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Summary 

The realism of a real time 3D scene depends not only on the complexity of the 

scene, but also on the realistic animation of the objects within the scene. This 

project presents an integrated system for animating and rendering a real time and 

realistic large-scale prairie. Animating a scene requires precise calculations on the 

exact movement of the 3D objects. However, real time and realism are usually 

two conflicting objectives and thus this report also employs a series of methods 

for reducing computational load and yet maintains its realism. By using physical 

equations such as fluid dynamic equations, we are able to render the realistic 

animation of plants under the influence of wind movement. Grasses in the prairie 

are rendered either as a single blade, or as a billboard, depending on the distance 

of the grass from the viewpoint. Furthermore, the sequence of the grasses being 

rendered is also determined by using two sorting algorithm, quick sorting and 

pre-computed sorting. Each grass grid is uniquely rendered by varying its terrain 

height and the inclusion of empty patches. To improve on the performance of the 

rendering, view-frustum culling is used to determine the visibility of each blade of 

grass. In general, our output fulfills these two constraints of both real time and 

realism.  

 

 

 

 - V - 



PHYSICALLY BASED ANIMATION AND FAST RENDERING OF LARGE-SCALE PRAIRIE 

 

FIGURE 1: THE VELOCITY AND DENSITY IN THE COMPUTATIONAL CUBE.. .................6 

FIGURE 2: MAIN LOOP STEP FOR EQ.(1) IN THE NAVIER-STOKES EQUATIONS. .........7 

FIGURE 3: ADVECTION IN 2D VERSION....................................................................10 

FIGURE 4: 2D VERSION OF MASS CONSERVATION FIELD. .........................................14 

FIGURE 5: THE DESIGN OF SINGLE BLADE OF GRASS WITH 4 BACKBONE POINTS.. ....17 

FIGURE 6: ONE SNAPSHOT FOR GRASS GRID WITH 32X32 BLADES OF GRASS INSIDE..

........................................................................................................................19 

FIGURE 7: CONSTRAINT OF GRASS SHAPE................................................................24 

FIGURE 8: ROTATION OF THE BLADE OF GRASS ACCORDING TO THE DIRECTION OF 

WIND...............................................................................................................26 

FIGURE 9: SIX TEXTURES OF FLOWERS ARE SPRINKLED INTO THE PRAIRIE.. ............27 

FIGURE 10: FAR PLANTS USING BILLBOARD TECHNIQUE IN THE GRASS GRID...........32 

FIGURE 11: TEXTURE OF BILLBOARD PLANTS WITH ALPHA CHANNEL.. ...................32 

FIGURE 12: BILLBOARDS WITH TEXTURE.. ..............................................................34 

FIGURE 13: THE LARGE-SCALE PRAIRIE. .................................................................37 

FIGURE 14: VIEW FRUSTUM CULLING......................................................................38 

FIGURE 15: TGA FORMAT USED FOR TRANSPARENT TEXTURE FILE.........................40 

FIGURE 16: THE PRE-COMPUTED SORTING FOR SURROUNDING GRASS GRIDS. .........42 

FIGURE 17: SORTING FOR A LARGE-SCALE PRAIRIE: PRE-COMPUTED SORTING. .......43 

FIGURE 18: HEIGHT MAP EDITOR.. ..........................................................................45 

FIGURE 19: BI-LINEAR INTERPOLATION FOR THE HEIGHT OF ARBITRARY POSITION IN 

THE HEIGHT MAP OF TERRAIN..........................................................................46 

FIGURE 20: FOUR DIRECTIONS OF THE TRANSFORMATION CONDITION FROM TOP 

VIEW.. .............................................................................................................50 

FIGURE 21: SPHERE-PLANT INTERACTION.. .............................................................53 

FIGURE 22: THE AESTHETIC LARGE-SCALE PRAIRIE WITH PHYSICALLY BASED 

ANIMATION. ....................................................................................................55 

FIGURE 23: FINAL RENDERING RESULTS FOR DIFFERENT VIEWS WHEN THE HEIGHT OF 

CAMERA INCREASES. .......................................................................................57 

 - VI - 



PHYSICALLY BASED ANIMATION AND FAST RENDERING OF LARGE-SCALE PRAIRIE 

1 Introduction 

Grasses are commonly used in virtual world systems such as simulators and 3D 

gaming. In the past, most applications usually render a simple polygonal model to 

represent grass patches. These grass patches however, are usually motionless that 

provide no interaction with the wind and other objects in the scene. Our objective 

in this project is to provide a realistic grass rendering system for a large-scale 

prairie which allows us to generate not only grass-object interaction, but also for 

animating grass motion using physically-based dynamics.  

1.1 Related Work 

Grass-object interaction was introduced by IO InteractiveTM in the game “Hitman 

Codename 47” in 2001. Although real time interaction was achieved, there was no 

animation of grass motion in the presence of wind. The benchmarking application 

of “Rendering Countless Blades of Waving Grass” in GPU Gems I [1] shows an 

aesthetic meadow in a valley, with grasses lying around the lake and wavering in 

the wind. However, no grass-object interaction is possible due to the fact that their 

grasses are all drawn as billboards. Furthermore, the animation of their grasses is 

not realistic as all the grasses are animated similarly using simple trigonometric 

function.  

Bakay et al. [2] present a simple method for real time rendering fields of grass 

which are able to waver in the presence of wind. Vertex shader is used to render 

displacement maps with transparent shells. Their scene consists of different shells 
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of grasses, which are animated based on a vector that represents the motion of the 

wind. However, the animation is convincing only when the viewpoint is far from 

the animating grasses.  

Shinya et al. [3] simulate the animation of trees and grass which are subjected to 

the complex wind fields. Their contribution is modeling the stochastic properties 

of wind by implementing the simple fluid flow model in [4]. However, their 

physical approach is considered to be too time consuming for applying onto a 

large-scale prairie. 

Perbet et al. [5] propose animating the prairies in real time, which is similar to our 

objective. However, their approach is fundamentally different from ours. In their 

implementation, the dynamics of grass motion is handled in a much simpler 

approach, similar to [4]. A time-varying stochastic component is included, which 

allows the wind effect to be placed in an orthographic direction with respect to the 

terrain. The direction of the animating grass are pre-computed and stored as 

indexes of postures. These postures represent the direction of grass with respect to 

the presence of wind. Similar to [2], their animation is only realistic when viewed 

from afar, such as the viewpoint from an aircraft which is flying over the prairie. 

Nevertheless, the drawback of such a design is that the choice of stochastic wind 

is not based on physically accurate simulation model and the animation is 

restricted to limited pre-computed postures.  
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1.2 Overview 

The objective of this project is to present an integrated system for rendering a real 

time large-scale prairie with physically-based animation. Section 2 introduces the 

Navier-Stokes equations and their solutions for each step of our implementation. 

Section 3 presents the design and animation for a single blade of grass and flower. 

Section 4 describes the design and animation for billboard grasses and flowers. 

Section 5 details the design of the large-scale prairie which relies on various 

algorithms related to the Levels-of-Details, view-frustum culling, and two kinds of 

sorting. The grass-object interaction is presented in Section 6. Finally, Section 7 

shows the results while Section 8 is the conclusion.
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2 Mathematics Background 

This Chapter introduces the fluid dynamic equations for controlling the motion of 

wavering grass. The equations are called the Navier-Stokes equations which are 

used for incompressible fluid whose density and temperature are nearly constant.  

2.1 The Navier-Stokes Equations 

In 18th and 19th century, Claude Louis Marie Henri Navier (1785-1836) and Sir 

George Gabriel Stokes (1819-1903) developed a precise mathematical model for 

the incompressible fluid, which is known as the Navier-Stokes equations [6]. The 

mathematical equations are: 

2( )u k
t

Sρ ρ ρ∂
= − ∇ + ∇ +

∂
i  (1) 

2( )u u u v u f
t

∂
= − ∇ + ∇ +

∂
i   (2) 

where  ρ = density of particles such as dust in the fluid 

  u = velocity of fluid 
t = time step 
k = density viscosity of the fluid 
v = kinematical viscosity of the fluid 

  S = density of particles injected into the computational grid 
f = external velocity injected into the computational grid 

  i= dot product between vectors 

∇= vector of spatial partial derivatives, ( , , )
x y z
∂ ∂ ∂
∂ ∂ ∂

 in 3D 

2∇ = ∇ ∇i  

Eq.(1) is imposed for the calculation of the change of fluid density in infinitesimal 

time and Eq.(2) is imposed for the calculation of the change of fluid velocity in 

infinitesimal time. 
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The proposed Navier-Stokes equations provide accurate animation traits for the 

incompressible fluid. Although solving the equations by hand remains difficult, 

computers are able to calculate the equation accurately, which is very crucial for 

the scientific purposes. Thus, we are able to utilize the equations to model 

simulations such as the passage of air over the wings of an aircraft. However, even 

for computers, modeling the equations accurately is still too time-consuming.  

On the other hand, in gaming industry, users are less demanding on accuracy 

while focusing more on real time simulation and convincing animations. For this 

purpose, Stam [8] propose a set of new solutions for the Navier-Stokes equations 

which is faster but slightly inaccurate. We briefly outline these steps that lead to 

the calculations of the Navier-Stokes equations for real time applications. 

In the next section, we discuss how the Navier-Stokes equations are applied to a 

3D scene and provide pseudo code for calculating the equations based on Stam’s 

approach [8] to a 2D scene.  

2.2 Overall Design  

We apply the typical Euler computational grids in computational mathematics to 

calculate the Navier-Stokes equations. It is a large cube (known as “computational 

cube”) which contains many uniform grid cells. The variables of fluid density and 

velocity are set in center of each grid cell. An extra layer (known as “boundary 

wall”) which also consists of similar sized grid cells covers the computational 

cube in order to account for boundary condition. Thus, if the cube has  grid 3N
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cells, we need to allocate  in the 3D scene. In our project, we set the 

value of N to be 8, thus the computational cube contains 1000 grid cells which 

includes the boundary walls. 

3( 2N + )

Figure 1.a shows one example, where the grids with 

lighter lines represent 8x8 cell grids. The grids with darker lines represent 

boundary condition to restrict the variable’s motion. The dot represents the 

velocity and density which reside in center of each grid cell. 

    
    (a)                             (b) 

Figure 1: The veloci oking from the top 

e, the fluid velocity and density are set to zero for each small grid 

cell, except the one called “source grid” which is used for injecting fluid velocity 

and density into the simulation. In each time step, we inject new random fluid 

velocity and density value into the source grid and apply the Navier-Stokes 

equations to calculate the diffusion and advection in each grid cell. After several 

time steps (it needs time to diffuse the variable of velocity and density), the 

velocities in each grid cell are able to obtain new values, which are used for 

controlling the animation of the blades of grasses. Figure 1.b shows one snapshot 

of velocity (shown as vector lines) for each small grid cell. The outline lines 

ty and density in the computational cube. (a) Lo
view. (b) One snapshot in the 3D scene. Each small line represents the velocity direction 
in current time. 

In the initial tim

 - 6 - 



PHYSICALLY BASED ANIMATION AND FAST RENDERING OF LARGE-SCALE PRAIRIE 

represent bounding box of the computational grid, and the direction of each small 

line represents the direction of velocity in each central of grid cell. 

2.3 Solution of Equations for Games 

q.(1) that To solve the Navier-Stokes equations, we need to derive the solution to E

the particles move with a fixed velocity and use the solution to assist in solving 

Eq.(2). The rationale is due to the fact that Eq.(1) is easier to solve as it is possible 

to express a linear equation. A loop calculation approach, as shown in Figure 2, is 

used to solve Eq.(1). To simplify the notation, S is used to represent the addition 

of new density value into the computational cube, 2k ρ∇  represents diffusion, 

and ( )u ρ− ∇i  represents advection. 

 
Figure 2: Main loop step for Eq.(1) in the Navier-Stokes equations. 

rid cell where it is selected as a source 

2.3.1 Adding Density 

A “source grid” is defined as a particular g

where variables are injected into the system. In each time step, a new random 

density value is injected into the source grid, while the densities of other grid cells 

are calculated by Eq.(1) in the Navier-Stokes equations.  
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2.3.2 Diffusion 

Diffusion is the fluid phenomena which describes the motion of particles among 

grid cells with different particle densities within the fluid itself. Such particles 

move freely from one location to another. Since our implementation of fluid 

motion is enclosed within grid cells, we are mostly concerned with the flow of 

particle densities from one grid cell to another. In our 3D scene, we assume each 

cell can only exchange particles with its six connected neighbors. Thus for each 

cell, we need to calculate six terms for the flow of particles outwards and six 

terms for the flow of particles inwards. The mathematical equation stated below is 

used to solve this process. 

1[ , , ] [ , , ] *( [ 1, , ] [ , 1, ] [ , , 1]
[ 1, , ] [ , 1, ] [ , , 1] 6* [ , , ])

t t t t t

t t t t

x i j k x i j k a x i j k x i j k x i j k
x i j k x i j k x i j k x i j k

+ = + − + − + −
+ + + + + −

+
 (3) 

where xt[i,j,k] represent the density of the particle present in cell [i,j,k] at time t. 

The factor a represents the diffusion rate of the fluid. Eq.(3) has a simple structure, 

however, it can work only when the time step is restricted to the condition lt
u

Δ < , 

where l is the size of small grid cell in the computational grid and u is the motion 

of speed. If the time step is larger than this condition, the density in one grid cell 

may transmit into the non-neighbored cells such that the non-neighbored cells 

obtain wrong results but the corresponding neighbor cell has no contribution in 

this time step. So Eq.(3) is unstable and eventually the result will be blown up. 

Thus, to achieve the stable result for any size of time step, we change the format 

 - 8 - 



PHYSICALLY BASED ANIMATION AND FAST RENDERING OF LARGE-SCALE PRAIRIE 

of Eq.(3) to one that calculates the x[i,j,k] diffused backward in time step as 

shown in Eq.(4). 

1 1 1 1

1 1 1 1

[ , , ] [ , , ] *( [ 1, , ] [ , 1, ] [ , , 1]
[ 1, , ] [ , 1, ] [ , , 1] 6* [ , , ])

t t t t t

t t t t

x i j k x i j k a x i j k x i j k x i j k
x i j k x i j k x i j k x i j k

+ + + +

+ + + +

= − − + − + −
+ + + + + −

+
 (4) 

We can build a matrix to solve Eq.(4) using a standard inverse matrix routine. But 

since the matrix is sparse as most items are zero, we can use a much simpler 

solution, “Gauss-Seidel relaxation” [9], to iteratively converge the result of the 

right side of Eq.(4). The pseudo code shows as follows: 

// Gauss-Seidel relaxation 

void linear_solver ( int N, int b, float * x, float * x0, float visc_a, float dt_t ) 

{ 

 for ( int iterate=0 ; iterate<20 ; iterate++ ) {  // iterate: numbers of iterations

  FOR_EACH_CELL 

 x(i,j,k) = (x0(i,j,k) +visc_a*(x(i-1,j,k) +x(i+1,j,k) +x(i,j-1,k) + 

x(i,j+1,k) +x(i,j,k-1) +x(i,j,k+1)))/dt_t; 

  END_FOR 

  set_bound ( N, b, x ); } 

}  

// A simpler iteration technique to invert the matrix, which is called Gauss-Seidel relaxation

void diffuse ( int N, int b, float * x, float * x0, float diff, float dt ) 

{ 

 float a=dt*diff*LENGTH*HEIGHT*DEPTH; 

 linear_solver ( N, b, x, x0, a, 1+6*a ); // using Gauss-Seidel relaxation 

} 

The advantage of this revision is that it would not be affected by a large time step 

while at the same time remain as an easily solvable equation. 

2.3.3 Advection 

Advection causes particles in fluid to move along the velocity direction at their 

position. Suppose we simplify the particle density in each grid cell into only a 

single particle residing in the center of the grid cell. In the first attempt, we can 
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calculate the new position of particle in one time step according to the velocity 

where the particle moves forward from the location of time t1 to the location of 

time t2 in Figure 3. However, this method can cause the same problem which is 

unstable if the time step is larger than the condition as we discussed in Section 

2.3.2, thus the larger time step can cause the result unstable, while the smaller 

time step can increase the heavy load of calculation within the same period.  

 
Figure 3: Advection in 2D version. Blue curve represents the particle’s trajectory along 
time step. Green arrow represents the velocity in each grid cell. Remember the velocity 
can not move outside of the computational grid. Red dot represents the location of 
particle in time t0, t1, t2. The location of particle in t1 stays in the center of grid cell. 

We can use the idea in Section 2.3.2 that inverses the direction of calculation in 

order to obtain the position one time step backward, such that the particle moves 

back from the location of time t1 to the location of time t0 in Figure 3. Suppose the 

density’s position moves to the center of grid cell in time t1, while in time t0 

( ), it resides in the position that the density can move to the position of 

t

0 1t t= − Δt

1 after one time step forward. The amount of density in the position in time t0 can 
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be calculated by tri-linear interpolation based on the densities of six connected 

neighbors in time t0, and assigned to the density in time t1. 

2.3.4 Calculation of Density 

We can combine above three steps, adding force, diffusion, and advection, 

together to form the calculation of density. The code is show as follows: 

// N: number of grid; *x: density in current step; *x0: density in previous step;  

// *u: x axis speed; *v: y axis speed; *w: z axis speed; diff: diffuse parameters;  

// dt: time step. 

void dens_step ( int N, float * x, float * x0, float * u, float * v, float * w, float diff, 

float dt ){ 

 add_source ( N, x, x0, dt ); 

 SWAP ( x0, x ); diffuse ( N, 0, x, x0, diff, dt ); 

 SWAP ( x0, x ); advect ( N, 0, x, x0, u, v, w, dt ); 

} 

where SWAP(x0,x) is the macro that exchanges data in two arrays, it is defined as 

follows: 

#define SWAP(x0,x) { float * tmp=x0; x0=x; x=tmp; } 

2.3.5 Calculation of Velocity 

We can use similar steps in calculating densities to calculate the velocities in 

Eq.(2). The three terms in Eq.(2) are that, f represents adding velocity;  

represents viscous diffusion; 

2v u∇

( )u u− ∇i  represents self-advection which states that 

the velocity field itself is moveable. The pseudo code of calculating velocity 

shows as follows: 

// velocity step calculation, 

// N: grid size; *u: x axis speed; *v: y axis speed; *w: z axis speed;*u0: x axis old speed;

// *v0: y axis old speed; *w0: z axis old speed 

// visc: viscosity parameter; dt; delta t, time step 
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void vel_step ( int N, float * u, float * v, float * w, float * u0, float * v0, float * w0, 

float visc, float dt ){ 

     // add force 

 add_source ( N, u, u0, dt ); add_source ( N, v, v0, dt ); add_source ( N, w, w0, dt );

  

     // viscous diffusion 

 SWAP ( u0, u ); diffuse ( N, 1, u, u0, visc, dt );   // 1: x axis direction 

 SWAP ( v0, v ); diffuse ( N, 2, v, v0, visc, dt );   // 2: y axis direction 

 SWAP ( w0, w ); diffuse ( N, 3, w, w0, visc, dt );   // 3: z axis direction 

  

 project ( N, u, v, w, u0, v0 );      // mass conserving 

  

 SWAP ( u0, u ); SWAP ( v0, v ); SWAP ( w0, w ); 

  

// self-advection 

 advect ( N, 1, u, u0, u0, v0, w0, dt );  

 advect ( N, 2, v, v0, u0, v0, w0, dt );  

 advect ( N, 3, w, w0, u0, v0, w0, dt ); 

  

 project ( N, u, v, w, u0, v0 );      // mass conserving 

} 

Compared to the functions for the steps of calculating density in Section 2.3.4, the 

difference here is that the steps in velocity calculations introduce a new routine 

called project() which is not presented in the density step. It is an important aspect 

in the calculation of velocity. In the next section, we demonstrate the function of 

project(). 

2.3.6 Mass Conservation 

There is still one step we have to solve before we have finished the velocity 

calculations, and that is the mass conservation of the fluid. The mass conservation 

of the fluid represents that the fluid that flows into a cell should be equal to the 

fluid that flows out of this cell. However, in practice after calculation of velocity 
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steps without the function of project() this is not the case. In this section, we need 

to correct the situation in this final step.  

Without the mass conservation, the velocity calculation will usually result in an 

un-natural fluid animation which contains many vectors pointing either all inward 

or all outward (the second item on right hand side in Figure 4.a), while in nature 

the fluid is a swirling-like flow (the first item on right hand side in Figure 4.a). To 

correct this un-natural fluid animation, we refer to a mathematic theory called 

“Helmholtz-Hodge decomposition” [11], which defined as that, each vector field 

(in our example, the one shown on the left hand side in Figure 4.a) is the sum of a 

mass conservation field (the first item shown on the right hand side in Figure 4.a) 

and a gradient filed (the second item shown on the left hand side in Figure 4.a). 

The mass conservation field looks like a beautifully swirling-like flow; on the 

other hand, the gradient field is the worst case for simulating the fluid since it 

represents the direction of steepest descent of the velocity in the fluid. Thus, the 

objective of the project()function is used for the mass conservation of velocity 

field, which remove the gradient field from the current result. By using the 

gradient field to subtract from the current vector field, we are able to obtain the 

mass conservation field (Figure 4.b).  
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(a)  

(b)  
Figure 4: The steps to calculate the mass conservation field in the velocity steps in 2D 
version. (a) Left side: the result prior to calling project() routine; on right side, the first 
item is a mass conservation field; the second item is a gradient field. (b) The sequence 
that we calculate the mass conservation field. (Courtesy from Stam [8]) 

The gradient field can be solved by a linear system called “Poisson equation” [12], 

a second-order partial differential equation commonly used in physics calculations. 

Since this linear system is sparse symmetrical with most items zero, for our 

project, we can re-use the method of Gauss-Seidel relaxation as discussed in the 

diffusion steps to solve it. The pseudo code for project() routine is shown as 

follows: 

// project, result is mass conserving field. 

void project ( int N, float * u, float * v, float * w, float * p, float * div ){ 

 FOR_EACH_CELL 

  temp = -0.5f*(  ( u(i+1,j,k) - u(i-1,j,k) ) / gridCellLengthofX + 

                          ( v(i,j+1,k) - v(i,j-1,k) ) / gridCellLengthofY +  

                          ( w(i,j,k+1) - w(i,j,k-1) ) / gridCellLengthofz  ); 

  div[IX(i,j,k)] = temp;  

  p[IX(i,j,k)] = 0; 

 END_FOR  

 // Gauss-Seidel relaxation 

 linear_solver ( N, 0, p, div, 1, 6 ); 

 FOR_EACH_CELL 

u[IX(i,j,k)] -= 0.5f*(p(i+1,j,k)-p(i-1,j,k)) / gridCellLengthofX; 

v[IX(i,j,k)] -= 0.5f*(p(i,j+1,k)-p(i,j-1,k)) / gridCellLengthofY;   

w[IX(i,j,k)] -= 0.5f*(p(i,j,k+1)-p(i,j,k-1)) / gridCellLengthofZ; 

 END_FOR 

 set_bound ( N, 1, u ); set_bound ( N, 2, v ); set_bound ( N, 3, w ); 

} 
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2.3.7 Boundary Condition 

The boundary condition is used for restricting the calculations of velocities and 

densities values inside of the computational cube. In our 3D scene, the function 

set_bound() sets the velocity along X, Y, Z axis to zero on the boundary wall 

perpendicular to the respective axis. However, we can also set different rules for 

the boundary conditions such as allowing the velocity vectors to diffuse from one 

end to the other or allowing the velocity vectors to reverse their direction upon 

reaching the boundary walls.  
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3 Near Plant Design 

A large-scale prairie includes grasses and flowers which can waver and rotate in 

the presence of wind. Depending on the distance of the grasses and flowers from 

the viewpoint, there are different implementations for rendering them. There are 

two implementation designs, one for viewing close-up while the other is for 

viewing far-distance.  

In this chapter, we describe the rendering of grasses and flowers when viewing 

close-up. We define "near-grasses" to be grasses that are close to the camera, 

while "far-grasses" to be grasses that are far distance from the camera. We define 

“near-flowers” and “far-flowers” similarly. In Chapter 5, we describe the judging 

conditions of “near” and “far” from the camera position in more details. 

3.1 Model of Near-Grasses 

For near-grasses, we first consider a single blade of grass and describe its design 

structure. 

3.1.1 Single Blade of Grass 

To represent the motion of near-grasses, we use four “control points” for each 

single blade of grass. The four control points of each blade of grass are subjected 

to motion vectors which will govern the animation of the blade. At each time 

interval, a Bezier curve is calculated from the control points. The calculated 

Bezier curve is then denoted as the “backbone” of the single blade of grass. A 
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group of “backbone points”, which lies on equal intervals on the backbone, is used 

to control the resolution of the blade of grass. Each backbone point then extends 

sideward in both directions, which are always perpendicular to the upward 

direction, to form two “segment points”. Thus, for any two adjacent backbone 

points, we have four segment points. These four segment points are used to form 

two triangular polygons for one segment of blade. With more backbone points, the 

blade of grass appears smoother, but it requires more processing time.  

           
  (a)     (b.I)       (b.II) 

      

(b.III)     (b.IV)      (b.V) 
Figure 5: The design of single blade of grass with 4 backbone points. Middle red points 
mean backbone points, outside green points mean segment points, triangles combine to 
form grass polygon, and dashed lines is backbone line of grass. (a) Single blade of grass 
with simple texture. (b.I~b.V) Single blade of grass with complex texture. 

In our implementation, we present two different rendering models for a single 

blade of grass with different textures. In Figure 5.a, four backbone points are 
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determined from the backbone of the grass. Three of the backbone points are used 

to form two rectangular polygons, while the last backbone point is used to form a 

triangular tip. A texture of a single blade of grass is then placed onto the two 

rectangular polygons and one triangular polygon. In the other rendering model, we 

construct three rectangular polygons from the four backbone points. For the 

texture however, we use complex textures with alpha channel as shown in Figure 

5.b (I~V) for aesthetic reason. Note that we have implemented the complex 

textures in this project, but for our explanation in this report, we may use the 

simpler version. 

3.1.2 Grass Grid 

In order to render the large-scale prairie, we divide it into smaller and simpler 

portions, known as the “grass grid” which is the same size as the computational 

grid in Section 2.2.  

Within a single grass grid, we place NxN blades into one grass grid with N blades 

along the length of the grass grid and N blades along the width of the grass grid. 

To further improve on the randomness of the placement of the grasses, we use a 

small random location offset and an angle rotation offset for each blade of grass 

along the upward direction. Each blade of grass is set to the same height as the 

height of the grass grid with a little offset so that each control point in a blade of 

grass can be animated by the velocity vectors in the computational grid. Figure 6 

shows a snapshot of one grass grid.  
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Figure 6: One snapshot for grass grid with 32x32 blades of grass inside. Yellow lines 
surround the grass grid. 

3.2 Animation of Near-Grasses 

The most important aspect in our project is to simulate the animation of grasses as 

natural as we see in the real world. In this section, we demonstrate how to achieve 

the animation. To show realistic result, each model and animation for blade of 

grass contains five components of design: the cubic Bézier curve for the wavering 

of grass model, the tri-linear interpolation for the velocity of grass animation, the 

Verlet integration for motion distance of grass animation, the shape constraints for 

the model of grass, and the rotations of grass model in the presence of wind effect. 

3.2.1 Cubic Bézier Curve for Wavering Grasses  

To simulate the wavering of grasses in the wind, we employ the use of cubic 

Bézier curves [13]. The choice of cubic Bézier curve is based on the following 

observations. In the presence of wind, a wavering blade of grass is usually 

restricted to a small angle tilt from its static position. This motion of tilting differs 
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from the motion of wavering long hair as hair tends to swirl around itself. Thus, it 

is unnecessary to employ techniques such as the kinematics technique used in hair 

animation. Furthermore, it is appropriate to use the cubic Bézier curve for 

animating grass motion as it is an aesthetically-curved shape.  

The control points discussed in Section 3.1.1 are used to control the cubic Bézier 

Curve. Furthermore, in Section 3.2.2, the control points act as vertices which are 

allowed to move along the direction of wind motion. In order to calculate a 

backbone point lying on the cubic Bézier curve, we use the following equation: 

3 2 2
0 1 2(1 ) 3 (1 ) 3 (1 ) 3

3p P t Pt t P t t P= − + − + − + t  (5) 

In Eq.(5), p is a backbone point in the blade of grass, Pi, (i=0, 1, 2, 3) are four 

control points of the blade of grass. Note that only P0 and P3 lie on the actual 

curve, while P1 and P2 provide the vectors to control the curvature of the cubic 

Bézier curve. t is the parameter value between 0 and 1 such as 0, 1
1n −

, 2
1n −

, …, 

1, where n is the number of backbone points. By varying the value of t between 0 

and 1, we can determine the backbone points lying on the curve. Thus, to find the 

middle three backbone points on the curve when n=5, we set the value of t to 0.25, 

0.5, 0.75. The more backbone points we set on the curve, the smoother the curve 

is, and the more computational time will be consumed. 

3.2.2 Tri-linear Interpolation for Velocity 

In this section, we discuss how the force is calculated which acts on the control 

points of the grass. In Chapter 2, we demonstrate how to calculate the velocity 
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vector for each grid cell in the computational grid. However, we only compute the 

velocity vector in the center of each grid cell. Thus, we need a method to compute 

the velocity vector at the position of the control point since it does not usually 

locate in the center of the grid cell.  

Firstly, we determine the grid cell which the control point resides in. Secondly, we 

determine the corner of the grid cell which the control point is closest to. Thirdly, 

we locate the eight grid cells which are incident to that corner. Using the velocity 

vectors at the centre of the eight grid cells, we apply the tri-linear interpolation to 

calculate the velocity vector for the control point. We show the pseudo code as 

follows: 

// set velocity to grass, tri-linear interpolation used now 

void Grass::SetVelocity(float *uu, float *vv, float *ww, int xGrid, int yGrid, int zGrid, 

float gridLength){ 

 FOR_EACH_GRASS_BLADE 

  FOR_EACH_GRASS_CONTROL_POINT 

  // get the position of current control point in grass grid 

  float x = m_grassBlade[i]->GetParticlePos(j)->x / gridLength; 

  float y = m_grassBlade[i]->GetParticlePos(j)->y / gridLength; 

  float z = m_grassBlade[i]->GetParticlePos(j)->z / gridLength; 

          

// calculate the grid cell with minimum x,y,z of current particle 

  if (x<0.0f) x=0.0f;  if(x>xGrid) x = (float)xGrid; i0=(int)x; i1=i0+1; 

  if (y<0.0f) y=0.0f;  if(y>yGrid) y = (float)yGrid; j0=(int)y; j1=j0+1; 

  if (z<0.0f) z=0.0f;  if(z>zGrid) z = (float)zGrid; k0=(int)z; k1=k0+1; 

          

// calculate the distance between particle and cell with minimum x/y/z length 

  r1 = x-i0; r0 = 1-r1;  s1 = y-j0; s0 = 1-s1;  t1 = z-k0; t0 = 1-t1;  

         // check particle close to which cell, and set the calculation grid to this cell

  if( r1>=r0 ) i0 = i1; if( s1>=s0 ) j0 = j1; if( t1>=t0 ) k0 = k1; 

         // get correct 8 grids for tri-linear interpolation 

         i1 = i0; i0 -= 1;   j1 = j0; j0 -= 1;    k1 = k0; k0 -= 1; 

          

// apply tri-linear interpolation 

         CVector3 temp; 
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  temp.x =      r0*s0*t0*uu[i0,j0,k0]+r0*s1*t0*uu[i0,j1,k0]+ 

     r1*s0*t0*uu[i1,j0,k0]+r1*s1*t0*uu[i1,j1,k0]+ 

     r0*s0*t1*uu[i0,j0,k1]+r0*s1*t1*uu[i0,j1,k1]+ 

     r1*s0*t1*uu[i1,j0,k1]+r1*s1*t1*uu[i1,j1,k1]; 

 

  temp.y =      r0*s0*t0*vv[i0,j0,k0]+r0*s1*t0*vv[i0,j1,k0]+ 

     r1*s0*t0*vv[i1,j0,k0]+r1*s1*t0*vv[i1,j1,k0]+ 

     r0*s0*t1*vv[i0,j0,k1]+r0*s1*t1*vv[i0,j1,k1]+ 

     r1*s0*t1*vv[i1,j0,k1]+r1*s1*t1*vv[i1,j1,k1]; 

 

  temp.z =      r0*s0*t0*ww[i0,j0,k0]+r0*s1*t0*ww[i0,j1,k0]+ 

     r1*s0*t0*ww[i1,j0,k0]+r1*s1*t0*ww[i1,j1,k0]+ 

     r0*s0*t1*ww[i0,j0,k1]+r0*s1*t1*ww[i0,j1,k1]+ 

     r1*s0*t1*ww[i1,j0,k1]+r1*s1*t1*ww[i1,j1,k1]; 

   

  m_grassBlade[BLADE_NUM]->SetForce( CONTROL_NUM, temp ); 

       END_FOR 

 END_FOR 

} 

3.2.3 The Verlet Integration for Motion 

The next component of animation of near-grasses is to define the calculation of 

velocity both for the purpose of simplicity and stability. In each time step, the 

distances traveled by control points with respect to the wind force are calculated. 

The control point has two variables: the position x and the velocity v. After one 

time step, the position will travel to x’ and the velocity will change to v’. We can 

easily get the equation before and after one time step. 

'
'

x x v t
v v a t
= + ⋅Δ
= + ⋅Δ

 (6) 

where  is the time step, and a is the acceleration. This is a simple Euler 

integration. The drawback of Eq.

tΔ

(6) is that it is not accurate since the magnitude 

of error introduced by the Euler integration is in 3( t )Ο Δ  [10]. 
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In our project, we use a more accurate and faster representation: instead of storing 

each control point’s position and velocity, we store its current position x and 

previous position x”. The equation is then: 

2' 2 "
"

x x x a t
x x
= − + ⋅Δ
=

  (7) 

This is called the Verlet integration [14] and is widely used for simulating 

molecular dynamics [15]. The magnitude of error introduced by the Verlet 

integration is in  4( tΟ Δ ) [14] which makes the Verlet integration an order more 

accurate than the Euler integration. The pseudo code is shown as follows: 

// the Verlet integration 

void GrassBlade::Verlet(float time){ 

 for(int i=1; i<4; i++) { 

  // back up the old Position 

  CVector3 temp = m_controlPos[i]; 

   

// the Verlet integration 

  m_controlPos[i] = 2*m_controlPos[i] - m_controlOldPos[i] + m_velocity[i] * time;

  m_controlPos[i].y = abs( m_controlPos[i].y ); // constrain positive on y axis 

   

// x”=x 

  m_controlOldPos[i] = temp; 

 } 

} 

3.2.4 Constraint of Grass Shape  

Without any constraints, each backbone point in the blade of grass can move 

along the direction of wind freely. The shape and the length of grass are lost and 

the result becomes un-realistic. In this section, we add the constraint of grass 

shape, no matter how the backbone points in grass blade animate, the shape of 

grass can be controlled. 
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Figure 7: Constraint of grass shape. The red dot represent the positions of a vertex 
initially; the blue dot represents the position of vertex after one time step; the green dot 
represents the position of vertex under the constraint condition; the red arrows represent 
the trajectory of vertex moving backward under the constraint condition. 

In the initial time, suppose L0~L3 are the locations of backbone points P0~P3 in 

one blade of grass (see Figure 7). The distance of two adjacent backbone points 

has the same length l, that is, 1 0 2 1 3 2| | | | | |L L L L L L l− = − = − = , where 1L L−  0

'

1

is a 

vector and l is a scalar. We first analyze the calculation of the segment  

which contains the backbone point P

0 1P P

0 residing on the ground. P1 moves to the new 

location  according to the presence of wind, ( ) is the same since it 

represents the position of root of grass and should be immovable. The length of 

the segment changes to , which is not equal to l in most case. Since the 

length of offset vector  is a tiny scalar compared to the length of the 

segment l, we can safely set the distance traveled  to  and move 

backward with the vector of 

'
1L 0L '

0L

'
1 0| |L L l− =

'
1L L−

'
1 1| |L L− 'l l−

'
'
1 0' (l l L L

l
−

− )  (the red arrow in ). The other 

segments are calculated by the above analysis from the sequence of bottom to top 

of the grass. The code is shown as follows: 

Figure 7
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// constraint the grass' particle moving 

void GrassBlade::Constraint (int index){ 

 float initSegmentLength = m_heightBound / numberOfSegment; 

 CVector3 delta = m_backbonePos[index] - m_backbonePos[index-1];  

 float length = delta.Magnitude();  // the length of delta 

 

// the percentage beyond the length of segment 

float diff = (length- initSegmentLength) / length;       

 

// subtract the beyond length 

m_backbonePos[index]   -= delta * diff;   

} 

3.2.5 Rotation of Grass by Wind 

Through the observation of real grasses, we realize that the blade of grass will 

rotate with respect to the direction of wind. To simulate this animation, we 

calculate the rotation to set the blade of grass be perpendicular to the direction of 

wind. In this section, we show how the function of rotation works for the blade of 

grass. 

To rotate the blade of grass, two segment points which are extended from the 

same backbone point are rotated along the upward direction in the middle point 

(the backbone point). The degree of rotation is calculated by the following 

assumption. 

We assume that two segment points extended from the same backbone point will 

rotate along the upward direction instead of along the direction of two adjacent 

backbone points as in the real world. This assumption changes the length of blade 

since the line connecting two segment points is not perpendicular to the line 
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connecting two adjacent backbone points, however, it simplifies the calculation of 

rotation and the result remains aesthetically pleasing. 

 
Figure 8: Rotation of the blade of grass according to the direction of wind, from top view. 
The dots at the end of lines represent segment points; θ is the degree of rotation; the dot in 
the middle of line represents the backbone point. 

The calculation of rotation is as follows (in Figure 8). Firstly, the “wind direction” 

is calculated by the direction of vector from the bottom of backbone point on the 

ground to the top of the backbone point in the air which represents moving 

towards the direction of wind. Secondly, the “blade direction” is obtained from 

the vector of two bottom segment points which represent the initial position of the 

blade of grass on the ground. Thirdly, the dot product of normalized vector of 

wind direction and normalized vector of blade direction is cos(θ) so it is easy to 

calculate θ by calling acos(θ) function. Finally, we rotate two segment points 

evenly with degree i
n
θ  along the upward direction in each segment of a blade so 

that the rotation looks smoothly from bottom to top, where n is the number of 

segments, and i is the index of the current segment of grass and . [1, ]i n∈
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3.3 Model of Near-Flowers 

It seems a little boring if only grasses exist in the prairie. Thus, to enrich the scene, 

we sprinkle some flowers into the prairie in this project. From the observation in 

the real world, the stem of the flowers are usually covered by the brushwood and 

only the petals are visible, so it’s not necessary to draw the flower model 

including stalk and foliage.  

In our project, the model of near-flowers is a simple square which represents the 

petal of flowers. The square of petal is perpendicular to the upward direction. A 

little random offset along the upward direction for each flower is set so all flowers 

do not point to the same direction uniformly. In Figure 9, we set the textures of 

flowers from the real photos. In the initial period, we randomly select one from 

these six textures and assign it to the model of flower.  

 
Figure 9: Six textures of flowers are sprinkled into the prairie. All textures are selected 
from the real photos. 

To position the near-flowers, we randomly sprinkle the flowers in one grass grid. 

The rendering method is such that, we concurrently check the condition for 

allocating flowers when rendering a single blade of grass, and if the condition of 

flowers is satisfied then we plant them in the corresponding position. To achieve 
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the effect that flowers are hidden in the blades of grass, we set the height of petals 

to 0.65 times of the height of blade with a little random offset. 

3.4 Animation of Near-Flowers 

The animation of near-flowers employs the same idea of the animation of blade: 

the direction of wind controls the animation of flowers. One difference between 

flowers and grasses is that, we only need to calculate the animating direction of 

petals which is similar to the top point of backbone of grass and no need to 

calculate the animations of other backbone points in the manner that are done in a 

blade of grass.  

Another difference in the animation between flowers and grasses is that, the petal 

of flower and the blade of grass have different animating speed. In the real world, 

the stalk of flower is more rigid than the blade of grass so that the flower animates 

with a little slower speed and a shorter distance than the grass under the same 

wind. To achieve this effect, we add a new variable, the mass, into the class of 

grass and flower and set the rule as follows: the heavier the mass, the less the 

model can animate in the wind. When applying the velocity to the position which 

the petal resides in, we multiply velocity to a number in proportion to the inverse 

of mass. For example, we can set the mass of vertex on the ground to be infinite 

and the reciprocal is 0 such that the velocity of vertex on the ground is 0, thus the 

vertex is immovable.
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4 Far Plant Design 

It is not necessary to render the grasses and flowers which are distant away from 

the camera position using the same technique as the near-grasses. There are two 

main reasons for it. The first reason is that, for objects distant away from the 

camera position, the users are not able to identify a single wavering grasses and 

flowers among the group. In this case, it is more attractive to animate a group of 

plants on a whole than individually for each grass or flower object. The second 

reason is that, according to current hardware capacity, it is impossible to achieve 

real time rendering if we render all grasses and flowers individually in a 

large-scale prairie.  

In this chapter, we describe how to design the grasses and flowers distant away 

from the camera position. Since we do not use different technique for grasses and 

flowers, we call them “plants” together instead of grasses and flowers, 

respectively. 

4.1 Billboards of Far-Plants 

For the grass grid which is distant away from the camera position, we have the 

following observation: the farther the distance between the camera position and 

the grass grid, the smaller the image of plants projected on the screen, and thus a 

smaller number of polygons that we need to render. It is obvious to choose the 

technique of billboards to render a group of far-plants. The benefit of using 
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billboards is to achieve similar visual effect and real time rendering by employing 

a fewer polygons for models rather than rendering the models individually. 

To achieve the visual effect that the billboards of far-plants appearing the same as 

rendering a group of single plants, in our project, we combine the single plants to 

form billboards in one grass grid with the following rules:  

• Each billboard of plants is composed of six rectangles connecting together 

at the middle line which is pointing to the upward direction (see Figure 10 

and Figure 12). 

• The length of billboard is represented by the numbers of single blades of 

grasses between two rectangles with the same orientation. 

The length of billboard depends on the distance between the “camera grid” 

(where the camera position resides in) and the other grass grid. We set the length 

of billboard as Eq.(8) and the numbers of billboards in one grass grid as Eq.(9): 

2log' *2 1gl l ⎢ ⎥⎣ ⎦= +   (8) 

'
'

1
1

nn
l
−⎡ ⎤= ⎢ ⎥−⎢ ⎥

   (9) 

where l is default length of billboard and we set l=2 in our project,  is the 

length of billboard in each grass grid which is distant away from the camera 

position, g is the maximum number of grid offsetting along X and Z axis between 

the grass grid and the camera grid; n is the numbers of single plants along X and Z 

axis respectively in one grass grid, and  is the numbers of billboards along X 

and Z axis respectively in one grass grid. Eq.

'l

'n

(8) is easy to program in C language 

since we can use the bit-shift function for the logarithm and power of 2. Eq.(8) 

 - 30 - 



PHYSICALLY BASED ANIMATION AND FAST RENDERING OF LARGE-SCALE PRAIRIE 

can guarantee that the maximum number of grids away within the range from 2n-1 

to 2n-1 can be rendered with the same length of billboard to keep the same visual 

effect. 

We show an example how to set the length of billboard and the numbers of 

billboards, and compare the numbers of polygons rendered between single plants 

and billboards in one grass grid. For each grass grid, suppose we have 32 blades 

along X and Z axis, respectively. We need to render 1024 blades of grass for a 

single grass grid. If each blade of grass has 3 segments, we need to render 3072 

rectangles for one grass grid. By using the technique of billboards, we can reduce 

the numbers of polygons significantly, as compared with drawing single plants. 

Consider the case where the camera resides in grass grid [2,2]. The grass grid [5,4] 

is max(5-2,4-2)=3 grids away from the camera grid. Using Eq.(8), each billboard 

represents  plants, except for the last billboards which have 

lesser number of plants to represent (as shown in the right and bottom billboards 

in 

2log 3' 2* 2 1 5l ⎢ ⎥⎣ ⎦= + =

Figure 10). Using Eq.(9), in this grass grid, there are 32 1 8
5 1
−⎡ ⎤ =⎢ ⎥−⎢ ⎥

 billboards 

along X and Z axis, in total 64 billboards (see Figure 10.a) and we need to render 

64x6=384 rectangles since each billboard has 6 rectangles combining together. 

Similarly, the grass grid [6, 7] is max(6-2,7-2)=5 grids away from the camera grid, 

and the billboard represents 2log 5' 2* 2 1 9l ⎢ ⎥⎣ ⎦= + =  single plants, there are 

32 1 4
9 1
−⎡ ⎤ =⎢ ⎥−⎢ ⎥

 billboards along X and Z axis, in total 16 billboards (see Figure 10.b) 

and we only need to render 16x6=96 rectangles. 
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       (a)            (b) 
Figure 10: Far plants using billboard technique in the grass grid, from the top view. The 
green dot points represent the single plant; the light red rectangles represent the length of 
one billboard group; the light blue lines represent rectangles in billboard. (a) One example 
of billboards with length of 5 in the grass grid. (b) One example of billboards with length 
of 9 in the grass grid. 

In order to display the similar visual effect for the billboard in the far-distance and 

single plant in the close-up, we design the texture of billboards based on the single 

texture of blade of grass and flower shown in Figure 5 and Figure 9. Figure 11 

shows the texture of billboard which is a simple rectangular picture with several 

blades of grasses and flowers. 

 
Figure 11: Texture of billboard plants with alpha channel. The grasses and flowers 

It is the technique of billboard that helps us achieve the goal of real time rendering 

with the same image projection for the far-plants as rendering individually for the 

combine together to simulate the same visual effect in the close-up. 
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single plants. For different distance of grass grid, it has different length of 

billboard and different number of billboards, which is called “Level-of-Details”. 

We re-emphasize it in the design of a large-scale scene in Section 5.2 where we 

introduce the large-scale prairie and put billboards and single plants into the 

scene. 

4.2 Animation of Far-Plants 

section, we specify it and design how it can animate in the 

gment points in single plants for 

the distance far away from the camera position. 

In Section 4.1, we show that the far plants are drawn as billboards with six 

rectangles combining together, and define the length and texture of billboards, but 

we do not define the position of each vertex in billboards in order to control the 

animation. In this 

presence of wind. 

The essential idea for the animation of billboard is the same as that for the 

animation of single plant. The segment points in single plants are used to form the 

vertices of rectangles in billboards. After calculating the length of billboards 

according to the distance between the camera grid and the other grass grid in 

Section 4.1, we connect the segment points in two single plants by offsetting the 

length of billboards to form the rectangular polygons. Furthermore, to simplify the 

computational time, only the bottom and top vertices of segment points in single 

plants are used to render the rectangular polygons in billboards, since it is not 

necessary to display the animation of middle se
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Figure 12: Billboards with texture. The darker lines of each billboard demonstrate the real 
polygonal shape of rectangles. 

Figure 12 shows an example of billboard in our project, according to Eq.(8), the 

near billboards represent 5 single blades of grasses combining together while the 

farthest billboards represent 9 single blades of grasses, which are organized as in 

Figure 10 for each grass grid. When the billboards project on the screen, they have 

the similar visual effect although the farthest grass grids have smaller numbers of 

polygons than the near grass grids. When the wind direction is added to the grass 

grid, the vertices of billboards animate like the wavering single plants which are 

similar to the plants closer to the camera position.  

Since the farther billboards only occupy small images when projecting on the 

screen, the wavering animation is not easy to be identified compared with the 

single plants which animate around the camera position. To display the same 

animating speed between far-distant billboards and close-distant single plants, we 

increase the velocity for the billboards in proportion to the distance between the 

grass grid and the camera position. 
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5 Large-Scale Prairie Design 

In this chapter, we describe how to combine two types of models, single plants 

and billboards, in a large-scale prairie. We have outlined the design of prairie, 

which consists of many individual grass grids. The single plants and billboards are 

then placed into the prairie, depending on the distance between the grass grid and 

the camera position. In the following section, we describe the implementation in 

more details. 

5.1 Overall Design of Scene 

The setting of the scene is as follows. The world coordinate system in the scene is 

such that the X and Z axis are parallel to the ground, with the Y axis pointing 

towards the upward direction. Within the scene, we place 16x16 grass grids for 

simulating the large-scale prairie. In one single grass grid, 32x32 plants are placed 

within. To compute the Navier-Stokes equations, we divide the computational grid 

into 8x8x8 grid cells, plus the boundary wall of extra grids. Thus in total, we have 

10x10x10 grid cells in a single computational grid. Note that the size of a grass 

grid is similar to the size of the computational grid.  

To reduce the computational time for animating the prairie, we only apply the 

Navier-Stokes equations for a single grass grid, and duplicating the solutions for 

the other grass grids. Thus the velocity at a particular grid cell for a grass grid is 

similar to its counterpart grid cell in another grass grid throughout the animation. 

It is therefore possible that two grasses in different grass grid residing at the same 
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position, relative to its grass grid, will result in exactly the same animation. 

However, since we offset the location of each grass grid by a random value, the 

chances of similar animation is reduced greatly. Furthermore, we have gaps 

among plants, which increase the diversity of the pattern of grasses in each grass 

grid. Thus, even though the solutions to the Navier-Stokes equations in each grass 

grid are similar, the resulting animation is different.  

5.2 Levels-of-Details Design 

In this section, we detail how the choice of using either single plants (near grass 

grid) or billboard plants (far grass grid) in each grass grid is decided.  

First, the grass grid (known as “camera grid”) which the camera resides in is 

calculated. Together with the camera grid, eight other grass grids (known as 

“surrounding grid”) which are adjacent to the camera grid, if exist (do not 

consider the view frustum culling in this section), are used to render single plants 

individually.  

For the other grass grids in the prairie, we use billboard plants to represent a set of 

plants. The length of the billboard depends on the maximum number of grid offset 

from the camera grid in Section 4.1.  

We show in Figure 13 to illustrate the setting of the whole scene consisting of the 

large-scale prairie. The figure is shown from the top view, and each small grid 

represents one grass grid. The bottom-left grid is set to (0,0), while the camera 

resides in grass grid (7,8). As described previously, the grass grids surrounding 
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the camera grid render single plants individually, shown as white squares in Figure 

13, while the other grass grids use different lengths of billboards to represent 

plants. The choice of the length of the billboard is shown in Section 4.1. We use 

the notation of (7±x,8±y) to represent grid which (x,y) offset grids away from the 

camera grid, which is in grass grid (7,8). Using the (x,y) values for each grid, we 

can thus determine the length of the billboard to employ. Using Eq.(8) from 

Section 4.1, there are 64 billboards with length of 5, and 16 billboards with length 

of 9, and 4 billboards with length of 17 in different far-distant grass grids. In 

Figure 13, we mark the grass grid with different billboard length with different 

patterns. Thus, by using the technique of levels-of-details we can reduce the 

numbers of polygons to be rendered while keeping the same visual effect as 

compared to rendering all plants one by one for the far-distant grass grids. 

 
Figure 13: The large-scale prairie, from the top view. The denser the cross lines, the more 
numbers of billboards in one grass grid. 
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5.3 View Frustum Culling 

When 3D object takes a promenade through the prairie, the camera can only see 

part of the scene because of the limitation of visual angle. Since many grass grids 

and plants are invisible, it is not necessary to render all of them, so we can employ 

the technique of view frustum culling to reduce the number of rendering objects. 

The basic idea of using view frustum culling is to render the visible grass grids in 

the scene and the visible plants in the grass grids, and skip the others.  

 
Figure 14: View frustum culling, from top view. The two light blue lines form visual 
angle of 60 degree. The light blue rectangles represent the visible grass grids which 
should be drawn in current frame. It only needs to render 50 grass grids using billboards 
out of total 247. 

In our project, we use two levels of view frustum culling. Firstly we eliminate the 

invisible grass grids; secondly we eliminate the invisible single plants in the 

camera grid and the surrounding grids. Suppose the view angle is 60 degree, in 

each time step, we check the position of each grass grid with respect to the six 

view planes (top, bottom, left, right, near, and far plane). If the grass grid stays 

inside of all view planes, we set the grass grid visible; if it is outside of any one of 
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viewing planes, we ignore it. Then, we render the visible grass grids from far to 

near sorting using the technique in Section 5.4. Based on this setting, in each 

frame, we only need to render about 20 percent of all grass grids (see the number 

on top-left in Figure 12 and the proportion of visible grids to all grids in Figure 14), 

which save computational time. The single plants in the camera grid and the 

surrounding grids use the same six viewing planes described above to eliminate 

the invisible single plants. Figure 14 shows an example from the top view. 

5.4 Far to Near Sorting 

In our project, the complex grass texture is stored as TGA file format which 

contains RGB channels and an alpha channel. The alpha channel controls the 

transparency of the RGB channels, with 0 meaning full transparency and 255 

meaning full opaque if the number is between 0 and 255. An example of texture is 

shown in Figure 15 which displays a blade of grass with pure black and pure white. 

Using transparency, we can see the grasses staying behind the blades or billboards 

through the components where the alpha channel is 0, which is called “blending” 

in OpenGL [16]. During blending, the color values of the incoming fragment (the 

Source) are combined with the color values of the corresponding currently stored 

pixel (the Destination) using the following equations in our project: 

* *(1
* *(1

* *(1
* *(1

r a r a )
)

)
)

g a g a

b a b a

a a a a
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where R, G, B, A represent the results of blending color, Sr, Sg, Sb, Sa represent the 

four components of color in source, and Dr, Dg, Db, Da represent the four 

components of color in destination. Each component of R, G, B, A is eventually 

clamped to [0, 1]. 

 

(a)                       (b)                    (c) 

Figure 15: TGA format used for transparent texture file. (a) RGB color is the same as that 
in BMP format. (b) Alpha channel represents the transparent and opaque part of RGB. (c) 
TGA format can show the translucent effect. 

From Eq.(10), we acknowledge that different rendering sequences of two objects 

overlapping each other can affect the rendering result. The correct sequence is to 

first render objects distant away from the camera position, and then render the 

objects closer to the camera position; otherwise the rendering result looks wrong. 

To satisfy this request, we apply two sorting algorithms: the quick sorting and 

pre-computed sorting for rendering objects from far to near according to the 

camera position.  

5.4.1 Sorting for Single Plants 

We use two sorting algorithms for single plants: those that reside in the camera 

grid and those that reside in the surrounding grids (see Section 5.2). For the plants 

residing in the camera grid, we use the common method of sorting algorithm, that 
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is, quick sorting [17]. We build up an array of data with the distance between each 

plant and the camera position. In each frame, we do the following steps: 

1) Determine the plants which are visible under current view angle using the 

technique of view frustum culling in Section 5.3.  

2) Obtain each distance between visible plant and the camera position, and 

store the distance into an array.  

3) Apply quick sorting algorithm to sort the distance from far to near.  

4) Render each plant using the sequence in the sorted array. 

For the plants staying in the surrounding grids, in order to save the computational 

time, we do not employ the quick sorting algorithm but use another strategy, 

which is called “pre-computed sorting”. Pre-computed sorting is calculated 

initially and used during the simulation. In each frame, the correct rendering 

sequence for a particular grass grid from far to near according to the camera 

position is determined by its relative position to the camera grid. Since there are 

eight grids surrounding the camera grid, there are eight sequence of drawing the 

single plants for each type of grass grid as shown the follows.  

Position Pre-computed Sort Figure 16
(0, +Z) FORWARD (a) 

(0, -Z) BACKWARD (b) 

(-X, 0) LEFT (c) 

(+X, 0) RIGHT (d) 

(-X, +Z) FORWARD_LEFT (e) 

(+X, -Z) BACKWARD_RIGHT (f) 

(+X, +Z) FORWARD_RIGHT (g) 

(-X, -Z) BACKWARD_LEFT (h) 

Table 1: Eight sequences of drawing the single plants in the surrounding grids. 

 - 41 - 



PHYSICALLY BASED ANIMATION AND FAST RENDERING OF LARGE-SCALE PRAIRIE 

Figure 16 shows the design of eight sequences of rendering plants for the 

pre-computed sorting. The direction of the arrow represents the rendering 

sequence in a particular row of billboard within the grass grid, while the numbers 

represent the sequence of the rows of billboard to be displayed. Figure 16.i 

represents the example of the sequence of rendering plants for surrounding grids, 

where the dot represents the camera position. In Figure 16.i, no matter which 

direction the camera views, the sequences of rendering plants in eight surrounding 

grids keep from far to near correctly. 

 
Figure 16: The pre-computed sorting for surrounding grass grids from the top view. 

The benefit of using pre-computed sorting is that, we only need to calculate the 

sequence of rendering plants once during the initial setup, and can be easily 

selected during the rendering of the scene.  

5.4.2 Sorting for Grass Grids 

The sorting for grass grids uses both quick sorting and pre-computed sorting. The 

purpose of quick sorting for grass grids is to render the grids from far to near. The 
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purpose of pre-computed sorting is to render the billboards from far to near inside 

of one grass grid. We calculate the sorting in the following steps. 

Firstly, we use the quick sorting algorithm to arrange the visible grass grids from 

far to near. The sorting priority is determined by the number of offset a grid from 

the camera grid. For example, in Figure 13, grass grid (1, 9) has the grid offset 

 (square root operation is not needed, to save the 

computational time further) from the camera grid (7, 8).  

2 2(1 7) (9 8) 37− + − =

Secondly, the sequence of rendering the billboards within a grass grid is 

determined by the grass grid’s relative position to the camera grid. Using the same 

principle in Section 5.4.1, we use one of the eight pre-computed sorting sequence 

in Figure 16.a~h to render the correct sequence of billboards.  

 
Figure 17: Sorting for a large-scale prairie: pre-computed sorting, from top view. The red 
lines separate the whole scene into nine sections.  

We separate the whole scene into nine sections, and the grass grids in each section 

has the same pre-computed sorting which can guarantee the correct sequence of 

rendering billboards, except the middle section is used for rendering the single 
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plants as discussed in Section 5.4.1. Furthermore, to simplify the computation, the 

section of forward-left in Figure 17 can use the rendering sequence of forward or 

left along the direction of X or Z axis, instead of the sequence of forward-left in 

Figure 16.e which renders single plants along the direction of diagonal, and the 

same as the section of forward-right, backward-left, and backward-right.  

When the camera moves to other grass grid, we only need to change the position 

of the camera grid, and use the same technique to solve the rendering sequence of 

grass grids and billboards from far to near. This judging condition will introduce 

an un-natural visual effect and the solution will be discussed in Section 6.1. 

5.5 Terrain Design 

Till now, we have set up a large-scale, but flat and orderly arranged prairie with 

billboards-displaying plants that are distant away from the camera position, and 

using single plants for plants that are close. Furthermore, the plants are rendering 

in a sequence from far to near with the correct visual effect. However, it is not 

aesthetic and convincing compared with the natural terrain, which should have 

hills, valleys including stochastically placed plants. In this section, we discuss the 

design of terrains. This section contains two components: the height of terrain and 

the “covering” of terrain defining which parts of the prairie contain plants and 

which parts do not. 
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5.5.1 Height Design of Terrain 

We use a free GNU General Public License program called Height Map Editor 

[18] to design the height map of terrain. The height map is a 2D representation of 

a 3D terrain. Each pixel in the height map represents a height value which ranges 

between 0 and 255. Height Map Editor provides user interface to easily set and 

edit the height of each pixel. 

 
Figure 18: Height map editor. Each color represents a height which ranges from 0 to 255. 

To define the resolution of the height map of terrain, suppose we have 16x16 

grass grids, and each grass grid contains 32x32 plants. Therefore in total we have 

512x512 plants (suppose billboards are represented by single plants). Thus the 

easiest way for defining the resolution is to set the resolution of height map to 

match the numbers of plants, that is, 512x512 pixels for the height map, thus each 

pixel in the height map corresponds to the height of one plant.  
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Figure 19: Bi-linear interpolation for the height of arbitrary position in the height map of 
terrain. 

Bi-linear interpolation is used when the position of plants and 3D monster object 

do not match the pixel of the height map, such as in cases where the resolution of 

the height map does not match the total numbers of plants in the prairie, or the 3D 

monster takes a promenade through the prairie freely. In Figure 19, suppose four 

dots P11, P12, P21, P22 represent the corresponding pixels in the height map, while 

R represents an unknown height. To calculate R, we first calculate the height of 

middle points Q1 and Q2 by linear interpolation along X axis using Eq.(11) and 

Eq.(12), then calculate the height of R by linear interpolation along Z axis using 

Eq.(13). 

1 2
1 12

2 1 2 1
11

x x x xQ P
x x x x

P− −
= +

− −
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1 2
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The advantage of using bilinear interpolation is that, it is easy to calculate the 

height of arbitrary position, even though we set the height map with a lower 
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resolution than the default setting that each pixel in height map matches one plant 

in the prairie. Another advantage is to move the 3D monster smoothly (no bump 

up and down suddenly) when it takes a promenade through the prairie. 

5.5.2 Coverings of Terrain 

In our implementation, we render all plants in the visible grass grid, which causes 

the scene to be too orderly and monotone, as compared with the natural 

environment. To increase the variety of the scene, we load other 3D models into 

the scene and randomize the prairie such that some parts are covered with plants 

while other parts are barren.     

We use another height map (known as “covering map”) to control the display of 

3D models instead of the height information discussed in Section 5.5.1. For 

example, we set a height map with 512x512 pixels to load the objects in the 

prairie. Since the number of pixel is between 0 and 255, we can set a maximum of 

256 different kinds of 3D models in the prairie. In our project, we use the 

following ID to represent 3D models: 

ID 3D Model 

0 None 

253 Tree 

254 Stone 

255 Grass 

Table 2: ID for 3D models. 

In each frame, the program checks the ID in current position and renders the 

corresponding model. If the number in current position is 0, then nothing is 

rendered, which is called “gap” in the terrain. Each non-plant model is rendered 
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with a random offset for orientation, size, and rotation. For example, the stones 

have three orientations and rotations along XYZ axis and the trees have one 

orientation and rotation along Y axis.  

Note that the position of gaps or other models can separate the billboard into 

several parts. Each part of small billboards is still a group of rectangles which 

have the small length compared with original billboards. 

The advantage of the covering map is that, it is easy to define and edit the grass 

patches since we can re-employ the height map editor, and do not need to revise 

any existent code in our project. 
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6 Model-plant Interaction 

In this section, we describe two aspects of interactions: the first one is to add the 

smooth transition that transforms the billboards to single plants or vice versa when 

the camera moves from one grass grid to another; the second one is to add the 

interaction between the 3D monster model and its surrounding plants as it walks 

through the prairie. 

We first introduce the setting of the 3D character and the control keys for moving 

camera. The 3D model format is called “MD2” which is introduced by id 

SoftwareTM when releasing Quake 2 in 1997, it's quite simple to understand and 

use. The camera stays behind the monster with a small fixed distance and looks 

towards the monster initially. User can press key ‘W’ and ‘S’ to move both the 

monster and the camera forward and backward, and press key ‘A’ and ‘D’ to 

rotate the orientation of the monster and the camera around the monster. 

6.1 Effect of Fade in and Fade out  

One artificial visual effect of the animation is that, as the camera traverses from 

one grass grid to another, some grass grids surrounding the camera position 

immediately transform from single plants to billboards while some grass grids 

transform from billboards to single plants. The reason is because of the judging 

condition for setting the billboards and single blades in our project: the grass grid 

which the camera resides in and eight surrounding grids (if exist) will be rendered 
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as single plants, while the others will be rendered as billboards. Thus, the 

transition is very sudden and disturbing to the viewer.  

The solution to this problem is to add a function to detect which grass grid is 

about to transform from billboards to single plants, and draw both billboards and 

single plants with opposite alpha channel in this grass grid, then set a transit ratio 

to the alpha channel to obtain a smooth transition of fade-in and fade-out effect. 

To achieve the first goal, first we determine the movement of the camera. In Figure 

20, four possible movement of the camera is displayed and the grids which are 

going to transit from single plants to billboards (“IB”) and from billboards to 

single plants (“BI”) are shown. Using the four conditions in Figure 20, we can 

determine the transition state (if any) for each grass grid.  

    
       (a)            (b)            (c)               (d) 

presents 

Transition 

Sphere”) residing in the camera position. If the transition sphere touches the 

boundary of a grass grid along X or Z axis, we render the grass grid twice, using 

the rendering methods of both billboards and single plants concurrently for visible 

         
Figure 20: Four directions of the transformation condition from top view. “B” re
rendering Billboards in the grass grid. “I” represents rendering single plants (Individual) 
in the grass grid. “BI” represents that the model of plants transform from Billboards to 
Individuals when the camera traverses to another grass grid and “IB” vice versa. The 
arrow represents the moving direction of the camera. Dot means current position of the 
camera. (a) The camera moves to LEFT. (b) The camera moves to RIGHT. (c) The 
camera moves to TOP. (d) The camera moves to BOTTOM. 

To achieve the second goal, we set a boundary sphere (known as “
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grass grids (BI or IB). We then vary the alpha channel of both billboards and 

single plants accordingly to achieve the transition.  

Under the same speed of the 3D monster, the radius of the boundary sphere 

(which is fixed) determines the speed of transformation from billboards to single 

plants or vice versa. The transformation begins only when the transition sphere 

intersects with the boundary of the grass grid. The alpha channel of the fade-in 

object (either single plant or billboard) is set to 1- 1

0

r
r

, where r1 is the distance 

between the center of the transition sphere and the boundary of the grass grid and 

r0 is the radius of the transition sphere. Correspondingly, the alpha channel of the 

fade-out object is set to 1

0

r
r

. Hence, the shorter the radius, the quicker the 

transformation is. Based on this approach, we can achieve the smooth 

transformation between the billboards and single plants when the camera traverses 

into the other grass grid. 

6.2 Sphere-plant Interaction 

In this section, we describe how plants are pushed aside from the monster’s body 

and restored to the original position after the monster passes over the plants. To 

achieve this goal, we use the boundary sphere (known as “Interaction Sphere”) for 

the monster. The calculation step is as follows. 

Firstly, we set an interaction sphere residing near the position of monster’s foot. 

The interaction sphere does not fully envelop the monster in this project since we 
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only need to consider the interaction for the low-lying plants, which reside in the 

position near the monster’s foot. This design depends on the requirement of the 

application, for example, if the monster passes over the plants which are higher 

than the monster, we need to set the boundary sphere enveloping the monster. 

Secondly, we project the interaction sphere on the ground to form a circle and 

check whether the root of plant resides inside of this circle, and those plants is 

involved in the sphere-plant interaction. 

Thirdly, we detect the first backbone point staying inside of interaction sphere (for 

example s1 in Figure 21.a, and we follow the sequence that s0 is below s1, and s2 is 

above s1) from bottom to top in a single plant, then move the backbone point 

outside to '
1s  along the vector from the center of interaction sphere to the initial 

position of s1.  

Fourthly, we use the constraint technique in Section 3.2.4 to restrict the length of 

segment '
0 1s s  to obtain the real vertex point s1 in the blade of grass, and calculate 

the vector from s0 to s1.  

Lastly, when calculating the positions of other backbone points above s1, in order 

to achieve the effect that the blade of grass is tangent to the boundary sphere when 

the grass is pushed aside, the direction of the remnant segments above s1 should 

point along the direction of vector from s0 to s1. 
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(a)         (b) 

Figure 21: Sphere-plant interaction. (a) 2D viewing. Red dot represents the original 
position of backbone point in the blade of grass with no interaction. Green dot represents 
the center of the boundary sphere. Blue dot represents the position of backbone point with 
the sphere-plant interaction and with constraint of shape. Yellow dot represents position 
of backbone point with the sphere-plant interaction and with no constraint of shape. (b) 
3D viewing. The grass blades are pushed outside by the gray boundary sphere. 

In this method, since we do not use the interaction between the real vertex of 

model and the real segment points of plant, the accuracy of the interaction is not 

perfect.  However, this simple technique can achieve fast and reasonable result 

for the sphere and plant interaction. It is sufficient for our purpose since we can 

obtain both real-time and convincing animation. Figure 21.b shows the snapshot of 

sphere and plant interaction in a 3D scene. 
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7 Results 

This chapter contains several examples of rendering the large-scale prairie. The 

project runs in the platform with the following specifications:  

MODEL DELL PRECISION M70 
CPU Intel(R) Centrino II 2.13GHz 
Memory 2GB  
GPU NVIDIA Quadro FX Go 1400 with 256 MB dedicated memory 
Operation System Windows XP with SP2 
Development 
Environment 

Microsoft Visual C++ with Studio 2003.Net  

Graphics API OpenGL 1.1 
Table 3: The specifications for the platform. 

Figure 22 shows an aesthetic and convincing scene in our project. The prairie has 

16x16 grass grids, and each grass grid contains 20x20 blades of grasses. Each 

blade of grass has 4 backbone points. The camera position follows the monster 

model when it walks in the prairie. The blades of grasses which surround the 

monster are pushed outside by the sphere-plant interaction. All blades of grasses 

and billboards of grasses are animating with respect to the presence of wind, and 

the velocity of wind is calculated by the Navier-Stokes equations with 103 grid 

cells. For the close-up of single blade of grass, each blade of grass animates with 

unique direction and strength. The technique of view frustum culling guarantees 

that the invisible grasses are not rendered, including the invisible grass grid and 

invisible single blades of grasses in the visible grass grid. When the camera is 

traversing from one grass grid to other, the visual effect of fade-in and fade-out 

provides a smooth transform between billboards and single plants. 
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Figure 22: The aesthetic large-scale prairie with physically based animation. 

Our design is more advantageous and flexible than any existent applications. For 

example, in [3], Shinya et al. propose stochastic motion for trees and grasses by 

using the power spectrum of wind in uniform fields. However, the solution of 

their application is too time-consuming, thus it is impossible to apply to a 

large-scale scene such as prairie in our project. Compared with [3], we employ the 

fast and stable physically-based equations, the Navier-Stokes equations, to 

describe the realistic motion in the presence of wind and provide real-time 

animation in the large-scale prairie. In [1], Pelzer et al. propose the meadow with 

animating grasses. However, the motions of grasses are not realistic since they 

only apply simple trigonometric functions, such as sine and cosine, to control 

animating grasses. Moreover, all grasses are represented by billboards so that the 

shapes are un-natural when the camera moves closer to grasses. Compared with 

[1], we apply single plants for close-up and billboards for far-distance, and a 

smooth visual transform is employed if changing the models between single plants 

and billboards. In [2], Bakay et al. propose the displacement map to simulate the 

animating grass by rendering several layers overlapped each other and animate 
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each layer with different direction. However, if the camera moves closer, it is 

un-natural to see a set of circles which represent the models of grasses. Compared 

with [2], we use rectangular polygons and complex textures with alpha channel to 

represent the translucent components of blades of grass, so that this design is more 

aesthetic and realistic than the method in [2]. In [5], Perbet et al. propose a method 

for the large-scale prairies in real time. They pre-define several postures of grasses 

and choose one of them for animation, and place a 2D mask map representing the 

effect of wind on the prairie from the top view. Compared with [5], we calculate 

the velocity using physically-based equations for each control points in grasses, 

thus different control points obtain different velocities. Therefore it is more 

realistic than simply laying a 2D mask on the prairie in [5]. 

Furthermore, our design is not restricted to apply for the particular purpose of 

application that the model is walking through a large-scale prairie, such as the 

games for outdoor shooting. We have considered different kinds of potential 

applications associated with the scene of the large-scale prairie and provided an 

integrated and all-purpose system for them. By easily modifying the height of 

camera position, we can emphasize different parts of scene which can be adapted 

to different applications. For example, the lower height of the camera in the 

prairie can closely look up at the single blade of grass, thus the scene with “huge” 

animating single blades of grasses and flowers surrounding the camera can be 

used for simulating the view from an ant’s eye, such as the scene in the movie “A 

bug’s life”. The higher location of the camera can view the large parts of scene 
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with animating billboards, which can be used for the aircraft flying over the 

prairie. In a word, our design of elaborate model of single blades of grasses near 

camera position and coarse model of billboards distant away from camera position 

can be used to solve different potential applications concerning the aesthetically 

animating grasses, while the applications in [1], [2], [3], [5] only pay attention to 

the particular purposes of animating grasses. 

We snapshot four scenes from our project in Figure 23 when the camera moves 

from the lower position to the higher position.  

   
(a)          (b) 

  
(c)          (d) 

Figure 23: Final rendering results for different views when the height of camera increases. 
(a) height=1. (b) height=5. (c) height=10. (d) height=20. 
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8 Conclusion 

In this project, we present an integrated model for grass dynamics in a large-scale 

prairie. The dynamics of grass is controlled by the Navier-Stokes equations which 

provide simulation of natural wind. We define grasses closer to camera position 

with single blades, and grasses distant away from camera position with billboards. 

For both billboards and single blades, we provide correct display from far to near 

sorting. When the camera looks around the scene, we use view frustum culling to 

only render the visible grass grids in order to save the computational time. When 

the camera moves from one grass grid to another, the transformation between 

billboards and single blades can be shown smoothly. The boundary sphere of 

model provides the model-plant interaction fast and easily. 

The design of the integrated system is easy to tune for different platform based on 

the multi-platform graphics API. It is also easy to adjust many parameters 

according to the capacity of CPU and specification of application, such as the 

segment numbers in a single blade, the numbers of blades in one grass grid, and 

the numbers of grass grids in whole scene.  

In conclusion, our design for the large-scale prairie can achieve the objective of 

both aesthetic animation and real-time rendering, so this project proves itself 

useful for the gaming industry. 
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