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SUMMARY

To meet the demand on very high data rates communication services, multiple

transmitting and multiple receiving antennas have been proposed for modern

wireless systems, where performance is limited by fading and noise. Most of

the current studies on multiple-input multiple-output (MIMO) systems assume

that the noise at receiving antennas are independent (white noise). In this

dissertation, we focus on MIMO systems under colored noise, i.e., the noise at

the receiving antennas are correlated.

Channel information estimation and data detection for MIMO systems under

spatially colored noise are studied. We propose an algorithm for pilot symbol

assisted joint estimation of the channel coefficients and noise covariance ma-

trix. Our proposed method is applied in quasi-static flat fading, quasi-static

frequency selective fading and flat fast fading. A strategy to apply Sphere

Decoder in the spatially colored noise environment is also presented. This algo-

rithm is used in the decoding stage of our proposed systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivations

Reliable communication over a wireless channel is a highly challenging problem

due to the complex propagation medium. The major impairments of the wireless

channel are fading and noise. Due to ground irregularities and typical wave

propagation phenomena such as diffraction, scattering, and reflection, when a

signal is launched into the wireless environment, it arrives at the receiver along

a number of distinct paths, referred to as multipath phenomenon. Each of these

paths has a distinct time-varying amplitude, phase and angle of arrival. These

multipaths add up constructively or destructively at the receiver. Hence, the

received signal can be distorted. The use of antenna arrays has been shown

to be an effective technique for mitigating the effects of fading and noise [1, 2,

3]. Antenna arrays can be employed at the transmitter, or receiver, or both

ends. With an antenna array at the receiver, fading can be reduced by diversity

techniques, i.e., combining independently faded signals on different antennas

that are separated sufficiently apart. If antennas receive independently faded

signals, it is unlikely that all signals undergo deep fades, hence, at least one

good signal can be received. To meet the requirement of very high data rates

for modern wireless networks, multiple antennas at both the transmitter and

receiver have been proposed [4, 5]. It was also proven that in a scattering rich

environment where channel links between different transmitters and receivers

fade independently, the Shannon’s information capacity of a MIMO channel

increases linearly with the smaller of the numbers of transmitting and receiving

3



4

antennas [6].

Most of the current studies on MIMO systems assume that the noise at the

receiving antennas are independent (white noise). However, in MIMO systems,

the noise may be dependent (colored noise) [7, 8]. In this dissertation, we focus

on MIMO systems under colored noise. Therefore, besides channel coefficients,

we have one more parameter to be concerned with, the noise covariance ma-

trix. The ability to derive accurate information on channel properties from the

received signal is thus more challenging compared to that of an additive white

noise environment.

The design of suitable receiver structures that maximize system performance

is another vital task in communication systems. The Maximum-Likelihood

(ML) detector is well-known to be optimum but it has a major drawback of

requiring high computational complexity. Recently, a method to solve the ML

detection problems by using Sphere Decoders (SD), is proposed. Sphere de-

coders, in general, consisting of several variations, are algorithms derived from

the closest lattice point problem which is widely investigated in lattice theory

[9].

The SD was first applied to the ML detection problem in the early 90’s

[10] but gained main stream recognition with a later series of papers [11, 12].

To be specific, in [11], Viterbo and Boutros applied the SD to perform ML

decoding of multidimensional constellations in a single transmit antenna and

a single receive antenna system operating over an independent fading channel

with perfect channel state information at the receiver. The decoder performs a

bound distance search among the lattice points falling inside a sphere centered

at the received point. In [12], Oussama Damen et al. successfully applied the



5

SD in uncoded and coded multi-antenna systems. The historical background as

well as the current state of the art implementations of the algorithm have been

recently covered in two semi-tutorial papers [13] and [14].

From the day of appearance, the SD algorithm has found many applications.

Some examples include [12] which focuses on multi-antenna systems, [15] on the

CDMA scenario, and [16] where the sphere decoder is extended to generate soft

information required by concatenated coding schemes.

The complexity of SD is much lower than the directly implemented ML

detection method, which needs to search through all possible candidates before

making a decision. In [14], it is reported that the complexity of SD is polynomial

in m (roughly, O(m3)) where m is the number of variables to be decoded. The

obtained performance of the SD algorithm is very promising. For example, in

[12], the authors apply SD to solve the detection problem in a MIMO system.

The results proved that SD can provide a huge performance improvement over

the well-known sub-optimal V-BLAST detection algorithm. Furthermore, the

complexity of SD method does not dependent on the number of signal points

in the signal constellations. SD also outperforms other suboptimal detection

scheme such as [17] in which authors applied the V-BLAST detection scheme

but in a new lattice where the basis is transformed to get a better orthogonality

among them in an operation called lattice reduction.

1.2 Contributions

In this dissertation, we consider MIMO systems under colored noise. We apply

the decouple maximum-likelihood (DEML) estimator, which was first used in

[18] to estimate the angle-of-arrival in antenna array systems, to estimate the
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channel coefficients and noise covariance matrix for MIMO systems using pilot

symbols. Our method can be applied in quasi-static flat fading, quasi-static

frequency selective fading and flat fast fading.

A strategy for applying SD in colored noise environment is also introduced.

The improvement in the proposed system bit-error-rate (BER) performance, us-

ing SD as the detection algorithm and using the information from the proposed

channel estimation algorithm, over a classical detection method using perfect

channel information is shown by simulation.

1.3 Organization of the dissertation

Chapter 2 presents the continuous time MIMO system where the discrete

time MIMO system is developed.

Chapter 3 reviews the solution to the so-called closest lattice point problems

for the case of infinite lattice. The two strategies to solve the closest lattice point

problems, Pohst enumeration and Schnorr-Euchner enumeration, are presented.

This chapter also give some examples to show that in many communication

problems, the Maximum Likelihood (ML) problems can be translated into the

closest lattice point problems but in finite lattices. The Sphere Decoder, the

algorithm which solve the closest lattice point problems in finite lattice, is pre-

sented. Two Sphere Decoders are reviewed in the chapter, the first one relying

on the Pohst enumeration and the second one on Schnorr-Euchner enumeration.

The latter is noted to outperform the former in term of computational complex-

ity. The Sphere Decoder so far deals with the case in which the noise at receivers

of MIMO systems are independent. This chapter also give a strategy to deal

with the case in which the noise components from receivers are correlated.
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Chapter 4 presents the decouple maximum likelihood (DEML) estimator

to estimate the channel information for MIMO systems under three types of

fading: quasi-static flat fading, quasi-static frequency selective fading and flat

fast fading. The DEML estimator relies on the pilot symbols placed at the

beginning of the data frame to aid estimation of the channel coefficients and

the noise covariance matrix at the receiver. The application of Sphere Decoding

after obtaining the estimated channel information is presented.

Chapter 5 presents computer simulation results based on the theory devel-

oped in previous chapter.

Chapter 6 concludes the dissertation with the conclusion and recommenda-

tion for future works.



CHAPTER 2

BACKGROUND

In this chapter, we introduce the MIMO system model and the fading channel

model that are considered in this dissertation.

2.1 Continuous time MIMO system model

We consider a MIMO communication system equipped with Ni transmitters

and N0 receivers. The system under consideration is depicted in Figure 2.1.
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( ) ( ) ( ) ( ) ( ) ( )1 1 11 0 1s s s−� �
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Figure 2.1: MIMO system model
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2.1.1 Transmitter structure

Signal Mapping

In Figure 2.1, the binary information source generates the binary sequence

{b(k)}+∞
k=−∞ where k denotes the time index. This sequence is generated at

the bit rate of 1/Tb and consists of independent identically distributed binary

bits. The binary sequence is fed into the signal mapping block in which a bit

or a combination of bits is mapped onto a symbol for transmission. The out-

puts of the signal mapping blocks are denoted as {s(i)(k)}+∞
k=−∞ where super-

script i, i = 1, 2, · · · , Ni denotes the ith transmitter. We consider a Gray-coded

quadrature phase-shift keying (QPSK) in which {00, 01, 11, 10} is mapped into

{1 + j,−1 + j,−1− j, 1− j} where j =
√
−1 (see Figure 2.2). After the signal

mapping block, the symbol duration is T = 2× Tb.

 

( )sℜ

( )sℑ

1

1

1−

1−

( )0,0( )0,1

( )1,1 ( )1,0

Figure 2.2: QPSK signal mapping illustration

Pulse shaping

The Ni parallel encoded sequences {s(i)(k)}+∞
k=−∞, i = 1, 2, · · · , Ni are sent to

the pulse shaping blocks and transmitted simultaneously from Ni transmitters.
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The pulse shaping blocks are illustrated in Figure 2.3 in which p(t) denotes its

impulse response.

 

. 

. 

. 

. 

. 

( ) ( ) ( ) ( ) ( ) ( )1 1 11 0 1s s s−� �

( ) ( ) ( ) ( ) ( ) ( )1 0 1i i iN N Ns s s−� �

( ) ( ) ( ) ( ) ( )1 1

k

s t s k p t kT= −∑

( ) ( ) ( ) ( ) ( )i iN N

k

s t s k p t kT= −∑

 
( )p t

( )p t

Figure 2.3: Spectrum shaping pulse blocks

The output of the ith pulse shaping block (corresponding to ith transmitter),

which are sent to ith transmitter for transmission, is written as

s(i)(t) =
∑

k

s(i)(k)p(t− kT ), i = 1, 2, · · · , Ni. (2.1)

2.1.2 Fading channel model

In urban area, fading is used to describe the rapid fluctuations of the amplitude

and phase in the received signal. Because of the short propagation distance (or

time), large-scale path loss may be ignored. Fading is caused by the interference

between two or more versions of transmitted signal which arrive at receiver

from different directions with different propagation delays. These multipath

signals, which come from reflections from the ground and surrounding structures

combine vectorially at the receiver, resulting in a received signal with randomly

distributed amplitude, phase, angle of arrival. Depending on the relationship

between signal parameters (such as bandwidth, symbol period, etc.) and the

channel parameters (such as delay spread and Doppler spread), the transmitted
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signal will experience different types of fading [19, 20].

If the channel has a constant gain and linear phase response over a band-

width which is greater than the bandwidth of the transmitted signal, then the

received signal undergoes flat fading. In flat fading, the multipath structure of

the channel is such that the spectral characteristics of the transmitted signal

are preserved at the receiver, i.e., all frequency components of the transmitted

signal are affected in the same manner by the channel. Flat fading is mainly ex-

perienced in narrow-band systems where the bandwidth of transmitted signal is

small compared with the coherence bandwidth of the channel, which is defined

as the reciprocal of the multipath delay spread of the channel. On the other

hand, if the channel possesses a constant gain and linear phase response over a

bandwidth that is smaller than the bandwidth of the transmitted signal, then

the channel introduces frequency selective fading on the received signal. Viewed

in the frequency domain, certain frequency components in the received signal

spectrum have greater gains than others. Frequency selective fading is mainly

experienced in broad-band systems where the the bandwidth of the transmitted

signal is larger than the coherence bandwidth of the channel. Frequency selec-

tive fading is manifested as time dispersion of the transmitted symbols within

the channel and thus induces ISI.

Depending on how rapidly the transmitted baseband signal changes as com-

pared to the rate of change of the channel, a channel maybe classified as fast

fading or slow fading channel. In a fast fading channel, the channel impulse

response changes rapidly within the symbol duration. That is, the coherence

time of the channel is smaller than the symbol period of the transmitted sig-

nal. This causes frequency dispersion (also called time selective fading) due
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to Doppler frequency shift, which leads to signal distortion. In a slow fading

channel, however, the channel impulse response changes at a rate much slower

than the transmitted baseband signal. Here, the coherence time is larger than

the symbol period of the transmitted signal.

In this dissertation, we will consider three types of fading: flat, frequency

selective and fast fading. The first two types of fading are considered in details

in the Section 2.2. The last type is considered in Section 4.4.

2.1.3 Receiver structure

At the receiver end, which is depicted in Figure 2.4, the received signal y(j)(t) at

the jth receivers, j = 1, 2, · · · , N0, is a linear superposition of the Ni transmitted

signals from Ni transmitters perturbed by fading and additive Gaussian noise.

 

sampling at t kT=  

. 

. 

. 

. 

( ) ( )1y t

( ) ( )1y n

( )q t

sampling at t kT=  
( ) ( )0Ny t

( ) ( )0Ny n

( )q t

Figure 2.4: The structure of received filters

This received signal is sent to a received filter whose impulse response is

q(t) and the output of this filter is sampled with period of T . The obtained

discrete-time signals from all N0 receivers are used for the purpose of channel

information estimation and detection.
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2.2 Discrete-time MIMO system model

To develop the discrete-time MIMO system model for the model in Figure 2.1,

we inspect only a link from ith transmitter to jth receiver in detail. This link is

illustrated in Figure 2.5.

 
additive white noise 

Binary Information 
Source 

Pulse Shaping 
( )p t  

Receiver filter 

( )q t  

( ) ( )jw t

( ) ( )is t

sampling at t kT=  

( ) ( )jy t
( ) ( )jy k

( ) ( )jx t

Signal  
Mapping 

Channel 
( ) ( ),i jc t  

Figure 2.5: The link from ith transmitter to jyh receiver

Let v(t) = p(t) ∗ c(i,j)(t). Then, v(t) becomes the modified transmitter filter

which includes the channel impulse response c(i,j)(t) of the link. The received

signal y(j)(t) after receiver filtering is written as

y(j)(t) =

∫

(x(j)(τ) + w(j)(τ))q(t− τ)dτ

=

∫

q(t− τ)

(
∑

m

s(i)(m)v(τ −mT )

)

dτ +

∫

q(t− τ)w(τ)dτ

=
∑

m

s(i)(m)

∫

q(t− τ)v(τ −mT )dτ +

∫

q(t− τ)w(τ)dτ. (2.2)

The sampled signal of y(j)(t) is given by

y(j)(k) , y(j)(t)
∣
∣
t=kT

= y(j)(kT )

=
∑

m

s(i)(m)

∫

q(kT − τ)v(τ −mT )dτ
︸ ︷︷ ︸

=q(t)∗v(t)|t=(k−m)T

+w(j)(k)
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=
∑

m

s(i)(m)h(i,j)(k −m) + w(j)(k) (2.3)

where w(j)(k) ,
∫

q(nT − τ)w(τ)dτ and h(i,j)(k −m) , q(t) ∗ v(t)|t=(k−m)T .

The resulting received signal after sampling in the discrete time domain is

given by

y(j)(k) =
∑

m

s(i)(m)h(i,j)(k −m) + w(j)(k) = s(i)(k) ∗ h(i,j)(k) + w(j)(k) (2.4)

where h(i,j)(k) is called the discrete time channel impulse response of the link.

From the investigation of one link, we generalized to our MIMO system with

Ni transmitter and N0 receivers to have the discrete-time MIMO system model

which is depicted in Figure 2.6.

In this model, the noise {w(j)(k)}+∞
k=−∞ at the jth receiver is assumed to

consist of i.i.d. Gaussian random variables with zero mean and variance of σ2
w

regardless of j. The noise at the N0 receivers, in general, are assumed to be

correlated.

The discrete-time channel impulse response of the link from ith transmitter

to jth receiver h(i,j)(k), i = 1, 2, · · · , Ni, j = 1, 2, · · · , N0 depends on the type

of fading under consideration.

If each link is a quasi-static frequency selective Rayleigh fading channel,

h(i,j)(k) is described by a linear, time-invariant finite impulse response as [20]:

h(i,j)(k) =
l=L∑

l=0

hi,j(l)δ(k − l); i = 1, 2, · · · , Ni, j = 1, 2, · · · , N0 (2.5)

where (L+ 1) is the length of the channel impulse response, hi,j(l) is a complex

Gaussian random variable with zero mean and variance of σ2
l , and δ(k) is the

Kronecker’s delta function.

If L = 0, then (2.5) specializes to the case of quasi-static flat fading where

h(i,j)(k) = hi,j(0)δ(k). (2.6)
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In this case we may simplify the notation by writing hi,j(0) = hi,j and

σ2
0 = σ2.
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Figure 2.6: Discrete MIMO system model
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2.3 Blocking and IBI Suppression for quasi-static fre-

quency selective fading channels

For transmission over wireless dispersive media, the channel induced ISI is a

major performance limiting factor. To mitigate such time-domain dispersive ef-

fect arising from frequency selectivity, it has been proven useful to transmit the

information-bearing symbols in blocks [21]. To be specific, we once again con-

sider the link from the ith transmitter to jth receiver in our MIMO system with-

out the presence of other links. This link is modeled as a quasi-static frequency

selective fading channel that has the length of CIR of (L+1). We group the serial

s(i)(k) into blocks of size P >> L and correspondingly define the mth transmit-

ted block to be s(i)(m) = [s(i)(mP ) s(i)(mP +1) · · · s(i)(mP +P −1)]T and the

mth received block as y(j)(m) = [y(j)(mP ) y(j)(mP +1) · · · y(j)(mP +P −1)]T .

Using (2.4) and (2.5), we can relate transmit- with receive-block as (see Figure

2.7(a))

y(j)(m) = H
(i,j)
0 s(i)(m) + H

(i,j)
1 s(i)(m− 1) + w(j)(m) (2.7)

where w(j)(m) is the corresponding noise vector, and the P × P matrices

H
(i,j)
l , l = 0, 1 are defined as

H
(i,j)
0 =
















hi,j(0) 0 0 · · · 0

... hi,j(0) 0 · · · 0

hi,j(L) · · · . . . · · · ...

...
. . . · · · . . . 0

0 · · · hi,j(L) · · · hi,j(0)
















, (2.8)
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H
(i,j)
1 =
















0 · · · hi,j(L) · · · hi,j(1)

...
. . . 0

. . .
...

0 · · · . . . · · · hi,j(L)

...
...

...
. . .

...

0 · · · 0 · · · 0
















. (2.9)

Due to the dispersive nature of the channel, IBI arises between successive

blocks are described in y(j)(m) in (2.7) dependent on both s(i)(m) and s(i)(m−

1).

 

( ) ( ), , 1
0 1
i j i j z−+H H  

( ) ( )j my
( ) ( )j mw

( ) ( )i ms

(a)

 

( ) ( ), , 1
0 1
i j i j z−+H H  

( ) ( )j mw

( ) ( )i ms
ZPT  

( ) ( )i ms

( ),i jH

( ) ( ) ( ) ( ) ( ) ( ) ( ),j i j i jm m m= +y H s w

(b)

Figure 2.7: (a) Block with P >> L. (b) General block transmission with zero-

padding

.

If the s(i)(m) blocks are IBI free, then we can process them independently

in an AWGN environment. To obtain IBI-free blocks, we need to introduce

“guard symbols” in the transmitted block s(i)(m). We start with an N × 1

vector s(i)(m) and create s̄(i)(m) = Ts(i)(m), where the guard-inserting matrix
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T is P ×N , with P = N + L. We can write (2.7) as

y(j)(m) = H
(i,j)
0 Ts(i)(m) + H

(i,j)
1 Ts(i)(m− 1) + w(j)(m) (2.10)

We observe that P symbols are now used to transmit N = P − L symbols.

From (2.10), if T is chosen such that H
(i,j)
1 T = 0P×N , then IBI disappears. This

corresponds to zero-padded (ZP) block transmission. In our matrix model, it

amounts to setting the last L rows of T to zero, i.e., T = T ZP = [IT
N 0T

L×N ]T

where IN is the identity matrix of size N and 0L×N is a zero matrix of size

L × N . Since only the last L columns of H
(i,j)
1 in (2.7) are nonzero, it can be

easily verified that H
(i,j)
1 T ZP = 0P×N because right-multiplying with T ZP is

equivalent to discarding L columns on the right.

Forming the P ×N matrix

H(i,j) = H
(i,j)
0 T ZP =




















hi,j(0) 0 · · · 0

... hi,j(0) · · · 0

hi,j(L)
. . . . . .

...

...
. . . . . . hi,j(0)

...
. . . . . .

...

0 0 · · · hi,j(L)




















from the first N columns of matrix H
(i,j)
0 , we can write the received block

y(j)(m) as

y(j)(m) = H (i,j)s(m) + w(j)(m). (2.11)

Hence, before the symbols are fed into the pulse shaping blocks for trans-

mission, the symbols are grouped to form a block and then zero-padded with L

numbers of 0 symbols to avoid IBI caused by frequency selective fading.
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2.4 Summary

In this chapter, a general continuous time MIMO system model is introduced

together with a brief review of fading channel models. We then develop the

general discrete-time MIMO system model for purpose of our study. The zero-

padding method to avoid IBI for systems operating in frequency selective fading

channels is also addressed.



CHAPTER 3

SPHERE DECODER

3.1 Introduction

In this chapter we shall be concerned with the following so-called integer least-

squares problem

min
s∈Zm
‖y −Hs‖2 (3.1)

where y ∈ R
n,H ∈ R

n×m, in which R denotes the set of real numbers and Z
m

denotes the m−dimensional integer lattice, i.e., s is an m−dimensional vector

with integer components. In practical communication problems, the search

space is a finite subset, D, of the infinite lattice Z
m, where we have

min
s∈D⊂Zm

‖y −Hs‖2. (3.2)

The integer least-squares problem has a simple geometric interpretation. As

the components of s take on integer values, s spans the “rectangular” m −

dimensional lattice, Z
m. However, for any given lattice-generating matrix H,

the n − dimensional vector Hs spans a “skewed” lattice. When n > m, this

skewed lattice lies in an m− dimensional subspace of R
n. Therefore, given the

skewed lattice Hs, and given a vector y ∈ R
n, the integer least-squares problem

is to find the “closest” lattice point (in the Euclidean sense) to y [14] . This

idea is illustrated in Figure 3.1

Compared to the standard least-squares problem where the unknown vector

s is an arbitrary vector in R
m, and the solution is obtained by using a simple

pseudo-inverse, it is much more difficult to find the solution to problems (3.1)

and (3.2). It is well-known that problems (3.1) and (3.2) are, for a general H,

20
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the closest lattice point y  

Figure 3.1: Geometrical interpretation of the integer least-squares problem.

NP-hard [22]. In [23], Pohst proposed an efficient strategy for enumerating all

the lattice points within a sphere of certain radius. Although Pohst’s enumera-

tion has the worst case complexity that is exponential in m, it has been widely

used due to its efficiency in many useful scenarios.

The Pohst enumeration strategy was first introduced in digital communica-

tions by Viterbo and Biglieri [10]. In [11], Viterbo and Boutros applied it to

the ML detection of multidimensional constellations transmitted over a single

antenna in fading channels where a flowchart of a specific implementation was

given.

In the following sections of this chapter we shall investigate the sphere de-

coders through the Pohst and Schnorr-Euchner enumerations. Afterward, ap-

plications of the sphere decoders in communications problems are reviewed.

3.2 The Pohst and Schnorr-Euchner Enumerations

We come back to problem of (3.1)

ŝ = min
s∈Zm
‖y −Hs‖2.

The set Λ = {Hs : s ∈ Z
m} is an m− dimensional lattice in R

n.
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Let C0 be the squared radius of an n−dimensional sphere S(y,
√

C0) centered

at y. We wish to produce a list of all points of Λ ∩ S(y,
√

C0). By performing

the Gram-Schmidt orthonormalization of the columns of H (equivalently, by

applying QR decomposition on H), we have

H = [Q Q
′

]






R

0m×n




 (3.3)

where R is an m×m upper triangular matrix, Q (respectively, Q
′

) is an n×m

(respectively, n× (n−m)) unitary matrix. The condition Hs ∈ S(y,
√

C0) can

be written as [14]

‖y −Hs‖2 ≤ C0,
∥
∥
∥
∥
∥
∥
∥

[Q Q
′

]Ty − [Q Q
′

]T [Q Q
′

]






R

0m×n




 s

∥
∥
∥
∥
∥
∥
∥

2

≤ C0,

∥
∥
∥
∥
∥
∥
∥

[Q Q
′

]Ty −






R

0m×n




 s

∥
∥
∥
∥
∥
∥
∥

2

≤ C0,

∥
∥QTy −Rs

∥
∥

2 ≤ C0 − ‖(Q
′

)Ty‖,

‖y′ −Rs‖2 ≤ C
′

0, (3.4)

where y
′

= QTy and C
′

0 = C0 − ‖(Q
′

)Ty‖2. Due to the upper triangular form

of R, (3.4) can be expressed as

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥













y
′

1

...

y
′

m−1

y
′

m













−













r1,1 · · · · · · r1,m

...
. . . . . .

...

0 · · · rm−1,m−1 rm−1,m

0 · · · 0 rm,m













×













s1

...

sm−1

sm













∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

≤ C
′

0,
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∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥













y
′

1 −
∑m

l=1 r1,lsl

...

y
′

m−1 −
∑m

l=m−1 rm−1,lsl

y
′

m −
∑m

l=m rm,lsl













∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

≤ C
′

0. (3.5)

The above inequality implies a set of conditions

m∑

j=i

∣
∣
∣
∣
∣
y

′

j −
m∑

l=j

rj,lsl

∣
∣
∣
∣
∣

2

≤ C
′

0, i = 1, 2, · · · ,m. (3.6)

For example, if i = m, we have

|y′

m − rm,msm|2 ≤ C
′

0. (3.7)

This condition is equivalent to sm belonging to the interval

⌈
1

rm,m

(

y
′

m −
√

C
′

0

)⌉

≤ sm ≤
⌊

1

rm,m

(

y
′

m +
√

C
′

0

)⌋

. (3.8)

For every sm satisfying (3.8), the condition on sm−1 is

|y′

m−1 − rm−1,m−1sm−1 − rm−1,msm|2 + |y′

m − rm,msm|2 ≤ C
′

0 (3.9)

which leads to sm−1 belonging to the interval

⌈
1

rm−1,m−1

(

y
′

m−1 − rm−1,msm −
√

C
′

0 − |y′

m − rm,msm|2
)⌉

≤ sm−1 ≤
⌊

1

rm−1,m−1

(

y
′

m−1 − rm−1,msm +
√

C
′

0 − |y′

m − rm,msm|2
)⌋

. (3.10)

One can continue in a similar fashion for sm−2, and so on until s1. In conclu-

sion, by considering (3.6) in the order from m to 1 (akin to back-substitution

in the solution of a linear upper triangular system), we obtain the set of ad-

missible values of each symbol si for given values of symbols si+1, · · · , sm. More

explicitly, let sl = [sl, sl+1, · · · , sm]T denote the last m − l + 1 components of
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the vector s. For a fixed si+1, the component si can take on values in the range

Ri(si+1) = [Li(si+1), Ui(si+1)] where

Li(si+1) =







1

ri,i



y
′

i −
m∑

j=i+1

ri,jsj −

√
√
√
√C

′

0 −
m∑

j=i+1

|y′

j −
m∑

l=j

rj,lsl|2










,

Ui(si+1) =






1

ri,i



y
′

i −
m∑

j=i+1

ri,jsj +

√
√
√
√C

′

0 −
m∑

j=i+1

|y′

j −
m∑

l=j

rj,lsl|2







 .

(3.11)

If
∑m

j=i+1 |y
′

j −
∑m

l=j rj,lsl|2 > C
′

0 or Li(si+1) > Ui(si+1), then Ri(si+1) = ∅.

In this case, there is no value of si satisfying the inequalities (3.6) and the points

corresponding to this choice of si+1 do not belong to the sphere S(y,
√

C0).

Pohst enumeration consists of spanning at each level i the admissible interval

Ri(si+1), starting from level i = m and climbing “up” to level i = m − 1,m −

2, · · · , 1. At each level, the interval Ri(si+1) is determined by the current values

of the variables at lower levels (corresponding to higher indexes). If R1(s2) is

nonempty, the vector s = [s1 sT
2 ]T , for all s1 ∈ R1(s2), yield lattice points

Hs ∈ S(y,
√

C0). The squared Euclidean distances between such points and y

are given by

d2(y,Hs) =
m∑

j=1

|y′

j −
m∑

l=j

rj,lsl|2.

The algorithm outputs the point ŝ for which this distance is minimum. If,

after spanning the interval Rm corresponding to sm, no point in the sphere is

found, the sphere is declared empty and the search fails. In this case, the search

squared radius C0 must be increased and the search is restarted with the new

squared radius.

Pohst enumeration is based on the so-called natural spanning of the interval

Ri(si+1) at each level i, i.e., si takes on values in the order Li(si+1), Li(si+1) +
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1, · · · , Ui(si+1)− 1, Ui(si+1). Schnorr-Euchner enumeration is a variation of the

Pohst strategy where the intervals are spanned in a zig-zag order, starting from

the middle point

Mi(si+1) =

⌊

1

ri,i

(

y
′

i −
m∑

j=i+1

ri,jsj

)⌉

. (3.12)

Hence, the Schnorr-Euchner enumeration will produce at each level i the

ordered sequence of values

si ∈ {Mi(si+1),Mi(si+1) + 1,Mi(si+1)− 1,

Mi(si+1) + 2,Mi(si+1)− 2, · · · } ∩ Ri(si+1)

if

y
′

i −
m∑

j=i+1

ri,jsj − ri,iMi(si+1) ≥ 0

or the ordered sequence of value

si ∈ {Mi(si+1),Mi(si+1)− 1,Mi(si+1) + 1,

Mi(si+1)− 2,Mi(si+1) + 2, · · · } ∩ Ri(si+1)

if

y
′

i −
m∑

j=i+1

ri,jsj − ri,iMi(si+1) < 0.

Similar to the Pohst enumeration, when a given value of si results in a point

segment si+1 outside the sphere, the next value of si+1 (at level i+1) is produced.

3.3 Sphere Decoders

In the previous section, we investigated the closest point search problem in

infinite lattices. However, in communication applications, we deal with finite
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lattices. In particular, the vector s does not belong to infinite lattice Z
m but a

subset, Z
m
Q , of it where ZQ = {0, 1, · · · , Q−1} (this point is addressed in details

in the next section). Hence, our problem is

ŝ = arg min
s∈Z

m
Q

‖y −Hs‖2. (3.13)

Probably, the most immediate application of the Pohst enumeration to solve

(3.13) is summarized in Algorithm 1

Algorithm 1

Step 1. Fix C0

Step 2. Apply the Pohst enumeration with the interval boundaries modified as

Li(si+1) = max

{

0,

⌈

1
ri,i

(

y
′

i −
∑m

j=i+1 ri,jsj−
√

C
′

0 −
∑m

j=i+1 |y
′

j −
∑m

l=j rj,lsl|2
)⌉
}

Ui(si+1) = min

{

Q− 1,

⌊

1
ri,i

(

y
′

i −
∑m

j=i+1 ri,jsj+

√

C
′

0 −
∑m

j=i+1 |y
′

j −
∑m

l=j rj,lsl|2
)⌋
}

and obtain the list of all vector s ∈ Z
m
Q such that Hs ∈ S(y, C0).

Step 3. If the list is nonempty, output the point achieving minimum distance

(i.e., the ML decision). Otherwise, increasing C0 and search again.

An improved version of the above algorithm, the Viterbo and Boutros algo-

rithm (VB algorithm) [11], allowed C0 to change adaptively along the search:

that is as soon as a vector s ∈ Z
m
Q is found such that Hs ∈ S(y,

√
C0), then C0

is updated as

C0 ←− d2(y,Hs)
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and the search is restarted in the new sphere with the smaller radius. The

drawback of this approach is that the VB algorithm may respan values of si for

some level i, 1 < i ≤ m, that have been already been spanned in the previous

sphere.

In [14], an algorithm is presented to overcome the respanning of already

spanned point segments. Also in [14], an algorithm that utilizes the Schnorr-

Euchner strategy, which is proven to be more robust than the Pohst-based

algorithms, is summarised in Algorithm 2.

3.4 Application of Sphere Decoder in Communications

Problems

In many communication problems, the received signal is given by a linear com-

bination of data symbols corrupted by additive noise. The input-output rela-

tionship describing such systems can be put in the form as follows:

y = H̃s + w (3.14)

where s, y, w denote the system input, output and noise signals, respectively

and H̃ is a matrix representing the system linear mapping. The noise compo-

nents are i.i.d. zero-mean complex Gaussian random variables with a common

variance.

The specific structures of (3.14) are explained in the following two examples.

• Example 1

Suppose, we consider a flat fading MIMO system having Ni transmitters
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Algorithm 2 Input C
′

0, y
′

, R Output ŝ

Step 1. (Initialization) Set i := m,Tm := 0, ξm := 0 and dc := C
′

0 (current

sphere radius)

Step 2. Set si := b(y′

i − ξi)/ri,ie and ∆i := sign(y
′

i − ξi − ri,isi)

Step 3. (Main step)

If dc < Ti + |y′

i − ξi − ri,isi|
Go to Step 4 (i.e., we are outside the sphere)

Else if si /∈ [0, Q− 1]

Go to Step 6 (i.e., we are inside the sphere but outside the

signal set boundaries)

Else (i.e., we are inside the sphere and signal set boundaries)

if i > 1

ξi−1 :=
∑m

j=i ri−1,jsj; Ti−1 := Ti + |y′

i − ξi − ri,isi|2

i := i− 1

Go to Step 2

else (i.e., i = 1)

Go to Step 5

Step 4.

If i = m

Terminate

Else

Set i := i + 1. Go to Step 6

Step5. (A valid point is found)

Let dc := T1 + |y′

1 − ξ1 − r1,1s1|2. Save ŝ := s. Let i := i + 1 and

go to Step 6.

Step 6. (Schnorr-Euchner enumeration of level i)

Let si := si + ∆i

∆i := −∆i − sign(∆i)

Go to Step 3.
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and N0 receivers that is illustrated in Figure 3.2. We assume that the
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Figure 3.2: Multiple antenna system

environment between transmitters and receivers is quasi-static, i.e., the

channel coefficients remain unchanged over one or several symbol periods.

If that is the case, the input-output relationship can be written at any

time instant as








y(1)

...

y(N0)









︸ ︷︷ ︸

y

=









h1,1 h2,1 · · · hNi,1

...
...

...
...

h1,N0 h2,N0 · · · hNi,N0









︸ ︷︷ ︸

H̃

×









s(1)

...

s(Ni)









︸ ︷︷ ︸

s

+









w(1)

...

w(N0)









︸ ︷︷ ︸

w

(3.15)

where H̃ ∈ C
N0×Ni is the known channel matrix, and w ∈ C

N0×1 is

the additive white Gaussian noise vector consisting of i.i.d. complex

Gaussian random variables with zero mean and variance of σ2, i.e., w ∼

CN (0, σ2IN0) (white noise).



30

• Example 2

Suppose we consider a system consisting of one transmitter and one re-

ceiver working in a frequency selective FIR fading channel modeled in

Figure 3.3.
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Figure 3.3: Frequency selective FIR channel

Here, the received signals can be written as























y1

y2

...

...

...

yT+L

yT+L+1























︸ ︷︷ ︸

y

=























h0

h1 h0

...
. . . . . .

hL
...

. . . h0

hL
... h1

. . .
...

hL























︸ ︷︷ ︸

H̃

×
















s1

s2

...

...

sT
















︸ ︷︷ ︸

s

+























w1

w2

...

...

...

wT+L

wT+L+1























︸ ︷︷ ︸

w

.

(3.16)

This structure can be adapted to a general MIMO system as will be dis-

cussed in Section 4.3.

In order to apply SD based on the complex model given in (3.14), we transform
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s, y, w and H to their real equivalent forms as

s =
[
Re(s)T Im(s)T ]T ,

y =
[
Re(y)T Im(y)T ]T ,

w =
[
Re(w)T Im(w)T ]T ,

H =






Re(H̃) Im(H̃)

−Im(H̃) Re(H̃)




 ,

respectively, where, in general, we assume s ∈ R
m, y,w ∈ R

n and H ∈ R
n×m.

Re(·) and Im(·) denote the real and imaginary part of a complex vector/matrix,

respectively.

The model (3.14) now can be written in its real-equivalent form as

y = Hs + w. (3.17)

Because of assumption of elements of w in (3.14), it follows that w in (3.17)

comprises of i.i.d. real Gaussian random variables with zero mean and a common

variance. The symbol vector s is uniformly distributed over a discrete and finite

set C ⊂ R
m. We assume that the complex symbols si of s belong to a QAM

constellation, i.e., C = Xm, where X is a PAM signal set of size Q. More

explicitely,

X = {u = 2q −Q + 1 : q ∈ ZQ}. (3.18)

Under these conditions and assuming that H is perfectly known at the re-

ceivers, the optimal detector g : y 7−→ ŝ ∈ C that minimizes the average symbol

error probability

Pr(e) , Pr(ŝ 6= s)
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is the ML detector given by

ŝ = arg min
s∈C
‖y −Hs‖2. (3.19)

By applying a suitable translation and scaling of the received signal vector,

(3.19) takes on the form

ŝ = arg min
s∈Z

m
Q

‖y −Hs‖2 (3.20)

and this corresponds to the problem of (3.13) in section 3.3.

One scenario we can encounter in practice is when w of (3.14) does not con-

sist of independent Gaussian random variables but correlated Gaussian random

variables (colored noise), i.e., w ∼ CN (0,Σ) where Σ is the covariance matrix

and Σ is no longer of diagonal form. In this case, in order to apply the Sphere

Decoder developed for the white noise case, we employ Cholesky decomposition

[24] and write Σ = GGH where G is a lower triangular matrix. We multiply

both sides of (3.14) with G−1 to obtain

G−1y = G−1H̃s + G−1w (3.21)

or equivalently

y
′

= H̃
′

s + w
′

. (3.22)

where y
′

, H̃
′

and w
′

are, respectively, y, H̃ and w premultiplied with G−1.

It is easy to see that the covariance matrix of w
′

satisfies

E
{

w
′

(w
′

)H
}

=E
{
G−1wwH(G−1)H

}

=G−1Σ(G−1)H = G−1GGH(G−1)H = I. (3.23)

We then transform (3.22) to its real-equivalent form and perform the needed

transformation and scaling operations on y
′

, to reduce the problem to that of

(3.20).
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3.5 Summary

In this chapter, we investigated the integer least-squares problem for infinite

and finite integer lattice. By inspecting the Pohst and Schnorr-Euchner enu-

merations to solve the problem for infinite integer lattices, the problem for finite

integer lattice is deduced. It turns out that the ML detection in many com-

munication problems can lead to the least-squares problems for finite integer

lattice. The algorithm to find the ML estimations based on Sphere Decoding is

discussed for the case of white noise and colored noise.



CHAPTER 4

CHANNEL ESTIMATION AND DETECTION FOR MIMO

SYSTEMS

4.1 Decouple Maximum Likelihood (DEML)

We consider a general estimation problem which is expressed in (4.1) below

Y = HS + W (4.1)

where Y = [y(0) y(1) · · · y(n)] ∈ C
m×n, H ∈ C

m×l , S ∈ Cl×n and W =

[w(0) w(1) · · ·w(n)] ∈ C
m×n. Each column of W , w(i), i = 1, 2, · · · , n is a

realization of a random complex Gaussian vector of zero mean and covariance

matrix of E
{
w(i)w(i)H

}
= Σ. The problem we would like to address is when

Y , S are known, how to determine the H and the covariance matrix Σ.

For a given S, the probability density function (pdf) of the ith column of Y ,

y(i), is

fy(i)|H,Σ,S

(
y(i)|H ,Σ,S

)
=

1

|πΣ| exp
{

−
(
y(i)− E {y(i)}

)H
Σ−1

(
y(i)− E {y(i)}

)}

(4.2)

Therefore,

fY |H,Σ,S

(
Y |H ,Σ,S

)
=

n∏

i=1

fy(i)|H,Σ,S

(
y(i)|H ,Σ,S

)

=
1

|πΣ|n exp
{
−tr

[
(Y −HS)HΣ−1(Y −HS)

]}
. (4.3)

The log-likelihood function of Y given S is proportional to (within an ad-

ditive constant) [18]

F1 = − log |Σ| − 1

n
tr
[
Σ−1(Y −HS)(Y −HS)H

]
. (4.4)

34
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In order to maximize F1 with respect to (w.r.t) Σ, we take the derivative of

F1 w.r.t Σ and equate it to 0 as follows:

dF1

dΣ
= −nΣ−1 −Σ−1(Y −HS)(Y −HS)HΣ−1 = 0

⇐⇒Σ =
1

n
(Y −HS)(Y −HS)H ≡ Σ̂ (4.5)

Substituting (4.5) into (4.4), we have

F1|Σ=Σ̂
=−n log |Σ̂| − tr[(Y −HS)HΣ̂−1(Y −HS)]

=−n log |Σ̂| − tr[Σ̂−1(Y −HS)(Y −HS)H]

=−n log |Σ̂| − tr[nΣ̂−1Σ̂]

=−n log |Σ̂| − nm. (4.6)

Therefore, we can obtain the estimate Ĥ (in order to maximize F1|Σ=Σ̂
) by

minimizing log |Σ̂|. Let

F2 = log |Σ̂| =
∣
∣
∣
∣

1

n
(Y −HS)(Y −HS)H

∣
∣
∣
∣

(4.7)

Let R̂Y Y = 1
n
Y Y H, R̂SS = 1

n
SSH and R̂SY = 1

n
SY H and define

C=
1

n
(Y −HS)(Y −HS)H

=
[
H − R̂H

SY R̂−1
SS

]
R̂SS

[
H − R̂H

SY R̂−1
SS

]H

+ R̂Y Y − R̂H
SY R̂−1

SSR̂SY (4.8)

Since R̂SS is positive definite (hence the first term in (4.8) is nonnegative)

and the second and third term do not depend on H , it follows that

C ≥ C|H=Ĥ (4.9)

where

Ĥ = R̂H
SY R̂−1

SS (4.10)
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The inequality expression in (4.9) means that the difference matrix C −

C|H=Ĥ is nonnegative definite. Since the whole sample covariance matrix C is

minimized, the estimate Ĥ of H will minimize any nondecreasing function1 of

C including the determinant of C which is F2 in (4.7). Thus, the ML estimate

of H is gven by (4.10).

Substituting (4.10) back to (4.5), we obtain the ML estimate of Σ

Σ̂ = R̂Y Y − R̂H
SY R̂−1

SSR̂SY . (4.11)

In this way, we decouple the multi-dimensional problem of exact maximum

likelihood estimator in (4.4) in to a set of one dimensional problems as given

by (4.10) and (4.11). A decoupled maximum likelihood (DEML) estimator is

established.

4.2 Channel estimation and Detection for quasi-static

flat fading channels

4.2.1 System model

We consider a MIMO system having Ni transmitters and N0 receivers whose

discrete-time model is addressed in Chapter 2. There are a total of NiN0 links in

our system of which the channel impulse response of the link from ith transmitter

to jth receivers is h(i,j)(k) = hi,jδ(k), i = 1, 2, · · · , Ni, j = 1, 2, · · · , N0. hi,j is

modeled as a complex Gaussian random variable. Furthermore, hi,j is assumed

to be unchanged during a block of N symbols and changed randomly from block

to block.

1A function h(C) is a nondecreasing function of a positive definite C if for
any nonnegative definite ∆C, h(C + ∆C) ≥ h(C), and the equality holds only
for ∆C = 0[25]
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With these assumptions, at any discrete time instance k, the received signals

at the N0 receivers can be written as a linear combination of the transmitted

signals from Ni transmitters using matrix notation as












y(1)(k)

y(2)(k)

...

y(N0)(k)













=













h1,1 · · · · · · hNi,1

h1,1 · · · · · · hNi,1

...
...

. . .
...

h1,N0· · · · · ·hNi,N0

























s(1)(k)

s(2)(k)

...

s(Ni)(k)













+













w(1)(k)

w(2)(k)

...

w(N0)(k)













or

y(k) = Hs(k) + w(k) (4.12)

where y(j)(k), s(i)(k), w(j)(k) is the received signal from the jth receiver, trans-

mitted signal from ith transmitter, additive noise at the jth receiver at time

k, respectively. hi,j is the channel impulse response from ith transmitter to

jth receiver, i = 1, 2, · · · , Ni, j = 1, 2, · · · , N0. y(k) ∈ C
N0×1, s(k) ∈ CNi×1,

w(k) ∈ C
N0×1 and H ∈ C

N0×Ni . The noise at the receivers are assumed to be

temporally white but dependent among the receivers, i.e., E
{
w(t1)w(t2)

H
}

=

Σ× δ(t1 − t2).

If we assume that the LOS path does not exist in each link of our system,

then hi,j is a complex Gaussian random variable with zero mean and variance

of σ2. Thus, the total transmit SNR over all antennas is

SNRtotal = Ni
Psσ

2

σ2
w

(4.13)

where σ2
w is the variance of noise at each receiver and Ps/2 is the average power

of constellation in use.

The per-antenna SNR is

SNR =
SNRtotal

Ni

=
Psσ

2

σ2
w

(4.14)
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If, in each link of our system, there is a LOS path, then Ricean fading

distribution is used to model the statistics of hi,j as

hi,j = A + vi,j (4.15)

where A denotes the peak amplitude of the LOS signal and vi,j is a complex

Gaussian random variable with zero mean and variance of σ2. The relationship

between A and σ2 is expressed by Rician factor K given by K = A2/(2σ2). In

this case, the the total transmit SNR over all antennas is

SNRtotal = Ni
Ps(A

2/2 + σ2)

σ2
w

(4.16)

The per-antenna SNR is

SNR =
SNRtotal

Ni

=
Ps(A

2/2 + σ2)

σ2
w

(4.17)

In all our simulations, the BER performance is sketched as a function of

per-antenna SNR.

During the N symbol periods over which the channels remain unchanged, the

transmitted signals from a specific transmit antenna has the structure depicted

in Figure 4.1. In which, the first M symbols of each block of N symbols are

used for estimation of channel information, more explicitly, to estimate H and

Σ.

4.2.2 Channel estimation

During the first M pilot symbols of a block of N symbols, we group M received

signal vectors at the receivers to form a matrix of Y = [y(0) y(1) · · · y(M −

1)] ∈ C
N0×M , then Y can be written as

Y = HS + W (4.18)
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data symbols pilot symbols 

. . . . . . . . . . . . . . . . . . . .  . . . . . .  

M N M−

Figure 4.1: Symbols structure for flat fading channels.

where S = [s(0) s(1) · · · s(M − 1)] and W = [w(0) w(1) · · · w(M − 1)] ∈

C
N0×M .

From the DEML estimator of Section 4.1, the estimation of H and Σ are

Ĥ = R̂H
SY R̂−1

SS (4.19)

Σ̂ = R̂Y Y − R̂H
SY R̂−1

SSR̂SY (4.20)

where R̂Y Y = 1
M

Y Y H, R̂SY = 1
M

SY H, R̂SS = 1
M

SSH.

4.2.3 Symbol Detection

In this section, we describe how to use the estimates from the section 4.2.2 to de-

code the transmitted signals. Here, we assume H and Σ have been determined

by our DEML algorithm.

In every block of transmitted signals from the transmitters, the last N −M

symbols are data symbols. At any time k = M + 1,M + 2, · · · , N the output-

input relationship is written as

y(k) = Hs(k) + w(k) (4.21)

In order to apply SD in the detection process, (4.21) is post-multiplied with
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G−1 where GGH = Σ to form

G−1y(k)=G−1Hs(k) + G−1w(k)

y
′

(k)=H
′

s(k) + w
′

(k) (4.22)

and SD is applied in (4.22) (after transforming to its real-equivalent form) to

find the ML estimation of transmitted symbol vector s(k) at time k.

4.3 Channel estimation and detection for quasi-static fre-

quency selective fading channels

4.3.1 System model

We consider the discrete-time block transmission equivalent model of a base-

band MIMO communication systems having Ni transmitters and N0 receivers

in Chapter 2. There are total of NiN0 links in this MIMO systems. We as-

sume that the link between each transmitter-receiver pair is modeled as a finite

impulse response (FIR) dispersive channel which has no greater than (L + 1)

symbol-spaced taps in the channel response. The sampled channel response be-

tween ith transmitter and jth receiver is denoted by h(i,j) = [hi,j(0) hi,j(1) · · ·

hi,j(L)]T ∈ C
(L+1)×1 where hi,j(l), 1 ≤ i ≤ Ni, 1 ≤ j ≤ N0, 0 ≤ l ≤ L

are independent identical complex Gaussian random variables. We denote

h(i)(l) = [hi,1(l) hi,2(l) · · · hi,N0(l)]
T ∈ C

N0×1, l = 0, 1, · · · , L as the channel

from ith transmitter to all N0 receivers at lth tap.

In our system, we adopt a block transmission structure with zero-padding to

eliminate interblock interference, hence alleviating the performance degration

due to IBI from the previous block onto the current block as discussed in Chapter

2. At each transmitter, information-bearing symbols are divided into N − long
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blocks, with the insertion of T ≥ L zeros symbols at the tail of each block to form

a frame having the length of D = N+T symbol periods. We denote the nth block

of the ith transmitter as s
(i)
n =

[
s
(i)
n (nN) s

(i)
n (nN + 1) · · · s

(i)
n (nN + N − 1)

]T
.

After zero padding , each N − long information-bearing block s
(i)
n creates a

transmit frame s̄
(i)
n = [s̄

(i)
n (nD) s̄

(i)
n (nD+1) · · · s̄

(i)
n (nD+D−1)]T of frame size

D, where the first N entries convey messages s̄
(i)
n (nD+k) = s

(i)
n (nN +k) for k =

0, 1, 2, · · · , N − 1, followed by T trialling zeros s̄
(i)
n (nD + k) = 0 for k = N,N +

1, N + 2, · · · , D − 1, for any frame index n and any transmitter i ∈ [1, Ni].

At the receiving premise, during the process of receiving the nth data frames

from Ni transmitters, we collect N0 samples from the outputs of N0 receivers at

time (nD+k) to form yn(nD+k) =
[
y

(1)
n (nD+k) y

(2)
n (nD+k) · · · y

(N0)
n (nD+

k)
]T ∈ C

N0×1 where y
(j)
n (nD + k) denotes the sample from jth receiver at time

(nD+k), k = 0, 1, · · · , D−1. This sample is contaminated by w
(j)
n (nD+k) which

is an complex Gaussian random variable. The y
(j)
n (nD + k) can be determined

by

y(j)
n (nD + k) =

Ni∑

i=1

L∑

m=0

hi,j(m)s̄(i)
n (nD + k −m) + w(j)(nD + k)

=
L∑

m=0

h1,j(m)s̄(1)
n (nD + k −m) + · · ·

+
L∑

m=0

hNi,j(m)s̄(Ni)
n (nD + k −m) + w(j)

n (nD + k). (4.23)

Therefore, yn(nD + k) can be evaluated as

yn(nD + k) =
L∑

m=0

h(1)(m)s̄(1)
n (nD + k −m) + · · ·

+
L∑

m=0

h(Ni)(m)s̄(Ni)
n (nD + k −m) + wn(nD + k). (4.24)

We model wn(nD + k) a complex Gaussian vector with zero-mean and
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E{wn(nD + k1)w
H
n (nD + k2)} = Σ × δ(t1 − t2), that is, our noise is tem-

porally white, w(t) ∼ CN (0,Σ) where Σ is the N0 × N0 covariance matrix of

w(t) to be determined.

Thus, equation (4.24) can be written as

yn(nD + k) =
[

h(1)(0) · · · h(1)(L)
]













s̄
(1)
n (nD + k)

s̄
(1)
n (nD + k − 1)

...

s̄
(1)
n (nD + k − L)













+ · · ·

+
[

h(Ni)(0) · · · h(Ni)(L)
]













s̄
(Ni)
n (nD + k)

s̄
(Ni)
n (nD + k − 1)

...

s̄
(Ni)
n (nD + k − L)













+ wn(nD + k) (4.25)

If we define s̄
(i)
n (m) =

[
s̄
(i)
n (m) · · · s̄

(i)
n (m−L)

]T
, i = 1, 2, · · · , Ni and H(i) =

[
h(i)(0) · · · h(i)(L)

]
then (4.25) can be written as

yn(nD + k) =
[
H(1) H(2) · · · H(Ni)

]













s̄
(1)
n (nD + k)

s̄
(2)
n (nD + k)

...

s̄
(Ni)
n (nD + k)













+ wn(nD + k) (4.26)

or equivalently

yn(nD + k) = Hs̄(nD + k) + wn(nD + k) (4.27)

where H =
[
H(1) H(2) · · · H(Ni)

]
∈ C

N0×Ni(L+1) and s̄n(nD + k) =
[
s̄

(1)
n (nD +

k)T s̄
(2)
n (nD + k)T · · · s̄

(Ni)
n (nD + k)T

]T
.

Because of zero padding, IBI is avoided and we may simply omit the adjacent

frames and consider only one frame. Hereon, we may drop the frame index n
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to simplify our notation.

The structure of a frame from a transmitter is illustrated in Figure 4.2.

 

. . . .  

data symbols pilot symbols 

. . . . . . . . . . . . . . . . . . . .  . . . . . .  

M N M−

0 0

T

Figure 4.2: Symbols structure for frequency selective fading channels.

If there is no LOS path in our system, then the channel coefficient hi,j(l),

i = 1, 2, · · · , Ni; j = 1, 2, · · · , N0; l = 0, 1, · · · , L, can be modeled as a complex

Gaussian random variable with zero-mean and variance of σ2
l . Thus the per-

antenna SNR is

SNR =
Ps

∑L
l=0 σ2

l

σ2
w

(4.28)

If there is a LOS path in each link in our system, then all the coefficients

hi,j(l), i = 1, 2, · · · , Ni; j = 1, 2, · · · , N0; l = 1, · · · , L are modeled as complex

Gaussian random variables with zero-mean and variance of σ2
l , with the coeffi-

cient hi,j(0) modeled as

hi,j(0) = A + vi,j(0) (4.29)

where A denotes the peak amplitude of LOS signal and vi,j(0) is a complex

Gaussian random variable with zero-mean and variance of σ2
0. Here, we modify

the Rician factor as

K =
A2/2
∑L

l=0 σ2
l

. (4.30)

Therefore, the per-antenna SNR is

SNR =
Ps(A

2/2 +
∑L

l=0 σ2
l )

σ2
w

(4.31)
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where σ2
w is the variance of noise at each receiver.

4.3.2 Channel estimation

The first M symbols of each frame from each transmitter are used for the

purpose of obtaining the information of channel that is needed in detection

stage.

During the training period, we group M vectors of received signals from all

N0 receivers to form Y = [y(0) y(1) · · · y(M − 1)] ∈ C
N0×M . This matrix can

be written as

Y = HS̄ + W (4.32)

where S̄ = [s̄(0) s̄(1) · · · s̄(M − 1)] and N = [w(0) w(1) · · · w(M − 1)] ∈

C
N0×M .

Let R̂Y Y = 1
M

Y Y H, R̂S̄S̄ = 1
M

S̄SH and R̂S̄Y = 1
M

S̄Y H. From the DEML

estimator, we have the estimated value of H and Σ as

Ĥ = R̂H
S̄Y R̂−1

S̄S̄
(4.33)

and

Σ̂ = R̂Y Y − R̂H
S̄Y R̂−1

S̄S̄
R̂S̄Y (4.34)

4.3.3 Symbol Detection

In this section, we describe how to use the estimates obtained from DEML

estimator for symbol detection. From now on, in every equation, we assume H

and Σ have been determined by our DEML algorithm.

The data received after training symbols are {y(k)}D−1
k=M which are deter-

mined as

y(k) = Hs̄(k) + w(k) (4.35)
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From these received data, a ML estimation of the information-bearing sym-

bols can be easily established. However, it will incur exponential complexity

with respect to frame length and hence has little practical usage.

We will apply the Sphere Decoder into symbol detection by dividing the

{y(k)}D−1
k=M into subframe of length P . The value of P is the tradeoff between

the system’s performance and the complexity of detection stage. We denote a

subframe as yP (j) =
[
yT (jP +M) yT (jP +M +1) · · · yT (jP +P +M−1)

]T ∈

C
PN0×1 and we define

H
(i) =













h(i)(L)h(i)(L− 1). . .h(i)(0) 0 . . . 0

0 h(i)(L) . . .h(i)(1) h(i)(0) . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . .h(i)(L)h(i)(L). . .h(i)(0)













(4.36)

that has the size of PN0×(P +L) and s̄
(i)
P (m) = [s̄(i)(mP +M−L) · · · s̄(i)(mP +

P + M − 1)]T for i = 1, 2, · · · , Ni; m = 0, 1, 2, · · · , I where I = dD−M
P
e.

The noise in this mth subframe can be represented as wP (m) = [nT (mP +

M) · · · nT (mP + P + M − 1)]T ∈ C
PN0×1.

Then, yP (m) can be written as

yP (m) =

Ni∑

i=1

H
(i)s̄

(i)
P (j) + wP (m)

=
[
H

(1)
H

(2) · · · H
(Ni)
]













s̄
(1)
P (m)

s̄
(2)
P (m)

...

s̄
(Ni)
P (m)













+ nP (m)

= Hs̄P (m) + nP (m) (4.37)

where H =
[
H

(1)
H

(2) · · · H
(Ni)
]
∈ C

PN0×Ni(P+L), s̄P (m) =
[
(s̄

(1)
P (m))T (s̄

(2)
P (m))T
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· · · (s̄
(Ni)
P (m))T

]
and nP (m) ∼ CN (0,Σ′) where Σ′ = IP ⊗Σ.

Applying the idea of SD in colored Gaussian noise, we multiple (4.37) with

G−1 where GGH = Σ′ to yield

G−1yP (m)=G−1
Hm̄

(i)
P (j) + G−1nP (m)

y
′

P (m)=H
′s̄P (m) + n

′

P (m) (4.38)

In (4.38), n
′

P (m) is a white Gaussian random vector, therefore we can apply

SD described in Chapter 3 to find the ML solution to s̄P (m) after translating

(4.38) into its real-equivalent form.

Note that in (4.37), the matrix H has the size of PN0×Ni(P +L). In order

to apply the SD algorithm, it is required that the number of rows should not

be less than the number of columns, i.e.,

PN0≥Ni(P + L)

or N0≥Ni(1 +
L

P
). (4.39)

Therefore, in general, the number of receive antennas should be greater than

the number of transmit antennas.

4.4 Channel estimation and detection for flat fast fading

channels

4.4.1 Sytem model

We still consider a MIMO system having Ni transmitters and N0 receivers.

Each link in our system is assumed to be flat fading channel with Doppler

spread effects taken into account. Therefore, the received signals are simply the

transmitted signals faded by a time-varying stochastic process. More explicitly,
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the Rayleigh distribution is used to describe the statistical time-varying nature

of received signal envelop due to flat fading and the received signal phase is

assumed to be uniformly distributed over interval of [0, 2π).

The Jakes’ simulation model [26] is a statistical model that can be used

for the channel where the envelope fluctuation is characterized by Rayleigh

process. The Rayleigh process, ζ(t) is obtained from the envelope of a narrow-

band complex Gaussian random process

µ(t) = µ1(t) + jµ2(t) (4.40)

where µ1(t) and µ2(t) are uncorrelated real Gaussian random processes with

zero-mean, E {µi(t)} = 0, and equal variance E {µ2
i (t)} = σ2

µi
= σ2

0/2, i = 1, 2.

Thus,

ζ(t) = |µ(t)| =
√

µ2
1(t) + µ2

2(t) (4.41)

is a Rayleigh distributed random process. The power spectrum density of the

two Gaussian random process, which are widely accepted Jakes’ power spec-

trum, are written as

Sµiµi
(f) =







σ2
0/2

πfmax

√
1−(f/fmax)2

|f | < fmax

0 elsewhere

, i = 1, 2 (4.42)

where fmax the the maximum Doppler shift 2. By taking the inverse Fourier

transform of (4.42), the autocorrelation function of µi(t), i = 1, 2 is given by

rµiµi
(τ) =

σ2
0

2
J0(2πfmaxτ) (4.43)

2The Doppler shift (Doppler frequency) of an elementary wave is equlal to
f = fmaxcosα, where α is the angle of arrival and fmax = vf0/c0 denotes the
maximum Doppler frequency(v: velocity of user, f0: carrier frequency, c0: speed
of light)
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The power spectrum density of µ(t) is thus

Sµµ(f) = Sµ1µ1(f) + Sµ2µ2(f) =







σ2
0

πfmax

√
1−(f/fmax)2

|f | < fmax

0 elsewhere

(4.44)

and its autocorrelation function is

rµµ(τ) = rµ1µ1(τ) + rµ2µ2(τ) = σ2
0J0(2πfmaxτ). (4.45)

We consider the link from ith transmitter to jth receiver in our MIMO system.

The received signal in continuous-time domain is

y(j)(t) = hi,j(t)s
(i)(t) + w(j)(t) (4.46)

where the random process hi,j(t) has the power spectrum density of (4.44) and

the autocorrelation of (4.45).

Therefore, the discrete-time form of (4.46) can be written as

y(j)(k) = hi,j(k)s(i)(k) + w(j)(k), k = · · · , 0, 1, 2, · · · (4.47)

The sequence {hi,j(k)}+∞
k=−∞ has the autocorrelation function that is the

sampled function of (4.45) at period of T , i.e.,

rh(i,j)h(i,j)(m) = σ2
0J0(2πfmaxTm), m = · · · , 0, 1, 2, · · · (4.48)

For our MIMO system, the received signals from N0 receivers at time k are

grouped to form a matrix y(k) that is expressed as













y(1)(k)

y(2)(k)

...

y(N0)(k)













=













h1,1(k) · · · · · · hNi,1(k)

h1,2(k) · · · · · · hNi,1(k)

...
...

. . .
...

h1,N0(k)· · · · · ·hNi,N0(k)

























s(1)(k)

s(2)(k)

...

s(Ni)(k)













+













w(1)(k)

w(2)(k)

...

w(N0)(k)
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or

y(k) = H(k)s(k) + w(k) (4.49)

where y(j)(k), s(i)(k), w(j)(k) is the signal received by the jth receiver, signal

transmitted by the ith transmitter, additive noise at the jth receiver at time k,

respectively. hi,j(k) is the channel coefficient from ith transmitter to jth receiver

at time k, i = 1, 2, · · · , Ni, j = 1, 2, · · · , N0. y(k) ∈ C
N0×1, s(k) ∈ CNi×1,

w(k) ∈ C
N0×1 and H(k) ∈ C

N0×Ni . The noise at the receivers are assume to be

temporally white but dependent among the receivers, i.e., E
{
w(t1)w(t2)

H
}

=

Σ× δ(t1 − t2) where Σ is a N0 ×N0 matrix to be determined.

The symbol structure from a transmitter is similar to that in case of quasi-

static flat fading channels, i.e., symbols are grouped into blocks of N symbols

in which the first M symbols are pilot symbols.

 

data symbols pilot symbols 

. . . . . . . . . . . . . . . . . . . .  . . . . . .  

M N M−

Figure 4.3: Symbols structure for fast fading channels.

The per-antenna SNR in this case is determined as

SNR =
Psσ

2
0

σ2
w

. (4.50)

where σ2
w is the variance of noise at each receiver.

4.4.2 Channel estimation

For our analysis of the estimation algorithm, we assume that the channel re-

mains almost unchanged within a block of N symbols. Hence, the channel
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matrix is approximated as time invariant so that the input-output relationship

can be writtens as

y(k) = Hs(k) + w(k), k = 0, 2, · · · ,M − 1. (4.51)

Our assumption can be applied when the value of fmaxT is small and the

value of N is small. If we group M received signal vectors corresponding to M

pilot symbols to form Y = [y(0) y(1) · · · y(M − 1)] ∈ C
N0×M then

Y = HS + W (4.52)

where S = [s(0) s(1) · · · s(M − 1)] and W = [w(0) w(1) · · · w(M − 1)] ∈

C
N0×M .

From the DEML estimator of section 4.1, the estimation of H and Σ are

Ĥ = R̂H
SY R̂−1

SS

Σ̂ = R̂Y Y − R̂H
SY R̂−1

SSR̂SY (4.53)

where R̂Y Y = 1
M

Y Y H, R̂SY = 1
M

SY H, R̂SS = 1
M

SSH.

4.4.3 Symbol detection

In this section, the estimated value of H and Σ are used in SD to decode the

transmitted signals during the left N −M symbol periods. In every equation

form now on, we assume H and Σ have been estimated by DEML algorithm.

At any k instant, k = M,M + 1, · · · , N − 1, the received signal vector is

y(k) = Hs(k) + w(k) (4.54)

Equation (4.54) is post-multiplied with G−1 where GGH = Σ to form

G−1y(k) = G−1Hs(k) + G−1w(k)

y
′

(k) = H
′

s(k) + w
′

(k) (4.55)
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and SD is applied in (4.55) (after transforming to its real-equivalent form) to

find the ML estimation of transmitted symbol vector s(k) at time k.

4.5 Summary

In this Chapter, we consider three realizations of the general MIMO system

model that are developed in Chapter 2: quasi-static flat fading channels, quasi-

static frequency selective fading channels and flat fast fading channel. The

system model is presented for each case. The organization of symbols at each

transmitter is also addressed. For every case, symbols are grouped into blocks

in which several leading symbols served as pilot symbols to estimate the channel

information needed in the detection process. For the fast fading case, we have

assumed block fading for blocks of very short lengths as an approximate analysis.

The validity of this assumption is verified by computer simulated results in

Section 5.3.



CHAPTER 5

RESULTS AND DISCUSSIONS

In this chapter, we present computer simulated results on the performance

of the channel information estimation and decoding algorithms proposed.

We assume that the noise vector w(k) at any time instance k at N0 receivers

has the covariance matrix Σ whose (m,n)th element is

Σm,n = σ2
w.(0.9)|m−n|. exp

[

j
(π

2

)

(m− n)
]

, 1 ≤ m,n ≤ N0

i.e., colored noise.This noise covariance model was adopted in [8]. The matrix

Σ can also be written as Σ = σ2
wΣ0 where

(Σ0)m,n = (0.9)|m−n|. exp
[

j
(π

2

)

(m− n)
]

, 1 ≤ m,n ≤ N0

Besides, we also consider the white noise case in which the Σ = σ2
wIN0 .

For the purpose of comparisons, we also obtained simulated results using the

Zero-Forcing (ZF) detection method. ZF is a classical detection technique which

is used widely in communication systems, and is briefly summarized below.

For the model

y = Hs + w, (5.1)

the unconstrained least-squares result is

ŝ = H†y, (5.2)

where H† = (HHH)−1HH is called the pseudo-inverse of H . The entries of

ŝ are not necessarily the elements used in the signal constellation. Rounding

them off to the closest elements of constellation (a process referred as slicing)

provides the estimated value of s according to the ZF algorithm.

52
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5.1 Quasi-static flat fading channels

In Figure 5.1, we present BER versus SNR for the MIMO system having Ni =

2 transmitters and N0 = 2 receivers in the colored noise environment. We

assume the channels from transmitters to receivers are independent. At any time

instance, a link in our system is modeled as a complex Gaussian random variable

with zero mean, i.e., there are no LOS paths in our system. We assume that

the channel coefficients remain unchanged over a interval of N = 44 symbols in

which the first M = 4 symbols are pilot symbols used to estimate the channel

coefficients and the noise covariance matrix. From Figure 5.1, we see that SD

using the channel information from DEML estimator outperforms the ZF with

perfect CSI.

SNR in dB

B
E

R

SD - perfect CSI and Σ
SD - DEML (proposed)
ZF - perfect CSI and Σ

ZF - DEML

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

Figure 5.1: BER v.s. SNR for N = 44, M = 4, no LOS’s and in the colored

noise environment.

For example, at a BER of 10−2, the former outperforms the latter by more
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than 5 dB.

Further, the results also show that the performance of the ZF algorithm us-

ing the channel information obtained from the DEML estimator is only about

1dB poorer when compared to the case with perfect channel information. This

observation illustrates the accuracy of channel information obtained by our pro-

posed estimator.

It is also seen in the Figure 5.1 that the loss of the SD using the chan-

nel information from the DEML estimator and the SD using perfect channel

information is around 5dB. This loss is larger than that of the ZF algrithm us-

ing information from DEML estimator compared with the ZF algorithm using

perfect channel information. We can infer that the SD is more sensitive with

channel information estimation error than the ZF algorithm.

SNR in dB

B
E

R

SD - perfect CSI and Σ
SD - DEML (proposed)
ZF - perfect CSI and Σ

ZF - DEML

0 2 4 6 8 10 12 14 16 18 20
10−3

10−2

10−1

100

Figure 5.2: BER v.s. SNR for N = 44, M = 4, no LOS’s and in the white noise

environment.

In Figure 5.2, the BER performance for the same system as above but op-
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erating in a white noise environment is presented. We see that for the case of

white noise, the proposed method only outperforms the ZF with perfect CSI

and noise covariance matrix when the SNR is above around 15 dB. From this

SNR value, the gap between them becomes larger. Comparing with the case of

colored noise, at the BER of 10−2, the case for colored noise outperforms that

for white noise by more than 2 dB.

We next consider the same system but there is a LOS path in each link in the

system. Figure 5.3 shows us the performance with the Ricean factor of K = 2

in the colored noise environment and Figure 5.4 in the white noise environment,

respectively.

SNR in dB

B
E

R

SD - perfect CSI and Σ
SD - DEML (proposed)
ZF - perfect CSI and Σ

ZF - DEML

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

Figure 5.3: BER v.s. SNR for N = 44, M = 4. Ricean factor of K = 2 and in

the colored noise environment.

In this case, at BER = 10−2, the SNR loss of the ZF using perfect channel in-

formation to the SD using the channel information from DEML estimator in the

colored noise environment is around 10dB and in the white noise environment
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SNR in dB

B
E

R

SD - perfect CSI and Σ
SD - DEML (proposed)
ZF - perfect CSI and Σ

ZF - DEML

0 5 10 15 20 25
10−5

10−4

10−3

10−2

10−1

100

Figure 5.4: BER v.s. SNR for N = 44, M = 4. Ricean factor of K = 2 and in

the colored noise environment

is around 4 dB, which are larger than that of without LOS paths.

To examine the accuracy of our approach, we plotted the average MSE of

the channel coefficient in case of colored and white noise environments in Fig-

ure 5.5 and Figure 5.6, respectively. The MSE of the noise covariance estimates

are plotted in Figure 5.7 and Figure 5.8 for the colored and white noise envi-

ronments, respectively. We observe that the MSE’s decrease rapidly with the

increase of SNR. It is further observed that at low SNR, the MSE incurred is

much larger for the case when a LOS component is present.

Figure 5.9 illustrates the BER as a function of SNR for the 2 × 2 system

in both the colored and white noise environments, without LOS. Figure 5.10

presents the BER of the same system in the presence of an LOS path.
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SNR in dB
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Figure 5.5: Average MSE of channel coefficients in 2 × 2 flat fading system,

N = 44 and M = 4, with and without LOS’s in the colored noise environment.

With LOS’s
Without LOS’s
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Figure 5.6: Average MSE of channel coefficients in 2 × 2 flat fading system,

N = 44 and M = 4, with and without LOS’s in the white noise environment.
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SNR in dB
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Figure 5.7: Average MSE of elements of Σ in 2× 2 flat fading system, N = 44

and M = 4, with and without LOS’s in the colored noise environment.
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Figure 5.8: Average MSE of elements of Σ in 2× 2 flat fading system, N = 44

and M = 4, with and without LOS’s in the white noise environment
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SNR in dB

B
E

R

White noise
Correlated noise
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SD - DEML (proposed)
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Figure 5.9: BER v.s. SNR for the 2× 2 flat fading system, N = 44 and M = 4,

without LOS’s in the colored and white noise environments.
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Figure 5.10: BER v.s. SNR for the 2×2 flat fading system, N = 44 and M = 4,

with LOS’s in the colored and white noise environments.
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From the two Figures, we see that the performance of the system in the

colored noise environment is better that that in the white noise environment.

To explain this phenomenon, we resort to the Matched-Filter Bound (MFB)

[27]. For the system of

y = Hs + w

= [h1 h2 hi · · · hNi
]













s(1)

s(2)

...

s(Ni)













+ w (5.3)

where E
{
wwH

}
= σ2

wIN0 (i.e., white noise environment), the SNR for the ith

symbol according to MFB is [pg. 448, 27]:

SNRMFB,i,white noise =
‖hi‖2
σ2

w

. (5.4)

For the colored noise environment, the covariance matrix of w is Σ =

E
{
wwH

}
= σ2

wΣ0. The Cholesky decomposition of Σ0 is Σ0 = GH
0 G0 and the

Cholesly decompostion of Σ can be easily written as Σ =
√

σ2
wGH

0

√

σ2
wG0. The

whitening operation is accomplished by post-multiplying (5.3) by (
√

σ2
wGH

0 )−1

as follows:

(
√

σ2
wGH

0 )−1y
︸ ︷︷ ︸

y
′

= (
√

σ2
wGH

0 )−1H
︸ ︷︷ ︸

H
′

=[h
′

1···h
′

i···h
′

Ni
]

s + (
√

σ2
wGH

0 )−1w
︸ ︷︷ ︸

w
′

. (5.5)

It is straightforward to prove that the E
{
w

′

(w
′

)H
}

= IN0 . Therefore, the

SNR for the ith symbol according to the MFB for the colored noise case is:

SNRMFB,i,colored noise =
‖h′

i‖2
1

=
‖(GH

0 )−1hi‖2
σ2

w

. (5.6)

In Figure 5.11, the 2 × 2 system is investigated and the SNRMFB,i’s are

presented for both colored and white noise environments. From the Figure we
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see that for the colored noise environment, SNRMFB,i is larger than that of the

white noise environment. Hence, the performance of the system in the colored

noise environment is better than that of the white noise.

SNR in dB

S
N

R
M

F
B

,i

SNRMFB,1,colored noise

SNRMFB,2,colored noise

SNRMFB,1,white noise

SNRMFB,2,white noise

0 2 4 6 8 10 12 14 16 18 20
10−1

100

101

102

103

104

Figure 5.11: Compare the SNRMFB,i for 2×2 systems in the colored and white

noise environments.
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5.2 Quasi-static frequency selective fading channels

In this section, we consider a system with Ni = 1 transmitter and N0 = 2

receivers. The channels between the transmitter and receivers are modeled as

FIR dispersive channels with L = 1, i.e., each channel has two taps in its impulse

response, which is basically the two-ray model.

First of all, we assume that the channels are independent. Further, we also

assume that in our system there is no LOS path between the transmitter and

receivers so that each tap of any channel impulse response can be modeled as a

complex Gaussian random variable with zero mean and a common variance.

We consider a frame structure in which the frame length is N = 44, the

first M = 4 symbols are used to estimated the channel coefficients and the

noise covariance matrix. Figure 5.12 and Figure 5.13 present the average Mean

Square Error (MSE) of each tap in the system in the colored and white noise

environments, respectively.

Figure 5.14 and Figure 5.15 illustrate the average MSE of elements of Σ

in the colored and white noise environments, respectively. We observe that

the average MSE for both noise environments decreases exponentially as SNR

increases.
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Figure 5.12: Average MSE of each channel coefficients, without LOS paths, in

the colored noise environment.
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Figure 5.13: Average MSE of each channel coefficients, without LOS paths, in

the white noise environment.
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Figure 5.14: Average MSE of elements of Σ, without LOS paths, in the colored

noise environment.
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Figure 5.15: Average MSE of elements of Σ, without LOS paths, in the white

noise environment.
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In Figure 5.16 and Figure 5.17, the BER as a function of SNR is shown for

the cases of colored and white noise, respectively.
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Figure 5.16: BER v.s. SNR for N = 44,M = 4, without LOS paths, in the

colored noise environment.

SNR in dB

B
E

R

SD - perfect CSI and Σ

SD - DEML
ZF - perfect CSI and Σ

ZF - DEML

0 2 4 6 8 10 12
10−3

10−2

10−1

100

Figure 5.17: BER v.s. SNR for N = 44,M = 4, without LOS paths, in the

white noise environment.
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As can be seen from Figure 5.16 for the colored noise case, by applying

DEML estimator to estimate channel information and using the estimated in-

formation to perform SD, the proposed system performs better than ZF with

known CSI and noise covariance when SNR is below about 7 dB. For the white

noise case, Figure 5.17 shows that the proposed method outperforms the ZF

with known CSI and noise covariance when SNR is below about 6 dB.

With the same 1× 2 system above, in Figure 5.18, we present the BER for

two cases in the colored noise environment: the first one N = 44, M = 4 and

the second one is N = 24, M = 4, i.e., the number of pilot symbols equals 4 in

each case, the first case has 40 data symbols compared to the second case which

has only 20 data symbols.
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Figure 5.18: BER v.s. SNR for N = 44,M = 4 and N = 24,M = 4, without

LOS paths, in the colored noise environment.

The same investigation is repeated for the white noise case and the results

are shown in Figure 5.19.
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Figure 5.19: BER v.s. SNR for N = 44,M = 4 and N = 24,M = 4, without

LOS paths, in the white noise environment.

When SD (using the channel information from DEML estimator) is applied,

we observe that better performance can be achieved by using a frame con-

structed with larger number of data symbols and this observation is applied for

both noise environments.

In Figure 5.20, we present a comparison of the two noise environments in

term of BER as a function of SNR. It can be seen from the figure that the

performance in the colored noise environment outperforms that of the white

noise environment. This observation also happens for the quasi-static flat fading

case as in Section 5.2. The observation can also be explained by using the

arguments given in Section 5.2.
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Figure 5.20: BER v.s. SNR for N = 44,M = 4, without LOS paths, in the

colored and white noise environment.

In the presence of LOS’s, the first tap in the impulse response of each channel

(transmitter-receiver pair) is no longer a Gaussian random variable with zero

mean but a Gaussian random variable with non-zero mean (which depends on

the Rician factor). All other taps are still modeled as Gaussian random variables

with zero mean. We further assume that the variances of all taps are the same.

Figure 5.21 and Figure 5.22 present the average MSE of each tap in the

system in the colored and white noise environments, respectively. Figure 5.23

and Figure 5.24 illustrate the average MSE of elements of Σ in the colored and

white noise environments, respectively. Again, the exponentially decreasing

trend is observed for both noise environments.
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Figure 5.21: Average MSE of each channel taps. There exists LOS paths with

Rician factor of 5, in the colored noise environment.
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Figure 5.22: Average MSE of each channel taps. There exists LOS paths with

Rician factor of 5, in the white noise environment.
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Figure 5.23: Average MSE of elements of Σ. There exists LOS paths with

Rician factor of 5, in the colored noise environment.
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Figure 5.24: Average MSE of elements of Σ. There exists LOS paths with

Rician factor of 5, in the white noise environment.
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Figure 5.25 and Figure 5.26 present the BER of a system with N = 44, M =

4 and each channel from the transmitter to the receiver has a LOS path, which

has the Rician factor of K = 5, working in the colored and white noise environ-

ments.
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Figure 5.25: BER v.s. SNR for N = 44,M = 4, with LOS paths, in the colored

noise environment.

With LOS path, the performance of SD when using the channel information

from DEML estimator is worse than that of ZF with perfect CSI and noise co-

variance matrix for both noise cases. This can be explained by examining Figure

5.27 and Figure 5.28 to reveals that the average MSE for the case with LOS

path is greater than that for the case without LOS paths for both the channel

estimates and noise covariance estimates in the colored noise environment. For

the white noise environment, the comparison is illustrated in Figure 5.29 and

Figure 5.30.
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Figure 5.26: BER v.s. SNR for N = 44,M = 4, with LOS paths, in the white

noise environment.
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Figure 5.27: Average MSE of each channel tap, with and without LOS paths,

in the colored noise environment.
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Figure 5.28: Average MSE of elements of Σ, with and without LOS paths, in

the colored noise environment.
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Figure 5.29: Average MSE of each channel tap, with and without LOS paths,

in the white noise environment.
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Figure 5.30: Average MSE of elements of Σ, with and without LOS paths, in

the white noise environment.

Figure 5.31 gives us the performance for two cases: N = 44, M = 4 and

N = 24, M = 4 in which the system works under the colored noise environment.

Figure 5.32 presents the performance of the same system under the white noise

environment. We see that for both noise cases, the performance of frame of

longer data symbols is again better than that of frame of shorter data symbols.

In Figure 5.33, the BER for the system with N = 44 and M = 4 working

under the colored and white noise environments is presented. Similar to the case

of no LOS path in the system, the performance in the colored noise environment

outperforms that of the white noise environment.
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Figure 5.31: BER v.s. SNR for N = 44,M = 4 and N = 24,M = 4, with LOS

paths, in the colored noise environment.
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Figure 5.32: BER v.s. SNR for N = 44,M = 4 and N = 24,M = 4, with LOS

paths, in the white noise environment.
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Figure 5.33: BER v.s. SNR for N = 44,M = 4, with LOS paths, in the colored

and white noise environment.
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5.3 Flat fast fading channels

We now consider the scenario in which the channel from each transmitter-

receiver pair changes from symbol to symbol (fast fading channels). Here,

we adopt the Jake’s model in [26]. Our system has Ni = 1 transmitter and

N0 = 2 receivers. The channels from the transmitter to receivers has fmaxT =

0.01, 0.005, 0.0005 where fmax is the maximum Doppler shift and T is the sym-

bol period. For each value of fmaxT , we consider the frames that have length of

N = 14, 24, 44, 64 in which the M = 4 first symbols are used as pilot symbols.

We make an assumption (not true in practice) that, during the training sym-

bols, the channels fluctuate negligibly so that we consider it as unchanged. We

apply the DEML algorithm to estimates the channel information. We further

assume that the obtained information is unchanged during the data symbols.

It is noticed that the above assumptions is violated in case of large value of

fmaxT or in case of long frame. Figure 5.34 and 5.35 show the BER perfor-

mance for our approach in fast fading channels in the colored noise and white

noise environments, respectively.

As observed, the smaller the value of fmaxT and frame length are, the better

the performance is. For fmaxT = 0.0005 and for the case that number of pilot

symbols is around 10% of frame length, the performance of SD using DEML

algorithm is quite near that of SD with perfect CSI.
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Figure 5.34: BER v.s. SNR for fast fading channels in colored noise environment
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Figure 5.35: BER v.s. SNR for fast fading channels in white noise environment.



CHAPTER 6

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

Prior to the discussion of channel estimation and detection for MIMO systems,

we developed the discrete-time model for fading MIMO systems which is used

throughout the dissertation to examine the performance of our proposed channel

estimation and signal decoding algorithms.

The problem of finding closest lattice point is presented for infinite lattice.

From this, the Sphere Decoder which is applied in communication problems are

presented.

Next, we propose the decouple maximum likelihood (DEML) estimator for

estimating the channel coefficients of MIMO systems as well as the noise co-

variance matrix at the receivers. The estimated parameters are used in the

detection which employs the Sphere Decoding algorithm.

The simulation results are given to illustrate the performance of the proposed

method. The method can be applied in MIMO quasi-static flat fading systems,

quasi-static frequency-selective fading systems. It also give reasonable results

for MIMO fast-fading systems.

6.2 Recommendation

In this dissertation, our research is all based on QPSK signalling, it will be inter-

esting to investigate our approach’s performance with other signal constellations

such as 16-QAM or 64-QAM. It would be also interesting and challenging to

investigate the structure of pilot symbols in order to have the most accurate

80
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channel information. Furthermore, with the development of space-time code

[28], it is of interest to investigate our proposed approach with coded MIMO

systems.
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