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Summary

Data stream processing has a wide applicability, ranging from computer network

management to financial monitoring to environment monitoring through sensor

network. Consequently, they have received much research attention in recent

years. Early research focused on developing centralized stream processing en-

gines. These systems are limited in their scalability to the number of users or the

volumes of streams. This thesis examines the design of a large scale distributed

stream processing system, COSMOS (Cooperative and Self-tuning Management

Of Streaming data), with the emphasis on its scalability and adaptability issues.

COSMOS is composed of a number of widely distributed stream processing Ser-

vice Providers (SP). It adopts a two-layer architecture, namely the inter-provider

layer and the intra-provider layer. The inter-provider layer manages the cooper-

ation among the widely distributed SPs while the intra-provider layer harnesses

a cluster of locally distributed processors inside an SP. By identifying the chal-

lenges in the two layers, we propose different architectures and techniques for them

respectively.

At the inter-provider layer, two overlays, the query overlay and the data overlay,

are designed to handle the query stream and data stream respectively. The query

overlay is responsible to distribute the queries to the SPs for processing to achieve
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both load balancing and minimum communication cost. We model the query

distribution problem as a graph partition problem and proposed a hierarchical

query distribution approach, which is scalable to a large number of queries and

adaptable to the changes of data and system characteristics. Furthermore a query

management scheme is proposed to leverage the power of the data overlay to

minimize the communication cost.

The data overlay is responsible to disseminate the source data from the sources

to the widely distributed SPs and the result data from the SPs to the users. To

achieve high dissemination efficiency, the SPs are organized into multiple overlay

dissemination trees. We propose an adaptive and cost-based overlay tree construc-

tion scheme, which can self-tune the tree structure at runtime in according to the

changes of system parameters, such as processing delays, transmission delays, and

data rates etc.

At the intra-provider layer, operators of the queries allocated to an SP are

distributed to the locally distributed processors for processing. In terms of query

optimization, there are two challenges within this layer: operator ordering and

operator placement. We propose an adaptive scheme to optimize the operator

ordering in the midst of the processing of a query. It employs multiple distributed

Eddies [8] at different processors to adapt the order of operators distributed to mul-

tiple processors. It can quickly detect the change of operator selectivities, trans-

mission speed and processors’ workload at runtime and continuously re-optimize

the operator orders accordingly.

We also propose a dynamic operator placement scheme which dynamically

allocate the query operators to the processors. It is aimed to minimize the delay

of result tuples. By analyzing the problem using a cost model, we identify a few

heuristics to achieve this objective. A scalable scheme is proposed to implement
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these heuristics dynamically.

Extensive experiment results show that the proposed techniques are effective

and efficient.
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Chapter 1
Introduction

In many emerging applications, such as stock tickers, sports tickers, network man-

agement, sensor network, financial monitoring etc., data occurs naturally in the

form of active continuous data streams. These applications typically require the

processing of complex queries over large volumes of data in a responsive man-

ner. They have fueled much research interest in designing stream processing en-

gines [22, 1, 31, 81]. Such engines support complex continuous queries over push-

based data streams, specified by SQL-like languages [31, 81] or operator networks

built through a GUI [22, 1].

Early research efforts have focused on centralized processing engines [22, 31,

81]. These systems are not scalable to large volumes of streams and queries. Fur-

thermore, the sources of data streams are naturally distributed. Using a centralized

engine would require the transmission of all the data to a central node. This may

incur a large amount of transmission over the network and aggressively consume

the precious network resources. To solve the above problems, a distributed stream

processing engine is inevitable.

In this thesis, we look at the design of a large scale distributed stream pro-

cessing engine, namely COSMOS (COoperative and Self-tuning Management of

Streaming data), based on our vision of future applications. The major challenge
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in the design of such a complex system is the unmanageability of its performance

tuning. To tackle this problem, we adopt the notion of autonomic computing and

design self-tuning techniques to manage the system. The system can adaptively

refine its configuration without the intervention of human activities.

1.1 Problem Statement and Motivation

In applications which have a potentially large number of clients, such as financial

market monitoring, there are some emerging service providers (SP) that provide

stream processing services for a large number of clients. One example of such kind

of SP is TRADERBOT (http://www.traderbot.com). Instead of only providing

stock quotes, such an SP should be able to evaluate user specified complex queries

over a large number of fast updating data objects (the temporal values and statis-

tics of individual stocks, indices ect.) and deliver the results in a real time manner

back to the clients. These source data are streamed into the SP in real time from

a large number of sources (such as exchanges) which are widely distributed over

the whole world. The following are some example queries:

1. Send me the quotes of Google when its price drops below $300. This is a

simple continuous selection query over a data object: Google stock. We can

write this query into a SQL-like language as follows:

SELECT *

FROM Quote

WHERE name = GOOGLE AND price < 300

2. Send me the quotes of both Google and Microsoft if the price of Google

drops below $300 and the price of Microsoft also drops below $20. This is a

http://www.traderbot.com
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continuous selection and join query over two data objects. This query can

be written with SQL:1999-like WITH syntax as follows.

WITH

Google as

{

SELECT *

FROM Quote

WHERE name = GOOGLE

}

Microsoft as

{

SELECT *

FROM Quote

WHERE name = Microsoft

}

(SELECT *

FROM Google, Microsoft

WHERE Google.price < 300 AND Microsoft.price < 20 AND

Google.time = Microsoft.time);

3. Continuously inform me all NASDAQ stocks between $20 and $200 that

have moved down more than 2% in the last 20 minutes. This query includes

selections, join and window-based aggregations over a set of objects.

WITH

Nasdaq as
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{

SELECT *

FROM Quote

WHERE market = "NasdaqGS"

}

(SELECT *

FROM Nasdaq [Range 20 minute] as N1, Nasdaq [Now] as N2

WHERE N1.name = N2.name

GROUP BY N1.name, N2.price

HAVING N2.price = min(N1.price) AND

max(N1.price)=1.02* min(N1.price));

In this query, the statements “Nasdaq [Range 20 minutes]” defines a window

over the stream “Nasdaq” which contains the tuples arrived in the last 20

minutes, while “Nasdaq [Now]” defines a window that contains only the last

arrived tuple from “Nasdaq”. More details and semantics of window will be

introduced in Chapter 2.

To support the evaluation of such complex queries, stream processing engines

can be employed by an SP. In order to scale up the volumes of streams and queries

that can be processed, an SP could employ an architecture of a cluster of processors

interconnected by a fast local network. Hence an efficient architecture that can

harness the power of such a processor cluster is inevitable.

Furthermore, we envisage that more and more such SPs would emerge in dif-

ferent cities, states, countries etc. Our system, COSMOS, is targeted at a more

ambitious service which integrates the processing power and capabilities of the
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various SPs to provide a central access portal to all the clients. A client can sub-

mit his queries to the system through any SP, which serves as his proxy and is

responsible to deliver the result stream back to him. The participating SPs are

expected to cooperate based on business agreements and they are encouraged to

process queries assigned to them by these agreements. For example, an SP can

be paid based on the length of time when it executes the queries. We also assume

there is a known global schema of the data. Each participating SP only needs to

install a wrapper which is responsible to cooperate with other SPs. Due to dif-

ferent business considerations, these SPs may employ different processing engines.

Hence different SPs may have different data models, processing models as well

as user interfaces. The SPs are not expected to surrender their administrations.

Furthermore, they are typically interconnected by a widely distributed network,

which brings different requirements to the architectural design.

Based on the above observations, we can see that COSMOS is naturally parti-

tioned into two layers: the inter-provider layer and the intra-provider layer. This

structure is illustrated in Figure 1.1. At the inter-provider layer, the widely dis-

tributed SPs cooperatively distribute the user queries to the SPs for processing

and disseminate the data to feed the queries. At the intra-provider layer, the

closely coupled processors of an SP efficiently process the queries allocated to that

SP. In the following subsections, we shall discuss the challenges of this system.

We first discus the general challenges of the whole system in Section 1.1.1 and

then concentrate on those specific to the two layers in Sections 1.1.2 and 1.1.3

respectively.
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1.1.1 Scalability and Adaptability

To design such a distributed processing system, the first problem we have to ad-

dress is its scalability. It should be scalable to the number of clients, the number

of service providers and processors as well as the volumes of data streams. To

achieve this goal, minimizing the query execution cost, balancing the load distri-

bution and minimizing communication cost is critical. Furthermore, the degree of

coupling of the distributed nodes in the system should be carefully considered.

In addition, the large scale and the unpredictability of such a system bring a lot

of difficulties in the tuning of system performance. First of all, it is unrealistic to

collect accurate statistics of system parameters from a large number of distributed

nodes. These parameters include the properties of the data streams (such as

arrival rates, value distributions, etc.), the processing servers’ load and the network

transfer bandwidth and delay etc. Second, these system parameters are hard to

predict and may evolve over time. Consequently, operator selectivities, operator

cost, operator processing delay as well as data transfer rates will fluctuate at

run time. Due to these unpredictable factors, the initial query plans may result

in unsatisfactory system performance. The problem is exacerbated by a large

number of continuous queries that run long enough to experience the changes of

the system parameters. As such, any suboptimal performance will persist for a

long time. To be robust to such inaccurate and fluctuant parameters, the system

should have the ability to continuously self-tune/adapt its behavior without the

intervention of human activities.

1.1.2 Challenges at the Inter-Provider Layer

There are a few challenges for the inter-provider layer. First, the SPs are au-

tonomous. This brings two problems to the system design. (1) The providers
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may join or leave at any time which is out of the system’s control even with-

out failure. The problem of how to restore from any of these events should be

considered. (2) The hardware and software configuration in the whole system is

heterogeneous. For instance, different stream processing engines may be installed

in different providers due to different business decisions. These providers may

consequently have different data models and processing models.

Second, both the number of SPs and users could be very high. Hence, algo-

rithms requiring to keep track of the status of the whole network at a single node

is non-scalable and even impossible. For example, in existing distributed stream

processing systems, a stream source has to keep track of all the queries requesting

its data. A more “intelligent” communication mechanism is required to decouple

the sources and users.

Third, in a WAN environment, the communication cost could be very high as it

may involve inter-country and even intercontinental communication. Furthermore,

streams are typically of a very high rate and are transferred persistently. Hence,

achieving communication efficiency should be an important objective in the system

design. More specifically, we should exploit the opportunities of the sharing of the

communication among different queries. For example, two users in Singapore

and Malaysia, respectively, may be interested in the stock market of the New

York Exchange and submit their queries to the two servers in their own countries

respectively. One approach is to plan the two queries separately. The requested

source streams as well as the intermediate result streams of these two queries

would be transferred separately even though they may share a large amount of

common contents. This incurs unnecessary overheads because these streams may

have similar transfer path due to the proximity of their destinations. With a large

number of user queries, such overhead would be overwhelming. While performing
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multiple query optimization may alleviate this problem, it impairs the system’s

scalability. For example, Borealis [1] proposed to generate a giant operator graph

for all the queries submitted to the system. However, no scalable algorithm was

proposed to achieve this goal so far.

To address the above problems, the providers should cooperate in an “intel-

ligent” and loosely coupling way. In this thesis, we focus on the cooperations in

the two major services provided by the system: the stream dissemination service

and the query processing service. We build two service overlays to address them

respectively.

Data overlay. This overlay is designed to support the stream dissemination

service, which is responsible to deliver the source streams from the stream sources

to the SPs and the result streams from the SPs to the end users. As mentioned

earlier, the mechanism to provide this service should be able to exploit the sharing

of the common communication of different queries and decouple the data sources

and the destinations. This requirement brings our attention to the multicast

paradigm. With a multicast network, we can associate each data stream with a

(virtual) multicast address. When a server receives a query, it joins the multicast

groups of all the relevant streams of the query. The sources do not need to keep

track of the receivers. Instead the sources simply pass the data to the multicast

network together with the corresponding multicast address and then the multicast

network routes it to all the multicast group members. The common communication

among different receivers are naturally shared.

However a multicast network is limited in its expressiveness of data interest and

hence is not adequate to minimize the communication cost in our context. For-

tunately, a new multicast-like networking method: content-based network (CBN)

is emerging in recent years [27]. In a CBN, each datagram consists of several



10

attribute-value pairs. A node in the network can express its data interest as a few

selection predicates on the attributes of the datagram. The data interest can be

viewed as the virtual network address. Again the sources and the destinations are

not known to each other. Datagrams are routed by the network based on the data

interest of the receivers. We can see that a CBN retains the merits of a multicast

network (i.e., communication for common items is shared, and the data sources

and receivers is loosely coupled) and achieves better communication efficiency by

providing a more powerful interface to express data interest.

While multicast and content-based network can be implemented at different

network levels, recent implementation effort has focused at the application level

due to the unsuccessful deployment of IP-level multicast network. Hence we will

employ application level content-based network in our system.

Query overlay. This overlay is to provide the query processing service. To

maximize the system resource utilization and the system throughput, the SPs

should share the workload with each other. Again the cooperation of SPs in this

service should also be loosely coupled. Thus, many tightly-coupled cooperation

techniques developed by existing systems cannot be directly tapped upon. For

instance, dynamically distributing the operators of a query to multiple providers

violates the loosely-coupling property. Moreover, this may also not be feasible, e.g.,

moving a window join operator from the STREAM system to a TelegrahCQ system

is hard to implement, because it relies on a special data structure “synopsis”

implemented in STREAM which is not only manipulated by the join operator

itself but also other operators before or after the join operator. Furthermore, even

though the providers use the same engine, one may upgrade its engine without

informing the others. This would also bring problems unless forward and backward

compatibility is implemented.
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Therefore, SPs are designed to share load in the unit of queries. In other

words, we adopt a query level load distribution scheme (instead of an operator

level scheme). The load distribution algorithm is expected to run much faster

than operator level algorithms as the number of queries is much smaller than that

of the operators. This also facilitates scaling to fast query arrivals and departures.

Under the above architecture, three challenges are addressed in this thesis. (1)

How can the query overlay leverage the power of the data overlay to enhance the

communication efficiency? (2) How to allocate the queries to the SPs to balance

the workload and minimize the communication cost? (3) How to construct the

dissemination trees to efficiently disseminate the streaming data to the widely

distributed SPs? Again, all these decisions should be made in an adaptive and

scalable way.

1.1.3 Challenges at the Intra-Provider Layer

For a SP, the first problem is how to receive the data feed by the upstream SP and

forward them to the downstream SP. Relying on a single processor to receive all

the streams is not scalable. Furthermore, the transfer cost at the inter-provider

layer is much higher than the one at the intra-provider layer. Hence, within each

SP, we assign a processor as the delegation of each data stream that is sent to the

SP. The delegation processor is responsible to route the streams to other processors

in the same SP as well as to transfer the streams to the child SPs.

The processors within each SP are assumed to be under a central administra-

tion and interconnected by a fast local network. This eases the employment of

tightly-coupled techniques to enhance the system efficiency. Particularly, we can

distribute the operators of each query to multiple processors to achieve desirable

system performance. There are two important questions to be answered: 1) How
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to decide the ordering of operators which has significant effect on the running cost

of a query? 2) How to distribute the operators to the processors to balance sys-

tem workload and minimize the communication cost? All these decisions should

be made and refined at runtime. The adaptation of the query plan should be done

efficiently. Furthermore, to enhance the scalability, the decisions should only be

made by distributed nodes based on local information instead of the global system

state.

1.2 Contributions

This thesis makes the following contributions:

• We propose a new loosely-coupled and large-scale architecture for the inter-

provider layer. To handle the streaming data and streaming queries respectively,

the system is composed by two overlays. The data overlay resembles the CBN

architecture and is responsible for disseminating source data streams among the

distributed SPs as well as the result streams to the users. The query overlay

dynamically distributes the streaming queries to a number of distributed nodes

for processing.

• In Chapter 3, we propose optimization techniques at the query overlay. More

specifically, we present how to utilize the power of the data overlay to enhance the

communication efficiency. We also present how to distribute the query workload

to achieve both load balance and minimum communication cost. We model the

query distribution problem as a graph partitioning problem and develop techniques

to adaptively and rapidly (re)distribute the streaming queries. Our extensive

performance study shows the efficiency of our techniques.

• In Chapter 4, we focus on some specific applications, such as disseminating
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stock quotes, where users can tolerate a certain degree of inaccuracy. For these

applications, we can further optimize the data overlay network by utilizing the

knowledge of such user tolerances. An adaptive mechanism is designed to con-

struct the overlay dissemination trees to efficiently transfer the streams from the

sources to the widely distributed SPs. We focus on constructing dissemination

trees to minimize the average loss of fidelity of the system. Based on a novel and

thorough cost model, we propose both adaptive and static overlay tree construction

mechanisms. The extensive performance study shows that the adaptive mecha-

nisms are effective in a dynamic context and the proposed static tree construction

algorithms perform close to optimal in a static environment.

• In Chapter 5, we design a new highly adaptive distributed query processing

architecture, which can quickly detect fluctuations in selectivities of operations,

as well as transmission speeds and workloads of servers, and accordingly change

the operation order of a distributed query plan during execution. We have imple-

mented a prototype based on the Telegraph system [64]. Our experimental study

shows that our mechanism can adapt itself to the changes in the environment and

hence approach to an optimal plan during execution.

• In Chapter 6, a dynamic operator placement scheme is proposed to adap-

tively distribute the operators of multiple queries within the processor cluster of

each SP. We formalize and analyze the operator placement problem in the con-

text of a locally distributed continuous query system. We also propose a solution,

that is asynchronous and local, to dynamically manage the load across the system

nodes. Essentially, during runtime, we migrate query operators/fragments from

overloaded nodes to lightly loaded ones to achieve better performance. Heuristics

are also proposed to maintain good data flow locality. Results of a performance

study shows the effectiveness of our technique.
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1.3 Layout

The rest of this thesis is organized as follows:

• Chapter 2 provides a general introduction and related work about this field.

• Chapter 3 presents the optimization techniques for the query overlay.

• Chapter 4 introduces the adaptive dissemination infrastructure construction

for the data overlay.

• Chapter 5 presents an adaptive operator ordering scheme at the intra-provider

layer.

• Chapter 6 proposes an efficient dynamic operator placement scheme for the

intra-provider architecture.

• We conclude our work in Chapter 7 with a summary of our contributions.

We also discuss some limitations and provide directions for future work.

The whole architecture of the system has been presented in [88]. The results

of Chapter 3 appear in [95, 93, 94] which have been submitted for publication.

Partial contents of Chapter 4 and Chapter 6 are published in [92] and [89, 91]

respectively. Finally, The contents in Chapter 5 has been published in [87, 90] .
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Chapter 2
Background

Our work is related to several areas: stream query processing systems, stream

delivery systems, distributed and parallel database systems, as well as general

distributed and parallel systems. In this chapter, we review the existing research

results that are generally related to our system as a whole. For those related work

that are only relevant to specific contributions of our work, we will present them

in the respective chapters.

2.1 Stream Processing Systems

A data stream is an unbounded bag of tuples that conform to a fixed schema.

Typically, the schema includes a special attribute, timestamp, that indicates a

tuple’s arrival time in a logical application time domain. Applications involving

data streams such as network monitoring, financial analysis and sensor network

require continuously evaluating user queries over the continuous data streams.

2.1.1 Centralized Techniques

Early research focused on developing centralized stream processing systems. STREAM [81],

Aurora [22] and TelegraphCQ [31] are some representative research systems in this
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area.

In STREAM and TelegraphCQ, user queries are specified in query languages

derived mainly by extending SQL with window semantics. Aurora takes a different

approach by providing a graphical interface that allows users to compose queries

by linking boxes and arrows, where boxes are the various query operators and the

arrows indicate the flow of the streams. The dataflow graph is then translated

into an internal XML-based query definition language.

No matter which approach is adopted, the streaming query languages in these

systems are all distinguished from traditional queries by introducing the window

semantics. Since data streams are unbounded, a window predicate should be speci-

fied in a query on each involved stream to avoid unbounded resource consumption

in the processing of the query. There are two types of window that are widely

adopted, namely tuple-based window and time-based window. A tuple-based win-

dow on a stream S with an integer window size N produces a temporal relation

R(τ), which contains the N tuples from S with the largest timestamps larger or

equal to τ . On the other hand, a time-based window on S with a window size

T produces a temporal relation R(τ), which contains all the tuples from S with

timestamps within the range [τ − T, τ ]. For example, in CQL [5], a stream identi-

fier, say S, in the FROM clause will be associated with a window predicate in the

form as “S [Range 10 minute]” , which specifies a time-based window on stream

S with the window size of 10 minutes. The default window size in CQL is in-

finite (specified as “[Range Unbounded]”), while the minimum window size is 0

(specified as “[Now]”).

An important problem to be solved in such systems is how to optimize the

query processing. Existing efforts have focused on the following directions.
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Adaptive Query Optimization

One difficulty in stream query optimization is that the data characteristics are

hard to collect and is subject to change at runtime. As queries run for a very

long time, they are expected to undergo such changes. Hence traditional query

optimization techniques based on static statistics are not optimal.

CACQ [58] uses the techniques of Eddies [8] and SteMs [66] to address the

problem of query plan adaptation. Instead of constructing a query plan as in

traditional query optimization techniques, TelegraphCQ adaptively decides the

operator ordering for each individual tuple. Our operator ordering mechanism at

the intra-provider layer presented in Chapter 5 extends the centralized Eddies [8]

scheme to a distributed environment. [17] improves the tuple routing strategies of

Eddies by generating different routing orders for tuples with different values.

The STREAM group proposed the use of adaptive filter reordering [10] as well

as adaptive caching of intermediate results [11] are proposed to minimize the query

evaluation cost in both CPU and memory consumption.

On the other hand, [97] studied the mechanisms to minimize the cost and delay

of adapting the plan at the midst of processing.

Resource Sharing

In a stream processing system, there would be a number of continuous queries

being executed simultaneously. As these queries would have common operations,

exploiting the sharing of resource consumption among them would bring drastic

benefit.

CACQ [58] proposed the use of “macro” operators, such as group filters and

SteMs, to exploit the share of computation and memory consumption among se-

lection and join operations. Each “macro” operator will be utilized by multiple
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queries to share computation. Furthermore, in each “macro” operator, an index

would be built for the related queries, which is used to efficiently find out the set

of queries that are satisfied by an input tuple.

STREAM [6], on the other hand, studies the opportunities of resource sharing

among sliding-window aggregate operations. Techniques are proposed for differ-

ent classes of aggregation functions (algebraic, distributive and holistic), different

window types (time-based, tuple-based, suffix and historical), and different input

models (single stream and multiple substreams).

More recently, authors in [54] also proposed techniques to share resources

among aggregate queries. Unlike prior work, the proposed approach does not re-

quire static analysis of fixed query workloads and hence facilitates frequent query

arrival and departure.

2.1.2 Techniques for Locally Distributed Systems

One direction of recent efforts on enhancing the scalability of stream processing

systems is deploying it onto locally distributed systems.

The research group of TelegraphCQ proposed Flux [74, 73], which employs a

cluster of tightly-coupled processors to enhance the scalability of TelegraphCQ. In

Flux, a dynamic load balancing strategy for horizontal (or intra-operator) parallel

processing of operators are employed. In their system, the network connections

are assumed to be very fast and hence the communication cost is ignored. A

centralized synchronous controller is used to collect workload information and to

make load balancing decisions.

The Borealis system, the descendant of the Aurora project, employs a dy-

namic load balancing [86] algorithm which considers the load correlation of oper-

ators. This scheme, similar to Flux, also assumes the communication cost could
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be ignored and employs a centralized controller to make load balancing decisions.

Therefore, in this scheme, it is possible that the intermediate result streams of a

query would be transferred many times over the network.

We, on the other hand, argue that the communication cost cannot be ignored

even in a fast local network. First, the volume of the data streams could be

very high. Transferring them many times over the network as in the Borealis

system would incur network congestions. Second, even though the network is

not congested, the delay incurred by sending the tuple over the network many

times cannot be ignored. Furthermore, the above researches assume the operator

ordering is pre-determined and only focus on the load balancing problem.

An independent piece of work [82] also performed studies on distributing the

eddies [8] mechanism. The authors focused on the study of several practical tuple

routing policies. They assume there exists an efficient distributed processing archi-

tecture based on eddies. Our work, on the other hand, focuses on a complementary

problem: developing a new and practical distributed processing architecture based

on eddies. The tuple routing strategies proposed in [82] can be incorporated into

our architecture. Furthermore, the simple distributed eddy mechanism proposed

in [82] can be viewed as a special case of our system.

2.1.3 Techniques for Widely Distributed Systems

The Medusa [32] system also adopts an architecture to integrate multiple ad-

ministratively independent participant. In their load distribution algorithm, it is

assumed that the participants employ the same type of processing engine so that

operators of a query can be distributed to multiple participants for processing.

Furthermore, their architecture does not address the problem of transferring the

data steams to large number of nodes and rely solely on the sources to disseminate
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the streams.

In project of SAND (Scalable Adaptive Network Databases) [2], the authors

studied the allocation of operators of a query in a widely distributed network for

a given operator ordering. The proposed algorithm allocates the operators along

the path from the input to the output to achieve minimum communication cost

incurred by the query. inTransit [55] has a similar problem setting as SAND. It

first partitions the network into hierarchical clusters and then exhaustively search

the optimal allocation scheme of operators at each level. SBON [63] is yet another

effort in this direction. The authors proposed the use of spring relaxation to

allocate the query operators.

In PMJoin [96], on the other hand, the authors studied not only operator

placement but also the operator ordering problem to minimize the communication

cost. PMJoin identifies that the optimal operator ordering and placement for

tuples with different values would be different. Hence it partitions each stream

into multiple substreams and perform optimizations on them respectively.

We can see that all the above approaches adopt a tightly-coupled architecture.

Operators of a query are allocated to multiple nodes and hence all the nodes are

required to employ the same processing model and data model. Furthermore,

synchronizations in runtime operations might also be needed. Therefore, they

cannot fit into our loosely-coupled architecture. Moreover, the above approaches

ignore the problem of load balancing and only focus on minimizing communication

cost. We believe that a more optimal approach should take both into consideration.

PeerCQ [40] also took a loosely-coupled architecture, a DHT-like P2P system,

to process continuous queries over data object updates. Queries with similar trig-

ger conditions tend to be hashed to a similar identifier and consequently tend to

be allocated to the same peer. This saves communication cost as the updates
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interested to the multiple queries running at the same node only need to be trans-

ferred once. The authors also proposed some heuristics to take into account of load

balancing, distance between the peers and the data sources, the availability of the

cache. However, besides this system was not explicitly proposed for stream pro-

cessing, it fails to exploit the sharing of common communication among queries

running at different nodes which is one of the main optimization objectives of

COSMOS’ inter-provider layer.

2.2 Stream Delivery Systems

The popularity of multimedia streams and event steams attracted much atten-

tion of the networking community. Consequently, a lot of efficient algorithms are

proposed to address the problem of delivering fast streams to a large number of

users.

2.2.1 Stream Multicast Systems

Stream multicast has a number of applications such as video conference, video

on demand etc., where data are sent from the sources to a group of interested

receivers.

Early efforts have been focused on deploying multicast at the IP layer [35]. IP

multicast can achieve high communication efficiency as each data packet would

be transferred at most once over a physical link and copies of the data packet

would only be generated when the links to the receivers splits. Unfortunately, IP

multicast requires the introduction of extra complexities (such as group manage-

ment functions) into routers and the changes at the infrastructure level. Hence,

its deployment is not very successful.
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Recently, a new application level multicast paradigm is proposed [33, 14]. This

kind of paradigm builds a multicast overlay on top of a unicast IP network. While

it can ensure that a data packet is only transferred once over an overlay link, it is

still possible that the data packet is transferred multiple times over a physical link.

However, by placing the complexities onto the application level, it trades commu-

nication efficiency for the ease of deployment. Furthermore, it also facilitates the

implementation of higher level features such as error, flow and congestion control.

Following this direction, a lot of recent efforts have been focused on optimizing

the overlay multicast trees [15, 20] to enhance the efficiency of this paradigm.

While stream multicast systems are efficient in sending data to a large number

of receivers, they send each data packet to all the receivers and hence they do not

readily fit into our system.

2.2.2 Distributed Publish/Subscribe Systems

Applications, such as stock/sports tickers, news feed etc., prompted a large number

of efforts on developing publish/subscribe systems [39]. Such systems are typically

implemented by installing the middlewares in a set of distributed servers. Users

issue subscriptions that specify their data interest to these servers, while the data

sources also publishes their data to these servers. The servers cooperatively route

the data to the interested users.

In topic-based publish/subscribe systems [3], data interests are classified into

multiple predefined topics. Users’ subscriptions only need to specify the topics

that they are interested. We can see that this type of system can be efficiently

implemented directly using multicast systems mentioned above.

A more complicated type of publish/subscribe systems are called content-

based publish/subscribe systems [67]. Users’ subscriptions are specified on the
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contents of the data instead of predefined topics. For example, in Gryphon [13]

and Siena [24, 25], a data item is composed by multiple attributes. Subscrip-

tions are expressed as filters on the values of these attributes. It is obvious that

content-based publish/subscribe systems are more flexible in expressing data in-

terest and hence can deliver more relevant data to the users and avoid unnecessary

communication.

In [27], the authors proposed extending the mechanism of content-based pub-

lish/subscribe systems to construct a a new networking infrastructure, content-

based network, to support content-based communication. Content-based net-

working aims to implement the communication style of a content-based pub-

lish/subscribe system on a true distributed network environment by leveraging

established networking techniques. Recently, the authors proposed the routing

and forwarding schemes of a content-based network in [26, 28] respectively. As we

can see, such a networking approach fits well with the requirements of our system

in data stream delivery. It not only can inherently exploit the sharing of com-

munication among different receivers, but also can achieve high communication

efficiency by sending only the interested data to the receivers.

Moreover, there is a recent trend to enhance publish/subscribe systems for

more complicated event notification services. Some efforts focus on developing

more expressive subscription languages, e.g. [36]. However, these languages are

far less expressive than SQL languages. A more recent effort [30] studied how

to leverage database systems to process stateful subscriptions on the updates of

database tables. However, the concept of such table updates is more limited than

the data stream concept addressed in our system. Furthermore, it only focused

on several ad hoc subscription types without performing a systematic study.
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2.3 Parallel and Distributed Query Processing

In this section, we review some related work on traditional parallel and distributed

database query processing.

2.3.1 Parallel Query Processing

A survey on traditional centralized database query processing as well as parallel

query processing can be found in [42]. Many efforts have focused on how to deploy

an operator on to a parallel system, such as join operators [70], sort operators [61, 7]

etc. The operator Exchange [41] was proposed to encapsulate the parallelization

details of these operators when pipelined query plan is composed by multiple

parallelized operators.

Work in [65, 59, 19] proposed some “semi-dynamic” load balancing strategies

to determine the degree of parallelism and placement of operators in a parallel

database system. The decisions are made just before the execution and hence

cannot adapt to the run time changes in a data stream system. In [57], the

authors explored some dynamic load balancing strategies on passive dataset.

2.3.2 Distributed Query Processing

Distributed query processing over traditional passive database also has been ex-

tensively explored. Reference [52] is a recent survey that provides a thorough

introduction of basic and the state of the art techniques in this area.

Distributed INGRES [38] extended the recursive optimization algorithm of

the centralized INGRES [85] by adding a strategy for selecting the fragments

to transfer and the sites for processing. System R* [71, 56] also extended the

query optimization of System R [72], which is based on dynamic programming,
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by considering two more decisions: the sites to evaluate the operation and the

method of transferring data between sites.

SDD-1 query optimization algorithm [16] addressed the problem of transferring

large size relations and made extensive use of semi-joins. The optimization objec-

tive function is expressed in terms of total communication time (local time and

response time are not considered). The algorithm first selects an initial feasible

solution that is iteratively refined in a hill-climbing way.

Mariposa [79] is a distributed DBMS developed in UC Berkeley. This system

uses a three-phase processing scheme. The first phase, compilation, is to construct

a locally optimal plan assuming all data are local to the home site. This step fixes

items such as join order and the application of join and restriction clauses. The

second phase, parallelization, determines the degree of intra-operator parallelism

required for various subtrees of the plan tree and inserts collector nodes throughout

the plan. The last phase distributes the tree nodes among the various Mariposa

sites and executes it. By introducing an economic bidding process, the site selec-

tion decision can adapt to the changing costs of the operations from query to query.

However, this system can only provide inter-query adaptivity and only affects the

choice of processing sites. The operation order is fixed before query processing.

In addition, in terms of degree of parallelism, our scheme is more flexible due to

the use of symmetric join algorithms, while Mariposa fixes it to be the number of

fragments of the outer join class of the leftmost bottom join node.

Furthermore, dynamic load balancing or load sharing are also extensively ex-

plored in other parallel or distributed systems [84, 77, 37]. Most of them do not

consider the situation that a task is partitioned into several pieces and distributed

to multiple nodes. Hence the data communication induced by the task partition is

overlooked in the strategies of these systems. Task partitioning has been addressed
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in the work of parallel scientific computations [45]. These focus particularly on

the dynamic re-partitioning of computational meshes. Moreover, all of the above

dynamic strategies only focused on non-continuous tasks and hence their aim is

to minimize a task’s response time, i.e. the time that the whole task could be

finished. Our objective is much different from this.
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Chapter 3
Query Distribution

In this and the next chapter, we shall study the query overlay and the data

overlay in the inter-provider layer of COSMOS. In this chapter, we first present

the system model of the inter-provider layer which consists of two overlays: the

data overlay and the query overlay. We assume there is a data overlay that can

disseminate the data streams efficiently based on the data interest profiles of the

distributed nodes and focus on the design of the query overlay in this chapter.

The query overlay is responsible for distributing the user queries for processing.

We target to solve two problems in this chapter.

• How to leverage the power of the data overlay to enhance the communica-

tion efficiency. Existing systems only adopt a simple unicast communication

paradigm and hence have not studied this problem.

• How to distribute the queries to the SPs for processing. Unlike existing

approaches which either focus on load balancing [74, 86] or minimizing com-

munication cost [2, 63], we propose an algorithm to distribute queries across

the SPs to balance the processing load as well as to minimize the communi-

cation cost in transferring the streaming data.

The rest of the chapter is organized as follows. Section 3.1 presents more de-
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tails of the system model, the assumptions and the challenges of the inter-provider

layer. Section 3.2 presents the query management techniques to enhance the com-

munication efficiency of the data overlay. The query distribution techniques are

presented in Section 3.3. We report the results of a performance study in Sec-

tion 3.4.

3.1 System Model of the Inter-Provider Layer

The system is backed by a number of distributed service providers interconnected

with a widely distributed overlay network (see Figure 1.1 for the overview of the

whole system). These SPs are autonomous and may join or leave the system

anytime. A number of data sources continuously publish their data to the network

through the SPs. While each SP is composed by a cluster of SPs, at the inter-

provider layer, we treat each SP as a single node for brevity.

There are two major challenges here: data stream delivery and query process-

ing. Two overlay, the data overlay and query overlay, are constructed to address

these two problems respectively. Figure 3.1 shows the architecture of a node.

There are two levels of modules in the architecture for the two overlay respec-

tively. Note that we do not require that every node is equipped with modules for

both overlays. Some nodes could have only the data overlay modules. They only

participate in the data overlay and plays the role similar to that of the brokers in a

distributed publish/subscribe system. Contrary to existing systems, each node can

be under different administrations and run by different entities. Hence, COSMOS

allows different stream processing engines (SPE) or different versions of the same

SPE to be installed in different SPs. Existing SPEs such as TelegraphCQ [31],

STREAM [81] and Aurora [22] can be employed in COSMOS. For each type of
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Figure 3.1: Software architecture of a node at the inter-provider layer

SPE, a data wrapper and a query wrapper can be plugged into the system to

translate the data and the queries between COSMOS and the SPE.

3.1.1 Data Overlay

Given the user queries, the system should route the source data streams to the SPs

to feed the queries and deliver the result streams to the users. Existing content-

based network (CBN) architecture is employed to support this service. CBN

provides a scalable content-based stream delivery service. The service is backed

by a number of brokers, which are organized into multiple dissemination trees.

Data sources can just push their data into the network through their root brokers

without the need to specify the destinations. Data destinations are identified by

their data interest, which is specified by their profiles. A profile typically contains

a set of predicates over the attributes of the data. Upon receiving a data item, a

broker checks if its neighboring brokers or its local users are interested in the data
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item and only forward it to those interested parties.

The data overlay modules of an SP in COSMOS plays the role of the brokers

in a CBN. Following traditional CBN, we can compose a data interest profile as

follows. Each profile is a disjunction of a few filters. Each filter is defined on one

stream and is only applicable to this stream. Furthermore, a filter is a conjunction

of constraints on the values of a set of attributes from the stream that the filter is

defined on. A tuple is said to be covered by a filter, if the tuple is from the data

stream of the filter and satisfies all the constraints in the filter. Furthermore, a

tuple is covered by a profile if it is covered by any filters in the profile.

To exploit more opportunities to reduce communication cost, we extend the

data overlay to perform projections. Early projection can save the cost of trans-

mitting unnecessary attributes. Hence, in addition to the filters mentioned above,

each profile also contains one set of attribute names for each of its requesting

streams. When a node receives a tuple, it first finds out which stream the tuple

is from and then evaluates the corresponding filters on the tuple. For each pro-

file that has a filter being satisfied by the tuple, the projecting attribute set of

the corresponding stream is retrieved and the projection operation is done on the

tuple.

In summary, a data interest profile pi is a triple 〈S,P ,F〉, where S is a set of

stream names, P specifies the set of attributes of streams in S that are of interest,

and F is a set of filters applied to streams in S in a similar form as traditional

subscription profiles.

In this chapter, we assume there exists an efficient data overlay and adopt a

similar scheme as SemCast [62]. In this scheme, the data space is partitioned into

multiple subspaces by dividing each stream into multiple substreams. We denote

the total set of substreams in the system as SS = {ss1, ss2, . . . , ss|SS|}. Logically,
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the data interest of a node can be represented as a bit vector q ∈ {0, 1}|SS|, where

|SS| is the total number of substreams.

q[i] =


1 if substream ssi overlaps with

the data interest of q,

0 otherwise.

When a tuple arrives, it is matched to a substream and then sent to those des-

tinations that are interested in the substream. As the focus of this chapter is on

the design of the query overlay, we shall not discuss the data overlay any further

in this chapter.

3.1.2 Query Overlay

In COSMOS, a user first connects to a SP which works as the proxy for the user

and is responsible for retrieving the result stream from the network and sending it

back to the user. User queries are specified in an SQL-like language similar to CQL.

They are handled by the query overlay. For simplicity, we only consider continuous

queries and assume they do not involve stored tables. Figure 3.2 illustrates the

handling procedure of a new user query. It is first distributed to an SP, say spi,

by the load management service (provided by the Query Distribution module in

Figure 3.1) for processing. The query management module of spi will analyze the

query, and a new query or a modification of an existing query is sent to the SPE.

A subscription profile, say p1, is composed for spi to retrieve the source data from

the sources. It will be submitted to the data overlay and handled by the content-

based network. In addition, another subscription profile p2 is created for the user

to retrieve his result stream.

In the following sections of this chapter, we will study the the two critical
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Figure 3.2: The handling procedure of a query

component of the above procedure, namely the query management module and

the query distribution module.

3.2 Query Management

As mentioned before, when a query is allocated to an SP, the query management

module is responsible for composing the data interest profiles for the SP to retrieve

the data for processing and the profiles for the users to retrieve the results.

For each query, a profile is composed for retrieving the source data. The selec-

tion predicates applied to each individual source stream are extracted to compose

the filters of the profile. Then a projection predicate is composed by using all the
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attributes that appear in the query. Consider the following two queries (specified

in CQL [81]) as an example:

Q1: Q2:

SELECT R.A, S.C SELECT R.A

FROM R, S FROM R

WHERE R.B=S.B AND R.A>10 WHERE R.A>20

Then the profiles pi = 〈Si,Pi,Fi〉 to retrieve the source data can be composed

as follows respectively: S1 = {R,S}, P1 = {R.A,R.B, S.B, S.C}, F1 = {R.A >

10}, S2 = {R}, P2 = {R.A}, F2 = {R.A > 20}.

In existing stream processing engines, different result streams are generated

for different queries and transferred to the users independently. This is because

users are assumed to be directly connected to the server in traditional systems.

Following this approach, we can also compose one profile for each user to retrieve

the result stream. First, a unique stream name is assigned to the result stream.

Then a profile can be composed by using this unique stream name without filter

and projection predicates.

However, this approach does not exploit the sharing of result stream delivery

among different queries and may result in large communication overhead in our

system as illustrated by the following example. Table 3.1 lists a few queries drawn

from an auction stream monitoring application specified using CQL [81]. The

schema of the two streams are:

• OpenAuction (itemID, sellerID, start price, timestamp)

• ClosedAuction(itemID, buyerID, timestamp)

Consider the join queries, Q3 and Q4, presented in Table 3.1. We can see that

the result tuples of Q3 and Q4 have overlaps in their result streams (since the

auctions closed within five hours contains those closed within three hours). Fur-

thermore, their projection attributes also overlap. Consider an overlay structure
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Figure 3.3: Result stream delivery

depicted in Figure 3.3(a). Nodes n3 and n4 issue two queries Q3 and Q4 respec-

tively. These two queries are allocated to node n1 for processing. Using traditional

techniques, their result streams, s3 and s4, are transmitted separately as shown in

Figure 3.3(a). Hence the overlapping contents of s3 and s4 are transmitted twice

over the link between n1 and n2.

Note that existing multi-query optimization techniques also suffer from this

problem. For example, one shared join operator can be created for the above

two queries. However this join operator would still generate two separate result

streams for the two queries respectively.

To solve the problem, we should send one result stream s5 to n2, which is the

superset of both s3 and s4, and “split” it into two streams s3 and s4 at node n2.

This approach is illustrated in Figure 3.3(b). To implement this scheme, one ap-

proach is to re-engineer a “specialized” SPE which can generate one result stream

for multiple queries. However, such an intrusive approach is not desirable as it

requires complex “low-level” software development and tightly coupled interaction
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Q3: Report all auctions that closed within three hours of their
opening
SELECT O.*
FROM OpenAuction [Range 3 Hour] O,

ClosedAuction [Now] C
WHERE O.itemID = C.itemID
Q4: Report the items and buyers of auctions closed within four
hours of their opening
SELECT O.itemID, O.timetamp, C.buyerID, C.timestamp
FROM OpenAuction [Range 5 Hour] O,

ClosedAuction [Now] C
WHERE O.itemID = C.itemID
Q5: Report all auctions that closed within five hours of their
opening and their buyers
SELECT O.*, C.buyerID, C.timestamp
FROM OpenAuction [Range 5 Hour] O,

ClosedAuction [Now] C
WHERE O.itemID = C.itemID

Table 3.1: Example queries

between the SPEs and the distributed system.

Instead, we propose a query reformulation approach. For a group of queries

that have overlapping results, our method composes a new query Q that contains

all the queries in this group, i.e. the result of Q is a superset of the result of

each query in this group. For example, we can create a new query Q5 listed in

Table 3.1, which contains Q3 and Q4, and issue Q5 to the SPE at n1 instead of Q3

and Q4. The result stream s5 is “split” at n2 using the filtering mechanism of the

data overlay. More specifically, the following two profiles are sent to n2 by n3 and

n4 respectively:

• p1: S = {s5},P = {O.∗},F = {−3(hour) ≤ O.timestamp−C.timestamp ≤

0}.

• p2: S = {s5},P = {O.itemID, O.timetamp,C.buyerID, C.timestamp},F =

{−5(hour) ≤ O.timestamp− C.timestamp ≤ 0}〉
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Tuples that pass p1 are sent to n3 and those that pass p2 are sent to n4.

In our approach, each SP maintains a number of query groups such that queries

inside each group have overlapping results and it is beneficial to rewrite these

queries into one query Q which contains all the member queries Qi. Such a query

Q is called the representative query of the query group. The benefit of the rewriting

can be estimated as
∑

i C(Qi) − C(Q), where C(Q) is the estimated rate of the

result stream of Q.

Query containment and equivalence is a fundamental problem which has been

extensively studied in the literature. For example, [29, 68] studied the conjunc-

tive select-project-join queries and union thereof; [34, 60] discussed the aggregate

queries; [51] studied queries with arithmatic comparison predicates; [21] investi-

gated problems of recursive queries. We, however, need to extend these techniques

to the continuous stream query context. Some related literature studies the use of

views to answer user queries [44]. This direction studied how to rewrite a query

such that the given views of the underlying relations can be utilized to answer the

original query. However, our work is kind of the other way round. We have to

compose a “view” of the streams that can be utilized to answer multiple queries

using the simple filtering mechanism in a CBN.

First of all, we have to extend the query containment and equivalence defi-

nition of traditional queries to continuous stream queries. Traditionally, query

containment and equivalence is defined as follows.

Definition 3.1 A query Q1 is contained by another continuous query Q2, denoted

by Q1 v Q2, if for all database instances D, Q1(D) is a subset of Q2(D), i.e.

Q1(D) ⊆ Q2(D), where Qi(D) is the result of evaluating Qi over D. Q1 and Q2

are equivalent if Q1 v Q2 and Q2 v Q1.

The above definition is based on set semantics. It can be extended to bag semantics
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in a straightforward way.

However, in the continuous query context, the result data are continuously

generated and hence this traditional definition is no longer applicable. To address

this problem, we assume there is an application discrete time domain T where the

timestamps of the input stream data are drawn from. We denote the temporal

result data set of a query Q evaluated on a stream instance S at the time instance

τ ∈ T be Q(S, τ), which is the result of evaluating Q over all the data from S with

timestamps smaller or equal to τ . Furthermore, let S be the whole set of streams.

We have the following definition.

Definition 3.2 A continuous query Q1 is contained by another continuous query

Q2, denoted by Q1 v Q2, if for all stream instances S, Q1(S, τ) ⊆ Q2(S, τ) at any

application time instance τ . Q1 and Q2 are equivalent if Q1 v Q2 and Q2 v Q1.

The second problem is how to determine the containment relationship between

two continuous queries. We assume that there is an approach to determine such

relationship between two traditional non-continuous queries. The major differ-

ence between continuous stream query and traditional query is the introduction of

window semantics. In a typical continuous query over data streams, each source

stream is associated with a window predicate. In this chapter, we only consider

the time-based sliding window predicate introduced in CQL [81]. Recall that a

time-based window takes a positive time-interval T as a parameter and defines a

temporal relation composed by tuples arrived within the last T time units, where

T ranges from zero to infinity. Note that if all window predicates have a param-

eter T = ∞, we can use the traditional approach to determine the containment

relationship by simply ignoring the window predicates.

For queries with window predicates, we have the following lemma and theorems.
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Lemma 3.1 For a query with only a window-based join operation of two streams

S1 and S2 with window sizes of T 1 and T 2 respectively, two tuples t1 from S1 and

t2 from S2 generate a join result tuple t if and only if both the following conditions

are true:

(1) they satisfy the join predicates;

(2) −1 · T 1 ≤ t1.timestamp− t2.timestamp ≤ T 2.

Proof: Let us look at the “if” part first. If condition (2) is satisfied, then there ex-

ists a time instance τ such that t1 appears in S1(τ, T
1) and t2 appears in S2(τ, T

2),

where Si(τ, T
i) is the set of tuples in the window of Si with size T i at time τ .

Based on the semantics of window-based continuous query [5], tuple t should be

included in the result set at time τ .

Now we proof the “only if” part. It is trivial that if condition (1) is not satisfied,

t1 and t2 can not be joined. Furthermore, if t1 and t2 appear in the result set,

then, from the semantics of window-based continuous query [5], there should be a

time instance τ such that t1 ∈ S1(τ, T
1) and t2 ∈ S2(τ, T

2). This also implies that

−1 · T 1 ≤ t1.timestamp− t2.timestamp ≤ T 2.�

Theorem 3.1 A select-project-join continuous query Q1 is contained by another

select-project-join continuous query Q2 if both the following conditions are true:

(1) Q∞
1 v Q∞

2 , where Q∞
i is a query resulted from setting all the window sizes of

Qi as ∞;

(2) T i
1 ≤ T i

2, where T i
j is the window size of the ith stream of query Qj.

Proof: At any time instance τ , let the set of arrived tuples of the ith stream

be Si(τ) and S(τ) = {S1(τ), S2(τ), . . . , Sn(τ)}, where n is the total number of
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streams. Let Ti = {T 1
i , T 2

i , . . . , T n
i } , Q

Tj

i be the query resulted by setting the

window sizes of Qi as Tj, and finally STi(τ) be the set of the tuples from S(τ)

whose timestamps are within the range of [τ − T j
i , τ ] for a tuple from Sj(τ).

First, from the definition of window, it is obvious that Q∞
i (ST2(τ)) = QT2

i (S(τ)).

Furthermore, since Q∞
1 v Q∞

2 , we have Q∞
1 (ST2(τ)) ⊆ Q∞

2 (ST2(τ)) and hence

QT2
1 (S(τ)) ⊆ QT2

2 (S(τ)) (3.1)

Let a result tuple t from QT1
1 (S(τ)) is generated by joining a set of source

tuples {t1, t2, . . . , tn}, where ti is a tuple from Si. From Lemma 3.1, we know

that these source tuples satisfy the join predicates and −1 · T i
1 ≤ ti.timestamp−

tj.timestamp ≤ T j
1 . Since T i

1 ≤ T i
2, we also have −1 · T i

2 ≤ ti.timestamp −

tj.timestamp ≤ T j
2 . Therefore, based on Lemma 3.1, t is also a result tuple from

QT2
1 (S(τ)) and then we have

QT1
1 (S(τ)) ⊆ QT2

1 (S(τ)) (3.2)

From both Equations 3.1 and 3.2, we can derive that QT1
1 (S(τ)) ⊆ QT2

2 (S(τ))

and hence Q1 v Q2. �

Theorem 3.2 An continuous aggregate query Q1 is contained by another contin-

uous aggregate query Q2 if both the following conditions are true:

(1) Q∞
1 v Q∞

2 , where Q∞
i is a query resulted from setting all the window sizes of

Qi as ∞;

(2) T 1
i = T 2

i , where T j
i is the window size of the ith stream in query Qj.

The proof of this theorem is similar to Theorem 3.1 and hence, for brevity, we

shall not reiterate here.
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With the above lemma and theorems, we can generate the representative query

for each group of queries. The profile for a user to retrieve his results from the

result stream of the representative query is actually to re-tighten the constraints

that have been “loosened” in the representative query.

3.3 Query Distribution

In this section, we present the details of our query distribution module. Two goals

are considered:

• Balance the load among the SPs. In this thesis, we only focus on the CPU

load. We assume the relative computational capability (the CPU speed) of each SP

is known. For example, we can set the capability of one SP as the basic capability

and associate it with a value 1. If a SP is l times more powerful than this basic SP,

its capability is valued as l. Furthermore, the load of a query is estimated as the

CPU time that the query will consume per unit time in the basic SP. Hence if the

total query load is L and the total capability of the SPs is C, the desirable load

that should be allocated to a SP with capability value l is l · L
C
. However, instead

of achieving absolute load balancing, we allow a certain degree of load imbalance

among the SPs. The load allocated to a SP should not exceed (1 + α) · l · L
C
. In

our study, we set α to 10%.

• Minimize the total communication cost. The communication cost can be

divided into two parts: (1) transferring source streams from the sources to the

SPs; (2) transferring query results from the SPs to the users. Following existing

work [2, 63, 55], to measure the communication efficiency, we use the weighted

unit-time communication cost
∑

∀i,j r(ni, nj) · d(ni, nj), where r(ni, nj) is the per-

unit time traffic (bit/s) on the link between ni and nj, and d(ni, nj) is the transfer
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latency of the link. Here, we use the transfer latency to estimate the distance

between two SPs. To minimize this cost, there are two issues to be addressed.

First, the total message rate in the system should be minimized. Hence, for

each tuple that has to be disseminated, it is desirable to disseminate it to as

few SPs as possible. That means we should minimize the overlap of the data

interest of the SPs. Second, we should avoid transferring data through links with

long distances as far as possible. This suggests we should maintain data flow

locality. For example, if a few queries have very large overlap in their data interest,

distributing them to a few nearby SPs can achieve better data flow locality than

distributing them to a few faraway nodes as the nearby SPs can cooperatively

disseminate the data that are of interests to them.

To achieve both of the above two goals, we should allocate the queries onto

the N SPs such that the communication cost is minimized under the condition

that the load is balanced. Furthermore, the query distribution module is at the

query overlay while the data dissemination topology is decided by the data over-

lay. Therefore, to achieve loose coupling between the two overlays, our algorithm

should not assume any knowledge of the topology of the content-based network

at the data overlay. Otherwise, any change of data overlay may require the re-

optimization of the query overlay and vice versa. In the following subsections, we

first present the theoretical model of the problem and then present the proposed

solution.

Unfortunately, typical DPSS does not consider load balancing and simply allo-

cates user queries to the closest brokers. The DSPEs proposed in [74, 86] employed

load balancing techniques for a cluster of locally distributed SPs, but they did not

consider the communication cost. Thus, they are not suitable for a widely dis-

tributed network. The load management scheme proposed in [91] is also only for
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locally distributed systems. On the other hand, in [2, 63, 55], optimization algo-

rithms were proposed to fine tune the distribution of the query operators of each

query across a set of widely distributed SPs to minimize the communication cost.

However, these techniques failed to address the load balancing problem. They

are suited for applications that only need to process a small number of complex

queries. Authors in [4] proposed scheduling algorithms to maximize the weighted

output rate under the situation with very limited buffer size and bursty stream

rates, which is not considered in this chapter. The authors of [78] studied the

static operator placement problem in a hierarchical stream acquisition architec-

ture, which cannot be applied in our architecture. Load balancing is also ignored

in this work. A common weakness of the above techniques, which require the

construction of a global query/operator graph, is their scalability to the number

of users.

Our new load management scheme distinguishes itself by achieving both load-

balancing and minimum communication cost, taking the communication character-

istics of the DPSS architecture into consideration as well as its scalability. Recall

that COSMOS is designed to support a large number of clients. Therefore, we

expect the queries to be streaming, i.e. the frequency of query arrival and query

departure/completion is high. As such, in COSMOS, we opt to distribute queries

to SPs instead of operators. In other words, we adopt a query level load distribu-

tion scheme (instead of an operator level scheme). Several reasons prompted this

design decision. First, it is simpler (than an operator-based scheme) and practical.

Consider the SPs in COSMOS are autonomous. Thus, they may install different

stream processing engines or different versions of the same engine. Hence dis-

tributing query load at the operator level may be infeasible. For instance, moving

a window join operator from the STREAM system to a TelegrahCQ system is hard
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to implement, because it relies on a special data structure “synopsis” implemented

in STREAM which is not only manipulated by the join operator itself but also

other operators before or after the join operator. Furthermore, even if the SPs

use the same engine, one may upgrade its engine without informing the others.

This might also give rise to problems unless forward and backward compatibility

is implemented. Second, operator level load distribution may tighten the coupling

of the SPs. Besides adopting the same processing model and data model, the SPs

may also have to synchronize with each other during the processing of a query.

Third, the number of queries in the system would be large. Moreover, at each

instance of time, there would be a large number of queries streaming in and out of

the system. Distributing at the operator level would be too complex to be scalable

to the fast query streams.

In addition, our query-level distribution scheme is essentially non-intrusive -

existing single site processing engines can fit into our system without much extra

software (re)development.

3.3.1 Problem Modeling

In this subsection, we model the problem as a graph mapping problem. This model

differs from those of the existing work by taking the communication characteristics

of a DPSS into consideration. For ease of exposition, we assume a data source is

also a SP here. Hence, we refer to all the nodes in the network as SPs. The word

“data source” refers to those SPs which are also the origins of one or more source

streams. Actually, for any node that cannot process queries, we can treat it as a

SP with zero capability value.

We first construct a network graph NG = {Vn, En, Wn}, where each vertex

vi ∈ Vn represents a SP in the network and there is one edge eij ∈ En between
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Figure 3.4: Graph

Scheme Load WEC
Scheme 1 Q1, Q2 → n1 n1: 0.2 165

Q3, Q4 → n2 n2: 0.2
s′i → si, n′i → ni

Scheme 2 Q1, Q4 → n1 n1: 0.2 115
Q2, Q3 → n2 n2: 0.2
s′i → si, n′i → ni

Scheme 3 Q1, Q3 → n1 n1: 0.2 110
Q2, Q4 → n2 n2: 0.2
s′i → si, n′i → ni

Table 3.2: Mapping Schemes

each pair of vertices vi and vj. The weight of each vertex vi is given by Wn(vi).

Wn(vi) is equal to the SP’s capability value. Furthermore, the weight of an edge

eij is also given by Wn(eij) and is equal to the communication latency between vi

and vj. Figure 3.4(a) shows an example network graph composed by four network

nodes. The weights of the vertices and edges are drawn around them. In this

example, there are two data sources, s1 and s2, which have no computational

capability (in terms of complex query processing) and two SPs, n1 and n2, have

the same computational capability value.

Second, we also construct a query graph, QG = {Vq, Eq, Wq}. There are two

types of vertices in Vq: query vertex (q-vertex) and network vertex (n-vertex).
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A q-vertex represents a query while an n-vertex represents a SP in the network.

Figure 3.4(b) shows the query graph when four queries are submitted to the net-

work of Figure 3.4(a). In the figure, there are four q-vertices, which are drawn in

rectangles, and four n-vertices, which are drawn in circles.

If a query requests data from a data source, there is an edge that connects

the query and the data source. Furthermore, we adopt the same assumption as a

DPSS that a user is allocated to his closest SP when he joins the system in the

first place. The user and the SP are said to be local to each other. Since the

result stream of a query is routed to the user by the DPSS architecture of the data

overlay, it is first routed to the user’s local SP and then to the user. Therefore, the

cost of transferring the query result from a SP to its local users are unavoidable.

Hence we do not need to model the communication between the SP and its local

users, instead we use one edge to connect each query to its local SP to model the

communication of the query’s result stream. For example, in Figure 3.4(b), Q1

and Q2 request source data from s1 and s2 respectively and both are local to n1.

In addition, if a query’s data source and its local SP happen to be the same node,

only one edge connects the query and that node.

In a query graph, the weights of the vertices and edges model the query

workload and the communication traffic of the stream delivery. Each q-vertex

is weighted with the estimated load that would be incurred by the query at the

SP with the basic capability, while n-vertices are assigned with zero weights. In

addition, each edge is weighted with the estimated data rate (bit/s) of the source

stream(s) (for those edges that represents source stream deliveries) or the result

stream (for those edges that represents result stream deliveries). For example, in

Figure 3.4(b), Q1 would consume 0.1 CPU cycles in a SP with basic capability.

In addition, it requests 10 bit/s data from source s1 and generates 1 bit/s result
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streams whose user is local to n1. Moreover, if a query’s data source and its local

SP happen to be the same node, then the weight of the edge connecting the query

and that node is equal to the sum of the data rate of the source stream(s) and the

result stream.
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Figure 3.5: Different allocation schemes of Q1 and Q2

Until now, our model is similar to those appear in existing work. However,

it is not enough for our problem. Note that query communication can be shared

among queries in a DPSS architecture. For example, consider queries Q1 and Q2

in Section 3.2. In Figure 3.5, we illustrate three different allocation schemes of Q1

and Q2 in a network configuration. In the figure, si represents the streaming data

that are requested by the query Qi. We can see, from the data retrieving profiles

of Q1 and Q2 that s1 contains s2. In Figure 3.5(a), Q1 and Q2 are allocated to

two nodes n3 and n6 respectively. n3 and n6 are far away from each other and

hence they have different data routing paths from the same source. As depicted in

Figure 3.5(b), by changing the allocation of Q2 to n4 which is closer to n3 and hence

shares part of the data routing path from the source with n3, we can save some

communication cost. That is because the data requested by the two queries have

large overlap and the transfer of these data can be naturally shared by the content-

based network in the data overlay if they have similar routing path. Furthermore,

allocating them to the same node can further reduce the communication cost as

illustrated in Figure 3.5(c). Therefore, to accurately model the communication
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cost, we should take this effect into consideration.

Specifically, we add one edge between each pair of queries that have overlap in

their data interests. The weight of such an edge is equal to the arrival rate of the

data that are of interest to both of its end vertices (queries). The intuition is to

penalize allocation schemes that distribute the two queries to two nodes that are

very far away from each other. For instance, the weight of the edge connecting

Q1 and Q3 in Figure 3.4(b) is equal to the rate of the data that are of interest to

both of them. In this case, the data requested by Q1 from s1 happens to contain

those of Q3.

Now, we can model the query distribution problem as a graph mapping problem

which maps the vertex set of one graph to the vertex set of another graph. A

mapping from a vertex set V1 to another vertex set V2 is defined as a boolean

function M(vi, vj), where vi ∈ V1 and vj ∈ V2, under the constraint that for each

vi ∈ V1 there is exactly one vj ∈ V2 such that M(vi, vj) = true. The formal

problem statement is as follows:

Given a query graph QG = (Vq, Eq, Wq) and a network graph NG = (Vn, En, Wn),

find a mapping M from Vq to Vn, such that the mapping

1. obeys network constraint: an n-vertex vi in Vq is mapped to a vertex vj

in Vn which represents the same network node as vi;

2. obeys load-balancing constraint:

∀vj ∈ Vn,
∑
vi∈Vq

M(vi,vj)

Wq(vi) ≤ (1 + α) ·Wn(vj) ·
W v

q

W v
n

, (3.3)

where W v
q =

∑
vi∈Vq

Wq(vi) and W v
n =

∑
vj∈Vn

Wn(vj); and
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3. minimizes the Weighted Edge Cut (WEC): which is given by

WEC =
∑

vk∈Vn
vl∈Vn

∑
vi∈Vq

vj∈Vq

M(vi,vk)
M(vj ,vl)

Wq(eij) ·Wn(ekl). (3.4)

In Table 3.2, we present three mapping schemes from the query graphs to the

network graphs in Figure 3.4, which obey both the network constraint and the

load-balancing constraint. In scheme 1, we map all the queries to their own local

SPs, while scheme 2 is the optimal mapping if we ignore the potential sharing of

communication of Q1 and Q3. We can see that scheme 3 is more optimal, which

has a smaller WEC value.

3.3.2 Challenges and Approach Overview

There are a few practical difficulties to solve this problem. First, it is hard to

construct the global network graph and query graph when the size of the network

and the number of queries scales up. A scalable algorithm is required. Second, even

if we have the global graphs, it is an NP-Hard problem [69]. Hence, an efficient

heuristic-based approach is needed. Third, the queries and stream statistics could

change over runtime. A runtime algorithm is required to redistribute the queries.

NG 7

NG 3

NG 4 NG 6NG 5

NG 1

NG 2

(a) Network graph hierarchy

QG 6QG 4 QG 5

QG 2
QG 3

QG 7

QG 1

(b) Query graph hierarchy

NG i

QG i

Mapping

(c) Map-
ping

Figure 3.6: Approach overview

To address the problems, distributed coordinators are employed to perform
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the heuristic graph mapping and remapping algorithms. They are organized into

a hierarchical tree. Each leaf coordinator constructs a network (sub)graph which

consists of an exclusive set of SPs while a parent coordinator constructs a network

(sub)graph composed by its child coordinators. This provides a hierarchical view

of the network graph (Figure 3.6(a)). On the other hand, each coordinator also

holds a query (sub)graph which is a coarsened overview of its descendants’ and

this constructs a query graph hierarchy (Figure 3.6(b)). Each coordinator only

performs the mapping and runtime remapping of its query (sub)graph to its net-

work (sub)graph (Figure 3.6(c)). The rest of this section presents the detail of our

scheme, which is implemented in the query distribution module.

3.3.3 Coordinator Hierarchy Construction

The coordinators are a subset of SPs chosen from all the SPs in the system. Each

such SP performs two separate logical roles: the stream processor and the coor-

dinator while the non-coordinators perform only the stream SP role. We assume

that separate resources of these SPs are reserved for these two roles. Hereafter,

the words “processor” and “coordinator” refer to the logical roles.

Figure 3.7: Hierarchical Coordinator Structure

The coordinators are organized into a hierarchical tree. An example of this

structure is illustrated in Figure 3.7. At the bottom level, each SP forms a separate

cluster and the SP is also called the parent of this cluster. At the second level,

the SPs are clustered into multiple close-by (in terms of transfer latency) clusters.



50

Within each cluster, the median is selected as the coordinator of the cluster which

is also called the cluster’s parent. The median of a set of SPs {n1, n2, . . . , nl} is

defined as the SP ni with minimum total transfer latency to all SPs in the cluster,

i.e.
∑

1≤j≤l d(ni, nj) ≤
∑

1≤j≤l d(nk, nj) for any nk. These coordinators are also

clustered level by level in a similar way. We say a SP belongs to a cluster of an

internal coordinator (at any level) if it is the descendant of this coordinator.

Each coordinator constructs a network subgraph containing only its child co-

ordinators (or child SPs for the leaf coordinators). Here, the weight of a vertex is

equal to the total capability values of all its descendant SPs. For the example in

Figure 3.7, the SPs are organized into three clusters at the bottom plane and the

median of each cluster (drawn in gray) is selected as the coordinator. At the next

plane, the coordinators only form one cluster and hence the clustering stops here.

In this chapter, we adapt the distributed mechanism proposed in [14] to dynam-

ically construct a hierarchical tree of coordinators. Here we only briefly present

the mechanism and refer the interested readers to reference [14] for more details.

The mechanism tries to maintain a tree with the following properties: (1) the size

of the cluster in each level is between k and 3k− 1 (except the cluster of the root

whose size could be less than k); (2) the parent is the center of its cluster, i.e.

with the minimum average delay to all the other nodes in the cluster. The tree is

constructed incrementally and dynamically.

1. When a new SP requests to join the network, its request is first directed

to the root node. For each node that receives a join request, if it is the leaf

coordinator, it adds the new node as its child node. Otherwise, it identifies the

child coordinator closest to the new node and direct the request to that child.

2. If a node leaves the network, a message is sent to its parent and children

(if any). If it is a coordinator, a new parent is reselected among its remaining
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Algorithm 3.1: Query graph coarsening algorithm

while |V | > vmax do1

Set all the vertices as unmatched;2

while ∃ unmatched vertices ∧ |V | > vmax do3

Randomly select an unmatched vertex u;4

A← adj(u)−mat(adj(u)) ;5

if is n(u) then6

A← A−{v|v ∈ adj(u)∧is n(v)∧(u.clu 6= v.clu∨v.clu = unknown)};
Select a vertex v from A such that the edge e(u, v) is of the7

maximum weight;
Collapse u and v into a new vertex w;8

Set w as matched;9

w.weight← u.weight + v.weight;10

Re-estimate the weights of the edges connected to w;11

if is n(u) OR is n(v) then12

is n(w)← true;13

w.clu = is n(u)?u.clu : v.clu;14

children. Furthermore, heartbeat messages are sent periodically among the parent

and children to detect any node failure.

3. If a coordinator finds out that the number of its children exceeds 3k − 1, it

partitions the cluster into two clusters, each of size at least b3k/2c, such that the

radii among the two clusters are minimized. The centers of the two clusters are

selected as the two new parents.

4. If the number of children of a coordinator x falls below k, it sends a merge

request to the closest sibling y. y adds all the children of x to its cluster.

5. Periodically, a new parent is selected if the current parent is no longer the

center among its cluster.

3.3.4 Query Graph Hierarchy Construction

In this subsection, we look at how to construct the query graph hierarchy. To

begin, each leaf coordinator collects the query specifications from its child nodes
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and generate a query graph over them. If the number of vertices of the query

graph is larger than vmax, then it runs the algorithm in Figure 3.1 to coarsen the

query graph. The graph mapping algorithm at each coordinator, which will be

presented in the following sections, is performed on this coarsened query graph.

The coarsening algorithm repeatedly collapses two selected vertices until the num-

ber of vertices is smaller than or equal to vmax. In the algorithm, a vertex u tends

to collapse with a neighbor v which has an edge eu,v with a larger weight, because

these two vertices are more likely to be mapped to the same vertex in the network

graph. For ease of exposition, we define the following functions: (1) adj(u) re-

turns the set of adjacent vertices of u; (2) is n(u) returns true if u is an n-vertex;

(3) matched(A) is all the matched vertices in a vertex set A. In addition, for

each n-vertex u, a field clu indicates which child cluster of the current coordinator

covers u. Two n-vertices belong to two different child clusters shall not be merged

together because they have to be mapped to different child clusters in the graph

mapping algorithm. Note that if u is not covered by any child cluster of this

coordinator, then their clu field is set as unknown.

The q-vertices in the (coarsened) graph are tagged with the current coordina-

tor’s name and then submitted to the parent coordinator who will perform the

same procedure after receiving all the (coarsened) graphs from its children. Note

that the procedure is run in parallel in different subtrees to accelerate the whole

procedure. At runtime, each coordinator periodically propagates the update of its

query graph to its parents.

3.3.5 Initial Query Distribution

Once the initial query graph hierarchy is constructed, the root coordinator starts

mapping its (coarsened) query graph to its network (sub)graph. The query sub-



53

graph mapped to each child is uncoarsened one level back and sent to the child.

This procedure repeats at each level until all the queries are assigned to the SPs.

Note that, to uncoarsen a vertex, information of the finer-grained vertices, if nec-

essary, is retrieved from the corresponding coordinator based on the tags of the

vertex.

Algorithm 3.2: Graph mapping algorithm

Input: NG = (Vn, En,Wn), QG = (Vq, Vq,Wq)
use a greedy algorithm to get the initial mapping;1

compute the gain gain(vi, vj) for each q-vertex vi ∈ Vq and each vj ∈ Vn ;2

minWEC ← current WEC; minMapping ← current mapping;3

repeat4

current mapping ← minMapping;5

repeat6

maxGain← −∞; vertexToRemap← ∅; vertexToRemapTo← ∅;7

for each vj ∈ Vn do8

Find an unmatched q-vertex vi ∈ Vq currently mapped to vj and a9

vertex vk ∈ Vn, gain(vi, vk) is maximized and remapping vi to vk does
not violate load-balancing or improves a violation (if any);
if gain(vi, vk) > maxGain then10

maxGain← gain(vi, vk); vertexToRemap← vi;11

vertexToRemapTo← vk;
if vertexToRemap 6= ∅ then12

set vertexToRemap as matched;13

remap vertexToRemap to vertexToRemapTo;14

update gain(vi, vk) for any vi directly connected to vertexToRemap;15

if current WEC < minWEC then16

minWEC ←current WEC; minMapping ← current mapping17

until vertexToRemap = ∅ ;18

until minWEC is the same as the last iteration ;19

The algorithm is illustrated in Figure 3.2. It starts by using a greedy algorithm

to get an initial mapping:

(a) Map each n-vertex to a child that manages the node that n-vertex represents.

(b) Map the q-vertices one by one in descending order of their weights. For each q-

vertex, among the children that can accommodate it (i.e. their load-balancing

constraints will not be violated after mapping the q-vertex to anyone of them),
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map it to the one that minimizes the current WEC. If no children can ac-

commodate it, then map it to the one with the minimum violation of the

load-balancing constraint.

We cannot guarantee to find a mapping efficiently satisfying the load-balancing

constraint because it is an NP-Complete problem.

Lines 3.2-3.2 iteratively improve the mapping by trying to remap the q-vertices

to other vertices in NG. Here, we use the value of gain(vi, vk) to heuristically guide

our remapping, which is equal to the reduction of the WEC value by remapping

vi ∈ Vq to vk ∈ Vn. To achieve some capability of climbing out of local minima, a

q-vertex vi with a negative gain(vi, vk) value would be considered for remapping

as long as its gain value is the largest and its remapping will not violate the

load-balancing constraint of vk. The mapping with minimum WEC value will be

restored at the beginning of each outer iteration.

3.3.6 Online Query Routing

Unlike prior studies which assume queries are relatively stable or updates are infre-

quent, our system stresses the problem of fast query streaming. The new queries

have to be quickly routed to the desirable SPs. While there are many possible

query routing schemes, in this thesis, we only study the use of the hierarchical

coordinator tree and show the significance of online query routing for the system

performance. In this scheme, a new query is first routed to the root coordinator

which then routes it to one of its children. The routing is done level by level until

the query is assigned to a SP. At each coordinator, the query is added to the query

graph and the weights of the new edges are estimated. Then the new vertex is

mapped to a vertex in the network graph such that the WEC is minimized.

Although all queries have to be routed through the root coordinator, this
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scheme is scalable to very fast query streams. This is because it only needs to

route the queries to a few children based on some coarse-grained information. As

shown in Section 3.4, it can handle more than 800,000 queries per second in our

experimental PC. For higher query stream rates, we can perform online routing

only on some queries while simply put the other queries at their local SPs. Further

trade-offs between routing quality and routing efficiency is an interesting piece of

future work.

3.3.7 Adaptive Query Redistribution

During runtime, the queries, the workload of SPs and the characteristics of data

streams might change. Hence the initial allocation of queries may become subop-

timal. Thus adaptive adjustment of the query distribution has to be performed.

Again we employ a hierarchical scheme. The adaptation works in rounds and each

round is initiated by the root coordinator periodically. After making the redistri-

bution decisions, the root coordinator would transfer the change of the distribution

to each of its children. Each child coordinator retrieves the finer-grained informa-

tion of the vertices newly allocated to it from their original coordinators. Then

the child coordinators would perform the same procedure to make redistribution

decisions. This process continues until the leaf coordinator had done the redistri-

bution. Note that the actual migration of queries happens after all decisions are

made and is done among the SPs.

The adaptive redistribution algorithm in each coordinator is composed of two

phases: load re-balancing followed by distribution refinement. In the load re-

balancing phase, the coordinator tries to re-balance the load among its children.

Besides that, there are a few other goals to be achieved:

1. Minimize the WEC of the mapping.
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2. Minimize the query migration time. Since migrating queries may incur the

migration of stateful operators (e.g. join), we should minimize the size of

the states to be moved.

Algorithm 3.3: Adaptive load re-balance

begin1

Compute the diffusion solution mij for every i, j pair;2

while there exists an mij > 0 do3

Randomly select a pair i, j such that mij > 0;4

V ← query vertices in ci whose benefits differ up to x% from the5

largest benefit;
Vd ← the dirty query vertices in V ;6

if Vd = ∅ then Vd ← V ;7

Remapping the vertex v ∈ Vd from ci to cj such that it is of the8

largest load density and mij is larger than 90% of its weight;
end9

In the load balancing phase, to avoid re-mapping from scratch, which may

incur too many query migrations, we adopt a load diffusion approach [46]. A

diffusion solution specifies the load mij that should be migrated from the child

coordinator ci to another child coordinator cj for each (i, j) pair. Authors in [46]

proposed a method to derive a diffusion solution such that the Euclidean norm

of the transferred load is minimized which may result in a small number of query

migrations. Our redistribution algorithm is presented in Figure 3.3. The n-vertices

are not considered for redistribution. Therefore, the vertices in the algorithm only

refer to the q-vertices. The benefit of remapping a vertex from ci to cj is defined

as the reduction of the weighted edge cut given by Eqn (3.4). To achieve good

mapping quality, our algorithm tends to remap those vertices with large benefits.

Furthermore, a vertex is called dirty if it had been picked for remapping in

the earlier iterations in the same adaptation round. We give these vertices higher

remapping priority because moving them again would not increase the amount of

query migration (Note that queries are actually moved after all the decisions are
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made in one round.). In addition, the load density of a vertex is equal to the weight

divided by the size of its state. We favor remapping the denser ones because it

may result in less state movement. The value of x in line 5 can be used to trade

mapping quality for lower migration cost. With a larger x value, we can consider

more vertices with lower migration benefit. In our experiments, we set x = 10.

The distribution refinement phase attempts to reduce the weighted edge cut

while maintaining the load balancing condition. Again the query vertices are

visited randomly and checked to see whether it belongs to one of the following

categories: (1) Mapping the vertex back to its original location can maintain load

balance and the current WEC. (2) Mapping the vertex to another node can de-

crease the current WEC without violating load balance. The checks are performed

in the order given above. Whenever such a vertex is found, the remapping is per-

formed.

3.3.8 Statistics Collection

Stream statistics are periodically multicast to the coordinators from the sources.

As stated before, we partition the data streams into multiple substreams and the

data interest of a user query is represented as a data interest bit vector. Hence

the stream statistics we need is the data rate of each substream. In addition, each

SP periodically collects the average CPU time that each of its running queries

consumes per unit time. Any such value that is changed since it was last submitted

will be (re)submitted to the parent coordinator to (re)estimate the workload that

the query may incur.
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3.3.9 Coping with Network Changes

While we do not address the issue of fault tolerance in this thesis, our techniques

allow the dynamic joining/leaving of nodes in the system. We cope with such

changes of the network as follows:

• New SP joins. We do not need to explicitly address this kind of changes,

because the adaptive query redistribution mechanism will detect an uneven load

distribution and then redistribute the queries accordingly.

• Processor departs. If the departure is actively requested by the SP, then it

will request the parent coordinator to redistribute its running queries. After being

informed of the new locations of the queries, the SP extracts the runtime states

of the queries and send them to the new locations. A node departure without

such explicit actions is deemed as node failure and treated by the fault tolerance

mechanism, which is not discussed in this thesis.

• Cluster splits/merges and parent changes. When a cluster is split, the par-

ent of the cluster will also split its query graph accordingly and transfer them

respectively to the two new parents. When two clusters are merged, the two query

graphs are merged in the parent of the new cluster. Upon the change of parent,

the query graph is simply transferred to the new parent.

3.4 Experiments

In this section, we present a performance study of the proposed techniques. A net-

work topology with 4096 nodes is generated using the GT-ITM topology generator.

The Transit-Stub model, which resembles the internet structure, is used. Among

these nodes, 100 nodes are chosen as the data stream sources, and 256 nodes are

selected as the SPs, and the remaining nodes act as the routers. Our algorithms
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are implemented in C and the communication between the SPs is simulated. The

experiments are run on a Linux Server with an Intel 2.8GHz CPU.

As it is hard to collect a large number of real query workload, following ex-

isting work [2, 63, 55], we use synthetic query workload in our experiments. To

avoid biased parameter settings, we perform sensitivity studies on all the following

parameters and only report those that have significant effects.

The default cluster size parameter k used in the coordinator tree construction

is set to 4, which will be varied in the experiments. All the streams are partitioned

into 20, 000 substreams and they are randomly distributed to the sources. The

arrival rate of each substream is randomly chosen from 1 to 10 (bytes/seconds).

To simulate clustering effect of user behaviors, g = 20 groups of user queries

are generated and each group has different data hot spots. The group that a

query belongs to is chosen randomly and the number of substreams that a query

requests is uniformly chosen from 100 to 200. For the queries within every group,

the probability that a substream is selected conforms to a zipfian distribution

with θ = 0.8. To model different groups having different hot spots, we generate

g number of random permutations of the substreams. The number of queries

are varied from 5, 000 to 60, 000 and we set their workload to be proportional to

their input stream rates. The adaptive interval of the adaptive query redistribution

algorithm is set to 200 seconds. Because the cost of transmitting the result streams

from the SPs to their local users are identical for any query distribution scheme.

We subtract such cost from the reported figures to ease the comparison.

3.4.1 Initial Query Distribution

In the first experiment, we study the performance of the initial query distribution

scheme with different number of queries. It is compared with three approaches:
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Figure 3.8: Varied #queries

(a) Naive: allocate the queries to their local SPs. (b) Greedy: only run the

greedy algorithm in Figure 3.2. (c) Centralized: a centralized node constructs a

global query graph and a global network graph. The algorithm in Figure 3.2 in

Section 3.3.5 is run to perform a global mapping. Figure 3.8(a) presents the results

of all the four approaches. Naive performs the worst because it cannot identify the

data interest of the queries and optimize their locations. Greedy works a lot better.

The two graph mapping algorithms perform the best and their performances are

similar. This also verifies that the graph coarsening procedure in our hierarchical

mapping algorithm does not incur much errors.

We also report the response time (i.e. the time interval from the begin to the

end of the mapping) and the total time (i.e. the total CPU time consumed in

all the coordinators) of the centralized and hierarchical graph mapping algorithms

in Figure 3.8(b). It is shown that both the response time and total time of the

hierarchical approach are much lower than the centralized one.
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Figure 3.9: Adapting to inaccurate statistics

3.4.2 Adaptive Query Distribution

In the second set of experiments, we study the performance of the adaptation

scheme. In the above experiments, the graph mapping algorithms perform well

if accurate apriori statistics exist. However, apriori statistics are hard to collect

in a large scale system. Hence, in the first experiment, we study the situation

that the apriori statistics are inaccurate. We model this situation by using a

random initial query allocation scheme. Three algorithms are compared: (1) NA-

Inaccurate: non-adaptive algorithm with inaccurate statistics; (2) A-Inaccurate:

adaptive algorithm with inaccurate statistics; (3) A-Accurate: Adaptive algorithm

with accurate statistics. Figures 3.9(a) and 3.9(b) present the communication

cost and the standard deviation of the system load over the observation period.

It can be seen that the adaptive algorithm can gradually refine the initial query

distribution scheme to minimize the communication cost and balance the system

load.

In another experiment, we study how the system performs when new queries

arrive in the system. Initially, there are 30, 000 queries in the system and new

queries are added into the system incrementally at a 200 seconds interval. At the
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Figure 3.10: New query arrival

start of each interval, there are 1, 500 new queries coming in. We reported the

average communication cost during each interval and the standard deviation of

the SPs’ workload. Three schemes are compared: (1) Random: randomly allocate

the new queries without considering their interest; (2) Online: use our online query

routing algorithm; (3) Online-Adaptive: use both the online query routing and the

adaptive query redistribution. The results are shown in Figure 3.10(a) and 3.10(b).

The performance of Random gets worse with more queries added, while Online

can maintain low communication cost but with increasing load imbalance. Online-

Adaptive performs the best in both metrics because of its ability to re-balance the

load distribution and to refine the query distribution.

In the fourth experiment, we examine the scalability of our system to fast query

streams. The settings are similar to that of the above experiment. We collect the

time for the root coordinator to distribute a query and then compute the maximum

query rate that it can accommodate. We study the root coordinator because it is

the potential bottleneck of the system. We vary the cluster size parameter k. The

results are shown in Figure 3.11. We can see that, with a smaller value of k, the

query distribution quality is worse. That is because there are more levels in the
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Figure 3.12: Perturbation of stream rates

coordinator tree and more graph coarsening is performed. On the other hand, the

throughput of query streams gets better with a smaller value of k. The reason is

the root coordinator needs to route queries to fewer number of children. Hence,

adaptively setting the parameter k is an interesting piece of future work.

In the last experiment, we examine the performance of the system when the

rates of streams change. At runtime, we increase (denoted by “I”) or decrease

(denoted by “D”) the rates of 800 random streams several times so that load

imbalance exists within the system. Here, we compare the adaptive scheme with
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two schemes: (1) Re-mapping: use the centralized mapping algorithm to remap the

global query graph to the global network graph; (2) Non-Adaptive: no adaptation

is done. Figures 3.12(a) and 3.12(b) depict the communication cost as well as

the standard deviation of the load in the system after each change. It is clear

that adaptive query redistribution performs close to centralized remapping and

can re-balance the system load to adapt to the new data characteristics without

increasing the communication cost. While the remapping algorithm can achieve

better results, it incurred about 7 times more query migrations than the adaptive

algorithm did.

3.5 Summary

In this chapter, we proposed a new architectural design to leverage the strength

of CBN to support scalable continuous query processing over data streams. This

architecture retained the loose coupling and easy to deploy merits of a CBN,

while it provided the complex query processing capabilities over data streams. To

handle both the query stream and data stream, two overlays, the query overlay

and the data overlay, were constructed, respectively, by two levels of functional

modules. We presented the design detail of two modules at the query overlay,

namely, the query management module and the query distribution module. A few

issues in the new architecture were addressed: managing the queries to exploit

the sharing of communication, constructing the coordinator tree, distributing the

queries to balance load and minimize communication cost, online routing of fast

query streams, adapting the query distribution. Solutions to these issues are

presented and performance study showed their effectiveness.
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Chapter 4
Data Stream Dissemination

In the previous chapter, we have seen how queries can be distributed in COSMOS.

However, the data layer, which employs traditional content-based network, is not

optimal for some applications where a data source continuously disseminates fast

changing data objects (e.g., sensor data, stock prices and sport scores) to a num-

ber of SPs. Since the data are changing very frequently, disseminating the data

upon any change would be very costly. To reduce the cost, we exploit the clients’

tolerable inaccuracy of data. Clients submit queries to the SPs with their own

preferences on data coherency requirements. Based on the requirements of the

running queries, each SP would have its own coherency requirement of each in-

teresting data object. Furthermore, as relying solely on the source to disseminate

to all the SPs is not scalable, nodes are organized into one or more dissemination

trees (with the data source being the root node) so that data/messages are trans-

mitted to each SP through its ancestors in the dissemination tree. Each node of

the tree would selectively disseminate only interesting data to its child nodes by

filtering out the unnecessary ones.

The dissemination efficiency is evaluated using the metric fidelity, which has

been used in previous work [76, 75]. It measures the portion of time that the

values in the SPs conform to their coherency requirements. The loss of fidelity at
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each SP is due to the dissemination delay of the update messages, which includes

the communication delay as well as the processing delay in its ancestors in the

trees. Therefore, minimizing the loss of fidelity can be viewed as minimizing the

delay of the update messages. Interestingly, while it is important to design optimal

dissemination trees in this context, there is very little study on this subject.

In this chapter, we present a cost-based approach to adapt dissemination trees

in a dynamic changing environment. Our contributions include:

• We formalize the problem by formally defining the metric (fidelity) used to

measure the effectiveness of the algorithms and the objective of the algorithms

(i.e., minimize the average loss of fidelity over all the SPs).

• We propose a novel and thorough cost model which considers both the pro-

cessing cost in the SPs as well as the communication cost in the network links.

With the cost model, we can explore a larger solution space than existing methods

do to achieve a more cost-effective scheme.

• Based on the cost model, we propose an adaptive runtime scheme that is

robust to inaccurate statistics and runtime changes in the data characteristics

(e.g., data arrival rates) and system parameters (e.g., workloads, bandwidths etc.).

The proposed scheme enables nodes to independently make decisions based on

localized statistics collected from neighbouring nodes to transform a dissemination

tree from one form to a more cost-effective one. Furthermore, we extend the cost

model to incorporate the adaptation overhead. Given apriori statistics of the

system characteristics, we propose two static optimization algorithms to build a

dissemination tree for relatively static systems. These static trees can also be used

as initial trees in a dynamic environment.

• We conducted an extensive performance study which shows that the pro-

posed tree construction scheme performs close to optimal, and the adaptive scheme
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is also robust to changing conditions at runtime.

The rest of this chapter is organized as follows. Section 4.1 formulates the prob-

lem and presents motivations. In Sections 4.2 and 4.3, we present our solution to

the single object dissemination problem, and its extension to the multi-object dis-

semination problem respectively. A performance study is presented in Section 4.4.

Finally, we conclude in Section 4.5.

4.1 Problem Formulation and Motivations

This section formulates the problem and presents the motivation.

4.1.1 Problem Formulation

Table 4.1 lists a number of major notations that would be used frequently through-

out the whole chapter. In the system, there is a data source s that stores a set of

data objects O = {o1, o2, · · · , o|O|}, a set of nodes (SPs) N = {n1, n2, · · · , n|N |},

and a large number of clients. Each client submits queries involving a subset of

data objects through a node (SP), and specifies a preference on the coherency on

the data objects. In this chapter, a user’s coherency requirement (cr) on a data

object is specified as the maximum tolerable divergence of the data value from its

exact value. Our approach does not restrict the way in which the divergence is

measured. The possible metrics include the number of changes since last update,

the deviation of the values (for numerical data), the edit distance (for string data)

or the difference of the update time stamp. Instead of just picking anyone of them,

our system allows a customizable divergence function. We denote the divergence

function as DIV (ox(ni, t), ox(nj, t)), where ox(ni, t) is the value of data object ox

perceived by node ni at time t.
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Table 4.1: Notations

s the source node
ni the ith node
ox the xth data object
LF (ni) the lost of fidelity of ni

Ci the set of child nodes of ni

GCi the set of grandchild nodes of ni

Oi the set of objects requested by ni

Om
i the set of objects requested by the subtree rooted at ni

cri,x the coherency requirement of ni on ox

ri the rate of the update message meant for ni

rm
i the rate of the update message meant for any node in the

subtree rooted at ni

rc
i the sum of the update rate over all nodes in the subtree

rooted at ni

ri,x the rate of the update message from ox meant for ni

rm
i,x the rate of the update message from ox meant for any node

in the subtree rooted at ni

d(ni, nj) the communication delay between ni and nj

D(s, ni) the total communication delay of the path from s to ni in
the tree

tpi the time needed to perform filtering of a message at ni

tci the time needed to perform transmission of a message at ni

tei the time needed to collect information at ni

tdi the time needed to compute the adaptation benefit of a
transformation at ni

tai the amortized adaptation cost at ni

ti the expected processing time at ni

g(ni) the processing delay of message in node ni

p(ni) the parent node of ni

ρi the workload of ni
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From the system’s point of view, each node ni can be viewed as a super-client

that requests a subset of data objects Oi from the source, which should be the union

of the objects that are requested by the queries running on ni, and the coherency

requirement cri,x of ni on object ox is equal to the most stringent requirement

of its queries that involve ox. To determine whether an update tuple should be

transferred to the child node or a client, our system also employs a customizable

function match(m, ni), which returns either true or false for a given tuple m and a

child node ni. An application developer can design different functions for different

divergence functions. [76] proposed such a function for numerical data dissemina-

tion. We will not go into detail of the design of this function and concentrate on

the construction and adaptation of dissemination trees in this chapter.

To ensure scalability, we model a generic dissemination scheme as follows.

The SPs N together with the source s compose an overlay network which can

be modeled as a directed complete graph G = (V, E), where V = N ∪ {s} and

E consists of the directed arcs connecting each pair of nodes in V . To build an

efficient dissemination scheme, the nodes in V are organized into one or more

overlay dissemination tree T . Each T is composed by s, a set of nodes V ′ ∈ N

and arcs E ′ ∈ E. The root of all the trees is the source s. Once new values of

the data objects at s arrive, s would initiate the messages and disseminate only

the necessary ones to each of its child SPs in all the dissemination trees. Upon

receiving a message, a SP would also selectively disseminate it to its child SPs.

This process happens in each SP until the messages reach the leaf SPs.

Since it is possible for an SP’s coherency requirement to be less stringent than

that of its descendants, every SP ni has an effective coherency requirement crm
i,x

on an object ox which corresponds to the most stringent one among all the cri,xs

of the subtree rooted at ni. A parent performs the filtering of messages based
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on the crm
i,x values of its children. In addition to disseminating messages to the

child SPs, an SP that receives a message also has to check whether any of its

clients’ coherency requirements are violated. If so it would update the results

of the query submitted by those clients. In this chapter, we assume that clients

are pre-allocated to certain SPs, and focus on the construction of dissemination

trees composed only by the SPs and the source. Henceforth we would use “SP”

and “node” interchangeably and would only consider the dissemination within the

dissemination trees.

Following [75, 76], we adopt the notion of fidelity as a measure of the perfor-

mance of a dissemination system. Informally, the fidelity on a data object at a

node during an observation period is defined as the percentage of time that the

data value at that node conforms to the coherency requirement. To build our cost

model, we formulate this metric in a formal way as follows. Let the value of a data

object ox at time t at the source and a node ni be ox(s, t) and ox(ni, t) respectively,

and the coherency requirement of ni on ox be cri,x. Then the fidelity of ni on data

object ox at time t is defined as:

f(ni, ox, t) =

 1 : DIV (ox(s, t), ox(ni, t)) < cri,x

0 : DIV (ox(s, t), ox(ni, t)) ≥ cri,x

(4.1)

And the fidelity of ni on ox during the observation period [t1, t2] can be computed

as

F (ni, ox, t1, t2) =

∫ t2

t1
f(ni, ox, t)

t2− t1
.

If our observation period is the whole life of the system, it can be rewritten as
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F (ni, ox). Furthermore, the average fidelity at node ni is computed as

F (ni) =
1

|Oi|
∑

∀ox∈Oi

F (ni, ox).

The loss of fidelity (LF) is defined as the complement of fidelity, which is LF (ni) =

1− F (ni). Our objective is to minimize the average loss of fidelity over all nodes

AvgLF =
1

|N |

|N |∑
i=1

LF (ni).

Since the loss of fidelity is due to the delay of the messages, we adopt an eager

approach: the source node continuously pushes update messages to child SPs as

soon as the corresponding coherency requirements are violated, and each SP, upon

receiving any update messages, also pushes the necessary ones to its children as

soon as violations occur.

We define the Min-AvgLF problem formally as follows: Given a source s, a

set of data objects O, a set of SPs N , and the set of requesting data objects Oi

of each SP ni as well as the coherency requirement cri,x of ni on each ox ∈ Oi,

construct/adapt one or more dissemination trees T to minimize the average loss

of fidelity (AvgLF ) of the system.

By the celebrated Cayley’s theorem, the number of spanning tree of a complete

graph is |V ||V |−1, where |V | is the number of nodes in the graph. This means that

brute-force searching is prohibitive even for a moderate number of nodes (e.g. 16

nodes). Even worse, a more restrictive problem is already NP-Hard [18].
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4.1.2 Motivations

In view of the complexity of the problem, existing approaches such as DiTA [75]

adopt two heuristics: (a) the coherency requirement of a parent node is at least

as stringent as its children; (b) Each node has an apriori constraint on the fanout,

i.e., the maximum number of child nodes is predetermined. However, under these

restrictions, the resulting dissemination tree would be far from optimal. This is

because they only explore a limited solution space and ignore the differences of

the nodes in their capabilities as well as their communication delays. For example,

although a node has a slow CPU, a long distance from the source, a low bandwidth

or a high workload, it would still be put at the upper level of the tree as long as its

coherency requirement is relatively stringent. However, all its descendants would

suffer from the long processing delay in the slow node or the long transmission

delay. This would result in severe loss of fidelity. Furthermore, multiple runs

of trial and error is required to obtain an optimal fanout constraint. This may

impede the deployment of the system. To handle these limits and find out the

trade-offs, we believe a cost-based approach that captures both communication

and processing cost is likely to lead to a more cost-effective dissemination tree.

Yet another challenge is that the optimality of a dissemination scheme depends

on the current system parameters (such as data arrival rates, system workloads

etc.). However, in a large scale distributed system, this information is hard to esti-

mate or collect beforehand. Moreover, these parameters would fluctuate over time.

For example, users would change their coherency requirements; a SP’s workload

would change as the number of clients connected to it are increased or decreased;

or the message rate of each SP would also change due to the fluctuation of the

data values. Since the dissemination system runs continuously, it can experience

these changes at runtime, which would make the previously optimal scheme sub-
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optimal. The problem of adapting to inaccurate statistics and system changes

has been extensively explored in other problems such as query processing [10, 58].

Unfortunately, few efforts have been devoted to adapting the structure of a dis-

semination tree at runtime. Moreover, a decentralized scheme is highly preferable

due to scalability and reliability problems.

4.2 Single Object Dissemination

In this section, we look at the scheme to construct a tree T to disseminate a single

data object. We note that T is a spanning tree of the overlay graph G. We first

present the cost model to evaluate the LF of a tree T , then describe the runtime

adaptation scheme and finally, present the two static tree construction schemes.

All the algorithms proposed do not place any restriction on the maximum fanout

allowed; neither do they require the internal nodes to be more stringent in the

coherency requirements than its child nodes.

4.2.1 Cost Model

In a cost-based approach, a cost function is used to evaluate the goodness of a

potential solution. In our case, we propose a novel cost model to measure the LF

of a dissemination tree. In the cost model, we make the following assumptions

and simplifications:

1. A message sent from ni to nj incurs a communication delay, whose expected

value is denoted as d(ni, nj).

2. The messages received by a node are processed in a FIFO manner. Upon

receiving a message, ni would check every child to see whether the message should

be disseminated to it. The processing order of the children is assumed to be
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random. Let the time to perform the filtering be tpi and the time to perform the

transmission be tci . tci includes the time to package the message and the time to

send out the packages. The latter part is inversely proportional to the available

bandwidth of ni.

3. Each node would assign a portion of its resources (e.g. CPU, bandwidth,

etc.) to perform the task of disseminating data to its child nodes. This portion of

resources might be adjusted periodically. However, within each period, we assume

it is fixed. Furthermore, the workload of a node is defined as the fraction of time

that the node is busy.

Given these assumptions, now let us see how to estimate the loss of fidelity of

a node ni. The LF of ni arises because of the delay of an update message. If the

number of messages per unit time (i.e., the average message arrival rate) for ni

is ri and the average delay of each update message is Di, then the average LF of

ni is LF (ni) = ri ·Di. ri is related to the data characteristics and the coherency

requirement of ni. Now we need to estimate Di. At a closer look, Di includes

the communication delay in all the links and the processing delay in all the nodes

along the path from the root to ni. To compute the communication delay, we

define D(nj, ni) as the communication delay from nj to ni in the dissemination

tree T . It is obvious that D(nj, ni) is the sum of the communication delay of the

overlay edges in the unique path from nj to ni. Hence the total communication

delay of a message from s to ni is D(s, ni). In the following paragraphs, we would

present how to estimate the second part of the delay: the processing delay.

The processing delay of a message for ni in each of its ancestor nk can be

divided into the queuing time and the processing time. Let us estimate them one

by one.

1. Queueing time. In our model, each node is a queuing system. From basic
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queuing theory [50], the expected queuing time of a message in a M/M/1 system is

equal to ρ
1−ρ

t where ρ is the workload of the system and t is the expected processing

time of a message. The workload of the system is equal to the message arrival rate

times the expected per-message processing time t. Hence to estimate the queuing

time, we have to estimate the expected per-message processing time. Note that our

tree construction scheme does not require the coherency requirement of a parent

node to be more stringent than that of its descendant nodes. Thus, every node

has an effective coherency requirement crm
i , which should be the most stringent cr

within the subtree rooted at ni. Consequently, there is an effective message arrival

rate rm
i for ni, which should be equal to the maximum message arrival rate within

the subtree rooted at ni. For each message arrived at a node nk, the probability

that it is sent to a child nj is rm
j /rm

k . Hence the expected processing time of a

message in nk for each of its children nj is

tkj = tpk + tck
rm
j

rm
k

. (4.2)

Therefore, if we denote the set of child nodes of nk as Ck, then the expected

processing time of a message in nk can be estimated as:

tk =
∑

nj∈Ck

tkj. (4.3)

Given tk, the average processing time of a message, we can derive that the workload

of nk is ρk = rm
k tk. Hence the queuing time of a message in node nk is ρk

1−ρk
tk. Note

that this covers both the queuing times for processing and transferring a message.

2. Processing time in nk for a message received by nj. Since the children are

processed in random order, before checking a child node nj, there are on average

(|Ck| − 1)/2 other children that have been processed. The expected length of this
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time is equal to (1/2)(tk − tkj). Then it takes tpk time to check for nj and then

takes another tck time to transmit the message to nj. This means that the expected

processing time in nk for a message received by nj is (1/2)(tk − tkj) + tpk + tck.

Summing up the queuing time and the processing time, we can derive the

processing delay in nk for a message received by nj as

g(nk, nj) =
1 + ρk

2(1− ρk)
tk + tpk + tck −

1

2
tkj. (4.4)

This function can accurately estimate the processing delay. However, it distin-

guishes the delays for different children, which will bring higher cost in our algo-

rithm. Hence we propose an approximation, where we use the average processing

delay over all the children, to approximate the delay for each of them. We can

derive, with simple calculations, that this processing delay is

g(nk) =
1

|Ck|
∑

nj∈Ck

g(nk, nj)

=
1 + ρk

2(1− ρk)
tk + tpk + tck −

1

2|Ck|
tk (4.5)

Now, we would derive the cost function to estimate the loss of fidelity for a

node ni as

LF (ni) = ri × [D(s, ni) + g(p(ni)) + g(p(p(ni)))

+ · · ·+ g(s)] (4.6)

where p(ni) denotes the parent of ni.
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4.2.2 Adaptive Reorganization of Dissemination Tree

In this subsection, we present our runtime scheme that adaptively reorganizes a

given dissemination tree to a more cost-effective one. The algorithm is a dis-

tributed local search scheme. At each state, distributed nodes would search the

neighbor states that can improve the current state. Neighbouring states are gen-

erated based on a set of transformation rules . In the following subsections, we

first present the local transformation rules that specify how the states could be

transformed and how to estimate the benefit of the transformations. Then we

present how to efficiently make adaptation decisions. Finally we summarize the

set of information that has to be collected at runtime to support the adaptive

scheme and present how to extend the cost model to incorporate the adaptation

cost.

Local Transformation Rules

In this section we define several local transformation rules that transform a scheme

into its neighbor schemes. We have identified six rules.

1. Node Promotion: Promote a node ni to its parent’s sibling. All the nodes

in the sub-tree rooted at ni are also moved along with ni. Figure 4.1(a) shows

an example of this transformation. In the example, ni is promoted to a sibling

of its previous parent nj. This transformation might be beneficial, for example,

when the workload of nk is reduced as a result of a decrease in the number of

its clients and hence more of its resources are assigned to the dissemination task.

Promoting ni can reduce the communication delay of messages sent to ni and all

its descendants if d(nk, nj) + d(nj, ni) > d(nk, ni). This would also be helpful if

we underestimate the capacity of nk when building the initial dissemination tree.

2. Node Demotion: Demote a node ni to a child of one of its siblings. The
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Figure 4.1: Local Transformation Rules

children of ni would also be moved along with ni. In the example shown in Figure

4.1(b), ni is demoted to the child of its prior sibling nj. This transformation may

be beneficial, for example, when nk’s workload is increased and hence less resources

are assigned to the dissemination task. Demoting ni can reduce the dissemination

load of nk and hence reduce the processing delay of messages to be sent to the

descendants of nk. In addition, it also helps to handle any overestimation of the

capacity of nk in the initial tree building.

3. Parent-Child Swap: Swap the positions of ni and its parent. Again all

their other children would be brought along with them. In Figure 4.1(c), the



79

positions of ni and its parent nj are swapped.

4. Cousin Swap: Swap the position of two nodes ni and nj which have the

same grandparent nk. Their original children would still be connected with them.

Figure 4.1(d) shows an example.

5. Nephew Adoption: A node nh adopts its nephew ni and adds it as its

own child. As shown in Figure 4.1(e), ni’s grandparent is the parent of nh. In this

transformation, ni is added as a child of nh. The children of ni are moved along

with it.

6. Uncle-Nephew Swap: Swap the positions of nh with its nephew ni.

Again, their children are moved along with them. Figure 4.1(f) depicts an ex-

ample.

Actually the first two basic transformation rules are complete, i.e. any other

transformations can be composed based on these two transformations. For exam-

ple, Nephew Adoption can be composed by first promoting ni and then demot-

ing it to a child of nh. However, using composite transformations directly may

help avoid being stuck in a local optimum. The four composite transformations

presented above are proposed based on this intuition. While the composite trans-

formations can be extended to involve arbitrary nodes, we only consider these

transformations to keep the runtime adaptation scheme relatively simple and less

costly (the computation complexity is limited to O(C2), where C is the largest

fanout in the tree). In addition, as shown in our experiments, it performs close to

a centralized randomized algorithm that considers random tree transformations.

So employing more complicated transformations would incur much more overhead

without significant performance gain.

Based on our cost model, we can recompute the cost of the dissemination tree

after the transformations, which will take O(|N |) time. But since the transforma-
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tions only affect part of the tree, rather than computing the cost from scratch, we

can compute the change of the cost in constant time. Here we would use Node

Promotion to illustrate.

As depicted in Figure 4.1(a), node ni is to be promoted, and nj and nk are

the parent and grandparent of ni respectively prior to the transformation. After

the transformation, the messages to be sent to ni would no longer experience

the transmission delays d(nk, nj) and d(nj, ni), and the processing delay in nj.

However it would experience the new transmission delay d(nk, ni). This would

also affect all the nodes below ni. Hence this results in the change of AvgLF

which is

∆AvgLF1 =
1

|N |
rc
i [d(nk, ni)− d(nk, nj)

− d(nj, ni)− g(nj)],

where rc
i is the aggregated message rate over all nodes in the subtree Ti rooted at

ni, i.e. rc
i =

∑
np∈Ti

rp. Furthermore, the load in nk and nj would be changed after

the transformation. Hence all the nodes below them would experience the change

of the cost due to the load changes. This results in the change of AvgLF which is

∆AvgLF2 =
1

|N |
{
(rc

j − rj)[g
′(nj)− g(nj)]

+(rc
k − rk)[g

′(nk)− g(nk)]} ,

where g′(nj) and g′(nk) denote the estimated new processing delay in nj and nk

respectively if the transformation is to have taken place. ∆AvgLF is equal to the

sum of ∆AvgLF1 and ∆AvgLF2. Other transformations can be analyzed similarly.
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Adaptation of Dissemination Tree

The adaptation scheme works as follows: periodically, compute the benefit (i.e.,

(−1)·∆AvgLF ) of each possible transformation, and then perform those that have

positive benefits. To implement this procedure, there are several choices. In one

extreme, we can select a SP to act as a centralized controller to make the adap-

tation decisions. However, as discussed, this approach suffers from problems of

scalability and reliability. In another extreme, we can design a totally distributed

approach. In this approach, each node makes the decisions independently and

asynchronously. Each node would keep track of all its possible transformations,

such as promoting/demoting itself, swapping with its child/parent/nephew/uncle,

etc. However, this totally unstructured scheme would result in (a) Conflicting

decisions being made by different nodes, e.g., ni may determine to promote itself

and meanwhile its parent may want to swap with it. Extra mechanisms have to

be employed to resolve this problem, potentially increasing the complexity of such

a scheme. (b) Wastage of computational resources as a result of multiple nodes

arriving at the same decisions, e.g., ni and its parent may determine to swap with

each other at the same time.

To alleviate these problems, we propose a more structured mechanism. The

adaptation operates in rounds. The root node initiates each round by creating a

token. Only when a node holds a token, could it make an adaptation attempt. Al-

gorithm 4.1 presents the operations to be executed in a node that receives a token.

Each node receives a token can make its own decision independently without any

synchronization with the other nodes. Instead of allowing every node attempts

to try all kinds of transformations, we restrict each node to consider only the

transformations involving its children and grandchildren. These include promot-

ing a grandchild (node promotion), demoting a child (node demotion), swapping
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a child and a grandchild (parent-child swap and uncle-nephew swap), swapping

two grandchildren (cousin swapping), and moving a grandchild from one child to

another child (nephew adoption). A node sends reorganization requests (if any)

to the involved descendants, e.g. nj in both Fig. 4.1(a) and (b), ni and nj in

Fig. 4.1(c), ng and nh in both Fig. 4.1(d) and (e), ng in Fig. 4.1(f). After the

adaptation (if any) has been carried out, a copy of the token is sent to each of its

non-leaf children. The next round of adaptation would be initiated by the root

node if the adaptation interval is exceeded. If a node receives a token when it is

still doing an adaptation, it would just ignore the token. Furthermore, if a node

receives a reorganization request when it is already holding a token, then it would

also ignore the reorganization request to avoid any contradictions.

Algorithm 4.1: AdaptationAttempt

begin1

maxBenefit← 0; t← NULL;2

for each possible transformations t1 involving the children and3

grandchildren do
if maxBenefit < Benefit(t1) then4

maxBenefit← Benefit(t1);5

t← t1;6

if t 6= NULL then Perform t;7

for each child nj do8

if nj is not a leave node then9

Send one copy of the token to nj;10

end11

In the midst of a tree transformation, data are disseminated through the old

path. After the new connections are created, the old connections are dropped and

the dissemination is transferred to the new connections.
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Information Collection

Given the adaptation scheme described above, we now look at what information

should be collected at runtime. Since each node would only consider transforma-

tions involving its children and grandchildren, it would collect state information

from its children and grand-children. Hence a node contains at most the infor-

mation of O(C2) nodes, where C is the maximum out-degree of all nodes. The

information to be collected has to enable us to calculate the benefit of the trans-

formations. Specifically, the information stored in a node ni is as follows:

1. The overlay paths from ni to its children and grand-children. This informa-

tion is collected only once and need not be collected again at runtime. This

is because any change in the structure in this part is determined by ni itself

and ni updates the information itself.

2. The values of rm
j , rc

j , as well as tcj and tpj of each of its children and its

grand-children.

3. The value of rc
i . Actually, rc

i can be computed based on the rc
j value stored

in each child node nj, i.e. rc
i = (

∑
nj∈Ci

rc
j) + ri.

4. The physical communication delay between ni and each of its children or

grand-children, and those between each of its children and each of its grand-

children.

The information collection scheme is also a window-based scheme. Each node

asynchronously maintains its own information collection window. At the end of

each window, a node would measure the necessary information. If it detects that

the new value is increased to (1+τ) times or decreased to 1/(1+τ) times of its

previous value, it would send the new value to its parent. In our experiments, we

set τ to be 0.2.
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Modeling the Adaptation Cost

The adaptation scheme incurs runtime overhead, which includes the cost of infor-

mation collection and decision making and depends on the fanout of the nodes.

To keep the adaptation cost low, there are two approaches: (1) extend the cost

model to reflect the adaptation cost so that the tree construction would inherently

restrict the fanout; (2) adopt a coarser-grained cost model when fanout increases.

We study the first approach in this chapter and defer the second one as our future

work. Let the set of grandchildren of nk be GCk. Assume the time spent by nk

to collect information for one node be tek and the time to consider each possible

decision be tdk. Furthermore, the length of the information collection and decision

making period be Te and Td respectively. Then by computing the number of nodes

to collect information and the number of possible decisions to be considered, we

can compute the amortized adaptation cost tak.

tak =
tek
Te

· (|Ck|+ |GCk|) +
tdk
Td

· (|GCk|

+|Ck|2 +
∑

nj∈Ck

|Cj| · (|GCk| − |Cj|)

+2
∑

nj∈Ck

(|GCk| − |Cj|)) (4.7)

This cost can also be computed in constant time by storing and performing incre-

mental updates of some of the intermediate values. tak is added to g(nk) to extend

our cost model to factor in the adaptation overhead.

4.2.3 Static Tree Construction Algorithms

In this subsection, we present two static tree construction algorithms: a greedy

algorithm and a randomized algorithm based on Simulated Annealing[49]. Given
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apriori statistics on the system parameters, the two algorithms can generate a good

dissemination tree. Such a tree can be used in environments that are static and

not subject to runtime changes. For a highly dynamic environment, the algorithms

provide a good initial scheme (as compared to a randomly generated dissemination

tree) that can speed up the convergence to the optimal scheme as dissemination

trees are refined adaptively based on the runtime characteristics.

Greedy Algorithm

The algorithm is presented in Algorithm 4.2. It adopts a greedy heuristic. The

algorithm sorts the nodes in ascending order of d(s, ni) + tpi + tci . Then it adds the

nodes into the dissemination tree one by one in the sorted order. The partially

built dissemination tree T is represented as the set of nodes and edges in the tree.

For each new node N [i], it selects one node nj within the partially built tree to

act as the parent of N [i] so that the average loss of fidelity AvgLF of the new tree

T ∪{N [i], e(nj, ni)} is minimized. The estimation of AvgLF is based on Equations

(4.3), (4.5) and (4.6). To save the computational time, simple techniques can be

employed to compute the new AvgLF value incrementally based on the current

AvgLF of the partial tree. For brevity, we do not present the details here. Given

each potential parent, it takes log |N | time to estimate the new AvgLF . Therefore,

the computational complexity of Algorithm 4.2 is O(|N |2 log |N |).

The dissemination tree built by using this algorithm has the following property:

Theorem 4.1 If the height of the tree is h, and the delay between pairs of nodes

satisfy the triangle inequality1, then the communication delay of a message received

1If every non-leaf node has at least 2 children, then h ≤ log |N |. In addition, some studies
[80] have shown that violations of triangle inequality is not very frequent, which is only about
1.4% ∼ 6.7%.
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Algorithm 4.2: Greedy

begin1

Add s to T ;2

N [0]← s;3

N [1 · · · |N | − 1]← Sort the other nodes in ascending order of value4

d(s, ni) + tpi + tci ;
for i = 1; i < |N |; i + + do5

e← arg min0≤j<i AvgLF (T ∪ {N [i], e(nj, ni)});6

Add N [i] and e to T ;7

return T;8

end9

by ni is at most 2di ·h where di = d(s, ni)+ tpi + tci . Further assume that the fanout

of each node is at most C and the maximum message rate over all nodes is at most

r, then the processing delay of a message received by ni is at most

h · ( 1 + r · C · di

2(1− r · C · di)
C · di + di)

Proof: Let us first look at the worst case communication delay of the messages

sent to a node ni. Because of the triangle inequality, when ni is added to T , the

transfer delay d(nk, ni) between the parent nk and ni is less than d(s, nk)+d(s, ni).

Because the nodes are added to T in ascending order of di, we can get d(s, nk) +

tpk + tck < d(s, ni) + tpi + tci and hence d(s, nk) < d(s, ni) + tpi + tci , i.e. d(s, nk) < di.

We can obtain the following expression:

d(nk, ni) < d(s, nk) + d(s, ni)

d(s, nk) < di

d(s, ni) < di

⇒ d(nk, ni) < 2di

We can also derive that the transfer delay of each edge in the path from the

root to ni is at most 2di. Because the height of the tree is at most h, then the

number of edges in the path from the root to ni is at most h. That means the
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worst case communication delay for ni is 2di · h.

Now we look at the worst case processing delay of messages sent to ni. Since

tpk + tck < di, we have tk < C(tpk + tck) < C · di (from Equations (4.3) and (4.2)).

Furthermore, from Equation (4.4) we have the following:

g(nk, ni) =
1 + rm

k · tk
2(1− rm

k · tk)
tk + tpk + tck −

1

2
tki

<
1 + r · C · di

2(1− r · C · di)
C · di + di (4.8)

This is the worst case processing delay in the parent nk. Since for any ancestor

nj, tpj + tcj < di is also true, Inequality (4.8) is also applicable to nj. Again, the

number of ancestors of ni is at most h. Hence we can derive that the worst case

total processing delay of a message sent to ni is at most h times the worst case

processing delay in each ancestor of ni. �

Simulated Annealing

Since the Min-AvgLF problem is NP-Hard, we use a probabilistic approach, Sim-

ulated Annealing[49](SA), to approximate an optimal solution. This approach has

been shown to generate very efficient solutions for hard problems, such as large

join query optimizations [47]. The algorithm is illustrated in Algorithm 4.3. It

starts from a random scheme S0 and an initial temperature T0. In the inner loop,

a new scheme newS is chosen randomly from the neighbors of the current scheme

S. If the cost of newS is smaller than that of S, the transition will happen.

Otherwise, the transition will take place with probability of e−∆C/T . (With the

decrease of T this probability would be reduced.) Meanwhile, it also records the

minimum-cost scheme that has been visited. Whenever it exits the inner loop, the

current temperature would be reduced. Based on our experimental tuning and
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past experiences[48, 47], we select the parameters as follows: (1) T0: 2 ∗ cost(S0);

(2) frozen: T < 0.001 and minS unchanged for 10 iterations; (3) equilibrium:

64 × #nodes; (4) reduceTemp: T ← 0.95T ; (5) RandomNeighbor: randomly

select one node and move its subtree to another random node.The cost of the new

scheme can be computed similar to the incremental cost computation presented

in Section 4.2.2. Given a static environment and accurate system parameters, we

believe this algorithm can derive the best dissemination scheme over all the other

algorithms. However, its optimization overhead may be high. Moreover, such a

centralized scheme will incur too large a communication overhead in a dynamic

context.

Algorithm 4.3: Simulated Annealing

begin1

S ← S0; T ← T0; minS ← S;2

while !frozen do3

while !equilibrium do4

newS ← RandomNeighbor(S);5

∆C ← cost(newS)− cost(S);6

if ∆C ≤ 0 then S ← newS;7

else S ← newS with probability e−∆C/T ;8

if cost(S) < cost(minS) then minS ← S;9

T ← reduceTemp(T );10

return minS;11

end12

4.3 Multi-Object Dissemination

In the above discussion, we only consider single object dissemination. To dissemi-

nate multiple objects, there are two possible solutions: (a) the single-tree approach

(to build one tree for multiple data objects), and (b) the multi-tree approach (to

build one dissemination tree for each data object). In the following subsections,
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we will look into these two approaches in detail.

4.3.1 The Single-Tree Approach

In the single-tree approach, a single dissemination tree T is built to disseminate

a set of objects. Note that if an object of interest to a child is not requested by

the parent itself, the parent’s requesting object set would be enlarged to include

this object. Hence there is an effective object set Om
i for a node ni which is the

union of all the interesting objects of the nodes in the subtree rooted at ni. In

this section, we first develop the cost model for this approach, and then present

the dissemination tree construction scheme.

Cost Model

The derivation process is similar to the single object case, except that we have to

deal with more than one object. The delay of a message for a node ni can still

be divided into two parts: the transmission delay and the processing delay in the

path from the root to ni. The transmission delay is the same as the single object

case which is D(s, ni). Before estimating the processing delay of a message in each

node, we extend some of the above notations as follows. The message arrival rate

of nk from object ox is rk,x and its corresponding effective update arrival rate is

rm
k,x. The sum of rm

k,x over all objects is denoted as rm
k =

∑
ox∈Om

k
rm
k,x. We assume

the expected per-child filtering time and the transmission time for a message in

nk is equal over all of the objects, which are still denoted as tpk and tck respectively.

Now we are ready to derive the cost function of the processing delay. Recall

that the delay is equal to the sum of the queuing time and the processing time.

For a message from object ox, the expected processing time in nk for a child nj
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interested in ox is

tkj,x = tpk + tck
rm
j,x

rm
k,x

.

Hence the total processing time of a message from object ox should be

tk,x =
∑

nj∈Ck,x

tkj,x.

The average processing time of a message from all the objects in Om
k is

tk =

∑
ox∈Om

k
rm
k,xtk,x

rm
k

.

Then the workload of nk can be computed as ρk = rm
k · tk. Therefore, the expected

queuing time of a message should be ρk

1−ρk
tk. Similar to the analysis in the sin-

gle object case, the message received by a child nj has to experience an average

processing time of 1
2
(tk,x − tkj,x) + tck + tpk. Summing up the queuing time and the

processing time, we have the expected processing delay in nk of a message for one

of its child nj on object ox:

g(nk, nj, ox) =
ρk

1− ρk

tk +
1

2
(tk,x − tkj,x) + tck + tpk. (4.9)

In Equation (4.9), the cost function distinguishes the processing cost on differ-

ent objects. That means if the number of objects is large, the computational cost

of our algorithm would be very large. Therefore, we provide an approximation on

the cost model as follows. First, we approximate tkj,x for all values of x by using

tkj =

∑
ox∈Om

j
rm
k,xtkj,x

rm
k

.

Then we use tk to approximate tk,x. In this way, we can approximate Equation
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(4.9) as follows:

g(nk, nj) =
ρk

1− ρk

tk +
1

2
(tk − tkj) + tck + tpk

=
1 + ρk

2(1− ρk)
tk + tck + tpk −

1

2
tkj (4.10)

Note that this equation is of the same form as Equation (4.4) in the single object

cost model. Similar to the approximation we have done in the single object case,

which uses the average processing delay over all the children to approximate that

of every child of nk, we have:

g(nk) =
1 + ρk

2(1− ρk)
tk + tck + tpk −

1

2|Ck|
tk (4.11)

Hence we can calculate the expected LF of ni on object ox, LF (ni, ok) and

then the expected LF of ni averaging over all its interesting objects, LF (ni).

LF (ni) =
1

|Oi|
∑

ox∈Oi

LF (ni, ox)

= ui[D(s, ni) + g(p(ni)) + g(p(p(ni)))

+ · · ·+ g(s)] (4.12)

where

ui =

∑
ox∈Oi

ri,x

|Oi|
.

Furthermore, the adaptation cost can be incorporated by adding tak · |Om
k | to

g(nk), where tak can be computed using Eq. (4.7).
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Dissemination Tree Construction

As in the single object case, we also design an adaptive scheme and a static scheme.

For the adaptive scheme, the transformation rules as well as the adaptation mech-

anism are also the same as the single object case. However, we need to extend the

information collection strategy to include the new information that are required

by the new cost model. More specifically, in the list in Section 4.2.2, the 1st and

4th points remain unchanged, while the 2nd and 3rd points are revised as follows:

• The values of Om
j , uc

j, r
m
j,x, t

p
j and tcj of each of its children or grandchildren

nj for each object ox in nj’s effective object set Om
j .

• The value of uc
i of node ni, where uc

i aggregated uj values of all the nodes in

the subtree Ti rooted at ni, i.e. uc
i =

∑
nj∈Ti

ui.

Both the Greedy and SA Algorithm can be used here by employing the new

cost model. The complexity of Algorithm 4.2 becomes O(|O| · |N |2 · log |N |).

Theorem 4.1 can also be applied to this scheme. Note that, in this case, the

parameter r in the theorem should be the sum of the maximum message rate

among all the nodes for each data object.

4.3.2 The Multi-Tree Approach

In this approach, one dissemination tree is created for each data object, which

is similar to DiTA. Each tree only covers those servers that are interested in the

corresponding data object. By doing so, update messages of an object will not be

routed through the uninterested nodes.

The operations in each node is similar to the single-tree approach. When an

update message arrives, the node checks the children that are involved and forward

the message if necessary. Therefore, the cost model is similar to the single-tree

approach.
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Furthermore, we can perform the adaptive transformation of each tree inde-

pendently and concurrently. Unfortunately, these trees are not independent. Two

trees are correlated through those nodes that appear in both of them. Hence the

change of one tree may affect the other trees through their common nodes. In

particular, when a node ni is making its adaptation decision for a tree, one of its

children nj may be performing the adaptation in another tree. Hence ni’s decision

may not be based on the right information. Simply sequencing the transformation

of the trees would slow down the adaptation.

Algorithm 4.4: Process Message

begin1

while true do2

wait for a new message msg;3

HandleMsg(msg);4

if state = IDLE||WAIT then5

for each wait ∈ Qready do6

wait← Qready.Dequeue();7

PerformAdapt(wait.tree);8

send a token message to each node in Child[wait.tree];9

continue;10

for each msg in Qtoken do11

remove msg from Qtoken;12

HandleMsg(msg);13

for each msg in Qhold do14

remove msg from Qhold;15

HandleMsg(msg);16

if state = HOLD then break;17

end18

To solve this problem, extra mechanism has to be incorporated. In our scheme,

each node has three possible states: IDLE, WAIT and HOLD. As in the single-tree

approach, the root node of each tree generates the token which is passed around

the tree in a top-down manner. Each node that receives the token, before making

the adaptation decision, sends out a “hold” message to all its children and enters
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Algorithm 4.5: Helper Functions

Function HandleMsg(msg)1

begin2

switch msg.type do3

case HOLD MSG4

if state = HOLD then Qhold.Enqueue(msg);5

else if state = WAIT then6

if msg.num > NUM then7

PerformHold(msg.tree) ; /* deadlock prevention */8

else Qhold.Enqueue(msg);9

else if state = IDLE then10

PerformHold(msg.tree)11

case TOKEN MSG12

if state = HOLD then13

if msg.tree = hold.tree then state← WAIT ; /* this14

token unlocks the hold state */

else Qtoken.Enqueue(msg); /* put it in the token15

queue */

if state = IDLE||WAIT then16

if ∃wait, wait.tree = msg.tree then break; /* ignore this17

msg */

create a new object wait and put it into waitPool;18

wait.tree← msg.tree ; /* initialize the wait object */19

wait.count← Child[msg.tree].length;20

state← WAIT ;21

create a new hold message hmsg;22

hmsg.num← NUM ;23

send one copy of hmsg to each node in Child[msg.tree];24

case ACK MSG25

Look up wait in waitPool s.t. wait.tree = msg.tree;26

wait.count−−;27

if wait.count = 0 then28

waitPool.Remove(wait);29

if state = WAIT ||IDLE then30

PerformAdapt(wait.tree);31

else Qready.Enqueue(wait);32

end33
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Algorithm 4.6: Helper Functions (Cont.)

Function PerformAdapt(tree)1

begin2

perform adaptation of tree;3

if waitPool = φ then state← IDLE;4

else state← WAIT ;5

end6

Function PerformHold(tree)7

begin8

send an ack message to msg.source;9

hold.tree← tree;10

state← HOLD;11

end12

the WAIT state. A child node that receives a hold message will reply with an

acknowledgement message and enter the HOLD state when possible. The parent

node that receives all the acknowledgements from its children, will perform the

adaptation as usual if and only if it is not in the HOLD state. The details of this

mechanism are presented in Algorithms 4.4,4.5 and 4.6.

Note that without careful considerations, the above algorithm may incur dead-

lock. Consider two nodes ni and nj. ni is the parent of nj in one tree while it is

the child of nj in another tree. It is possible that ni and nj will send a “hold”

message to each other at about the same time. If they keep waiting for acknowl-

edgement from each other, deadlock occurs. Furthermore, they should not both

enter the HOLD state. To solve the deadlock problem, we assign a unique integer

number NUM to each node, which is implemented by using the unique IP address

of every node. When a node in the WAIT state receives a hold message, it enters

the HOLD state only when its number is smaller than that of the hold message’s

origin. Lines 6 - 9 in Algorithm 4.5 implement this scheme.

Now let us analyze the effectiveness of our algorithm in solving the distributed

deadlock problem. First, to model the problem, a directed graph, called a parent-
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child graph (or P-C graph), can be generated, where a vertex represents a network

node and a directed edge from ni to nj represents the fact that nj is a child of

ni in at least one dissemination tree. Moreover, without any deadlock prevention

scheme, a deadlock would happen if there is a cycle, ni1 → ni2 → · · · → nip → ni1 ,

in the P-C graph and each node in the cycle is kept waiting for the acknowledge-

ment from its immediate next node, i.e. ni1 waits for ni2 , ni2 waits for ni3 and so

on. By using our proposed scheme, we have the following theorem:

Theorem 4.2 The system is deadlock-free.

Proof: Without loss of generality, assume there is a cycle ni1 → ni2 → · · · →

nip → ni1 in the P-C graph. If a deadlock happens in this cycle, then NUM1 <

NUM2 < · · · < NUMp < NUM1 has to be satisfied, where NUMj is the NUM

value of node nij . Otherwise, if say NUM1 > NUM2 (note that NUMj is unique so

NUM1 6= NUM2), then, when ni2 receives a hold message from ni1 , ni2 will enter

the HOLD state and hence the dead lock will not happen. However NUM1 <

NUM2 < · · · < NUMp < NUM1 would not be true at anytime. Therefore,

deadlock will not exist. �

In addition, when a node ni is ready to perform adaptations, the workload

statistics of a child nj may have changed due to the adaptation of the other

trees. In order to let ni make decisions based on updated statistics, such statistics

will piggyback onto the acknowledgement message sent to ni. This includes the

change of the number of nj’s children as well as the change of the update rates of

its children.
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4.4 Experiments

In this section, we present a performance study of the proposed techniques, and

report our findings.

4.4.1 Experiment Configurations

The simulator is implemented using ns-2, a popular discrete-event simulator for

networking research. The topology is generated using the GT-ITM topology gen-

erator. The Transit-Stub model, which resembles the Internet structure, is used.

We generate a network topology with 1500 nodes, of which one node is chosen

as the source, 256 nodes are selected as the SPs, and the remaining nodes act as

routers. The average communication delay between any two SPs is about 20ms.

The expected filtering time and transmission time of each node is derived by

using two respective uniform distributions. In our basic configuration, we set the

average values of these times as 5ms and 1ms respectively (which may vary in

our experiments), and set the minimum values as 1ms and 0.125ms respectively.

The source node’s expected filtering time and transmission time are always set

to the minimum value to model an enterprise class server. Given the expected

filtering time tpi and transmission time tci for a node, the exact filtering time and

transmission time of each message are drawn from two respective exponential

random variable with expected values as tpi and tci respectively. Recall that each

SP in our system has to process local user queries (probably complex queries) and

disseminate data to the child SPs, and only a limited resource can be allocated

for the dissemination task. Hence we use a relatively long filtering time and

transmission time which capture the load of processing user queries in the SPs.

In addition, the adaptation interval of our adaptive scheme is set to 200 seconds
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and the information update window is set to 50 seconds. These values are chosen

such that the system would not be over reactive to short term variances in our

experimental setup. With higher data volumes, these intervals could be set shorter.

We model the time used to transmit the statistical information to be the same as

tci . All the experiments are conducted in a Linux server with an Intel 2.8GHz CPU.

We also implemented the optimization algorithms and the adaptation functions

in C to study their performance. The adaptation overhead would be studied and

modelled in the experiments.

To evaluate the performance of the proposed techniques, we compare them

with the following approaches:

1. DiTA[75]. In DiTA, a tree is constructed for each data object. Fanout

constraint is set for each node to avoid overloading. In our experiments, this is

done by trial-and-error by repeatedly trying with different parameters and to pick

the set that gives the optimal performance. (We find that this is the only way

to find good fanout constraints and we believe this is a disadvantage of schemes

relying on predetermined fanout constraints.) The nodes are added to the trees

one by one. A node can serve another node only when its coherency requirement

is at least as stringent as that of the other. A node ni is added to each tree for

each of its requesting data objects. Heuristics are applied to ensure that the level

of ni is as small as possible and secondarily the communication delay between ni

and its parent is also as small as possible. However, since DiTA is a distributed

algorithm, these heuristics cannot guarantee the above objective. Hence we use

a centralized version of DiTA which has the guarantees. Note that this is biased

towards DiTA. It first sorts the nodes in ascending order of the values of their

coherency requirements and then adds them one by one into the tree in the sorted

order. When adding a node ni, another node within the partial tree, which has
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the smallest communication delay to ni and still has available fanout degree, is

selected to act as the parent of ni.

2. Source-Based Approach. The distributed nodes do not cooperate and

all the nodes are connected to the source. This provides a base line to evaluate all

the schemes.

3. Random Tree. The nodes are added in random order. For each joining

node, randomly select a node to act as its parent. This scheme provides a base

line to evaluate all the tree-based schemes.

Furthermore, in the experiments, we use two types of datasets: synthetic data

and real data. In the synthetic dataset, we set a specific expected message rate

ri,x for each node on every object based on a uniform distribution. The source is

of the largest ri,x for all the objects. Given the rs,x of the source, the interval of

each update message is an exponential distributed variable with an average value of

1/rs,x. The synthetic data set provides relatively steady message rates, which offers

opportunities for us to study the properties of the different algorithms. For the

real dataset, we continuously poll stock traces from http://finance.yahoo.com.

The polling is done in an interval of one second. In the experiments, we use 100

traces as our basic dataset which would be varied.

4.4.2 Adaptation Cost

In this section, we study the cost of performing adaptations using our C imple-

mentation. To examine the cost of making adaptation decisions, we use a node

that serves 100 objects and try estimating 100 possible decisions. We found that

tdk ≈ 0.6µs for both the single-tree and multi-tree approach. To keep the adap-

tation cost affordable, we have to set an appropriate adaptation period Td. For

example, if we can afford 5% of the CPU time for adaptation, we can set the

http://finance.yahoo.com
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adaptation period of this testing node as shown in Figure 4.2. For example, if this

node serves 10,000 objects, we have to set the adaptation period larger than or

equal to 12 seconds. Therefore, to keep the adaptation responsive, the number of

objects served by each node and the number of children and grandchildren should

be kept to a certain limit. Note that constructing the tree using our extended

cost model inherently consider this effect. The cost of collecting information is

analyzed similarly. In the following experiments, we set both tdk and tek as 1µs in

the cost model and the simulation.
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Figure 4.2: Adaptation period selection

4.4.3 Single Object Dissemination

In this subsection, we examine the algorithms in a single object dissemination situ-

ation. We utilize the synthetic dataset. The expected message rate of each node is

selected from a uniform distribution with the average value of 1 messages/second

and a minimum value of 0.5 messages/second. (Note that the message rate models

the coherency requirement at each node - a small coherency requirement implies

a high message rate, and vice versa.)



101

 1

 2

 3

 4

54321N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Load Factor

Greedy
Random

Source-Based
DiTA

Greedy+Adpative
SA+Adaptive

(a) Sensitivity to processing time

 0

 1

 2

 3

 4

 5

10080604020N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Time (units of adaptation period)

Random+Adaptive (load=5)
Greedy+Adaptive (load=5)

Random+Adaptive (load=1)
Greedy+Adaptive (load=1)

(b) Online improvement

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

8421N
or

m
al

iz
ed

 A
vg

LF
 (

ov
er

 S
A

)

Load Factor

Greedy
Random

Source-Based
DiTA

Greedy+Adaptive
SA+Adaptive

(c) Sensitivity to message rate

Figure 4.3: Performance on single object dissemination in static environment

Static Environment

In the first experiment, we vary the average filtering time and transmission time

by multiplying them with a parameter load. The parameter load ranges from 1

to 5 in our simulation. The minimum values of filtering time and transmission

time are not changed. This models two effects: (1) Various load conditions of the

whole system. When more clients are connected or more queries are submitted to a

node, its load would become higher and hence it takes a longer time to disseminate

messages to its child nodes. The filtering and transmission times of these nodes

would be increased. (2) Various degrees of heterogeneity of the system. With a



102

higher value of load, the filtering time and transmission time of the nodes would

differ to a higher degree. No matter which is the case, nodes with higher filtering

and transmission time would be deemed as less capable nodes and hence a good

plan should be able to identify this kind of nodes and put them at a lower level

of the dissemination tree. We run each algorithm for 20, 000 seconds and record

the average AvgLF over the whole simulation period as well as the values within

every 1, 000 seconds time window. To ease the comparison, we normalize the

AvgLF values of all the other algorithms over that of the SA algorithm, which is

(as expected) the best dissemination scheme.

Figure 4.3 shows the results of our experiment. From Figure 4.3(a), we can

see that when load = 1, Greedy and the adaptive counter-part (Greedy + Adap-

tive) perform as well as SA, while the adaptive algorithm slightly improves over

the initial scheme. Due to the optimality of SA, the adaptive scheme has few

opportunities to further optimize the scheme. On the other hand, DiTA has more

than two times AvgLF than SA. That is because it can neither differentiate the

capabilities of the different nodes nor utilize information of the communication de-

lays between the nodes. The source-based algorithm performs the worst. In this

scheme, all nodes are connected to the source node. Although the source node in

our settings is not overloaded, the messages would still experience very long delay

in the source node because of the high workload of the source. The random tree

algorithm on the contrary scatters the workload randomly over all the nodes, and

hence has a smaller AvgLF value.

However, with the increase of the load parameter, we can see from Figure 4.3(a)

that the relative performance of the source-based scheme improves. This is be-

cause, in our study, increasing the load parameter increases the processing time

of all the nodes except the source node. Since the source-based approach dis-
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seminates the messages directly from the source, it is not influenced by the load

parameter. On the contrary, all the tree-based schemes would suffer from the in-

crease of load. Furthermore, with the increase of load, DiTA and the random tree

scheme become much worse while our static algorithms with/without adaptation

scheme remains effective. This is because our scheme can identify the different

capabilities of the nodes and reorganize them in a more cost-effective way.

Although our static schemes work well as shown above, they rely on accu-

rate system statistics. To examine the performance of our adaptive mechanisms

without these statistics, we use the random scheme to model an initial scheme

that would be generated without accurate statistics. Figure 4.3(b) shows the re-

sult of this experiment. To ease viewing, we only depict the results of load = 1

and load = 5 for the Random+Adaptive and Greedy+Adaptive algorithms. The

curves of the other load values would be between these two cases. It can be seen

that when there are accurate system statistics, Greedy would result in a good

dissemination scheme that works as well as SA. Hence there are not many op-

portunities for the adaptation scheme to improve. On the contrary, the random

scheme works far worse than SA. Our adaptation algorithm iteratively improves

this initial scheme. After about 30 adaptation periods, the random scheme has

been improved from more than 3 and 4 to only 1.3 times of the performance of SA.

And after more adaptation periods, the random scheme is improved to the extent

that it performs as well as SA. This clearly shows the need for adaptive strategy,

as well as the effectiveness of our adaptive scheme.

Another type of load change of the system is the change of message rates. With

the increase of message rates, the dissemination load of the system is increased.

In this experiment, we fix the processing time of each node to its basic value and

multiply each node’s basic message rate with the load parameter. The results are
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depicted in Figure 4.3(c). With increasing message rate, Source-Based deteriorates

rapidly. This is because with a high message rate, the workload of the source

node largely increases due to its large number of children, and this incurs long

queuing time for the messages in the source node. On the other hand, the relative

performances of all the tree-based algorithms are not sensitive to message rate

changes. This is due to the moderate number of child nodes in a tree-based

scheme. Furthermore, our schemes steadily outperform the others under various

message rates.

Dynamic Environment

In this subsection, we study our adaptive algorithm under a dynamic environment.

In the experiments, we study how the algorithms perform when the workloads of

the nodes are changed. The first experiment studies the single object dissem-

ination schemes using the synthetic dataset. The parameters are set as in the

first experiment in the last subsection where load = 1. Since Source-Based and

Random have been shown to perform worse than the others in this situation, we

only examine the results of the other algorithms. We run the system for 20, 000

seconds, and at the 10, 000th second, we increase the processing time of 10 nodes

that are the first 10 nodes (except the source node) in a breadth-first search of the

dissemination tree. These nodes are at the top of the dissemination tree. Their fil-

tering time and transmission time are increased to 10 times of the previous values.

This models the situation that the workloads of some nodes at the higher level of

the tree increase as more clients are connected or more queries are submitted.

The result is depicted in Figure 4.4. In order to examine the optimality of

the algorithms before and after the state transitions, we also executed two special

runs of the SA algorithm: (a) Run the SA algorithm based on statistics before
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Figure 4.4: Performance on single object dissemination in dynamic environment

the change. Let the AvgLF value of this run be SA1. (b) Run the SA algorithm

based on statistics after the change. Let the AvgLF value of this run be SA2.

We then normalized the AvgLF value of each algorithm under each condition

by the corresponding AvgLF of the SA algorithm. For example, consider the

DiTA scheme. Let the AvgLF be D. Then, before the change, its normalized

value will be D/SA1, and after the change, its normalized value will be D/SA2.

We compute the average of the normalized AvgLF values over a 1, 000 seconds

window and then report the 20 resulting values. In figure 4.4, one can see that

at the first 10, 000 seconds, SA and SA+Adaptive perform as well as SA, while

DiTA is two times worse than them. After the 10, 000th second, the AvgLF s

of both DiTA and SA drastically increase. That is because the 10 nodes whose

processing times are increased become the bottleneck of the whole dissemination

tree. Furthermore because they are at the top of the tree, their processing delays

dominate the delays of the messages sent to all their descendant nodes. On the

other hand, our adaptive mechanism can detect this change and hence reorganize

the dissemination tree to adapt to the new situation. Therefore, it only has a

short term increase in the AvgLF and then drops back to the original state. That

is because the highly loaded nodes have been put to lower levels of the tree and



106

then their high processing times have little effect on the dissemination efficiency.

4.4.4 Multiple Object Dissemination

In the second set of experiments, we use our collected stock traces to examine

the efficiency of our multiple object dissemination scheme. For each object, a

probability that it is of interest to a node is set to 0.6, which will be varied in the

experiments. The cri,x values of each node ni on each object ox is chosen using

a uniform random variable between 0.1 to 0.01. 100 traces are used as our basic

configuration. For the ease of exposition, in the following experiments we first

compare our single-tree approach with other approaches and then compare the

single-tree approach with the multi-tree approach.

Single-Tree Approach

In the first experiment, we use a parameter load to vary the average filtering

time and transmission time as we have done in the single object experiments.

Figure 4.5(a) shows the results of this experiment. The relative performance of

the algorithms is similar to the single object case. All our techniques perform as

well as SA. Random and DiTA perform worse with larger load due to their inability

to differentiate the capabilities of the various nodes. Source-Based is insensitive

to the parameter load. Figure 4.5(b) again shows that our adaptive mechanism

can improve a random tree, which models a tree built on inaccurate statistics, to

perform as well as SA.

In another experiment, we examine the sensitivity of the algorithms to different

number of data objects. We vary the number of data objects to be disseminated

from 100 to 500. The results are depicted in Figure 4.5(c). With different number

of data objects, Greedy, Greedy+Adaptive and SA+Adaptive persistently outper-
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Figure 4.5: Performance on multiple object dissemination

form all the other algorithms. We can also see that the relative performance of

the Source-Based algorithm deteriorates with increasing number of data objects.

This is because the source’s workload largely increases with increasing number

of data objects and hence its processing delay increases. Furthermore, the abso-

lute values of the AvgLF s of all the other tree-based algorithms only increase by

around 15% when the number of objects is increased from 100 to 500. However,

for the AvgLF of Source-Based, the increase is around 200%. This shows that

the tree-based approaches have better scalability with respect to the number of

objects.



108

Multi-Tree Approach
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Figure 4.6: Sensitivity on system workload

Now we study our multi-tree approach. From the results in the previous ex-

periments, it is clear that our proposed single-tree method is superior to other

methods. Thus, we shall only compare our multi-tree approach against our pro-

posed single-tree method. Furthermore, for conciseness, only the results of SA

for both approaches are presented. In the first experiment, we use a parameter

load to vary the average filtering time and transmission time of the nodes as we

have done in Section 4.4.3 and 4.4.4. Figure 4.6 shows the result. It can be seen

that the multi-tree approach outperforms the single-tree approach consistently.
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Figure 4.7: Sensitivity on the number objects of interest to each node

Furthermore, with higher workload on the nodes, their performance difference is

larger. This is because the update messages in the multi-tree approach are trans-

ferred through fewer number of nodes and this benefit is more obvious with larger

workload on the nodes.

In the second experiment, we fix the load parameter at value 8. Instead, we

vary the probability that a node is interested in an object for each pair of node

and object. We refer to this probability as the degree of data interest. The smaller

the degree of interest, the fewer are the number of objects of interest to each node.

From the results shown in Figure 4.7, it is obvious that the multi-tree approach
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consistently outperforms the single-tree approach. Moreover, when each node has

a smaller number of interesting objects, we can achieve more benefit by using

the multi-tree approach. The reason is the number of nodes in each individual

dissemination tree is smaller and the update messages experience less processing

delays in the nodes. This effect is more obvious with a larger number of objects.
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Figure 4.8: Running time of Greedy and SA

From the above experiment results, we can conclude that in a static environ-

ment, Greedy and SA perform the best among all the static algorithms given

accurate statistics. In this experiment, we evaulate their running time. We use

two sets of parameters of SA: (1) the parameters listed above and (2) changing

64 × #nodes to 16 × #nodes and T < 0.001 to T < 0.0015. Since the running

time of the single-tree and the multi-tree approach is similar, only the results of

the single-tree approach is presented here. Figure 4.8 shows the running time of

both algorithms with different number of objects. Obviously, Greedy persistently

outperforms SA in running time for both sets of parameters of SA. However, SA

with parameters (2) comes with a plan whose cost is more than 2 times of that of

Greedy. SA with parameters (1) can derive the best plan; however, the running
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time is significantly increased. We also tested a lot of other parameters of SA and

cannot find a case that SA outperforms Greedy both in runtime and tree cost.

For a static environment, SA is superior to Greedy due to its ability and robust-

ness to find a low cost scheme. However Greedy is more suitable for a dynamic

environment, because it provides a cheaper way to construct a good initial tree

and devoting more time to construct the initial tree does not make much sense

as a previously optimal plan would become sub-optimal when the system state is

changed. We can see this effect in Section 4.4.3 and the next section.

Dynamic Environment
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Figure 4.9: Performance on multi-object dissemination in dynamic environment

This experiment is similar to the one in Section 4.4.3, except that it is per-

formed on multiple object dissemination. Since DiTA builds one tree for each

object and DiTA has been shown above that it is not adaptable to system changes

for any one of its dissemination trees, we only compare the SA and SA+Adaptive

in this experiment. The other settings are similar to Section 4.4.3. At the 5, 000th

second, we shift the filtering time and transmission time of 10 nodes, which are

at the top of the dissemination tree, to 10 times of their original values. The

result is reported in Figure 4.9. We can see that before the change, SA works
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slightly worse than Adaptive. At the 5, 000th seconds, both SA and SA+Adaptive

increase in their AvgLF s. However, our adaptive mechanism successfully detects

the shift and then reorganizes the dissemination tree to adapt to the new situation.

Hence SA+Adaptive restores back to its original state in terms of AvgLF while

the bad performance of SA persists. We also performed experiments on runtime

change of transmission delays and coherency requirements. The results show that

our adaptive scheme can also adapt to these changes and re-optimize the scheme

incrementally.

4.5 Summary

In this chapter, we studied the problem of optimizing the overlay network at

the data overlay of COSMOS. We proposed a cost-based approach to construct

dissemination trees to minimize the average loss of fidelity of the system. Based

on our cost model, a novel adaptation scheme was proposed and is experimentally

shown to be able to adapt to inaccurate statistics and changes of system states.

Two static algorithms: Greedy and SA, have also been proposed for relatively

static environments and for constructing initial trees under dynamic environments.

The Greedy algorithm is useful for dynamic environments due to its faster speed

to build a relatively good initial tree, while SA is superior for static environments

due to its robustness. Furthermore, the multi-tree approach was shown to be

more robust to the number of objects, the degree of data interest as well as system

workload.
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Chapter 5
Adaptive Operator Ordering

Having seen the design of the inter-provider layer, we shall turn to the intra-

provider layer in the following two chapters. We study the problem of operator

ordering in this chapter and the problem of operator placement in the next one.

In this chapter, we introduce a new highly adaptive distributed query processing

mechanism, called SwAP (Scalable & Adaptable query Processor), that facilitates

efficient adaptation of operator orders at runtime. The architecture can quickly

detect fluctuations in selectivities of operations, as well as transmission speeds and

workloads of servers, and accordingly change the operation order of a distributed

query plan during execution. We have implemented a prototype based on the

Telegraph system [64]. Experimental study shows that the proposed mechanism

can adapt itself to the changes in the environment and hence approach to an

optimal plan during execution.

The rest of this chapter is organized as follows. In the next section, we intro-

duce the background and challenges. Details of the query execution mechanisms

are given in Section 5.2. In Section 5.3, the scheme to construct a distributed

query plan for multi-join queries is presented. Experimental results are given in

Section 5.4.
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5.1 Background and Challenges

In this section, we present the background of our work and discuss the challenges.

5.1.1 Background

Our work is based on several pieces of work of the Telegraph Project. Eddy [8]

is an tuple routing operator interposed between data sources and query operators

such as selections and joins. An eddy operator continuously pushes tuples into

the queue of the query operators and the query operators may return the result

tuples to the eddy operator. By adjusting the routing orders of tuples through

operators under a tuple routing scheme, eddy is able to adaptively approach the

optimal order of operations at runtime.

The authors introduced two tuple routing schemes, back-pressure effect and

lottery routing scheme, that enable eddy to observe an operator’s behavior (cost

and selectivity) and accordingly route tuples through the operator in an order

approaching the optimal plan. The idea of the back-pressure effect is as follows:

operators of higher costs take more time to finish the processing of a tuple and

hence they consume tuples more slowly than those of lower costs. This results in

larger input queue sizes for high cost operators. Hence by fixing the lengths of the

operators’ input queues, the eddy operator is forced to route tuples to an operator

of lower cost before routing to those of higher costs. Under the lottery routing

scheme, each operator is assigned a number of tickets. An operator gets a ticket

when a tuple is routed to it and looses a ticket when it returns a tuple to the eddy.

Thus the number of tickets can be used to roughly estimate the selectivity of an

operator. The more selective an operator is, the more tickets it holds. When two

operators vie for a tuple, the operator with more tickets has higher probability
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to “win” the tuple. By combining the back-pressure effect and lottery routing

scheme, an eddy generally routes tuples to a faster and more selective operator

before routing to those slower and less selective ones.

[66] extends eddies by splitting up a symmetric join operator [43] into two first

order operators called SteMs. A SteM can be viewed as a half symmetric join

operator. It is implemented as an indexed repository built on tuples from a base

stream using a particular attribute. One SteM is created for each attribute of

each base stream addressed in the join predicates. For example, a two-way equi-

join can be evaluated using two SteM operators each is implemented as a hash

table built on the joining attribute of the two base streams. Tuples arriving from

each base stream are first built into their own SteM(s) and then used to probe the

other streams’ SteMs to get the join results. By exposing the normally hidden data

structures (for example hash tables), SteMs enable eddies to have more control over

the normally hidden physical operations: build and probe within a join algorithm.

By probing SteMs in different orders, the join ordering, join algorithm and the

spanning tree (for cyclic queries) can be adapted. SteM also provides a shared

data structure for data from a given table, regardless of the number of access

methods or join algorithms. This facilitates the access method adaptation by

avoiding redundant work during competition between access methods.

Figure 5.1(a) is an example execution plan for a three-way join R ./ S ./ T .

In this example, all the operations are located at a single site, while data sources

could be remote data sources. The join operators are all equi-joins. In the figure,

and all figures throughout this chapter, we use the rounded rectangles to denote

SteMs. Tuples from the sources are routed through the Eddy operator to the

processing operators. The internal data structure in the SteM operator is a hash

table built on the joining attributes. We can see that the SteM of R is shared
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by both join operations. Tuples of S are first inserted into the hash table of the

SteM of S and then probe the hash tables of the other two SteMs. The order in

which the other two SteMs are probed is determined based on the routing schemes

stated above. Tuples of R and T are routed similarly.

Eddy

S

R TS

R T

(a) Single site processing

Eddy

S

R

T

R

S

R T

Site Boundaries

(b) Multi-site processing

Figure 5.1: Centralized eddy.

5.1.2 Challenges

Unfortunately, the above techniques are not readily applicable to our context. In

our intra-provider system, there are multiple locally distributed processors and

hence the operators of a query may be executed in multiple processors. Moreover,

there are two kinds of parallelism in a distributed query plan that can be exploited

between processors: horizontal (or intra-operator) and vertical (or pipelined) par-

allelism. In horizontal parallelism, different processors are running independently

on different partitions of data. In vertical parallelism, processors are running in

a pipelined manner, i.e., results of operations running in one site may be piped

to another site for further processing. It turns out that vertical parallelism offers

greater opportunities for adaptivity.
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Consider the following example, which we shall use as a running example

throughout this chapter to illustrate the mechanisms of SwAP. Suppose we want

to evaluate a three-way join R ./ S ./ T . Recall that we assign a delegation pro-

cessor for each stream (Section 1.1.3. Therefore, R, S and T may be delegated

to three different processors: Site 1, Site 2 and Site 3 respectively. Assume that

the two join operations are to be evaluated at Site 1 and Site 3 respectively. Then

we can form two different pipelined query plans each corresponding to a different

join order. The first one is to route tuples of S to Site 1 to evaluate R ./ S

whose results are piped to Site 3 to join with T . This plan actually corresponds

to executing the join operations in the order (R ./ S) ./ T . The other plan is to

route the tuples of S to Site 3 first and then to pipe the results to Site 1. This

corresponds to (T ./ S) ./ R. To determine the best plan to use is essentially

the operation ordering problem. A good choice of the order should consider both

the selectivities and costs of the distributed operations, as well as the network

transmission speeds and workloads of the processors. We believe this is where

traditional query optimization is inadequate as a static query plan that fixes the

order in which tuples are routed would be unable to adapt to inaccurate estima-

tions or runtime changes. Instead, we need robust query processing schemes that

can dynamically adjust the join order on-the-fly based on characteristics of the

queries and data, as well as the system resources at runtime.

A naive strategy that serves the purpose is to extend the mechanism of eddies

by placing an eddy operator on a single processor and connecting all operators

and data sources to the eddy no matter where they are located. The query plan

for the three-way join query in our running example using this method is shown in

Figure 5.1(b). The eddy is located on a server that could be one of the three data

source sites or an alternative site. Then the eddy can dynamically reorder the
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distributed operations. However, this centralized eddy architecture suffers from

the problem of scalability, reliability and large communication overhead and the

eddy operator can become a bottleneck during query processing. SwAP targets

on solving the above problems.

5.2 Query Execution Mechanism

In SwAP, when a new query is submitted to a server, that server becomes the

coordinator for that query. The coordinator site compiles the query, chooses the

sites for processing the query and determines the degree of parallelism for the

operations required by the query. Then, an algorithm (described in Section 5.3)

is employed to generate the distributed query plan.

In this chapter, we assume the placement of operators is determined. At run-

time, SwAP adapts the operation orders, join algorithms and access methods (as

well as spanning trees for cyclic queries) on the fly. (The choices of join algorithms,

access methods and spanning trees are done by using the adaptive capability pro-

vided by SteMs.)

In the following subsections, we assume that a query plan has been set up,

and look at how the query plan is processed in SwAP. We shall consider both

vertical parallelism and horizontal parallelism. We defer the discussion on how a

distributed query plan can be generated to the next section.

5.2.1 Scheme for Vertical Parallelism

Given a particular layout of query operations, there are two kinds of parallelism

between the processing sites: vertical parallelism and horizontal parallelism. We

shall focus on vertical parallelism in this subsection and discuss horizontal paral-
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lelism later. Under vertical parallelism, sites are running in a pipelined manner:

the output of one site is piped to another site(s). A result tuple can only be output

as an answer when it has gone through all sites. (A result tuple is said to have

gone through a site if and only if at least one of its component tuples has gone

through that site.)

An interesting problem here is that the output of one site may have the choice

of being routed through other sites in different order. Recall our running example:

R ./ S ./ T mentioned in Section 5.1. The result tuples of Site 2 have two possible

routing order, either Site 2→ Site 1→ Site 3 or Site 2→ Site 3→ Site 1, which

correspond to the two join orders: (R ./ S) ./ T and (T ./ S) ./ R. A good choice

of the order should balance the workloads of servers while minimizing the cost

of communication and other system resources. Instead of fixing this order, our

scheme makes the routing decision at runtime and thus can potentially balance

the workloads of servers, and minimize the communication cost and response time.

Rather than using a centralized eddy operator as illustrated in Figure 5.1(b),

our scheme employs multiple eddies - one at each site. The query plan for the

sample query under our scheme is shown in Figure 5.2. There is one eddy operator

at each processing site. The rounded squares are the SteMs used to evaluate

the join operations. To choose a site to transmit the results of Site 2, the eddy

operator in Site 2 continuously measures the selectivities of operations, as well

as the transmission speeds and the workloads at Site 1 and Site 3. The exact

mechanisms will be introduced in the following sub-subsections. Moreover, this

is done in a distributed manner, i.e., each site is making the decision for the

transmission of its own results.

To realize the above framework, we have identified three issues: (a) How does

each eddy efficiently collect statistics from remote sites and make routing decisions
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Figure 5.2: An example of the scheme for vertical parallelism. LA denotes local
access operator; RA denotes remote access operator.

for its intermediate result tuples? (b) Since the routing order of tuples is not fixed,

what kind of mechanisms should we use to facilitate the routing of tuples? (c) How

does the system efficiently process the intermediate result tuples received from the

remote sites? In the remaining part of this section, we shall present our solutions

to these issues.

Collecting Statistics and Making Routing Decisions

In SwAP, we use a Remote Output (RO) operator to transmit intermediate results

from a local site to a remote site for further processing. Each RO connects to an

RA (Remote Access) operator at its corresponding remote site. An RO operator
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continuously sends intermediate results of the local site to its corresponding RA

operator. For example, in Figure 5.2, we attach an RO to Eddy 1 at Site 1, which

transmits output tuples from Site 1 to its corresponding RA operator at Site 3.

However, when a site needs to choose the routing order of its results, such

as Site 2 in the running example, we have to collect statistical information from

the candidate remote sites so that we can make an appropriate routing decision.

Therefore, in this situation, we extend the functionality of an RO operator such

that it not only sends out local result tuples but also collects statistics from its

corresponding remote site. This extended version of the RO operator is called

the Remote Meta-Operator (RMO). In some sense, the RMO together with the

statistical information it collects forms a local abstraction of the operations running

at the remote site. For example, in Figure 5.2, Site 2 needs to choose between

Site 1 and Site 3 to transmit its results. Therefore, we attach two RMOs to the

eddy at Site 2. Based on the statistics collected by the RMOs, the local eddy can

determine the RMO through which it should route its results.

Let us now look at the kind of statistics an RMO should collect from a re-

mote site. As stated above, to make an appropriate decision, we have to know

the selectivities, as well as the transmission speeds and workloads of the candidate

remote sites. We can adapt to the latter two parameters by using the back pres-

sure effect introduced in centralized eddy [8]. In other words, if a remote site’s

transmission speed is slow or its workload is high, then it consumes tuples very

slowly so that its corresponding RMO also consumes tuples very slowly from the

local eddy. Therefore, it forces the local eddy to route the result tuples to another

RMO which connects to a faster remote site.

To estimate the first parameter, i.e., selectivity of a remote site, we have to

know how many result tuples the remote site generates given the number of tuples
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it receives from an RMO. Therefore, the remote site has to send this number back

to its corresponding RMO. Our scheme works as follows. At a remote site, when

its eddy routes a tuple to an output operator (RO or RMO), it will check whether

the tuple contains any data fetched from an RA that is connected to an RMO.

If so, it tells the RA that a result tuple has been generated. The RA operator

accumulates the number of result tuples generated, and when the number reaches

a threshold, it sends the number (as an integer) back to its corresponding RMO.

The threshold is a tunable system parameter, which determines how sparingly the

information is sent. There is clearly a trade-off here: the transmission overhead

and the responsiveness of the system. The higher the threshold, the lower the

transmission overhead, but the less responsive the system will be. Let us look

at the example in Figure 5.2. When Eddy 1 routes a result tuple of R ./ S to

the RO operator, it will detect that the tuple contains data fetched from an RA

which is connected to an RMO (the left RMO of Eddy 2). Then the eddy tells

the RA module that a result tuple has been generated. The RA accumulates

this number until it reaches a threshold, after which it sends this number to the

corresponding RMO. The dotted curves in the figure indicate the flow of this

information. Similar processing is performed at Site 3. Actually, we can compute

the transmission overhead between two sites arose from this mechanism as

s× t× sizeof(int)

threshold
bytes,

where s is the selectivity of the site receiving tuples from the other site, and t is

the number of tuples sent to that site.

Now that RMO can collect statistical information, the eddy needs to be able to

use this information to determine the correct join order. In this thesis, we adopt
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the lottery routing scheme implemented in the original eddy implementation [8].

In the lottery routing scheme, query operators will return result tuples to the eddy

so that eddy can calculate the tickets for them and hence make routing decision.

In order for the lottery routing scheme to work in our context, an RMO mimics

actions of other ordinary query operators by returning Virtual Tuples to its eddy.

Virtual Tuples are not typical data tuples. In fact, they do not contain any data,

i.e., have zero data length.1 The number of Virtual Tuples an RMO returns to the

eddy equals to the number it receives from the remote site (which corresponds to

the number of result tuples the remote site generates). From an eddy’s point of

view, an RMO is like an ordinary query operator that continuously fetches tuples

from the eddy and returns “tuples” to the eddy.2 The virtual tuples are used to

calculate tickets of the RMO in the lottery scheme. Therefore, under the lottery

routing scheme, the number of tickets held by an RMO can be used to roughly

estimate the selectivities of the operations of its corresponding remote site. For

example, in Figure 5.2, the tickets held by the left RMO of Eddy 2 reflect the

selectivities of the operations running at Site 1. In this sense, the RMO together

with the Virtual Tuples it generates form a local abstraction of the operations

running at the remote site. Therefore, by using the lottery routing scheme, we can

adaptively make the decision on which site to transmit the intermediate results

according to the selectivities of the candidate remote sites.

By combining the back pressure effect and the lottery routing scheme, we can

generally route tuples to the site with lower selectivity, faster transmission speed

and lighter workload first. (Note that this combination, unlike only using the

1In Telegraph, every tuple passing through operators is a message, and every message has a
header indicating the message type. Thus, virtual tuples are tuple messages without the message
body.

2The virtual tuples are sent in bulk to the eddy. Only one message is sent for a bundle of
virtual tuples once the RMO receives a statistical message from the remote site.
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lottery routing scheme, can distinguish between a slow site and a very selective

site. Because a slow site consumes tuples very slowly while a very selective but

fast site would consume tuples very fast.) The intuition is that a site with lower

selectivity can eliminate larger number of irrelevant tuples, and a site with faster

transmission speed and lighter workload can finish its processing earlier. Hence

routing to this kind of sites first can speed up the processing. Moreover, all these

decisions in our scheme are done in a distributed way, i.e. sites are making decisions

for the transmission of their own results.

In addition, more routing strategies can be incorporated into our proposed

processing architecture. For example, in [82], the authors proposed several routing

strategies which also can be incorporated into our system by extending the RMO

to collect more statistical information from the remote sites. Since our main

contribution is building the new processing architecture, we do not consider the

incorporation of them in this thesis.

Routing of Tuples

In the case of vertical parallelism, a final result tuple must have undergone the

processing of all sites. To execute the query efficiently and effectively we have to

avoid two types of routing of tuples: (1)Redundant routing and (2)void routing.

Redundant routing occurs when tuples are routed through the same site more

than once, while void routing occurs when tuples are routed to a site that have no

operations over them, e.g. routing tuples of stream R to Site 3 for the example

in Figure 5.2. Since no operation in Site 3 involves tuples of R, we refer to this

kind of routing as void routing. To prevent these two kinds of routing, we have to

know two pieces of information: a tuple’s routing history (which sites the tuple has

been routed through and which it has not) and the tuple’s possible next “stations”
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(given a tuple’s routing history, which sites the tuple can be routed to).

To record a tuple’s routing history, we associate with each tuple a bit vector

called Global Footprint, whose length equals to the number of participating sites.

Each bit in the Global Footprint corresponds to one participating site. Turning

on a bit (setting it to 1) in the global footprint means the tuple has been routed

through the corresponding site. Whenever a tuple has completed the local process-

ing on one site, the corresponding bit in the global footprint is set. When joining

two tuples, the global footprint of the new tuple is an OR result of the two global

footprints. Note that there is an extra constraint on the routing of tuples. In order

to minimize the communication overhead, tuples must have been fully processed

by the local operations before being routed to an RMO/RO operator. Otherwise,

the result tuples of the remote site have to be sent back for processing, which will

significantly increase the communication overhead. In the example of Figure 5.2,

each tuple is associated with a Global Footprint of three bits corresponding to the

three processing sites. Consider an S tuple in Site 2, its Global Footprint will be

set to [0,1,0] after it has been retrieved and is ready to be transmitted to Site 1 or

Site 3.

To efficiently store and use the second piece of information mentioned above

(the tuple’s possible next “stations”), we attach to each RMO/RO a compact de-

scriptor that contains two bit vectors: AllowingBits and ValidatingMask. These

bit vectors are of the same length as the Global Footprint. The AllowingBits indi-

cates which type (in terms of the Global Footprint) of tuples can be routed through

the RMO/RO, and the ValidatingMask indicates which bits of the AllowingBits

are valid. Only if a tuple’s global footprint matches the AllowingBits under the

ValidatingMask of an RMO/RO can the tuple be routed through that RMO/RO.

Let us use Figure 5.2 to illustrate. The bit vectors drawn around the RMO/ROs
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are their AllowingBits and ValidatingMasks. The ith bit in these bit vectors corre-

sponds to Site i. Consider the left RMO of Eddy 2, whose AllowingBits indicates

that only those tuples that have been fully processed by Site 2 but have not been

routed through Site 1 can be routed through this RMO. The corresponding Vali-

datingMask indicates that only the first and the second bits of the AllowingBits

are valid. Now, the global footprint of an S tuple retrieved at Site 2 would be set

to [0,1,0] once it is ready to be transmitted. This tuple can be routed through

the left RMO since the first two bits of the AllowingBits (the ValidatingMask says

that we only need to consider the first two bits) match the global footprint of the

tuple.

As another example, consider the RO attached to Eddy 1. Result tuples of

Site 1 can be routed through this RO only when they have been fully processed

both by Site 1 and Site 2, and have not undergone Site 3. Hence we have to

consider all the three bits of a tuple’s global footprint (all the three bits of the

ValidatingMask are turned on). Here, we have three possible scenarios: (a) Site 1

retrieves a local R tuple. In this case, upon retrieval, the R tuple initially has a

global footprint of [0,0,0]. Since the valid bits of the AllowingBits do not match

the global footprint of this tuple, it is prevented from being routed to Site 3 (which

is what we wanted otherwise we will end up with void routing). (b) Site 1 receives

an S tuple from Site 2. Initially, upon arrival, the global footprint of the tuple

would be [0,1,0]. When there is a matching R tuple, the resultant tuple RS will

have a global footprint of [0,1,0] (recall that we OR-ed the global footprints of

joining tuples). Now, the eddy detects that this tuple has been fully processed at

Site 1, so it turns on the first bit of RS’s global footprint making it [1,1,0]. Based

on the ValidatingMask and the AllowingBits, RS can now be routed to Site 3.

(c) Site 1 receives an intermediate result tuple from Site 3. The initial global
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Table 5.1: Storage overhead of the affiliated data structures

Structure Size Expression

Global Footprint #tuples×#sites
8

bytes

AllowingBits #sites×(#RMO+#RO)
8

bytes

ValidatingMask #sites×(#RMO+#RO)
8

bytes

footprint of this tuple would be [0,1,1], which means it has been fully processed

by Site 2 and Site 3 and has not been processed by Site 1. Then, if it matches a

tuple from R the resultant tuple’s global footprint would still be [0,1,1]. Since it

has been fully processed at Site 1, eddy turns on the first bit of its global footprint

resulting in a vector as [1,1,1]. Again, since it cannot match all the three bits

of the RO’s AllowingBits, it is prevented from being routed to Site 3 (to prevent

the redundant routing). In fact, since the global footprint is [1,1,1], that means

the tuple has been fully processed at all sites, and is an answer tuple that can be

output to the user.

Table 5.1 summarizes the storage overhead of the above auxiliary data struc-

tures. In the table, #tuples denotes the number of tuples that have been loaded

into the system and are still under processing. The number of RMO and RO at

every site is at most #sites, which is the number of the processing sites. There-

fore the total number of these operators in all sites, #RMO + #RO, is at most

#sites2. However, as we will see in Section 5.3 tuples should not be transmitted

between some sites. A simple example is Site 1 in Figure 5.2 should not route its

intermediate result tuples to Site 2. Therefore, #RMO + #RO is often less than

#sites2 in practice.

We shall defer the discussion on how these bit vectors are initialized to sec-

tion 5.3 where we present the algorithm to generate the distributed query plan.
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Processing of Intermediate Results

In the centralized processing framework of Eddies and SteMs, the processor does

not store the intermediate join results. For example, in Figure 5.1(a), a possible

routing order for tuples of R after they are inserted into their own SteM is to

probe the SteM of S first and then the intermediate join tuples RS are used to

probe the SteM of T . In this case, the intermediate join tuples RS are not stored

in the processor. When a new tuple of T is received, it has to probe the other two

SteMs to get the final result tuples. Instead, if the intermediate tuples RS were

stored, then the new T tuple only needs to probe the intermediate tuples. The

reasons why centralized Eddies and SteMs do not store the intermediate tuples

are because (a) probing a hash table is a very fast operation and (b) storing the

intermediate tuples may require a lot of memory.

However, in a distributed processing context, there are further considerations.

Not storing the intermediate results from a remote site may incur a high commu-

nication overhead. For example, in Figure 5.2, if we do not store in Site 3 the

intermediate result tuples RS from Site 1, then every new T tuple has to be sent

to Site 1 to probe the two SteMs in Site 1. That is because even if the T tuple

does not match the tuples in the S’s SteM in Site 3, we cannot guarantee that

the T tuple will not match the S and R tuples in Site 1. On the contrary, if we

store the intermediate result tuples RS in Site 3, then we can just use the newly

received T tuple to probe the RS and S tuples that are stored locally. Only those

tuples that join with S need to be transmitted to Site 1 to probe the SteM of R.

Therefore, we choose to store the intermediate result tuples in a processing site.

On the other hand, storing the intermediate results gives rise to another prob-

lem. In our scheme, the processing sites may receive different types of intermediate

tuples. For example, in Figure 5.2, Site 1 receives two types of tuples, one is from



129

Site 2 and another is from Site 3. They are different because those from Site 2 are

only tuples from Relation S while those from Site 3 are results of S ./ T . Hence

there may be more than one “sub-query” running at a single site. For example,

in Figure 5.2, there are actually two joins running at Site 1: R ./ S and R ./ ST ,

where ST is the join results of a portion of stream S and stream T . Similarly,

there are two sub-queries running at Site 3. Actually the number of sub-queries

at one site is related to the number of possible global footprint of tuples routed

through that site. To evaluate a number of sub-queries efficiently, one solution is

to adopt the multi-query processing scheme proposed in CACQ [58]. Applying the

techniques of CACQ in our scenario would result in creating a separate SteM for

each type of intermediate result tuples. Hence each sub-query running at a site

would require different operators, and this would result in overheads to maintain a

lot of query information, which are necessary for queries with different operations.

However, the situation in our scheme is different from that of CACQ, i.e., all these

queries require the same operations, while queries in CACQ may require different

operations!

To avoid the above unnecessary overhead, we adopt another approach. We use

only one SteM for all types of tuples containing data from a particular stream

involved in a join operation. For example, in Figure 5.2, we use only one SteM

for both the intermediate tuples sent from Site 2 and Site 3 and tuples are built

into the SteM using the same fields from the base stream S. In this way, all

sub-queries require tuples to undergo the same operators and hence there is no

need to maintain sub-query completion information and additional tuple routing

information as is done in CACQ [58].
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5.2.2 Scheme for Horizontal Parallelism

When one or some streams are composed by the union of multiple substreams

which are delegated to multiple sites, it is natural to horizontally parallelize the

operations. In this scheme, different sites exploit intra-operator parallelism to

independently perform the same operation on different substreams. In the hori-

zontally parallelization scheme of SwAP, each processing site has its own eddy to

manage the required operators running there. Each eddy has the same number of

operators but operating on different substreams. Complete results can be obtained

by performing a union operation on the output of all the processing sites. The

complete results may be further processed if they are only intermediate results or

output to the user if they are the final answers. Since eddies between the hori-

zontally parallelized sites are running independently to one another and provide

adaptivity of operations running at their own sites, there is no need to introduce

any extra mechanism.

For example, if stream R in our running example is fragmented onto two sites:

Site 1′ and Site 1′′. The execution scheme in SwAP is illustrated in Figure 5.3.

The operators in Site 2 and Site 3 are not changed. The operators of Site 1 in

Figure 5.2 are replicated onto Site 1′ and Site 1′′. Site 1′ and Site1′′ are running in

a horizontally parallelized manner. The two eddies in these two sites are running

independently to each other.

An alert reader may note that now the left RMO of Eddy 2 (in Figure 5.3)

corresponds to two remote sites rather than one remote site. It is reasonable since

the mechanism of RMO in this example is actually used to choose the join order

between (R ./ S) ./ T and (T ./ S) ./ R. Therefore, there is no need for Eddy 2 to

distinguish the two sites: Site 1′ and Site 1′′. Now we have to refine the definition

of RMO/RO and RA under the case of horizontal parallelism. Each RMO/RO
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is connected to all the RA operators of the horizontally parallelized down stream

partner, and vice versa. The RMO-RA (or RO-RA) pair encapsulates the dis-

tribution of operations, the corresponding communications/flow details as well as

the collection of statistics of the remote sites. Hence it separates the distribution

details from the local eddies and operators. This feature eases the development

of our system. Few modifications need to be added into the existing centralized

system. Furthermore, the RMO/RO would send tuples using the partition infor-

mation of the partitioned streams. For example, if R is partitioned based on the

join attribute, then the RMO connected to Site 1′ and Site 1′′ would send a tuple

from S based on its join attribute value to either Site 1′ or Site 1′′ accordingly.

Otherwise the tuple have to be sent to both sites.

5.2.3 Cyclic Queries

We note that the above discussions and examples only focus on acyclic queries. For

cyclic queries, a traditional query optimizer will statically choose a spanning tree

and only create join operations in the spanning tree. The remaining predicates

are enforced by using selection operations. In [66], the author has addressed the

issue of making the choice of spanning trees adaptive in a centralized processing

environment. This is done by adaptively changing the order of tuples routed

through SteMs. In a distributed processing context, if all the join operations

involved in the cycle are to be evaluated at a single site, then the spanning tree

can be adapted as in a centralized processing context. If these join operations are

running across multiple sites, a spanning tree can only be chosen statically under

the current scheme. (Note that we are not arguing against adapting the spanning

trees. In fact, we plan to explore this as our future work.) Hereafter, we focus on

acyclic queries.
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5.3 Query Plan Generation for Multi-Join Queries

In the above discussion, we have assumed that a distributed join plan is available,

and its operations have been set up on the various processing sites. We can also see

that SwAP works on a distributed query plan that is different from a traditional

plan. Since SwAP does not fix the tuple routing order through the processing

sites, we have to find out all the candidate routing orders for the result tuples of

each site and accordingly add the RMO-RA (or RO-RA) operators to transmit

tuples between the sites. In this section, we will present a scheme to generate a

distributed plan that supports both horizontal and vertical parallelism. Given a

query, the plan generation is done by a preparatory phase in SwAP, which involves

three steps. In the first step, the query is parsed into a query parse tree. Then a

join graph [53] (JG), is generated. A JG is essentially an undirected graph where

nodes represent streams and an edge exists between two streams when there is a

join predicate between them. Figure 5.4(a) is an example of a JG. Here, we have

6 streams R1 - R6, and a join predicate exists between R1 and R2, R2 and R4,

and so on.

In the second step, the optimizer selects the processing sites and the degree

of parallelism of the operations. The end result is a distributed extension of

the join graph, called Distributed Join Graph (DJG). Finally, in the last step,

communication operators (i.e, RMO/RO-RA pairs) are added into the DJG to

produce the distributed query plan.

In the following subsections, we first introduce the DJG and its properties,

and present the algorithm to generate the DJG from a JG. Then, we present the

algorithm to incorporate the communication operators into the query plan.
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5.3.1 Distributed Join Graph

In the second step of the preparatory phase, the optimizer first annotates the join

graph (from the first step) to reflect the processing sites and the degree of paral-

lelism of the operations. (Since we do not address operator placement problem in

this chapter, we just use the simple strategy mentioned at the beginning of Section

5.2.) In the annotated join graph, nodes are labeled with the delegation sites of

the corresponding streams, and edges are labeled with the processing sites. Note

that more than one join operation can be assigned to a processing site. Figure

5.4(b) is an example annotated join graph. Superscripts of the stream names are

the locations of the streams. In the figure, we have streams R1 and R3 being

co-located at Site 1, and the join operation between these two streams is also to

be performed at Site 1.

We shall refer to a maximum connected sub-graph in an annotated join graph

as a sub-query if all the edges have the same label (i.e, the operations are to be

performed at a single site). For example, in Figure 5.4(b), the subgraph involving

streams R1 and R3 corresponds to a subquery; similarly, the subgraph involving

streams R1, R2 and R4 also forms a subquery. We note that a sub-query can be

a single node in a join graph, i.e. the sub-query is only a stream access, e.g., R4

in Figure 5.4(b). (For ease of presentation, we assume that each site processes

exactly one sub-query. But in fact, we can treat multiple sub-queries running at

one site separately when setting up the plan, and then run them separately at the

same site.)

The annotated join graph is finally converted to a Distributed Join Graph

(DJG). A DJG is an acyclic directed graph where nodes represent sub-queries and

edges represent cooperation relations between the nodes. Figure 5.4(c) is the DJG

transformed from the annotated join graph 5.4(b). We note that there are two
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Figure 5.4: Example join graph, distributed join graph and the distributed plan.

kinds of nodes in a DJG:

Self-contained Node A node is self-contained when all streams involved in

the sub-query are co-located. The circular nodes in Figure 5.4(c) are self-

contained nodes. In Figure 5.4(b), the sub-query R1 ./ R3 is to be run

at site 1, and R1 and R3 are also located at site 1. So the node for this

sub-query is a self-contained node. Self-contained nodes may be evaluated

in parallel.

Partial Node A node is a partial node if one or more streams involved in the sub-

query are located at other nodes. In Figure 5.4(b), the sub-query involving

streams R1, R2 and R4 contains two join operations (R1 ./ R2 and R2 ./

R4) to be run at site 2, but R1 and R4 are not located at Site 2. So this

sub-query forms a partial node in DJG. Partial nodes can cooperate with

other nodes (could be partial nodes or self-contained nodes) in a pipelined
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manner, which corresponds to vertical parallelism.

A node u has an outgoing edge pointing to a partial node v, if a stream involved

in one or more operations of v is contained in the result of u (either as part of the

joining result with other streams or as the result of filters if any). For example, in

Figure 5.4(c), node 1 has an outgoing edge pointing to node 2, since stream R1 is

contained in the result of node 1 (as part of the joining result with R3) and R1

is involved in the join operation R1 ./ R2 to be executed at node 2. We can see

that the direction of an edge actually indicates the direction of tuple transmission.

We note that we did not address the fragmentation of streams. As stated in

the previous section, when a stream is composed by several substreams delegated

to a few sites, the operations assigned to the delegation sites are parallelized onto

these sites using the mechanism addressed in section 5.2.2. This scenario can be

represented in the DJG by replicating the node which is to be parallelized. For

brevity, we only present the scenario where the whole stream is delegated to a

single site.

Algorithm 5.1 describes the scheme to transform an annotated join graph into

a DJG. The annotated join graph is described by an adjacency list (variable adj),

an edge list (variable edge) and also the labels of the nodes and edges (variable

site). The output DJG is also represented as an adjacency list. The algorithm

first creates an DJG with empty edge set and then initializes the two auxiliary

variables: visitedList and Q (lines 1,2). It then performs a breadth-first traver-

sal through the input annotated join graph AJG to create the DJG (lines 3-19).

In lines 10-11, the operations about the visiting node v are added into the cor-

responding node in the DJG. Lines 12-15 creates the necessary edges incurred

by the visiting node v in the DJG. Line 16 adds v to the visitedList to avoid

subsequent duplicate visits, while line 17 adds it into the FIFO queue Q to further
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Algorithm 5.1: AJG To DJG(AJG): Transforming an Annotated
Join Graph AJG to a Distributed Join Graph

Create a DJG with empty edge set and one self-contained node for1

each processing site;
visitedList⇐ Q⇐ ∅;2

// visitedList: a list of visited nodes; Q is a FIFO queue.

visitedList.add(s); // s is an arbitrary node in AJG.3

Q.enqueue(s);4

add local access operation of s to the node corresponding to site[s] in5

DJG;
while !Q.isEmpty() do6

u⇐ Q.dequeue();7

for each v ∈ adj[u] do8

if v ∈ visitedList then continue;9

add local access operation of v to the node in DJG10

corresponding to site[v];
add join operation u ./ v to the node corresponding to11

site[edge[u, v]] in DJG;
if site[edge[u, v]] 6= site[u] AND site[edge[u, v]] /∈ adj′[site[u]]12

then
adj′[site[u]].add(site[edge[u, v]]);13

// adj’ is the adjacency list of the resulting

DJG.

Change the node of site[edge[u, v]] in DJG to partial node;14

visitedList.add(v);15

Q.enqueue(v);16

return DJG;17

process its adjacent nodes.

Properties of DJG

To generate the final query plan, we need to incorporate the communication oper-

ators. For each edge in the DJG, we should add one RMO(/RO)-RA pair to the

two connected sites. However, this is not enough. For example, in Figure 5.4(c), it

is possible to route the intermediate result tuples of Site 5 to Site 2 first and then

to Site 6. Therefore, even though there is no edge between node 5 and node 2, we
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should add on RMO(/RO)-RA pair to transmit tuples from Site 5 to Site 2. The

final distributed plan is shown in Figure 5.4(d) (the bit vectors are not shown).

In our set up algorithm, we have to consider all the possible routing paths while

leaving out the impossible ones to avoid redundant routing and void routing as

stated in Subsection 5.2.1.

Before we look at the algorithm to incorporate the communication operators

to produce the distributed query plan, let us present several interesting properties

of a DJG that the algorithm is based upon.

Property 5.1 A self-contained node has only outgoing edges.

This is because a self-contained node involves only those operations whose streams

are co-located.

In a DJG, if a partial node v has an incoming edge from another node u, u is

called a parent of v. Moreover, if there is a path from node u to node v, then u is

an ancestor of v and v is a descendant of u. Obviously, self-contained nodes have

no parent or ancestors.

Property 5.2 Descendants of all the self-contained nodes contain all the partial

nodes.

This can be proven by noting that there is at least one parent, say u, for any partial

node. If u is not a self-contained node, then it should have a parent. This process

can be continued until it reaches a self-contained node. That means for each

partial node, there is a path originated from a self-contained node. Property 5.2

means that we can traverse all nodes in the DJG by traversing the descendants of

all self-contained nodes.

Property 5.3 For a partial node, only those tuples that have been routed through

at least one of its parents should be routed to it.
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A partial node u actually joins the intermediate results of its parents and the local

streams if any. So only those tuples that have been routed through one of its

parents can be used in the operations of u. Based on this property, we can make

the following observation:

Observation 5.1 Ancestors of a node u, except its parents, should not route their

intermediate result tuples to u, since these tuples could not have been routed through

any of u’s parents. Symmetrically, a node u should not route its intermediate result

tuples to its ancestors, since they had already processed these tuples.

5.3.2 Incorporating the Communication Operators

Algorithm 5.2: Setup(DJG): Setting up the distributed plan

for each self-contained node s do1

pre[s]⇐ null; // pre: an array of parents2

anc[s]⇐ null; // anc: an array of lists of ancestors3

visitedList⇐ Q⇐ ∅;4

// visitedList: a list of visited nodes; Q is a FIFO

queue.

visitedList.add(s);5

Q.enqueue(s);6

while !Q.isEmpty() do7

u⇐ Q.dequeue();8

for each v ∈ adj[u] do9

pre[v]⇐ u;10

anc[v].addAll(anc[u]);11

/* ancestors of u are also ancestors of v, since u
is v’s parent. */

anc[v].add(u);12

for each t ∈ visitedList do13

if t /∈ anc[v] OR t = u then CreateOutputModule(t, v);14

if t /∈ anc[v] then CreateOutputModule(v, t);15

visitedList.add(v);16

Q.enqueue(v);17
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Algorithm 5.3: CreateOutputModule(u, v): Creating output
operators to transmit tuples from one site to another site

if u already has an output module pointing to v then return;1

if (u already has output modules) then2

for each output module r of u do3

CreateOutputModule(v,the remote node of r);4

CreateOutputModule(the remote node of r, v);5

/* tuples routed from u to v may need to route to

those nodes later and vice versa. */

replace the existing RO module, if any, with an RMO module;6

add an RMO module r to u outputting to v;7

else8

add an RO module r to u outputting to v;9

add an RA module to v to connect with r;10

for the AllowingBits of r, set the bits corresponding to u and pre[v],11

and clear the bit corresponding to v;
create a ValidatingMask for r with the above bits set;12

We are now ready to describe the algorithm to set up the processing plan.

Algorithm 5.2 gives an algorithmic description of how to setup the processing plan

given a DJG. Algorithm 5.3 is a routine used in Algorithm 5.2. For brevity, we

do not address the set up of regular operators (such as LA, SteMs, etc.) in the

algorithm, which are straightforward 3, and only focus on the newly introduced

operators: RMO/RO and RA. The setup algorithm assumes that the input graph

is represented using adjacency list and the variable adj is the adjacent list for the

input DJG. As shown in line 1, the algorithm begins from each self-contained node

to traverse the DJG. Lines 2-3 set the parent and ancestors of the self-contained

node, and based on Property 5.1 they are both null. From line 4 to line 20, it

traverses all of the current self-contained node’s descendants in a breadth-first way.

The completeness of the traversal is based on Property 5.2. The lines from 10 to

12 set the parent and ancestors of node v. Then lines 13-16 create the necessary

3One LA is created to access a local source. One SteM is created in a site for each source’s
attribute that appears in the join predicates to be evaluated in that site.



141

output operators (RO or RMO) between the visited nodes and the current node

v. Due to Observation 5.1, we avoid routing a node’s results to its ancestors and

vice versa. After these processing, line 17 and line 18 end the current iteration by

adding the current node v to the visited list and the FIFO queue Q. Then a new

iteration is started. After applying the algorithm, every node has the necessary

output operators created.

Algorithm 5.3 creates the module pair: RO-RA or RMO-RA to transmit tuples

from site u to site v and creates AllowingBits and the ValidatingMask accordingly.

Most part of the algorithm is self-explanatory, except for lines 3-6. We note that

if a node u already has one or more RO/RMO to transmit tuples to other sites,

then u can choose to transmit its result tuples to those sites first and then to v or

the reverse. Therefore, we need to create the transmission relationship between

these nodes and node v. That is what the code segment lines 3-6 does.

After running the setup algorithm, all the operators would have been created.

In Figure 5.4(d), we illustrate the final query plan for the example query, where

arrows represent the transmission directions for the created transmission operators.

5.4 Experiments

In this section, we describe our experimental setup and present the results of

various experiments conducted to evaluate our proposed SwAP. For horizontal

parallelism, an eddy runs independently in each site. Since this is similar to

running an eddy in a single site context, we only focus on the evaluation of SwAP

for vertical parallelism.

All experiments are performed on four machines, interconnected with a 100M

LAN. Like the running example on vertical parallelism, there are three streams:
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Table 5.2: Configuration of processing sites.

Name CPU Memory Operating System
Site 1 P4 2.4G 512M MS Windows XP Pro.
Site 2 P3 1G 256M MS Windows 2000
Site 3 P4 2.4G 256M MS Windows XP Pro.

R, S and T , delegated to three different sites (machines): Site 1, Site 2 and Site

3 respectively. Queries are submitted on the fourth site. The main configuration

of the three processing sites are listed in Table 5.2. To examine the efficiency of

our mechanism, we measure the response time for processing a number of tuples

from three streams. We set the number of tuples of streams R, S and T as 10000,

100000 and 10000 respectively. All streams have one attribute a and the values in

that attribute are uniformly distributed. By changing the range of this attribute,

we can control the selectivities of the joins. For example, based on the cardinalities

and the value ranges of two streams, we can calculate the average number of tuples

at each value for each stream. Multiplying the product of these two numbers and

the overlapped range, we can get the cardinality of the join result. In all the

experiments, R ./ S and S ./ T are run at Site 1 and Site 3 respectively. We

choose the relatively large cardinality of stream S to better show the effect of the

choice of tuple routing orders. Although the choice of processing sites in this case

may not be optimal, it does not affect the validity of the experiments. Unless

explicitly stated, both joins are implemented as symmetric pipelined hash joins

using SteMs.

We have implemented a prototype of SwAP based on the Java code of Tele-

graph system [64]. There is an instance of the distributed version of the telegraph

server running on each processing site. For the network communication, we used

java.nio package, which provides efficient unblocking I/O API. For the virtual tuple

transmission, we adopt an aggressive approach: once the network allows the trans-
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mission, we will transmit the virtual tuple immediately, otherwise we accumulate

the number needed to transmit.

5.4.1 Learning Static Characteristics

In the first set of experiments, we compare the performance of SwAP with static

plans when all the characteristics are static. The static plans are implemented

by employing a fixed join ordering and employing only the RO-RA pair of opera-

tors, i.e., there is no RMO-RA pair of operators so that no runtime adaptivity is

supported. In this way, by comparing with the static plans we can evaluate the

effectiveness of SwAP as well as the overhead of introducing the Virtual Tuple

mechanism in RMO. In all the experiments of this subsection, the running query

is a three-way join: R ./ S ./ T .

First, we study how well SwAP can learn the selectivities of operations. In this

experiment, we fix the selectivity of S ./ T with respect to S (i.e., |S ./ T |/|S|)

to 100%, and change the selectivity of R ./ S w.r.t. S so that it is 200% in one

version and 20% in the other. The transmission speeds and workloads of the two

processing sites are about the same. Under this scenario, the best static plan in

the first version of the experiment is to evaluate S ./ T before R ./ S, while

the reverse is true for the second case. This is because evaluating R ./ S in the

first case may increase the join size to be further processed to 200%, while it may

reduce the join size to 20% in the other case. Figure 5.5 shows the response time

of the three different schemes for both cases. We can see that the response time

of the SwAP scheme is very close to the best static plan in both cases, while the

worst static plan took much more time to complete. This not only implies that

SwAP is effective, but it also shows that the overhead of SwAP is not significant.

Figure 5.6 shows that nearly 80% of tuples are routed through the optimal order



144

in both cases in SwAP. Figure 5.7 shows the percentage of tuples routed under

back-pressure effect and ticket routing scheme. We can see that when both of

the selectivities w.r.t. S are larger than or equal to 1, nearly 90% of the tuples

are routed under the back-pressure effect. That is because neither operators can

accumulate positive tickets and hence the ticket routing scheme cannot be applied.

The effectiveness of back-pressure effect in this case is due to the fact that sites with

higher selectivities may take more time to finish than sites with lower selectivities

do. On the contrary, when one of the selectivities w.r.t. S is less than 1, then

tuples are mainly routed under the ticket routing scheme.
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In the second experiment, we study how SwAP adapts to the transmission

speeds of the sites. In this experiment, both joins are implemented as index joins

to facilitate the changing of selectivities. First, we fix both selectivities of the

two joins w.r.t. S to 10%. But Site 3 has a slow connection to the other two

processing sites. To simulate the slow transmission speed, output modules take

10 ms to send a tuple to the site with slow connection. Under this situation, the

best static plan is to send tuples of S to Site 1 to perform the join with stream R

first, and then route the resulting tuples to Site 3 to perform the remaining join
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operation. Figure 5.8 is the resulting response time of the three schemes. As the

figure shows, SwAP turns out to outperform the optimal static plan slightly. This

is because even though the transmission speed of Site 3 is slow, Site 3 is lightly

loaded. For the best static plan, at some time, the memory of Site 1 may be filled

with join results that are waiting to be output to Site 3. At this moment Site 1

cannot process more tuples, while Site 3 is idle. SwAP can exploit this idle time

by sending some tuples of S to Site 3. In this way, Site 3 can utilize the idle time

to evaluate the join (S ./ T ) before sending the result tuples to Site 1 to produce

the final answers.
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The above result inspires us to do another experiment to see how well SwAP

can outperform the best static plan when the selectivities of the joins varied.

Figure 5.9 shows the response time of both schemes when the selectivities of both

joins w.r.t. S are varied between 0 to 0.9. We can see that the response time

of both schemes increases linearly while the line for SwAP grows more slowly.

Figure 5.10 shows the change in the percentage of tuples routed through Site 1

first when the selectivities of the joins varied in SwAP. When the selectivities are

0, nearly all the tuples are routed through Site 1 first. This is because operations

in Site 1 can eliminate all tuples to be sent to Site 3 which has a slow transmission
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through site R first

speed. When the selectivities become higher, more and more tuples are routed

through the other way. This is because Site 1 can eliminate fewer tuples when the

selectivities are higher. When the selectivities w.r.t. S approach 1, nearly the same

number of tuples are going in either way. Although tuples going through Site 3

first will be transmitted two times through the slow connection while those going

through Site 1 first only need to be transmitted once through the slow connection,

the completion time of either way is about the same due to the pipelined effect.
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The last experiment in this subsection is to study how well SwAP can learn the

static workloads of processing sites. To simulate the high workload, we created a

thread that ran a spin loop that may cost a lot of CPU cycles. In this experiment,

we make Site 3 the overloaded site. The selectivities of the two joins w.r.t. S are

both 10%. Again, the best static plan is to perform R ./ S first. We can see from

Figure 5.11 that SwAP approaches the optimal static plan.

5.4.2 Adapting to fluctuations

In this set of experiments, we study how well SwAP adapts to the fluctuation of

selectivity, transmission speeds and workloads of servers. The running query is

the same as that used in the previous set of experiments.
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Figure 5.14: Performance of adapting
to fluctuations of workloads of servers

First, we consider the fluctuation of selectivity. For the first 50,000 tuples of

stream S, the selectivity of R ./ S w.r.t. S is 20%, while the selectivity of S ./ T

w.r.t. S is 200%. For the remaining tuples, we toggle the selectivities of the two

joins. As stated in [8], the benefits of an adaptive scheme for changing only the

selectivities of two operators are not very dramatic. But the benefits become larger

if there are more operators and the changing of selectivity becomes more dramatic.
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Figure 5.12 shows the performance of the two static plans compared with SwAP.

As we would hope, SwAP outperforms the two static plans. In this query, for

the first 50,000 tuples of S, the best join order is (R ./ S) ./ T ; however, for

the remaining tuples of S, the best join order becomes (T ./ S) ./ R. Since the

static plans employed only one join order, they are unable to adapt to the change

in selectivities resulting in overall poorer performance. SwAP, on the other hand,

can cope with the change in selectivities to adapt to the best join order during

runtime.

Second, we study how well SwAP adapts to the fluctuation of transmission

speeds of servers. For this experiment, we fix both the selectivities of the two sites

w.r.t. S to be 50%. Initially the connection to Site 3 is slow and the connection

to Site 1 is fast. After 250 seconds, the two sites swap transmission speeds. Here,

output operators take 10 ms to send a tuple over a slow connection. As shown in

Figure 5.13, SwAP is much more efficient than both the static plans for reasons

similar in logic to the earlier experiments, i.e., the static plans only perform best

for a limited time period, while SwAP is optimal most of the time.

A similar experiment is done for studying the adaptivity of SwAP to the work-

load fluctuations of servers. In this experiment, we created five delay threads for

the overloaded site. And the selectivities of the two sites w.r.t. S are fixed at 10%.

Initially Site 3 is overloaded while Site 1 has normal workload. After 70 seconds,

we toggle the workload of the two sites. The results, shown in Figure 5.14, indi-

cate that SwAP is superior over the two static plans. The superiority is attributed

to SwAP’s ability to adapt the tuple routing orders according to the workload

fluctuations in the midst of processing.
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5.5 Summary

In this chapter, we have presented a novel distributed query processing mechanism,

namely SwAP, which can optimize the query operation orders by adaptively learn-

ing the operator selectivities, as well as the transmission speeds and workloads of

processing servers. When these properties changed during runtime, SwAP can also

adapt its behavior accordingly to approach an optimal plan. Moreover, all runtime

decisions are made in a distributed manner. Hence it is scalable. Furthermore,

more routing strategies can be easily incorporated.
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Chapter 6
Dynamic Operator Placement

The previous chapter presents a runtime adaptive operator ordering mechanism

executed over an adaptable distributed query plan. However, such adaptable query

plans would become very complicated once the number of joins as well as the num-

ber of queries increases. Hence, in this chapter, we propose another mechanism to

optimize the performance of the intra-provider layer by dynamically and optimally

placing the operators. This mechanism is more scalable to the number of queries

as well as the complicity of the queries. More specifically we make the following

contributions:

• We formally define the metric Performance Ratio (PR) to measure the rela-

tive performance of each query and the objective for the whole system (informally,

we want to minimize the worst relative performance among all queries).

• By building a new cost model, we identify the heuristics that can be used

to approach the objective. More specifically, the heuristics (1) balance the load

among all the processing nodes; (2) restrict the number of nodes that the operators

of a query can be distributed to; (3) and minimize the total communication cost

under conditions (1) and (2).

• The design objective of a platform independent (independent on the underly-

ing stream processing engines) and non-intrusive load management scheme distin-
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guishes our approach from existing ones ( e.g. [86]). The proposed techniques are

meant to allow the leveraging of exiting well developed single-site stream process-

ing engines without much modifications. This is reflected throughout the design

of the whole system and especially reflected in the load selection strategy.

• To support heuristic (1), we focus on new architectural design that allows

us to tap on existing well studied load balancing algorithms instead of proposing

new ones. The architectural design includes constructing the load migration unit,

load management partner selection, online collection of load statistics, selection of

operators to be migrated, operator migration mechanisms.

• To reduce the overhead of employing heuristic (2), unlike existing propos-

als [32, 82, 86] where load (re)distribution is done at the operator level, we adopt

the notion of query fragments (a subset of operators) as the finest migration unit.

It also helps reduce the overhead of making load balancing decisions.

• To employ heuristic (3), we propose the data flow aware load selection strat-

egy to select the query fragments to be migrated. It effectively maintains data

flow locality so that the communication cost is minimized.

• We conducted an extensive simulation study to evaluate the proposed strat-

egy. Results show that the proposed strategy can effectively adapt to the runtime

changes of the system to approach our objective.

The rest of this chapter is organized as follows. Section 6.1 formulates the

problem and presents our analysis. We present the details of our system design in

Section 6.2. Experiment results are presented in Section 6.3. Finally Section 6.4

summarize the chapter.
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6.1 Problem Formulation and Analysis

In this section, we formulate the problem setting and define the metric to measure

the system performance, followed by a formal presentation of the problem state-

ment. Finally, we analyze the problem by building a new cost model and present

the proposed heuristics.

6.1.1 Problem Formulation

In the system there is a set of geographically distributed data stream sources S =

{s1, s2, · · · , s|S|} and a set of distributed processing nodes N = {n1, n2, · · · , n|N |}

interconnected by a local network. As mentioned in Section 1.1.3, each source

stream is routed to other processing nodes through a delegation node. We de-

note the delegation scheme as Ω. Users impose a set of continuous queries Q =

{q1, q2, · · · , q|Q|} over the system. The set of operations Ok = {o1, o2, · · · , o|Ok|}

of query qk might be distributed to a set of nodes Nk ⊆ N for processing. The

operators we consider include filters, window joins and window aggregations. In

addition, we denote the set of streams that a query qk operates on as Sk.

Like previous work on continuous processing of streams [23, 82], we are con-

cerned about the delay of resulting data items, which is also one of the main

concerns of end users in terms of system performance. More formally, if the eval-

uation of query qk on a source tuple tuplel from stream sl generates one or more

result tuples, then the delay of tuplel for qk is defined as dl
k = tout − tin, where tin

is the time that tuplel arrived at the system and tout is the time that the result

tuple is generated. If there are more than one result tuples, then tout is the time

that the last one is generated. A similar metric was used in [82]. We focus on this

metric because users in a continuous query system typically make decisions based
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on the results arrived so far. Shorter delay of result tuples would enable a user to

make more timely decisions.

At a closer look, dl
k includes the time used in evaluating the query (denoted as

pl
k), the time waiting for processing as well as the time it is transferred over the

network connections. For a specific processing model and a particular query qk,

we regard the evaluation time pl
k as the inherent complexity of qk. Since different

queries may have different inherent complexities, the value of dl
k cannot reflect

correctly the relative performance of different queries. For example, a query may

experience a long delay because its evaluation time is long. We cannot conclude

that the relative performance of this query is worse than another one which has a

shorter evaluation time. However, in a multi-query and multi-user environment,

we wish to tell the relative performance of different queries. Hence we propose a

new metric Performance Ratio (PR) to incorporate the inherent complexity of a

query. Formally, the PRl
k of the processing of tuplel for qk is defined as PRl

k =
dl

k

pl
k
.

And the performance ratio of qk is defined as PRk = maxsl∈Sk
PRl

k. PRk reflects

the relative performance of qk. Our objective is to minimize the worst relative

performance among all the queries.

The formal problem statement is as follows: Given a set of queries Q, a set

of processing nodes N , a set of data stream sources S and a delegation scheme

Ω, according to the change of system state, dynamically distribute the operators

of each query to the |N | processing nodes so that the maximum performance ratio

PRmax = max1≤k≤|Q| PRk is minimized.

6.1.2 Problem Analysis

In this section we develop a cost model to estimate the values of dl
k and pl

k. Note

that our cost model is meant to be simple for us to figure out the main factors that
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Figure 6.1: An example query plan

affect these values and to allow us to analyze the problem complexity. Finding

that the problem is NP-hard, we design some heuristics to help solve the problem.

Cost Model

In our cost model we adopt the following simplifications and assumptions:

1. Operators of each query compose a separate processing tree. They are

grouped into query fragments and distributed to the processing nodes. Figure 6.1

shows an example processing tree for a query whose operators are grouped into

two query fragments and distributed to two nodes: n1 and n2. Tuples arrived at

each node are processed in a FIFO manner. Only when an input tuple1 is fully

processed would a new input tuple be processed. The cost of delivering the final

results to the users is not considered.

2. For an operator oj, we assume its per-tuple evaluation time t′j is independent

of its location. And we define its average per-tuple selectivity selj as the average

number of tuples that would be generated for a given input tuple.

3. Workload ρi of a node ni is defined as the fraction of time that the node is

busy.

Given these assumptions, we now look at how to estimate pl
k and dl

k. In a

particular execution plan of a query, for source tuples from each querying source,

there is a path composed by some operators and possibly some network connec-

1A tuple here could be a batch of individual tuples in a batch processing mode.
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tions. For example, in Figure 6.1, the path for source tuples from s1 consists of

o1, o2, o5 and the connection between n1 and n2, while the path for those from s2

comprises o3, o4 and o5. Hence, roughly speaking, the pl
k and dl

k of a source tuple

are respectively equal to the total processing time of the operators in its path and

the total time that the tuple stays in its path. In the following paragraphs we will

compute them one by one.

For query qk, assume the path for source tuples from sl comprises a set Ol
k

of operators and some network connections. Furthermore, let Ol
k be distributed

to a set N l
k of nodes and Ol

k,i ⊆ Ol
k be the subset of operators of Ol

k assigned to

node ni (where ni ∈ N l
k). Let the average per-tuple evaluation time of operator

olj ∈ Ol
k be t′j and its average per-tuple selectivity be selj. Without loss of

generality, assume olj is processed before olj+1
. Note that only those source tuples

that would be output as result tuple(s) are counted in our metric (hence, each

operator’s selectivity on these particular tuples is at least 1). Assume tuplel from

sl is such a tuple, then the average processing time of olj incurred by tuplel is

tj = t′j
∏j−1

h=1 max(selh, 1). Hence we have

pl
k =

∑
olj

∈Ol
k

tj. (6.1)

In our model every processing node is a queueing system. From queueing

theories [50], in all solvable single task queueing systems, the time that a data item

spends in a system can be calculated as t = g(ρ) ∗ ts, where ts is the processing

time of a data item and g(ρ) ≥ 1 is a monotonically increasing concave function of

the system’s workload ρ. The exact form of g(ρ) depends on the type of system,

e.g. g(ρ) = 1
1−ρ

in an M/M/1 system.
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This inspires us to model the delay of tuplel as

dl
k = (

∑
ni∈N l

k

(f(ρi)×
∑

olj
∈Ol

k,i

tj)) + tc ×m, (6.2)

where tc is the communication delay of a tuple and m is the number of times that a

tuple is transferred over the network. f(ρi) is a monotonically increasing concave

function. Note that f(ρi) is different from g(ρ) mentioned above and may have a

much higher value than g(ρ). That is because there are multiple tasks running on

each node. We assume f(ρi) is identical for all nodes. Hence the first term of the

right-hand side of Equation (6.2) summarizes the delay in the processing nodes

while the second term summarizes the delay caused by the communications.

Based on Equations (6.1.1), (6.1) and (6.2), we have

PRl
k = PPRl

k + CPRl
k, (6.3)

where

PPRl
k =

∑
ni∈N l

k

(f(ρi)×
∑

olj
∈Ol

k,i

tj)∑
olj

∈Ol
k

tj
, (6.4)

and

CPRl
k =

tc ×m∑
olj

∈Ol
k

tj
. (6.5)

We call PPRl
k the processing performance ratio (PPR) and CPRl

k the commu-

nication performance ratio (CPR). Analogously, PPRk = maxsl∈Sk
PPRl

k and

CPRk = maxsl∈Sk
CPRl

k.
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Problem Complexity

Given the cost model, let us examine the complexity of the problem. We can

observe that the total number of possible allocation schemes is |N ||O| where O =⋃
1≤k≤|Q| Ok. Even worse, we can derive that the problem is actually NP-hard. To

see this let us first ignore the communication cost and only consider minimizing

PPRmax = max1≤k≤|Q| PPRk. It is easy to see from Equation (6.4) that PPRl
k is

a weighted sum of the f(ρi) values, where the weight for f(ρi) is the fraction of

evaluation time pl
k allocated to node ni. Assume we can migrate the load between

nodes in the finest granularity. Then we have the following observation.

Observation 6.1 To minimize PPRmax, PPRk is equal for all queries and ρi is

equal for all nodes. �

The intuition behind it is when PPRk of a query qk is higher than the others, we

can always allocate more resources to qk (i.e. reducing the workload of some of the

processing nodes for qk by load migration to the other nodes) so that PPRk is still

the largest but is reduced. When the load is balanced then PPRk equal to f(ρ)

for all queries, where ρ is the uniform workload of all nodes. However, we cannot

migrate the load in the finest granularity in practice and hence the best plan is

to minimize the difference of loads among all the nodes. By restricting our prob-

lem to ignore the communication cost, it is equivalent to a MULTIPROCESSOR

SCHEDULING problem which is NP-hard. Hence our problem is NP-hard.

Heuristics

In view of the complexity of the problem, we opt to designing heuristics instead

of finding an optimal algorithm. From the estimation equation dl
k, we know that

the extra delay is caused by the communication and the workload of the system.
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Hence, we adopt the following heuristics. (1) Dynamically balance the workload

of the processing nodes. This heuristic is inspired by Observation 6.1. (2) Dis-

tribute operators of a query to a restricted number of nodes so that communication

overhead of a query is limited. We call the maximum of this number as the dis-

tribution limit of that query. Note that always distributing all the operators of

every query to a single node is impractical, because it would incur excessive data

flow over the network.(3) Minimize the communication cost under conditions (1)

and (2). In short, we have to design a dynamic load balancing scheme where the

operations of each query should not be distributed to too many nodes and the

total communication traffic is minimized.

Besides employing the heuristics stated above, the scheme should also satisfy

the following objectives in the perspective of system design:

1. It is fast and scalable. Because dynamic re-balancing could happen fre-

quently at runtime, the overhead of making re-balancing decisions should be kept

low. Furthermore, a distributed scheme is preferred to enhance scalability and

avoid bottleneck.

2. It does not rely on any specific processing model. There are different single-

node processing models that are currently under development such as TelegraphCQ [31],

Aurora [22] and STREAM [81]. Our system is not restricted to any processing

model because it separates the stream processing engine in each node from the

distributed processing details. Queries are compiled into logical query plans which

consist of logical operators. The logical operators are distributed to the processing

nodes by our placement scheme. Then the logical operators would be mapped

into physical operators by the stream processing engine for processing. Differ-

ent engines under different processing models could map a logical operator into a

different physical operator.
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6.2 System Design

In our dynamic operator placement scheme, we adopt a local load balancing strat-

egy. Each node would select its load management partners and dynamically bal-

ances the load between its partners. To implement this, there are several issues

to be addressed: (1) initial placement of operators; (2) load management partner

selection; (3) workload information collection; (4) load balance decision-making;

(5) selection of operators for migration; and (6) migration strategy. We address

these issues in the following subsections.

6.2.1 Initial Placement of Operators

In our initial placement scheme, we only consider minimizing the communication

cost and leave the load balancing task to our dynamic scheme. The scheme gen-

erates one query fragment for each participating stream and then distributes the

query fragments to the delegation nodes of their corresponding streams. More

specifically, the scheme comprises the following steps:

1. When a query is submitted to the system, it is compiled and optimized into

a logical query plan without considering the distribution of the data streams. The

logical query plan, which is represented as a traditional query plan tree, determines

the required logical operators such as filters, joins, aggregation operators and their

processing orders. Existing optimization techniques [83, 9] can be applied at this

step. Figure 6.2(a) is an example of the resulting query tree of this step.

2. For each stream involved in the query, generate one query fragment which

is initially set to empty. Add each leaf node (i.e. the stream access operators) to

its corresponding query fragment QFi and then replace it with QFi.

3. For each query fragment, if the parent operator is a unary operator, the
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operator would be added to the query fragment and removed from the query tree.

The step is repeated until all the operators are removed or the parent operator

for every query fragment is a binary operator. Figure 6.2(b) is an example of the

resulting query tree of this step. The intuition is to place each stream’s filters at

its delegation node to reduce the amount of data to be transferred.

4. Now we have a query tree in which all the next-to-leaf nodes are binary

operators. Add each next-to-leaf binary operator to one of its two child query

fragments, say QFi, whose estimated resulting stream rate is higher than the

other one. Then remove the other query fragment from the tree and push QFi

up a level to replace that binary operator. A binary operator is added to the

query fragment of higher (estimated) resulting stream rate to reduce the volume

of data that needs to be transmitted through the network if the two fragments of

the two involved streams are to be evaluated at two different nodes. This process

continues until all operators are removed or the parents of one or more of the

remaining query fragments are unary operators. For the latter case, the algorithm

goes back to step (3). Figures 6.2(c) and (d) illustrate the procedure of this step.

5. Distribute the query fragments to the delegation nodes of their correspond-

ing streams.

Based on the operator ordering, there is a downstream and upstream relation-

ship between some of the query fragments. For example, in Figure 6.2, results of

QF2 should be further processed by the binary operator of QF1 and hence we call

QF2 the upstream query fragment of QF1. Similarly, QF1 is the upstream query

fragment of QF4. Symmetrically, we call QF1 (or QF4) the downstream query

fragment of QF2 (or QF1). We call a query fragment’s downstream or upstream

query fragments its neighbors. For instance, QF2 and QF4 are neighbors of QF1.

Furthermore, if a query fragment QFi’s corresponding data stream is delegated to
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Figure 6.2: Query Fragments Generation

Algorithm 6.1: Partner Selection

Function PartnerSelect()1

begin2

sort neighbors in descending order of neighboring factor;3

for (i← 0; |g1| < max1 AND i <|neighbors|+ MaximumTry; i++) do4

if i < |neighbors| then n← neighbors[i];5

else n← a random node /∈ neighbors ∪ g1;6

if n ∈ g2 then7

move it from g2 to g1;8

else if n /∈ g1 then9

send a request to n;10

if the request is accepted then11

add n to g1;12

end13

a node nj then QFi is called a native query fragment of nj and nj is a native node

of QFi. Otherwise, QFi is called a foreign query fragment of nj and nj is a foreign

node of QFi.

Furthermore, the native nodes of two neighboring query fragments are called

neighbors to each other. And the number of neighboring query fragments between

two nodes is called the neighboring factor.
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6.2.2 Partner Selection Strategy

As stated above, our dynamic load balancing scheme is a local strategy. Each

node ni has a number of load management partners (abbreviated as partners).

The partner relationship is symmetric, i.e. if ni is a partner of nj, then nj is also

a partner of ni. In this section, we discuss the partner selection strategy for each

node.

In our scheme, each node sends out requests to some other nodes to initiate

the partner relationships and receives such requests from its peers. We separate

the partners of each node into two groups : (1) g1, the relationship is created by

the (explicit) request of this node; (2) g2, the rest. There is a maximum bound for

each group of partners denoted as max1 and max2 respectively. Each node would

use Algorithm 6.1 to send out requests. Neighbors with higher neighboring factors

with the current node have higher priority to be selected. That is to enhance the

opportunity of reducing communication cost during load redistribution, which is

can easily be seen in Section 6.2.5. Algorithm 6.1 is implemented in asynchronous

mode in our system. It does not wait for a remote response but instead returns

once all requests have been sent out. After a node receives a response message, the

algorithm is called to resume the processing. Furthermore, a node ni which receives

a request will check whether the sender nj is also being requested by ni or is already

in g1. If so, ni accepts the request and adds nj into g1 if necessary. Otherwise it

adds nj into g2 if |g2| < max2 or sends back a reject message otherwise. A node

will update its partners periodically.

6.2.3 Information Collection Strategy

The information collection strategy determines when and how workload informa-

tion of nodes in the system is collected and also what information is to be collected.
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We adopt a window based and asynchronous workload collection approach.

Time is divided into windows which have static lengths τ . Each node accumulates

the total processing time t of all its physical operators within each window and

the workload with respect to a window is computed by dividing t by τ . Each node

asynchronously collects its workload within each window and updates its workload

once the current time window elapsed. It broadcasts the workload information to

all its partners if its workload increases to κ or decreases to 1/κ times of the last

broadcast value.

The above strategy performs well only if the input rate and the processing time

are constants. But in practice they are random variables. The resulting workload

may fluctuate over time, which renders the system unstable. As stated before,

we only focus on adaptation to long term system changes which would bring long

term benefits and alleviate the short term adaptation overhead. To prevent the

system from reacting to short term fluctuations, we use a low pass filter to remove

the high frequency noises (caused by the short term changes of stream rates, tuple

processing time, etc.) in workload collection. In particular, workload is computed

as ρi+1 = α×ρi+(1−α)×ρc, where ρi+1 and ρi are the workload information used

for load balancing after i+1 and i time windows, and ρc is the collected workload

within the (i+1)th time window. α is a parameter to determine the responsiveness

of the estimated value to the workload changes. The purpose of using this formula

in previous work is to give more weight to recent collected statistics. Here we

analytically show that it can also smooth out short term fluctuations.

Figure 6.3 shows the effect of low pass filter in the estimation of workload of an

M/M/1 machine. The average input rate of data is 10 tuples/ms before the fifth

second and becomes 14 tuples/ms after the fifth second. The average processing

time is 1ms/tuple. The workload collection window is set to 10ms and α = 0.9.
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Figure 6.3: Effect of low pass filter

As shown in the figure, workload estimation without using the low pass filter is

more fluctuant than the one with low pass filter.

We now consider how α would be set in a system. Without loss of generality, we

assume the workload is increasing. Given the initial workload ρ0 and that we want

to filter out transient workload fluctuation where the workload is changed to lρ0

(l > 1) within m1τ time and last for m2τ time, we should choose α such that the

estimated workload after (m1 +m2)τ time ρm1+m2 should satisfy ρm1+m2 ≤ κρ0. In

practice, the values of m1, m2 and l reflect the typical range and time span of short

term fluctuations. They can be adaptively tuned by collecting the characteristics

of the system. In our calculation, we assume the workload increases (l − 1)ρ0/m1

within each τ time during the m1τ period. After the m1τ time, the estimated

workload is

ρm1 = ρ0 +

m1∑
i=1

(αm1−i(1− α)
(l − 1)ρ0

m1

i)

= ρ0 + (1− α)αm1
(l − 1)ρ0

m1

m1∑
i=1

i(
1

α
)i

= ρ0 +
(l − 1)ρ0

m1

(m1 + 1 +
αm1+1 − 1

1− α
)
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The last step in the derivation is based on the fact:

m1∑
i=1

ixi =
x + (m1x−m1 − 1)xm1+1

(1− x)2
.

Then after m2τ time, the estimated workload ρm1+m2 can be calculated as:

αm2ρ0 +
αm2(l − 1)ρ0

m1

(m1 + 1 +
αm1+1 − 1

1− α
) + (1− αm2)lρ0.

Substitute the above equation into the inequality ρm1+m2 ≤ κρ0, we have

αm2 +
αm2(l − 1)

m1

(m1 + 1 +
αm1+1 − 1

1− α
) + (1− αm2)l ≤ κ.

Hence we can calculate the lower bound of α by solving the above inequality given

the values of m1, m2 and l. For example, given m1 = m2 = 1, l = 2 and κ = 1.2,

we can get α ≥ 0.9. The case for short term workload decrease can be analyzed

similarly.

On the other hand, if α is too high, the estimated workload may not be able

to reflect the current workload, hence the system would response too slowly to the

workload changes. To show this effect, we do the following calculations. Assume

that the workload is changed from ρ0 to lρ0 and then remain steady. Further

assume that the change happens within 0 time. Then similar to the above calcu-

lation, we have the estimated workload after mτ time as

ρm = αm × ρ0 + (1− αm)× l × ρ0.

If we want the estimated workload to reflect k percent of the actual workload, we
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have to solve the inequality ρm ≥ k × l × ρ0, which results in

m ≥
ln (k−1)l

1−l

ln α
.

Let l = 2, k = 1 − (1/2e) = 0.92. m ≥ 10 for α = 0.9, and m ≥ 20 for α = 0.95.

While the optimal value of α depends on the specific situation, in this chapter, we

fix it at 0.9 which is shown to be efficient under our experimental configuration in

the performance study.

6.2.4 Load Balance Decision Strategy

Algorithm 6.2: Generate Load Requests

Function GenRequest()1

begin2

Compute the average workload ρ within itself and its partners;3

if the local workload κρl < ρ then4

Find the partner ni whose workload ρi is the largest;5

Compute the load request ρr = (ρi − ρl)/2;6

Request ρr amount of workload from ni;7

end8

The load balance decision strategy determines whether it is beneficial to initiate

a load balance attempt and how much workload should be transmitted between

the nodes. Our strategy is adapted from the local diffusive load balancing strategy

introduced in [84]. It is a receiver-initiated strategy, which is found to be more

efficient in [84]. It works in rounds. The length of each round is denoted as ∆.

Each node maintains its own value of ∆. At the start of each round, Algorithm 6.2

is run to generate one workload request if necessary. In this algorithm, the load

request is generated by the potential load receiver (i.e., the node with smaller load

initiates load balancing). Since we focus on continuous queries, load migration can

bring long term benefits. As such our decision strategy does not consider the short
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term migration overhead. Once a node receives a workload request, it satisfies the

request as much as possible, provided the workload to send out within each ∆

time window is no more than half of its total workload at the beginning of the

current window.

It is possible that the nodes in the system are separated into several non-

overlapping groups and the workloads are not balanced between groups. Hence

once a node in our system detects that itself and all of its partners are overloaded,

it will randomly probe the other nodes until it finds an underloaded node to add

it as a partner or the probe limit is reached.

6.2.5 Load Selection Strategy

As stated above, once a potential load sender receives a load request, it will select

the victim query operators to satisfy the request as far as possible. When multiple

such requests are received, the sender processes them in descending order of the

workload amount requested. The sender will estimate its resulting workload after

each migration, and if it detects that half of the workload has been exported within

the current ∆ interval, it will stop processing any request until the start of the

next round. In this subsection, we explore how to select the victim operators for

migration and discuss how to migrate them in the next subsection.

Migration Unit.

The first question to be answered is what is the smallest task unit used for load

migration. We consider the following choices:

1. Using the whole logical query as the migration unit is easy to implement.

However, a good evaluation plan often distributes the operations across multiple

nodes in order to minimize the communication overheads. So migrating in the
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unit of logical query is inappropriate.

2. Logical operator as another candidate is a fine-grained unit. Migrating at

this level may result in better balance state. However, it is hard to implement our

second heuristic which imposes a distribution limit on the query operators (see

Section 6.1.2). When we are trying to move an operator, we have to know the

location of the other operators belonging to the same query. Otherwise, we do not

know if the distribution limit is violated. This results in high update overhead

and is not compatible to our local strategy as a node cannot make decisions based

on local information.

3. Another candidate physical operator that is proposed in previous work [32,

82, 86], has similar pros and cons. Furthermore, as stated above, physical operators

may be shared by multiple queries [58]. Hence migrating a physical operator affects

all the queries sharing that operator. It becomes harder to maintain good plans for

all the queries sharing that operator. Another shortcoming is that the underlying

stream processing engines need to be tightly coupled with the load balancing

strategy. That means excessive complexity has to be introduced into the existing

stream processing engines.

4. Query fragments. Based on the above analysis, a good candidate for mi-

gration unit should render the maintenance of good query plans easy and allow

the separation of load balancing strategy from the underlying stream processing

engine and hence introduce less complexity to the existing processing techniques.

Furthermore, this unit should not be too coarse to restrict the adaptive ability of

the load management module. For the above purposes, we would like to find a

subset of operators that is of appropriate size and would be processed in the same

site in most cases for a good query plan. Furthermore, we consider only candidates

in the logical level. We adopt the notion of query fragment - a subset of logical
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operators of a query. We set the number of query fragments of a query as its

distribution limit. This exempts the task of keeping track of the distribution of all

the operators of a query while we are implementing heuristic (2). The distribution

limit would always be met no matter where we allocate the query fragments.

While a query can be fragmented in a lot of ways, we simply use the query frag-

ments generated in our initial placement scheme as the migration units. Operators

in each of such query fragments would be allocated to the same processing node

in a good query plan generated by applying traditional optimization heuristics.

Furthermore, by doing so, the distribution limit of a query is set to the number

of streams involved by the query. Here, we assume that queries involving more

streams are more complicated and hence can afford a higher distribution limit.

Note that migrating logical level query operators/fragments may sometimes

create more physical operators than migrating physical operators. E.g., we might

have to create an additional physical operator when we migrate a logical operator

that shares a physical operator with another non-migrated logical operator. How-

ever, this is the price we have to pay for a platform independent and non-intrusive

load management scheme.

Data Flow Aware Load Selection.

The choice of query fragments to be migrated is critical in maintaining data flow

locality. A poor choice may cause streams to be scattered across too many nodes

and result in network congestion. In this subsection, we propose a lightweight

query fragment selection strategy which makes decisions only based on local in-

formation.

In our strategy, for each request, the sender chooses the query fragments in the

following order until the request is satisfied or half of the workload of this node
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has been exported within the current ∆ interval.

1. Query fragments that are foreign to the sender but native to the receiver.

This kind of query fragments is considered to be of highest priority to migrate

because migrating them has the potential to reduce the data flow.

2. Other query fragments that are foreign to the sender.

3. Query fragments that are native to the sender. This kind of query fragments

is considered of lowest priority for migration because migrating them tends to

scatter the streams delegated to this node.

The above heuristics are reasonable in maintaining data flow locality. However,

its categorization is too coarse. The migrations of the query fragments within each

category may still have different effects on the data flow locality and the delay of

the queries. For example, migrating a query fragment QFi to a node that is

evaluating a neighbor of QFi may bring less increase of data flow than migrating

it to other nodes. This is because it avoids the transfer of the data flow between

QFi and its neighbor. Hence, within each of the above categories, we further

classify the query fragments into one of the following categories and we list them

in the order of descending migration priorities.

1. Query fragments that have neighbors being evaluated at the receiver but none

at the sender. The migration of this class of query fragments eliminates the trans-

mission of the data flow between the sender and the receiver caused by the migrated

query fragment. Figure 6.4(a) shows a possible situation in this case. The situa-

tions before and after migration are plotted on the left and the right respectively.

Solid arrows in the figure indicate the data flows between the query fragments.

For brevity, the other query fragments being evaluated in the two nodes are not

shown. In this example QF1 is a neighbor of QF2. ni is the sender while nj is the

receiver. After migration, the data flow introduced by QF1 and QF2 between ni
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Figure 6.4: Query fragments migration cases

and nj is eliminated.

2. Query fragments that have neighbors at both nodes. This class of query

fragments has lower migration priority than the above-mentioned one because the

migration eliminates one data flow but also creates another one between the sender

and the receiver. For example, in Figure 6.4(b), the transmission of the data flow

introduced by QF2 and QF3 is eliminated while the one incurred by QF1 and QF2

is created by the migration.

3. Query fragments have neighbors at neither node. Figure 6.4(c) is an example

situation.

4. Query fragments that have neighbors at the sender but none at the receiver.

This class has lower priority than the third one because the migration may intro-

duce extra data flow between the sender and the receiver. An example of this case

can be found in Figure 6.4(d). The migration in this example creates the data

flow between ni and nj caused by QF1 and QF2.

If there is more than one query fragment in the above subcategories, we will

compute the migration priority for each of them and will migrate those with

higher priorities first. The migration priority of a query fragment is computed

as ρ
max(size,1)

, where ρ is the workload it incurs, and size is its state size in bytes.
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We call this value the load density of the query fragment as it means the amount

of workload will be migrated for each byte of state transmission. Furthermore, ρ

is estimated by summing up the estimated workload incurred by each of its logical

operator, which is estimated as 1/n of the workload caused by its correspond-

ing physical operator. n is the number of logical operators sharing that physical

operator.

6.2.6 Migration Strategy

After the sender had chosen the query fragments for migration, it would per-

form the migration operation in the following steps. First, it redirects the input

stream(s) of the migrating query fragments to the receiver. After the stream pro-

cessing engine has drained the data currently in the system for the migrating query

fragments, the query fragments are removed and their intermediate state informa-

tion (such as joins, aggregations), if any, are extracted from the stream processing

engine. Then the query fragments and their state information are shipped to the

receiver. The receiver will add the query fragments and install their state infor-

mation into the stream processing engine. Here we assume the stream processing

engine has a data buffer strategy under which a query can specify when to start or

resume the evaluation [12, 31]. Furthermore, we assume there is a unique times-

tamp associated with each tuple from each stream. The sender records with the

shipped query fragments the timestamp(s) of the last processed tuple(s) so that

the receiver node will resume the query fragments at that point of time.
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6.3 A Performance Study

Our experiments are performed on a Linux server with Intel Xeon 2.8GHz CPU

and 2.5GB RAM. The stream processing engine in each node is an emulation of

the TelegraphCQ system and implemented based on the Java code of the Tele-

graphCQ system, where joins are evaluated using SteM operators while filters

are implemented using group filters to share computations between queries. We

choose the TelegraphCQ system model because it is able to add or remove queries

efficiently at very frequent moments (the moment that a tuple is fully processed).

Following existing work [74, 86], we use a simulator to simulate the communica-

tion among the processing nodes. The simulator is implemented in JAVA using

the JavaSim discrete event simulation package. We use 32 simulation nodes and an

additional sink node as our basic configuration. Each processing node is delegated

3 streams. Tuples from every stream are of 100 bytes and consist of 10 attributes.

The bandwidth of the network connecting the nodes is modeled as 100Mbps.

We use 500 queries and a total of 5750 logical operators, to measure our system

performance. Each query qk is generated in the following steps: (1) randomly

choose the number of querying streams |Sk| ; (2) pick the set of querying streams

Sk conforming to a particular distribution which will be stated in the following

experiments; (3) create 4 filters on 4 randomly chosen attributes for each querying

streams; (4) create |Sk| − 1 equi-joins and ensure that each stream is involved in

at least one join. The sliding window size for window joins is randomly selected

from 5000 to 20000. The selectivities of the operators are from 0.5 to 0.8. We set

the average data inter-arrival time to be 4ms and the mean processing time for

each filter and join operation to be 20µs and 80µs respectively. Besides, we use

the following algorithm parameters: the workload collection window τ = 100ms,

the length of load management round ∆ = 1s, and the threshold to broadcast
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workload κ = 1.2. The real values of pl
k and dl

k were collected online and the PRk

values were computed by the sink node when it received a result tuple. In all the

computations, we do not consider the cost of transmitting results to the sink node

and the cost of transmitting data streams from their sources to their delegation

nodes. That is because these costs are fixed given a fixed problem setting and are

irrelevant to our scheme.

6.3.1 Partner Selections

We have two parameters for our partner selection strategy: max1 and max2. In

this experiment, we set max2 = d1
2
max1e and vary the value of max1. The system

is initially in an unbalance state generated by using a zipfian distribution (θ = 0.95)

to select the querying streams Sk for all queries. We use the standard deviation

(STDEV) of the ρi for all processing nodes to measure the load imbalance, i.e.√P
i(ρi−ρ)2

|N |−1
. Figure 6.5(a) shows the final load distribution for different values of

max1. max1 = 0 means that dynamic load balancing is disabled. We can see when

max1 >= 4 the load is well balanced. No significant improvement can be made by

using a larger max1 value. Figure 6.5(b) illustrates the PRmax after the system is

stable. It is computed by averaging on the values within 10 seconds. It is clear that

the PRmax values are also similar when max1 >= 4. Figure 6.5(c) shows the time

it takes to converge to the final load distribution. There is not much difference

between small and large number of partners. The above comparisons show that

our system works well with a small max1 value. As a larger number of partners

would increase the runtime cost (such as transferring workload update messages,

making load balancing decisions), we could keep the number to a small value and

hence keep the cost low. In the subsequent experiments, we set max1 = 5 and

max2 = d1
2
max1e.
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6.3.2 Load Selection Heuristics
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Figure 6.6: QF-based vs. OP-based

The first experiment examines the necessity of imposing a distribution limit.

This is done by comparing the QF-based (query fragment based) load balancing

strategy with the OP-based (operator based) strategy proposed by reference [86].

The latter approach does not impose any distribution limit. To generate an im-

balanced workload, the streams that a query operates on are chosen according to

a Zipfian distribution (θ = 0.95). Initially the query fragments are distributed

using the static allocation scheme. Then the system would detect the imbalance

and hence initiate load balance actions. We varied the number of operators per

query fragment in our experiment. We ran the experiment under each case for 60

seconds simulation time and report the average values.

Figure 6.6 presents the result. We can see that when the number of operators

in each query fragment is fewer or equal to 2, both PRmax are nearly identical.

However, when the number reaches 3, the PRmax of the OP-based scheme increases

to a very high value. Figure 6.6(b) may be able to explain this phenomenon. The

data transfer volume of the OP-based scheme increases quickly with more opera-
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tors. That is because operators of a single query are migrated to too many sites in

the OP-based scheme and hence the data streams are scattered over the network

and leads to network congestion. On the other hand, the QF-based strategy still

maintains small transfer overhead and hence it still performs well in data delay.

Note that, by employing a distribution limit, an OP-based strategy can achieve

better performance. However, as analyzed before, the cost to maintain such a

limit would be higher than a QF strategy and such a scheme does not fit into a

local load management strategy.
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Figure 6.7: On load selection strategies

The second experiment examines the effectiveness of our flow-aware load se-

lection strategy in maintaining good data flow locality. We impose an initially

balanced load distribution over the processing nodes and use a uniform distribu-

tion to choose the querying streams Sk for every query qk. At time t = 20s we

randomly select 4 nodes and then increase the input rates of the streams delegated

to those nodes to 3 times of their initial values. At t = 50s, the increased input

rates drop back to their initial values.

To show the effect of load selection strategy, we design another two approaches
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for comparison: (1) Elementary: the query fragments are selected in descending

order of their load density. (2) Intermediate: the same as Elementary except for-

eign query fragments are given higher migration priorities than the native query

fragments. In previous work, such as [74, 86], data flow relationship is not con-

sidered. Hence their effects on the communication cost can be well represented

by the Elementary algorithm. We compare the transfer overhead introduced by

the three strategies against the static query fragment allocation strategy, i.e. the

initial placement scheme. The static strategy allocates the query fragments to

their native nodes, hence its data flow transfer cost is minimum though it may

incur very high data delay due to the unbalanced load allocation. We subtract the

amount of transfer cost of the static strategy from those of the other three and

then compare the extra transfer overheads of the three dynamic strategies over

the static one.

From figure 6.7(a), we can see that the data flow aware strategy outperforms

the other two at all stages of the experiment. Both Intermediate and Elementary ,

unlike the data flow aware strategy, fail to identify the neighborhood relationship

of the query fragments. Intermediate is better than Elementary because it can

differentiate between foreign query fragments and native query fragments and to

some degree can help maintain data flow locality. At t = 50s when the perturbed

stream rates dropped back to the original value, all three strategies’ transfer over-

heads are reduced. However, both Intermediate and Elementary cannot restore

back to the state prior to the change. This is because both strategies are unable to

identify their native nodes when migrating foreign query fragments. That means

they would become worse and worse with the evolution of the system state while

the data flow aware strategy is able to maintain a more stable state over time.

Figure 6.7(b) shows the PRmax for all the four strategies. The values are calcu-
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lated by averaging over the whole simulation time. The static strategy performed

the worst simply because of the absence of load balancing strategy. Furthermore,

the three dynamic strategies performed similarly. This is attributed to our heuris-

tic to maintain a distribution limit for every query. Since processing load are

similar for the three dynamic strategies due to the balanced load distribution,

PRmax was similar for the three strategies. However, in the case when network

traffic is so high that it approaches the bandwidth limit, the data flow aware

strategy will do much better to avoid network congestion situation.

6.3.3 Adapting to Changes of System State
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Figure 6.8: Small perturbation on stream rates

In this subsection we examine the system performance when the system state

changes. A good system should be able to quickly adapt to changes and then re-

mains steady. For the first experiment, we examine the stability of our mechanism

under changes of workload. The settings are similar as the previous experiment.

Figure 6.8 shows the result of this experiment. As shown in Figure 6.8(a), the

PRmax values for both static and dynamic strategies are identical before the per-
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turbation of stream rates. At time t = 10s, the input rates of the streams of a

random node were increased and hence rendered some nodes’ workload increased.

The query fragments running on the perturbed nodes suffer long delay, hence the

PRmax in the static case increased significantly. However users in the dynamic

case nearly have no sense of the changes in PRmax, except a temporary increase

during the load migration period. The temporary increase is due to the stalled

processing of the migrated query fragments. This good performance can be at-

tributed to the load balancing strategy’s ability to amortize the workload of the

processing nodes. At t = 40s the stream rates dropped back to the original value

and the PRmax of the static case is restored back to the state prior to the change.

Now both the static and dynamic schemes behave identically again.
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Figure 6.9: Large perturbation on stream rates

Figure 6.8(b) also shows the number of query fragments migrated over time. At

t = 10s, the dynamic strategy detected the load imbalance and began to migrate

the query fragments in order to balance the load distribution. A lot of query

fragment migrations occurred within 5 seconds. After that the system became

stable and few migrations occurred until t = 40s. Some migrations occurred again
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within 5-6 seconds and then the system became stable again. We also conducted

another experiment on perturbing the stream rates from 4 nodes. As shown in

Figure 6.9. The results suggest similar conclusions.
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Figure 6.10: On change of workloads

The second experiment shows how the system behaves with external turbulence

introduced by ad-hoc queries, which only last for a short time. However, in a multi-

user environment, we can expect such ad-hoc queries follow some access patterns

over certain period. Once that pattern changes, the system should re-distribute the

workload to achieve new balance. The configuration of this experiment is similar

to the previous one, except extra workloads of ad-hoc queries are introduced at the

15th second instead of the change in stream rates. The workload of a perturbed

node is about 0.9. We varied the number of perturbed nodes and ran each case for

60 seconds, then calculated the average PRmax values over the whole period. For

ease of comparison, we normalized the figures by dividing them by the one without

perturbation (whose absolute value can be found from Figure 6.8). From Figure

6.10, we can see that the static case degrades much faster than the dynamic one.

This is because the load balancing algorithm amortizes the workload by migrating

query fragments and hence alleviates the influence of the workload imbalance
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introduced by ad-hoc queries.

6.3.4 Sensitivity to α
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Figure 6.11: Sensitivity to α

In this section, we examine the sensitivity of our load balancing strategy to the

value of α, the parameter of the low pass filter. We conducted two experiments.

In one experiment we did not impose any change in the system, while in the other

one we increase the external workloads of 8 nodes similar to the experiment in the

previous subsection. Figure 6.11(a) illustrates the change of PRmax over simulation

time under three values of α. It is clear when α is too low, the PRmax becomes

very fluctuant. A larger α can alleviate this problem by filtering out the high

frequency components (i.e. the short term changes). In the second experiment

we impose external workloads to 8 nodes at t = 15s. To ease viewing, Figure

6.11(b) only presents the portion when the workload varies. After t = 15s, all

three cases started to react to the change and hence the PRmax is increased due

to the temporary stalling of the query fragments being migrated. But the larger

the value of α, the longer the system takes to react to the change. These two
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experiments suggest a trade-off in selecting a proper α value. We leave this issue

for our future work.

6.4 Summary

Distributed processing of continuous queries over data streams suffers from run

time changes of system resource availability and data characteristics. Dynamic

operator placement techniques are desirable for a locally distributed stream pro-

cessing system. In this chapter, we formalized the problem and analyzed it by

building a cost model. We also proposed a load management architecture, which

dynamically balances the workload of the locally distributed processors and main-

tain good data flow locality. As shown in our experiments, load imbalance can

cause severe performance degradation and our techniques can alleviate such degra-

dation by dynamic load balancing. Our data flow aware load selection strategy

can help restrict the scattering of data flows and lead to lower communication

cost.
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Chapter 7
Conclusion

In this thesis, we presented several mechanisms that enhance the scalability and

adaptability of a large-scale distributed stream processing system. To conclude,

we first review the contributions we have made and then propose a few interesting

problems for future work.

7.1 Review of Contributions

We began our journey at Chapter 1 by observing that a lot of stream processing

applications need to process a large number of complex continuous queries and

hence building a scalable and adaptable distributed stream processing system is

critical for them. Then we investigated a large-scale system that is composed of

a number of autonomous service providers and proposed a two layer architecture

to integrate the power of all these service providers.

We observed a few challenges in the two layers respectively. In the inter-

provider layer, due to the autonomous and widely distribution of the SPs, loosely

coupling and communication efficiency should be stressed in the architecture de-

sign. Two overlays were built in this layer to handle the query streams and the

data streams respectively.
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At the query overlay, we first addressed how to manage the queries to leverage

the power of the data overlay to efficiently disseminate both the source data and

the result data around the network. Then we studied the problem of distributing

the queries among the SPs to achieve load balancing and minimum communica-

tion cost. The query distribution problem was modeled as a graph partitioning

problem. To enhance the scalability, hierarchical algorithms were proposed to

distribute the initial query workload, to route the incoming new queries and re-

distribute the queries in according to the change of the system.

The data overlay employed a content-based network to disseminate the data

throughout the whole network. The SPs were organized into multiple dissemi-

nation trees to avoid communication bottlenecks at the sources and to break the

coupling between the sources and the destinations. Furthermore, common com-

munication of different destinations was naturally shared in such an architecture.

Here an optimization algorithm is required to construct optimal dissemination

trees. Hence we proposed an adaptive algorithm and two static algorithms to

solve this problem. The adaptive algorithm was shown to be robust the inaccurate

statistics and runtime change of system parameters, while the static algorithms

worked close to the optimum by given accurate apriori statistics.

After investigating the inter-provider layer, we then concentrated on the intra-

provider layer. An SP could employ a cluster of locally distributed processors to

enhance its scalability. Queries allocated to an SP could be divided into multiple

fragments and evaluated in parallel at multiple processors. We proposed two

mechanisms to harness these processors. The first mechanism deployed multiple

eddy [8] operators at multiple processors to adaptively optimize the ordering of

the distributed operators. As shown in this thesis, such an mechanism can quickly

detect the changes of operator selectivities, transmission speed as well as processor



186

workload and adapt the query plan accordingly.

On the other hand, the second mechanism proposed in the intra-provider layer

enabled the dynamic placement of query operators among the processors. After

formally analyzing the problem, we identified several heuristics to achieve the

optimization objective. To implement these heuristics, queries were partitioned

into multiple query fragments and a local algorithm was proposed to dynamically

(re)distribute them to the processors. A low pass filter was applied on the collected

statistics to filter out short term variances hence our decisions can be made on long

term changes. Furthermore, the proposed data flow aware load selection strategy

was shown to be effective in maintaining data flow locality and hence help avoid

network congestion.

7.2 Future Work

Based on the proposed architecture, we believe we have only studied a small por-

tion of the problem. There are a few interesting future directions to be explored.

Sharing of computation resources. In the current scheme of the inter-

provider layer, we only considered the sharing of communications. As the widely

distributed SPs would be running queries with similar operations, exploiting the

sharing of computation resources among these queries is beneficial. This is a very

hard problem. First, we need a mechanism to efficiently discovery the similarities

among the widely distributed queries. Second, an algorithm is required to generate

a processing plan that maximizes the sharing of computation resources but does

not impair the communication efficiency. Last but not the least, these algorithms

should be scalable and adaptable.

QoS management. In such a service oriented system, QoS management is an
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important issue. It is desirable to allow the users to specify their QoS preferences.

Example QoS parameters are: delay and accuracy of query results, the sensitivity

of the query to system failures, and the cleaness of data etc. The problem is how

to allocate the resources to maintain the QoS requirements. For example, more

resources should be allocated to process queries that have higher requirements in

delays and accuracies. Queries are more sensitive to failures should be allocated

to more stable nodes for processing. Furthermore, queries’ preferences on data

cleaness also affect the amount of resource to be put to clean the data.

Fault tolerance. The SPs are autonomous and hence they can join or leave

the system anytime. It is hard to actively control the their availability. Therefore,

it is interesting to investigate both proactive and reactive approaches to handle

any unexpected leave of SPs. This problem should be addressed in both the query

overlay and the data overlay. The fault tolerance mechanism at query overlay is

responsible to resume the interrupted queries upon any failures, while the one at

the data overlay should recover the broken overlay network as well as retransmit

the lost messages.
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