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SUMMARY 

 The flower heads of Chrysanthemum morifolium have been used as traditional 

medicine as well as a beverage for centuries in many Asian countries. Recently, it was 

found that the water extract of chrysanthemum significantly inhibited tumor growth in 

mice, suggesting the anti-tumor potential of this herbal plant. To investigate the anti-

tumor properties of chrysanthemum and its major active components, we conducted 

the following studies: 1) identification of the major active components of the water 

extract of chrysanthemum; 2) evaluation of the anti-tumor effects of the major active 

components; 3) investigation of the combined effects of luteolin, its main flavonoid, 

with cancer therapeutic agents in vitro and in vivo. 

 Initially, we applied a bioassay-driven fractionation strategy, and sequentially 

obtained four fractions from chrysanthemum. Flavonoids were then identified as the 

major components in the fraction showing the most potent cytotoxicity against human 

cancer cells. Further studies showed that the flavonoids extracted from chrysanthemum 

exerted significant cytotoxic effect on several human cancer cells via inducing 

caspase-dependent apoptosis. 

 Among a number flavonoids identified, luteolin is one of the most abundant 

found in chrysanthemum. In this study, we focused on the combined effect of luteolin 

with several cancer therapeutic agents, including tumor necrosis factor (TNF), TNF-

related apoptosis-inducing ligand (TRAIL) and cisplatin. 

 First, we found that luteolin significantly sensitized TNFα-induced apoptosis in 

a number of cancer cell lines. The sensitization was due to the inhibitory effect by 

luteolin on TNFα-induced activation of nuclear transcription factor-kappaB (NF-κB). 

As a result, luteolin suppressed the expression of NF-κB targeted anti-apoptotic genes, 



 xii

including A20 and cellular inhibitor of apoptosis protein-1 (c-IAP1), and augmented 

and prolonged c-Jun N-terminal kinase (JNK) activation.  

 Next, we found that luteolin significantly sensitized the apoptosis induced by 

TRAIL in TRAIL-resistant cancer cells. Such sensitization was achieved through 

down-regulation of X-linked inhibitor of apoptosis protein (XIAP), which was due to 

enhanced XIAP ubiquitination and proteasomal degradation. Further, we demonstrated 

that inhibitory effect of luteolin on protein kinase C (PKC) contributed to the XIAP 

down-regulation. In addition, our data reveal a novel function of PKC in cell death: 

PKC activation may stabilize XIAP and thus suppress TRAIL-induced apoptosis. 

 Third, we examined the effect of luteolin on the anti-cancer activities of 

cisplatin, a potent DNA damaging agent that has been widely used as a cancer 

chemotherapeutic in clinic. Our data showed that luteolin was able to enhance the 

apoptosis-inducing effect of cisplatin. Interestingly, p53 played a critical role in the 

apoptosis induced by combination of luteolin and cisplatin. We found that the rapid 

elevation of p53 protein level was due to stabilization effect of luteolin by decreasing 

MDM2 protein. Furthermore, combined treatment of luteolin and cisplatin induced 

significant p53 and Bax mitochondrial translocation as well as Bax conformation 

change. Finally, the anti-cancer potential of a combination of luteolin and cisplatin was 

investigated in a xenograft nude mice model. We found that luteolin could 

significantly enhance the anti-cancer activity of low dose of cisplatin by elevating p53 

protein. 

          In conclusion, the present study provides a new insight of the anti-tumor 

property of chrysanthemum and its major active component, luteolin. The evidence 

from both in vitro and in vivo experiments clearly demonstrates the anti-tumor 

potential of luteolin as a chemo-sensitizer in cancer therapy. 
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1.1   CHRYSANTHEM MORIFOLIUM 

1.1.1 General introduction 

 Chrysanthemum morifolium Ramatuelle (also called Dendranthema morifolium 

or Hang Bai Ju in Chinese, referred as chrysanthemum hereafter in this thesis) is a 

member of the Compositae family. Its dried flower-heads have been used as a 

traditional herbal medicine in several Asian countries, such as China, Korea and Japan, 

for centuries. They have also been used as an herbal beverage in Chinese folklore and 

known as chrysanthemum tea (Figure 1.1). 

 The biological characters of chrysanthemum are “A perennial herb. 60-150 cm 

high. Stem erect, striate, hairy. Leaves alternate, petiolate, ovate or oblong, 3.5-5 cm 

long by 3-4 cm wide, variously lobed and divided. Inflorescence small head, 5 cm in 

diameter. Flowers yellowish-white. Calyxgreenish; ligulate unisexual, tubular bisexual. 

Stamens 5, syngenesious, epipetalous. Gynoecium bicarpellary, syncarpous, unicular, 

inferior; ovule one, basal placentation; style one with bifid curled stigmas whose 

receptive surfaces is on the inside. Fruit a one-seeded cypselia, crowned. Seed fills the 

fruit” (The Institute of Chinese Materia Medica, 1989). 

 Chrysanthemum is widely distributed in most habitats of China. In China, they 

are cultivated mainly in Zhejiang province along the Grand Canal. Tong Xiang City 

of this province, also referred to as the ‘City of Chrysanthemum’, produces about 

4000-5000 tons of dried chrysanthemum flowers each year, which accounts for more 

than 90% of the total chrysanthemum production in China. The plants are usually 

grown in early spring and the flowers are harvested in autumn of each year. Although 

the components of chrysanthemum may vary slightly according to the different 

cultivation environments, the flowers are processed using similar methods. After 
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Figure 1.1 Chrysanthemum morifolium Ramat (A) has been used 
as an herbal medicine as well as a beverage (B)

A

B
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steam treatment, the flowers were dried under the sun and then packed into an air-

tight plastic bag to prevent absorption of moisture.  

1.1.2 Chemical components of chrysanthemum 

 Volatile oil and flavonoids are believed to be the main active components in 

chrysanthemum. The most abundant and biologically active components flavonoids, 

in the form of glycoside derivatives, are more polar than volatile oil and hence are 

readily dissolved in water. Another group is terpenoids, which are present in the 

volatile oil. 

1.1.2.1 Flavonoids in chrysanthemum 

 Flavonoids are ubiquitous plant components with a common C6-C3-C6 

structure, consisting of two aromatic rings linked through three carbons (Figure 1.2A). 

The carbon skeleton can be regarded as being made up of a C6 fragment (A ring) and 

a C6-C3 fragment that contains a B ring. According to the variations in the 

heterocyclic C-ring, flavonoids can be further grouped into six major subclasses, 

including flavones, flavonols, flavanones, catechins, anthocyanidins, and isoflavones 

(Figure 1.2B) (Ross and Kasum, 2002).   

 Most flavonoids in plant cells are present as glycosides which are aglycons 

with sugar substitution. Sugar substitution on the flavonoid skeleton may occur 

through hydroxyl groups in the case of O-glycosides (Figure 1.2C), which is more 

common, or directly to carbon atoms in ring A as C-glycosides. The most important 

variations in their structure arise from the level of oxygenation (hydroxyl or methoxyl 

groups) and the position of attachment of ring B (flavonoids and isoflavonoids). The 

number of sugar rings substituted on the aglycone varies from one to four. All these 

render the great structure variation in flavonoids and so far more than 4000 types of 

flavonoids have been identified. 
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Figure 1.2 Structure of flavonoids

A, The skeleton of flavonoids; B, subgroups of flavonoids; C, 
example structure of a flavonoid glycoside

A

B

C

Adopted from Ross and Kasum 2002
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Both flavonoid aglycons and flavonoid glycosides can be extracted from plants by 

methyl alcohol (MeOH) or ethyl acetate (EtOAc). Since flavonoid glycosides are 

more polar than flavonoid aglycons, its solubility in water is higher than that of 

aglycons. The structure of an individual flavonoid in a mixture can be identified using 

liquid chromatography (LC) and mass spectrometry (MS) (Stobiecki, 2000). 

 Flavonoids play an important role in defense of plants against microorganisms 

and insects, and act as UV protectants in plant cells (Harborne and Williams, 2000). 

These phytochemicals also affect the human and animal health because of their 

significance in the diet, which is ascribed to their antioxidant properties, estrogenic 

action and a wide spectrum of antimicrobial and pharmacological activities (Birt et 

al., 2001). The evidence comes from in vivo animal studies, in vitro cell culture 

experiments and human epidemiological studies (Hollman and Katan, 1999). For 

instance, epidemiological studies show a clear correlation between the flavonoid 

consumption and lower risk of cancer of the gastrointestinal tract (Hollman and 

Katan, 1999). A cohort study in Finland also supported that flavonoids intake in some 

circumstances may be involved in slowing cancer process and lowered cancer risks 

(Knekt et al., 1997). Several studies also suggested an inverse correlation of 

flavonoids intake with stroke and cardiovascular disease (Hollman and Katan, 1999). 

Flavonoids may block several points in the process of tumor promotion, including 

inhibiting kinases, reducing transcription factors and regulating cell cycle (Birt et al., 

2001). 

 In the last 3 decades, extensive studies have been conducted on isolation and 

identification of flavonoids in chrysanthemum. By extraction using 70 % MeOH and 

partition using hexane, CHCl3, ethanol (EtOH), n-butanol (n-BuOH), and H2O or 

similar methods, more than 12 flavonoids have been identified in chrysanthemum (Hu 
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et al., 1994; Liu et al., 2001; Lee et al., 2003; Hu et al., 2004). Most of the flavonoids 

are glycosides, which are conjugated with sugars. Based on their aglycon form, these 

flavonoids can be grouped into the following six major types: (i) luteolin (luteolin, 

luteolin-7-O-beta-D-glucoside), (ii) apigenin (apigenin-7-O-beta-D-glucoside, 

apigenin 7-O-beta-D-(4'-caffeoyl)glucuronide), (iii) acacetin (acacetin-7-O-beta-D-

glucoside, acacetin-7-O-beta-D-galactopyranoside, acacetin-7-O-(6”-rhamnosyl)-

beta-D-glucopyranoside), (iv) hesperetin (hesperetin-7-O-beta-D-glucopyranosyl (6”-

alpha-L-rhamnopyranoside, hesperetin-glucoside), (v) quercetin, and (vi) baicalin (Hu 

et al., 1994; Liu et al., 2001; Lee et al., 2003; Hu et al., 2004). 

 The flavonoid components of chrysanthemum have been proven to be 

responsible for the many pharmacological properties of this herbal plant, which will 

be discussed in more details in Section 1.1.3. However, it should be noted that the 

flavonoids present in chrysanthemum are not restricted in this plant. Most of them are 

also widely distributed in other plants, for example green tea, parsley, celery and 

berries. The studies on the bioactivities of flavonoids were extensively reviewed by 

Harborne and Williams (2000). 

1.1.2.2 Terpenoids in chrysanthemum 

 Terpenes are a class of naturally occurring chemicals derived from five-carbon 

isoprene units assembled and modified in various ways. They consist of one 

isoprenoid skeleton or of a polymer made up of several such units. According to the 

number of isoprene units that they contain, terpenes can be subdivided into several 

subclasses, including monoterpenes (C10H16, 2 isoprene units), sesquiterpenes (C15H24, 

3 isoprene units), diterpenes (C20H32, 4 isoprene units), triterpenes (C30H48, 6 isoprene 

units), tetraterpenes (C40H60, 8 isoprene units) and polyterpenes with a large number 

of isoprene units (Hanson, 2001). 
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 Terpenoids are terpenes which have substitute groups. The substitute groups 

may have varying degrees of oxygenation, such as alcoholic and ketonic, at different 

positions. The large variety of this compound makes terpenoids the largest group of 

natural products. Among the more than 23,000 terpenoids described, various 

interesting substances are already known to be present. For example, plant hormones, 

flavour, flagrances and biopolymers (latex) are terpenoids. Because many terpenoids 

are biologically active, they are also used for medical purposes. For instance, the 

antimalarial drug artemisinin and the anticancer drug paclitaxel (Taxol) are terpenoids 

with an established medical application (Linden et al., 2001) 

 Until now, more than 50 triterpenoids and several sesquiterpenoids have been 

isolated and identified in chrysanthemum (Akihisa et al., 1996). Ukiya et al. identified 

32 triterpenoids which are present as 3-O-fatty acid esters in the n-hexane soluble 

fraction and 24 triterpenoids as 3-O-palmitoyl esters in the nonsaponifiable lipid 

fraction (Ukiya et al., 2001). 

1.1.3 Pharmacological properties of chrysanthemum 

 Traditionally chrysanthemum is mainly used for common cold, fever, 

migraines, conjunctivitis, eye irritation, hypertension, ulcerative colitis, vertigo and 

ophthalmia with swelling and pain etc (Jiang, 2002). As a mixture with other herbs, it 

has been claimed to be able to relieve migraines and eye irritation, improve vision and 

cure keratitis. For instance, the effective rates against ulcerative colitis and 

hypertension are reported to be more than 90% and 80%, respectively (Liu, 1998; 

Jiang, 2002). 

1.1.3.1 Antioxidant activities 

 The antioxidant properties of flavonoids extracted from chrysanthemum could 

have been responsible for its broad pharmacological effects. It was found that its 
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water extract showed significant antioxidant activities, suggesting that the extract may 

reduce lipid peroxidation and play a role in protecting against damages to the cell 

membrane (Chen et al., 2003).  

 The water extract of chrysanthemum also possessed direct inhibitory effects 

on various free radicals (Duh, 1999). The significant correlation between phenolic 

compounds and antioxidant activity indicates that the flavonoids may contribute 

directly to the antioxidant activity of the extract. The flavonoids can also be absorbed 

into the cell membrane and hence protect the cells from the damages of free oxygen 

radicals (Duthie and Dobson, 1999).  

1.1.3.2 Anti-hypertension 

 The flavonoids of chrysanthemum have been proven to increase blood 

circulation in experimental animals, suggesting a potential role in reducing 

hypertension (Zhou, 1987). Several fractions from the ethanol extract also showed 

significant anti-myocardial ischemia and anti-arrhythmias activities in rats (Jiang et 

al., 2004).  

1.1.3.3 Anti-eye irritation 

 Aldose reductase catalyzes the reduction of glucose to sorbitol, which is 

responsible for eye irritation (Terashima et al., 1991; Matsuda et al., 2002). Hot water 

extract of chrysanthemum has been reported to inhibit rat lens aldose reductase. 

Flavones and flavone glycosides were found to be the active components (Matsuda et 

al., 2002).  

1.1.3.4 Anti-ulcerative colitis 

 Chrysanthemum water extract was found to inhibit ulcerative colitis by 

decreasing the contents of adherent glycoproteins, which are responsible for the 

adherence and communication between cells (Liu et al., 2001). 
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1.1.3.5 Anti-inflammatory activity 

 Chrysanthemum has long history for treatment of inflammation  (Yu and 

Xie, 1987). Eleven triterpene alcohols, isolated from chrysanthemum, were tested for 

their inhibitory effects on phorbal myristate acetate (PMA)-induced inflammation in 

the ears of mice. All eleven triterpene alcohols showed remarkable inhibitory effect 

with a 50% inhibitory dose at 0.1-0.8 mg per ear, which was roughly at the level 

comparable to that of indomethacin, an anti-inflammatory drug as positive control 

(Ukiya et al., 2001). Helianol, the most predominant component in the triterpene 

alcohol fraction, exhibited the strongest inhibitory effect among the 11 compounds 

tested. Since anti-inflammation activity of the inhibitors is highly related to their anti-

cancer-promoting activities, helianol is also expected to be a potent anti-tumor agent 

(Akihisa et al., 1996).  

 Flavonoids of chrysanthemum also have been showed to exert anti-

inflammatory effects (Cheng, 2005) and the mechanisms have been extensively 

studied. For example, luteolin is able to inhibit lipopolysaccharide (LPS)-induced 

release of TNF or interleukins (ILs) or directly inhibit the signaling transduction such 

as nuclear factor-kappa B (NF-κB) that mediates inflammatory responses (Xagorari et 

al., 2001; Xagorari et al., 2002; Kim et al., 2005b). The functional role of those 

molecules will be discussed in more details in Section 1.2.3. 

 Recently, extracts of chrysanthemum were investigated on their anti-

inflammatory effect in animal models. A butanol soluble fraction, which mainly 

contains flavonoids, caused a significant inhibition on the auricle edema induced by 

dimethylbenzene in mice (Cheng et al., 2005b) 
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1.1.3.6 Anti-tumor activities 

 Recently the potential anti-tumor activity of chrysanthemum has interested 

many researchers. For instance, fifteen pentacylic triterpenes isolated from 

chrysanthemum have been screened for their anti-tumor-promoting activities. All of 

the compounds showed inhibitory effects against Epstein-Barr virus early antigen 

(EBV-EA) activation induced by the tumor promoter, PMA in Raji cell, which means 

that they can inhibit tumor promotion (Ukiya et al., 2002). The terpenoids faradiol, 

heliantriol B0, heliantriol, arnidiol, faradiol α-epoxide and maniladiol also showed 

significant inhibitory activity against almost all 60 human tumor cell lines derived 

from seven cancer types (lung, colon, melanoma, renal, ovarian, brain and leukemia) 

(Ukiya et al., 2002).  

 The anti-tumor activities of flavonoids have also been well documented. For 

example, as one of the flavonoids from chrysanthemum, luteolin has been reported to 

inhibit proliferation or induce cycle arrest or induce apoptosis in some cancer cells 

(more details in Sections 1.2.4.2, 1.2.4.3, and 1.2.4.4). The anti-tumor properties of 

luteolin can also be through inhibiting angiogenesis and metastasis (more details in 

Sections 1.2.4.5 and 1.2.4.6). 

 

1.2 PHARMACOLOGICAL MECHANISMS OF LUTEOLIN 

 Luteolin is one of the major flavonoids in chrysanthemum. As a ubiquitious 

flavonoid, luteolin has been extensively studied for its various biological effects, such 

as estrogenic and anti-estrogenic activity, anti-oxidant activity, anti-inflammation, 

anti-proliferation, anti-carcinogenesis, and anti-tumor effects. Many of these activities 

are functionally related to each other. For instance, its anti-inflammatory effects may 

also attribute to its anti-cancer effects. Anticancer property is closely related to the 
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effects on proliferation, cell cycle, apoptosis, topoisomerase and several protein 

kinases.  

1.2.1 Estrogenic and anti-estrogenic activity  

 Estrogens are hormones involved in the proliferation and differentiation of 

target cells. In response to estrogens, estrogen receptor (ER) will be activated and it 

then stimulate DNA synthesis and cell proliferation (Colditz, 2005). Flavonoids are 

naturally occurring phytoestrogens because they can bind to ER and activate its 

signaling pathway (Collins-Burow, 2000). So, it is suggested that these groups of 

natural compounds may be used to replace conventional hormones in therapy of 

menopause disorder. Luteolin possesses potent estrogenic activity at very low 

concentration (Zand, 2000), suggesting that it may be useful in hormone replacement 

therapy. 

 However, there were also reports about the anti-estrogenic effects of luteolin, 

similar to genistein, a well studied soy isflavone with both estrogenic and anti-

estrogenic properties (Wang, 1996; Han, 2002). The mechanisms behind this still 

remain controversial. A possible explanation is that flavonoids are estrogenic because 

they have a high affinity towards ER and thus activate ER if the estrogen is deficient. 

Nevertheless, their estrogenic activity is  relatively weak, 103-105 fold less than 17β-

estradiol (Murkies et al., 1998; Zand, 2000). Thus, in the presence of estradiol, 

flavonoids could possibly inhibit estrogen by competing for its receptors.  

 Since ER is one of the major risk factors in breast cancer, the anti-estrogenic 

activity of flavonoids has been suggested to be closely related to their anti-

proliferation activity and potential in breast cancer therapy and prevention. Luteolin, 

as well as other flavonoids such as daidzein, genistein and quercetin, is able to inhibit 

the proliferation-stimulating activity in MCF-7 cells caused by environmental 
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estrogens such as diethylstilbestrol, clopmiphene and bisphenol (Han, 2002). The 

suppressive effect of flavonoids suggests that these compounds have anti-estrogenic 

and anti-cancer activities. Wang and Kurzer (1998) also found that luteolin inhibits 

estradiol-induced DNA synthesis (Wang, 1998). In an in vivo test, Holland and Roy 

(1995) proved that luteolin reversed the estrogen-stimulated proliferation of 

mammary epithelial cells in female Noble rats, suggesting that it may play a 

preventive role in estrogen-induced mammary carcinogenesis (Holland and Roy, 

1995).  

 It is however important to point out that the anti-estrogenicity of flavonoids 

does not always correlate with their ER binding capacity, suggesting that alternative 

signaling mechanisms could have been involved in their antagonistic effects (Collins-

Burow, 2000). Mammalian cells contain two classes of estradiol binding sites, type I 

(Kd~1.0 nM) and type II (Kd ~20 nM), named according to their affinity 

(Markaverich, 1988). Luteolin was found to compete for estradiol binding to cytosol 

and nuclear type II sites but it did not interact with estrogen receptors (Markaverich, 

1988). In an in vivo study, injection of luteolin blocked estradiol stimulation of 

nuclear type II sites in the immature rat uterus and this correlated with an inhibition of 

uterine growth (Markaverich, 1988). Further studies also showed that luteolin could 

bind to nuclear type II sites irreversibly due to covalent attachment (Markaverich, 

1988). 

1.2.2 Antioxidant activity 

 Flavonoids are well known antioxidants and there were also many reports 

about the antioxidant effects of luteolin. Robak et al (1998) found that luteolin 

inhibits lipoxygenase activity, cyclooxygenase activity and ascorbic acid-stimulated 

malonaldehyde formation in liver lipids (Robak et al., 1988). In other reports, luteolin 
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also inhibits DNA damage induced by hydrogen peroxide or singlet molecular oxygen 

in human cells (Devasagayam et al., 1995; Noroozi et al., 1998). The glycosylated 

form of luteolin, luteolin-7-O-glucoside, demonstrates a dose-dependent reduction of 

LDL oxidation, although it is less effective than luteolin (Brown and Rice-Evans, 

1998). Studies of the copper-chelating properties of luteolin-7-O-glucoside and 

luteolin suggest that both of them act as hydrogen donors and metal ion chelators 

(Brown and Rice-Evans, 1998). Since oxidative stresses is closely related to 

mutagenesis and carcinogenesis, luteolin, as an anti-oxidant, may act as a 

chemopreventive agent to protect cells from various forms of oxidant stresses and 

thus prevent mutagenesis and carcinogenesis. 

 Although the ability of flavonoids to protect cells from the oxidative stress has 

been demonstrated, there is also increasing evidence for their pro-oxidant property 

(Cao et al., 1997; Lapidot et al., 2002; Sakihama et al., 2002; Galati and O'Brien, 

2004). It is believe that flavonoids could behave as antioxidants or pro-oxidants, 

depending on the concentration and the source of the free radicals (Cao et al., 1997). 

The pro-oxidant activity of flavonoids may be related to the ability of flavonoids to 

undergo autoxidation catalyzed by transition metals to produce superoxide anions 

(Hanasaki et al., 1994). In other reports, however, it was observed that the phenol 

rings of flavonoids are metabolized by peroxidase to form pro-oxidant phenoxyl 

radicals, which are sufficiently reactive to cooxidize glutathione (GSH) or 

nicotinamide-adenine hydrogen (NADH) accompanied by extensive oxygen uptake 

and reactive oxygen species formation (Galati et al., 2002). 

 One important understanding is that the pro-oxidant properties of flavonoids 

could contribute to their ability in induction of tumor cell apoptosis and cancer 

chemoprevention (Ueda et al., 2002). Exposure of mammalian cells to flavonoids is 
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accompanied by an increase in intracellular ROS levels and lipid peroxidation, which 

lead to apoptotic or necrotic cell death (Yoon et al., 2000; Morin et al., 2001; Mouria 

et al., 2002; Salvi et al., 2002; Shen et al., 2004).  

 Structure-activity relationship study on pro-oxidant cytotoxicity of flavonoids 

showed that flavonoids containing a phenol ring are generally more bioactive than 

that containing a catechol ring (Galati et al., 2002). Further studies showed that an 

increase in cytotoxicity is correlated with an increase in ease of electrochemical 

oxidation of flavonoids and their lipophilicity (Sergediene et al., 1999). Although 

luteolin has been shown to induce apoptosis in several cancer cells (section 1.2.4.3), it 

remains to be determined whether the pro-oxidant activity of luteolin is part of the 

mechanisms causing apoptotic cell death.  

1.2.3 Anti-inflammatory activity 

 Inflammation is a defense mechanism to guard against infection and help heal 

injury. During an inflammation, monocytes and macrophages become activated by 

various immune molecules, such as cytokines, or endotoxin, such as 

lipopolysaccharide (LPS), an outer membrane component of gram-negative bacteria. 

The activated macrophages will vigorously produce inflammatory molecules such as 

TNFα (Tracey and Cerami, 1994), ILs (Akira et al., 1993), free radicals and nitric 

oxide (NO) etc (Nathan and Xie, 1994), which will lead to  inflammation and turn on 

a deadly cascade of events. 

 LPS triggers the secretion of a variety of inflammatory products, such as TNF-

α (Tracey and Cerami, 1994), interleukins (Akira et al., 1993), intercellular adhesion 

molecule-1 (ICAM-1), as well as inducible nitric oxide synthase (iNOS), which 

produces excessive amounts of nitric oxide (Nathan and Xie, 1994). Production and 

release of inflammatory cytokines by LPS depends on inducible gene expression 
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mediated by the activation of transcription factor NF-κB (Baeuerle and Henkel, 1994; 

Baeuerle and Baltimore, 1996; Beuvink et al., 2005). The signals from LPS converge 

upon the IκB kinase (IKK) complex, which phosphorylates the inhibitor of NF-κB 

(IκB), causing its ubiquitination and degradation. Removal of IκB liberates NF-κB 

proteins such as p65 for nuclear translocation, binding to κB-promoter elements and 

induction of gene transcription.  

Macrophages participate in host defense and are main targets for the action of 

LPS. Pretreatment of murine macrophages RAW 264.7 with luteolin or luteolin-7-

glucoside inhibits both the LPS-stimulated TNFα and IL-6 release. Furthermore, 

luteolin abolishes the LPS-induced phosphorylation of Akt, which may link LPS 

activation to NF-κB activation (Zhou et al., 2000; Xagorari et al., 2001). However, 

overexpression of a dominant negative form of AKT does not alter LPS-induced 

TNF-α release, suggesting that inhibition of this kinase does not mediate the 

inhibitory action of luteolin (Xagorari et al., 2002). It is possible that luteolin 

interferes with LPS signaling by reducing the activation of MAPK family members 

ERK and p38, but not c-Jun N-terminal kinase (JNK) (Xagorari et al., 2002). The 

active anti-inflammatory components of Glossogyne tenuifolia were identified as 

oleanolic acid and luteolin-7-glucoside. Both of them inhibited LPS-stimulated 

inflammatory mediator production and NF-κB activation (Wu et al., 2004b). 

 Similar effects and mechanisms of luteolin on innate immunity were found in 

intestinal epithelial cells and dendritic cells. Luteolin significantly blocks LPS-

induced IκB phosphorylation and degradation, NF-κB transcriptional activity and 

intercellular adhesion molecule-1 (ICAM-1) gene expression in rat IEC-18 cells (Kim 

and Jobin, 2005). This effect is by directly inhibiting the LPS-induced IKK activity. 



 17

 Interestingly, although luteolin shows potent inhibition on LPS-stimulated NF-

κB transcriptional activity in Rat-1 fibroblasts, it does not inhibit either IκBα 

degradation, ,NF-κB nuclear translocation, or DNA binding induced by LPS (Kim et 

al., 2003b). Rather, luteolin prevents LPS-stimulated interaction between the p65 

subunit of NF-κB and the transcriptional coactivator CBP, suggesting that the effect 

of luteolin on NF-κB signaling varies depending on the cell types.  

 Luteolin not only inhibits LPS stimulated release of proinflammatory 

cytokines such as TNF and ILs, but also directly inhibits the signaling triggered by 

TNF or ILs. Intercellular adhesion molecule-1 (ICAM-1) is an immunoglobulin 

superfamily expressed on endothelial cells and important for adhesion of leukocytes 

and transendothelial migration (Hubbard and Rothlein, 2000). Luteolin inhibits TNF-

α-stimulated ICAM-1 expression by inhibiting IKK activity, IκBα degradation, NF-

κB DNA-protein binding, and NF-κB luciferase activity in respiratory epithelial cells 

(Hubbard and Rothlein, 2000). The inhibitory effects of luteolin on ICAM-1 

expression are also mediated by the sequential attenuation of the three MAPKs 

activities, the c-fos and c-jun mRNA expressions, and the activator protein-1 (AP-1) 

transcriptional activity (Chen et al., 2004). Through a similar mechanism, luteolin can 

inhibit TNF-alpha-induced IL-8 production in human colonic epithelial cells (Kim et 

al., 2005b).  

 Another important inflammation mediator, NO is synthesized by inducible NO 

synthase (iNOS), which is activated by LPS. Luteolin and its glycoside, luteolin-7-O-

glucoside, suppress the production of NO and prostaglandin E2 (PGE2) in LPS 

activated-mouse macrophage RAW264.7 cells (Kim et al., 1999; Hu and Kitts, 2004). 

The inhibitory effect is attributed to the suppression of both iNOS and 
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cyclooxygenase-2 (COX-2) protein expression by luteolin, without affecting the 

enzymatic activity directly (Kim et al., 1999; Hu and Kitts, 2004). 

 It should be pointed out that it seems unlikely that the inhibitory action of 

luteolin on proinflammatory cytokine production is the result of antioxidant properties. 

This is based on observations that some flavonoids with strong antioxidant properties 

are completely ineffective in reducing LPS-stimulated TNF-production (Devasagayam 

et al., 1995). A structure-activity study shows that the presence of a double bond at 

position C2-C3 of the C ring with oxo function at position 4, along with the presence 

of the OH groups at positions 3' and 4' of the B ring are required for optimal inhibition 

of LPS-stimulated TNF- release (Xagorari et al., 2001).  

 The anti-inflammatory ability of luteolin has been also evaluated in vivo. Mice 

receiving LPS exhibited high mortality after the LPS challenge. On the contrary, mice 

that had received luteolin (0.2 mg/kg, intraperitoneally) before LPS showed an 

increased survival (Kotanidou et al., 2002). Luteolin pretreatment also reduces LPS-

stimulated TNF-α release in serum and ICAM-1 expression in the liver (Kotanidou et 

al., 2002), which is in agreement with many in vitro observations. The effect of 

luteolin was also tested in an acute Chlamydia pneumoniae infection model in 

C57BL/6J mice. Luteolin was found to suppress inflammation in lung tissue that was 

caused by Chlamydia pneumoniae, however, luteolin treatment had no effect on iNOS 

but significantly decreased the expression of constitutive eNOS enzyme 

(Tormakangas et al., 2005).  

 In summary, the anti-inflammation effect of luteolin has been well 

documented. It is via not only inhibiting LPS-stimulated release of cytokines such as 

TNF and ILs but also directly inhibiting the signal transductions triggered by these 
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cytokines. Both mechanisms may attribute to the strong inhibitory effects of luteolin 

on NF-κB.  

1.2.4 Anti-cancer property 

1.2.4.1 Anti-carcinogenesis activities 

 Carcinogenesis is a long-term and multi-stage process that results from 

accumulation of mutation and dysfunction of important molecules regulating cell 

proliferation and cell death. The process of chemical carcinogenesis may be divided 

into three stages: initiation, promotion and progression. During initiation, a potential 

carcinogen is transformed into a mutagen by phase I enzymes such as cytochrome 

P450. The mutagen may react with cellular molecules such as DNA and result in 

genetic mutation. During the promotion stage, the genetic alterations will lead to 

enhanced cell proliferation and/or reduced cell death. During the promotion stage, the 

mutations are enhanced and the cells are proliferating in an uncontrolled manner 

(Pitot, 1993). 

 The inhibitory effects of flavonoids, including luteolin, on carcignogenesis 

have been well documented. In an in vivo study, it was observed that luteolin 

significantly decreased the incidence of fibrosarcoma induced by 20-

methylcholanthrene (20-MC), a strong carcinogen, in male Swiss albino mice 

(Elangovan et al., 1994). Other studies showed that, to prevent tumor development, 

different stages of carcinogenesis can be targeted by luteolin. In the initiation stage, 

luteolin were found to inhibit the metabolism of carcinogens in isolated liver 

microsomes (Buening, 1981). In another study, Huang et al (1983) found that luteolin 

inhibits the mutagenic activity resulting from the metabolic activation of benzo-

pyrene and trans-7,8-dihydroxy-7,8-dihydrobenzo-pyrene in rat liver microsomes 

(Huang, 1983). Later in 1998, Oguri et al proved that luteolin suppresses formation of 
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mutagenic and carcinogenic heterocyclic amines (Oguri, 1998). Recently, it was 

found that luteolin acts as a potent inhibitor of human cytochrome P450 (CYP) 1 

family enzymes, such as CYP1A1, CYP1A2, and CYP1B1, and thus the 

transformation of potential carcinogen into a potent mutagen product is inhibited 

(Kim, 2005). During the promotion stage, luteolin could directly scavenge the 

ROS/RNS generated by various mutagens, or by inhibiting pro-oxidant enzymes, such 

as xanthine oxidase (Nagao, 1999), myeloperoxidase (Kostyuk et al., 2003), and 

lipoxygenases (Sadik et al., 2003). In addition, luteolin can inhibit the lipid 

peroxidation induced by CCl4 (Cholbi, 1991) or by FeSO4
+ cysteine in rat liver 

microsomes (Mora, 1990). 

  On the other hand, luteolin targets the enzymes involved in DNA synthesis, 

for example, DNA topoisomerases, to suppress tumor promotion. DNA 

topoisomerases are the essential enzymes that catalyze the interconversion of 

topological isomers of DNA molecules (Corbett and Berger, 2004). Acting by 

sequential breakage and reunion strands of DNA, two topoisomerases (topoisomerase 

I and topoisomerase II) are involved in many vital cellular processes such as DNA 

replication, transcription, recombination, integration and chromosomal segregation 

(Corbett and Berger, 2004). The dysfunction of these vital enzymes will result in 

DNA damage that may induce cell cycle arrest or apoptosis. Several flavonoids have 

been shown to exert their action by interacting with DNA topoisomerases and 

promoting site-specific DNA cleavage (Constantinou, 1995). Luteolin inhibits 

topoisomerase II activity of HL-60 cells by forming a luteolin- topoisomerase II-DNA 

ternary complex and then induces apoptosis in the cells (Yamashita and Kawanishi, 

2000). By inhibiting DNA synthesis and promoting topoisomerase-II-mediated 

cleavage of kinetoplast DNA minicircles, luteolin inhibits the growth of Leishmania 
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donovani promastigotes and arrest its cell cycle progression, leading to apoptosis 

(Mittra et al., 2000).  

 In addition, luteolin also strongly inhibits the catalytic activity of eukaryotic 

DNA topoisomerase I (Chowdhury et al., 2002). Luteolin intercalates directly with 

the enzyme as well as the substrate DNA to stabilize the topoisomerase-DNA 

covalent complex and thus to block the subsequent rejoining of the DNA breaks.  

1.2.4.2 Inhibition on cell proliferation 

 One character of cancerous cells is that they are undergoing rapid and 

unlimited proliferation. Proliferation requires the success of DNA synthesis and then 

cell division, which is controlled by signaling pathways triggered by growth factors, 

such as epidermal growth factor receptor (EGF), platelet-derived growth factor 

(PDGF), insulin-like growth factor (IGF), fibroblast growth factor (FGF), and 

vascular endothelial growth factor (VEGF). 

 Many flavonoids, including luteolin, were found to be able to inhibit the 

proliferation of cancer cells derived from nearly all tissues, such as human breast 

cancer cells MCF-7, human neuroblastoma cells SHEP and WAC2 (Fotsis, 1997; Han, 

2002), Raji lymphoma cells (Ramanathan, 1994), pancreatic cancer cells MiaPaCa-2 

(Lee et al., 2002), human leukemia cells HL-60 (Ko et al., 2002), hepatic stellate cells 

(Zhao, 2002), human thyroid carcinoma cell lines (Yin, 1999), human melanoma cells 

OCM-1 (Iwashita, 2000), human epidermoid carcinoma A431 (Huang et al., 1999a) 

and human prostatic tumor cells (Knowles, 2000). 

 The anti-proliferation mechanisms of luteolin have been explored extensively 

in several aspects. 

 Firstly, it is controversial whether the anti-proliferation effect of luteolin is 

dependent on endoplasmic reticulum (ER) (Ross and Kasum, 2002). Luteolin, as well 
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as several other flavonoids, suppresses the proliferation of human prostatic tumor 

cells (PC-3), androgen-independent cells, indicating that flavonoids show their anti-

proliferation activity in an androgen-independent manner (Knowles, 2000). On the 

other hand, it was found that luteolin inhibits estradiol-induced DNA synthesis in both 

estrogen-dependent MCF-7 and estrogen-independent MDA-MB-231 human breast 

cancer cells (Wang, 1997; Wang, 1998; Han, 2002). In a separate study, luteolin was 

shown to inhibit the proliferation of several human thyroid carcinoma cell lines, 

UCLA NPA-87-1 (with estrogen receptor), UCLA RO-82W-1 (with anti-estrogen 

binding site) and UCLA RO-81A-1 (lacking both estrogen receptor and anti-estrogen 

binding site), suggesting that the inhibitory activity of luteolin on cancer cell 

proliferation is not dependent on estrogen receptor or androgen receptor, but via other 

mechanisms (Yin, 1999). 

 Secondly, since luteolin is able to inhibit the activity of topoisomerases, which 

is critical for DNA synthesis (Constantinou, 1995; Mittra et al., 2000; Chowdhury et 

al., 2002), it has been suggested that luteolin inhibits cell proliferation by inhibiting 

topoisomerases and DNA synthesis (Makino, 2001).  

 Thirdly, the inhibitory effect of luteolin on cancer cell proliferation is related 

to its effects on various growth factors and their signaling pathways, including 

epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and vascular 

endothelial growth factor (VEGF). For instance, EGF activates EGF receptor which is 

a typical receptor tyrosine kinase that stimulates cell growth as well as cell migration 

through receptor phosphorylation and the subsequent activation of downstream 

signaling pathways (Zhang, 1998). Luteolin was found to inhibit the proliferation of 

pancreatic cancer cell MiaPaCa-2 and its effect is closely related to the inhibition of 

the activity of EGF receptor, but not protein synthesis (Lee et al., 2002). The same 
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group found that luteolin inhibits proliferation of human epidermoid carcinoma A431 

cells via a similar mechanism (Huang et al., 1999b).  

 PDGF is one of the principal regulators of proliferation and migration of 

vascular smooth muscle cells (VSMCs). PDGF binding to its receptor leads to its 

phosphorylation on multiple tyrosine residues. The activated PDGF receptor is 

associated with a number of proteins including the phosphatidylinositol 3'-kinase 

(PI3K), which mediates Raf-MEK-ERK transduction (Claesson-Welsh, 1994). 

Luteolin inhibits PDGF-induced proliferation and DNA synthesis of rat aortic VSMCs 

by inhibiting PDGF receptor phosphorylation (Kim et al., 2005b). As a consequence, 

luteolin significantly inhibits PDGF-induced ERK, Akt and phospholipase C (PLC)-

γ1 activation as well as c-fos gene expression (Kim et al., 2005b). These results 

suggest that the inhibitory effect of luteolin on the PDGF-induced proliferation of rat 

aortic VSMCs may be mediated by blocking phosphorylation of PDGF receptor (Kim 

et al., 2005c). 

 Another important growth factor is VEGF, which is one of the most important 

factors regulating key angiogenic responses of endothelial cells. They include 

proliferation, migration, and differentiation, as well as protection from apoptosis 

(Ferrara, 2001). In a murine xenograft model, luteolin was demonstrated to inhibit 

tumor growth and angiogenesis (Bagli et al., 2004). Furthermore, it was found that 

luteolin inhibits proliferation of human umbilical vein endothelial cells by inhibiting 

VEGF-induced PI3K activity and activation of Akt, a downstream target of PI3K. 

However, luteolin does not affect VEGF-induced ERK activation, which is considered 

important for the mitotic effects of VEGF (Bagli et al., 2004). 

 Protein kinase C is a family of serine-threonine protein kinases that regulate 

growth factor response, cell proliferation, differentiation and apoptosis (Lucas and 
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Sanchez-Margalet, 1995; Weinstein et al., 1997). It was found that PKC is inhibited 

in a concentration-dependent manner by many flavonoids including luteolin in both 

cell-free systems and intact cells (Ferriola et al., 1989). Another study showed that 

luteolin is a potent inhibitor of human mast cell activation through the inhibition of 

Ca2+ influx and PKC activation (Kimata et al., 2000). 

 Thus, it appears that luteolin is able to inhibit activity of a range of kinases, 

such as RTKs, PI3K and PKC. The question to ask is whether this inhibitory effect on 

different kinases is via a common mechanism. Apigenin, with a structure similar to 

luteolin, is also able to inhibit a wide range of kinases and this inhibitory effect is by 

competing with adenosine triphosphate (ATP) (Huang, 1996; Conseil, 1998). It 

remains to be determined whether luteolin inhibits various kinase activity through the 

same mechanism. 

 Finally, the inhibitory effect of luteolin on cell proliferation is related to its 

effect on cell cycle progression or cell death. For example, luteolin inhibits 

proliferation of human melanoma cells OCM-1 by arresting the cells at phase G1 

(Casagrande and Darbon, 2001). In human leukemia HL-60 cells, luteolin inhibits its 

proliferation at low dose and induces apoptosis at higher dose (Ko et al., 2002). 

Detailed discussion about cell cycle arrest- or apoptosis-inducing effects of luteolin 

will be covered in subsequent sections. 

1.2.4.3 Induction of cell cycle arrest 

 In eukaryotic cells, cell proliferation proceeds through DNA replication 

followed by division of nucleus and separation of cytoplasm to yield two daughter 

cells. The sequential process, called cell cycle, contains 4 distinct phases 

biochemically. G1 phase is a period when cells decide whether to start proliferation or 

to stay quiescent. Once cells decide to proliferate, their DNA will be replicated during 
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a DNA synthesis phase (S phase). The phase after DNA synthesis is called G2 phase 

which allows for the repair of DNA damage and replication errors. When there is no 

DNA damage or replication errors, the nucleus and cytoplasm will be equally divided 

into two and yield two daughter cells, which is call mitosis phase (M phase) 

(Massague, 2004). Cell cycle progression is timely regulated by cyclin-dependent 

kinases (CDKs) and their cyclin subunits (Ekholm and Reed, 2000). G1 progression 

and G1/S transition are regulated by CDK4-cyclin D, CDK6-cyclin D and later 

CDK2-cyclin E. While CDK2 controls S-phase when associated with cyclin A and 

G2/M transition is regulated by CDK1 in combination with cyclins A and B 

(Donjerkovic and Scott, 2000). Activation of CDKs is regulated by cyclin as well as 

CDK inhibitors (CKIs). Two families of mammalian CKIs have been identified: the 

INK4 family, which specifically inhibits CDK4 and CDK6, and the CIP/KIP family, 

including p21cip1/waf1, p27kip1 and p57kip2, which have a broad range of inhibition 

(Ekholm and Reed, 2000).  

 Cell cycle checkpoints have been the targets for chemotherapeutic and 

chemopreventive agents. In several in vitro experiments, flavonoids have been found 

to inhibit the proliferation of many cancer cells by arresting cell cycle progression 

either at G1 or at G2/M phase (Zi et al., 1998; Lindenmeyer et al., 2001).  

 Although luteolin has been found to inhibit cell growth and proliferation of 

many cancer cells, its effect on cell cycle distribution was found only in several cell 

lines. Luteolin arrests the cell cycle at G1 phase in the following three cancer cell 

lines: human gastric cancer HGC-27 cells (Matsukawa et al., 1993), human melanoma 

cells OCM-1 (Casagrande and Darbon, 2001) and human prostate cancer cells LNCaP 

(Kobayashi et al., 2002). The G1 cell cycle arrest induced by luteolin on OCM-1 is 

mediated by inhibiting the activity of CDK2, which is attributed to the up-regulation 
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of its inhibitors p27/kip1 and p21/waf1 (Casagrande and Darbon, 2001). On the other 

hand, luteolin was found to arrest mouse cancer cell tsFT210 at G2/M phase (Li et al., 

2005). Another study suggests that the G2/M arresting effect might be related to the 

activation of the tumor suppressor protein p53. Luteolin was also found to induce 

G2/M arrest in a non-tumor cell line C3H10T1/2CL8 due to the rapid activation of 

p53 (Plaumann et al., 1996). 

1.2.4.4 Induction of apoptosis 

 During the development, apoptosis is critical in eliminating unwanted cells in 

a specific site to form organs. Apoptosis is also critical in eliminating any damaged 

cells that may be caused by carcinogens and keep the whole organism healthy. 

Insufficient apoptosis of the damaged cells is believed to be a reason of cancer 

formation. Therefore, many cancer therapeutics work through induction of cancer cell 

apoptosis (Ghobrial et al., 2005). 

In addition to the inhibitory effect on cancer growth, luteolin is able to kill 

cancer cells by inducing apoptotic cell death. It has been reported that luteolin can 

induce apoptosis in several cancer cell lines, including human epidermoid carcinoma 

A431(Huang et al., 1999b), human leukemia HL-60 (Ko et al., 2002; Cheng et al., 

2005a) and U937 (Monasterio et al., 2004), pancreatic tumor cell MiaPaCa-2 (Lee et 

al., 2002), and human hepatoma cell HepG2 (Lee et al., 2005). 

 One possible mechanism of apoptosis-inducing effect of luteolin is that this 

flavonoid is a RTK inhibitor and it may mimic deprivation of growth factors by 

blocking the growth factor-triggered signaling pathway. The possibility was partially 

supported by the finding that apoptosis induced by luteolin in pancreatic cancer cell 

MiaPaCa-2 is concomitant with dampened EGF receptor triggered-signals (Lee et al., 

2002). 
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 Topoisomerases are essential in catalyzing sequential breakage and reunion 

strands of DNA, which is involved in many vital cellular processes such as DNA 

replication and transcription. Inhibition of topoisomerases not only suppresses DNA 

replication and cell proliferation but also caused DNA damage, which might lead to 

apoptosis. Luteolin has reported to inhibit topoisomerases II (Yamashita and 

Kawanishi, 2000) and induced apoptosis in HL-60 cells. The inhibition is through 

forming a luteolin-topoII-DNA ternary complex. Luteolin has been also proven to 

inhibit the catalytic activity of DNA topoisomerase I  (Chowdhury et al., 2002). 

Luteolin intercalates directly not only with the enzyme but also with substrate DNA. 

Further study showed that it can cause DNA damage by stabilizing the topoisomerase-

DNA covalent complex and block the subsequent rejoining of the DNA break 

(Chowdhury et al., 2002).  

 In response to DNA damage, a number of signals are activated sequentially. 

Ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia and Rad3-

related kinase (ATR) are activated very rapidly and then activate p53, which 

eventurely leads to cell cycle arrest or apoptosis. The apoptosis mediated by p53 may 

be through either a transcription-dependent pathway, which involves the activation of 

proapoptsotic genes, or transcription–independent pathway, which involves p53 and 

Bax mitochondrial translocation (Chipuk et al., 2003; Erster et al., 2004). Plusseman 

(1996) found that luteolin, as well as apigenin and quercetin, induces apoptosis, which 

is accompanied by p53 protein accumulation and p53 transactivation (Plaumann et al., 

1996). Recently, two studies proved that change of mitochondria and Bcl-2 family 

member proteins are involved in the apoptosis induced by luteolin in cancer cells. 

Luteolin induces cleavage of the proapoptotic Bcl-2 proteins, Bax and Bak 

translocation to mitochondria and the release of cytochrome c to cytosol, whereas Fas 
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ligand remains unchanged, suggests that luteolin induced apoptosis via mechanisms 

involving mitochondria translocation of Bax/Bak (Cheng et al., 2005a; Lee et al., 

2005).  

1.2.4.5 Anti-angiogenesis 

 Angiogenesis, the generation of new blood vessels, occurs during many 

physiological processes, including development, wound healing, formation of the 

corpus luteum, endometrium and placenta (Folkman, 1995). Angiogenesis also occurs 

in some pathological processes, such as solid tumor growth and metastasis, which 

require nutrition and oxygen due to the fact that avascular tumors do not grow beyond 

a diameter of 1-2 mm (Folkman, 1995). Rapid growth of tumor and consumption of 

oxygen result in hypoxia, which activates transcription of genes such as vascular 

endothelial growth factor (VEGF) and matrix metalloproteases (MMP). In response to 

secretion of angiogenic stimuli, such as VEGF and MMP which degrade the 

extracellular matrix, the endothelial cell basal membrane is degraded by the action of 

protease and then the endothelial cells migrate and proliferate and finally organize 

into capillary tubes. Several important factors are involved in this progress. (1) VEGF 

receptor. This enzyme is one of the most potent and specific known angiogenic 

factors in vivo. It increases microvascular permeability in response to hypoxia, 

multiple growth factors, cytokines and estradiol (Benassayag et al., 2002). (2) 

Hyaluronidase. Hyaluronic acid is one of the most abundant constituents of the 

extracellular matrix and acts as a barrier to neovascularization (Trochon et al., 1997). 

Fragments of hyaluronic acid, as a result of catalytic activity of hyaluronidase, bind to 

CD44 receptor exposed on the membrane of endothelial cells and then are responsible 

for endothelial cell proliferation, migration and finally angiogenesis. (3) MMP. 

Metalloproteases also can promote angiogenesis by degrading the extracellular matrix.  
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 Transcription of the VEGF gene is enhanced under hypoxic conditions 

(Semenza, 2001). Many flavonoids have been reported to be able to inhibit hypoxia 

and hypoxia-activated downstream events (Zhou et al., 2004; Fang et al., 2005; Liu et 

al., 2005). Luteolin is also effective in inhibiting the transactivation of the hypoxia-

response element (HRE) under hypoxic conditions (Hasebe, 2003). On the other hand, 

luteolin, as a RTK inhibitor (section 1.2.4), was also found to be able to inhibit the in 

vitro angiogenesis by inhibiting VEGF activity (Fotsis, 1997; Bagli et al., 2004).  

 In addition, luteolin has been found to be a potent competitive inhibitor of 

hyaluronidase (Kuppusamy, 1990), which catalyzes  hyaluronic acid and activates 

receptors for endothial cell proliferation, migration and angiogenesis. As an inhibitor 

of several growth factors, luteolin inhibits EGF triggered MMP secretion in A431 

cells (Huang et al., 1999b). Moreover, it was shown luteolin can also directly inhibit 

MMP activity. Interestingly, kinetic analysis revealed that the inhibition of MMP by 

luteolin is non-competitive, while luteolin inhibits hyaluronidase in a competitive 

manner (Ende, 2004). 

 The anti-angiogenesis effect of luteolin was confirmed in two in vivo studies. 

Luteolin can significantly inhibit corneal angiogenesis in vivo and corneal 

neovascularization induced by fibroblast growth factor (FGF) (Joussen et al., 2000). 

Recently, in a murine xenograft model, luteolin is able to inhibit tumor growth and 

angiogenesis (Bagli et al., 2004). Furthermore, it has been shown that luteolin inhibits 

angiogenesis by inhibited VEGF-induced PI3K activity and activation of AKT (Bagli 

et al., 2004). 

1.2.4.6 Inhibition on cancer metastasis 

 In addition to rapid and continuous division and proliferation, another 

important feature of cancer cells is their ability to spread from the primary site to 
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other more distant sites. This process, called metastasis, contributes to over 90% of 

human cancer mortality. The deadly process involves several sequential steps, 

migration, invasion and adhesion, which are driven by growth factors such as EGF, 

and MMPs (Brinckerhoff and Matrisian, 2002).  

 Transactivation of the epidermal growth factor receptor (EGFR) tyrosine 

kinase activity is proposed to stimulate cell migration by regulating MMP expression. 

By blocking of the EGFR-signaling pathway, luteolin is able to reduce the level of 

phosphorylated FAK as well as the secreted MMP, which may lead to the suppression 

of cell invasion and metastasis (Huang et al., 1999b; Lee et al., 2004).  

 In addition to many growth factors, cytokines also control MMP expression. 

For example, interleukin 6 (IL6) is known as a cytokine that induces MMP-1 

expression. Luteolin is potent in inhibiting the production of IL-6 and suppressing the 

expression of MMP-1 (Kim, 2004). Since ILs production is regulated by NF-κB, it is 

possible that the inhibitory effect of luteolin on NF-κB may play a role in suppressing 

IL production and MMP expression.  Interestingly, luteolin as well its glycoside, can 

directly inhibit the activity of MMP-2 and MMP-9, in a non-competitive manner 

(Ende, 2004). 

 On the other hand, luteolin is a potent inhibitor of in vitro invasion of human 

PC-3 prostate cancer cells (Lansky, 2005). Since elevation of Focal adhesion kinase 

(FAK) activity in human carcinoma cells is associated with increased invasive 

potential, the inhibitory effect of luteolin on FAK phosphorylation may contribute to 

suppression of cell invasion ability (Huang, 2005). 

 Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the 

processes of adhesion and metastasis. Luteolin was found to suppress TNF-stimulated 

ICAM-1 expression in respiratory epithelial cells. The inhibitory effect of luteolin on 
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ICAM-1 expression is mediated by inhibiting NF-κB pathway, including IKK activity, 

IκBα degradation, NF-κB DNA-protein binding, and NF-κB luciferase activity, as 

well as AP-1 transcriptional activity (Chen et al., 2004). 

 Taken together, Section 1.2.4 summarizes different aspects of the anticancer 

properties of luteolin and the main mechanisms involved. Luteolin has been proved to 

be a potent anticancer agent in a variety of cancer cells in vitro as well as in a number 

of in vivo animal models. Firstly, it can inhibit carcinogenesis at different stages: 

initiation, promotion and progress. Secondly, it can inhibit cancer cell proliferation, or 

modulate cancer cell cycle progression, or induce apoptotic cell death or suppress 

angiogenesis. Lastly, luteolin possesses strong anti-metastasis effect, an important 

property in cancer therapy to restrict the mortality of cancer. It is possible that a 

number of common mechanisms are involved in the diverse activity of luteolin on 

cancer. For example, inhibition on receptor tyrosine kinases and topoisomerases 

contributes to its inhibitory effects on carcinogenesis, proliferation, cell cycle and 

apoptosis. The inhibition on NF-κB could contribute to its anti-inflammatory, anti-

carcinogenesis, anti-angiogenesis and anti-metastasis activities.  

 

1.3 APOPTOSIS 

1.3.1 General introduction 

 Apoptosis is a tightly regulated cell death process characterized by unique 

morphological and biochemical changes including cell shrinkage, mitochondrial 

depolarization, nuclear fragmentation, chromatin condensation, membrane blebbing 

and formation of apoptotic bodies (Hengartner, 2000; Kaufmann and Hengartner, 

2001). In receiving cell death signals, which might be either intrinsic or extrinsic, 

cells will undergo a chain of biochemical changes, which are characterized by 
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dramatic changes of mitochondria, the main apoptosis mediator, and activation of 

caspase cascade, the main apoptosis executors. Activated caspase will cleave a 

number of substrates, including DNase II, caspase-activated deoxyribonuclease and 

cytoskeletal proteins which responsible for the distinct morphological changes such as 

nuclear fragmentation, chromatin condensation and cell shrinkage. The cleaved 

substances of the cells will be packed into small apoptotic bodies, which, with 

phosphatidylserine flipped to outer cell membrane, will be recognized and removed 

by phagocytes by engulfment and degradation (Savill and Fadok, 2000). So, different 

from necrosis, apoptosis does not trigger inflammation responses and exert damages 

to surrounding cells, and thus are believed to be a physiological way to eliminate a 

cell. 

1.3.2 Caspases 

 Caspases are a group of proteases which cleave its substrate proteins 

specifically on the carboxyl side of an aspartate residue (Strasser et al., 2000). Up to 

now, there are about 14 caspases have been identified in mammalian cells and more 

than half of them are directly involved in apoptosis regulation (Nicholson and 

Thornberry, 1997). Caspases are produced initially in cells in an inactive form with an 

extended N-terminal prodomain that must be cleaved during activation. According to 

their structures and functions in activation, caspases can be subdivided into two 

groups, initiator caspases and effector caspases. Initiator caspases, including caspase-

8, -10, -9 and -2, have caspase recruitment domains (CARD) or death effector 

domains (DED) which function in its activation. For example, upon death signals, 

such as Fas-FasL interaction, caspase 8 can be recruited through its DED domains to 

death receptors via an adaptor protein Fas-associating death domain protein (FADD) 

(Chinnaiyan et al., 1995). The recruitment will bring pro-caspase-8 together and 
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trigger its auto-activation through proximity-induced dimerization. Another important 

initiator caspase, caspase-9, is activated in an apoptosome comprising of pro-caspase-

9, cytochrome C, apoptotic protease-activating factor 1 (Apaf-1) and dATP (Kroemer, 

2000). Activation of effector caspase, including caspase-3, -6 and -7, requires 

activated initiator caspase which cleave effector caspase at specific internal Asp 

residues and produce its active form. The active effector caspases will act as executors 

that cleave diverse cellular substrates which lead to apoptotic cell death (Fischer et al., 

2003). For instance, cleavage of ICAD by caspase-3 liberates the active CAD 

nuclease that mediates apoptotic DNA fragmentation.  

 Interestingly, initiator caspases also serve as the substrates of active effector 

caspases. For example, active caspase-3 can cleave and activate pro-caspase-8. The 

apoptosis process can be accelerated by this positive feedback loop (Shi, 2002). 

 On the other hand, the activation of caspase is negatively regulated by anti-

apoptotic proteins (IAPs) that directly interact with caspases and inhibit their 

activation as well as activity. One of the most important anti-apoptotic proteins is X-

linked inhibitor of apoptosis (XIAP), a member of IAPs family. XIAP can inhibit the 

activation of caspase-3 and -9 as well their active forms. XIAP has a baculovirus IAP 

repeat domain (BIR) which mediates its interaction with caspase-3 or -9 (Deveraux et 

al., 1997). So, a success activation of caspase-9 requires neutralization of the 

inhibitory effect of XIAP, which is performed by SMAC/DIBLO released 

simultaneously with cytochrome C from mitochondria. Another potent anti-apoptotic 

protein is FLICE-inhibitory protein (FLIP), which specifically inhibits caspase-8 

activation. FLIP, has similar structure with pro-caspase-8 but without protease activity, 

can compete with pro-caspase-8 to be recruited to activated death receptors (Hu et al., 

1997; Irmler et al., 1997). 
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 Although it has been well established that caspases are vital mediators of 

apoptosis, there are apoptosis independent of caspases but mediated by apoptosis 

inducing factor (AIF) (Cande et al., 2002) or other proteases such as  granzyme B and 

calpain (Kroemer and Martin, 2005).  

1.3.3 Apoptosis pathways 

 Apoptosis is mediated through two signaling pathways, death receptor 

pathway (the extrinsic pathway) and mitochondrial pathway (intrinsic pathway). 

Notably, there is significant cross-talk between these two pathways. 

1.3.3.1 Death receptor-mediated apoptosis pathway 

 In the death receptor pathway, the death receptors are triggered by their 

ligands or antagonist antibodies and lead to the recruitment of adaptor molecules that 

activate the caspase cascade. Death receptors are receptors on the cell surface which 

can be specifically activated by death ligands. The death receptors are intermembrane 

proteins characterized by its extracellular domains that can be recognized by death 

ligands, and its intercellular death domains (DD), which recruit a series of proteins 

and trigger caspase activation (Itoh and Nagata, 1993). Several groups of death 

receptors have been identified such as Fas/CD95, TNFR1, DR4 and DR5. 

Accordingly, the main death ligands which can bind to death receptors include FasL 

(for Fas), TNF (for TNFR), and TRAIL (for DR4 and DR5). 

 The signal transduction of receptor-mediated apoptosis has been well 

understood using Fas/FasL as a model (Chinnaiyan et al., 1995). The binding of FasL 

to Fas will trigger trimerization of Fas, which recruits Fas associated death domain 

(FADD) through DD domain. FADD is acting as an adaptor protein with its death 

domains binding to death receptors, and its death effector domain recruiting pro-

caspase-8 and form the death-inducing signaling complex (DISC). Within the DISC, 
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pro-caspase-8 is processed by its auto-activation through proximity-induced 

dimerization. The long prodomain is cleaved and pro-caspase-8 forms intermediate 

but inactive forms, which will be cleaved further and maturate into active forms. The 

active caspase-8 will cleave its effector caspase, caspase-3, which activation is 

considered as “no-return” event during apoptosis.  

 Receptor-mediated apoptosis, however, can be triggered in the absence of 

death ligands. Under certain circumstances, cells overexpress death receptors, which 

may trigger receptor trimerization and caspase activation (Wu, 1997). 

1.3.3.2 Mitochondria-mediated apoptosis pathway 

 Mitochondria, apart from its crucial role in supplying energy, are the pivotal 

mediator of apoptosis. One of the main evidence supporting the critical role of 

mitochondria in apoptosis is that mitochondria contain an array of apoptosis 

regulatory proteins including  cytochrome c, Smac, apoptosis-inducing factors (AIFs), 

endonuclease G and HtrA2 (also known as Omi) (Kroemer, 2000). Whereas AIF and 

endonuclease G seem to be able to directly cause nuclear and DNA damage, 

cytochrome c works together with Apaf-1 and pro-caspase-9 to form a complex, 

called apoptosome, within which caspase-9 is activated and then activates the effector 

caspases that results in morphological and biochemical changes in apoptosis. On the 

other hand, Smac and HtrA2 can reverse the suppressive effects of the inhibitor-of-

apoptosis proteins (IAPs), such as XIAP, on either caspase-9 or caspase-3/7, thus 

further enhancing the activation of the effector caspases. 

 The involvement of mitochondria in apoptosis is tightly regulated by bcl-2 

family proteins, which can be either pro-apoptotic such as Bid, Bad and Bax, or anti-

apoptotic such as Bcl-2, Bcl-xL, Mcl-1 (Adams and Cory, 1998). For example, Bcl-2 

is an anti-apoptotic protein over-expressing in many cancer cells and is responsible 
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for their resistance to cell death. Down-regulation of Bcl-2 or inactivation of Bcl-2 

has been suggested to be effective in restoring the sensitivity of cancer cells to 

anticancer treatment (Bartholomeusz et al., 2005). 

 Mitochondria are also closely involved in death receptor-mediated apoptosis 

in certain types of cells. In type I cells, the presence of activated caspase-8 is 

sufficient to induce activation of effector caspases, which then act on death substrates 

in apoptosis (Wallach et al., 1999). However, in type II cells, a small amount of 

activated caspase-8, although not enough to activate the effector caspases directly, is 

sufficient to trigger a mitochondria-dependent apoptotic amplification loop (Scaffidi 

et al., 1998; Scaffidi et al., 1999). Active caspase-8 will cleave its substrate Bid and 

form a truncated Bid (tBid). tBid, together with other pro-apoptotic bcl-2 members, 

then translocates to outer membrane of mitochondria and cause cytochrome C release 

and apoptotic cell death (Li, 1998; Luo et al., 1998). 

1.3.4 Apoptosis and cancer 

 Apoptosis, as a way to eliminate unwanted cells, is crucial for development, 

organ morphogenesis, and tissue homeostasis. There is accumulating evidence 

showing that the accumulation of damaged cells in the tissue resulted from lacking of 

proper apoptosis is closely associated with tumorigenesis (Hanahan and Weinberg, 

2000). The resistance to apoptosis of cancer cells is acquired through a variety of 

biochemical changes, including over-expression or low-expression of certain 

functional proteins relevant to apoptosis. Moreover, these changes also attribute to the 

responsiveness of cancer cells to anticancer therapy. Therefore, apoptosis regulatory 

molecules are legitimate targets for anticancer treatment. 

 Apoptosis is executed by activated intracellular proteases, known as caspases, 

which are responsible for the specific apoptotic biochemical and morphological 
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changes. The activation of caspases is regulated by a fine balance with/between two 

opposite sides, i.e. proapoptotic signals that facilitate its activation and antiapoptotic 

signals that inhibit its activation. Changes at either side may perturb the balance and 

confer the cancer to be resistant or sensitive to apoptosis stimuli. For example, low 

expression of cell death receptors contributes to the resistance of some cancers (Wang 

and El Deiry, 2003). Apaf-1, a cell-death effector that acts with cytochrome c and 

caspase-9, is frequently inactivated in cancers such as malignant melanoma (Soengas 

et al., 2001). Another well known example is p53, a tumor suppressor protein, which 

activation in response to DNA damage induced by anticancer drugs will lead to cell 

cycle arrest or apoptosis. However, many cancers have mutant p53, which confers the 

cancer cell to be resistant to anticancer therapy (Koechli, 1994). Thus activation of 

p53, for example by inhibiting its interaction with MDM2 (Vassilev et al., 2004), a 

p53 antagonist, or restoration of wide type p53, for example by introducing wide type 

p53 using gene therapy (Quist, 2004), have been proved to be effective in anti-cancer 

therapy. The cancer resistance can also be acquired by over-expression of one or 

several anti-apoptotic proteins, such as Bcl-2, survivin, FLIP and IAPs (Deveraux et 

al., 1997; Deveraux and Reed, 1999). Understanding of the molecular basics of cancer 

resistance also helps to locate proper targets for activating apoptosis in cancer therapy. 

1.3.5 TNFR signaling pathway 

 TNF, a cytokine produced mainly in macrophages, was initially regarded as an 

important player in inflammation and immuno responses. Upon the activation of LPS, 

macrophages produce a number of cytokines including TNF and ILs, which can 

mediate inflammation responses through activating NF-κB (Tracey and Cerami, 1993). 

It is now well understood that TNF, through binding to it receptors, can trigger 

caspase cascade and thus function as a death ligand. The bioactivities of TNF are 
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mainly elicited by TNF receptor 1 (TNFR1), through which the following three 

distinct signaling pathways are initiated: a caspase cascade, NF-κB, and mitogen-

activated protein kinase JNK (Chen and Goeddel, 2002). 

1.3.5.1 TNFR1-mediated apoptosis 

 Comparing to that of Fas, TNFR1-induced apoptosis pathway is more 

complicated, which involves more players, formation of two complexes, and feedback 

regulations. Upon TNF binding, the trimerized TNFR1 does not directly recruit 

FADD, like in Fas signaling pathway, but first binds to an adaptor protein TNF 

receptor-associated death domain (TRADD), which then binds to cytosolic proteins 

FADD as well as receptor-interacting protein (RIP) and TNF receptor-associated 

factor 2 (TRAF2). The above molecules form a big complex (complex I), which is 

bound to membrane via TNFR1. Pro-caspase-8 is not bound to TNFR directly and not 

found in complex I (Harper et al., 2003a). However, the complex I is disassociated, 

together with FADD and pro-caspase-8, form a second complex (complex II), within 

which pro-caspase-8 is processed and activated (Chinnaiyan et al., 1995; Yeh et al., 

1998; Micheau and Tschopp, 2003). The active caspase-8 will activate caspase-3 

directly or through crosstalking with mitochondria via tBid. 

1.3.5.2 TNFR1-induced NF-κB activation 

 NF-κB is a ubiquitous transcription factor playing an important role in 

inflammation responses and cell survival regulation. It consists of heterogenous 

dimeric proteins, such as p65 and p50, which all containing a Rel homology domain 

(Karin and Delhase, 2000). In TNFR1 signaling pathway, NF-κB is activated and 

provides a negative feedback for apoptotic cell death. 

 In resting cells, NF-κB binds to inhibitor of κB (IκB) proteins and localizes in 

cytoplasm. In response to TNFα-TNFR1 ligation, the activated IκB kinase (IKK) 
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phosphorylates IκB, which results in the proteasomal degradation of IκB through 

ubiquitination. The released NF-κB then translocates from cytoplasm to nuclei and 

binds to the promoter regions of its target genes to regulate the gene expression.  

 A number of genes such as A20, IAPs, c-FLIP, TRAF1 and TRAF2 have been 

identified as NF-κB-regulated anti-apoptotic genes (Krikos et al., 1992; Wang et al., 

1998; Micheau et al., 2001). Expression of these anti-apoptotic proteins can promote 

cell survival and inhibit cell death. For example, XIAP, a member of IAPs, can 

directly bind to and inhibit the activation of caspase-9 and -3 (Deveraux et al., 1997). 

It is thus why some cancer cells are resistant to the TNF-induced apoptosis and 

inhibition of NF-κB by a transcription inhibitor (actinomycin D) or translation 

inhibitor (cycloheximide, CHX), can great facilitate TNF-induced apoptosis. 

1.3.5.3 TNFR1-induced JNK activation 

 Another branch of signaling pathway triggered by TNF-TNFR1 is JNK. Upon 

TNF-TNFR1 interaction, JNK is readily activated in a transient manner. Persistent 

JNK activation was observed in TNFα-treated cells when the NF-κB signaling 

pathway was blocked. It is known now that the crosstalk between NF-κB and JNK 

plays a role in diminishing the activated JNK. For instance, upregulation of the 

Gadd45 and XIAP by NF-κB can block the JNK activation (Tang et al., 2001; Papa et 

al., 2004). Another important mediator between JNK and NF-κB is believed to be 

ROS as many of the NF-kB target proteins function as antioxidants to remove ROS 

and to suppress JNK activation (Bubici et al., 2006). 

 In contrast to the well-established anti-apoptotic role of NF-κB, the exact 

function of JNK in TNF-mediated apoptosis remains largely controversial (Liu et al., 

1996; Natoli et al., 1997). Recently it has been demonstrated that prolonged JNK 

activation by the suppression of NF-κB activity promotes TNFα-induced apoptosis 
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(De Smaele et al., 2001; Tang et al., 2001). It appears that the exact function of JNK 

in TNF-induced apoptosis depends on a number of factors such as cell type and/or the 

presence of other signaling pathways such as NF-κB activation (Karin and Lin, 2002). 

1.3.5.4 Regulation of TNF-induced apoptosis 

 Upon TNF-TNFR interaction, in addition to the recruitment of FADD that 

activate caspase cascade, the recruitment of RIP and TRAF2 results in the activation 

of NF-κB which mainly functions as a cell survival mechanism to protect cells against 

TNFα-induced apoptotic cell death (Ting et al., 1996; Reinhard et al., 1997; Kelliher 

et al., 1998). As TNFα activates both cell death and cell survival pathways 

simultaneously, most cancer cells are resistant to TNFα-induced apoptosis and thus 

inhibition of NF-κB activation becomes a popular strategy to enhance the sensitivity 

of cancer cells to apoptosis mediated by TNF family proteins (Baldwin, 2001; 

Yamamoto and Gaynor, 2001). Various approaches have been developed, including 

the genetic disruption of NF-κB signaling pathway by overexpression of a mutant 

IκBα (Leverkus et al., 2003) and chemical inhibitors of NF-κB. Some of these 

approaches have been in clinical trial with promising results in cancer therapy. 

1.3.6 TRAIL signaling pathway 

 Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is newly 

identified member of the TNF superfamily. TRAIL elicits its function by binding to 

its receptors on the cell surface. To date, four types of receptors have been identified. 

Death receptor 4 (DR4) and death receptor 5 (DR5) have both an extracellular domain 

that binds to TRAIL, and intercellular domains with DDs that trigger caspase cascade. 

However, other two receptors, death decoy receptor 1 (DcR1) and death decoy 

receptors (DcR2), lack the functional intercellular domains. Therefore, TRAIL can 
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bind to DcR1 and DcR2 but does not trigger caspase cascade and cell death (Wang 

and El Deiry, 2003). 

1.3.6.1 TRAIL-induced apoptosis 

 The apoptosis induced by TRAIL is quite similar with that induced by FasL. 

Ligation of TRAIL to its receptors (DR4 and DR5) results in trimerization of 

receptors and clustering of intracellular death domains (DDs), which then recruit Fas-

associated death domain protein (FADD) and pro-caspase-8 to form the death-

inducing signaling complex (DISC). Caspase 8 activation within DISC subsequently 

leads to activation of effector caspases or cleavage of Bid, which then crosstalks with 

mitochondria to activate caspase-9 and -3 (Green, 2000a; Ashkenazi, 2002). 

1.3.6.2 TRAIL-induced NF-κB activation 

 The apparent difference from TNF-induced signaling is that TRAIL-DRs 

interaction does not recruit TRADD or RIP or TRAF2 that can activate the cell 

survival signal, NF-κB. However, there were several reports that, in some cell lines, 

TRAIL can trigger NF-κB activation as evidenced from the detection of NF-κB-DNA 

binding by electrophoretic mobility shift assay (EMSA), although it is much weaker 

comparing with that induced by TNF. Up to date, little is known about how TRAIL 

activates NF-κB. It suggests that PI3K/AKT might be involved in the process (Zauli 

et al., 2004). On the other hand, a recent report provided a possible explanation why 

TRAIL fails to activate NF-κB in some cells: TRAIL triggered-caspase activation 

causes the cleavage of NF-κB protein and in the presence of caspase inhibitor, TRAIL 

can significantly activate NF-κB (Kim et al., 2005a). 
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1.3.6.3 Regulation of TRAIL-induced cell death 

 TRAIL is a potent apoptosis inducer and might be potential in cancer therapy. 

However, its application in clinical is limited because many cancer cells are found to 

be resistant to the apoptosis induced by TRAIL. 

 The resistance of cancer cells to TRAIL has been studies extensively. It may 

attribute to the biochemical changes in the cells in a variety of ways. First, either low 

expression of DR4/DR5, or high expression of decoy receptors DcR1/DcR2 will 

render the cancer cell to be resistant to TRAIL (Sheridan et al., 1997). A number of 

anti-cancer drugs can activate DR4 or DR5 via DNA damage-activated p53 because 

DR4/DR5 is under control of transcription factor p53 (Liu et al., 2004). Thus, a 

combination of anti-cancer drug with TRAIL might be an effective anti-cancer 

therapy. Second, although TRAIL may not activate NF-κB in some cancer cells, the 

relatively high basal level of NF-κB activation may directly or indirectly inhibit 

caspase activation via an array of its anti-apoptotic genes. Many small molecules 

which can downregulate or antagonize these anti-apoptotic proteins have been shown 

to be potent in sensitizing TRAIL-induced apoptosis in both in vitro and in vivo 

experiments (McManus, 2004; Hyer et al., 2005). 

1.3.7 Cisplatin and its anti-cancer effects 

 Cisplatin (cis-diamminediachloroplatium) is a widely used anti-cancer drug. 

Since its approval in 1970’s for the treatment of genitourinary tumors, cisplatin has 

become one of the most widely used and successful drugs for the treatment of a 

variety of cancers, including ovarian, head, neck, bladder, cervical, and small cell 

lung cancers (Loehrer, 1984).  
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1.3.7.1 Anti-cancer effects of cisplatin and mechanisms of action of p53 

. Once cisplatin enters a cell, its chloride ligand will be replaced by water 

molecules and form positively charged species that can react with nucleophilic sites 

on intracellular macromolecules such as protein, RNA and DNA (Dijt, 1988). It is 

generally accepted that the anti-cancer effect of cisplatin is mainly mediated by its 

interaction with DNA to form DNA adducts, which induce DNA damage and activate 

several signaling transduction pathways including ATR, ATM, p53, and MAPK 

(Siddik, 2003). 

 The interaction between cisplatin and DNA not only inhibits DNA replication 

and cell division, but also leads to apoptosis (Gonzalez et al., 2001). Tumor 

suppressor p53 activation is one of major factors responsible for apoptosis induced by 

cisplatin. It has been observed that cisplatin treatment can cause apoptosis in wide 

type p53 cancer cell but not in p53 deficient or mutant cancer cells (Song et al., 1998; 

Kanata et al., 2000; Tang and Grimm, 2004; Beuvink et al., 2005), suggesting that 

p53 is the key regulator for cisplatin-mediated apoptosis in cancer cells.  

 p53 is a tumor suppressor protein (Ko, 1996; Levine, 1997), which is readily 

activated by DNA damage as well as other stimuli. Activation of p53 contributes to 

the tumor suppression either by inducing cell cycle arrest, possibly providing 

opportunity for the cells to repair damaged DNA, or by inducing apoptosis in the 

injured cells. So, p53 is playing a critical role in avoiding genetic instability and acts 

as tumor suppressor protein. It is believed that the loss of p53 activity promotes 

malignant transformation, leading to the high incidence of p53 mutations in a wide 

spectrum of human cancer (Hollstein, 1991; Levine et al., 1991). 

 At present, the molecular mechanisms controlling p53 activation have been 

studied extensively. Generally, there are two regulatory mechanisms working together 
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to control the function of p53: p53 transcriptional activation and p53 stability 

(Kubbutat et al., 1997; Ashcroft and Vousden, 1999). The stability of p53 protein, a 

short-lived protein, is mainly regulated by its interaction with its transcriptional target 

mouse double minute 2 (MDM2), which act as an ubiquitin E3 ligase and promotes 

p53 ubiquitination and proteasomal degradation (Kubbutat, 1997). Meanwhile, 

MDM2 is a transcriptional target of p53 and expression of MDM2 will promote p53 

degradation to maintain the negative feedback loop. Upon DNA damage or other 

stimuli, p53 is up-regulated by transcriptional activation as well as via a number of 

mechanisms that disrupt the interaction between MDM2 and p53 and thus to increase 

p53 stability. Modifications on either p53 or MDM2 may affect their interaction. For 

instance, phosphorylation of p53 affects its interaction with MDM2 or its binding to 

DNA or its transcriptional activity (Steegenga et al., 1996). It is known that DNA 

damage-activated ATM, ATR and DNA-PK can phorphorylate p53 on Ser 15 and Ser 

37 (Shieh, 1997), Chk2 is among the kinases that contribute to phosphorylation of p53 

on serine 20 (Shieh, 1999), whereas JNK phosphorylates p53 on tyrosine 81 

(Buschmann et al., 2001). Any of above phosphorylations on p53 may affect its 

interaction with MDM2 and finally affect its stability. On the other hand, post-

translational modifications on MDM2 or inhibition of MDM2 activity or decrease of 

MDM2 protein can disrupt the interaction between p53 and MDM2 and promote the 

rapid accumulation of p53 (Ryan et al., 2001). MDM2 protein is also controlled by 

ubiquitination and proteasomal degradation (Chang, 1998). 

 One important role of p53 as a tumor suppressor is its involvement in 

apoptosis. p53 activates the caspase cascade and apoptosis mainly via an intrinsic 

pathway that involves mitochondria, a central regulator of apoptosis. The integrity of 

outer mitochondrial membrane is tightly regulated by Bcl-2 family proteins. Pro-
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apoptotic members of the Bcl-2 family, such as Bax, Bak and Bid, form channels in 

membranes and to regulate preexisting channels. Anti-apoptotic members of the 

family, such as Bcl-2 and Bcl-XL, tend to have the opposing effects on membrane 

channel formation. (Kelekar and Thompson, 1998). The pro-apoptotic functions of 

p53 can be mediated through a transcription-dependent pathway, which involves the 

activation of pro-apoptotic genes. It was shown that p53 can regulate the transcription 

of a group of pro-apoptotic proteins such as Bax (Miyashita and Reed, 1995), Noxa 

(Oda et al., 2000a), PUMA (Nakano and Vousden, 2001; Chipuk et al., 2005), DR5 

(Wu, 1997), BID (Sax et al., 2002), and CD95 (Muller et al., 1998), which elicit 

caspase cascade and apoptosis. 

 In addition to transactivation of target genes, evidence has also implicated that 

p53 can induce apoptosis via a transcription–independent way. For example, the 

apoptosis induced by p53 may be through increasing surface Fas by transporting from 

the Golgi complex (Bennett et al., 1998), or require FADD-independent activation of 

caspase-8 (Ding et al., 2000). Further, it was found that p53 protein can translocate to 

mitochondria, form complexes with Bcl-XL and Bcl-2 proteins and directly induce 

cytochrome c release (Mihara et al., 2003). Recently, it has been demonstrated that 

the apoptosis induced by p53 is mediated by Bax mitochondrial translocation and 

activation (Chipuk et al., 2003; Erster et al., 2004). In non-stimulated cells, Bax exists 

as a monomer either in the cytosol or loosely attached to the outer mitochondrial 

membrane. Upon stimulation, the cytosolic Bax translocates to mitochondria and 

inserts into the membrane. Bax oligomerizes into large complexes which are believed 

to be crucial to mitochondrial membrane permeabilization (Goping et al., 1998). The 

activated Bax on mitochondria can be distinguished by a conformational change in the 
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N-terminus that exposes the formerly buried 6A7 epitope (Desagher et al., 1999; 

Nechushtan et al., 1999) 

1.3.7.2 Regulation of cisplatin-induced apoptosis 

 Despite the success against testicular cancer, the use of cisplatin against other 

cancers is limited due to acquired or intrinsic resistance. For example, cisplatin has 

minimal activity against some common cancer types, such as colorectal cancer (Natoli 

et al., 2000). Thus, resistance is the major constraint that undermines the curative 

potential of cisplatin. 

 Efforts have been made to define the cellular and molecular mechanisms 

responsible for cisplatin resistance (Kartalou and Essigmann, 2001). The resistance 

may be through either limiting the extent of cisplatin-induced damage, for example, 

alterations in cellular pharmacology, including decreased drug accumulation, 

increased cellular thiol levels and increased repair of platinum–DNA damage. In 

addition, alterations in the cellular response to the damage also contribute to the 

resistance. Since p53 is a major mediator of the apoptosis induced by cisplatin, 

mutation of p53 or alteration of expression level of Bcl-2, Bcl-XL, Bax or MDM2 

may affect the responses to cisplatin. For example, MDM2 overexpression confers the 

cancer cells to be resistant  to cisplatin (Kondo et al., 1995). 

 Therefore, cisplatin is usually not used alone for cancer therapy. Clinically, it 

is used in combination with other anti-cancer drugs, such as etoposide (Kovnar et al., 

1990; Ardizzoni et al., 1999), bleomycin (Behnia et al., 2000) and irinotecan (Sandler, 

2002). Recently, new strategies to enhance the cytotoxicity of cisplatin has been 

investigated (Duan et al., 2001; Iwase et al., 2003; Kim et al., 2003a; Fulda and 

Debatin, 2005; Mohanty et al., 2005). For instance, downregulation of MDM2 using 
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MDM2 antisense oligonucleotides or RNA interference can enhance the sensitivity to 

cisplatin (Yu et al., 2006).  

 

 

1.4 OBJECTIVES OF THE STUDY 

 At present, many aspects of pharmacological activities of chrysanthemum 

have been well studied, including the anti-inflammatory and anti-oxidant function.. 

Preliminary results from our laboratory has shown that the water extract of 

chrysanthemum exerted significant anti-tumor effects in in vivo experiments 

(unpublished data), suggesting the anti-tumor potential of this herbal plant. However, 

the major anti-tumor components in the water extract of chrysanthemum are yet to be 

determined. It has been reported that chrysanthemum contains a wide range of 

flavonoids including luteolin, apigenin etc. However, it is currently not known how 

these flavonoids contribute the potential anti-tumor effect in chrysanthemum. 

Therefore, the goals of this study are to identify the major anti-tumor components in 

the water extract of chrysanthemum and to investigate the molecular mechanisms 

involved.  

To achieve these goals, the following studies will be conducted: 

(1) To identify the major active component(s) in the water extract of Chrysanthemum 

morifolium Ramat. 

(2) To evaluate the anti-tumor property and mechanism of the water extract of 

chrysanthemum. 

(3) To study the anti-tumor effect and mechanisms of luteolin, a major component 

found in Chrysanthemum, on human cancer cells. 
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(4) To investigate the potential synergistic effects of luteolin with known cancer 

therapeutics agents (cisplatin) or cell death ligands (TNF and TRAIL) on 

apoptosis in cancer cells and the molecular mechanisms involved. 

(5) To evaluate the synergistic anti-tumor effects of luteolin and cancer therapeutic 

agents using in vivo animal models. 

 This study will help in understanding the anti-tumor properties of 

chrysanthemum and, at a molecular level, provide evidence of the potential effects of 

this herb on cancer prevention or therapy. Furthermore, the study of combined effects 

of luteolin with other cancer therapeutic agents could provide useful insight on the 

synergistic mechanisms, and the potential application of luteolin as a chemosensitizer 

in cancer therapy.  
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IDENTIFICATION OF THE MAJOR ACTIVE COMPONENTS IN 

CHRYSANTHEMUM 
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2.1 INTRODUCTION 

 The dried flower heads of Chrysanthemum morifolium Ramatuelle have been 

used as a traditional herbal medicine in Asian countries for centuries. Its traditional 

usage includes treatment of common cold, fever, migraines, conjunctivitis, eye 

irritation, hypertension, ulcerative colitis, vertigo and ophthalmia with swelling and 

pain etc (Liu, 1998; Jiang, 2002). There were also reports about its other activities, such 

as anti-tumor activities (Ukiya et al., 2002). 

 Due to its multiple pharmacological properties as well as the mild fragrance, the 

flower is used popularly as herbal beverage, chrysanthemum tea. Chrysanthemum tea is 

prepared in the same way as for traditional tea. The dried flowers are infused with hot 

water for a few minutes before it is served. For clinical usage, the chrysanthemum is 

boiled with water. Therefore, the water-soluble components in the flower are more 

likely related to its pharmacological properties. 

 Recently, preliminary data from our laboratory found that the water extract of 

chrysanthemum significantly inhibited growth of transplanted tumor in nude mice (Shen 

et al, unpublished data), suggesting that the aqueous components of chrysanthemum 

may have potent anti-tumor effects. More than 50 terpenoids, identified as the main 

components of volatile oil from chrysanthemum flower, were tested on their anti-tumor 

properties (Ukiya et al., 2002). However, the anti-tumor components in the water 

extract are yet to be determined.  

 In this chapter, we attempted to identify the major water soluble anti-tumor 

components of chrysanthemum based on bioactivity-driven HPLC-MS analysis. 
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2.2 MATERIALS AND METHODS 

2.2.1 Materials 

 Commercially available air-dried flower head of Chrysanthemum morifolium 

(commercial name: Hang Bai Jv) was obtained from Tong xiang city, Zhejiang 

Province, China. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide 

(MTT) and dimethyl formamide (DMF) were from Sigma (St. Louis, MO). Formic 

acid, ammonia solution and hydrochloric (HCl) acid were obtained from Merck 

(Darmstadt, Germany). All organic solvents and other chemical reagents used were 

analytical grade. 

2.2.2 Cell lines and cell culture 

 Human colorectal cancer cells HCT116 were purchased from the American 

Type Culture Collection (ATCC, Rockville, MD) and maintained in completed RPMI 

1640 medium supplemented with 10% fetal bovine serum (FBS), penicillin (100U/mL) 

and streptomycin (100 U/mL) at 37°C in 5% CO2. 

2.2.3 Extraction and fractionation 

 The flower head of chrysanthemum was pulverized by an electronic blender 

and kept airtight at 4OC for further use. 200g of the dried powder was boiled in 3000 

ml distilled water for 20 min and filtered through paper filter (Whatman). The same 

process was applied to the residue twice. The combined filtrate was concentrated to 

1400 ml using a rotary vacuum evaporator. 700 ml condensed filtrate was freeze-dried 

and resulted in crude water extract (Fraction A). Another 700 ml condensed filtrate 

was partitioned with 700 ml ethyl acetate (EtOAc) four times and freeze-dried 

(Fraction B), while the aqueous fraction was freeze-dried and then extracted three 

time with 250 ml 80% ethanol (EtOH). After concentrated by a rotary vacuum 
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evaporator and then freeze-dried, two fractions were obtained, the EtOH fraction 

(Fraction C), and water fraction (Fraction D) (Figure 2.1). 

2.2.4 Cytotoxicity assay  

 MTT assays were used to assess the cytotoxicity of various extracts on cancer 

cells as described previously (Yang et al., 1999). Briefly, HCT116 cells were plated 

on 96-well microplates (1 × 104 cells/well in 100 μL of medium) for 24 h. After 

discarding the medium, cells were then treated with various concentrations of extracts 

dissolved in RPMI 140 medium for 24 h. At the end of treatment, 25 μL of MTT (5 

mg/mL) was added to each well and incubated for a further 2 h. Finally, 100 μL of 

lysing buffer (50% DMF and 20% SDS, pH 4.6) was added to each well and 

incubated for another 2 h. The plate was finally read using a microplate reader (BIO-

RAD Model 3550) at a wavelength of 595 nm. Each assay was repeated 3 times. 

2.2.5 High-performance liquid chromatography-mass spectrum  

 The major components of ethyl acetate fraction were identified by reverse 

phase high performance liquid chromatography coupled with mass spectrometer (RP-

HPLC-MS). The ethyl acetate fraction was dissolved in methanol:acetic acid (95:5) 

and filtered through 0.5 μm filter before applying to HPLC-MS. Separation was 

performed on a Zorbax SB-C18 (5 μm) column (150 × 4.6 mm i.d.) from Agilent 

Technologies. The detectors are Finnigan MAT LCQ ion trap mass spectrometer 

equipped with an atmospheric pressure chemical ionization interface (APCI) and a 

diode array thermo separation product UV6000LP detector. Mobile phase: step 

gradient of 0.1% formic acid in water (A) and 0.1 % formic acid in acetonitrile (B) 

was used according to the following profile: 0–15 min, 100–77% A, 0–23 % B; 15–35 

min, 77 % A, 23 % B; 35-45 min, 77-66% A, 23-34 % B; 45-50 min, 25-0 % A, 75-

100 % B. The flow rate was 1.0 ml/min. Column temperature, controlled with a 
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column heater–cooler HP Series 1100 from Hewlett-Packard, was set at 35 °C. The 

mass scanning range of APCI detector was set in 50-1500. 

2.3. RESULTS 

2.3.1 Fractionation of chrysanthemum water extract 

 To determine the anti-tumor water-soluble components of chrysanthemum, we 

used a strategy applying a combination of bioactivity-directed fractionation and 

HPLC-MS analysis. First, we extracted the chrysanthemum flower powder using 

boiling water, which is to mimic the procedure of chrysanthemum tea preparation. 

The 200 g chrysanthemum flower power was boiled with water and half of them was 

freeze-dried and resulted in the crude water extract (Fraction A), which was about 38 

g (yielding rate 38 %) (Figure 2.1). Another half was sequentially partitioned into 

three fractions according to their polarity and resulted in EtOAc (Fraction B), EtOH 

(Fraction C) and final water extract (Fraction D). The EtOAc fraction was about 2 g 

(yielding rate 2 %) and was the minimal fraction. EtOH fraction and final water 

extract were about 5 g and 30 g, respectively.  

2.3.2 Cytotoxicity of each fraction 

 The cytotoxicity of each fraction was assessed using the MTT assay. As 

shown in Figure 2.2, the crude water extract showed a moderate cytotoxicity (IC50 = 

3.6 mg/ml) on HCT116 cancer cells. The EtOAc fraction showed a higher 

cytotoxicity (IC50 = 0.2 mg/ml), which is about ten times higher than using crude 

water extract. However, two other fractions, sequentially extracted from the leftover 

of EtOAc extraction, showed much lower cytotoxicities (IC50 > 5 mg/ml for EtOH 

fraction and IC50 > 8 mg/ml for final water fraction). These results suggest that the 

EtOAc fraction (Fraction B) contains the major anti-tumor components in the water 

extract of chrysanthemum. 
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Figure 2.1 Bioassay-directed fractionation from Chrysanthemum

The water extract of chrysanthemum was separated into four fractions, 
A, B, C and D. Details were described in Section 2.2.3
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Figure 2.2 Cytotoxicity of fractions from Chrysanthemum on human
colorectal cancer cells HCT116

HCT116 cells were treated with various fractions from chrysanthemum 
for 24 h. At the end of treatment, cell viabilities were determined by MTT 
assay. Cell viabilities were expressed as means of three experiments. A, 
crude water extract ; B, EtOAc fraction; C, EtOH fraction; D, final water 
fraction.
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2.3.3 Flavonoids are the major components in EtOAc fraction 

 Flavonoids are ubiquitious in many edible plants. They consist of two 

aromatic rings linked through three carbons. Most flavonoids in plant are present as 

flavonoid glycosides, aglycone with sugar substitution (Figure 1.2) (Ross and Kasum, 

2002). 

 A common method of flavonoid extraction is using ethyl acetate. In this study, 

EtOAc fraction was separated in a C18-HPLC column with a UV detector and a MS 

detector. HPLC is able to effectively separate various flavonoids under the specific 

conditions and mass spectrum and UV spectrum provides some structure information 

of each peak such as molecular weight, major stable ions and existence of phenol ring. 

A combination of HPLC separation and MS are useful in identification of flavonoids 

from a mixture (Stobiecki, 2000). Since the EtOAc fraction was originally from a 

water extract, it was separated in a reverse phase column using a gradient solution, a 

combination of water and acetonitrile, after optimization. Figure 2.3 shows that there 

are 13 major peaks. 

 The structure of each of the 13 peaks was identified according to the 

information provided by MS and UV and made reference to available literature (Hu et 

al., 1994; Liu et al., 2001; Lee et al., 2003; Hu et al., 2004). Mass spectrum provides 

important information about the peak, in particular the molecular weight. Increasing 

the voltage of APCI will result in more fragments and provide additional information 

about its possible structure. Take peak 2 (retention time 20.23 min) as an example, the 

mass spectrum using low collision energy of APCI showed two major peaks, m/z 449 

and m/z 287.5 (Figure 2.5A). Thus, m/z 449 is the molecular weight ion peak [M+H]+ 

and its molecular weight (MW) is 448. Higher collision energy of APCI caused the 

peak m/z 449 disappeared and only peak m/z 287.5 remained (Figure 2.5B). The loss 
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of 162 (from 449 to 287.5) is evidently due to the loss of a sugar residue (C6H12O6 - 

H2O = 162). Loss of 162 resulted in a stable structure m/z 287.5. According to 

literature (Hu et al., 2004), it is putatively considered as luteolin. UV spectrum 

confirmed the existence of a phenol ring (data not shown). According to the literature, 

the sugar is established as a glucose side chain (Hu et al., 2004; Hu and Kitts, 2004). 

Thus, peak 2 is luteolin glucoside. Figure 2.5C shows the conversion from peak m/z 

449 to m/z 287 under APCI. 

 Similarly, the putative structures of other peaks were identified based on their 

mass spectrum and earlier reports (Hu et al., 1994; Liu et al., 2001; Lee et al., 2003; 

Hu et al., 2004) (Figures 2.4-2.16). Peak 8 appears to be a mixture of two flavonoids, 

one is a baicalein glucuronide and another is a hesperetin glycoside. However, the 

latter contains an unknown group attached to glucose. The structure of a small peak 

(peak 4) was not identified. In this investigation, a total of 13 flavonoids from 12 

peaks were identified. 

 The 13 flavonoids of EtOAc fraction can be classified into five groups 

according to their aglycones (Figure 2.3). Four peaks are related to luteolin, including 

luteolin-rhamonosyl-glucoside (peak 1), luteolin-glucoside (peak 2), luteolin-

glucuronide (peak 3) and luteolin-methoxyl-glucoside (peak 7). Two peaks are 

apigenin glycosides; including apigenin-glucoside (peak 6) and apigenin-methoxyl-

glucoside (peak 10). There are three hesperetin glycosides, including hesperetin-

rhamonosyl-glucoside (peak 5), heperetin-glucuronide (peak 9) and heperetin-

methoxyl-glucoside (peak 8). Two peaks are baicalein glycosides, including 

baicalein-glucuronide (peak 8) and baicalein-methoxyl-glucoside (peak 12). The last 

group consists of two acacetin-glycosides, acacetin-rhmnosyl-glucoside (peak 11) and 

acacetin-glucoside (peak 13). 
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Figure 2.3 Flavonoids in the EtOAc fraction

The flavonoids in the EtOAc fraction are grouped into five groups, 
luteolin glycosides, apigenin glycosides, hesperetin glycosides, 
baicalein glycosides and acacetin glycosides. 
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Figure 2.4 Structure elucidation of peak 1, RT 18.31 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT18.31 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak 1 
and its conversion under APCI.

A

B

C
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Figure 2.5 Structure elucidation of peak 2, RT 20.23 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The Mass spectrums of the peak (RT20.23min) were shown 
in A and B. A, under low energy APCI; B, under high energy of 
APCI. C, Structure of peak 2 and its conversion under APCI

A

B

C
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Figure 2.6 Structure elucidation of peak 3, RT 21.22 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT21.22 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak 3 
and its conversion under APCI.

A

B

C

Luteolin-Glucuronide RT21.22 min

m/z 463 m/z 287

-Glucuro (176)
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Figure 2.7 Mass spectrum of peak 4, RT 22.79 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT22.79 were shown. A, under 
low energy APCI; B, under high energy of APCI.

A

B
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Figure 2.8 Structure elucidation of peak 5, RT 23.5 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT23.5 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak 5 
and its conversion under APCI.

A

B

C Hesperdin (Hesperetin-Glucoside-Rhamnoside)     RT 23.50 min 
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Figure 2.9 Structure elucidation of peak 6, RT 25.2 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT25.2 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak 2 
and its conversion under APCI

A

B

C
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Figure 2.10 Structure elucidation of peak 7, RT 23.18 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT23.18 min were shown. A, 
under low energy APCI; B, under high energy of APCI. Structure of 
peak 3 and its conversion under APCI.

A

B

C
Luteolin-(methoxyl)-Glucoside RT23.18min

m/z 491.1 m/z 287.4

- Methoxyl-Glu (204)
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Figure 2.11 Structure elucidation of peak 8, RT 21.22 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT21.22 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak 3 
and its conversion under APCI.

A B

C

m/z 447 Baicalin m/z 271 Baicalein

-Glucuronic (176)

Baicalin (Baicalein-7-O-D-Glucuronide)        RT 27.22 min

Hesperetin-Glycoside                                 RT 27.22 min D
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Figure 2.12 Structure elucidation of peak 9, RT 28.70 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT28.70 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak 9 
and its conversion under APCI.

A

B

C

m/z 477
m/z 301

-Glucuronic (176)

Hesperetin-7-D-O-Glucuronide     RT 28.70 min 
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Figure 2.13 Structure elucidation of peak 10, RT 33.20 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT33.20 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak
10 and its conversion under APCI.

A

B

C Apigenin-(Methoxyl)-Glucoside RT33.20min

-Methoxyl-Glu (204)

m/z 271.4m/z 475.2
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Figure 2.14 Structure elucidation of peak 11, RT 36.61 min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT36.61 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak
11 and its conversion under APCI.

A

B

C
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Figure 2.15 Structure elucidation of peak 12, RT 42.09min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT42.09 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak
12 and its conversion under APCI.

A

B

C
Baicalein-(Methoxyl)-Glucoside RT 42.09min

m/z 475.1 m/z 271.4

- Methoxyl-Glu(204)
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Figure 2.16 Structure elucidation of peak 13, RT 43.08min

EtOAc fraction was separated on reverse phase-HPLC and detected 
by APCI. The mass spectrum of peak RT43.08 were shown. A, under 
low energy APCI; B, under high energy of APCI. Structure of peak
13 and its conversion under APCI.

A

B

C
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2.4 DISCUSSION 

 Flavonoids are a group of phytochemicals ubiquitiously present in plants. It 

has been well documented that flavonoids possess certain anti-tumor effects, 

including flavonoids from tea (Brown, 1999; Hibasami, 2000; Kinjo et al., 2002), 

ginkgo biloba (Kim et al., 2005d), grape (Ye et al., 1999) and soybean (Kim et al., 

2004b) etc. In this study, the EtOAc extract of chrysanthemum was shown to have 

strong cytotoxicity on human cancer cells (Figure 2.2). 

 The components of this fraction were further identified using HPLC-MS and 

also made reference to various earlier reports (Hu et al., 1994; Liu et al., 2001; Lee et 

al., 2003; Hu et al., 2004). Twelve of the major peaks of this extract were identified 

as flavonoids (Figures 2.4-2.16). All are conjugated with either one or two sugar side 

chains. 

Several flavonoids, which have not been reported previously in 

chrysanthemum, are also detected in the present study. We found four luteolin 

glycosides (only 1 was reported previously), three hesperetin glycosides (2 were 

reported previously) and two baicalein glycosides (1 was reported previously). 

However, apigenin-(4'-caffeoyl)-glucuronide, which was reported earlier, was not 

found in the present study. Instead, apigenin-methoxyl-glucoside was detected. 

 In summary, the EtOAc extract was found to be the most potent in its 

cytotoxic effect on human cancer cells. The flavonoids in the EtOAc fraction can be 

divided into 5 groups according to their aglycones. They are glycosides of luteolin, 

apigenin, hesperetin, baicalein and acacetin. Among them, luteolin glycosides and 

apigenin glycosides are the two major components in chrysanthemum EtOAc extract. 
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3.1 INTRODUCTION 

 The flower heads of chrysanthemum have been used as an herbal medicine as 

well as a popular beverage for centuries. Recently, it has been shown that the water 

extract of chrysanthemum exerted significant anti-tumor properties (Shen et al., 

unpublished data). In order to find out the active components of chrysanthemum 

water extract, we obtained several fractions and then tested their cytotoxicity on 

human cancer cells (Figures 2.1 and 2.2). In the most potent EtOAc fraction, 13 

flavonoids were identified as the major components (Figure 2.17). Thus, it is believed 

that chrysanthemum flavonoids are the major anti-cancer components of 

chrysanthemum water extract.  

 The anti-tumor effects of flavonoids have been well studied and extensively 

reviewed (Harborne and Williams, 2000). Many of them are capable of inhibiting 

tumor growth and/or inducing cancer cell apoptosis, which is characterized by 

characteristic morphological and biochemical changes including cell shrinkage, 

nuclear fragmentation, chromatin condensation, membrane blebbing and formation of 

apoptotic bodies (Hengartner, 2000; Kaufmann and Hengartner, 2001). In the 

previous Chapter, chrysanthemum flavonoids was shown to possess strong 

cytotoxicity in cancer cells, however, it remains to be determined whether they are 

capable of inducing apoptotic cell death in cancer cells.  

 Another important issue closely related to the biological effect of flavonoids is 

absorption. Most flavonoids in plants are conjugated with sugar substitute, named 

flavonoid glycosides. Absorption of flavonoid glycosides has been thought to occur in 

intestine after hydrolysis into their algycone forms (Griffiths and Barrow, 1972). The 

hydrolysis can be processed by microorganisms in intestine or oral cavity (Walle et al., 

2005). Once this hydrolysis occurs, the aglycones are absorbed more efficiently. 
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Recently, it was reported that flavonoid glycosides can also be absorbed directly 

(Hollman et al., 1995). In contrary, intact flavonoid glycosides was not found in 

plasma (Sesink et al., 2001). As shown in Chapter 2, most of the chrysanthemum 

flavonoids are glycosides of the five main aglycones. Luteolin glycosides and 

apigenin glycosides are the two major groups of chrysanthemum flavonoids, therefore 

luteolin and apigenin were the main focus of the subsequent studies. 

The main aim of this chapter is to examine the anti-cancer property of 

chrysanthemum flavonoid extract and its major flavonoids, luteolin and apigenin. We 

found that chrysanthemum flavonoid extract (EtOAc fraction) and luteolin are strong 

inducers of apoptosis in colorectal cancer cell COLO205 via caspase activation.  

 

3.2 MATERIALS AND METHODS 

3.2.1 Regents and chemicals 

 Luteolin, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT), 4’,6-diamidino-2-phenylindole (DAPI), Propidium iodide (PI), RPMI 1640 

were obtained from Sigma (St. Louis, MO). Chrysanthemum flavonoid extract was 

prepared as described in Figure 2.1. Characterized Fetal Bovine Serum (FBS) was 

obtained from Hyclone (Logan,Utah). Apo-one Homogeneous Caspase-3/7 Assay Kit 

was obtained from Promega (Madison, WI). General caspase inhibitor z-VAD-fmk 

were purchased from Biomol (Plymouth Meeting, PA). Anti-caspase-3 antibody and 

CHAPS lysis buffer were purchased from Cell Signaling (Beverly, MA). Anti-PARP 

antibody was purchased from Pharmingen (San Diego, CA). 

3.2.2 Cell lines and cell culture 

 Human colorectal cancer cells COLO205, HCT116 and HT29 were obtained 

from American Type Culture Collection (ATCC). COLO205 cells were routinely 
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maintained at 37° C in RPMI 1640 medium containing 10% filter-inactivated fetal 

bovine serum (FBS) in an atmosphere containing 5% CO2. HCT116 and HT29 were 

maintained in McCoy 5A medium. 

3.2.3 Assessment of cell viability using MTT assay 

 Cell growth was assessed by a MTT assay as described previously in Chapter 

2 (Section 2.2.4) 

3.2.4 Assessment of apoptosis using DAPI staining 

 The cells undergoing apoptosis were evaluated by chromatin condensation and 

nuclear shrinkage using 4’,6-diamidino-2-phenylindole (DAPI) staining (Fuentes et 

al., 2003). After various designated treatments, medium was removed and cells were 

fixed with 70% ethanol at room temperature for 10 min. Cells were then stained with 

0.3 μg/mL DAPI (in PBS) at room temperature for 10 min and visualized under an 

inverted fluorescence microscope and photographed.  For quantification, 200 cells 

were counted and the percentage of apoptotic cells was calculated. 

3.2.5 Assessment of DNA content using flow cytometry.  

 After treatment, all cells were collected by trypsinization and fixed with ice-

cold 70% ethanol. Before subject to flow cytometry, ethanol was removed from the 

fixed cells and then the cells were stained with 0.5 ml propidium iodide solution for 

30 min at room temperature. 10,000 cells were counted by flow cytometer (Coulter 

Epics Elite ESP, Miami, FL, USA) using a filter with 488 nm excitation and 610 nm 

emission.  

3.2.6 Caspase 3-like activity assay 

 Apo-one homogeneous caspase-3/7 assay kit (Promega) was used to measure 

the caspase 3-like activity according to manufacturer’s protocol. Briefly, cells were 

plated on 96-well microplates. At the end of designated treatments, z-DEVD-
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Rhodamine 110 was added into the cells as substrate and continued the incubation at 

37°C for 1 h. The fluorescence intensity was then recorded using a spectrofluorimeter 

(Tecan) at excitation 485 nm and emission 535 nm. Cells treated by TNF (10ng/ml) 

with ActD (1 μg/ml) pretreatment were used as a positive control. 

3.2.7 Western blotting 

 PARP cleavage and procaspase 3 cleavage were detected by western blotting. 

Equal amount of proteins were fractionated on SDS-polyacrylamide gel in the Mini-

PROTEAN II system (Bio-Rad) and blotted onto PVDF membrane (Millipore). After 

blocked with 5% nonfat milk in TBST (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 

0.1% Tween 20), the membrane was probed with various antibodies and developed 

with enhanced chemiluminescence (Pierce) using a Kodak Image Station (Kodak). 

 

3.3 RESULTS 

3.3.1 Cytotoxicity of chrysanthemum flavonoids on human cancer cells. 

 In Chapter 2, an EtOAc fraction was obtained from chrysanthemum water 

extract (Figure 2.1) and flavonoids have been identified as its major components 

(Figure 2.17). Further, our data showed the flavonoid fraction (Fraction B) exerted 

higher cytotoxicity than other fractions of chrysanthemum water extract (Figure 2.2), 

suggesting that flavonoids are the cytotoxic components of the chrysanthemum water 

extract. Here we aimed to further examine the cytotoxic effect of chrysanthemum 

flavonoids on various human cancer cell lines. As shown in Figure 3.1, the EtOAc 

fraction rich in chrysanthemum flavonoids exerted significant cytotoxicity on three 

human colorectal cancer cells HCT116, COLO205 and HT29.  
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3.3.2 Chrysanthemum flavonoid extract induces apoptosis in cancer cells 

 To examine whether the cytotoxicity of chrysanthemum flavonoids are due to 

induction of apoptosis, we then checked the morphological changes of HCT116 after 

24 h treatment with 0.25 mg/ml chrysanthemum flavonoids. Under a normal light 

microscope, we observed that most cancer cells rounded up after treatments (upper 

panel of Figure 3.2A). Using DAPI staining, which specifically stains DNA, we could 

see that a large portion of cells showed a chromatin condensation (lower panel of 

Figure 3.2A). The above data were quantified and presented in Figure 3.2B, 

chrysanthemum flavonoids induced around 60% and 90% apoptosis at 0.25 mg/ml 

and 0.5 mg/ml, respectively, which is consistent with the dose response pattern of the 

cytotoxicity detemined by MTT assay (Figure 3.1). Significant apoptosis was also 

observed in COLO205 and HT29 cells after the Fraction B treatment (data not shown). 

3.3.3 Chrysanthemum flavonoid causes apoptosis by inducing a caspase cascade  

 Caspases are the major executors of apoptosis (Strasser et al., 2000). To test 

whether the apoptosis induced by chrysanthemum flavonoids was through caspase 

activation, we then examined the caspase-3 activation as well as the cleavage of its 

substrate protein PARP using Western blot in HCT116 cells. The caspase-3 as well as 

PARP was cleaved significantly in cells treated with chrysanthemum flavonoids at 

0.25 mg/ml and 0.5 mg/ml (Figure 3.3).  

 More importantly, the cleavage of caspase-3 and PARP induced by 

chrysanthemum flavonoids were completely prohibited by a general caspase inhibitor, 

z-VAD-fmk (Figure 3.3), suggesting that the apoptosis induced by chrysanthemum 

flavonoids was mediated via caspase activation. 
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Figure 3.1 Cytotoxicity of EtOAc extract on human colorectal cancer cells

Human cancer cell HCT116, COLO205 and HT29 were plated on 96-well 
plates. After 24 h, the cells were treated with indicated concentration of EtOAc
extract for 24 h. At the end of treatment, cell viabilities were determined by 
MTT assay. Cell viability was expressed as means of three experiments ± SE
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Figure 3.2 EtOAc extract induces apoptosis in cancer cells HCT116

A, HCT116 cells were treated with 0.5 mg/ml EtOAc fraction for 24 h, cells 
were observed under a light microscope directly (upper panel) or under UV 
after DAPI staining (lower panel); B, HCT116 cells were treated with 
indicated concentration of EtOAc fraction for 24 h, apoptotic cells were 
counted after DAPI staining.
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EtOAc Extract (mg/ml)     0        0.063     0.125      0.25        0.5         0.5
Z-VAD-fmk                         - - - - - +

PARP

Pro-Caspase 3

Cleaved caspase 3

Tubulin

Figure 3.3 EtOAc extract causes apoptosis by inducing caspase
cascade in HCT116

HCT116 cells were treated with indicated concentration of EtOAc fraction 
for 24 h, cells were collected for Western blotting using anti-caspase-3 
and anti-PARP antibody. Tubulin was used as loading control 

Cleaved PARP
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3.3.4 Cytotoxicity of luteolin and apigenin in human cancer cells. 

 Our chemical assay shows only flavonoid glycosides are detected in the 

EtOAc fraction, with apigenin and luteolin as the major components. Physiologically, 

when ingested the sugar moiety of their glycosides are also likely to be removed by 

colonic bacteria and left with the aglycones. We then tested the cytotoxicity of 

luteolin and apigenin, the two major flavonoid aglycones in chrysanthemum, on 

several human colorectal cancer cell lines using the MTT assay. Both of them showed 

significant cytotoxicity in all three cancer cell lines in a concentration-dependent 

pattern (Figure 3.4). Interestingly, both of them showed stronger cytotoxicity in 

COLO205 and HCT116 cells than in HT29 cells, similar to the cytotoxicity effect of 

the chrysanthemum flavonoids extract (Figure 3.1). To be noted, luteolin showed 

stronger cytotoxicity than apigenin in all three cell lines, especially on COLO-205 

cells. Therefore in the subsequent studies we decided to focus on the anti-tumor 

properties of luteolin. 

3.3.5 Luteolin induces apoptosis in COLO205 but not in HCT116 and HT29 cells. 

 We next tested whether luteolin exerts its cytotoxicity through induction of 

apoptosis in all three cancer cell lines. Since the COLO205 cells are semi-adherent, 

we had to use flow cytometry after propidium iodide staining, instead of DAPI 

staining, to quantify the extent of apoptosis. Cells undergoing apoptosis will lose 

DNA fragments after fixation and washing. So, the hypodiploid proportion (sub-G1) 

is generally regarded as apoptotic cells (Yang et al., 2000a). As shown in Figure 3.5A, 

luteolin induced apoptosis in COLO205 cells in a dose-dependent pattern. Luteolin at 

40 μM induced more than 70% apoptotic cell death after 24 h. Under a normal light 

microscope, COLO205 cells were undergoing typical apoptosis, as judged by the cell 

shrinkage and formation of apoptotic bodies (Figure 3.6).  
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 To our surprise, luteolin treatment, even at higher doses, was unable to induce 

evident apoptosis in both HCT116 and HT29 cells (Figure 3.5B), suggesting that 

other mechanism may be involved in the cytotoxicity in these two cells. The 

molecular mechanisms involved in the cytotoxicity of luteolin on these two cell lines 

remain to further be elucidated.  

 To confirm the form of cell death induced by luteolin in COLO205 cells, we 

then tested the changes of a typical apoptosis marker, PARP cleavage. Figure 3.7A 

showed that luteolin caused significant PARP cleavage in a dose-dependent manner. 

The time course data showed that the cells started to undergo apoptosis after 18 h. 

(Figure 3.7B) 

3.3.6 Luteolin induced apoptosis in COLO205 by activating caspase-3  

 To examine whether caspase activation is involved luteolin-induced apoptosis, 

we used western blot to detect the activation of caspase-3. As shown in Figure 3.8, 

two cleaved bands (21 kDa and 17 kDa), the active forms of caspase-3, were detected 

after 18 h and 24 h treatment with luteolin. In addition, Apo-ONE caspase 3/7 

homogenous assay kit was used to detect the caspase-3-like activity. Significant 

caspase-3-like activity was detected after 18 h treatment by luteolin at 40 μM (Figure 

3.9), which was consistent with the temporal pattern of caspase-3 cleavage (Figure 3.8) 

and apoptotic cell death (Figure 3.5A). 

 Next, we pretreated the cells with a general caspase inhibitor, z-VAD-fmk and 

found that the percentage of sub-G1 cells measured by flow cytometry was almost 

completely blocked by z-VAD (Figure 3.10). In addition, z-VAD-fmk could also 

inhibit cell shrinkage and formation of apoptotic bodies induced by luteolin (data not 

shown).  Therefore, it is believed that luteolin induces apoptosis in COLO205 cells 

through activating caspases.  
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Figure 3.4 Cytotoxicities of luteolin and apigenin in human cancer cells
Human cancer cell HCT116 (A), COLO205 (B) and HT29 (C) were plated on 
96-well plates. After 24 h, the cells were treated with indicated concentration of 
apigenin or luteolin for 24 h. At the end of treatment, cell viabilities were 
determined by MTT assay. Cell viability was expressed as means of three 
experiments ± SE
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Figure 3.5 Luteolin induces apoptotic cell death in COLO205 cells but 
not in HCT116 or HT29 cells

COLO205, HCT116 and HT29 cells were plated on 24-well plates for 24 
hours prior to various treatments by luteolin. At the end of treatment, cells 
were collected by trypsinization, fixed with ice-cold 70% ethanol and 
stained with PI solution. Samples were subject to flow cytometry and 
10,000 cells were counted.
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Figure 3.6 Morphological change of COLO205 after luteolin 
treatment

COLO205 cells were treated with 40 μM luteolin for 24 h, cells 
were observed under a light microscope.

Control Luteolin
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Figure 3.7 Luteolin induces PARP cleavage time- and dose-
dependently in COLO205 cells

A, COLO205 cells were exposed to various concentration of luteolin for 
24 h; B, COLO-205 Cells were exposed to 40 μM luteolin for indicated 
periods. Cells were collected for Western blotting. Anti-PARP antibody 
was used to detected both PARP (116 kD) and cleaved PARP (85 kD). 
ActD (1 μg/ml) with TNF (10 ng/ml) was used a positive control.
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Lu (h)           0         6        12       18         24      -
ActD+TNF +

Pro-caspase-3

Active 
Caspase-3

Actin

Figure 3.8 Luteolin induces caspase-3 cleavage in COLO205 cells

COLO205 cells were exposed to 40 μM luteolin for indicated periods 
and collected for Western blotting. Anti-caspase-3 antibody was used 
to detected both pro-caspase-3 PARP (32 kD) and cleaved caspase-3 
(21and 17 kD). ActD (1 μg/ml) with TNF (10 ng/ml) was used a 
positive control. and actin was used as loading control.
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Figure 3.9  Luteolin activates caspase-3 like activity in COLO205 

COLO205 cells were exposed to 40 μM luteolin for indicated periods and 
subject to caspase-3 like activity assay using Apo-one caspase-3 assay kit. 
Cells treated with ActD (1 μg/ml) and TNF (10 ng/ml) was used a positive 
control.
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Figure 3.10 z-VAD-fmk inhibits cell death induced by luteolin 
in COLO205 cells

COLO205 cells were pretreated with z-VAD-fmk (25 μM) for 30 
min before exposure to 40 μM luteolin for 24 h. Cells were then 
collected for detection of apoptosis using flow cytometry after PI 
staining.

0

20

40

60

80

A
po

pt
ot

ic
 c

el
ls

 %



 91

3.4 DISCUSSION 

 In the previous Chapter, we found that flavonoids were the major cytotoxic 

components from water extract of chrysanthemum. In this Chapter, we further 

investigated their cytotoxicity in several cancer cell lines and the mechanisms 

involved. 

 We first tested the EtOAc extract (Fraction B), a mixture of flavonoids, on 

several colorectal cancer cells. We found that this fraction at 0.25 mg/ml or 0.5 mg/ml 

showed significant cytotoxicity in all three cancer cell lines studied (Figure 3.1). Its 

cytotoxicity is similar to that of several other plant flavonoid extracts, such as ginkgo 

biloba extract (EGb761) (Kim et al., 2005d) or grape seed extract (Ye et al., 1999) 

and soybean extract (Kim et al., 2004b), although their compositions are different. 

Further studies showed that the flavonoid extract induced apoptosis in these cancer 

cells, as evidenced by chromatin condensation and PARP cleavage (Figure 3.2). The 

inhibition of a caspase inhibitor on the apoptosis further proved that the apoptosis was 

through activating caspases (Figure 3.3). 

 To be noted, the EtOAc extract exerted higher cytotoxicity in wild type p53 

cancer cells HCT116 and COLO205 than in mutant p53 cells HT29 (Figure 3.1). 

Similar results were found when luteolin and apigenin, the two major flavonoids of 

chrysanthemum, were tested (Figure 3.4). Therefore, it appears that the cytotoxic 

effect of chrysanthemum flavonoids requires the presence of a functional p53.  

 Although luteolin and apiginin are similar in their structure (luteolin contains 

one more hydroxyl group than apigenin, Figure 1.3), luteolin showed higher 

cytotoxicity than apignin in all three cell lines, especially in COLO205 cells (Figure 

3.4). In addition, as suggest by Figure 2.3, the concentration of luteolin glycosides 

was higher that that of apigenin glycosides in chrysanthemum. Therefore, it is 
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believed that luteolin plays a more important role in the anti-cancer potential of 

chrysanthemum, a fact that leads us to focus on luteolin in our subsequent studies.  

 Data from this part of our study confirmed that luteolin is capable of inducing 

apoptosis in COLO205 cells as evidenced by DNA fragmentation, PARP cleavage 

and formation of apoptotic bodies (Figures 3.5, 3.6 and 3.7). The apoptosis was 

through activating caspases as it was completely inhibited by a pan-caspase inhibitor, 

z-VAD-fmk (Figure 3.8). Such a finding is basically consistent with some earlier 

reports in which luteolin can induce apoptosis in several cancer cell lines, including 

human epidermoid carcinoma A431(Huang et al., 1999b), human leukemia HL-60 

(Ko et al., 2002; Cheng et al., 2005a) and U937 (Monasterio et al., 2004), pancreatic 

tumor cell MiaPaCa-2 (Lee et al., 2002). Interestingly, luteolin fails to induce 

apoptosis in HCT116 or HT29 cells (Figure 3.5), although the growth of both cancer 

cells was inhibited by luteolin (Figure 3.4). It is thus believed that luteolin may exert 

anti-cancer effects in various cancer cells via different mechanisms. 

 In summary, we found that both the flavonoids extract of chrysanthemum and 

luteolin, one of the major flavonoid aglycones of chrysanthemum, can induce 

apoptosis in cancer cells by activating caspases. Such a finding lays a foundation for 

further study on the cancer therapeutic potential of luteolin. 
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4.1 INTRODUCTION 

Tumor necrosis factor (TNF) is a proinflammatory cytokine with a wide 

spectrum of functions in many biological processes, including cell growth and cell 

death, development, oncogenesis, immunity, inflammatory and stress responses 

(Tracey and Cerami, 1993). The bioactivities of TNF are mainly elicited by TNF 

receptor 1 (TNFR1), via the following three distinct signaling pathways: (i) NF-κB, (ii) 

mitogen-activated protein kinase c-Jun N-terminal kinase (JNK), and (iii) a caspase 

cascade (Chen and Goeddel, 2002). Upon TNF binding, the trimerized TNFR1 first 

recruits a key adaptor protein TNF receptor-associated death domain (TRADD), 

which then binds to cytosolic proteins such as receptor-interacting protein (RIP), TNF 

receptor-associated factor 2 (TRAF2) and Fas-associated death domain (FADD). It 

has been well established that the recruitment of FADD into the signaling complex 

leads to the activation of a caspase cascade and apoptosis (Chinnaiyan et al., 1995; 

Yeh et al., 1998). On the other hand, the recruitment of RIP and TRAF2 results in the 

activation of NF-κB which mainly functions as a cell survival mechanism to protect 

cells against TNFα-induced apoptotic cell death (Ting et al., 1996; Reinhard et al., 

1997; Kelliher et al., 1998). As TNFα activates both cell death and cell survival 

pathways simultaneously, most cancer cells are resistant to TNFα-induced apoptosis 

and thus inhibition of NF-κB activation becomes a popular strategy to enhance the 

sensitivity of cancer cells to apoptosis mediated by TNF family proteins (Baldwin, 

2001; Yamamoto and Gaynor, 2001). 

NF-κB is a ubiquitous transcription factor consisting of heterogenous dimeric 

proteins containing a Rel homology domain (Karin and Delhase, 2000). In resting 

cells, NF-κB binds to inhibitor of κB (IκB) proteins and localizes in cytoplasm. In 

response to TNFα-TNFR1 ligation, the activated IκB kinase (IKK) phosphorylates 
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IκB, which results in the degradation of IκB through ubiquitination. The released NF-

κB then translocates from cytoplasm to nuclei and binds to the promoter regions of its 

target genes to regulate the gene expression. A number of genes such as A20, IAPs, 

cellular FLICE inhibitory protein (c-FLIP), TRAF1 and TRAF2 have been identified 

as NF-κB-regulated anti-apoptotic genes (Krikos et al., 1992; Wang et al., 1998; 

Micheau et al., 2001). In contrast to the well-established anti-apoptotic role of NF-κB, 

the exact function of JNK in TNF-mediated apoptosis remains largely controversial 

(Liu et al., 1996; Natoli et al., 1997). Recently it has been demonstrated that 

prolonged JNK activation by the suppression of NF-κB activity promotes TNFα-

induced apoptosis (De Smaele et al., 2001; Tang et al., 2001). It appears that the exact 

function of JNK in TNF-induced apoptosis depends on a number of factors such as 

cell type and/or the presence of other signaling pathways such as NF-κB activation 

(Karin and Lin, 2002). 

Flavonoids are a group of natural polyphenolic compounds widely distributed 

in the plant kingdom. The bioactivities of flavonoids have been extensively studied, 

including their antioxidant, anti-inflammatory and anti-cancer activities (Ross and 

Kasum, 2002). The anti-cancer activity of flavonoids has been well proven in 

epidemiological investigation and in animal studies (Birt et al., 2001;Yang et al., 

2001). Luteolin, 3’, 4’, 5, 7-tetrahydroxyflavone, is a flavonoid which is commonly 

found in many types of fruits and vegetables. We have previously identified luteolin 

as one of the major chrysanthemum flavonoids, which are responsible for the 

anticancer effects of chrysanthemum (Chapter 2). We then proved that luteolin can 

suppress the growth of several cancer cell lines (Chapter 3). It has been reported that 

luteolin can inhibit LPS-induced NF-κB activation in fibroblasts or macrophages 

(Xagorari et al., 2002; Kim et al., 2003b). As inhibition of NF-κB activation becomes 
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a popular strategy to enhance the sensitivity of cancer cells to the apoptosis mediated 

by TNF family proteins (Baldwin, 2001; Yamamoto and Gaynor, 2001), we naturally 

ask whether luteolin can synergistically enhance TNF-induced apoptosis in cancer 

cells. 

 In this chapter, we reported that luteolin significantly sensitizes TNFα-induced 

apoptosis in a number of human cancer cell lines. Such sensitization is closely 

associated with its inhibitory effect on NF-κB activation, resulting in down-regulation 

of some key anti-apoptotic genes such as A20 and c-IAP1. Luteolin pretreatment also 

leads to augmented and prolonged JNK activation induced by TNFα, a process that is 

proven to be critical in the sensitization effect of luteolin to TNFα-induced apoptosis.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Cell culture and treatment. 

 Human colorectal cancer cells COLO205, HCT116 were obtained from ATCC 

and maintained in RPMI1640 medium (Sigma) supplemented with 10% fetal bovine 

serum (FBS) (Hyclone) and antibiotics. Human cervix cancer cells HeLa (from ATCC) 

were maintained in Dulbecco’s modified Eagle’s medium (Sigma) containing 10 % 

fetal bovine serum and antibiotics. Treatment details with luteolin (Sigma) and TNFα 

(Sigma) were illustrated in figure legends. 

4.2.2 Measurement of cell death and apoptosis 

 Percentage of the hypodiploid cells or sub-G1 cells were measured as a 

general parameter for cell death as described previously (Yang et al., 2000a). Various 

approaches were used to assay the specific parameters of apoptosis, including (i) 

poly(ADP-ribose) polymerase (PARP) cleavage by Western blot; (ii) DNA 

fragmentation using agarose gel electrophoresis (McGahon et al., 1995) and (iii) 
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morphological changes after cells were stained with acridine orange (AO) and 

ethidium bromide (EB) (Lin et al., 1999).  

4.2.3 Caspase 3-like and caspase-8 activity assay 

 Apo-one homogeneous caspase-3/7 assay kit (Promega) was used to measure 

the caspase 3-like activity according to manufacturer’s protocol. Briefly, cells were 

plated on 96-well microplates. At the end of designated treatments, z-DEVD-

Rhodamine 110 was added into the cells as substrate and continued the incubation at 

37°C for 1 h. The fluorescence intensity was then recorded using a spectrofluorimeter 

(Tecan) at excitation 485 nm and emission 535 nm. For the measurement of caspase 8 

activity, cells were collected, pelleted and lysed in lysis buffer (10 mM Hepes, pH 7.4, 

42 mM KCl, 5 mM MgCl2, 1 mM DTT, and 0.1% Triton X-100). The whole cell 

lysate containing 50 μg protein was incubated with 5 µM Ac-IETD-AMC (Biomol) in 

a total volume of 200 µl of reaction buffer (50 mM HEPES, pH 7.0, 10% glycerol, 

0.1% CHAPS, 2 mM EDTA, 2 mM dithiothreitol) at 37°C for 1 h. The fluorescence 

intensity of released AMC was then quantitated using a spectrofluorimeter (excitation 

390 and emission 510 nm). Caspase activities were presented as relative values of the 

fluorescence intensity over the control group. 

4.2.4 Transient transfection  

 HeLa cells were transiently transfected with either pcDNA (Clontech), myc-

A20 (kindly provided by Dr. A Ting, Mount Sinai School of Medicine, NY), HA-c-

IAP1, CrmA, or dominant negative forms of both HA-JNKK1 and HA-JNKK2 

(kindly provided by Dr. ZG Liu, NIH), using the Lipofectamine transfection reagent 

(Invitrogen). A red fluorescent protein expression vector (pDsRed, Clontech) was co-

transfected as a transfection marker. After 24 h of transfection, the cells were 

pretreated with luteolin (40 μM × 2 h) followed by TNFα (15 ng/ml × 24 h). Cell 
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death was determined by morphological changes examined under an inverted 

fluorescent microscope. 

4.2.5 NF-κB luciferase reporter assay 

 COLO205 cells were transiently transfected with the NF-κB-dependent 

luciferase reporter construct and β-gal construct (Clontech) using the Lipofectamine 

and PLUS transfection reagent according to the manufacturer's protocol (Invitrogen). 

Luciferase activity was determined using the luciferase assay system (Promega) and 

normalized with the-galactosidase enzyme activity for transfection efficiency.  

4.2.6 Preparation of whole cell lysate, cell fractionation, immunoprecipitation 

and western blot 

 Whole cell lysate was obtained using M2 lysis buffer (20 mM Tris, pH 7.4, 

0.5% NP-40, 250 mM NaCl, 3 mM EDTA, 3 mM EGTA, 2 mM dithiothreitol, 0.5 

mM phenylmethylsulfonyl fluoride, 20 mM β-glycerol phosphate, 1 mM sodium 

vanadate, and 1 µg/ml leupeptin) (Wu et al., 2002). Cytosol and nuclear fractions 

were prepared based on a protocol described previously (Kim et al., 2003b). The 

immunoprecipitation experiment was performed using CBP antibody for detecting 

CBP−p65 interaction, based on a report method (Hehner et al., 1998). For Western 

blot, equal amount of proteins were fractionated on SDS-polyacrylamide gel in the 

Mini-PROTEAN II system (Bio-Rad) and blotted onto PVDF membrane (Millipore). 

After blocked with 5% nonfat milk in TBST (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 

0.1% Tween 20), the membrane was probed with various antibodies and developed 

with enhanced chemiluminescence (Pierce) using a Kodak Image Station (Kodak). 

4.2.7 Electrophoretic Mobility Shift Assay (EMSA) 

 The DNA binding activity of nuclear proteins was tested according to 

established method with modifications (He and Ting, 2002). NF-κB consensus 
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oligonucleotides (5’-AGTTGAGGGGACTTTCCCAGGC-3’ and 3’-

TCAACTCCCCTGAAAGGGTCCG-5’) (Promega) were labeled with p32-γATP 

using T4 kinase (Invitrogen). Equal amounts of nuclear protein (5 μg) were incubated 

with 100,000 cpm labeled NF−κB oligonucleotides in 5 × reaction buffer (100 mM 

HEPES/KOH, pH 7.9, 20% glycerol, 1 mM dithiothreitol, and 300 mM KCl) for 30 

min at room temperature, in the presence of 2 μg poly(dI-dC) and 2 μg bovine serum 

album in a total volume of 20 μl. The DNA-protein complexes were resolved on a 5% 

polyacrylamide gel. Gels were then dried and exposed to an X-ray film (Kodak) at –

80°C overnight. 

4.2.8 RNA extraction and RT-PCR 

 RNA extraction was carried out using a total RNA extraction kit (Purescript), 

following the instructions from the manufacturer. Five μg of total RNA from each 

sample were subjected to reverse transcription using M-MLV reverse transcriptase 

(Promega). For PCR, the amplification reaction was carried with 200 pmol of each 

primer, 200 μM of each dNTPs, and 0.5 units of Tag DNA polymerase II (Promega). 

The PCR conditions were optimized to achieve exponential amplification in which the 

PCR product formation is proportional to the starting cDNA. The primers of human 

A20 (Sonoda et al., 2000), c-IAP1, c-IAP2 (Petak et al., 2000), c-FLIPL, c-FLIPS 

(Mafune et al., 1999) and glyceraldehydes-3-phosphate dehydrogenase (G3PDH) 

(Denecker et al., 2001) were based on literature. After PCR, products were size 

fractionated using 1.8% agarose gel and visualized by ethidium bromide staining. 

4.2.9 Statistical Analysis 

 The numeric data are presented as mean ± SD from at least three sets of 

independent experiments and were examined using student’s t test. p < 0.05 was 

considered statistically significant. 
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4.3 RESULTS 

4.3.1 Luteolin sensitizes TNFα-induced cell death in cancer cells 

 Majority of cancer cells are resistant to TNFα without the blockage of gene 

transcription and de novo protein synthesis. In this study, human colorectal cancer 

COLO205 cells were found to be resistant to TNFα-induced cytotoxicity, as 

demonstrated by the lack of sub-G1 cells determined using flow cytometry (Figure 

4.1). Similarly, no evident cell death was observed when cells were treated with 

luteolin alone (40 μM × 12 h). We next tested the combined effect of luteolin and 

TNFα and discovered that pretreatment with luteolin (40 μM × 2 h) greatly sensitized 

and accelerated COLO205 cells to TNFα-induced cell death. As shown in Figure 4.1, 

more than 60% of cell death occurred as early as 6 h with luteolin plus TNFα. The 

sensitizing effect of luteolin on TNFα-induced cell death was also found to be dose-

dependent. Similar sensitization effect by luteolin was also found in another human 

colorectal cancer cells HCT116 and human cervix cancer HeLa cells (Figure 4.1), 

suggesting that the sensitization of luteolin to TNFα -induced cell death may apply to 

a wide spectrum of cancer types. Furthermore, we noted that the sequence of 

treatment is important. No sensitization was found when luteolin was added 2 h after 

TNFα exposure (luteolin post-treatment) (Figure 4.2), indicating that the sensitization 

effect by luteolin is probably achieved through the blockage of certain cell survival 

signals elicited by TNFα. 
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Figure 4.1 Luteolin pretreatment sensitizes TNFα-induced cell death in 
cancer cells.

Cells were pretreated with indicated concentrations of luteolin for 2 h, followed 
by TNFα (15 ng/ml) for another period of time (6 h for COLO205, or 24 h for 
HeLa and HCT116 cells). Cell death was determined by the percentage of sub-
G1 cells as described in Materials and Methods. Data are presented as means ±
SD from at least 3 independent experiments. * p<0.05 comparing to their 
respective non-treated control group  (student's t test).
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Figure 4.2 Effect of luteolin treatment sequence on sensitization.

In COLO205 cells, luteolin was administered either 2 h before (pre-
treatment) or after (post-treatment) TNFα (15 ng/ml) exposure, then 
continued the culture for another 4 h. Cell death was determined by the 
percentage of sub-G1 cells as described in Materials and Methods. Data 
are presented as means ± SD from at least 3 independent experiments. * 
p<0.05 comparing to their respective non-treated control group; # p<0.05 
comparing to the pre-treatment group. 
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4.3.2 Luteolin sensitizes TNFα-induced cell death through apoptosis 

 To further investigate the apoptosis induced by luteolin and TNFα, we then 

examined the morphological changes using AO/EB staining under a fluorescent 

microscope (Salghetti et al., 1999). In COLO205 cells combined treatment of luteolin 

and TNFα resulted in evident cell shrinkage, cell membrane blebbing, chromatin 

condensation, and formation of apoptotic body at the early stage of cell death (data 

not shown), indicating that luteolin plus TNFα induces typical apoptotic cell death in 

this cell line. To confirm the above observations, we further analyzed two 

biochemical hall-markers of apoptosis: PARP cleavage and DNA fragmentation. 

While neither luteolin nor TNFα alone caused PARP cleavage or DNA fragmentation, 

luteolin pretreatment caused PARP cleavage (Figure 4.3A) and DNA fragmentation 

(Figure 4.3B) in cells treated with TNFα in a dose-dependent manner. The extent of 

these changes was comparable to cells treated with actinomycin D (ActD) plus TNFα. 

It is well known that ActD and cycloheximide (CHX) are general gene transcription 

and de novo protein synthesis inhibitors, respectively, which enhance TNFα-induced 

cell death via unspecific blockage of anti-apoptotic gene expression. To test whether 

luteolin acts through a similar mechanism, we examined the changes of the protein 

level of c-myc, a short half-life protein in the cell (Strasser and Newton, 1999). As 

shown in Figure 4.4, ActD and CHX but not luteolin reduced the c-myc protein 

content, indicating that luteolin is not a general gene expression inhibitor, but may act 

via other mechanisms.  
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Figure 4.3 Luteolin and TNFα induce typical apoptosis in COLO205 
cells. 

COLO205 cells were pre-treated with indicated concentrations of luteolin 
for 2 h followed by TNFα (15 ng/ml) treatment for additional 6 h. ActD (1 
μg/ml) pretreatment (1 h) was used as a positive control in both 
experiments. PARP cleavage was detected by Western blot (A). DNA
fragmentation was examined by agarose gel electrophoresis (B).
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Figure 4.4 Effect of luteolin on c-myc protein level in 
COLO205 cells.

Changes of c-myc protein level in COLO205 cells treated with 
luteolin (40 μM), ActD (1 μg/ml) or CHX (10 ng/ml) for 6 h was 
detected by Western blot. The content of tubulin was used as a 
loading control.
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4.3.3 Luteolin-induced sensitization to TNFα is associated with enhanced 

caspase-8 activation 

 Caspase activation is the central machinery in apoptosis and TNFα mediates 

apoptotic cell death via the cell death receptor pathway initiating from caspase-8 

activation (Baldwin, 2001; Yamamoto and Gaynor, 2001). In this study, no caspase-8 

activation was found in COLO205 cells treated with either luteolin or TNFα alone, 

while luteolin pretreatment markedly enhanced caspase-8 cleavage as well as caspase-

8 activity in TNFα-treated cells (Figures 4.5 and 4.6). Similar pattern was also 

observed in subsequent activation of caspase-3. To confirm the role of such a caspase 

cascade in apoptosis mediated by luteolin plus TNFα, we tested the effect of a specific 

caspase-8 inhibitor (z-IETD-fmk) as well as a general caspase inhibitor (z-VAD-fmk) 

on cell death induced by luteolin plus TNFα. Both inhibitors effectively blocked cell 

death (Figure 4.7), PARP cleavage (Figure 4.8 upper panel) and DNA fragmentation 

(Figure 4.8 lower panel) in cells treated with luteolin plus TNFα, in concomitant with 

caspase-8 and caspase-3 inhibition (Figure 4.5). Similar results were also found in 

HeLa cells and HCT116 cells treated with luteolin plus TNFα (data not shown). These 

results thus indicate that the apoptosis induced by luteolin plus TNFα is mediated via 

a caspase cascade initiated from caspase 8 activation.  
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Figure 4.5 Effect of luteolin and TNFα on caspase.

COLO205 cells were pretreated with 40 μM luteolin for 2 h and then 
treated with TNF (15 ng/ml) for indicated hours. Cells were collected 
for detection of caspase-8 and caspase-3 activation by specific anti-
caspase-8 and caspase-3 antibodies (Cell Signaling), recognizing the 
pro- and cleaved caspase-8, and the cleaved caspase-3, respectively. 
Cells treated with ActD and TNFα were used as a positive control. 
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Figure 4.6 Effect of luteolin and TNFα on caspase activity.

COLO205 cells were pretreated with 40 μM luteolin for 2 h and then 
treated with TNF (15 ng/ml) for indicated period.  Cells were collected for 
detection of caspase-8 and caspase-3 activity using their respective 
substrates (Ac-IETD-AMC and z-DEVD-Rhodamine 110). * p<0.05 
comparing to their respective non-treated control group  (student's t test).
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Figure 4.7 Effect of caspase inhibitors on luteolin and TNFα-
induced apoptosis.

COLO205 cells were first treated with either z-VAD-fmk (25 μM) or z-
IETD-fmk (25 μM) for 30 min, followed by luteolin (40 μM) for 2 h, 
and then TNFα (15 ng/ml) for another 6 h. Cell death was evaluated by 
flow cytometry after PI staining. * p<0.05 comparing to their respective 
non-treated control group  (student's t test). # p<0.05 comparing to 
luteolin and TNF-treated group  (student's t test).
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Figure 4.8 Effect of caspase inhibitors on luteolin and TNFα-induced 
apoptosis.

COLO205 cells were first treated with either z-VAD-fmk (25 μM) or z-
IETD-fmk (25 μM) for 30 min, followed by luteolin (40 μM) for 2 h, and 
then TNFα (15 ng/ml) for another 6 h. Cells were collected for detection 
of PARP cleavage by Western blot (upper panel) and DNA 
fragmentation by agarose electrophoresis (lower panel).
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4.3.4 TNFα-induced NF-κB activation is inhibited by luteolin 

 NF-κB is the main cell survival pathway elicited by TNFα. It has been well 

established that inhibition of NF-κB signaling pathway sensitizes TNFα-induced cell 

death (Kim et al., 2003b). Luteolin has recently been shown to inhibit LPS-induced 

NF-κB activation in fibroblasts, a mechanism involved in its anti-inflammatory 

activity (Hehner et al., 1999). Here in order to understand the underlying mechanism 

responsible for the sensitization effect of luteolin to TNFα-induced apoptosis, we 

systematically tested the effects of luteolin on various phases of NF-κB signaling 

pathways triggered by TNFα. First, we examined the inhibitory effect of luteolin on 

NF-κB transcriptional activity in COLO205 cells by using the NF-κB luciferase 

reporter assay. As shown in Figure 4.9, treatment with TNFα significantly enhanced 

NF-κB transcriptional activity and luteolin pretreatment markedly suppressed the 

transactivation of NF-κB induced by TNFα. A similar inhibitory effect was found 

with parthenolide, a known specific inhibitor of IKK (Karin and Ben-Neriah, 2000). 

In order to exclude the possibility that the reduced luciferase activity by luteolin is 

due to its direct inhibition on luciferase enzyme activity, we performed luteolin post-

treatment: cells were first treated with TNFα (15 ng/ml) for 2 h followed by luteolin 

(40 μM) treatment for another 2 h. It is rather interesting to find that luteolin post-

treatment failed to inhibit the transactivation of NF-κB induced by TNFα, suggesting 

that luteolin does not suppress NF-κB post-transcriptionally and pose no direct 

inhibition to luciferase enzyme activity. 
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Figure 4.9 Luteolin inhibits TNFα-induced NF-κB transcriptional 
activity. 

COLO205 cells were co-transfected with NF-κB-dependent luciferase
reporter construct and β-galactosidase construct. The cells were then treated 
with luteolin pretreatment or post-treatment (40 μM × 2 h), followed by 
TNFα (15 ng/ml) for 2 h. Luciferase activity was expressed as fold increased 
over control after normalized with β-galactosidase enzyme activity. 
Pretreatment with pathenolide (PN, 20 μM × 2 h) was used as a positive 
control. Data are presented as means ± SD from at least 3 independent 
experiments. * p<0.05 comparing to the non-treated control group  (student's t 
test). # p<0.05 comparing to the TNF-treated group  (student's t test).
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 The activation of NF-κB requires a series of upstream events including 

degradation of IκBα, NF-κB nuclear translocation and NF-κB-DNA binding (Kim et 

al., 2003b). To define the mechanism by which luteolin inhibits NF-κB activation, we 

sought to define whether luteolin affects these upstream events. As shown in Figure 

4.10, IκBα degradation and p65 nuclear translocation induced by TNFα in COLO205 

cells were inhibited by parthenolide but not by luteolin. As shown in Figure 4.11, p65 

was found to be main NF-κB component in TNFα-stimulated cells (supershift assay). 

Luteolin pretreatment also failed to influence NF-κB-DNA binding activity detected 

using EMSA (Figure 4.11), while it was completely abolished by parthenolide. 

Similar results were obtained when HeLa cells were tested (data not shown). It thus 

appears that luteolin may affect TNFα-induced NF-κB activation via interfering the 

transcriptional machinery, similar to its inhibitory effect on LPS-activated NF-κB 

transcription in fibroblasts (Gerritsen et al., 1997). 
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Lu                - +           - +         - -
TNF             - - +         +          - +
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Figure 4.10 Effect of luteolin pretreatment on IκBα degradation and 
p65 nuclear translocation in COLO205 cells. 

COLO205 cells were pretreated with luteolin (40 μM × 2 h) or PN (20 μM
× 2 h), followed by TNFα (15 ng/ml) for 30 min. Cells were collected and 
fractioned to obtain cytosolic fraction and nuclear fraction. The levels of 
IκBα in cytosol and p65 in nuclear fraction were detected by Western blot. 
Tubulin and Histone were used as loading control for cytosol and nuclear 
fraction, respectively. 
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Lu            - +      - +         - - -
TNF         - - +       +        - +        +*
PN           - - - - +      +        -
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Figure 4.11 Effect of luteolin pretreatment on NF-κB-DNA binding 
activity. 

COLO205 cells were pretreated with or without luteolin (40 μM) or PN (20 
μM) for 2 h, followed by TNF (15 ng/ml) for 30 min. The cytosol and 
nuclear fraction were prepared as described in Materials and Methods. NF-
κB-DNA binding activity was determined by EMSA.
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4.3.5 Luteolin inhibits TNFα-activated NF-κB by interfering with CBP-p65 

interaction 

 It is known that transcriptional activation of NF-κB requires participation of a 

number of coactivators including cAMP response element-binding protein (CBP) 

(Kim et al., 2003b). We next examined whether luteolin affects the interaction 

between p65 and CBP. As shown in Figure 4.12, TNFα markedly enhanced CBP–p65 

interaction and the interaction was significantly inhibited by luteolin pretreatment, 

suggesting that luteolin inhibits TNFα-induced NF-κB activation via interfering with 

p65-CBP interaction. Such action of luteolin was found to be similar to its inhibitory 

effect on LPS-activated NF-κB transcription in fibroblasts (Wang et al., 1998; He and 

Ting, 2002).  

4.3.6 p65 expression protects the cell death induced by luteolin and TNFα 

 To further confirm the involvement of p65–CBP interaction in luteolin-

mediated suppression on NF-κB activation, HeLa cells were transiently transfected 

with a p65-GFP expression vector. As shown in Figure 4.13A and B, p65 

overexpression significantly overturned the sensitization effect of luteolin and 

protected against cell death. The above observation also suggests that NF-κB (p65) 

serves as the molecular target for the sensitization activity of luteolin on TNFα 

induced apoptosis. 
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Figure 4.12 Effect of luteolin on CBP-p65 interaction

COLO205 cells were pretreated with 40 μM luteolin for 2 
h followed by TNF (15 ng/ml) for 30 min. Cell lysate was 
co-immunoprecipited by anti-CBP antibody (Santa Cruz) 
and then detected by Western blot using anti-p65 antibody 
(Santa Cruz). 1% input was used as a proper control. 
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Figure 4.13 Effect of p65 overexpression on cell death induced by 
luteolin and TNF

A, HeLa cells were transiently transfected with pcDNA and GFP or p65-
GFP for 24 h. Cells were then treated with luteolin (40 μM × 2 h) 
followed by TNF (15 ng/ml × 24 h). B, quantification of the cell death in 
A by counting the percentage of dead cells among those transfected cells 
in total 200 randomly selected transfected cells. Data are presented as 
means ± SD from 3 independent transfection experiments. * p<0.05 
comparing to the group with pcDNA transfection.

A
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4.3.7 Luteolin suppresses the expression of NF-κB anti-apoptotic target genes 

A20 and c-IAP1 

 The anti-apoptotic function of NF-κB is depending on the expression of its 

anti-apoptotic target genes. Here we further tested whether luteolin pretreatment 

influences the expression level of those genes. As shown in Figure 4.14, TNFα 

markedly upregulated the expression of A20 and c-IAP1, while luteolin pretreatment 

significantly reduced their expression level. In contrast, no significant changes of c-

IAP2, c-FLIPL and c-FLIPS were noted in cells treated with TNFα or luteolin. Both 

A20 and c-IAP1 are important anti-apoptotic molecules (De Smaele et al., 2001; Tang 

et al., 2001) and their reduced expression levels caused by luteolin pretreatment are 

likely to contribute to the sensitization effect by luteolin to TNFα-induced apoptosis.  

4.3.8 JNK activation contributes to the sensitization effect of luteolin to TNFα-

induced apoptosis 

 Although the exact role of JNK in TNF-induced apoptosis is largely 

controversial, some recent studies have suggested that inhibition of NF-κB resulted in 

sustained JNK activation and apoptosis (Bennett et al., 2001). Here we examined the 

effect of luteolin pretreatment on TNFα-induced JNK activation. TNFα alone caused 

a rapid and transient activation of JNK in COLO205 cells, demonstrated by the 

increased level of JNK (Figure 4.15, upper panel) and c-Jun phosphorylation (Figure 

4.15, lower panel), with a peak level at 30 min. Although luteolin alone had little 

effect on JNK, luteolin pretreatment significantly augmented and prolonged JNK 

activation (both JNK and c-Jun phosphorylation). Similar augmentation effect of 

luteolin on TNFα-mediated JNK activation was also found in HeLa cells (data not 

shown).  
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Lu                     - +        - - - +         +         +    
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Figure 4.14 Luteolin pretreatment down-regulates expression 
of NF-κB anti-apoptotic target genes. 

COLO205 cells were treated with TNFα (15 ng/ml) for 30, 60 or 
120 min, with or without luteolin pretreatment (40 μM × 2 h). The 
mRNA level of various NF-κB target genes were examined using 
RT-PCR, as described in Materials and Methods. 

 



 121

Phospho-JNK
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Lu                - +        - - - +       +       +       +         
TNF (min)    - - 30      60     120    30     60     120    30
SP                - - - - - - - - +

Phospho-c-Jun
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Figure 4.15 Luteolin pretreatment leads to augmented and 
prolonged JNK activation induced by TNFα. 

COLO205 cells were first pretreated with SP600125 (20 μM ×
30 min), followed by luteolin (40 μM × 2 h) and then TNFα
(15 ng/ml) for indicated periods. Cells were collected for 
detection of JNK activation by enhanced level of both JNK and 
c-Jun phosphorylation by Western blot. 
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 In order to understand the role of JNK activation in apoptosis induced by 

luteolin and TNFα, we next assessed the effect of a synthetic JNK inhibitor, 

SP600125 (Muzio et al., 1997), on JNK activation and cell death in COLO205 cells 

treated with luteolin plus TNFα. As expected, pretreatment with SP600125 prevented 

luteolin plus TNFα induced JNK activation (Figure 4.15). More importantly, it almost 

completely blocked the catalytic cleavage of caspase-8 and its downstream effector 

caspase-3, as well as PARP cleavage (Figure 4.16), suggesting that JNK activation is 

required for caspase-8 activation and apoptotic cell death induced by luteolin plus 

TNFα.  

4.3.9 Ectopic expression of A20, c-IAP1 and dominant negative forms of JNKK1 

and JNKK2 prevents apoptosis induced by luteolin plus TNFα 

 The above data collectively demonstrate that the reduced expression of anti-

apoptotic genes A20 and c-IAP1, as well as the augmented activation of JNK may 

contribute to the apoptosis induced by luteolin plus TNFα (Figures 4.14 and 4.16). 

We then used genetic approaches to further establish the causative link between these 

events. HeLa cells were transiently transfected with either myc-A20 or HA-c-IAP1 

expression vector together with a red fluorescence protein construct (pDsRed) as a 

transfection marker. In addition, a vector expressing a viral protein cytokine response 

member A (CrmA), which is known to be a specific caspase-8 inhibitor (Davis, 2000), 

were included as a positive control. As shown in Figure 4.17, the successfully 

transfected cells emitted strong red fluorescence as seen under a fluorescence 

microscope. Following combined treatments with luteolin and TNFα, most of the cells 

transfected with pDsRed and pcDNA died. A quantitative analysis counting the 

percentage of cell death among transfected cells was also carried out (Figure 4.18). 

CrmA Over-expression offered a complete protection against apoptotic cell death 
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induced by the combined treatments of luteolin and TNFα, confirming the earlier 

finding that such apoptosis is mediated by caspase-8 activation (Figures 4.7 and 4.8). 

In addition, the over-expression of either A20 or c-IAP1 protein significantly 

protected cell death induced by luteolin plus TNFα, although to a lesser extent than 

that of CrmA (Figure 4.18). 

 It has been well established that TNFα-mediated JNK activation is regulated 

by two upstream MAPK kinases: JNKK1 and JNKK2 (Ueda et al., 2003). The 

effectiveness of dominant negative forms of JNKK1 and JNKK2 were proven in 

HeLa cells when they successfully blocked TNF-mediated JNK activation using JNK 

kinase assay (data not shown). Here cells with successful HA-JNKK1(DN)+HA-

JNKK2(DN) transfection became largely resistant to apoptosis induced by 

luteolin+TNFα. Such findings, together with the pharmacological evidence from 

SP600125 (Figure 4.15), strongly suggesting that JNK plays a critical role in the 

sensitization effect of luteolin on TNFα-induced apoptosis.  
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Figure 4.16 SP600125 Inhibits caspase 8 and caspase 3 
activation and PARP cleavage in cells treated with luteolin 
and TNFα. 

COLO205 cells were first pretreated with SP600125 (20 μM ×
30 min), followed by luteolin (40 μM × 2 h) and then TNFα
(15 ng/ml) for another 6 h. Western blotting was performed to 
detect caspase-8, caspase-3 and PARP cleavage. Tubulin was 
used as loading control 
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Figure 4.17 Ectopic expression of A20, c-IAP1 and 
JNKK1(DN)+JNKK2(DN) protects cell death induced by luteolin 
and TNFα. 
HeLa cells were transiently transfected with either pcDNA, CrmA, HA-
c-IAP1, myc-A20 or HA-JNKK1(DN)+JNKK2(DN), together with 
pDsRed as a transfection marker. After 24 h, the cells were treated with 
luteolin (40 μM) for 2 h followed by TNFα (15 ng/ml) treatment for 
another 24 h. Cell death was then evaluated by morphological changes 
under a fluorescent microscope and those successfully transfected cells 
were in bright red. 
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Figure 4.18 Ectopic expression of A20, c-IAP1 and 
JNKK1(DN)+JNKK2(DN) protects cell death induced by 
luteolin and TNFα (Quantification).

Cells were treated as in Figure 5.17, quantification of cell death 
was conducted by counting the percentage of dead cells among 
those transfected cells in a total of randomly selected 200 
transfected cells. Data are presented as means ± SD from 2 
independent transfection experiments. * p<0.05 comparing to the 
group with pcDNA transfection.
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4.4 DISCUSSION 

 Luteolin is a common flavonoid found in human diet. Previous studies have 

demonstrated the anti-cancer property of luteolin. For instance: it is capable of 

preventing 7,12-dimethylbenz[a]anthracene (DMBA)- and 12-O-

tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin cancer (Huang et al., 

1999b; Casagrande and Darbon, 2001; Ko et al., 2002) or inducing cell cycle arrest 

and apoptosis in some human cancer cells in vitro (Strasser and Newton, 1999). In 

this study, we provided evidence that luteolin sensitizes TNFα-induced apoptosis in 

human colorectal and cervical cancer cells. Such sensitization is achieved via its 

inhibitory effect on NF-κB activation, which in turn results in reduced expression of 

anti-apoptotic NF-κB targets genes (A20 and c-IAP1), as well as augmented and 

prolonged JNK activation. Data from this study thus reveal a novel function of 

luteolin and enhance the value of luteolin as a useful anti-cancer agent. 

 There are several features in the sensitization effect of luteolin to TNFα-

induced cell death. First, the sensitization is mainly achieved through enhanced 

activation of caspase-8, the initial caspase in the death receptor signaling pathway to 

induce typical apoptosis (Muzio et al., 1997). Such notion is supported by the strong 

inhibitory effects on cell death offered by z-IETD-fmk, a synthetic caspase-8 inhibitor 

(Figures 4.7 and 4.8) as well as by over-expression of CrmA (Figures 4.17 and 4.18), 

a powerful and specific caspase-8 inhibitor (Baldwin, 2001; Kucharczak et al., 2003). 

In contrast, the contribution from mitochondria to the sensitization process by luteolin 

is believed to be insignificant based on the marginal inhibitory activity of a caspase-9 

inhibitor on apoptosis (data not shown). Second, although luteolin sensitized TNFα-

induced apoptosis in a similar pattern as ActD (Figure 4.3), they apparently act 

through different mechanisms. Luteolin did not block the expression level of c-myc as 
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ActD or CHX did (Figure 4.4), indicating that luteolin is not a general gene 

expression inhibitor, but rather works through a specific mechanism. Third, the 

sensitization effect of luteolin is depending on luteolin administration schedule and 

luteolin post-treatment failed to exert significant sensitization to TNFα-induced 

apoptosis (Figure 4.2), suggesting that the sensitization effect of luteolin may be 

associated with the blockage of anti-apoptotic gene expression elicited by TNFα.  

 NF-κB activation is the principal cell survival signaling triggered by TNFα 

through TNFR1. The anti-apoptotic function of NF-κB is achieved through up-

regulation of its anti-apoptotic target genes (Kim et al., 2003b). Therefore, we 

reasoned that luteolin sensitizes TNFα-induced apoptosis via its inhibitory effect on 

the NF-κB signaling pathway. Such a hypothesis is strongly supported by the finding 

that luteolin pretreatment efficiently blocked the transactivation of NF-κB determined 

by NF-κB luciferase assay (Figure 4.9). Meanwhile, post-treatment with luteolin did 

not inhibit NF-κB transactivation and subsequently failed to exert any sensitization 

effect (Figure 4.2). We also attempted to evaluate the effect of luteolin on upstream 

signaling events of NF-κB activation. To our surprise, luteolin did not affect IκBα 

degradation, p65 nuclear translocation and p65-DNA binding (Figures 4.10 and 4.11). 

Such findings are basically similar to the effect of luteolin on LPS-induced NF-κB 

activation in rat fibroblasts (Xagorari et al., 2001). In contrast, Dhanalakshmi et al. 

reported that, in macrophages, luteolin inhibited LPS-induced NF-κB activation via 

preventing IκBα degradation (Dhanalakshmi et al., 2002). Different cell types used in 

those studies may explain the different responses to the same stimulus.  A number of 

flavonoids are capable of inhibiting the NF-κB signaling pathway but distinct 

mechanisms are involved. Silibinin can directly inhibit IKKα kinase activity and 

subsequently block phospho-IκBα degradation and NF-κB translocation (Farah et al., 
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2003; Kim et al., 2003b). In contrast, both apigenin and flavopiridol suppress TNFα-

stimulated NF-κB transcriptional activity, without affecting IκBα degradation 

(Gerritsen et al., 1997), which is similar to the effect of luteolin found in this study.  

 Then how does luteolin inhibit NF-κB transactivation? Since transcriptional 

activation of NF-κB requires participation of a number of coactivators including 

cAMP response element-binding protein (CBP) (Gerritsen et al., 1997), we next 

examined the effect of luteolin on the CBP-p65 interaction, which is known to be 

required for p65 transcriptional activation (Kim et al., 2003b). Luteolin significantly 

inhibited TNFα-induced CBP-p65 interaction (Figure 4.12), which is similar to its 

effect on LPS-induced CBP-p65 interaction (Kim et al., 2003b). At present, it is not 

clear how luteolin interrupts CBP-p65 interaction. In the context of LPS signaling, 

luteolin might induce JNK and c-jun activation and thus sequester transcriptional 

coactivators (Krikos et al., 1992; Wang et al., 1998; Micheau et al., 2001). In this 

study, luteolin alone had only marginal effect on JNK activation (Figure 4.16) 

Furthermore, SP600125 (specific JNK inhibitor) failed to restore the suppressed NF-

κB transactivation by luteolin (data not shown), suggesting that JNK activation is 

unlikely to be an important factor contributing to the inhibitory effect of luteolin on 

NF-κB activation. Based on the observation that p65 overexpression could overturn 

the cell death induced by luteolin and TNF (Figure 4.13), it is possible that luteolin 

may inhibit p65-CBP interaction by targeting p65, although the exact mechanism 

responsible for such action remains to be further identified. 

 Among various anti-apoptotic genes regulated by NF-κB, a number of them 

such as c-IAP1, c-IAP2, c-FLIPL, c-FLIPS and A20 have been well characterized to 

specifically inhibit caspase-8 activation (Krikos et al., 1992). As shown in Figures 4.5, 

4.6, 4.7 and 4.8, luteolin sensitizes TNFα-mediated cell death via enhanced caspase-8 
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activation. We thus postulated that luteolin may augment caspase-8 activation by 

relieving the suppressive effects of those molecules. Among the NF-κB target genes 

tested, the expression of A20 and c-IAP1, which was up-regulated by TNFα, were 

found to be markedly suppressed by luteolin (Figure 4.14). More importantly, the 

ectopic expression of either A20 or c-IAP1 conferred significant protection against 

apoptosis induced by the combined treatment of luteolin with TNFα (Figure 4.17). 

Zinc finger protein A20 is a NF-κB inducible gene (Song et al., 1996; Lademann et 

al., 2001). The important function of A20 includes its strong inhibitory effect on 

TNFα-mediated apoptosis (Lee et al., 2000). The A20 deficient cells are highly 

susceptible to apoptotic cell death induced by TNFα (He and Ting, 2002). A recent 

study revealed that A20 is capable of interrupting the recruitment of TRADD and RIP 

into TNFR1, thus blocking both caspase-8 (cell death) and the NF-κB (cell survival) 

pathways (Li et al., 2002). On the other hand, c-IAP1, but not c-IAP2, is also found to 

be an important modulator in the sensitization effect of luteolin to TNFα-induced 

apoptosis, although to a lesser extent than that of A20. Despite the high sequence 

similarity between c-IAP1 and c-IAP2, different specificities have been identified 

regarding their effects on apoptosis. For instance, c-IAP1, but not c-IAP2, is capable 

of directing the ubiquitylation of TRAF2 in TNF signaling (De Smaele et al., 2001; 

Tang et al., 2001).  

 One intriguing issue in TNF signaling is the role of JNK in TNF-mediated 

apoptosis. Recently, several lines of evidence have demonstrated that inhibition of 

NF-κB leads to prolonged JNK activation, which promotes TNFα-induced apoptosis 

(De Smaele et al., 2001; Tang et al., 2001). In this study, luteolin pretreatment also 

augmented and prolonged TNFα-mediated JNK activation (Figure 4.15). Since 

luteolin alone has little effect on JNK, such augmentation is most likely due to the 
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potent inhibitory of luteolin on TNFα-induced NF-κB transactivation (Figure 4.9). 

Suppressed NF-κB activation and subsequently diminished XIAP or GADD45b 

expression in luteolin-treated cell could account for the enhanced JNK activation 

(Tournier et al., 2000). By using both genetic and pharmacological approaches, we 

provided convincing evidence that the augmented and prolonged JNK activation plays 

a critical role in apoptosis triggered by luteolin and TNFα (Figures 4.16 and 4.17). 

The exact mechanism for JNK-mediated apoptosis may vary depending on the 

cellular context and the nature of stimuli. In UV-induced apoptosis, JNK is an 

important component in mitochondrial apoptotic pathway (Deng et al., 2003). On the 

other hand, a recent study by Deng et al showed that JNK is required to relieve the 

inhibition imposed by TRAF2-c-IAP1 on caspase-8 activation triggered by TNFα. 

This newly identified role of JNK in TNFα-induced apoptosis helps to explain our 

observation that a specific JNK inhibitor (SP600125) prevented caspase-8 activation 

in cells treated with luteolin plus TNFα (Figure 4.17).  

 In conclusion, in this part of study we have highlighted a novel function of 

luteolin by demonstrating that luteolin interferes with the TNF signaling pathway and 

markedly sensitizes human cancer cells to TNFα-induced apoptosis. Such 

sensitization is closely associated with the inhibitory effect of luteolin on NF-κB 

activation, resulting in down-regulation of some key anti-apoptotic genes such as A20 

and c-IAP-1, as well as augmented and prolonged JNK activation induced by TNFα. 

Therefore, the strong sensitization effect of luteolin to TNFα-mediated apoptosis in 

human cancer cells suggests that luteolin are valuable as chemopreventive and 

chemotherapeutic agents against cancer together with TNFα. 
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LUTEOLIN SENSITIZES TUMOR NECROSIS FACTOR- RELATED 

APOPTOSIS INDUCING LIGAND (TRAIL)-INDUCED APOPTOSIS IN 

HUMAN CANCER CELLS 
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5.1 INTRODUCTION 

 Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a 

member of the TNF superfamily (Wang and El Deiry, 2003). TRAIL is an ideal 

therapeutic agent for cancer treatment because it has been shown to be a potent 

apoptosis inducer in a wide variety of cancer and transformed cells without damaging 

most normal cells. TRAIL induces apoptosis through binding to its receptors on cell 

surface. To date, four types of receptors have been identified: death receptor 4 (DR4) 

and death receptor 5 (DR5) as death receptors and DcR1 and DcR2 as decoy receptors 

(Wang and El Deiry, 2003). Ligation of TRAIL to its receptors results in trimerization 

of receptors and clustering of intracellular death domains (DDs), which then recruit 

Fas-associated death domain protein (FADD) and caspase 8 to form the death-

inducing signaling complex (DISC). Caspase 8 activation within DISC subsequently 

activates executor caspase 3, which in turn cleaves its substrates and eventually 

induces apoptosis (Green, 2000a; Ashkenazi, 2002). On the other hand, activation of 

caspase 3 by caspase 8 can be greatly facilitated through mitochondrial amplification 

pathway, in which activated caspase 8 cleaves the proapoptotic Bcl-2 family member 

Bid into truncated Bid (tBid). Translocation of tBid together with other pro-apoptotic 

Bcl-family members promotes release of cytochrome C and SMAC/DIABLO from 

mitochondria, leading to caspase 3 activation and apoptosis (Green, 2000a; Jiang and 

Wang, 2004).  

However, the potential application of TRAIL in cancer therapy is limited as 

many cancer cells are found to be resistant to the cytotoxicity of TRAIL. The 

resistance may be due to low expression of pro-apoptotic molecules (DRs or caspase 

8) or high expression of anti-apoptotic molecules (DcRs, FLIP, IAPs, Bcl-2) (Wang 

and El Deiry, 2003). Thus, combination TRAIL with other agents has been a 
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promising strategy to potentiate the cytotoxicity of TRAIL and its therapeutic 

applications (Bagli et al., 2004; Huerta-Yepez et al., 2004; Rosato et al., 2004; von 

Haefen et al., 2004). 

 In previous chapter, we have found that luteolin greatly sensitizes TNF-

induced cell apoptosis via inhibition of NF-κB and sustained and augmented 

activation of c-jun N-terminal kinase (JNK). We here demonstrated that luteolin also 

sensitizes TRAIL-induced apoptosis in various human cancer cells. Interestingly, such 

sensitization is achieved via enhanced XIAP ubiquitination and proteasomal 

degradation. Furthermore, our study demonstrates that the enhanced XIAP 

ubiquitination and degradation are likely due to suppressed protein kinase C (PKC) 

activation by luteolin. Data from this study thus present a novel function of luteolin as 

a potential anti-cancer agent. 

 

5.2 MATERIALS AND METHODS 

5.2.1 Reagents and Plasmids  

 Luteolin, 4'-6-Diamidino-2-phenylindole (DAPI) were purchased from Sigma 

(St Louis, MO). Human recombinant TRAIL was from R&D Systems (Minneapolis, 

MN) and was dissolved in 1% BSA as stock solution (50 μg/ml). The following 

reagents were from Calbiochem (San Diego, CA): pan caspase inhibitor z-VAD-fmk, 

caspase 8 inhibitor z-IETD-fmk, caspase 3 inhibitor z-DEVD-fmk, phorbol-12-

myristate-13-acetate (PMA), general PKC inhibitor bisindolylmaleimide I (BIM), PI3 

kinase inhibitor LY-294002 (LY) and Wortmannin (Wort), and proteasome inhibitor 

MG132, PSI and PSII. Flag-XIAP expression vector was a generous gift from Dr. 

Colin Duckett (University of Michigan, Ann Arbor, MI). Anti-caspase-8, anti-

caspase-3, anti-Bcl-2, anti-Bcl-xL, anti-Bid, and anti-phospho-substrate (Ser)-PKC 
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and anti-ubiquitin antibodies were from Cell Signaling Technology (Beverly, CA). 

The anti-XIAP and anti-PARP antibody were from BD Transduction Laboratories 

(San Diego, CA). Anti-FLIP, anti-c-IAP-1, anti-c-IAP-2, anti-Mcl-1, anti-mouse-

FITC, and anti-tubulin antibodies were obtained from Santa Cruz Biotechnology 

(Santa Cruz, CA). Anti-DR4, anti-DR5, anti-DcR1 and anti-DcR2 were from R&D. 

5.2.2 Cell culture and treatments  

 Human cervical cancer cells HeLa, human liver cancer cells HepG2 and 

human colorectal cancer cells HT29 were from ATCC and human nasopharyngeal 

cancer cells CNE1 was obtained from Sun Yet-sat University (Guangzhou, China). 

HeLa, HepG2 and CNE1 were maintained in DMEM medium (Sigma) with 10 % 

FBS (Hyclone). HT29 were maintained in RPMI-1640 medium with 10 % FBS. 

5.2.3 Apoptosis assessment-DAPI staining  

 The cells undergoing apoptosis were evaluated by chromatin condensation, 

nuclear shrinkage and formation of apoptotic bodies, all visualized with 4’,6-

diamidino-2phenylindole (DAPI) staining (Fuentes et al., 2003). After various 

designated treatments, medium was removed and cells were fixed with 70% ethanol at 

room temperature for 10 minutes. Cells were then stained with 0.3 μg/mL DAPI (in 

PBS) at room temperature for 10 minutes and visualized under an inverted 

fluorescence microscope and photographed.  

5.2.4 Colony formation assay  

 Cancer cells (HT29, HeLa and HepG2) were plated on 6-well plates (5,000 

cells/well) for 24 hours followed by various treatments. After 3 weeks, the survival 

clones were stained by 0.5 % crystal violet for 1 hour and photos were taken using 

digital camera (Mangan et al., 2004). 
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5.2.5 Transient transfection  

 HeLa cells were transiently transfected with either pcDNA or Flag-XIAP, 

using the Lipofectamine transfection reagent (Invitrogen, Carlsbad, CA). A red 

fluorenscent protein expression vector (pDsRed, Clontech Inc. Palo Alto, CA) was co-

transfected as a transfection marker. After 24 h of transfection, the cells were 

pretreated with luteolin (40 μM × 2 hours) followed by TRAIL (1 ng/ml × 6 hours). 

Cell death was determined by morphological changes examined under an inverted 

fluorescent microscope. 

5.2.6 Immunoprecipitation and western blot  

 At the end of treatment, cells were collected by scrapping and then washed 

with ice-cold PBS twice. Cells were lysed in lysis buffer [50 mM Tris HCl (pH7.4), 

150 mM NaCl, 1 mM EDTA and 1 % TRITON X-100] for 1 hour on ice. The 

supernatant was collected after centrifugation at 20,000 × g for 15 minutes. Each 

sample was added with 0.5 μg anti-XIAP body BD Biosciences Pharmingen (San Jose, 

CA) and 50 μL protein A/G agarose beads (Roche Molecular Biochemicals, 

Indianapolis, IN) and rotated overnight at 4°C. The beads were washed four times 

using ice-cold PBS buffer and then eluted using SDS-sample buffer before subject to 

western blot analysis. For Western blot, equal amount of proteins were fractionated on 

SDS-polyacrylamide gel in the Mini-PROTEAN II system (Bio-Rad, Hercules, CA) 

and blotted onto PVDF membrane (Millipore, Bedford, MA). After blocked with 5% 

nonfat milk in TBST [10 mM Tris-HCl (pH 7.5), 100 mM NaCl and 0.1% Tween 20], 

the membrane was probed with various antibodies and developed with enhanced 

chemiluminescence (Pierce, Rockfold, IL) using a Kodak Image Station (Kodak, 

Rochester, NY). 
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5.2.7 RNA extraction and reverse transcription-PCR 

 RNA extraction was carried out using a total RNA extraction kit Purescript 

(Gentra Systems Inc., Minneapolis, MN), following the instructions from the 

manufacturer. Five μg of total RNA from each sample were subjected to reverse 

transcription using M-MLV reverse transcriptase (Promega, Madison, IL). For PCR, 

the amplification reaction was carried with 200 pmol of each primer, 200 μM of each 

dNTPs, and 0.5 units of Tag DNA polymerase II (Promega). The PCR conditions 

were optimized to achieve exponential amplification in which the PCR product 

formation is proportional to the starting cDNA. The primers of human XIAP (Asselin 

et al., 2001), DR4, DR5, DcR1, DcR2 (Abdollahi et al., 2003), and glyceraldehydes-

3-phosphate dehydrogenase (G3PDH) (Mafune et al., 1999) were based on literature. 

PCR products were size-fractionated using 1.8% agarose gel and visualized by 

ethidium bromide staining. 

5.2.8 Immunostaining for detection of death receptors  

 Cell surface expression of DR4, DR5, DcR1, and DcR2 were analyzed by 

indirect staining with primary mouse anti-human DRs (R&D systems), followed by 

FITC-conjugated rabbit anti-mouse IgG (Kim et al., 2004a). Briefly, cells were first 

stained with saturating amounts of anti-DR4, anti-DR5, anti-DcR1, or anti-DcR2 on 

ice for 30 min. After washing, cells were reacted with FITC-conjugated anti-mouse 

IgG on ice for another 30 min (Shao et al., 2004). Negative control cells were stained 

with the same FITC-conjugated secondary antibody. Cells were then subject to flow 

cytometry analysis to determine the expression of these death receptors. 
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5.2.9 Statistical analysis  

 The numeric data are presented as mean ± SD from at least three sets of 

independent experiments. The differences among different groups were examined 

using a student's test and p < 0.05 was considered statistically significant. 

 

5.3 RESULTS 

5.3.1 Luteolin sensitizes cancer cells to TRAIL-induced apoptosis  

 We have recently shown that luteolin was able to sensitize TNF-induced 

apoptosis in human cancer cells (Chapter 4). Here we further assessed the effect of 

luteolin on TRAIL-induced cell death. First we tested the cytotoxicity of TRAIL on 

human cancer cell lines originated from various tissues, including human live cancer 

cell HepG2, human colorectal cancer cell HT29, human nasopharyngeal cancer cell 

CNE1 and human cervical cancer cell HeLa. Some cancer cells were found to be 

TRAIL-resistant. For instance, up to as high as 200 ng/mL TRAIL exerted no 

significant cytotoxicity on HepG2, HT29 or CNE1 cells even after 24 hours treatment. 

In contrast, HeLa cells were sensitive to as low as 5 ng/mL TRAIL (Figure 5.1). 

Luteolin (40 μM) alone did not induce cell death in any of these cells. However, when 

the cells were pretreated with luteolin for 2 hours followed by a non-cytotoxic 

concentration of TRAIL for as short as 6 hours, all the four cell lines tested underwent 

dramatic apoptotic cell death (Figure 5.2). Figure 5.3A shows the chromosome 

condensation in HeLa cells treated with luteolin and TRAIL. These data suggest that 

luteolin pretreatment not only markedly sensitizes TRAIL-resistant cancer cells, but 

also significantly expedites the cell death process. To test the long term effect of 

luteolin and TRAIL on cancer cell growth, the colony formation assay was performed 

using HT29 cells. As shown in Figure 5.3B, luteolin (40 μM) alone reduced HT29 
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colony size evidently, although it was not cytotoxic in the short term apoptosis assay 

(Figures 5.1 and 5.2). However, a combination of luteolin and TRAIL completely 

suppressed cancer cell growth and colony formation. Similar results were also found 

in HeLa and HepG2 cells (data not shown). 

5.3.2 Luteolin facilitates TRAIL-initiated caspase-3 maturation  

 TRAIL-induced apoptosis is mainly executed by the extrinsic cell death 

receptor pathway, involving caspase-8 as the initiator caspase and caspase-3 as the 

executor. Here we examined the effect of luteolin on TRAIL-initiated caspase cascade. 

As shown in Figure 5.4, TRAIL alone induced obvious caspase-8 cleavage, producing 

both p44 and p23. While luteolin alone had no effect on caspase-8 activation, luteolin 

pretreatment greatly promoted TRAIL-induced caspase-8 activation, as evidenced by 

the enhanced cleavage of pro-caspase-8 p55 to its intermediate form p44 and further 

to its active form p23. We next examined the pattern of caspase-3 activation. In cells 

treated with TRAIL alone for 6 hours, there was only slight cleavage of caspase-3, 

producing its inactive fragment p21 (Figure 5.4). Although luteolin alone did not 

cause any change of caspase-3, its pretreatment followed by TRAIL led to the 

complete cleavage of caspase-3, resulting in formation of the active form p17. This 

result indicates that luteolin, in combination with TRAIL, facilitates the maturation of 

caspase-3. Similar caspase changes were also observed in CNE-1, HT29 and HepG2 

cells (data not shown). Finally, we found that only combined treatment with luteolin 

and TRAIL resulted in evident PARP cleavage, downstream of caspase-3 activation 

and a hall marker for apoptosis (Figure 5.4), which is consistent to cell death results 

shown in Figure 5.2. 
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Figure 5.1 Sensitivity of human cancer cells to TRAIL-induced 
apoptosis. 

CNE1, HT29, HeLa and HepG2 cells were treated with various 
concentrations of TRAIL for 24 h. At the end of treatment, cells
were stained with DAPI and examined under an inverted fluorescent 
microscope. The result was presented as the percentage of cells with 
evident nuclear condensation in 200 randomly selected cells.
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Figure 5.2  Luteolin sensitizes human cancer cells to TRAIL-induced 
apoptosis

Cells were first pretreated with indicated concentration of luteolin for 2 h, 
followed by treatment with a subtoxic concentration of TRAIL for another 
6 h (1 ng/ml for HeLa and CNE1, 5 ng/ml for HT29 and HepG2). At the 
end of treatment, cells were stained with DAPI and examined under an 
inverted fluorescent microscope. The result was presented as the
percentage of cells with evident nuclear condensation in 200 randomly 
selected cells. 
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Cont rol Lu +  TRAI L

B

Figure 5.3  Luteolin sensitizes human cancer cells to TRAIL-induced 
apoptosis. 

A, apoptotic morphological changes in HeLa cells with combined 
treatment of luteolin (40 μM× 8 h) and TRAIL (1 ng/ml× 6 h). Top: 
cells pictured under a normal light microscope; bottom: the cells with 
DAPI staining under an inverted fluorescence microscope. B, colony 
formation assay. HT29 cells were plated on six-well plates (5,000 
cells/well) and treated with luteolin alone (40 μM), TRAIL alone (1 
ng/mL), or their combination for 3 weeks. The survival clones were 
stained with 0.5 % crystal violet.
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Figure 5.4  Luteolin and TRAIL induces caspase activation.

HeLa cells were treated with TRAIL (1 ng/ml) for the indicated 
periods with or without the presence of luteolin pretreatment (40 μM
× 2 h). Cells were collected and subjected to Western blot for 
detection of the cleavage of caspase-8, caspase-3 and PARP. 

TRAIL(h)      - - 1     3       6      1      3      6
Lu                 - +      - - - +      +      +

Caspase-3

PARP

Caspase-8
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We then used various caspase inhibitors to confirm the role of the observed caspase 

cascade in the cell death induced by luteolin and TRAIL. Figures 5.5 and 5.6 show 

that z-DEVD-fmk (a caspase-3 inhibitor), z-IETD-fmk (a caspase-8 inhibitor) and z-

VAD-fmk (a pan caspase inhibitor) completely blocked caspase-3 activation and cell 

death induced by luteolin and TRAIL. One interesting finding here is that z-DEVD-

fmk, the specific inhibitor of caspase-3, also abrogated caspase-8 cleavage in cells 

treated with luteolin and TRAIL, indicating the presence of a caspase-8 and caspase-3 

positive feed back loop (Shi, 2002). 

 In certain cells, TRAIL has been demonstrated to induce apoptosis via the 

intrinsic mitochondrial pathway via caspase-8-mediated Bid cleavage (Shi, 2002). 

However, in this study we found that a caspase-9 inhibitor did not offer significant 

protection against luteolin and TRAIL-induced apoptosis (data not shown). Therefore, 

it is believed that luteolin enhances TRAIL-induced apoptosis mainly by utilizing the 

cell death receptor pathway. 

5.3.3 Luteolin does not alter expression of death receptors 

          It has been reported that modulation of surface expression of death receptors 

could sensitize cells to TRAIL-induced apoptosis (Gibson et al., 2000; Nagane et al., 

2000). We then tested the changes of various TRAIL death receptors after luteolin 

treatment by using immunofluorescence staining for the cell surface protein level and 

RT-PCR for their mRNA level. However, it was found that luteolin treatment did not 

alter the surface expression of death receptors (DR4, DR5, DcR1 or DcR2) (Figure 

5.7). mRNA level of death receptors does not change either after luteolin treatment 

(Figure 5.8), suggesting that luteolin promotes caspase activation via other 

mechanisms 
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Figure 5.5 Effect of caspase inhibitors on caspase activation 
induced by luteolin and TRAIL.

HeLa cells were pretreated with z-IETD-fmk (25 μM), z-DEVD-
fmk (25 μM) or z-VAD-fmk (25 μM) for 30 min, then cells were 
treated with a combination of luteolin (40 μM × 8 h) and TRAIL (1 
ng/ml × 6 h). Cells were collected for measuring caspase-3 and 
caspase-8 cleavage by Western blot. 
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Figure 5.6  Effect of caspase inhibitors on cell death induced 
by luteolin and TRAIL.

HeLa cells were pretreated with z-IETD-fmk (25 μM), z-DEVD-
fmk (25 μM) or z-VAD-fmk (25 μM) for 30 min, then cells were 
treated with a combination of luteolin (40 μM × 8 h) and TRAIL 
(1 ng/ml × 6 h). The percentage of apoptosis was evaluated using 
DAPI staining as described in Figure 5.1.
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Figure 5.7 Effect of luteolin on expression level of various TRAIL 
death receptors. 

HeLa cells were treated with 40 μM luteolin for 6 h, then collected and 
washed prior to immunostaining using respective first antibody to 
DR4, DR5, DcR1 and DcR2, followed by FITC-conjugated secondary 
antibody. Cells were analyzed by flow cytometry and the histogram 
were representative from 3 independent experiments. Open frame 
stands negative control and the closed frame stands for cells with 
immunostaining. 
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Figure 5.8  Effect of luteolin and TRAIL on death 
receptor  mRNA level.

HeLa cells were treated with luteolin (40 μM) for 2  h 
followed by TRAIL (1 ng/ml) 2 h. Or cells were treated 
with luteolin alone 4 h or TRAIL alone 2 h. Cells were 
then collected for detection of mRNA level of DR4, DR5, 
DcR1 and DcR2 using RT-PCR. 
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5.3.4 NF-κB is not involved in the sensitization of luteolin  

 On the other hand, NF-κB is a potent anti-apoptotic factor in TNF-induced 

apoptosis (Wang et al., 1998; Yamamoto and Gaynor, 2001). In previous chapter, we 

have found that luteolin sensitized TNF-induced cell death through inhibition of NF-

κB. Although TRAIL-induced NF-κB activation has been observed in certain cells 

(Zauli et al., 2004), in this study NF-κB is unlikely to be important in the sensitization 

activity of luteolin on TRAIL-induced-apoptosis, based on the finding that either 

TRAIL or luteolin did not change NF-κB luciferase activity (Figure 5.9). In contrast, 

luteolin pretreatment successfully blocked the TNF-induced NF-κB transcriptional 

activation. Such a finding is consistent with an earlier report that sensitivity to 

TRAIL-induced apoptosis is not significantly modulated by transfection of dominant 

negative mutants of IKKβ or IκBα (Leverkus et al., 2003). 

5.3.5 XIAP down-regulation contributes to the sensitized cell death  

 It has been well documented that a number of cellular proteins are important 

regulators in apoptosis via inhibition of the caspase cascade. Those proteins include 

FLIP, c-IAP, Bcl-2, Bcl-xL and XIAP, which are known to be regulated by NF-κB at 

the transcriptional level (Deveraux and Reed, 1999; Micheau et al., 2001; Yamamoto 

and Gaynor, 2001). In search of the molecular mechanisms which may be involved in 

the sensitization activity of luteolin, we tested the changes of these proteins in cells 

treated with TRAIL with or without luteolin pretreatment. The protein levels of FLIP, 

c-IAP1, c-IAP2, Bcl-2 and Bcl-xL remained constant among various treated groups 

(Figure 5.10). This finding is basically consistent with the earlier observation that 

TRAIL or luteolin is unable to affect NF-κB transcriptional activity in HeLa cells 

(Figure 5.9). Interestingly, the protein levels of two anti-apoptotic proteins, Mcl-1 and 

XIAP, significantly decreased as cells undergoing apoptosis (Figure 5.11A). However, 
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the decrease of Mcl-1, but not XIAP, was reversed in the presence of z-VAD-fmk, a 

pan caspase inhibitor, indicating that the reduction of Mcl-1 protein level is the result 

of caspase activation (Herrant et al., 2004), while XIAP down-regulation is caspase-

independent. Figure 5.11B demonstrates the dose-dependent pattern of XIAP down-

regulation in cells treated with luteolin and TRAIL, which is consistent with the dose-

dependent pattern of cell death observed above (Figure 5.2). Luteolin-dependent 

reduction of XIAP protein level was also observed in two other TRAIL-resistant cell 

lines (HT29 and HepG2) (data not shown). 

 To further confirm the role of XIAP in the cell death induced by luteolin and 

TRAIL, we examined whether XIAP overexpression will protect the cell death. HeLa 

cells were transiently transfected with either wild-type XIAP plasmid (Flag-XIAP) or 

an empty vector (pcDNA). Red fluorescence protein plasmid (pDsRed) was used as a 

transfection marker. In pcDNA-transfected cells, almost all cells died after luteolin 

and TRAIL treatment based on the morphological changes. In contrast, most XIAP-

overexpressing cells remained alive while those non-transfected cells underwent cell 

death (Figures 5.12 and 5.13). The above results thus strengthen our argument that 

XIAP down-regulation plays a critical role in luteolin and TRAIL induced cell death. 
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Figure 5.9 Effect of TRAIL and luteolin on NF-κB
transcriptional activity. 

Three human cancer cells were transfected with NF-κB-luciferase
construct and β-galactosidase construct for 24 h, followed by TNF 
(15 ng/ml × 2 h) or TRAIL (1 ng/ml × 2 h for HeLa and CNE1, 25 
ng/ml × 4 h for HT29) in the presence or absence of luteolin 
pretreatment (40 μM × 2 h). NF-κB luciferase activity was 
normalized by β-galactosidase activity and expressed as folds over 
the control. 
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Figure 5.10 Effect of luteolin and TRAIL on expression of anti-
apoptotic proteins. 

HeLa cells were treatment with TRAIL (1 ng/ml) for indicated 
periods with or without presence of luteolin pretreatment (40 μM × 2 
h). Cells were collected for detection of FLIPL, c-IAP1, c-IAP2, Bcl-
2 and Bcl-xL protein level by Western blot. Tubulin was used as a 
loading control. 
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Figure 5.11  Down-regulation of XIAP in cells treated with 
luteolin and TRAIL. 
A, HeLa cells were first pretreated with z-VAD-fmk (25 μM ×
30 min), then cells were treated with TRAIL (1 ng/ml) for 
indicated periods with or without luteolin pretreatment (40 μM
× 2 h). Cells were collected for detection of Mcl-1 and XIAP 
by Western blot. B, HeLa cells were treated with indicated 
concentrations of luteolin for 2 h, followed by TRAIL (1 ng/ml) 
for additional 6 h and then cells were collected for detection of 
XIAP protein level by Western blot. Tubulin was used as a 
loading control. 
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Figure 5.12 Ectopic expression of XIAP protects cell 
death induced by luteolin and TRAIL.

HeLa cells were transiently transfected with either pcDNA or 
Flag-XIAP-Wt, together with pDsRed as a transfection
marker. After 24 h, the cells were treated with a combination 
of luteolin (40 μM × 8 h) and TRAIL (1 ng/ml × 6 h). Cell 
death was then evaluated by morphological changes under a 
fluorescent microscope and those successfully transfected 
cells were in bright red. 
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XI AP-w t
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Figure 5.13 Ectopic expression of XIAP protects cell death 
induced by luteolin and TRAIL (Quantification).

Cells were treated as described in Figure 6.12. Cell death was 
quantified by counting the percentage of dead cells among 200 
randomly selected transfected cells. Data are presented as means ±
SD from 3 independent transfection experiments. * p<0.05 
comparing to the group with pcDNA transfection (One-way ANOVA 
with Scheffe's test).
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5.3.6 XIAP down-regulation is mediated by ubiquitination and proteasomal 

degradation  

 The down-regulation of XIAP could be due to modulation at either 

transcriptional or post-transcriptional level. In order to elucidate the molecular 

mechanism involved, we first measured the XIAP mRNA level using RT-PCR. As 

shown in Figure 5.14, either luteolin, TRAIL, or their combined treatment did not 

alter the XIAP mRNA level up to 4 h, suggesting that the XIAP is mainly regulated 

post-transcriptionally.  

 In order to determine whether the decreased XIAP level is due to proteasomal 

degradation, here we tested the effects of proteasome inhibitors on XIAP protein level. 

As shown in Figure 5.15A, MG132 (1 μM), PSI (5 μM) or PSII (5 μM) completely 

abolished the XIAP down-regulation induced by luteolin and TRAIL. The effect of 

MG132 was also found to be dose-dependent; and a low concentration of MG132 (0.1 

μM) only partially prevented XIAP degradation (data not shown). Since XIAP is 

probably the most potent apoptosis inhibitor, the stabilization of XIAP would render 

cells resistant to apoptosis induced by luteolin and TRAIL. Such a hypothesis was 

supported by the results shown in Figure 5.15B that the three proteasome inhibitors 

were able to completely prevent cell death induced by luteolin and TRAIL. It is thus 

believed that the down-regulation of XIAP protein through proteasomal degradation is 

the underlying mechanism in the sensitization effect of luteolin on TRAIL-induced 

apoptosis. Similar results were also found in other cell lines such as HT29 and HepG2 

(data not shown). 

 It is known that XIAP has ubiquitin protease ligase (E3) activity and the 

autoubiquitination and degradation is an important mechanism for regulating the 

XIAP function in apoptosis (Yang et al., 2000b; Zhang et al., 2004). Here we further 
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examined whether treatment with luteolin and TRAIL promotes XIAP ubiquitination 

by directly measuring XIAP ubiquitination. It was found that the combined treatment 

of luteolin and TRAIL significantly enhanced the level of ubiquitylated XIAP in 

HeLa cells in the presence of proteasome inhibitor MG132 (Figure 5.16). In 

consistent, the level of total protein ubiquitination was also increased by luteolin and 

TRAIL in the presence of MG132. Similar results were also in HT29 and HepG2 cells 

(data not shown). The above results thus clearly demonstrate that luteolin and TRAIL 

promotes XIAP degradation by enhancing its ubiquitination.  
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Figure 5.14  Effect of luteolin and TRAIL on XIAP 
mRNA level.

HeLa cells were treated with luteolin (40 μM), or TRAIL (1 
ng/ml) or a combination of both for indicated periods. Cells 
were collected for detection of XIAP mRNA level using RT-
PCR. G3PDH was used as a loading control.

TRAIL (h)      - 1        2      4        - - - 1       2       4 
Lu (h)            - - - - 1       2      4        +      +       +
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Figure 5.15 XIAP down-regulation is through proteasomal degradation 
in cells treated with luteolin and TRAIL. 

A, HeLa cells were pretreated with proteasome inhibitor MG132 (1 μM), 
PSI (5 μM), or PSII (5 μM) for 1 h, followed by combined treatment of 
luteolin (40 μM × 8 h) and TRAIL (1 ng/ml × 6 h). XIAP protein level was 
determined by Western blot. B, HeLa cells were treated as described in A 
and the percentage of apoptotic cell death was evaluated by DAPI staining.



 160

Lu+TRAIL - +            - +                    
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Figure 5.16 A combination of luteolin and TRAIL promotes XIAP 
ubiquitination. 

HeLa cells were pretreated with proteasome inhibitor MG 132 (1 μM) for 
2 h before combined treatment with luteolin (40 μM) and TRAIL (1 
ng/mL) for another 2 h. Cell lysate was used for immunoprecipitation with 
anti-XIAP antibody, followed by Western blot using anti-ubiquitin 
antibody.
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5.3.7 PI3K/AKT is not involved in cell death induced by luteolin and TRAIL 

 Previous studies have shown that the PI3K-AKT pathway plays a protective 

role in TRAIL-induced apoptosis (Thakkar et al., 2001) and one of the mechanisms is 

that AKT phosphorylates and stabilizes XIAP by inhibiting its ubiquitination (Dan et 

al., 2004). On the other hand, it is known that phorbol 12 myristate 13 acetate (PMA) 

is capable of protecting cells from TRAIL-induced apoptosis (Harper et al., 2003b). 

In our study, PMA pretreatment also completely prevented luteolin and TRAIL 

induced cell death (Figure 5.17).  

 It has been well established that PMA stimulates a series of downstream 

signals including PI3K-AKT, MAPK and PKC (Thakkar et al., 2001; Harper et al., 

2003b). We examined the involvement of each signaling pathway in the protective 

activity of PMA using various specific inhibitors. The two PI3K inhibitors (LY and 

Wort) failed to reverse the protective effect of PMA (Figure 5.17). Similar negative 

results were also found with a JNK inhibitor (SP600125), a p38 inhibitor (SB203580), 

or an ERK inhibitor (PD98059) (data not shown). The effectiveness of these two 

inhibitors on the PI3K/AKT pathway was confirmed in PMA-stimulated cells (Figure 

5.18A). We also found that either TRAIL or luteolin alone or their combination has 

no effect on AKT activation (Figure 5.18B). Therefore, the above data indicate that 

neither the PI3K-AKT nor the MAPK pathway plays a critical role in the protective 

effect of PMA against the apoptosis induced by luteolin and TRAIL. 

 

5.3.8 PKC activation blocks XIAP degradation and prevents the cell death 

induced by luteolin and TRAIL  

 It has been reported that PKC activation plays a protective role against 

TRAIL-induced apoptosis (Harper et al., 2003b). Here we attempted to explore the 
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possible role of PKC in luteolin and TRAIL-induced apoptotic cell death. First, BIM, 

a general PKC inhibitor, is capable of abolishing the protective effect of PMA on 

luteolin and TRAIL-induced cell death (Figure 5.19A), suggesting that the protective 

effect of PMA is mediated via PKC activation. Second, we asked whether PKC 

activation is associated with changes of XIAP protein level. As shown in Figure 

5.19B, PMA pretreatment completely prevented XIAP degradation in cells treated 

with luteolin and TRAIL. Moreover, such an effect by PMA on XIAP was completely 

abolished by BIM, thus suggesting that PMA-mediated PKC activation is able to 

stabilize XIAP and subsequently prevent apoptosis. The effectiveness of BIM on PKC 

activation was confirmed by the overall PKC activity which was assessed using an 

anti-phospho (Ser)-PKC substrate antibody by Western blot (Tanaka et al., 2003). As 

expected, PMA readily activated PKC and this activation was completely blocked by 

BIM but not LY and Wort (Figure 5.20), clearly suggesting that the protective effect 

of PMA is mediated via PKC activation.  
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Figure 5.17  Effect of PMA on the cell death induced by 
luteolin and TRAIL.

HeLa cells were pretreated with either 10 μM LY or 0.5 μM
Wort for 30 min, followed by treatment with PMA (80 ng/ml 
× 30 min) and finally with a combination of luteolin (40 μM
× 8 h) and TRAIL (1 ng/ml × 6 h). Cell death was evaluated 
by DAPI staining.
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Figure 5.18  Effect of luteolin and TRAIL on PI3K/AKT 
pathway. 

A, HeLa cells were pretreated with LY (10 μM) or Wortmannin (1 
nM) for 60 min followed by PMA (80 nM) treatment for 1 h. Cells 
were collected for detection of activation of AKT by Western blot 
using anti-phospho 473-AKT. Total AKT level was used as loading 
control. B, HeLa cells were pretreated with luteolin for 2 h followed 
by TRAIL for 1 h. Cells were collected for detection of activation of 
AKT by Western blot using anti-phospho 473-AKT. Total AKT level 
was used as loading control.
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Figure 5.19  PKC activation protects cell death and XIAP down-
regulation induced by luteolin and TRAIL. 
A, HeLa cells were first pretreated with 10 μM BIM for 30 min, 
followed by treatment with PMA (80 ng/ml × 30 min), and finally 
with combined treatment of luteolin (40 μM × 8 h) and TRAIL (1 
ng/ml × 6 h). Cell death was evaluated by DAPI staining. B, HeLa
cells were treated as in panel A and XIAP protein level was detected 
by Western blot. Tubulin was used as a loading control.
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PMA           - +           +           +           +
BIM            - - +            - -
LY              - - - +           -
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Figure 5.20  Effect of LY, Wort and BIM on PMA-induced 
PKC activation.

HeLa cells were pretreated with either 10 μM BIM, 10 μM LY or 
0.5 μM Wort for 30 min, followed by treatment with PMA (80 
ng/ml × 30 min). Cells were collected for detection of PKC 
activation by Western blot using anti-phospho (Ser)-PKC substrate 
antibody.  Tubulin was used as a loading control.
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5.3.9 PKC inhibition promotes XIAP down-regulation and apoptosis in TRAIL- 

treated cells  

 As the above data on PKC were all obtained from cells stimulated with PMA, 

next we examined whether the sensitization activity of luteolin also involves PKC 

without the presence of PMA. An earlier report showed that TRAIL activates PKC in 

one pancreatic adenocarcinoma cell line (PancTuI) but marginally in another 

(Colo357 cells) (Trauzold et al., 2001), suggesting the effect of TRAIL on PKC is 

cell-type specific. In this study, there was considerable degree of basal PKC activation 

in the control HeLa cells and marginal PKC activation by TRAIL. In contrast, luteolin 

pretreatment markedly reduced both the basal PKC and PKC activation by TRAIL, 

which is similar to the effect of BIM (Figure 5.21). These data thus support the 

hypothesis that luteolin sensitizes TRAIL-induced apoptosis through PKC inhibition. 

 To confirm the role of PKC in XIAP stability and the possible mechanisms 

involved, we further tested the effect of BIM on XIAP protein level in cells treated 

with TRAIL. Combined treatment of BIM and TRAIL significantly down-regulated 

XIAP level, a process not affected by z-VAD-fmk (data not shown), but prevented by 

MG132 (Figure 5.22A), which is similar to effect of luteolin on TRAIL-induced 

XIAP down-regulation as shown earlier (Figures 5.11A and 5.15A). Furthermore, 

similar to the sensitization activity of luteolin, BIM also significantly enhanced 

TRAIL-induced cell apoptosis (Figure 5.22B). Similar results were found in TRAIL-

resistant cells (HT29 and HepG2, data not shown). Therefore, data from this part of 

our study demonstrate that PKC activation plays a protective role in TRAIL-induced 

apoptosis via stabilization of XIAP and that luteolin may act as a PKC inhibitor to 

sensitize cancer cells to TRAIL-mediated apoptotic cell death. 
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Figure 5.21  Effect of luteolin on PKC activation. 

HeLa cells were first pretreated with luteolin (40 μM) or BIM 
(10 μM) for 30 min, followed by TRAIL (1 ng/ml for 1 h). 
Cells were then collected for detection of PKC activation by 
Western blot using anti-phospho (Ser)-PKC substrate antibody. 
Tubulin was used as a loading control

TRAIL                - - +           +            +
Lu                      - +           - +            -
BIM                    - - - - +
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30 kD
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Tubulin

Figure 5.22  A combination of PKC inhibition and TRAIL 
enhances XIAP degradation and cell death.

A, HeLa cells were pretreated with BIM (10 μM), and/or MG132 (1 
μM) for 30 min, followed by TRAIL (1 ng/ml × 6 h). XIAP protein 
level was detected by Western blot. Tubulin was used as a loading 
control. B, cells were treated as described in panel A and cell death 
was evaluated by DAPI staining. 
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5.4 DISCUSSION 

 TRAIL is a potent therapeutic agent due to its unique property of killing 

cancer cells by apoptosis but sparing normal cells. However, many cancer cells are 

found to be resistant to TRAIL, thus limiting its clinical application. A number of 

factors may be involved in the resistance, including modified expression of surface 

death receptors or changes of anti-apoptotic proteins (Wang and El Deiry, 2003). One 

effective strategy to overcome TRAIL resistance is to combine TRAIL with other 

anti-cancer agents (Gibson et al., 2000; Nagane et al., 2000; Huerta-Yepez et al., 

2004; Rosato et al., 2004; von Haefen et al., 2004). We demonstrated in an earlier 

study that luteolin sensitized TNF-induced apoptosis in cancer cells (Chapter 4). We 

here reported that luteolin also sensitizes TRAIL-induced apoptosis in a number of 

cancer cells. Such sensitization effect of luteolin is probably achieved via inhibition 

on PKC activation, promotion of XIAP ubiquitination and proteasomal degradation, 

which then removes the blockage on caspase and enhances apoptosis. 

 Data from this study have demonstrated that the sensitization activity of 

luteolin on TRAIL-induced apoptosis is mainly executed through the cell death 

receptor pathway and luteolin sensitizes TRAIL-induced apoptosis via enhanced 

caspase-3 maturation (Figures 5.4 and 5.5). It was reported that luteolin upregulated 

DR5 protein level in HeLa cells only after 12 h (Horinaka et al., 2005). This is 

consistent of our finding that luteolin treatment did not alter the expression level of 

TRAIL death receptors (DR4 and DR5) or its decoy receptors (DcR1 and DcR2) in 6 

h (Figures 5.7 and 5.8), suggesting that the slow increase of DR5 level unlikely 

contributes to the rapid sensitized cell death (4 h). We then went on to screen the 

changes of other apoptosis regulatory proteins after luteolin and TRAIL treatment. 

Among many anti-apoptotic proteins tested, we found that XIAP was significantly 
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down-regulated by combined treatment of luteolin and TRAIL, but not by their 

individual treatment (Figure 5.11). More importantly the XIAP down-regulation was 

caspase-independent, indicating the down-regulated XIAP level is upstream of 

caspase-3 activation. XIAP, a member of IAP family, is probably the most potent 

apoptosis inhibitory protein and plays important roles in cell survival. XIAP is 

characterized by baculoviral IAP repeat (BIR) domains, which can inhibit caspase-3 

and caspase-9 activity by direct binding (Deveraux et al., 1997; Deveraux and Reed, 

1999; Riedl et al., 2001). In this study, it appears that luteolin sensitizes TRAIL-

induced apoptosis by targeting XIAP to remove the blockage on caspase-3 activation 

and cell death. Such a hypothesis was further supported by the fact that over-

expression of XIAP protein offers complete protection against luteolin and TRAIL-

induced apoptosis (Figures 5.12 and 5.13).  

 We further examined the possible mechanisms contributing to the reduced 

XIAP protein level in cells treated with luteolin and TRAIL. Since either luteolin, 

TRAIL or their combined treatment had no effect on the XIAP mRNA level (Figure 

5.14), the reduced XIAP protein level is most probably the result of enhanced post-

transcriptional degradation. The effect of luteolin is apparently different from that of 

flavopiridol which acts synergistically with TRAIL by suppression of XIAP gene 

transcription (Rosato et al., 2004). It is known that the RING finger domain of XIAP 

has ubiquitin protease ligase (E3) activity and is responsible for its autoubiquitination 

and degradation after an apoptosis stimulus (Yang et al., 2000b). Here we tested 

whether luteolin and TRAIL promote XIAP ubiquitination and subsequent 

proteasomal degradation., the three proteasome inhibitors offered complete protection 

against both XIAP degradation (Figure 5.15A) and cell death (Figure 5.15B) in cells 

treated with luteolin and TRAIL. By performing XIAP immunoprecipitation and 
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ubiquitin western blot analysis, we then provided direct evidence showing that the 

level of ubiquitylated XIAP was enhanced in cells treated with luteolin and TRAIL. It 

is thus believed that the decreased XIAP protein level is mediated via ubiquitination 

and proteasomal degradation, a process crucial for deciding the susceptibility to 

apoptosis induced by luteolin and TRAIL in cancer cells.  

 One interesting finding in this study is that PMA pretreatment completely 

blocked the XIAP down-regulation and apoptotic cell death induced by luteolin and 

TRAIL (Figure 5.17). PMA is a potent inducer for a number of important cell 

signaling pathways, including the PI3K-AKT pathway (Hah et al., 2003). It has been 

reported that AKT activation stabilizes XIAP through enhanced phosphorylation and 

suppressed ubiquitination and proteasomal degradation (Dan et al., 2004). It has also 

been noted that over-expression of active AKT render TRAIL-sensitive cells to be 

resistant (Chen et al., 2001; Nesterov et al., 2001). In this study, pretreatment with the 

two PI3K inhibitors (LY or Wort) did not alter the cell sensitivity to TRAIL-induced 

apoptosis (Data not shown). No evident change of AKT activation was found in cells 

treated with either luteolin, TRAIL alone or their combination (Figure 5.18B). 

Moreover, LY or Wort failed to abrogate the protection effect of PMA against 

apoptosis induced by luteolin and TRAIL (Figure 5.17). Therefore, it appears that the 

PI3K-AKT pathway is not an important factor in luteolin and TRAIL-mediated XIAP 

down-regulation and apoptosis.  

 We next turned our attention to the possible involvement of PKC in luteolin 

and TRAIL-mediated XIAP and apoptosis since PMA is also known to be a potent 

stimulus for both classical and novel PKC activation (Tanaka et al., 2003). In this 

study we first confirmed that PKC activation contributes to the protective effect of 

PMA against luteolin and TRAIL-induced apoptosis by the following observations: (i) 
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PMA activates PKC (Figure 5.20) and (ii) a general PKC inhibitor (BIM) prevents 

PKC activation and abolishes the protective effect of PMA (Figure 5.22). It has been 

reported that PKC activation plays a protective role in TRAIL-induced apoptosis 

(Harper et al., 2003b). The protective effects of PKC against TRAIL-induced 

apoptosis could be achieved through interfering with DISC formation (Harper et al., 

2003b) or disrupting proteolytic cleavage of procaspase-8 (Meng et al., 2002) or 

affecting caspase-8-mediated Bid cleavage (Sarker et al., 2002). Here, we propose a 

novel mechanism to illustrate the anti-apoptotic function of PKC: PKC activation is 

associated with decreased XIAP proteasomal degradation and increased stability. 

Such a hypothesis is supported by the findings that PMA pretreatment prevents XIAP 

down-regulation while BIM reverses the effect of PMA on XIAP protein level in cells 

treated with luteolin and TRAIL (Figure 5.22). The suggested close linking between 

PKC activation and XIAP level indicates that there might be a positive correlation 

between the basal PKC level and XIAP level among cells with different sensitivity. 

However, we did not find any correlation after comparing the basal PKC and XIAP 

level among both TRAIL-sensitive cells and TRAIL-resistant cells (data not shown). 

It is possible that the basal level PKC activity and XIAP are not the only determining 

factors in the cellular response to TRAIL. It is known that phosphorylation of XIAP 

by some other protein kinases such as AKT protects XIAP from ubiquitination and 

proteasomal degradation (Dan et al., 2004). It is thus possible that PKC acts through a 

similar mechanism to stabilize XIAP. Thus, a number of important questions remain 

to be further investigated. For instance, does XIAP serve as the direct substrate for 

PKC? If so, which specific PKC subunit is involved? Further studies on these topics 

will certainly shed lights on the underlying mechanisms controlling TRAIL resistance 

and sensitivity in cancer cells. 
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 It was reported that certain flavonoids, including luteolin, inhibited PKC 

activity in some in vitro cell-free systems (Ferriola et al., 1989; Agullo et al., 1997). 

In this study, luteolin was found to significantly block both the basal PKC activation 

in control cells and the enhanced PKC activation in TRAIL-treated cells (Figure 5.21). 

Furthermore, the general PKC inhibitor (BIM) mimics the effect of luteolin: 

pretreatment with BIM down-regulated XIAP protein level in the presence of TRAIL 

(Figure 5.22A) and greatly caused apoptosis (Figure 5.22B). Therefore it is likely that 

luteolin acts as a PKC inhibitor to facilitate XIAP degradation and to promote 

TRAIL-mediated apoptosis. However, it is still not clear how luteolin inhibits PKC 

activity. Through the structure analysis, it has been hypothesized that flavonoids 

might interfere with the binding of PKC to calcium or diacylglycerol (DAG), but not 

directly interacting with the functional domain of PKC protein (Ferriola et al., 1989). 

Interestingly, although either luteolin or BIM could effectively suppress the basal 

PKC activation in control cells, they failed to cause any evident reduction of basal 

XIAP protein level. It thus suggests that PKC-induced modification of XIAP has no 

effect on its stability or expression, but likely acts on the recognition process by the 

proteosomal degradation pathway. Further study on PKC activation and XIAP 

ubiquitination and degradation is obviously required to address this issue.  

 Taken together, we discovered a novel anti-cancer function of luteolin. 

Luteolin sensitizes TRAIL-induced apoptosis in human cancer cells via inhibition on 

PKC activation and promotion of XIAP degradation (Figure 5.23). Understanding of 

such an effect of luteolin supports its potential therapeutic application in overcoming 

TRAIL resistance, especially in those cancers with elevated level of PKC activation. 

In addition, we also reveal a novel function of PKC in TRAIL-mediated apoptosis: 

PKC may protect the cell death by blocking XIAP ubiquitination and degradation 
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although a firm biochemical link between PKC and XIAP ubiquitination and 

degradation remains to be further established.   
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Figure 5.23  Illustration of the pathways involved in the 
sensitization activity of luteolin on TRAIL-induced apoptosis in 
cancer cells. 
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CHAPTER SIX 

 

LUTEOLIN ENHANCES THE ANTI-CANCER EFFECT OF CISPLATIN VIA 

STABILIZING P53 
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6.1 INTRODUCTION 

Cisplatin (cis-diamminediachloroplatium) and its derivatives are among one of 

the most effective anticancer drugs used clinically in the treatment of solid tumors, 

including ovarian, testicular, cervical, and small cell lung cancers (Loehrer, 1984). 

The anti-cancer effect of cisplatin is mainly depending on its DNA damaging activity, 

via its direct interaction with DNA to form DNA adducts (Dijt, 1988). Subsequently, 

several signaling transduction pathways are activated, including ataxia telangiectasia 

mutated kinase (ATM); ataxia telangiectasia and rad3-related kinase (ATR), p53, 

mitogen-activated protein kinases (MAPKs). Among them, p53 activation is one of 

major factors responsible for the apoptosis induced by cisplatin (Siddik, 2003). It has 

been observed that cisplatin can cause apoptosis in wild type p53 cancer cells but not 

in p53 deficient or mutant cancer cells, suggesting that p53 is the key regulator for 

cisplatin-mediated apoptosis in cancer cells (Song et al., 1998; Kanata et al., 2000; 

Tang and Grimm, 2004; Beuvink et al., 2005).  

 p53 is a short-lived tumor suppressor protein (Ko, 1996; Levine, 1997). Its 

stability is mainly regulated by its interaction with its transcriptional target mouse 

double minute 2 (MDM2). Acting as an ubiquitin E3 ligase, MDM2 interacts with 

p53 directly and promotes its ubiquitination and proteasomal degradation. Hence, p53 

level is kept at a low level in p53 wild type cancer cells (Kubbutat, 1997). Upon the 

DNA damage caused by cisplatin, p53 is up-regulated via increased p53 stability 

which is achieved through disrupting the interaction between MDM2 and p53. For 

example, DNA damage-activated ATM, ATR and DNA-PK can phosphorylate p53 on 

Ser 15 and Ser 37 (Shieh, 1997); Chk2 contributes to phosphorylation of p53 on serine 

20 (Shieh, 1999); whereas JNK phosphorylates p53 on tyrosine 81 (Buschmann et al., 
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2001). Phosphorylation on p53 affects its interaction with MDM2 or its binding to 

DNA or its transcriptional activity (Steegenga et al., 1996). 

 One important role of p53 as a tumor suppressor is its involvement in 

apoptosis. p53 activates caspase cascade and apoptosis mainly via an intrinsic 

pathway that involves mitochondria, a central regulator of apoptosis. The integrity of 

outer mitochondrial membrane is tightly regulated by Bcl-2 family proteins. Pro-

apoptotic members of the Bcl-2 family, such as Bax, Bak and Bid, form channels in 

membranes to regulate the release of pro-apoptotic proteins from mitochondria. On 

the other hand, anti-apoptotic members of the Bcl-2 family, such as Bcl-2 and Bcl-XL, 

tend to block the above process. (Kelekar and Thompson, 1998). Activation of p53 

can perturb the balance of Bcl-2 family proteins and favour the release of cytochrome 

C, SMAC, AIF, and EndoG from mitochondria to cytosal through openings on outer 

mitochondria membrane (Green, 2000b; Schuler and Green, 2001).  

 In Chapter 4 and 5, we have discovered that luteolin was capable of sensitizing 

apoptotic cell death induced by TNF or TRAIL in various human cancer cells, 

suggesting the potential therapeutic value of luteolin in cancer therapy. The resistance 

by tumor cells to cisplatin is one of the major limitations in cisplatin chemotherapy 

(Kartalou and Essigmann, 2001; Siddik, 2003). Furthermore, it would be of interest to 

find out whether luteolin, a common flavonoid that could be found in plants, could 

have a synergistic anti-cancer effect with a commonly used chemotherapeutic agent. 

In this part of our study, we aimed to evaluate the effect of luteolin on the 

chemotherapeutic efficacy of cisplatin, using both in vitro cell culture and in vivo 

cancer cell xenograft model. We reported here that luteolin significantly enhanced the 

anti-cancer effects of cisplatin by sensitizing cisplatin-induced apoptosis. The 

molecular mechanism responsible for this enhancement activity is found to be closely 
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related to the p53-controlled cell death pathway: luteolin is capable of stabilizing p53 

and promoting the activity of the pro-apoptotic Bcl-2 family member Bax at the site 

of mitochondria. Results from this study provide new evidence for the potential 

application of luteolin as a chemosensitizer in cancer therapy. 

 

6.2 MATERIALS AND METHODS 

6.2.1 Reagents and chemicals 

 Luteolin, 4'-6-Diamidino-2-phenylindole (DAPI), cisplatin, camptothecin, 

doxorubicin and anti-Bax 6A7 antibody were all purchased from Sigma (St Louis, 

MO). Pan-caspase inhibitor z-VAD-fmk was from Calbiochem (San Diego, CA). 

Anti-caspase 3, anti-Bcl-2, anti-Bcl-xL, anti-Bid, anti-p53 and anti-ubiquitin 

antibodies were from Cell Signaling Technology (Beverly, CA). Anti-Bax antibody 

was from Chemicon (Temecula, CA). Anti-XIAP antibody was from BD transduction 

laboratories (San Diego, CA). Anti-tubulin and anti-MDM2 antibody was obtained 

from Santa Cruz Biotechnology (Santa Cruz, CA). Fluorescin (FITC)-labeled 

synthetic siRNA (scrambled siRNA and p53 siRNA) were from QIAGEN (Valencia, 

CA).  

6.2.2 Cell culture and treatments 

 Human liver cancer cells HepG2 and Hep3B, and human colorectal cancer 

cells HT29 and HCT116 were from American Type Culture Collection (ATCC, 

Manassas, VA) and human nasopharyngeal cancer cells CNE1 was obtained from Sun 

Yet-sat University (Guangzhou, China). HepG2, HCT116 and CNE1 were maintained 

in DMEM medium (Sigma) with 10 % FBS (Hyclone, Logan, UT). HT29 cells were 

maintained in Mcoy5A medium with 10 % FBS. 

6.2.3 Apoptosis assessment-4’,6-diamidino-2phenylindole staining 
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 The cells undergoing apoptosis were evaluated by chromatin condensation, 

nuclear shrinkage and formation of apoptotic bodies, all visualized with 4’,6-

diamidino-2phenylindole (DAPI) staining (Fuentes et al., 2003). After various 

designated treatments, medium was removed and cells were fixed with 70% ethanol at 

room temperature for 10 minutes. Cells were then stained with 0.3 μg/mL DAPI (in 

PBS) at room temperature for 10 minutes and visualized under an inverted 

fluorescence microscope and photographed.  

6.2.4 RNA interference 

 HCT116 cells were transfected with scrambled siRNA labeled with FITC or 

p53 siRNA using the Lipofectamine 2000 transfection reagent (Invitrogen, Carlsbad, 

CA). The knockdown efficiency was confirmed by western blotting.  

6.2.5 Immunoprecipitation, cell fractionation and Western blot 

 Cells were lysed in Chaps lysis buffer [150 mM NaCl, 10 mM HEPES (pH 7.4) 

and 1 % Chaps] for 1 hour on ice. The supernatant was collected after centrifugation 

at 20,000 × g for 15 minutes. Each sample was added with 0.5 μg anti-Bax 6A7 

antibody or anti-MDM2 antibody and 50 μL protein A/G agarose beads (Roche 

Molecular Biochemicals, Indianapolis, IN) and rotated overnight at 4°C. The beads 

were washed four times using ice-cold PBS buffer and then eluted using SDS-sample 

buffer before subject to western blot analysis (Izeradjene et al., 2005). For cell 

fractionation, treated cells were suspended in 100 μl of buffer (20 mM HEPES, 10 

mM KCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol, 0.1 mM 

phenylmethylsulfonyluoride, 250 mM sucrose, pH 7.5), homogenized by a syringe 

with a 27-guage needle for 15–20 times. The lysate was centrifuged at 1000 g for 10 

min to spin down the intact cells and nuclear. The supernatant was further centrifuged 

at 15 000g for 1 h to obtain cytosolic fraction. For Western blot, equal amount of 
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proteins were fractionated on SDS-polyacrylamide gel in the Mini-PROTEAN II 

system (Bio-Rad, Hercules, CA) and blotted onto PVDF membrane (Millipore, 

Bedford, MA). After blocked with 5% nonfat milk in TBST [10 mM Tris-HCl (pH 

7.5), 100 mM NaCl and 0.1% Tween 20], the membrane was probed with various 

antibodies and developed with enhanced chemiluminescence (Pierce, Rockfold, IL) 

using a Kodak Image Station (Kodak, Rochester, NY). 

6.2.6 RNA extraction and real time-PCR 

RNA extraction was carried out using a total RNA extraction kit Purescript 

(Gentra Systems Inc., Minneapolis, MN), following the instructions of the 

manufacturer. Five μg of total RNA from each sample were subjected to reverse 

transcription using M-MLV reverse transcriptase (Promega, Madison, IL). Real-time 

PCR was carried out with QuantiTect SYBR Green PCR kit (QIAGEN, Valencia, CA) 

using 2 μL cDNA in a 20 μL final volume. Quantitative PCR was performed using an 

Opticon real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA) for 45 

cycles. A threshold cycle (CT) value, corresponding to the PCR cycle number at 

which fluorescence was detected above threshold, was calculated using Opticon 

analysis software (Bio-Rad Laboratories, Hercules, CA). The data was expressed as 

the fold increase after normalization using G3PDH. The primers of p53, 

glyceraldehydes-3-phosphate dehydrogenase (G3PDH) (Mafune et al., 1999) and 

human MDM2 (Wu et al., 2004a) were based on literature. 

6.2.7 In vivo nude mice xenograft experiment 

 To assess the effect of luteolin on the anti-cancer efficacy of cisplatin under in 

vivo condition, we used a nude mice xenograft model. The protocol was approved by 

the University Institutional Animal Care and Use Committee (IACUC). Briefly, 

female Balb/c nude mice of 5-6 weeks old, about 20 g were purchased from the 
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Animal Resources Centre (Murdoch, Australia) and maintained in SPF facility. The 

mice were inoculated subcutaneously in the two sides of flank with 107 HCT116 cells 

in a volume of 100 μL of PBS (Brattain et al., 1981). One week post-inoculation, 

mice bearing with visible tumors were randomly assigned to four experimental groups 

(six mice per group): vehicle (PBS), luteolin (40 mg/kg body wt), cisplatin (1.25 

mg/kg body wt) and luteolin (40 mg/kg body wt) plus cisplatin (1.25 mg/kg body wt). 

The dose of cisplatin we used was much lower than that in other studies ranging from 

3 mg/kg to 6 mg/kg (Hofmann et al., 1990; Okamoto et al., 2001; Goto et al., 2004). 

The dose of luteolin was based on our preliminary study and was comparable with 

that of other flavonoids used in vivo (Hofmann et al., 1990). The treatment was 

administered through i.p. three times per week (every Monday, Wednesday and 

Friday) with close monitoring of the general conditions of the animals. After three 

weeks, all mice were sacrificed by CO2 inhalation, the tumors were isolated and 

tumor weight and size were measured.  

6.2.8 Immunohistochemistry for p53 staining 

 p53 expression in tumor was evaluated by immunohistochemical staining. The 

tumor tissues obtained above were fixed in buffered formalin (10%) for paraffin 

sectioning. The p53 protein level was detected by immunohistochemistry with light 

counterstaining using haematoxylin. The cell thus stains brown in a positive and blue 

in a negative case. 
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6.3 RESULTS 

6.3.1 Luteolin enhances cisplatin-induced caspase-dependent apoptosis in human 

cancer cells  

 Many cancer cells are resistant to cisplatin-induced apoptosis (Kartalou and 

Essigmann, 2001; Siddik, 2003). As shown in Figure 6.1, all three cancer cells, 

HepG2, CNE-1 and HCT116 cells were rather refractory to cisplatin: only small 

fraction of cells (<5%) were apoptotic when treated with 10 μg/mL of cisplatin for 24 

h. Luteolin alone at 40 μM did not induce evident apoptosis in any of these cells. 

However, pretreatment with luteolin for 2 h significantly enhanced cisplatin-induced 

apoptosis in all three cancer cells. Apoptotic cells were evaluated by DAPI staining 

which shows typical chromatin condensation in apoptotic cells, as illustrated in Figure 

6.2.  

The apoptosis induced by luteolin and cisplatin was further examined by 

detection of PARP cleavage and caspase activation, the two hall markers of apoptosis. 

Caspase-3 is the main downstream effector caspase and PARP is one of its major 

substrates (Boulares et al., 1999). In HCT116 cells, either luteolin or cisplatin alone 

caused no caspase-3 or PARP cleavage (Figure 6.3). However, their combination led 

to evident cleavage of caspase-3 and PARP, which is consistent with the cell death 

evaluated by DAPI staining (Figure 6.1). Furthermore, the cleavage of PARP and 

caspase 3 were inhibited by a pan-caspase inhibitor, z-VAD-fmk (Figure 6.3), 

suggesting that the apoptosis induced by luteolin and cisplatin is caspase-dependent. 
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Figure 6.1  Luteolin enhances cisplatin-induced apoptosis in cancer 
cells. 

Cells were pre-treated with luteolin for 2 h (40 μM for HCT-116 and CNE-
1, 20 μM for HepG2) and then treated with indicated concentrations of 
cisplatin (μg/ml) for another 24 h. Cells were fixed with 70% ethanol for 5 
min and then stained with 0.3 μM DAPI for 10 min. Apoptotic cells were 
counted according to their morphologic changes under a fluorescence 
microscope. Column: means of three independent experiments; bar: SD. 
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- Luteolin

-

Cisplatin

Figure 6.2 Luteolin enhances cisplatin-induced apoptosis in 
HCT116 cells. 

HCT116 cells were treated with cisplatin (10 μg/ml) for 24 h with or 
without luteolin (40 μM × 2 h) pretreatment. Cells were fixed with 
70% ethanol for 5 min and then stained with 0.3 μM DAPI for 10 min. 
Pictures were taken under an inverted fluorescence microscope with 
UV stimulation 
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Luteolin     - +           - +           +
Cisplatin - - +           +           +
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PARP

Tubulin

Figure 6.3 A combination of luteolin and cisplatin causes 
caspase activation 

HCT116 cells were treated with luteolin (40 μM × 2 h) 
followed by cisplatin (10 μg/ml) for 24 h, with or without the 
presence of z-VAD-fmk (25 μM, 30 min pretreatment). Cells 
were then collected for detection of PARP and caspase 3 using 
Western blot. Tubulin was used as a loading control. 
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6.3.2 Luteolin and cisplatin elevate p53 protein level 

            To elucidate the possible mechanism involved in the sensitization effect of 

luteolin on cisplatin-induced apoptosis, we first examined the changes of several 

important apoptosis regulatory proteins, such as XIAP, Bcl-2, Bcl-XL and Bax in cells 

treated with luteolin and cisplatin. However, none of them demonstrated any 

significant changes in HCT116 cells (Figure 6.4). Since cisplatin is known to activate 

p53 via DNA damage and p53 is the key regulator for cisplatin-mediated apoptosis in 

cancer cells (Siddik, 2003), we next examined the change of p53 protein in HCT116 

cells treated with luteolin, cisplatin, or their combination. As shown in Figure 6.4, 

luteolin or cisplatin alone is capable of enhancing p53 protein level significantly. 

More importantly, combined treatment of luteolin and cisplatin further increased the 

p53 protein level, especially at 12 and 18 h after treatment, suggesting that p53 may 

play an important role in promoting luteolin and cisplatin-induced apoptosis. 

 

6.3.3 Luteolin does not enhance cisplatin-induced apoptosis in mutant p53 cells  

          To further test the involvement of p53 in apoptosis induced by combined 

treatment of luteolin and cisplatin, we compared the responses of cells with different 

genetic features of p53. As shown in Figure 6.5, luteolin plus cisplatin induced 

significant apoptosis in HepG2  and HCT116 cells, both of them are with wild type 

p53 (Boyer et al., 2004). In contrast, luteolin plus cisplatin failed to induce evident 

apoptosis in Hep3B or HT29 cells with a mutant p53. Therefore, it is believed that 

induction of apoptosis by luteolin and cisplatin is dependent on the presence of 

functional p53.  
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Figure 6.4 A combination of luteolin and cisplatin elevates p53 
protein level

HCT116 cells were treated with cisplatin (10 μg/ml) for the indicated 
period with or without the presence of luteolin pretreatment (40 μM ×
2 h). Cells were collected for detection of p53,XIAP, Bcl-xL, Bax and 
Bcl-2 protein levels by Western blot. Tubulin was used as loading 
control. 
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Figure 6.5 A combination of luteolin and cisplatin does not 
cause apoptosis in mutant p53 cancer cells

Cells were pre-treated with luteolin for 2 h (40 μM for HCT-116 
and HT29, 20 μM for HepG2 and Hep3B) and then treated with 
cisplatin (10 μg/ml) for another 24 h. Cells were fixed with 70% 
ethanol for 5 min and then stained with 0.3 μM DAPI for 10 min. 
Pictures were taken under an inverted fluorescence microscope 
with UV stimulation.
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6.3.4 p53 knockdown abolishes the apoptosis induced by luteolin and cisplatin 

 In order to further confirm the role of p53 in apoptosis induced by luteolin and 

cisplatin, we knocked down p53 protein in HCT116 cells using the technique of RNA 

interference. The transfection efficiency of siRNA was higher than 90%, as monitored 

by a FITC-labeled siRNA (data not shown). The knockdown efficiency was 

confirmed by Western blot. As shown in Figure 6.6, luteolin plus cisplatin elevated 

p53 protein level in cells transfected with scrambled siRNA, which does not target 

any gene. The p53 protein level was significantly reduced in cells transfected with 

p53 siRNA. We then examined the apoptosis rate induced by luteolin and cisplatin 

after various siRNA transfections. Luteolin plus cisplatin caused significant apoptotic 

cell death in cells transfected with scrambled siRNA (Figure 6.7), which is similar to 

the cell death in non-transfected cells (Figure 6.1). However, p53 knockdown 

significantly reduced the number of apoptotic cells induced by luteolin and cisplatin. 

This again confirms that p53 is required for the enhanced apoptosis by luteolin and 

cisplatin. 



 192

Tub

Lu+Cisplatin - +              - +
Scrambled siRNA p53 siRNA

p53

Figure 6.6 p53 RNA interference

HCT116 cells were transfected with scrambled siRNA labeled 
with FITC, or p53 siRNA for 24 h, then cells were treated with 
luteolin (40 μM) for 6 h and cells were collected for detection 
of p53 by Western blot 
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Figure 6.7 p53 RNA interference suppresses the apoptosis induced
by luteolin and cisplatin in HCT116 cells

HCT116 cells were transfected with scrambled siRNA or p53 siRNA for 
24 h, then were treated with luteolin (40 μM × 2 h) followed by 
cisplatin (10 μg/ml × 24 h). The cells were fixed with 70% ethanol 
and stained with 0.3 μM DAPI for 10 min. Apoptotic cells were counted. 
Column, mean of three independent experiments; bar, SD. 
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6.3.5 Luteolin elevates p53 by increasing its protein stability 

 One important finding from Figure 6.4 is that luteolin alone can elevate p53 

protein level significantly and rapidly. In the presence of luteolin, significant increase 

of p53 protein was found as early as 3 h, which is much faster than the changes 

induced by cisplatin. Such a kinetic difference suggests that luteolin and cisplatin 

promotes p53 protein accumulation via different mechanisms. To elucidate the 

mechanisms of p53 elevation by luteolin, we first examined the effect of luteolin on 

p53 mRNA level. However, luteolin did not affect p53 mRNA level at 1, 3, or 6 h 

(Figure 6.8), when p53 protein was significantly elevated (Figure 6.4), suggesting that 

the rapid elevation of p53 protein level by luteolin is not regulated at transcriptional 

level.  

 p53 is a short half-life protein, which is degraded rapidly once it is synthesized. 

We then examined the p53 stability in the presence of luteolin. In cells treated with 

cycloheximide (CHX), a de novo protein synthesis inhibitor to block p53 protein 

synthesis, the p53 protein was rapidly degraded, showing a half-life of around 15 min 

(Figure 6.9). On the other hand, luteolin can significantly prolong the half-life of p53 

to about 60 min, suggesting that luteolin promotes p53 protein stabilization. 
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Figure 6.8 Luteolin does not affect p53 mRNA level in HCT116 cells

HCT116 cells were treated with luteolin (40 μM) for indicated period. 
Cells were collected for detection of MDM2 mRNA level using real
time PCR. G3PDH was used for normalization.
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Figure 6.9 Luteolin elevates p53 stability in HCT116 cells

HCT116 cells were treated with luteolin (40 μM) or vehicle for 30 min 
followed by cycloheximide (CHX) (1 µg/ml) for the indicated period. 
Cells were collected for detection of p53 and tubulin using Western blot.
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6.3.6 Luteolin increases p53 protein stability by inhibiting MDM2 and disrupting 

their interaction 

 Stability of p53 protein is mainly regulated by its interaction with its 

transcriptional target mouse double minute 2 (MDM2), which acts as an ubiquitin E3 

ligase and promotes p53 ubiquitination and proteasomal degradation (Kubbutat, 1997; 

Chi et al., 2005). We then investigated the effect of luteolin on the interaction 

between p53 and MDM2 using immunoprecipitation. In vehicle-treated cells, there 

was an interaction between p53 and MDM2, which is supposed to mediate p53 

ubiquitination and degradation. However, the interaction was significantly disrupted 

by luteolin (Figure 6.10). 

 One important finding from the data presented in Figure 6.10 is that luteolin 

treatment reduced the MDM2 protein level. We thus decided to examine the time 

course of MDM2 protein level change after luteolin treatment. Interestingly, MDM2 

protein level decreased after 3 or 6 h treatment of luteolin (Figure 6.11), which 

occurred at the same when p53 protein was elevated (Figure 6.4). These findings 

suggest that luteolin stabilizes p53 protein level by decreasing MDM2 protein and 

disrupting its interaction with p53.  

 To elucidate the mechanism of MDM2 protein down-regulation by luteolin, 

we then tested whether MDM2 was regulated at transcriptional level. Figure 6.12 

shows that luteolin significantly decreased MDM2 mRNA level at as early as 1 h, 

which was earlier than the protein level change (Figure 6.11). As expected, evident 

reduction of MDM2 mRNA level was found in cells treated with actinomycin D 

(ActD), a transcription inhibitor. However, cisplatin did not appear to affect the 

MDM2 mRNA level.  
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Figure 6.10 Luteolin disrupts the p53-MDM2 interaction in 
HCT116 cells

HCT116 cells were treated with luteolin (40 μM) or vehicle for 6 
h. Cell lysate was immunoprecipated with anti-p53 antibody, 
followed by Western blot using anti-MDM2 antibody. 1 % input 
lysate was subjected to Western blot to detect MDM2 and tubulin.
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Figure 6.11 Luteolin decreases MDM2 protein level

HCT116 cells were treated with luteolin (40 μM) for 
indicated period. Cells were collected for detection of 
MDM2 protein level using Western blot. Tubulin was used as 
a loading control. 
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Figure 6.12 Luteolin decreases MDM2 mRNA level

HCT116 cells were treated with luteolin (40 μM) for indicated period 
or actinomycin D (ActD 1 μg/ml) for 6 h or cisplatin (µg/ml) for 12 h. 
Cells were collected for detection of MDM2 mRNA level using real
time PCR. G3PDH was used for normalization.
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6.3.7 Luteolin and cisplatin induces p53 and Bax mitochondrial translocation 

 Since the apoptosis induced by luteolin and cisplatin was not prevented by a 

specific caspase 8 inhibitor, z-IETD-fmk (data not shown), suggesting that the 

apoptosis is unlikely to be executed via the extrinsic death receptor pathway, but 

rather the intrinsic mitochondrial pathway. This speculation was confirmed by the 

finding that cytochrome c release to cytosol was caused by a combination of luteolin 

and cisplatin (Figure 6.13).  

 Recent evidence suggests that apoptosis mediated by p53 could involve its 

mitochondrial translocation (Chipuk et al., 2003; Erster et al., 2004). To test whether 

this is the case in luteolin and cisplatin combined treatment, we carried out 

mitochondrial fraction. The complete separation was confirmed by the absence of 

tubulin in mitochondria fraction. Figure 6.14 shows that both luteolin and cisplatin 

caused p53 translocation to mitochondria, whereas the combination treatment of 

luteolin and cisplatin induced an even more extensive p53 mitochondrial translocation. 

 The p53 mediated transcription-independent apoptosis requires the 

involvement of another partner, Bax (Chipuk et al., 2003). Although the total protein 

level of Bax was not increased by either luteolin, cisplatin or their combination 

(Figure 6.4), Bax translocation to mitochondria was significant in the presence of 

luteolin. For the combined treatment, the translocation was even more significant 

(Figure 6.14). 

 It is known that the pro-apoptotic function of Bax requires its transformational 

changes (Park et al., 2002). The activated Bax on mitochondria can be distinguished 

by a conformational change in the N-terminus that exposes the formerly buried 6A7 

epitope (Desagher et al., 1999; Nechushtan et al., 1999). We thus used a specific 

antibody, anti-Bax 6A7, to pull down the active form of Bax and detect it using 
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Western blot. As shown in Figure 6.15, the Bax transformation was increased by 

either luteolin or cisplatin. More importantly, Bax was further activated when 

cisplatin was treated together with luteolin. The above observations suggest that the 

enhanced p53 and Bax mitochondrial translocation, as well as enhanced Bax 

transformation, contribute to enhanced apoptotic cell death induced by combined 

treatment of luteolin and cisplatin. 

6.3.8 Luteolin enhances the anti-cancer effect of cisplatin in vivo  

 To evaluate the potential of luteolin as a sensitizer of cisplatin in vivo, we 

tested the combined anti-cancer effect of the two agents on HCT116 xenografted nude 

mice. As shown in Figures 6.16 and 6.17, the tumor in vehicle-treated mice grew very 

fast and increased to about 1.2 g after 3 weeks. Low dose of cisplatin (1.25 mg/kg 

body weight) alone slightly suppressed the tumor growth and luteolin (40 mg/kg body 

weight) alone did not affect much the tumor growth. However, tumor weight was 

significantly reduced by the combined treatment. In several mice, the tumor was 

almost invisible (Figure 6.16). Therefore the in vivo evidence confirms that luteolin 

can significantly enhance the anti-cancer effect of cisplatin.  

6.3.9 Luteolin enhanced the anti-cancer effect of cisplatin in vivo by elevating p53  

 To explore the mechanisms involved in the in vivo anti-cancer effect by 

luteolin and cisplatin, the tumor tissue were fixed and stained with anti-p53 antibody 

using immunohistochemistry. In vehicle treated mice, the expression of p53 was only 

marginal (Figures 6.18 and 6.19). Although both cisplatin and luteolin could 

significantly increase the expression of p53 protein, their patterns are different. About 

50% of the cells were found over-expressing p53 in cisplatin-treated mice and the p53 

level was moderate in those cells. In contrast, the p53 protein level in luteolin-treated 

mice was much higher than that in cisplatin-treated mice, although the number of 
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positive cells was less. It is noted that in mice with combined treatment of luteolin and 

cisplatin, more than 80% cancer cells were stained positive and the p53 protein level 

was also significantly higher than the individual treatment. Such a finding is basically 

consistent with in vitro data (Figure 6.4). 
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Figure 6.13 A combination of luteolin and cisplatin induces 
cytochrome c release to cytosol

HCT116 cells were treated with luteolin (40 μM × 2 h) 
followed by cisplatin (10 μg/ml) for 18 h. Cells were then 
collected and cytosol was fractioned for detection of cytochrome
c using Western blot. Tubulin was used as a loading control.
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Figure 6.14 Luteolin and cisplatin induced p53 and bax 
mitochondrial translocation

HCT116 cells were treated with luteolin (40 μM) or cisplatin
(10 μg/mL) or their combination for 12 h. Cells were collected 
and mitochondria fractions were obtained to detect p53 and Bax 
using Western blot. Anti-MnSOD was used as a loading control 
and anti-tubulin was used to prove the absence of cytosal 
proteins. 
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Figure 6.15 Luteolin and cisplatin induced bax mitochondrial 
translocation

HCT116 cells were treated with luteolin (40 μM) or cisplatin (10 
μg/mL) or their combination for 12 h. Cells were collected and 
cell lysate was used for immunoprecipitation using anti-Bax (6A7) 
antibody, followed by Western blot using anti-Bax antibody. Bax 
in 1 % input lysate was used as a loading control. 
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Figure 6.16  Luteolin enhances the anti-cancer effect of cisplatin in 
vivo

Six-eight weeks Balc/B nude mice (about 20 g) were inoculated with 
107 HCT116 cells in 100 μl PBS. After one week, mice bearing tumor 
were treated with PBS as vehicle, or luteolin (40 mg/kg), or cisplatin
(1.25 mg/kg), or luteolin (40 mg/kg) with cisplatin (1.25 mg/kg), 
through i.p. injection (3 times per week) for 3 weeks. At the end of 
treatment, mice were sacrificed by CO2 inhalation and photographed.
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Figure 6.17  Luteolin enhances the anti-cancer effect of cisplatin in 
vivo (Quantification)

Tumor weights (g) of mice treated in Figure 6.16 were measured. 
Column, mean of tumor weight; bar, SD. Six mice in one group. 
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Figure 6.18  Luteolin and cisplatin elevate p53 protein level in vivo

Tumor samples from the mice treated in Figure 6.16 were fixed by buffered 
formalin for paraffin sectioning, p53 expression was evaluated by 
immunohistochemistry after counter staining. The representative field for 
p53 expression was photographed. The p53 positive cell stains brown and 
the negative cell stains blue. 
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Figure 6.19  Luteolin and cisplatin elevate p53 protein level in vivo
(Quantification)

The percentages of p53 positive cells in Figure 6.18 were counted in 
representative fields. Column, mean; bar, SD.
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6.4 DISCUSSION 

 Cisplatin is widely used to treat a variety of tumors. However, resistance to 

this drug is a major limitation for its clinical use (Kartalou and Essigmann, 2001; 

Siddik, 2003). Therefore, treatment together with other agents is a strategy to enhance 

the anti-cancer potential of cisplatin (Duan et al., 2001; Iwase et al., 2003; Kim et al., 

2003a; Fulda and Debatin, 2005; Mohanty et al., 2005). Here we reported that a 

natural flavonoid, luteolin can enhance the anticancer potential of cisplatin through a 

novel mechanism, stabilizing p53 protein and causing p53 and Bax mitochondrial 

translocation. 

 As shown in our early studies, luteolin could sensitize TNF and TRAIL-

induced apoptosis in a variety of human cancer cells (Chapters 4 and 5). We thus 

further examine whether luteolin has a synergistic effect when combined with anti-

cancer drugs, such as cisplatin. 

 As shown in Figure 6.1, several human cancer cells are resistant to cisplatin, 

while luteolin, at its non-toxic concentration, significantly enhanced cisplatin-induced 

apoptosis (Figure 6.3). Moreover, this sensitization effect was only observed in p53 

wild type HCT116 and HepG2 cells, but not in p53 mutant cells such as Hep3B and 

HT29 (Figure 6.5). The critical role of p53 status was further supported by the 

following observations: (i) the significant elevation of p53 protein (Figure 6.4), (ii) 

knockdown of p53 by siRNA offered significant protection against apoptosis induced 

by a combined treatment of luteolin and cisplatin (Figures 6.6 and 6.7). 

 To be noted, the increase of p53 protein by luteolin is rapid, occurred as soon 

as 3 h after treatment (Figure 6.4). It has been previously reported that luteolin can 

activate p53 in p53 wild type cancer cells (Plaumann et al., 1996), but the mechanism 
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was not known. It is possible that luteolin can inhibit topoisomerase I (Mittra et al., 

2000; Chowdhury et al., 2002) to cause DNA damage (Leung et al., 2005). However, 

this could not explain the significant and rapid elevation of p53 protein within 3 h, 

since cisplatin, a typical DNA-damaging agent, could only elevate p53 protein after 6 

h in HCT116 (Figure 6.4). Further, we showed that the rapid p53 elevation is not 

dependent on p53 mRNA increase (Figure 6.8) but through stabilizing of this short-

lived protein (Figure 6.9). p53 stability is mainly regulated by its interaction with 

MDM2 protein, which interacts with p53 directly and promotes its ubiquitination and 

proteasomal degradation. In this study, we demonstrated that the rapid p53 

accumulation by luteolin is through decreasing MDM2 protein (Figure 6.11) and 

disrupting the MDM2-p53 interaction (Figure 6.10). In Chapter 5, we reported that 

luteolin, in the presence of TRAIL, promoted XIAP ubiquitination and proteasomal 

degradation without affecting its mRNA level. Here we tested whether luteolin also 

affected MDM2 protein via a similar mechanism. Very interestingly, we found that 

luteolin decreased MDM2 mRNA level (Figure 6.12) but did not promote MDM2 

ubiquitination (data not shown). Since MDM2 is one of the target gene of the 

transcriptional factor p53, it was expected to see that luteolin caused elevation of 

MDM2 mRNA and protein level corresponding with the marked increase of total p53 

protein level (Figure 6.4) induced by luteolin. Conversely, we found that MDM2 

mRNA level decreased after luteolin treatment, suggesting that luteolin may either 

suppress the transcriptional activity of p53 or adversely affect MDM2 mRNA stability. 

The exact mechanism remains to be further investigated. 

 There were reports that the anti-cancer effect of cisplatin largely depends on 

the p53 status of the tumors (Song et al., 1998; Kanata et al., 2000; Tang and Grimm, 

2004; Beuvink et al., 2005). It has been demonstrated that the resistance to cisplatin 
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could be overcome by enhancing or restoring the wild type p53 in p53 mutant cancer 

cells (Song et al., 1997). The apoptosis induced by p53 is mainly mediated by the 

mitochondria pathway, a central regulator of apoptosis. In response to death stimuli 

including p53 activation, cytochrome C and SMAC are released from mitochondria to 

cytosal and facilitate the caspase activation and nuclear fragmentation (Green, 2000b). 

The cytochrome c release is not present in either luteolin or cisplatin treated cells 

(Figure 6.13). A combined treatment of luteolin and cisplatin led to the release of 

cytochrome c to cytosol prior to apoptosis, indicating the involvement of 

mitochondria in the apoptosis.  

 Generally there are two pathways in p53-mediated apoptosis: the transcription 

dependent and transcriptional activity-independent pathway. In the former, p53 could 

enhance the transcription of some pro-apoptotic proteins, such as Bax, Noxa and 

PUMA (Miyashita and Reed, 1995; Attardi et al., 2000; Oda et al., 2000b; Yu et al., 

2001). However, in this study we did not observe the elevation of Bax after the 

combined treatment. On the contrary, we found that the mRNA level of MDM2 and 

p21, two downstream genes regulated by p53, reduced, indicating that the p53 

transcription-dependent pathway may not be involved in the apoptosis induced by 

luteolin and cisplatin. Currently there is accumulating evidence suggesting that p53-

mediated apoptosis is independent of its transcriptional activity, a process mainly 

involving mitochondrial translocation of p53 and some pro-apoptotic Bcl-2 family 

members such as Bax (Chipuk et al., 2003; Erster et al., 2004; Arima et al., 2005). In 

non-stimulated cells, Bax exists as a monomer either in the cytosol or loosely attached 

to the outer mitochondrial membrane. Although Bax total protein level was not 

affected in the present study (Figure 6.4), we observed that luteolin alone could 

induce translocation of p53 and Bax to mitochondria (Figure 6.14). In contrast, 
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cisplatin alone only induced marginal p53 and Bax mitochondrial translocation. The 

combined treatment of luteolin and cisplatin further enhanced p53 and Bax 

mitochondrial translocation as well as Bax transformation, suggesting the importance 

of such changes.  

 In this part of our study, the anti-cancer effect of combined treatment of 

luteolin and cisplatin was further examined using in vivo xenograft model. The dose 

of cisplatin used in this study was much lower than that in other studies (Hofmann et 

al., 1990; Okamoto et al., 2001; Goto et al., 2004). In our study, cisplatin at 1.25 

mg/ml only slightly suppressed the tumor growth (Figures 6.16 and 6.17). 

Immunohistochemisty showed that the p53 protein was elevated by cisplatin treatment, 

which is consistent with the in vitro data (Figure 6.4). The p53 protein level was also 

elevated by luteolin. Interestingly, luteolin plus cisplatin markedly elevated the p53 

protein level and significantly inhibited the tumor growth (Figures 6.16, 6.17, 6.18 

and 6.19). This in vivo finding suggests that luteolin can enhance the anti-tumor effect 

with a low dose of cisplatin by elevating p53.  

 In conclusion, we found that luteolin, a major flavonoid in chrysanthemum, 

can significantly enhance the anti-cancer effect of cisplatin. The enhancement is 

through decreasing MDM2 mRNA as well as protein level, disrupting the p53-MDM2 

interaction, thus to stabilize p53 protein, leading to mitochondrial translocation of p53 

and Bax, and eventually apoptotic cell death. Data from both the in vivo and in vitro 

experiments provide convincing evidence to support the potential application of 

luteolin as a chemosensitizer in cancer therapy. 
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 Chrysanthemum morifoium is a common traditional herbal medicine for 

treatment of fever, eye irritation and hypertension, etc in many Asian countries (Jiang, 

2002). The main pharmacological activity of chrysanthemum includes its anti-

inflammatory and anti-oxidant function (Yu and Xie, 1987; Chen et al., 2003). 

Preliminary data from our laboratory have found that the water extract of 

chrysanthemum significantly inhibited the growth of xenografted tumor in nude mice 

(Shen et al., unpublished data), suggesting the potential anti-cancer property of 

chrysanthemum.  

 Many types of active components identified in chrysanthemum have been 

found to own potential anti-cancer function. For instance, more than 50 terpenoids 

identified from chrysanthemum have been shown to possess anti-tumor effects in a 

number of cancer cell lines (Ukiya et al., 2001; Ukiya et al., 2002). However, 

terpenoids are unlikely the active components in the water extract due to their 

insolubility in water. On the other hand, flavonoids are a group of phytochemicals 

ubiquitiously present in plants, and their anti-tumor effects have been well 

documented (Ross and Kasum, 2002). A dozen of flavonoids have been identified 

from chrysanthemum (Hu et al., 1994; Liu et al., 2001; Lee et al., 2003; Hu et al., 

2004). As flavonoids are mostly water soluble, thus are expected to be present in the 

water extract of chrysanthemum. Therefore, it was of interest to determine whether 

those flavonoids are responsible for the anti-cancer potential of chrysanthemum. 

 Apoptosis is a type of cell death characterized by specific morphological and 

biochemical changes (Hengartner, 2000). Insufficient apoptosis is believed to be one 

of the causes of tumor formation (Hanahan and Weinberg, 2000). Thus, induction of 

apoptosis in cancer cells has been an established strategy in cancer therapy. Apoptosis 

is mediated mainly through two signaling pathways, the extrinsic death receptor 
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pathway and intrinsic mitochondrial pathway. In the death receptor pathway, the 

death receptors are triggered by their ligands, such as TNFα and TRAIL, leading to 

the recruitment of adaptor molecules that activate the caspase cascade (Chen and 

Goeddel, 2002). In the mitochondrial pathway, cell death signals converge on 

mitochondria, causing the release of an array of apoptosis regulatory proteins such as 

cytochrome c and SMAC that activates the caspase cascade (Kroemer, 2000). The 

role of mitochondria in apoptosis is mainly mediated by the Bcl-2 family proteins in 

response to a variety of cell death stimuli, including DNA damaging agents or cancer 

therapeutics such as cisplatin.  

 One of the important issues in cancer therapy is resistance. Some cancer cells 

acquire the resistance to apoptosis through a variety of biochemical changes. For 

example, the rapid activation of NF-κB pathway by TNFα will trigger the expression 

of a series of anti-apoptotic proteins, including A20, XIAP and c-IAPs, etc (Krikos et 

al., 1992; Wang et al., 1998; Micheau et al., 2001). These anti-apoptotic proteins can 

then suppress the caspase cascade triggered by TNFα or TRAIL to block apoptosis. 

For example, XIAP can directly interact with caspase-3 to inhibit its activation and 

activity (Deveraux et al., 1997). It is known that cisplatin induces cancer cell 

apoptosis mainly through activating p53 (Siddik, 2003). Thus, high expression of 

MDM2 protein, which suppresses p53 protein level, may cause cancer cells to be 

resistant to cisplatin (Kondo et al., 1995). Therefore, it was important to seek effective 

strategies to overcome the resistance in cancer therapy. 

 As one of the major flavonoids of chrysanthemum (Chapter 2), luteolin has 

been demonstrated to possess a variety of activity, including antioxidant, anti-

inflammation, inhibition of cell proliferation, induction of cell cycle arrest or 

apoptosis, inhibition of topoisomerases and protein kinases, and suppression of 
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metastasis and angiogenesis (see more detailed discussion in Section 1.2). To be noted, 

some of these effects are closely related to the ability of luteolin in modulating the 

activation and function of NF-κB and p53. Luteolin has been demonstrated to block 

LPS-induced NF-κB transcriptional activity in macrophages (Xagorari et al., 2002), 

Rat-1 fibroblasts  (Kim et al., 2003b) and rat IEC-18 cells (Kim and Jobin, 2005). In 

addition, luteolin activates wild type p53 in several cells (Plaumann et al., 1996). It is 

thus postulated that luteolin may interfere with the cell death signaling pathway 

elicited by TNF, TRAIL and cisplatin to modulate the apoptotic cell death process. 

 The main objectives of this study are to investigate the anti-tumor property of 

chrysanthemum and its major flavonoids, luteolin. The whole study included the 

following investigation: 1) identification of the major anti-tumor components of the 

water extract of chrysanthemum, (presented in Chapter 2); 2) evaluation of the anti-

tumor effects of the major active components, (presented in Chapter 3); 3) 

investigation of the combined effects of luteolin with cancer therapeutic agents, 

including TNF, TRAIL and cisplatin (presented in Chapters 4, 5 and 6). 

7.1 Flavonoids are the major anti-tumor components of chrysanthemum water 

extract 

To investigate the major anti-tumor components in the water extract of 

chrysanthemum, we obtained a crude water extract (Fraction A) and then partitioned 

it into three fractions according to their polarity (Figure 2.1). The bioassay showed 

that the EtOAc fraction were the most potent in inhibiting cancer cell growth (Figure 

2.2). Its cytotoxicity was much higher than that of the crude chrysanthemum water 

extract and other two fractions, suggesting that EtOAc fraction contains the major 

cytotoxic components of the water extract of chrysanthemum.  
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Further chemical assays suggested that there are 13 flavonoids in the EtOAc 

fraction and all of them are conjugated with sugar substitutes. We found that the 

chrysanthemum flavonoids mixture, at 0.25 and 0.5 mg/ml, exerted significant 

cytotoxicity in several colorectal cancer cells (Figure 3.1). It was further showed that 

the cytotoxicity was through induction of apoptosis (Figures 3.2 and 3.3). This was in 

line with the effects of flavonoid extracts of many other plants, which have shown 

anti-tumor effects in the range of 0.05-1 mg/ml (Ye et al., 1999; Kim, 2004; Kim et 

al., 2005d).  

As luteolin is the most abundant flavonoid in the EtOAc extract (Figure 3.4), it 

could have played an important role in the anti-tumor effects of chrysanthemum. 

However, the effects of other components in the chrysanthemum can not be excluded. 

For example, apigenin has also been demonstrated to be highly capable of killing 

cancer cells (Figure 3.4) (Way et al., 2004; Shukla et al., 2005; Torkin et al., 2005; 

Zheng et al., 2005). On the other hand, there may be synergistic effects between 

different flavonoids (Liu, 2004). There is evidence that combination of low doses of 

flavonoids may work cooperatively in blocking cell-cycle progression of cancer cells 

(Wang et al., 2004). 

7.2 Luteolin sensitizes TNFα-induced apoptosis in human cancer cells 

 Many cancer therapeutic agents are capable of eliminating cancer cells by 

inducing apoptotic cell death (Ferreira et al., 2002). TNFα has been regarded as a 

cancer therapeutic cytokine due to its potential of inducing apoptosis in cancer cells 

(Tracey and Cerami, 1993). TNFα induces apoptosis through a typical death receptor 

pathway. It binds to TNFR1, a death receptor, and causes recruitment of a number of 

molecules which can subsequently trigger a caspase cascade (Chen and Goeddel, 

2002). However, most cells are resistant to TNFα-induced apoptosis, mainly due to 
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the fact that TNFα simultaneously activates NF-κB, a cell survival signal transduction 

pathway. Activation of NF-κB induces expression of a number of anti-apoptotic 

proteins such as c-IAP-1, c-IAP-2, XIAP, FLIPs, survivin and A20 (Krikos et al., 

1992; Wang et al., 1998; Micheau et al., 2001). On the other hand, the activation of 

NF-κB also suppresses JNK activation, a signal generally regarded as pro-apoptotic in 

TNF signaling (De Smaele et al., 2001; Tang et al., 2001). Therefore, the therapeutic 

value of TNFα alone in cancer therapy is rather limited.  

 As one of the major flavonoids in chrysanthemum, luteolin can inhibit cancer 

cell growth to certain extent (Figure 3.4), and induce apoptosis in certain cancer cell 

lines (Figure 3.5). Interestingly, in the presence of nontoxic concentrations of luteolin, 

TNF could induce apoptosis rapidly in cancer cells (Figure 4.1). This striking 

synergistic effect suggests that luteolin can interfere with the cell survival mechanism 

elicited by TNFα.  

 Further studies showed that the sensitization is via an inhibition on NF-κB 

(Figure 4.9). TNFα-triggered NF-κB activation and over-expression of at least two 

anti-apoptotic proteins, c-IAP-1 and A20, were suppressed by luteolin (Figure 4.14). 

On the other hand, JNK activation was prolonged in the presence of luteolin due to 

removal of the blocking effect of NF-κB (Figure 4.15).  

 It has been reported that luteolin inhibits LPS-induced NF-κB activation in rat 

fibroblasts without affecting IκBα degradation, p65 nuclear translocation and p65-

DNA binding (Xagorari et al., 2001), which is in line with our findings (Figures 4.10 

and 4.11). However, luteolin was found to inhibit LPS-induced NF-κB activation by 

suppressing IκBα degradation in macrophages (Dhanalakshmi et al., 2002), indicating 

that the effect of luteolin on NF-κB may be cell type or stimulus-specific. 

Furthermore, we proved that luteolin inhibits NF-κB activation by disrupting the 
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interaction between p65 and its coactivator, CBP (Gerritsen et al., 1997), one of the 

critical step in p65 transcriptional activation (Kim et al., 2003b).  

 Taken together, data from this part of our study demonstrated a new anti-

cancer function of luteolin: sensitization of human cancer cells to TNFα-induced 

apoptosis. Understanding such an effect of luteolin supports the potential application 

of luteolin as a chemotherapeutic agent against cancer together with TNFα. 

7.3 Luteolin sensitizes TRAIL induced apoptosis in human cancer cells 

 In Chapter 4, we studied the synergistic effect between luteolin and TNFα. In 

our subsequent study, we then focused on the effect of luteolin on TRAIL-induced 

apoptosis. TRAIL is a newly identified member of the TNFR family. The unique 

property of TRAIL is its selectivity: it can kill cancerous or transformed cells but 

spare most of the normal cells (Wang and El Deiry, 2003), thus making TRAIL an 

ideal cancer therapeutic agent. However, one of the major obstacles in its clinical 

application is that many cancer cells are found to be resistant to TRAIL-induced 

apoptosis (Wang and El Deiry, 2003). 

 In this part of study, we observed that luteolin pretreatment greatly enhances 

TRAIL induced-apoptosis in human cancer cells, including those TRAIL-resistant 

cancer cells (Figures 5.2 and 5.3), indicating the potential of using luteolin as a 

chemosensitizer to overcome TRAIL resistance. In search of the molecular 

mechanisms involved in the sensitization, we first excluded the possibility of NF-κB 

inhibition or altered expression of DR4 and DR5, two death receptors for TRAIL 

(Figures 5.7, 5.8 and 5.9). Instead, we found significant reduction of XIAP protein 

level in cells treated with luteolin and TRAIL (Figure 5.11). XIAP is known to be  the 

most important member of IAP family as it can directly bind to and inhibit both 
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caspase 9 and caspase activity (Deveraux et al., 1997; Deveraux and Reed, 1999; 

Riedl et al., 2001).  

 The expression level of XIAP could be regulated at both transcriptional and 

post-transcriptional levels. At transcriptional level, XIAP is known to be one of the 

target genes of NF-κB (Deveraux and Reed, 1999). Since TRAIL fails to activate NF-

κB in our system (Figure 5.9) and there is no change of its mRNA level (Figure 5.14). 

We then focused on the post-transcriptional regulatory mechanisms of XIAP. It is 

known that the RING finger domain of XIAP has ubiquitin protease ligase (E3) 

activity and is responsible for its autoubiquitination and proteasomal degradation 

(Yang et al., 2000b). It is also known that XIAP ubiquitination and degradation 

depends partly on its phosphorylation status as protein kinases such as AKT have 

been shown to block XIAP ubiquitination and degradation via phosphorylation (Dan 

et al., 2004). In this study, we demonstrated a novel PKC signaling mechanism: PKC 

activation contributes to XIAP protein stabilization via enhanced XIAP 

phosphorylation and reduced protein ubiquitination and degradation. More 

importantly, luteolin is probably acting as a PKC inhibitor to inhibit XIAP 

phosphorylation and to promote its ubiquitination and proteasomal degradation. Such 

a finding is important since many cancer cells contain elevated basal PKC level and 

many tumor promoters such as PMA are known to be potent PKC activators (Harper 

et al., 2003b). 

 Combination of TRAIL with other anti-cancer agents has been a promising 

strategy to enhance the therapeutic efficiency of TRAIL and to overcome TRAIL 

resistance (Bagli et al., 2004; Huerta-Yepez et al., 2004; Rosato et al., 2004; von 

Haefen et al., 2004). Our data provide convincing evidence for the potential 

therapeutic application of luteolin in overcoming TRAIL resistance.  
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7.4 Luteolin enhances the anticancer effect of cisplatin in vitro and in vivo 

 Cisplatin has been used successfully as an anti-cancer drug in variety of 

cancers. It has been well established that cisplatin kills the cancer cells via induction 

of DNA damage and p53 activation (Siddik, 2003). However, changes in p53 

signaling pathway, for example, elevation of MDM2 protein level, confer cancer cells 

to resistant to cisplatin (Kondo et al., 1995). 

 In this part of our study, we focused on effect of luteolin on the anti-cancer 

efficacy of cisplatin using both in vitro cell culture and an in vivo animal model. One 

significant finding is that a functional p53 is required for cell death induced by 

combined treatment of luteolin and cisplatin. Moreover, luteolin alone is capable of 

markedly increasing p53 protein level. It has been reported that luteolin activates wild 

type p53 in several cells (Plaumann et al., 1996), without knowing the mechanism 

involved. Here we provided clear evidence that luteolin is capable of stabilizing p53 

protein through suppression of MDM2 gene transcription. Such a finding is indeed 

consistent with a previous report that apigenin could activate p53 through decreasing 

MDM2 protein level, indicating that there might exist a common mechanism by 

which flavonoids activate p53.  

 The chemosensitization effect of luteolin was further tested in a nude mice 

xenograft model. While a relatively low dose of luteolin or cisplatin only marginally 

suppressed the tumor cell growth, the combined treatment of luteolin and cisplatin led 

to significant reduction of tumor size (Figures 6.16 and 6.17). Importantly, higher 

level of p53 protein was also observed in tumor tissues in mice receiving combined 

treatment of luteolin and cisplatin, suggesting that luteolin acts via a similar 

mechanism as observed in vitro to enhance the therapeutic efficacy of cisplatin in vivo. 

Although the combined treatment of luteolin and cisplatin will only be workable in 
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cancers with wild-type p53, luteolin is certainly valuable as a chemosensitizer to 

improve the efficacy of cisplatin or other DNA damaging agents in cancer therapy.  

7.5 Luteolin as a chemosensitizer in cancer therapy 

 One of the focuses of this study is to examine the synergistic effect of luteolin 

with other cancer therapeutic agents, although luteolin alone at a relatively high 

concentration, is capable of inducing apoptotic cell death in cancer cells (Chapter 3). 

Systematic studies were conducted to demonstrate the sensitization activity of luteolin 

on cancer cell apoptosis induced by TNFα (Chapter 4), TRAIL (Chapter 5) and 

cisplatin (Chapter 6).  

 In the summary of the sensitization activity of luteolin, one important point 

emerges: luteolin is capable of utilizing distinct mechanisms depending on the nature 

of the cell death stimuli. For TNFα-induced apoptosis, luteolin acts as a NF-κB 

inhibitor (Chapter 4). In the presence of TRAIL, it promotes XIAP ubiquitination and 

proteasomal degradation by inhibiting PKC (Chapter 5). In cisplatin-treated cells, 

luteolin is able to stabilize p53 protein via inhibition of MDM2 expression (Chapter 

6). Although distinct mechanisms are involved in different parts of our study, it is 

worth mentioning that some of the above mechanisms are functionally interlinked. 

For instance, XIAP is one of the target genes of NF-κB (Deveraux et al., 1997) and 

constitutively active NF-κB activation found in some cancers would render resistance 

to cancer therapy (Baldwin, 2001). Therefore, treatment with luteolin would then 

offer multiple impacts on XIAP: suppression of XIAP expression via reduced NF-κB 

and promotion of XIAP ubiquitination and degradation. On the other hand, it is 

known that NF-κB activation will lead to decreased p53 stabilization (Tergaonkar et 

al., 2002). NF-κB activation is also implicated in resistance to cisplatin-induced 

apoptosis (Chuang et al., 2002). Therefore, treatment with luteolin may increase p53 
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protein stability via multiple mechanisms, including reduced MDM2 expression and 

suppressed NF-κB signaling pathway. Taken together, such a unique property of 

luteolin makes this compound desirable as a chemosensitizer in cancer therapy. The 

significant synergistic effect of luteolin and cisplatin observed in the in vivo animal 

model tends to support the above notion. 

       Based on the literature and our earlier observations that luteolin could have 

multiple functions and effects in cancer cells, possibly with multiple targets and 

affecting different anti-cancer pathways. It was reported that luteolin can directly 

inhibit the activities of several kinases (Ferriola et al., 1989; Huang, 1996; Conseil, 

1998). However, the linkage of the inhibition with the biological effects has not been 

elucidated. Furthermore, it is not clear whether other molecular targets are also 

involved. Sporadic reports have also shown that many flavonoids showed similar 

biological effects as luteolin (Gerritsen et al., 1997; Plaumann et al., 1996; Farah et 

al., 2003; Kim et al., 2003b). Thus, it is worthwhile to explore the structure-activity 

relationship systematically. The identification of the molecular targets of some of the 

flavonoids as well as the structure-activity relationship study will also help to 

optimize its pharmacokinetics and pave a way to its clinical application.  

 

7.6 Conclusions 

 In this study, we carried out systematic investigation on the anti-tumor 

properties of chrysanthemum. We first confirmed that flavonoids are the main active 

components responsible of the anti-cancer effect of chrysanthemum. Subsequently we 

focused on the anti-tumor activity of luteolin by examining its sensitization effect on  

cancer therapeutic agents, including TNFα, TRAIL and cisplatin. 

 The major findings are: 
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 1) Flavonoids are the major anti-tumor components of the chrysanthemum 

water extract; 

 2) Chrysanthemum flavonoids exert their anti-tumor activity by inducing 

caspase-dependent apoptosis; 

 3) Luteolin is the major flavonoid in chrysanthemum, and induces caspase-

dependent apoptosis in human cancer cells; 

 4) Luteolin sensitizes TNFα-induced apoptosis in cancer cells by suppressing 

NF-κB activation and augmenting JNK activation; 

 5) Luteolin sensitizes TRAIL-induced apoptosis in cancer cell by promoting 

XIAP ubiquitination and proteasomal degradation via its inhibitory effect on PKC; 

  6) Luteolin enhances the anti-cancer activity of cisplatin by stabilizing p53 

protein via suppression of MDM2 gene expression;  

 7) Luteolin enhances the anti-cancer activity of cisplatin in a nude mice 

xenograft model.  

 In summary, data from this study clearly demonstrate the anti-tumor activity 

of luteolin, a major flavonoid from chrysanthemum. More importantly, this study 

provides evidence showing that luteolin is highly capable of sensitizing TNFα, 

TRAIL and cisplatin-induced cancer cell apoptosis. Such findings support the 

potential application of luteolin as a chemosensitizer in cancer therapy. 
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