QSPkR and R  

f the  mo

nd kNN.

 m are als  in T

.2. A RNN- an R-develop

s

 of dr rance

oth G d SVR-de ped models ore e than
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 To assess the performa e stati cal lear ethods Ltot 

prediction of a iverse s mpounds, it is useful to examine whether the 

predictive capability of these methods is at a similar level as those derived from the 

use of a significantly smaller set of com s. It is noted that, a direct com

with results fro tu opriate cause o ifferenc  the 

dataset, molecular descriptors, and computing algorithms used. Although desirable, it 

is impossible t s ison g resu ectly fr ther 

studies without f ormation about the algorithms of molecular descriptors and 

modeling methods used in each study. Nonetheless, a tentative comparison may 

f the QSPkR models studied in this work. 

ALL, K-ALL and P-

LL m

ay not be the most efficient approach for 

constructing a QSPkR model for predicting CLtot. Thus non-linear methods, such as 

nce of the thre sti ning m  for C

more d et of co

pound parison 

m previous s dies is inappr be f the d es in

o conduct a eparate compar usin lts dir om o

ull inf

provide some crude estimate regarding the approximate level of predictive capability 

o

 Table 7.3 gives the prediction results of the G-ALL, S-

A odels from this work along with those derived from previous studies. The 

percentage of compounds in the validation set with predicted CLtot within two-fold 

error of actual values of G-ALL and S-ALL models are comparable and in some cases 

slightly better than those of earlier studies that were tested by using a much smaller 

number of compounds. Diversity of the training sets has been shown to affect the 

applicability domain of QSPkR models (Dimitrov et al. 2005). Thus the results 

suggest that using a more diverse and larger number of compounds and applying 

statistical learning methods, particularly GRNN and SVR, are useful for prediction of 

CLtot. A possible reason for the better performance of GRNN and SVR is that 

multiple mechanisms are involved in determining CLtot. A variety of factors may 

interact in complex ways to affect the CLtot of a compound. Therefore methods based 

only on linear relationships, such as PLS, m
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GRNN and SVR, which do not require prior knowledge about the molecular 

mechanism or structure-activity relationship of a particular drug property may be 

more suitable.  

 

Table 7.3 Number of compounds with the predicted CLtot within two-fold error of 

Model Number of 

compounds 

Number (percentage) of compounds 

with fold-errors < 2 

the actual CLtot from this work and other studies. 

G-ALL (this work) 105 73 (69.5%) 

S-ALL (this work) 105 78 (74.3%) 

 (Wajim

 44 (64.7%) 

PLS (Ng et al. 2004) 44 22 (50.0%) 

K-ALL (this work) 105 65 (61.9%) 

P-ALL (this work) 105 63 (60.0%) 

Multiple linear regression 68

a et al. 2003a) 

kNN (Ng et al. 2004) 44 30 (68.2%) 

Parallel tube (Obach 1999) 29 16 (55.2%) 

 

 Plots of the predicted CLtot against the actual values for the G-ALL and S-

ALL models are shown in Figure 7.2. These plots show that both models tend to 

under-predict the CLtot value of compounds rather than over-predicting the CLtot. 

Under-prediction of CLtot is more desirable than over-prediction of CLtot during drug 

development because over-prediction results in more frequent dosing of a drug 

candidate during clinical trials which may lead to higher rates of adverse drug 

reactions. For compounds with fold-errors greater than 2, the G-ALL model 

underpredicted 22 and overpredicted 10 of these compounds respectively. The 

corresponding values for the S-ALL model are 18 and 11 respectively.  
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Figure 7.2 (a) Plot of predicted CLtot vs actual CLtot for the G-ALL model. (b) Plot of 

a 
predicted CLtot vs actual CLtot for the S-ALL model. 

 
b

 

L and S-ALL 

 

 

The dotted line represents line of unity. The area between the two solid lines and between the 
two dotted-dash lines represents an area between two-fold and three-fold error respectively. 
Compounds in validation set with fold-error greater than 3 for both G-AL
models are identified. 
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Figure 7.3 Chemical structures of compounds in validation set with fold-errors 
greater than three for both G-ALL and S-ALL modelsa.  
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NH
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Carbidopa 
G-ALL: 3.2 
S-ALL: 3.2 
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Tocainide 
G-ALL: 3.2 
S-ALL: 4.7 

 

OH
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Allopurinol 
G-ALL: 3.3 
S-ALL: 3.2 

 

N
N

O

 

Propyphenazone 
G-ALL: 3.4 
S-ALL: 5.0 

 

N

N

Cl  

Chlorphenamine 
G-ALL: 3.1 
S-ALL: 3.3 

 

HN
 

Fendiline 
G-ALL: 3.6 
S-ALL: 5.2 

 

N
S

NH

HO O

HO

O

O N

NH
O  

Raltitrexed 
G-ALL: 5.5 
S-ALL: 3.7 

a The numbers represent the fold-errors of each compound for both G-ALL and S-ALL 
models. 
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 There are 7 compounds having fold-errors greater than 3 for both models and 

their chemical structures are shown in Figure 7.3. A possible reason for the high fold-

errors of some of these compounds is that the descriptors used in this study may be 

inadequate to properly describe these compounds. Examples of these compounds are 

chlorphenamine and fendiline, which contain two aromatic ted by an atom, 

allopurinol, whi  a complex two ring system with m heteroatoms, 

carbidopa, which has a hydrazine group that is a highly reactive reducing agent, and 

raltitrexed, which has two carboxylic acid groups that makes it highly charged at 

physiological pH. Our previous studies (sections 4.2.3, 6.4.4, and 8.1.3.3) have 

suggested that c containing these structural fea e adequately 

represented by c ailable descriptors. Thus by us tly available 

algorithm, these compounds are misrepresented and incorrectly positioned in the 

chemical space, leading to inaccurate prediction of their CLtot values. 

 A cQSPkR model was developed by using G-ALL and S-ALL models. The K-

ALL model was not used because its prediction capability is significantly lower than 

those of the G-ALL and S-ALL models and hence m the prediction 

capability of the cQSPkR model. The cQSPkR model has an average-fold error of 

1.61. Thus the cQSPkR model had slightly better prediction capability than either the 

G-ALL or S-ALL model. The relatively small average-fold error suggests that the 

model is useful for the prediction of CLtot. The cQSPkR model correctly predicted 77 

(73.3%) compounds in validation set to be within two-fold error of actual CLtot. For 

compounds with fold-errors greater than 2, the cQSPkR model under-predicted 19 and 

over-predicted 9 of these compound ly. None of the under-predicted or 

proved over that of the G-ALL and S-ALL models which have two and four 

rings separa

c sh contain ultiple 

ompounds tures may not b

urrently av ing the curren

ay reduce 

s respective

over-predicted compounds have fold-errors greater than 4.5. This is significantly 

im
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c nds with fold-errors greater than 4.5 respectively. The cQSPkR model gives 

an R

ompou

7.3.4 Functional dependence analysis 

 Multiple elimination processes are involved in drug clearances. Thus it is 

difficult to determine which molecular characteristics are important in affecting CL . 

Nonetheless, it is possible to infer some information from a functional dependence 

study of the QSPkR models. It is noted that the results of a functional dependence 

study may vary with respect to different QSPkR models. Thus the following 

interpretation of the descriptors must be taken in light of the absolute predictive 

ability of the QSPkR models. Figure 7.4 shows the prediction results of the first seven 

PCs of the G-MIXED model by using artificial testing sets. The first seven PCs are 

able to explain approximately 60% of the total variance of the descriptors. Plots of 

logCL  against the PCs for the S-MIXED model are similar and thus are not given 

here. The DS-MIXED descriptor set was used to determine the relationship between a 

specific molecular characteristic and CL  because models developed by using this 

descriptor set have higher predictive capabilities than those developed by using other 

descriptor sets. In addition, it is relatively easier to assign the descriptors in the DS-

MIXED descriptor set to specific molecular characteristics. Table 7.4 gives the list of 

the dominant descriptors and the corresponding molecular characteristic in different 

PCs. 

 

s value of 0.652 which suggests that the model may be useful for ranking 

compounds according to their CLtot in large chemical libraries. 

 

tot

tot

tot
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Table 7.4 The dominant descriptors and the corresponding molecular characteristic 

PC Dominant Descriptors Corresponding Molecular 
in different principal components. 

Characteristic 

First 3D-Wiener index (Basak et al. 1999) 

Valence molecular connectivity Chi index for 

Molecular shape 

path order 2 (Kier et al. 1999) 

Second 2

aromatic) (Kier et al. 1999) 

Fifth Atom-type Estate sum for =S=< (Kier et al. 1999) Charge and molecular solvation 

capability 

Atom-type Estate sum for :CH: (sp , 

Atom-type Estate sum for :C:-  (Kier et al. 1999) 

AlogP- (Viswanadhan et al. 1993) 

Lipophilicity  

Third Kier flexibility index (Kier 1990) Flexibility 

Fourth Average molecular weight 

Gravitational 3D index (Wessel et al. 1998) 

Molecular size 

Solvation molecular connectivity Chi index for 

path order 2 (Todeschini et al. 2000) 

Mean topological charge index for path order 

1 (Galvez et al. 1994) 

Sixth Number of H-bond acceptors Hydrogen bond accepting 

Seventh Number of H-bond donors Hydrogen bond donating 

capability 
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Figure 7.4 Plots of log CLtot against the various PCs for G-ALL model. Increasing 
values of PC1 denotes increasing sphericity of a compound. Increasing values of PC2 
den decreasing lip ound. Increasi tes 
decreasing flexibility of a compound. Increasing values of PC
molecular size of a compound. Increasing values of PC6 denote ydrogen 
b accept easing values of PC7 denotes increasing 
hydrogen bond donating ability of a compound.  
a 

 
c 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d 

 
 

otes ophilicity of a comp ng values of PC3 deno
4 denotes increasing 

s increasing h
ond ing ability of a compound. Incr

 

b 
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e f 

 
g 

scriptors shows that the first PC is 

riptors. These include 3D-Wiener index, 

phericity of a structure, and 2χv, which is th

alence molecular connectivity Chi index for path order 2 and encodes the relative 

egree of branching in a compound (Kier et al. 1986). Prediction results by using the 

rtificial testing set show that CLtot generally decreases with increasing value of the 

D-Wiender index and 2χv (Figure 7.4a). This suggests that spherically-shaped 

 

 
 

 Analysis of the variations of the de

primarily determined by topological desc

which decreases with increasing s e 

v

d

a

3
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molecules with fewer side chain branching tend to have higher CLtot
 than that of 

aspherical molecules with multiple branches. 

 Electrotopological state descriptors like Estate_aaCH and Estate_aasC, which 

describe electrotopological properties of carbons in aromatic rings, and 

AlogP (Viswanadhan et al. 1993), which measures the partition coefficient of a 

compound, are the main contributor to the second PC. Thus it is likely that the second 

PC is a measure of the lipophilicity of a compound. Results of the artificial testing set 

suggest CLtot increases with increasing lipophilicity of a compound. 

 The third PC is determined primarily by KierFlexibilityIndex, which is related 

to the flexibility of a molecule. The complex role of molecular flexibility in 

membrane permeation has been found by two studies. One found a positive 

correlation between flexibility and permeation (Iyer et al. 2002) while the other found 

a negative correlation (Veber et al. 2002). Using the artificial testing set, it was found 

that compounds with low or high flexibility have higher CLtot than those with 

moderate flexibility. This may partially explain the apparent contradiction between 

the two earlier studies. 

The fourth PC is formed mainly by AMW, which is the average molecular 

electrotopological descriptor for sulfur atoms, 2χs, which is the solvation molecular 

 

weight, and Gravitational3DIndex. These are related to the volume of a molecule and 

the distribution of atomic masses within the molecular space. The contribution of 

these two descriptors to the fourth PC suggests that the fourth PC is a measure of 

molecular size. The artificial testing sets show that CLtot generally increases with 

decreasing molecular size. This is consistent with the findings that small molecular 

size is necessary for good membrane penetration (Pardridge 1998). 

 The main contributors to the fifth PC are Estate_ddssS, which is the 
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connectivity Chi index for path order 2, and Mean1Gc, which is the mean topological 

charge index for path order 1. It is difficult to attribute these descriptors to a single 

pectively. Figure 

.4f an

nge in CLtot per unit change in the PC values can provide a 

molecular characteristic. Nonetheless, studies have consistently shown that charge 

and molecular solvation are important in determining the metabolism (Smith et al. 

1997b; de Groot et al. 2002) and renal clearance (Turner et al. 2004b; Venturoli et al. 

2005) of a molecule. 

 The sixth and seventh PCs are determined primarily by descriptors encoding 

the hydrogen bond acceptor and donor properties of a compound res

7 d Figure 7.4g shows that CLtot increases with increasing hydrogen bonding 

capability of a compound. Studies have found that binding affinity to human serum 

albumin generally decreases with increasing hydrogen bonding capability of these 

compounds (Hall et al. 2003; Yap et al. 2005b). Many compounds bind to serum 

albumin and the albumin-bound fraction is not available for hepatic metabolism or 

renal clearance (Colmenarejo 2003). Thus factors which decrease serum albumin 

binding are expected to increase the CLtot of a compound. 

 The rate of cha

useful hint about the contribution of a molecular characteristic to the clearance of a 

compound. The plots in Figure 7.4 show the effect of changing the value of each PC 

on the clearance of a compound in the following order: PC5 > PC4 > PC3 > PC6 > 

PC1 ≈ PC2 > PC7. Thus charge, molecular solvation, molecular size and flexibility 

are the most important molecular properties which influence clearance of a compound. 
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7.4 Conclusion 

with those developed by using a linear method, PLS. All of the 

e such type of feature bias. 

h

 Our study suggests that both GRNN and SVR are potentially useful for 

developing QSPkR models to predict drug clearance from a large diverse set of 

compound data. QSPkR models developed by using GRNN, SVR and KNN were 

tested and compared 

GRNN- and SVR-developed models show better prediction capability than the 

corresponding KNN- or PLS-developed models. The predictive capabilities of the 

QSPkR models developed in this study are comparable to those of previous studies 

and can be further improved by using consensus modeling methods. 

 A collection of constitutional, geometrical, topological and electrotopological 

descriptors seems to be more useful for modeling drug clearance than specialized 

descriptor sets such as 3DMoRSE, ATS, GETAWAY, RDF and WHIM. An 

individual descriptor set tends to partially neglect some important features and thus 

the use of all the available descriptors may help to alleviat

The three statistical learning met ods used in this work appears to be capable of 

combining the information encoded in the different descriptor sets effectively to 

develop more predictive QSPkR models. 
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Chapter 8 

T ity Prediction oxic

 

 This chapter describes two important drug toxicities: genotoxicity (section 8.1) 

and torsade de pointes (section 8.2). The classification accuracies of the qSPkR 

models for prediction of genotoxic potential and torsade-causing potential of 

compounds developed by using SVM and other classification methods are presented. 

The possible reasons for misclassification of some compounds are also discussed. 

 

8.1.1 Introduction 

cological tests and clinical safety 

uated by the drug regulatory authorities for 

drug safety assessment. Because of the high cost of conducting toxicity tests and 

clinical trials, effort has been directed at developing low-cost and efficient tools for 

predicting ADRs aimed at eliminating unsafe drug candidates in the early stages of 

drug development (Kennedy 1997; van de Waterbeemd et al. 2003). 

 Genotoxicity is one of the ADRs closely evaluated in drug discovery and 

approval processes. The molecular mechanisms of genotoxicity include DNA 

intercalation by aromatic ring of a drug, DNA methylation, DNA adduct formation 

8.1 Genotoxicity 

 Adverse drug reactions (ADRs) are responsible for the failure of a substantial 

percentage of investigational drugs and the withdrawal of marketed drugs (Johnson et 

al. 2000; van de Waterbeemd et al. 2003). Up to one-third of all drug failures are due 

to ADRs (Kennedy 1997). A variety of toxi

evaluations need to be conducted and eval
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and strand break, and unscheduled DNA synthesis (Bolzan et al. 2002). Some 

genotoxic (GT+) compounds require metabolic activation and their GT+ effect are 

 (Snyder et al. 2004). These events subsequently result in 

hromosomal aberrations, micronuclei, sister chromatid exchanges, and cell death 

ude 

eductive Estimation on Risk from Existing Knowledge (DEREK), Multiple 

Computer Automated Structure Evaluation (MCASE) and Toxicity Prediction by 

puter Assisted Technology (TOPKAT). Specific details about these 

t es can be found in the review by Greene (Greene 2002). qSPkR 

pounds based on 

mediated via N-dialkylation

c

which contribute to drug ADR (Bolzan et al. 2002). 

 Tools for fast and efficient prediction of drug GT+ potential, particularly those 

based on computational methods, are being developed (Kramer 1998; Schwetz et al. 

1998). For instance, expert systems that use structural alerts for predicting GT+ as 

well as other toxicological profiles are now commercially available. These incl

D

Kom

compu ational databas

models have been developed for predicting GT+ potential of several groups of related 

chemicals (Marchant 1996; Cash 2001). However the qSPkR models of a majority of 

chemical groups are yet to be determined which hinders the practical application of 

this method. 

 Statistical learning methods have recently been explored as a new approach 

for genotoxicity prediction without the restriction on the features of structures or types 

of molecules (He et al. 2003; Mattioni et al. 2003; Mosier et al. 2003). Instead of 

focusing on specific structural feature or a particular group of related molecules, these 

methods classify molecules into GT+ and non-genotoxic (GT-) com

their general structural and physicochemical properties regardless of their structural 

and chemical types. Therefore, in principle, these methods are expected to be 

applicable to a diverse set of molecules. However, the performance of these methods 

 



CHAPTER 8: TOXICITY 173

can be practically limited by the quality of molecular descriptors, diversity of training 

and testing data, and the efficiency of statistical learning algorithm. 

 So far, three statistical learning methods, linear discriminant analysis (LDA), k 

nearest neighbour (kNN), and probabilistic neural network (PNN), have been used 

and achieved a prediction accuracy of up to 73.8% for GT+ and 92.8% for GT- 

ompou

 GT- compounds. These methods include SVM, PNN, kNN and C4.5 

c nds respectively (He et al. 2003; Mattioni et al. 2003; Mosier et al. 2003). 

However, these methods have been developed and tested by using no more than 394 

GT+ and GT- compounds (Snyder et al. 2004), which is significantly smaller in 

number and diversity than the 860 known GT+ and GT- compounds found from our 

recent literature search. Therefore, there is a need to examine if a similar level of 

accuracy can be achieved for the more diverse set of molecules. It is also of interest to 

determine if the GT+ accuracy can be further improved by a training set composed of 

a more diverse set of GT+ compounds. Moreover, other statistical learning methods 

such as support vector machine (SVM) and C4.5 decision tree (DT) have shown 

promising potential, and it is useful to evaluate these methods. 

 This work is intended to evaluate several statistical learning methods by using 

860 GT+ and

DT. Recursive feature elimination (RFE) is used in this work for selecting the 

molecular descriptors relevant to the classification of GT+ and GT- compounds. To 

adequately assess the prediction accuracy of the methods used in this work, two 

different evaluation methods are used. One is 5-fold cross-validation, and the other is 

the use of an external independent validation set. 
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8.1.2 Methods 

8.1.2.1 Selection of GT+ and GT- compounds 

 A total of 860 GT+ and GT- compounds with known genotoxicity test results 

are selected from several sources including the 1999-2002 Physician’s Desk 

Reference, National Toxicology Program, and a number of publications (Snyder et al. 

2001; He et al. 2003; Mattioni et al. 2003; Mosier et al. 2003; Snyder et al. 2004). 

Genotoxicity tests for generating these data include the pre-ICH four standard 

batteries (Ames test, in vitro cytogenetics, in vivo cytogenetics, mouse lymphoma 

assay) and the Salt-Overly-Sensitive (SOS) chromotest (which is a rapid alternative 

genotoxicity test based on the detection of the DNA damage through the SOS 

pathway)  (Quillardet et al. 1993; Vasilieva 2002). Compounds with genotoxicity test 

results are divided into GT+ and GT- groups according to whether these genotoxicity 

test results showed at least one positive finding. Under this definition, there are a total 

of 229 GT+ compounds and 631 GT- compounds. 

 These compounds are further separated into training and testing sets by either 

5-fold cross-validation or removal-until-done method (section 2.2.2.3) depending on 

the evaluation method used. For evaluation by an independent validation set, these 

compounds are divided into training, testing, and independent validation set. The 

generated training, testing and independent evaluation set contains 577 (166 GT+, 

411 GT-), 160 (36 GT+, 124 GT-) and 123 (27 GT+, 96 GT-) compounds respectively. 

 

.1.2.2 Molecular descriptors 

 In this work, a set of 199 molecular descriptors, which include 143 topological, 

31 quantum chemical, and 25 geometrical descriptors, are computed using our own 

8
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design d molecule ar descriptor computing program. The remaining redundant and un-

related descriptors are further reduced by using RFE method. The computation 

procedure for RFE is the same as that in the human intestinal absorption study 

(section 4.1.2.3). 

 

 Prediction results of SVM without RFE and SVM with RFE (SVM+RFE) by 

using 5-fold cross-validation are given in Table 8.1. The accuracies of SVM+RFE are 

75.5% for GT+ compounds and 90.6% for GT- compounds, which are slightly better 

than the values of 69.4% for GT+ compounds and 88.2% for GT- compounds derived 

from SVM without RFE. The GT+ prediction accuracy is noticeably improved, which 

indicates the usefulness of RFE in selecting the proper set of descriptors for the 

prediction of GT+ and GT- compounds. The use of these RFE-selected descriptors 

also slightly improves the prediction accuracy of the other three statistical methods. 

The GT+ accuracies are improved from 70.4% to 74.1% for PNN and from 44.4% to 

55.6% for DT respectively, and that of kNN remains roughly unchanged. The GT- 

accuracy of kNN is improved from 82.2% to 86.5%, and those of PNN and C4.5 DT 

are roughly unchanged. These results showed that descriptor selection by using RFE 

plays the important role in improving the prediction capability for the above methods 

in general. Similar prediction accuracies are also found from two additional 5-fold 

ed by using training-testing sets separately generated 

om d

8.1.3 Results and discussion 

8.1.3.1 Overall prediction accuracies 

cross-validation studies conduct

fr ifferent random number seed parameters. 
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Table 8.1 SVM and SVM+RFE prediction accuracy of the GT+ and GT- compounds 

Genotoxicity Non-genotoxicity  
by using 5-fold cross-validation. 

Method Cross -

validation TP FN SE (%) TN FP SP (%) 

Q (%) MCC 

1 32 17 65.3 109 11 90.8 83.4 0.59 SVM 

2 30 10 75.0 115 14 89.1 85.8 0.62 

3 32 13 71.1 119 21 85.0 81.6 0.53 

62.7 106 11 90.6 82.1 0.56 

5 32 12 72.7 107 18 85.6 82.2 0.56 

9.4   88.2 83.0 0.57 

4 32 19 

average   6

SD   4.6   2.5 1.5 0.03 

SE   1.9   1.0 0.6 0.01 

1 35 14 71.4 111 9 92.5 86.4 0.66 

a

b

2 32 8 80.0 118 11 91.5 88.8 0.69 

3 35 10 77.8 123 17 87.9 85.4 0.62 

4 35 16 68.6 109 8 93.2 85.7 0.65 

5 35 9 79.5 110 15 88.0 85.8 0.65 

average   75.5   90.6 86.4 0.66 

SDa   4.6   2.3 1.2 0.02 

SVM + 

SE

RFE 

b   1.9   0.9 0.5 0.01 

a standard deviation 
b standard error 
 

 Table 8.2 gives the GT+ and GT- prediction accuracies derived from the four 

methods SVM, PNN, kNN and C4.5 DT by using the independent validation set and 

the RFE-selected molecular descriptors. The GT+ accuracies are in the range of 

55.6%-77.8% and the GT- accuracies are in the range of 75.0%-92.7%. Similar level 

of accuracies are obtained for SVM, PNN and kNN, with SVM giving the highest 

alue of 77.8% and 92.7% for GT+ and GT- compounds respectively. C4.5 DT 

appears to give substantially lower accuracies, which is concordant with other 

v
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experimental comparison results (Brown et al. 2000; Huang et al. 2002). A possible 

reason for this lower accuracy is that C4.5 D on o he 

optimum set of descriptors, which m be the m ef approach for every 

problem. It has been pointed out that filter me y 

not be as efficient as wrapper methods, such as RFE, for determining the subset of 

descriptors relevant to a p u rob (Sa t a 00

 

Table 8.2 Co n of he edic accuracies of G nd G compounds 
derived from different machine learning methods by using the independent validation 
set in this work.

Method Para TP FN T FP SE ( ) P (%) Q 

T uses informati gain t find t

ay not ost fective 

thods, such as information gain, ma

artic lar p lem eys e l. 2 4). 

mpariso  t pr tion T+ a T- 

 
meter N % S (%) 

C4.5 DT - 15 12 72 24 55.6 75.0 70.7 

PNN σ=0.2 20 7 77 19 74.1 80.2 78.9 

k-NN k=3 19 8 83 13 70.4 86.5 82.9 

SVM σ=3 21 6 89 7 77.8 92.7 89.4 

 

8.1.3.2 Relev ures to genotoxicity study 

 Apart from the quality of datasets used, selection of descriptors relevant to 

genotoxicity study is important for optimizing the prediction system by reducing the 

tical learning process. A total of 39 molecular descriptors are selected 

by the RFE method, as given in Table 8.3. Most of these are found to be relevant to 

the assessment of genotoxicity potential of molecules. For instance, an important 

characteristics of some GT+ compounds is their ability to intercalate DNA (He et al. 

2003). The selected electrotopological state descriptors S(10) and S(14) describe 

atom-type H estate sum for :CH: sp2 aromatic structures and atom-type H estate sum 

for CH  aromatic structures respectively. 

 

ance of selected feat

noise in a statis

n

 



CHAPTER 8: TOXICITY 178

Table 8.3 Molecular descriptors selected from the RFE method for SVM 

Descriptors Description Class 
classification of GT+ and GT- compounds. 

Nrot Number of rotatable bonds Simple molecular properties 

ndonr Number of H-bond donors Simple molecular properties 

cluster 

3χC Simple molecular connectivity Chi indices for Connectivity and shape 

path/cluster 

ctivity and shape 

lar conn ty indi

/cluste

Conn nd sha

-type stat m f NH Electrotopological stat

-type stat m H Electro gical stat

-type  E e  fo :CH: 

aromatic) 

Electro gical stat

S(13) Atom-type H Estate sum for CHn (unsaturated) Electrotopological state 

ctrotopological state 

6) 

S(26) Atom-type Estate sum for : C:- Electrotopological state 

S(27) Atom-type Estate sum for : C :: Electrotopological state 

Tradi PetitJohn R2 Index Electrotopological state 

Tpeti PetitJohn I2 Index Electrotopological state 

Quantum chemical properties 

μ cp Chemical potential Quantum chemical properties 

4χ Simple molecular connectivity Chi indices for ConnePC

3χv
C Valence molecular connectivity Chi indices for 

cluster 

Connectivity and shape 

4χv
PC Valence molecu ectivi  Chi ces for 

path r 

ectivity a pe 

S(2) Atom  H E e su or =  e 

S(4) Atom  H E e su for -N  2 topolo e 

S(10) Atom  H stat sum r (sp2, topolo e 

S(14) Atom-type H Estate sum for CH n (aromatic) Ele

S(1 Atom-type Estate sum for -CH 3 Electrotopological state 

S(25) Atom-type Estate sum for =C< Electrotopological state 

S(30) Atom-type Estate sum for =NH Electrotopological state 

S(34) Atom-type Estate sum for =N- Electrotopological state 

S(35) Atom-type Estate sum for :N: Electrotopological state 

S(41) Atom-type Estate sum for -O- Electrotopological state 

Μ Molecular dipole moment 
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χ en Electronegativity index Quantum chemical properties 

ω Electrophilicity in dex Quantum ch roperties 

x toms  

toms  

rties 

Q H, Min, gative charge on H atoms Quantum chemical properties 

c rties 

Rnc tive charge Quantum chemical properties 

ty 

Gloty lar globularity Geometrical properties 

l 

Shpb  region Geometrical properties 

 

l 

 

Hiwpa ic moment Geometrical properties 

emical p

Q H, Ma Most positive charge on H a Quantum chemical properties

Q N, Max Most positive charge on N a Quantum chemical properties

Q O, Max Most positive charge on O atoms 

Most ne

Quantum chemical prope

Rp Relative positive charge 

Relative nega

Quantum chemical prope

Rug Molecular rugosity 

Molecu

Geometrical properties 

Shp Hydrophilic region 

Hydrophobic

Geometrical properties 

Capty Capacity factor Geometrical properties 

Hiwp Hydrophilic integy moment Geometrical properties 

Hiwpb Hydrophobic integy moment 

Amphiphil

Geometrical properties 

 

 Many G ally valent 

bond to DNA  substantial po lected 

descriptors are from the class of electrotopological state that describe characteristics 

of specific types of functiona

substantial num e quantum che rmine 

m lar dipo tential, electron ilicity, 

relative positive the atomic charge on H, N and O atoms in a 

molecule. These properties are important for describing features of chemical reactions 

involved in the m  

 The size, shape, and polar property of a molecule have also been found to play 

a e in geneti d by GT+ compounds (H e 

T+ compounds are known to structur modify or form a co

via chemical reactions. A rtion of the RFE se

l groups involved in DNA modification. There are also a 

ber of descriptors from th mical class that dete

olecu le moment, chemical po egativity, electroph

 and negative charge, and 

odification of DNA.

 rol c damages cause e et al. 2003). Eight of th
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selected descri descriptors (Cruciani e 

molecular rugosity, molecular globularity, capacity factor, hydrophilic and 

hydrophobic region, hydrophilic integy moment, hydrophobic moment and 

amphiphilic mo arily describe the size, sha

p  of a m  descriptors, l 

descriptors extr uted 3D molecular f d 

s ically for  pharmacodynamics l. 

2000; Cruciani et al. 2000b). It is thus not surprising that the VolSurf descriptors 

rela e mo e, and polar property are selected. 

 Molecul is another feature kno nt for 

discriminating b GT+ compounds from their stance, 

4 -3-nitro  GT+ compound, while its analog 4-amino-3-

nitro-2,6-dimethylaniline is GT- (Chung et al. 1997). Four molecular connectivity 

3χC, 4χPC, 3χv
C, and 4χv

PC, are selected by RFE in this work. These 

connectivity chi indices for path/cluster, valence molecular connectivity chi indices 

respectively. 

similar level as those derived by the use of a 

gnific

ptors are VolSurf et al. 2000b). These ar

ment. These descriptors prim pe, and polar 

roperty olecule. In general VolSurf which are one-dimensiona

acted from the comp ield maps, were develope

pecif pharmacokinetics and  applications (Crivori et a

ted to th lecular size, shap

ar connectivity wn to be importa

etween some GT- analogs. For in

-amino -2,5-dimethylaniline is a

descriptors, 

descriptors are simple molecular connectivity chi indices for cluster, simple molecular 

for cluster, and valence molecular connectivity Chi indices for path/cluster 

 

8.1.3.3 Performance evaluation 

 To assess the performance of the statistical learning methods for genotoxicity 

prediction of the more diverse set of molecules, it is useful to examine whether the 

accuracy from these methods is at a 

si antly smaller set of molecules. It is noted that, a direct comparison with results 

from previous studies is inappropriate because of the differences in the dataset and 
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molecular descriptors used. Table 8.4 gives the prediction results of the four statistical 

methods from this work along with those derived from previous studies.  

 

Table 8.4 Overview of the prediction accuracies of GT+ and GT- compounds from 
a

Study Method Number of 

compounds 

SE (%) SP (%) Q (%) 
this work as with those from other studies . 

Snyder RD 

b

MCASE 

TOPKAT 

394 

394 

48.1 

43.4 

95.1 

88.1 

89.6 

81.7 

 (Snyder et al. 2004) DEREK 394 51.9 75.1 73.6 

Philip D. Mosier k-NN 140 66.7 

 ( r et al. 2003) 

Linnan He 

 (He et al. 2003)  

Consensus model 

developed with k-NN, 

classifiers 

227 

 

73.8 84.3 81.2 

Brian E. Matt ni 

 (Mattioni et al. 2003) 

k- N 334 69.3 74.1 72.2 

This work C4.5 

PNN 

860 

860 

55.6 

74.1 

75.0 

80.2 

70.7 

78.9 

Mosie

92.9 85.0 

LDA, and PNN 

io N

k-NN 

SVM 

860 

860 

70.4 

77.8 

86.5 

92.7 

82.9 

89.4 

a Prediction accuracies of this work listed here are based on independent evaluation sets, 
which are similar to those based on 5-fold cross-validation. Since different groups used 

acies given in this table only reflect the relative 
y

b Best performance characteristics of the three programs were selected. 

different sets of descriptors, the accur
efficienc  of each method. 

 

 The GT+ accuracies of these four methods are comparable and in some cases 

slightly better than those of earlier studies derived from kNN (Mattioni et al. 2003; 

Mosier et al. 2003) and the consensus model developed with kNN, LDA, and 

PNN (He et al. 2003). The GT- accuracies of these four methods are comparable to 
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those of earlier studies (He et al. 2003; Mattioni et al. 2003; Mosier et al. 2003; 

Snyder et al. 2004). The results from all of these statistical learning methods are 

bstantially better than those obtained by DEREK, TOPKAT, MCASE 

the applicability domain of odels et ). he  

suggest that the better prediction performance of the qSPkR models developed in this 

work is likely due to the use of a more diverse and larger number of compounds and 

the capability of statistical ethods for classification of a mo  

o n tha uctural alert-based approaches. 

  study suggests that statistical learning methods, particularly SVM, 

k NN, are us icity asses pounds. 

The prediction accuracy of these methods is at a similar level as those of earlier 

studies that were tested by using a much smaller number of molecules. Another 

advantage of these me is that they do not require know o r 

m ture activity relationship (SAR) of a particular drug property. 

Moreover, the classification speed of these methods is generally fast. For instance, the 

number of compounds which can be classified per second by using SVM, kNN, PNN 

and C4.5 DT method is approximately 4000, 3000, 2000 and 62000 respectively on a 

 

training set. Thus the classification speed of SVM is usually 25-55% faster than that 

of kNN and PNN. On the other hand, the classification speed of SVM is slower than 

that of C4.5 DT which uses a set of rules to reach a decision leaf. 

su

programs (Snyder et al. 2004). Diversity of the training sets has been shown to affect 

 QSPkR m (Dimitrov al. 2005  Thus t  results

learning m re diverse range

f molecules tha t of str

Overall, our

NN and P eful for genotox sment of a broad range of com

thods ledge about the m lecula

echanism or struc

P4 3.6Ghz machine. SVM typically uses a portion of the training set as support 

vectors for classification. In contrast, kNN and PNN use the whole training set for 

classification. The number of support vectors of SVM is in the range of 45-75% of the

 



CHAPTER 8: TOXICITY 183

 There are six GT+ and seven GT- compounds in the independent validation 

set that were misclassified by SVM, which are shown in Figure 8.1 and Figure 8.2 

respectively.  

 

Figure 8.1 Six structures of misclassified GT+ compounds in the independent 

number of these compounds are shown in the figure. 
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Figure 8.2 Seven structures of misclassified GT- compounds in the independent 

number of these compounds are shown in the figure. 
validation set. Chemical name and relevant Chemical Abstracts Service (CAS) 
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 The six misclassified GT+ compounds are mebendazole, clomiphene, 

lansoprazole, clarithromycin, imipramine and ampicillin. From the study of Snyder et. 

al (Snyder et al. 2004), ampicillin, imipramine and lansoprazole were also 

misclassified by MCASE, DEREK and TOPKAT. Clomiphene was misclassified by 

MCASE and TOPKAT, but correctly classified by DEREK which alerts the 

halogen r et al. 2004). Mebendazole was misclassified by 

DEREK but predicted as equivocal genotoxicity by TOPKAT and by MCASE as 

GT+ with 57% probability (Snyder et al. 2004). To the best of our knowledge, there 

is no computational study on clarithromycin, which has been found to be GT+ in the 

in vitro cytogenetics tests (Snyder et al. 2001) but GT- in other assays such as 

bacterial mutation (Ames), mouse lymphoma assay (MLA), and in vivo cytogenetics. 

 ased expert system ation 

model (Greene 2002). MCASE performs a quantitative prediction by generating each 

test molecule into 2-10 atoms fragments by consideration of their physicochemical 

properties (Greene 2002). TOPKAT uses electrotopological states as well as shape, 

symmetry, molecular weight and logP as descriptors in a QSAR model for 

prediction (Greene 2002). Although each of these methods is able to correctly predict 

one of th  misclassified by our method, there are also GT+ 

com (Snyder et al. 2004), correctly 

predicted by our method but misclassified by each of these methods. While all of the 

methods misclassified some of the GT+ compounds due to the general inadequacy for 

fully representing all of the properties of these molecules, each method appears to be 

more useful to specific types of compounds than other methods. For instance, 

clomiphene is correctly predicted by DEREK because of the use of knowledge-based 

alert for halogenated alkene stru assified by our method because 

ated alkene structure (Snyde

DEREK is a knowledge-b  of qualitative estim

e six GT+ compounds

pounds, such as naloxone and pentobarbital 

cture, while it is miscl
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of the lack of a descriptor to properly represent halogen atoms. Thus the use of 

multiple methods may be useful to cover a more diverse set of compounds. 

 The seven misclassified GT- compounds are dansyltryptamine, ketotifen, 2-

chloro-4-(4-methoxyphenyl)-3-phenylquinoline, ceftibuten, 5-chloro-1,3-dihydro-

1,3,3 trimethylspiro, candesartan, and indinavir. Both candesartan and indinavir were 

correctly classified by MCASE, DEREK and TOPKAT (Snyder et al. 2004). 

Ketotifen was correctly classified by MCASE and DEREK, but misclassified by 

TOPKAT (Snyder et al. 2004). Ceftibuten was correctly classified by MCASE and 

TOPKAT, but misclassified by DEREK (Snyder et al. 2004). The first two 

compounds contain aromatic amines, the third contains an α,β-unsaturated ketone 

group, the fourth is composed of an α,β-unsaturated amide group, These chemical 

groups can be easily distinguished from the structural alerts of genotoxicity (Ashby 

1985) used in MCASE, DEREK and TOPKAT, but they are not properly described by 

the commonly used molecular descriptors. This is perhaps the reason why our method 

failed to correctly classify these four compounds. Dansyltryptamine, 2-chloro-4-(4-

methoxyphenyl)-3-phenylquinoline and 5-chloro-1,3-dihydro-1,3,3 trimethylspiro 

were correctly predicted by using LDA, kNN, PNN and their consensus model in an 

earlier study (He et al. 2003). These are polycyclic aromatic compounds that contain 

either chlorine atom or aromatic amine and a N-dimethyl group. One possible reason 

for the correct prediction of these compounds in that study (He et al. 2003) is that it 

focused on polycyclic aromatic compounds only and thus was easier to select all of 

the relevant features without the concern of introducing noise for other types of 

chemical groups. In contrast, our study includes a diverse set of compounds, and our 

feature selection method can only pick up those descriptors that are both relevant to 

the polycyclic aromatic compounds and without significant noise to other types of 
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compounds. It is also noted that there are polycyclic aromatic compounds, such as 9-

aminophenanthrene and ethyl 5-hydroxy-2-methylindole-3-carb-oxylate that were 

correctly predicted by our method and misclassified in the earlier study (He et al. 

2003). This seems to suggest that the currently available descriptors may not be fully 

representative of the polycyclic aromatic compounds. 

 In general, the main reason for the SVM misclassification of these GT+ and 

GT- compounds is that none of the current descriptors adequately represents the 

compounds containing multi-rings with various heteroatoms such as nitrogen, oxygen, 

sulphur, fluorine and chlorine. Current topological descriptors are capable of 

representing molecular shape, connectivity, and some level of molecular 

flexibility (Basak et al. 1999; Luco 1999; Wegner et al. 2004). However, because of 

the limited coverage of the number of bond links in a heteroatom loop, these 

descriptors are not yet capable of describing the special features of a complex multi-

ring structure that contains multiple heteroatoms. Another reason for the 

misclassification of some of these compounds is that none of the current descriptors 

can be used to fully represent molecules containing a long flexible chain. Therefore, 

there is a need to explore different combination of descriptors and to select more 

optimum set of descriptors by using more refined feature selection algorithms and 

parameters. However, indiscriminate use of many existing topological descriptors, 

which are overlapping and redundant to each others, may introduce noise as well as 

extending the coverage of some aspects of these special features. Thus, it may be 

necessary to introduce more appropriate descriptors for representing these and other 

special features. 
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8.1.4 Conclusion 

 This study shows that statistical learning methods, particularly SVM, kNN, 

and PNN, are useful for facilitating the prediction of GT+ potential of a diverse set of 

molecules without requiring the intrinsic mechanism knowledge of chemical 

compounds. The prediction accuracy of these methods may be further improved by 

troduin cing molecular descriptors that can better represent complex ring structures 

and flexible long chains and by selection of descriptors most relevant to genotoxicity 

prediction by means of more refined feature selection methods and parameters. 

Current efforts are directed at the improvement of the efficiency and speed of feature 

selection methods (Furlanello et al. 2003), which can further help to optimally select 

molecular descriptors and enable the development of more accurate and efficient 

computational tools for genotoxicity prediction. Moreover, recent works on the 

introduction of weighting function into SVM descriptors (Chapelle et al. 2002) may 

also be helpful in developing SVM into a practical tool for the prediction of 

toxicological properties of compounds. 
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8.2 Torsade de Pointes 

l. 2000; Devillers 2000). 

So far, attention has not been sufficiently paid to the development of methods 

for prediction of serious ADRs that occur less frequently. While these ADRs are 

tolerated to a certain extent for the approval of drugs used in serious diseases urgently 

needing effective or more treatment options such as AIDS and cancer (Somers et al. 

1990), they are nonetheless important safety issues for the approval of drugs intended 

for minor illnesses with availability of alternative treatment options. Examples of 

these illnesses are rhinitis, cough, pain, inflammation and hypertension. Therefore, 

there is a need to develop computational methods for facilitating the prediction of the 

ADRs of these drugs. 

8.2.1 Introduction 

 In an effort to improve the efficiency of drug discovery, computational tools 

for ADR prediction have been developed, aimed at facilitating the elimination of 

ADR causing compounds in early stages of drug development (Kennedy 1997; van de 

Waterbeemd et al. 2003). Mechanism-based knowledge systems (Sanderson et al. 

1991; Smithing et al. 1992) and statistical models describing the correlation between 

specific ADR and structure-derived physicochemical features (Klopman 1992; Prival 

2001) have been developed. Moreover, ligand-protein docking methods have also 

been explored for the prediction of ADR by screening ADR-inducing drug-protein 

interactions (Chen et al. 2001; Rockey et al. 2002). These methods have shown 

promising potential in the prediction of such ADRs as carcinogenicity, mutagenicity, 

teratogenicity, irritation, sensitization, immunotoxicity and neurotoxicity (Cronin et al. 

1994; Kulkarni et al. 1999; Benigni et a
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 One such ADR is torsade de pointes (TdP), which is an atypical rapid 

ventricular tachycardia with periodic waxing and waning of amplitude of the QRS 

plexes about the 

larly human ether-a-

 HERG K+ channel (Muzikant et al. 2002). Thus, it is desirable 

complexes on the electrocardiogram as well as rotation of the com

isoelectric line (Saunders 2000). TdP may be self-limited or may progress to 

ventricular fibrillation (Saunders 2000). This ADR is uncommon (Darpo 2001) and 

thus difficult to detect during clinical trials. There are cases of TdP-causing drugs 

which were initially approved and later withdrawn after post-marketing surveillance 

revealed their TdP-causing potential (De Ponti et al. 2002; Layton et al. 2003). 

 Not all mechanisms of TdP are completely understood (Moss 1999). TdP is 

frequently associated with QT prolongation, which is the lengthening of the time 

between the start of ventricular depolarization and the end of ventricular 

repolarization. This arises from the disruption of the balance between inward and 

outward currents during the cardiac action potential repolarization phase (Malik et al. 

2001). Drugs that induce QT prolongation usually cause disruption of the outward 

potassium currents by blocking potassium ion channels, particu

gogo related gene (HERG) K+ channel (Vandenberg et al. 2001). This correlation 

between QT prolongation and blockade of relevant channels had been exploited in the 

development of computational methods for the prediction of the QT prolongation risk 

of drugs using artificial neural network (Roche et al. 2002) and pharmacophore 

models (Cavalli et al. 2002).  

 There is no definitive correlation between QT prolongation and TdP (Malik et 

al. 2001; Muzikant et al. 2002). For instance, verapamil causes QT prolongation but 

does not induce TdP, whereas procainamide and disopyramide cause TdP but are not 

potent inhibitors of the
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to develop a method capable of prediction of TdP of multiple mechanisms without 

complete knowledge of these mechanisms. 

 A useful method for classification of systems with multiple mechanisms 

without requiring their knowledge is SVM. This work explores the use of SVM as a 

potential tool for TdP prediction. 

 

8.2.2 Methods 

.2.2.1

nds, also identified from human studies, were collected 

om M

satisfying either criterion Ia or IIIa. Criterion Ia is the existence of clinical studies 

8  Selection of TdP- and non-TdP-causing compounds 

 TdP-causing (TdP+) compounds were collected from 

ArizonaCERT (ArizonaCERT). These compounds were identified from human 

studies and can be divided into 4 classes: Class 1 contains compounds with risk of 

TdP, class 2 includes compounds with possible risk of TdP, class 3 is composed of 

compounds to be avoided by congenital long QT patients and class 4 contains 

compounds which have been weakly associated with TdP. Only compounds from 

class 1, 2 and 3 were used for training the SVM system. Compounds in class 4 were 

not considered because it is unclear which of the compounds definitely induces TdP. 

Thus 67 TdP+ compounds were selected and used as the training set.  

 To objectively assess the prediction accuracy of our SVM system, an 

additional set of TdP+ compou

fr icromedex (MICROMEDEX 2003b), Drug Information Handbook (Lacy et al. 

2002), Meyler's side effects of drugs (Dukes 1996) and a list of compounds compiled 

by De Ponti et al (De Ponti et al. 2001), The selection criteria for the compounds are: 

(1) compounds with known TdP side effects and (2) compounds from De Ponti’s list 
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and/or case reports associating the compound with the occurrence of TdP/ventricular 

tachyarrhythmias. Criterion IIIa is the presence of official warnings in the labeling on 

2, 3 or 4 of the ArizonaCERT list. This gives an 

dependent validation set of 39 TdP+ compounds. 

 Like in the case of other classification systems, training of a SVM system 

requires information about non-TdP-causing (TdP-) compounds. In this work, 243 

edex, Drug Information 

8.2.2.2 Chemical descriptors 

 In this work, linear solvation energy relationships (LSER) descriptors (Kamlet 

et al. 1981; Kamlet et al. 1987; Abraham 1993) were used for the modeling of TdP-

causing potential of compounds. LSER descriptors describe solvent-solute 

interactions and contain three main terms: a cavity term, a polar term, and hydrogen-

bond term. The cavity term is a measure of the endoergic cavity-forming process, 

which is the free energy necessary to separate the solvent molecules, overcoming 

solvent-solvent cohesive interactions, and provides a suitably size cavity for the solute. 

The polar term measures the exoergic balance of solute-solvent and solute-solute 

QT prolongation or occurrence of TdP. The exclusion criteria are: (1) compounds 

known to be involved in QT prolongation without information about their effect on 

TdP, (2) compounds in class 1, 

in

TdP- compounds were obtained from the search of Microm

Handbook and American Hospital Formulary Service (AHFS)  (Bethesda 2001) for 

compounds with no reported case of TdP in humans. 39 of these compounds were 

randomly selected and used as part of the independent validation set to assess the 

prediction accuracy of the SVM system on TdP- compounds, while the rest were used 

in the training set. 
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dipolarity/polarizability interactions and the hydrogen-bond term measures the 

exoergic effects of the complexation between solutes and solvents.  

 LSER was initially developed for the estimation of the effects of different 

solvents on properties of specific solutes or the solubilities, lipophilicities, or other 

properties of a set of different solutes in a specific solvent. It has since been extended 

for analysis of biological properties including toxicological properties of 

mpou

cribed as a solvent system and LSER methods provide useful 

sights into important binding features (Cramer et al. 1992). Thus, the polar term 

may represent the binding action via dispersion forces of a chemical in the polar 

regions of a receptor molecule and the hydrogen bond term represents the hydrogen-

bonding effect between the chemical and the receptor molecule (Lowrey et al. 1997; 

Liu et al. 2003). Since toxicity of a compound involves the transport of the compound 

to a site and its interaction with a molecular target, LSER descriptors are thus likely to 

be useful for TdP modeling.  

 The LSER descriptors used in this study was calculated using our own 

developed software based on the method developed by Platts (Platts et al. 1999). The 

accuracy of these calculated descriptors for some of the compounds has been verified 

using the demo version of the software Absolv (Sirius 2000). These descriptors are 

co nds (Wilson et al. 1991; He et al. 1995; Sixt et al. 1995; Dai et al. 2001; Yu et 

al. 2002; Liu et al. 2003), cell permeation (Platts et al. 2000), intestinal 

absorption (Zhao et al. 2001) and blood-brain barrier penetration (Platts et al. 2001). 

LSER descriptors encode the size, polarity and hydrogen bonding capability of a 

chemical which have been found to be important for the passive transport of a 

chemical through biological membranes (Gratton et al. 1997; Kramer et al. 2001). In 

addition, it has been shown that complex systems, such as receptor sites, can be 

approximately des

in
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excess molar refraction, combined dipolarity/polarizability, overall solute hydrogen 

bond acidity, overall solute hydrogen bond basicity and McGowan’s characteristic 

lume

8.2.2.3 Validation of SVM classification system 

 In this work, the SVM classification system was optimized and validated using 

leave-one-out (LOO) cross-validation. Y-randomization was also used to validate the 

trained SVM classification system. The randomization is repeated 10 times and LOO 

accuracies of the new classification system from each run are compared to that of the 

original classification system. If the scrambled training set gives significantly lower 

LOO accuracies than the original training set, the original classification system is 

unlikely to arise as a result of chance correlation. 

 The final SVM classification system was then tested by using the independent 

validation set to objectively assess its predictive capability. Prediction accuracy of the 

final SVM classification system using this independent validation was compared with 

those derived from three other classification methods useful for the prediction of 

multiple mechanisms. These methods are PNN, kNN and C4.5 DT. The three 

classification systems were trained using the same training set, descriptors and 

procedure as those used in SVM. They were tested using the same independent 

validation set. 

 

vo . 

 

8.2.3 Results 

 A principal component analysis (PCA)  (Wold et al. 1987) on all of the five 

LSER descriptors was performed using the training set. PCA resulted in two principal 

 



CHAPTER 8: TOXICITY 195

components (PCs) which explained 84.6% of the total variance in the five LSER 

descriptors. Component one and two explained 70.2% and 14.4% of the variance 

respectively. Figure 8.3 shows a score plot of the compounds in the training set using 

e first two PCs. Score plots are useful for comparing the distribution of compounds 

in the chemical space between two datasets and to identify clusters of compounds and 

single compounds that may be outliers (Wold et al. 1987; Doddareddy et al. 2006). 

 

Figure 8.3 Score plot of first two principal components for training set. 

 

th
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 Octreotide, a TdP+ compound, and desmopressin, a TdP- compound, was 

found to be far out to the right of the score space. Both of these compounds are large 

in size, with molecular weight of approximately 1019 and 1069 respectively. There is 

also a cluster of TdP- compounds at the top of the score plot. This cluster mainly 

contains the aminoglycoside antibiotics like amikacin and gentamicin together with 

two other compounds, acarbose and zanamivir. Other than the aminoglycosides’ 

cluster, the score plot showed that TdP+ and TdP- compounds cannot be easily 

 LOO cross-validation was used to derive the optimum sigma parameter for the 

Gaussian kernel used by SVM and the optimum SVM classification system was found 

to have a LOO TdP+ accuracy of 71.6% and LOO TdP- accuracy of 86.3%. Both of 

these accuracies are significantly greater than 50%, indicating that the trained SVM 

classification system is significantly better than a random classifier. 

 To determine whether it results from chance correlation, the SVM 

classification system was further tested by repeating y randomization for 10 times. 

The average LOO TdP+ accuracy from these ten scrambled classification systems is 

21.2% and the average LOO TdP- accuracy is 77.3%. Both of these accuracies are 

worse than that of the original SVM classification system, indicating that the SVM 

classification system is produced as a result of actual correlation between LSER 

descriptors and TdP-causing potential of the chemicals and not due to chance.  

 There has been no reported computational study of the TdP-causing potential 

of a compound. Thus to objectively assess the usefulness of SVM for TdP prediction, 

its prediction accuracy is compared with those obtained from three other classification 

methods, C4.5 DT, kNN and PNN, using the same independent validation set. The 

optimum parameters, k for kNN and σ for PNN, were found by using LOO cross-

separated using their PCs. 
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validation. The optimum parameters for SVM, PNN and kNN and the accuracy results 

are given in Table 8.5. SVM has the highest overall accuracy among the four 

classification methods. Its TdP+ accuracy of 97.4% is substantially higher than the 

other three classification methods which have TdP+ accuracies of 38.5-89.7%. Its 

TdP- accuracy of 84.6% is comparable to the other three methods which have TdP- 

accuracies of 84.6-92.3%. These results suggest that SVM is potentially useful for 

facilitating the prediction of TdP causing risk of investigative compounds and likely 

other ADRs with multiple mechanisms. In addition, the SVM classification system is 

ot mo

TdP+ TdP- 

n re flexible than is necessary and thus unlikely to overfit. 

 

Table 8.5 Results of various classification methods on independent validation set. 
Method Optimum Q (%) 

parameter TP FN SE (%) TN FP SP (%) 

C4.5 DT - 15 24 38.5 36 3 92.3 65.4 

kN 3 35 4 89.7 34 5 87.2 88.5 

PNN 0.1 28 11 71.8 33 6 84.6 78.2 

SVM 0.3 38 1 97.4 33 6 84.6 91.0 

N 

 

 In the training set, there are several aminoglycoside antibiotics grouped 

together in a cluster which does not overlap significantly with the main cluster of 

compounds. To examine whether this cluster of aminoglycoside antibiotics contribute 

in some way to the high TdP+ accuracy, a new SVM classification system was 

trained with all of the aminoglycoside antibiotics removed from the training set. The 

new SVM classification system gives the same TdP+ and TdP- accuracies as the 

original system. This suggests that the aminoglycoside antibiotics are not responsible 

for the high TdP+ accuracy of the SVM classification system. 
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 There are seven compounds incorrectly classified by our SVM system, which 

are shown in Figure 8.4. These include one TdP+ compound (prenylamine) and six 

TdP- compounds (medroxyprogesterone, medrysone, metirosine, penicillamine, 

pyridoxine, rimexolone). Their location on the score plot of the training set is shown 

in Figure 8.3 above. Prenylamine is incorrectly classified by SVM, PNN and C4.5 DT. 

Metirosine and pyridoxine are incorrectly classified by SVM, kNN and PNN while 

penicillamine is incorrectly classified by both SVM and PNN. Medroxyprogesterone, 

medrysone and rimexolone have a common steroidal structure and are consistently 

misclassified by all the four classification methods. This may indicate that the LSER 

escriptors are unable to fully describe the properties of steroidal compounds thus 

 

d

resulting in their misclassifications by all the four classification methods. 
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Figure 8.4 Incorrectly classified compounds in the independent validation set. 
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 To determine whether the LSER descriptors are sufficient for TdP prediction, 

we analyzed 490 commonly used descriptors for their relevance in TdP classification 

and used those essential descriptors to construct a separate SVM classification system. 

Results using that system are compared with the results using LSER descriptors. 

These descriptors can be broadly classified into four classes. The first class includes 
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descriptors for global properties of a molecule such as molecular weight, count of 

atoms, rings and rotatable bonds. The second class contains topological descriptors 

such as molecular connectivity indices (Kier et al. 1986), electrotopological 

indices (Kier et al. 1999), shape indices (Kier 1985) and flexibility indices (Kier 

1990). The third class is composed of geometric descriptors including molecular 

volume, surface area and polar surface area. The fourth class contains chemical 

descriptors such as dipole moment, polarizability and some of the VolSurf 

descriptors (Cruciani et al. 2000a). A preliminary screening was done to reduce the 

pool of descriptors by elim ptors that contained little information. 

Descriptors that have the same value for more than 50% o ounds were also 

removed. Backward elimination was then used to produce an optimum subset of 

descriptors. During backward elimination, LOO cross-validation was used to assess 

the performance of each subset of descriptors. In the end, the best subset of 

descriptors consists of 108 descriptors that are not highly correlated with one another. 

These 108 descriptors were used to train the SVM classification system and the 

resultant system has TdP+ and TdP- accuracies of 92.3% and 84.6% on the 

independent validation set. These results are comparable to that of the current study. 

This suggests that LSER descriptors are equally useful for prediction of TdP as those 

using a more diverse set of descriptors. 

.2.4 

were developed primarily in the machine learning literature and use different 

inating those descri

f the comp

 

8 Discussion 

 In this study, SVM classification system is compared with three other 

classification methods and the results suggest that SVM classification system has the 

best predictive ability among the four methods. All of these classification methods 
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algorithms than standard statistical methods. Thus to fully evaluate the performance 

of SVM classification system, a standard statistical method, logistic regression, was 

applied to the classification of the same TdP+ and TdP- datasets. The TdP+ 

prediction accuracy using the independent validation set using logistic regression is 

only 20.5%. In addition, y randomization validation tests showed that the LOO TdP- 

accuracy of the logistic regression model is less than the mean LOO TdP- accuracies 

of the scrambled models. Thus the logistic regression model, as a method for systems 

with unique mechanism, is not suitable for TdP classification which is intrinsically a 

multi-mechanism problem.  

 The possible reason for the usefulness of LSER descriptors for TdP prediction 

is that they roughly encode most of the essential characteristics related to the TdP 

causing capability of a compound. Excess molar refraction represents the tendency of 

a compound to interact with a receptor through n- and π-electron pairs and thus is a 

measure of the hydrophobic interaction between the compound and receptor. The 

combined dipolarity/polarizability, on the other hand, represents the ability of 

electrons to move and be delocalized in the chemical and is a measure of the polar 

interaction between the compound and receptor.  

 The overall solute hydrogen bond acidity, overall solute hydrogen bond 

basicity represents the ability of the compound to form hydrogen bonds with the 

ceptor. This, together with the hydrophobic and polar interactions encoded by the 

n and combined dipolarity/polarizability, determines the 

binding affinity of the chemical for the receptor.  

 The McGowan’s characteristic volume influences the passage of a chemical 

through biological membranes. A compound with a large volume may have difficulty 

passing through biological membranes and thus may not exhibit toxicity as it is 

re

excess molar refractio
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unable to reach its toxicity receptor. In addition, the binding site of a receptor is 

usually a cavity that can accommodate compounds of a specific range of sizes and 

shapes.  

 Currently, with the exception of C4.5 DT which is able to generate decision 

rules, the other three classification methods are unable to determine the relative 

importance of individual LSER descriptor. This limits the scope of the application of 

SVM classification systems in drug design to tasks such as high-throughput screening. 

With further improvement of SVM algorithm such as the introduction of weighting 

function to the descriptors (Chapelle et al. 2002), specific rules of the descriptors may 

 of TdP in patients. Thus a positive 

afer alternatives, like fexofenadine 

be derived which in turn extend the application range of SVM classification systems. 

 As with all other in silico predictions of toxicological properties of chemical 

compounds, prediction of TdP-causing potential by SVM should be assessed together 

with pharmacokinetic and pharmacodynamic properties of the chemical compounds in 

order to determine their clinical significance. This is because a potential TdP-causing 

drug is not the sole factor in precipitating TdP in a patient. Variability in drug 

concentrations, drug/drug interactions and individual patient’s susceptibility are some 

of the numerous factors that affect the occurrence

TdP-causing risk of a drug-like molecule may not preclude its use in the clinical 

setting (Malik et al. 2001). For example, both halofantrine and terfenadine can 

potentially cause TdP. However, halofantrine is still in use whereas terfenadine has 

been withdrawn from the US market as halofantrine is useful for resistant malaria 

treatment but for terfenadine, there are other s

available (Malik et al. 2001). Despite the limitations of in silico prediction of TdP, it 

may be used as part of the overall risk-benefit analysis of investigative drugs to 

evaluate their usefulness in the clinical setting. 

 



CHAPTER 8: TOXICITY 203

8.2.5 Conclusion 

 As a statistical learning method for the prediction of systems with multiple 

mechanisms, SVM is potentially useful for facilitating the prediction of TdP causing 

risk of investigative drugs. The availability of more extensive information about 

various ADR-causing compounds and associated mechanisms and more 

comprehensive descriptors for toxicity prediction will enable the development of 

SVM and other computational methods into useful tools for facilitating the prediction 

of different types ADRs in early stage of drug development. 
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Chapter 9 

 (section 9.4) are also 

discussed. 

 

9.1 Major Findings 

 In chapters 4, 6 and 8, support vector machine (SVM) was shown to be a 

useful computational method for facilitating the prediction of ADMET properties like 

human intestinal absorption (HIA), p-glycoprotein (P-gp) substrates, cytochrome 

(CYP) P450 isoenzymes inhibitors and substrates, genotoxicity and torsade de pointes 

(TdP), without requiring the intrinsic mechanism knowledge of chemical compounds. 

Thus it is likely that SVM will be an efficient computational tool for the prediction of 

ADMET properties of chemical compounds. 

 In chapters 4 and 8, recursive feature elimination (RFE) was found to be 

capable of automatic selection of molecular descriptors and reduction of the noise 

generated by the use of overlapping and redundant molecular descriptors. This 

reduction appears to be helpful in enhancement of the performance of SVM for the 

prediction of ADMET properties of chemical compounds. 

Conclusions 

 

 This last chapter summarizes the major findings (section 9.1) and 

contributions (section 9.2) of this work to the progress of using machine learning 

approaches for pharmacokinetics and toxicity predictions. Limitations of the present 

work (section 9.3) and possible areas for future studies
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 In chapter 6, our study suggests that consensus classification systems give 

better predictive performance than single classification systems. This result is 

rlier studies. All of the ‘positive probability’ consensus SVM 

lassification systems (PP-CSVMs) for predicting inhibitors/substrates of the three 

inhibitors and substrates of various P450 isoenzymes. Thus CSVMs, 

articularly PP-CSVM, are potentially useful for developing filters for prediction of 

inhibitors and substrates of P450 isoenzymes and other ADMET properties. 

results suggest that general regression neural network 

apability than the corresponding MLR- 

ared with those developed 

by using a linear method, partial least squares (PLS). All of the GRNN- and SVR-

consistent with ea

c

P450 isoenzymes, CYP3A4, CYP2D6 and CYP2C9, show high prediction accuracies, 

with improved specificities compared to those of earlier studies. Our computational 

results suggest PP-CSVM is better than ‘positive majority’ consensus SVM 

classification system (PM-CSVM) for constructing consensus SVMs (CSVMs) for 

classifying 

p

 In chapter 5, our 

(GRNN) is a potentially useful method for developing QSPkR models from a diverse 

set of drug data. QSPkR models developed by using GRNN for three drug distribution 

properties, blood-brain barrier (BBB) penetration, human serum albumin (HSA) 

binding, and milk-plasma (M/P) distribution, were tested and compared with those 

developed by using a linear method, multiple linear regression (MLR), and a non-

linear method, multilayer feedforward neural network (MLFN). All the GRNN-

developed models showed better prediction c

or MLFN-developed models.  

 In chapter 7, our study suggests that both GRNN and support vector regression 

(SVR) are potentially useful for developing QSPkR models to predict drug clearance 

from a large diverse set of compound data. QSPkR models developed by using GRNN, 

SVR and k nearest neighbour (kNN) were tested and comp
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developed models show better prediction capability than the corresponding kNN- or 

PLS-developed models. The predictive capabilities of the QSPkR models developed 

in this study are comparable to those of previous studies and are further improved by 

using consensus modeling methods.  

 In chapter 7, we also found that a collection of constitutional, geometrical, 

topological and electrotopological descriptors seems to be more useful for modeling 

drug clearance than specialized descriptor sets such as 3DMoRSE, ATS, GETAWAY, 

RDF and WHIM. A possible reason is that an individual descriptor set tends to 

partially neglect some important features and thus the use of different types of 

descriptors may help to alleviate such type of feature bias. The three statistical 

learning methods, GRNN, SVR and kNN, appears to be capable of combining the 

forma

gle model. The ADMET property of a compound is 

in tion encoded in the different descriptor sets effectively to develop more 

predictive QSPkR models. 

 Non-linear methods, such as SVM, GRNN, and SVR, are useful for 

developing QSPkR/qSPkR models involving multiple mechanisms because they 

belong to the class of distance-based methods. In a diverse dataset, compounds having 

the same mechanism of actions will be close to one another in the chemical space and 

compounds having different mechanism of actions will be far apart. In distance-based 

methods, multiple localized models were developed for each mechanism and these 

were then combined into a sin

predicted by measuring the distance between the compound and the various localized 

models and then using the localized model which is closest to the compound.  
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9.2 Contributions 

 This work has improved the quality of previous QSPkR/qSPkR models for 

ADMET prediction. All the QSPkR/qSPkR models developed in this work have 

higher prediction capability than the corresponding models developed by other 

 better generalization ability than the previous models and 

. 

esults from this work suggest that the use of multi-sigma GRNN models and PCA 

an partially solve this problem. The individual σ values for each descriptor provide a 

useful hint about its contribution to the ADMET properties. PCA, when coupled with 

workers. The use of known, relative new machine learning methods, such as SVM, 

SVR and GRNN, and consensus modeling was found to be useful for improving 

prediction capability of QSPkR/qSPkR models for HIA, P-gp substrates, BBB 

penetration, HSA binding, M/P, CYP isoenzymes substrates and inhibitors, total body 

clearance, and genotoxicity. A qSPkR model was also constructed for TdP, a rare but 

serious adverse drug reaction, which have not received sufficient attention. These 

models were also developed by using a larger number and more diverse groups of 

compounds, as well as compounds with known human ADMET data. Thus the 

models are expected to have

are directly applicable for the prediction of human ADMET property without the need 

for allometric scaling to convert predicted animal ADMET property to human 

ADMET property like in the previous models. Hence, the QSPkR/qSPkR models 

developed in this work are potentially useful to be incorporated as part of the strategy 

for reducing the cost and improving the speed of drug development. 

 This work introduces a novel principal component analysis (PCA) based 

method to improve the interpretability of QSPkR models. Most of the non-linear 

methods including neural networks are incapable of providing explicit relationships 

between the predicted properties and the molecular features of the compounds

R

c
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specially designed artificial testing sets, may provide a rough guide for the influence 

 mol

ods to measure 

of ecular characteristics on ADMET properties. Hence the development of the 

novel PCA-based functional dependence study approach in this work has helped to 

improve the interpretability of non-linear models, which were previously difficult to 

interpret.  

  A new machine learning library, YMLL, and a new Microsoft Windows 

software, PHAKISO, were designed and developed in this work to enable 

QSPkR/qSPkR models to be developed and validated easily. The library and software 

were better than existing software, Torch and Weka, for developing QSPkR/qSPkR 

models because Torch and Weka were developed for general machine learning 

problems whereas YMLL and PHAKISO were developed specifically for 

QSPkR/qSPkR problems. Thus YMLL and PHAKISO contain algorithms which were 

more relevant for QSPkR/qSPkR problems. In addition, PHAKISO presents a user-

friendly graphical user interface to enable QSPkR/qSPkR models to be built with a 

few mouse clicks. Torch, on the other hand, does not have a graphical user interface 

and thus is difficult to be used by scientists who are not familiar with programming. 

Both Torch and Weka also have a limited number of descriptor selection methods, 

especially wrapper methods, and have a limited number of meth

prediction capabilities of QSPkR/qSPkR models. Hence the development of YMLL 

and PHAKISO in this work and the availability of both software for non-commercial 

uses are expected to aid scientists in creating QSPkR/qSPkR models rapidly and thus 

speed up the drug development process.  
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9.3 Limitations 

 The performance of machine learning methods critically depends on the 

diversity of compounds in a training dataset and the appropriate representation of 

these compounds. The datasets used in this work are not expected to be fully 

representative of all of the compounds possessing and not possessing a specific 

ies related specifically to conformational 

 present. In addition, molecular dipole moment is ill-defined since the 

associated “active conformation” for the dipole is unknown. The insufficient use of 3-

D descriptors may affect the prediction capability and interpretation of the 

ADMET property. This is particularly true for compounds not possessing a specific 

property given the vast chemical space of millions of known compounds in the 

currently available chemical database. Various degrees of inadequate compound 

representation in these studies likely affect, to a certain extent, the prediction accuracy 

of the developed QSPkR/qSPkR models. 

 In chapter 6, a potential problem is that the selection criteria for non-inhibitors 

and non-substrates of CYP isoenzymes may result in a small number of false 

negatives. However, the use of SVM was found to help in achieving a balance 

between training errors and prediction accuracies. The CSVMs are presently only 

suitable for distinguishing between inhibitors and non-inhibitors or substrates and 

non-substrates. The availability of more detailed experimental data will enable the use 

of multi-class SVM (Angulo et al. 2003) for the classification of non-inhibitors, weak 

inhibitors and strong inhibitors, or SVM regression (Smola et al.) for quantitative 

prediction of the Ki values of inhibitors. 

 Most of the descriptors used in this study are 1-D and 2-D in information 

content about the molecule. Some of the descriptors have some 3-D content such as 

molecular dipole moment, but propert

entropy, are not

 



CHAPTER 9: CONCLUSIONS 210

QSPkR/qSPkR models. For example, in BBB penetration, transport across a series of 

lass level where redundant and overlapping 

tures that often seem to present in molecules 

tightly packed biological membranes is involved. There are no meaningful 1-D and 2-

D descriptors that can distinguish between a long, thin and flexible conformation of a 

molecule from a spherical, balled-up and rigid confirmation of a molecule and this 

difference in conformational preference is a controlling factor for BBB penetration. 

 Some of the descriptors used in this study may be highly correlated and thus 

are very likely redundant in information content. Descriptors which are essentially the 

same do not necessarily equate to a large information content regarding distinct 

molecular properties. Hence the interpretation of the descriptors should be more 

appropriately conducted at the descriptor c

descriptors are grouped into one class. PCA can also be used to group descriptors 

sharing the same information content into one principal component (PC) and 

performing functional dependence study on the individual PCs rather than on the 

individual descriptors. 

 Currently, three-levels of characterizing a mechanism of action from a 

QSPkR/qSPkR model are usually reported in the literature. The first level is stating 

the specific groups and their interactions of a molecule responsible for activity. The 

second level is providing a pharmacophore needed for expressing the activity, and the 

last level is stating general molecular fea

exhibiting a given type of activity. All the QSPkR/qSPkR models that were developed 

in this study fall into the third, least specific category. 

 Examinations of incorrectly classified compounds in this work have 

consistently suggested that the current molecular descriptors are not sufficient to 

adequately represent some of the compounds that contain complex structural or 

chemical configurations (Figure 9.1). These include compounds containing long 
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flexible chains, highly polar tetrazole rings, multiple ionisable groups, polycyclic 

aromatic structures, complex two ring system with multiple heteroatoms, aromatic 

rings separated by a specific atom, compounds with multiple heteroatoms and 

compounds with complicated ring structure. Due to the limited coverage of the 

number of bond links in a heteroatom loop, topological descriptors are not yet capable 

of describing the special features of a complex multi-ring structure that contains 

multiple heteroatoms. It appears that none of the currently available descriptors can be 

used to fully represent molecules containing a long flexible chain. 
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Figure 9.1 Examples of compounds not-well-represented by the currently available 

dashed line. 
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9.4 Suggestions for Future Studies 

 Some of the ADMET properties are known to correlate to specific 

pharmacodynamic properties which lead to clinical significance. For instance, a drug 

with high BB ratio may not have effects in the brain either because of the absence of 

target receptors or insufficient potencies towards the target receptors in the brain. 

Conversely, a d relatively low BB ratio he brain 

because of its high potency towards specific receptors ( . 1980). Such 

correlations, which have not been adequately considered in machine learning methods 

so far, may need to be incorporated in developing QSPkR/qSPkR models for 

predicting those ADMET properties that are known to correlate to certain 

pharmacodynamic property. 

 In th ssumed that  

classification system are equally important. However, in a drug discovery project, 

these accuracies may have different importance at different stages of the design cycle. 

For example, in the initial target and hit identification phase, it may be more 

imp ds. Thus, it is more important to have a 

classification s  has very high sensitivity (smal  false negatives) 

and reasonably good specificity. At later stages, it becomes increasingly important to 

focus on a manageable number of candidates. Thus a classification system with very 

high specificity (small number of false positives) and reasonably good sensitivity may 

become more important. It is possible to alter the SVM classification systems to suit 

these different needs. There are two possible approaches for modifying the SVM 

classification sy e first approach uses differe error penalties 

(equation (2.14)) for D+ and D-. For example, a higher training error penalty for D+ 

and lower training error penalty for D- can be used to increase the sensitivity of the 

rug with a may still have effects in t

Hallstrom et al

is work, it is a sensitivity a of the SVMnd specificity 

 

ortant not to miss potential lea

ystem which l number of

stems. Th nt training 
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SVM classification systems. The second approach adds a correction factor to the 

ular structures. This will improve the interpretability of 

SVM decision function (equation (2.12)). A positive or negative correction factor will 

improve the sensitivity or specificity of the SVM classification system respectively. 

 There is a need to explore different combination of descriptors and to select 

more optimum set of descriptors by using more refined feature selection algorithms 

and parameters. However, indiscriminate use of many existing topological descriptors, 

which are overlapping and redundant to each other, may introduce noise as well as 

extending the coverage of some of the aspects of these special features. Thus, it may 

be necessary to introduce new descriptors for more appropriately representing these 

and other special features. The new descriptors should ideally be able to be 

translated back to the molec

the QSPkR/qSPkR models.  

 In this work, RFE is incorporated into SVM classification systems for dividing 

molecules into two classes according to specific ADMET property. This method can 

also be applied to the prediction of ADMET properties in a continuous fashion. Future 

studies can combine RFE with SVR for providing non-linear QSPkR of specific 

ADMET properties. 

 Genetic programming (GP), an evolutionary programming approach, has been 

found to be useful for the development of qSPkR models for oral bioavailability 

prediction of a diverse group of compounds (Bains et al. 2002). This is because GP 

implements the IF logic to capture multiple mechanism of action within a single 

model. Thus evolutionary programming approaches, which have the potential to 

identify and optimize all independent QSPkR models consistent with the training set 

data, may be potentially useful for the prediction of the ADMET properties of 

chemical compounds. 
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 The lack of structural diversity in the training sets may limit the applicability 

of the models developed by machine learning. However, it may be possible to use 

analog compound training sets to provide benchmarks as to what upper-level models 

are possible from a given method for a given endpoint. Future studies can model high 

analog datasets as a way to evaluate how much accuracy and reliability is lost in 

modeling structurally diverse data sets for a given machine learning approach.     

 



BIBLIOGRAPHY 216

Bibliography 

 JA 
(1999). Hydrogen bonding part 46: A review of the correlation and prediction 
of transport properties by an LFER method: Physicochemical properties, brain 
penetration and skin permeability. Pesticide Science 55(1): 78-88. 

 
Abraham MH, Chadha HS and Mitchell R (1994). Hydrogen bonding. 33. Factors that 

influence the distribution of solutes between blood and brain. Journal of 
Pharmaceutical Sciences 83(9): 1257-1268. 

 
Abraham MH, Zhao YH, Le J, Hersey A, Luscombe CN, Reynolds DP, Beck G, 

Sherborne B and Cooper I (2002). On the mechanism of human intestinal 
absorption. European Journal of Medicinal Chemistry 37(7): 595-605. 

 
Accelrys (2005). DS ViewerPro. Accelrys.  
 
Adenot M and Lahana R (2004). Blood-brain barrier permeation models: 

Discriminating between potential CNS and non-CNS drugs including p-
glycoprotein substrates. Journal of Chemical Information and Computer 
Sciences 44(1): 239-248. 

 
Agatonovic-Kustrin S, Beresfordb R, Pauzi A and Yusof M (2001). Theoretically-

derived molecular descriptors important in human intestinal absorption. 
Journal of Pharmaceutical and Biomedical Analysis 25(2): 227-237. 

 
Agatonovic-Kustrin S, Ling LH, Tham SY and Alany RG (2002). Molecular 

descriptors that influence the amount of drugs transfer into human breast milk. 
Journal of Pharmaceutical and Biomedical Analysis 29(1-2): 103-119. 

 
Agatonovic-Kustrin S, Tucker IG, Zecevic M and Zivanovic LJ (2000). Prediction of 

drug transfer into human milk from theoretically derived descriptors. 
Analytica Chimica Acta 418(2): 181-195. 

 
Agrafiotis DK (1996). Stochastic algorithms for maximizing molecular diversity. 3rd 

Electronic Computational Chemistry Conference. 
 
Agrafiotis DK (2001). A constant time algorithm for estimating the diversity of large 

chemical libraries. Journal of Chemical Information and Computer Sciences 
41(4): 159-167. 

 

 
Abraham MH (1993). Scales of solute hydrogen-bonding: Their construction and 

appplication to physicochemical and biochemical processes. Chemical Society 
Reviews 22: 73-83. 

 
Abraham MH (2004). The factors that influence permeation across the blood-brain 

barrier. European Journal of Medicinal Chemistry 39(3): 235-240. 
 
Abraham MH, Chadha HS, Martins F, Mitchell RC, Bradbury MW and Gratton

 



BIBLIOGRAPHY 217

Agrafiotis DK and Lobanov VS (1999). An efficient implementation of distance-
based diversity measures ournal of Chemical Information 
and Computer Sciences 39(1): 51-58. 

 
ndrea

 
ndrew ting human oral bioavailability of 

 
ngulo ine for 

uting 55(1-2): 57-77. 

 
rizon t prolong the QT interval and/or induce torsades de 

based on k-d trees. J

 
Ajay, Bemis GW and Murcko MA (1999). Designing libraries with CNS activity. 

Journal of Medicinal Chemistry 42(24): 4942-4951. 
 
Almuallim H and Dietterich TG (1994). Learning Boolean concepts in the presence of 

many irrelevant features. Artificial Intelligence 69: 279-306. 
 
Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I and Gottesman MM 

(1999). Biochemical, cellular, and pharmacological aspects of the multidrug 
transporter. Annual Review of Pharmacology and Toxicology 39: 361-398. 

 TA and Kalayeh H (1991). Applications of neural networks in quantitative A
structure-activity relationships of dihydrofolate reductase inhibitors. Journal 
of Medicinal Chemistry 34: 2824-2836. 

s CW, Bennett L and Yu LX (2000). PredicA
a compound: development of a novel quantitative structure-bioavailability 
relationship. Pharmaceutical Research 17(6): 639-644. 

 C, Parra X and Catala A (2003). K-SVCR. A support vector machA
multi-class classification. Neurocomp

 
Ankrest M, Breunig M, Kriegel H and Sander J (1999). OPTICS: Ordering points to 

identify the clustering structure. Proceedings of the ACM SIGMOD 
International Conference on Management of Data: 49-60. 

aCERT. (2003). Drugs thaA
pointes ventricular arrhythmia. University of Arizona CERT. Retrieved 18 
November 2003, from http://www.arizonacert.org/medical-pros/drug-
lists/drug-lists.htm. 

 
Ashby J (1985). Fundamental structural alerts to potential carcinogenicity or 

noncarcinogenicity. Environmental Mutagenesis 7(6): 919-921. 

en AH, Ruuskanen J and Tuppurainen KA (2004). Performance of (con
 

sikain sensus) 

 
tkinso  drug distribution into human milk 

061-2069. 

A
kNN QSAR for predicting estrogenic activity in a large diverse set of organic 
compounds. SAR and QSAR in Environmental Research 15(1): 19-32. 

n HC and Begg EJ (1990). Prediction ofA
from physiochemical characteristics. Clinical Pharmacokinetics 18(2): 151-
167. 

 
Bai JPF, Utis A, Crippen G, He H-D, Fischer V, Tullman R, Yin H-Q, Hsu C-P, Jiang 

L and Hwang K-K (2004). Use of classification regression tree in predicting 
oral absorption in humans. Journal of Chemical Information and Computer 
Sciences 44(6): 2

 

 



BIBLIOGRAPHY 218

Bain LJ, McLachlan JB and LeBlanc GA (1997). Structure-activity relationships for 
xenobiotic transport substrates and inhibitory ligands of P-glycoprotein. 
Environmental Health Perspectives 105(8): 812-818. 

ethods to predict oral 
bioavailability QSPRs. Current Opinion in Drug Discovery and Development 

 
akken GA and Jurs PC (2000). Classification of multidrug-resistance reversal agents 

 
alaban AT (1986). Chemical graphs. 48. Topological index J for heteroatom-

 
alakin KV, Ekins S, Bugrim A, Ivanenkov YA, Korolev D, Nikolsky YV, Skorenko 

0): 1183-1189. 

 775-778. 

60. 

ormation and 
Computer Sciences 39(1): 1-10. 

Begg E

cteristics. British Journal of Clinical Pharmacology 33(5): 501-505. 

 

 
Bains W, Gilbert R, Sviridenko L, Gascon JM, Scoffin R, Birchall K, Harvey I and 

Caldwell J (2002). Evolutionary computational m

5(1): 44-51. 

B
using structure-based descriptors and linear discriminant analysis. Journal of 
Medicinal Chemistry 43(23): 4534-4541. 

B
containing molecules taking into account periodicities of element properties. 
MATCH 21: 115-122. 

B
AV, Ivashchenko AA, Savchuk NP and Nikolskaya T (2004). Kohonen maps 
for prediction of binding to human cytochrome P450 3A4. Drug Metabolism 
and Disposition: The Biological Fate of Chemicals 32(1

 
Basak SC, Gute BD and Drewes LR (1996). Predicting blood-brain transport of drugs: 

a computational approach. Pharmaceutical Research 13(5):
 
Basak SC, Gute BD and Ghatak S (1999). Prediction of complement-inhibitory 

activity of benzamidines using topological and geometric parameters. Journal 
of Chemical Information and Computer Sciences 39: 255-2

 
Basak SC and Magnuson VR (1983). Molecular topology and narcosis. A quantitative 

structure-activity relationship (QSAR) study of alcohols using complimentary 
information content (CIC). Arzneimittel-Forschung/Drug Research 33: 501-
503. 

 
Bayada DM, Hamersma H and van Geerestein VJ (1999). Molecular diversity and 

representativity in chemical databases. Journal of Chemical Inf

 
J and Atkinson HC (1993). Modelling of the passage of drugs into milk. 
Pharmacology and Therapeutics 59(3): 301-310. 

 
Begg EJ, Atkinson HC and Duffull SB (1992). Prospective evaluation of a model for 

the prediction of milk:plasma drug concentrations from physicochemical 
chara

 
Benigni R, Guiliani A, Franke R and Gruska A (2000). Quantitative structure-activity 

relationships of mutagenic and carcinogenic aromatic amines. Chemical 
Reviews 100(10): 3697-3714. 

 



BIBLIOGRAPHY 219

Bergstrom CA, Strafford M, Lazorova L, Avdeef A, Luthman K and Artursson P 
(2003). Absorption classification of oral drugs based on molecular surface 
properties. Journal of Medicinal Chemistry 46(4): 558-570. 

 
Bolzan AD and Bianchi MS (2002). Genotoxicity of streptozotocin. Mutation 

Research 512(2-3): 121-134. 

Boobis
tics. Report of an expert meeting 

organised by COST B15. European Journal of Pharmaceutical Sciences 17(4-

 
Box GEP, Hunter WG and Hunter JS (1978). Statistics for experimenters: An 

introduction to design, data analysis, and model building. New York, Wiley. 

Brassar
 
Bravi G ). MS-

WHIM, new 3D theoretical descriptors derived from molecular surface 

l Academy of 
Sciences of the United States of America 97(1): 262-267. 

Burbid

uters and Chemistry 26(1): 5-14. 

 
utina D (1999). Unsupervised data base clustering based on Daylight's fingerprint 

 Computer Sciences 39(4): 
747-750. 

Butina 
. 

 

 
Bethesda (2001). AHFS drug information, American Society of Health-System 

Pharmacists, Inc. 

 
 A, Gundert-Remy U, Kremers P, Macheras P and Pelkonen O (2002). In silico 
prediction of ADME and pharmacokine

5): 183-193. 

 
d G and al. e (1996). Fundamentals of algorithms. New Jersey, Prentice Hall. 

, Gancia E, Mascagni P, Pegna M, Todeschini R and Zaliani A (1997

properties: A comparative 3D QSAR study in a series of steroids. Journal of 
Computer-Aided Molecular Design 11(1): 79-92. 

 
Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet C, Ares JM and Haussler D 

(2000). Knowledge-based analysis of microarray gene expression data by 
using support vector machines. Proceedings of the Nationa

 
ge R, Trotter M, Buxton B and Holden S (2001). Drug design by machine 
learning: support vector machines for pharmaceutical data analysis. 
Comp

 
Burges CJC (1998). A tutorial on support vector machines for pattern recognition. 

Data Mining and Knowledge Discovery 2(2): 127-167. 

B
and Tanimoto similarity: A fast and automated way to cluster small and large 
data sets. Journal of Chemical Information and

 
D, Segall MD and Frankcombe K (2002). Predicting ADME properties in 
silico: Methods and models. Drug Discovery Today 7(11 (Suppl)): S83-S88

 
Cacoullos T (1966). Estimation of a multivariate density. Annals of the Institute of 

Statistical Mathematics 18: 179-189. 

 



BIBLIOGRAPHY 220

Cai CZ, Han LY, Ji ZL, Chen X and Chen YZ (2003). SVM-Prot: Web-based support 
vector machine software for functional classification of a protein from its 
primary sequence. Nucleic Acids Research 31(13): 3692-3697. 

of absorption, distribution, metabolism, and excretion. 
Toxicologic Pathology 23(2): 102-114. 

Cardie C (1993). Using decision trees to improve case-based learning. Proceedings 
10th International Conference on Machine Learning. Los Altos, Morgan 

 
Carhart

ructure-activity studies: definition and applications. Journal of 
Chemical Information and Computer Sciences 25(2): 64-73. 

Carnah  
learning classifiers: Alternatives for predictive modeling in human factors 

 
avalli A and Poluzzi E (2002). Toward a pharmacophore for drugs inducing the long 

 
Chang rt vector machines. 

http://csie.ntu.edu.tw/~cjlin/libsvm

 
Caldwell J, Gardner I and Swales N (1995). An introduction to drug disposition: the 

basic principles 

 

Kaufmann: 25-32. 

 RE, Smith DH and Venkataraghavan R (1985). Atom pairs as molecular 
features in st

 
an B, Meyer G and Kuntz L-A (2003). Comparing statistical and machine

research. Human Factors 45(3): 408-423. 
 
Cash GG (2001). Prediction of the genotoxicity of aromatic and heteroaromatic 

amines using electrotopological state indices. Mutation Research 491(1-2): 
31-37. 

C
QT syndrome: Insights from a CoMFA study of HERG K+ channel blockers. 
Journal of Medicinal Chemistry 45(18): 3844-3853. 

CC and Lin CJ (2001). LIBSVM: A library for suppo
.  

Chapel
 Machine Learning 46(1-3): 131-159. 

52-1556. 

 
heng A, Diller DJ, Dixon SL, Egan WJ, Lauri G and Merz KMJ (2002). 

e P450 1A2 inhibition potential of 
compound libraries. Journal of Medicinal Chemistry 48(16): 5154-5161. 

 

 
le O, Vapnik V, Bousquet O and Mukherjee S (2002). Choosing multiple 
parameters for support vector machines.

 
Charton M (1975). Steric effects. I. Esterification and acid catalysed hydrolysis of 

esters. Journal of the American Chemical Society 97: 15
 
Chen YZ and Ung CY (2001). Prediction of potential toxicity and side effect protein 

targets of a small molecule by a ligand-protein inverse docking approach. 
Journal of Molecular Graphics and Modelling 20(3): 199-218. 

C
Computation of the physio-chemical properties and data mining of large 
molecular collections. Journal of Computational Chemistry 23(1): 172-183. 

 
Chohan KK, Paine SW, Mistry J, Barton P and Davis AM (2005). A rapid 

computational filter for cytochrom

 



BIBLIOGRAPHY 221

Chung KT, Kirkovsky L, Kirkovsky A and Purcell WP (1997). Review of 
mutagenicity of monocyclic aromatic amines: Quantitative structure-activity 
relationships. Mutation Research 387(1): 1-16. 

 
Clark DE (1999). Rapid calculation of polar molecular surface area and its application 

to the prediction of transport phenomena. 2. Prediction of blood-brain barrier 
penetration. Journal of Pharmaceutical Sciences 88(8): 815-821. 

37(6): 1181-1188. 

 
ollobert R, Bengio S and Mariéthoz J (2002). Torch: A modular machine learning 

 
Colmen g-binding strengths to human serum 

albumin. Medicinal Research Reviews 23(3): 275-301. 

Colmen
to predict binding affinities to human serum albumin. Journal of 

Medicinal Chemistry 44(25): 4370-4378. 

Conson
iptors. 1. Theory of the 

novel 3D molecular descriptors. Journal of Chemical Information and 

 
raig AJ, Weininger D and Delany J (2005). Fingerprints - Screening and Similarity. 

 
ramer CJ and Truhlar DG (1992). An SCF solvation model for the hydrophobic 

 

 
Clark RD (1997). OptiSim: An extended dissimilarity selection method for finding 

diverse representative subsets. Journal of Chemical Information and 
Computer Sciences 

 
Clark RD and Wolohan PR (2003). Molecular design and bioavailability. Current 

Topics in Medicinal Chemistry 3(11): 1269-1288. 

C
software library. Technical Report IDIAP-RR 02-46, IDIAP. 

arejo G (2003). In silico prediction of dru

 
arejo G, Alvarez-Pedraglio A and Lavandera JL (2001). Cheminformatic 
models 

 
ni V, Todeschini R and Pavan M (2002). Structure/Response correlations and 
similarity/diversity analysis by GETAWAY descr

Computer Sciences 42(3): 682-692. 

C
Daylight Theory Manual, Daylight Chemical Information Systems, Inc. 

C
effect and absolute free energies of aqueous solvation. Science 256(5054): 
213-217. 

 
Crivori P, Cruciani G, Carrupt PA and Testa B (2000). Predicting blood-brain barrier 

permeation from three-dimensional molecular structure. Journal of Medicinal 
Chemistry 43(11): 2204-2216. 

 
Cronin MTD and Basketter DA (1994). Multivariate QSAR analysis of a skin 

sensitization database. SAR and QSAR in Environmental Research 2(3): 159-
179. 

 
Cronin MTD and Schultz TW (2003). Pitfalls in QSAR. Journal of Molecular 

Structure: THEOCHEM 622(1-2): 39-51. 

 



BIBLIOGRAPHY 222

Cruciani G, Crivori P, Carrupt PA and Testa B (2000a). Molecular fields in 
quantitative structure-permeation relationships: the VolSurf approach. Journal 
of Molecular Structure: THEOCHEM 503(1-2): 17-30. 

 compounds. Journal of Chemical 
Information and Computer Sciences 36(4): 750-763. 

Currit N limitations with the general 
regression neural network. Computers, Environment and Urban Systems 26(4): 

 
zerminski R, Yasri A and Hartsough D (2001). Use of support vector machine in 

 

 
Daszyk L (2002). Representative subset selection. 

Analytica Chimica Acta 468(1): 91-103. 

de Gro P450. 
Advanced Drug Delivery Reviews 54(3): 367-383. 

de Jon
 power regression. Journal of Chemometrics 15(2): 85-100. 

ety 25(4): 263-286. 

: a call for consensus. European Journal of Clinical Pharmacology 57(3): 
185-209. 

Delph eb waiting to be unraveled. from 
http://www.aidsinfonyc.org/tag/science/pgp.html

 
Cruciani G, Pastor M and Guba W (2000b). Volsurf: a new tool for the 

pharmacokinetic optimization of lead compounds. European Journal of 
Pharmaceutical Sciences 11(Suppl. 2): S29-S39. 

 
Cummins DJ, Andrews CW, Bentley JA and Cory M (1996). Molecular diversity in 

chemical databases: Comparison of medicinal chemistry knowledge bases and 
databases of commerically available

 
 (2002). Inductive regression: overcoming OLS 

335-353. 

C
pattern classification: Application to QSAR studies. Quantitative Structure-
Activity Relationships 20(3): 227-240. 

 
Dai J, Jin L, Yao S and Wang L (2001). Prediction of partition coefficient and toxicity 

for benzaldehyde compounds by their capacity factors and various molecular 
descriptors. Chemosphere 42(8): 899-907.

 
Darpo B (2001). Spectrum of drugs prolonging QT interval and the incidence of 

torsade de pointes. European Heart Journal 2001(3 Suppl): K70-80. 

owski M, Walczak B and Massart D

 
ot MJ and Ekins S (2002). Pharmacophore modeling of cytochromes 

 
g S, Wise BM and Ricker NL (2001). Canonical partial least squares and 
continuum

 
De Ponti F, Poluzzi E, Cavalli A, Recanatini M and Montanaro N (2002). Safety of 

non-antiarrhythmic drugs that prolong the QT interval or induce torsade de 
pointes: An overview. Drug Saf

 
De Ponti F, Poluzzi E and Montanaro N (2001). Organising evidence on QT 

prolongation and occurrence of torsades de pointes with non-antiarrhythmic 
drugs

 
Y. (2000). P-glycoprotein: a tangled w

. 
 

 



BIBLIOGRAPHY 223

Devillers J (2000). A neural network SAR model for allergic contact dermatitis. 
Toxicology Methods 10(3): 181-193. 

 
ewar MJS and Stewart JJP (1984). A new procedure for calculating molecular 

 
iMasi JA, Hansen RW and Grabowski HG (2003). The price of innovation: new 

 
Dimitr wicz G, Niemela J and 

Mekenyan O (2005). A stepwise approach for defining the applicability 

 
oddareddy MR, Cho YS, Koh HY, Kim DH and Pae AN (2006). In silico renal 

 
oniger S, Hofmann T and Yeh J (2002). Predicting CNS permeability of drug 

 
orronsoro I, Chana A, Abasolo MI, Castro A, Gil C, Stud M and Martinez A (2004). 

se drugs. 
Quantitative Structure-Activity Relationships 23(2-3): 89-98. 

Drews J (2000). Drug discovery: A historical perspective. Science 287(5460): 1960-
1964. 

Drucke vector machine for spam 
categorization. IEEE Transactions on Neural Networks 10(5): 1048-1054. 

Dukes ica. 

 
Eddershaw PJ, Beresford AP and Bayliss MK (2000). ADME/PK as part of a rational 

approach to drug discovery. Drug Discovery Today 5(9): 409-414. 

Ekins S on and validation of rapid 
computational filters for CYP2D6 and CYP3A4. Drug Metabolism and 
Disposition 31(9): 1077-1080. 

D
polarizabilities; Applications using MNDO. Chemical Physics Letters 
111(4,5): 416-420. 

D
estimates of drug development costs. Journal of Health Economics 22(2): 151-
185. 

ov S, Dimitrova G, Pavlov T, Dimitrova N, Patle

domain of SAR and QSAR models. Journal of Chemical Information and 
Modeling 45(4): 839-849. 

D
clearance model using classical Volsurf approach. Journal of Chemical 
Information and Modeling 46(3): 1312-1320. 

D
molecules: comparison of neural network and support vector machine 
algorithms. Journal of Computational Biology 9(6): 849-864. 

D
CODES/Neural network model: A useful tool for in silico prediction of oral 
absorption and blood-brain barrier permeability of structurally diver

 

 
r H, Wu DH and Vapnik VN (1999). Support 

 
MNG (1996). Meyler's side effects of drugs. Amsterdam, Excerpta Med

 
Durant JL, Leland BA, Henry DR and Nourse JG (2002). Reoptimization of MDL 

keys for use in drug discovery. Journal of Chemical Information and 
Computer Sciences 42(6): 1273-1280. 

 
Ecker GF and Noe CR (2004). In silico prediction models for blood-brain barrier 

permeation. Current Medicinal Chemistry 11(12): 1617-1628. 

 
, Berbaum J and Harrison RK (2003). Generati

 



BIBLIOGRAPHY 224

 
S, Bravi G, Binkley S, Gillespie JS,Ekins  Ring BJ, Wikel JH and Wrighton SA 
(1999a). Three and four dimensional-quantitative structure activity 

 
kins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH and Wrighton SA 

olism and Disposition: The Biological Fate of Chemicals 28(8): 994-
1002. 

Ekins 

rmacology and Experimental Therapeutics 291(1): 
424-433. 

Ekins 
thods for modeling cytochrome 

P450 active sites. Drug Metabolism and Disposition: The Biological Fate of 

 
Ekins S 0b). Present and 

future in vitro approaches for drug metabolism. Journal of Pharmacological 

 
Ekins S

ico. Journal of 
Pharmacological and Toxicological Methods 44(1): 251-272. 

Engkvist O, Wrede P and Rester U (2003). Prediction of CNS activity of compound 
libraries using substructure analysis. Journal of Chemical Information and 

 
rb RJ (1995). The backpropagation neural network--a Bayesian classifier. 

ics 
29(2): 69-79. 

Eriksso
nty assessment and for applicability 

evaluations of classification- and regression-based QSARs. Environmental 

 
riksson L, Johansson E, Kettaneh-Wold N and Wade KM (2001a). Multi- and 

relationship (3D/4D-QSAR) analyses of CYP2D6 inhibitors. 
Pharmacogenetics 9: 477-489. 

E
(2000a). Three- and four-dimensional-quantitative structure activity 
relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug 
Metab

 
S, Bravi G, Wikel JH and Wrighton SA (1999b). Three-dimensional-
quantitative structure activity relationship analysis of cytochrome P-450 3A4 
substrates. Journal of Pha

 
S, de Groot MJ and Jones JP (2001). Pharmacophore and three-dimensional 
quantitative structure-activity relationship me

Chemicals 29(7): 936-944. 

, Ring BJ, Grace J, McRobie-Belle DJ and Wrighton SA (200

and Toxicological Methods 44(1): 313-324. 

, Waller CL, Swaan PW, Cruciani G, Wrighton SA and Wikel JH (2000c). 
Progress in predicting human ADME parameters in sil

 

Computer Sciences 43(1): 155-160. 

E
Introduction and applicability to pharmacokinetics. Clinical Pharmacokinet

 
n L, Jaworska J, Cronin M, Worth A, Gramatica P and McDowell R (2003). 
Methods for reliability and uncertai

Health Perspectives 111(10): 1361-1375. 

E
megavariate data analysis - Principles and applications. Umea, Sweden, 
Umetrics AB. 

 
Eriksson L, Johansson E, Kettaneh-Wold N and Wade KM (2001b). PCA. Multi- and 

megavariate data analysis - Principles and applications. Umea, Sweden, 
Umetrics AB: 43-70. 

 



BIBLIOGRAPHY 225

 
Ertl P, Rohde B and Selzer P (2000). Fast calculation of molecular polar surface area 

as a sum of fragment-based contributions and its application to the prediction 
of drug transport properties. Journal of Medicinal Chemistry 43(20): 3714-
3717. 

 
Ester M, Kriegel HP, Sander J and Xu X (1996). A density-based algorithm for 

discovering clusters in large spatial databases with noise. Proceedings of the 
2nd International Conference on Knowledge Discovery and Data Mining: 
226-231. 

 
vgeniou T and Pontil M (2001). Support vector machines: theory and applications. 

 
Farnum rlais R and Agrafiotis DK (2003). Molecular diversity. Handbook of 

chemoinformatics : From data to knowledge. Gasteiger J. Chichester, Wiley-

 
Feher M

ernational Journal of Pharmaceutics 201(2): 239-
247. 

Fix E a
l of Aviation Medicine, Randolph 

Field: 261-279. 

Fleisha

protein and fat. Journal of Pharmaceutical Sciences 76(3): 189-193. 

Flockh
/flockhart/table.htm

E
Machine learning and its applications. Advanced lectures. Paliouras G, 
Karkaletsis V and Spyropoulos CD. New York, Springer: 249-257. 

 M, DesJa

VCH. 4: 1640-1686. 

, Sourial E and Schmidt JM (2000). A simple model for the prediction of 
blood-brain partitioning. Int

 
nd Hodges JL (1951). Discriminatory analysis: Non-parametric discrimination: 
Consistency properties. Texas, USAF Schoo

 
ker JC, Desai N and McNamara PJ (1987). Factors affecting the milk-to-
plasma drug concentration ratio in lactating women: physical interactions with 

 
art DA. (2003). Cytochrome P450 drug-interaction table. Retrieved November 
2003, from http://medicine.iupui.edu . 

 
rohlich H, Chapelle O and Scholkopf B (2003). Feature selection for support vector 

 
Fujita T bstituent constants, p, derived from 

partition coefficients. Journal of the American Chemical Society 86: 5175-

 
Furlanello C, Serafini M, Merler S and Jurman G (2003). An accelerated procedure 

for recursive feature ranking on microarray data. Neural Networks 16: 641-

 

 
Forgy E (1965). Cluster analysis of multivariate data: Efficiency vs interpretability of 

classifications. Biometrics 21: 768-780. 

F
machines by means of genetic algorithm. Proceedings. 15th IEEE 
International Conference on Tools with Artificial Intelligence: 142-148. 

, Iwasa J and Hansch C (1964). A new su

5180. 

648. 

 



BIBLIOGRAPHY 226

Galvez J, Garcia R, Salabert MT and Soler R (1994). Charge indexes. New 

 
Gao H, Lajiness MS and Van Drie J (2002). Enhancement of binary QSAR analysis 

by a GA-based variable selection method. Journal of Molecular Graphics and 

 
Geladi 

Chimica Acta 185: 1-17. 

 
Gobburu JV and Shelver WH (1995). Quantitative structure-pharmacokinetic 

relationships (QSPR) of beta blockers derived using neural networks. Journal 

 
Golbraikh A and Tropsha A (2002). Beware of q2! Journal of Molecular Graphics 

and Modelling 20(4): 269-276. 

Gottesm
nt Opinion in Genetics and Development 6(5): 610-617. 

 Sciences 
44(5): 1794-1802. 

Gratton ). Molecular factors 
influencing drug transfer across the blood-brain barrier. Journal of Pharmacy 

 
reene N (2002). Computer systems for the prediction of toxicity: An update. 

 
Guyon ction. 

Journal of Machine Learning Research 3: 1157-1182. 

Guyon 
cation using support vector machines. Machine Learning 46(1-3): 389-

422. 

Hadi A
 Statistical Society, Series B 54(3): 761-771. 

Hall LH, Kellogg GE and Haney DN (2002). Molconn-Z. eduSoft, LC.  

topological descriptors. Journal of Chemical Information and Computer 
Sciences 34(3): 520-525. 

Modelling 20(4): 259-268. 

P and Kowalski BR (1986). Partial least squares regression: A tutorial. 
Analytica 

 
Gillet VJ, Willett P, Fleming PJ and Green DVS (2002). Designing focused libraries 

using MoSELECT. Journal of Molecular Graphics and Modelling 20(6): 491-
498. 

 
Glover F (1989). Tabu search - Part I. ORSA Journal on Computing 1: 190-206. 

of Pharmaceutical Sciences 84(7): 862-865. 

 
an MM, Pastan I and Ambudkar SV (1996). P-glycoprotein and multidrug 

resistance. Curre
 
Gramatica P, Pilutti P and Papa E (2004). Validated QSAR prediction of OH 

tropospheric degradation of VOCs: Splitting into training-test sets and 
consensus modeling. Journal of Chemical Information and Computer

 
 JA, Abraham MH, Bradbury MW and Chadha HS (1997

and Pharmacology 49(12): 1211-1216. 

G
Advanced Drug Delivery Reviews 54(3): 417-431. 

I and Elisseeff A (2003). An introduction to variable and feature sele

 
I, Weston J, Barnhill S and Vapnik V (2002). Gene selection for cancer 
classifi

 
S (1992). Identifying multiple outliers in multivariate data. Journal of the 
Royal

 

 



BIBLIOGRAPHY 227

 
M, Hall LH and Kier LB (2003). QSAR modeling of beta-lactam binding to 
human serum proteins. Jo

Hall L
urnal of Computer-Aided Molecular Design 17(2-4): 

103-118. 

Hall LM
e representation. Journal of Chemical Information 

and Computer Sciences 43(6): 2120-2128. 

Hallstr  Diazepam and N-desmethyldiazepam 
concentrations in saliva, plasma and CSF. British Journal of Clinical 

 
Han JW d Kamber M (2001). Data mining : concepts and techniques. San 

Francisco, Morgan Kaufmann Publishers. 

an LY, Cai CZ, Lo SL, Chung MCM and Chen YZ (2004). Prediction of RNA-

 
ansch C (1972). Quantitative relationships between lipophilic character and drug 

 
ansch C, Leo A, Mekapati SB and Kurup A (2004). QSAR and ADME. Bioorganic 

 
ardman JG, Limbird LE and Goodman Gilman A (2002). Goodman and Gilman's 

 
Hassan

olecular diversity of combinatorial libraries. Molecular 
Diversity 2(1-2): 64-74. 

Hawki

iences 43(2): 579-586. 

olecular structure with 
different classifiers. Chemical Research in Toxicology 16(12): 1567-1580. 

He YB
lsulfonyl)cycloalkane-carboxylates to Daphnia magna and quantitative 

structure--activity relationships. Chemosphere 31(2): 2739-2746. 

Hemme riving the 3D structure of 
organic molecules from their infrared spectra. Vibrational Spectroscopy 19(1): 

 
, Hall LH and Kier LB (2004). Modeling drug albumin binding affinity with 

E-state topological structur

 
om C and Lader MH (1980).

Pharmacology 9(4): 333-339. 

 an

 
H

binding proteins from primary sequence by support vector machine approach. 
RNA 10(3): 355-368. 

H
metabolism. Drug Metabolism Reviews 1: 1-14. 

H
and Medicinal Chemistry 12(12): 3391-3400. 

H
the pharmacological basis of therapeutics. New York, McGraw-Hill. 

 M, Bielawski JP, Hempel JC and Waldman M (1996). Optimization and 
visualization of m

 
ns DM (2004). The problem of overfitting. Journal of Chemical Information 
and Computer Sciences 44(1): 1-12. 

 
Hawkins DM, Basak SC and Mills D (2004). Assessing model fit by cross-validation. 

Journal of Chemical Information and Computer Sc
 
He L, Jurs PC, Custer LL, Durham SK and Pearl GM (2003). Predicting the 

genotoxicity of polycyclic aromatic compounds from m

 
, Wang LS, Liu ZT and Zhang Z (1995). Acute toxicity of alkyl (1-
pheny

 
r MC, Steinhauer V and Gasteiger J (1999). De

151-164. 

 



BIBLIOGRAPHY 228

 
Herman RA and Veng-Pedersen P (1994). Quantitative structure-pharmacokinetic 

relationships for systemic drug distribution kinetics not confined to a 
congeneric series. Journal of Pharmaceutical Sciences 83(3): 423-428. 

 
obohm U, Scharf M, Schneider R and Sander C (1992). Selection of representative 

 
Hou TJ and Xu XJ (2002). ADME evaluation in drug discovery. 1. Applications of 

genetic algorithms to the prediction of blood-brain partitioning of a large set of 

 
ou TJ and Xu XJ (2003). ADME evaluation in drug discovery. 3. Modeling blood-

 
uang C, Davis LS and Townshend JRG (2002). An assessment of support vector 

(QSAR). Proceedings of the 
International Conference on Mathematics and Engineering Techniques in 

 
udson BD, Hyde RM, Rahr E, Wood J and Osman J (1996). Parameter based 

 
udson PTW and Postma EO (1995). Choosing and using a neural net. Artificial 

ringer-Verlag: 273-287. 

a on 
metabolism, together with binding and transport. Annual Review of 

 
Iyer M rier 

partitioning of organic molecules using membrane-interaction QSAR analysis. 

 
Izrailev ualizing the 

diversity of QSAR models. Journal of Molecular Graphics and Modelling 

 

 
Higo J and Go N (1989). Algorithm for rapid calculation of excluded volume of large 

molecules. Journal of Computational Chemistry 10(3): 376-379. 

H
protein data sets. Protein Science 1(3): 409-417. 

drugs. Journal of Molecular Modeling 8(12): 337-349. 

H
brain barrier partitioning using simple molecular descriptors. Journal of 
Chemical Information and Computer Sciences 43(6): 2137-2152. 

H
machines for land cover classification. International Journal of Remote 
Sensing 23: 725-749. 

 
Huang L, Lu HM and Dai Y (2003). Feature selection of support vector regression for 

quantitative structure-activity relationships 

Medicine and Biological Sciences: 88-93. 

H
methods for compound selection from chemical databases. Quantitative 
Structure-Activity Relationships 15: 285-289. 

H
neural networks : an introduction to ANN theory and practice. Thuijsman F, 
Weijters AJMM and Braspenning PJ. Berlin, Sp

 
Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y and Sugiyama Y (1998). Quantitative 

prediction of in vivo drug clearance and drug interactions from in vitro dat

Pharmacology and Toxicology 38: 461-499. 

, Mishru R, Han Y and Hopfinger AJ (2002). Predicting blood-brain bar

Pharmaceutical Research 19(11): 1611-1621. 

 S and Agrafiotis DK (2004). A method for quantifying and vis

22(4): 275-284. 

 



BIBLIOGRAPHY 229

Jarvis RA and Patrick EA (1973). Clustering using a similarity measure based on 

 
Joachim Kernel 

Methods: Support Vector Learning. Schölkopf B, Burges CJC and Smola AJ. 

 
hnson DE and Wolfgang GH (2000). Predicting human safety: Screening and 

 
hnson MA and Maggiora GM (1990). Concepts and applications of molecular 

 
Johnso te statistical analysis. 

Englewood Cliffs, NJ, Prentice Hall. 

Jouan-R
 algorithm. 

Chemometrics and Intelligent Laboratory Systems 35(2): 213-220. 

Kaliner
can Family Physician 45(3): 1337-1342. 

 
amlet MJ, Abbound J-LM and Taft RW (1981). An examination of linear solvation 

 
amlet MJ, Doherty PJ, Taft RW, Abraham MH, Veith GD and Abraham DJ (1987). 

y 21: 
149-155. 

Karalis

20(1): 115-123. 

 

shared near neighbours. IEEE Transactions in Computers C-22: 1025-1034. 

s T (1999). Making large-Scale SVM Learning Practical. Advances in 

Cambridge, MIT-Press: 169-184. 

Jo
computational approaches. Drug Discovery Today 5(10): 445-454. 

Jo
similarity. New York, Wiley. 

n RA and Wichern DW (1982). Applied multivaria

 
imbaud D, Massart DL and de Noord OE (1996). Random correlation in 

variable selection for multivariate calibration with a genetic

 
 MA (1992). Nonsedating antihistamines: pharmacology, clinical efficacy and 
adverse effects. Ameri

 
Kaliszan R and Markuszewski M (1996). Brain/blood distribution described by a 

combination of partition coefficient and molecular mass. International Journal 
of Pharmaceutics 145(1-2): 9-16. 

K
energy relationships. Progress in Physical Organic Chemistry. Taft RW. New 
York, Wiley. 13: 485-630. 

K
Solubility properties in polymers and biological media. 8. An analysis of the 
factors that influence toxicities of organic nonelectrolytes to the golden orfe 
fish (Leuciscus idus melanotus). Environmental Science and Technolog

 
 V, Tsantili-Kakoulidou A and Macheras P (2002). Multivariate statistics of 
disposition pharmacokinetic parameters for structurally unrelated drugs used 
in therapeutics. Pharmaceutical Research 19(12): 1827-1834. 

 
Karalis V, Tsantili-Kakoulidou A and Macheras P (2003). Quantitative structure-

pharmacokinetic relationships for disposition parameters of cephalosporins. 
European Journal of Pharmaceutical Sciences 

 
Karelson M and et al. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. 

Chemical Reviews 96(3): 1027-1043. 

 



BIBLIOGRAPHY 230

Katritzky AR, Karelson M and Lobanov V (1997). QSPR as a means of predicting 
and understanding chemical and physical properties in terms of structure. Pure 
and Applied Chemistry 69(2): 245-248. 

Katritz
 A training set of 298 diverse organics and a 

test set of 9 simple inorganics. Journal of Physical Chemistry 100: 10400-

 
aznessis YN, Snow ME and Blankley CJ (2001). Prediction of blood-brain 

sign 15(8): 697-708. 

inating determinant for oral absorption 
and brain penetration of drugs. Pharmaceutical Research 16(10): 1514-1519. 

Kennar

ular Design 15(7): 649-657. 

20-128. 

 
Kier L

graph theory. Rouvray DH. New York, Nova Science Publishers: 
151-174. 

Kier L

Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM and Wilkinson GR 
(1998). The drug transporter P-glycoprotein limits oral absorption and brain 

 
ky AR, Mu L, Lobanov VS and Karelson M (1996). Correlation of boiling 
points with molecular structure. 1.

10407. 

K
partitioning using Monte Carlo simulations of molecules in water. Journal of 
Computer-Aided Molecular De

 
Kelder J, Grootenhuis PDJ, Bayada DM, Delbressine LPC and Ploemen JP (1999). 

Polar molecular surface area as a dom

 
d RW and Stone L (1969). Computer aided design of experiments. 
Technometrics 11: 137-148. 

 
Kennedy T (1997). Managing the drug discovery/development interface. Drug 

Discovery Today 2(10): 436-444. 
 
Keseru GM (2001). A virtual high throughput screen for high affinity cytochrome 

P450cam substrates. Implications for in silico prediction of drug metabolism. 
Journal of Computer-Aided Molec

 
Keserü GM and Molnár L (2001). High-throughput prediction of blood-brain 

partitioning: a thermodynamic approach. Journal of Chemical Information and 
Computer Sciences 41(1): 1

 
Kier LB (1985). A shape index from molecular graphs. Quantitative Structure-

Activity Relationships 4: 109-116. 

B (1990). Indexes of molecular shape from chemical graphs. Computational 
chemical 

 
B (1997). Kappa shape indices for similarity analysis. Medicinal Chemistry 
Research 7: 394-406. 

 
Kier LB and Hall LH (1986). Molecular connectivity in structure-activity analysis. 

Letchworth, Hertfordshire, England; New York, Research Studies Press; 
Wiley. 

 
Kier LB and Hall LH (1999). Molecular structure description: The electrotopological 

state. San Diego, Academic Press. 
 

 



BIBLIOGRAPHY 231

entry of HIV-1 protease inhibitors. Journal of Clinical Investigation 101(2): 
289-294. 

 
irpichenok MA and Zefirov NS (1987). Electronegativity and molecular geometry. I. 

 
lein C, Kaiser D, Kopp S, Chiba P and Ecker GF (2002). Similarity based SAR 

 
lopman G (1992). MULTI-CASE: 1. A hierarchical computer automated structure 

 
Klopm  

of multidrug resistance reversal agents. Molecular Pharmacology 52(2): 323-

 
lopman G, Stefan LR and Saiakhov RD (2002). ADME evaluation. 2. A computer 

): 253-263. 

 
ononenko I (1994). Estimating attributes: analysis and extensions of RELIEF. 

 
oymans LA, Vermeulen NPE, Van Acker SABE, Tekoppele JM, Heykants JJP, 

of cytochrome P450-debrisoquine 2D6. 
Chemical Research in Toxicology 5(2): 211-219. 

Kozak 
uation of regression models? Canadian Journal of Forest Research 

33(6): 976-987. 

Kramer PJ (1998). Genetic toxicology. Journal of Pharmacy and Pharmacology 50(4): 
395-405. 

Krame
okinetic lead optimization. Farmaco 56(1-2): 145-148. 

 new approach. Biochemical Pharmacology 
64(9): 1355-1374. 

K
General basis of the developed approach and determination of the effect of 
closer electrostatic interactions on bond lengths in organic molecules. Zhurnal 
Organicheskoi Khimii 23: 673-691. 

K
(SIBAR) as tool for early ADME profiling. Journal of Computer-Aided 
Molecular Design 16(11): 785-793. 

K
evaluation program. Quantitative Structure-Activity Relationships 11: 176-184. 

an G, Shi LM and Ramu A (1997). Quantitative structure-activity relationship

334. 

K
model for the prediction of intestinal absorption in humans. European Journal 
of Pharmaceutical Sciences 17(4-5

 
Kohavi R and John GH (1997). Wrappers for feature subset selection. Artificial 

Intelligence 97(1-2): 273-324. 

K
Machine Learning: ECML-94. European Conference on Machine Learning. 
Proceedings. 

K
Lavrijsen K, Meuldermans W and Donne-Op Den Kelder GM (1992). A 
predictive model for substrates 

 
A and Kozak R (2003). Does cross validation provide additional information 
in the eval

 

 
r SD and Wunderli-Allenspach H (2001). Physicochemical properties in 
pharmac

 
Kratochwil NA, Huber W, Muller F, Kansy M and Gerber PR (2002). Predicting 

plasma protein binding of drugs: A

 

 



BIBLIOGRAPHY 232

Kubat 
tellite radar images. Machine Learning 30(2-3): 195-215. 

 
Kulkarni AS and Hopfinger AJ (1999). Membrane-interaction QSAR analysis: 

Application to the estimation of eye irritation by organic compounds. 

 
Labute t of descriptors. Journal of Molecular 

Graphics and Modelling 18: 464-477. 

Lacy C
Inc. 

Lam R
Technometrics 44(2): 99-109. 

 
ayton D, Key C and Shakir SA (2003). Prolongation of the QT interval and cardiac 

ies conducted and proposals for the future. 
Pharmacoepidemiology and Drug Safety 12(1): 31-40. 

Leach 
matics. Boston, Kluwer Academic Publisher: 123-145. 

 
essmann S (2004). Solving unbalanced classification problems with support vector 

 
ewis DF, Modi S and Dickins M (2002). Structure-activity relationship for human 

 

M, Holte RC and Matwin S (1998). Machine learning for the detection of oil 
spills in sa

 
Kubinyi H (2003). Drug research: Myths, hype and reality. Nature Reviews Drug 

Discovery 2(8): 665-668. 

Pharmaceutical Research 16(8): 1244-1252. 

 P (2000). A widely applicable se

 
F and et al. (2002). Drug information handbook. Hudson, Ohio, Lexi-Comp, 

 
LH, Welch WJ and Young SS (2002). Uniform coverage designs for molecule 
selection. 

 
Langowski J and Long A (2002). Computer systems for the prediction of xenobiotic 

metabolism. Advanced Drug Delivery Reviews 54(3): 407-415. 

L
arrhythmias associated with cisapride: Limitations of the 
pharmacoepidemiological stud

 
AR and Gillet VJ (2003). Selecting diverse sets of compounds. An introduction 
to chemoinfor

 
Leardia R and González AL (1998). Genetic algorithms applied to feature selection in 

PLS regression: How and when to use them. Chemometrics and Intelligent 
Laboratory Systems 41(2): 195-207. 

L
machines. Proceedings of the International Conference on Artificial 
Intelligence, IC-AI'04. 1: 214-220. 

L
cytochrome P450 substrates and inhibitors. Drug Metabolism Reviews 34(1-2): 
69-82. 

 
Li AP (2001). Screening for human ADME/Tox drug properties in drug discovery. 

Drug Discovery Today 6(7): 357-366. 
 
Li AP, Kaminski DL and Rasmussen A (1995). Substrates of human hepatic 

cytochrome P450 3A4. Toxicology 104(1-3): 1-8. 

 



BIBLIOGRAPHY 233

Li H, Ung CY, Yap CW, Xue Y, Li ZR, Cao ZW and Chen YZ (2005a). Prediction of 
genotoxicity of chemical compounds by statistical learning methods. Chemical 
Research in Toxicology 18(6): 1071-1080. 

Li ZR, Han LY and Chen YZ (2005b). MODEL - Molecular Descriptor Lab 
(http://jing.cz3.nus.edu.sg/cgi-bin/model/model.cgi)

 

. 
http://jing.cz3.nus.edu.sg/cgi-bin/model/model.cgi. Bioinformatics & Drug 
Design group: Singapore.  

 
ipinski CA, Lombardo F, Dominy BW and Feeney PJ (1997). Experimental and 

dvanced Drug Delivery Reviews 23: 3-
25. 

Litman T, Zeuthen T, Skovsgaard T and Stein WD (1997). Structure-activity 
relationships of P-glycoprotein interacting drugs: kinetic characterization of 

ery. 2. Blood-
brain barrier penetration. Journal of Chemical Information and Computer 

 
Liu XH

anched phenylsulfonyl 
acetates to Daphnia magna. Chemosphere 50(3): 403-408. 

Liu Y iscovery. 
Journal of Chemical Information and Computer Sciences 44(5): 1823-1828. 

Livings
ford University Press. 

 
ivingstone DJ and Rahr E (1989). Corchop - An interactive routine for the 

 Journal of Pharmaceutical 
Sciences 92(2): 360-370. 

 

L
computational approaches to estimate solubility and permeability in drug 
discovery and development settings. A

 

their effects on ATPase activity. Biochimica et Biophysica Acta 1361(2): 159-
168. 

 
Liu R, Sun H and So SS (2001). Development of quantitative structure-property 

relationship models for early ADME evaluation in drug discov

Sciences 41(6): 1623-1632. 

, Wang B, Huang Z, Han SK and Wang LS (2003). Acute toxicity and 
quantitative structure-activity relationships of alpha-br

 
(2004). A comparative study on feature selection methods for drug d

 
tone DJ (1995a). Data analysis for chemists: Applications to QSAR and 
chemical product design. Oxford, Ox

 
Livingstone DJ (1995b). Data pre-treatment. Data analysis for chemists: Applications 

to QSAR and chemical product design. Oxford, Oxford University Press: 48-
64. 

 
Livingstone DJ and Manallack DT (2003). Neural networks in 3D QSAR. QSAR & 

Combinatorial Science 22(5): 510-518. 

L
dimension reduction of large QSAR data sets. Quantitative Structure-Activity 
Relationships 8: 103-108. 

 
Lobell M, Molnár L and Keserü GM (2003a). Recent advances in the prediction of 

blood-brain partitioning from molecular structure.

 



BIBLIOGRAPHY 234

Lobell M and Sivarajah V (2003b). In silico prediction of aqueous solubility, human 
plasma protein binding and volume of distribution of compounds from 
calculated pKa and AlogP98 values. Molecular Diversity 7(1): 69-87. 

alculations. Journal of 

 
ong A and Walker JD (2003). Quantitative structure-activity relationships for 

 
Lowrey AH, Famini GR, Loumbev V, Wilson LY and Tosk JM (1997). Modeling 

drug-melanin interaction with theoretical linear solvation energy relationships. 

 
Lu CT

edings of the Third IEEE International Conference on Data Mining. 

 
alik M and Camm AJ (2001). Evaluation of drug-induced QT interval prolongation: 

 
Manall ug discovery: have 

they lived up to their promise? European Journal of Medicinal Chemistry 

 
andagere AK and Jones B (2003). Prediction of bioavailability. Drug bioavailability: 

, Wiley-VCH. 18: 
444-460. 

Manly 
on, Chapman and Hall. 

ence Review 20(1-2): 13-38. 

pectives 104S(5): 1065-1073. 

. Pharmaceutical Research 5(4): 201-208. 

 
Lombardo F, Blake JF and Curatolo WJ (1996). Computation of brain-blood 

partitioning of organic solutes via free energy c
Medicinal Chemistry 39(24): 4750-4755. 

L
predicting metabolism and modeling cytochrome P450 enzyme activities. 
Environmental Toxicology and Chemistry 22(8): 1894-1899. 

Pigment Cell Research 10(5): 251-256. 

, Chen DC and Kou YF (2003). Algorithms for spatial outlier detection. 
Proce

 
Luco JM (1999). Prediction of the brain-blood distribution of a large set of drugs from 

structurally derived descriptors using partial least-squares (PLS) modeling. 
Journal of Chemical Information and Computer Sciences 39(2): 396-404. 

M
implications for drug approval and labelling. Drug Safety 24(5): 323-351. 

ack DT and Livingstone DJ (1999). Neural networks in dr

34(3): 195-208. 

M
Estimation of solubility, permeability, absorption and bioavailability. van de 
Waterbeemd H, Lennernas H and Artursson P. Weinheim

 
BFJ (1997). Randomization bootstrap and Monte Carlo methods in biology. 
Lond

 
Maran U and Sild S (2003). QSAR modeling of genotoxicity on non-congeneric sets 

of organic compounds. Artificial Intellig
 
Marchant CA (1996). Prediction of rodent carcinogenicity using the DEREK system 

for 30 chemicals currently being tested by the National Toxicology Program. 
Environmental Health Pers

 
Markin RS, Murray WJ and Boxenbaum H (1988). Quantitative structure-activity 

study on human pharmacokinetic parameters of benzodiazepines using the 
graph theoretical approach

 

 



BIBLIOGRAPHY 235

Masters T (1995). Advanced algorithms for neural networks : a C++ sourcebook. 
New York, Wiley. 

 
atthews BW (1975). Comparison of the predicted and observed secondary structure 

 
Mattion , Durham SK and Pearl GM (2003). 

Predicting the genotoxicity of secondary and aromatic amines using data 

 
cDowell R and Jaworska J (2002). Bayesian analysis and inference from QSAR 

 
cGowan JC (1963). Partition coefficients and biological activities. Nature 200: 

 
eltzer EO (1990). Performance effects of antihistamines. Journal of Allergy and 

 
Menard trics 

in diversity analysis, library design, and compound selection. Journal of 

 
eskin MS and Lien EJ (1985). QSAR analysis of drug excretion into human breast 

 
Meyer D, Leischa F and Hornik K (2003). The support vector machine under test. 

Neurocomputing 55(1-2): 169-186. 

MICRO

 
ICROMEDEX (2003b). MICROMEDEX. MICROMEDEX, Inc.: Greenwood 

 
iller JL, Bradley EK and Teig SL (2002). Luddite: An information-theoretic library 

 
itchell TM (1997). Machine learning. New York, McGraw-Hill. 

Molina
IA 2002. 

Escrig MT, Toledo F and Golobardes E, Springer-Verlag Heidelberg. 2504: 
216-227. 

M
of T4 phage lysozyme. Biochimica et Biophysica Acta 405(2): 442-451. 

i BE, Kauffman GW, Jurs PC, Custer LL

subsetting to generate a model ensemble. Journal of Chemical Information 
and Computer Sciences 43(3): 949-963. 

M
predictive model results. SAR and QSAR in Environmental Research 13: 111-
125. 

M
1317-1317. 

M
Clinical Immunology 86(4 Part 2): 613-619. 

 PR, Mason JS, Morize I and Bauerschmidt S (1998). Chemical space me

Chemical Information and Computer Sciences 38(6): 1204-1213. 

M
milk. Journal of Clinical and Hospital Pharmacy 10(3): 269-278. 

 
MEDEX (2003a). DRUGDEX® System. MICROMEDEX, Inc.: Greenwood 

Village, Colorado. Edition expires 12/2003 

M
Village, Colorado. Edition expires 12/2003 

M
design tool. Journal of Chemical Information and Computer Sciences 43(1): 
47-54. 

 
Mitchell TJ (1974). An algorithm for the construction of "D-optimal" experimental 

designs. Technometrics 16: 203-210. 

M
 

 LC, Belanche L and Nebot A (2002). Evaluating feature selection algorithms. 
Topics in Artificial Intelligence: 5th Catalonian Conference on AI, CC

 



BIBLIOGRAPHY 236

 
Molnar L and Keseru GM (2002). A neural network based virtual screening of 

cytochrome P450 3A4 inhibitors. Bioorganic and Medicinal Chemistry Letters 

 
oreau G and Broto P (1980). The autocorrelation of a topological structure: A new 

 
Morigu

tion coefficient. Chemical and 
Pharmaceutical Bulletin 40(1): 127-130. 

Mosier
rks and generalized regression neural networks. Journal of Chemical 

Information and Computer Sciences 42(6): 1460-1470. 

Mosier PD, Jurs PC, Custer LL, Durham SK and Pearl GM (2003). Predicting the 
genotoxicity of thiophene derivatives from molecular structure. Chemical 

 
oss AJ (1999). The QT interval and torsade de pointes. Drug Safety 21(Suppl 1): 5-

 
Mount urface-based 

system for molecular diversity. Journal of Medicinal Chemistry 42(1): 60-66. 

Muzika tential QT 
prolongation risk of drugs. Current Opinion in Drug Discovery and 

 
arayanan R and Gunturi SB (2005). In silico ADME modelling: prediction models 

y 13(8): 3017-3028. 

puters 26: 917-922. 

tabolic studies with liver microsomes from animals and humans. Drug 
Metabolism and Disposition 29(10): 1316-1324. 

NCI/NI s program. Retrieved 5 July 2005, from 
http://dtp.nci.nih.gov/index.html

12(3): 419-421. 

M
molecular descriptor. Nouveau Journal de Chimie 4: 359-360. 

chi I, Hirono S, Liu Q, Nakagome I and Matsushita Y (1992). Simple method 
of calculating octanol/water parti

 
 PD and Jurs PC (2002). QSAR/QSPR studies using probabilistic neural 
netwo

 

Research in Toxicology 16(6): 721-732. 

M
10. 

J, Ruppert J, Welch W and Jain AN (1999). IcePick: A flexible s

 
nt AL and Penland RC (2002). Models for profiling the po

Development 5(1): 127-135. 

N
for blood-brain barrier permeation using a systematic variable selection 
method. Bioorganic and Medicinal Chemistr

 
Narendra PM and Fukunaga K (1977). A branch and bound algorithm for feature 

subset selection. IEEE Transactions on Com
 
Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A and Sugiyama Y (2001). 

Prediction of human hepatic clearance from in vivo animal experiments and in 
vitro me

 
H. (2005). Developmental therapeutic

. 

eter J, Kutner MH, Nachtsheim CJ and Wasserman W (1996). Diagnostics and 

 
Ng C, 

inetic parameters relationships (QSPKR) analysis of antimicrobial 

 
N

remedial measures. Applied linear statistical models. Chicago, Irwin: 95-151. 

Xiao YD, Putnam W, Lum B and Tropsha A (2004). Quantitative structure-
pharmacok

 



BIBLIOGRAPHY 237

agents in humans using simulated annealing k-nearest-neighbor and partial 

 
ikolic S, Trinajstic N and Mihalic Z (1995). The Wiener index: Development and 

 
iwa T (2003). Using general regression and probabilistic neural networks to predict 

tistics. The use of electrotopological 
state indices. Journal of Pharmaceutical Sciences 90(8): 1076-1085. 

Norinder U, Österberg T and Artursson P (1999). Theoretical calculation and 
prediction of intestinal absorption of drugs in humans using MolSurf 

 Pharmaceutical Sciences 87(8): 952-959. 

itro half-life 
approach and nonspecific binding to microsomes. Drug Metabolism and 

 
Obach 

acokinetic parameters from 
preclinical and in vitro metabolism data. Journal of Pharmacology and 

 
lsson I-M, Gottfries J and Wold S (2004). D-optimal onion designs in statistical 

least-square analysis methods. Journal of Pharmaceutical Sciences 93(10): 
2535-2544. 

N
applications. Croatica Chemica Acta 68(1): 105-129. 

N
human intestinal absorption with topological descriptors derived from two-
dimensional chemical structures. Journal of Chemical Information and 
Computer Sciences 43(1): 113-119. 

 
Norinder U (2003). Support vector machine models in drug design: applications to 

drug transport processes and QSAR using simplex optimisations and variable 
selection. Neurocomputing 55(1-2): 337-346. 

 
Norinder U and Österberg T (2001). Theoretical calculation and prediction of drug 

transport processes using simple parameters and partial least squares 
projections to latent structures (PLS) sta

 

parametrization and PLS statistics. European Journal of Pharmaceutical 
Sciences 8(1): 49-56. 

 
Norinder U, Sjöberg P and Österberg T (1998). Theoretical calculation and prediction 

of brain-blood partitioning of organic solutes using MolSurf parametrization 
and PLS statistics. Journal of

 
Nuttakorn T and Boonserm K (2001). Support vector machine for Thai phoneme 

recognition. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 9(6): 803-813. 

 
Obach RS (1999). Prediction of human clearance of twenty-nine drugs from hepatic 

microsomal intrinsic clearance data: an examination of in v

Disposition 27(11): 1350-1359. 

RS, Baxter JG, Liston TE, Silber BM, Jones BC, Macintyre F, Rance DJ and 
Wastall P (1997). The prediction of human pharm

Experimental Therapeutics 283(1): 46-58. 

O
molecular design. Chemometrics and Intelligent Laboratory Systems 73(1): 
37-46. 

 

 



BIBLIOGRAPHY 238

Ooms 

-125. 

ling 17(5-6): 261-274. 

 
Osterbe iction of drug transport processes using 

simple parameters and PLS statistics. The use of ACD/logP and 

 
sterberg T and Norinder U (2000). Theoretical calculation and prediction of P-

 
Palm K r surface 

properties predict the intestinal absorption of drugs in humans. 

 
Pan D,

odels using a combination of 4D-molecular similarity 
measures and cluster analysis. Journal of Chemical Information and Computer 

 
Pardrid arrier 

transport. Journal of Neurochemistry 70: 1781-1792. 

Park B
rds understanding idiosyncratic drug toxicity. 

Toxicology 153(1-3): 39-60. 

Parzen

 
atterson DE, Cramer RD, Ferguson AM, Clark RD and Weinberger LE (1996). 

 
Pauling  properties of simple substances. IX. 

Hapten inhibition of precipitation of antisera homologous to the o-, m-, and p-

 
earlman RS CONCORD User's Manual. St. Louis, MO, Tripos Inc. 

 

F, Weber P, Carrupt PA and Testa B (2002). A simple model to predict blood-
brain barrier permeation from 3D molecular fields. Biochimica et Biophysica 
Acta 1587(2-3): 118

 
Oprea TI and Gottfries J (1999). Toward minimalistic modeling of oral drug 

absorption. Journal of Molecular Graphics and Model
 
Oprea TI and Gottfries J (2001). Chemography: the art of navigating in chemical 

space. Journal of Combinatorial Chemistry 3(2): 157-166. 

rg T and Norinder U (2001). Pred

ACD/ChemSketch descriptors. European Journal of Pharmaceutical Sciences 
12(3): 327-337. 

Ö
glycoprotein-interacting drugs using MolSurf parametrization and PLS 
statistics. European Journal of Pharmaceutical Sciences 10(4): 295-303. 

, Stenberg P, Luthman K and Artursson P (1997). Polar molecula

Pharmaceutical Research 14(5): 568-571. 

 Iyer M, Liu J, Li Y and Hopfinger AJ (2004). Constructing optimum blood 
brain barrier QSAR m

Sciences 44(6): 2083-2098. 

ge WM (1998). CNS drug design based on principles of blood-brain b

 
K, Kitteringham NR, Powell H and Pirmohamed M (2000). Advances in 
molecular toxicology - Towa

 
 E (1962). On estimation of a probability density function and mode. The 
Annals of Mathematical Statistics 33(3): 1065-1076. 

P
Neighborhood behavior: A useful concept for validation of "Molecular 
Diversity" descriptors. Journal of Medicinal Chemistry 39(16): 3049-3059. 

 L and Pressman D (1945). The serological

Azophenylarsonic acid groups. Journal of the American Chemical Society 67: 
1003-1012. 

P

 



BIBLIOGRAPHY 239

Pearlman RS and Smith KM (1999). Metric validation and the receptor-relevant 
subspace concept. Journal of Chemical Information and Computer Sciences 
39(1): 28-35. 

 
Pelkonen O, Boobis AR, Gundert-Remy U and 1 ACBWG (2001). In vitro prediction 

of gastrointestinal absorption and bioavailability: an experts' meeting report. 
European Journal of Clinical Pharmacology 57(9): 621-629. 

Penzott . A computational 
ensemble pharmacophore model for identifying substrates of P-glycoprotein. 

 
Perez J

 
latts JA, Abraham MH, Zhao YH, Hersey A, Ijaz L and Butina D (2001). 

y 36(9): 719-730. 

mputer Sciences 39(5): 835-845. 

s. Journal of Medicinal 
Chemistry 41(4): 478-488. 

Prival 
sis 

37(1): 55-69. 

Pudil P

 
uillardet P and Hofnung M (1993). The SOS chromotest: A review. Mutation 

 
i JE, Lamb ML, Evensen E and Grootenhuis PDJ (2002)

Journal of Medicinal Chemistry 45(9): 1737-1740. 

J (2005). Managing molecular diversity. Chemical Society Reviews 34(2): 143-
152. 

 
Pérez MAC, Sanz MB, Torres LR, Avalos RG, González MP and Díaz HG (2004). A 

topological sub-structural approach for predicting human intestinal absorption 
of drugs. European Journal of Medicinal Chemistry 39(11): 905-916. 

 
Pintore M, van de Waterbeemd H, Piclin N and Chrétien JR (2003). Prediction of oral 

bioavailability by adaptive fuzzy partitioning. European Journal of Clinical 
Pharmacology 38(4): 427-431. 

 
Platts JA, Abraham MH, Hersey A and Butina D (2000). Estimation of molecular 

linear free energy relationship descriptors. 4. Correlation and prediction of cell 
permeation. Pharmaceutical Research 17(8): 1013-1018. 

P
Correlation and prediction of a large blood-brain distribution data set - an 
LFER study. European Journal of Medicinal Chemistr

 
Platts JA, Butina D, Abraham MH and Hersey A (1999). Estimation of molecular free 

energy relation descriptors using a group contribution approach. Journal of 
Chemical Information and Co

 
Potter T and Matter H (1998). Random or rational design? Evaluation of diverse 

compound subsets from chemical structure database

 
MJ (2001). Evaluation of the TOPKAT system for predicting the 
carcinogenicity of chemicals. Environmental and Molecular Mutagene

 
, Novoviová J and Kittler J (1994). Floating search methods in feature 
selection. Pattern Recognition Letters 15(11): 1119-1125. 

Q
Research 297(3): 235-279. 

 

 



BIBLIOGRAPHY 240

Quinlan JR (1993). C4.5 : programs for machine learning. San Mateo, Calif, Morgan 
Kaufmann. 

 
ajer-Kanduc K and Zupan JM, N. (2003). Separation of data on the training and test 

 
andic M (1991). Novel graph theoretical approach to heteroatom in quantitative 

s 10: 213-227. 

 
endic S (2002). Summary of information on human CYP enzymes: human P450 

 
Reunan king comparisons between variable selection 

methods. Journal of Machine Learning Research 3: 1371-1382. 

Roche 
 potassium channel 

liability of compound libraries. Chembiochem 3(5): 455-459. 

Rockey

EDA-based feature 
ranking. BMC Bioinformatics 5: 64-. 

Sanderson DM and Earnshaw CG (1991). Computer prediction of possible toxic 
action from chemical structure: The DEREK system. Human and 
Experimental Toxicology 10(4): 261-273. 

R
set for modelling: a case study for modelling of five colour properties of a 
white pigment. Chemometrics and Intelligent Laboratory Systems 65(2): 221-
229. 

 
Randic M (1975). Graph theoretical approach to local and overall aromaticity of 

benzenoid hydrocarbons. Tetrahedron 31(11-12): 1477-1481. 

R
structure-activity relationship. Chemometrics and Intelligent Laboratory 
System

 
Randic M (1995). Molecular profiles. Novel geometry-dependent molecular 

descriptors. New Journal of Chemistry 19: 781-791. 

R
metabolism data. Drug Metabolism Reviews 34(1-2): 83-448. 

en J (2003). Overfitting in ma

 
O, Trube G, Zuegge J, Pflimlin P, Alanine A and Schneider G (2002). A 
virtual screening method for prediction of the hERG

 
 WM and Elcock AH (2002). Progress toward virtual screening for drug side 
effects. Proteins 48(4): 664-671. 

 
Rohrbaugh R and Jurs PC (1987). Descriptions of molecular shape applied in studies 

of structure/activity and structure/property relationships. Analytica Chimica 
Acta 199: 99-109. 

 
Rose K, Hall LH and Kier LB (2002). Modeling blood-brain barrier partitioning using 

the electrotopological state. Journal of Chemical Information and Computer 
Sciences 42(3): 651-666. 

 
Rücker G and Rücker C (1993). Counts of all walks as atomic and molecular 

descriptors. Journal of Chemical Information and Computer Sciences 33(5): 
683-695. 

 
Saeys Y, Degroeve S, Aeyels D, Rouze P and Van de Peer Y (2004). Feature 

selection for splice site prediction: a new method using 

 

 



BIBLIOGRAPHY 241

 
Saunders WB (2000). Dorland's illustrated medical dictionary. London. 

 
Schultz  Netzeva TI and Cronin MTD (2003). Selection of data sets for QSARs: 

analyses of Tetrahymena toxicity from aromatic compounds. SAR and QSAR 

 
chuur JH, Setzer P and Gasteiger J (1996). The coding of the three-dimensional 

uter Sciences 36(2): 334-344. 

lar Mutagenesis 31(1): 1-
3. 

Seelig P-glycoprotein. 
European Journal of Biochemistry 251: 252-261. 

Segarra tion of drug 
permeability based on grid calculations. Quantitative Structure-Activity 

 
Seydel pharmacokinetic 

relationships and drug design. Pharmacology and Therapeutics 15: 131-182. 

Shankar A and Pacovský O (2004). Annie - Artificial neural network library. 
www.sourceforge.net/projects/annie

 
Schmitt L and Tampe R (2002). Structure and mechanism of ABC transporters. 

Current Opinion in Structural Biology 12(6): 754-760. 

 TW,

in Environmental Research 14(1): 59-81. 

S
structure of molecules by molecular transforms and its application to structure-
spectra correlations and studies of biological activity. Journal of Chemical 
Information and Comp

 
Schwetz BA and Casciano DA (1998). Genetic toxicology: Impact on the next 

generation of toxicology. Environmental and Molecu

 
A (1998). A general pattern for substrate recognition by 

 
 V, Lopez M, Ryder H and Palacios JM (1999). Predic

Relationships 18(5): 474-481. 

JK and Schaper KJ (1981). Quantitative structure-

 

.  

Sherida
thms. Journal of Molecular Graphics and Modelling 18(4-

5): 320-334. 

Siedlec
Recognition Letters 10: 335-347. 

 
Sixt S, Altschuh J and Brueggemann R (1995). Quantitative structure-toxicity 

relationships for 80 chlorinated compounds using quantum chemical 

 
Sjoberg P (1997). MolSurf - a generator of chemical descriptors for QSAR. 

Computer-assisted lead finding and optimization: current tools for medicinal 

 

 
n RP, SanFeliciano SG and Kearsley SK (2000). Designing targeted libraries 
with genetic algori

 
ki W and Sklansky J (1989). A note on genetic algorithms for large-scale 
feature selection. Pattern 

 
Sirius (2000). Absolv. Sirius Analytical Instruments Ltd.  

descriptors. Chemosphere 30(12): 2397-2414. 

chemistry. van de Waterbeemd H, Testa B and Folkers G. Basel; Weinheim, 
VHCA; Wiley-VCH: 83-92. 

 



BIBLIOGRAPHY 242

Smith DA, Ackland MJ and Jones BC (1997a). Properties of cytochrome P450 
istics. Drug 

Discovery Today 2(10): 406-414. 

Smith  of cytochrome P450 
isoenzymes and their substrates Part 2: properties of cytochrome P450 

 
Smith  DK (2001a). High(er) throughput 

ADME studies. Pharmacokinetics and metabolism in drug design. Weinheim ; 

 
Smith 

iley-VCH. 

strong DJ. Washington, DC, American Chemical Society: 191-200. 

he computational programs DEREK, 
TOPKAT, and MCASE in the prediction of the genotoxicity of 

 
omers E, Kasparek MC and Pound J (1990). Drug regulation--the Canadian 

 
omol P and Pudil P (2000). Oscillating search algorithms for feature selection. 

e on Pattern Recognition. 
Barcelona. 2: 406-409. 

Somol 
s 20(11-13): 1157-1163. 

al Information and Computer Sciences 43(6): 
2019-2024. 

isoenzymes and their substrates Part 1: active site character

 
DA, Acklanda MJ and Jones BC (1997b). Properties

substrates. Drug Discovery Today 2(11): 479-486. 

DA, van de Waterbeemd H and Walker

Chichester, Wiley-VCH. 13: 133-141. 

DA, van de Waterbeemd H and Walker DK (2001b). Pharmacokinetics and 
metabolism in drug design. Weinheim ; Chichester, W

 
Smithing MP and Darvas F (1992). HazardExpert: an expert system for predicting 

chemical toxicity. Food Safety Assessment. Finlay JW, Robinson SF and 
Arm

 
Smola AJ and Scholkopf B A tutorial on support vector regression. NeuroCOLT2 

Technical Report Series. 
 
Snarey M, Terrett NK, Willett P and Wilton DJ (1997). Comparison of algorithms for 

dissimilarity-based compound selection. Journal of Molecular Graphics and 
Modelling 15(6): 372-385. 

 
Snyder RD and Green JW (2001). A review of the genotoxicity of marketed 

pharmaceuticals. Mutation Research 488(2): 151-169. 
 
Snyder RD, Pearl GS, Mandakas G, Choy WN, Goodsaid F and Rosenblum IY (2004). 

Assessment of the sensitivity of t

pharmaceutical molecules. Environmental and Molecular Mutagenesis 43(3): 
143-158. 

S
approach. Regulatory Toxicology and Pharmacology 12(3): 214-223. 

S
Proceedings of the 15th International Conferenc

 
P, Pudila P, Novoviová J and Paclí P (1999). Adaptive floating search methods 
in feature selection. Pattern Recognition Letter

 
Sorich MJ, Miners JO, McKinnon RA, Winkler DA, Burden FR and Smith PA (2003). 

Comparison of linear and nonlinear classification algorithms for the prediction 
of drug and chemical metabolism by human UDP-glucuronosyltransferase 
isoforms. Journal of Chemic

 



BIBLIOGRAPHY 243

 
 DF (1990). Probabilistic neural networks. Neural Networks 3(1): 109-118. Specht

 
pecht DF (1991). A general regression neural network. IEEE Transactions on 

 
Stanton harged partial surface area 

structural descriptors in computer assisted quantitative structure-property 

 
Stenber 2000). Virtual screening of intestinal 

permeability. Journal of Controlled Release 65: 231-243. 

Subram t blood-brain 
barrier permeation and CNS activity. Journal of Computer-Aided Molecular 

 
Sun HM ogP, 

LogS, LogBB, and absorption. Journal of Chemical Information and 

 
usnow RG and Dixon SL (2003). Use of robust classification techniques for the 

 
utherland JJ, O'Brien LA and Weaver DF (2003a). Spline-fitting with a genetic 

mputer Sciences 43(6): 
1906-1915. 

Sutherl

. 

hemical 
Journal 47(1-2): 60-66. 

Svetnik
ol for compound classification and QSAR modeling. 

Journal of Chemical Information and Modeling 45(3): 786-799. 

Tabach , MA, 
Allyn and Bacon. 

Taft RW

 

S
Neural Networks 2(6): 568-576. 

 DT and Jurs PC (1990). Development and use of c

relationship studies. Analytical Chemistry 62: 2323-2329. 

g P, Luthman K and Artursson P (

 
anian G and Kitchen DB (2003). Computational models to predic

Design 17(10): 643-664. 

 (2004). A universal molecular descriptor system for prediction of L

Computer Sciences 44(2): 748-757. 

S
prediction of human cytochrome P450 2D6 inhibition. Journal of Chemical 
Information and Computer Sciences 43(4): 1308-1315. 

S
algorithm: A method for developing classification structure-activity 
relationships. Journal of Chemical Information and Co

 
and JJ and Weaver DF (2003b). Development of quantitative structure-activity 
relationships and classification models for anticonvulsant activity of hydantoin 
analogues. Journal of Chemical Information and Computer Sciences 43(3): 
1028-1036

 
Sutter JM and H. KJ (1993). Comparison of forward selection, backward elimination, 

and generalized simulated annealing for variable selection. Microc

 
 V, Wang T, Tong C, Liaw A, Sheridan RP and Song QH (2005). Boosting: 
An ensemble learning to

 
nick BG and Fidell LS (2000). Using multivariate statistics. Boston

 
 (1952). Polar and steric substituent constants for aliphatic and o-benzoate 

groups from rates of esterification and hydrolysis of esters. Journal of the 
American Chemical Society 74: 3120-3128. 

 



BIBLIOGRAPHY 244

Todeschini R and Consonni V (2000). Handbook of molecular descriptors. Weinheim, 

 
oon S and Rowland M (1983). Structure-pharmacokinetic relationships among the 

 
ropsha A, Gramatica P and Gombar VK (2003). The importance of being earnest: 

 
rotter MWB, Buxton BF and Holden SB (2001). Support vector machines in 

 
Trotter

QSAR & Combinatorial Science 22(5): 533-548. 

 
urner JV, Maddalena DJ and Agatonovic-Kustrin S (2004a). Bioavailability 

 
urner JV, Maddalena DJ and Cutler DJ (2004b). Pharmacokinetic parameter 

 
urner JV, Maddalena DJ, Cutler DJ and Agatonovic-Kustrin S (2003b). Multiple 

 Sciences 92(3): 552-559. 

 15: 480-490. 

Wiley-VCH. 
 
Todeschini R, Consonni V, Mauri A and Pavan M (2003). DRAGON Web version. 

Talete SRL: Milan.  
 
Todeschini R, Consonni V, Mauri A and Pavan M (2005). DRAGON. Talete SRL: 

Milan.  

T
barbiturates in the rat. Journal of Pharmacology and Experimental 
Therapeutics 225(3): 752-763. 

 
Topliss JG and Edwards RP (1979). Chance factors in studies of quantitative 

structure-activity relationships. Journal of Medicinal Chemistry 22(10): 1238-
1244. 

 
Toutain PL and Bousquet-Melou A (2004). Plasma clearance. Journal of Veterinary 

Pharmacology and Therapeutics 27(6): 415-425. 

T
Validation is the absolute essential for successful application and 
interpretation of QSPR models. QSAR & Combinatorial Science 22(1): 69-77. 

T
combinatorial chemistry. Measurement and Control 34(8): 235-239. 

 MWB and Holden SB (2003). Support vector machines for ADME property 
classification. 

 
Turner JV, Glass BD and Agatonovic-Kustrin S (2003a). Prediction of drug 

bioavailability based on molecular structure. Analytica Chimica Acta 485(1): 
89-102. 

T
prediction based on molecular structure for a diverse series of drugs. 
Pharmaceutical Research 21(1): 68-82. 

T
prediction from drug structure using artificial neural networks. International 
Journal of Pharmaceutics 270(1-2): 209-219. 

T
pharmacokinetic parameter prediction for a series of cephalosporins. Journal 
of Pharmaceutical

 
van de Waterbeembd H, Camenisch G, Folkers G and Raevsky OA (1996). 

Estimation of Caco-2 cell permeability using calculated molecular descriptors. 
Quantitative Structure-Activity Relationships

 

 



BIBLIOGRAPHY 245

van de Waterbeemd H and Gifford E (2003). ADMET in silico modelling: towards 
prediction paradise? Nature Reviews. Drug Discovery 2(3): 192-204. 

: 299-303. 

ters. Advances in Experimental Medicine and Biology 456: 145-158. 

 
apnik VN (1995). The nature of statistical learning theory. New York, Springer. 

Vasilie
ch in Microbiology 153(7): 435-440. 

ailability of drug candidates. 
Journal of Medicinal Chemistry 45(12): 2615-2623. 

Ventur

and deformability. American Journal of Physiology. Renal Physiology 288(4): 

 
eropoulos K (2001). Machine learning approaches to medical decision making, 

 
iswanadhan VN, Reddy MR, Bacquet RJ and Erion MD (1993). Assessment of 

 
otano JR, Parham M, Hall LH and Kier LB (2004). New predictors for several 

 
ajima T, Fukumura K, Yano Y and Oguma T (2003a). Prediction of human 

nce. Journal of Pharmaceutical 
Sciences 92(12): 2427-2440. 

Waldm
olecular Graphics 

and Modelling 18(4-5): 412-426. 

 
van de Waterbeemd H and Kansy M (1992). Hydrogen-bonding capacity and brain 

penetration. Chimia 46
 
van Veen HW and Konings WN (1998). Structure and function of multidrug 

transpor
 
Vandenberg JI, Walker BD and Campbell TJ (2001). HERG K+ channels: friend and 

foe. Trends in Pharmacological Sciences 22(5): 240-246. 

V
 

va S (2002). Chromotest methodology for fundamental genetic research. 
Resear

 
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW and Kopple K (2002). 

Molecular properties that influence the oral bioav

 
oli D and Rippe B (2005). Ficoll and dextran vs. globular proteins as probes for 
testing glomerular permselectivity: effects of molecular size, shape, charge, 

F605-F613. 

V
University of Bristol. 

V
methods used for predicting lipophilicity: application to nucleosides and 
nucleoside bases. Journal of Computational Chemistry 14(9): 1019-1026. 

V
ADME/Tox properties: Aqueous solubility, human oral absorption, and Ames 
genotoxicity using topological descriptors. Molecular Diversity 8(4): 379-391. 

W
clearance from animal data and molecular structural parameters using 
multivariate regression analysis. Journal of Pharmaceutical Sciences 91(12): 
2489-2499. 

 
Wajima T, Fukumura K, Yano Y and Oguma T (2003b). Prediction of human 

pharmacokinetics from animal data and molecular structural parameters using 
multivariate regression analysis: Oral cleara

 
an M, Li H and Hassan M (2000). Novel algorithms for the optimization of 
molecular diversity of combinatorial libraries. Journal of M

 



BIBLIOGRAPHY 246

 
M (2005). GAlib. Wall http://lancet.mit.edu/ga/. Massachusetts Institute of 
Technology. A C++ Library of Genetic Algorithm Components 

Watari N and et al. (1988). Prediction of hepatic first-pass metabolism and plasma 
levels following intravenous and oral administration of barbiturates in the 

 

rabbit based on quantitative structure-pharmacokinetic relationships. Journal 
of Pharmacokinetics and Biopharmaceutics 16(3): 279-301. 

 
Wegner JK (2005). JOELib/JOELib2. http://www-ra.informatik.uni-

tuebingen.de/software/joelib/index.html.  
 
Wegner JK, Fröhlich H and Zell A (2004). Feature selection for descriptor based 

classification models. 2. Human intestinal absorption (HIA). Journal of 

 
eisstein EW. (1999). Correlation coefficient. MathWorld - A Wolfram Web 

Chemical Information and Computer Sciences 44(3): 931-939. 

W
Resource. from http://mathworld.wolfram.com/CorrelationCoefficient.html. 

ad ST (1994). Neural network and fuzzy logic appl
 
Welste ications in C/C++. New 

York, Wiley. 

Wessel

and Computer Sciences 38(4): 726-735. 

rt of drug discovery. Annual Review of Pharmacology 
and Toxicology 40: 133-157. 

Wilkin

 
ilson JT (1981). Drugs in breast milk. Sydney, ADIS Press. 

Wilson

emistry 34(5): 1668-1674. 

 
itten IH and Frank E (2005). Data mining: Practical machine learning tools and 

 

 
 MD, Jurs PC, Tolan JW and Muskal SM (1998). Prediction of human 
intestinal absorption of drug compounds from molecular structure. Journal of 
Chemical Information 

 
White RE (2000). High-throughput screening in drug metabolism and 

pharmacokinetic suppo

 
son GR (1981). Clearance approaches in pharmacology. Pharmacological 
Reviews 39(1): 1-47. 

 
Willett P, Barnard JM and Downs GM (1998). Chemical similarity searching. Journal 

of Chemical Information and Computer Sciences 38(6): 983-996. 

W
 

 LY and Famini GR (1991). Using theoretical descriptors in quantitative 
structure-activity relationships: some toxicological indices. Journal of 
Medicinal Ch

 
Winkler DA and Burden FR (2004). Modelling blood-brain barrier partitioning using 

Bayesian neural nets. Journal of Molecular Graphics and Modelling 22(6): 
499-505. 

W
techniques. San Francisco, Morgan Kaufmann. 

 



BIBLIOGRAPHY 247

Wold S and Eriksson L (1995). Statistical validation of QSAR results. Chemometric 

 
Wu W  and Prebble KA 

(1996). Artificial neural networks in classification of NIR spectral data: 

 
u L and Zhang WJ (2001). Comparison of different methods for variable selection. 

 
ue CX, Zhang RS, Liu HX, Yao XJ, Liu MC, Hu ZD and Fan BT (2004a). QSAR 

method and a support vector machine. Journal of Chemical 
Information and Computer Sciences. 

Xue Y,
assification of 

pharmacokinetic and toxicological properties of chemical agents. Journal of 

 
Xue Y, Wang JF and Chen YZ (2004c). Prediction of p-

glycoprotein substrates by support vector machine approach. Journal of 

 
amazaki K and Kanaoka M (2004). Computational prediction of the plasma protein-

rsade-causing potential 
of drugs by support vector machine approach. Toxicological Sciences 79(1): 

 
Yap CW ytochrome P450 3A4, 2D6, and 2C9 

inhibitors and substrates by using support vector machines. Journal of 

 
Yap CW n YZ (2005b). Quantitative structure-pharmacokinetic relationships 

for drug distribution properties by using general regression neural network. 

 
oshida F and Topliss JG (2000). QSAR model for drug human oral bioavailability. 

Journal of Medicinal Chemistry 43(13): 2575-2585. 

methods in molecular design. van de Waterbeemd H. Weinheim; New York; 
Basel; Cambridge; Tokyo, VCH: 309-318. 

 
Wold S, Esbensen K and Geladi P (1987). Principal component analysis. 

Chemometrics and Intelligent Laboratory Systems 2: 37-52. 

, Walczaka B, Massarta DL, Heuerdingb S, Ernib F, Lastc IR

Design of the training set. Chemometrics and Intelligent Laboratory Systems 
33(1): 35-46. 

 
Wythoff BJ (1993). Backpropagation neural networks. A tutorial. Chemometrics and 

Intelligent Laboratory Systems 18(2): 115-155. 

X
Analytica Chimica Acta 446: 475-481. 

X
models for the prediction of binding affinities to human serum albumin using 
the heuristic 

 
 Li ZR, Yap CW, Sun LZ, Chen X and Chen YZ (2004b). Effect of molecular 
descriptor feature selection in support vector machine cl

Chemical Information and Computer Sciences 44(5): 1630-1638. 

 Yap CW, Sun LZ, Cao ZW, 

Chemical Information and Computer Sciences 44(4): 1497-1505. 

Y
binding percent of diverse pharmaceutical compounds. Journal of 
Pharmaceutical Sciences 93(6): 1480-1494. 

 
Yap CW, Cai CZ, Xue Y and Chen YZ (2004). Prediction of to

170-177. 

 and Chen YZ (2005a). Prediction of c

Chemical Information and Modeling 45(4): 982-992. 

 and Che

Journal of Pharmaceutical Sciences 94(1): 153-168. 

Y

 



BIBLIOGRAPHY 248

 
 RC, Mitchell RC, Brown TH, Ganellin CR, Griffith R, Jones M, Rana KK, 
Saundesr D, Smith IR, Sore NE and Wilks 

Young
TJ (1988). Development of a new 

physicochemical model for brain penetration and its application to the design 

B): 220-228. 

nal of Environmental Sciences 
(China) 14(4): 552-557. 

Yuan Z f protein accessible surface areas by 
support vector regression. Proteins 57(3): 558-564. 

Zaknic

46-1449. 

Journal of 
Pharmaceutical Sciences 90(6): 749-784. 

Zmuidi
n of human 

intestinal absorption. Journal of Pharmaceutical Sciences 92(3): 621-633. 

Zuegge
 liability of 

compound libraries. Quantitative Structure-Activity Relationships 21(3): 249-

 
Zuegge J, Schneider G, Coassolo P and Lave T (2001). Prediction of hepatic 

metabolic clearance: comparison and assessment of prediction models. 

 
 

of centrally acting H2 receptor histamine antagonists. Journal of Medicinal 
Chemistry 31: 656-671. 

 
Yu H, Yang J, Wang W and Han J (2003). Discovering compact and highly 

discriminative features or feature combinations of drug activities using support 
vector machines. Proceeding of the IEEE computer society bioinformatics 
conference (CS

 
Yu RL, Hu GR and Zhao YH (2002). Comparative study of four QSAR models of 

aromatic compounds to aquatic organisms. Jour

 
 and Huang BX (2004). Prediction o

 
h A (1999). Efficient kernel functions for the general regression and modified 
pobabilistic neural networks. Proceedings of the International Joint 
Conference on Neural Networks. 2: 14

 
Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Boutina D, 

Beck G, Sherborne B, Cooper I and Platts JA (2001). Evaluation of human 
intestinal absorption data and subsequent derivation of a quantitative structure-
activity relationship (QSAR) with the Abraham descriptors. 

 
navicius D, Didziapetris R, Japertas P, Avdeef A and Petrauskas A (2003). 
Classification structure-activity relations (C-SAR) in predictio

 
 J, Fechner U, Roche O, Parrott NJ, Engkvist O and Schneider G (2002). A 
fast virtual screening filter for cytochrome P450 3A4 inhibition

256. 

Clinical Pharmacokinetics 40(7): 553-563. 

 



APPENDIX 249

Appendix 

1: HIA+ compounds. 

 

Table 

Acebutolol Diazepam Lornoxicam Praziquantel 

Acetami

cetylsa Mercaptoethane sulfonic Progesterone 

Acrivast Methadone Propiverine 

lprenolol Ethinylestradiol Methylprednisolone Propylthiouracil 

moxici Recainam 

Antipyri

ropine Sorivudine 

Bromaz

Bupropi

affeine Granisetron Nisoldipine Sulindac 

aptopr Telmisartan 

efadroxil Ibuprofen Nordiazepam Tenidap 

Cefatrizine Imipramine Norfloxacin Tenoxicam 

Ceftizoxime Isoniazid Ofloxacin Terazosin 

Cephalexin Isoxicam Omeprazole Testosterone 

nophen Diclofenac Meloxicam Prazosin 

licylic acid Dihydrocodeine A

acid 

ine Disulfiram 

Alprazolam Ethambutol Methotrexate Propranolol 

A

Aminopyrine Famciclovir Metoprolol Quinidine 

llin Felodipine Mexiletine A

Amrinone Fenclofenac Morphine Saccharin 

ne Flecainide Moxonidine Salicylic acid 

 Fluconazole Naloxone At

Betaxolol Flumazenil Naproxen Sotalol 

epam Fluvastatin Nefazodone Spironolactone 

Bumetanide Gallopamil Nicotine Stavudine 

on Glyburide Nicotinic acid Sudoxicam 

C

Camazepam Guanabenz Nitrendipine Sultopride 

il Hydrocortisone Nizatidine C

C
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Chloramphenicol Isradipine Ondansetron Theophylline 

Cicaprost Ketoprofen Tiagabine 

c Oxazepam Timolol 

Clofibrate Labetalol Oxprenolol Tolbutamide 

Clonidine Lamivudine Oxyfedrine Tolmesoxide 

Codeine Lamotrigine Phenglutarimide Topiramate 

Corticosterone Lansoprazole Phenytoin Torasemide 

Cycloserine Levodopa Pindolol Toremifene 

Cyproterone-acetate Levonorgestrel Piroxicam Tramadol 

Desipramine Loracarbef Piroximone Trapidil 

Dexamethasone Lormetazepam Practolol  

Oxatomide 

Cisapride Ketorola
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Table 2: HIA- compo

 

unds. 

Acarbose Chlorothiazide Lactulose Pirbuterol 

Acyclovir Cimetidine  in 

cin 

 

acid 

enol 

Azithromycin Erythromycin Metformin Rimiterol 

Azosemide Etoposide Methyldopa Streptomycin 

Aztreonam Famotidine Metolazone Sulfasalazine 

umatriptan 

retyliumtosylate Gabapentin Neomycin Terbutaline 

Bromocriptine Ganciclovir Netivudine Thiacetazone 

Capreomycin Gliclazide Olsalazine Tranexamicacid 

Cefetamet-pivoxil Guanoxan Ouabain  

Ceftriaxone Hydrochlorothiazide Pafenolol  

Cefuroxime Kanamycin Phenoxymethylpenicillin  

Lincomycin Pravastat

Amiloride Ciprofloxa Lisinopril Raffinose 

Ampicillin Doxorubicin Lovastatin Ranitidine 

Ascorbic- Eflornithine Mannitol Reproterol 

Atenolol Enalapril Metaproter Ribavirin 

Benazepril Fenoterol Mibefradil Sulpiride 

Benzylpenicillin Furosemide Nadolol S

B
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Table 3: P-glycoprotein substrates. 

Compound t Compound Set Se  

Corticosterone Training  ning Prazosin Trai

Doxorubicin ing  ine Training 

ning  ir Training 

ining  henylphosphon Training 

-deoxypodoph raining  Training 

ng  fan Training 

e Training  ining 

aining  in aining 

one aining  Training 

ining  ramycin raining 

ining  aniline ing 

ining  cin   aining 

raining  ing 

raining  ol       Training 

A azine Training 

ining  Training 

hodamine123 Training  Epirubicin Testing 

Digitoxigenin Training  Quinine Testing 

Staurosporine Training  Vincristine Testing 

Isosafrole Training  Cis-flupenthixol Testing 

Lovastatin Training  Digitoxin Testing 

Fexofenadine Training  Methylprednisolone Testing 

Nimodipine Training  Idarubicin Testing 

Nelfinavir   Training  Verapamil Testing 

Methadone Training  Pafenolol Testing 

Trifluoperazine Training  Digoxigenin Testing 

Monensin Training  Terfenadine Testing 

Train Promaz

Quinidine Trai Ritonav

Vinblastine Tra Tetrap ium 

Acetamido yllotoxin T Bisantrene 

Fluphenazine   Traini Endosul

Hydrocortison Estriol Tra

Digoxin Tr Ivermect Tr

Dexamethas Tr Leupeptin   

Daunomycin Tra Mith T

HOE33342   Tra Pararos Train

GF120918-1    Tra Rapamy Tr

Diltiazem T S9788    Train

Colchicine T Safing

Cyclosporin- Training  Phenox

Dibucaine   Tra Vindoline 

P
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Ondansetron Training  Spiperone Testing 

Indinavir Tra   Cinchonid Test

erpate 

ysteine-methylester ne 

 

e 

ole  

 

 

ne  

   

curonide  

ne                             

                                    n 

  

e    e 

e 

n 

n 

icin 

n 

m 

te  

ining ine ing 

Dexniguldipine   Training  Methylres Testing 

Saquinavir Training  Celiprolol Testing 

S-farnesylc Training  Cepharanthi Testing 

Reserpine Training  Puromycin Testing 

LY335979 Training  Docetaxel Testing 

Mitoxantrone Training  Mitomycin-C Testing 

Topotecan Training  Morphin Testing 

Dipyridam Training  Valinomycin Testing 

Haloperidol Training  Teniposide Testing 

Estradiol Training  Epothilone_A Testing 

Azidopine Training  Acebutolol Validation

Toremifene   Training  Adriamycin Validation

Paclitaxel Training  Aldostero Validation

Thioridazine Training  Calphostin_C Validation

Morphine-6-glu Training  Catharantine Validation

Nifedipine Training  Chlorpromazi Validation

Actinomycin_D Training  CP100356  Validatio

Cefoperazone  Training  Depredil   Validation 

Triflupromazin Training  Domperidon Validation 

Amiodaron Training  Emetine Validation 

Cefazolin Training  Etoposide Validatio

Cefotetan Training  Gallopamil Validatio

Clotrimazole Training  Hydroxyrub Validation 

Erythromyci Training  k02 Validation 

Flunitrazepa Training  Losartan Validation 

Loperamide Training  Nicardipine Validation 

Methotrexa Training  Perphenazine Validation 
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Phenobarbital    n Training  Rifampicin Validatio

Phenytoin Training  Yohimbine   Validation 
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Table 4: P-glycoprotein non- s

Compound  mpound 

substrate . 

Set Co Set 

 (Penzotti et al. 2002) Training  NSC268251 Training 4

NSC667558 Training  NSC606532   Training 

NSC676602                                      Training  NSC617286   Training 

NSC667532 Training  NSC639677 Training 

Prednisolone Training  NSC648403   Training 

Aminodeoxy Training  NSC666331   Training 

Cortexolone Training  NSC671400 Training 

Methoxychlor Training  NSC686028    Training 

Chlorambucil Training  S_farnesyl_cysteine Training 

NSC674570 Training  Aminocarb Training 

NSC49899 Training  Atrazine Training 

Deoxypodophyllotoxin Training  Chaps Training 

PSC833   Training  Dialifos Training 

NSC630148 Training  Dieldrin Training 

NSC630721 Training  Leptophos Training 

3 (Penzotti et al. 2002) Training  Mirex      Training 

Progesterone Training  Phosmet     Training 

Aldoxycarb Training  Systeine_methylester   Training 

L767679 Training  Triforine Training 

BIBW22 Training  Trypan_blue   Training 

NSC633528 Training  Vinclozolin Training 

Nigericin Training  NSC667551 Training 

NSC653278 Training  NSC676615 Training 

NSC623083 Training  Epipodophyllotoxin Training 

NSC668354 Training  Deoxycorticosterone Training 

Reserpic_acid Training  1 (Penzotti et al. 2002) Testing 

Fluazifop-butyl Training  2 (Penzotti et al. 2002) Testing 
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NSC664565 Training  Farnesol Testing 

Tamoxifen Tra   Melphalan Test

 

ide  

  

 17  

6616  

2 lotoxin  

ining ing 

NSC667560 Training  Mevinphos Testing 

Cytarabine Training  Paraquat Testing 

NSC615985 Training  Propiconazole Testing 

NSC678047 Training  NSC676593 Testing 

NSC676610 Training  NSC676618 Testing 

Carbaryl Training  NSC674508 Testing 

Aldicarb Training  NSC309132 Testing 

Carmustine Training  NSC364080 Validation

Cyclophospham Training  NSC630357 Validation

Epinephrine Training  NSC667533 Validation

Fluorouracil Training  NSC6766 Validation

Lindane Training  NSC67 Validation

NSC31462 Training  Podophyl Validation

Midazolam Training    
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Table 5: Blood brain barrier p  datas

pound Lo Set Remarks 

enetration et. 

Com g BB 

2 -0.04 a ing Tr in   

4 -1.3 is et al. 2001; Platts et 

-1.17 a ing 

-2.15  Kaznessis et al. 200

-0.67 a ing 

-0.66 l ation 

-0.12 a ing 

-0.18 a ing 

-1.15 l ation 

-1.57 a ing 

-1.54 a ing 

-1.12  al. 1994; Platts et a

-0.73 994; Platts et a

-0.27 a ing 

3 -0.28 Training   

24 -0.46 Validation   

25 -0.24 Training   

26 -0.02 Training   

27 0.69 Validation   

28 0.44 Training   

30 0.22 Training   

33 -0.3 Validation   

34 -1.34 Validation   

35 -1.82 Training   

69 -0.16 Training   

111-trichloroethane 0.4 Training   

111-trifluoro-2-chloroethane 0.08 Training   

1-hydroxymidazolam -0.07 Training   

Outlier  (Kazness al. 2001) 

11 Tr in   

12 Outlier  (Luco 1999; 1) 

13 Tr in   

14 Va id   

15 Tr in   

16 Tr in   

17 Va id   

18 Tr in   

19 Tr in   

20 Outlier  (Abraham et l. 2001) 

21 Outlier  (Abraham et al. 1 l. 2001) 

22 Tr in   

2
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22-dimethylbutane 1.04 Training   

2-methy 0.97 Vali    

ethylpropanol 

opanol   

ethylhexane 

ethylpentane  

ymidazolam  

H-risperidone 

tone 

tylsalicylic acid 

razolam 

inopyrine 

itriptyline 

obarbital  

on  

nolol 

zene 

tazenil 

mperidol 

anone 

 

 

feine -0.05 

bamazepine 

bamazepine epoxide 

ustine 

 

lpentane dation

2-m -0.17 Training   

2-pr -0.15 Training   

3-m 0.9 Training   

3-m 1.01 Training   

4-hydrox -0.3 Validation   

9-O -0.67 Training   

Ace -0.15 Training   

Ace -0.5 Training   

Alp 0.04 Validation   

Am 0 Training   

Am 0.89 Training   

Am 0.04 Training   

Arg 0.03 Not used Descriptors cannot be computed 

Ate -1.42 Training   

Ben 0.37 Training   

Bre -0.09 Training   

Bro 1.38 Training   

But -0.08 Training   

C15 0.39 Training   

C17 1.2 Training   

C7 0.11 Training   

Caf Validation   

Car 0 Training   

Car -0.34 Training   

Carm -0.52 Training   

Chlorambucil -1.7 Training   

Chlorpromazine 1.06 Validation   

Cimetidine -1.42 Training   
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Clobazam 0.35 Training   

Clonidine 0.11 Training   

Codeine 0.55 Validation 

 

  

ldesipramine  

azine  

thene) ether 

2  

ne 

 ether 

her 

one 

 

benzene 

azenil  

itrazepam 

ine latts et al. 2001) 

3 

l 

  

CS2 0.6 Training   

Cyclohexane 0.92 Training   

Cyclopropane 0 Training   

Desipramine 1.2 Validation   

Desmethylclobazam 0.36 Validation   

Desmethy 1.06 Validation   

Desmonomethylprom 0.59 Validation   

Di-(2-fluoroe 0.13 Training   

Diazepam 0.5 Validation   

Dichlorometha -0.11 Training   

Didanosine -1.3 Training   

Diethyl 0 Training   

Divinyl et 0.11 Training   

Domperid -0.78 Training   

Enflurane 0.24 Training   

Ethanol -0.16 Training   

Ether 0 Validation   

Ethyl 0.2 Training   

Flum -0.29 Training   

Flun 0.06 Training   

Fluphenaz 1.51 Outlier  (P

Fluroxene 0.1 Training   

Haloperidol 1.34 Training   

Halothane 0.35 Training   

Heptane 0.81 Training   

Hexane 0.8 Training   

Hexobarbita 0.1 Training   
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Hydroxyzine 0.39 Training   

Ibuprofen -0.18 Training   

Icotidine -2 Outlier  (Abraham et al. 1994; Lombardo et al. 1996) 

ine  

6 

 

escriptors cannot be computed 

ane 

ntane 

 

e  

e 

ene 9 

escriptors cannot be computed 

lark 1999; Liu et al. 2001) 

 

promazine  

romazine 

 

dazine 

2  aznessis et al. 2001; Platts et al. 2001) 

 

Imipram 1.06 Training   

Indinavir -0.74 Training   

Indometacin -1.2 Training   

Isoflurane 0.42 Training   

Krypton -0.16 Not used D

Lupitidine -1.06 Training   

Mepyramine 0.49 Training   

Mesoridazine -0.36 Training   

Methane 0.04 Training   

Methohexital -0.06 Training   

Methoxyflur 0.25 Training   

Methylcyclope 0.93 Training   

Mianserin 0.99 Training   

Midazolam 0.36 Validation   

Mirtazapin 0.53 Validation   

Morphin -0.16 Training   

m-Xyl 0.2 Training   

Neon 0.2 Not used D

Nevirapine 0 Training   

Nitrogen 0.03 Outlier  (C

Nitrous oxide 0.03 Training   

Nor-1-chlor 1.37 Validation   

Nor-2-chlorp 0.97 Training   

Nordazepam 0.5 Training   

Northiori 0.75 Training   

Org 1296 1.64 Outlier  (K

Org 13011 0.16 Training   
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Org 30526 0.39 Training   

Org 32104  

  

 

 

ol 

e 

 

ine  

 

l 

ne  

46 

 t al. 2001) 

 

d 

 

  

0.52 Validation   

Org 34167 0 Training   

Org 4428 0.82 Training   

Org 5222 1.03 Validation   

Oxazepam 0.61 Validation   

o-Xylene 0.37 Training   

Paracetam -0.31 Training   

Paraxanthin 0.06 Training   

Pentane 0.76 Training   

Pentobarbital 0.12 Training   

Phenazone -0.1 Training   

Phenserine 1 Training   

Phenylbutazone -0.52 Training   

Phenytoin -0.04 Training   

Physostigm 0.079 Training   

Promazine 1.23 Training   

Propanol -0.16 Training   

Propanone -0.15 Validation   

Propranolo 0.64 Training   

p-Xyle 0.31 Training   

Quinidine -0. Training   

Ranitidine -1.23 Outlier  (Abraham et al. 1994; Platts e

Risperidone -0.02 Validation   

RO19-4603 -0.25 Training   

Salicylic acid -1.1 Training   

Salicyluric aci -0.44 Training   

SB 222200 0.3 Training   

SF6 0.36 Training   

SKF101468 0.25 Validation   
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SKF89124 -0.43 Training   

SKF93319 -1.3 Training   

Sulforidazine 8  

e 

rambucil 1 

ine  

 

ium 

ine latts et al. 2001) 

 

hene 

e 

ine 

cid 

escriptors cannot be computed 

 

 

aznessis et al. 2001; Platts et al. 2001) 

aznessis et al. 2001; Platts et al. 2001) 

 

0.1 Validation   

Teflurane 0.27 Training   

Temelastin -1.88 Training   

Terbutylchlo Training   

Theobrom -0.28 Validation   

Theophylline -0.29 Training   

Thiopental sod -0.14 Training   

Thioridaz 0.24 Outlier  (P

Tibolone 0.4 Training   

Tiotidine -0.82 Training   

Toluene 0.37 Training   

Triazolam 0.74 Training   

Trichloroet 0.34 Training   

Trichloromethan 0.29 Training   

Trifluoperaz 1.44 Training   

Valproic a -0.22 Training   

Verapamil -0.7 Training   

Xenon 0.03 Not used D

Y-G14 -0.3 Validation   

Y-G15 -0.06 Training   

Y-G16 -0.42 Training   

Y-G19 -1.3 Outlier  (K

Y-G20 -1.4 Outlier  (K

Zidovudine -0.72 Training   

Zolantidine 0.14 Training   
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Table 6: Human serum in bin se  

pound Log a Remarks 

album ding data t.

Com Khs Set 

Acebutolol -0.21 Training   

Acetylsalicylic acid 

4  

 

 

n 

epine 

 

l 

e  

ide 

ine 

xacin 

te 

e 

e  

licic acid  

e 

 

igitoxin 0.13 Training   

Doxycycline 0.01 Validation   

Droperidol 0.43 Training   

-1.39 Training   

Acrivastine -0.02 Training   

Alprenolol 0.0 Validation   

Amoxicillin -1.21 Training   

Atenolol -0.48 Validation   

Bumetanide -0.03 Training   

Bupropion -0.05 Training   

Caffeine -0.92 Training   

Camptotheci -0.08 Training   

Carbamaz -0.1 Training   

Cefalexin -1.11 Validation   

Cefuroxime -1.33 Training   

Cefuroxime axetil -0.56 Training   

Chloramphenico -0.46 Training   

Chlorpromazin 1.1 Validation   

Chlorpropam -0.44 Training   

Cimetid -0.44 Training   

Ciproflo 0.14 Training   

Clofibra 0.27 Training   

Clonidin -0.13 Training   

Clotrimazol 1.34 Training   

Cromog -1.07 Training   

Dansylglycin -0.26 Training   

Desipramine 0.61 Training   

D
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Ebselen -1.04 Not used Descriptors cannot be computed 

Estradio Train   

 

e 

rothiazide 

ne  

 

n 

 

 

solone  

e 

 

l  

one 

 

l 0.68 ing 

Etoposide -0.49 Training   

Flucytosine -1.11 Training   

Furosemide -0.13 Training   

Fusidic acid 0.33 Training   

Glibenclamid 0.68 Training   

Hydrochlo -0.42 Training   

Hydrocortiso -0.4 Validation   

Imipramine 0.75 Validation   

Indometaci 0.47 Training   

Itraconazole 1.04 Training   

Ketoconazole 0.84 Training   

Ketoprofen 0.03 Training   

Labetalol 0.14 Training   

Lamotrigine -0.13 Training   

Levofloxacin 0.14 Training   

Lidocaine -0.23 Training   

Methotrexate -0.77 Training   

Methylpredni -0.22 Validation   

Metoprolol -0.29 Training   

Minocyclin 0.21 Training   

Nadolol -0.4 Training   

Naproxen 0.25 Training   

Norfloxacin 0.14 Validation   

Novobiocin 0.35 Training   

Ondansetron 0.37 Training   

Oxprenolo -0.15 Validation   

Oxyphenbutaz -0.02 Validation   

Paracetamol -0.81 Training   
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Phenazone -0.69 Training   

Phenoxymethylpenicillin  

zone 

 

 

cil 

 

 

 

e 

 

  

 

 

-0.69 Validation   

Phenylbuta 0.19 Training   

Phenytoin 0 Training   

Pindolol -0.13 Validation   

Prazosin 0.06 Validation   

Prednisolone -0.4 Training   

Procaine -0.19 Training   

Progesterone 0.59 Training   

Promazine 0.92 Training   

Propranolol 0.28 Training   

Propylthioura -0.75 Training   

Quinidine 0.44 Training   

Quinine 0.49 Validation   

Ranitidine -0.1 Training   

Salicylic acid -0.66 Training   

Sancycline 0.21 Validation   

Scopolamin -0.34 Training   

Sotalol -0.44 Training   

Sulfaphenazole -0.21 Training   

Sulfasalazine 0.56 Training   

Sumatriptan -0.05 Training   

Terazosin -0.16 Training   

Terbinafine 1.17 Training   

Testosterone 0.74 Validation   

Tetracaine 0.32 Training   

Tetracycline -0.08 Validation   

Timolol -0.33 Training   

Tolazamide -0.42 Training   

Tolbutamide -0.22 Training   
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Triflupromazine 1.05 Training   

Trimethoprim -0.26 Training   

Tryptophan -0.78 Training   

Verapamil 0.52 

e 

Training   

Warfarin -0.04 Training   

Zidovudin -1.02 Training   
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Table 7: Milk-plasma distribution d

ound M/P Remarks 

ataset. 

Comp Set 

Acyclovir 2.35 Training   

Amitriptyline  

in  n  

e   

Ampicillin 0.295 Validation   

Aspirin 1.63 Training   

Astemizole 4.4 Training   

Atenolol 2.1 Validation   

Bupivacaine 0.34 Training   

Bupropion 5.545 Training   

Caffeine 0.711 Validation   

Cannabis 4.24 Training   

Carbamazepine 0.465 Training   

Carbamazepine 10,11-

epoxide 

0.79 Training   

Carbenicillin 0.02 Training   

Cefotaxime 0.16 Training   

Cefoxitin 0 Training   

Ceftriaxone 0.045 Training   

Cephalexin 0.012 Training   

Chloramphenicol 0.655 Training   

Chlorprothixene 1.48 Training   

Cimetidine 1.7 Training   

Ciprofloxacin 1.495 Training   

Citalopram 2.1 Training   

Clemastine 0.375 Training   

Clofazimine 1.35 Training   

Clomipramine 1.03 Training   

1.53 Validation  

Amoxycill 0.028 Validatio  

Amphetamin 5.15 Training  
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Clonazepam 0.33 Training   

Clozapin Trai   

 

loratadine 0.8 

pram  

 

yldoxepin   

  

 

 

foxide 

 

0.9 Training   

 

 8  

 

n  

 5 

 

e 3.555 ning 

Codeine 2.16 Validation   

Cotinine 0.78 Training   

Decarboetoxy Training   

Demethylcitalo 1.75 Validation   

Desipramine 0.915 Validation   

Desmeth 1.275 Validation   

Diazepam 0.7 Training   

Diltiazem 0.98 Training   

Disopyramide 0.9 Training   

Dothiepin 1.59 Validation   

Dothiepsul 1.18 Training   

Doxepin 1.37 Training   

Doxycycline 0.34 Training   

Erythromycin 

Ethanol 

0.455 Training   

Ethosuximide 0.8 Training   

Flunitrazepam 0.54 Training   

Fluoxetine 0.7 Validation   

Gentamicin 0.44 Training   

Haloperidol 0.64 Training   

Ibuprofen 0 Training   

Imipramine 0.76 Validation   

Indomethaci 0.19 Training   

Labetalol 1.7 Training   

Lamotrigine 0.42 Training   

Lidocaine 1.07 Training   

Loratadine 1.2 Training   

Lorazepam 0.205 Training   
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Medroxyprogesterone 0.72 Training   

Mefloquine 

ol 

e 

 

 

 

 

de 

ertraline 

 

  

in 

 

 sulfoxide  

one 9  

e roneous compound 

ne  

lvenlafaxine 

0.145 Training   

Mepindol 2.6 Validation   

Methadon 0.44 Training   

Methotrexate 0.04 Training   

Methyldopa 0.265 Training   

Metoprolol 2.55 Training   

Metronidazole 0.95 Training   

Mexiletine 1.34 Training   

Mianserin 2.2 Training   

Minoxidil 0.76 Training   

Moclobemi 0.72 Training   

Morphine 2.46 Training   

Nadolol 4.6 Training   

N-desmethyls 1.64 Training   

Nefopam 1.2 Training   

Nicotine 2.25 Training   

Nitrazepam 0.27 Validation   

Nitrendipine 0.35 Training   

Nitrofuranto 2.25 Training   

Nordothiepin 0.85 Training   

Nordothiepin 1.86 Validation   

Norethindr 0.1 Validation   

Norfluexetin 0.56 Not used Er

Norfluoxetine 0.56 Training   

Nortriptyli 1.18 Training   

Noscapine 0.29 Training   

O-desmethy 3.3 Training   

Oxazepam 0.1 Training   

Oxprenolol 0.37 Training   
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Paracetamol 0.88 Training   

Paroxetine 0.75 Training   

Penicillin G 0.315 

ne 

 

e 

de 

l  

cin  

 

5  

azole 

 

 

 

5 

  

 

Validation   

Penicillin V 0.37 Training   

Perfenazine 0.9 Training   

Phenacetin 0.67 Training   

Phenobarbito 0.5 Training   

Phenytoin 0.363 Training   

Prednisolon 0.13 Training   

Procainami 3.2 Training   

Propranolo 0.403 Training   

Quazepam 4.13 Training   

Quinapril 0.12 Training   

Rosarami 0.12 Training   

Roxithromycin 0.035 Training   

Sertraline 1.27 Validation   

Sotalol 5.4 Training   

Sulfamethox 0.1 Training   

Sumatriptan 4.9 Training   

Suprofen 0.014 Training   

Temazepam 0.14 Validation   

Tetracycline 0.95 Validation   

Theobromine 0.82 Training   

Theophylline 0.7 Training   

Tiapamil 0.44 Training   

Timolol 0.8 Training   

Tinidazole 1.005 Training   

Tolmetin 0.00 Training   

Triprolidine 0.53 Training   

Valproic acid 0.053 Training   

 



APPENDIX 271

Venlafaxine 3.8 Training   

Verapamil 0.6 Training   

Vigabatrin 1 Training   

Zolpidem 0.13 Training   

Zonisamide 0.93 

 

Training   

Zopiclone 0.555 Training   
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Table 8: CYP P450 dat . I – in n- hibitor datasets. S – substrates/non-

 datasets. 

Compound 3A4-I 3A4-S 2D9-I 2D9-S 2C9-I 2C9-S 

asets hibitor/no in

substrates

Abacavir P- P- P- P- P- P- 

Abecarnil P- P- P- P- P- P- 

Abiraterone P- P- P- P- P- P- 

Acebutolol P- P- P+ P- P- P- 

Aceclofenac P- P- P- P- P- P+ 

Acenocoumarol P- P+ P- P- P+ P+ 

Acetanilide P- P- P- P- P- P- 

Acetazolamide P+ P- P- P- P- P- 

Acetone P- P- P- P- P- P- 

Acetylsalicylic acid P- P- P- P- P- P+ 

Adinazolam P- P+ P- P- P- P- 

Ajmaline P- P- P+ P- P- P- 

Albendazole P- P+ P- P+ P- P+ 

Alfentanil P- P+ P- P- P- P- 

Almotriptan P+ P+ P+ P+ P- P- 

Alosetron P- P+ P- P- P- P+ 

Alpidem P- P+ P- P- P- P- 

Alprazolam P- P+ P- P- P- P- 

Alprenolol P- P- P+ P+ P- P- 

Ambroxol P+ P+ P- P- P- P- 

Amfetamine P- P- P- P+ P- P- 

Amiflamine P- P- P- P+ P- P- 

Amifloxacin P- P- P- P- P- P- 

Aminoglutethimide P- P- P- P- P- P- 

Aminopyrine P- P+ P- P+ P- P+ 

Amiodarone P+ P+ P+ P+ P+ P+ 
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Amitriptyline P+ P+ P+ P+ P+ P+ 

Amlodipine P+ P+ P+ P- P+ P- 

Amodiaqui

P+ P+ P+ 

ir P+ P+ P- P+ P- 

P+ P+ P- 

 

P+ P+ 

P+ 

ine P+ 

P+ P+ P+ P+ P+ 

P+ P+ 

P+ P+ P+ P+ 

P+ 

P+ 

P+ 

ne P- P- P- P+ P- P- 

Amoxapine P- P- P+ 

Amprenav P+ 

Anastrozole P- P+ P- 

Aniline P- P- P- P- P- P- 

Anthraquinone P- P- P- P- P- P- 

Apomorphine P- P+ P- P- P- P- 

Aprepitant P- P- P- P- 

Aprindine P- P- P- P- P- 

Aranidip P- P- P- P- P- 

Argatroban P- P+ P- P- P- P- 

Aripiprazole P- P+ P- P+ P- P- 

Artemisinin P- P+ P- P+ P- P- 

Artesunate P- P- P- P- P- P- 

Astemizole P- 

Atamestane P- P- P- P- P- P- 

Atazanavir P- P- P- P- 

Atomoxetine P- P+ P- P+ P- P+ 

Atorvastatin P- P- 

Atovaquone P- P- P- P- P- 

Avasimibe P+ P- P- P- P- P- 

Avitriptan P- P+ P- P+ P- P- 

Azacyclonol P- P- P+ P- P- P- 

Azamulin P- P- P- P- P- 

Azapropazone P- P- P- P- P- 

Azatadine P- P- P- P- P- P- 

Azelastine P+ P+ P+ P+ P+ P- 
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Azimilide P- P+ P- P- P- P- 

Azithromycin 

ne 

ne 

 

one 

 

 

m 

 

ol 

 

 

P+ P- P- P- P- P- 

Barnidipine P+ P+ P+ P- P+ P- 

Beclometaso P- P- P- P- P- P- 

Benidipine P+ P- P+ P- P+ P- 

Benzbromaro P- P- P- P- P+ P- 

Benzene P- P- P- P- P- P- 

Benzfetamine P- P+ P- P- P- P- 

Benzydamine P- P+ P- P+ P- P- 

Bepridil P- P+ P+ P- P- P- 

Betamethas P+ P- P- P- P- P- 

Betaxolol P- P- P+ P+ P- P- 

Bexarotene P- P+ P- P- P- P- 

Bezafibrate P- P+ P- P- P- P- 

Bifluranol P- P- P- P- P- P- 

Bifonazole P+ P- P- P- P- P- 

Biperiden P- P- P+ P- P- P- 

Bisoprolol P- P+ P- P+ P- P- 

Boldenone P- P+ P- P- P- P- 

Bortezomib P- P+ P- P+ P- P+ 

Bosentan P- P+ P- P- P- P+ 

Brinzolamide P- P+ P- P- P- P- 

Brofaromine P- P- P- P+ P- P- 

Bromazepa P- P+ P- P- P- P- 

Bromocriptine P+ P+ P- P- P- P- 

Bromperid P- P+ P- P+ P- P- 

Bropirimine P- P- P- P- P- P- 

Brotizolam P- P+ P- P- P- P- 

Budesonide P- P+ P- P- P- P- 
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Budipine P- P- P+ P- P- P- 

Buflomedil P- P- P- P+ P- P- 

Bufuralol P- P+ P+ P+ P- P+ 

Bunitrolol P- P- P- P+ P- P- 

Bupivacaine 

hine 

linate 

 

ine 

e 

l 

 

holic acid 

ate 

col 

P- P+ P- P+ P- P- 

Bupranolol P- P- P+ P+ P- P- 

Buprenorp P+ P+ P+ P+ P+ P- 

Bupropion P- P+ P+ P- P- P- 

Buspirone P- P+ P- P+ P- P- 

Busulfan P- P+ P- P- P- P- 

Caffeine P- P+ P- P+ P- P+ 

Calcium fo P+ P- P- P- P- P- 

Candesartan P- P- P- P- P+ P+ 

Capravirine P- P- P- P- P- P- 

Captopril P- P- P- P+ P- P- 

Carbamazep P+ P+ P- P+ P+ P+ 

Carbaril P- P+ P- P+ P- P+ 

Carbimazol P- P- P- P- P- P- 

Carisoprodo P- P- P- P- P- P- 

Carteolol P- P- P- P+ P- P- 

Carvedilol P+ P+ P- P+ P- P+ 

Cathinone P- P- P+ P- P- P- 

Celecoxib P- P+ P+ P+ P- P+ 

Cerivastatin P+ P+ P+ P- P+ P- 

Cetirizine P+ P- P- P- P- P- 

Cevimeline P- P+ P- P+ P- P- 

Chenodeoxyc P- P+ P- P- P- P- 

Chloral hydr P- P- P- P- P- P- 

Chlorampheni P+ P- P+ P- P+ P- 
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Chlordiazepoxide P- P+ P- P- P- P- 

Chlormadinone 

mine 

il P- 

ine 

ne 

 

n 

e 

e 

 

 

 

n 

 

 

ole 

P+ P- P- P- P- P- 

Chloroquine P+ P+ P+ P+ P- P- 

Chlorphena P- P+ P+ P+ P- P- 

Chlorproguan P- P- P- P- P- 

Chlorpromaz P+ P+ P+ P+ P+ P- 

Chlorpyrifos P+ P+ P- P+ P- P+ 

Chlorzoxazo P+ P+ P- P+ P- P- 

Cibenzoline P- P+ P- P+ P- P- 

Ciclospori P+ P+ P- P- P- P- 

Cilnidipin P- P+ P- P- P+ P- 

Cilostazol P- P+ P- P- P- P- 

Cimetidine P+ P+ P+ P- P+ P- 

Cinnarizine P- P- P- P+ P- P+ 

Ciprofibrat P- P+ P- P- P- P- 

Ciprofloxacin P+ P- P- P- P- P- 

Cisapride P+ P+ P+ P+ P- P+ 

Citalopram P- P+ P+ P+ P+ P- 

Clarithromycin P+ P+ P- P- P- P- 

Clemastine P+ P- P+ P- P- P- 

Clindamyci P+ P+ P- P- P- P- 

Clofazimine P+ P- P- P- P- P- 

Clofibrate P- P+ P- P- P- P- 

Clofibric acid P- P+ P- P- P- P- 

Clomethiaz P- P+ P- P- P- P- 

Clomipramine P- P+ P+ P+ P- P+ 

Clonazepam P- P+ P- P- P- P- 

Clopidogrel P- P+ P- P- P+ P- 

Clotrimazole P+ P+ P+ P- P+ P- 
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Clozapine P+ P+ P+ P+ P+ P+ 

Cocaine P+ P+ P+ P- P- P- 

Codeine P- P+ P+ P+ P- P- 

Colchicine P+ P+ P- P- P+ P- 

Colecalciferol P- P- P+ P- P+ P- 

Colestyramine P- P- P- P- P- P- 

Corticosterone 

prine 

amide 

n 

 

ram 

 

e 

P+ P+ P- P- P- P- 

Cortisol P+ P+ P- P- P- P- 

Cortisone P- P+ P- P- P- P- 

Cotinine P- P- P- P- P- P- 

Coumarin P+ P- P- P- P- P- 

Cyclobenza P- P+ P- P+ P- P- 

Cyclophosph P+ P+ P- P+ P- P+ 

Cyproterone P- P+ P- P- P- P- 

Dacarbazine P- P- P- P- P- P- 

Dalfopristin P+ P- P- P- P- P- 

Danazol P+ P- P- P- P- P- 

Dantrolene P- P+ P- P- P- P- 

Dapsone P- P+ P- P+ P- P+ 

Daunorubici P+ P- P- P- P- P- 

Dazoxiben P- P- P- P- P- P- 

Debrisoquine P- P- P+ P+ P- P- 

Delapril P+ P- P- P- P- P- 

Delavirdine P+ P+ P+ P+ P+ P+ 

Demethylcitalop P- P- P- P+ P- P- 

Desipramine P- P- P+ P+ P- P- 

Desloratadine P+ P- P+ P- P+ P- 

Desogestrel P- P- P- P- P- P+ 

Dexamethason P+ P+ P- P- P- P- 
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Dexloxiglumide P- P- P- P- P+ P- 

Dexmedetomidine 

thorphan 

xyphene 

rol 

rbamazine 

estrol 

 

ine 

rgotamine 

sulfoxide 

amine 

orazepate 

n 

ium 

P+ P- P+ P- P+ P- 

Dextrome P- P+ P+ P+ P- P+ 

Dextropropo P+ P- P+ P- P+ P- 

Dextrorphan P- P+ P- P+ P- P- 

Diazepam P+ P+ P- P- P- P+ 

Diclofenac P+ P+ P- P- P+ P+ 

Dicouma P- P- P- P- P+ P+ 

Dieldrin P- P- P- P- P- P- 

Diethylca P- P- P- P- P- P- 

Diethylstilb P- P+ P- P- P- P- 

Difloxacin P- P- P- P- P- P- 

Digitoxin P- P+ P- P- P- P- 

Digoxin P+ P- P- P- P- P- 

Dihydralazine P+ P+ P- P- P- P- 

Dihydrocode P- P+ P- P+ P- P- 

Dihydroe P+ P+ P- P- P- P- 

Diltiazem P+ P+ P+ P+ P+ P+ 

Dimethyl P+ P- P+ P- P+ P- 

Diosmin P- P- P- P- P- P- 

Diphenhydr P- P- P+ P+ P- P- 

Dipotassium cl P- P+ P- P- P- P- 

Diprafenone P- P- P- P+ P- P- 

Dirithromyci P+ P- P- P- P- P- 

Disopyramide P- P+ P- P- P- P+ 

Disulfamide P+ P- P- P- P- P- 

Disulfiram P- P- P- P- P+ P- 

Ditiocarb sod P+ P- P- P- P- P- 

Docetaxel P+ P+ P- P- P- P- 
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Dofetilide P- P+ P- P- P- P- 

Dolasetron P- P+ P- P+ P- P+ 

Domperidone P+ P- P- P- P- P- 

Donepezil P- P+ P- P+ P- P- 

Dorzolamide P- P+ P- P- P- P+ 

Doxepin P- P+ P- P+ P- P+ 

Doxorubicin P+ P+ P+ P- P- P- 

Doxycycline P+ P+ P- P- P- P- 

Dronabinol 

 

e 

 

 

P- P+ P- P- P- P- 

Drospirenone P+ P+ P- P- P+ P- 

Dutasteride P- P+ P- P- P- P- 

Ebastine P- P+ P- P- P- P- 

Ebrotidine P+ P- P- P- P- P- 

Ecabapid P- P+ P- P- P- P- 

Econazole P+ P- P- P- P- P- 

Efavirenz P+ P+ P+ P- P+ P- 

Efonidipine P+ P- P- P- P- P- 

Eletriptan P- P+ P- P- P- P+ 

Emedastine P- P+ P- P- P- P- 

Emivirine P- P+ P- P- P- P- 

Enalapril P- P+ P- P- P- P- 

Encainide P- P- P- P+ P- P- 

Enflurane P- P- P- P- P- P- 

Enoxacin P- P- P- P- P- P- 

Entacapone P+ P- P+ P- P+ P- 

Epinastine P- P+ P- P+ P- P- 

Epinephrine P- P- P- P- P+ P- 

Eplerenone P+ P+ P- P- P- P- 

Eprosartan P- P- P- P- P+ P- 
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Ergometrine P- P+ P- P- P- P- 

Ergotamine P+ P+ P- P- P- P- 

Erythromycin P+ P+ P+ P- P- P- 

Escitalopram 

ol 

e 

 

hine 

l 

 

 

 

 

 

e 

P- P+ P- P+ P+ P- 

Estradiol P- P+ P- P+ P- P+ 

Estrone P- P+ P- P- P- P+ 

Ethanol P- P+ P- P- P+ P- 

Ethinylestradi P+ P+ P- P- P- P- 

Ethosuximid P- P+ P- P- P- P- 

Ethotoin P- P- P- P- P- P- 

Ethylbenzene P- P- P- P- P- P- 

Ethylmorp P- P+ P- P+ P- P- 

Etomidate P- P- P- P- P- P- 

Etonogestre P- P+ P- P- P- P- 

Etoperidone P- P+ P+ P+ P- P+ 

Etoposide P+ P+ P- P- P- P- 

Etoricoxib P+ P+ P+ P+ P+ P+ 

Everolimus P- P+ P- P- P- P- 

Exemestane P- P+ P- P- P- P- 

Ezlopitant P- P+ P+ P+ P- P- 

Fadrozole P- P- P- P- P- P- 

Famotidine P+ P- P- P- P- P- 

Felbamate P- P+ P- P- P- P- 

Felodipine P+ P+ P+ P- P+ P- 

Fenfluramine P- P- P- P+ P- P- 

Fenofibrate P- P+ P- P- P- P- 

Fentanyl P+ P+ P- P- P- P- 

Fexofenadin P- P+ P+ P- P- P- 

Finasteride P- P+ P- P- P- P- 
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Flecainide P- P- P+ P+ P- P- 

Flosequinan P- P+ P- P- P- P- 

Flucloxacillin P- P+ P- P- P- P- 

Fluconazole P+ P- P- P- P+ P- 

Flufenamic acid 

ne 

epam 

n 

 

n 

 

 

in 

n 

e 

P- P- P- P- P- P- 

Flunarizi P- P- P- P+ P- P+ 

Flunitraz P- P+ P- P- P- P+ 

Fluorouracil P- P- P- P- P+ P- 

Fluoxetine P+ P+ P+ P+ P+ P+ 

Fluparoxa P- P- P- P- P- P- 

Fluperlapine P- P- P+ P+ P- P- 

Fluphenazine P+ P- P+ P+ P- P- 

Flurazepam P- P- P- P- P- P- 

Flurbiprofen P- P- P- P- P+ P+ 

Flurithromyci P+ P- P- P- P- P- 

Flutamide P+ P+ P- P- P- P- 

Fluticasone P- P+ P- P- P- P- 

Fluvastatin P+ P+ P+ P+ P+ P+ 

Fluvoxamine P+ P- P+ P+ P+ P- 

Fosphenyto P- P- P- P- P- P- 

Frovatripta P- P- P- P- P- P- 

Furafylline P- P- P- P- P- P- 

Galantamin P- P+ P- P+ P- P- 

Gallopamil P+ P+ P- P- P- P- 

Ganaxolone P- P+ P- P- P- P- 

Gatifloxacin P- P- P- P- P- P- 

Gefitinib P- P+ P- P- P- P- 

Gemfibrozil P+ P+ P- P- P+ P- 

Gepirone P- P+ P- P+ P- P- 
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Gestodene P+ P+ P- P- P- P- 

Glibenclamide 

itrate 

 

cyclizine 

e 

e 

e 

ine 

oquine 

e 

e 

P+ P+ P- P- P+ P+ 

Gliclazide P- P- P- P- P- P+ 

Glimepiride P- P- P- P- P- P+ 

Glipizide P+ P- P- P- P- P+ 

Glyceryl trin P- P+ P- P- P- P- 

Granisetron P- P+ P- P- P- P- 

Grepafloxacin P+ P- P- P- P- P- 

Griseofulvin P- P- P- P- P- P- 

Guanabenz P- P- P- P- P- P- 

Guanoxan P- P- P- P+ P- P- 

Halofantrine P- P+ P+ P+ P- P- 

Haloperidol P+ P+ P+ P+ P- P- 

Halothane P- P+ P- P+ P- P+ 

Hexobarbital P- P- P- P- P- P+ 

Homochlor P+ P- P- P- P- P- 

Hydralazine P+ P- P- P- P- P- 

Hydrocodon P- P+ P- P+ P- P- 

Hydrocortison P- P+ P- P+ P- P- 

Hydroquinidin P- P- P+ P- P- P- 

Hydroxyamfetam P- P- P- P+ P- P- 

Hydroxychlor P- P- P+ P- P- P- 

Hydroxyzine P- P- P+ P- P- P- 

Ibuprofen P- P- P- P- P+ P+ 

Ibutilide P- P- P- P- P- P- 

Ifosfamide P+ P+ P- P- P- P+ 

Iloperidon P- P+ P- P+ P- P- 

Imatinib P+ P+ P+ P- P+ P- 

Imipramin P- P+ P+ P+ P- P+ 
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Imiquimod P- P+ P- P- P- P- 

Indinavir P+ P+ P+ P+ P+ P+ 

Indometacin 

 

itrate 

ine 

 

ethadol 

aine 

cin 

azine 

P- P- P- P- P+ P+ 

Indoramin P- P- P- P+ P- P- 

Ipriflavone P+ P- P- P- P+ P- 

Irbesartan P+ P- P- P- P+ P+ 

Irinotecan P+ P+ P- P- P+ P- 

Isbogrel P- P- P- P- P- P- 

Isoconazole P- P- P- P- P- P- 

Isoflurane P- P- P- P- P- P- 

Isoniazid P+ P- P+ P- P+ P- 

Isosorbide din P- P+ P- P- P- P- 

Isradipine P- P+ P- P- P+ P- 

Itraconazole P+ P+ P- P- P+ P- 

Ivermectin P- P+ P- P- P- P- 

Josamycin P+ P- P- P- P- P- 

Ketamine P- P+ P- P+ P- P+ 

Ketoconazole P+ P+ P+ P- P+ P- 

Ketoprofen P- P- P- P- P+ P- 

Labetalol P- P- P+ P+ P- P- 

Lacidipine P- P+ P- P- P- P- 

Lansoprazole P+ P+ P+ P- P+ P+ 

Leflunomide P- P+ P- P- P+ P- 

Lercanidip P+ P+ P+ P- P- P- 

Letrozole P- P+ P- P- P- P- 

Levacetylm P- P+ P- P+ P- P+ 

Levobupivac P- P+ P- P- P- P- 

Levofloxa P- P- P- P- P- P- 

Levomeprom P- P- P+ P- P- P- 
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Levonorgestrel P- P+ P- P- P- P- 

Levothyroxine sodium 

 

e 

 

ine 

lpiperazine 

sterone 

P- P+ P- P- P- P- 

Liarozole P- P- P- P- P- P- 

Lidocaine P- P+ P+ P+ P- P+ 

Lilopristone P+ P+ P- P- P- P- 

Linezolid P- P- P- P- P- P- 

Liothyronine P- P- P- P- P- P- 

Lisofyllin P- P+ P- P- P- P- 

Lisuride P- P+ P- P+ P- P- 

Litoxetine P- P- P- P- P- P- 

Lobeline P- P- P+ P- P- P- 

Lomefloxacin P- P- P- P- P- P- 

Lomustine P+ P- P+ P- P- P- 

Lopinavir P+ P+ P+ P- P+ P- 

Loratadine P+ P+ P+ P+ P+ P- 

Lornoxicam P- P- P- P- P+ P+ 

Losartan P+ P+ P- P- P+ P+ 

Losigamone P- P- P- P- P- P- 

Lovastatin P- P+ P+ P- P+ P- 

Lumefantr P- P+ P- P- P- P- 

Malathion P+ P- P- P- P- P- 

Manidipine P+ P+ P+ P- P+ P- 

Maprotiline P- P- P+ P+ P- P- 

m-Chloropheny P- P- P- P+ P- P- 

Mebendazole P- P- P- P- P- P- 

Medazepam P- P- P- P- P- P- 

Medifoxamine P- P+ P- P- P- P- 

Medroxyproge P- P+ P- P- P- P- 

Mefenamic acid P- P- P- P- P+ P+ 
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Mefloquine P+ P+ P- P- P- P- 

Meloxicam P- P+ P- P- P+ P+ 

Mepacrine 

in 

e 

ine 

e 

ne 

b 

 

rane 

etrine 

ate 

nobarbital 

solone 

ide 

ole 

P- P- P+ P- P- P- 

Mephenyto P- P- P- P- P+ P+ 

Mepyramine P- P- P+ P- P- P- 

Mequitazin P+ P- P- P+ P- P- 

Mestranol P- P- P- P- P- P+ 

Metamfetam P- P- P- P+ P- P- 

Methadon P+ P+ P+ P+ P- P+ 

Methaqualo P- P+ P- P- P- P- 

Methiocar P- P+ P- P+ P- P- 

Methomyl P- P- P- P- P- P- 

Methoxsalen P+ P- P+ P- P+ P- 

Methoxyflu P- P+ P- P- P- P- 

Methylergom P- P+ P- P- P- P- 

Methylphenid P- P+ P+ P- P- P- 

Methylphe P- P- P- P- P- P- 

Methylpredni P+ P+ P- P- P- P- 

Metoclopram P+ P+ P+ P+ P- P- 

Metoprolol P- P- P+ P+ P- P- 

Metronidaz P+ P- P- P- P+ P+ 

Metyrapone P+ P- P- P- P- P- 

Mevastatin P- P- P- P- P- P- 

Mexazolam P- P+ P- P- P- P- 

Mexiletine P- P- P- P+ P- P- 

Mianserin P- P+ P+ P+ P- P+ 

Mibefradil P+ P+ P+ P- P- P- 

Miconazole P+ P+ P+ P- P+ P- 

Midazolam P+ P+ P+ P- P+ P+ 
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Midecamycin P+ P- P- P- P- P- 

Mifepristone 

 

 

e 

P+ P+ P+ P- P- P- 

Milameline P- P- P- P+ P- P- 

Milnacipran P- P- P- P- P- P- 

Minaprine P- P- P- P+ P- P- 

Minoxidil P- P- P- P- P- P- 

Mirtazapine P+ P+ P+ P+ P- P+ 

Mitoxantrone P+ P- P- P- P- P- 

Mizolastine P+ P+ P+ P+ P+ P- 

Moclobemide P- P- P+ P- P+ P- 

Modafinil P- P+ P- P- P+ P- 

Molindone P- P- P- P+ P- P- 

Montelukast P- P+ P- P- P- P+ 

Moracizine P- P- P- P- P- P- 

Morphine P- P+ P- P+ P- P+ 

Mosapride P- P+ P- P- P- P- 

Nafcillin P- P- P- P- P- P- 

Nalidixic acid P- P- P- P- P- P- 

Naproxen P- P- P- P- P- P+ 

Nateglinide P- P+ P- P- P+ P+ 

Nefazodone P+ P+ P+ P- P- P- 

Nefiracetam P- P+ P- P- P- P- 

Nelfinavir P+ P+ P+ P+ P+ P+ 

Nevirapine P+ P+ P- P+ P- P+ 

Nicardipine P+ P+ P+ P+ P+ P- 

Niclosamid P- P- P+ P- P- P- 

Nicotine P- P+ P- P+ P- P+ 

Nifedipine P+ P+ P+ P+ P+ P- 

Niludipine P- P+ P- P- P- P- 
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Nilutamide P- P- P- P- P- P- 

Nilvadipine P+ P+ P- P- P- P- 

Nimodipine P+ P+ P- P- P+ P- 

Nimorazole P- P- P- P- P- P- 

Nisoldipine 

e 

 

e 

 

 

e 

ne 

e 

e 

 

ne 

P+ P+ P- P- P- P- 

Nitrendipin P+ P+ P- P- P+ P- 

Nitrosamine P- P- P- P- P- P- 

Norcodeine P- P- P- P+ P- P- 

Nordazepam P- P+ P- P- P- P- 

Norethisterone P- P- P- P- P- P- 

Norfloxacin P+ P- P- P- P- P- 

Norfluoxetin P+ P- P+ P+ P+ P- 

Nortriptyline P- P+ P+ P+ P- P- 

Ofloxacin P- P- P- P- P- P- 

Olanzapine P+ P- P+ P+ P+ P- 

Olopatadine P- P+ P- P- P- P- 

Oltipraz P+ P- P- P- P- P- 

Omapatrilat P- P- P- P- P- P- 

Omeprazol P+ P+ P+ P+ P+ P+ 

Onapristone P+ P+ P- P- P- P- 

Ondansetron P- P+ P+ P+ P+ P+ 

Opipramol P- P- P- P+ P- P- 

Orphenadri P+ P+ P+ P+ P+ P- 

Oxamniquin P- P- P+ P- P- P- 

Oxcarbazepin P- P- P- P- P- P- 

Oxiconazole P+ P- P- P- P- P- 

Oxodipine P- P+ P- P- P- P- 

Oxomemazi P- P- P- P- P- P- 

Oxprenolol P- P- P+ P- P- P- 
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Oxybutynin P+ P+ P+ P- P- P- 

Oxycodone P- P- P- P+ P- P- 

Paclitaxel P+ P+ P- P- P- P- 

Pantoprazole 

 

e 

 

lline P- 

al 

on 

P+ P+ P- P- P- P- 

Papaverine P+ P- P- P+ P- P- 

Paracetamol P+ P+ P- P+ P- P+ 

Parathion P+ P+ P- P+ P+ P- 

Paraxanthine P- P- P- P- P- P- 

Parecoxib P- P- P- P- P+ P- 

Pargyline P- P- P+ P- P- P- 

Paroxetine P+ P- P+ P+ P+ P- 

Pefloxacin P- P- P- P- P- P- 

Penbutolol P- P- P- P+ P- P- 

Pentamidin P- P- P+ P- P- P- 

Pentazocine P- P- P- P+ P- P- 

Pentobarbital P- P- P- P- P- P- 

Pentoxify P- P- P- P- P- 

Pergolide P+ P- P+ P- P- P- 

Perhexiline P- P- P+ P+ P- P- 

Perospirone P- P+ P- P+ P- P- 

Perphenazine P+ P+ P+ P+ P+ P+ 

Pethidine P- P- P- P+ P- P- 

Phenacetin P- P+ P- P+ P- P+ 

Phenazone P- P+ P- P- P- P+ 

Phencyclidine P+ P+ P- P- P- P- 

Phenformin P- P- P- P+ P- P- 

Phenobarbit P- P- P- P- P- P+ 

Phenol P- P- P- P- P- P- 

Phenprocoum P- P- P- P- P+ P+ 
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Phensuximide P- P- P- P- P- P- 

Phenylbutazone P- P- P- P- P+ P+ 

Phenytoin P- P- P- P+ P+ P+ 

Pilocarpine P+ P- P- P- P- P- 

Pilsicainide P+ P- P- P- P- P- 

Pimobendan P- P+ P- P- P- P- 

Pimozide P+ P+ P+ P- P- P- 

Pinacidil P- P+ P- P+ P- P- 

Pindolol P- P- P+ P+ P- P- 

Pioglitazone 

cid 

 

 

 

il 

P+ P+ P- P- P+ P- 

Pipemidic a P- P- P- P- P- P- 

Piroxicam P+ P- P- P- P+ P+ 

Plomestane P- P- P- P- P- P- 

Pramipexole P- P- P+ P- P- P- 

Pranidipine P- P+ P- P- P- P- 

Prasterone P- P+ P- P- P- P- 

Pravastatin P+ P+ P+ P- P+ P- 

Praziquantel P- P+ P+ P+ P- P+ 

Prednisolone P+ P+ P- P- P- P- 

Prednisone P+ P+ P- P- P- P- 

Pregnenolone P- P+ P- P+ P- P- 

Primaquine P+ P+ P+ P+ P- P- 

Primidone P- P- P- P- P- P- 

Proadifen P+ P- P+ P- P+ P- 

Probenecid P- P- P- P- P+ P- 

Procainamide P- P- P- P+ P- P- 

Progesterone P- P+ P- P+ P+ P+ 

Proguan P- P+ P- P- P- P+ 

Promazine P- P+ P- P+ P- P+ 
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Promethazine P- P- P+ P+ P- P- 

Propafenone P- P+ P+ P+ P- P- 

Propanol P- P- P- P- P+ P- 

Propofol P+ P+ P+ P+ P+ P+ 

Propranolol P- P+ P+ P+ P- P- 

Pyrantel P- P- P- P+ P- P+ 

Pyridostigmine bromide 

mine 

 

 

 

d 

 

P- P- P- P- P- P- 

Pyrimetha P- P- P+ P- P+ P- 

Quercetin P+ P+ P+ P- P+ P- 

Quetiapine P- P+ P- P+ P+ P+ 

Quinelorane P+ P- P- P- P- P- 

Quinine P+ P+ P+ P- P- P- 

Quinupristin P+ P- P- P- P- P- 

Rabeprazole P+ P+ P- P- P+ P- 

Raloxifene P+ P- P- P- P- P- 

Ranitidine P+ P- P+ P+ P- P- 

Ranolazine P- P+ P- P- P- P- 

Rebamipide P- P+ P- P- P+ P- 

Reboxetine P+ P+ P+ P- P- P- 

Remacemide P+ P- P- P- P- P- 

Remoxipride P- P- P- P+ P- P- 

Repaglinide P- P+ P- P- P- P+ 

Reserpine P+ P- P- P- P- P- 

Resiquimo P- P+ P- P- P- P- 

Rifabutin P- P+ P- P- P- P- 

Rifampicin P- P+ P- P- P- P+ 

Rifamycin P- P- P- P- P- P- 

Rifapentine P- P- P- P- P- P- 

Riluzole P- P- P+ P- P- P- 
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Risperidone P+ P+ P+ P+ P- P- 

Ritonavir P+ P+ P+ P+ P+ P+ 

Rofecoxib 

 

e 

ne 

 

ycin 

d 

ctone 

P- P- P- P- P- P- 

Rogletimide P- P- P- P- P- P- 

Rokitamycin P+ P- P- P- P- P- 

Ropinirol P- P+ P+ P- P- P- 

Ropivacaine P- P+ P- P+ P- P- 

Roquinimex P- P+ P- P- P- P- 

Rosiglitazo P+ P- P+ P- P+ P+ 

Rosuvastatin P- P- P- P- P- P+ 

Roxatidine P- P- P- P- P- P- 

Roxithrom P+ P+ P- P- P- P- 

Rupatadine P- P+ P- P- P- P- 

Salbutamol P+ P- P- P- P- P- 

Salicylic aci P- P+ P- P- P- P- 

Salmeterol P- P+ P- P- P- P- 

Saquinavir P+ P+ P+ P+ P+ P- 

Secobarbital P- P- P- P- P- P- 

Selegiline P+ P+ P+ P+ P+ P+ 

Seratrodast P+ P+ P+ P- P+ P+ 

Sertindole P+ P+ P+ P+ P- P- 

Sertraline P+ P+ P+ P+ P+ P+ 

Sevoflurane P- P+ P- P- P- P- 

Sibutramine P- P+ P- P- P- P- 

Sildenafil P+ P+ P- P+ P+ P+ 

Simvastatin P+ P+ P+ P- P+ P- 

Sirolimus P+ P+ P- P- P- P- 

Sparteine P- P- P+ P+ P- P- 

Spironola P+ P- P- P- P- P- 
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Stiripentol P+ P- P+ P- P+ P- 

Styrene P- P- P- P- P- P- 

Sufentanil P- P+ P- P- P- P- 

Sulconazole P+ P- P+ P- P+ P- 

Sulfadiazine P- P+ P- P- P+ P+ 

Sulfadimethoxine 

 

 

ole 

le 

 

 

e 

e 

 P- 

one 

 

 

P- P- P- P- P+ P- 

Sulfadimidine P- P- P- P- P+ P- 

Sulfadoxine P- P- P- P- P+ P- 

Sulfafurazole P- P- P- P- P+ P- 

Sulfamerazine P- P- P- P- P+ P- 

Sulfamethiz P+ P- P- P- P+ P- 

Sulfamethoxazo P+ P+ P- P- P+ P+ 

Sulfamoxole P- P- P- P- P+ P- 

Sulfanilamide P- P- P- P- P+ P- 

Sulfaphenazole P+ P- P- P- P+ P- 

Sulfapyridin P- P- P- P- P+ P- 

Sulfasalazin P- P- P- P- P- P- 

Sulfatroxazole P- P- P- P+ P- 

Sulfinpyraz P+ P+ P- P- P+ P+ 

Sulindac P- P- P- P- P+ P- 

Sulpiride P+ P- P- P- P- P- 

Suprofen P- P- P- P- P+ P+ 

Tacrine P- P- P- P- P- P- 

Tacrolimus P+ P+ P- P- P- P- 

Tadalafil P- P+ P- P- P- P- 

Tamoxifen P+ P+ P+ P+ P+ P+ 

Tamsulosin P- P+ P- P+ P- P- 

Tasosartan P- P+ P- P- P- P- 

Tauromustine P- P+ P- P+ P- P+ 
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Tazanolast P+ P- P- P- P- P- 

Tazofelone 

ole 

ine 

e 

ne 

 

 

P- P+ P- P- P- P- 

Tecastemiz P+ P+ P- P- P- P- 

Tegafur P- P- P- P- P- P+ 

Tegaserod P+ P- P+ P+ P+ P- 

Telmisartan P- P- P- P- P- P- 

Temazepam P- P+ P- P- P- P+ 

Teniposide P+ P+ P- P- P+ P- 

Tenofovir P- P- P- P- P- P- 

Tenoxicam P- P- P- P- P+ P+ 

Terbinafine P- P+ P+ P- P- P+ 

Terfenadine P+ P+ P+ P+ P+ P- 

Terguride P- P+ P- P+ P- P- 

Testolactone P- P- P- P- P- P- 

Testosterone P+ P+ P- P+ P- P+ 

Tetracycline P+ P- P- P- P- P- 

Tezosentan P- P- P- P- P+ P- 

Thalidomide P- P- P- P- P- P- 

Theobromine P- P- P- P- P- P- 

Theophyll P+ P+ P- P+ P- P+ 

Thiamazol P+ P- P+ P- P+ P- 

Thioridazi P- P- P+ P+ P- P- 

Thiotepa P- P- P- P- P- P- 

Tiabendazole P- P- P- P- P+ P- 

Tiagabine P- P+ P- P+ P- P- 

Tiaramide P- P- P- P- P- P+ 

Ticlopidine P+ P+ P+ P- P+ P- 

Tienilic acid P- P- P- P- P+ P+ 

Timolol P- P- P+ P+ P- P- 
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Timoprazole P+ P- P- P- P- P- 

Tinidazole P- P+ P- P- P- P- 

Tioconazole P+ P- P+ P- P+ P- 

Tiotixene 

 

 

mine 

ene 

ethane 

 

l 

ne 

e 

 

ate 

P- P- P- P- P- P- 

Tipranavir P- P+ P- P- P- P- 

Tirilazad P- P+ P- P- P- P- 

Tocainide P- P- P- P- P- P- 

Tolbutamide P- P- P- P- P+ P+ 

Tolcapone P- P+ P- P- P+ P- 

Tolperisone P- P- P+ P+ P- P- 

Tolterodine P- P+ P- P+ P- P+ 

Toluene P- P- P- P- P- P- 

Topiramate P- P- P- P- P- P- 

Torasemide P- P- P- P- P- P+ 

Toremifene P- P+ P- P- P- P+ 

Tramadol P- P+ P- P+ P- P- 

Tranylcypro P- P- P- P- P- P- 

Trapidil P- P- P- P- P- P- 

Trazodone P- P+ P- P+ P- P- 

Tretinoin P- P+ P- P- P- P- 

Triazolam P- P+ P- P- P- P- 

Trichloroethyl P- P+ P- P- P- P- 

Trichlorom P- P- P- P+ P- P+ 

Trifluoperazine P- P- P- P- P- P- 

Trifluperido P- P- P- P+ P- P- 

Trimetazidi P- P- P- P- P- P- 

Trimethadion P- P+ P- P- P- P+ 

Trimethoprim P+ P+ P+ P- P+ P+ 

Trimetrex P- P+ P- P- P- P- 
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Trimipramine P- P+ P+ P+ P- P- 

Tripelennamine 

ide 

e 

mycin 

 

ride 

 

r 

e 

e 

e 

le 

P- P- P+ P- P- P- 

Triprolidine P- P- P+ P- P- P- 

Trofosfam P- P+ P- P- P- P- 

Troglitazon P+ P+ P+ P+ P+ P+ 

Troleando P+ P+ P- P- P- P- 

Tropisetron P- P+ P+ P+ P- P+ 

Trospium chlo P- P- P+ P- P- P- 

Valdecoxib P+ P+ P+ P+ P+ P+ 

Valproic acid P+ P- P+ P- P+ P+ 

Valsartan P- P- P- P- P+ P- 

Valspoda P+ P+ P- P- P- P- 

Vanoxerine P- P+ P- P- P- P- 

Venlafaxine P+ P+ P+ P+ P- P+ 

Verapamil P+ P+ P+ P- P+ P+ 

Vesnarinon P- P+ P- P- P- P- 

Vinblastine P+ P+ P+ P- P- P- 

Vincristin P+ P+ P+ P- P- P- 

Vindesine P+ P+ P- P- P- P- 

Vinorelbin P+ P+ P+ P+ P- P- 

Voriconazo P+ P+ P- P- P+ P+ 

Vorozole P- P- P- P- P- P- 

Warfarin P- P+ P- P+ P+ P+ 

Yohimbine P- P+ P+ P+ P- P- 

Zafirlukast P+ P- P+ P- P+ P+ 

Zaleplon P- P+ P- P- P- P- 

Zaltoprofen P+ P- P- P- P+ P+ 

Zatosetron P- P+ P- P- P- P- 

Zidovudine P- P+ P- P- P- P+ 
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Zileuton P+ P+ P+ P- P+ P+ 

Ziprasidone P+ P+ P+ P- P- P- 

Zolmitriptan P- P- P- P- P- P- 

Zolpidem P+ P+ P+ P+ P+ P+ 

Zonisamide P- P+ P- P- P- P- 

Zopiclone P- P+ P- P- P- P+ 

Zotepine P- P+ P- P+ P- P- 

Zoxazolamine P- P- P- P- P- P- 

Zuclopenthixol P- P- P- P+ P- P- 
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Table 9: Total clearance dataset. 

ompound Total c nce (ml/min/kg) Set C leara

Chlorpropamide 0.04 ining Tra

Droxicam 0.05 ining 

n 0.07 ining 

0.09 ining 

 0.11 ining 

0.14 ining 

0.14 ining 

ordazepam 0.17 Training 

thosuximide 0.19 Training 

Delorazepam 0.21 Training 

Ceftriaxone 0.23 Training 

Sulfasalazine 0.24 Training 

Liothyronine 0.25 Training 

Cefpiramide 0.28 Training 

Sulfafurazole 0.28 Training 

Tolbutamide 0.29 Training 

Fluconazole 0.30 Training 

Sulfamethoxazole 0.31 Validation 

Olmesartan 0.32 Training 

Cefonicid 0.33 Training 

Amobarbital 0.35 Training 

Benazeprilat 0.35 Training 

Flurbiprofen 0.35 Training 

Topiramate 0.37 Training 

rhein 0.38 Training 

Ertapenem 0.40 Training 

Secnidazole 0.40 Training 

Tra

Benoxaprofe Tra

Tenidap Tra

Meloxicam Tra

Azapropazone Tra

Dutasteride Tra

N

E
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Mefloquine 0.41 Training 

Levocabast Training 

t 

 

 

 

 

 

atrin 

 

ine 0.43 

Borocaptate 0.43 Training 

Fosinoprila 0.46 Training 

Phenazone 0.46 Training 

Phenytoin 0.46 Training 

Mecillinam 0.48 Training 

Ketorolac 0.50 Training 

Lamotrigine 0.51 Training 

Doxycycline 0.52 Training 

Glipizide 0.52 Training 

Ceforanide 0.56 Training 

Diazepam 0.56 Training 

Rufloxacin 0.57 Training 

Rosiglitazone 0.58 Training 

Tinidazole 0.58 Training 

Raltitrexed 0.59 Validation

Brodimoprim 0.60 Training 

Dapsone 0.60 Training 

Tamsulosin 0.62 Training 

Cefotetan 0.63 Validation

Nevirapine 0.63 Training 

Etoricoxib 0.70 Training 

Cefodizime 0.71 Training 

Torasemide 0.71 Training 

Theophylline 0.73 Training 

Vigab 0.74 Training 

Cetirizine 0.75 Training 

Glimepiride 0.76 Validation
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Acivicin 0.78 Training 

Bromazepam 0.82 Training 

Sulfinpyrazone 

 

te 

cid  

 

e 

am 

 

e 

e 

 

 

ine 

 

0.82 Training 

Cefazolin 0.84 Training 

Alprazolam 0.86 Training 

Modafinil 0.88 Training 

Minocycline 0.89 Training 

Trimetrexa 0.89 Training 

Tiaprofenic a 0.91 Validation

Trimazosin 0.94 Training 

Terodiline 0.95 Training 

Cefoperazon 0.96 Training 

Levetiracet 0.96 Training 

Procyclidine 0.97 Training 

Tegafur 0.98 Training 

Prednisolon 1.00 Training 

Chlortalidon 1.02 Training 

Aprepitant 1.07 Training 

Oxazepam 1.08 Training 

Edetate 1.09 Training 

Lorazepam 1.10 Validation 

Terazosin 1.10 Training 

Carbamazep 1.11 Training 

Ibuprofen 1.12 Training 

Mizolastine 1.15 Training 

Iohexol 1.17 Training 

Carbenicillin 1.18 Training 

Pidotimod 1.19 Training 

Ketoprofen 1.20 Training 
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Pemetrexed 

 

 

 

e 

 1.27 

 

id 

epam 

 

ic acid 

 

  

ine 

n 

 

 

ne 

1.20 Training 

Toremifene 1.21 Validation

Alendronic acid 1.22 Validation

Ifosfamide 1.23 Training 

Metronidazol 1.26 Training 

Temazepam Training 

Azosemide 1.29 Training 

Cefixime 1.30 Training 

Glibenclamide 1.30 Training 

Piracetam 1.30 Training 

Tolmetin 1.30 Training 

Latamoxef 1.32 Training 

Iobitridol 1.33 Validation

Zoledronic ac 1.33 Training 

Flunitraz 1.34 Training 

Tobramycin 1.35 Training 

Indometacin 1.40 Training 

Tamoxifen 1.40 Training 

Ticarcillin 1.41 Validation

Flufenam 1.43 Training 

Pioglitazone 1.43 Training 

Valdecoxib 1.43 Validation

Ioxilan 1.44 Training 

Levocarnit 1.45 Training 

Trovafloxaci 1.46 Training 

Linezolid 1.49 Training 

Candesartan 1.50 Training 

Iopromide 1.53 Validation

Acetylcystei 1.55 Training 
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Clonazepam 1.55 Validation 

ide 

 

rbamide 

 acid 

e 

e 

ine  

 

ime 

le  

 

 

 

Foscarnet 1.58 Training 

Tolcapone 1.58 Training 

Temozolom 1.59 Training 

Cefozopran 1.60 Training 

Dicloxacillin 1.60 Training 

Gabapentin 1.60 Validation

Hydroxyca 1.60 Training 

Zanamivir 1.60 Training 

Tranexamic 1.61 Training 

Furosemid 1.66 Training 

Bezafibrate 1.67 Training 

Tetracyclin 1.67 Training 

Trandolaprilat 1.67 Training 

Pentostatin 1.68 Training 

Chlorphenam 1.70 Validation

Gemfibrozil 1.70 Training 

Remoxipride 1.70 Training 

Rofecoxib 1.70 Training 

Etanidazole 1.73 Training 

Methadone 1.77 Training 

Tiagabine 1.78 Training 

Ceftizox 1.79 Training 

Fleroxacin 1.79 Training 

Cefepime 1.83 Training 

Cefmetazo 1.84 Validation

Tertatolol 1.86 Validation

Ceftazidime 1.88 Training 

Amiodarone 1.90 Validation
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Caffeine 1.90 Training 

Melagatran 

m 

  

 

 

 

 

 

cysteine 2.06  

 

d 

  

 

 acid 

1.90 Training 

Trimethopri 1.90 Training 

Trospectomycin 1.90 Validation

Aztreonam 1.91 Validation

Lamifiban 1.91 Validation

Cefsulodin 1.92 Training 

Pefloxacin 1.93 Validation

Cefpirome 1.98 Validation

Lincomycin 1.98 Training 

Cefetamet 2.00 Validation

Rosoxacin 2.00 Training 

N-acetylhomo Validation

Bromfenac 2.10 Training 

Cefuroxime 2.10 Validation

Methotrexate 2.10 Validation 

Trazodone 2.10 Training 

Troxacitabine 2.13 Training 

Anagrelide 2.14 Training 

Pheniramine 2.14 Training 

Sotalol 2.14 Training 

Cefclidin 2.15 Training 

Clodronic aci 2.20 Training 

Thalidomide 2.20 Validation

Piritrexim 2.21 Training 

Cefmenoxime 2.22 Validation 

Ibandronic 2.29 Validation 

Cidofovir 2.30 Training 

Finasteride 2.30 Training 
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Pirmenol 2.34 Validation 

 

 

mide 

e 

  

l 

col  

nitrate  

 

ide 

e 

Nolatrexed 2.36 Training 

Cefpodoxime 2.38 Training 

Eplerenone 2.38 Training 

Cinoxacin 2.50 Training 

Irbesartan 2.51 Validation 

Azlocillin 2.52 Validation

Norfloxacin 2.52 Training 

Donepezil 2.53 Training 

Atenolol 2.54 Training 

Cyclophospha 2.54 Validation 

Pantoprazol 2.57 Training 

Levofloxacin 2.58 Validation 

Amoxicillin 2.60 Validation

Chlorambuci 2.60 Training 

Tocainide 2.60 Validation 

Thiampheni 2.62 Validation

Bumetanide 2.64 Training 

CI-921 2.67 Training 

Isosorbide mono 2.67 Validation

Urapidil 2.69 Training 

Disopyram 2.70 Training 

Mezlocillin 2.71 Training 

Sparfloxacin 2.71 Training 

Baclofen 2.72 Training 

Brotizolam 2.74 Training 

Biapenem 2.77 Training 

Bosentan 2.81 Training 

Cefamandol 2.82 Training 
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Chloramphenicol 

 

 

 2.91 

 

 

 

one 

acin  

 

 

l 

 

r 

2.82 Training 

Gatifloxacin 2.85 Training 

Cefoxitin 2.89 Validation

Cefadroxil 2.90 Training 

Tazobactam Training 

Nadolol 2.94 Training 

Tenofovir 2.97 Training 

Cerivastatin 2.98 Training 

Cilastatin 3.00 Validation

Prazosin 3.00 Training 

Thiopental 3.02 Training 

Fludarabine 3.06 Training 

Imipenem 3.08 Training 

Frovatriptan 3.09 Training 

Efavirenz 3.10 Validation

Ampicillin 3.11 Training 

Temafloxacin 3.19 Training 

HI-6 3.20 Validation

Risperid 3.20 Training 

Acecainide 3.22 Training 

Lomeflox 3.30 Validation

Cefprozil 3.31 Validation

Moexiprilat 3.31 Validation

Cilazaprilat 3.33 Training 

Dronabino 3.33 Training 

Imatinib 3.33 Validation

Tianeptine 3.43 Training 

Ganciclovi 3.46 Training 

Drotaverine 3.47 Training 
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Meropenem 3.49 Training 

Ofloxacin 3.50 Training 

Bisoprolol 

 

 

acin  

 

id 

tal 

e  

e 

 

 

inoside-A 

  

e 

thadol 4.09  

 

 

3.55 Training 

Glycerol 3.55 Validation

Lumefantrine 3.57 Training 

Moxiflox 3.57 Validation

Pirenzepine 3.57 Training 

Clavulanic ac 3.60 Training 

Hexobarbi 3.60 Training 

Prednison 3.60 Validation

Atomoxetin 3.63 Training 

Bicalutamide 3.67 Training 

Piperacillin 3.68 Training 

2-fluoro-arab 3.70 Training 

Adefovir 3.72 Validation 

Cadralazine 3.79 Validation

Trapidil 3.79 Training 

Esomeprazol 3.81 Training 

Sematilide 3.86 Training 

Quinidine 3.87 Training 

Tirofiban 3.87 Training 

Lisinopril 3.89 Training 

Terbutaline 4.00 Validation 

Fosfomycin 4.02 Training 

Levacetylme Validation

Pimozide 4.10 Training 

Enprofylline 4.16 Training 

Amantadine 4.17 Validation

Flomoxef 4.17 Training 
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Midazolam 4.17 Validation 

e 

 

 

 

 

n 

 

  

in 

e 

  

dan 

Busulfan 4.18 Training 

Cisapride 4.21 Training 

Pimagedin 4.27 Training 

Cefuzonam 4.28 Training 

Hydrocortisone 4.29 Training 

Cefalexin 4.30 Validation

Amsacrine 4.33 Training 

Dexrazoxane 4.42 Training 

Loracarbef 4.45 Validation 

Recainam 4.47 Validation

Chlorothiazide 4.50 Training 

Spiraprilat 4.52 Training 

Thiotepa 4.60 Training 

Argatroba 4.70 Validation 

Betaxolol 4.70 Validation 

Cefradine 4.80 Training 

Enalaprilat 4.90 Training 

Lamivudine 4.95 Validation

Paracetamol 5.00 Training 

Ribavirin 5.00 Training 

Clindamyc 5.05 Training 

Loprazolam 5.09 Validation 

Phencyclidin 5.17 Training 

Melphalan 5.20 Training 

Citalopram 5.21 Validation

Dofetilide 5.23 Training 

Nifedipine 5.23 Training 

Levosimen 5.29 Training 
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Cefotiam 5.32 Training 

Galantamine 

isolone 

e  

e 

 

 

 

5.37 Training 

Zolpidem 5.41 Training 

Clozapine 5.49 Training 

Methylpredn 5.49 Training 

Isoniazid 5.55 Training 

Flecainide 5.60 Validation 

Zalcitabine 5.61 Training 

Metrifonate 5.67 Training 

Clonidine 5.70 Training 

Sultopride 5.71 Validation 

Doxapram 5.75 Training 

Ketanserin 5.86 Training 

Amlodipin 5.90 Validation

Diclofenac 5.90 Training 

Rabeprazol 6.00 Training 

Rolipram 6.00 Validation

Sildenafil 6.00 Training 

Tolterodine 6.03 Training 

Cefaclor 6.10 Training 

Oxacillin 6.10 Validation

Milrinone 6.17 Training 

Perindopril 6.19 Training 

Lansoprazole 6.23 Training 

Mexiletine 6.30 Training 

Moexipril 6.30 Training 

Naratriptan 6.35 Training 

Cefapirin 6.36 Training 

Avitriptan 6.40 Training 
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Buflomedil 

  

 

cin 

 

 

e 

 

e 

ide 

e  

 

 

mine 

ne 

 beta-hydroxy acid 

ne  

6.43 Training 

Alprenolol 6.47 Training 

Olanzapine 6.48 Validation

Eletriptan 6.50 Validation

Bupivacaine 6.59 Training 

Ciprofloxa 6.62 Training 

Alfuzosin 6.67 Training 

Toborinone 6.67 Validation

Cefalotin 6.70 Validation

Rilmenidin 6.73 Training 

Roxatidine 6.73 Training 

Actisomide 6.79 Training 

Paroxetine 6.80 Validation

Nafcillin 6.89 Training 

Fluocortolon 7.00 Training 

Chloroquine 7.09 Training 

Metoclopram 7.13 Training 

Ropivacain 7.14 Validation

Treprostinil 7.14 Training 

Zileuton 7.14 Validation

Tasosartan 7.17 Training 

Ritipenem 7.21 Training 

Diphenhydra 7.30 Training 

Pseudoephedri 7.33 Training 

Talipexole 7.38 Training 

Triazolam 7.55 Training 

Celecoxib 7.59 Training 

simvastatin 7.60 Training 

Bendamusti 7.62 Validation
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Pindolol 7.69 Validation 

 

 

 

e 

 

n 

  

le 

 

ine  

 

Bufuralol 7.70 Training 

Amisulpride 7.80 Training 

Salbutamol 7.89 Training 

Metformin 7.91 Validation

Procainamide 7.98 Training 

Atropine 8.00 Training 

Famciclovir 8.00 Validation 

Zatebradin 8.00 Training 

Ethambutol 8.05 Training 

Oxybutynin 8.10 Training 

Timolol 8.10 Training 

Pramipexole 8.20 Validation 

Mitomyci 8.23 Training 

Stavudine 8.24 Training 

Mirtazapine 8.25 Training 

Propiverine 8.32 Training 

Azelastine 8.33 Validation 

Domperidone 8.33 Validation

Losartan 8.34 Training 

Carteolol 8.40 Training 

Ketoconazo 8.40 Training 

Crisnatol 8.44 Training 

Pravastatin 8.50 Validation

Pyridostigm 8.57 Validation

Cimetidine 8.63 Training 

Ritodrine 8.67 Training 

Carvedilol 8.70 Validation

Gusperimus 8.77 Training 
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Hydrocodone 

e 

 

cylic acid 

te 

 

  

e 

 

ine 

 

ine 

 

ine 

il 

t 

  

8.82 Training 

Doxofyllin 8.93 Training 

Famotidine 8.95 Training 

Tezosentan 9.05 Training 

Repaglinide 9.17 Training 

Lidocaine 9.20 Training 

Acetylsali 9.30 Training 

Penciclovir 9.36 Training 

Methylphenida 9.44 Training 

Isradipine 9.52 Validation

Molsidomine 9.52 Validation

Fluoxetin 9.60 Training 

Mitoxantrone 9.60 Training 

Nizatidine 9.63 Training 

Amiloride 9.70 Training 

Chlorpromaz 9.80 Training 

Tebufelone 9.88 Training 

Allopurinol 9.90 Validation 

Nitrofurantoin 9.90 Training 

Fluphenaz 10.00 Training 

Ketobemidone 10.00 Training 

Dexmedetomid 10.01 Training 

Nedocrom 10.20 Training 

Triflusal 10.71 Training 

Tolamolol 10.80 Training 

Perindoprila 10.95 Training 

Acebutolol 11.00 Validation

Codeine 11.00 Training 

Diaziquone 11.00 Training 
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Mercaptopurine 

one  

m 11.06 

e 

 

 

 

 

 

 

 

 

 

e 

 

ital 

 

11.00 Training 

Propyphenaz 11.00 Validation

Metaclazepa Training 

Moclobemid 11.19 Training 

Ropinirole 11.19 Validation

Entacapone 11.22 Training 

Doxifluridine 11.43 Training 

Oxycodone 11.43 Training 

Eprosartan 11.55 Validation

Felodipine 11.59 Training 

Amitriptyline 11.67 Training 

Topotecan 11.78 Training 

Haloperidol 11.80 Validation

Fentanyl 11.96 Training 

Enoximone 12.02 Training 

Nicorandil 12.29 Training 

Trandolapril 12.38 Training 

Moxonidine 12.50 Training 

Emedastine 12.52 Validation

Sufentanil 12.70 Validation

Bromopride 12.86 Validation

Alosetron 12.93 Training 

Abecarnil 13.00 Training 

Cytarabin 13.00 Training 

Abacavir 13.07 Training 

Triamcinolone 13.07 Training 

Captopril 13.33 Training 

Methohex 13.33 Training 

Mebendazole 13.40 Training 
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Etilefrine 13.63 Validation 

 

 

 

e 

n 

 

 

 

n 

 

 

ine 

Propranolol 13.67 Training 

Doxepin 14.00 Validation

Nalmefene 14.40 Training 

Vinpocetine 15.00 Training 

Didanosine 15.25 Training 

Fluticasone 15.61 Validation

Etidocaine 15.86 Training 

Trimipramin 15.90 Training 

Terguride 16.00 Training 

Fluvastatin 16.18 Training 

Mosapride 16.19 Training 

Ketamine 16.30 Validation 

Doxorubici 16.46 Training 

Carmustine 16.70 Training 

Neostigmine 16.70 Training 

Pethidine 17.00 Training 

Coumarin 17.30 Training 

Dixyrazine 17.54 Training 

Terbinafine 17.86 Training 

Carbidopa 18.00 Validation 

Lorcainide 18.00 Training 

Methoxsale 18.00 Training 

Cetiedil 18.33 Validation

Tegaserod 18.33 Training 

Nicotine 18.50 Training 

Propanthel 18.86 Training 

Rizatriptan 18.90 Training 

Propafenone 19.00 Training 
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Quetiapine 

rphone 

 

 

e 

ne 

 

 

 

19.06 Validation 

Sumatriptan 19.15 Training 

Hydromo 19.16 Training 

Carbimide 20.00 Training 

Fendiline 20.00 Validation

Mesna 20.50 Training 

Fluvoxamine 21.40 Training 

Midodrine 23.00 Training 

Fenretinide 23.48 Training 

Naloxone 23.50 Training 

Perphenazin 23.81 Training 

Morphine 24.50 Training 

Rivastigmi 25.71 Training 

Zidovudine 26.00 Training 

Quinapril 26.43 Training 

Nandrolone 26.67 Training 

Labetalol 28.10 Training 

Buspirone 28.30 Training 

Emivirine 28.57 Training 

Ibutilide 29.00 Training 

Amineptine 29.55 Training 

Nalbuphine 29.70 Training 

Phenylephrine 29.90 Training 

Cocaine 32.00 Training 

Tizanidine 33.33 Training 

Bupropion 36.00 Training 

Dopexamine 36.00 Training 

Sertraline 38.00 Training 

Butorphanol 40.00 Training 
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Acadesine 41.67 Training 

Oxaprozin 48.33 Training 

Hydralazine 56.00 Training 

Azathioprine 

e 

abine 

xyphenyl)retinamide 

e 

l 

57.00 Training 

Dobutamin 59.00 Training 

Capecit 59.73 Training 

Prilocaine 64.00 Training 

N-(4-metho 98.86 Training 

Articaine 126.19 Training 

Exemestan 145.00 Training 

Encainide 177.14 Training 

Misoprosto 240.00 Training 
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Table 10: GT+ compounds. 

hen Methimazole Tr ate ino-6-

xybenzothiazole 

Acetaminop imetrex 2-am

etho

Acrivastine Methylphenidate Troglitazone etyl-2,5-

lorothiophene 

Metronidazole W etyl-2,5-

ethylthiophene 

e Za ethyl-2-

phenecarboxaldehyde 

Moexipril Z e iopheneacetonitrile 

oic acid Morphine Z an 

phenecarboxaldehyde 

minosalicylic acid Nabumetone 9,10-difluoro-2,3-dihydro-3-

Me-7-Oxo-7h-pyrido-1,4-

benzoxazine-6-cooh 

5-chloro-2-

thiophenecarboxaldehyde 

Amitriptyline Nalbuphine 6,9-dichloro-2-

methoxyacridine 

5-ethyl-2-

thiophenecarboxaldehyde 

Ampicillin Naloxone 1-isoquinolinecarbonitrile Ethyl 3-thiopheneacetate 

Aspirin Naproxen 9-anthraldehyde(P-

tosyl)hydrazone 

Thiophene-2-carbonitrile 

Brinzolamide Nitrofurantoin 1,N6-ethenoadenine Methapyrilene 

Bupropion Nitroglycerin (1-

pyrrolidinylmethyl)benzotri

azole 

2-acetylthiophene 

Chloramphenicol Omeprazole 1-pyrenemethanol 2-nitrothiophene 

Chloroquine Oxcarbazepime 7-bromoindole 2,3,5-tribromothiophene 

Chlorpheniramine Pantoprazole 9-anthracenylmethyl 2,4,6-

trimethylbenzoate 

2-acetyl-5-chlorothiophene

Ciclopirox Pentobarbital 7-chloroindole 3-methyl-2-

3-ac

dich

Alendronate arfarin 3-ac

dim

Almotriptan Milrinon leplon 3-m

thio

Amifostine iprasidon 3-th

Aminocapr olmitript 3-

thio

A
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thiophenecarboxylic acid 

Ciprofloxacin Pentostatin 9-anthryl-N,N-

dimethylmethanamine 

 

ophene 

Citalopram Pentoxifylline 7-chloro-1,2,3,4-

cyclopent(B)indol

e 

in  hracene cetonitrile 

Clofibrate Pergolide 3-amino-9-ethylcarbazole 

 cene dibromothiophene 

Dantrolene Phenoxybenzamine 2-amino-1-

Dexrazoxane Phenylephrine 

Diazepam Pilocarpine  2,3-dihydrothieno-(3,4-B)-

 

Diflunisal Podofilox  

rgotamine l 

Diphenhydramine Procarbazine 2,3-

oxaldehyd

Donepezil Propranolol 3-(thianaphthen-3-yl)-L-

alanine 

 

methylthiophene 

 ne phene-2,8-

hydrochloride

2,5-diiodothi

tetrahydro

3-acetylthiophene 

Clarithromyc Peperacillin 2-aminoant 2-thiophenea

Ethyl 2-

thiophenecarboxylate 

Clomiphene Permethrin 1-aminoanthra 2,3-

2,5-dichlorothiophene 

methylbenzimidazole 

5-aminoindole 

9-aminophenanthrene

2,5-dibromothiophene 

1,4-dioxin

5-nitro-2-Bisbenzimidazole

trihydrochloride thiophenecarboxaldehyde 

Dihydroe Praziquante Indoline 

Pipemidic acid 

Di-2-thienyl ketone 

thiophenedicarb

e 

4-aminoindole 

Doxycycline Pyrazinamide 8-aminoquinoline 4-keto-4,5,6,7-

tetrahydrothianaphthene 

Doxylamine Pyrilamine 1-hydroxypyrene 2-acetyl-3-

Entacapone Pyrimethamine 6-methylthiopuri Dibenzothio
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diylbis((N-

carbonylmethylene) 

dimethylamine) 

Epinephrine Quetiapine aphthalene 3-(diethylamino)phenol 

Erythromycin Rabeprazole 2-chloroaniline 

Esomeprazole Ranitidine -dichloroquinolinium 4-methoxy-2-

il e 

Fosphenytoin Riluzole Phthalazine 

e  

Furosemide Rivastigmine 2-fluoroaniline 

n e  

Haloperidol Stavudine 3-indolylacetonitrile ine 

ide -tert-

 yindole henol

-2-

methylindole-3-carb-oxylate

aminotoluene 

Ifosfamide Tamoxifen 8-(trifluoromethyl)-4- amino-m-cresol 

Imatinib Tazobactam 8-sulfo-2,4-

lic acid 

benzyl cyanide 

Imipramine Temozolomide 2-(2-aminophenyl)indole 

 e ndole ,4-

1,5-dihydroxyn

Eprosartan Quinidine Indole 

1-naphthaldehyde 

4,7

o-phenetidine 

methylaniline 

Fosinopril Remifentan Quinoxaline p-anisidin

2-methoxy-5-

methylaniline 

Furazolidon Risedronate Quinazoline

4-fluoroindole 

Phenoxazine 

Grepafloxacin Ropivacaine Harmine 2,4-difluoroaniline 

Griseofulvi Rosiglitazon 2-phenylbenzimidazole 1,8-diaminonaphthalene 

m-phenetid

Halothane Sulfanilam 7-methylindole 2-amino-4

butylphenol 

Hydrochlorothiazide Sulfasalazine 6-methox 5-amino-2-methoxyp

Ibuprofen Tacrine Ethyl 5-hydroxy 2,3-di

6-

quinolinol 

quinolinedicarboxy

4-amino

2,3-difluoroaniline 

Indomethacin Theophyllin 5-amino-2-methyli 2,5-dimethyl-1

phenylenediamine 

Isoniazid Thiotepa N,R- 2-anilinopyridine 
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diphenylbenzotriazolemetha

namine 

Ketorolac Tiagabine N,methyl-N-

a

iophene 

methoxybenzothiazole 

thiazole 

Levodopa Tramadol 2-amino-6-

le 

ol 

enzothiazole 

ne 

m hyde 

phenylbenzotriazolemethan

mine 

2-amino-4-

methylbenzonitrile 

Lamivudine Timolol 2-acetyl-5-bromoth Enoxacin 

Lansoprazole Tolcapone 2-amino-4- 2,3-xylidine 

Letrozole Toremifene 2-amino-4-

methylbenzo

2-amino-4-

chlorobenzonitrile 

3-amino-o-cres

flurobenzothiazo

Loratidine Travoprost 2-amino-6-

methoxyb

 

Mebendazole Trientine 2-bromo-5-chlorothiophe  

Melphalan Trimethopri 2-thiophenecarboxalde  
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Table 11: GT- compounds. 

Acarbose Miglitol -L-tryptophan 4,6-diphenylthieno-(3,4-

xol-2-one-5,5-

N-acetyl

D)-(1,3)-dio

dioxide 

Acebutolol Mirtazapine 5-anilino-1,2,3,4-

 

Acitretin Modafinil 6-amino-2-

nzothiazole 

Adapalene Montelukast 

ne 

l 

Albendazole Moricizine an N,N-dimethyl-N-((5-nitro-

-thienyl)methylene)-1,4-

phenylenediamine 

 ,N-dimethyl-4-(6-

ethylbenzothiazol-2-

yl)aniline 

Alprostadil Mycophenolate 2,8-quinolinediol Thieno-(3,2-B)-pyridin-7-

ol 

Amantadine Nafarelin 4-acridinol Trans-3-(3-thienyl)acrylic 

acid 

Amiloride Nalidixic acid 5-carboxyfluorescein Trans-2-(4-

dimethylamino)styryl)ben

zothiazole 

Aminolevulinic acid Naltrexone 2-aminobenzimidazole 5,5-dibromo-2,2-

biothiophene 

Amiodarone Naratriptan 2-mercaptobenzimidazole 3-phenylthiophene 

Amlexanox Nateglinide 4-H-

cyclopenta(D,E,F)phenanthr

2,5-dibromo-3-

hexylthiophene 

N-

phenylbenzotriazolemethana

mine 

9-anthraldehyde oxime 

thiatriazole

mercaptobe

Cyclopropyl 2-thienyN-(3-indolylacetyl)-L-

phenylalani

1-methyl-L-tryptoph

ketone 

2

Alprazolam Mupirocin Anthrarobin N

m
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ene 

Amlodipine il 

Amphotericin B Nefazodone Acyclovir rthiophene-5,5-

Amprenavir Nelfinavir ene-2-

carboxylic acid 

e  nyl)glycine 

Argatroban Niacin Etofylline 

ne

Atorvastatin Nicotine ine ianaphthene 

Azelaic acid Nilutamide 2,7-diaminofluorene 

 zolo(3,4-

D)pyrimidine 

Azithromycin Nisoldipine 6-aminoindazole phene 

Balsalazide Norfloxacin Acridine orange -dibromo-3-

Beclomethasone Olanzapine Aminopterin ibromo-3-

phene 

Benazepril Olopatadine Bisbenzimide 

hene 

cine 

Bepridil Ondansetron Harmane 1,2,3,4-tetrahydro- )glycine 

ine nzo-(B)-

Nedocrom Acenaphthene 4,6-

dimethyldibenzothiophene

2,2:5,2-te

dicarboxaldehyde 

5-nitrothiophBenomyl 

Anagrelid Nevirapine Ellagic acid D-R-(2-thie

Cephalothin Sodium 

Atenolol Nicardipine Ganciclovir 

1-isoquinolinam

2-iodo-5-methylthiophe

2-methylth

Atovaquone Nifedipine 1-aminopyrene 3-(2-thienyl)-L-alanine 

3-bromo-4-

methylthiophene 

Azelastine Nimodipine 4-amino-pyra P trans-2-(2-

nitrovinyl)thiophene 

3-butylthio

Aztreonam Nizatidine 8-azaadenine 3-dodecylthiophene 

2,5

decylthiophene 

2,5-d

dodecylthio

2-bromo-5-

methylthiop

Benzoyl peroxide Olsalazine Coumarin, 7 L-R-(3-thienyl)gly

L-R-(2-thienyl

3-carboxylic acid 

Bimatoprost Orlistat L-abr 3-chloroacetylbe

thiophene 
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Bisoprolol Oseltamivir ethyltryptamine Perphenazine N-m

Bitolterol Oxaprozin Sangivamycin hydrate rcidin 

Brimonidine Oxiconazole Sulfaquinoxaline 

rboxaldehyde 

raquino

Buspirone Pamidronate 2-ethylanthracene inone 

e line 

ne thalene  

ol line 

ne 

nolamine -

dimethoxyquinazoline 

dine 

e 

oph

ne cid 

ic acid -

 

 

Carisoprodol Pirbuterol 4,8-dihydroxyquinoline-2-

 

 

Carteolol Pramipexole 5-chlorobenzotriazole nyl-

l 

nzimidaz

Cefdinir Primidone 5-fluoroindole perazine 

Tube

Disperse orange 11 

Bromocriptine Oxybutynin 1-pyreneca 1-

(methylamino)anth

ne 

1-aminoanthraqu

Butaconazol Paricalcitol 3-aminoquino Ethyl 2-aminobenzoate 

Butenafine Paroxeti 1-ethylnaph 2,4,6-trimethylaniline

Butorphan Pemirolast 6-aminoquino 2-amino-4-chlorobenzoic 

acid 

Cabergoline Perindopril 4,7-phenanthroli o-anisidine 

Caffeine Phenylpropa 4-amino-2-chloro-6,7 9-aminoacri

Calcipotrien Phenytoin 5-aminoquinoline 4,4¢-

bis(diethylamino)benz

enone 

Calcitriol Phytonadio Folic acid N-phenylanthranilic a

Candesartan Pimozide Indole-3-propion 7-diethylamino-4

methylcoumarin

Carbamazepine Pioglitazone Nebularine Ethoxyquin 

N,N-diethylaniline

carboxylic acid

2,4-diamino-6-phe

1,3,5-triazine 

Carvedilo Pravastatin 2-

(trifluoromethyl)be

ole 

2-chlorophenothiazine 

1-phenylpi

 



APPENDIX 322

Cefepime Probenecid Octaverine Phenothiazine 

Cefonicid Procainamide 

 )-2-

thylamine 

Cefotaxime Promethazine 5-methylbenzimidazole 

Cefpodoxime Propafenone 9-chloroanthracene loro-o-anisidine 

e 

rine lfide 

ine  

d 

Ceftriaxone Raloxifene 9-bromoanthracene moaniline 

10- ine 

Celecoxib Repaglinide 3-chloroaniline 

zine 

Cetirizine Rifapentine 1-methyl-2-phenylindole 

thylamino)ethanol 

e yl-4,7-diphenyl-

Chirocaine Risperidone 4-methoxyindole yl)amine

e phthylamine 

 

cene 

 acid 

one de 

Cilastatin Rofecoxib 9,10-bis(4-methoxyphenyl)-

hloro-anthracene 

-p-cresol 

Cisapride Ropinirole 

otriazole 

2-anilinoethanol 

e -quinoline-

9-phenylacridine Benzidine 

Cefoperazone Proguanil 5-methylindole N-(4-hydroxyphenyl

naph

1,1'-dianthrimide 

5-ch

Cefprozil Propofol 2,6-dimethylquinolin 3,4-dimethylaniline 

Ceftazidime Pseudoephed 8,8-diquinolyl disu 2,5-dimethylaniline 

Ceftibuten Pyridostigm 5-benzyloxyindole 3-dimethylaminophenol

Ceftizoxime Quinapril 3-indoleglyoxylic aci N-phenylglycine 

4-bro

Cefuroxime Ramipril 3,4,7,8-tetramethyl-1,

phenanthroline 

Bathophenanthroline 

4-chloroanil

Cerivastatin Rifabutine Octrizole Pipera

2-(2-

aminoe

Cevimelin Rimantadine 2,9-Dimeth

1,10-phenanthroline 

Diethanolamine 

Bis(2-methoxyeth

Chlorothiazide Ritonavir 5-bromoindol N-ethyl-1-na

Chloroxine Rizatriptan 2-ethyl-9,10-

dimethoxyanthra

N-methylanthranilic

Chlorthalid Rocuronium N-(9-acridinyl)maleimi o-tolidine 

3-(ethylamino)

2-c

1-((phenylthio)methyl)-1h-

benz

Clemastin Salmeterol 2-biphenyl-4-yl Sulfisoxazole 
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4-carboxylic acid 

Clindamycin 

ctamethyl-

anthracene 

anthraquinone

y-

lic acid 

quinone

e)-4-

 

niline 

ne 

pholine 

rine lthio)-7- thylene)triami

Cycloserine Sulfamethoxazole 2-methyl-phenanthrene 

ine 

Dapsone Tamsulosin -

le 

4-

oro-N(6)-

ine 

Diltiazem Terazosin 3-aminophenol 

Disopyramide Terbinafine ne 3-aminophenyl sulfone 

 e 

Saquinavir 9,10-dimethoxy-

1,2,3,4,5,6,7,8-o

1,5-diamino

Clonidine Sertraline 4-hydroxy-6,7-diisobutox

quinoline-3-carboxy

ethyl ester 

2,6-diaminoanthra

Clopidogrel Sibutramine N-(9-

anthracenylmethylen

chloroaniline 

4-phenoxyaniline 

Clotrimazole Sildenafil N-(9-

anthracenylmethylene)-

2,4,6-trimethyla

2,6-diaminopyridi

Cromolyn Simvastatin 9-benzoylanthracene 2,6-dimethylmor

Cyclobenzap Sotalol 4-(tert-buty

chloroquinoline 

Bis(hexame

ne 

p-phenetidine 

Cyproheptad Sumatriptan 9-phenoxyacridine 

1,2,3,4-tetrahydro-9H

2-aminopyridine 

pyrido(3,4-B)indo (dimethylamino)benzophe

none 

Desflurane Tazarotene 1-deaza-2-chl

cyclopentyladenosine 

N-methyldiphenylamine 

Diclofenac Telmisartan 2,4-diamino-6-

hydroxymethylpteridine 

2-amino-5,6-

N-allylanil

dimethylbenzimidazole 

2-aminoacrido

Dolasetron Terconazole 5-chloro-1,3-dihydro-1,3,3- Triphenylamin
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trimethylspiro(indole-2,3-

)oxazine phenanthr(9,10-B

Dorzolamide Tetracycline 

H-pyrido-(3,4-

4,4’-

diaminobenzophenone 

Doxazosin Tiludronate N-(2-

carboxyphenyl)glycine 

6-chloro-2-

Efavirenz Tobramycin ro-

le-3-

4-chloro-N-methylaniline 

Eflornithine Tocainide xy- -

iperazine 

ethylamino)benzopheno

Enalaprilat Tolterodine Tenoxicam hylphenothiazine 

 

hyde 

yl)-6- iline 

il 

io

 

6-methoxy-1,2,3,4-

tetrahydro-9

B) indole-1-carboxylic acid 

9,10-diaminophenanthrene 

Dronabinol Tirofiban 9-

(methylaminomethyl)anthra

cene 

N,N-dibutylaniline 

Econazole Tizanidine 9-amino-

methoxyacridine 

(S)-(-)-2,3,4,9-tetrahyd

N-isopropylaniline 

1H-pyrido(3,4-B)indo

carboxylic acid 

9-bromo-2-metho

anthracene 

1-(2

fluorophenyl)p

Enalapril Tolmetin Acetazolamide 5-chloro-2-

(m

ne 

10-met

Epoprostenol Topiramate 2,5-

thiophenedicarboxalde

1,2-diaminoanthraquinone

Eptifibatide Torsemide 2-(4-aminophen

methylbenzothiazole 

N-cyclohexylan

Estazolam Trandolapr 2-

(dimethylaminomethyl)th

phene 

Dipentylamine 

Estramustine Tretinoin 2-amino-4- 1-(4-
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chlorobenzothiazole fluorophenyl)piperazine 

Etodolac Triamterene 

le 

4-amino-3-methylbenzoic 

Famotidine Triprolidine 

methylbenzothiazole 

etramethyl-1,4-

minobenzothiazole N,N-diisopropylaniline 

Fenofibrate Vancomycin 2-(phenylsulfonyl)aniline 

Fenoldopam Venlafaxine rothiophene N,N’-bis(2-

nedia

mine 

Fexofenadine Zafirlukast 4-(butylamino)benzoic 

acid 

ide perhydroisoquinoline 

Fluconazole Zileuton hlorothiophene 

l te thene ne 

Fluoxetine Zolpidem 3-bromothiophene 

Fluticasone Zonisamide 3-methoxythiophene ethyldodecylamine 

orescein cetic acid 

yl-L-

tryptophan 

ophenecarboxylic acid 

acid 

amine id 

Fosfomycin 3-deazaadenosine 

ophenecarboxaldehyde 

2-(propylamino)ethanol 

Gabapentin 1,N6-etheno-2-

deoxyadenosine necarboxylic acid 

4-

(diethylamino)benzopheno

2-amino-5,6-

dimethylbenzothiazo

2-amino-6-

chlorobenzothiazole 

acid 

4-amino-m-cresol 

Felbamate Valproate 2-amino-6- 2,3,5,6-t

phenylenediamine 

Felodipine Valsartan 2-a

2-bromothiophene 

2-chlo

hydroxyethyl)ethyle

Fentanyl Verapamil 2-propylthiophene 

2-thiopheneacetic acid 

2-(methylamino)pyridine 

Flecainide Zanamivir 2-thiophenecarboxam

3-bromo-2-c 2-acetylphenothiazine 

Flumazeni Zoledrona 3-bromothianaph 2-benzylaminopyridi

Solvent blue 59 

N-m

Fluvastatin 6-carboxyflu 3-thiophenea 2-aminoterephthalic acid 

Fluvoxamine N-chloroacet 3-thi 4-(methylamino)benzoic 

Formoterol Dansyltrypt 4-(2-thienyl)butyric ac

4-bromo-2-

Tolfenamic acid 

thi

5-bromo-2-

thiophe

ne 
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Galantamine O6-methyl-2-

ne 

ole 

deoxyguanosi

5-bromothiophene-2-

carbaldehyde 

6-methoxy-1,2,3,4-

tetrahydro-9H-pyrido[3,4-

b]ind

Glipizide Ethyl-4-hydroxy-7-

trifluoromethyl-3-

boxylate

cid 

Glyburide 9-

nomethyl)

zine 

ndole ,5-

dioxide 

c acid 

Guanadrel 1,3-diphenyl-

e 

Ethyl 2-thiopheneacetate yl-o-anisidine 

ne y-1,10-

phenanthroline tetrahydrobenzo-(B)- lsulfonyl)phenol 

3-phenyl-

oline 

one

inoline iophene

ino

,J)

(1,10)phenanthroline acid 

3- iophene ino-2-naphthoic acid

Irbesartan N-(9- 2,2-bithiophene ino-1,2,4-triazole 

quinolinecar

5-methyl-2-

thiophenecarboxylic a

2,2'-oxydianiline 

(phenylimi

anthracene 

Coumarin 6 1-(2-pyridyl)pipera

Granisetron 2,5-dimethyli Dibenzothiophene-5 6-norlysergi

diethylamide 

5-phen

benzo(F)quinolin

Hexachlorophe 4,7-dihydrox Ethyl 2-amino-4,5,6,7-

thiophene-3-carboxylate 

2-amino-4-

(ethy

Ibutilide 1-methyl-

benzo(F)quin

Suprofen 4'-piperazinoacetophen

Imipenem 2-styryl-qu 2-(trifluoroacetyl)th N-ethyl-N-

isopropylaniline 

Imiquimod 2-

phenylbenzo(H)qu

line 

Thianaphthene 3,3',5,5'-

tetramethylbenzidine 

Indinavir 6,7-dihydro-5,8-

dimethyldibenzo(B

Dibenzothiophene N-(2-amino-4-

chlorophenyl)anthranilic 

Ipratropium 2-methylindole-

carboxaldehyde 

2-benzoylth 6-Am

3-am
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anthracenylme

)-P-toluidine 

thylene

Isosorbide 2-butoxy-7,10- 2-phenylthiophene e 

Itraconazole 

ethylsulfonyl)benz

2-thiopheneglyoxylic acid 1-naphthylamine-8-

Ketoconazole Acetic 10-

anthracen-9-ylmethyl 

Diethyl 5-amino-3-methyl-

late 

2-trifluoromethylaniline 

Ketoprofen Methyl 3-amino-2- N-methylaniline 

Ketotifin l)-1-

cyclohexanol 

cid 

e 

hene 

e 

anthracenylmethylene

-anisidine 

thiophenecarboxaldehyde 

Levalbuterol 

acenylmethylene

Nocodazole 

sulfonic acid 

Levamisole R-terthienyl 

Leviteracetam l-

nol 

2,5-bis(5-tert-butyl-2-

ophene 

3,5-

ine

dichloropyrido(3,2-

B)quinoline 

2-

Cytarabin

(m

othiazole 

acid 

sulfonic acid 

acetoxymethyl-

ester 

2,3-diphenyl-5,6-

2,4-thiophenedicarboxy

benzoquinoxaline 

1-(9-phenanthry

thiophene carboxylate 

3-thiophenemalonic a N-phenyl-m-anisidine 

Labetalol 2-(4-

biphenylyl)quinolin

3,3-bithiop Formanilide 

Lamotrigin N-(9-

)-P

N-(9-

anthr

5-methyl-2- Allylthiourea 

)-M-anisidine 

3-

(trifluoroacetyl)indol

1-naphthylamine-7-

e 

Di-anthracen-9-y

5-fluorouridine 

metha benzoxazolyl)thi bis(trifluoromethyl)anil
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Levocarnitine 

anthr

odothiophene Sulfameter 9,10-bis(4-

methoxyphenyl)

3-i

acene 

Levomethadyl 

hanol 

1-(2-thienyl)-1-propanone 3-methylxanthine 

 

-3- hexamethylene)amiloride 

Linezolid Pseudocoralyne 2-thiopheneethylamine Guanazole 

ophene 

f 

l ether hydrazide methylhomoveratrylamine

racenylmethyl lthiophene clononane 

ryl 

 

5-

chlorobenzoate 

ndolylacetyl)- hiophene zoic 

Mefloquine ethyl 

thyl sulfide 

2-(3-thienyl)ethanol 3-amino-2-naphthoic acid 

Meloxicam 2-(2-thienyl)ethanol 2',3'-dideoxyuridine 

Meropenem 2-methyl-9-

y

Tetrachlorothiophene N-methylglucamine 

R,R-diphenyl-2-

quinolinemet

Lidocaine 2,4-

diphenylbenzo(H)qui

nazoline 

2-iodothiophene 5-dimethylamiloride

Lindane 2-chloro-4-(4-

methoxyphenyl)

phenylquinoline 

2-thiophenecarboxylic acid 5-(N,N-

Lisinopril 1,N6-

ethenoadenosine 

4-methyldibenzothi Hycanthone 

Loracarbe 9-anthracenylmethyl 

4-benzylpheny

2-thiophenecarboxylic N-

Losartan 9-anth

P-tolyl sulfide 

2-bromo-3-methy 1,4,7-triazacy

Lovastatin 9-anth

trifluoromethyl 

ketone 

2-(4-

methoxybenzoyl)thiophene

Methyl 2-amino-

Mafenide N-(3-i

L-isoleucine 

9-anthracenylm

3,4-dibromot 4-(diethylamino)ben

acid 

me

1-pyreneacetic acid 

acridinecarboxaldeh

de 
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Mesalamine 3-(10-(2-car

ethyl)anthracen-9-

yl)prop

boxy-

ionic acid 

3-octylthiophene Proglumide 

Mesna 2-mesitylquinolin

6,9-dichloro-2-

e ine 

Metformin 

ylacridine 

â-(2-thienyl)-D-alanine N,N'-bis(3-

diam

ine 

Methyldopa ro-9-

acene 

2,2-thenil 3,5-dimethylanthranilic 

Metolazone 

)qu

2-((5-(dibutylamino)-2-

thienyl)methylene)-1H- 2,2'-diamine 

 2-methyl-2-

yl dinitrothiophene 

ycarbonyl)-

L-leucine methyl ester 

Mexiletine 

otriazol-1-

le 

no-6-(methylsulfonyl) 

ino]-4-

(methylamino)-9,10-

Midodrine 

ne 

3,6,9,14-tetrathiabicyclo-

3-

diened 

Cefoxitin sodium salt 2,4,6-triphenylanil

meth

1,8-dichlo

aminopropyl)ethylene

methoxy-anthr

4-methyl-2-(2-

naphthyl)benzo(H

acid 

(S)-(-)-1,1'-binaphthyl-

inoline indene-1,3-(2H)-dione 

Metoprolol 3,6-bis(

morpholinopropion

)-9-octylcarbazole 

1-(4-

2-amino-3,5- N-(tert-butox

biphenylyl)isoquinoli

ne 

2-chloro-5-

(chloromethyl)thiophene 

5-iodo-2',3'-

dideoxyuridine 

Midazolam 9-(1h-benz

ylmethyl)-9h-

carbazo

2-ami

benzothiazole 

1-[(2-

hydroxyethyl)am

anthracenedione 

 2-(2-

benzo(B)thiophen-2-

yl-vinyl)quinoli

(9.2.1)-tetradeca-11,1
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Table 12: TdP+ com

Compound Set  Compound Set 

pounds. 

Amantadine  Ritodrine Training Training 

Amiodarone 

in 

Bepridil  Sibutramine 

Chloral hydrate Training  Sotalol Training 

rfloxacin 

Cisapride Training  Tacrolimus Training 

n Trai  

Cocaine Training 

Disopyramide Training  Thioridazine Training 

Dobutamine Training  Tizanidine Training 

Dofetilide Training  Venlafaxine Training 

Domperidone Training  Voriconazole Training 

Dopamine Training  Ziprasidone Training 

Droperidol Training  Adenosine phosphate Validation 

Ephedrine Training  Ajmaline Validation 

Epinephrine Training  Aprindine Validation 

Erythromycin Training  Astemizole Validation 

Felbamate Training  Atropine ation 

ne Training Validation 

Flecainide Training Validation 

Foscarnet sodium hloroquine Validation 

osphenytoin Training  Clindamycin Validation 

Gatifloxacin Training  Diphenhydramine Validation 

Granisetron Training  Emedastine Validation 

Halofantrine Training  Grepafloxacin Validation 

Haloperidol Training  Halothane Validation 

Training  Salbutamol Training 

Azithromyc Training 

Training 

 Salmeterol Training 

Training 

Chlorpromazine Training  Spa Training 

Clarithromyci ning  Tamoxifen 

 Terbutaline 

Training 

Training 

Valid

Fenflurami  Azelastine 

 Azimilide 

 CTraining 

F
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Hydrochlorothiazide Training  Hydroquinidine Validation 

Ibutilide Train  Ketanserin Valid  

e  

 

 

n  

tine  

 

  

  

acin  

ine  

ne  

 

 

ne  

 

e  

e  

lamine 

drine n camsilate 

ing  ation

Indapamide Training  Maprotilin Validation

Isoprenaline Training  Mefloquine Validation

Isradipine Training  Mianserin Validation

Levofloxaci Training  Mibefradil Validation

Mesoridazine Training  Mizolas Validation

Methadone Training  Olanzapine Validation

Midodrine Training  Papaverine Validation

Moexipril Training  Prenylamine Validation

Moxiflox Training  Probucol Validation

Nicardipine Training  Prochlorperaz Validation

Norepinephri Training  Promethazine Validation

Octreotide Training  Quinine Validation

Ondansetron Training  Sematilide Validation

Orciprenali Training  Sertindole Validation

Pentamidine Training  Spiramycin Validation 

Phentermin Training  Sultopride Validation 

Phenylephrin Training  Terfenadine Validation 

Phenylpropano Training  Terodiline Validation 

Pimozide Training  Tiapride Validation 

Procainamide Training  Trazodone Validation 

Pseudoephe Training  Trimetapha Validation 

Quetiapine Training  Vasopressin Validation 

Quinidine Training  Vincamine Validation 

Risperidone Training  Zimeldine Validation 
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Table 13: TdP- compoun

d 

ds. 

Compoun Set  Compound Set 

Abacavir Training  Methotrexate Training 

Acarbose Training  Methoxsalen 

ide sterone 

ic acid inium chloride 

 

 

 

 acid 

ol 

e oleate 

 acid 

c acid 

e 

ine Training 

in 

in 

eclometasone Training  Phenazopyridine Training 

Bendroflumethiazide Training  Phenelzine Training 

Benzonatate Training  Phytomenadione Training 

Training 

Acetazolam Training  Methyltesto Training 

Acetohydroxam Training  Methylthion Training 

Acetylcysteine Training  Miconazole Training 

Adapalene Training  Mifepristone Training 

Albendazole Training  Miglitol Training 

Alendronic Training  Minocycline Training 

Alitretinoin Training  Misoprost Training 

Allopurinol Training  Monoethanolamin Training 

Amcinonide Training  Montelukast Training 

Amifostine Training  Nalidixic Training 

Amikacin Training  Natamycin Training 

Amiloride Training  Nelfinavir Training 

Aminosalicyli Training  Neomycin Training 

Amoxicillin Training  Nevirapine Training 

Ampicillin Training  Nitrofural Training 

Anakinra Training  Olsalazine Training 

Anastrozol Training  Orlistat Training 

Azelaic acid Training  Oxcarbazep

Aztreonam Training  Oxytetracycline Training 

Bacampicill Training  Paracetamol Training 

Baclofen Training  Paromomyc Training 

Balsalazide Training  Perindopril Training 

B
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Betaine Training  Piperacillin Training 

Bicalutamide ing  ing 

e 

 

in 

id 

ital Training 

ne  

 

ne 

e 

n 

cin 

 

zole 

zone 

 

e 

Train  Pramipexole Train

Bumetanid Training  Prednicarbate Training 

Butenafine Training  Procarbazine Training 

Calcipotriol Training  Pyrantel Training 

Calcium folinate Training  Pyrazinamide Training 

Carbenicillin Training  Raloxifene Training 

Carmustine Training  Riboflavin Training 

Cefaclor Training  Rifampic Training 

Cefamandole Training  Rifapentine Training 

Cefapirin Training  Risedronic ac Training 

Cefazolin Training  Ritonavir Training 

Cefdinir Training  Salsalate Training 

Cefditoren Training  Saquinavir Training 

Cefixime Training  Secbutabarb

Cefoperazo Training  Simvastatin Training 

Cefotetan Training  Spectinomycin Training 

Cefoxitin Training  Spironolacto Training 

Cefpodoxim Training  Stanozolol Training 

Cefprozil Training  Streptomyci Training 

Ceftazidime Training  Streptozo Training 

Ceftibuten Training  Sulfadiazine Training 

Ceftizoxime Training  Sulfafurazole Training 

Ceftriaxone Training  Sulfamethoxa Training 

Chlorzoxa Training  Sulfasalazine Training 

Cinoxacin Training  Testolactone Training 

Clobetasol Training  Tetracycline Training 

Clocortolone Training  Theophyllin Training 

Clopidogrel Training  Thiamazole Training 
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Colestipol Training  Thiosulfate Training 

Colestyramine 

d 

e 

n 

ane 

 acid 

in de 

l 

rine e 

estrol ycin 

roxyquinoline 

 

e 

e  

diol 

 id 

e  

 

 acetonide  

Training  Thiotepa Training 

Cycloserine Training  Tiabendazole Training 

Cytarabine Training  Tiludronic aci Training 

Dacarbazine Training  Tioguanin Training 

Danazol Training  Tobramycin Training 

Dapsone Training  Tolazamide Training 

Desmopressi Training  Tolcapone Training 

Dexrazox Training  Tolnaftate Training 

Diclofenamide Training  Tranexamic Training 

Dicloxacill Training  Trichlormethiazi Training 

Dicoumaro Training  Trientine Training 

Dicyclove Training  Trifluridin Training 

Diethylstilb Training  Troleandom Training 

Diiodohyd Training  Trometamol Training 

Dirithromycin Training  Unoprostone Training 

Dorzolamid Training  Uramustine Training 

Eflornithin Training  Ursodeoxycholic acid Training 

Estradiol Training  Valrubicin Training 

Estrone Training  Vincristine Training 

Ethambutol Training  Vinorelbine Training 

Ethinylestra Training  Warfarin Training 

Etidronic acid Training  Zafirlukast Training 

Finasteride Training  Zanamivir Training 

Floxuridine Training  Zidovudine Training 

Fluconazole Training  Zoledronic ac Training 

Flucytosine Training  Alclometason Validation

Flunisolide Training  Benzocaine Validation

Fluocinolone Training  Cefadroxil Validation
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Fluocinonide  Training  Cefalexin Validation

Flutamide Training  Cefradine  

 

 

line  

de  

n  

e  

de  

 

 

 

el  

 

esterone  

 

mide  

 

e  

n  

n  

rone  

 

 

e  

 

 

 

Validation

Fluvastatin Training  Cefuroxime Validation

Fosfomycin Training  Clotrimazole Validation

Furazolidone Training  Demeclocyc Validation

Furosemi Training  Dienestrol Validation

Gabapenti Training  Doxycycline Validation

Gemfibrozil Training  Ethionamid Validation

Gentamicin Training  Ethosuximi Validation

Glibenclamide Training  Ethotoin Validation

Glimepiride Training  Guaifenesin Validation

Glipizide Training  Ketorolac Validation

Griseofulvin Training  Levonorgestr Validation

Guanabenz Training  Lovastatin Validation

Hydroflumethiazide Training  Medroxyprog Validation

Hydroquinone Training  Medrysone Validation

Hydroxycarba Training  Metirosine Validation

Irinotecan Training  Metronidazole Validation

Isoniazid Training  Mometason Validation

Kanamyci Training  Nandrolone Validation

Lactulose Training  Nitrofurantoi Validation

Lamotrigine Training  Norethiste Validation

Letrozole Training  Norgestrel Validation

Levamisole Training  Pemoline Validation

Lincomycin Training  Penicillamin Validation

Liothyronine Training  Primidone Validation

Lomustine Training  Propylthiouracil Validation 

Loracarbef Training  Pyridoxine Validation 

Loteprednol Training  Rimexolone Validation 
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Mafenide Training  Stavudine Validation 

Mebendazole e 

e  

e 

m 

de 

 

Training  Sulconazol Validation 

Meclocyclin Training  Sulfanilamide Validation 

Melphalan Training  Testosterone Validation 

Mercaptopurin Training  Ticarcillin Validation 

Mesalazine Training  Trimethopri Validation 

Methazolami Training  Zileuton Validation 

Methenamine Training    
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