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Summary

As a gray area between parametric and nonparametric methods, semi-parametric model

has generated a large literature in econometrics and statistics. By semi-parametric ap-

proach, we mean models and estimation problems that involve an unknown smooth

function and a finite number of unknown parameters. By relaxing the rigid assumption

imposed on the form of the functional by parametric methods, such as linear or poly-

nomial, semi-parametric approach allows for more flexible modeling, while avoiding the

‘curse of dimensionality’ suffered by nonparametric models since the unknown function

is defined in one dimension space. There have been quite a few recent monographs on

this topic ([6, 7, 64]) and it is shown that semi-parametric techniques have indeed much

to offer in practice. In this thesis, two aspects of application of semi-parametric models

are discussed: subset selection and financial time series modeling.

Subset selection has always been a critical and challenging issue in regression analysis.

Exclusion of irrelevant variables not only delivers parsimonious models which facilitate

explanation, but also improves estimation precision and forecasting accuracy. In linear

regression models, it is well-known that the leave-one-out cross-validation is inconsistent,

vi
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while the leave-m-out cross-validation(CV(m)) is ([73]). But the Balanced Incomplete

Block Design assumption necessitated by CV(m) is not easy to verify in practice. Moti-

vated by the properties of cross-validation methods under nonparametric settings, a new

consistent method based on semi-parameterization is proposed in Chapter 1. Simula-

tions show that this approach has very good finite sample performance, which is further

backed up by applications to a pollution data set.

In the second chapter, subset selection issue in the single-index model, which is a type

of semi-parametric model, is discussed. I prove that CV(m) behaves differently in the

single-index model from in linear regression models or in nonparametric regression mod-

els. A new consistent selection algorithm, called the separated cross-validation (SCV),

is proposed. Further analysis suggests that this method has robust finite sample perfor-

mance and is computationally easier than CV(m). SCV applied to the Swiss banknotes

data and the ozone concentration data, leads to single-index models with selected vari-

ables that have better prediction capability than models based on all the covariates.

The last chapter focuses on financial time series modeling in which respect, the ARCH

and GARCH models are among the most powerful tools in depicting the volatility clus-

tering phenomena. However, due to the time homogeneous structure, neither ARCH nor

GARCH is capable of grasping the time varying characteristics exhibited by most finan-

cial data over long time spans. As an integration of the ARCH model and the monotone

varying coefficient model, the newly introduced model inherits the flexibility of varying

coefficient models, while preserving the additive structure of the ARCH model. Its esti-

mation and theoretical property are discussed. Simulation results and real data analysis



Summary viii

are also available.
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Chapter 1

Subset Selection for Linear

Regression Models

1.1 Introduction

Due to its simplicity, linear regression model has been one of the most widely used

and fully investigated models. Although as many covariates as possible can be taken

into modeling, unnecessarily large models not only lead to estimation insufficiency but

also result in difficulty for model explanation. A lot of work has been done in the

literature. Examples are AIC ([1, 75]); the Cp method ([50]); BIC ([33]); the final

prediction error(FPE) method ([76]); the generalized information criterion ([68]); the

leave-one-out cross-validation(CV) method ([80]); the generalized cross-validation(GCV)

method ([16]); the v-fold cross-validation method ([10]) and the bootstrap model selection

method ([19, 20, 74]). More recent work includes [28, 81].

1



CHAPTER 1. SUBSET SELECTION FOR LINEAR REGRESSION MODELS 2

So far, the classical CV method and its variations (e.g. GCV) or equivalents (e.g. AIC)

have been the main focus of researchers’ attention in model identification and variable

selection. A good survey can be found in [57, 58]. However, it is proved that for linear

regression models, both CV and AIC are conservative, as they have an inclination for

unnecessarily large models. Several modifications have been made on the AIC method,

which is defined as n log(σ̂) + cnp, where σ̂ is the mean of the residual squares of the

working model, p is the number of covariates and cn = 2. In AIC, cnp can be regarded as

a penalty against choosing too large a p. The basic idea of modification is to increase the

penalty against including too many covariates. Well-known modifications are cn = log(n)

([71]) and cn = c log log(n) ([33]). Another modification called ‘leave-m-out’ CV, denoted

by CV(m) herein, increases the penalty by each time leaving m observations out as the

test set. [73]proved that if n−m →∞ and m/n → 1, then CV(m) is consistent. However,

his findings are based on the Balanced Incomplete Block Design (BIBD) assumption

that the sample covariance matrix of any test set of size m is asymptotically uniformly

invariant as shown in (1.5), which is usually not easy to justify in practice.

While in nonparametric settings, the CV method is consistent due to the ‘heavier penalty’

mechanism resulted from kernel smoothing; see, e.g. [13, 82]. Motivated by the above

facts, it is promising to address the subset selection issue in linear regression models by

semi-parameterization, i.e. we treat linear regression models as semi-parametric models.

We will show that this method is consistent. Compared with CV(m), it is easy to

implement and is robust against the choice of the smoothing parameter.
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1.2 Optimal Model and Review of Cross-validation

Consider the linear model

y = Xβ + ε, (1.1)

where y = (y1, · · · , yn)>, ε = (ε1, · · · , εn)> with E(ε) = 0, V ar(ε) = σ2I, X =

(X1, · · · , Xp) is a n × p matrix, and β = (β1, β2, · · · , βp)> is an unknown parameter.

We adopt the notations in [73]. As some of the components of β in model (1.1) may be

zero, a more compact model might be

y = x>αβα + ε, (1.2)

where α is a subset of dα distinct positive integers that are less or equal to p and xα (or

βα) is the dα dimensional vector which consists of the components of x (or β) which are

indexed by the integers in α. Let A denote all nonempty subsets of {1, · · · , p}. Nominally,

there are 2p − 1 possible different models of the form (1.2), each of which corresponds

to a subset α and is denoted by Mα. The size of Mα is defined to be dα, the number of

predictors in Mα. Under model Mα, the least squares estimator of βα is

β̂α =
(
X′

αXα

)−1 X>αy (1.3)

where Xα = (x1α, · · · ,xnα)> is an n × dα matrix assumed of full column rank for any

α ∈ A, and xiα is the dα dimensional vector containing the components of xi that are

indexed by the integers in α. If we know exactly which components of β are zeros, all

candidate models {Mα : α ⊆ {1, · · · , p}} can be classified into two categories:

• Category 1: at least one nonzero component of β is missing in βα.
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• Category 2: βα contains all nonzero components of β.

Obviously, models in Category 1 are incorrect and those in Category 2 may contain

redundant variables. The true model, denoted by Mα0 , is the one in Category 2 with

the smallest size d0 .

Leave-m-out cross-validation method CV(m) selects a model which among all Mα mini-

mizes the estimated squared prediction error. First, we split the data into two sets: test

set {(yi,xi), i ∈ s} and learning set {(yi,xi), i ∈ sc}, where s is a subset of {1, · · · , n}

containing m integers and sc is its complement containing n −m integers. The model

Mα is fitted from the learning set and the prediction error is assessed using the test set,

treated as if they were future values. The average squared prediction error is defined as

m−1‖ys −Xs,αβ̂\sα ‖2, (1.4)

where ‖a‖ = (a>a)1/2 for a vector a, Xs,α is the m × dα matrix containing the rows of

Xα indexed by i ∈ s, ys is the m dimensional vector consisting of the components of y

indexed by i ∈ s and β̂
\s
α is the least square estimator of βα from the learning set.

Suppose B is a selected collection of b size m subsets of {1, · · · , n}, which satisfies the

Balanced Incomplete Block Design([73])

sup
m→∞

max
s∈B

‖ 1
m

∑

i∈s

xix>i −
1

n−m

∑

i/∈s

xix>i ‖ = 0. (1.5)

For each modelMα, the cross-validation estimate of prediction error, denoted by CVα(m)

is obtained by averaging (1.4) over B, i.e.

CVα(m) =
1

bm

∑

s∈B
‖ys −Xs,αβ̂\sα ‖2, (1.6)
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and the model with the smallest value of CVα(m) is the preferred model.

We here give the asymptotic expansion for CVα(1) and CVα(m). Let Pα = Xα

(
X>αXα

)−1 X>α,

and ∆α,n = n−1β>X>(In − Pα)Xβ. Suppose (1.5) hold and

X>X = O(n), (X>X)−1 = O(n−1), and lim
n→∞max

i≤n
piα = 0, ∀α ∈ A, (1.7)

where piα is the ith diagonal element of the projection matrix Pα. [73] proved that

CVα(1) = σ2 +
1
n

dασ2 + ∆α,n + op(1), if Mα is in Category 1 , (1.8)

CVα(1) =
1
n

ε>ε +
2
n

dασ2 − 1
n

ε>Pαε + op(1), if Mα is in Category 2. (1.9)

Therefore, based on (1.8) and (1.9), if

lim inf
n→∞ ∆α,n > 0, for any Mα in Category 1, (1.10)

then the chance for CV (1) to eliminate useful variables tends to zero, while the proba-

bility of taking in extra variables does not. Specifically, for any Mα with α ⊃ α0,

P{Mα is preferred to Mα0 by CV (1)} = P{2δdσ
2 < ε>(Pα − Pα0)ε}+ o(1).

where δd := dα − d0. If ε is distributed as N(0, σ2In), then as n →∞,

P{Mα is preferred to Mα0 by CV (1)} → P{2δd < χ2(δd)} 6= 0, (1.11)

where χ2(δd) is the chi-square random variable with δd degrees of freedom.

CV (m) method rectified this inconsistency by providing more accurate assessment of the

prediction error as more observations are used for validation. [73] showed that if a subset

collection B satisfies (1.5) with n−m →∞ and m/n → 1, then

CVα(m) = n−1ε>ε + (n−m)−1dασ2 + op((n−m)−1), if Mα is in Category 2.
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However, there are some disadvantages about the CV (m) method. Firstly, it is difficult

to verify whether there exists such a subset collection satisfying (1.5). Secondly, even if

it does exist, the computational workload is formidable, since (2p − 1) different models

need to be evaluated, if the full covariate set contains p variables.

1.3 Variable Selection by Separation

Note that if δd, the difference in the numbers of parameters to be estimated under model

Mα and Mα0 , tends to infinity, the probability in (1.11) will tend to 0. This implies that if

we can ‘force’ the unnecessary large model into one with ‘infinite number of parameters’,

then the consistency property can be materialized. To this end, first note that any linear

model Mα with α1 = α ∪ k ⊇ α0 is a special case of the partially linear model([69, 78])

y = x′αβα + g(z) + ε, z = xk (1.12)

with g(z) set to be βkz, where βk is the kth component of β. The ‘forced’ presence of

an unknown function g(.) means that the number of parameters in (1.12) and thus δd in

(1.11) is infinite.

The estimation of (1.12) were studied by[69, 78]. Note that E(y|z) = β>E(x|z)+g(z), y−

E(y|z) = β>{x− E(x|z)}+ ε, which suggests that estimates of the regression functions

E(y|z) and E(x|z) be inserted prior to application of the no-intercept ordinary least

square method. While a variety of nonparametric estimators is available, we here consider

Nadaraya-Waston estimator for E(x|z) and E(y|z). Let

x̃α(z) =
∑n

i=1 Kh(zi − z)xiα∑n
i=1 Kh(zi − z)

, ỹ(z) =
∑n

i=1 Kh(zi − z)yi∑n
i=1 Kh(zi − z)

,
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where K(.) is a symmetric univariate density function, h > 0 is a bandwidth and Kh(.) =

K(./h). Then βα in (1.12) can be estimated by

β̂α =
[ n∑

i=1

{xiα − x̃α(zi)}{xiα − x̃α(zi)}>
]−1

n∑

i=1

{xiα − x̃α(zi)}{yi − ỹ(zi)},

Under some regularity conditions, [69] proved that β̂α is root-n consistent. Let

x̃\iα (z) =
∑

l 6=i

Kh(zl − z)xl

/ ∑

l 6=i

Kh(zl − z), ỹ\i(z) =
∑

l 6=i

Kh(zl − z)yl

/ ∑

l 6=i

Kh(zl − z),

ĝ\i(z) = ỹ\i(z)− x̃\iα (z)>β̂α, ŷ
\i
lα = ĝ\i(zl) + x>lαβ̂α.

Then the average prediction error is defined as

SCV (α, z) :=
1
n

n∑

i=1

(yi − ŷ
\i
iα)2 =

1
n

n∑

i=1

[
yi − ỹ\i(zi)− {xiα − x̃α(zi)}>β̂α

]2
. (1.13)

The selection algorithm goes as follows. Start with an initial set α = {i1, · · · , id} ⊇ α0.

Step 1. Compute CVαk
(1) for every αk = α \ {ik}, k = 1, · · · , d and k := min

1≤j≤d
CVαj (1).

Step 2. Calculate SCV (αk,xik) defined in (1.13) with α replaced by αk and z by xik .

If CVαk
(1) > SCV (αk,xik), stop and model Mα is selected. Otherwise, go to step 1

with α updated with αk. Repeat the above procedures until no further variables can be

removed. We call this selection procedure the separated cross-validation (SCV) method.

Remark If (1.10) holds, then by (1.8) and (1.9), we have

P{CVα1(1) > CVα2(1)} → 0, for any Mα1 in Category 1 and Mα2 in Category 2.

This implies that if α0 ⊂ α, then after Step 1, we still have αk ⊇ α0 in probability and

consequently by Theorem 1.1, the output of Step 2 will be αk in probability. That is, we
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Table 1.1: Penalties for some variable selection criteria with sample size n.

Method Asymptotic Expansion Penalty Consistency

AIC log(RSS∗) + 2d/n + constant 2d/n N

BIC log(RSS∗) + log(n)d/n + constant log(n)d/n Y

CV (1) RSS∗ + σ2(2d− ε′Pαε)/n σ2{2− χ2(1)}/n N

CV (m) RSS∗ + σ2/(n−m) σ2/(n−m) Y

SCV RSS∗ + σ2(RK + 4ck)/(nh) σ2RK/(nh) Y

RSS∗, residual sum of squares under model Mα0 , d = dα.

successfully locate one extra variable contained in Mα. Theorem 1.1 also implies that if

α = α0, then no variable will get removed after Step 2 with probability tending to 1.

Theorem 1.1 Suppose (1.7) (1.10) and (A1)− (A4) in Appendix A hold, then

SCV (α,xk) =
1
n

n∑

i=1

ε2i +
σ2(RK + 4ck)

nh
+ βk∆ + op(

1
nh

), (1.14)

where RK =
∫

K2(v)dv, ck is the Lebesgue measure of the support of xk and ∆ ≥ 0 with

E∆ = o(n−1h−b) for any b > 1. Therefore,

1. If k ∈ α0 and α ∪ k = α0, then lim
n→∞Pr{SCV (α,xk) > CVα0(1)} → 0.

2. If α0 ⊆ α, and k /∈ α0, then lim
n→∞Pr{SCV (α,xk) < CVα(1)} → 0.

The proof of the theorem is given in Appendix A. To get a feel of the newly proposed

SCV method and some popular selection criteria, we list in Table 1.1 the asymptotic

expansion form of each method and its penalty term, when one redundant variable is
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added into the true modelM0. We can see that the ‘penalty’ imposed by those consistent

methods are invariably larger than by inconsistent ones.

1.4 Simulations and Examples

We study the finite sample performance of several selection criteria, namely AIC, BIC,

CV (1), CV (m) and SCV. In all the calculations below, the Epanechnikov kernel K(µ) =

0.75(1 − µ2)+ is used. Since the function g(.) in (1.12) is actually linear, the optimal

bandwidth which minimizes the mean squared error is infinite([26]). Fortunately, the

choice of bandwidth in subset selection is not as crucial as in smoothing regression, as long

as the order of the bandwidth meets the requirement for consistency ( [13, 89]). Therefore,

it suffices to use the rule-of-thumb ([77], pp.45-7), thus bypassing the aforementioned

problem.

To take into account of the variation of y, we propose to use the following scheme for the

partially linear model Yi = β>Xi + g(zi) + εi, i = 1, · · · , n. First calculate the residual

errors of a linear regression model of Y on X as

êi = yi − n−1X>
i

(
n−1

n∑

i=1

XiX
>
i

)−1
n−1

n∑

i=1

XiYi.

Then compute the conditional variance of êi on zi using the method in [32] as

σ̂2
e =

1
n− 2

n−2∑

i=1

(0.809êi − 0.5êi+1 − 0.309êi+2)2.

Then the bandwidth is chosen to be h = σxσ−1
y σ̂e/n0.2, which is parallel to the one

proposed by Silverman ([77]) with coefficient adjusted.
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Table 1.2: Simulation results for Example 1.2

Methods n = 40, σ = 3 n = 40, σ = 1 n = 60, σ = 1 n = 100, σ = 1

(M) (T) (E) (M) (T) (E) (M) (T) (E) (M) (T) (E)

AIC .31 4.04 .20 .40 4.12 0 .41 4.15 0 .41 4.20 0

BIC .49 4.60 .33 .72 4.69 0 .78 4.76 0 .90 4.90 0

CV (1) .37 4.14 .17 .45 4.19 0 .45 4.18 0 .46 4.26 0

CV (m) .30 4.79 .64 .82 4.79 0 .82 4.81 0 .86 4.84 0

SCV .37 4.79 .69 .93 4.94 .01 .96 4.96 0 1 5 0

Example 1.2 In this example we simulated 100 data sets with sample size n from model

Y = X>β + σε, β = (3, 1.5, 0, 0, 2, 0, 0, 0)>,

where the components of X and ε are standard normal. The correlation between xi

and xj is ρ|i−j| with ρ= 0.5. This is a model used in [81]. The model error of the

proposed procedures is compared to that of some other methods. The column labeled

‘(M)’ in Table 1.2 is the frequency of correct model selection. The average number of

zero coefficients is also recorded. The column labeled ‘(T)’ are the average restricted only

to the true zero coefficients and the column labeled ‘(E)’ are for coefficients erroneously

set to 0. From inspection of Table 1.2, we can see that SCV method performs the best.

Example 1.3 We consider the model in [73]

yi = β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + ei

where i = 1, · · · , 40, ei are i.i.d. N(0, 1), xki is the ith value of the kth prediction
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Table 1.3: Simulation results for Example 1.3

True model AIC BIC CV (1) CV (m) SCV

(2 0 0 4 0) .588 .856 .484 .934 .882

(2 0 0 4 8) .690 .866 .641 .947 .858

(2 9 0 4 8) .996 .996 .801 .965 .968

(2 9 6 4 8) 1.000 1.000 .985 .948 .920

variable xk, x1i ≡ 1 and the values of xki, k = 2, · · · , 5, i = 1, · · · , 40, are taken from

the example in [31]. Here we only consider four different models with at least three

nonzero βk’s and this is in favor of those methods with relatively lighter penalty, such as

AIC, BIC and CV (1). Frequencies out of 500 simulations that the true model is selected

are recorded in Table 1.3.

Example 1.4 [Ground Ozone Level] Air pollution has serious impact on the health of

plants and animals (including human beings) and reduces the visibility; see the report

of WHO ([88]). Substances not naturally found in the air or at greater concentrations

or in different locations from usual are referred to as ‘pollutants’. The main pollutants

include nitrogen dioxide (NO2), Carbon dioxide (CO), sulphur dioxide (SO2), respirable

particulate (PM), ozone (O3) and others. Pollutants can be classified as either primary

or secondary. Primary pollutants are substances directly produced by a process, such

as ash from a volcanic eruption or the carbon monoxide gas from a motor vehicle ex-

haust. Secondary pollutants are not emitted, such as ozone, which is produced from the
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photochemical oxidation of volatile organic compounds in the presence of sunlight and

nitrogen oxides and other pollutants. Let N, S, P, T and H be the weekly average levels

of NO2, SO2, PM, temperature and humidity respectively. To account for the interaction

effect, we take on the interaction between any two of them, resulting in 15 covariates

altogether.

To decide which of the 15 covariates significantly contribute to the average level of ozone,

we use the pollution data collected in Hong Kong from 1994 to 1997. A linear model

with all 15 variables shows that linear regression is enough. The selection process of

SCV are put in Table 1.4. Begin with the full covariate set of 15 variables. Its subset

αk obtained in Step 1 is given immediately below, with corresponding CVαk
(1) and

SCV (αk, xk) value put in the neighbor columns labeled ‘CV (1)’ and ‘SCV ’ respectively.

For example, among all size 3 subsets of (H, N ∗ T, S ∗H, P ∗ T ), (H, S ∗H, P ∗ T ) has

the smallest CV (1) = 0.3513 and the SCV value is 0.3110 for model

y = (H, S ∗H, P ∗ T ) ∗ β + g(N ∗ T ) + ε.

Focusing on the column labeled ‘CV (1)’, we can see that the backward CV (1) will pick

up H, N ∗ S,N ∗ T, S ∗ T, S ∗ H, P ∗ T and T ∗ H (values in italic), although it makes

no sense to take in the chemistry interaction factor N ∗ S. Variables selected by SCV

are weather conditions and their interactions with NO2 and SO2 (values in boldface),

which is in line with the chemical claim that ozone is produced from chemical reactions

between reactive organic gases (P ) and oxides of nitrogen in the presence of sunlight.
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Table 1.4: Variable selection procedure for Example 1.4

Variable candidates CV (1) SCV

(N, S, P, T, H, N ∗ S, N ∗ P, N ∗ T, N ∗H, S ∗ P, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2992 0.3161

(S, P, T, H, N ∗ S, N ∗ P, N ∗ T, N ∗H, S ∗ P, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2945 0.3059

(S, P, H, N ∗ S, N ∗ P, N ∗ T, N ∗H, S ∗ P, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2916 0.3106

(P, H, N ∗ S, N ∗ P, N ∗ T, N ∗H, S ∗ P, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2895 0.3013

(P, H, N ∗ S, N ∗ P, N ∗ T, N ∗H, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2895 0.2943

(P, H, N ∗ S, N ∗ T, N ∗H, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2880 0.3183

(P, H, N ∗ S, N ∗ T, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2868 0.2895

(H, N ∗ S, N ∗ T, S ∗ T, S ∗H, P ∗ T, P ∗H, T ∗H) 0.2859 0.2864

(H ,N ∗ S ,N ∗ T ,S ∗ T ,S ∗H ,P ∗ T ,T ∗H ) 0.2842 0.2945

(H, N ∗ S, N ∗ T, S ∗H, P ∗ T, T ∗H) 0.2859 0.2963

(H, N ∗ S, N ∗ T, S ∗H, P ∗ T ) 0.2941 0.3099

(H, N ∗ T, S ∗H, P ∗ T ) 0.2939 0.3110

(H, S ∗H, P ∗ T ) 0.3513 0.3517



Chapter 2

Subset Selection for Single-Index

Models

2.1 Introduction

As a semi-parametric approach attending to tackle data in high dimensions, the single-

index model (SIM) is widely used in applied quantitative sciences, such as econometrics

and statistics. Suppose Y is a response variable and X = (x1, · · · ,xp)> are covariates.

The single-index model is written as

Y = g(X>θ0) + ε, (2.1)

where E(ε|X) = 0 almost surely, g is an unknown link function and θ0 is an unknown

unit parameter vector (single-index) with its first nonzero component positive for iden-

tification purposes. Many widely parametric models have this form; examples include

14
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linear regression, binary logit and probit and Tobit models. These models assume that

g is known; when g is unknown, SIM is more flexible than a parametric model while

avoiding the loss of precision that occurs in fully nonparametric estimation with a mul-

tidimensional X.

Recent papers ([34, 36, 41, 42, 44, 45, 65, 92]) have considered the estimation of the

parametric index and the nonparametric link function with focus on the root-n consis-

tency of the former; efficiency issues have also been studied. Amongst them, the most

popular ones are the sliced inverse regression method ([48]), the semi-parametric least

squares estimator ([34, 44]) and the minimum average conditional variance estimator

([92]). If X are continuous, then the computation difficulty can be greatly reduced

through the use of average derivative estimator (ADE, [36]), which relies on the fact that

E[∂g(X>θ)/∂X] ∝ θ. However, because the high dimensional kernel estimation method

is used, the estimation still suffers from the so called “curse of dimensionality”. [42]

adopted the same idea as ADE and came up with a dynamic procedure to adapt to the

structure of the model by lowering the dimension of the kernel smoothing. On the other

hand, to tackle the situation when E[∂g(X>θ)/∂X] = 0, [91] proposed an outer product

of gradients method which is based on the fact that θ is the eigenvector corresponding

to the greatest eigenvalue of E[∂g(X>θ)∂>g(X>θ)].

All the studies mentioned above assume that all regressors X contain useful information

for predicting the response variable. If irrelevant regressors are included, which is very

likely in high dimensional environments ([59]), the precision of parameter estimation

as well as the accuracy of forecasting will suffer ([2]). Therefore, it is necessary to
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remove irrelevant variables from SIM. Using sliced inverse regression method (SIR), [59]

considered this issue when the error term ε is normally distributed and X are continuous

and elliptically symmetric. However, in practice it is common that some covariates are

asymmetric or discrete. In this case, SIR fails to obtain a useful estimator of the single-

index parameter and the method of [59] is thus inapplicable.

Cross-validation method and its equivalent have long been used in model identification

and subset selection ([58]). We mentioned in Chapter 1 that under nonparametric set-

tings, the leave-one-out CV method is consistent. In fact, the same result holds for

‘leave-m-out’ CV (CV(m)), the proof of which is given in Appendix B.

Semi-parametric models are different again. I will prove that CV(1) again fails to select

variables in SIM but CV(m) does not, provided that m/n → c ∈ [2/3, 1), different

from the requirements on m in linear regression models. Thus no more than 1/3 of the

samples can be used for model estimation and this is usually not enough to estimate the

model well, resulting in inferior efficiency in variable selection. Furthermore, CV(m) is

computationally prohibitive. To overcome these disadvantages, we shall propose a new

variable selection method called separated cross-validation method (SCV).

2.2 Optimal Model and Parameter Estimation

We use notation similar to that in [73]. Let S denote all nonempty subsets of {1, · · · , p}.

For any α ∈ S, let dα be the cardinality of α, θα and Xα be two dα × 1 column vectors,

which containing the components of θ or X indexed by the integers in α respectively. Let
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θ denote the vector which minimizes E[Y −E(Y |X>
α θ)]2. The corresponding single-index

model

Y = gα(X>
α θ) + εα, εα = Y − E(Y |X>

α θ) = Y − gα(X>
α θ) (2.2)

is denoted by Mα. If we know whether or not each component of θ0 is 0, then models

Mα can be classified into two categories. In one category, at least one covariate with

a nonzero coefficient in (2.1) is missing in Xα. In the other category, Xα contains all

covariates with nonzero coefficients. The true model denoted by Mα0 , is defined as the

model in the second category with the smallest number d0 of covariates.

Suppose {(Xi, Yi), i = 1, · · · , n} is a random sample from model (2.1). Consider model

Mα with α0 ⊆ α. To guarantee the consistency of estimation, we assume throughout

the paper that X>
α θα has an almost everywhere positive density function for any α ⊇ α0

and θ in a small neighborhood of θ0
α, a column vector containing the components of θ0

indexed by the integers in α; see [41] for more discussion. The popular method proposed

by [34] estimates the model as follows. Suppose A ⊆ Rp is a compact convex set such

that the density function of X>θ is uniformly bounded away from zero on {θ>x : x ∈ A}

for any θ near θ0. For any given b > 0 and h > 0, let Abh = {x ∈ Rp : ‖x − x0‖ ≤

bh for some x0 ∈ A}. The introduction of A and Abh is for technical purposes; see [34]

for more details. Let gα(u|θ) = E(Y |X>
α θ = u>θ). Its leave-one-out estimate is given by

ĝ\iα (u|θ) =

∑
j 6=i Kh(X>

j,αθ − u>θ)Yj∑
j 6=i Kh(X>

j,αθ − u>θ)
, (2.3)

where h is a bandwidth, K is an univariate density function with support [−b, b] and

Kh(.) = h−1K(./h). Since gα(u|θ0
α) ≡ g(u>θ0

α), the index parameter under model Mα is
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estimated by minimizing

HCVα(θ, h)
4
=

∑

i

′{Yi − ĝ\iα (Xi,α|θ)}2, (2.4)

with respect to θ and h > 0 subjected to ‖θ‖ = 1, where
∑
i

′ denotes summation over

indices i such that Xi ∈ A. We assume that all Xi ∈ Abh. Otherwise one can always

completely ignore those data outside of Abh. To make the notations neat, let Xi ∈ A if

1 ≤ i ≤ n′ and Xi /∈ A if i > n′, which implies that n − n′ = O(nh). This estimator

has very good asymptotic properties. It needs no under-smoothing for the estimator of

θ to achieve root-n consistency. However, it is not easy to solve the above minimization

problem, even when dα = 2, let alone even higher dimensions.

Based on local linear approximation, [92] estimated θ0
α by

θ̂ = arg min
θ:‖θ‖=1

n∑

j=1

n∑

i=1

(Yi − aj − djθ
>Xij,α)2wij ,

where Xij,α = Xi,α −Xj,α and wij is a weight depending on the distance between Xi,α

and Xj,α. The corresponding algorithm takes the following form; with an initial value θ,

calculate

(
aθ

j

dθ
j

)
=

[∑

i

Kh(X>
ij,αθ)

(
1

X>
ij,αθ

)(
1

X>
ij,αθ

)>]+ ∑

i

Kh(θ>Xij,α)
(

1
X>

ij,αθ

)
Yi (2.5)

and then calculate

θ =
[ ∑

i,j

Kh(X>
ij,αθ)(dθ

j)
2Xij,αX>

ij,α

]+ ∑

i,j

Kh(X>
ij,αθ)dθ

jXij,α(Yi − aθ
j), θ = sign(θ1)

θ

‖θ‖ .(2.6)

where [.]+ denotes the Moore-Penrose inverse of the matrix in the brackets. Repeat (2.5)

and (2.6) until the iteration process converges, to what we call the minimum average

variance estimator (MAVE).
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[91] proved that the MAVE estimator is root-n consistent and has the same asymptotic

distribution as the estimator of [34], referred to as HHI herein.

2.3 Cross-validation Subset Selection

In the cross-validation method, the data are split into two sets, training set sc and the

test set s. The training set is used to estimate all candidate models and the model that

best predicts the test set is the preferred model.

2.3.1 CV(m) Based on HHI Method

The leave-m-out HHI estimator of gα(µ|θ) is given by

ĝ\sα (u|θ) =
∑

j /∈s

YjKh(u−X>
j,αθ)/

∑

j /∈s

Kh(u−X>
j,αθ),

where s is a subset of {1, · · · , n′} and #s = m. We then estimate θ0
α by minimizing

HCV m
α (θ, h)

4
=

1
nv

(
n
nv

)
∑

s

∑

i∈s

{Yi − ĝ\sα (X>
i,αθ|θ)}2, (2.7)

where summation
∑
s

runs over all possible size m subsets of {1, · · · , n′}. Let HCV m
α =

min
θ,h

HCV m
α (θ, h). The following theorem shows that HCV m

α can not be used for subset

selection.

Theorem 2.1 If (A1) − (A4) in Appendix B hold and m/n → c ∈ [0, 1), then for any

α ⊃ α0, Pr{HCV m
α < HCV m

α0
} → 1, as n →∞.
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2.3.2 CV(m) Based on MAVE Method

Note that in (2.2), θ = θ0
α for any α ⊃ α0. For such α and any s ⊂ {1, · · · , n′} with

#s = m, we first estimate θ0
α by θ̂

\s
α , the MAVE estimator of the index vector θ in model

(2.2) from {(Xj , Yj) : 1 ≤ j ≤ n, j /∈ s}. The link function is then estimated by the local

linear smoother

ĝ\sα (u|θ̂\sα ) =
∑

j /∈s

Mα,h((Xj,α − u)>θ̂\sα )Yj

/∑

j /∈s

Mα,h((Xj,α − u)>θ̂\sα ), (2.8)

where

Mα,h((Xj,α − u)>θ̂\sα ) = S
\s
α,2(u|θ̂\sα )Kh

{
(Xj,α − u)>θ̂\sα

}

−S
\s
α,1(u|θ̂\sα )

{
(Xj,α − u)>θ̂\sα /h

}
Kh

{
(Xj,α − u)>θ̂\sα

}

with S
\s
α,k(u|θ) =

∑
j /∈s

Kh

{
(Xj,α − u)>θ

}{
(Xj,α − u)>θ/h

}k
, k = 0, 1, 2. We define the

leave-m-out cross-validation estimate of prediction error as

CVα(m)
4
= m−1

(
n′

m

)−1∑
s

′∑

i∈s

{Yi − ĝ\sα (Xi,α|θ̂\sα )}2, (2.9)

where
∑
s

′ indicates summation over all possible size m subsets of {1, · · · , n′}. Later, we

will use
∑
i,s

′ to denote
∑
s

′ ∑
i∈s

. The model Mα with the smallest value of CVα(m) is the

selected model.

Theorem 2.2 Suppose(A1)-(A5) in Appendix B hold. If m → ∞, m/n → c ∈ [0, 1)

and h ∝ n−1/5, then for any α ⊃ α0 with δd := dα − d0, we have

lim
n→∞Pr{CVα(m) > CVα0(m)} = Pr{χ2(δd) >

(2− 3c)δd

1− c
}.
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By Theorem 2.2, for CV(m) to be consistent, i.e. lim
n→∞Pr{CVα(m) > CVα0(m)} = 1, it

is required that 2− 3c ≤ 0, or 1 > c ≥ 2/3. Although we have no conclusion in the case

c = 1, our conjecture is that the consistency does not hold, since θ̂
\s
α is no longer root-n

consistent as nc := n−m = o(n), i.e. the size of learning set is much smaller than n.

The way CV(m) splits the data is acceptable for linear regression models, whose pa-

rameter can be estimated well with a small sample. However, the size of the training

set used by CV(m) is usually too small for nonparametric smoothing methods. Another

disadvantage of CV(m) is the heavy computational burden since there are
(
n′
m

)
possible

splitting combinations. To tackle this problem, Monte Carlo CV(m) randomly draws,

with or without replacement, a collection R of subsets of {1, · · · , n′} of size m, and

selects a model that minimizes

CV mc
α (m)

4
=

∑

s∈R

∑

i∈s

{Yi − ĝ\sα (Xi,α|θ̂\sα )}2.

In linear regression models, the performance of this method has been proved to be similar

to that of CV(m); see [73, 94]. The Monte Carlo CV(m) is thus used in the simulation

study instead of CV(m).

Although Theorem 2.2 is proved for MAVE estimator, the same results hold for other

single-index model estimation methods, providing that the estimator has a similar stochas-

tic expansion to that given in (B.1). Examples are the estimator by [34], albeit compu-

tationally intensive, and the average derivative estimator by [36]. The method of [42]

might also be used as [91] proved that an alternative version has a similar expansion.
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2.4 Subset Selection by Separation

Starting with the full covariate set {x1, · · · ,xp}, we need to check whether or not a

certain covariate, xk say, contributes to the response variable Y . For this purpose, we

introduce the following model

Y = g(X>
α θ,xk) + ε, α ∪ k = {1, · · · , p}. (2.10)

Compared with model (2.1), where the contribution of xk is mixed up with that of the

other covariates through a linear combination, xk in model (2.10) is ‘separated’ and its

contribution can be assessed more accurately. Another reason for the introduction of

model (2.10) is the different behavior of cross-validation method in parametric models

and nonparametric models. As the relationship between Y and xk is ‘nonparametric’ in

(2.10), simple CV(1) can tell whether or not xk contributes to Y as proved in [13, 89].

The parameter θ in model (2.10) can be estimated by the first dα entries of the MAVE

estimator of the index vector in SIM Y = g(X>
α∪kθ) + e. For any fixed θ, define

gα,k(u, v|θ) = E(Y |X>
α θ = u>θ,xk = v). Its leave-one-out local linear estimator is

the first component of





∑

j 6=i

Kα,θ
h1,j(u, v)




1

θ>(Xj,α − u)

Xj,k − v







1

θ>(Xj,α − u)

Xj,k − v




>



−1

∑

j 6=i

Kα,θ
h1,j(u, v)




1

θ>(Xj,α − u)

Xj,k − v




>

Yj ,

(2.11)

where Kα,θ
h1,j(u, v) = Kh1(θ

>Xj,α − u)Hh1(xj,k − v) is a two-dimensional product kernel,

h1 is a bandwidth and H = K for xk continuous and Hh(v) = I(v = 0) for xk discrete.

To make notations more neat, let ĝ
\i
α1,k(Xi|θ̂\iα1) and ĝ

\i
α1(Xi|θ̂\iα1) denote ĝ

\i
α1,k(Xi,α1 ,xi,k|θ̂\iα1)
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and ĝ
\i
α1(Xi,α1 |θ̂\iα1) respectively. We propose the following algorithm for variable selec-

tion. Start with an initial covariate set α satisfying α0 ⊆ α.

Step 1. Calculate θ̂, the MAVE estimator of θ in model Y = g(X>
α θ) + ε from all data

points. Find the entry of θ̂ with the smallest absolute value and its corresponding

index in α, k say. Set α1 = α \ {k}.

Step 2. Denote by θ̂
\i
α the MAVE estimator of θ in Y = g(X>

α1∪kθ) + ε based on

{(Xj , Yj)}j 6=i. Eliminate the last entry and denote the rest by θ̂
\i
α1 .

Step 3. Calculate ĝ
\i
α1,k(Xi|θ̂\iα1) as defined in (2.11) and ĝ

\i
α1(Xi|θ̂\iα1) as defined in (2.5),

with θ, and α replaced by θ̂
\i
α1 and α1 respectively. Let

CVα1,k =
1
n′

∑

i

′{Yi − ĝ
\i
α1,k(Xi|θ̂\iα1

)}2, CVα1 =
1
n′

∑

i

′{Yi − ĝ\iα1
(Xi|θ̂\iα1

)}2,

where
∑
i

′ is defined in (2.4). If CVα1,k < CVα1 , stop and select model α. Otherwise

go to Step 1 with α replaced by α1.

Repeat the above procedure until no further variable can be removed. We call this

procedure the separated cross-validation method (SCV).

Step 1 is employed to simplify the calculations. As θ0 can be estimated with root-n

consistency in SIM, if α ⊃ α0, then θ̂k = Op(n−1/2); if xk is necessary, θ̂k = θ0
k +

Op(n−1/2), which is bounded away from 0 in probability. Therefore, if α is too large,

then with probability tending to 1, only its redundant variables will be considered for

removal by Step 1. Computations in Steps 2 and 3 can also be simplified by replacing θ̂
\i
α

and θ̂
\i
α1 with θ̂α and θ̂α1 respectively. Step 2 estimates the parameters in model (2.10)
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assuming that xk should be removed. Step 3 compares the cross-validation values for

model (2.10) and (2.2) to check the importance of xk; see [13].

As shown in [34, 91], the same bandwidth can be used to estimate the link function

as well as the index parameter. To implement (2.11), theoretical justification requires

different bandwidths used for the estimation of model (2.10), depending on the type of

xk: h1 ∝ n−1/6 for xk continuous and h1 = h ∝ n−1/5 for xk discrete, where h is the

bandwidth used when calculating CVα1 . Many available bandwidth selection methods,

such as the cross-validation, the generalized cross-validation, and the rule-of-thumb can

be used to choose the bandwidths; see [26, 77] for more details. More is to be said about

this in Section 5 below. We have the following consistency property for SCV method.

Theorem 2.3 Suppose assumptions (A1)-(A7) in Appendix B hold and that the band-

width satisfies the requirement mentioned above.

1. If α ∪ k = α0, then lim
n→∞Pr{CVα,k > CVα} → 0.

2. If α0 ⊆ α and k /∈ α0, then lim
n→∞Pr{CVα,k < CVα} → 0.

2.5 Simulation Study

We compare CV(1), CV(m) and SCV by simulations. Since the asymptotic distribution

of θ̂ can be used for variable selection, we also include it in the comparison study. The

distributional result is that

n1/2(θ̂ − θ0)→N(0,W+
0 W1W

+
0 ), (2.12)
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in distribution as n →∞, where W0 = E[{X−E(X|X>θ0)}{X−E(X|X>θ0)}>g′(X>θ0)2],

W1 = E[{X−E(X|X>θ0)}{X−E(X|X>θ0)}>g′(X>θ0)2ε2] and W+
0 denotes the Moore-

Penrose inverse. The matrices W0 and W1 can be estimated by kernel smoothing as

Ŵ0 = n−1
∑n

i=1(Xi −µ̂i)(Xi−µ̂i)>d̂2
i and Ŵ1 = n−1

∑n
i=1(Xi−µ̂i)(Xi−µ̂i)>d̂2

i (Yi−âi)2,

where µ̂i =
∑n

j=1 Kh(X>
ij θ̂) Xj/

∑n
j=1 Kh(X>

ij θ̂) with âi and d̂i given by

(
âi

d̂i

)
=

{ n∑

j=1

Kh(X>
ij θ̂)

(
1

X>
ij θ̂

)(
1

X>
ij θ̂

)>}−1
n∑

j=1

Kh(X>
ij θ̂)

(
1

X>
ij θ̂

)
Yj .

Based on (2.12), a variable xk is selected if |θ̂k| > 1.96(ckk/n)1/2, where ckk is the (k, k)

entry of Ŵ+
0 Ŵ1Ŵ

+
0 .

In calculations below, the Gaussian kernel is used, since we find empirically it performs

better in estimating the index parameter; see also [72]. After (Xi, yi) are standardized,

the bandwidths are calculated by the rule-of-thumb ([77], pp. 45-7) as follows. In (2.5),

h = 1.06sθ>Xα
n−1/5, where sθ>Xα

is the sample standard deviation of θ>Xi,α. In (2.11),

h1 = 1.06max(sθ>Xα
, 1)n−1/6 for xk continuous and h1 = h for xk discrete.

Example 2.4 We draw random samples with size n = 50, 100 and 200 respectively from

a logistic regression model

Y ∼ Ber{l(X>β)}, l(µ) = exp(µ)/{1 + exp(µ)},

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)>. Two designs were used for X = (x1, · · · ,x8)>. In

Design A, (x1, · · · ,x6)> ∼ N(0,Σ6), where Σp = (0.5|i−j|)1≤i≤j≤p, and x7, x8, are

independent Ber(0.5), independent of (x1, · · · ,x6)>. In Design B, x(2k) = 2I(z(2k) >

0)−1 and x(2k−1) = z(2k−1), for k = 1, 2, 3, 4, where Z = (z1, · · · , z8) ∼ N(0,Σ8). Design

A was investigated by [28]. A single-index model is fitted to the data and the variable
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Table 2.1: Frequency of correct model selection for Example 2.4

Design n CV(1) CV(0.25n) CV(0.5n) CV(0.75n) SCV ASD

50 0 0 0.18 0.38 0.41 0.27

(A) 100 0.29 0.46 0.58 0.63 0.66 0.44

200 0.23 0.47 0.85 0.68 0.90 0.72

50 0.3 0.37 0.46 0.46 0.51 0.32

(B) 100 0.37 0.43 0.69 0.77 0.81 0.65

200 0.67 0.71 0.80 0.87 0.91 0.75

selection methods are applied. The relative frequencies of correct subset selection among

100 replications are reported in Table 2.5. We can see that SCV outperforms all the other

methods. Its efficiency is even comparable with the results of [28], where the model is

known up to unknown parameters. Also, the table shows that the CV(m) usually has

better performance if the data is split in the way according to Theorem 2.2.

Example 2.5 The Tobit model is an econometric model in which the dependent variable

is censored. In the original model in [83], for example, the dependent variable was

expenditure on consumer durables, and the censoring occurs as values below zero are not

observed, i.e.

Y = (β>X + 0.5ε)I(β>X + 0.5ε > 0), (2.13)

where I(.) is an indicator function; see also [61]. We also consider two designs: (A)

X = (x1, · · · ,x20)> ∼ N(0, I20); (B) x(2k) = 2I(z(2k) > 0)− 1 and x(2k−1) = z(2k−1), for
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Table 2.2: Frequency of correct model selection for Example 2.5

Design l n CV(1) CV(0.5n) CV(0.75n) SCV ASD

5 50 0.08 0.36 0.02 0.84 0.08

10 50 0.17 0.49 0.14 0.60 0.14

(A)
5 100 0.32 0.82 0.78 0.99 0.26

10 100 0.56 0.90 0.93 1.00 0.33

5 50 0.12 0.38 0.0 0.85 0.03

10 50 0.14 0.32 0.0 0.59 0.17

(B)
5 100 0.42 0.92 0.93 0.97 0.10

10 100 0.55 0.92 0.90 0.99 0.37

k = 1, · · · , 10, where Z ∼ N(0,Σ20). The error term ε ∼ N(0, 1) is independent of X

and β = (1, 1, · · · , 1, 0, · · · , 0)> with first l elements 1 and others 0.

Here we have more covariates than in Example 1. As we mentioned at the beginning of

Section 4, having a large number of covariates will compromise the efficiency of CV(m)

and this is clearly reflected in Table 2.5, where the relative frequencies of correct subset

selection among 100 simulations are recorded. We can see that CV(0.5n) outperforms

CV(0.75n), suggesting that for small to medium sample size, the way of splitting the

data suggested by Theorem 2.2 is not applicable due to the nature of nonparametric

smoothing. In contrast, the SCV method is rather robust and performs better.

We also found from simulations not reported here that the choice of bandwidth is not
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as crucial in subset selection as in nonparametric regression. This phenomenon was also

observed in [13]. As mentioned in Sections 3 and 4, other ways of estimating single-index

models can also be used in CV(m) or SCV, but some can be very time consuming.

2.6 Applications to Two Real Data Sets

Example 2.6 (The Swiss banknotes data) The data contain 6 explanatory variables

which are certain measurements of Swiss banknotes, called Length, Left, Right, Bottom,

Top and Diagonal, and denoted by x1, · · · ,x6 respectively. The response variable Y

is coded as 0 or 1, indicating whether a banknote is genuine or not. There are 200

banknotes, with the first 100 banknotes genuine and the others counterfeit.

The fitted values from single-index models using all variables, (x4,x5,x6), or variables se-

lected by SCV are plotted in Fig. 2.1. The index parameters are estimated respectively as

θALL = (−.1597, .4638,−.1549, .5699, .2922,−.5703)> and θS = (.8006, .3011,−.5181)>.

Both models fit the data very well. To compare their prediction capabilities, we split the

data randomly into a training set comprising 50 counterfeit banknotes and 50 genuine

banknotes, and a test set containing the rest. We estimate the model with the training

set, apply the estimated model to the test set and calculate the number of misspecifica-

tions. With different covariate sets, the average numbers of misspecifications based on

10000 replications of this random splitting are given in Table 2.6. A single-index model

with variables selected by the principle component analysis is also compared; see [35].

Apparently SCV delivers the best results.
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Table 2.3: The Swiss banknotes data: average numbers of misspecifications

Method selected variables Ave. No. of misspecifications

All variables x1, · · · ,x6 0.5787

Cross-validation x1,x4,x5,x6 0.6223

SCV x4,x5,x6 0.5100

Principle Component Anal. x5,x6 0.5411
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Figure 2.1: ‘+’: observations; ‘.’: fitted values. (a) based on all covariates, (b) based on the

selected variables. The observed Y are rescaled for easy visualization.

Example 2.7 (The ozone concentration data) We study the relationship between

ozone concentration level Y and radiation level R, temperature T , and wind speed W .

111 observations were taken daily from May to September 1973 in New York. Taking into

account the interaction effect between any two covariates, we have totally nine covariates

X = (x1, · · · ,x9)> = (R, T, W,R2, R ∗ T,R ∗W,T 2, T ∗W,W 2)>. After standardizing Y

and xk, k = 1, · · · , 9, we apply SCV to the data, thereby selecting variables x3, x6 and x8

with estimated index parameter θc = (.8486,−.0992,−.5196)>. Single-index models with

X or (R, T, W ) as predictors are also investigated and the estimated index parameters

are θb = (.2147, .1544,−.7541,−.1245,−.0029,−.0607,−.2292, .5183, .1448)>, and θa =
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Table 2.4: Ozone concentration data: average prediction errors

Method selected variables Average prediction errors

All original variables x1,x2,x3 0.3643

All extended variables x1, · · · ,x9 0.3621

SCV x3,x6,x8 0.3403

(.3443, .7051,−.6199)> respectively. The fitted values from the three single-index models

are plotted in Fig. 2.2. To compare the prediction capabilities of single-index models

with different covariates, we again split the data randomly into two sets, this time with

the training set comprising 56 observations and the test set containing the remaining 55

observations. The prediction errors are defined as the averaged sum of squared residuals.

The results in Table 2.7 are based on 10000 replications of such random splitting.
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Figure 2.2: ‘.’: observations; ‘–’: fitted values. (a) based on the original covariates

(R, T, W ), (b) based on the extended variables, (c) based on the selected variables.



Chapter 3

Conditional Heteroscedasticity

Modeling in Finance

3.1 Introduction

In the 1970’s, the autoregressive moving average processes (ARMA) was the focus of

the research on time series modeling. Based on the conditional expectations, ARMA is

easy to implement, with any temporal dependencies in the higher order moments treated

as a nuisance. However, the three major drawbacks of ARMA models, namely linear

setup, priori constraints on the parameters and conditional homoscedasticity, restrict the

type of dynamics to be approximated and make this approach inadequate for structural

interpretations. Among the fields of applications where standard ARMA fit is poor are

financial and monetary problems. The financial time series features various forms of

nonlinear dynamics, the crucial one being the strong dependence of the instantaneous

31
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variability (volatility or conditional heteroscedasticity) of the series on its own past,

called the ‘volatility clustering’ phenomena. In simple words, that is, ‘...large changes

tend to be followed by large changes of either sign, and small changes tend to be followed

by small changes...’([52]). The panels on the left hand side of Fig. 3.6 show the daily

returns (differenced in the logs of the daily closing price) of three stocks, with tickers

IBM, BP and GM. Immediately evident is the existence of different regions where the

daily returns and thus local volatility are relatively more or less extreme.

Understanding the exact nature of this temporal dependence in volatility is crucial for

many issues in macroeconomics and finance, such as option pricing, the term structure

of interest rates and risk management. For example, volatility is closely related to Value

at Risk (VaR), the maximum loss over a given time horizon at a given confidence level

α. In fact, VaR with confidence level α can be estimated by Φ−1(α)ĥ1/2
t , where Φ−1(α)

is the α quantile of standard normal distribution and ĥt is the estimated volatility.

The structure of this chapter is as follows. First, some well established parametric and

nonparametric modeling of conditional heteroscedasticity, such as the ARCH, GARCH

and stochastic volatility models, are briefly described in Sections 2 and 3. Section 4

is an empirical study of the nonparametric volatility model and GARCH(1,1) using an

extensively investigated real data set. In Section 5, a new model called the Monotone

constrained varying coefficient ARCH model (MvARCH) is proposed and its estimation

and corresponding asymptotic property are discussed. Both simulation and real data

examples are used for illustration.
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3.2 Parametric Conditional Heteroscedasticity Models

3.2.1 Autoregressive Conditional Heteroscedasticity (ARCH) Model

ARCH model was introduced by Engle ([21]) to offer key insight into the distinction

between the conditional and unconditional second order moments. The ARCH regression

model for a dependent variable yt is formally defined as:

yt|Ft−1 ∼ N (x′tβ, ht), ht = h(εt−1, εt−2, · · · , εt−p;α), εt = yt − x
′
tβ,

where Ft is the information set at time t, xt is a vector of exogenous variables or lagged

values of the dependent variables, and β and α are parameter vectors. Application of

ARCH has primarily focused on the linear ARCH(p) model given by

ht = α0 + α1ε
2
t−1 + · · ·+ αpε

2
t−p, α0 > 0, αi ≥ 0. (3.1)

For the process {εt} to be weakly stationary, the parameter in (3.1) must satisfy

Σp
i=1αi < 1. Consequently,

var(εt) = σ2 =
α0

1− Σp
i=1αi

, ht = (1− Σp
i=1αi)σ2 + α1ε

2
t−1 + · · ·+ αpε

2
t−p,

where ht can be regarded as a weighted average of the ‘global’ variance σ2 and the ‘local’

variances ε2
t−1, · · · , ε2

t−p ([21]). In many empirical applications, it has been shown that

ARCH process provides a good fit for a wide variety of financial return time series; see

e.g. [5, 9] among others.
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3.2.2 Extensions of ARCH Model

Since Engle’s paper, many extensions and generalizations have emerged to refine the

modeling volatility with specific characteristics; see [22] for a good survey. As pointed

out by [39], this research falls into three general categories, each of which addresses one of

the assumptions of the linear ARCH specification. The first area of study concerns about

the conditional normality assumption, with Student’s t ([22]) or the generalized error

distribution ([43]) among others proposed to account for heavy tails of the conditional

distribution. The second extension of the ARCH are models with nonlinear functional

forms for ht. Some examples are

ht = exp(α0 + α1ε
2
t−1 + · · ·+ αpε

2
t−p) ([22]),

log(ht) = α0 + α1 log(ε2
t−1) + · · ·+ αp log(ε2

t−p) ([62]).

Note that the parameters need no longer to be nonnegative for ht to be positive.

The last area, by far the one having received the most amount of attention is that ht

is itself an ARMA process with ε2t acting as innovations, which avoid the problem that

often a large number of parameters are called in ARCH for better performance. These

are the so called Generalized ARCH models( [8]), abbreviated as GARCH model. The

volatility ht in the GARCH(p,q) model is given by

ht = α0 +
q∑

j=1

αjε
2
t−j +

p∑

i=1

βiht−i, α0 > 0, αj ≥ 0, βj ≥ 0, (3.2)

where
∑p

i=1 βi +
∑q

j=1 αj < 1 for {εt} to be weakly stationary. We can see that GARCH

models allow for both a long memory and a much more flexible lag structure. In practice,

the most frequently used is the GARCH(1,1) model.
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To account for the different responses of the price of a financial asset to positive and

negative shocks, i.e. the asymmetric impacts of the ‘good news’ and the ‘bad news’ on

financial returns, variations of GARCH were introduced with leverage terms included in

the expression of ht. Well-known examples are

1. Exponential GARCH(q,p) model ([60])

lnht = α0 +
p∑

i=1

αi(γ[|εt−i| − E|εt−i|] + φεt−i) +
q∑

i=1

βi lnht−i;

2. Threshold GARCH model ([84, 85])

ht = α0 +
p∑

j=1

αjε
2
t−j +

p∑

j=1

γjSt−jε
2
t−j +

q∑

i=1

βiht−i, St−j = I{εt−j<0}.

3.3 Nonparametric Volatility Model

By nonparametric volatility model, we mean that ht = σ2(xt), where xt can be a vec-

tor of exogenous variables or lagged values of yt and σ(.) is a nonnegative and smooth

function. Contrary to ARCH and GARCH models, nonparametric volatility model puts

no restriction on the exact form of ht, thus allowing more space of flexibility. To ac-

commodate time series with nonzero mean, a more generalized nonparametric mean and

volatility model for strictly stationary process {(yt, xt)} is given by

yt = m(xt) + σ(xt)εt, E(εt|xt) = 0, V ar(εt|xt) = 1, (3.3)

while the conditional distribution of εt given xt = x may still depend on x. Let yt =

(S(t+1)4 − St4)/4, xt = St4. Then (3.3) is related to the continuous model([29])

dSt = µ(St) + σ(St)dWt, (3.4)
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which was used to model return structure dynamics by [79, 93] .

An obvious and direct estimator for the volatility function in (3.3) is σ̂2
d(x) = v̂(x) −

(m̂(x))2, where m̂(.)and v̂(.) are estimators for m(.) and v(x) = E(y2
t |xt = x) respec-

tively; see [90, 37]. However, as σ̂2
d(.) is not always non-negative and is greatly biased

([29]), [29] suggested the following residual-based estimator of σ(.)

Step 1. Estimate m(xi), i = 1, . . . , n, by â given by

(â, b̂) = arg min
a,b

n∑

j=1

{yj − a− b(xj − xi)}2K{(xj − xi)/h1}.

Step 2. Compute squared residuals r̂i = {yi − m̂(xi)}2, i = 1, . . . , n.

Step 3. Obtain the local linear estimator σ̂2
r (xi) = â, i = 1, . . . , n by solving

(â, b̂) = arg min
a,b

n∑

j=1

{r̂j − a− b(xj − xi)}2K{(xj − xi)/h2}, (3.5)

where K(.) is a symmetric density function and h1, h2 are two smoothing parameters.

This method, as pointed out by [29], performs almost as well as the local linear estimator

σ̂2
b (x) when the regression function m(.) is known.

3.4 Parametric or Nonparametric? An Empirical Study

This example concerns the yields of the three-month Treasury Bill from the second

market rates on Fridays. The second market rates are annualized using a 360-day year

of bank interest and are quoted on a discounted basis. The data, which consists of 1735

weekly observations, from Jan 5, 1962 to Mar 31, 1995, is presented in Fig. 3.1(a). This

data has been analyzed by various authors and the complete data set is available at

www.federalreserve.gov/releases/h15/data.htm.



CHAPTER 3. CONDITIONAL HETEROSCEDASTICITY MODELING 37

Let yt denote the interest rate series. Following the steps in [3, 29], we first fit an AR

model using Yule-Walker method with the order selected by AIC criterion

yt = zt + 1.2641yt−1 − .2766yt−2 + .0444yt−3 + .036yt−4

−.0459yt−5 − .028yt−6 − .0921yt−7 + .0974yt−8,

where zt is the ‘residual’ of the AR fit. This is different from the AR(5) model in

[29, 3], which is caused by the difference in estimation method used for AR fitting.

However, we will see later that this does not have significant impact on the estimation

of volatility. The ‘residual’ zt is plotted against yt−1 in Fig. 3.1(b), where the solid line

is the Nadaraya-Waston estimator of the mean function m(x) := E(zt|yt−1 = x) and a

weakly upward tendency can be noticed up to yt−1 = 14, which was also observed by [29].

The detrended zt, i.e. zt − m̂(yt−1) and the residual-based estimator of the conditional

variance σ2(x) := V ar(zt|yt−1 = x) are illustrated in Fig. 3.1(c) and (d) respectively,

which are almost identical to that in [29]. The bandwidth selected by cross-validation is

1.3537 for m̂(x) and 2.6458 for σ̂2
r (x). The overall fitted model is

yt = 1.2641yt−1 − .2766yt−2 + .0444yt−3 + .036yt−4 − .0459yt−5

−.028yt−6 − .0921yt−7 + .0974yt−8 + m̂(yt−1) + σ̂r(yt−1)εt, (3.6)

with E(εt|yt−1) = 0, V ar(εt|yt−1) = 1.

Among the parametric models, I tried AR(q)+GARCH(1, 1) model, i.e.

yt = c0 + c1yt−1 + · · · ,+cqyt−q + εt, εt ∼ GARCH(1, 1), (3.7)

with order q chosen by AIC. To compare model (3.6) and (3.7), we compute the ex-

ceedance ratio (ER) defined in [27] for performance evaluation. This measure counts
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Figure 3.1: (a) raw data yt; (b) scatterplot of (yt−1, zt) and m̂(yt−1) (solid line); (c)scatterplot

of (yt−1, zt − m̂(yt−1)); (d) σ̂2
r(yt−1) and σ̂r(yt−1).

number of events for which the loss of the asset exceeds the loss predicted by the normal

model at a given confidence level α. With one-day forward forecasted volatility ĥt from

previous 435 records, the ER with a post sample of size N at time point T is computed

as

ERT = N−1
T−N∑

t=T−1

I(εt < Φ−1(α)ĥ1/2
t ). (3.8)

Note that ER is closely related to VaR mentioned in Section 1. Fig. 3.2 presents

ERT (T = 736, · · · , 1735) with α = 5%. Although neither is satisfactory, ER from (3.6)
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fluctuate around 5%, while those from (3.7) is always below 2.5%, i.e. the volatility is

always over forecasted if we use model (3.7).
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Figure 3.2: Exceedance ratio with post sample size 300: (a) model (3.6); (b) model (3.7).

3.5 Monotone Constrained Varying Coefficient ARCH Mod-

els

3.5.1 Introduction

The parametric volatility models, including GARCH and its extensions are time-homogeneous

models, i.e. the parametric structure of the interest process is assumed to be constant

throughout the whole sample span. This is a possibly unrealistic assumption, in partic-

ular, as far as forecasting is concerned.

Our motivation to introduce varying coefficients comes from the empirical study of [46]

and [87]. The data set in [46] comprises daily return and trading volume for 20 actively
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traded stocks for which options trade on CBOE (Chicago Board Options Exchange).

They found that while the GARCH effect is quite strong, as measured by the summation

(α1 + β1) of the fitted GARCH(1,1) model, it tends to disappear if daily trading volume

vt is included in the conditional variance equation, i.e.

ht = α0 + β1ht−1 + α1Y
2
t−1 + α2vt. (3.9)

Furthermore, they argued that daily trading volume has significant explanatory power

regarding ht, since α2 in (3.9) is nonzero (in fact positive) at 95% significant level for all

20 stocks. Their findings are not isolated, as previous empirical studies of both futures

and equity markets always find a positive association between the return variability ht

and the trading volume; see [14, 23] for possible explanations for such phenomena.

This idea was further developed by [87]. He found that trading volume not only con-

tributes positively to the contemporaneous volatility, but also has a negative impact on

the subsequent volatility. Specifically, he considered the following model

|Yt| = α0 + α1|Yt−1|+ α2|Yt−2|+ β1TOt + β2TOt−1 + εt, (3.10)

where |Yt| is the absolute value of individual stock daily return and TOt is the turnover

acquired by dividing the traded shares by corresponding shares outstanding. He reported

that while β1 in (3.10) is positive and significant, β2 is negative and significant. Although

(3.10) is specified about the absolute return, it is expected that similar result holds for

ht. This inspired us to conjecture that what really has an impact on volatility ht is not

the contemporary trading volume vt, but Vt := vt−vt−1, the difference in trading volume

between today and the previous day. This combined with the findings of [46] results in
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the following model

ht = α0Vt, (3.11)

which, when considered as a linear ARCH model with p = 0, implied that the constant

term in ht specified by (3.1) is actually a linear function, or more generally, a monotone

function of Vt. Similar generalization of other coefficients αj , j = 1, · · · , p in (3.1) leads

to the Monotone constrained varying coefficient ARCH(p) (MvARCH) model

Yt =
{

a0(Vt) +
p∑

j=1

aj(Vt)Y 2
t−j

}1/2
εt, E{εt|Vt,F t−1

1 } = 0, V ar(εt|Vt,F t−1
1 ) = 1, (3.12)

where ai(.), i = 0, · · · , p are unknown smooth functions of Vt satisfying

aj(.) ≥ 0, aj(v1) ≥ aj(v2), if v1 ≥ v2, j = 0, · · · , p, (3.13)

and F t−1
1 is the σ−algebra generated by {Vj , Yj}t−1

j=1.

Next, we discuss the geometric ergodicity of {Yt} in (3.12). Note that (3.12) can be

transformed into an ordinary varying coefficient regression model by taking squares of

both sides. Suppose that every aj(.), j = 1, · · · , p, can be written as aj(.) = αj(.)+βj(.)

with βj(v)|v| bounded on R and |αj(.)| < ci, such that all the roots of λp − c1λ
p−1 −

· · · − cp = 0 are inside the unit circle. If the density function of εt is positive almost

everywhere and lim
|v|→∞

sup |a0(v)/v| → 0, then {Yt} is geometrically ergodic; see [12]. By

the results in [63], a geometrically ergodic time series is a strongly mixing sequence.

Therefore, it is safe to impose the strongly mixing assumption on model (3.12) under the

aforementioned conditions.

Constraint (3.13) complicates the estimation of (3.12), since the function value at any
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given points are no longer determined locally but associated with one another. Vari-

ous techniques for estimating constrained nonparametric functions have been developed;

see e.g. [51, 67]. In theory, it is possible to incorporate the constraint into all kinds

of smoothing methods, but arguably it is not as convenient to do so with kernel-type

smoothing as with spline-based smoothing methods; see the comments of Wahba on [66].

Estimation of (3.12)-(3.13) is based on local linear smoothing and coincides in some sense

with the ‘globalization’ approach of [53]; see also [51]. The proposed method will enjoy

the same convenience as spline-based approach in terms of incorporating constraints and

might be appealing for users who prefer kernel-type smoothing.

3.5.2 Globalization Kernel Smoothing Estimation

Let ξt =
{
a0(Vt) +

∑p
j=1 aj(Vt)Y 2

t−j

}
(ε2t − 1). Then the weakly stationary process given

by (3.12) can be written as a bona fide varying coefficient model

Y 2
t = a0(Vt) +

p∑

j=1

aj(Vt)Y 2
t−j + ξt. (3.14)

To start with, we adopt the local linear smoothing approach to estimate the coefficient

functions in (3.14). Local linear approximation method is chosen here because of its

high statistical efficiency in an asymptotic minimax sense and design-adaptive property

([24]), besides the capability of automatically correcting the edge effects ([25, 38, 70]).

The basic idea is to treat the value of the function ak(.) at any given point, v0 say, as a

local parameter and to approximate ak(.) by a local linear function

ak(V ) ' ak(v) + a′k(v)(V − v), k = 0, 1, · · · , p, (3.15)
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for V in a neighborhood of v. The local linear estimator of a(v) = (a0(v), · · · , ap(v))> and

a′(v) = (a′0(v), · · · , a′p(v))> are given by â(v) := (â0, · · · , âp)> and â′(v) := (b̂0, · · · , b̂p)>

respectively, where (â0, b̂0, · · · , âp, b̂p)> is the solution to the minimization problem

min
a0,··· ,ap,
b0,··· ,bp

n∑

i=1

{
Y 2

i −
p∑

k=0

(ak + bkViv)Y 2
ik

}2
Kh(Viv),

where Viv := Vi − v, Yi0 := 1, Yik := Yi−k, K is an univariate density function, h is the

smoothing parameter and Kh(.) := K(./h)/h. For details about local linear smoothing,

see [26]. If the marginal density of V , fV (v) is positive, then under some regularity

conditions (see Appendix C), [11] proved that

(nh)1/2
{
â(v)− a(v)− µ2

2
h2a

′′
j (v)

}
→ N(0,Θ1(V )), (3.16)

where Θ1(v) := µ∗0f
−1
V (v)Ω−1(v)Ω∗(v)Ω−1(v), a

′′
j (v) = (a′′0(v), · · · , a′′p(v))> and the defi-

nition of Ω(v), Ω∗(v) and µ∗0 are given in Appendix C.

As the estimated function is often not monotonic, the globalization kernel smoothing

method is needed to solve this problem by estimating the values of ak(.) at desired

points simultaneously. Let v1 < v2 < · · · < vm denote m equally spaced points on D,

the compact support of Vt. Let Xj = (Yj0, Y
2
j1, · · · , Y 2

jp)
>, j = 1, · · · , n, where Yj0 ≡ 1

and Yjk = Yj−k, k = 1, · · · , p. For i = 1, · · · ,m, set

X̃i =




X>
1 ⊗ (1, V1i)

· · ·

X>
n ⊗ (1, Vni)




, X = diag(X̃1, · · · , X̃m), Y = 1m×1 ⊗




Y 2
1

· · ·

Y 2
n




, (3.17)

1m×1 = (1, · · · , 1)>, Wi = diag{Kh(V1i), · · · ,Kh(Vni)}, W = diag(W1, · · · ,Wm),

β = (a1,0, b1,0, a1,1, b1,1, · · · , a1,p, b1,p, · · · , am,0, bm,0, am,1, bm,1 · · · , am,p, bm,p)>,
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where Vji := Vj − vi and ⊗ denotes the Kronecker product. Let ek,m be the m× 1 vector

with 1 at the kth position and others 0. Denote by α̂ the solution to

min
β

(Y − Xβ)>W (Y − Xβ). (3.18)

Then a(vi) and a′(vi), i = 1, · · · ,m can be estimated by â(vi) := (âi,0, · · · , âi,p)> a nd

â′(vi) := (b̂i,0, · · · , b̂i,p)> respectively, where

âi,k = e>(2p+2)(i−1)+2k+1,2m(p+1)α̂, b̂i,k = e>(2p+2)(i−1)+2k+2,2m(p+1)α̂.

To reflect the constraint (3.13), what we need is the solution to (3.18) subject to

aj,k ≤ aj+1,k, j = 1, · · · ,m− 1, 0 ≤ k ≤ p. (3.19)

To do this, first rewrite (3.18) as

min
β

(B + β>Qβ − 2C>β), (3.20)

where Q = X>WX , B = Y>WY, C = X>WY. Let A be a (m− 1)(p + 1) by 2m(p + 1)

matrix, with A(j, 2j − 1) = −1, A(j, 2j + 2p + 1) = 1, j = 1, · · · , (m − 1)(p + 1), and

other entries zero. Then (3.20) subject to (3.19) is equivalent to

min
β

(B + β>Qβ − 2C>β) subject to Aβ ≥ 0, (3.21)

which is a quadratic minimization programming subject to inequality constraints.

Let α̃ = (ã1,0, b̃1,0, ã1,1, b̃1,1, · · · , ã1,p, b̃1,p, · · · , ãm,0, b̃m,0, ãm,1, b̃m,1 · · · , ãm,p, b̃m,p)> be the

solution to (3.21) and ã(vi) := (ãi,0, · · · , ãi,p)>, i = 1, · · · ,m, and δn = (nh/ lnn)−1/2.

Theorem 3.1 Suppose (A1)− (A8) in Appendix C hold. Then

sup
v∈D

|âj(v)− aj(v)| = Op(h2 + δn).
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For the strong uniform convergence rate and asymptotic normality of ãj(vi), we have

Theorem 3.2 If (3.13) and (A1)− (A9) in Appendix C hold, then

sup
1≤i≤m

∣∣ãj(vi)− aj(vi)
∣∣ = Op(h2 + δn). (3.22)

Let α := (a(v1)>,a′(v1)>, · · · ,a(vm)>,a′(vm)>)>. If Aα > 0, then

(nh)1/2
{
ã(vi)− a(vi)− µ2

2
h2a

′′
j (vi)

}
→ N(0,Θ1(vi)) i = 1, · · · ,m. (3.23)

If there exist matrices A1, A2 such that A> = [A>1 |A>2 ] and A1α > 0, A2α = 0, then

(nh)1/2
{
ã(vi)− a(vi)− θ(vi)h2a

′′
j (vi)

}
→ N(0,Θ2(vi)), i = 1, · · · ,m, (3.24)

for some vector θ(vi) and matrix Θ2(vi) given in the proof.

Similar consistency issues were addressed in [49] for linear regression models, where

a closed form of the estimator was given in the situation that the constraints can be

identified as strict inequality or equality. Theorem 3.2 considers not only the strong

uniform convergence, but also the asymptotic normality for the constrained estimator.

We can see that if the inequality in (3.19) holds strictly, estimators with and without

constraints share common limit distribution, as n →∞.

3.6 Simulation Results

In this section, the performance of estimators from (3.20) is compared with from (3.21).

Because of the presence of heteroscedasticity, it is appropriate to use weights other than

W defined in (3.18), which treats ξt’s in (3.14) as if they were conditionally homoscedas-

tic. To examine the influence of the weight on the performance of the estimator, besides
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W (labeled ‘U’), two other ways to decide the weight function are also considered. The

first is W ∗ diag(h−2
1 , · · · , h−2

n , · · · , h−2
1 , · · · , h−2

n ), i.e. as if the true volatility is known.

Generally speaking, this should be the optimal weight (labeled ‘T’). The second way is

through iteration (labeled ‘I’). That is, starting with W , each time we get the estimated

ĥt, t = 1, · · · , n, the weight is updated as W ∗diag(ĥ−2
1 , · · · , ĥ−2

n , · · · , ĥ−2
1 , · · · , ĥ−2

n ). We

find empirically that the results usually become stable after five or six iterations.

Example 3.3 Consider the nonlinear time series model

Yi =
{
a0(Vi) + a1(Vi)Y 2

i−1

}1/2
εi,

where {Vi} and {εi} are two independent sequences of independent random variables

with Vi ∼ U [0, 3], εi ∼ N(0, 1) and

a0(V ) =
exp{(V + 2)3/30}
3{9 + 2 exp(V )} , a1(V ) =

2
3
{1− exp(−2V )}.

For each simulated sample, the performance of estimators both with and without con-

straints is evaluated based on the mean absolute deviation error(MAD),

MADk =
1

ngrid

ngrid∑

j=1

|âk(vj)− ak(vj)|, k = 0, 1,

where {vj , j = 1, · · · , ngrid} are grid points on [0, 3] with ngrid = 99. Results from 200

simulations with n = 800 are summarized as Fig. 3.3, where the upper two panels are

the box plots of MAD0 and MAD1 respectively. The columns are labeled in the way

such that the first letter ‘C’/‘W’ indicates with/without constraints and the second letter

‘U’/‘T’/‘I’ indicates the type of weight used. First we can see that the performance of

estimator after iteration is comparable to that when the true volatility is known. As an-

ticipated, estimators from (3.21) performs uniformly better than from (3.20). The lower
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two panels are the empirical pointwise 90% percentiles for a0(V ) and a1(V ) respectively,

which show that estimator with constraints lies in a slightly narrower neighborhood

around the true value than that without constraint does. Results regarding a typical

simulated data set are presented in Fig. 3.4, which leads to similar conclusion as Fig.

3.3.

To examine the effect of correlation on estimation performance, we simulate {Vi} from an

AR(2) model Vi = −0.4Vi−1 +0.3Vi−2 +εi, where {εi}, independent of {εi}, is a sequence

of independent N(0, 0.01) random variables and a1(V ) = 2
3{1−exp(−2V −0.8)}. MAD0

and MAD1 are calculated on grid points of [−0.4, 0.3] with ngrid = 69. Box plots based

on 200 simulations are given in Fig. 3.5.
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Figure 3.3: Box plots of MAD0 and MAD1 and pointwise 90% percentile.
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3.7 Empirical Study

The original data consist of daily observations of closing price Pt and trading volume vt

of three stocks with tickers IBM, BP, and GM. A brief description of the three data sets

is given in Table 3.7. In Fig. 3.6, panels on the left are plots of series of daily return

rt := log(Pt/Pt−1) and those on the right are plots of the differenced trading volume

Vt := vt − vt−1.

The performance comparison is based on the exceedance ratio (ER) defined in (3.8) with

confidence level α = 0.01. One-day forward forecasted volatility ĥt is calculated based

on immediately previous 800 records and the post sample size of ER is 300. Besides
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Figure 3.5: Box plots of MAD0 and MAD1 with correlated Vt.

GARCH(1,1) model, the following models are also considered

ht = a0(Vt) +
p∑

k=1

ak(Vt)r2
t−k, ak(.) ≥ 0, k = 0, · · · , p. (M1)

ht = a0(|Vt|) +
p∑

k=1

ak(|Vt|)r2
t−k, ak(.) ≥ 0, k = 0, · · · , p. (M2)

ht = a0(Vt) +
p∑

k=1

ak(Vt)r2
t−k, ak(.) ≥ 0 and increasing, k = 0, · · · , p. (M3)

ht = a0(|Vt|) +
p∑

k=1

ak(|Vt|)r2
t−k, ak(.) ≥ 0 and increasing, k = 0, · · · , p. (M4)

We find that with the same order p, model (M2) outperforms (M1) and model (M4)

delivers better results than (M3). The reason that |Vt| is more powerful than Vt in

explaining volatility may be that, big changes of either sign in trading volume are always

accompanied by big changes in price. Therefore, from now on we focus on the study

of GARCH(1,1), model (M2) and (M4). For model (M2) and (M4), the order p which

gives the best results in terms of ER for each data set are given in the last column of

Table 3.7. Panels on the left hand side of Fig. 3.7 depict ER of GARCH(1,1) and model

(M4), while those on the right hand side present ER of GARCH(1,1) and model (M2).
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Table 3.1: Details of Three Stocks Data Sets

Ticker Country Period Sample size Order

IBM USA Dec 29, 1975 - July 26, 1996 5202 6

BP UK Mar 9, 1978 - Oct 11, 1996 4902 4

GM USA July 15, 1979 - Dec 1, 1998 4702 2

Through comparison of the graphs on the left with those on the right, it is clear that

the presence of monotonicity constraint significantly enhances the accuracy of volatility

prediction. Focusing on panels on the left, we can see that MvARCH model performs as

well as, and sometimes better better than GARCH(1, 1) model.
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Figure 3.6: Plots of rt and Vt: IBM,(a)-(b);BP,(c)-(d);GM,(e)-(f).
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Appendix A

Conditions and Proofs for

Chapter 1

We impose the following regularity conditions.

(A1) K(.) is a symmetric density function with K(0) = 1 and K(t)(1 + |t|2+δ1) ≤ M for

some δ1 > 0, M > 0.

(A2) Bandwidth h → 0, nh6 → 0, nh2 →∞.

(A3) For any α and k with α∪k ⊇ α0, E(xα|xk = t) has bounded second order derivative

with finite second moments and Φα,k := E
[{xα − E(xα|xk)}{xα − E(xα|xk)}>

]
is

positive definite.

(A4) The density function fk(.) of xk is bounded away from zero with second-order

derivative |f ′′k (.)| ≥ δ2, for some δ2 > 0 over its compact support, for all 1 ≤ k ≤ p.
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(A1)-(A4) are imposed by [69] to prove the asymptotic normality property of β̂α in

partially linear models. Note that (A4) can be relaxed by introducing a trim function in

the definition of cross validation function to tackle ‘small’ random denominator; see [69].

In the notation below, the α in subscript of x or xi are dropped for ease of exposition.

Kij = Kh(zi − zj), wij = Kij/

n∑

l=1

Kil, ε̃i=
n∑

j=1

wijεj , g̃i =
n∑

j=1

wijgj ,

gi = g(zi), fi = f(zi), ỹi = ỹ(zi), x̃i = x̃(zi), ei = (zi, εi).

It follows directly from (A4) that

max
i,j

wij = Op(n−1h−1), (1− wii)−2 = 1 + 2wii + O(w2
ii). (A.1)

A statistic Vn is called a V−statistic of dimension k(≥ 1) based on i.i.d. observations

{Xi}n
i=1, if it admits the following form

Vn =
1
nk

n∑

i1=1

· · ·
n∑

ik=1

H(Xi1, · · · , Xik)

where H(.) is the kernel function and is symmetric in its k arguments. Let θ :=

EH(X1, · · · , Xk), H1(X1) := E{H(X1, · · · , Xk)|X1}, and σ2
1 := V arH1(X1). The fol-

lowing two lemmas are proved in [86] and [69] respectively.

Lemma A.1 If σ2
1 > 0, then n1/2(Vn − θ) → N(0, k2σ2

1), as n →∞.

Lemma A.2 Under (A1)− (A4), we have

(1)
n∑

i=1

(xi − x̃i)(gi − g̃i) = op(h−b), E

[
n∑

i=1

(gi − g̃i)2
]

= o(h−b), for any b > 1.

(2)
n∑

j=1

(xj − x̃j)(εj − ε̃j) =
n∑

j=1

εj{xj − E(x|zj)}+ Rn, ER2
n = o(h−b), for any b > 1.

(3)Σn :=
1
n

n∑

i=1

(xi − x̃i)(xi − x̃i)>
p→ Φα,k, (4)n1/2(β̂α − βα) d→ N(0,Φ−1

α,k), n →∞.
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Therefore, δn = β̂ − β = Op(n−1/2).

Proof Theorem 1.1 As yi − ŷ\i(zi) = (1− wii)−1(yi − ỹi − (xi − x̃i)>β̂), we have

CVs(Mα, z) =
1
n

n∑

i=1

1
(1− wii)2

{εi − ε̃i + (xi − x̃i)>δn + gi − g̃i}2

=
1
n

n∑

i=1

ε2i
(1− wii)2

+
1
n

n∑

i=1

ε̃2i
(1− wii)2

+
1
n

n∑

i=1

δn
>(xi − x̃i)(xi − x̃i)>δn

(1− wii)2

− 2
n

n∑

i=1

(
εiε̃i

(1− wii)2
+

1
n

n∑

i=1

(gi − g̃i)2

(1− wii)2
+

2
n

n∑

i=1

(εi − ε̃i)(xi − x̃i)>δn

(1− wii)2

+
2
n

n∑

i=1

(εi − ε̃i)(gi − g̃i)
(1− wii)2

+
2
n

n∑

i=1

(xi − x̃i)>δn(gi − g̃i)
(1− wii)2

:=T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8.

By (A.1), simple algebra leads to

T1 =
1
n

n∑

i=1

ε2i +
2
n

n∑

i=1

wiiε
2
i + op(

1
nh

)

T2 =
1
n

∑

i6=j

w2
ijε

2
j +

1
n

∑

j 6=k

εjεk

(
n∑

i=1

wijwik

)
+ op(

1
nh

)

T4 =
2
n

n∑

i=1

wiiε
2
i +

1
n

∑

i6=j

wijεiεj + op(
1

nh
), T5 =

1
n

n∑

i=1

(gi − g̃i)2 + op(
1

nh
).

The Theorem thus follows from Lemma A.3 and A.4.

Lemma A.3 T3 = Op(n−1), T6 = op(n−3/2h−b), T8 = op(n−3/2h−b) for any b > 3/2.

Proof: Let T81 =
n∑

i=1
wi(xi − x̃i)(gi − g̃i). By (A.1) and Cauchy-Schwartz inequality,
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Cov
{∑n

i=1 wiεi(xi − x̃i)
}

= σ2O(
1

n2h2
)

n∑

l=1

(xi − x̃i)(xi − x̃i)> = O(
1

nh2
)

Cov
{ n∑

i=1
wiε̃i(xi − x̃i)

}
= σ2

n∑

j=1

n∑

i=1

wiwij(xi − x̃i)
n∑

i=1

wiwij(xi − x̃i)>

≤ nσ2
n∑

j=1

n∑

i=1

w2
i w

2
ij(xi − x̃i)(xi − x̃i)>

≤ nσ2
n∑

i=1

(xi − x̃i)(xi − x̃i)>w3
i = O(n−1h−3)

E(T81T
>
81) ≤

n∑

i=1

wi(xi − x̃i)(xi − x̃i)>
n∑

i=1

wi(gi − g̃i)2

= o(n−1h−2−b), for any b > 1.

To prove Lemma A.4, we will repeatedly refer to the following result in [17](pp.48)

1
nh

n∑

l=1

Kil = fi + Op(cn), uniformly in i where cn = h2 +
(

log n

nh

)1/2

. (A.2)

Lemma A.4

(1)
n∑

i,j

w2
ij = Op(

1
h

), (2)
∑

j 6=k

εjεk

n∑

i=1

wijwik = op(
1
h

), (3)
n∑

i=1

wiiε
2
i

p→ σ2h−1ck,

(4)
1
n

∑

i6=j

w2
ijε

2
j =

σ2RK

nh
+ op(

1
nh

),
∑

i6=j

wijεiεj = op(h−1), (5) T7 = op(h−1).

Proof

(1)
n∑

j=1

n∑
i=1

w2
ij ≤

n∑
i=1

wii = Op(h−1).

(2) E
( ∑

j 6=k

εjεk
∑n

i=1 wijwik

)2
= O( 1

n4h4 )E
( ∑

k 6=l

∑
i,j

KikKilKjkKjl

)
= O(h−1).

(3) The first equation can be verified by law of large numbers and the second by (1).
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(4) As n−1
∑

i6=j w2
ijε

2
j = U{1 + Op(cn)}, where U = n−3h−2

∑
i<j

(ε2jK
2
jif

−2
i + ε2i K

2
jif

−2
j ),

it suffices to show that U = (nh)−1σ2RK + op(n−1h−1). Define

H(ei, ej) = ε2jf
−2
i K2

ij + ε2i f
−2
j K2

ij , H1(ei) = E{H(ei, ej)|ei}, H0 = E{H(ei, ej)},

C1(zi) = f−2
i E(K2

ij |ej), C2(zi) = E(f−2
j K2

ij |ej), C0 = E(C1(z)) = E{C2(z)}.

Mimicking Hoeffding’s projection([40]), we have

U =
n− 1
2n2h2

H0 +
n− 1
n3h2

n∑

i=1

{H1(ei)−H0}+
1

2n3h2

∑

i<j

{H(ei, ej)−H1(ei)−H1(ej) + H0}

:=U1 + U2 + U3,

and U1 = (nh)−1σ2RK + O(n−1h) since H0 = 2hσ2RK + O(h3). Note that

H1(ei)−H0 = σ2[C1(zi)− C0] + (ε2i − σ2)C2(zi) + σ2[C2(zi)− C0],

EU2
2 ≤ 3n−4h−4σ4E

[ n∑

i=1

{C2(zi)− C0}2 + {C1(zi)− C0}2 +
µ4

σ4
{C2(zi)}2

]

where µ4 = E(ε2i − σ2)2. Therefore, U2 = Op(n−3/2h−1), since E[Ck(zi)]2 =

O(h2), k = 1, 2, by (A1) and (A4). Similarly, U3 = op(n−1h−1), since

H(ei, ej)−H1(ei)−H1(ej) + H0 = H(ei, ej)−H0 − (H1(ei)−H0)− (H1(ej)−H0).

and H(ei, ej)−H0 can be argued much the same way as H1(ei)−H0.

(5) Let T71 =
n∑

i=1
εi(gi− g̃i)(1−wii)−2, T72 =

n∑
i=1

ε̃i(gi− g̃i)(1−wii)−2. Then by Lemma

A.2(1), T71 = op(h−1). Next, we have

∣∣∣
n∑

i=1
ε̃i(gi − g̃i)

∣∣∣≤ cn

nh

n∑

i=1

|(gi − g̃i)
n∑

j=1

Kijεj |+ 1
nh
|

n∑

i=1

f−1
i (gi − g̃i)

n∑

j=1

Kijεj |

= S1 + S2. (A.3)
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By Cauchy-Schwarz inequality and Lemma A.2(1),

ES2
1 ≤

σ2c2
n

n2h2
E

{ n∑

i=1

(gi − g̃i)2
}

E
{ n∑

i=1

n∑

j=1

K2
ij

}
= o(c2

nh−b), for any b > 2,

Therefore, S1 = o(h−1).

S2 ≤
∣∣∣
∑

i,j,k

KijKikεj(gi − gk)
n2h2f2

i

∣∣∣ + Op(
cn

n2h2
)

n∑

i=1

f−2
i

∣∣∣
∑

j,k

KijεjKik(gi − gk)
∣∣∣,

where the terms inside |.| can be dealt with using Lemma A.1. Take the first term

for example. Define

H(ei, ej , ek)=
KijKik

f2(zi)
εj(gi − gk) +

KkjKki

f2(zk)
εj(gk − gi) +

KjiKjk

f2(zj)
εi(gj − gk)

+
KkiKkj

f2(zk)
εi(gk − gj) +

KjiKjk

f2(zj)
εk(gj − gi) +

KijKik

f2(zi)
εk(gi − gj).

Hence EH(ei, ej , ek) = 0 and

H1(ei) = E[H(ei, ej , ek)|ei] = εiEj,k

{
KjiKjkf

−2
j (gj − gk) + KkiKkjf

−2
k (gk − gj)

}
.

Let s = zij/h, t = zjk/h,

∫
KijKjk(gj − gk)f−1

j fkdzjdzk

= h2

∫
K(s)K(t)

{
g(zi + hs)− g(zi + hs− ht)

}
f−1(zi + hs)f(zi + hs− ht)dsdt

= h2

∫
K(s)K(t)htg′(zi)

{
1− htf ′(zi)f−1

i + o(h)
}

,

where the last equality holds since g(t) = βkt. Therefore, by (A4), H1(ei) = Op(h4)

and EH2
1 (ei) = ch8 + o(h8) with c > 0. By Lemma A.1, n−5/2

∑
i,j,k

H(ei, ej , ek) =

Op(h4). Therefore, if nh6 → 0, we have

∑

i,j,k

KijKikεj(gi − gk)
n2h2f2(zi)

=
1
6
n−2h−2

∑

i,j,k

H(ei, ej , ek) = Op(n1/2h2) = op(h−1).



Appendix B

Conditions and Proofs for

Chapter 2

First we introduce some notation. Let γα(.|θ) and γ0(.) be the density functions of X>
α θα

and X>θ0 respectively. Let Uα = {X>
α θ0

α : X ∈ A}, Uα = {X>
α θ0

α : X ∈ A}, Dα =

{xα : x ∈ A}, Ad = {xd : (x1, · · · , xd, · · · , xp) ∈ A}, with A defined in Section 2, and

K1 =
∫

t2K(t)dt, K2 =
∫

K2(t)dt. For any α ⊃ α0, let µα(x|θ) = E(Xα|X>
α θα =

x>α θα), vα(x|θ) = µα(x|θ)− xα, Wα =
∫
A vα(x|θ)vα(x|θ)>g′(x>θ0)2f(x)dx, and

Uα,j = W
1
2
+

α g′(X>
j θ0)vα(Xj |θ0).

Let Θn,α = {θα : ‖θ‖ = 1, ‖θ − θ0‖ ≤ rn−1/2}, Hn = {h : r1n
−1/5 ≤ h ≤ r2n

−1/5} for

some r > 0 and 0 < r1 < r2 < ∞. Denote Θn,{1,··· ,p} by Θn.

We impose the following regularity conditions to prove the theorems.

(A1) X has a compact support in Rp and for any α ⊇ α0, infx∈A,θ∈Θn,α γα(x>θ|θ) > 0.

69



APPENDIX B. CONDITIONS AND PROOFS FOR CHAPTER 2 70

(A2) The link function g(.) has bounded third-order derivatives on U .

(A3) The function K is a symmetric density function with a compact support. Assume

that K1 = 1 and the Fourier transform of K(t) is absolutely integrable.

(A4) We have E(εi|Xi) = 0 and E(ε2i |Xi) = σ2.

(A5) For any α, sup
m→∞

sup
s
‖m−1

∑
j∈s

Uα,jU
>
α,j − Idα + θ0

αθ0
α
>‖ = op(1), and

θ̂\sα − θ0
α = nc

−1W+
α

∑

j /∈s

g′(X>
j,αθ0

α)v>α (Xj |θ0)εj + δ\sn , (B.1)

where Idα is the identity matrix and δ
\s
n = op(n−1/2) uniformly for all s.

(A6) For any α ⊂ α0, gα(v|θ) = E(Y |X>
αθ = v>θ) has bounded first-order derivative

with respect to θ ∈ Θn,α; σ2
α(θ) := E {gα(Xα|θ)− Y }2 and inf

θ∈Θn,α

σ2
α(θ) > σ2.

(A7) Suppose α ∪ d ⊇ α0. For xd continuous, the joint density function of (X>
α θ,xd),

fX>
α θ,xd

(u>θ, v), is uniformly bounded away from zero for θ ∈ Θn,α, u ∈ Dα and

v ∈ Ad; For xd discrete, the conditional density function of X>
α θ given xd = v,

fX>αθ|xd=v(.) satisfies inf
u∈Dα,θ∈Θn,α

fX>αθ0
α|xd=v(u>θ) > 0.

Assumptions (A1)-(A4) are required for the consistency of estimations; see [34, 91] . For

(A5), while [91] proved (B.1) with δ
\s
n = op(n−1/2) for any given s, the uniform conver-

gence rate here is necessary to guarantee the validity of leaving-m-out crossvalidation

and parallels the balanced block design assumption in linear regression; see [94]. The

requirement on the Fourier transform of K(t) in (A3) is to ensure the difference between

the MAVE estimator θ̂ and θ0
α admit the form in (B.1). Many kernel functions meet

this demand, such as the triweight kernel. The Gaussian kernel is also permissible at
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the expense of a longer proof. (A6) is a common assumption if the optimal model exists

and is unique; see [89]. (A7) is used to ensure the denominators of kernel smoothers are

bounded away from zero.

Proof Theorem 2.1 We consider two cases with m = 1 or m > 1.

1. [34] proved that, for any α ⊃ α0, HCVα(θ, h) defined in (4) can be written as

HCVα(θ, h) = S̃α(θ)+H, where H contains terms either of higher order than S̃α(θ)

or independent of θ (thus model α) and

S̃α(θ) =
n∑

i=1

e2
i − Z>Z + n(W 1/2

α ηθ00 − n−1/2σZ)>(W 1/2
α ηθ00 − n−1/2σZ) + op(1),

where Z = n−1/2σ−1W
−1/2
α Vα, which is asymptotically Ndα(0, I). Therefore, the

dominating term in the deviance of HCVα from HCVα0 is given by Z>α0
Zα0−Z>α Zα,

which is asymptotically χ2(d− d0). The proof of is thus completed.

2. Let N = m
(

n
m

)
,

∑
i,s

=
∑
s

∑
i∈s

. For any α ⊃ α0, mimicking the steps in [34], we have

HCV m
α (θ, h) = S̃α(θ) +

1
N

∑

i,s

{D\s2
i + ∆\s2

i + 2(D\s
i ∆\s

i + ∆\s
i δi + D

\s
i δi −D

\s
i εi −∆\s

i εi)}

where S̃α(θ) = 1
N

∑
i,s
{Yi − g(X>

i,αθ|θ)}2, D
\s
i = ĝ

\s
α (X>

i θ0|θ0)− g(X>
i θ0),

δi = g(X>
i,αθ|θ)− g(X>

i θ0), ∆\s
i = ĝ\sα (X>

i,αθ|θ)− g(X>
i,αθ|θ)− {ĝ\sα (X>

i θ0|θ)− g(X>
i θ0)}.

In outline, our argument runs as follows. We show in step 1 that with X−probability

1, and for all ξ > 0, N−1
∑

i,s ∆\s2
i = Op(n−7/5+ξ). As N−1

∑
i,s E(D\s2

i ) =

O(n−4/5), N−1
∑

i,s D
\s2
i = O(n−4/5). By Taylor expansion at θ0, it follows that
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δi = O(n−1/2) uniformly in i, and N−1
∑

i,s δ
\s2
i = O(n−1) and

1
N

∑

i,s

∆\s2
i +

2
N

∑

i,s

(D\s
i ∆\s

i + ∆\s
i δi)

≤ 1
N

∑

i,s

∆\s2
i +

2
N

( ∑

i,s

∆\s2
i

)1/2{
(
∑

i,s

D
\s
i )1/2 + (

∑

i,s

δi)1/2
}

= Op

{
n−7/5+ξ + (n−7/5+ξn−4/5)1/2

}
= op(n−1).

We will prove in step 2 and 3 that N−1
∑

i,s D
\s
i δi = O(n−13/10+ξ), and in step 4

N−1
∑

i,s ∆\s
i εi = Op(n−11/10+ξ). Putting all together, we will have proved that

HCVα(θ, h) = S̃α(θ) + N−1
∑
i,s

(D\s2
i − 2D

\s
i εi) + op(n−1). As D

\s
i is independent of

α, if we can prove S̃α < S̃α0 , for any α ⊃ α0, this theorem will be established.

Step 1. N−1
∑
i,s

∆\s2
i = Op(n−7/5+ξ), with X − probability 1, ∀ξ > 0.

For s = {i}, [34] proved that E(∆\s
i ) = O(n−7/10+ξ) and V ar(∆\s

i ) = O(n−2h−3)

uniformly in i. Since m/n → m ∈ [0, 1), the same result holds for #s = m.

Step 2. |N−1
∑
i,s

E(D\s
i )δi| = O(n−13/10+ξ), with X − probability 1,∀ξ > 0.

For any bounded X, by Taylor expansion, we have

g(X>θ0) = g(X>θ)− η(θ>00X)g′(X>θ0) + O(n−1) (B.2)

g(X>
α θ|θ) = g(X>

α θ)− η{θ>00µα(Xα|θ)}g′(X>θ0) + O(n−1). (B.3)

Note that µα(Xα|θ)− µα(Xα|θ0) = O(n−1/2). Therefore

δi = ηθ>00{Xi − µα(Xi,α|θ0)}g′(X>θ0) + O(n−1),

E(D\si ) = b
\s
i (θ0)c\si (θ0)−1 = b

\s
i (θ0)γ0(Xi)−1 + O(h4nξ) = O(h2nξ),
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uniformly in i, where c
\s
i (θ0) = 1

(n−m)h

∑
j /∈s

Kh{(Xj −Xi)>θ0} = γ0(Xi) + O(h2nξ),

b
\s
i (θ0) =

1
(n−m)h

∑

j /∈s

{g(X>
j,αθ0)− g(X>

i,αθ0)}Kh{(Xj −Xi)>θ0} = O(h2nξ),

uniformly in i. Hence, n−1
∑
i,s

E(D\s
i )δi = −n−1ηt + O(n−13/10+ξ), with

t =
∑

i,s

θ>00{Xi,α − µ(Xi,α|θ0)}g′(X>
i θ0)b\si (θ0)γ0(Xi)−1,

the observed value of T = n−1
c h−1

(
n−2
m−1

)
θ>00

∑
j 6=i

A(Xi, Xj), where

A(Xi, Xj) = {Xi,α − µ(Xi,α|θ0)}g′(X>
i θ0)γ0(Xi)−1{g(X>

j θ0)− g(X>
i θ0)}Kh(X>

ij θ
0).

Again, through similar arguments in [34], we have T =
(

n−2
m−1

)
O(n1/2+ξh2). recall

that N = m
(

n
m

)
. The desired result thus follows.

Step 3. With X − probability 1, ∀ξ > 0, V ar
(
N−1

∑
i,s

D
\s
i δi

)
= O(n−14/5+ξ).

Simple algebra gives

V ar
( ∑

i,s

D
\s
i δi

)
=

1
(n−m)2h2

∑

j

u2
jσ

2
j , uj =

∑

j /∈s

∑

i∈s

δic
\s
i (θ0)−1Kh{X>

ij θ
0}

Similarly to that in step 2, we can prove that with X−probability 1 and for all

ξ > 0, uj = −ηvj + k
(

n
m

)
O(n−1/2+ξh2) uniformly in j, where

vj =
∑

j /∈s

∑

i∈s

θ>00{Xi,α − µα(Xi,α|θ0)}g′(X>
i θ0)γ0(Xi)−1Kh{X>

ij θ
0}.

Therefore, V ar
( ∑

i,s
D
\s
i δi

)
≤ 2(n−m)−2h−2η2

∑
j

v2
j σ

2
j +k2

(
n−1
m

)2
O(n2ξ−2h2). Now

vj equals the observed value of Vj =
(

n−2
m−1

) ∑
i6=j

B(Xi, Xj), where

B(Xi, Xj) = θ>00{Xi,α − µα(Xi,α|θ0)}g′(X>
i θ0)γ0(Xi)−1Kh{X>

ij θ
0}.
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By similar arguments used for A(Xi, Xj) in step 2, we have X−probability 1,

V ar
( ∑

i,s

D
\s
i δi

)
=O

{
n−2h−2η2

(
n− 2
m− 1

)2

n2+ξh + m2

(
n− 1

m

)2

O(n−1+2ξh4)
}

=O
(
nξ−1h−1

(
n− 2
m− 1

)2

+
(

n− 1
m

)2

O(n1+2ξh4)
)
,∀ξ > 0

Therefore, V ar
(

1
n

∑
i,s

D
\s
i δi

)
= O(nξ−3h−1) which completes the proof.

Step 4. With X−probability 1, E
(
n−1

∑
i,s

∆\s
i εi

)2
= Op(n−11/5+ξ),∀ξ > 0

Since E(∆\s
i ) = O(n−7/10+ξ) uniformly in i (see step 1), E

{
n−1

∑
i,s

E(∆\s
i )εi

}2
=

n−1O(n−7/5+ξ). For any two subsets s1, s2 of {1, · · · , p}, define

Ss1,s2
ij = E

{
(∆\s1

i − E∆\s1

i )εi(∆
\s2

j − E∆\s2

j )εj

}
. Therefore,

Ss1,s1
ii = V ar(∆\s1

i )σ2
i , Ss1,s2

ii ≤ 2
{

V ar(∆\s1

i ) + V ar(∆\s2

i )
}

σ2
i .

For fixed s1 3 i 6= j ∈ s2, if i ∈ s2, or j ∈ s1, Ss1,s2
ij = 0; otherwise,

Ss1,s2
ij =σ2

i σ
2
j

{ Kh(X>
ij θ

0)∑
k/∈s1

Kh((Xk −Xi)>θ0)
− Kh((Xj,α −Xi,α)>θ)∑

k/∈s1

Kh((Xk,α −Xi,α)>θ)

}

{ Kh(X>
ij θ

0)∑
k/∈s2

Kh((Xk −Xi)>θ0)
− Kh((Xj,α −Xi,α)>θ)∑

k/∈s2

Kh((Xk,α −Xi,α)>θ)

}
.

Note that

∆\s1

i − E∆\s1

i =
∑

j /∈s1

εj

{ Kh(X>
ij θ

0)∑
j /∈s1

Kh(X>
ij θ

0)
− Kh((Xj,α −Xi,α)>θ)∑

j /∈s1

Kh((Xj,α −Xi,α)>θ)

}
,

E
{ 1

N

∑

i,s

(∆\s
i − E∆\s

i )εi

}2
=

1
N2

{∑

i,s

Ss,s
ii +

s1 6=s2∑

i∈s1∩s2

Ss1,s2
ii +

i/∈s2,j /∈s1∑

s13i6=j∈s2

Ss1,s2
ij

}

=O(n−4h−3 + n−3h−4) = O(n−3h−4).

The desired results thus follows.
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Step 5 By (B.2) and (B.3), we have

g(X>
i θ0)− g(X>

i,αθ|θ) = ηθ>00{µα(Xi,α|θ0)−Xi,α}g′(X>
i θ0) + O(n−1)

Define W =
∑
i,s
{Xi,α − µα(Xi,α|θ0)}{Xi,α − µα(Xi,α|θ0)}>g′(X>

i θ0)2, then

S̃α(θ)=
1
N

n∑

i=1

{εi + g(X>
i θ0)− g(X>

i,αθ|θ)}2

=
1
N

n∑

i=1

ε2i −
2
n

ηθ>00Vα +
1
n

θ>00Wθ00 + o(n−1)

=
1
N

{∑

i

e2
i − Z>Z + n(W 1/2

α0
ηθ00 − n−1/2σZ)>(W 1/2

α ηθ00 − n−1/2σZ) + op(1)
}

which parallels the result in HHI, thus implies the same conclusion.

Before proceeding to the proof of Theorem 2.2, we introduce the following lemma of [91]

Lemma B.1 [Basic results for kernel smoothing] If E(Z|θ>X = θ>x) = mθ(x) has

bounded third derivatives, and µK
d =

∫
K(v)vddv, then

1
nh

n∑

i=1

Kh(θ>(Xi − x))[θ>(Xi − x)/h]dZi = fθ(x)mθ(x)µK
d + {fθ(x)mθ(x)}′ µK

d+1h + O(τn),

uniformly for (θ, x) ∈ Θn
⊗

Abh, where τn = h2 + (log n/nh)1/2.

Proof Theorem 2.2 If α ⊃ α0, and h ∈ Hn, by Lemma 9 in [91], the local linear

estimator ĝα(u|θ) based on {Xi, Yi}n
i=1 has the following expression

ĝα(u|θ) = g(u>θ0
α)− g′(u>θ0

α)(θ0
α − θ)>vα(u|θ0

α) +
1
2
g′′(u>θ0

α)h2

+n−1γ−1
α (u>θ|θ)

n∑

i=1

Kh{(Xi,α − u)>θ}εi + rn(u|θ), (B.4)
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where rn(u|θ) = op(n−1/2) uniformly for u ∈ Dα and θ ∈ Θn,α. The above equation

continues to hold if we consider the leave-m-out estimator, i.e.

ĝ\sα (u|θ) = g(u>θ0
α)− g′(u>θ0

α)(θ0
α − θ)>vα(u|θ0

α) +
1
2
g′′(u)h2

+n−1
c γ−1

α (u>θ|θ)
∑

j /∈s

Kh{(Xj,α − u)>θ}εj + r\sn (u|θ),

where r
\s
n (u|θ) = op(n−1/2) uniformly for u ∈ Dα, θ ∈ Θn,α and all s. Since θ̂

\s
α ∈ Θn,α

by (B.1), we have

ĝ\sα (u|θ0
α)− ĝ\sα (u|θ̂\sα ) = g′(u>θ0

α)vα(u|θ0)(θ̂\sα − θ0
α) + R(u|θ0

α, θ̂\sα )

uniformly for all s, where

R(u|θ0
α, θ̂\sα )=

1
nc

{
γ−1

α (u>θ0
α|θ0

α)− γ−1
α (u>θ̂\sα |θ̂\sα )

}∑

j /∈s

Kh{(Xi,α − u)>θ0
α}εj

+r\sn (u|θ0
α)− r\sn (u|θ̂\sα ).

It follows from Lemma 7 in [91] that

1
nc

{
γ−1

α (u>θ0
α|θ0

α)− γ−1
α (u>θ̂\sα |θ̂\sα )

}∑

j /∈s

Kh{(Xi,α − u)>θ0
α}εj = Op(n−1/2τn),

1
nc

∑

j /∈s

[
Kh{(Xi,α − u)>θ0

α} −Kh{(Xj,α − u)>θ̂\sα }
]
εj = Op(n−1/2τn).

Therefore R(u|θ̂0
α, θ̂

\s
α ) = op(n−1/2) uniformly for all u ∈ Dα and all s, as long as τn → 0.

Recall that Uα,j = W
1
2
+

α g′(X>
j θ0)vα(Xj |θ0). We have

Yi − ĝ\sα (Xi|θ̂\sα ) = Yi − ĝ\sα (Xi|θ0
α) + ĝ\sα (Xi|θ0

α)− ĝ\sα (Xi|θ̂\sα )

= Yi − ĝ\sα (Xi|θ0
α) + nc

−1U>α,i

∑

j /∈s

Uα,jεj + R(Xi,α|θ0
α, θ̂\sα ) + g′iv

>
α (Xi|θ0

α)δ\sn .
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CVα(m)=m−1

(
n′

m

)−1[∑

i,s

′{Yi − ĝ\sα (Xi|θ0
α)}2 +

1
n2

c

∑

i,s

′
U>α,i{

∑

j /∈s

Uα,jεj}{
∑

j /∈s

Uα,jεj}>Uα,i

+
2
nc

∑

i,s

′{Yi − ĝ\sα (Xi|θ0
α)}U>α,i

∑

j /∈s

Uα,jεj + 2
∑

i,s

′{Yi − ĝ\sα (Xi|θ0
α)}R(Xi,α|θ0

α, θ̂\sα )

+2
∑

i,s

′{Yi − ĝ\sα (Xi|θ0
α)}g′(X>

i,αθ0
α)v>α (Xi|θ0)δ\sn +

2
nc

∑

i,s

′
R(Xi,α|θ0

α, θ̂\sα )U>α,i

∑

j /∈s

Uα,jεj

+
2
nc

∑

i,s

′
g′(X>

i,αθ0
α)v>α (Xi|θ0)Uα,i

∑

j /∈s

U>
α,jεjδ

\s
n

]
+ op(

1
n

)

:= RSS(m) + T1 + T2 + T3 + T4 + T5 + T6 + op(
1
n

), (B.5)

where the term op( 1
n) is established by (A1),(A6) and the following fact

1
m

(
n′
m

)
∑

i,s

′
R2(Xi,α|θ0

α, θ̂\sα ) = op(
1
n

),
1

m
(
n′
m

)
∑

i,s

′{g′(X>
i,αθ0

α)v>α (Xi|θ0)δ\sn }2 = op(
1
n

)

∣∣∣R(Xi,α|θ0
α, θ̂\sα )g′(X>

i,αθ0
α)v>α (Xi|θ0)δ\sn

∣∣∣ ≤ R2(Xi,α|θ0
α, θ̂\sα ) + {g′(X>

i,αθ0
α)v>α (Xi|θ0)δ\sn }2

In (B.5) T5 = op(n−1) and T6 = op(n−1) can be verified by calculating the second

moments. Next, we prove that

T2 =
2

mnc

(
n′

m

)−1∑

i,s

′
εiU

>
α,i

∑

j /∈s

Uα,jεj + op(
1
n

). (B.6)

Let ε̃
\s
i ≡ n−1

c

∑
j /∈s

Kh(X>
ij θ

0)εjγ
−1
0 (X>

i θ0). Then, by (B.5),

Yi − ĝ\sα (Xi|θ0
α) = εi − ε̃

\s
i + h2g′′(X>

i θ0)/2 + op(n−1/2),

with the op(n−1/2) term independent of Xi, thus Uα,i. As Uα,i is independent of εj (i 6= j),

E{
j /∈A∑
i∈A

g′′(X>
i θ0)U>α,iUα,jεj}2 = O(n′(n− n′)), E{

i6=j∑
i,j∈A

g′′(X>
i θ0)U>α,iUα,jεj}2 = O(n′2), (B.7)

∑
i,s

′g′′(X>
i θ0)U>α,i

∑
j /∈s

Uα,jεj=
(
n′−1
m−1

) j /∈A∑
i∈A

g′′(X>
i θ0)U>α,iUα,jεj +

(
n′−2
m−1

) i6=j∑
i,j∈A

g′′(X>
i θ0)U>α,iUα,jεj ,
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and n− n′ = O(nh), thus

h2

mnc

(
n′

m

)−1∑

i,s

′
g′′(X>

i θ0)U>α,i

∑

j /∈s

Uα,jεj =
h2

mnc

(
n′

m

)−1

{
(

n′ − 1
m− 1

)
Op(nh

1
2 ) +

(
n′ − 2
m− 1

)
Op(n′)}

= Op{(n−m)−1h5/2 + n′−1h2} = Op(n−1h2). (B.8)

Next, let Kij
4
= Kh(X>

ij θ
0)γ−1

0 (X>
i θ0)n−1

c = Op{(nch)−1}, we have

∑

i,s

′
ε̃
\s
i U>α,i

∑

j /∈s

Uα,jεj =
∑

i,s

′
U>α,i

∑

j /∈s

KijUα,jε
2
j +

∑

i,s

′
U>α,i

j1 6=j2∑

j1 /∈s,j2 /∈s

Kij1εj1εj2Uα,j2

=
(

n′ − 2
m− 1

) i6=j∑

(i,j)∈A

Kijε
2
jU

>
α,iUα,j +

(
n′ − 1
m− 1

) j /∈A∑

i∈A

Kijε
2
jU

>
α,iUα,j +

(
n′ − 3
m− 1

) (i,j,l)⊂A∑

i6=j 6=l

U>α,iUα,jKilεjεl

+
(

n′ − 2
m− 1

) (i,j)⊂A,l/∈A∑

i6=j 6=l

U>α,iUα,jKilεjεl +
(

n′ − 1
m− 1

) i⊂A,(j,l)/∈A∑

j 6=l

U>α,iUα,jKilεjεl

The rate of each term in the above equation can be decided by quantifying corresponding

second moments like that in (B.7). Therefore, as nch
2 →∞, we have

1
2mnc

(
n′

m

)−1∑

i,s

′
ε̃
\s
i U>α,i

∑

j /∈s

Uα,jεj = Op(
1

n3/2h
) = op(

1
n

).

which together with (B.8) establishes (B.6). Similarly, we can prove that

2
m

(
n′

m

)−1∑

i,s

′{Yi − ĝ\sα (Xi|θ0
α)}g′(X>

i,αθ0
α)v>α (Xi|θ0)δ\sn = op(

1
n

), (B.9)

2
m

(
n′

m

)−1∑

i,s

′{Yi − ĝ\sα (Xi|θ0
α)}R(Xi,α|θ0

α, θ̂\sα ) = op(
1
n

). (B.10)

Combining (B.5), (B.6), (B.9) and (B.10), we have

CVα(m) = RSS(m) + m−1

(
n′

m

)−1{ 1
n2

c

∑

i,s

′
U>α,i(

∑

j /∈s

Uα,jεj)(
∑

j /∈s

U>α,jεj)Uα,i

+
2
nc

∑

i,s

′
εiU

>
α,i

∑

j /∈s

Uα,jεj

}
+ op(

1
n

).
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Let T1 = 2n−1
c

∑
i,s

′εiU
>
α,i

∑
j /∈s

Uα,jεj . Then

T1 =
2
nc

(
n′ − 2
m− 1

)(∑

i

′
εiU

>
α,i

∑

i

′
εiUα,i −

∑

i

′
ε2i U

>
α,iUα,i

)
+

2
nc

(
n′ − 1
m− 1

)∑

i

′
εiU

>
α,i

∑

j /∈A

Uα,jεj .

Let e = (ε1, · · · , εn), esc = (εj)j /∈s, Uα = (Uα,1, · · · , Uα,n)> and Uα,s = (Uα,j1 , · · · , Uα,jm)>,

where ji ∈ s; Uα,sc = (Uα,j1 , · · · , Uα,jnc
)>, where ji /∈ s. By (A2) and (A5), we have

T2
4
=

1
n2

c

∑

i,s

′
U>α,i

( ∑

j /∈s

Uα,jεj

)( ∑

j /∈s

U>α,jεj

)
Uα,i

=
1
n2

c

∑
s

′( ∑

j /∈s

U>α,jεj

) ∑

i∈s

Uα,iU
>
α,i

( ∑

j /∈s

Uα,jεj

)

=
m

n2
c

∑
s

′(
e>scUα,sc

)
(Idα − θ0

αθ0
α
>)

(
e>scUα,sc

)>

=
m

n2
c

∑
s

′(
e>scUα,sc

)(
e>scUα,sc

)>
,

where the last equation holds as U>α,jθ
0
α = 0 for all j. Simple combinatoric calculation

leads to

∑
s

′
e>scUα,scU>

α,scesc =
(

n′

m

) ∑

j /∈A

U>α,jεj

∑

j /∈A

Uα,jεj + 2
(

n′ − 1
m

) ∑

j /∈A

U>α,jεj

∑

i

′
Uα,iεi

+
(

n′ − 2
m

)∑

i

′
U>α,iεi

∑

i

′
Uα,iεi +

(
n′ − 2
m− 1

)∑

i

′
U>α,iUα,iε

2
i .(B.11)

The coefficient in (B.11) is decided by the following facts

• ∑
j /∈A

Uα,jεj is contained in any e>scUα,sc since s ⊂ A and there are
(
n′
m

)
such s.

• For any i ∈ A,
∑
j /∈A

U>α,jεjUα,iεi appears in e>scUα,sc iff i /∈ s and there are
(
n′−1

m

)

such s.

• For any i1 ∈ A, i2 ∈ A, the number of s with e>scUα,sc including term U>α,i1
εi1Uα,i2εi2

is
(
n′−2

m

)
if i1 6= i2 and

(
n′−2

m

)
if i1 = i2.
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Regarding the terms in (B.11), by weak law of large numbers, we have

(
∑

j /∈A

U>α,jεj)(
∑

i

′
Uα,iεi) = Op{(n− n′)1/2n′1/2}, (

∑

j /∈A

U>α,jεj)(
∑

j /∈A

Uα,jεj) = Op(n− n′),

(
∑

i

′
U>α,iεi)(

∑

i

′
Uα,iεi) = Op(n′),

∑

i

′
U>α,iUα,iε

2
i = Op(n′),

The terms involving
∑
j /∈A

Uα,jεj are thus negligible compared with the others. Thus

T1 + T2 =
(

n′ − 2
m− 1

)
1
n2

c

{
(2n + n′ − 3m− 1)(

∑

i

′
U>α,iεi)(

∑

i

′
Uα,iεi)

+(3m− 2n)
∑

i

′
U>α,iUα,iε

2
i

}
{1 + op(1)}

=
(

n′ − 2
m− 1

)
n′

n2
c

{
(2n + n′ − 3m− 1)(

1√
n′

∑

i

′
U>α,iεi)(

1√
n′

∑

i

′
Uα,iεi)

+(3m− 2n)
1
n′

∑

i

′
U>α,iUα,iε

2
i

}
{1 + op(1)}.

Note that nc = n−m, both m/n′ and m/n tend to c, and

n′
(
n′−2
m−1

)

m
(
n′
m

) =
n′(n′ − 2)!m!(n′ −m)!

m(m− 1)!(n′ −m− 1)!n′!
=

(n′ −m)
(n′ − 1)

→ 1− c,

2n + n′ − 3m− 1
n2

c

=
2n + n′ − 3m− 1

(n−m)2
∼ 3

n−m
∼ 3

n(1− c)
,

(3m− 2n)
n2

c

=
(3m− 2n)
(n−m)2

∼ 3c− 2
n(1− c)2

.

By the law of large numbers and (A5),

n′−1
∑

i

′
ε2i U

>
α,iUα,i → σ2E{tr(Idα − θ0θ0>)} = σ2(dα − 1) in probability.

By the central limit theorem, we have

n′−1(
∑

i

′
U>α,iεi)(

∑

i

′
Uα,iεi)

d→ σ2χ2(dα − 1),

n
{

CVα(m)−RSS(m)
}
→ σ2

{
3χ2(dα − 1) +

(3c− 2)(dα − 1)
(1− c)

}
, in distribution.
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Recall that δd = dα − dα0 . Since for any α ⊃ α0, Uα0,i is a subvector of Uα,i,

Pr{CVα(m)− CVα0(m) > 0} → Pr{χ2(δd) >
(2− 3c)δd

3(1− c)
},

Proof of the consistency for CV(M) in nonparametric models. By simple

combinatoric calculations, for nonparametric regression model E(Y |X) = G(X), where

X = (x1, · · · ,xp)>, we have

CV (m) =
∑

#s=m

∑

i∈s

{Yi − ĝ\s(Xi)}2 =
∑

#s̃=n−m+1

∑

i∈s̃

{Yi − g̃\i(Xi)}2, (B.12)

where g̃\i(X) is the estimate of g(X) from observations indexed by s̃ \ {i}, and s̃ ⊂

{1, · · · , n} with #s̃ = n − m + 1. Note that the second summation on the right hand

side is actually CV (1). If α ⊃ α0, by Lemma 1 of [89], we have

∑

i∈s̃

{Yi − g̃\i(Xi,α)}2 >
∑

i∈s̃

{Yi − g̃\i(Xi,α0)}2 in probability. (B.13)

Therefore, it follows from (B.12) and (B.13) that CVα(m) > CVα0(m) in probability.

By (B.12) again and Lemma 1 of [89], if α ⊂ α0, we also have CVα(m) > CVα0(m) in

probability. In other words, CV(m) method is consistent.

Proof of Theorem 2.3 We first give the form of CVα for α ⊇ α0 and α ∪ p = α0.

1. α ⊇ α0. In the proof of Theorem 2.2, when m = 1 we know that

CVα =
1
n′

∑

i

′{Yi − ĝ\iα (Xi|θ0
α)}2 + Op(

1
n

).

Since n − n′ = O(nh) and that the local linear estimator is used, by (B.4) we

have Yj − ĝ
\j
α (Xj |θ0

α) = εj + Op(τn) uniformly in j /∈ A, where the term Op(τn) is

independent of εj . Therefore,

∑

j /∈A

{Yj − ĝ\jα (Xj |θ0
α)}2 =

∑

j /∈A

ε2j + Op(log n).
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We can write

∑

i

′{Yi − ĝ\iα (Xi|θ0
α)}2 =

n∑

i=1

{Yi − ĝ\iα (Xi|θ0
α)}2 −

∑

j /∈A

{Yj − ĝ\jα (Xj |θ0
α)}2.

Following the steps in the proof of Lemma 1 in [89], we have

n−1
n∑

i=1

{Yi − ĝ\iα (Xi|θ0
α)}2 = n−1

n∑

i=1

ε2i + c1(nh)−1 + c2h
4 + op{(nh)−1},

where c1 = σ2K2E{γ−1
0 (X>θ0)}, c2 = Eg′′2(X>θ0)/4. Recall that U = {X>θ0 :

X ∈ A}. Note that since α ⊃ α0, U also equals to {X>
αθ0

α : X ∈ A}. By (A1),

c1 = σ2K2L(U) with L(U) being the Lebesgue measure of U . Thus,

CVα =
1
n′

∑

i

′
ε2i +

c1

n′h
+ c2h

4 + op(
1

n′h
). (B.14)

2. α ∪ d = α0. Let ĝα(Xi|θ) be defined similarly to (2.8) but using all observations.

Then by Lemma B.1, ĝα(Xi|θ̂\iα )− ĝ
\i
α (Xi|θ̂\iα ) = Op(τn) uniformly in i. Therefore,

by Theorem 6 in [54], for any θ ∈ Θn,α,

max
X∈A

∣∣∣ĝ\iα (Xα|θ)− gα(Xα|θ)
∣∣∣ = Op(τn). (B.15)

Step 2 in the algorithm indicates that θ̂
\i
α is the first dα entry of the MAVE estimator

of SIM: Y = g(X>
α∪dθ) + ε using data {Xj , Yj}j 6=i. Therefore, by (B.1), θ̂

\i
α − θ0

α =

Op(n−1/2) uniformly in i. By (B.15) with θ replaced by θ0
α and θ̂

\i
α , we have

ĝ\iα (Xα|θ0
α)− ĝ\iα (Xα|θ̂\iα )= ĝ\iα (Xα|θ0

α)− gα(Xα|θ0
α) + gα(Xα|θ0

α)− gα(Xα|θ̂\iα )

+gα(Xα|θ̂\iα )− ĝ\iα (Xα|θ̂\iα )

=Op(τn), uniformly in i,
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Hence Yi − ĝ
\i
α (Xi|θ̂\iα ) = Yi − ĝ

\i
α (Xi|θ0

α) + Op(τn) uniformly in i with term Op(τn)

independent of {Xi, Yi}. Therefore, according to Lemma 1 in [89],

CVα = n′−1
∑

i

{Yi − ĝ\iα (Xi|θ0
α)}2 + op(1)

p→ σ2
α(θ0

α). (B.16)

The form of CVα,d with xd discrete is different to that with xd continuous.

1. For discrete xd with M values v1, · · · , vM , we classify {(Xi, Yi)}n′
i=1 into M groups

based on the value of xd : i ∈ Gk ⇔ xid = vk. Let nk be the number of elements

in Gk and nk = O(n′), k = 1, · · · ,M. If i ∈ Gk, by (2.11), ĝ
\i
α,d(Xi|θ̂\iα ) equals to

ĝ
\i
α (Xi|θ̂\iα ), which is defined in (2.8) with θ replaced by θ̂

\i
α and subindex {j /∈ s} by

{j ∈ Gk, j 6= i}. Thus CVα,d = n′−1
∑M

k=1 nkCV k
α , where CV k

α :=nk
−1

∑
i∈Gk

{Yi −

ĝ
\i
α (Xi|θ̂\iα )}2 is the CVα(1) in (2.9) using data {(Xiα, Yi) : i ∈ Gk}. Since α∪d ⊇ α0,

E(Y |X) depends only on Xα within each Gk. Therefore, similarly to (B.14), by

(A7) we then have

CV k
α =

1
nk

∑

i∈Gk

ε2i + c4h
4
1 +

σ2K2

nkh1
L(Uk

α) + op(
1

nkh1
), k = 1, · · · ,M,

where c4 = E{g′′2(X>
αθ0

α)|xd = vk}/4, and Uk
α is the support of X>

αθ0
α given that

xd = vk. Therefore,

CVα,d =
1
n′

∑

i

′
ε2i +

σ2K2

n′h1

M∑

k=1

L(Uk
α) + c2h

4
1 + op(

1
n′h1

). (B.17)

Note that if xd is redundant, i.e. θ0
d = 0, then Uk

α is also the support of X>θ0 given

that xd = vk. By the discussion about the identification of single-index models

with discrete covariates ([44]), we have
∑M

k=1 L(Uk
α) > L(U).
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2. xd continuous: Note that if α∪d ⊇ α0, then gα,d(u, v|θ0
α) = g(u>θ0

α+θ0
dv). Similarly

to (B.4), we have

ĝα,d(u, v|θ)=g(u, v|θ0
α) + g′(u>θ0

α + θ0
dv)(θ0

α − θ)>vα(u|θ0) +
1
2
g′′(u>θ0

α + θ0
dv)h2

1

+
1
n

f−1
X>αθ,xd

(u>θ0
α, v)

n∑

i=1

Kh1((Xi,α − u)>θ0
α)Hh1(xi,d − v)εi + op(n−1/2).

Following the proof of Theorem 2.2, we have

ĝ
\i
α,d(u, v|θ0

α)− ĝ
\i
α,d(u, v|θ̂\iα ) = g′(u>θ0

α + θ0
dv)(θ̂\iα − θ0

α)>vα(u|θ0) + Op(h2
1 log1/2 n),

uniformly in i and u ∈ Dα, v ∈ Ad. Therefore,

Yi − ĝ
\i
α,d(Xi|θ̂\iα )=Yi − ĝ

\i
α,d(Xi|θ0

α) + ĝ\iα,p(Xi|θ0
α)− ĝ

\i
α,d(Xi|θ̂\iα )

=Yi − ĝ
\i
α,d(Xi|θ0

α) +
1
n

U>α,i

∑

j 6=i

Uα,j + Higher order terms

4
=T1i + T2i + higher order terms.

Similar arguments as in the proof Theorem 2.2 can be engaged to deal with
∑
i

′T1iT2i

and
∑
i

′T 2
2i. Finally, again through arguments similar to that in [89], we have

CVα,d =
1
n′

∑

i

′{Yi − ĝ
\i
α,d(Xi|θ0

α)}2 + op(
1

n′h2
1

) (B.18)

=
1
n′

∑

i

′
ε2i +

c5

n′h2
1

+ E
{

g′′2(X>θ0)
}

h4
1 + op(

1
n′h2

1

), (B.19)

where c5 = σ2K2
2L(X>

αθ0
α)L(Ad) > 0.

Note that the bandwidth h ∝ n−1/5 in CVα, and in CVα,d, h1 = h for xd discrete and

h1 ∝ n−1/6 for xd continuous. Comparing CVα,d in (B.17) and (B.19) with CVα in (B.14)

and (B.16), we complete the proof.



Appendix C

Conditions and Proofs for

Chapter 3

we first introduce some notation. Let

µi =
∫

tiK(t)dt, µ∗i =
∫

tiK2(t)dt, Γ =


µ0 0

0 µ2


, Γ∗ =


µ∗0 0

0 µ∗2




σ2(Xi, Vi) = V ar(ξi), Ω(v) = [ωi,j(v)] = E(XiX
>
i |Vi = v),

Ω∗(v) = [ω∗i,j(v)] = E
{

XiX
>
i σ2(Xi, Vi)|Vi = v

}
, G = Ip+1 ⊗ diag(1, h).

C(v) = f(v)Ω(v)⊗ Γ, ξ = (ξ1, · · · , ξn)>, Y = (Y 2
1 , · · · , Y 2

n )>.

Let δn = (nh/ lnn)−1/2 and Ωj is the jth column of Ω. Let Fk
i be the σ−algebra generated

by {Vj , Yj}k
j=i. The process {Vj , Yj} is α−mixing if the mixing coefficient

α(k) := sup
A∈F0−∞
B∈F∞k

|P (AB)− P (A)P (B)| → 0, as k →∞.

Among various mixing conditions used in time series literature, α−mixing is reasonably

85
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weak, and is known to be fulfilled for many stochastic processed including many times

series models. [4] provided illuminating discussions on the role of α−mixing (including

geometric ergodicity) for model identification in nonlinear time series analysis. Further,

[55, 56] showed that under some mild conditions, both ARCH process and NAARX

(additive autoregressive process with exogenous variables) are stationary and α−mixing.

(A1) The function K(.) is a symmetric and bounded density with a bounded support.

(A2) The density function f(v) of V is bounded from 0 on its compact support D with

bounded first-order derivative.

(A3) Ω(v) is nonsingular for all v ∈ D. Ω(v) and Ω−1(v) have bounded-first order

derivatives.

(A4) EY 2δ∗ < ∞, for some δ∗ > 2.

(A5) The coefficient functions ak(.), k = 0, · · · , p all have second-order derivatives in

D and are Lipschitz continuous |a′′k(v1)− a
′′
k(v2)| ≤ c|v1 − v2|, for some c > 0.

(A6) Let Yl := (Y 2
lp, · · · , Y 2

l1). The conditional density f(Vl,Yl|Yl) of (Vl,Yl) given Yl

exists and bounded; the conditional density f(Y1, v1,Yl, vl|Y1, Yl) of (Y1, v1,Yl, vl)

given (Y1, Yl) exists and bounded for all l ≥ 1.

(A7) The processes {Vt, Yt} are stationary and α−mixing with

∑
kc{α(k)}1−2/δ < ∞,

∞∑

n=1

ψ(n) < ∞, (C.1)
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for some 2 < δ ≤ δ∗ and c > 1− 2/δ, where

ψ(n):=
nL(n)
r(n)

(
nT 2

n

h lnn

)1/4

α{r(n)}, r(n):=
(nh/ lnn)1/2

Tn

L(n):=
(

nT 2
n

h3 lnn

)1/2

, Tn:={n lnn(ln lnn)1+µ}1/δ for some 0 < µ < 1.

(A8)The bandwidth h → 0 with n2/δ∗−1h−1 lnn1+2/δ∗(ln lnn)2(1+δ)/δ∗ −→ 0.

(A1)-(A6) are regular assumptions for regression models in time series analysis. Condi-

tions (A7)(A8) on α(k) and h are required to ensure the strong uniform convergence rate

of local linear estimators for time series ([54]); see [54] for an explicit rate of decay for

α(k) of the form α(k) = O(1/kc) for some c > 0. For local linear estimators in varying

coefficient regression models for nonlinear time series, the asymptotic normality (3.16)

was proved by [11] to hold under conditions weaker than in [54].

Proof of Theorem 3.1 By Taylor’s expansion around v, we have

Y = X̃0(a0(v), a′0(v), · · · , ap(v), a′p(v))> +
1
2

p∑

j=0




a
′′
j (ε1j)V

2
1vY 2

1j

...

a
′′
j (εnj)V

2
nvY 2

nj


 + ξ

where X̃0, and W0 are similarly defined as X̃i, Wi in (3.17) with vi replaced by v. and

εij lies between Vi and v, for i = 1, · · · , n, j = 0, · · · , p. Therefore,

âj(v)=aj(v) +
1
2

p∑

j=0

e>2j+1,2p+2(X̃
>
0 WX̃0)−1X̃>

0 W




a
′′
j (ε1j)V

2
1vY 2

1j

..

.

a
′′
j (εnj)V

2
nvY 2

nj




+e>2j+1,2p+2(X̃
>
0 WX̃0)−1X̃>

0 Wξ, j = 0, · · · , p. (C.2)

Therefore, by Lemma C.1, Lemma C.2 and (C.5), we have from (C.2)

âj(v)− aj(v)=
h2

2
e>2j+1,2p+2G

−1C−1(v)
{ p∑

j=0

a
′′
j (v)ωj+1 ⊗

(
µ2

0

)}
+ Op(δn)
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uniformly for all v ∈ D. By the property of Kronecker product, C−1(v) and a
′′
j (v)ωj+1⊗

(1, 0)> admit the following two forms respectively:



? 0 · · · ? 0

0 ? · · · 0 ?

.

..
.
..

. . .
.
..

.

..

? 0 · · · ? 0

0 ? · · · 0 ?







?

0

...

?

0




(C.3)

which completes the proof.

Lemma C.1 facilitates the approximation of the random matrices on the right hand side

of (C.2) by the corresponding deterministic ones.

Lemma C.1 Suppose (A1),(A4) and (A6)-(A8) hold. Then

sup
v∈D

∣∣∣∣
1
n

G−1X̃>
0 W0X̃0G

−1 − C(v)
∣∣∣∣ = Op(δn + h). (C.4)

sup
v∈D

∣∣∣ 1
n

G−1X̃>
0 W




a
′′
j (ε1j)V

2
1vY 2

1j

...

a
′′
j (εnj)V

2
nvY 2

nj


− f(v)h2a

′′
j (v)Ωj+1 ⊗

(
µ2

0

)∣∣∣ = Op(τn), 0 ≤ j ≤ p.

Proof. We only prove the first equation for illustration. Note that for 1 ≤ l, t ≤ 2, 0 ≤

k, s ≤ p, the (2k + l, 2s + t) position element of n−1G−1X̃>
0 WX̃0G is given by

Bkl,st :=
1
n

h2−t−l
n∑

j=1

Y 2
jkY

2
jsV

t+l−2
jv Kh,j(v).

where Yjk is defined in right above (3.17). By Lemma 3 in [54],

h2−t−l
∣∣∣Bkl,st − E

{
Y 2

jkY
2
jsV

t+l−2
jv Kh,j(v)

}∣∣∣ = Op(δn),

uniformly for all v ∈ D. Note that E
{

Y 2
jkY

2
jsV

t+l−2
jv h2−t−lKh,j(v)

}
does not depend on

j from (A7). By (A2) and (A4), we have

E
{

Y 2
jkY

2
js(

Vjv

h
)t+l−2Kh,j(v)

}
= [Ω(k+1,s+1)f ](v)µt+l−2 + hµt+l−1[Ω(k+1,s+1)f ]′(v) + O(h2),
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uniformly for v ∈ D. The proof is thus complete since the (2k+ l, 2s+t) position element

of C(v) is exactly Ω(k+1,s+1)(v)f(v)µt+l−2.

By (C.4) and the fact that (A + hB)−1 = A−1 − hA−1BA−1 + O(h2), we have

nG(X̃>
0 WX̃0)−1G = C−1(v) + Op(δn + h) (C.5)

uniformly for v ∈ D.

Lemma C.2 Let τn = h2(δn + h) and suppose (A8) holds. Then

sup
v∈D

∣∣∣ 1
n

G−1X̃>
0 Wξ

∣∣∣ = Op(τn) (C.6)

Proof By definition, the 2k + l(l ≤ 1)th component of n−1G−1X̃>
0 Wξ is given by

n−1
∑n

i=1 Y 2
ik(Viv/h)l−1Kh,i(v)ξi. Since given Vi and Vi+l, εi and εi+l are independent,

the mixing coefficient of the process Y 2
ikξi still satisfies (C.1). (C.6) thus follows from

Lemma 3 in [54] and the fact that E(ξi|Vi) = 0.

Proof of Theorem 3.2 According to [49], (3.21) can be represented as the following

fundamental problem, which can then be quickly soved by the Lemke([47]) or Dantzig-

Cottle([18, 15]) algorithms

vn = Wnλn + qn subject to v>nλn = 0, vn ≥ 0, λ ≥ 0, (C.7)

where Wn = AQ−1A>, qn = Aα̂, α̂ = Q−1C. Let vn, λn be the nonnegative comple-

mentary solution to (C.7). The solution to (3.21) is thus given by

α̃ = α̂ + Q−1Aλn. (C.8)

Case 1: Aα > 0. Based on (3.16) and Theorem 3.1, both (3.22) and (3.23) are true if

we can prove that P (α̃− α̂ 6= 0) → 0, n →∞. To do this, note that the Dantzig-Cottle
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system (C.7) implies that if qn > 0, then λn = 0 and consequently α̃ = α̂ by (C.8). Write

qn = Aα̂ = Aα + A(α̂−α). It’s easy to see that qn > 0 in probability, since Aα > 0 and

A(α̂− α) = op(1) by (3.16). The proof is thus complete.

Case 2: A1α > 0, and A2α = 0.

According to [49], the solution to minα(α>Qα− 2C>α) subject to A2α = 0 is

α∗ = α̂−Q−1A>2
(
A2Q

−1A>2
)−1

A2α̂ = α̂−Q−1A>2
(
A2Q

−1A>2
)−1

A2(α̂− α),

Let Σ = diag{C−1(v1), · · · , C−1(vm)}, Ξ = ΣA>2 (A2ΣA>2 )−1A2. Then by Lemma C.1

Q−1 =
1
n

diag{1m×1 ⊗G−1} Σ diag{1m×1 ⊗G−1}{1 + Op(δn + h)}.

As C(vi) admits the form in (C.3) and all the even-numbered columns of A2 are zero

vectors, Q−1A>2 (A2Q
−1A>2 )−1A2 = Ξ{1 + Op(δn + h)}. Therefore,

α∗ − α̂ = −Ξ(α̂− α){1 + Op(δn + h)}.

By Lemma C.3, we can see that (3.22) follows from Theorem 3.1 and the fact that

α̃− α̂ = −Ξ(α̂− α){1 + Op(δn + h)},

α̃− α = (I− Ξ)(α̂− α){1 + Op(δn + h)}.

Let a = {a(v1)>, · · · ,a(vm)>}>, â = {â(v1)>, · · · , â(vm)>}>, a
′′

= {a′′(v1)>, · · · ,a
′′
(vm)>}>.

Using methods in [11] to prove (3.16), we can prove that

(nh)1/2
{
â− a− µ2

2
h2a

′′} → N(0,Θ), Θ := diag{Θ1(v1), · · · ,Θ1(vm)}. (C.9)

Let Ji be a (p+1)×m(2p+2) matrix with Ji(k+1, (2p+2)(i−1)+2k+1) = 1, k = 0, · · · , p,

and other entries zero, and Ξi a (p + 1)×m(p + 1) matrix with

Ξi(k, l) = Ξ((2p + 2)(i− 1) + 2k − 1, (2p + 2)(i− 1) + 2l − 1).
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Then it is easy to check that

â(vi)− a(vi) = Ji(α̂− α), ã(vi)− a(vi) = Ji(α̃− α), JiΞ(α̂− α) = Ξi(â− a),

where the last equation holds by the fact that all the even-numbered columns and rows

of Ξ are zero vectors. Therefore,

ã(vi)− a(vi) = â(vi)− a(vi)− Ξi(â− a) = (Hi − Ξi)(â− a){1 + Op(δn + h)},

where Hi is a (p+1)×m(p+1) matrix with Hi(k, (i−1)(p+1)+k) = 1, k = 1, · · · , p+1,

and other entries zero. Finally, by (C.9),

(nh)1/2
{
ã(vi)− a(vi)− µ2

2
h2(Hi − Ξi)a

′′
(vi)

}
→ N

{
0, (Hi − Ξi)Θ(Hi − Ξi)>

}
.

Lemma C.3 To prove P (α̃−α∗ 6= 0) → 0, as n →∞, first note that for any constrained

least-square problem

minb Z = 1
2(y −Xb)>(y −Xb) (C.10)

Ab ≥ c ( or Ab− v = c) (C.11)

(where v is a surplus vector and b is not otherwise restricted) is equivalent to

maxλ L = c′λ + 1
2(y′y − b′X ′Xb)

A′λ + X ′y = (X ′X)b, λ ≥ 0, (C.12)

where λ is a dual vector and b is the solution to (C.10). (C.11) and (C.12) can thus be

partitioned as

A1α− v1 = 0, A2α− v2 = 0,

(A′1 A′2)




λ1

λ2


 + C = Qα
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or

α̃ = Q−1A′1λ1 + Q−1A′2λ2 + Q−1C. (C.13)

By the Dantzig-Cottle conditions,

v′1λ1 = 0, v′2λ2 = 0, v1 ≥ 0, λ1 ≥ 0, v2 ≥ 0, λ2 > 0.

Through the arguments in [49], we have

λ2 = −W−1
22 W21λ1 −W−1

22 A2α̂, α̂ = Q−1C,

v1 = M∗λ1 + qn, M∗ = W11 −W12W
−1
22 W21,

where Wij = AiQ
−1A′j , i, j = 1, 2, and

qn = −W12W
−1
22 A2α̂ + A1α̂

= A1α−W12W
−1
22 A2α + (A1 −W12W

−1
22 A2)(α̂− α)

By the prior belief A1α > 0 and A2α = 0 and Theorem 3.1, qn > 0 in probability. Since

qn > 0 implies v1 = qn > 0 and λ1 = 0, we have

λ2 = −(A2Q
−1A′2)

−1A2α̂. (C.14)

Substitute λ2 in (C.13) for (C.14) and we have

α̃ = α̂−Q−1A′2(A2Q
−1A′2)

−1A2α̂ = α∗.


