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Summary

In this thesis, we advocate storing XML documents in a relational DBMS, and

address the related challenges. In particular, we set out to address the issues of

mapping, indexing and updating XML documents.

The first challenge is how to store XML documents. We propose XStorM, a

mapping scheme that maps XML documents to a relational DBMS. Our experi-

ments demonstrate that XStorM gives good query performance, uses minimal space

requirement and is scalable.

The second challenge is how to handle branching path (twig) queries efficiently.

Inspired by the join index proposed in the relational context, we propose XJoin

Index, a simple yet efficient indexing approach to shrink twigs before applying

structural join algorithms. Our experiments show that the XJoin Index efficiently

reduces the number of structural joins, thus improving overall query performance.

The third challenge is how to handle XML updates efficiently. XML updates

can be modeled as inserting/removing small XML segments into/from an existing

XML database. On this premise, we propose a new lazy approach to handle XML

updates. This approach avoids relabeling existing elements after updates. Our

experiments show that the lazy approach is much more efficient in handling updates

than using immutable labeling; at the same time, it improves the performance of

the structural join algorithm by taking advantage of segments.



Chapter 1

Introduction

The eXtensible Markup Language, XML[4], was initiated by the World Wide Web

Consortium (W3C) as a simplified form and subset of the Standard Generalized

Markup Language (SGML)[7]. The key features of XML include the ability for

information providers to define new tags and attribute names at will, the nesting

of document structures to any level of complexity, and the provision of Document

Type Declaration (DTD)[8] and XML Schema[11] for constraining the structure

and data values of a class of XML documents.

XML has reduced a fair amount of redundant features of SGML, making it much

easier to manage and process than SGML. Another great advantage of XML over

SGML is that XML is free from any intellectual property restriction while SGML

products are proprietary. Compared with its closest sibling, HTML[5], XML is

much more powerful in terms of extensibility. XML is in fact not a markup lan-

guage, as its name suggests, but a metamarkup language. It is malleable, allowing

different users to create their own markup-languages based on it. In contrast,

HTML is quite limited. It only understands a set of predefined tags which are

mainly used to format web pages. Because of all these advantages, although XML
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was originally designed to meet the challenge of large electronic publishing, it is

also rapidly becoming a standard for data representation and exchange over the

Internet and in various database applications.

XML is fundamentally different from relational and object-oriented data. The

key distinction is that XML is not rigidly structured. In relational and object-

oriented models, every data instance has a schema, which is separated from and

independent of the data. In XML, the schema exists with the data. Thus, XML

data is self-describing. Although W3C has developed DTD and XML Schema along

with XML, they are mainly used to validate or to create XML documents. Both

are not essential to understanding the contents of the documents. Because XML

is self-describing, it can naturally model irregularities that cannot be modeled by

the relational or object-oriented data model. For example, data items may have

missing elements or multiple occurrences of the same element; elements may have

atomic values in some data items and structured values in others; also, collections

of elements can have heterogeneous structures.

Figure 1.1 shows an XML instance extracted from DBLP XML record [1]. It

clearly shows the irregularity of the XML data model. For example, the first

inproceedings element has three author child elements while the second inproceedings

has only one. The second inproceedings has cite child elements, but the first

inproceedings has none. We can see that the order of inproceedings’s child

elements is not constant either.

XML data is normally generated as plain text files, and it is necessary to have

a graphical representation of the data for efficient processing. Various models can

be used for XML data, e.g.,the Document Object Model (DOM)[2] and the Object

exchange Model (OEM)[77]. The work presented in this thesis is mainly based on

the DOM model. Under the DOM model, the graphical representation of an XML
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<dblp> ...
<inproceedings mdate="2002-06-04"key="conf/ah/MunOW02">

<author>Hyeonjeong Mun</author>
<author>Sooho Ok</author>
<author>Yongtae Woo</author>
<title>An Automatic Rating Technique Based on XML Document.</title>
<pages>424-427</pages>
<year>2002</year>
<crossref>conf/ah/2002</crossref>
<booktitle>AH</booktitle>
<ee>http://link.springer.de/...</ee>
<url>db/conf/ah/ah2002.html#MunOW02</url>

</inproceedings>

<inproceedings mdate="2002-01-03" key="conf/er/Schuldt86">
<author>Gary Schuldt</author>
<title>ER-Based Access Modeling.</title>
<pages>233-251</pages>
<year>1986</year>
<booktitle>ER</booktitle>
<url>db/conf/er/er86.html#Schuldt86</url>
<crossref>conf/er/86</crossref>
<cdrom>er86/ER86-P233.pdf</cdrom>
<ee>db/conf/er/Schuldt86.html</ee>
<cite label="deMarco">...</cite>
<cite label="Flavin">...</cite>
...

</inproceedings>
</dblp>

Figure 1.1: Example of an XML document

document is usually in form of a tree structure. Figure 1.2 shows a partial graphical

representation of the XML document in Figure 1.1. Each ellipse node represents an

XML element. The text inside the ellipse is the type/class of the element, and the

text below it is the value of the element. For simplicity, attributes of an element

are sometimes treated as child elements. Also, it is common in practice that every

node is assigned a unique label (identifier), usually based on the position of the

element it represents within the XML document, for the convenience of document

processing.



Chapter 1. Introduction 4

inproceedings inproceedings

dblp

author author author title pages year .........

Hyeon
Jeong Mun

Yongtae
Woo

An Automatic 
....

Sooho Ok 424−427 2002

..........

Figure 1.2: Partial graphical representation of the XML document in Figure 1.1

There are various possible ways to store and query XML data. [32, 37, 55,

88, 89, 92, 17, 87, 103, 28, 60, 74, 23, 102] propose mapping techniques to store

XML data into a relational database. [18, 33, 36, 72, 45, 63, 69, 85, 86, 57] pro-

pose various ways to translate XML queries into SQL. The obvious advantage is

that mature RDBMS technologies, e.g.,indexes, concurrent control and transaction

management, can be exploited without much change. However, it is also a chal-

lenge to accommodate the irregular structure of an XML document into a rigid

relational table.

[89, 35, 59, 84, 3, 58] implement an XML database on top of an object-oriented

database. Object-oriented databases have richer data modelling capabilities than

RDBMS, which are useful for clustering XML elements and attributes. However,the

current generation of object-oriented database systems is not fully developed to pro-

cess complex queries on large databases. Besides, the object-oriented data model
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is essentially a fixed schema model and it also suffers from the extreme irregularity

of XML data as the relational model does.

The research community has shown increasing interest in building native XML

databases in recent years. The word “native” here means that XML data is stored

directly, preserving its original tree-like structure. Though some components of

traditional DBMS, e.g., transaction management functions, can be applied to native

XML database with no change, most other components need to be modified to

accommodate the new data model and query language. Theoretically, native XML

databases should perform much better than simply mapping the XML model to

traditional DBMSs, as it is specially designed for XML. However, it takes time for

native XML databases to be mature enough to compete with traditional DBMSs.

Some early research projects [70, 71, 80] built native XML databases on top of

semi-structured databases. Natix[50, 49] has been developed as a storage manager

for XML data and its main focus is on efficient physical page management of tree-

structured data. Timber[44] is so far the most comprehensive attempt of building

practical native XML databases. The Timber system is based on a bulk algebra

for manipulating trees, and stores XML directly. It has also developed new access

methods, a cost estimation mechanism, and query optimization techniques for query

processing.

1.1 Motivation

Mapping XML data into relational database remains the main trend of storing XML

data so far, as relational stores are effective in providing multiple distinct logical

views on the same data with very good scaling and transactional characteristics.
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There are many ways to map XML data into relational tables. Among them,

Oracle 8i lets the user or system administrator decide how XML elements are

stored in relational tables. [88] infers from the DTDs of the XML document how

the XML elements should be mapped into tables. STORED [32] analyzes the

XML data and expected query workload to obtain a set of relational schemas. Any

data that cannot be accommodated in these schemas are stored in overflow graphs.

This involves integration of the relational storage with a semistructured overflow,

raising yet to be resolved system issues. Furthermore, if the data instance has a very

irregular structure, then the schema extracted may not cover a large percentage

of the data and a lot of overflow graphs will be generated, leading to performance

degradation. [37] takes the graph representation of an XML document and studies

various schemes to map the edges and nodes into relational tables. Among them,

the binary approach gives the best experimental performance. The binary approach

creates a relational table for each XML tag and stores the value accordingly, which

is similar to the binary storage scheme proposed for storing semistructured data in

[95]. There are as many binary tables created as there are different subelement and

attribute names in an XML document. The values of the attributes can be stored

together (inlined) in the same table. Unfortunately, the number of join operations

needed to answer a query is proportional to the number of attributes involved,

which becomes very costly when reconstructing large XML documents.

We note that XML elements that present entities in the real world (objects) are

differentiated from XML elements that represent properties of entities (attributes).

If we can capture the general structure of an object in the XML data, we will be

able to generate a relational table to store the object together with the majority of

its attributes. The motivation of our work on XML storage is therefore to develop

a new scheme that maps XML data into relational tables based on this finding.
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Figure 1.3: Graphical Representation of a Branching Path Expression

The new scheme should overcome the drawbacks of the existing mapping schemes,

i.e., with the scheme, no excessive fragmentation is generated and data integrity is

guaranteed.

Regardless of whether the XML database is built on top of an existing database

management system or built specially for XML data (the native XML database),

query evaluation is one of the most important aspects of XML processing. W3C has

developed XQuery[10] as a standard to solve queries on XML data while in most

cases, the core operation of solving an XML query is to solve the XPath[9] ex-

pression within the query. A typical query for XML documents specifies selection

predicates for multiple elements, related by some tree structured relations. For

example, the query: book[@title = ‘Databases’ AND @publisher = ‘Springer

Verlag’]/author[@name = ‘john’] matches author elements whose name is john

and that are children of book elements, whose title is Databases and whose pub-

lisher is Springer Verlag. Figure 1.3 shows the graphical representation of the

above query. Expressions such as this are known as branching path expressions be-

cause their graphical representations contain branch(es) and correspond to a small

tree (a twig).
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To solve a branching path expression, two main approaches can be applied.

Under the first approach, the tree-based representation of the whole XML dataset

is scanned; thus a naive tree traversal strategy is used. Summary indexes can

be used for this purpose[81, 26, 39, 73, 29, 38, 53, 75]. The main limitation of

this approach is that, when the expression contains ‘//’, i.e., requires the evalu-

ation of an ancestor-descendant relationship, it may require the whole dataset to

be scanned even if there are only a few matches. Under the second approach, el-

ements matching each single node are first determined. Then, the sets obtained

are joined with the use of structural join algorithms. Such algorithms take ad-

vantage of specific labeling schemes (for every element/attribute in the document)

to efficiently check ancestor-descendant and parent-child relationships among ele-

ments/attributes. One relationship for each twig edge has to be evaluated and the

results have to be merged.

A number of structural join algorithms have been proposed. The results from

these algorithms are typically pairs of element/attribute labels, which are later used

to evaluate other path query expressions. A more recent attempt tries to reduce

the size of intermediate results by using holistic algorithms [48]. Most of these

algorithms rely on the usage of some indexing techniques to more efficiently perform

the join operation and they can be used to either reduce the number of elements

before the structural join algorithm is applied[66], or during the application of the

algorithm itself, to skip descendants[25] or descendants and ancestors[47] without

matches. These indexing techniques do not vary the number of joins to be executed

for branching path expressions. Rather, they provide support for efficient join

processing.

The motivation of our work on efficient XML query processing is therefore to

find a way to reduce the number of structural joins required to solve a branching
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path query. This is as important as making each individual structural join more

efficient.

Updating XML documents is also a major challenge in the area of XML doc-

ument processing. As we have mentioned, every element/attribute in an XML

document is normally assigned a unique label based on its location in the XML

document to facilitate query processing, particularly structural join. The correct-

ness of the structural join algorithm completely depends on these labels. However,

this identifier does cause problems when updates take place. The problem is that

after the original XML document has been updated, i.e., new elements have been

inserted or existing elements have been removed, we may need to update the labels

of possibly a large number of elements in order to maintain the correct relationship

between elements, which is the foundation of the structural join algorithms. This

relabeling process could make the update operation very inefficient. Figure 1.4

illustrates the relabeling scenario. In this figure, each node represents an XML el-

ement and we use (start position:end positon) pairs to uniquely identify them, i.e.,

labeling each node with a (start position:end positon) pair. When a new element

(the black node) is inserted between nodes 3 and 4, the start positions of 4, 5 and 6

need to be updated and the end positions of 1, 2, 4, 5 and 6 need to be updated as

well. So only node 3’s label remains unchanged. In general, the I/O cost of update

is O(N), where N is the total number of elements in the XML document.

Previous attempts to solve this problem basically rely on various labeling schemes

[66, 27, 76, 92, 101, 90, 61, 62]. [66] is an extended interval-based scheme where

additional space is reserved for future insertions. This scheme fails if the space

required to hold the inserted nodes exceeds the reserved space. Prefix labeling

[27, 76, 92, 61, 62] allows each node to inherit its parent’s label as the prefix of
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Figure 1.4: Relabeling Caused by Update

its own label so that inserting new nodes does not affect the labels of the exist-

ing nodes, i.e., labels are immutable. Unfortunately, the results presented in [27]

establish that any immutable labeling scheme requires Ω(N) bits per label, where

N is the size of the document, thus incurring high storage overhead. Moreover,

structural join algorithms using a prefix labeling scheme are less efficient than

those using an interval-based labeling scheme because determining the ancestor-

descendant relationship between two elements using prefix comparison is slower

than using simple integer comparison. The prime number labeling scheme [101]

overcomes some problems of prefix-labeling by assigning to each node a product of

prime numbers as its label and the containment relationship of two elements can

be determined by the properties of prime numbers. The order of each element is

preserved by maintaining a table of simultaneous congruences of element label sets

and element order sets. Heavy computation is required for the insertion of a new

element since computing simultaneous congruences is costly. Most recently, a dif-

ferent approach to cope with updates while guaranteeing good query performance

was proposed in [90]. In this approach, a dynamic, thus mutable, labeling scheme

is used together with specific data structures that provide a good trade-off between

query and update costs.

We observe that, in real world scenarios, XML document updates tend to be
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done in batch manner, i.e., multiple XML elements are inserted (or removed) to-

gether. As an example, consider the DBLP XML database. It contains many

articles, books and proceedings, and new items need to be added into the DBLP

database almost every day. Due to the high frequency of update operations, up-

dating the database after each single request of element insertion/deletion is not

a feasible solution. Another example is represented by an on-line registration sys-

tem. In such a system, once a user submits a registration form, an automatically

generated XML document containing information about the user’s identification,

name, occupation, etc., is inserted into the system. In this case, multiple XML

elements are inserted instead of a single element. In both examples, instead of in-

serting/deleting each element when requested, it seems more reasonable to generate

XML segments corresponding to a set of elements that must be inserted (deleted)

into (from) the whole database together and then update the database once for

each segment.

The motivation of our work is therefore to develop a new scheme for XML

updates based on the batch update nature of XML documents. This new scheme

should solve the update problem mentioned above and in the mean time, it must

not affect the efficiency of query processing, i.e., this new scheme must not incur

any significant processing overhead for structural join algorithms.

1.2 Contributions

For this thesis, we have designed an architecture for storing and processing XML

documents in its natural form. Our work is built around this architecture, and in

particular, we address three important problems. Figure 1.5 shows a general struc-

ture of our work. In the next three subsections, we summarize our contributions.
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1.2.1 XStorM Mapping Scheme

To overcome the drawbacks of existing mapping schemes that map XML data into

relational tables, we propose a new scheme, XStorM, that has the following features:

• XStorM discovers frequent patterns in an XML dataset by exploiting data-

mining algorithms. Based on the frequent patterns discovered, it identifies

real-world objects in the XML dataset. These objects are then stored in

a core relational table together with the majority of its attributes to avoid

excessive fragmentation.

• XStorM stores data that deviates from the core schemas in separate overflow

tables.

• XStorM embeds structural information of an XML document in the names

of overflow tables and some attribute names for the fast reconstruction of the

original XML document.

• XStorM guarantees data integrity as entire XML data instances are stored in

the relational database.
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We present the procedure to generate XStorM mapping and we compare it

with other mapping schemes on both space occupancy and query performance.

Our experimental results show that XStorM yields good query performance and

consumes the least storage. More importantly, it is scalable.

1.2.2 XJoin Index

In the relational context, Join index [94] has been proposed for efficient join pro-

cessing. It basically pre-joins some relations and the actual joins benefit from the

results of these pre-computed joins. This gives us the inspiration for building a

“join index” to solve branching path expressions in the XML context. Our aim

is to reduce the number of joins to be executed, and we propose a simple yet ef-

ficient join indexing approach to shrink the twig before applying any structural

join algorithm. The index technique, which we call XJoin Index, pre-computes

some (semi-)join results, thus reducing the number of joins to be computed. Pre-

computed (semi-)joins correspond to both content and structure information and

they support the following operations: (i) attribute selections, possibly involving

several attributes; (ii) detection of parent-child relationships; and (iii) counting

selections, such as “Find all books with at least 3 authors”.

The main features of the proposed technique can be summarized as follows:

• Simplicity: Unlike other approaches, based on specialized data structures,

the XJoin Index is entirely based on B+-trees [82], constructed over specific

tuples of values.

• Flexibility: The XJoin Index can be coupled with any structural join algo-

rithms that have been proposed so far. Moreover, given a branching path

expression, several execution plans can be defined by the query processor,
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based on the usage of the XJoin Index.

In this thesis, we first present the XJoin Index and we show that, even with

the duplication of some element information in the index, the space required is

linear to the number of elements and attributes appearing in the XML dataset.

We then present search and update algorithms for the XJoin Index. Our approach

differs from other approaches in that any additional attribute or counting predicate

inside a query condition does not correspond to a new application of a structural

join algorithm. Rather it corresponds to a simple set intersection. Next, we show

which query execution plans a query processor can define, based on the usage of

the XJoin Index. Such plans differ in the number of joins to be executed to solve

the original branching query. Experimental results are presented for the search and

update operations of the XJoin Index. These results show that the XJoin Index

can process twig queries by up to an order of magnitude faster than traditional

index approaches.

1.2.3 Lazy update scheme

Based on the observation that updates tend to be done in batch manner and in the

form of segments, we present a new approach to dealing with XML updates in this

thesis. We call it lazy since segments are used to avoid computations during both

updating and querying.

First, we model the whole XML database as a single super document by simply

adding a dummy root to all the existing XML documents; thus update operations

correspond to inserting (or removing) XML segments into (or from) the super

document. In this model, each element has two positions. The first is its local

position with respect to the XML segment it belongs to. The second is its global

position in the super document. The local position label never changes once it is
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assigned to an element, but it is not unique. On the other hand, the global position

label is unique but it changes if an update occurs. From these considerations, it

naturally follows that if a local position label is used as the key (or part of the key)

in the element index, we can avoid updating the existing element labels after an

update. However, since local labels are not unique, they cannot be directly used in

structural join.

The key point here is that the number of inserted (or removed) segments is likely

to be significantly less than the number of XML elements these segments contain.

For example, an XML document corresponding to a registration form may contain

20 to 30 XML elements. This gives us the inspiration to build an in-memory update

log to record the information of every segment. The update log must satisfy the

following requirements:

• The update log must maintain sufficient information to support structural

join between segments

• The update log must allow us to identify the structural information of the

segments given only the global start positions and lengths of the segments.

These two values are likely to be the only information we know when a seg-

ment is inserted (removed) in real scenarios.

• The update log can be integrated easily into existing structural join algo-

rithms. However, segment-aware query processing techniques can be defined

to reduce query processing costs.

In this thesis, we also present update algorithms for the proposed update log,

assuming that each operation takes as input the position in the super document

where the segment has to be inserted/deleted and the length of the segment. We

further present a structural join algorithm that works with our lazy approach. The
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algorithm is developed based on the stack-based structural join algorithm proposed

in [12] to deal with segments. The results of our experimental study on the update

and structural join operations show that the lazy approach is significantly more

efficient than existing labeling approaches for updates; additionally, it improves

query processing performance.

1.3 Organization

The remainder of this thesis is organized as follows:

• Chapter 2 presents the research works that are closely related to this thesis.

• Chapter 3 introduces the XStorM mapping scheme that maps XML data into

relational tables.

• Chapter 4 introduces XJoin Index for efficient branching path query process-

ing.

• Chapter 5 presents our lazy approach to handle XML updates.

• We conclude our work in Chapter 6 with a summary of our contributions.

We also discuss some limitations and directions for future work.

We acknowledge that the work in Chapter 3 is published in [99, 100] and is a

continuation of eailier works as on the honors year project , the work in Chapter 4

is published in [16], and that in Chapter 5 is published in [20].



Chapter 2

Related Work

In this chapter, we review research work closely related to this thesis. Various map-

ping schemes that map XML document into relational database will be reviewed

in Section 2.1. Background information of XML element labeling schemes, which

is considered as one of the foundations of XML document processing, is presented

in Section 2.2. In Section 2.3, we present an overview of XML query processing,

introduce structural join, which is considered as the core operation of solving path

expressions, and review several indexing techniques designed for facilitating struc-

tural join. We will also review several proposals to solve XML query that are

independent of structural join algorithms. In Section 2.4, we will show the state of

the art on the topic of XML update. We summarize in the last section.

2.1 Relational Mapping Scheme

Ever since the launch of XML, the database research community has been working

on the efficient and effective storage of XML documents. Among all the approaches

proposed so far, mapping XML data into existing relational databases receives

most attention. A number of mapping schemes have been proposed in recent years.
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[17, 74, 88] focus on how to define a “good” relational schema from given XML

schemas. [22] proposed XFDs, which is a constraint definition to capture struc-

tural and semantic information of XML documents, and an mapping scheme called

RRXS based on an algorithm that computes the reduced set of given XFDs. [92]

proposed several order encoding methods so that ordered XML processing can be

supported by relational databases. [37, 103] proposed fixed relational schema for

storing the XML data and algorithms were also presented for query translation.

STORED [32] was proposed to generate relational schema which is decided based

on the XML data itself. In this section, we will take a closer look at STORED, the

mapping schemes proposed in [37] and XRel[103] as they are compared with our

proposed mapping scheme in our experiments.

STORED is in fact a declarative query language used to express a mapping

scheme that maps semistructured data, e.g., XML, to relational schemas. It relies

on a data mining algorithm proposed in [97] to identify frequent patterns in the

data instance and generate relational schemas bases on these patterns. The process

of generating relational schemas involves the following steps:

1. Computing minimal path prefixes. In this step, all prefixes 1 l1, l2,...,1k

with support greater than or equal to a minimal support are generated. These

prefixes identify the collection of objects that become the root objects for the

data mining algorithm in the next step.

2. Data mining. The data mining algorithm is applied in this step to identify

all frequent K patterns, where K stands for the number of leaf nodes in the

tree-like pattern. Also in this step, all paths with high support are identified

1The prefix of a node is simply a chain of its ancestor nodes starts from root node and ends
at its parent node.
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and retained.

3. Selecting K0 patterns. In this step, by using a greedy algorithm, the

frequent K patterns are checked to find those K0 patterns that best cover

the high support paths identified in the previous step.

4. Selecting required attributes. In this step, the sub-patterns of each K0

pattern selected in the last step are checked to identify which attributes are

to be included in the final schemas

5. Generating STORED queries. This is a straightforward step to generate

relational schemas based on the results from previous steps.

Data that cannot fit the identified relational schemas is stored in external

Overflow graphs, thus ensuring that the STORED mapping is lossless. But if

the XML data instance has a very irregular structure, the schemas extracted may

not be able to cover a large percentage of the data. Hence a lot of overflow data

structures will be generated, leading to performance degradation.

[37] takes a graphical representation, i.e., OEM [77], of XML document. In this

model, each outgoing edge models an attribute of the object. Edges are labeled with

attribute names and each object has a unique identifier. The leaves of this model

are labeled with data value (e.g., integers, strings, etc.). Schemes of mapping both

attributes and values are proposed and compared with their performances over the

same data instance.

The simplest scheme for mapping attributes is to store all attributes in a single
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Edge table, which has the following structure:

Edge(source, ordinal2, name, flag, target)

The key of Edge table is {source, ordinal}. An index on source column and a

combined index on the {name, target} columns can be established for forward and

backward traversals, respectively.

The second scheme for mapping attributes is to group all attributes of the

same name into one Attribute table, which actually corresponds to a horizontal

partitioning of the Edge table in the previous scheme. There are as many Attribute

table as different attribute names in the data instance and each Attribute table has

the following structure:

Aname(source, ordinal, f lag, target)

The key of Attribute table is {source, ordinal}. An index on the source column

and an index on the target column can be built for forward and backward traversal,

respectively.

The third scheme is to generate a single Universal table to store all the at-

tributes, which corresponds to the result of an outer join of all Attribute tables.

The structure of Universal table is as follows, suppose n1,...,nk are the attribute

names in the XML instance,

Universal(source, ordinaln1 , f lagn1 , targetn1 , ..., ordinalnk
, f lagnk

, targetnk
)

It is obvious to see that the Universal table is not normalized. Therefore, a

2the ordinal of an attribute is simply its sequence number among all attributes of its parent
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normalized Universal approach, UnivNorm, was proposed by storing multi-valued

attributes in separate overflow tables. The structure of the UnivNorm table and

the Overflow tables is as follows, suppose n1,...,nk are the attribute names in the

XML instance,

Universal(source, ordinaln1 , f lagn1 , targetn1 , ..., ordinalnk
, f lagnk

, targetnk
)

Overflown1,...,nk
(source, ordinal, f lag, target)

The key of the UnivNorm table is source and the key of an Overflow table is

{source, ordinal}. The flag is set to “m” if the attribute is multi-valued. Index

can be built on the source and the target column(s) for both UnivNorm and

Overflow tables.

There are two possible ways to store values in the leaves of an XML document

tree:

1. Storing values in separate V alue tables with the structure of the following

form:

Vtype(vid, value)

The vids of the V alue tables depend on the implementation of the mapping

schemes. Index on both vid and value column can be built on the V alue

table.

2. Storing values and attributes in the same table. The table corresponds to

an outer join of the Edge(Attribute, Universal, UnivNorm, Overflow) table

and the V alue tables. This approach is also known as inlining as one column

is needed for each data type.

Since there are four approaches for storing attributes and two approaches for
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storing values, there are totally eight different mapping schemes. According to the

results of the experiments conducted in [37], among all the eight schemes, storing

attributes in separate Attribute table and values inline, which is also known as

Binary approach, yields the best performance. One obvious disadvantage of the

Binary approach is that the number of join operations needs to answer a query is

proportional to the number of attributes involved. This becomes very expensive

when answering complicated path queries or reconstructing large XML documents.

XRel[103] also defines fixed schemas to store XML document in relational

database. Compared with Binary scheme, XRel is more efficient to solve path

queries involving ”//” or with long lengths because it embeds path information in

the tables, thus string comparison can be used to reduce the number of joins to be

performed. The basic structure of XRel scheme consists of four relational schemas,

as shown below:

Element(docID, pathID, start, end, index, reindex)

Attribute(docID, pathID, start, end, value)

Text(docID, pathID, start, end, value)

Path(pathID, pathexp)

In the above relational schemas, the database attributes docID, pathID, start,

end and value represent document identifier, simple path expression identifier, start

position of a region, end position of a region, and string value, respectively. index

and reindex in the relation Element represent the occurrence order of an element

node among the sibling element nodes in document order and reverse document

order, respectively. pathexp in the relation Path stores simple path expressions.

XRel stores elements and values in separate tables and stores all elements in

one big Element table. Therefore, if the path query does not contain ”//” or if the

element/value tables are too big, binary scheme may outperform it as joining small
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tables is likely to take less time than joining large ones.

2.2 Labeling Schemes

Labeling schemes play very important role in XML document processing. The main

purpose of labeling XML elements is to allow fast identification of relationships

between elements, particularly the ancestor-descendant relationship, which is in

fact the core operation of any structural join algorithm. Also, most research work

on the topic of XML update focus on developing dynamic labeling schemes that

cope with updates. In this section, we will first introduce some classical labeling

schemes, including Dietz’s labeling scheme [34] and some of its variations, and the

well-studied prefix based labeling schemes[92, 27, 61, 62]. Several newly proposed

labeling schemes[54, 76, 93, 101, 13, 90, 98, 24, 67], especially the prime number

labeling scheme[101], which we used to compare with our approach in Chapter 5,

will be subsequently presented.

2.2.1 Dietz’s Scheme

Dietz’s scheme [34] is the first labeling scheme used to determine the ancestor-

descendant relationship between any pair of tree nodes by tree traversal order.

The proposition given in the paper is as following:

Proposition 2.1 For two given nodes x and u of a tree T, x is an ancestor of y

if and only if x occurs before y in the preorder traversal of T and after y in the

postorder traversal.

For example, consider the left tree in Figure 2.1 where the nodes are labeled

by Dietz’s labeling scheme. Each node is labelled with a pair of preorder and
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Figure 2.1: Numbering Scheme Examples

postorder numbers. In the tree, we can see that node (1,7) is an ancestor of node

(4,2), because node (1,7) comes before node (4,2) in the preorder traversal(i.e.,

1 < 4) and after node (4,2) in the postorder traversal(i.e., 7 > 2). The original

Dietz’s labeling scheme allows constant time identification of ancestor-descendant

relationship between two nodes. However, if a new node is inserted into the tree,

the preorders and postorders of many nodes may need to be recomputed.

To overcome this shortcoming, [66] proposed an extended preorder labeling

scheme based on original Dietz’s labeling scheme by reserving extra space for future

insertions. The scheme associates each node with a pair of numbers <order, size>

as follows.

• For a tree node y and its parent x, order(x) < order(y) and order(y) + size(y)

≤ order(x) + size(x). In other words, interval [order(y),order(y) + size(y)]

is contained in interval [order(x), order(x) + size(x)].

• For two sibling nodes x and y, if x is the predecessor of y in preorder traversal,

order(x) + size(x) < order(y).

Then, for a tree node x, size(x) ≥ ∑
ysize(y) for all y ’s that are a direct child

of x. Thus, size(x) can be an arbitrary integer larger than the sum of sizes of all

current descendants of x, which allows to accommodate future insertions gracefully.
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This extended labeling scheme also allows constant time identification of ancestor-

descends relationship as the original Dietz’s scheme does. The lemma given is:

Lemma 2.1 For two given nodes x and y of a tree T, x is an ancestor of y if and

only if order(x) < order(y) ≤ order(x) + size(x).

For example, consider the right tree in Figure 2.1, a node (25,5) is contained

in both (10, 30) and (1,100). Hence, the node with order 25 is a descendant of

nodes with order 10 and 1. The extended Dietz’s labeling scheme is obviously

more flexible than the original Dietz’s scheme because it can deal with dynamic

updates as long as there is pre-reserved space available. But it is also obvious

that this scheme does not solve the dynamic insertion problem completely simply

because that it will fail if there is no pre-reserved space available.

A similar labeling scheme uses (start, end) pairs as the labels of elements, like

the one shown in Figure 1.4. This variation is more widely applied in practice

[104, 44, 47, 42, 48, 31], as only one pass of the document is required to generate

these labels. The start(end) here refers to the starting (ending) position of the XML

element in the whole XML document, in terms of bytes or words. An element x

is an ancestor of an element y if and only if x has a smaller starting position

than y AND a larger ending position than y. This scheme can determine ancestor-

descendant relationship between elements in constant time as the original Dietz’s

scheme does. However, it faces the same problem when new elements are inserted.

2.2.2 Prefix Labeling Schemes

Dewey labeling scheme[92] is based on Dewey Decimal Classification developed for

general knowledge classification. With Dewey label, each node in a tree is assigned

a vector that represents the path from the root to the node. Each component of
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the path represents the local order of an ancestor node, as illustrated in Figure

2.2. Dewey label is “lossless” because each path uniquely identifies the absolute

position of the node within the document. The ancestor-descendant relationship

between two nodes can be identified by prefix comparison. For example, node with

label “1.1.2.4.3” must be a descendant of node with label “1.1.2”, but cannot be a

descendant of node with label “1.1.3”. In case of insertion, only the right siblings

(of the inserted node) and their descendants may need to be relabeled.

1.2.1.1

1.3

1.2.21.2.1

1.2

1.1.1

1.1

1

Figure 2.2: Dewey Order Example

Binary prefix labeling scheme has been thoroughly discussed in [27], both in the

static case, where the full document is given in advance and in the dynamic case,

where no information about the document is known beforehand.

Static prefix schemes typically work as follows. The outgoing edges of each node

are assigned a set of prefix-free binary strings (a set of strings is prefix-free if no

string in the set is a prefix of another), and then, starting from the root and going

down, the label of each node is defined to be the concatenation of its parent label

and the string assigned to the edge leading to the node. For example, consider a

node v with three children v1, v2, v3. Strings “0”, “10”. and “11” can be assigned

to the three edges (v, v1), (v, v2), and (v, v3), respectively. So the labels of v1,

v2, and v3 are L(v1) = L(v) · 0, L(v2) = L(v) · 10, and L(v3) = L(v) · 11. The

above scheme is similar to the Dewey labeling scheme, except it uses binary strings
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to code prefixes. Therefore, this scheme encounters similar problem in a dynamic

setting as well. For example, if a new child v4 is added to v,there is no string that

can be attached to new edge(v,v4). This is because any string would have one of

the strings 0, 10, and 11 as a prefix.

A more flexible prefix scheme for the dynamic situation works as follows. The

root of the tree is labeled with an empty string. The first child of the root is labeled

with “0”, the second child with “10”, the third with “110”(rather than the “11” in

the static labeling example), the forth with “1110”, etc. Similarly for any node v

the first child of v is labeled with L(v) · “0”, the second child of v is labelled with

L(v) · “10”, the third with L(v) · “110”, and the ith child with L(v) · “111i−10”. It

is easy to see that for all pairs of nodes v, u, L(v) is a prefix of L(u) if and only if

v is an ancestor of u. Also, by induction it is easy to prove that the length of the

maximum label is at most i-1 after inserting i nodes including the root. So for any

n-node tree the maximum label length is at most n-1 without any need to know n

in advance.

The following theorem[27] shows that no labeling scheme (regardless if it is

prefix based, range based, or uses any other labeling type) can achieve better

bound on the labels length.

Theorem 2.1 For every deterministic labeling scheme S = <p, L> there is an

insertion sequence of length n such that S assigns a label of length at least n - 1 for

some node in the sequence.

The above theorem assumes no restrictions on the tree structure. It works

for the case that a node can have arbitrary number of children. But for XML

documents, the DTD and XML Schema may restrict the number of children, e,g.

the total number of children is bounded by some constant ∆. In this case, following

theorem[27] gives a slightly weaker lower bound of the length of label.
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Theorem 2.2 For every deterministic labeling scheme S and every constant ∆,

there is an n-node insertion sequence constructing a tree of maximum degree ∆ on

which S assigns a label of length at least nlog2(1/α) - O(1), where α is a root of x

+ x2 + ... + x∆ = 1.

The above theorem shows that even if for binary trees (∆ = 2), any deterministic

labeling scheme will have some label of size Ω(n), or, more precisely, of size at least

0.69n - O(1) (α = 0.618, for ∆ = 2).

In practice, XML documents tend to have a relatively low depth, i.e., the trees

are balanced with relatively high degrees. A more suitable labeling scheme can be

developed for such trees. The children of a node v have label of v concatenated

with the string attached to their incoming edge, similar as previous scheme. The

string s(i) for the ith child is defined such that

s(1), s(2), s(3), ... = 0, 10, 1100, 1101, 1110, 11110000, ...

Namely, to obtain s(i+1) the binary number represented by s(i) is increased by 1

and if the representation of s(i) + 1 consists of all ones, the length of the label is

doubled by adding sequence of zeros.

The heuristics of this scheme is that a node with more children is more likely to

have additional children when update takes place. So rather than allocating for the

new child the shortest possible available prefix-free string (as done in the previous

scheme), a longer one is given instead. The investment is likely to pay off as it

will shorten the labels of forthcoming siblings. In the previous scheme, for each

new child, the length of the assigned prefix free string grows by exactly one bit. In

contrast, in this scheme, the length may grow by several bits at once. But then

can stay the same for several future coming nodes (until it needs again to grow).
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The length of labels of this scheme is given in the follow theorem[27].

Theorem 2.3 The maximum length of a label using this scheme is at most 4dlog(∆),

d being the maximal depth of the tree and ∆ the maximum outdegree of a node.

2.2.3 Recent Works on Labeling Scheme

The research community has proposed quite a number of labeling schemes in re-

cent years. [54] expresses the coordinate of an XML element based on the region

of its parent element and proposed an index structure based on this coordinate,

which requires only a small portion of index file to be updated in case of updating.

ORDPATH[76, 93] is a hierarchical labeling scheme, which uses a “careting-in”

scheme to support dynamic insertions of element. Prime number labeling scheme

[101] labels elements with prime numbers and allows ancestor-descendant relation-

ship identification by properties of prime numbers. [13] uses floating numbers,

instead of integer numbers, to label elements so that there is more space between

labels, which favorites insertion. But the number of distinct values is still limited

by the number of bits used in representation. The BOX method [90] proposed

a dynamic labeling scheme, used together with specific data structures (W-BOX

and B-BOX), to provide a good trade-off between query and update costs. W-

BOX uses weight-balanced B-trees to reduce the relabeling overhead, obtaining a

logarithmic amortized update costs and constant worst-case lookup cost, whereas

B-BOX further reduces update costs, resulting in a constant amortized update time

and logarithmic worst-case lookup cost, by avoiding the storage of labels, that can

however be reconstructed starting from the proposed data structure, a variant of B-

tree. [98] proposed a new labeling scheme called PBiTree coding, which also allows

efficient identification of ancestor-descendant relationship between elements. New

algorithm for solving containment query was subsequently proposed based on this
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PBiTree coding, which does not require sorting/indexes. [24] presented a labeling

scheme that combines P-labeling (for processing suffix path queries efficiently) with

D-labeling (for processing queries involving the descendant axis). Most recently,

[67] proposed an powerful extended Dewey labeling scheme such that from the label

of an element alone, all element names along the path from the root to the element

can be derived. This labeling schemes is used as the base of its holistic twig join

algorithm[67].

The prime number labeling scheme[101] was proposed to overcome some prob-

lems of prefix-labeling schemes. This scheme determines ancestor-descendant rela-

tionship between elements by properties of prime numbers.

Property 2.1 If an integer A has a prime factor which is not a prime factor of

another integer B, then B is not divisible by A.

In XML trees, if a node A has a descendant which is not a descendant of another

node B, then A cannot be a descendant of node B. Therefore, if the leaf nodes in

XML tree are labeled by prime numbers and the non-leaf nodes are labeled as a

product of the labels of its child nodes, then the ancestor-descendant relationship

can be easily determined by using the above property of prime numbers. But it is

obvious that this bottom-up approach can quickly result in relatively large numbers

being assigned to nodes at the top of XML tree.

An alternative of bottom-up approach is a top-down approach, as shown in

Figure 2.3. The label of a node is divisible only by its ancestor’s label. In the

top-down scheme, each non-leaf node is given a unique prime number and the label

of each node is the product of its parent node’s label (parent-label) and its own

label(self-label). In Figure 2.3, the “parent-label” is 2 for the node whose label is

“10” while its “self-label” is 5. When a new node is inserted, it is easy to simply
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assign a prime number that has not been assigned before as the self-label for the

newly inserted node. No re-labeling is required.

1
(1 x 1)

2
(1 x 2)

3
(1 x 3)

10
(2 x 5) (2 x 7)

14 33
(3 x 11) (3 x 13)

39

label
(parent label x self label)

Figure 2.3: Top Down Prime Number Labeling Scheme

Several optimization techniques can be applied to overcome the shortcoming of

the top-down labeling scheme, which is still the relatively large label size. These

techniques include (1) reserving small prime number for upper level labels, (2)

making use of the only even prime number “2” to label leaf nodes and (3) merging

paths to reduce redundancy if ordering is not important.

A major advantage of prime number labeling scheme is its capability to preserve

orders of elements when updates take place, which makes it capable to answer order-

sensitive queries. The Chinese remainder theorem is applied to maintain order in

the prime number labeling scheme.

Definition 2.1 Chinese Remainder Theorem: Let M = [m1, m2,..., mk] and

N = [n1, n2,..., nk] be two lists of integers. If the GCD(m1, m2, ..., mk) = 1, then

the simultaneous congruence SC (M, N) = x satisfies
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x mod m1 = n1

x mod m2 = n2

...

x mod mk = nk

and there is exactly one solution x between 0 and C, where C = Πi=1
k mi

The simultaneous congruence of two sets of integers can be computed using the

following Euler’s quotient function:

X = (Σi=1
k (

C

mi

)× ni × φ(mi)) mod C,

where C = Πi=1
k mi and φ(x) is Euler’s totient function [14] which is defined as the

total number of integers which are smaller than x and relatively prime to x.

For example, given a list of prime numbers P = [3,4,5], and a list of integers I

= [1,2,3], the Chinese remainder theorem states that there exists a number x = 58,

where





x mod 3 = 1

x mod 4 = 2

x mod 5 = 3

The Chinese Remainder Theorem makes it possible to generate a one-to-one

mapping between the elements in P and I. When the prime numbers in P are self-
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labels of the nodes in an XML tree, the integers in I represents the ordering of these

nodes. The number SC(P,I) = x can therefore be used to capture the global ordering

for an XML document. Figure 2.4 shows an XML tree that has been labeled using

the prime number labeling scheme. The integer inside the node represents the order

of the element within the XML document. The SC value which is generated from

self-labels and the order numbers is 29243. Thus, the global ordering for each node

can be subsequently derived from the formula: SC mod (self-label). For example,

the order number for the node whose self-label is 5 is 3, i.e., 29243 mod 5.

4

2 3 5 6

1

2

3 5 11 13

7

order number

self−label

SC = 29243 and order number = SC mod self−label

1

0

Figure 2.4: Capturing order by an SC value

In practice, huge SC value may be generated for large XML tree. An alternative

way is to use a list of SC value instead of a single SC value. Each SC value maintains

the global ordering of a subset of the nodes in the XML tree. In Figure 2.5, two

SC values are used to capture the ordering of the nodes in the XML tree in Figure

2.4.

The update operation of the prime number labeling scheme is as follows. Sup-

pose a new node with self-label 17 and order number 3 is inserted into the XML

tree in Figure 2.4. The corresponding SC value for this record is also updated to



2.2 Labeling Schemes 34

2

3

5

7

11

13

max prime SC

11

13

1523

6

1

2

3

4

5

6

SC table

self−label order number

Figure 2.5: SC table for XML tree in Figure 2.4

the new simultaneous congruence value that satisfies the following two equations:





x mod 13 = 7

x mod 17 = 3

The order numbers for the nodes that comes after the newly inserted node will

be increased by 1. Thus, the SC values associated with these nodes need to be

updated accordingly, in this example, the first record of the SC table contains the

order number that need to be changed. The new simultaneous congruence value
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for this record is computed according to the following equations:





x mod 2 = 1

x mod 3 = 2

x mod 5 = 4

x mod 7 = 5

x mod 11 = 6

Figure 2.6 shows the updated SC table. Since an SC value can capture the order

numbers for several nodes in an XML tree, updating the ordering information of

these nodes can be performed by updating the SC value.

2

3

5

7

11

13

max prime SC

SC table

20

1139

17

11

3

7

6

5

4

2

1

17

order numberself−label

Figure 2.6: Updated SC Table

The major drawback of the prime labeling scheme, comparing with other label-

ing schemes, is the heavy computation cost for SC value, as our experiments shows

in Chapter 5. Moreover, insertion of a single node could cause up to O(N) nodes

in the XML tree having their order numbers changed, which means it is possible
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that all SC values in the SC table require re-computation. The update efficiency

could be seriously decreased in this scenario.

2.3 XML Query Processing

In this section, we first introduce the related work on Structural Join as it is con-

sidered as the core operation of solving XML path query and most recent research

efforts on XML index are aimed to make structural join more efficient. Then we

introduce those research works on efficient XML query processing that are inde-

pendent of structural join.

2.3.1 Structural Join

Structural join is basically a process to generate a set of element pairs (a, b), where

a is an ancestor of b, and these pairs are later merged or joined to produce final

result of the path query. It may be called in different ways, for example, Multi-

predicate Merge Join in [104], EE-Join in [66], etc, but the underline idea remains

the same. In the section, we will first introduce several structural join algorithms

that do not exploit indexes to increase join performance (though they may use

index to construct the input lists). Then we introduce several indexing schemes

that facilitate structural join processing.

[104] proposed a “Multi-predicate Merge Join” algorithm to solve containment

queries, which is generally considered as the first structural join algorithm. The

containment relationship referred in [104] is essentially the same idea as ancestor-

descendant relationship which we mentioned earlier in this thesis. A pair of numbers

(docno, begin:end, level) is assigned to every element in the XML document, where

docno refers to the identifier of the document, begin is the starting position (in term
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of words) of the XML element, end is the ending position (in term of words) of

the element, and level refers to the level where the element is in the corresponding

XML tree. The Containment Property is defined as follows[104]:

Definition 2.2 Containment Property: An occurrence of an XML element

(docno1, begin1:end1, L1), contains an occurrence of another XML element (docno2,

begin2:end2, L2), if and only if: (1) D1 = D2, and (2)begin1:end1 nests begin2:end2.

For example, (1,1:23,0) contains (1,9:13,2).

The inputs to Multi-predicate Merge Join algorithm are two lists of elements,

which are in fact the inputs to most structural join algorithms. Each list contains

the XML element with same label and is sorted by docno and begin position. The

algorithm is presented in Figure 2.7

The whole join process contains two logical steps. In the first step, the equality

predicate on docno is used to produce pairs of rows whose docno values match. In

the second step, the inequality predicates are applied on these matching rows. The

Multi-predicate Merge Join is essentially a form of nested-loop join, except that

seeking is not done on an index, but directly on data records. The “nested-loop”

join is performed in the following way: for each outer row, a seek is done on the

inner rows until a “start record” is found, then a record scan is conducted and each

row during the scan is attempted to join with the outer row; the record scan ends

at a “stop record”. The next seek does not need to start from the first record, but

instead can start from the beginning of the last scanned record. A merge join can

be done this way since both the inner rows and the outer rows are sorted.

[66] proposed the decomposition method to solve XML path queries. A com-

plex path expression can be decomposed into several simple path expressions. The
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Multi-predicate Merge Join (list1, list2)

begin

set cursor1 at beginning of list1

set cursor2 at beginning of list2

while (cursor1 <> end of list 1 and

cursor2 <> end of list 2) do

if (cursor1.docno < cursor2.docno) then

cursor1 ++

else if (cursor2.docno < cursor1.docno) then

cursor2 ++

else

mark = cursor2

while (cursor2.position < cursor.position and

cursor2 <> end of list2) do

cursor2 ++

if (cursor2 == end of list2) then

cursor1++

cursor2 = mark

else if (cursor1.val contains cursor2.val) then

mark = cursor2

do

merge cursor1 and cursor2 values

cursor2 ++

while (cursor1 value contains cursor2 value and

cursor2 <> end of list2)

cursor1 ++

cursor2 = mark

endif

endwhile

endif

endwhile

end

Figure 2.7: The Multi-predicate Merge Join Algorithm
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intermediate results from these simple path expressions are combined or joined to-

gether to obtain the final result. For example, a regular path expression of the

form E1/E2/E3/E4 can be decomposed to E1/E2 and E3/E4. Then, the interme-

diate results from E1/E2 and E3/E4 are joined together to produce the final result.

In general, a regular path expression can be decomposed into the following basic

subexpressions:

1. a subexpression with a single element or a single attribute,

2. a subexpression with an element and an attribute,

3. a subexpression with two elements,

4. a subexpression that is a Kleene closure(+,*) of another subexpression,

5. a subexpression that is a union of two other subexpressions.

EA-Join, EE-Join and KC-Join were designed to respectively process subex-

pression 2, 3 and 4. Both EE-join and EA-join can be viewed as structural join.

EE-join is principlely similar to Multi-predicate Merge Join mentioned above. To

determine parent-child relationship between attributes and elements, we can use

either containment comparison, as that is used to determine relationship between

elements, or we can directly retrieve the information from the index.

The EA-Join algorithm joins two intermediate results from subexpression, which

are a list of elements and a list of attributes. The skeleton of algorithm is shown

in Figure 2.8. Since the element (or attribute) index maintains the element (or

attribute) records in a sorted order by document identifiers and then position val-

ues, the join of the intermediate results can be obtained by a two-step sort-merge

operation without sorting. In the first step, elements and attributes are merged

according to their document identifers. In the second step, every pair element list
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and attribute list with the same document identifier is merged by examining the

parent-child relationship based on containment comparison, or just the information

retrieved from index.

Input :
{E1, ...,Em}: Ei is a set of elements having a common document identifier;
{A1, ...,Am}: Aj is a set of attributes having a common document identifier;
Output:
A set of (e,a) pairs such that the element e is the parent of attribute a;
//Sort-merge {Ei} and {Aj} by doc. identifier.
foreach Ei and Aj with the same did do

//Sort-merge Ei and Aj by PARENT-CHILD relationship
foreach e ∈ Ei and a ∈ Aj do

if (e is parent of a) then output (e,a);
end

end

Figure 2.8: The EA-Join algorithm

The EE-Join algorithm , shown in Figure 2.9, joins two lists of elements. Like

EA-Join, it performs join by a two-step sort-merge operation sorting. But un-

like EA-Join, two sets of elements with a matching document identifier cannot be

merged in a single scan by EE-Join algorithm. For example, for a pair of elements a

and b, their ancestor-descendant is determined by examining whether the order(b)

is contained in [order(a), order(a) + size(a)]. Since a descendant element can have

more than one ancestor element, it may be necessary to scan the b element list

more than once.

[12] proposed a stack-based tree-merge algorithm for structural join. It has been

proved to be more efficient than traditional tree-merge algorithm as it avoids scan-

ning descendant list multiple times. The algorithm takes a (docID, startPos:endPos,

levelNum) representation of elements, which is similar to the (docno, begin:end,

level) representation of elements in [104]. According to the order of output list,

the stack-based structural join algorithm family has two members. The first one
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Input :
{E1, ...,Em} and {F1, ...,Fn}: Ei or Fj is a set of elements having a common
document identifier;
Output:
A set of (e,f ) pairs such that the element e is an ancestor of element f ;
//Sort-merge {Ei} and {Fj} by doc. identifier.
foreach Ei and Fj with the same did do

//Sort-merge Ei and Fj by ANCESTOR-DESCENDANT relationship
foreach e ∈ Ei and f ∈ Fj do

if (e is an ancestor of f) then output (e,f);
end

end

Figure 2.9: The EE-Join algorithm

is called “Stack-Tree-Desc”, where the output list [(ai,dj)] is sorted by (docID,

dj.startPos, ai.startPos). The second one is called “Stack-Tree-Anc”, where the

output list is sorted by (docID, ai.startPos, dj.startPos).

The algorithm “Stack-Tree-Desc” is presented in Figure 2.10. The basic idea is

to take the two input operand lists, AList and DList, both sorted on their (docID,

startPos) values and conceptually merge (interleave) them. As the merge proceeds,

the ancestor-descendant relationship between the current top of the stack and the

next node in the merge, which is in fact the node with the smallest value of startPos,

is determined. Based on the comparison, the stack is manipulated and the output

is produced. The stack at all times has a sequence of ancestor nodes and each node

in the stack is a descendant of the node below it. When a new node from the AList

is found to be a descendant of the current top of the stack, it is simply pushed on

to the stack. When a new node from the DList is found to be a descendant of the

current top of the stack, then it is a descendant of all the nodes in the stack. Also,

it is guaranteed that it will not be a descendant of any other node in AList. Hence,

the join results involving this DList node with each of the AList nodes in the stack

are output. If the new node in the merge list is not a descendant of the current
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top of the stack, then it is guaranteed that no future node in the merge list is a

descendant of the current top of the stack, so the stack may be popped, and the

rest is repeated with the new top of the stack.

Algorithm Stack-Tree_Desc(AList, DList)

/* Assume that all nodes in AList and DList have the same docID */

/* AList is the list of potential ancestors,in sorted order of

startPos */

/* DList the list of potential descendants in sorted order of

startPos */

a = AList->firstNode; d = DList->firstNode; OutputList = NULL;

while (the input lists are not empty or the stack is not empty) {

if((a.startPos > stack->top.endPos) &&

(d.startPos > stack->top.endPos)) {

/* time to pop the top element in the stack */

tuple = stack->pop();

}

else if (a.startPos < d.startPos) {

stack->push(a)

a = a ->nextNode

}

else {

for (a1 = stack->bottom; a1 != NULL; a1 = a1->up){

append (a1,d) to OutputList

}

d = d->nextNode

}

Figure 2.10: Algorithm Stack-Tree-Desc

The algorithm Stack-Tree-Anc is presented in Figure 2.11. It is not straightfor-

ward to modify Algorithm Stack-Tree-Desc to produce results sorted by ancestor

because of the following: if node a from AList on the stack is found to be an ances-

tor of some node d in the DList, then every node a
′
from AList that is an ancestor
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of a (and hence below a on the stack) is also an ancestor of d. Since the startPos

of a
′

precedes the start position of a, the output of the join pair (a,d) must be

delayed until after (a
′
,d) has been output. But there remains the possibility of a

new element d
′
after d in the DList joining with a

′
as long a

′
is on stack, so the

pair (a,d) cannot be output until the ancestor node a
′
is popped from stack.

The solution is to associate two lists with each node on the stack: the first,

called self-list is a list of result elements from the join of this node with appropriate

DList elements, the second, called inherit-list is a list of join results involving AList

elements that are descendants of the current node on the stack. When a new node

from the AList is found to be a descendant of the current top of the stack, it is

simply pushed on to the stack. When a new node from the DList is found to be a

descendant of the current top of the stack, it is simply added to the self-lists of the

nodes in the stack. If no new node (from either list) is a descendant of the current

top of the stack, then it is guaranteed that no future node in the merge list is a

descendant of the current top of the stack, so the stack can be popped and test is

repeated with the new top of the stack. When the bottom element in the stack is

popped, its self-list is output and then its inherit-list. When any other element in

the stack is popped, no output is generated. Instead, its inherit-list is appended

to its self-list, and the result is appended to the inherit-list of the new top of the

stack.

Various index schemes, and structural join algorithms that make use of these

indexes, have then been proposed. We introduce some major research work below.

[66] has first proposed an index structures XISS for structural join algorithms.

The purpose of these index structures is to allow fast retrieval of elements that

will participate the proposed EE/EA-joins. The XISS index structure consists of
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Algorithm Stack-Tree_Anc(AList, DList)

/* Assume that all nodes in AList and DList have the same docID */

/* AList is the list of potential ancestors,in sorted order of

startPos */

/* DList the list of potential descendants in sorted order of

startPos */

a = AList->firstNode; d = DList->firstNode; OutputList = NULL;

while (the input lists are not empty or the stack is not empty) {

if((a.startPos > stack->top.endPos) &&

(d.startPos > stack->top.endPos)) {

/* time to pop the top element in the stack */

tuple = stack->pop();

if (stack->size == 0) { /* the elements were popped. */

append tuple.inherit-list to OutputList

}

else{

append tuple.inherit-list to tuple.self-list

append the resulting tuple.self-list to

stack->top.inherit-list

}

}

else if (a.startPos < d.startPos) {

stack->push(a)

a = a ->nextNode

}

else {

for (a1 = stack->bottom; a1 != NULL; a1 = a1->up){

if (a1 == stack->bottom)

append (a1,d) to OutputList

else

append (a1,d) to the self-list of a1

}

d = d->nextNode

}

Figure 2.11: Algorithm Stack-Tree-Anc
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three major components: element index, attribute index and structure index. Both

the element index and attribute index are implemented as a B+-tree using name

identifiers (nid) as keys. Each entry in a leaf node points to a set of fixed-length

records for elements (or attributes) having an identical name string, grouped by

document they belong to. The element index allows quick retrieval of all elements

with the same name string. Each element record includes the extended preorder

label and other related information of the element, and the element records are in

a sorted order by the order values as shown in Figure 2.12. The attribute index

has the similar structure as the element index.

.....

Document ID List

B+ tree

Element nid

Element List with the 
same Name in the Same
Document

Element Record

<Order Size>
Depth
Parent ID

Figure 2.12: XISS element index structure

[25] proposed a structural join algorithm Anc-Des-B+, base on the use of B+-

trees, to skip descendants that do not match the considered structural relationship.

The algorithm Anc-Des-B+ is shown in Figure 2.13. Initially, variables a and d

denote the first elements (having the smallest start position ) of the two sorted lists

A and D. Then the algorithm systematically moves a and d forward and performs

the join until one of the lists becomes empty. During the execution, a stack of
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element from list A is maintained. This is similar to the Stack-Tree algorithm in

[12]. However, in algorithm Anc-Des-B+, steps 11 and 15 utilize the B+-tree to

skip elements from the A and D lists, respectively.

Algorithm Anc-Des-B+ (List A, List D)
1. Let a, d be the first elements of A and D;
2. while (not at the end of A or D) do
3. if (a is an ancestor of d) then
4. Locate all elements in A that are ancestors of d

and push them into stack;
5. Let a be the last element pushed;
6. Output d as a descendant of all elements in stack;
7. Let d be the next element in D;
8. else if (a.end < d.start) then
9. Pop all stack elements which are before d;
10. Let l be the last element popped;
11. Let a be the element in A(locate using B+-tree)

having the smallest start that is larger than l.end;
12. else /* a is after d, or a is a descendant of d */
13. Output d as a descendant of all elements in stack;
14. if (ancestor stack is empty) then
15. Let d be the element in D (locate using B+-tree)

having the smallest start that is larger than a.start;
16. else
17. Let d be the next element in D;
18. endif
19. endif
20. endwhile

Figure 2.13: Algorithm Anc-Des-B+

[25] also proposed an enhancement that further improves the join performance.

This enhancement relies on the use of Containment Forest (C-forest). A Contain-

ment Forest (C-forest) is a structure linking the elements from the same tag. Each

element corresponds to a node in the structure and is linked to other elements for

the same tag via parent, first-child and right-sibling pointers. These pointers are

defined as following.

• Given nodes n and np from the same tag, node np is called the parent of node
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n iff: (a)np is n’s ancestor in the document tree; and (b) there is no other

ancestor node na of n from the same tag, such that np is an ancestor of na.

n is therefore called a child of np.

• Given same-tag nodes n and nc, node nc is called the first-child of n iff: (a)

nc is a child of n; and (b) there does not exist another same-tag node that is

a child of n which is before nc (node n1 is before n2 iff n1.end < n2.start).

• Given same-tag node n and ns , ns is the right-sibling of n iff: (a) n and ns

have the same parent; and (b) there is no same tag node between them which

has the same parent (n2 is between n1 and n3 iff n1.end < n2.start and n2.end

< n3.start).

A C-forest has the following properties:

• The (start,end) interval of each node contains all intervals in its subtree (hence

the name containment forest)

• The start numbers in the forest follow a preorder traversal.

• The start(end) numbers of sibling nodes are in increasing order.

A C-forest for a given tag can be easily embedded within the B+-tree that

indexes the tag’s elements, which is accomplished by adding C-forest parent and

next-sibling pointers among the leaf records of the B+-tree. First-child pointers

are implicit because an element and its first child are always stored subsequently

in the B+-tree. The Anc-Des-B+ join algorithm also works when the B+-tree is

enhanced with the C-forest pointers. One difference appears in step 11 that finds

the element anew which has the smallest start position larger than a.end. Consider

the embedded C-forest, the relationship between anew and a is as follows: if a has
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a right-sibling then anew = a.sibling. If a does not have a right-sibling, but a’s

parent has a sibling, then anew = a.parent.sibling, and so on. If neither a nor any

of a’s ancestors have right-sibling, then the join algorithm completes since no other

A elements need to be examined.

The index structure XR-tree, proposed in [47], further improves the idea pre-

sented in [66] to skip not only descendants but also ancestors. The basis of this

index scheme, stab and stab list are defined as following.

Definition 2.3 Given a key k and an element with region Ei(si, ei), Ei is said

to be stabbed by k, or k stabs Ei, if si ≤ k ≤ ei. Given a set or ordered keys,

kj(0 ≤ j < n), where kx < ky if x < y, and an element Ei(si, ei), Ei is said to be

primarily stabbed by kj, or kj primarily stabs Ei, if (1)si ≤ k ≤ ei, and (2) for all

l, l < j, kl < si, that is, kj is the smallest key that stabs Ei.

Definition 2.4 Given a set or ordered keys,kj(0 ≤ j < n), where kx < ky if x <y,

and a set of elements ε =
⋃

i(si, ei), the stab list of a key kj is the list of elements

in ε that are stabbed by kj, denoted as SLj or SLkj
. The primary stab list of a key

kj is the list of elements in ε that are primarily stabbed by kj, denoted as PSLj or

PSLkj
.

Definition 2.5 The start and end positions, psj, pej of key kj with primary stab

list PSLj are defined the start and end positions of the first element of PSLj when

PSLj 6= ∅, and (nil, nil) if PSLj = ∅

An XR-tree is essentially a B+-tree with a complex index key entry and extra

stab lists associated with its internal nodes. It is defined as following[47],

Definition 2.6 An XR-tree for a set of region-encoded XML elements is a tree

with the following properties:
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1. An XR-tree is a balanced tree.

2. An internal node contains m key entries in the form of (ki, psi, pei), with

k0 < k1 < · · · < km−1, and d leq m leq 2d, where d is the degree of the

XR-tree.

3. An internal node with m keys also contains m + 1 pointers pj, (0 ≤ j ≤ m),

pointing to the nodes in the next level of the tree, such that all keys in the

node pointed by pi are less than ki, and all keys in the node pointed by pi+1

are greater than or equal to ki, respectively.

4. An internal node n is associated with a stab list, SL(n), which holds all el-

ements Ei, such that Ei is stabbed by at least one key in n but not stabbed

by any key of any ancestor of n. Each element in SL(n) is in the form of

(s,e,pointer), where (s,e) is the region of the element and pointer points to

the data entry of the element.

5. SLj,PSLj for the set of all keys kj in an internal node n are defined on

the list SL(n) by Definition 2.4. Each pair of (psj, pej) of kj is defined by

Definition 2.5.

6. Leaf nodes contain element entries, in the form of (s,e,InStabList, pointer),

where (s,e) is the region of the element, and s is the index key. InStabList is

a flag indicating whether the element is included in any stab list of internal

nodes, and pointer points to the data entry of the element.

7. Leaf nodes are linked from left to right.

To process structural join with XR-tree index, two basic operations are first

introduced. The first one is FindDescendants, i.e., given an element Ea, find all
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its descendants in an element set indexed by an XR-tree. The second one is Find-

Ancestors, i.e., given an element Ed, find all its ancestors in an element set indexed

by an XR-tree.

For a given element(sa, ea), finding all its descendants is to find all elements Ei

such that sa < Ei.start < ea, which is a simple range query over the start position

of elements which are indexed in the backbone of XR-trees. The algorithm is

rather straightforward and there is no need to access stab lists when searching for

descendants.

For a given element (sd, ed),finding all its ancestors is to find all elements Ei

such that Ei.start < sd < Ei.end. In other words, it is to search for all elements

stabbed by sd.The basic idea is, during the navigation from the root to the leaf

page, the stack lists of internal nodes is searched to collect elements stabbed by sd.

After reaching the leaf page, those elements stabbed by sd but not included in the

stab lists of internal nodes is output. The FindAncestors algorithm is presented in

Figure 2.14.

Algorithm: Find Ancestors

Description: Find all ancestors of ED = (sd, ed) in XR-tree T.

Let node be the root of T;
Search non-leaf pages
while node is not a leaf page do

Retrieve all elements stabbed by sd in its stab list, by calling SearchStabList.
Find the largest key ki, such that ki < sd.
If found, let node be ki.rightChild; otherwise, let node be the left child of the
first index entry.

[Search within the leaf page] Search from the first element of node to output ele-
ments that are stabbed by sd but with InStabList flags being no, until an element
whose start position is greater than sd is encountered.

Figure 2.14: Algorithm FindAncestors
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The algorithm for finding stabbed elements in a stab list is shown in Figure

2.15. Assume that sd falls in [ki, ki+1). It is clear that sd cannot stab any element

in PSLj, where j > i + 1 because all such elements have their start values larger

than ki+1, i.e., these elements are “behind” sd. Therefore, only PSLc of kc, where

c ≤ i + 1, needs to be checked.

Algorithm: SearchStabList
Description: Search the stab list of an internal node I for all elements stabbed
by sd.

Let ki be the key in I, such that ki ≤ sd < ki+1;
for c = i + 1 to 0 do

if psc 6= nil and psc < sd < pec then
Scan PSLc and output the scanned elements until an element not
stabbed by sd is encountered;

endif
endfor

Figure 2.15: Algorithm SearchStabList

The structural join algorithm using the XR-tree to skip ancestors or descen-

dants is outlined in Figure 2.16. According to the results presented in [64], the

performance of XR-tree highly depends on the buffer size mainly because of the

additional scans on the stab-lists. If the buffer size is small, XR-tree is likely to per-

form less efficient than the B+-tree index approach presented in [25]. If the buffer

size is big(100kb, as in their experiments), XR-tree can outperform the B+-tree

index approach presented in [25] because stab-list pages can be pinned in memory.

Also according to the results presented in [64], XR-tree has higher update cost

because additional maintenances are required for the stab-lists.
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Algorithm: Stack-based Structural Joins with XR-trees
Input: A is the ancestor set and D is the descendant set.

CurA := First(A);
CurD := First(D);
stack := ∅;
while CurA 6=Endof(A) and CurD 6=Endof(D) do

if stack 6= ∅ then
pop all elements that are not ancestors of CurD;

endif
if CurA.start < CurD.start then

Ad = FindAncestors(A,CurD.start);
for each aj ∈ Ad, if aj 6∈ stack, put it on the stack;
output pairs (a ∈ stack, CurD);
CurA := first element in A whose start > CurD.start;
CurD := next element in D after CurD;

else
if stack 6= ∅ then

output pairs (a ∈ stack, CurD);
CurD := next element in D after CurD;

else
CurD := first element in D whose start > CurA.start;

endif
endif

endwhile

Figure 2.16: Stack-based Structural Join Algorithm with XR-trees

2.3.2 Non-SJ based Query Processing

Quite a number of other techniques were proposed to speed up XML query pro-

cessing other than structural join algorithms. Some work are based on building

summary indexes, usually in the form of a labelled directed graph, of XML docu-

ment [81, 26, 39, 73, 29, 38, 53, 75]. The basic idea is to extract paths and summary

nodes from the original XML data. Such an index typically consists of a structural

summary, together with a mapping from summary nodes to actual data nodes. It

can be used to evaluate path expressions directly by pruning search space. [29] en-

codes paths as strings and uses a Patricia trie[56] based index called Index Fabric
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to index these strings. A major drawback of these kinds of approaches is that they

cannot efficiently solve expressions that contain “//”,where ancestor-descendant

relation is involved, as it may be necessary to scan all stored paths to find possible

matches.

Many other techniques have been proposed recently to solve XML query. Among

them, the technique presented in [40], based on the employment of R-trees [41] and

B-trees, is able to support any kind of structural relationship, according to XPath

[9] specification. Holistic twig join [19] was proposed to match XML twig patterns

without decomposition. [46] proposed holistic algorithms to solve twig queries with

OR predicates. The technique proposed in [51] extends the notion of covering index

to deal with branching path expressions. ViST [96] proposed a B-tree base approach

to directly solve branching queries without applying structural join algorithm. [83]

transforms both XML document and twig query patterns into sequences of labels

by Prüfer′s methods[43] and then identifies the occurrence of twig pattern by

performing subsequence matching on these Prüfer′s patterns.

Set-based techniques [19, 21, 67, 68] use a chain of linked stacks to compactly

represent partial results to root-to-leaf query paths, which are then composed to

obtain matches for the twig pattern. The algorithm presented in [19] makes use

of the (docID, startPos:endPos,level) representation of elements. Each node q is

query twig pattern is associated with a stream Tq, The stream contains the posi-

tional representations of the database nodes that match the node predicate at the

twig pattern node q. The nodes in the stream are sorted by their (docID, startPos)

values. A stack Sq is also associated with each query node q. Each data node in

the stack consists of a pair: (positional representation of a node from Tq, pointer

to a node in Sparent(q)). At every point during the computation, (i) the nodes in

stack Sq (from the bottom to top) are guaranteed to lie on a root-to-leaf path in
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the XML database, and (ii) the set of stacks contain a compact encoding of partial

and total answers to the query twig pattern, which can represent in linear space a

potentially exponential (in the number of query nodes) number of answers to the

query twig pattern. Figure 2.17 illustrates the stack encoding of answers to a path

query for a sample dataset. The answer [A2, B2, C1] is encoded since C1 points to

B2, and B2 points to A2. Since A1 is below A2 on the stack SA, [A1,B2,C1] is also

an answer. Finally, since B1 is below B2 on the stack SB, and B1 points to A1, [A1,

B1, C1] is also an answer. [A2,B1,C1] is not an answer, since A2 is above the node

(A1) on stack SA to which B1 points.

C1

A

B

C

C1 A1

A2B2

(c) Stack encoding

A1 B1 C1
A1 B2 C1
A2 B2 C1

(a) Data (b) Query

(d) Query results

B1

B2

A1

B1

A2

Figure 2.17: Compact encoding of answers using stacks

Algorithm TwigStack[19], which computes answers to a query twig pattern,

is presented in Figure 2.18. It operates in two phases. In the first phase, some

(but not all) solutions to individual query root-to-leaf paths are computed. In

the second phase, these solutions are merge-joined to compute the answers to the

query twig pattern. Before a node, hq, from the steam Tq is pushed on its stack Sq,
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TwigStack ensures that: (i) node hq has a descendant hqi
in each of the streams

Tqi
for qi ∈ children(q), and (ii) each of the nodes hqi

recursively satisfies the first

property. Thus, when the query twig pattern has only ancestor-descendant edges,

each solution to each individual query root-to-leaf path is guaranteed to be merge-

joinable with at least one solution to each of the other root-to-leaf paths. This

ensures that no intermediate solution is larger than the final answer to the query

twig pattern.

Algorithm TwigStack(q)
//Phase 1
while ¬end(q)

qact = getNext(q)
if (¬isRoot(qact))

cleanStack(parent(qact, nextL(qact))
if (isRoot(qact) ∨ ¬empty(Sparent(qact))

cleanStack(qact,next(qact)
moveStreamToStack(Tqact ,Sqact , pointer to top(Sparent(qact)))
if (isLeaf(qact))

showSolutionWithBlocking(Sqact ,1)
else advance (Tqact)

//Phase 2
mergeAllPathSolutions()

Function getNext(q)
if (isLeaf(q)) return q
for qi in children(q)

ni = getNext(qi)
if (ni 6= qi) return ni

nmin = minargni
nextL(Tni

)
nmax = maxargni

nextL(Tni
)

while(nextR(Tq < nextL(Tnmax))
advance (Tq)

if (nextL(Tq < nextL(Tnmin
)) return q

else return nmin

Figure 2.18: Algorithm TwigStack

A more efficient variation of TwigStack algorithm is TwigStackXB[19], which

uses a variation of B+-tree, the XB-tree, to speed up the algorithm by skipping parts
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of the input list without miss any matches. One of the limitations of TwigStackXB

is that the effectiveness of skipping data depends on the distribution of the matches

in the input lists. Also, both TwigStack and TwigStackXB algorithm solve twig

pattern involving parent-child relationship less efficiently than ancestor-descendant

relationship. The algorithms may need to check unnecessary matches that are not

included in the final result.

2.4 XML Update

Compared with XML query evaluation, the topic of updating XML documents has

received much less attention from the research community. Current research efforts

mainly focus on how to update XML index efficiently, so that no rebuilding of the

index is required. For the indexes making use of labeling schemes, most work con-

centrates on the development of various dynamic labeling schemes that cope with

updates, which we have already introduced in Section 2.2. In this section, we will

introduce some other works on this topic.

In [91], a set of basic update operations for XML data has been proposed

and the XML query language, XQuery, is extended to incorporate these update

operations. Assume there is the presence of a path-expression-matching operation

that binds variables to objects within the input XML document and returns tuples

of references to the selected objects. One of these bindings will be the target of

the sequence of operations, and is assumed implicit in the specification below. The

update operations also take a set of parameters. The proposed primitive operations

of an update are described as:

• Delete(child): if the child is a member of the target object, it is removed.
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Valid types for child include PCDATA, attribute, IDREF within an IDREFS

list, and element. If the child is a reference within an IDREFS, only the

single entry is removed - the remainder of the IDREFS is preserved.

• Rename(child, name): if the child is a non-PCDATA member of the target

object, it is given a new name, Note that an individual IDREF cannot be

renamed within an IDREFS, such a rename operation will rename the entire

IDREFS.

• Insert(content): inserts new content, which can be PCDATA, element, at-

tribute, or reference, into target. An attempt to insert an attribute with

the same name as an existing attribute fails. An attempt to insert a refer-

ence with the same name as an existing IDREFS adds an extra entry into

the IDREFS. In an ordered execution model, all non-attribute insertions are

defined to occur at the end, i.e., the new contend is appended.

• InsertBefore(ref, content): (defined only for ordered execution). If ref is

a child element of target or PCDATA, then content must be an element or

PCDATA, and it will be inserted directly before ref in target ’s list of children.

If ref is an entry in an IDREFS, then content must be an ID and it it inserted

directly ahead of ref in the IDREFS. InsertAfter(ref, content) is defined

analogously.

• Replace(child, content): atomic replace operation, equivalent to InsertBe-

fore(child, content) followed by Delete(child) in the ordered model, or (In-

sert(content), Delete(child)) under unordered execution.

• Sub-Update(patternMatch, predicates, updateOp); starting at the target el-

ement, invokes a new pattern-matching operation over the input, returning
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bindings that are filtered by the predicates. For each valid combination of

bindings, recursively invokes the update operation. This allows expressing

updates at multiple levels within a complex XML structure.

A full update-operation may consist of several of these sub-operations that

execute in sequence. Therefore, several additional restrictions are added to the

semantics of the operations in order to prevent ill-defined semantics. All bindings

within Sub-Update operations are made over the input before any updates take

place. Likewise, content is evaluated for each target before the sequence of updates

is executed. Finally, a binding that has been deleted cannot be used by any oper-

ations later in the sequence (except as content).

The work in [52], based on the notion of graph bisimilarity, analyzes two kinds

of updates - the addition of a subgraph, intended to represent the addition of a

new document to the database, and the addition of an edge, to represent a small

incremental change. The details of the first on is shown below as it is more related

to our proposed scheme in Chapter 5.

The notion of graph bisimilarity[52] is defined as below.

Definition 2.7 A symmetric, binary relation ≈ on VG is called a bisimulation if,

for any two data nodes u and v with u ≈ v, we have that

1. u and v have the same label, and

2. if u’ is a parent of u, then there is a parent v’ of v such that u’≈v’, and

vice-versa

Two nodes u and v in G are said to be bisimilar, denoted by u ≈b v, if there is some

bisimulation ≈ such that u ≈ v
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The partition of VG induced by ≈b defines an index graph, refereed to as

Bisim(G) or simply “the 1-index [73]”. Suppose there is a database of XML

documents on which the 1-Index is already built and a new document is added

to the database (suppose there are no inter-document references). The problem is

how to find the new 1-index without having to recompute it from scratch. Let the

data graph corresponding to the database before the addition of the new file be G,

the 1-index be IG and let the addition of the new file correspond to the addition of

a new subgraph H under the root. The following theorem[52] enables computation

of the modified index from the old index and the index on the new file, without

having to look at the whole of the current data.

Theorem 2.4 Let G be a data graph, Let Bisim(G) be the 1-Index constructed

from the bisimulation relation and Bisimref (G) be the index graph constructed from

any refinement of Bisim(G), Then Bisim(Bisimref (G)) = Bisim(G). Here, graph

equality means isomorphism.

procedure subgraph-add(G,H)
//Graph H added under root of G

1. Let I ← 1-Index of G
2. Compute the 1-Index of H, Let it be IH

3. Add IH as a subgraph under the root of I. Let this graph be I’
4. Treat I’ as a data graph and compute its 1-index. Let it be Inew

5. Set the extents of the nodes of Inew by blowing up the current extents
6. return Inew

end

Figure 2.19: Algorithm Addition of a subgraph

The algorithm to find new 1-index without recomputing it from scratch is out-

lined in Figure 2.19. While computing Inew from I’, the index extents have nodes

of I’. Therefore, the nodes of I’ , together with their respective extents that consist
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of data nodes, needs to be “blow up” in order to obtain the original data nodes

corresponding to an extent.

2.5 Summary

In this chapter, we have reviewed research works in the area of XML document

processing. We first reviewed several mapping schemes which map XML docu-

ments to relational DBMS. Mapping XML documents into relational DBMS is the

current trend of storing XML document, yet it is facing many challenges to han-

dle irregular structures of XML documents. Building native XML DBMS, where

XML documents are stored as plain documents, is attracting more and more at-

tentions, but it still needs time to meet industry requirements. We then reviewed

various labeling schemes which play important roles in XML document query pro-

cessing. Labeling XML elements allows us to quick determine ancestor/descendant

relationships between elements, but it also incurs processing overhead, especially

when update operations take place. Next, we reviewed technologies used to process

XML queries. Structural join was proposed to match XML elements with ances-

tor/descendant relationships, which is generally considered as the core operation

to solve XML path queries. Some other technologies that are independent of struc-

tural join were also proposed to overcome the major disadvantage of structural

join, i.e., generation of possibly large intermediate results. We reviewed research

works regarding XML update at last. Most research efforts on this topic focus on

developing various dynamic labeling schemes. Besides that, there are also research

works focusing on dynamic inserting/removing sub-graphs to/from original XML

trees.
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The XStorM Mapping Scheme

3.1 Introduction

There are various possible ways to store and query XML data: ranging from

a primitive file system, a relational database, an object-oriented database to a

special-purpose system (the “native” XML database). The file system is the most

straightforward option, but it lacks support for querying the XML data. An object-

oriented database system has rich data modeling capabilities, which are useful for

clustering XML elements and sub-elements. Unfortunately, the current generation

of object-oriented database systems is not fully developed to process queries with

heavy workload on large databases. Native XML database systems should work

best theoretically as they are specially designed to work on XML data. However,

such systems are not yet so common and take time to get mature enough to be

able to compete with relational database systems.

Therefore, the main trend is to leverage the robust and widespread technology

by using a relational database system. Relational stores are great at providing

multiple distinct logical views on the same data with very good scaling and trans-
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actional characteristics. Oracle 8i lets the user or system administrator decide how

XML elements are stored in relational tables. [17, 60, 88, 93] generate relational

schema(s) based on the given XML DTD or schema. STORED [32] determines

relational schemas based on a data-mining algorithm and any data that cannot be

accommodated in these schemas is stored in external data structures, which are

called overflow graphs. This scheme faces the problem of integrating the relational

storage with external data structures and in case there are too many overflow graphs

due to highly irregular data instances, its query performance is likely to degrade

significantly. [37] studies various schemes to map edges and nodes in the graphi-

cal representation of XML document into relational tables. The Binary approach,

which has the best experimental performance among all these schemes, creates a

relational table for each XML tag and stores the value accordingly. There are as

many Binary tables as there are different tags. The values of the attributes are

stored together (inlined) in the same table. The problem of this approach is that

number of operations required to answer a query is proportional to the number of

attributes involved, which makes the query processing very inefficient.

We address the above mentioned drawbacks and propose a new mapping scheme,

XStorM, to store XML data in relational database. We distinguish elements that

represent real world entities (objects) from elements that represent properties of

objects (attributes). We avoid excessive fragmentation by mapping each object,

together with the majority of its attributes, into a core relational table. And for

the overflow data that cannot be accommodated into core table, we store them

in separate relational tables, or overflow tables. We also embed structural infor-

mation into the attribute/table name for the purpose of fast reconstruction of the

original XML document. Our experiments show that XStorM gives good query

performance, uses minimal space requirements and is scalable.
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The rest of this chapter is organized as follows. We present both table structure

of XStorM and the procedure to generate these tables in Section 3.2. Section 3.3

gives the performance study results and we conclude in Section 3.4.

3.2 XStorM Mapping Scheme

In this section, we will introduce our proposed XStorM mapping scheme, including

both its table structure, and the procedure to generate these relational tables.

3.2.1 The table structure

As we have mentioned earlier, we observe that there are two types of XML elements:

one that denotes objects or entities in the real world and one that denotes attributes

or the properties of entities. Note that in XML, an attribute can also be defined

within the start tag of an element, for example, in the following element

< book btype = “textbook” > myBook < /book >

where btype is an attribute of the book element. Such attributes bear textual

information instead of structural information and we have to mark these attributes

when we store them in a relational database so that we can reconstruct the XML

data instance correctly. In addition, we can differentiate between collections of

attributes versus collection of objects. Figure 3.1 shows how authors becomes a

collection of objects when the XML document records more information about an

author such as institution, country, etc. in addition to name. Note that authors

can also be a mixed collection of attributes (author just have name) and objects

(author has name, institution and country or just name and institution) as shown

in Figure 3.2.
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authors

authorauthor

Gillian Ram James Braun

name institution country name institution country

Welsh 
University

Tele-Lab UKUSA

Figure 3.1: Example of Authors as a collection of objects

It is important that different types of objects should be stored in separate

tables since they are likely to be referenced somewhere else. For example, if author

is a complex object consisting of name, institution, country ; then it should be

stored in a separate table since a person is likely to write more than one article

and repeating his information for each article leads to redundancy and updating

anomalies. However, we have a number of options when authors is just a collection

of author names. For example, if the articles almost always have two authors, then

we can consider storing all the attributes of article including author1 and author2

in the same table. In practice, however, this may not be possible as the XML data

is often irregular. An article A may have 5 authors while another article B may

have only 2. If we map the article element together with all its attributes (including

fields author1,author2,author3,author4,author5) to a relational table, then all the

author fields for article B will be NULL except for author1 and author2. This
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authors

Gillian Ram

name

authorauthor

James Braun

name institution country

Tele-Lab UK

Figure 3.2: Example of Authors as a mixed collection of attributes and objects

situation is worsened if the majority of the articles have two authors. Adding more

authors to an article becomes problematic without expanding the table.

One solution is to store collections of attributes in a separate table. Hence,

we can have a core relational table for an object containing all the single-valued

attributes and separate overflow tables for collections of attributes. This scheme

resembles how multi-valued attributes are handled in relational data model. How-

ever, this may not work too well if an XML element has many different small

collections of attributes, leading to many overflow tables and subsequent joins for

heavy queries.

On the other hand, suppose we know that the majority of the articles have two

authors, with a few outliers that have more than two authors or even one author.

In this case, we can incorporate author1 and author2 into the core relational table

for article. Additional authors will be stored in an overflow author table. If an
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article has only one author, then we simply set the author2 field to NULL.

Table 3.1 shows the core relational table obtained by assuming that the major-

ity of the articles have two authors and Table 3.2 shows the corresponding over-

flow table. Note that we have embedded the structural information of the XML

document in the attributes authors.author1 and authors.author2 and overflow ta-

ble name article.authors.author. The subscripts are used to ensure uniqueness of

names.

Core Article

articleID issueNo title initPage endPage authors.author1 authors.author2 abstract

1 16 Inter... 365 376 Gillian Ram James Braun ...

2 18 Parallel... 123 133 Jacob Linz Paul Tan ...

Table 3.1: Core table example

Overflow Atricle.authors.author

articleID index author

2 1 Kelvin Tan

Table 3.2: Overflow table example

3.2.2 The mapping procedure

In this section, we describe the procedure to map XML data into relational tables

by our proposed XStorM mapping scheme. The steps involved are:

1. Identification of XML objects.

2. Identification of frequent tree patterns in XML graph.

3. Generate core relational tables.
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4. Generate overflow tables.

We will elaborate on each of these steps in the following subsections.

Object identification

As noted earlier, element nodes in DOM can be differentiated into object nodes

and attribute nodes. The goal of this step is to find all the object nodes in an

XML data instance. For example, if we have an XML data instance containing

1000 articles, then we need to identify all nodes that represent the object article.

Depending on whether the DTD of the XML instance is presented or not, we have

two ways to identify these object nodes.

If the DTD of the XML instance is given, it is rather straightforward to find

all object nodes we are interested at. We first extract all the paths that leads from

the root node to the object node from the semantic information presented in the

DTD. Then we use a depth-first search algorithm to traverse the XML instance to

find all the object nodes which these paths lead to. Figure 3.3 gives the algorithm

for finding the objects with a path extracted from DTD. We shall note that the

paths extracted from DTD may not be explicit, i.e., they may contain wildcards.

Therefore, we also need to include matching wildcards while we are comparing the

current path and object path in line 2 of the algorithm. The cost of the algorithm

is O(N), where N is the total number of nodes in the document.

However, if the DTD of the XML instance is not presented, to identify nodes

that represent a specific object is a daunting task. Without any semantic infor-

mation of the XML instance, it is difficult, if not impossible, to know whether a

node represents an object or not. We adopt a three-step approach in our work.

First, we determine the number of path corresponding to a prefix. We shall refer

to this as the support of the prefix. Next, we identify the minimal prefix which is
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IdentifyObjectWithPath(objPath)
1. Identify(docRoot,emptyPath)

Identify(root,curPath)
1. curPath := curPath + root.tag
2. If(curPath = objPath)
3. Then
4. Add root to object node set
5. ELSE
6. For every child node i of root
7. Identify(i,curPath)

Figure 3.3: Algorithm to identify object nodes with a path extracted from DTD

the shortest prefix whose support is greater than or equal to some certain predeter-

mined threshold. Finally, the node at the lowest level of the minimal prefix is the

target object that we are looking for. This scheme can be implemented efficiently

using the well-known breadth first search (BFS) algorithm as shown in Figure 3.4.

Suppose the XML tree is a balanced tree, which is true for most cases, the cost of

the algorithm is O(NlogN), where N is the total number of nodes in the document.

Figure 3.5 shows the partial tree of a sample XML document, which we use as

an example to illustrate the process of object identification when the DTD is not

presented. Suppose the object we are interested in is “article”, then the path we

need to identify is SigmodRecord → issue → article. We first carry out a BFS

on the data tree. During the search process, we will discover the prefixes. If the

support of a prefix exceeds a certain threshold or minimal support, then we record

it. Nodes that support this prefix will not be expanded, i.e., their children will not

be pushed into the queues in the algorithm. We set the minimal support to be 3,

which is a heuristic value. The prefix we will discover first is: SigmodRecord →
issue. However, the support of this prefix is only 2 (i.e., only 2 “issue” tags), which

is less than the minimal support. The next prefix found is: SigmodRecord →
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IdentifyObjectWithoutPath()
1. IdentifyPath(minSupport)
2. For every path p in identified path set
3. IdentifyObjectWithPath(p)

IdentifyPath(minSupport)
1. Enqueue(Q,docRoot)
2. While Q is not empty
3. Do node = Head(Q)
4. If (node.prefix exists in identified path set)
5. Then addSupport(node.prefix)
6. Else Add node.prefix to identified path set
7. If node.prefix.support ≥ minSupport
8. add node.prefix to identified path set
9. Else For every child i of node
10. Enqueue(Q,i)
11. Dequeue(Q)

Figure 3.4: Algorithm to identify object nodes without predefined path

issue → article, The support of this prefix is 4 and it is greater than the minimal

support, so we record this prefix. As mentioned previously, the children of article

node will not be pushed into the queue. The search process therefore stops. The

prefix we recorded is then used as the path to identify the four article objects in

the sample. Note that choosing an appropriate minimal support value is crucial. In

the above example, if the minimum support value we choose is 2, then the object

identified will be issue, not article.

Frequent tree pattern identification

Given the “schema-less” semi-structured XML data, it is very difficult to find a

general schema that covers the whole XML data instance. [32] showed that gener-

ating a storage schema for semistructured data that minimizes computational cost

is NP-hard with respect to the size of the input. Dynamic programming algorithms
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article

SigmodRecord

articlearticle

issue

article

issue

Figure 3.5: Example of Object Identification

are not feasible in this case. Instead, we use a data-mining algorithm to identify

frequent tree patterns in an XML graph. This enables us to generate a schema

that covers a major portion of the data. Our aim is to incorporate as many small

attribute collections into an object’s core relational table as possible in order to

minimize the number of overflow tables. Query performance is improved when

excessive fragmentation is avoided because the number of joins is reduced.

We adopt the data-mining algorithm for semistructured data described in [97]

for our purpose here. First let us review some concepts used in the algorithm. A

tree-expression is a tree-like structure for representing patterns in the DOM graph.

A k-tree-expression is a tree-expression containing k leaf nodes. A k-tree expression,

k ≥ 1, can be constructed by “gluing” a sequence of k 1-tree expressions that are

not prefixes of each other. A 1-tree expression is actually a simple path from a

root node to a leaf node. For example, suppose we have three 1-tree expressions

p1, p2, p3 as shown in Figure 3.6. Then, a 3-tree expression p4 can be constructed

from p1, p2, p3 and the sequence is < p1, p2, p3 >. We say that p4 =< p1, p2, p3 >.

Note that if the sequence of the 1-tree-expression is different, then a different k-

tree expression is constructed. Let pi denote a 1-tree-expression, for i ≥ 1. The

k -tree-expression < p1, p2, ..., pk > is constructed from two (k-1)-tree-expressions
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< p1, p2, ..., pk−2, pk−1 > and < p1, p2, ..., pk−2, pk >. We call these two (k-1)-tree-

expressions a matching pair. This property of k -tree expression is very useful as it

prunes our search. We do not need to consider a k -tree-expression if it has some

“subtree-expression” that is known to be infrequent.

article article

author

authors

article

author

authors abstracttitle

article

abstracttitle

p1 p2 t3
p4 =<p1, p2, p3>

Figure 3.6: Example of how a k -tree-pattern can be constructed from k 1-tree-
expressions

In order to determine frequent k -tree-expressions, we use the depth first search

algorithm to discover all the 1-tree-expressions starting from the object nodes found

in step 1. The support of these 1-tree-expressions are tracked. Frequent 1-tree-

expressions are used to generate 2-tree-expressions; frequent 2-tree-expressions are

used to generate 3-tree-expression, and so on. Finally, the algorithm will gener-

ate frequent k -tree-expressions for a given k. A large k should be used to find a

schema with maximal data coverage. Figure 3.7 gives the details of the algorithm.

Theoretically, for each frequent k -tree-pattern, we need to scan the whole XML

data once. The cost of this step is therefore O(αN), where α is the number of

frequent k -tree-expressions discovered and N is the total number of nodes in the

XML data tree. We are aware that there are more efficient methods to discover fre-

quent k -tree-expressions. But as our main focus of this piece of work is to develop

an XML-to-Relational mapping scheme, we still use this algorithm for it is sim-
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Frequent Tree Patterns (k)

/* find frequent 1-tree-expressions */
1. Ti, 1 ≥ i ≥ k: sets of i-tree-expressions, initially empty;
2. Fi, 1 ≥ i ≥ k: set of frequent i-tree-expressions, initially empty;
3. For each object node n do
4. Depth-First-Traverse(n);
5. For each 1-tree-expressions t found do
6. If (t IN T1)

/* increase the support of t */
7. addSupport (t);
8. Else

/* add t to the list of 1-tree-expressions */
9. T1 = T1 UNION {t};
10.For each t in T1 do
11. If (getSupport(t) ≥ THRESHOLD)
12. F1 = F1 UNION {t};
/* generating k-tree-expression */
13.For i = 2 to k do

/* generate i-tree-expression from matching (i-1)-tree-expression */
14. Ti = combineMatchingParis(Fi−1);
15. For each t in Ti do
16. If (getSupport(t) ≥ THRESHOLD)
17. Fi = Fi UNION {t};
18.END

Figure 3.7: Algorithm to find frequent tree patterns

ple to implement and it is quite effective to discover frequent k -tree-expressions.

“THRESHOLD” is a user-specified value and may vary on different XML data

instances.

Generate core relational tables

The frequent k -tree-expression(s) obtained in step 2 creates schema(s) for the XML

data. SQL statements that create relational tables can now be generated from these

schema(s). Root nodes in the k -tree-expressions represent objects and each object

node n in the schema is mapped to a core relational table R. Leaf nodes in the tree
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rooted at n become attributes of R. In addition, R has an attribute that stores the

object identifiers, for example, articleID in Table 3.1. The XML data can now be

loaded into these relational tables. Nulls are used for any missing data.

Figure 3.8 gives the algorithm for generating a relational schema from a fre-

quent tree expression. The algorithm first uses the Depth-first search algorithm

to traverse every leaf node of the tree pattern and convert the tag name of these

leaf nodes to the attributes of the final relational schema. If there are other nodes

between the root node and a leaf node, the resulting attribute name corresponding

to this leaf node will then be defined as the path from the root node to this leaf

node(including the left node name), instead of the name of the leaf node alone.

Moreover,if there are leaf nodes with identical names, we need to append index

numbers to the corresponding attribute names so that they can be differentiated.

After the Depth-first traverse, we will get a list of attribute names. Then we can

write SQL statement to create relational table based on this attribute list. Note

that we need to add one more attribute, which is object ID, to the attribute list

before we write the SQL statement. The types of these attributes can be deter-

mined by the user according to his knowledge or just character string if it can not

be decided. The cost of the algorithm is O(MlogM ), where M is the number of tree

nodes in the frequent k -tree-pattern.

Generate overflow relational tables

Since XML is semistructured, not all the data can fit into the core tables. In

contrast to STORED which uses overflow graphs in external storage, we store the

extraneous data in overflow tables in the relational database as shown in Table

3.2. Figure 3.9 describes the algorithm for storing XML data into relational tables

according to our XStorM scheme. Overflow tables are created on-the-fly while
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GenerateSchema(treePattern)
1. GenerateAttribute(treePattern.root)
2. add objectID to attributeList
3. generate (attributeName, attributeType) pairs
4. generate relational table schema.

GenerateAttribute(root)
1. If root has no child /* leaf node */
2. Then
3. If (root.path = treePattern.root.name) AND (Index(root.name) = 0)
4. Then
5. add root.name to attributeList
6. Else If (root.path 6= treePattern.root.name) AND (Index(root.name) = 0)
7. Then
8. add (root.path + root.name) to attributeList
9. Else If (root.path = treePattern.root.name) AND (Index(root.name) > 0)
10. Then
11. add (root.name + Index(root.name)) to attributeList
12. IncreaseIndex(root.name)
13. Else
14. add (root.path + root.name + Index(root.name)) to attributeList
15. Else /* non leaf node */
16. For every child i of root
17. If (Index(root.path + root.name) > 0)
18. Then
19. IncreaseIndex(root.path + root.name)
20. GenerateAttribute(i)

Figure 3.8: Algorithm to create a relational schema from a tree expression

we map the XML instance to the core relational tables. The mapping process

starts from each object element that has been identified in the first step of XStorM

mapping scheme. For each data tree rooted at a object element, we use the Depth-

first search algorithm to traverse every leaf node. If the path of a leaf node is

contained in one of the frequent k -tree-expressions which are discovered in the

second step of XStorM mapping scheme, then the value of this leaf node shall be

stored in the corresponding core relational table. If the path of a leaf node is not
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contained in a frequent k -tree-expression, then it is considered as overflow data and

shall be stored in an overflow table. The overflow table names embed the XML

structural information necessary for pattern matching queries and reconstruction

of the XML document. More precisely, the name of a overflow table is defined as

the root-to-leaf path of the overflow leaf node. For example, the overflow table

name for the author object is overflow article.authors.author, indicating the path

in the XML graph. Note that there is an additional attribute, objectID, in the

overflow tables that contains the identifier of the object to which these overflow

data belongs. Apparently, we need to traverse the whole XML instance to store

every leaf node into core or overflow relational tables. The cost of determining a leaf

node’s path is bounded by the height of the XML tree. The cost of the algorithm

is therefore bounded by O(N + mlogN ), where N is total number of nodes in the

XML tree and m is the total number of leaf nodes.

3.3 Performance study

We implemented XStorm in Java and carried out a series of experiments on a PC

with Pentium 3GHz CPU and 1GB RAM to evaluate the performance of it. The

RDBMS we choose to use is Oracle 9i, which is generally considered as the leading

DBMS product. Two metrics are used: the size of the relational tables generated

and the response time of different classes of queries. We compared our storage

scheme with the binary approach in [37], STORED in [32] and XRel in [103].

3.3.1 Experiment Setup

We created synthetic XML documents based on the ACM SIGMOD Record XML

data for our experiments. The datasets have the following characteristics:
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XML To RDBMS()
1. For every object element obj
2. Let p be the corresponding frequent k -tree-pattern for obj
3. mapData(obj, p)

mapData(currentRoot, pattern)
1. If currentRoot is a leaf node
2. Then
3. If currentRoot.path exist in pattern

/* this leaf node should be mapped to core relational table
4. Then
5. add currentRoot.value to the table record of obj
6. Else

/* this leaf node should be mapped to overflow table */
7. Let table name = “overflow ” + currentRoot.path
8. If table name exists in database

/* corresponding overflow table exists, insert data only */
9. Then
10. add currentRoot.value to corresponding overflow table
11. Else

/* corresponding overflow table does not exist */
12. create new overflow table with table name
13. add currentRoot.value to the new overflow table
14. Else
15. For every child i of currentRoot
16. mapData(i)

Figure 3.9: Algorithm to map XML data to Relational DBMS

• Five sets of XML documents with varying sizes are used: 1MB, 10MB, 20MB,

40MB, and 100MB. They contains 1274, 11500, 22890, 44200, and 113754

articles, respectively.

• Each article has the following information: issue number, title, starting page,

ending page, a number of authors, and a short description. The number of

authors varies from 1 to 17 and majority (over 80%) of the articles have 2 or

3 authors.
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Query Description Figure

Q1 Retrieve information to reconstruct XML object Select by object id

Q2 Find objects that have attribute a1 with value in certain
range

Select by value

Q3 Find objects that have attributes a1 and a2 with certain
values

Two predicates

Q4 Find objects that have a1 and a2 with certain value or
just a1 with certain value

Optional predicates

Q5 Find objects that have a1 or a2 or a3 with certain value Predicate on attribute name

Q6 Find objects that match a certain pattern Pattern matching

Table 3.3: Benchmark query templates

Table 3.3 describes the query templates used in our experiments. These query

templates test a variety of features, including simple selections by object identifiers

(oid) and attribute values, optional predicates, predicates on attribute names and

pattern matching. All the attribute values are stored as strings in the database. For

predicates involving numerical comparisons, we convert string values to numbers

using the to number() function provided in SQL. We translate all queries into

corresponding SQL queries, which are shown in the appendix of this thesis. We

shall note that in XRel Scheme, an element is uniquely identified by its document

id and start position in the document, while in other three schemes, an element is

identified by its object id which is assigned automatically by the system.

In order to obtain reproducible experimental results, we carry out all the bench-

mark queries as follows: Each query is run once to warm up the database buffers

and then ten times subsequently to get the average response time of the query.

Warming up the buffers will have an impact on queries that operate on data which

fits in the main memory although queries with heavy workload are not likely to be

affected.



3.3 Performance study 78

3.3.2 The impact of frequent k-tree-patterns identified

First of all, we study how the frequent k-tree-patterns, which are identified in step 2

of Section 3.2.2, affect the resulting relational schemas. We use the 100MB dataset

as described in Section 3.3.1 in this set of experiments. By choosing different

thresholds as indicated in Figure 3.7, we get a number of k-tree-patterns, which

are then converted to core relational schemas with different number of author

attributes.

To study how the threshold value affects the storage space, we measure two

values in the experiment. One is the overflow table size, the other is the space

wasted in core relational table, which is caused by author attributes with empty

value. Figure 3.10 gives the results. We can clearly see that the size of wasted

space increases as the threshold value decreases, while in the mean time, the sizes

of overflow tables decrease. The reason is that if we choose a large threshold value,

we will get a k-tree-pattern with a small k value, which means that few space in

the core relational table is wasted. However, a large number of author attributes

are then stored in overflow tables. If we choose a small thresholdvalue, then a lot

of spaces in the core relational table are wasted because a lot of author attributes

are empty. But in this case, the size of overflow tables will also be small because

the core relational table is able to cover most of the data.

Figure 3.11 shows how different threshold values affect the response time of

queries involving overflow tables. In this experiment, we choose query Q3 and Q4 in

Table 3.3 because they are typical queries that involve joins between core relational

table and overflow tables. We can see from the results that as the threshold value

decreases, the query response time for both Q3 and Q4 decreases as well. This is

because that we get smaller overflow tables as the threshold value decreases, which

has been elaborated in the last paragraph.
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Generally speaking, choosing small threshold value helps increase query effi-

ciency because most data can be stored in the core relational table. However, a

large k-tree-pattern identified by choosing small threshold value will cause signif-

icant waste of disk space. In the given 100MB dataset of our experiment, we can

see that when the threshold value is set to be 65%, we can strike a balance between

the size of wasted space and the size of overflow tables. Meanwhile, the decrease

of query performance is also acceptable. In this case, the k value is three, which

means we store three author attributes in the core relational table.
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Figure 3.10: Resulting disk space by varying threshold value

3.3.3 Storage Requirements

We investigate the amount of storage required by the various mapping schemes to

store XML data in this sub section. Table 3.4 shows the size of the XML document

and the resulting relational databases. The binary and XRel approach produce

much larger relational databases compared with STORED and XStorM. Indeed,

the binary and XRel approach require double of the original document size for

storage, while STORED and XStorM require a storage space of about 70%-80%
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Figure 3.11: Resulting query response time by varying threshold value

of the original XML documents. The high storage space requirements by the bi-

nary and XRel approach are because that they store the structural information

for each object, even when most objects have similar structure. On the contrary,

both STORED and XStorM only store common structures extracted from the doc-

uments. The XRel scheme requires slightly more space than the binary approach

because in XRel, values of elements are stored in separate “Text” tables, which in

general, incurs more overhead. While both STORED and XStorM use about the

same amount of storage for the base data, the overflow data obtained in XStorM

is much smaller than in STORED. Furthermore, XStorM keeps both the base data

and overflow data in the relational database instead of using auxiliary data struc-

tures as in STORED. Apart from consistency, keeping the overflow data in the

database is amenable to faster reconstruction.

3.3.4 Query Response Time

Query running time is a very important measure when evaluating these mapping

schemes. We will elaborate the results in the following subsections.
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XML(MB) Binary(MB) XRel(MB) STORED(MB) XStorM(MB)

dataset 1

Base Data 1.1 2.25 2.41 0.84 0.84

Overflow Data - - - 0.1 0.01

Total 1.1 2.25 2.41 0.94 0.85

dataset 2

Base Data 10.1 20.2 21.4 7.6 7.6

Overflow Data - - - 0.85 0.08

Total 10.1 20.2 21.4 8.45 7.68

dataset 3

Base Data 20.2 40.3 41.2 15.2 15.2

Overflow Data - - - 1.7 0.16

Total 20.2 40.3 41.2 16.9 15.36

dataset 4

Base Data 40 82.7 84.6 30.4 30.4

Overflow Data - - - 3.4 0.32

Total 40 82.7 84.6 33.8 30.72

dataset 5

Base Data 100 202.2 204.73 77.4 77.4

Overflow Data - - - 7.4 0.8

Total 100 202.2 204.73 84.8 78.2

Table 3.4: Comparison of database sizes generated by different schemes

Retrieve information to reconstruct XML document

This experiment queries information needed to reconstruct an XML object from

the relational database. This query involves selection by object id or element po-

sition (for XRel scheme) and for every table, there are indexes build on object

id or element position(e.g., oid, source) column because it is the primary key or

part of the primary key. Figure 3.12 shows the results. We first observe that the

performance of XRel is worse than other three schemes in most cases. XRel per-

forms worse than the binary scheme is mainly because XRel stores elements and
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values separately, thus more join operations are required to form the final answer.

Another reason is that generally speaking, inequality comparison is less effective

than equality comparison in RDBMS. In most cases, there is no significant differ-

ence among binary, STORED and XStorM mapping schemes since index lookup is

very fast in RDBMS. For the 100MB dataset, the binary scheme performs worse

because it requires the retrieval of data from all the attribute tables compared with

STORED or XStorM which retrieves data from just the core table and overflow

graphs/tables.
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Figure 3.12: Results of reconstructing XML document experiment

Selection queries

In this experiment, we tested queries to retrieve objects that have attribute with

values in a certain range. An example of the query used is

Query : Select articles that have “initpage” between 500 and 600.
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The results are shown in Figure 3.13. There is no significant difference among all

four mapping schemes except for the 100MB dataset. XRel performs slightly worse

than other schemes as it is the only scheme that requires join operations. For other

three schemes, no join operation is needed to answer the query. For the 100MB

dataset, the binary scheme performs better since its single attribute table is much

smaller than the core tables in the STORED scheme and XStorM scheme (8MB vs

77MB).
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Figure 3.13: Results of selection query experiment

Join Queries

This experiment examines the situation where multiple predicates are involved in

a query. A typical query is shown below.

Query: Select articles with issueNumber 15 and whose 10th author is ‘Pinar

Koksal’.

Note that one of the predicates involves overflow attribute for the STORED and
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XStorM schemes. Figure 3.14 shows the results of this experiment. In order to

make the bar chart easier to read, we set the upper bound of y axis to 6000.

The same setting is also applied to Q4 and Q5. The exact response time of the

binary and XRel schemes for the 100MB dataset can be found in the appendix and

they are in fact over fifty times of that of XStorM. The differences become large

enough to claim that XStorM performs the best among all four schemes when size

of datasets increase. The reason is simple: joining a much smaller overflow table

is much faster than joining two large attribute tables (or large element and or text

table) as required in the binary approach (or XRel scheme). The STORED scheme

performs poorly in the 100MB dataset because searching for values in overflow

graphs is getting more and more inefficient as the data size increases.
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Figure 3.14: Results of join query experiment
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Queries with optional predicates

We tested the performance of queries containing optional predicates and predicates

involving overflow data on the various storage mapping schemes. For instance,

Query: Select articles that have first author ‘Dallan Quass’ AND 7th author

‘SvetlozarNestorov’ OR just first author ‘Kenneth A. Ross’.

Figure 3.15 contains the results of the experiment. XStorM again has the best

overall performance. The response time of the binary and XRel scheme increases

rapidly as the dataset size increases and becomes over forty times of that of XStorM

scheme for the 100MB dataset. Similarly, STORED performs poorly for the 100MB

dataset for the same reasons given in join query experiments,i.e.,Q3.
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Figure 3.15: Results of optional predicate query experiment
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Queries with attribute predicates

This experiment evaluates the performance of queries involving predicates on at-

tribute names. Figure 3.16 shows the results when the following query is issued.

Query: Select articles that have initpage = 388 or endpage = 2 or 7th author

‘Svetlpzar Nestorov’

For this query, differences among all schemes become obvious in the 100MB dataset.

The binary scheme performs poorly because we need to search matching tuples

in three attribute tables and then take the union of the tuples returned. The

XRel scheme performs even worse as it requires additional join operations between

element table and value table. Although the STORED scheme only searches one

table and XStorM searches two tables, XStorM performs better than STORED

because accesses to the overflow graphs in STORED takes more time than retrievals

from the overflow tables in XStorM, especially in the case of 100MB dataset.

 0

 1000

 2000

 3000

 4000

 5000

 6000

XStorMSTOREDXRelBinary

R
es

po
ns

e 
T

im
e 

(in
 m

s)

Mapping Schemes

Query Q5

  1  MB
 10  MB
 20  MB
 40  MB

100  MB

Figure 3.16: Results of query with attribute predicates experiment
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Pattern matching queries
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Figure 3.17: Results of pattern matching query experiment

Figure 3.17 shows the performance results of the following pattern matching

query:

Query: Select articles that have attributes issuenumber, title, initpage, and

9 authors.

Again, XStorM has the overall best performance. The binary scheme performs

poorly in this query because it needs to join many attribute tables to find the

matching tuples, especially when the pattern involves many attributes. The same

reason applies to the XRel scheme as well. The STORED scheme performs much

better than the binary scheme as most of the attributes are contained in the core

table. But retrieving data from disk-resident overflow graphs is still slower than

retrieving data from database tables in most cases.
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Discussion

Theoretically, schemes that map XML data into relational model based on schematic

information should work better than just storing XML data in attribute tables. The

most expensive operation in query processing is join operation and to answer most

queries, we need information about several attributes of an object. In the binary

scheme, if we want information from several attributes, we have to join the cor-

responding attribute tables to form the query result. If the attribute tables are

large, the join operation will be expensive. The situation is even worse for the

XRel scheme as it has only one single element table and additional joins with a

single value table are often required to process a query. On the other hand, storing

XML data according to the schema not only saves disk space, but also reduces the

number of join operations needed to answer a query.

For example, let us consider the query to find objects with attributes a1 and

a2 with certain values. For binary scheme, to answer this query we need to join

two attribute tables: table a1 and table a2. For the XRel scheme, we need to

join the element table “Element” with itself and with value table “Text”. On the

other hand, STORED and our proposed scheme, XStorM, only search one table for

tuples that satisfy the selection condition. While in most cases selection operation

is much faster than the join operation, there are situations that involves overflow

data. Suppose attribute a2 is not included in the schema of the table. In this case,

we will need to join the core table with the overflow table that stores a2 to get

the complete answer. The cost of this join operation is tolerable because overflow

tables are typically much smaller than the core table. In addition, storing overflow

data in relational tables have a better query performance than storing overflow

data in external data structure. The reason is because relational databases have

very powerful query optimizers that will find the optimal plan for most queries.
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If we store overflow data on external data structure, we cannot make use of this

conventional tool and have to find a way to efficiently retrieve and update them.

Furthermore, if the size of overflow data is too large to fit the main memory, then

we have to fetch them from local disk, which is also a time consuming process.

When the XML dataset is small, for example, 1MB, we observe that there is

not much significant difference in the query response time for all three schemes.

However, when the sizes of datasets increase, the performance gain in XStorM

becomes obvious. The experimental result on the 100MB dataset clearly presents

the advantage of XStorM scheme in term of scalability.

XRel is mainly designed to efficiently process queries involving long or undeter-

mined paths. When there’s few such paths involved in the query, the performance

of XRel is likely to be worse than the binary scheme. XRel stores elements and

values separately and all elements are stored in a single large element table while

[37] has already shown that this scheme is less efficient than the binary scheme.

Moreover, inequality comparisons are also involved when we perform self-join op-

eration on the element table and join operations between element and value table,

which are also less efficient than equality comparisons in most cases.

3.4 Concluding Remarks

In this chapter, we have examined how XML data can be stored using a relational

database. The semistructured feature in XML introduces complications in the

mapping. Our proposed scheme, XStorM, overcomes the problems by making a

distinction between XML elements that represent entities in the real world, i.e.,

objects, and XML elements that represent properties of entities, i.e., attributes. A

breadth-first-search algorithm is used to identify objects in the XML data.
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XStorM avoids excessive fragmentation of XML data by mapping each object

together with the majority of its attributes to a core relational table. A data mining

algorithm is exploited to find frequent patterns in the XML dataset. These frequent

patterns are used to generate the core relations for objects. Irregularities or data

instances that deviate from the core schemas are stored in separate overflow tables.

The names of these overflow tables also contain the structural information of the

XML document for fast reconstruction. Our performance study has demonstrated

that XStorM gives good query performance, minimizes storage space and is scalable.



Chapter 4

The XJoin Index

4.1 Introduction

Efficient query evaluation is the core operation of XML document processing. Dif-

ferent from traditional SQL query designed for relational data, a typical query for

XML documents specifies not only selection predicates for elements/attrbutes, but

also specifies the structural relationship between these elements/attributes. If the

graphical representation of the query is not a trivial tree(a null tree or a single linked

list), then we call the query a branching path query. A branching path query consists

of two parts, one is the value predicate(s), and the other is the structural compo-

nents which we call branching path expression. Let’s take the query: book[@title =

‘Databases’ AND @publisher = ‘Springer Verlag’]/author[@name = ‘John’] as

an example. In this query, the ‘=’ signs represent value predicates, and the struc-

tural information can be seen in Figure 1.3. To solve this query, we need to match

those author elements whose name attributes are of value John and that are chil-

dren of book elements, whose title attributes and publisher attributes have

value Databases and Springer Verlag, respectively. A branching path query is

also know as a twig query.

Besides the traditional approaches which make use of summary index to quickly
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scan the whole data tree, structural join algorithms are used to first evaluate binary

path expressions, i.e., those path expressions of the form A//D, or A/D, in the

query and then the results for these binary path expressions are merged to form

the final answer. Quite a number of index structures have been proposed to speed

up the structural join process by the research community in recent years.

We note that such indexing techniques do not vary the number of structural

joins to be executed. Instead, they aim to make each individual structural join more

efficient. On the other hand, the join index proposed in relational context pre-joins

some relations and makes the joins more efficient by the semi-joined results. The

idea of trading space occupancy for query efficiency inspired us to build a join index

in the XML context.

In this chapter, we present our approach to indexing XML data for solving twig

queries with the aim of reducing the number of joins to be executed. We propose

a simple yet efficient join index (XJoin Index ) approach to shrink the twigs before

applying structural join algorithms. The proposed XJoin Index pre-computes some

(semi-) join results that help reduce the number of structural joins to be executed.

These pre-computed joins correspond to both value and structural information and

support following operations: attribute selections involving multiple attributes,

parent-child relationship detection and counting selections such as Find all books

with at least 3 authors. The XJoin Index is simple as it is completely based on

B+-tree and no specialized data structures are required. The XJoin Index is also

flexible since it can be coupled with other structural join algorithms and several

execution plans can be defined based on the usage of the XJoin Index.

The rest of this chapter is organized as follows. Section 4.2 introduces the

concept of branching path expressions in detail, extended with counting predicates.

Section 4.3 presents the structure of the XJoin Index. We show that even if some
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element information is replicated in the XJoin Index, the space occupancy is still

linear with respect to the total number of elements/attributes in the original XML

documents. Search and update operations of the XJoin Index are presented in

Section 4.4. We show that to solve attribute or counting predicate inside a query

conditions, we do not need to perform structural join operations. Instead, we only

need simple selection and set intersection. In Section 4.5, we show how different

query plans can be defined based on the XJoin Index. Such plans differ in the

number of joins to be executed. Experimental results are shown in Section 4.6,

The results show that by using the XJoin Index, we can process twig queries much

faster than traditional index approaches. We conclude this chapter in Section 4.7.

4.2 Preliminaries

In this section,we provide and recap on the background information about XML

document model and also some basic concepts about XML branching query expres-

sion, which is essential to describe our XJoin Index.

4.2.1 XML documents

We assume each XML document is represented as a rooted, ordered and labeled tree

where each node corresponds to an element, an attribute, or a value. Edges rep-

resent ancestor-descendant, element-subelement, element-attribute, element-value,

or attribute value relationships.

We assume that a position is assigned to each element or attribute node ac-

cording to some labeling scheme. In the following, we assume to use a numbering

scheme that univocally identifies each node and that supports the detection of

ancestor-descendant relationships, for example, the Dietz’s or the Dewey labeling
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schemes. We use the labeling scheme to assign a unique identifier to each node,

that we call position. In this chapter, for the sake of simplicity, we assume that the

XML dataset corresponds to a single document, eventually generated by adding

a dummy root to all documents in the document collection. This limitation can

be easily overcome by inserting the identifier of the document the element or the

attribute belongs to as part of their position.

4.2.2 Branching path expressions

We consider a subset of branching path expressions according to the syntax present

in Figure 4.1. With respect to other approaches dealing with branching path ex-

pressions, we consider an additional predicate that allows us to define conditions

over the number of child-elements of a given node, with a certain name. Exam-

ples of these queries are Find all books with 3 authors, Find all companies with at

least 100 employees, etc. We call these predicates counting predicates. While no

other technique have been proposed to deal with counting queries, they are quite

relevant in all XML applications that require computations, for example, in XML

data warehousing applications. Counting queries can be represented in XPath as

follows:

books[author][last() = 3]

company[employee][last() >= 100].

For the sake of simplicity, in the following part of this thesis, a[b][last()θn] is

simply denoted by a[b(θn)].

According to our definition, a branching path expression can always be seen

as a sequence of base expressions, connected by ‘/’ or ‘//’. Base path expressions

represent conditions applied to elements and can be classified as follows (in the
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V:= value strings

A:= attribute names

E:= element names

N:= natural numbers

OP := >|<|=|>=|<=

ACOND:= @A|@A=v

ECOND:= E|E(OP N)| E = v

COND:= ACOND|ECOND|COND AND COND|COND OR COND

CPE:= E|E[COND]|CPE/CPE|CPE//CPE

Figure 4.1: Syntax of branching path expressions

following a, b, and e are element names, c and d are attribute names, and v and u

are values):

• Simple selections : they represent all expressions generated by ECOND and

ACOND productions, excluding the expressions of the form E(OP N). a,a =

v, @c, @c = v are examples of simple path expressions. The result of eval-

uating a simple path expressions is the set of elements (attributes) with tag

name a(c), satisfying the equality condition, if required.

• Attribute selections : they represent expressions generated by E[ACOND]

production. a[@c], a[@c = v] are examples of attribute expressions. Expres-

sions inside brackets are called attribute predicates. The result of evaluating

an attribute expression is a set of elements which satisfy the attribute predi-

cate.

• Counting selections : they represent expressions generated by the E[ECOND]



4.2 Preliminaries 96

production. a[b(= 5)] and a[b(> 6)] are examples of counting selections. Ex-

pressions inside brackets are called counting predicates. The result of eval-

uating a branching selection is a set of elements which satisfy the counting

predicate.

• Complex selections : they represent expressions generated by the E[COND]

production such that COND contains at least two predicates. a[@c = d AND

b(< 6) OR b(= 4)] is an example of a complex selection. Expressions inside

brackets are called complex predicates.

We then call navigational expressions those expressions generated by produc-

tions E/E and E//E. The first is called direct navigation, the second indirect

navigation. a/b, and a//b are examples of navigational expressions. The result of

evaluating a navigational expression is a set of pairs (n,m) where n is the parent(in

the direct case) or the ancestor (in the indirect cast) of m, and n is an element

with tag name a, m is an element with tag name b. Each base path expression,

except simple ones, represent semi-join operations whereas navigational expressions

correspond to join operations. In both cases, relations to be joined are sets of ele-

ment/attribute positions with a certain tag name and the join predicate imposes a

structural relationship between them.

According to our definition, a branching path expression can always be repre-

sented as a tree, where each node represents either an element tag, an attribute tag,

or a value. This tree is also called twig. Conditions like b(θn) are represented in the

tree with a node labeled bθn . Edges represent (semi-)join operations, correspond-

ing to ancestor-descendant, element-subelement, element-attribute,element-value,

or attribute value relationships. Given an XML document D and a branching path

expression Q, the result of evaluating Q against D is a mapping from the nodes

of Q to nodes in D such that content and structural relationships between query
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nodes are satisfied by the corresponding document nodes.

4.3 XJoin Index: the Structure

In this thesis, we are interested in defining an index structure for efficiently support-

ing the evaluation of base expressions. The proposed index structure, that we call

XJoin Index, pre-computes some (semi-) joins, similarly to the join index defined

in the relational context [94]. Any index access corresponds to directly solving one

relationship represented as an edge inside the query tree. Thus, it allows the query

processor to shrink the twig before applying the structural join algorithm. The

index is flexible enough to support a large variety of query processing strategies,

that we discuss in more details in Section 4.5.

In the relational context, the join index over two relations R and S is the set

JI = {(r1, r2)|f(t1.A, t2.B) is true}

where ti is a tuple identified by ri, i = 1, 2 and f is a boolean function that defines

the join predicate against attribute A and B. A join index is created for any join

operation of interest. Typically, since we may need fast access to JI tuples via

either r values or s values depending on whether there are selections on relations

R or S, a JI should be clustered on (r, s). One possible solution is to maintain two

copies of the JI, one clustered on r and the other clustered on s.

In the XML context, as we pointed out before, a join Index over two sets E -a

set of element positions - and F - a set of either attributes or element positions -

can be defined as the set:

XJI = {(r1, r2)|f(r1, r2) is true}
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where f is a predicate requiring some tag name for r1 and r2 and some structural

relationship between them. Thus, in principle, an XJI has to be created for each

triple (tag1, tag2, relationship) of interest. In our approach, we consider two re-

lationships (parent-child and element-attribute) and we create an index for each

relationship, maintaining information concerning all the possible combinations of

tag names.

B+ tree
Key(enid, cnid, noc)

Key

(Pos,depth, offset),  ...

To data file

B+ tree
Key(pos)leaf

entry

intermediate Layer

Figure 4.2: XJoin Index: Structure

The structure of the XJoin Index is composed of the following indexes (see

Figure 4.2 , and in the following, E denotes the set of element positions, EN the

set of element names, EV the set of value identifiers, A the set of attribute posi-

tions, AN the set of attribute names, and AV the set of attribute value identifiers.):

Name Index. Given a set of XML documents, all distinct name strings, corre-

sponding to element and attribute names, are collected in the name index. Each

distinct name string is identified by a unique name identifier (nid) returned by the

name index. Using the name index greatly reduces the storage space of the whole

index structure and also reduces the computational cost of string comparison in

query processing.
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Value Index. Since all value entities in XML data are considered as variable-

length character strings, attribute and text values appearing in XML documents

are collected into the value index and each string value is assigned an identifier(vid).

Element Index (EI). The element index allows one to quickly retrieve all el-

ements with a given identifier; thus it directly supports the execution of simple

path expressions over elements. It is implemented as a B+-tree whose keys corre-

spond to EN values. Each key value enid in the leaves points to a list of tuples

(epos, evid, cnus), where epos ∈ E is the position of an element named enid with

value evid. cnum is the total number of children of the element in position epos.

The lists are ordered with respect to the element positions and a B+-tree index can

be created over each list.

Attribute Index (AI). The attribute index allows one to quickly retrieve all at-

tributes with a given identifier; thus it directly supports the execution of simple

path expressions over attributes. It is implemented as a B+-tree index whose keys

correspond to AN values. Each key value anid in the leaves points to a list of tuples

(apos, avid), where apos ∈ A is the position of an attribute named anid with value

avid. The list is ordered with respect to attribute positions and a B+-tree can be

created for each list to make the access faster.

Counting XJI(CXJI). It is an XJI over the parent-child relationship, supporting

counting expressions. It is organized as a B+-tree with keys (enid, cid, noc), enid ∈
EN, cnid ∈ EN, noc ∈ N \ {0}. Each key value (enid, cnid, noc) in the leaves

points to a list of element positions corresponding to elements having enid as tag
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name and at least noc children with cid as tag name. Note that only information

concerning elements with at least one child are inserted in the index. The lists are

ordered with respect to the element positions and a B+-tree index can be created

over each list to make the access faster.

Attribute XJI (AXJI). It is an XJI over the element-attribute relationship, in

order to support attribute expressions. It is organized as a B+-tree with keys

(enid, anid), enid ∈ EN, anid ∈ AN . Each key value (enid, anid) in the laves

points to a list of tuples (epos, avid), epos ∈ E, avid ∈ AV , such that element with

position epos has an attribute named anid with value avid. The lists are ordered

with respect to the element positions and a B+-tree can be created over each list

to make the access faster.

It is important to point out that lists pointed by the various index leaf levels

(also called intermediate layers in the following) are not disjoint. In particular,

element positions are replicated in EI, CXJI, and AXJI. However, it is easy to prove

that the overall space is still linear in the maximum between the total number of

elements and the total number of attributes of the XML dataset.

Proposition 4.1 The space occupancy of the XJoin Index is linear in O(max(||E||, ||A||)),
where ||E|| and ||A|| denote the number of elements and attributes, respectively.

Proof. It is immediate to prove that EI space occupancy is linear in ||E|| and AI

space occupancy is linear in ||A||. The size of CXJI and AXJI is dominated by the

size of their corresponding intermediate layer. The intermediate layer of AXJI is

bounded by the total number of attributes whereas the intermediate layer of CXJI

is bounded by the total number of elements. From these considerations, it follows

that the space occupance of XJoin Index is linear in O(max(||E||, ||A||)). 2



4.4 XJoin Index: operations 101

4.4 XJoin Index: operations

In the following, we discuss search and update operations for the XJoin Index.

4.4.1 Search

In the following we discuss how simple, attribute and counting selections, as well as

navigational expressions, can be executed in the XJoin Index. Complex selections

are not discussed since their evaluation corresponds to executing a set of attribute

or counting selections and then intersecting the obtained results.

Simple Selection. Simple path expressions are solved directly by using EI or AI,

depending on the specific query. In case the selection is of type @a = v or e = v,

the list associated with a in AI or with e in EI has to be scanned to find values

equal to v. In all the other cases, the index access returns the exact result.

Attribute Selections. Two different expressions have to be considered:

• e[@a]: we look for (e, a) in AXJI and we get the exact result.

• e[@a = v]: we look for (e, a) in AXJI. Then, the list associated with (e, a)

has to be scanned to find values equal to v.

Counting Selections. Let e1[e2(θn)] be the considered selection. We look for

(e1, e2, n) in CXJI. Then, the exact result is retrieved according to the usual B+-

tree properties.

Navigational Selections. Let e1/e2 or e1//e2 be the navigational expression.

The XJoin Index can also solve direct navigational expressions as a semi-join by
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using CXJI. Both direct and indirect navigational expressions can also be executed

as a join. In this case, CXJI can be used to reduce the size of the set of e1 elements

to be used in the structural join. More precisely, in this case we look for (e1, e2, 1)

in CXJI to find elements e1 with at least one e2 child. Finally, we look for (e2)

in EI to find all e2 elements. Then, we apply a structural join algorithm to the

obtained results.

ollowing proposition gives the cost for solving the above simple sections.

Proposition 4.2 Base expressions are supported by the XJoin Index with the fol-

lowing costs:

Simple selections on elements: O(logF ||EID||+ R/B)

Simple selections on attributes: O(logF ||AID||+ ||a||/B)

Attribute selections: O(logF (||EIDA ∗ Ãpar||) + Na
(e,a)/B).

Counting selections: O(logF (||EIDC ∗ C̃par||) + N c
(e1,e2)/B).

Navigational selections: O(logF (||EIDC∗C̃par||)+N b
(e1,e2)/B+logF ||EID||+||e2||/B+

C(Sj)).

In the previous formulas:

• N is the number of elements indexed; F is the fanout of the used index; R is

the output size; B is the average number of element entries in each leaf page

of the used index;
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• C(Sj) is the cost of applying a structural join algorithm to the retrieved lists;

• ||EID|| and ||AID|| are the number of distinct element and attribute identi-

fiers, respectively;

• ||EIDC || and ||EIDA|| are the number of distinct identifiers for which there

exists at least one element with a child or with an attribute, respectively;

• Ãpar and C̃par represent the average number of attributes or child element

names, associated with elements having a certain name.

• Na
(e,a) is the number of elements e having an attribute called a.

• N c
(e,a) is the number of elements e having a child called a.

4.4.2 Update

We consider four main update operations for the proposed index structure (updates

can always be implemented as a deletion followed by an insertion):

• InsertA(enid, epos, anid, avid): an attribute named anid, with value avid, is

associated with the element named enid in position epos.

• DeleteA(enid, epos, anid): the attribute named anid associated with the ele-

ment named enid in position epos is deleted.

• InsertE(enid, epos, evid, pnid, ppos): an element name enid is inserted in po-

sition epos, with value evid, ppos is the position of the parent element and

pnid the corresponding identifer.

• DeleteE(enid, epos, pnid, ppos): the element named enid at position epos is

deleted. ppos is the position of the parent element and pnid the corresponding

identifier. The deleted element must not have nested elements.
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Note that the update operations we are going to present should not be confused

with updates of XML source documents, for which the tree is built. Such a problem

is still an open issue.

Algorithms to implement the previous operations are rather straightforward

since they correspond to insertion (deletion) in (from) B+-trees. Figures 4.3 and

4.4 present the code for element insertion and deletion. In both cases, both EI and

CXJI have to be updated, in order to insert(delete) the new element and update

counting information accordingly.

Insert_E(enid,epos,evid,pnid,ppos):

Modify EI:

insert (enid), if it does not exist yet

insert (epos,evid,0) in the list

associated with enid

look for ppos in the list

associated with epnid in EI

let (ppos,pvid,p) be the retrieved tuple

let p := p+1

Modify CXJI:

look for (pnid,enid,1) in CXJI

look for (ppos) in the intermediate layer

and get the noc value

remove ppos from the current position

IF (noc > 1)

insert ppos in the list

associated with (pnid,enid,noc-1) in CXJI

Figure 4.3: Insertion of an element
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Delete_E(enid,epos,pnid,ppos):

Modify EI:

look for (enid)

delete (epos,evid,0) in the list

associated with enid

look for ppos in the list

associated with pnid in EI

let (ppos,pvid,p) be the retrieved tuple

let p := p-1

Modify CXJI:

look for (pnid,enid,1) in CXJI

look for (ppos) in the intermediate layer

and get the noc value

remove ppos from the current position

IF (noc > 1)

insert ppos in the list

associated with (pnid,enid,noc-1) in CXJI

Figure 4.4: Deletion of an element

4.5 Query processing strategies based on the XJoin

Index

Given a branching path expression, the XJoin Index can be used to reduce the

number of structural joins to be executed, shrinking the tree corresponding to the

query to be executed. Indeed, as we discussed before, any index access corresponds

to directly solving one relationship represented as an edge inside the tree. We call

this shrinking operation.

Four main types of shrinking operations can be applied to a twig by using the

XJoin Index. Shrinking operations can be represented in the twig by assigning

annotations to nodes. The possible shrinking operations are the following: (in

what follows, a, a1, ..., an represent attribute names, v, v1, ..., vn represent values,

e, e1, ..., en represent element names):
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1. Attribute-value shrink. An edge of type attribute-value (a, v) is removed. It

corresponds to a simple selection that can be solved by an AI access. We

assign annotation p(a, v) to node a.

2. Element-value shrink. An edge of type element-value (e, v) is removed. It

corresponds to a simple selection that can be solved by an EI access. We

assign annotation p(e, v) to node e.

3. Element-attribute shrink. An edge of type element-attribute (e, ai) is re-

moved, as well as the edge (ai, vi) from the attribute to its value, if any. This

corresponds to an attribute selection, that can be solved by an AXJI access.

We assign annotation p(e, ai) or p(e, ai, vi) to node e.

4. Element-sub-elements shrink. An edge of type element-child element (e, ei)

is removed, as well as the edge (ei, vi) from the child element to its value, if

any. This corresponds to a counting selection, that can be solved by a CXJI

access. We assign annotation p(e, ei) or p(e, ei, vi) to node e.

In case one node is associated with no annotation, it means that we have just

to retrieve elements or attribute with that tag name, through either an EI or AI

access. The annotation in this case is either p(e) or p(a).

The previous shrinking operations can be combined in different ways. We iden-

tify three main strategies:

1. Weak Shrinking Strategy. By using this approach, we apply only attribute-

value and element-value shrinks to the tree. This strategy corresponds to the

one proposed in [66] and it can be implemented by using only EI, AI, and a

structural join algorithm.
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2. Strong Shrinking Strategy. By using this approach, all possible shrinking

operations are applied to the tree. Note that for nodes associated with more

than one annotation, a(non structural) equi-join has to be applied to the

intermediate results. In order to implement this strategy, we need the whole

XJoin Index and a structural join algorithm.

3. Medium Shrinking Strategy. By using this approach, we apply all possible

shrinking operations providing that at most one annotation is associated with

each node. In this case, no equi-join has to be applied. Also in this case, the

strategy can be implemented by using the whole XJoin Index and a structural

join algorithm.

Figure 4.5 presents the tree obtained by shrinking the tree presented in Figure

1.3 and inserting the corresponding annotations, according to the three proposed

strategies. The obtained trees lead to different costs in computing the result of the

original branching path expression, since a different number of structural joins is

required in each case. It is a task of the query optimizer to decide which strategy

will get better results, according to existing statistics.

4.6 Experimental Results

4.6.1 Experimental setup

We implemented the XJoin Index in C, on an ultra450 machine running Solaris 8.

It has the processor of 500MHz and 3 Gigabytes of memory. For the experiments,

we used synthetic datasets, created by the IBM XML generator [6], benchmark

datasets, generated by XMark [15], and real dataset such like DBLP [1]. The usage

of synthetic datasets is motivated by the need of controlling the structure and
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author P(author,@name,"John")

P(book,@title,"Databases") AND

P(book,@publisher,"Springer Verlag")

(b)

book

@publish author

P(book,@title,"Databases")

P(@publisher,"Springer Verlag") P(author,@name,"John")

(c)

book

book

@title @publisher author

@name

P(book)

P(@title,"Database") P(@publisher,"Springer Verlag")

P(author)

         (a)

Figure 4.5: Query plans corresponding to different shrinking strategies: a) weak
shrinking; b) strong shrinking; c) medium shrinking

the join characteristics of XML documents. Document size vary from 120 to 280

Megabytes. Experiments have been conducted concerning space occupancy as well

as query and update time. The results of the performed experiments are described

below.
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4.6.2 Storage Requirement

In order to understand the overhead of the XJoin Index with respect to the space

occupancy, we have compared the space occupancy of traditional element and at-

tribute indexes (the only needed to implement the weak shrinking strategy) with

that of using also the XJoin Index. Figure 4.6 reports results comparing EI and

EI + CXJI sizes by varying the number of elements with at least one child. The

total number of elements is nearly two million and the maximum number of ele-

ments with at least one child is set to be approximately 35% of the total number

of elements. We believe this setting is reasonable as theoretically speaking, the

percentage of these elements is approximately 1
α
, where α is the branching factor

and is usually a large number in XML tree, which means that 1
α

is likely to be

small. We can also see this from real datasets, e.g., this percentage is about 9.4%

(200948 versus 2137264) for DBLP XML record. We can see from the figure the

linear increment of the size of CXJI when the number of elements with at least one

child increases.

Figure 4.7 reports results comparing AI and AXJI sizes by varying the number

of elements with at least one attribute, which we call attribute elements. The

total number of elements is around two million and every attribute element has 2

attributes on average, which we believe is a reasonable assumption based on the

statistics of DBLP XML record (526780 attributes vs 275760 attribute elements).

When the number of attribute elements increases, the sizes of both AI and AXJI

increase. Note that the size of AXJI is decided by the number of elements with

attribute, while the size of AI is decided by the number of attributes. In case that

most elements with attribute have large number of attributes associated with them,

it is possible that the size of AI becomes larger than the size of AXJI though we

store less information for an attribute than for an element.



4.6 Experimental Results 110

 40

 60

 80

 100

 120

 140

 160

 0.05  0.1  0.15  0.2  0.25  0.3  0.35

in
de

x 
si

ze
 (

m
b)

no. of elements with child / total no. of elements

EI
EI + CXJI

Figure 4.6: Space occupancy for artificial databases, by varying the number of
branching elements

4.6.3 Search Efficiency

We performed two groups of experiments. The first group concerns attribute, count-

ing, and direct navigational expressions. For them, we have compared weak and

strong shrinking strategies. Note that strong shrinking for attribute and count-

ing selections always correspond to simple index lookups. Then, we have com-

pared strong and weak shrinking strategies in evaluating branching path expres-

sions against XMark benchmark and DBLP datasets. We did not consider medium

shrinking in the experiments since it will always get performance results in be-

tween those obtained by applying strong and weak shrink strategies. It is known

that holistic techniques perform better than standard merge-join method to pro-

cess twig queries. But since the aim of the experiments is to consider the impact of

using difference indexes, for the sake of simplicity we implemented the merge-join

method [104]. We compare the performance of both approaches by comparing the

elapsed time of processing the queries.

Given a base expression a[b(n)], in the following we denote with S(a, b) the
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semi-join selectivity of element a with respect to b, i.e., the total number of a

elements having at least one child element b. We also denote with S(b, a) the semi-

join selectivity of element/attribute b with respect to a, i.e., the total number of

b elements/attributes having parent element a. Semi-join selectivity of attribute

selections and navigational expressions is defined accordingly.

Base path expressions

Attribute Selections. For this group of experiments, we considered expressions

like a[cond] and we varied the number of predicates in cond, by fixing semi-join se-

lectivities of each attribute selection. In order to change semi-join selectivities, we

performed the experiments on artificial datasets. Figure 4.8 reports elapsed time for

executing a[@b1 AND @b2..., AND @bm], S(a, bi) = S(bi, a) = 25%, i = 1, ..., m

(we got the similar results for different selectivity values). We can see that strong

shrinking outperforms weak shrinking for any number of attribute predicates in the

condition. This is due to the fact that each additional predicate in the condition

corresponds to an additional equi-join in strong shrinking but to a structural join
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in weak shrinking. Moreover, since structural join is more expensive than equi-join,

weak shrinking line grows faster than the strong shrinking one. From Figure 4.9, we

can also see that different selectivity values do not significantly vary weak shrinking

performance. Indeed, in this case, all attribute selections are solved by applying

a structural join over the same set of elements. Even if the number of returned

elements changes when changing the selectivity, the number of steps performed in

the structural algorithm is almost the same. This is not true by using a strong

shrinking strategy. In this case, since we use a join index, results are directly influ-

enced by selectivities. We got the same results from different numbers of predicates

in the condition.
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Figure 4.8: Elapsed time for attribute selections a[@b1 AND @b2..., AND @bm]
with respect to m, S(a, bi) = S(bi, a) = 25%, i = 1, ..., m

Counting Selections. For this group of experiments, we considered expressions

like a[cond] and we varied the number of counting predicates in cond, by fixing semi-

join selectivity of each counting selection. In order to change semi-join selectivity,

we perform the experiments on artificial datasets. Similarly to attribute selections,

by using the weak shrinking strategy, indexes are used just to retrieve sets of el-
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Figure 4.9: Elapsed time for attribute selection a[@b1 AND @b2] with respect to
S(a, bi) = S(bi, a), i = 1, 2

ements with a certain tag. These sets are then joined by using a structural join

algorithm to solve the counting selections. On the other hand, by using the strong

shrinking strategy, each counting predicate can be solved by a single index lookup.

Figure 4.10 (a) reports elapsed time for executing a[b1(n) AND ... AND bm(n)],

S(a,bi) = S(bi,a) = 25%, i = 1, ..., n, considering both n = 2 and n = 8. We can

see that strong shrinking outperforms weak shrinking for any number of counting

predicates in the condition. We got the similar results from Figure 4.10 (b), where

selectivity is set to be 75%. Similarly to attribute selections, since each additional

predicate in the condition corresponds to an additional equi-join in strong shrink-

ing but to a structural join in weak shrinking, weak shrinking line grows faster as

structural join is more expensive than equi-join. Moreover, note that the strong

shrinking strategy is independent from n, since different values of n does not re-

quire different processing. Therefore, in the Figure 4.10, the lines representing

strong shrinking when n = 2 and n = 8 are almost coincident. On the other hand,

weak shrinking strategy increases when n increases since additional processing has

to be applied in this case. For similar reason in previous discussion on attribute
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selections, we can see that, from Figure 4.11, weak shrinking performances are al-

most independent from selectivity while for strong shrinking strategy, elapsed time

increases as selectivity increases.
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Figure 4.10: Elapsed time for counting selections a[b1(≥ n) AND ... AND bm(≥ n)]
with respect to m
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Figure 4.11: Elapsed time for counting selections a[b1(≥ n) AND ... AND bm(≥ n)]
with respect to S(a,bi) = S(bi,a), i = 1, ..., m

Direct navigational selections. For this group of experiments, we considered

expressions like e1/e2 and we varied element selectivity. Figure 4.12 reports the

results we obtained. We can see that the elapsed time for weak shrinking is almost
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constant while the elapsed time for strong shrinking increases as selectivity increas-

ing. As we described before, with the strong shrinking technique, we solve a/b by

first retrieving those a elements with b children from CXJI, then join this partial

set of a element with b elements. The number of a elements to be retrieved from

CXJI, which is the main factor affecting elapsed time, increases by the increasing

of selectivity. But for weak shrinking, no matter how many a elements have b chil-

dren, we always retrieve them all. hence the elapsed time remain almost constant

as long as the total number of a and b elements remains constant.
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Figure 4.12: Elapsed time for direct navigational expressions e1/e2 with respect to
S(e1, e2)

Experiment on benchmark/real datasets

For this group of experiments, we considered various queries from the XMark

dataset and DBLP dataset. We did not choose queries presented in the bench-

mark of XMark project, instead we designed some queries from scratch since we

wanted to consider also counting queries which are not included in the XMark

workload. Details of these queries are presented in Table 4.1. For all the queries,

we applied strong and weak shrinking strategies and the results are presented in
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Query Expression Result cardinality

Q1 profile[@income] 12823

Q2 person/phone 12679

Q3 profile[interest(≥10)] 511

Q4 person/watches[watch(≥10)] 1146

Q5 person[/profile[interest(≥3)]]/watches[watch(≥3)]] 1135

Q6 person[/profile[interest(≥20)]]/watches[watch(≥30)]] 2

Q7 item[@featured]/mailbox[mail(≥ 3)]] 101

Q8 item[@featured]/mailbox[mail(≥ 10)] 1

Q9 open auctions/open auction[bidder(≥ 20)] 258

Table 4.1: XMark Queries

Figure 4.13. We can see that strong shrinking outperforms weak shrinking in ev-

ery query, especially for those queries involving counting selections, which proves

the effectiveness of the XJoin index in reducing unnecessary I/Os. The results are

consistent with those presented in the synthesis datasets.

We also compared strong and weak pruning strategies with TwigStack algorithm

presented in [19] using a real XML data instance originated from DBLP XML

record. The path expression of the query we used is:

inproceedings[author(≥ n) AND cite(≥ n)]

The result cardinalities with varying n are presented in Table 4.2 and the result

of this group of experiment is represented in Figure 4.14. As expected, we can

see from the results that weak pruning performs much worse than the other two

methods. TwigStack has proven to be an quite efficient algorithm and it performs

better than strong pruning when n is less than three. However, as the number of n

increases, the number of inproceedings elements that satisfy the counting predicates

gets fewer and fewer. Therefore, the index lookup on CXJI requires less time and
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Figure 4.13: Results for XMark dataset queries

n 1 2 3 4 5 6 7 8 9 10

No. Results 689 455 231 98 46 21 8 4 3 1

Table 4.2: DBLP Result

strong pruning has therefore the best performance.

4.6.4 Update

Figure 4.15 shows the average elapsed time for both inserting/deleting a single

element to/from the proposed index structure, which is build on the XMark bench-

mark dataset, for one hundred times under two different situations. Both insertion

and deletion requires a number of index lookup and update. Therefore, the elapsed

time is determined by the number of index lookups and updates. In case the if

conditions in insertion and deletion algorithms are true, additional index opera-

tions are required, hence the total elapsed time increases. But in either case, the
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update operation is efficient enough.
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Figure 4.15: Element insertion and deletion

4.7 Concluding remarks

In this chapter, we have proposed the XJoin Index, a join index for executing

branching path queries in an XML database. The XJoin index has been defined

extending the well known join index defined for relational databases to the XML
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context. The main characteristics of the proposed index are simplicity, since it is

based on a set of B+-trees, and flexibility, since it supports the choice of differ-

ent execution plans for the same branching query, and efficiently support attribute

selections, element selections, and parent-child relationships. Among element se-

lections, we consider also counting queries, determining whether an element has

at least (or at most) a certain number of children with a specific name. We have

subsequently presented algorithms and costs for search and update operations in

the XJoin Index and we have shown how the XJoin Index can be used to prune

the query twigs before applying structural join algorithms, which presents differ-

ent approaches. The experimental results confirm that the XJoin Index effectively

reduces the number of structural joins to be executed, thus improves the overall

query response time.



Chapter 5

The Lazy Update Scheme

5.1 Introduction

Most research works in the area of XML document processing focus on how to effi-

ciently query XML documents. However, we must also provide an efficient way to

handle XML updates in order to fully evolve XML into a universal data representa-

tion and exchange standard. Basically, there are two classes of update operations.

One is value update, where the value (PCDATA) of an element/attribute is changed.

The other is structural update, where a new element/attribute is inserted into (re-

moved from) the original XML document, thus causes structural change. We will

focus our discussion in this chapter to the structural change of XML elements for

two reasons, (i) value update is relatively easier to handle compared with structural

change, (ii) attributes can be equivalently considered as subelements.

As mentioned in previous chapters, an XML document is usually modeled as

an ordered tree, and every element/attribute is assigned an unique label(identifier)

based on its position in the XML document. And this label is later used as the key

or part of the key in the element index for efficient structural join processing. So

the main problem of structural update is that, in order to maintain the correctness

of structural joins, we may need to update the labels of possibly a large number
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of elements when the original XML document has been updated, which makes the

update operation very inefficient. Previous attempts to solve this problem mostly

rely on various dynamic labeling schemes. But they either cannot accommodate ar-

bitrary dynamic updates , or involve heavy computation which affects the efficiency

of structural join and update operation.

We therefore propose a different approach to handle XML update in this chap-

ter. This approach relies on the fact that in real world scenarios, XML updates

tend to be done in batch manner, i.e., multiple XML elements are inserted (or re-

moved) together. We model the whole XML database as a single super document

and consider update operations as inserting (or removing) XML segments, which

corresponds to a set of elements that must be inserted (deleted) together, into (or

from) the super document. In this model, every element has two positions. One is

its local position with respect to the segment it belongs to, the other is its global

position with respect to the super document. The local position of an element will

not change once it is assigned to an element. This gives us the inspiration of using

local position of an element as its identifier so that this identifier does not need to

be modified when update occurs. But the local position cannot be directly used as

the identifier of an element as it is not unique, thus is not suitable for structural

join algorithms. The key point to solve this problem is that the number of inserted

(or removed) segments is likely to be significantly less than the number of elements

these segments contain. So we can build an in-memory update log to record the

information of every segment. With the information of segments and the local

positions of elements, we can therefore uniquely identify an element in the super

document, thus we can perform structural joins without knowing the global posi-

tions of the elements. We are aware that, after many insertions, the size of update

log could grow large. However, as shown in the experiments, the size of update
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log is small enough not to pose a problem to modern machines. Moreover, the

database administrator can rebuild the index for the whole XML database during

maintenance, and therefore clear the update log for future insertions.

We also note that in real world scenarios, XML documents are normally stored

as just plain text files and update is likely to be done by simple text editing,

i.e., only the start location in the super document and the length of the inserted

(removed) segment are available to us. The update log shall be able to compute

the structural information of the segment given only these two values.

We organize this chapter as follows. Section 5.2.2 presents the structure of the

proposed update log and update algorithms for it. In Section 5.3, we present a

structural join algorithms that works with our lazy approach. Results from experi-

mental study on the update and structural join operations are given in Section 5.4.

The results show that out approach is more efficient than existing dynamic labeling

approaches for update and, additionally, it improves query processing performance.

We conclude this chapter in Section 5.5.

5.2 The Data Structure

In this section, we introduce the in-memory update log and corresponding update

operations, together with the element index.

5.2.1 Preliminaries

As we have mentioned, by adding a dummy root, the whole XML database, whether

it have been organized with a tree or many sub-trees, can be considered as one

super document and XML update operations are therefore modeled as inserting (or

removing) XML segments into (or from) the super document. It is obvious that
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every segment inserted (or removed) must be a valid XML document itself so that

the validity of the whole XML database is preserved, which also implies that every

segment, except the dummy root, is included in at least one other segment. As

part of the super document, every segment s has a starting position in the super

document. which we refer to as its global position, denoted by s.gp, with respect to

the super document. Each segment has a length, which is denoted by s.l. Based on

global positions and length, we can then define a segment containment relationship.

Definition 5.1 Let s1, s2 be two segments. The global position of si, denoted by

si.gp , is defined as the offset of the starting tag of si inside the super document.

The length of si, denoted by si.l, is the number of characters in si. s1 contains s2

if and only if s1.gp < s2.gp and s1.gp+ s1.l > s2.gp+ s2.l. s1 is the ancestor and s2

is the descendant segment. If there exists no other segment s3 such that s1 contains

s3 and s3 contains s2, s1 directly contains s2. In this case, s1 is the parent and s2

is a child segment of s1. 2

In Figure 5.1, rectangles represent XML segments and dashed lines the direct

containment relationships among different segments. We can see that segment 3

is directly contained in segment 2, which is its parent. Segment 1 is its ancestor.

Segment 4 and 5 are child segments of segment 3 and segment 6 is a descendant of

segment 3.

Besides a global position, we also assign a local position to every segment (except

the root), denoted by s.lp. The local position of a segment s2 with respect to its

parent s1 is simply the number of characters in s1 preceding s2 and not contained

in any left sibling of s2, at the time when s2 is being inserted.

Definition 5.2 Let segment s1 be the parent of segment s2. The local position of s2,

denoted by s2.lp, is defined as s2.lp = s2.gp− s1.gp−∑
(s is a left sibling of s2)

s.l.

2
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Figure 5.1: Segment containment relationship

Local positions, once assigned to a segment, never change. Insertions and dele-

tions of left siblings of s may vary the local position of a segment s. However, such

insertions (deletions) increase (decrease) the global position of s; thus, according

to definition 5.2, s.lp does not change.

Figure 5.2 represents the super document corresponding to Figure 5.1, pointing

out segment length, global and local positions, assuming, for the sake of simplicity,

each element is a dummy element which contains no character content and each

tag requires n characters for its storage.

5.2.2 Structure of Update Log

The update log consists of two main data structures. The first consists of a B+-tee

to easily access segment information. The second is the tag-list, which is a simple

inverted list that maps element tags to segments in the super document.

Figure 5.3 illustrates the structure of the considered B+-tree. Keys are segment

identifiers (sid), which are unique identifiers generated by the system when a new

segment is inserted. The B+-tree, call segment B+-tree (SB-tree), associates sid’s
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Figure 5.2: Super document corresponding to figure

with the following information: the segment global position gp, the segment length

l, the segment local position lp with respect to its parent, a pointer to its parent,

pointers to its children, sorted by global positions in ascending order. Every leaf

node in the B+-tree corresponds to a segment in the super document. Since the

leaf level is organized as a tree-like data structure, we refer to it as the ER-tree

(sEgment-Relationship tree) in the remainder of this chapter. The ER-tree is a

segment-based representation of a document, according to the sequence of inser-

tions/deletions that have been executed. The root node represents the dummy

root of the super document. As we will see in Sections 5.2.3 and 5.3, the ER-tree

simplifies update operations whereas the B+-tree is needed for query execution.
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Figure 5.4 illustrates the structure of the ER-tree for the segments shown in Figure

5.1.

sid.....lp gp

sid

.....lplllgpsid lp gpsid.....

Figure 5.3: SB-tree (Segment B+-tree)

seg_lpseg_5 lengthseg_gp

seg_6 seg_lplengthseg_gp

seg_4

...... .......

...C3C2dummy root

C1

C1

C2C1

C1

C1

seg_1 seg_lplengthseg_gp

seg_2 seg_lplengthseg_gp

seg_lplengthseg_gp

seg_3 seg_lplengthseg_gp

seg_lpseg_gp lengthseg_0

Figure 5.4: ER-Tree (sEgment Relationship tree)

Obviously, the size of SB-tree is O(N), where N is the number of segments

contained in the super document. We claim that N will be quite small compared

with the size of the document, thus it is reasonable to assume that the SB-tree

resides in main memory.
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Figure 5.5 illustrates the tag-list structure of the segments shown in Figure 5.1,

where we suppose the tag ids for tag A and B are tid 1 and tid 2 respectively.

Each list stores not only the segment id but also a path for every segment in the

ER-tree. The path of a segment is actually the concatenation of the segment ids of

all its ancestor segments plus its own segment id. Tag ids are sorted by ascending

order, and within the path lists attached to the tags, the paths are sorted by global

positions of the corresponding segments. The reason for storing the path is that

it allows us to more efficiently perform operations needed by the structural join

algorithm, as we will see in Section 5.3. The path is computed when the segment

is inserted into the super document and the length of the path is at most O(N),

which occurs in the most highly nested case where every segment has at most one

child segment, i.e., the ER-tree is reduced into a single linked list.We also associate

the numbers of element occurrences for each tag id in each segment together with

the paths, which helps us determine if a path should be removed from the path

list when we remove segments from the super document. We will describe this in

detail in Section 5.2.3. The size of the tag-list is O(TN2) where T is the number of

different tag ids and N is the number of segments. This is the worst case estimation

when every segment contains all tags and when the segments are most highly nested

as we described above. We are aware that there could be more compact ways to

represent the tag-list, but this approach is easier to maintain and since all the ids

are simply numbers, the total size of that tag-list is still small enough to fit into

the memory of modern machines.

Proposition 5.1 SPACE COMPLEXITY. Let N be the number of segments

and T the number of element tags. The space complexity of the SB-tree and tag-list

is O(N) and O(TN2), respectively. 2
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Figure 5.5: Tag-List

5.2.3 Updating the Update Log

The assumptions under which we define update operations are: (i) for each in-

sertion/deletion of a segment, we assume to know only its global position and its

length; local positions are transparent to the application and are detected during

update execution; (ii) only segment information can be modified;elements are only

inserted or deleted but never modified; (iii) inserting a segment into the super doc-

ument results in adding a new node into the SB-tree, but removing a segment from

the super document does not necessarily mean deleting a node from the SB-tree.

In case of insertion of a segment into the super document, the system will

automatically generate a segment id for it. Then both the SB-tree and the tag-list

need to be updated. More precisely, in case of insertion, we need to: (1) update

the global positions of relevant nodes in the ER-tree; (2) compute the needed

information for the segment from ER-tree; (3) add a node corresponding to the

segment into the SB-tree; (4) update the tag-list accordingly. Figure 5.6 gives

the algorithm for steps (1), (2), and (3). Function AddNewSegment Start first

increases global positions greater than that of the new segment by the length of

the new segment. Then, it calls function AddNewSegment, that recursively traverses

the ER-tree and adds the new node into the proper location in the child list of its
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AddNewSegment Start(new)
1. For each node m in ER-tree, m.gp > new.gp
2. m.gp = m.gp + new.l
3. AddNewSegment(ER root,new,empty path)
4. insert new.Node into the SB-tree

AddNewSegment(root,new,path)
1. path := path + root.sid
2. root.length := root.lengh + new.l
3. If a child node k of root is an ancestor of new
4. Then
5. AddNewSegment(k,new,path)
6. Else
7. path := path + new.sid
8. lengthSum := 0
9. for each left sibling n of new
10. lengthSum := lengthSum + n.l
11. new.lp := new.gp - root.gp - lengthSum
12. insert new.sid into the child list of root
13. Endif

Figure 5.6: Adding a segment into the SB-tree

parent node. The path variable is initially empty. The root parameter is initially

set to the root node of the ER-tree. We first append the segment id of the current

root node into the path variable and increase the length of the current root node

by the length of the segment represented by the new node. Then, according to

definition 5.1, we check if any of the children of the current root fully contains

the inserted node. If there exists such a child node, then the current root is not

the parent node of the inserted node and we recursively call the AddNewSegment

function, setting this child node as the new root. if there is no such child node,

which means that the current root is the parent of the inserted node, then we simply

insert the node into the child list of the current root. Of course, the new node must

be inserted into a proper location in the child list such that the order in global

positions of the child nodes is still preserved. New node’s local position is then
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computed according to definition 5.2. Although child list could be long after many

insertions, we can search or update a child list of size k in O(log(k)) time because

the SB-tree resides in memory and efficient algorithms like binary search [30] can

be used. It is obvious that the overall cost of adding a node into the SB-tree is

bounded by O(N), where N is the number of segments. This worst case also occurs

in the case that segments are most highly nested, which we have described earlier.

Concerning global position changes, again, although the cost of this propagation

process is O(N), it is still efficient in most cases because the SB-tree is memory

resident. Thus, the overall time to update the SB-tree is in O(N).

Once we have obtained the path of an inserted segment, we can update the

tag-list accordingly. If the inserted segment contains the tag with tag id T , then

its path (computed by the AddNewSegment function) is inserted into the path list

associated with tag id T according to global ordering. The cost of locating a tag id

is O(log(T )), where T is the number of different tags. The cost of inserting a path

into the path list associated with a tag id is bounded by O(log(N)). Therefore the

total cost of updating the tag list is O(p(log(T )+ log(N)))), where p is the number

of tags contained in the inserted segment.

Compared with inserting a new segment, removing a segment from a super

document is a bit more complicated. Indeed, the removed segment may not be any

of the existing segments recorded in the SB-tree. To clarify the problem, let seg

be the segment to be removed. We formalize the relationship between the removed

segment and segments in the ER-tree (except the dummy root) into three main

cases:

1. seg is contained in a segment k, i.e., k.gp < seg.gp and k.gp + k.l > seg.gp

+ seg.l. The length of k is reduced by seg.l.
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2. seg contains a segment k, i.e., seg.gp < k.gp and seg.gp + seg.l > k.gp + k.l.

k and all its descendants are deleted from the ER-tree in this case.

3. seg intersects a segment k. If k.gp < seg.gp < k.gp + k.l < seg.gp + seg.l,

it is a left intersection; if seg.gp < k.gp < seg.gp + seg.l < k.gp + k.l, it is a

right intersection. The length of k is reduced by k.gp + k.l − seg.gp (for left

intersection) or seg.gp + seg.l − k.gp (for right intersection).

Besides the previous cases, the global position of segments starting after seg

ending position is reduced by seg.l.

0

3

seg_1

seg_2 seg_5 seg_7

seg_3 seg_4 seg_8seg_6

Removed segment

6

52

4 8

7

1

Figure 5.7: Example of Removing a Segment

The relationship between the removed segment and the super document is a

combination of the three cases listed above. In Figure 5.7, the removed segment

(dashed box) is contained in segment 1, contains segments 4,5 and 6, left intersects

segment 2 and right intersects segments 7 and 8. In the corresponding ER-tree,
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black nodes refer to those segments that are to be completely deleted from the

tree, gray nodes refer to those segments that are affected by the removed segment

in terms of segment length and global position, white nodes refer to those segments

that are not affected when deletion occurs. Node 0 is the dummy root, whose

information is not supposed to change in all cases.

RemoveSegment Start(seg org)
1. For each node m in ER-tree, s.t. m.gp > seg.gp+seg.l
2. m.gp = m.gp - seg.l
3. RemoveSegment(ER root,seg org)

RemoveSegment(root,seg)
1. root.l := root.l - seg.l
2. For every child node k of root
3. If seg is contained in k
4. Then
5. RemoveSegment(k,seg)
6. Else if k is contained in seg
7. Then
8. remove k from the child list of root
9. remove k and its descendant nodes from SB-tree
10. Else if seg left intersects k
11. Then
12. segaux.gp = seg.gp;
13. segaux.l := k.gp + k.l - segaux.gp
14. RemoveSegment(k,segaux)
15. Else if seg right intersects k
16. Then
17. segaux.gp = k.gp;
18. segaux.l := seg.gp + seg.l - k.gp
19. RemoveSegment(k,segaux)
20. k.gp := seg org.gp
21. Endif
22. Endfor

Figure 5.8: Segment removal algorithm

Figure 5.8 gives the algorithm for updating the SB-tree when a segment is

removed from the super document. Function RemoveSegment Start(seg) takes



5.2 The Data Structure 133

the current segment to be removed as parameter. We first reduce the global position

of segments starting after seg ending position by the length of the current removed

segment. Then, we call the recursive function RemoveSegment with the root of the

ER-tree and the segment to be removed as parameters. In calling such function, the

root segment will always contain the segment to be removed. RemoveSegment first

updates the root length, then it checks the relationship between the current removed

segment and the child segments of the current root. If the removed segment is

contained in a child node, we just call function RemoveSegment recursively. If a

child segment is contained in the current removed segment, we remove the node

that corresponds to that child segment and all its descendants from the SB-tree.

If the removed segment left intersects a child node, we update the length of the

removed segment by using an auxiliary segment, as indicated in lines 12-13, and

call function RemoveSegment recursively, setting the child node as the new root. If

the removed segment right intersects a child node, we update the length and the

global position of the removed segment by using an auxiliary segment, as indicated

in lines 17-18, we call function RemoveSegment recursively, and we update the

global position of the child node. The usage of an auxiliary segment allows the

algorithm to maintain the correct information associated with the segment to be

removed when checking the other child nodes. Moreover, in order to maintain the

correctness of structural join results after a series of segment insertion/deletion,

we need to maintain the information of each removed segment as well, which also

helps decide which elements are to be removed from the element index. The cost

of recursively updating the ER-tree is bounded by O(N). The worst case happens

when the segments are most highly nested and the removed segment intersects all

of them. Since the cost of deleting a node from the SB-tree is O(log(N)), the total

cost for updating the SB-tree is bounded by O(Nlog(N)).
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The tag-list is updated after updating the element index. To update the tag-

list when a segment is removed, we need to know the tag name and the number

of elements actually removed from the super document, since a path has to be

deleted only if no more elements with that tag are contained in the segment after

deletion. The information concerning the type and the number of elements removed

is computed when we actually perform the delete operation in the element index.

The cost of updating the tag-list for one tag id is bounded by O(log(T )+mlog(N)),

where m is the number of segment paths to be removed from the path list, T is the

number of different tags in the super document, and N is the number of segments.

log(T ) + log(N) is the worst case cost of locating a single path in the tag-list

for a given tag id. The worst case occurs when the tag id is contained in all

segments and a path is to be removed from the path list attached with this tag id.

Therefore, the total cost of updating the update log when a segment is removed is

O(Nlog(N) + p(log(T ) + mlog(N))), where p is the number of distinct tag names

the removed segment contains.

Following proposition gives a summary of update cost of update log.

Proposition 5.2 Update Complexity. Let N be the number of segments, T the

number of distinct element tag ids, p the average number of distinct element tag

names in a segment, and m the average number of paths to be removed from a path

list in the tag-list. The segment insertion cost is O(N + p(log(T) + log(N))) and

the segment deletion cost is O(Nlog(N) + p(log(T) + mlog(N))). 2

5.2.4 Element Index

The element index is simply a B+-tree. Every record in the index represents an

element and is represented by the tuple (tid, sid, start, end, LevelNum), where tid

is the tag id of the element, sid is the segment id the element belongs to, start is
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the starting position of the element in the segment identified by sid, i.e., the local

position of the element, end is the local ending position of the element, LevelNum is

the depth at which the element appears in the document. According to the proposed

labeling scheme, each element is univocally identified by the tuple (tid, sid, start),

which is in fact the key of the element index.

Search and insert operations for the element index are the same as those for

standard B+-trees. But when element records are removed from the element index,

we need to record the number of removed elements with the same tid and sid,

which is necessary when we decide if a segment path should be removed from a

path list as we mentioned when we discussed the impact of deletion on the tag-list

in Subsection 5.2.3.

5.3 Query Evaluation

Under the lazy XML update approach, existing structural join algorithms can still

be used to compute pairs of ancestor/descendant or parent/child elements. As we

discussed in Subsection 5.2.4, elements in the element index are identified by the ids

of the segments in which they appear and their local positions. To use traditional

structural join algorithms, we need to compute the global positions of elements.

To do that, we first retrieve information of the segments that contain the elements

to be participated into the structural join, then we compute the global positions of

the element according to the local positions of the elements.

On the other hand, information concerning segments can be used to reduce the

number of elements to be checked in structural join, thus improving the overall

performance. In this section, we first present some results concerning containment

relationship between elements and segments; then we show how to perform struc-
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tural join by using the element index and the update log.

5.3.1 Preliminaries

The containment relationship between XML segments is closely related to the con-

tainment relationship between XML elements, which is the foundation of struc-

tural join. In general, we distinguish between cross-segment join, i.e., join between

elements contained in distinct segments, and in-segment join, i.e., join between

elements contained in the same segment.

In the following, we present two properties of cross-segment joins that will be

useful in defining our structural join algorithm, Their proof follows from defini-

tion 5.1. The first property specifies that, in order to be related by an ancestor-

descendant relationship, elements must be contained in pairs of ancestor-descendant

segments, thus providing a necessary condition for pairs of segments to generate

cross-segment joins; the second provides a sufficient and necessary condition for an

element to generate cross-segment joins. In presenting such properties, given two

segments S and T such that S contains T , P S
T denote the local position of a seg-

ment L containing T and directly contained in S. For example, if S is identified by

path 0.1.2 and T by 0.1.2.3.4.6, P S
T is the local position of segment 3 with respect

to S. If S directly contains T , we just set P S
T to be the local position of T with

respect to S. Moreover,we call X − element an element with X as tag name.

Proposition 5.3 Let S and T be two distinct segments. Let a be an A-element in

S and b a B-element in T . The following results hold:

1. If a is an ancestor (parent, descendant, child) of b then S contains T (S

directly contains T , T contains S, T directly contains S).

2. a is an ancestor of b if and only if a contains T and a.start < P S
T and
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a.end > P S
T . 2

Proof. Suppose that a contains b. We get the following inequalities: (i) a.gp <

b.gp, a.gep > b.gep (since a//b); (ii) b.gp > N.gp, b.gep < N.gp +N.length (since b

is contained in T ). Now suppose that a does not contain T . We have the following

cases: (i) a is in front of T . In this case, a.gep < T.gp. But from inequality

(i), T.gp < b.gp, thus a.gep < b.gp < b.gep, which contradicts inequality (i); (ii)

a is after T . In this case, a.gp > T.gp + T.length. But, from inequality (ii),

T.gp + T.length > b.gep > b.gp, thus a.gp > b.gp, which contradicts inequality (i).

This means that a must contain T .

Now assume that b is contained in T and a contains T . We have to prove that

a contains b. We get the following inequalities: (i) a.gp < T.gp and a.gep > T.gp+

T.length (since a contains T ); (ii) b.gp > T.gp and b.gep < T.gp + T.length (since

b is contained in T ). From them, it follows that a.gp < T.gp < b.gp and a.gep >

T.gp + T.length > b.gep, thus a contains b. The other part of the proposition can

be proved in a similar way.

If a contains T , necessarily contains the segment at position P S
T by definition.

Thus, Proposition 5.3(2) is completed proved.

To prove Proposition 5.3(1), we note that if a is an ancestor of b, according to

Proposition 5.3(2), a contains T . Since segments are either nested or disjoint, it

follows that S contains T . If a is a parent of b, no elements must be contained

between a and b. Thus, T must be directly contained in S. 2

Consider Figure 5.9, where Sn and En represent the starting and ending position

of element n. We see that the A-element S2 in segment 2 contains segment 3 and

so is its ancestor A-element S1. Therefore, according to proposition 5.3(2), we have

two join results: (2 : S1, 3 : S1) and (2 : S2, 3 : S1). Segment 2 is contained in the

A-element S4 in segment 1, hence , the A-element S4 in segment 1 contains segment
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Figure 5.9: Cross-segment join between segments

3 as well. We get another three results from A-element S4 in segment 1 and its

ancestor A-elements, which are S2 and S3. The three pairs are (1 : S2, 3 : S1),

(1 : S3, 3 : S1) and (1 : S4, 3 : S1). We can finally see that A-element S3 in segment

2 does not produce any result with B-element in segment 3 since it does not contain

segment 3. The same happens with A-elements S1 and S5 in segment 1.

5.3.2 The Lazy-Join Algorithm

In the following, we present a structural join algorithm that uses segment infor-

mation to improve the processing. It is a variation of the stack-based algorithm

proposed in [12], called Stack-Tree-Desc. We consider this algorithm because it

is quite efficient and, at the same time, it is easy to implement. The algorithm

we propose, called Lazy-Join to highlight that it relies on a lazy XML update

approach, returns pairs of ancestor/descendant elements first sorted by descendant
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Algorithm Lazy-Join(SLA,SLD)
1. sa = SLA.firstNode; sd = SLD.firstNode; OutputList = NULL; stack = empty stack();
2. While (stack is empty) /* the stack is empty*/
3. If (sa.gp < sd.gp)
4. stack.push(sa);
5. sa = SLA.nextNode;
6. Else if (sa.gp = sd.gp)
7. Append the result of Stack-Tree-Desc(sa,sd) to OutputList;
8. sd = SLD.nextNode;
9. Endif
10. Endwhile
11. While ((SLA and SLD are not empty) /* both lists are not empty */
12. If (sd.gp > stack.top.gp + stack.top.l) stack.pop(); /* Step 1 */
13. Else if (sa.gp < sd.gp) /* Step 2 */
14. If (sa contains sd)
15. remove from stack.top() elements e such that e.lep < Pstack.top()

sa ;
16. stack.push(sa);
17. EndIf
18. sa = SLA.nextNode
19. Else if (sa.gp ≥ sd.gp) /* Step 3 */
20. For every segment sa1 in stack, starting from stack bottom
21. For every element a1 in sa1 such that a1.start < P sa1

sd , starting from lowest lp
22. If (a1.end > Psa1

sd )
23. For every element d1 in sd
24. Append (sa.sid,a1.lp,sd.sid,d1.lp) to OutputList;
25. If (sa.gp = sd.gp) Append the result of Stack-Tree-Desc(sa,sd) to OutputList;
26. sd = SLD.nextNode
27. While (SLD and the stack are not empty) /* SLA is empty /*
28. If (sd.gp > stack.top.gp + stack.top.l) stack.pop();
29. Elseif (stack.top contains sd)
30. For (sa1 = stack.bottom; sa1 != NULL; sa1 = sa1.up)
31. For (a1 = sa1.bottom; a1 != NULL; a1 = a1.up)
32. If (a1.start < Psa1

sd && a1.end > Psa1
sd )

33. For (b1 = sd.bottom; b1 != NULL; b1 = b1.up)
34. Append (sa.sid,a1.lp,sd.sid,b1.lp) to OutputList;
35. sd = SLD.nextNode;
36. Endif
37. Endwhile

Figure 5.10: Algorithm Lazy-Join
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positions.

Lazy-join differs from traditional structural join algorithms in two aspects: (i)

it computes the result starting from two lists of segment identifiers, instead of two

lists of element identifiers; (ii) it relies on proposition 5.3 to improve cross-segment

join computation. Any traditional structural join algorithm can be used to generate

in-segment joins.

Suppose the path expressions is A//D. The algorithm starts from two lists

of segment identifiers SLA and SLD, the first containing A-elements, the second

containing D-ones, sorted by global positions. These lists are extracted from the

tag-list (see Section 5.2.2). The basic idea of the algorithm is to merge the two

lists of segments (thus, each segment in the lists is accessed just once), according

to their global position, using a stack. The stack at all times contains a sequence

of segments from SLA. Each segment in the stack is a descendant of the segment

below it. For each segment s, we push: (i) its identifier, global position, and

length (retrieved from the SB-tree); (ii) the local starting and ending positions of

A-elements in s (retrieved from the element index).

At each step, the ancestor-descendant relationship between the current segment

in SLA - say sa - and the current segment in SLD - say sd - is checked. Based on the

result of this comparison, the stack is manipulated, pointers in the lists advanced,

and results produced, according to proposition 5.3. More precisely, three distinct

operations can be executed, until SLA or SLD becomes empty:

1. Pop Segments : sd.gp > stack.top.gp + stack.top.l. This means that sd is not

a descendant of the top segment in the stack, thus no future segment from

SLD will be a descendant of the current top of the stack (since segments are

sorted by their global position). Therefore, we can pop the stack. No result

is generated.
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ments sadi contain both D- and A-elements
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2. Push Segments : sa.gp < sd.gp. Due to step 1, we know that sd is a descendant

of the top segment in the stack. Since sa.gp < sd.gp, sa is a descendant of

the top segment, too. If sa contains sd, sad is pushed into the stack since,

due to 5.3, it may generate joins with sd. Then, We advance SLA. No result

is generated.

3. Join Generation: sa.gp ≥ sd.gp. Due to step 1 and 2, we know that sd is a

descendant of all the segments in the stack, thus, according to proposition 5.3,

all segments in the stack may generate cross-segment joins with sd. However,

differently from [12], not all elements in the stack will generate joins with

elements in sd. Thus, for each segment in the stack, say sa1, we generate

cross-segment joins with D-element in sd only if condition 2 of proposition

5.3 is satisfied. No condition has to be checked for elements in sd.

If sa.gp = sd.gp, in-segment joins are then generated. Elements are joined based

on their local positions by using any structural join algorithm (e.g., Stack-Tree-Desc.

Note that if sa.gp > sd.gp, sa and sd cannot generate joins due to proposition 5.3(1),

due to the ordering of SLA, any future segment in SLA cannot generate joins with

sd. Thus SLD is advanced.

If SLD becomes empty before SLA, no more joins can be generated and the

algorithm stops. One the other hand, if SLA becomes empty before SLD, we just

process the remaining segments in SLD according to steps (1) and (3), until SLD

or the stack become empty.

According to the algorithm above, elements in the stack do not represent a chain

of ancestor-descendant relationships. On the other hand, this property is satisfied

by the algorithm presented in [12]. In order to reduce the overhead, due to the fact

that more elements than required are inserted in the stack, the Lazy-Join algorithm

can be optimized by inserting in the stack only element that can potentially gen-
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erate cross-segment joins. Since the stack contains a chain of ancestor-descendant

segments, according to proposition 5.3(2), those element are such that they contain

at least one child segment. We get this behavior by modifying step(2) as follows:

(i) we push only elements containing at least one segment. The information can

be checked by using child information associated with each leaf value in the SB-

tree. Note that, since in-segment joins are computed before a segment from SLA

is pushed into the stack, no pairs are lost; (ii) before pushing a segment sa into the

stack, we remove from the top segment the elements ending before sa starts, since

they will not contain any future segment from SLA. Figure 5.10 presents lazy-join

algorithm and Figure 5.11 presents an simple example of its application. We finally

observe that the Lazy-Join algorithm can be easily extended to compute parent-

child relationships. In this case, according to proposition 5.3(1), segments must

share a parent-child relationship. Thus , at step 3 of the algorithm, cross-segment

joins can be generated only from the pair of segments (stack.top, sd). For each pair

of elements (a1, d1), the join is generated if d1.LevelNum = a1.LevelNum + 1.

5.3.3 Analysis of Lazy-Join Algorithm

Correctness of the proposed algorithm follows from proposition 5.3 and [12]. Con-

cerning time complexity, the algorithm implements a merge of two lists. Let pA(pD)

be the average number of A− (D−) elements in one segment. The operations per-

formed by the algorithm are the following:

• Push segments. Each segment in SLA is pushed at most once. Since for each

pushed segment sa we need to access the SB-tree to get necessary information

about sa, the cost of pushing segments is (O(|SLA|∗(log(N)+log(NE)+pA)),

where N is the total number of segments and NE is the total number of

elements.
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• Pop Segments. Each segment in the stack can be popped at most once. Thus,

the cost is bounded by |SLA| ∗ pA.

• Join Generation. In Step 3, for each segment in the stack, at most all its

A-elements are checked. Each of them either generates cross-segment joins

with all D-elements in sd or with none of them (lines 21-24). Thus, the

cost of accessing D-element is amortized by the cost of returning join re-

sults in output. Moreover, according to the applied optimization, only in

the top segment more than one element may generate no join with ele-

ments in sd(all elements ending before sd starts). Since SLD is ordered,

such elements will generate no join with any next segment from SLD and

therefore can be removed from the stack. By applying this additional opti-

mization, each top segment is completely analyzed once during the overall

join computation. Thus, the complexity of generating cross-segment joins is

O(|SLD| ∗ (log(NE) + log(N)) + |SLA| ∗ pA + OutputList), where log(NE)

is due to the element index access needed to retrieve D-elements contained in

sd, log(N) is due to the computation of P sa
sd for the top element in the stack

(for the others, it can be computed after each push operation and stored in

an auxiliary data structure), and OutputList is the number of returned pairs.

Concerning in-segment joins, since we use the algorithm proposed in [12], the

cost is O(SAD(PA +PD + log(NE))+OutputList), where SAD is the number

of segments containing both A- and D-elements.

Proposition 5.4 TIME COMPLEXITY: The time complexity of algorithm

Lazy-Join is O(|SLA| ∗ pA + SAD ∗ pD + seg overhead + OutputList) where

Seg overhead = (|SLA|+ |SLD|) ∗ (log(N) + log(NE)) 2
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We note that cost SAD ∗ pD is the maximum overhead due to in-segment joins.

Thus, by fixing the total number of joins as well as the number of segments, in-

creasing the percentage of cross-segment joins improves the performance. With

the respect to the Stack-Tree-Desc algorithm, whose complexity is linear in the

number of A- and D- elements, i.e., in |SLA| ∗ pA + |SLD| ∗ pD, we note that, since

SAD ∗ pD ≤ |SLD| ∗ pD, Lazy-Join outperforms Stack-Tree-Desc depending on:

(i) the percentage of in-segment joins; (ii) the segment overhead, which in turn

depends on the number of segments.

5.4 Performance Study

5.4.1 Experiment Setup

We have implemented the update log and the related element index in C++, on

an ultra 450 machine with processor of 500MHz and 3 Gigabytes of main mem-

ory. For the experiments, we used both synthetic datasets, created by the IBM

XML generator [6] and benchmark datasets, generated by XMark [15]. We used

synthetic datasets in order to more easily get the characteristics we need for an-

alyzing the properties of the proposed algorithms. On the other hand, by using

XMark datasets, we can analyze the proposed techniques in more realistic situ-

ations. When using synthetic datasets, to simulate the real world scenario, we

chopped the datasets into many small segments and inserted these segments into

an initially dummy XML document while maintaining the validity of the super

document. Segment size varies from few kilo bytes to several hundred kilo bytes

and the number of elements they contain varies from a few to several thousands.

Experiments have been conducted concerning update log space occupancy and

building time, as well as time to execute structural joins and to update the struc-
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tures. In the last two cases, we considered two different assumptions, resulting

in different query/update times. Under the first assumption (that we call lazy dy-

namic (LD)), we assume to maintain the update log incrementally updated, thus at

query time the update log is ready to be used; under the second assumption (that

we call lazy static (LS)), we further reduce update time by assuming to maintain

incrementally updated only the ER-tree and to keep the tag-list unsorted. Path

lists are sorted and the B+-tree generated from scratch just before querying the

XML database.

5.4.2 Update Log Space and Building Time

The update log consists of both the SB-tree and the tag-list. Figure 5.12 reports

the size of each component and the total size of the update log, in term of kilo

bytes, when the number of inserted segments varies. Each segment contains all

element tags appearing in the tag-list (the worst case for tag-list update). We can

see that the size of the tag-list increases much faster than that of SB-tree and the

tag-list size contributes a large percent of the total size of update log. This is

because, as stated in Section 5.2.2, the size of the tag-list is O(TN2) while that

of the SB-Tree is O(N), where T is the number of distinct tag ids and N is the

number of segments. We also note that in the nested case, tag-list size increases

faster, as discussed in Section 5.2.2. As we have claimed before, the size of the

update log is considerably small. Its size is only about 95 kilobytes for balanced

ER-trees and 195 kilobytes for nested ER-trees after over 300 insertions, which

cannot be a problem for modern machines. Figure 5.13 reports similar results for

update log building time.



5.4 Performance Study 147

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 10  60  110  160  210  260

up
da

te
 lo

g 
si

ze
 (

kb
)

# of segments

SB tree, balanced ER tree
TagList, balanced ER tree

SB tree, nested ER tree
TagList, nested ER tree

Figure 5.12: Update Log Size

5.4.3 Structural Join Processing

We compared the elapsed time of solving path expressions like A//D by LS, LD,

and the Stack-Tree-Desc algorithm proposed in [12] (denoted by STD in the

following). Three main groups of experiments have been performed.

The aim of the first group is to analyze the impact of cross-segment joins in

query performance. To this purpose, we fixed the number of segments and the

number of A- and D- elements. Then, we varied the percentage of cross-segment

joins. Since the structure of the ER-tree determines how many segments containing

D-elements can be skipped, we considered two different ER-tree structures: a com-

pletely nested one (which corresponds to the worst case) and a balanced one, which

corresponds to a more reasonable real situation. Figure 5.14 reports the results for

the nested and balanced case, by considering 50 and 100 segments. We can see

that when the number of cross-segment joins increases, the performance of LS and

LD increases, since, as we saw in Section 5.3, the cost of performing cross-segment

joins is lower than the cost of performing in-segment joins. On the other hand, the
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cost of STD is almost constant since, even if it can be influenced by the position of

elements generating joins, it has to read all elements that may potentially generate

joins even if some of them will not generate any result. From this experiment we

also note that, as expected, LD is always more efficient than STD, due to the fact

that by LD entire segments can be skipped and the segment processing overhead is

very low. On the other hand, LS is more efficient than STD for high cross-segment

join percentage (higher than 60% in this experiment).

In the second group of experiments, we investigated the impact of number of seg-

ments in structural join performance. To this purpose, we fixed a document (which

contains about 120k elements and whose size is approximatively 10 Megabytes), we

changed the number of segments and the structure of the ER-tree, and we executed

the same query over all situations. In all cases, the percentage of cross-segment

joins is around 20%. Results from LD and STD are reported in Figure 5.15. We

can see that the higher is the number of segments the higher is the processing time

since the segment lists to be scanned are longer. We also note that, for more than
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Figure 5.14: Elapsed time for structural join over: (a)-(b) nested ER-trees; (c)-(d)
balanced ER-trees

180 segments and balanced ER-tree, LD performs worse than STD. This is because,

in this case, the overhead in segment processing is higher than the improvement

got from cross-segment join computation.

Finally, in the third group of experiments, we analyzed the performance of LD

on an XMark dataset, slightly modified to increase the number of cross-segment

joins. The size of the dataset is about 100 Megabytes and it contains about 3

millions elements. Table 5.1 and Figure 5.16 present the considered queries and

the obtained results. For the experiment, we chopped it into 100 segments and we

considered a balanced ER-tree. The percentage of cross-segment joins is about 20%

to 30%. We can see that for all the considered queries, LD, differently from LS,
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Query XPath expression Result cardinality

Q1 person//phone 413170

Q2 profile//interest 494240

Q3 watches//watch 879891

Q4 person//watch 1455040

Q5 person//interest 1074792

Table 5.1: XMark Queries

outperforms STD. The results are coherent with those presented in Figure 5.15.

From the first two groups of experiments, it follows that, when the number of

segments is very high or when the percentage of cross-segment joins decreases, and

therefore for the special case when one segment coincides with one element, the

performance of LS and LD may decrease. In those cases, nested segments can be

collapsed together in order to reduce the overall number of segments, increase their

sizes, and improve query performance. Alternatively, traditional structural join
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Figure 5.16: Elapsed time for structural join over XMark datasets.

algorithms can still be used. At the same time, as we will see in Subsection 5.4.4,

the usage of segments is still useful since it always improves update performance.

5.4.4 Update Processing

In order to analyze update time of the lazy approach, we considered two different

experiments. In the first experiment, we compared LD with a traditional approach,

labeling elements by their starting and ending positions. For that, we inserted a

segment into XMark datasets of variable size and we reported the elapsed time

of updating the element index (and the update log, for the lazy approach). We

considered the average case in which the inserted segment causes half the elements

to change their global positions. Figure 5.17 reports the obtained results in log

scale. We can see that, as the size of the XML document increases, the insertion

time of the traditional approach increases dramatically while that of LD remains

low and almost constant. The reason is obvious. For the traditional approach,

whenever a new segment is inserted, many of the indexed element records have

to be updated. However, for LD, we need only to insert a new segment into the
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in-memory log, and to insert element records of that segment into the element

index. No update of existing element records is required. We note that for the lazy

approach, global relabeling of segments is required. However, since the number of

segments is usually much less than that of elements, the overhead of this step does

not greatly affect the insertion cost.
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Figure 5.17: Elapsed time of inserting one segment.

The aim of the second experiment is to compare update performance of LD and

LS with that of approaches based on immutable labeling schemes. To this purpose,

we considered the prime numbering scheme recently proposed in [101] (denoted

by PRIME in the following). Since the structure of the ER-tree influences the

length of paths in the tag-list and the number of segments to be updated, we

considered both the balanced and nested case. Figure 5.18 and 5.19 show the

elapsed time of inserting one element in a document chopped into 100 segments,

by changing the number of elements (maintaining fixed the number of distinct tag

names) and the number of distinct tag names (maintaining fixed the number of

elements) in the inserted segment, respectively. Since our approach is based on

segments, to determine the update cost of each single element (needed in order
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to compare LD and LS with PRIME), we divided the time required to insert the

segment by the number of elements it contains. K value in the figure is the number

of prime numbers that share the same simultaneous congruence in PRIME. We

can see that LS and LD require much less time than PRIME. Indeed, PRIME

requires recomputing at least one simultaneous congruence value in the table of

simultaneous congruence values and this recomputation process contributes large

part of the total processing time and it is also very costly according to the algorithm

presented in [101]. One the other hand, under the lazy approach, no complicated

computation is required. We see that by increasing the number of elements inside a

segment, the insertion time decreases. This is due to the fact that, in order to obtain

the element insertion time, we divide the segment insertion, which is constant in

this experiment, by the number of elements contained in one segment. On the

other hand, costs increase when the number of tag names increases since more

path lists must be updated in tag-list. The structure of the ER-tree also influences

costs. We can see that nested ER-trees require higher costs since path lengths
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increase and tag-list update cost increases as well. This is even more evident from

Figure 5.20, showing how insertion costs for LD change when varying the number

of segments. From the experiment results shown in Figure 5.18, 5.19 and 5.20, we

can see that, as expected, insertion time varies almost linearly with respect to the

number of segments. Moreover, LS is more efficient compared with LD, even if the

gain in performance is very small. Since LD guarantees better query performance,

it provides the best compromise between update and query processing time.

5.5 Concluding Remarks

In this chapter, we have presented a lazy approach to handle XML updates. Dif-

ferently from all the other existing approaches for XML updates, under the lazy

approach multiple XML elements (called XML segments) are inserted (deleted)

into (from) the whole XML database without modifying element identifiers. Thus,

no update to existing records in the element index is required. To support the
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proposed approach, specific data structures have been designed and a structural

join algorithm relying on the usage of segments has been proposed. Experimental

results show that our approach outperforms other existing solutions in handling

updates and in the mean time, may give better performance compared with tradi-

tional structural join algorithms, such as the one proposed in [12].



Chapter 6

Conclusion

6.1 Summary of Main Contributions

This thesis presents our solutions to solve three major issues in the area of XML

document processing. The first one is the XStorM mapping scheme for mapping

XML documents into relational tables. The second one is the XJoin Index, our

indexing solution for efficient evaluation of branching path queries. The third one

is our lazy approach for handling XML update.

Mapping XML data into relational tables remains the main trend of XML stor-

age and various mapping schemes have been proposed. These schemes either gen-

erate too many small tables, which decreases query performance, or they require

DTD or schema information. Our new mapping scheme, XStorM, overcomes these

drawbacks by making a distinction between XML elements that represent entities

in the real world, i.e., objects, and XML elements that represent properties of

entities, i.e., attributes. XStorM avoids excessive fragmentation of XML data by

mapping each object together with the majority of its attributes to a core rela-
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tional table. We use a data-mining algorithm to identify the frequent patterns in

the original XML data and we generate the core table schema from these patterns.

The overflow that cannot be fit into the core relational table is stored in separate

overflow tables. The names of attributes and the names of the relational tables

contain structural information of the original XML file, so fast reconstruction is

possible. Our performance study has demonstrated that XStorM gives good query

performance, minimizes storage space and is scalable.

Structural join is generally considered a core operation for solving XML path

queries, and quite a number of index structures were proposed to speed up struc-

tural join. These index structures mainly focus on how to evaluate a single struc-

tural join operation more efficiently and they do not help reduce the number of

structural joins to be executed. Inspired by the join index proposed in the relational

context, we have proposed a new indexing scheme, XJoin Index, to speed up the

evaluation of branching path queries. The XJoin Index reduces the number of struc-

tural joins to be executed in branching path query processing by pre-computing

some (semi-)join results, i.e., it trades space occupancy for query processing effi-

ciency. The main features of the XJoin Index include: (i)It is simple to implement

as it is entirely based on B+-trees, constructed over specific tuples of values. (ii)It is

flexible as it can be coupled with other structural join algorithms, and several join

plans can be chosen based on the usage of the XJoin Index. We also present three

possible query strategies to shrink twigs in branching path queries by applying the

XJoin Index. We have conducted experiments concerning space occupancy as well

as query and update time, and our experimental results show that the XJoin Index

can efficiently reduce the number of structural joins to be executed, thus improving

overall query performance.
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XML elements are usually assigned with labels (identifiers) according to their

positions in the document for efficient query processing, especially structural join.

These labels are usually the keys or parts of the keys in the element indexes.

Therefore, it is possible that a large number of such labels in the index need to

be modified when new elements are inserted into (or removed from) the original

document. To solve this problem, previous research focused on developing various

dynamic labeling schemes, which are either not flexible enough or entail heavy

computation. We propose a brand new lazy approach to efficiently handle XML

documents. This lazy approach is based on the fact that XML updates tend to be

done in batch manner. Multiple elements, which form what we call a segment, are

inserted into (or removed from) the original document together. We show that an

in-memory update log can be constructed to record every segment that is inserted

because the number of segments is likely to be significantly less than the number

of elements. With the help of this update log, we completely avoid re-labeling

every element when update occurs. This segment-based update model not only

improves update efficiency, but also generally improves structural join efficiency.

This is because we can skip those elements that are definitely not included in

the final results by the containment relationship between elements and segments.

Experimental studies on both update and structural join operations show that this

lazy approach significantly improves update efficiency, and it improves structural

join efficiency most of times too.

6.2 Future Work

In this section, we discuss some limitations of our proposed work and some direc-

tions to be explored in future work.
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Our work on the XStorM mapping scheme can be extended in several direc-

tions. First, the object identification algorithm described in Section 3.2.2 can only

identify objects whose paths are of the same length. In some real world documents,

there are objects which have paths of different lengths. Therefore, it is necessary

to develop an improved method to handle this kind of data. Another possible ex-

tension is to develop a complete query re-writing mechanism that translates XML

queries into SQL queries that work on top of our XStorM mapping scheme.

As described in Chapter 4, the proposed XJoin Index is able to help a query

optimizer choose different query plans according to several twig shrinking strate-

gies. If the twig pattern is complex, it is not trivial to decide which twig shrinking

strategy should be applied to obtain optimal performance. One possible way that

guides the selection of twig shrinking strategies is by estimating the intermediate

results of structural joins before performing any selection or join operation. A

number of estimation methods have been proposed in recent years [98, 78, 79, 65].

In the next phase of our work, we will construct a detailed cost model for use in

query optimization algorithms. This model will allow the selection of the most ef-

ficient shrinking strategy according to existing statistics on data distribution. The

estimation methods mentioned above should also be quite helpful in that regard.

The lazy update scheme proposed in Chapter 5 uses the segment update paradigm

to avoid relabeling elements when an update occurs. The performances of both up-

date and structural operations depend on the size and shape of the ER-tree, i.e.,

the total number of segments and the distribution of the segment insertion posi-

tions. As we have seen in Section 5.4, if the number of segments increases or the
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insertion positions of new segments are not evenly distributed, the performances

of both the update and structural join processes decrease. This is simply because

we need more time to modify the update log (in case of updates) or to retrieve

information from the update log (in case of performing segment-based structural

joins). To make the lazy scheme more efficient, we will explore the possibility of

developing dynamic segment packing techniques, where several segments can be

packed together as a whole without destroying the containment relationship be-

tween elements and segments. We believe by doing so, the size and complexity of

the ER-tree could be decreased , thus making search and update operations on it

more efficient.

Another possible direction is to explore is how to incorporate concurrency con-

trol into our lazy update scheme. Currently, when a new segment is inserted, we

need to lock its ancestor elements, and other inserted segments with the same an-

cestors need to wait until the lock is released. However, update operations of the

update log are not atomic operations. Therefore, it is not always necessary to

lock all the ancestor segments and all information of these segments when updates

take place. We intend to further investigate the relationships between segments

and segment update operations, and possibly propose a more detailed model for

the update operations of update log, and more efficient update algorithms that

incorporate concurrency control.
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Appendix

In this appendix, we first give the details of benchmark queries used in Chapter

3 and their corresponding SQL translations and file operations(for STORED) in

different mapping schemes. Then we presents the response time of executing these

SQL queries in detail. We have presented these results in bar charts in Chapter 3

already. But some values presented in the bar charts are not complete because we

have to set the upper bounded of the y axis to an appropriate value.

In oracle database, a table name cannot exceed 30 characters. Therefore, we

need to have a name index to map tag names to numbers so that the name of core

and overflow relational tables (for STORED and XStorM scheme) will not exceed

the limit. The mapping is shown in Table 6.1. According to the name index, the

core relational table core sigmodRecord issue article is mapped to “c 0 1 2” and

overflow table of article authors author is mapped to “o 2 7 8”.

Tag SigmodRecord issue article title issueNumber

Number 0 1 2 3 4

Tag initPage endPage authors author description

Number 5 6 7 8 9

Table 6.1: Tag to number mapping



Appendix 174

Query 1. Reconstruct Object with object id “4212”

Binary Scheme:

select DISTINCT title.source, to number(issuenumber.value), title.value,

to number(initPage.value), to number(endPage.value), author.value,

description.value from title, issuenumber, initPage, endPage, authors, author,

description where title.source = 4212 AND title.source = issuenumber.source

AND title.source = initPage.source AND title.source = endPage.source

AND title.source = authors.source AND author.source = authors.nodeID

AND title.source = description.source

STORED Scheme:

select oid, issuenumber 0, title 0, to number(initPage 0), to number(endPage 0),

author 0, author 1, author 2, description 0 from c 0 1 2

where oid = 4212

Retrieve overflow graphs under oid 4212, from overflow graphs files.

XRel Scheme:

select e1.docID, e1.start, e1.end, t2.value, t3.value, t4.value, t5.value, e6.index, t6.value,

t7.value from Element e1, Element e6, Text t2, Text t3, Text t4, Text t5, Text t6, Text t7,

Path p1, Path p2, Path p3, Path p4, Path p5, Path p6, Path p7

where e1.start = 2134 AND e1.end = 2759 AND e1.docID = 0

AND e1.pathID = p1.pathID AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article’

AND t2.pathID = p2.pathID AND p2.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/title’

AND t2.start > e1.start AND t2.end < e1.end AND t2.docID = e1.docID

AND t3.pathID = p3.pathID and p3.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/issueNumber’

AND t3.start > e1.start AND t3.end < e1.end AND t3.docID = e1.docID

AND t4.pathID = p4.pathID AND p4.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/initPage’

AND t4.start > e1.start AND t4.end < e1.end AND t4.docID = e1.docID

AND t5.pathID = p5.pathID AND p5.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/endPage’

AND t5.start > e1.start AND t5.end < e1.end AND t5.docID = e1.docID

AND e6.pathID = p6.pathID AND p6.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/authors#/author’

AND e6.start > e1.start AND e6.end < e1.end AND e6.docID = e1.docID
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AND t6.pathID = p6.pathID AND t6.start > e6.start AND t6.end < e6.end

AND t7.pathID = p7.pathID AND p7.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/description’

AND t7.start > e1.start AND t7.end < e1.end AND t7.docID = e1.docID

XStorM Scheme:

select A.oid, A.issuenumber 0, A.title 0, A.initPage 0, A.endPage 0,

A.author 0, A.author 1, A.author 2, B.attrIndex, B.value, A.description 0

from c 0 1 2 A, o 2 7 8 B

where A.oid = 4212 AND A.oid = B.oid

Query 2. Find articles that have “initPage” between 500 and 600

Binary Scheme:

select source from initPage where to number(value) > 500

AND to number(value) < 600

STORED Scheme:

select oid from c 0 1 2

where to number(initPage 0) > 500 and to number(initPage 0) < 600

XRel Scheme:

select e1.docID, e1.start, e1.end from Element e1, Path p1, Text t1

where e1.pathID = p1.pathID AND t1.pathID = p1.pathID

AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/initPage’

AND to number(t1.value)> 500 AND to number(t1.value) < 600

AND e1.docID = t1.docID AND t1.start > e1.start AND t1.end < e1.end

XStorM Scheme:

select oid from c 0 1 2

where to number(initPage 0) > 500 and to number(initPage 0) < 600

Query 3. Find the article that has the 10th author named “Pinar Koksal” and has

issuenumber equal to 15



Appendix 176

Binary Scheme:

select DISTINCT authors.source from authors, author, issuenumber

where author.source = authors.nodeID AND authors.source = issuenumber.source

AND to number(issuenumber.value) = 15 AND author.ordinal = 9

AND author.value = ‘Pinar Koksal’

STORED Scheme:

select DISTINCT oid from c 0 1 2

where to number(issuenumber 0) = 15

Retrieve “author” overflow graphs with index 9 and value “Pinar Koksal” from

overflow graph files

XRel Scheme:

select e1.docID, e1.start, e1.end

from Element e1, Element e2, Text t2, Text t3, Path p1, Path p2, Path p3

where e1.pathID = p1.pathID AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID

AND p2.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/authors#/author’

AND e2.start > e1.start AND e2.end < e1.end AND e2.docID = e1.docID

AND e2.index = 9 AND t2.pathID = p2.pathID AND t2.start > e2.start

AND t2.end < e2.end AND t3.pathID = p3.pathID

AND p3.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/issueNumber’

AND t3.start > e1.start AND t3.end < e1.end

AND t3.docID = e1.docID AND to number(t3.value) = 15

XStorM Scheme:

select DISTINCT core 0 1 2.oid from c 0 1 2, o 2 7 8

where c 0 1 2 = o 2 7 8.oid AND to number(issuenumber 0) = 15

AND attrIndex = 9 AND value = ‘Pinar Koksal’

Query 4. Find articles that have first author ‘Dallan Quass’ and 7th author ‘Svetlozar

Nestorov’ or just first author ’Kenneth A. Ross’ (no 7th author)



Appendix 177

Binary Scheme:

select DISTINCT A1.source from authors A1, author A2

where A2.source = A1.nodeID AND A2.ordinal = 0 and A2.value = ‘Kenneth

A. Ross’ AND NOT EXISTS (select * from author A3 where A3.ordinal = 6

AND A3.source = A2.source)

UNION

select DISTINCT A1.source from authors A1, author A2

where A2.source = A1.nodeID AND A2.ordinal = 6 AND A2.value = ‘Svetlozar

Nestorov’ AND A1.source IN (select DISTINCT A3.source from authors A3,

author A4 where A4.source = A3.nodeID AND A4.ordinal = 0 and A4.value =

‘Dallan Quass’)

STORED Scheme:

select DISTINCT oid from c 0 1 2 where author 0 = ‘Kenneth A. Ross’

Find “author” overflow graph with value “Svetlozar Nestorov” and ordinal 6

select DISTINCT oid from c 0 1 2 where author 0 = ’Dallan Quass’

Check “author” overflow graphs with oids returned from above SQL query,

remove those oids with ordinal 6.

XRel Scheme:

select e1.docID, e1.start, e1.end

from Element e1, Element e2, Element e3, Text t2, Text t3, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID

AND p2.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/authors#/author’

AND e2.start > e1.start AND e2.end < e1.end AND e2.docID = e1.docID

AND e2.index = 0 AND t2.pathID = p2.pathID AND t2.docID = e2.docID

AND t2.start > e2.start AND t2.end < e2.end AND t2.value = ‘Dallan Quass’

AND e3.pathID = p2.pathID

AND e3.start > e1.start AND e3.end < e1.end AND e3.docID = e1.docID

AND e3.index = 6 AND t3.pathID = p2.pathID AND t3.docID = e3.docID
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AND t3.start > e3.start AND t3.end < e3.end AND t3.value = ’Svetlozar Nestorov’

UNION

select e1.docID, e1.start, e1.end from Element e1, Element e2, Text t2, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID

AND p2.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/authors#/author’

AND e2.start > e1.start AND e2.end < e1.end AND e2.docID = e1.docID

AND e2.index = 0 AND t2.pathID = p2.pathID AND t2.docID = e2.docID

AND t2.start > e2.start AND t2.end < e2.end AND t2.value = ‘Kenneth A. Ross’

AND NOT EXISTS (select * from Element e3, Element e4

where e3.docID = e1.docID AND e3.pathID = p1.pathID

AND e4.pathID = p2.pathID AND e4.start > e3.start

AND e4.end < e3.end AND e4.docID = e3.docID

AND e4.index = 6)

XStorM Scheme:

select DISTINCT C.oid from c 0 1 2 C where C.author 0 = ‘Kenneth A.Ross’

AND NOT EXISTS (select * from o 2 7 8 O where O.oid = C.oid and O.attrIndex

= 6)

UNION

select DISTINCT oid from c 0 1 2 where author 0 = ‘Dallan Quass’ AND oid

IN (select DISTINCT oid from o 2 7 8 where attrIndex = 6 and value =

‘Svetlozar Nestorov’)

Query 5. Find articles that have initPage = 388 or endpage = 2 or 7th author

‘Svetlozar Nestorov’

Binary Scheme:

select source from initPage where to number(value) = 388

UNION

select source from endPage where to number(value) = 2

UNION

select authors.source from author, authors where author.source = authors.nodeID
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AND author.ordinal = 6 AND author.value = ‘Svetlozar Nestorov’

STORED Scheme:

select oid from c 0 1 2 where to number(initPage 0) = 388 OR

to number(endPage 0) = 2

Find “author” overflow graph with value “Svetlozar Nestorov” and ordinal 6

XRel Scheme:

select e1.docID, e1.start, e1.end from Element e1, Text t2, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article’

AND t2.pathID = p2.pathID AND p2.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/initPage’

AND e1.docID = t2.docID AND t2.start > e1.start AND t2.end < e1.end

AND to number(t2.value) = 388

UNION

select e1.docID, e1.start, e1.end from Element e1, Text t2, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article’

AND t2.pathID = p2.pathID AND p2.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/endPage’

AND e1.docID = t2.docID AND t2.start > e1.start AND t2.end < e1.end

AND to number(t2.value) = 2

UNION

select e1.docID, e1.start, e1.end from Element e1, Element e2, Text t2, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp LIKE ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID

AND p2.pathexp LIKE ‘#/SigmodRecord#/issue#/article#/authors#/author’

AND e2.docID = e1.docID AND e2.start > e1.start AND e2.end < e1.end

AND e2.index = 6 AND t2.docID = e2.docID AND t2.pathID = p2.pathID

AND t2.start > e2.start AND t2.end < e2.end AND t2.value = ‘Svetlozar Nestorov’

XStorM Scheme:

select DISTINCT oid from c 0 1 2

where to number(initPage 0) = 388 OR to number(endPage) = 2

UNION
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select DISTINCT oid from o 2 7 8 where attrIndex = 6

AND value = ‘Svetlozar Nestorov’

Query 6. Find articles that have attribute, issuenumber, title, initPage and 9 authors

Binary Scheme:

select source from issuenumber INTERSECT

select source from title INTERSECT

select source from initPage INTERSECT

select DISTINCT authors.source from author, authors

where author.source = authors.nodeID AND author.ordinal = 8

STORED Scheme:

select DISTINCT oid from c 0 1 2

where issuenumber 0 IS NOT NULL AND title 0 IS NOT NULL

AND initpage 0 IS NOT NULL AND author 0 IS NOT NULL

AND author 1 IS NOT NULL AND author 2 IS NOT NULL

Check “author” overflow graphs with oids returned from above SQL query,

Remove oids that do not have corresponding overflow graphs with ordinal 8.

XRel Scheme:

select e1.docID, e1.start, e1.end from Element e1, Element e2, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp = ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID

AND p2.pathexp = ‘#/SigmodRecord#/issue#/article#/issueNumber’

AND e2.docID = e1.docID AND e2.start > e1.start AND e2.end < e1.end

INTERSECT

select e1.docID, e1.start, e1.end from Element e1, Element e2, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp = ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID AND p2.pathexp = ‘#/SigmodRecord#/issue#/article#/title’

AND e2.docID = e1.docID AND e2.start > e1.start AND e2.end < e1.end

INTERSECT

select e1.docID, e1.start, e1.end from Element e1, Element e2, Path p1, Path p2
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where e1.pathID = p1.pathID AND p1.pathexp = ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID AND p2.pathexp = ‘#/SigmodRecord#/issue#/article#/initPage’

AND e2.docID = e1.docID AND e2.start > e1.start AND e2.end < e1.end

INTERSECT

select e1.docID, e1.start, e1.end from Element e1, Element e2, Path p1, Path p2

where e1.pathID = p1.pathID AND p1.pathexp = ‘#/SigmodRecord#/issue#/article’

AND e2.pathID = p2.pathID AND p2.pathexp = ‘#/SigmodRecord#/issue#/article#/authors#/author’

AND e2.docID = e1.docID AND e2.start > e1.start

AND e2.end < e1.end AND e2.index = 8

XStorM Scheme:

select DISTINCT c 0 1 2.oid from c 0 1 2, o 2 7 8

where c 0 1 2.oid = o 2 7 8.oid AND issuenumber 0 IS NOT NULL

AND title 0 IS NOT NULL AND initpage 0 IS NOT NULL

AND author 0 IS NOT NULL AND author 1 IS NOT NULL

AND author 2 IS NOT NULL AND attrIndex = 8
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Query Response Time (in ms)

Query 1:

XML Size Binary XRel STORED XStorM

1MB 240 265 211 203

10MB 387 454 331 323

20MB 452 662 421 403

40MB 465 832 451 454

100MB 798 1143 532 503

Query 2:

XML Size Binary XRel STORED XStorM

1MB 231 251 261 241

10MB 243 254 273 252

20MB 250 262 272 264

40MB 246 271 283 276

100MB 253 432 402 398

Query 3:

XML Size Binary XRel STORED XStorM

1MB 221 245 231 202

10MB 265 304 273 232

20MB 276 342 421 265

40MB 331 411 489 307

100MB 20342 22431 2031 387
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Query 4:

XML Size Binary XRel STORED XStorM

1MB 230 254 244 212

10MB 395 467 432 347

20MB 578 511 653 567

40MB 804 723 853 767

100MB 43564 46342 3112 1213

Query 5:

XML Size Binary XRel STORED XStorM

1MB 244 256 214 215

10MB 311 324 272 255

20MB 521 413 321 304

40MB 783 721 433 426

100MB 39821 41567 1768 1254

Query 6:

XML Size Binary XRel STORED XStorM

1MB 321 354 278 273

10MB 678 702 342 311

20MB 1143 1204 467 386

40MB 1764 1775 611 435

100MB 5342 5873 2343 1134


