
ALGORITHMS FOR MESHING SMOOTH SURFACES

AND THEIR VOLUMES

BY

SHI XINWEI

B.S., Harbin Institute of Technology, 1998

M.S., Harbin Institute of Technology, 2000

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2006



To my wife Ei Ei.



Acknowledgements

I owe special thanks to many people throughout the preparation of this thesis for their

guidance, support, help and encouragement. First and foremost, I would like to thank

my supervisor Dr. Cheng Ho-lun for his invaluable help and guidance presented in

various aspects of the work. I got introduced to the field of computational geometry

when I met him for an introductory discussion of my Ph.D study. The following

numerous discussion sessions with him enlightened me in pursuing further research

in the field. His constructive feedback while working on manuscripts improved my

writing skills. His encouragement always pushed my progressing forward when I felt

frustrated. I also thank him for the care of my life, and the generous dinners and

coffee.

I am grateful to my other committee members Associate Professor Tan Tiow Seng

and Associate Professor Chionh Eng Wee for their help and guidance at different

stages of my thesis. Special thanks to Tiow Seng for his effort to maintain a good

research environment in computer graphics research lab. His meticulous attention to

detail and rigorous scholarship also motivate me to work harder. I also thank Dr.

Huang Zhiyong for giving me valuable advice on academic matters and career options.

I am extremely fortunate to have the inspiring discussions with Professor Herbert

Edelsbrunner during the SoCG conference. I am also grateful to Professor Tien-Tsin

Wong for the valuable advice and discussions. Thanks to Professor Siu-Wing Cheng

for the constructive discussions when he visited us. I would like to thank Professor

i



Bernd Hamann, Professor Patrice Koehl, Professor Nina Amenta, Professor Kwan-

Liu Ma, and Dr. Vijay Natarajan for the wonderful discussions when I visited UC

Davis.

During my stay in NUS, I have enjoyed the friendship with many people. I want

to thank all of them for the fancy time we spent together. Special thanks go to

Chen Chao and Tony Tan for the joyful talks in the afternoon break. I also thank

my labmates Zhao Yonghong, Xiao Yongguan, Liang Yongqi, Rong Guodong, Calvin

Lim, Ng Chu Ming, Zhang Xia, Yu Hang, and Zhang Xin for making the office a nice

place to stay.

Last but not the least, I would like to convey my thanks to my parents Shi

Tianshun and Huang Xiuzheng for their love and support throughout my life. I am

deeply grateful to my wife Ei Ei for her endless love, perpetual support, cheering

encouragement and strong confidence in me. She deserves the particular recognition

for being the driving force in my life. Finally, I would like to thank our forthcoming

baby who will be arriving in this world soon. This special excitement has greatly

inspired me in accomplishing this thesis.

ii



Table of Contents

Abstract vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Geometric Models of Proteins . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Needs of Quality Skin Meshes . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Meshing Techniques: A Brief Review . . . . . . . . . . . . . . . . . . 9

1.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Geometric Background 15

2.1 Voronoi and Delaunay Complexes . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Simplicial Complexes . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Unweighted Voronoi and Delaunay Complex . . . . . . . . . . 17

2.1.3 Weighted Case . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Alpha Complex . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Skin Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Skin Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Skin Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Geometric Properties . . . . . . . . . . . . . . . . . . . . . . . 34

iii



2.3 Triangulations of Skin Surfaces . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Restricted Delaunay Triangulation . . . . . . . . . . . . . . . 41

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Adaptive Sweeping Skin Meshing Algorithm 44

3.1 Front Collision Handling . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Front Collision Problem . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Topological Changes of the Front . . . . . . . . . . . . . . . . 46

3.2 Critical Points Computation . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Noisy Critical Points Removal . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.2 The Adaptive Sweeping Algorithm . . . . . . . . . . . . . . . 62

3.4.3 Curvature Adaptation . . . . . . . . . . . . . . . . . . . . . . 67

3.4.4 Local Refinement . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Skin Meshing Using Restricted Union of Balls 77

4.1 The New Idea: Advancing Front Meets Delaunay Triangulation . . . 78

4.2 Sampling Theory of Skin Surfaces . . . . . . . . . . . . . . . . . . . . 80

4.3 Components Computation . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Point Placement . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.3 Computation of Delaunay Triangulation . . . . . . . . . . . . 92

4.4.4 Extraction of Candidate Surface Triangles . . . . . . . . . . . 94

iv



4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Quality Tetrahedral Mesh Generation for the Skin Body 99

5.1 Numerical Methods and Mesh Quality . . . . . . . . . . . . . . . . . 100

5.2 Delaunay Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Initial Tetrahedralization of the Skin Body . . . . . . . . . . . 108

5.3.2 Prioritized Delaunay Refinement . . . . . . . . . . . . . . . . 111

5.3.3 Sliver Removal by Pumping Vertices . . . . . . . . . . . . . . 117

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Skin Meshing Software and Applications 124

6.1 Skin Meshing Software . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Conclusion 140

v



Abstract

Quality meshes of molecular models are essential to support computational tools for

new drug discovery. However, it is still challenging to generate the meshes efficiently.

The principal goal of this thesis was to develop and implement efficient algorithms for

triangulating the molecular skin surface and their bounded volumes with guaranteed

quality.

Two skin surface meshing algorithms were developed, namely, the adaptive sweep-

ing skin meshing algorithm and the Delaunay skin meshing algorithm. The first algo-

rithm adapts the advancing front method to sweep the surface mesh from the bottom

to the top of the skin surface until the whole surface is covered. In particular, the algo-

rithm employs Morse theory to handle the front collision problem in advancing front

meshing. As such, the algorithm improves the efficiency of skin meshing dramatically.

Moreover, the mesh quality and the homeomorphism between the triangulation and

the surface are guaranteed as well. The second meshing algorithm incrementally sam-

ples points on the surface and constructs the Delaunay triangulation simultaneously.

By associating each sample point to a ball centered on the surface, the algorithm

achieves an even ε-sampling of the skin surface when it terminates. The restricted

Delaunay triangulation, a subset of the Delaunay triangulation of the ε-sampling,

forms a quality mesh of the skin surface. This second algorithm not only offers guar-

antees on both the mesh quality and the homeomorphism between the triangulation

and the skin surface but also performs excellently in practice.
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Based on the result of quality skin surface meshing, an algorithm for generating

quality tetrahedral meshes of the volumes bounded by skin surfaces was developed.

The algorithm applies the Delaunay refinement to a tetrahedral mesh bounded by

the surface. In particular, the circumcenters of bad shape tetrahedra are inserted

iteratively with a priority parameterized by its distance from the surface. The al-

gorithm achieves an upper bound on radius-edge ratio of the tetrahedral mesh after

the refinement. Moreover, the slivers are removed by assigning weight to the mesh

vertices in a post processing procedure.

The implementation results provide evidence of the efficiency and quality guaran-

tees of the algorithms. The skin meshes generated by the algorithms will serve as an

essential component in the study of the molecular shape and functions.

vii



List of Tables

3.1 Performance of the adaptive sweeping triangulation algorithm. . . . . 74

4.1 Performance of the meshing algorithm using restricted union of balls. 96

5.1 Quality statistic of the tetrahedral mesh for Crambin. . . . . . . . . . 122

5.2 Quality statistic of the tetrahedral mesh for pdb7. . . . . . . . . . . . 122

6.1 The statistics of the minimum angle of the triangles in the surface mesh.126

6.2 Comparison of the performance between the surface meshing algorithms.128

viii



List of Figures

1.1 Three different geometric models for the protein Myoglobin. . . . . . 3

1.2 Existing molecular surface models. . . . . . . . . . . . . . . . . . . . 4

1.3 Comparison between the molecular surface model and the skin model. 5

1.4 The molecular skin model of the protein 1CHO. . . . . . . . . . . . . 7

2.1 Four types of simplices. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Examples of simplicial complexes. . . . . . . . . . . . . . . . . . . . . 17

2.3 A Voronoi polyhedron and the Delaunay triangulation in R3 . . . . . 18

2.4 An edge flip for computing the Delaunay triangulation in R3. . . . . . 19

2.5 The weighted distance and the bisector of two circles. . . . . . . . . . 21

2.6 An example of the weighted Voronoi and Delaunay complex. . . . . . 22

2.7 The dual relationship between Delaunay simplices and Voronoi Cells. 23

2.8 The dual complex of 8 disks. . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Uniformly growing disks and their α-complexes. . . . . . . . . . . . . 26

2.10 The union of spheres and the skin surface model of a torus. . . . . . . 28

2.11 The affine hull and convex hull of two circles. . . . . . . . . . . . . . 29

2.12 The shrunk affine hull and convex hull of two circles. . . . . . . . . . 30

2.13 The envelope of the shrunk affine hull and convex hull of two circles. . 30

2.14 Four different mixed cells with dimension from 1 to 4. . . . . . . . . . 31

2.15 Examples of one sheeted hyperboloid and two sheeted hyperboloid. . 33

2.16 The orthogonal set and its shrunk result. . . . . . . . . . . . . . . . . 34

ix



2.17 Two orthogonal spheres. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.18 The skin patches clipped within the mixed cells. . . . . . . . . . . . . 35

2.19 The sandwich spheres of a point on the skin surface. . . . . . . . . . . 37

2.20 The topological changes of the skin surface . . . . . . . . . . . . . . . 39

2.21 Examples of homeomorphic figures. . . . . . . . . . . . . . . . . . . . 40

2.22 The homeomorphism between a sphere and an inscribed tetrahedron. 41

2.23 The restricted Delaunay triangulation of a partial sampling on a surface. 42

2.24 The closed ball property in R3. . . . . . . . . . . . . . . . . . . . . . 43

3.1 Advancing front meshing and front collision problem. . . . . . . . . . 45

3.2 Three types of critical points on a 2-manifold. . . . . . . . . . . . . . 47

3.3 Critical points and level curves on a smooth 2-manifold. . . . . . . . . 49

3.4 Critical points on a two-sheeted hyperboloid. . . . . . . . . . . . . . . 51

3.5 Gradient vector of the height function. . . . . . . . . . . . . . . . . . 57

3.6 Extending an integral line from a saddle point. . . . . . . . . . . . . . 58

3.7 The Morse-Smale complex on two skin surfaces. . . . . . . . . . . . . 59

3.8 The contraction of the arc ab in the Morse-Smale complex. . . . . . . 59

3.9 Six snap-shots of the growing mesh. . . . . . . . . . . . . . . . . . . . 61

3.10 Create a bowl at the minimum point p0. . . . . . . . . . . . . . . . . 63

3.11 Creep triangles from a departure vertex pt. . . . . . . . . . . . . . . . 65

3.12 Wing a small angle to avoid the overlapping triangles. . . . . . . . . . 66

3.13 Bridge the front at a saddle point ps. . . . . . . . . . . . . . . . . . . 67

3.14 Radius of the tangent disks. . . . . . . . . . . . . . . . . . . . . . . . 71

3.15 The molecular skin models of A-DNA molecule. . . . . . . . . . . . . 76

3.16 The molecular skin model of Gramicidin A. . . . . . . . . . . . . . . 76

4.1 The molecular skin model of HIV-2 protease. . . . . . . . . . . . . . . 79

4.2 Definition of the ε-sampling of a smooth surface. . . . . . . . . . . . . 80

x



4.3 A restricted Delaunay triangle abc and its Voronoi edge. . . . . . . . 81

4.4 The properties of a restricted Delaunay triangle. . . . . . . . . . . . . 83

4.5 A filtration from empty set to a tetrahedron. . . . . . . . . . . . . . . 86

4.6 The initial construction of the restricted union of balls. . . . . . . . . 88

4.7 The vertex insertion in the algorithm. . . . . . . . . . . . . . . . . . . 89

4.8 Locate the new point v correspond to a front edge ab. . . . . . . . . . 91

4.9 The molecular skin model of the molecule with PID:200D. . . . . . . 98

4.10 The molecular skin model of the molecule with PID:1FG1. . . . . . . 98

5.1 A classification of the bad shape tetrahedra. . . . . . . . . . . . . . . 103

5.2 The insertion of the circumcenter of a poor shape triangle. . . . . . . 105

5.3 The boundary recovery fails when there is an acute input angle. . . . 106

5.4 The dihedral angle at the edge bc. . . . . . . . . . . . . . . . . . . . . 110

5.5 Examples of the prioritized Delaunay refinement. . . . . . . . . . . . 113

5.6 A tetrahedron with its circumcenter inside a protecting sphere. . . . . 116

5.7 Flip an edge to maintain the weighted Delaunay triangulation. . . . . 118

6.1 The user interface of the skin meshing software. . . . . . . . . . . . . 125

6.2 Examples of the skin surface generated by the skin meshing software. 127

6.3 Experiments result of the quality tetrahedral mesh generation. . . . . 130

6.4 Molecular models generated by the skin meshing software. . . . . . . 133

6.5 Molecular models of a protein. . . . . . . . . . . . . . . . . . . . . . . 135

6.6 The skin model of a foot and the Stanford Bunny. . . . . . . . . . . . 139

xi



Chapter 1

Introduction

Discovering new medicines or drugs for the treatment of diseases and improvement of

people’s living quality is one of the most important scientific challenges. Two keys in

a successful drug discovery are the identification of the right cellular target, usually

a protein molecule and the selection of the right drug candidates. A potent drug

is a small molecule called a ligand that simultaneously optimizes its affinity with

the target, and decreases the interaction between the ligand and other targets that

could lead to side effects [73]. This process of target identification and drug selection

usually involves large-scale experimental investigations, which results in lengthy and

expensive drug discovery . For example, bringing up new medicine from the laboratory

to the pharmacy takes an average of ten to fifteen years [65].

Computational tools that predict the interactions between proteins and ligands,

namely, protein-ligand docking programs, accelerate the drug development process

significantly. The docking problem has attracted great attention from computer sci-

entists as well as biochemists because the protein-ligand interactions are largely char-

acterized by the complementarity of their geometric shapes and chemical properties

[67, 94]. A geometric formulation of the docking problem is as following. Given two

proteins A and B, compute the alignment such that their shapes best complement
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each other. Three main issues are involved here, (i) developing suitable shape repre-

sentations of the proteins to capture the shape features; (ii) searching the conforma-

tion space for the alignments of two proteins with complementary shape matching;

(iii) evaluating the generated alignments to reduce false predictions. These three

components are mutually correlated.

In particular, the molecular shape representation is the base of the algorithms for

alignments searching and evaluation. On one hand, accurate shape representations are

likely to improve fidelity of the generated alignments in procedure (ii). On the other

hand, polygonal meshes for the molecular shapes facilitate accurate approximations of

the chemical properties such as electrostatics potential to reduce the false alignments

in procedure (iii) correctly [53, 67]. Although a number of docking programs have

been studied, their prediction accuracy is still not sufficient for the application in

the drug discovery process [94]. The low accuracy is partly due to the unsatisfactory

molecular shape representations and the challenges in converting the continuous shape

representation to discrete form.

This thesis develops efficient algorithms for building digital models of macro-

molecules such as proteins and DNAs using a new shape representation, namely,

the skin surface defined by Edelsbrunner [37, 38]. I will focus on meshing the skin

surfaces and their volumes with guaranteed quality. The surface mesh provides an

accurate and efficient molecular shape representation that facilitates fast alignments

searching algorithm. The volumetric mesh facilitates the approximation of the elec-

trostatic potentials using the finite element methods. Applying the meshes in the

protein ligand docking study will improve the prediction accuracy. Moreover, skin

surfaces and meshing techniques are useful in various application areas other than

protein-ligand docking, including geometric modeling, computer graphics, and mesh

generation [40, 55, 61, 95]. Most of the techniques developed in this thesis are appli-

cable to these other fields as well.
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In the remainder of this chapter, I will first introduce the existing geometric models

of proteins and justify the advantages of the skin model. Second, I will describe the

needs of skin meshes for the protein-docking study and review the main meshing

techniques. Finally, I will summarize the main contributions of this thesis.

1.1 Geometric Models of Proteins

Proteins are large molecules that typically consist of 500 to a few thousands atoms.

Various interactions among these atoms such as chemical bonds and electrostatic

forces result in a stable three dimensional structure of the protein, which defines a

protein shape. Such three dimensional structure can be presented in various geometric

models. Three different well-known protein models are illustrated in Figure 1.1. The

(a) (b) (c)

Figure 1.1: Three different geometric models for the protein Myoglobin. (a) Ball and
stick model, (b) Cartoon model, (c) Space-filling model.

ball-stick model (Figure 1.1 (a)) represents a protein using a set of balls at the atomic

centers connected by sticks corresponding to covalent bonds between pairs of atoms.

Such representation emphasizes the chemical nature of the proteins. The Cartoon

model (Figure 1.1 (b)) gives a high level view of the protein structure organization,
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in which the protein is considered as a folded chain of amino acids. It provides a

simplified representation of a protein and is popular in applications such as protein

folding [52]. The space-filling model, as shown in Figure 1.1 (c) represents a protein

as a union of balls, in which each atom is modeled by a ball in R3 with its van der

Waals radius. This representation shows the tight packing of the atoms in a protein.

(a) (b) (c) (d)

Figure 1.2: Existing molecular surface models. Dashed circles represent the probe
sphere. (a) van der Waals surface (VW), (b) solvent accessible surface (SA), (c)
molecular surface (MS), (d) self-intersection on molecular surfaces.

However, for computational purposes, especially for the study of the protein-ligand

docking, surface models of proteins are more favorable since the key to the function of

a protein is the existence of shape features such as depressions and protrusions on the

boundary of the protein shapes, which are not characterized in the geometric models

illustrated in Figure 1.1. There are three existing molecular surface models, that is,

the van der Waals surface (or VW) model, the solvent accessible (or SA) model and

the molecular surface (or MS) model [31]. See Figure 1.2. The VW model is defined

as the boundary of the space-filling model of the molecule. The other two surface

models are defined through tracing a probe sphere that rolls over the VW model. The

SA model is the surface traced by the center of the probe sphere, while the MS model

is the surface traced by the inward-facing surface of the probe sphere. The major

advantage of the MS model over the other two is its smoothness in most cases. Because

smooth surfaces can be meshed with good quality triangles, MS model facilitates

accurate numerical computations [63]. However, this may not be possible because

4



(a) (b) (c) (d)

Figure 1.3: Comparison between the molecular surface model and the skin model for
the protein Myoglobin.

sharp corners still exist since the MS model may have self-intersections, as illustrated

in Figure 1.2 (d). On one hand, the cusp results in unfaithful representations of the

molecules and unrobust meshing software implementations [5, 9, 96]. On the other

hand, the self-intersections lead to singularities when computing the derivatives of

the volume and area of molecular surface with respect to its atomic coordinates [45].

To circumvent these difficulties, we use a new shape representation, namely, the

skin surface to model molecules. A skin surface is specified by a finite set of spheres

and lends itself as a better surface model for molecules than the existing surface

models. The self-intersection problem does not exist in molecular skin models as

the skin surface is a C1-continuous surface. See Figure 1.3 for a comparison of the

molecular surface model and the skin model for a protein molecule. Figure 1.3 (a)

shows the MS model of the protein Myoglobin and the cusps duo to self-intersections

are highlighted in the rectangle. Figure 1.3 (b) illustrates the magnified view of

the part with cusps. The corresponding skin model is illustrated in Figure 1.3 (c)

and (d), which is smooth and free of any cusps. In addition, the skin surface also

has a number of desirable properties for molecular modeling applications such as

decomposability, complementarity and capability of free deformation, which will be

5



introduced in Section 2.2.

1.2 Needs of Quality Skin Meshes

The skin model of proteins outperforms the existing surface models in terms of

smoothness and other elegant properties [38]. Applying the skin model to protein-

ligand docking investigations should improve the prediction accuracy of the docking

programs. However, the skin surface is a continuous surface encoded in the functions

specified by a set of spheres. In order to perform computations over the skin model,

discrete forms of the surface are essential. Meshes are the most preferred discrete

representations because they facilitate fast rendering for molecular visualization, ge-

ometric algorithms for shape feature extraction, and numerical methods for chemical

properties computation. In the context of chemical properties computation, mesh

quality are usually critical to the accuracy and convergency of the solution.

Surface Meshes. Skin surface meshes support molecular visualization applications.

Since surface meshes can be rendered very efficiently by modern graphics hardware,

the skin models can be visualized on the computer screen or virtual reality devices,

which provide direct understanding and interaction of the molecular shapes. Figure

1.4 (a) shows an example of the rendered skin model of protein 1CHO. The surface

meshes also support the visualization of the molecular properties, such as atomic

charge, electrostatic potential, and polarization etc. The information can be encoded

as color codes and texture maps over a mesh to represent these added dimensional

properties.

In addition, skin surface meshes also facilitate efficient combinatorial algorithms

to extract the shape features such as depressions and protrusions on the surface.

These concave and convex features over the surface can be identified by computing

the critical points of some real-valued functions defined on the surface. For example,

6



(a) (b)

Figure 1.4: The molecular skin model of the protein 1CHO and the zoomed in view
of the partial mesh.

the critical points of the Connolly function used in [21] and the elevation function

proposed by Agarwal et al. [4]. Since the critical points theory is originally developed

on smooth surfaces and their critical points are hard to be efficiently computed, sur-

face meshes can facilitate fast combinatorial algorithms for computing critical points

on the base of an extension of the smooth concepts to the discrete analogs [44]. Thus,

the shape complementarity computation in the protein docking can be materialized

by matching the depressions and protrusions pairwisely. In addition, the accuracy of

the mesh approximation affects the precision of the extracted features. Experimental

results in [4] shows that an adaptive mesh approximations with guaranteed quality

significantly reduces the number of noisy critical points of elevation functions. In

which, the adaptiveness of the surface mesh means that the edge lengths in the mesh

are adaptive to the local surface curvature and the guaranteed quality is defined by

an lower bound of the minimum angle of the triangles in the mesh. See Figure 1.4

(b) for an example.

Volumetric Meshes. Volumetric meshes of the skin model are essential to improve

the accuracy of the docking program. The searching algorithm based on shape com-
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plementarity usually generates a number of alignments that are potential solutions.

Among these alignments, only one of them is the real docking conformation and the

remainders are false positive alignments. To discriminate the real docking conforma-

tion from the set of potential solutions, a scoring function defined in terms of the

biological and chemical properties is essential to rank the potential solutions. On the

base of the observation that the interacting protein and ligand always exhibits excel-

lent complementarity in the electrostatic potential, incorporation of the electrostatic

potential in the scoring function would make it more reliable to filter out the false

conformations. The Poisson-Boltzmann equation(PBE) is one of the most popular

approach to model the electrostatic of large molecules [10]. Using the solution of

PBE to predict the electrostatic property of molecules achieves good agreement with

experimental results [63, 80]. Since the PBE is a non-linear partial differential equa-

tion, there is no analytical solutions for the PBE currently and it is necessary to use

numerical methods, for example, finite element methods. The accuracy and stability

of the solution with finite element methods depend on the quality of the elements

used to decompose the molecular volume. Moreover, the solution of PBE is sensitive

to the boundary of the molecular model [10]. As a result, a quality volumetric mesh of

the molecule that conforms to its boundary is necessary for computing the molecular

electrostatic by solving the PBE.

To conclude, quality meshes for the skin surfaces and the bounded volumes are

essential for scientific computing in the study of protein ligand docking. However, the

skin meshing problem is still far from being solved. Although Cheng et al. [22, 23]

and Kruithof et al. [70, 71] had addressed the problem recently, both their work

have deficiencies. Cheng’s algorithms [23] generated topologically correct surface

meshes with guaranteed quality but the efficiency is unsatisfactory. For instance, it

takes hours to generate a skin surface of a protein molecule with about one thousand

atoms. The algorithms presented by Kruithof et al. [70, 71] offered little in the
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way of guaranteeing the mesh quality. Moreover, the tetrahedralization problem of

the skin volume is still open. Therefore, the skin meshing problem deserves further

investigations.

Next, I will review the previous mesh generation techniques to identify the chal-

lenges and gain some new insights for skin meshing.

1.3 Meshing Techniques: A Brief Review

In scientific computing and engineering, decomposing a physical domain into a mesh

of primitive elements is an essential step in a wide range of applications such as

computer graphics and numerical simulations. This is referred to the problem of

mesh generation. Mesh generation algorithms should guarantee that the output mesh

elements have high shape quality so that the numerical simulations converge and

achieve accurate solutions.

The most popular shapes of the mesh elements are triangles and tetrahedra in

two and three dimensions respectively because they have several advantages such as

the flexibility to fit complicated domains and ease of refinement over other types

of meshes, for instance, the hexahedral meshes. Thus, I will focus on the meshing

techniques for generating triangular and tetrahedral meshes. A number of substantial

advances have been achieved in both theories and practices. Most of the previous work

has been focused on meshing polygons in two dimensions [11, 30, 87], and polyhedra

in three dimensions [28, 42, 78, 90]. A few works also has been proposed for meshing

parametric surfaces [19, 33, 58, 97] and implicit surfaces [62, 6, 15, 60, 66].

Most of the mesh generation algorithms can be categorized into one of the three

main approaches: advancing front, Delaunay and quadtree/octree mesh generators.

There are certainly differences in the complexity and performance when applying

these approaches to mesh polygons, polyhedra and smooth surfaces. I will sketch
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the essential ideas of each approach and justify its effectiveness and challenges for

meshing the skin surface according to the pros and cons. For detailed review of the

mesh generation algorithms, readers can refer to the recent survey paper by Bert and

Plassmann [13], Owen [81] and Edelsbrunner [39].

Advancing-front Methods. Advancing front methods [25, 60, 66, 70, 89, 64] con-

struct meshes from the domain boundary to the interior in a way of a layer by a layer.

The boundaries of the domain are firstly discretized to a collection of edges (in two

dimensions) or triangle faces (in three dimensions), which is called the front. Starting

from one element in the front, new triangles or tetrahedra are added incrementally.

At the same time, the front is updated and advancing towards the unmeshed region.

The mesh is completed when the front becomes empty.

Advantages of advancing front methods include high efficiency, good mesh quality

and ease of implementation. On the other hand, it is challenging to avoid the colli-

sion of the front elements during the advancing. Front collision leads to overlapping

triangles in the mesh, which may fail the meshing procedure. An efficient way to

handle the front collision problem would make the advancing front methods much

effective. I will investigate the skin triangulation using advancing front methods in

Chapter 3 and attack the front collision problem by applying the recent results from

computational topology studies.

Delaunay Mesh Generation. Delaunay meshing algorithms [28, 30, 42, 78, 87,

90, 58] utilize the Delaunay triangulation to generate meshes with provable guaran-

tees on both shape quality and size. Delaunay mesh generators place mesh vertices

to the boundary and interior of the domain followed by connecting them with the

Delaunay triangulation. These two steps can be two separate phases but are usually

integrated into a refinement procedure. That is, starting from the Delaunay trian-

gulation of the boundary vertices, the algorithms maintain the Delaunay property of
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the triangulation while placing new mesh vertices at the circumcenters of some mesh

elements until the whole domain boundaries appear in the mesh and the mesh quality

satisfies the pre-set conditions.

Delaunay based approaches have become one of the most popular mesh generation

methods because they not only offer nice theoretical guarantees on mesh quality and

size but also perform excellently in practice. A key issue in applying the Delaunay

based approach to mesh smooth surface is the efficiency. Since the complexity of

the Delaunay triangulation of n surface samples can be O(n2) in the worst case [54],

Delaunay surface meshing algorithms may be too slow. In this thesis, I improve

the efficiency of this construction by combining the advancing front methods and

Delaunay meshing in Chapter 4. Other challenges in Delaunay mesh generations

include boundary recovering and sliver removal. I will further discuss these problems

in Chapter 5.

Quadtree/Octree Methods. Meshing algorithms based on quadtrees (in two di-

mensions) and octrees (in three dimensions) use the divide and conquer strategy. An

initial bounding cube (a square in two dimensions) is divided into eight congruent

cubes followed by splitting these cubes recursively until each minimal cube intersects

the domain in a simple way. Further splits are always performed to hold the balance

condition, that is, no cube should be more than two times larger than its eight neigh-

bors. The collection of all the cubes forms an octree decomposition of the domain.

Then, the octree is wrapped and cut so that it conforms to the domain boundary.

Finally, the cells in the octree are triangulated and forms the final meshes.

The quadtree/octree methods enjoy the same guaranteed quality as Delaunay

meshing algorithm in two dimensions [14]. However, the mesh quality achieved in

octree based surface meshing algorithms are usually bad because of the curvedness

of the surface. Moreover, computing the intersection of a cube and the surface can
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be very costly, which decreases the efficiency of the meshing algorithm badly. As a

result, I will not follow this method in my skin meshing studies.

To sum up, the framework of meshing techniques has been well established and

fruitful results had been achieved in meshing the geometric domains such as polygons

and polyhedra. Several challenges still reside in meshing the smooth surfaces. First,

there should be provable bounds on the triangulation quality. Second, the output

triangulation should be topological equivalent to the original surface. Finally, with

the guarantees of mesh quality and topological correctness, the algorithm should be

efficient and guaranteed to terminate. Overcoming these challenges in the study of

skin meshing leads to the main contributions in this thesis.

1.4 Main Contributions

This thesis aims to develop efficient algorithms to generate quality surface and vol-

umetric meshes for the skin surface. Since a quality surface triangulation is often

essential to construct the volumetric mesh, the first goal of this thesis is to develop

and implement surface triangulation algorithms for the skin satisfying the following

requirements: (i) high efficiency; (ii) guaranteed quality; (iii) homeomorphic mesh;

(iv) correctness and termination. I aim to triangulate the skin surface specified by

thousands of spheres on a PC platform in a few minutes. At the same time, I will

guarantee that the output triangulations have a lower bound on the minimal angle

of the triangles in the mesh and are homeomorphic to the skin surfaces. Finally, I

should demonstrate the correctness and termination of the triangulation algorithms.

Based on the results of the surface meshing algorithms, the second goal of this work is

to generate tetrahedral meshes for the volume enclosed by skin surfaces with quality

guarantees, which means the shape of the tetrahedra in the mesh is close to that of

a regular tetrahedron.
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As a result, this thesis consists of two parts. The first part concentrates on the

surface triangulation algorithms and the second part studies the tetrahedralization of

the skin volume.

In the first part, I develop two skin triangulation algorithms, namely, the adaptive

sweeping skin triangulation and Delaunay skin meshing using restricted union of

balls. The first algorithm adapts to the advancing front method and applies the

Morse theory to handle the front collision problem. A curvature adaptive scheme

for the triangle size and quality control is designed in the algorithm to guarantee

the mesh quality and the homeomorphism. In the process of sweeping meshes along

the surface, I utilize the critical points of a height function defined on the surface

to handle the front collision problem efficiently. Due to the robustness issue in the

implementation raised by the noisy critical points, I present another skin surface

triangulation algorithm capturing the advantages of both the advancing front and

Delaunay mesh generation techniques. In this algorithm, I use the restricted union of

balls to generate an ε-sampling of the skin surface. The sample points are generated

incrementally and have a lower bound on the distance to their nearest neighbors.

After each surface sample point is placed, the Delaunay triangulation of all the sample

points is constructed with an incremental manner efficiently. A specified subset of

the Delaunay triangulation, namely, the restricted Delaunay triangulation, forms a

quality triangulation of the skin surface when the algorithm terminates.

In the second part, I introduce an algorithm to generate quality tetrahedral mesh

for the volumes bounded by skin surfaces. By taking the advantages of the previous

skin surface meshing results, the algorithm builds an initial Delaunay meshes bounded

by the surface and applies the Delaunay refinement to improve the mesh quality after-

wards. In particular, the algorithm inserts the circumcenters of bad shape tetrahedra

with a priority parameterized by the value of the distance function defined by the

surface. The algorithm achieves an upper bound on radius-edge ratio of the tetrahe-
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dral mesh after the refinement and all the slivers are removed in a post processing

procedure. The algorithm terminates with guarantees on the tetrahedral quality and

an accurate approximation of the original surface boundary.

The triangulation algorithms of this study will serve as a powerful tool for the

study of the shapes and functions of molecules. First, the skin triangulation ap-

proximates the surface of a molecule and is useful for studying the shape features of

the molecules. For example, the concave and convex features on the molecular sur-

face, which are used to study of protein-docking problem, can be identified with skin

meshes [86, 94]. Second, the good quality tetrahedral mesh of the skin body facili-

tates the numerical computations to approximate the electrostatic potentials of the

proteins, which are essential to improve the reliability of the scoring function used in

the protein-ligand docking programs [63]. Finally, the triangulation algorithms also

provide new insights to the triangulation of other smooth surfaces and the domains

with curved boundaries.

In the next chapter, I will introduce some geometric background and several impor-

tant geometric properties of the skin surface, namely, the continuity of the curvature,

the skin decomposition and the homeomorphic conditions, which are important for

the development of skin triangulation algorithms.
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Chapter 2

Geometric Background

The skin surface is a new paradigm of smooth surfaces based on the geometric notions

of Voronoi diagram and Delaunay triangulation defined by a set of spheres. In particu-

lar, the skin triangulation algorithms developed in this thesis generate surface meshes

that are the subsets of the Delaunay triangulation defined by the sample points on

the surface. In this chapter, I will introduce these geometric backgrounds and develop

relationships between the Voronoi diagram, Delaunay triangulation, alpha complex,

skin surfaces and skin triangulations.

Section 2.1 reviews Voronoi diagram, Delaunay triangulation and their generaliza-

tion to weighted point sets. A special subset of the weighted Delaunay triangulation,

namely, the alpha complex, is introduced at the end of this section. With these

notions as the foundations, I will introduce the definition and geometric properties

of the skin surface in Section 2.2. Section 2.3 introduces the triangulation of skin

surfaces and the homeomorphic conditions.

2.1 Voronoi and Delaunay Complexes

This section introduces the Voronoi diagram and its dual Delaunay triangulation. I

begin with the terminology of simplicial complexes. Then, I review the definition of
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the Voronoi diagram and Delauany triangulation for a finite set of unweighted points

and weighted ones. Finally, I introduce a special subset of the weighted Delaunay tri-

angulation, namely, the alpha complex. Although these definitions apply to arbitrary

fixed dimensions, I will focus on the three dimensional cases.

2.1.1 Simplicial Complexes

A simplex is the convex hull of a set of affinely independent points in T ⊂ Rd, that

is, σ = conv(T ). A set T is called affinely independent if every point x ∈ T is

not the affine combination of other points in T . The maximum number of affinely

independent points in Rd is d + 1. So in R3 we only have four types of simplices,

that is, vertices, edges, triangles and tetrahedron when card(T ) = 1, 2, 3, 4, in which

card(T ) denotes the cardinality of the set T . The simplex σ is called a k-simplex

and k = card(T ) − 1 is the dimension of the simplex. The empty set is defined as

a (-1)-simplex. Figure 2.1 shows the simplices of dimensions 0, 1, 2 ,3 from left to

right. For any subset S ⊆ T , the simplex τ = conv(S) is called the face of σ, and the

simplex σ is called the coface of τ .

Figure 2.1: Four types of simplices.

A simplicial complex K is the collection of faces of a finite set of simplicies in

which any two simplices are either disjoint or meeting in a common face. That is, the

collection K satisfies the following two conditions,

1. if σ ∈ K and τ is a face of σ, then τ ∈ K, and

2. if σ, σ′ ∈ K, then τ = σ
⋂

σ′ is a face of both σ and σ′.
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A subcomplex of K is a subset of K that is a simplical complex. The underlying

space of K is the union of its simplices, denoted as |K|. The star of a 0 dimensional

simplex p ∈ K is the collection of its cofaces. See Figure 2.2 for an example. Figure

(a) shows a simplicial complex that consists of 4 triangles, 9 edges and 6 vertices.

One of its subcomplexes with 1 triangle, 4 edges and 4 vertices is showed in Figure

(b). Figure (c) illustrates the underlying space of the simplical complex in (a). The

six solid edges and 4 triangles in Figure (d) form the star of vertex p.

p

(a) (b) (c) (d)

Figure 2.2: Examples of simplicial complexes. (a) a simplicial complex. (b) a sub-
complex (c) the underlying space of (a). (d) the star of a vertex p.

2.1.2 Unweighted Voronoi and Delaunay Complex

Given a finite set of points P = {p1, p2, · · · , pn} ⊆ R3, the Voronoi Diagram of P is a

subdivision of R3 in which each cell is the Voronoi region of a point pi. The dual of

the Voronoi diagram is called the Delaunay triangulation of P .

Voronoi Diagram. The Voronoi region of pi ∈ P , denoted as νi, is the set of points

in R3 that is closer to the point pi than any other point in P , namely,

νi = {x ∈ R3 | ‖x − pi‖ ≤ ‖x − pj‖, ∀j ≤ n},

in which ‖x− pi‖ denote the Euclidean distance between two points x and pi. Thus,

νi is the intersection of n−1 half spaces defined by the bisector plane between pi and
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pj, which is a convex polyhedron but possibly unbounded. Figure 2.3 (a) shows the

Voronoi region of the red point in a point set consisting of ten points in R3.

(a) (b)

Figure 2.3: A Voronoi polyhedron and the Delaunay triangulation of 10 points in R3.

Voronoi regions may meet each other along a common portion of their boundary.

The Voronoi cell of a subset X ⊆ P is defined as the common intersections of the

Voronoi regions, νX =
⋂

pi∈X νi. The Voronoi diagram of P is the collection of all the

non-empty Voronoi cells, VP = {νX | νX 6= ∅, X ⊆ P}. In R3, the Voronoi diagram

consists of polyhedra, polygons, edges and vertices.

It is convenient to assume that the point set P satisfies the general position con-

ditions, that is, there are no four points in a common plane and no five points on a

common sphere. This assumption removes the degenerate cases in our discussions of

Voronoi diagram and its dual. In practice, the assumption is not necessary since an

arbitrary small perturbation can remove these degeneracies [48].

Delaunay Complex. The Delaunay complex of P , DP , usually known as the De-

launay triangulation, consists of a collection of tetrahedra that decomposes the convex

hull of P . See Figure 2.3 (b) for an example. Each tetrahedron τ , a 3-simplex, is the

convex hull of four points whose Voronoi cell share a common Voronoi vertex. The

faces of a tetrahedron τ are triangles, edges, and vertices, which are dual to Voronoi
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edges, Voronoi polygons and Voronoi polyhedra respectively.

The Delaunay complex DP is a unique triangulation of P that has the empty sphere

property. That is, the circumsphere of each tetrahedron in DP does not enclose any

point in P . It also implies that the diametral sphere of the Delaunay edges and the

equatorial sphere of the Delaunay triangles are empty. As a result, the closest pair

of points in P must be connected by an edge in the Delaunay triangulation. Another

interesting result is that the minimum spanning tree of P is a subcomplex of the

Delaunay Complex DP [32].

Randomized Construction. The Delaunay triangulation can be constructed with

a randomized incremental algorithm efficiently [51, 72]. This algorithm is based on the

empty sphere property of the Delaunay tetrahedra. The basic idea of the algorithm

is the following. Assuming that the Delaunay triangulation Di of the first i points

in P is already constructed. Add the (i + 1)-th point into the triangulation Di and

restore the Delaunayhood by edge flipping, this results in Di+1. Repeat this process

until i = n. Each edge flip replaces two tetrahedra with three other tetrahedra or

vice versa. Figure 2.4 illustrates an example of the flipping.

Figure 2.4: An edge flip for computing the Delaunay triangulation in R3.

A crucial step in the algorithm is the point location, which occurs when a new

point is added into the triangulation. A directed acyclic graph (DAG) with the
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history of all performed flips are used to speed up the point location. The expected

running time of the algorithm is O(n log n) in R3. However, it could run into O(n2)

in the worst case but rarely occurred in practice [54]. The ability to permit efficient

algorithms makes the Delaunay triangulation very popular in the applications such

as mesh generation, geography and computer graphics [83, 90, 98].

2.1.3 Weighted Case

So far, the points are unweighted, and I will generalize the concepts to weighted

point set in this section. A weighted point bi ∈ R3 × R is denoted as bi = (zi, wi),

in which zi is the position of bi and wi is its weight. We can also view bi as a

sphere or a ball with center zi and radius
√

wi. The weight wi can be negative,

and it represents an imaginary sphere. A finite set of n weighted points is denoted as

B = {bi = (zi, wi) ∈ R3×R | i = 1..n}. The Voronoi diagram of B is the generalization

of the unweighted Voronoi diagram by replacing the Euclidean distance with weighted

distances.

Weighted Distance. For a point x ∈ R3, the weighted distance from x to the

weighted point bi defined by

π(x, bi) = ‖x − zi‖2 − wi.

Geometrically, the weighted distance can be explained as the length of the tangent

line segment xt of sphere bi passing through x, as shown in Figure 2.5. We have

π(x, bi) = 0 when x is on the boundary of bi and π(x, bi) < 0 when x is in the

interior of bi. The set of points with equal weighted distance from two spheres in

B is a hyperplane. In particular, if the two spheres intersect with each other, the

hyperplane passes through the intersection circle. Figure 2.5 illustrates the ideas with
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(a) (b) (c)

x

zi

t

Figure 2.5: The weighted distance and the bisector of two circles.

the three possible configurations of two circles.

Weighted Voronoi and Delaunay Complex. The Voronoi region νi of the

weighted point bi is defined as the set of the points in R3 with smaller weighted

distances to bi than any other weighted points in B, namely, νi = {x ∈ R3 | π(x, bi) ≤

π(x, bj), ∀j ≤ n and j 6= i}. Similar to the unweighted case, the Voronoi region

νi is a convex polyhedron (possibly unbounded) that is the intersection of n − 1

half spaces defined by the inequalities. Note that there are situations that νi = ∅.

The weighted point bi is called redundant if νi = ∅. The Voronoi regions overlap

each other with polygons that are the the Voronoi cell for a subset X ⊆ B, namely,

νX =
⋂

νi, bi ∈ X. The weighted Voronoi diagram is the collection of all the non-

empty Voronoi cells, VB = {νX | νX 6= ∅, X ⊆ B}. Figure 2.6 (a) illustrates a

weighted Voronoi diagram defined by 8 circles in R2.

For a subset X ⊂ B with a non-empty Voronoi cell, define δX as the convex hull

of the centers of the weighted points in X, δX = conv({zi | bi ∈ X}). The weighted

Delaunay triangulation DB of B is

DB = {δX | νX ∈ VB}.

Figure 2.6 (b) shows the weighted Delaunay triangulation of 8 circles in R2. The

weighted Delaunay triangulation is a triangulation of the convex hull of the centers of

all non-redundant weighted points. However, it may not be the Delaunay triangula-
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(b)

Figure 2.6: The weighted Voronoi diagram and Delaunay triangulation of 8 circles in
R2.

tion of the centers. For example, the triangle abc in Figure 2.6 (b) is not a Delaunay

triangle because its circumcircle encloses another vertex d.

In R3, we assume the general position such that no more than 4 weighted points

with Voronoi cells sharing a common Voronoi vertex. Also, each Voronoi edge be-

longs to exactly 3 Voronoi regions. As a result, the Voronoi cells are vertices, edges,

polygons and polyhedra respectively when card(X) = 4, 3, 2, 1. Under the general

position assumption, DB is a simplicial complex. Each tetrahedron τ ∈ DB and its

faces, namely, triangles, edges, and vertices are dual to a Voronoi vertex, edges, poly-

gons and polyhedra respectively. This dual relationship is illustrated in Figure 2.7.

Since the empty sphere property for unweighted Delaunay triangulation does not

hold for the weighted cases, we define the orthogonal sphere to generalize the empty

sphere criteria for the weighted Delaunay triangulation.

Orthogonal Spheres. For two spheres bi, bj , the weighted distance between them

is defined as π(bi, bj) = ‖x − zi‖2−wi−wj . The sphere bi is orthogonal to the sphere bj

if and only if their weighted distance π(bi, bj) = 0. Geometrically, the spheres bi and bj
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Figure 2.7: The dual relationship between Delaunay simplices and Voronoi Cells.

intersect at a right angle. Two spheres are called further than orthogonal when their

weighted distance is positive, and closer than orthogonal when the distance becomes

negative.

For a tetrahedron τ ∈ DB, let zτ be the dual Voronoi vertex and zτ has a equal

weighted distance r from four balls b1, b2, b3, b4 whose centers are exactly the vertices

of τ . We define the sphere b = (zτ , r) as the orthogonal sphere of the Delaunay

tetrahedron τ because b is orthogonal to the spheres b1, b2, b3 and b4. At the same

time, the sphere b is further than orthogonal from all other spheres in B and we

call the orthogonal sphere empty. This property is used to generalize the empty

sphere property for a set of weighted points. The weighted Delaunay triangulation

DB consists of all the tetrahedra with vertices zi, zj , zk, zl such that the orthogonal

sphere of bi, bj, bk, bl is empty. Note that it is also true for the unweighted case if we

consider each unweighted point as a weighted point with zero weight.

As a result, we can apply the randomized incremental algorithm for computing
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the Delaunay triangulation of (unweighted) point set P to compute the weighted

Delaunay triangulation by generalizing the empty sphere criteria. Edelsbrunner and

Shah [51] described such an efficient algorithm to compute weighted Delaunay tri-

angulations. In general, the weighted Delaunay triangulation of B is different from

the Delaunay triangulation of the unweighted point set Z = {zi | ∀bi = (zi, wi) ∈ B}

except the case that all the spheres in B have same weights.

The weighted Delaunay triangulation has a number of applications in mesh gen-

eration and surface reconstructions [27, 28, 57]. I will use the weighted Delaunay

triangulation to remove the slivers in the Delaunay tetrahedralization in Chapter 5.

In the next section, I will investigate a subset of the weighted Delaunay triangulation

that characterizes the shape of a union of the balls.

2.1.4 Alpha Complex

The α-complex is a subcomplex of the weighted Delaunay triangulation DB param-

eterized by a real value α. When α = 0, the α-complex is usually called the dual

complex of the union of the balls in B, which is defined as
⋃

B = {x ∈ R3 | π(x, bi) ≤

0, ∀i ∈ [1 · · ·n]}.

Dual Complex. The union of balls in B covers only a portion of the Voronoi cells

in VB and each Voronoi cell is dual to a Delaunay simplex in DB. The dual complex

of
⋃

B, denoted as KB, is defined as the collection of Delaunay simplices whose dual

Voronoi cells have non-empty intersection with the union of balls, that is,

KB =
{

δX ∈ DB |
⋃

B ∩ νX 6= ∅, X ⊆ B
}

.

Figure 2.8 shows the dual complex of 8 disks in two dimensions. The dashed lines

are the Voronoi edges. The solid lines and triangles form the dual complex. The dual
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Figure 2.8: The dual complex of 8 disks.

complex KB has the same topology with the union of balls in B. More precisely,

the dual complex KB is homotopy equivalent to
⋃

B and there is a deformation

retraction from
⋃

B to KB. We refer to [36] for a complete list of the properties

of the dual complex. Since the dual complex is a simplicial complex and there are

efficient combinatorial algorithms to compute its topological properties such as Betti

numbers [34], we can investigate the topological properties of a union of balls by

studying its dual complex.

Alpha Complex. We can grow the balls in B with a parameter α and generate a

new set of balls. In particular, we choose the growth model that keeps the weighted

Voronoi diagram VB unchanged. That is, we define a new set of balls for the control

value α as the following,

B(α) = {bi(α) = (zi, wi + α2), bi ∈ B}.

The dual complex of the union of balls in B(α) is referred as the α-complex,

namely,

Kα =
{

δX |
⋃

B(α) ∩ νX 6= ∅, X ⊆ B
}

.
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The alpha complex is changed as the value of α varies. When the α value is negative

and small enough, all the balls in B(α) are imaginary and its α-complex is empty.

As we increase α, some simplices in DB enter the alpha complex K(α) until the α-

complex is equal to the Delaunay triangulation DB. Figure 2.9 shows the α-complex

of 8 disks at three moments.

Figure 2.9: Uniformly growing disks and their α-complexes.

As the control value α grows, the changing of the α-complex is in a way of gaining

new simplices. For each simplex δX ∈ DB, its birth time ζX is defined as the corre-

sponding α value such that the union of balls in B(α) just touches the Voronoi cell

νX . And δX will be in the α-complex Kα for all α ≥ ζX . For a 3-simplex, that is, a

tetrahedron, the birth time is exactly the radius of its orthosphere. For a simplex δX

with dimension less than 3, we define the orthosphere of δX as the smallest sphere b

that orthogonal to all spheres in X, b = (zδ, r). The point zδ is called the center of

the simplex and it is the intersection of the affine space of δX and νX . The radius of

the orthosphere r is the weighted distance from zδ to either sphere in X.

After a Delaunay simplex enters the α-complex, the topology of the α-complex

changes in a specific way depending on the dimension of the simplex. That is, when a

0-simplex enters the α-complex, a new component is formed by the vertex itself; when

a 1-simplex enters the α-complex, two components or two portions of one component
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are connected by the edge; when a 2-simplex appears in the α-complex, the triangle

either splits a void, which is a component of the complementary part of the α-complex

in R3, or closes a tunnel between two portions of the same void; when a 3-simplex

appears, it fills a void.

As a result, we can compute the time and types of the topological changes of the

α-complex deterministically. Since the dual complex has the same topological type

as the union of balls, we can investigate the topological changes of the union of balls

by studying the α-complex. Furthermore, the topology of the space bounded by the

skin surface changes in the same way as the α-complex. I will first introduce the

definition of the skin surface in the next section.

2.2 Skin Surfaces

The skin surface, denoted as FB, specified by a finite set of spheres B is a closed

C1-continuous surface in R3. It consists of one or more disjoint components and each

one is free of self-intersections and intersections with other components. Intuitively,

the skin surface is geometrically similar to the boundary of the union of balls but

with a smooth appearance by blending the spheres with quadratic patches. Figure

2.10 illustrates the union of a set of spheres that forms a torus and the corresponding

skin surface.

In this section, I first introduce the sphere algebra and define the skin surface

as the envelope of the convex combination of the spheres after shrinking. Then, I

describe the mixed complex to decompose the skin surface FB into a finite collection

of quadratic patches. Finally, I introduce the key properties of the skin surface,

namely, the complementarity property, the curvature variation of the skin surface

and its capability of deformation.
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(a) (b)

Figure 2.10: The union of spheres and the skin surface model of a torus.

2.2.1 Skin Definition

Recall that we can consider a sphere bi ∈ B as the zero-set of the weighted distance

function πi(x) = ‖x− zi‖2 −wi. Following the addition and the scalar multiplication

operations of the weighted distance functions πi(x), we can define the addition of two

spheres bi, bj , and the scalar multiplication of bi and a real number c as

(zi, wi) + (zj , wj) = (zi + zj , wi + wj + 2〈zi, zj〉), and

c · (zi, wi) = (c · zi, c · (wi − (1 − c)‖zi‖2)).

The notation 〈zi, zj〉 is the dot product of vectors zi and zj . Using these two opera-

tions, the affine hull and convex hull of X ⊆ B can be defined as

aff(X) =

{

∑

bi∈X

λibi

∣

∣

∣

∑

i

λi = 1,

}

, and

conv(X) =

{

∑

bi∈X

λibi

∣

∣

∣

∑

i

λi = 1, ∀λi > 0

}

.

The affine hull and convex hull of X consist of an infinite family of spheres. For any

sphere bj ∈ aff(X), we can deduce the expression of the center and radius of bj as
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(a)
(b)

z1 z2

x1

x2

Figure 2.11: The affine hull and convex hull of two circles.

following,

zj =
∑

i

λizi,

wj =
∑

i

λiwi +
∥

∥

∥

∑

i

λizi

∥

∥

∥

2

−
∑

i

λi‖zi‖2.

That is, the center of bj is on the affine hull of the centers of the spheres in B. For

example, if X = {b1, b2} and b1, b2 intersect each other with a common circle in R3, the

affine hull contains all the spheres that pass through the circle and have their centers

lying on the line passing through z1 and z2. Since the family of spheres are difficult

to draw, I illustrate the affine hull and convex hull of two circles in two dimensions in

Figure 2.11. We can also consider it as the cross section of three dimensional cases.

In order to define the skin surface, we need one more operation. We define the

shrinking operation of a sphere bi as
√

bi = (zi,
wi

2
), and for a set of spheres X,

√
X = {

√
bi | bi ∈ B}. Figure 2.12 shows the shrunk affine hull and convex hull of

two circles.

We are interested in the envelope of the family of spheres in the affine hull and

convex hull of X after shrinking. In R3, Edelsbrunner [38] proved that the envelope

of aff({bi, bj}) is a hyperboloid and the envelope of conv({bi, bj}) is a closed smooth
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(a)
(b)

Figure 2.12: The shrunk affine hull and convex hull of two circles.

surface consisting of two spherical patches joined by a portion of a hyperboloid, as

shown in Figure 2.13.

(a)
(b)

Figure 2.13: The envelope of the shrunk affine hull and convex hull of two circles.

For a general set of spheres B, the skin surface, FB, is defined as the envelope of

the family of infinite spheres in the convex hull of B after shrinking, namely,

FB = env
(

√

conv(B)
)

.

The envelope is the boundary of the union of balls in the shrunk convex hull of B.

The union of balls,
⋃

√

conv(B), is called the body of the skin FB. It is difficult to

illustrate the shape of a general skin surface directly as what we did in Figure 2.13 for
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two circles. Instead, I use an indirect way to illustrate the shape of the skin surface

in the next section. First, I decompose the skin surface to a collection of patches

specified by up to four spheres. Then, I show that each patch is a portion of either a

sphere or a hyperboloid.

2.2.2 Skin Patches

I introduce the mixed complex that decompose the skin surface into a collection of

simple pieces. Recall that the Voronoi complex VB of B and its dual Delaunay complex

as DB establish a corresponding relationship between each Delaunay cell and its dual

Voronoi cell of a subset X ⊆ B. When X has cardinality 1 to 4, the Delaunay cells are

vertices, edges, triangles and tetrahedra in R3 respectively. Then, the corresponding

Voronoi cells are polyhedra, polygons, edges and vertices respectively.

The mixed cell, µX , of X is defined as the Minkowski sum of νX and δX shrunk

by half, that is,

µX = (νX + δX)/2.

The mixed cell, µX , is always a polyhedron. Figure 2.14 illustrates the four cases of

the mixed cell in three dimensions. The collection of mixed cells partitions the space

Figure 2.14: Four different mixed cells with dimension from 1 to 4.

in R3, which is called the mixed complex, MB, of B. We define the center of µX as
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the point zX = aff(νX)
⋂

aff(δX), in which aff(Y ) is the affine hull of Y .

We consider the portion of the skin surface FB clipped within each mixed cell µX .

Edelsbrunner [38] proved that the intersection of the skin surface FB and a mixed

cell µX is same as the intersection of µX with the envelope of the shrunk affine hull

of X, namely,

FB

⋂

µX = env
(

√

aff(X)
)

⋂

µX .

In other words, the skin surface within each mixed cell is determined by the weighted

points in X. Under the general positions assumption, we have only four different

cardinalities of X, namely, card(X) = 1, 2, 3 or 4.

When card(X) = 1, the affine hull of X = {bi} is the sphere bi itself. As a result,

the skin patch in µX is simply the part of the sphere with center at zi and radius
√

wi

2
clipped by the faces of µX .

When card(X) = 2, the envelope of the shrunk affine hull of X = {bi, bj} is a

hyperboloid. The idea is illustrated in Figure 2.12. If we translate and rotate the

mixed cell such that its center zX is the origin, the hyperboloid can be expressed in

a standard form, that is,

x2
1 + x2

2 − x2
3 = ±R2.

in which R is the minimum distance from the center zX to the hyperboloid and equal

to the absolute value of the radius of the orthosphere of δX divided by
√

2. The

sign in the right side of the equation is determined by the sign of the orthosphere

radius. In the case of the orthosphere has a positive radius, the sign in the equation

is minus and it indicates the hyperboloid is a one-sheeted hyperboloid. If the radius

is negative, the envelope is a two-sheeted hyperboloid. If the radius is equal to zero,

the envelope is a double cone, which is considered as the degenerate case. Figure 2.15
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illustrates the hyperboloids. As a result, the skin patches within the mixed cell µX

of dimension 1 are hyperboloid patches of 1 sheeted or 2 two sheeted.

(a) (b)

Figure 2.15: Examples of one sheeted hyperboloid and two sheeted hyperboloid.

For the case of card(X) = 3, we claim that the envelope of affine hull of X after

shrinking is a hyperboloid as well. In order to explain this, we need the help of the

orthospheres bj , bk of the coface tetrahedra next to the Delaunay triangle δX . Since

the orthosphere bj and bk are orthogonal to every sphere in X, the sphere bj and bk

are orthogonal to every sphere in the affine hull of X. By symmetry, every sphere

bi ∈
√

aff(X) is orthogonal to bj and bk, and every sphere in their affine hull as well.

If we apply the shrinking operation to the spheres in
√

aff(X) and
√

aff({bj , bk}), we

can find out that they share a common envelope, which is illustrated in Figure 2.16

using the two dimensional case. The reason is that two shrunk orthogonal spheres

will touch each other if and only if they have the same radius, and they are disjoint

in all other cases. See Figure 2.17 for the examples in two dimensions. As a result,

the skin patch for X with cardinality 3 is also a hyperboloid patch.

Finally, when card(X) = 4, the orthogonal set of the four spheres in X is its

unique orthosphere. As a result, the skin patch is the shrunk orthosphere clipped by

the four faces of the mixed cells.

To sum up, we have two types of surface patches inside each µX depending on
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Figure 2.16: The orthogonal set and its shrunk result.

(a) (b)

Figure 2.17: Two orthogonal spheres.

the cardinalities of X. If card(X) = 1 or 4, there is a sphere patch clipped within

the mixed cell µX . If card(X) = 2 or 3, there is a hyperboloid patch clipped within

µX . The center of µX , zX , is the center of the corresponding sphere or the apex of

the corresponding hyperboloid. These patches join each other smoothly at the inter-

section of two mixed cells and form a closed smooth surface. Figure 2.18 illustrates

a skin surface and its patches in four different types of mixed cells.

2.2.3 Geometric Properties

The skin surface has a number of elegant properties [38]. Among them, I will introduce

the complementarity, the curvature variation property, and the deformation under the

34



Figure 2.18: The skin patches clipped within the mixed cells.
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growing model in this section to facilitate our discussions about the skin triangulation

algorithms in the later chapters.

Complementarity. The complementarity of a skin surface FB tells that we can

find another collection of spheres that specify the same skin surface of B but with

reverse normal direction and a complementary body. Edelsbrunner [38] shows that

the orthogonal set of of B, B⊥ = {b⊥X = (z⊥X , w⊥
X) | δX ∈ DB}, shares the same

envelope with B, where b⊥X is the orthogonal sphere of the simplex δX . The union of

the body bounded by the skin of B and B⊥ cover the whole three dimensional space.

That is,

body(B)
⋂

body(B⊥) = skin(B)

= skin(B⊥),

body(B)
⋃

body(B⊥) = R3.

In other words, the skin surface FB is the envelope of two families of spheres,
√

conv(B) and
√

conv(B⊥), one inside and the other outside the surface. As a result,

for every point x on the skin surface FB, there are two unique spheres bx and b⊥x

that pass through x and externally tangent each other. These two spheres have same

radius and their separate plane is the tangent plane at x. We refer to bx and b⊥x as the

sandwiching spheres at x because they squeeze the surface in the local neighborhood

around x. Figure 2.19 illustrates the ideas in two dimensions.

The radius of the sandwiching sphere varies continuously over the skin surface,

which certifies the continuity of the tangent of x ∈ FB. In addition, the maximum

curvature of the skin surface is continuous and varies slowly on the surface.

Curvature Variation. The curvature of a surface at a point x is measured by using

the curvature of the curve at the cross-section of the surface with a plane passing the
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x

Figure 2.19: The sandwich spheres of a point on the skin surface.

normal of x. More precisely, given a surface M, a point x on M with the tangent

vector tx, the normal curvature of M at x is that of the curve on M through x in

the direction tx. There is a circle of tangent vectors at the point x and each one

corresponds to a normal curvature. The maximum and minimum normal curvatures

at the point x on a surface are called the principle (normal) curvature [18]. The

principle curvatures measure how much the surface is curving. I will investigate the

changing of the maximum principle curvature of the skin surface and use it control

the surface mesh size in our later studies.

Denote the maximum principle curvature at x ∈ FB as κ(x). The reciprocal

1/κ(x) is defined as the local length scale at x, denoted as ̺(x). Since the skin surface

can be decomposed into sphere patches and hyperboloid patches, we can compute

κ(x) analytically for any point x on a skin surface FB. For a sphere, the maximum

curvature is one over its radius. In the situation of a hyperboloid of revolution, the

maximum normal curvature is one over the radius of its sandwiching sphere, which is

equal to the distance of x from its apex. That is, for any point x on the skin surface

FB, the local length scale at x, ̺(x), is the distance from x to the center of the mixed

cell. This means both the maximum curvature and the local length scale for each

x ∈ FB can be determined individually within its mixed cell.

The maximum curvature varies slowly on the skin surface. For two points x, y ∈
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FB, this property can be expressed in the Lipschitz condition [23],

|̺(x) − ̺(y)| ≤ ‖x − y‖.

This property leads to the possibility of adaptive homeomorphic triangulation. I

will use it to determine the step size of our algorithm in Chapter 3 and Chapter 4.

Growing Skin. Recall the growth model of B that keeps the weighted Delaunay

triangulation DB unchanged by introducing a parameter α, and defines the set of

spheres B(α) = {bi(α) = (zi, wi + α) ∈ R3 ×R | i = 1..n}. For each α-value, we have

a skin surface FB(α) that shares the same mixed cells with FB. As we increase the α

from −∞ to ∞, the skin surface FB(α) grows continuously and its topology changes

at the center of each mixed cell [38].

Since the skin body of FB(α) is homotopic to the underlying space of its dual

complex |KB|, the topological changes of the skin surface FB(α) are corresponding

to the topological changes of the alpha complex we introduced in Section 2.1.4. In

particular, the changes of the topology depend on the cardinality of X ⊆ B. We

have four cases for the cardinality of X, namely, card(X) = 1, 2, 3, 4. In the case of

card(X) = 1, the skin surface in the mixed cell µX changes from empty to a sphere

when the radius of bi(α) become positive. When card(X) = 2, the skin changes

from a 2-sheet hyperboloid to a 1-sheet hyperboloid. Symmetrically, in the case of

card(X) = 3, the skin changes from a 1-sheet hyperboloid to a 2-sheet hyperboloid.

When card(X) = 4, the skin changes from a sphere to empty. Figure 2.20 illustrates

5 snap-shots of the growing skin surface specified by four spheres.
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Figure 2.20: The topological changes of the skin surface as we grow the radius simul-
taneously.
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2.3 Triangulations of Skin Surfaces

The goal of this section is to define the triangulation of a skin surface FB that has

the same topology with the surface and approximates the surface accurately as well.

First, I introduce the homeomorphism between two sets and define the triangulation

of skin surfaces. Then, I describe a special subset of the Delaunay triangulation

of the surface samples, namely, the restricted Delaunay triangulation to guide our

construction of skin triangulation. Finally, I introduce the conditions that ensure the

restricted Delaunay triangulation is homeomorphic to the skin surface.

2.3.1 Homeomorphism

A function g from a set Y to Z is called a map if it is continuous. The map g is a

homeomorphism if it is bijective and has a continuous inverse. If a homeomorphism

exists from Y to Z then Y is homeomorphic to the set Z, denoted as Y ≈ Z. For

example, a square is homeomorphic to a circle, and a cube is homeomorphic to a

tetrahedron as well, which are showed in Figure 2.21 (a) and (b) respectively. For

another example, a sphere without its north pole is homeomorphic to a plane. The

homeomorphism can be realized using the so-called stereographic projection, g(x) =

x
1−‖x‖ , in which x is any point on the sphere except the north pole. See Figure 2.21

(c).

≈
≈

(a) (b) (c)

≈

Figure 2.21: Examples of homeomorphic figures.

The triangulation of the skin surface FB is a simplical complex K whose under-

lying space is homeomorphic to FB, namely, |K| ≈ FB. Figure 2.22 (a) illustrates a
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homeomorphism between a sphere and an inscribed tetrahedron. By projecting each

edge of the tetrahedron from the center onto the sphere, we obtain four spherical

patches which are the homeomorphic images of the four faces of a tetrahedron. See

Figure 2.22 (b).

(a) (b)

Figure 2.22: The homeomorphism between a sphere and an inscribed tetrahedron
and the mapping from a spherical patch to a triangle.

For a skin surface with arbitrary topology, we seek to use a subset of the Delaunay

triangulation of the sample points T ⊂ FB to construct its triangulation. With the

recent results from Edelsbrunner and Shah [50], there is a homeomorphism between

the restricted Delaunay triangulation and a compact manifold if certain conditions

are satisfied. I will introduce the definition of the restricted Delaunay triangulation

and the conditions in the next section.

2.3.2 Restricted Delaunay Triangulation

I firstly formalize the definition of the restricted Delaunay triangulation of a skin

surface. Then, I describe the closed ball property that ensures the homeomorphism

between the restricted Delaunay triangulation and the surface.

Let T ⊆ FB be a finite subset of points on the skin surface. The restricted Voronoi

polygon of a ∈ T is defined as νa
′ = νa

⋂

FB, in which νa is the Voronoi cell of a with

respect to T in R3. The nerve of the restricted Voronoi polygons is the set of these

polygons with non-empty common intersection. The collection of the convex hull of
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the nerve element is the restricted Delaunay triangulation, namely,

DT
′ =

{

conv (U) | U ⊆ T,
⋂

a∈U

νa ∩ FB 6= ∅
}

.

We assume that there are no four restricted Voronoi polygons with common intersec-

tions. It follows D′
T is a simplicial complex consisted of vertices, edges and triangles.

See Figure 2.23 for an example.

Figure 2.23: The restricted Delaunay triangulation of a partial sampling on a surface.
The dashed lines are the restricted Voronoi polygons and the solid lines are the
Restricted Delaunay triangulation.

The restricted Delaunay triangulation D′
T is a triangulation of FB if D′

T has the

closed ball property. The closed ball property refers that the intersection of the

restricted Voronoi polygons with the surface is a d-dimensional closed topological ball,

in which d equals 3 minus the dimension of the Voronoi cell, k. With assumption

of general position, we have four cases of Voronoi cells, that is, Voronoi polyhedra,

polygons, edges and vertices when k = 0, 1, 2, and 3 respectively. Thus, we can

formulate the closed ball property in term of these four cases, that is, the intersection

with the skin surface is a closed disk when k = 0, empty or a closed interval when

k = 1, empty or a single point when k = 2, empty when k = 3. Figure 2.24 illustrates

the three possible intersections in three dimensions.

To maintain the closed ball property, the local density of the vertices in the tri-

angulation need to be sufficiently dense. More precisely, we require the set of mesh
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Figure 2.24: The closed ball property in R3.

vertices is an ε-sampling of skin surfaces with feasible ε value, which will be further

discussed in Chapter 4.

2.4 Summary

This chapter introduced the concepts of the simplicial complex, Voronoi diagram

and Delaunay triangulation, alpha complex, and defined the skin surface and its

triangulation. The properties of the skin surface were reviewed. These background

lays the foundations to rest of this thesis. It enables us to develop algorithms for

meshing the skin surfaces.
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Chapter 3

Adaptive Sweeping Skin Meshing

Algorithm

This chapter develops an adaptive sweeping algorithm for meshing the skin surface

with guaranteed quality efficiently. The algorithm adapts the advancing front method

and sweeps the triangulation from the bottom to the top of a skin surface. The front

collision problem during the triangulation sweeping is handled by utilizing the recent

result from the computational topology. In particular, a set of critical points of a

height function on the surface is computed to detect the potential front collisions.

The noisy critical points are removed using Morse-Smale complex to simplify the

topological changes of the front. Our implementation results suggest that the algo-

rithm improves the efficiency of the advancing front methods dramatically. Moreover,

the triangulation is adaptive to the surface curvature and has a provable lower bound

of 21◦ on its minimum angle, which implies a high triangulation quality.

Section 3.1 introduces the Morse function and its critical points on a surface to

handle the front collision problem in advancing front methods. Section 3.2 computes

the critical points of the height function. The noisy critical points are removed in

pair using Morse-smale complex in Section 3.3. Section 3.4 describes the algorithm.
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I demonstrate some triangulation results in Section 3.5 and conclude the chapter in

Section 3.6.

3.1 Front Collision Handling

First, I review the front collision problem in advancing front meshing. Then, I in-

troduce the Morse function and its critical points, which enable to detect the front

collision efficiently when the front is advancing along the direction of the function.

3.1.1 Front Collision Problem

The advancing front methods construct a surface mesh by iteratively attaching tri-

angles to the partial mesh. The mesh boundary, namely, the front, is composed of a

set of closed piecewise linear curves. In each step, we select a vertex from the front

as the departure vertex. New mesh vertices are placed around the departure vertex

and more triangles are attached to the front using the new vertices. Then the front

advances towards the unmeshed region progressively until the whole surface is cov-

ered. Figure 3.1 (b) illustrates the updated front after inserting a new mesh vertex

and two triangles to the partial mesh in Figure 3.1 (a).

(a) (b) (c)

Figure 3.1: Advancing front meshing and front collision problem.

The front collision problem arises when different portions of the front are close to

each other. In this situation, the newly added triangles may overlap other existing

45



triangles. See Figure 3.1 (c) for an example. The detection of these collisions is ex-

pensive because they may happen anywhere. A number of heuristics were employed

to address this problem and these heuristics always lead to unrobust implementa-

tion and lower efficiency [60, 66]. For example, Hartman [60] handle this problem by

frequently checking the distance of any two vertices on the front, which are costly

computations. Even though the collisions can be detected and the front stops ad-

vancing at such regions, there will be cracks in the partial triangulations when no

more triangles can be added. Fixing these cracks involves heuristics, which always

lead to robustness problems of algorithms.

I introduce the Morse theory to handle this problem. Morse theory was developed

by Marston Morse in 1930s [79]. Recently, it is applied in the applications such

as topological modeling for visualization [56], topological simplification of piecewise

linear 2-manifolds and 3-manifolds [43, 44]. Different from these previous works that

apply the Morse theory to piecewise linear approximations of smooth manifolds, I will

use the critical points of a Morse function defined on the smooth surfaces to detect

the potential front collision in skin meshing algorithm.

3.1.2 Topological Changes of the Front

Morse theory on surfaces describes the topological changes of the partial surface

boundary specified by a function, namely, the Morse function [77]. First, I intro-

duce the Morse function and its critical points on surfaces. Then, I describe the

relationships between the critical points and the topological changes of the front.

Morse function. We denote M as a smooth, compact 2-manifold without boundary

in R3 and a function f : M → R. We assume a local coordinate system (x1, x2) in

a neighborhood of a point p ∈ M. The point p is a critical point of function f if

all its partial derivatives vanish with respect to the local coordinate system, that is,
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∂f

∂x1

|p = ∂f

∂x2

|p = 0. Otherwise, it is a regular point. If p is a critical point, f(p) is the

critical value of f at p. The critical point p is non-degenerate if the Hessian of f at

p, H(p), that is,

H(p) =







∂2f

∂x2

1

(p) ∂2f

∂x1∂x2

(p)

∂2f

∂x2∂x1

(p) ∂2f

∂x2

2

(p)






,

is non-singular, namely, det H(p) 6= 0. The function f is called a Morse function if

all its critical points are non-degenerate.

For a critical point p ∈ M, we can choose an appropriate local coordinate system

(x1, x2) in the neighborhood of p such that the Morse function f is expressed in the

form f(x1, x2) = ±x2
1 ± x2

2 + f(p) . The number of minuses is called the index of

f at p. Thus, there are three types of critical points on a smooth 2-manifold in R3,

namely, minima with index 0, saddle points with index 1 and maxima with index 2

[77]. Figure 3.2 illustrates the three types of critical points.

h(p)

Y

X

Y
h(p)

h(p)

(a) Minimum point (b) Saddle point (c) Maximum point

X

Y

X

h(p) = −X2
− Y 2 + c3h(p) = X2 + Y 2 + c1 h(p) = X2

− Y 2 + c2

Figure 3.2: Three types of critical points on a 2-manifold.

In this thesis, I employ the height function h(p) = yp on M as the Morse function

if p = (xp, yp, zp). The critical points of h are the points with horizontal tangent

planes.
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Topological changes of the front. Let Ma = {x ∈ M | h(x) ≤ a} be the partial

surface for some a ∈ R. Denote La = {x ∈ M | h(x) = a} as the level curve at a.

The curve La is the boundary of Ma and it is the intersection of M and the horizontal

plane Ta : y = a.

We illustrate the topological changes of the level curve La at the three types of

critical points of h with the example in Figure 3.3. Let ǫ be a small positive number.

While we sweep a horizontal plane Ta upwards from a = −∞, the partial surface,

Ma, is empty when a < h(p). After Ta passes the minimum p and when a = h(p)+ ǫ,

the level curve La changes from Lh(p)−ǫ = ∅ to Lh(p)+ǫ, which is a topological circle.

When the horizontal plane rises to Th(r), the two topological circles in Lh(r)−ǫ touch

at r. At the level h(r) + ǫ, the curve Lh(r)+ǫ becomes one topological circle. As the

height increases to h(s), Lh(s) changes to two topological circles with their contact

point at s. When the horizontal plane Ta arrives at the maximum u, one topological

circle converges to the point u. Finally, Lh(t)+ǫ becomes empty after the horizontal

plane passes the maximum t. To sum up, a component of the level curve La is created

at the minimum points, two components of La are connected or a component of La

is split to two at the saddle points, and a component of La converge to a point at the

maximum points.

By this observation, we are inspired to sweep the partial triangulation over the skin

surface in a similar manner. The topological changes of the level curve correspond

to the topological changes of the front. Therefore, the front will collide around the

critical points on the skin surfaces. We set a protecting sphere with the center at each

critical point to detect the potential collisions of the front. Thus, we only manage the

topological changes of the front within each protecting sphere. There are three kinds

of topological changes corresponding to the three types of critical points, namely,

“creation” at the minima, “bridge” at the saddle points and “seal” at the maxima.

Since the number of the critical points are much small comparing with the vertices

48



u

p

q

r

s

t

h
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h(u)
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h(r)

h(q)

h(p)

Figure 3.3: Critical points and level curves of height function h on a smooth 2-
manifold. The points p, q are minima, r, s are saddle points and t, u are maxima of
h. Solid curves are the level curves at different height.

on the front, it would improve the efficiency of front collision handling procedure. In

the next section, we compute the critical points on the skin surface analytically.

3.2 Critical Points Computation

The computation of the critical points includes the locations of all the critical points

on the skin surface and their types, namely, minimum, saddle or maximum. Since

a skin surface can be decomposed to a collection of sphere patches and hyperboloid

patches, we can find the critical point for each patch individually. Moreover, the

type of the critical point can be determined by the type of the quadratic patch. I

first describe the classification of the critical points. Then, I locate the critical points

by solving quadratic equations. The correctness of the computation is justified by

verifying the Euler characteristic of the skin surface.

Classification of Critical Points. The skin surface clipped within a mixed cell of

dimension 0 and 3 is a sphere patch. Therefore, the critical points in such mixed cells

can only be a minimum point when its height value is smaller than that of the mixed
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cell center, and be a maximum point when its height value is larger than that of the

center. The skin surface in the mixed cells of dimension 1 and 2 is a hyperboloid patch.

In these situations, there are two cases, the skin patch is a one sheeted hyperboloid

when the radius of the orthogonal sphere of the Delaunay simplex is positive, or a two

sheeted hyperboloid otherwise. The critical points on a one sheeted hyperboloid are

all saddle points. And the critical points on a two sheeted hyperboloid are minimum

points or maximum points, which can be determined by comparing the height of the

critical points and the center of the mixed cell.

Locating Critical Points. The critical points of the height function on the skin

surface are the points with horizontal tangent planes. In other words, the surface

normal at the critical point is perpendicular to the horizontal plane. We can find

such points on each sphere or hyperboloid by solving a quadratic equation. Then, we

judge if these points are on the skin surface.

Recall that if we translate and rotate the mixed cell such that its center zX is the

origin, the sphere and hyperboloid can be expressed in a standard form, that is,

X2 + Y 2 + Z2 = R2,

X2 + Y 2 − Z2 = ±R2.

Therefore, the critical points on a sphere are simply the “south pole”, ps(0, 0, R) and

“north pole”, pn(0, 0,−R) in this coordinate system. For a hyperboloid, there are

four points with horizontal tangent planes. Only two of them can be critical points.

Moreover, these two points lie on a hyperbola that is the cross-section of the plane

passing through the axis Y and Z. See Figure 3.4 for an example of a two-sheeted

hyperboloid case. The cross-section hyperbola can be expressed by Y 2 − Z2 = R2

in the standard form. The vector n(nZ , nY ) is the normalized vector of the height

function and the tangent vector at each point p on the hyperbola is t(1, Z√
R2+Z2

). As
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Figure 3.4: Critical points on a two-sheeted hyperboloid.

a result, the coordinates of the two possible critical points p1 and p2, whose tangent

vectors are perpendicular to the height function direction, are the solutions of the

equation 〈n, t〉 = 0, that is, p1(
|nZ |·R√
n2

Y
−n2

Z

, |nY |·R√
n2

Y
−n2

Z

) and p2(− |nZ |·R√
n2

Y
−n2

Z

,− |nY |·R√
n2

Y
−n2

Z

).

Next, we can get the coordination of the two points with horizontal tangent planes

on the skin surface by transforming the points p1 and p2 to the original coordination

system.

Finally, we judge if the points p1 and p2 are on the surface. Since each mixed cell

is a convex polyhedron, we can always find a point c that is inside the mixed cell. By

computing the dot product of the vectors from p1 and p2 to c and the normal vector

of each face of the mixed cell, we can easily find out whether the points p1 and p2 are

critical points on the surface or not. If the points p1 or p2 are on the face of the mixed

cell, they are degenerate critical points. We can simply discard them since they are

a pair of critical points that cancel each other. And there are no topological changes

of the front at such points.

Euler Characteristic. An easy but effective way to verify the correctness of the

critical points computation is to compute the Euler characteristic of the skin surface.

For a smooth 2-manifold with g genus, the Euler characteristic is 2−2g and it is also
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the alternating sum of the critical points, that is,

χ = nmin − nsad + nmax,

= 2 − 2g,

in which nmin, nsad and nmax are the numbers of minimum critical points, saddle

points and maximum critical points respectively [77].

We can compute the Euler characteristic of a skin surface FB efficiently according

to the homotopic equivalence relationship between the skin body and the dual complex

of KB. We have the following Lemma.

Lemma 3.2.1 Let χs be the Euler characteristic of the skin surface FB and χd be

the Euler characteristic of dual complex KB of the union of balls in B, then,

χs = 2χd.

Proof. Denote the Betti numbers of the dual complex KB as βd0, βd1 and βd2. βd0

is the number of connected components, βd1 is the number of independent tunnels,

and βd2 is the number of voids. Similarly, the Betti numbers of the corresponding

skin surface are βs0, βs1 and βs2.

Recall that the skin body is homotopic to the underlying space of the dual complex.

Thus, the skin body has the same Betti numbers as that of the dual complex. Since

each connected component or void in the skin body corresponds a component in the

skin surface, we have,

βs0 = βd0 + βd2.

Moreover, each component in the skin surface is a closed surface. Thus, it corresponds
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a void as well, that is,

βs2 = βd0 + βd2.

And each tunnel in the skin body corresponds two tunnels in the skin surface, that

is,

βs1 = 2βd1.

According to the Euler −Poincare theorem [77], the Euler characteristic of the skin

surface χs is,

χs = βs0 − βs1 + βs2,

= βd0 + βd2 − 2βd1 + βd0 + βd2,

= 2(βd0 − βd1 + βd2),

= 2χd.

The Euler characteristic of dual complex KB is the alternating sum of the number

of vertices, edges and triangles. As a result, we can easily get the Euler character-

istic of the skin surface according to the Lemma 3.2.1, which enable us to test the

correctness of the set of critical points.

However, two critical points can be close to each other on the portion of the

surface with small fluctuations. In this case, the protecting spheres can have non-

empty intersection. In order to handle the topological changes of the front, we need to

decrease the radii of the protecting spheres until no two protecting spheres intersect.

This solution needs to decrease the size of all the triangles in the triangulation as well
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because the radii of the protecting spheres are proportional to the triangle size. Since

the distance between two critical points on a skin surface can be arbitrary small, it

would result in huge number of triangles, which would decrease the efficiency of the

algorithm and increase the storage.

On the other hand, we can solve this problem in a systematic way. The idea is

to remove these critical points that are close to each other in a consistent manner

such that the topological changes of the front are captured by the left critical points.

Since these critical points close to each other are caused by the spurious features like

small fluctuations on the surface, these fluctuations can be approximated by a few fat

triangles in the final surface triangulation. In other words, there will be no critical

points in such portion of the surface if we define the height function on the surface

triangulation. Therefore, we can simplify the height function by removing pairs of

critical points such that the height function is equivalent to the height function defined

on the skin mesh. Since the critical points that are close to each other represent the

spurious features on the surface, I call them noisy critical points. In the next section,

I will introduce the Morse-Smale complex to remove such critical points.

3.3 Noisy Critical Points Removal

Two noisy critical points can be eliminated by contracting an arc in the Morse-

Smale complex [46]. We can remove all the noisy critical points by repeating the

arc contraction in the Morse-Smale complex. Edelsbrunner et al. [46] used this idea

to construct a hierarchical representation for piecewise linear approximations of the

smooth surfaces. In this section, I will first introduce the definition of the Morse-

Smale complex. Then, I describe the construction of the Morse-Smale complex on a

skin surface. Finally, I introduce the noisy critical points removal by contracting arcs

in the Morse-Smale complex.
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Morse-Smale complex. The Morse-Smale complex of a Morse function on a smooth

2-manifold decomposes the surface into quadrangular regions whose boundary con-

sisting of exactly four critical points, a minimum, two saddles and a maximum point.

The critical points are connected in the Morse-Smale complex via the integral lines.

An integral line, γ, is a curve on M. For each point p ∈ γ, its tangent vector on γ

agrees with the gradient of the height function h at p. The gradient of the height

function h at a point p can be defined as ∇h = ( ∂f

∂x1

(p), ∂f

∂x2

(p)) in an orthogonal local

coordinate system (x1, x2). The gradient vanishes at the critical points. For a regular

point, the gradient is the tangent vector in the steepest ascending direction.

We can trace out an integral line from any non-critical point along the gradient.

It starts at a critical points and ascends monotonically. The integral line ends at

another critical point. Two integral lines are either disjoint or the same. For a critical

point a, the union of all the integral lines ending at a forms the stable manifold of

a. Specifically, the stable manifold of a minimum point is the minimum point itself,

that of a saddle point is open interval, and that of a maximum point is an open

disk. The collection of the stable manifolds of all the critical points forms a complex

that decomposes M into open cells. Symmetrically, we define the unstable manifold

of the critical point a as the union of all the integral lines starts at a. We assume

the stable and unstable manifold intersect only transversally, that is, a stable and

unstable manifold cross at a saddle point when they intersect. This assumption can

be easily fulfilled by a small perturbation of the Morse function.

The Morse-Smale complex is the collection of the connected components after

intersecting the stable and unstable manifolds for all the critical points on M . It

consists of vertices, arcs and regions. Each vertex is a critical point, and each arc is

an integral line connecting a saddle point to a minimum or a maximum critical point.

The arcs divide the manifold M into quadrangular regions. Each region is surrounded

by two saddle points, a minimum and a maximum critical point [44].
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Construction. We construct the Morse-Smale complex of the height function h

on the skin surface FB. Since we have computed all the critical points of h on

the surface, the remaining work is to compute the arcs that connecting the critical

points. According to the combinatorial structure of the Morse-Smale complex, we can

compute the arcs by tracing four integral lines start at each saddle point. First, we

determine the tangent vector at each saddle point that indicates the steepest ascent

and steepest descent directions. Then, we compute the gradient vector at each regular

point on the surface. Finally, we trace the integral curves in an incremental manner.

There are a circle of tangent vectors at each saddle point s and two of them

indicates the steepest ascending, denote as u1, u2. Because each saddle point lies on

an one-sheeted hyperboloid, the two ascending integral lines start from s are the two

intervals in a small neighborhood of s, which is the intersection of the skin surface

FB and the plane H that is parallel to the y-axis and pass through s and the center of

the mixed cell contains s. Therefore, the two initial vectors u1, u2 of s ∈ FB lying on

intersection of the plane H with the tangent plane of s ∈ FB. Another two tangent

vectors, d1, d2, that indicate the steepest descending can be obtained easily because

they are perpendicular to u1, u2 respectively. We call the tangent vectors u1, u2, d1, d2

the initial vectors of a saddle point.

Then, we compute the gradient of the height function h at the regular points

analytically. For each regular point p ∈ FB, we denote the gradient vector of the

height function h at p as gp and the unit surface normal vector of p as np. The height

function can be represented by a unit vector V = (0, 1, 0). For each non-critical point

p ∈ FB, the gradient vector, gp, is the projection of normal vector np on the tangent

plane of p along the height direction, which is described in the following Lemma.

Lemma 3.3.1 The gradient vector of height function h at each non-critical point
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Figure 3.5: Gradient vector of the height function.

p ∈ FB is

gp =
V

np · V
− np.

Proof. According to the decomposition of the skin surface, a non-critical point p

lies on either a sphere or a hyperboloid.

Consider the case that p lies on a sphere. We translate the coordinate such that

the center of the sphere is the origin and take the sphere as a unit sphere S. The

gradient vector gp is the tangent vector pt on the circle that is the intersection of the

sphere S with the plane that is parallel to the y-axis and passes through p and o.

The point t is the intersection of y-axis with the tangent vector. It is illustrated in

Figure 3.5. With the vector subtraction, we get pt = ot−op. Since S is a unit sphere,

the vector op is same as the normal vector np. Thus, the vector op is perpendicular

to the tangent vector pt. And the angle between vector op and ot, ∠top, is equal to

arccos(np · V ). Therefore, the vector ot = V
np·V . As a result, gp = V

np·V − np.

If p lies on a hyperboloid, we have an osculating sphere of the skin surface at p.

The gradient vector gp and the surface normal vector np at p is same as that of the

osculating sphere. The lemma follows the proof in the case p lies on a sphere.

As a result, for any non-critical point p ∈ FB, the lemma is correct.
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Finally, we approximate the integral lines with piecewise linear curves because

the integral lines on the skin surface are difficult to compute analytically. At each

saddle point, starting from the tangent vectors indicating the steepest directions, we

trace four integral lines by iteratively stepping forward following the gradient until

we meet a maximum or a minimum critical point. Figure 3.6 illustrate the procedure

of tracing an integral line from saddle point s. With point p1 as the initial position,

we step forward a small step size ∆s along its gradient vector and get another point

q2. We project point q2 to the skin surface FB by computing the intersection of FB

and the line passing through q2 along the normal vector at p1. We get the point

p2 ∈ FB. Repeat this operation until we meet a minimum point or maximum point.

The other three integral lines can be computed with the same way. The step size is

s

p1

p2

q2

ns

np1

np2

gp1

gp2

skin surface

Figure 3.6: Extending an integral line from a saddle point.

important for the accuracy of the computation result. We use the step size adaptive

to the maximum curvature at the skin surfaces. We observe that for a point t, the

step size use the value 0.2̺(t) is a feasible value. In the degenerate cases, that is, the

integral line meets a saddle point before arriving at a minimum or maximum point,

we can do a small perturbation before the integral line crosses the saddle points to

ensure the integral lines end at a minimum or maximum point. The accuracy of

the approximation is guaranteed by choosing sufficiently small step sizes adaptive to

the surface curvature. The Figure 3.7(a) illustrates an example of the Morse-Smale
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complex constructed on two skin surfaces.

(a) (b)

Figure 3.7: The Morse-Smale complex on two skin surfaces. Figure (a) shows the
Morse-Smale complex on the surface in Figure 3.3. Figure (b) illustrates the Morse-
Smale complex on a molecular skin model of “pdb7tmn”. The red points are the
minima, the blue points are the saddle points and the green points are the maxima.
The red and green curves are the ascending and descending integral lines respectively.

Elimination of the noisy critical points. For the critical points whose protecting

spheres intersect each other, we remove them by contracting the short arcs in the

Morse-Smale complex. An arc is contracted through deleting its two ending critical

points and re-connecting their neighbors. We describe the contraction of an arc with

the example illustrated in Figure 3.8.

c

d

e

minimum saddle maximum

a bc

d

e

Figure 3.8: The contraction of the arc ab in the Morse-Smale complex.

Let a be a saddle point and b be a minimum critical point. Suppose that the

arc ab is a short ascending integral line from b to a. We can view the contraction of
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the arc ab as merging critical points a, b into another minimum critical point c that

connected to a. The four integral lines connected to a are removed and all the integral

lines start from b are extended to c. After the contraction of ab, each region is still

a quadrangle with minimum, saddle, maximum and saddle in order. The short arcs

between the saddle points and maxima can be contracted in a similar way.

Contraction of the short arcs between a saddle point and a minimum or a max-

imum critical point is the only operation required in eliminating the noisy critical

points. With a sequence of contraction operations, it is sufficient to get a simplified

Morse-Smale complex in which no two protecting spheres intersect each other [44] .

We explore each saddle point and check if its protecting sphere intersect with

its neighbors in the Morse-Smale complex. The arcs between pairs of a saddle and

a minimum or a maximum critical point are contracted if their protecting sphere

intersects each other. As a result, we get a simplified Morse-Smale complex in which

no any two protecting spheres of the critical points intersect each other.

3.4 Algorithm

In this section, I give a complete description of our meshing algorithm. The input of

the algorithm is a set of weighted points, B, and the output is a triangulation, K,

which approximates the skin surface FB. I first give an overview of the algorithm.

Then, a top-down description of the algorithm and essential operations in the algo-

rithm are introduced. Finally, the curvature adaptive schema is introduced followed

by the description of the mesh refinement operations.

3.4.1 Overview

The algorithm adapts the advancing front meshing method and utilizes the critical

points of the height function to detect front collisions. In particular, the initial front
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Six snap-shots of the growing mesh from the bottom to the top of the
skin surface defined by 8 weighted points at the corners of a cube. The red points
are the minima, the blue points are the saddle points and the green points are the
maxima. The red boundary of the partial mesh is the front.

is created from the minimum critical points. When the front is advancing, the new

triangles are always attached to the lowest vertex on the front, which is called depar-

ture vertex. Thus, the partial triangulation sweeps from the bottom to the top of the

skin surface until the whole surface is covered. Figure 3.9 illustrates the six snap-shots

of the growing mesh of the skin surface defined by 8 weighted points at the corners

of a cube. Moreover, in each step of adding new triangles, their sizes are adaptive

to the surface curvature and the triangulation is guaranteed to be homeomorphic to

the surface. Next, we give a top-down description of the algorithm and introduce the

essential operations in the algorithm.
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3.4.2 The Adaptive Sweeping Algorithm

The algorithm is divided into two stages, namely, initialization stage and the stage

of sweeping triangulation.

Initialization. In this stage, we construct two combinatorial structures, namely,

the mixed complex MB of the set of weighted point B and the Morse-Smale complex

of the height function h on the skin surface FB. These two complexes guide the mesh

generation in the next stage. We first compute the mixed complex, MB, of B by

constructing the weighted Delaunay triangulation of B. For each polyhedron µ in

MB, it is the Minkowski sum of a simplex in the weighted Delaunay triangulation of

B and its dual Voronoi cell, scaled by 1/2. Then, we locate all the critical points on

each quadratic patch within µ. Finally, we compute the Morse-Smale complex. The

Algorithm 3.1 is the detail of the initialization stage.

Algorithm 3.1 Initialization()

1: Compute the mixed complex, MB, of B;
2: Locate all the critical points on FB:

a. C−: = the set of minima;

b. C+: = the set of maxima;

c. C0: = the set of saddle points.

3: Construct the Morse-Smale complex;
4: Contract short arcs in the Morse-Smale complex;

We set a protecting sphere for each the critical point according to their curvature,

which will be described in Section 3.4.3. If two protecting spheres intersect, we

eliminate the critical points by contracting the short arcs in the Morse-Smale complex.

Sweeping Triangulation. Next, we add triangles to the mesh incrementally. The

partial triangulations sweep over the skin surface along the height direction. The

sweeping triangulation stage is divided into three steps, namely, creating the initial
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front, creeping triangles and sealing holes, and they are implemented according to the

topological changes of the front at the three types of critical points, namely, minima,

saddle point and maxima respectively. The following Algorithm is the detail of the

stage of sweeping triangulation.

Algorithm 3.2 SweepingTriangulation()

1: CreateInitialFront();
2: CreepTriangles();
3: SealHoles();

First, we create the initial front at the minima with the “creation” operations.

Then we advance the front along the height direction by attaching triangles to the

lowest vertex on the front iteratively. During this process, the different portions of the

front connect around the saddle points within its protecting sphere, and we call this

the “bridge” operation. When the front is in the protecting spheres of the maxima

and no more triangles can be attached, we close the holes with the “seal” operation

and the algorithm terminates.

Initial front. We first construct the initial front by applying “creation” operation

at each minimum critical point. The “creation” operation creates a “bowl” of 6

neighboring triangles that share one common vertex. See Figure 3.10.

p0

p1

p2

p3

p4

p5

p6

q1

q2

q3

q4

q5

q6

Figure 3.10: Create a bowl at the minimum point p0.
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Let p0 be the minimum critical point. We first draw a tangent disk with p0 as the

center. Then we locate six points qi, i = 1..6 on the boundary of the tangent disk.

See the dashed circle in Figure 3.10. These six points divide the tangent circle into

six arcs uniformly, that is, ∠qip0qi+1 = 60◦. We add the new vertices pi by projecting

qi to the skin surface and form the six triangles. The boundary of each bowl is a

cycle of 6 edges, which is a front polygon. After applying creation() operation to all

minima, we get the initial front, which consists of a set of front polygons. We push

all the edges in the front polygons to a priority queue, Q, which enables us to get the

departure vertex with the minimum height in the next step.

Creeping triangles. In this step, we add more triangles iteratively from the initial

front. There are two operations in this process: the creep() operation to attach

triangles to the front from a departure vertex, and the bridge() operation to connect

two portions of the front around the saddle points. The step of creeping triangles is

implemented with CreepTriangles(), which is illustrated in the following pseudo code.

Algorithm 3.3 CreepTriangles()

1: while Q 6= ∅ do
2: t = ExtractMin(Q);
3: if t falls in the protecting sphere of a saddle point c then
4: if c is ready to be bridged then
5: bridge();
6: else
7: Mark the triangle t with red;
8: end if
9: else if t falls in the protecting sphere of a maximum point c then

10: Mark the triangle t with green;
11: else
12: creep();
13: end if
14: Refine the newly added triangles;
15: end while

In each iteration, we get the departure vertex from Q to attach new triangles.

A fan of triangles around the departure vertex are created by the creep() operation.
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Figure 3.11: Creep triangles from a departure vertex pt.

See Figure 3.11 as an example. Let pt be the departure vertex. We first draw the

tangent disk with pt as the center. The dashed circle in Figure 3.11 is the boundary

of the tangent disk. Let p0, pn be the neighbors of pt on the front and the points q0,

qn are the projections of p0, pn on the tangent plane of pt. We add new vertices pi

and form new triangles pi−1ptpi from i = 1 to i = n, in which n = ⌈∠q0ptqn

60◦
⌉. To get

pi, we first locate qi that satisfies ∠qiptqi+1 ≃ 60◦. Then, we project each qi to a point

pi on the skin surface. After each creep() operation, we push the new front edges to

the priority queue Q. While the priority queue Q is not empty, we repeat the creep()

operation to advance the front towards the untriangulated part of the surface.

During the front advancing by the creep() operation, the small angle between two

front edges may cause overlap between the newly added triangles and the existing

triangles. See the Figure 3.12 (a).

In Figure 3.12, the angle ∠gfd is a small angle and the vertex d is the departure

vertex. The dashed circle is the boundary of the tangent disk in the current creep()

operation. In the Figure 3.12 (a), two newly added mesh vertices are p0 and p1.

Because ∠gfd is small, the vertex p1 lies in the existing triangle efg. As a result,

the new triangles fp1d and p1p0d overlap the existing triangle efg. We can solve this

problem by fixing the angle ∠gfd before we apply creep() to vertex d. As illustrated

in the Figure 3.12 (b), the newly added triangles from d do not overlap the existing
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Figure 3.12: Wing a small angle to avoid the overlapping triangles in creep() oper-
ation. Figure (a) and (b) illustrate the result of creep() operation before and after
fixing the small angle ∠gfd.

ones after adding a triangle gdf .

We call fixing small angles the wing() operation and apply it at the end of each

creep() operation to fix all the small angles. It ensures that there are no angles smaller

than 90◦ between any two adjacent front edges during front advancing. However, the

newly added triangles in the creep() operation may not have good qualities. We will

introduce the refinement operations in Section 3.4.4.

Bridging the front. As the partial mesh grows, the fronts will get closer to each

other around the saddle points or the maxima. The protecting spheres for the critical

points will detect such events. Once the front falls into the protecting sphere of a

saddle point, we stop the front advancing at this portion because it would lead to front

collision. If the front reaches the protecting sphere of a saddle point on two different

sides, we use a bridge() operation to connect the two sides of the front. Figure 3.13

illustrates the result a bridge operation.

In Figure 3.13, the vertex ps is a saddle point and the thin dotted line represents

the protecting sphere of ps. The front edges plpr and pupv fall in the protecting sphere

on two different sides of ps. We add new triangles to bridge the front together at the

edges plpr and pupv. Then, we update the priority queue Q after a bridge() operation
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Figure 3.13: Bridge the front at a saddle point ps.

and resume the loop of creep() operation to advance the front. See the snapshots (b),

(c) and (d)in Figure 3.9 for an example.

Sealing holes. Once the front falls into the protecting sphere of a maximum critical

point, we simply stop the front advancing at that portion. When the priority queue

Q is empty, the surface, FB, is covered by an almost finished partial triangulation

with holes only around maxima. The boundary of each hole is a topological circle

consisted of a cycle of edges in the protecting sphere of a maximum. We seal the

hole by repeatedly adding triangles whose two edges are neighbors in the circle. The

snapshots (e) in Figure 3.9 illustrates the holes around each maximum before the

sealing operation.

Finally, we get the triangulation K of the skin surface FB after refining the newly

added triangles in these seal() operations.

3.4.3 Curvature Adaptation

Adaptation of the surface mesh to the curvature is critical to decrease the number of

the triangles in the mesh because we can use large triangles to approximate the region

with smaller curvature. In our skin meshing algorithm, we adapt the surface mesh
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to the maximum curvature of the skin surface. In particular, we control the edge

lengthes and circumradii of triangles in the mesh to be proportional to the radius of

the maximum curvature, namely, the local length scale at their vertices. Since the

edge length and triangle size depend on the radius of the tangent disks we used in the

creation() and creep() operations, we control the mesh size by adapting the radius of

the tangent disks to the local length scale at the departure vertex. Also, we use the

same radius for the protecting spheres at the critical points. The reason is that each

step of the front advancing must not cross to the other side of the spheres.

I first introduce two conditions that bound the edge length and triangle size in

skin triangulation proposed by Cheng et al. [23]. Then, I deduce the lower bound and

upper bound for the edge length. Finally, I give the curvature adaptation formula of

the radius of the tangent disk.

Conditions. Cheng et al. [23] used two conditions to bound the edge lengths and

the circumradii of the triangles in the surface mesh such that the surface mesh is

homeomorphic to the skin surface and have a lower bound on the minimum angle

of the triangles. The condition [L] restricts the edge length not too short, and the

condition [U] bounds the circumradius of a triangle not large in terms of the local

length scale at their vertices, that is,

[L] Rab > C
Q
̺ab, for every edge ab,

[U] Rabc < CQ̺abc for every triangle abc.

In Condition [L], notation Rab is the size of an edge ab which is equal to ‖ab‖/2.

Similarly, the size of a triangle abc is defined as Rabc that is the circumradius of the

triangle abc. The local length scale of the edge ab is defined as ̺ab = max{̺(a), ̺(b)}

and that of the triangle abc is defined as ̺abc = min{̺(a), ̺(b), ̺(c)}. C and Q are

judiciously chosen positive constants. C controls how closely the mesh approximates
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the surface and Q controls the quality of the mesh. Cheng et al. [23] also proved

that the restricted Delaunay triangulation has the closed ball property if these two

Conditions are satisfied with C = 0.08 and Q = 1.65. This implies it is homeomorphic

to the skin surface FB [50]. At the same time, the minimum angle in the surface mesh

is larger than arcsin 1
Q2 , which is around 21◦ for Q = 1.65.

In this algorithm, I will control the triangle sizes to maintain these two conditions

while constructing the skin triangulation incrementally. For these triangles that vio-

late the conditions [L] and [U], I will apply local refinement operations to force the

surface mesh satisfying the conditions, which will be introduced in the next section.

As a result, we can achieve homeomorphic skin triangulation with a lower bound on

its minimum angle as well. Next, I deduce the lower bound and upper bound of the

edge length according to conditions [L] and [U].

Edge length constraints Let the departure vertex be a and a new mesh vertex

be b. Denote the radius of the tangent disk as ra centered at a. Our consideration is

to ensure the edge length of ab is not too long nor too short for both vertices a and

b according to the two Conditions [L] and [U]. We first derive the lower bound and

upper bound of the size of edge ab, Rab, relative to the local length scale ̺(a).

Lower bound. Starting from a vertex a, it is trivial to see that the length of an edge

ab has a lower bound of 2C
Q
̺(a). Although the edge is not too short for the vertex a,

it may be too short for the other end b. The reason is that the local length scale of

b, ̺(b), may be greater than ̺(a), thus, ab may be too short for b. However, we know

the bound for ̺(b) because the change of local length scales of two vertices on F is

less their distance, i.e.

‖a − b‖ ≥ |̺(a) − ̺(b)|.

It follows that ̺(b) ≤ ̺(a)+2Rab. In order to ensure the length of ab is not too short
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for b, the Condition [L], Rab > C
Q
̺(b), must be satisfied for the vertex b also. Since

the worst case is ̺(b) = ̺(a) + 2Rab, the edge ab is not too short for both endpoints

if

Rab >
C

Q − 2C
̺(a).

The inequality tells that we need a slight longer edge in order to make sure the edge

is long enough for both vertices a and b.

Upper bound. Similarly, the edge size is also bounded by the Condition [U] since the

size of any edge of a triangle cannot exceed its circumradius. It is obvious that the

Condition Rab < CQ̺(a) must be satisfied in order to ensure the edge is not too long

for vertex a. However, the edge may be too long for vertex b because ̺(b) may be

smaller than ̺(a). Following the curvature variation limitation, the lower bound for

̺(b) is ̺(a) − 2Rab and we want to keep the Condition Rab < CQ̺(b) also. Thus, we

have the new constraint for an edge ab that

Rab <
CQ

1 + 2CQ
̺(a).

With the edge length constraints, we can determine the radius of the tangent disk.

Radius of the tangent disk. To ensure the edge is not too short, we can use

the bound of ra > 2C
Q−2C

̺(a) since Rab > ra/2. For the upper bound of ra, we know

that Rab increases when b gets further from the tangent disk. However, there is a

sandwiching ball with radius ̺(a) for every vertex a. The sandwiching ball is tangent

to the skin surface at the point a and the skin surface does not penetrate into this

ball. Figure 3.14 shows the cross section of the skin surface and the sandwiching ball

at a.

Then, the longest edge will be created if b is on the surface of the sandwiching
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2θ

θ
a

b
2Rab

ra

̺(a)

Skin surface b′

Figure 3.14: Cross section of the scenario of projecting the point from the tangent
disk with radius ra.

ball of a. In Figure 3.14, we compute the angle θ = arcsin(Rab/̺(a)) and thus

ra = 2Rab cos θ

= 2Rab

√

1 − (
Rab

̺(a)
)2

Substituting the upper bound of Rab = CQ̺(a)
1+2CQ

into the above equation, the upper

bound of the tangent disk radius is

ra =
( CQ

(1 + 2CQ)2

√

(1 + CQ)(1 + 3CQ)
)

· ̺(a).

For C = 0.08 and Q = 1.65, the numerical value of ra/̺(a) is around 0.208, which is

better than the lower bound 2C
Q−2C

= 0.107.

3.4.4 Local Refinement

The curvature dependent radius of the tangent disk ra ensures that the edge length

is not too long nor too short in most cases. However, the partial triangulations

may not maintain the conditions [L] and [U] during sweeping. It is mainly due to

three reasons. Firstly, the local region of newly added triangles in each step may not

keep the restricted Delaunay property, we use edge flipping to maintain the restricted
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Delaunay triangulation. Secondly, the short edges added in the wing() operation may

violate the Condition [L], we use the edge contraction to remove these short edges.

Finally, edge contraction may lead to violation of the Condition [U]. Thus, we need

the vertex insertion operation to destroy the big triangles.

We refer to the implementation of the refinement operations introduced in the

dynamic skin triangulation algorithm [23]. After each step of adding new triangles,

these refinement operations are applied. As a result, we maintain the closed ball

property for the sweeping mesh. Cheng et al. proved that these refinement opera-

tions terminate, which implies the termination of our algorithm. Experiments with

our implementation show that the refinement operations only influence a very small

number of triangles around the new attached ones in each creep() operation. It means

the refinement operations are efficient. At the same time, these refinement operations

guarantee the minimal angle in the triangulation is larger than 21◦, which implies a

good quality mesh.

Since the implementation in [23] assumes the triangulation has no boundary, we

extend it in three aspects. Firstly, we restrict that a front edge is not “flippable”.

Secondly, in the vertex insertion operation, if the vertex x we need insert lies outside

of the triangulation, we split the front edge instead of inserting vertex x. Finally,

after each refinement operations, we need update the priority queue q according to

the changes of the front. Edge flipping operation replace an edge ab by the diagonal of

the quadrangle abcd. An edge ab is contracted through deleting the vertex b together

all the edges and triangles contains b. Insert an vertex on the surface at equal distance

from a, b, and c in the triangle abc break a big triangle to three smaller ones.

In each step of adding new triangles, we check if the newly added triangles satisfy

the condition [L] and [U]. We push the triangles that break the conditions to three

stacks, that is, flip stack, contraction stack and insertion stack. We pop the flip

stack first, then the contraction stack and finally the insertion stack. The refinement
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terminate when all the stacks are empty. Note that there is no infinite loop in the

refinement operations [23].

3.5 Results

I demonstrate the skin meshes constructed by our algorithm in this section. Figure

3.7(b) shows the surface of a simple molecule named “pdb7”, which is a binding

inhibitor of protein molecule. Figure 3.15 (a) shows the molecular skin model of

a DNA molecule and the zoomed in view of the mesh details in the rectangle is

illustrated in Figure 3.15 (b). Figure 5.5(a) shows the molecular skin surface model

of “Gramicidin A” molecule and Figure 3.16(b) illustrates its partial mesh details

included in the box of Figure 3.16(a).

Table 3.1 lists the statistical results of the examples shown in this chapter, along

with a comparison of computation time with the dynamic skin triangulation algorithm

[23]. A Pentium 4 processor running at 2.54GHz is used in the test. As shown in the

third column of Table 3.1, we achieve a better bound of the minimum angle of the

mesh in practice. For example, the minimum angle in the triangulation of “pdb7”

molecule is 27.02◦, which is much better than the theoretical result 21◦. The high

quality we achieved may be explained by three factors. First, the smoothness of the

molecular skin model is crucial to generating quality meshes. It would be problematic

to guarantee a lower bound on the minimum angle of the triangulation if the surface

is not smooth. Second, our strategy of the initial vertices placement in the creeping

process creates well-shaped triangles. Third, the mesh refinement operations kill the

bad shape triangles.

The results also demonstrates that our algorithm achieved high efficiency. For

example, the computing time of the molecule Gramicidia A decreased from more than

1 hour to 3 minutes. The dramatic improvement of the efficiency over the dynamic
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molecular no. of minimum computing time
triangles in angle in our Dynamic

name the mesh the mesh approach skin
pdb7tmn(Figure3.7(b)) 24,336 27.02◦ 00:00:05 00:10:00
A − DNA(Figure3.15) 114,316 24.12◦ 00:00:51 00:35:12

GramicidinA(Figure3.16) 305,186 24.37◦ 00:03:22 01:35:23

Table 3.1: Performance of the adaptive sweeping triangulation algorithm.

skin triangulation algorithm can be explained by using the advancing front method to

avoid the costly computation of 3D Delaunay triangulation. Conventional methods

to handle this problem are always time consuming because the potential collisions

are detected by frequently checking the distance of any two vertices on the front [60].

Even though the collisions can be detected and the front stops advancing at such

regions, there will be cracks in the partial triangulations when no more triangles can

be added. Fixing these cracks involves heuristics, which always lead to robustness

problems of algorithms.

3.6 Summary

This chapter presents an algorithm for constructing high quality mesh of the skin

surface with guarantees on the topology and a lower bound of the minimum angle

as 21◦. The surface triangulation can support not only the protein visualization but

also numerical simulations of the protein interactions. The algorithm achieves high

efficiency by employing the Morse theory to handle the front collision problem in

advancing front method.

The choice of the height function in this chapter might be questionable as the

resulting critical points and Morse-Samle complex are obviously dependent on the

choice of the height direction. However, our algorithm can generate correct mesh

with different directions of the height function. Another issue is the number of the

critical points. Since a large number of critical points may affect the efficiency of our
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algorithm, we tackle this by using an efficient point location data structure, namely,

the kd-tree. On the other hand, it is possible to use other Morse functions instead of

the height function and we change the priority of the front advancing accordingly.

It should be noted that our application of Morse theory on skin triangulation

differs from Stander et al. [92]. On one hand, we use a height function on the sur-

face, a smooth 2-manifold, as the Morse function. Stander et al. use the function

that defines the implicit surface as the Morse function, which could be considered

as a height function on a 3-manifold. On the other hand, Stander et al. guaran-

tee the homeomorphism between the mesh and the implicit surface by tracking the

critical points of the implicit function. However, our homeomorphic triangulation is

guaranteed by locally controlling the triangles size. Besides, a related concept to the

Morse-Smale complex in this chapter is the Reeb graph used in the surface recon-

struction [56]. The Reeb graph is a compressed representation of the components

of implicit surfaces. However, the Morse-Smale complex expresses the gradient flow

on surfaces. We use the Morse-Smale complex of a height function to simplify the

topological changes of the front.
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(a) (b)

Figure 3.15: The molecular skin models of A-DNA molecule. The left figure shows
molecular skin model and the right shows the zoomed mesh details in the box of the
center right figure..

(a) (b)

Figure 3.16: The molecular skin model of Gramicidin A. Figure (a) shows its surface
model and (b) illustrates the zoomed mesh details of the portion in the box of (a).
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Chapter 4

Skin Meshing Using Restricted

Union of Balls

A new skin meshing algorithm that integrates the advancing front methods into De-

launay triangulation is developed in this chapter. The algorithm incrementally sam-

ples points on the surface and constructs the Delaunay triangulation simultaneously.

By associating each sample point a ball centered on the surface, the intersection of

the union of these balls with the skin surface, namely, the restricted union of balls,

facilitates the point sampling process and guarantees that an even ε-sampling of the

skin surface is generated when the algorithm terminates. A subset of the Delaunay

triangulation, namely, the restricted Delaunay triangulation, forms a quality mesh of

the skin surface. The algorithm not only offers guarantees on both the mesh qual-

ity and the homeomorphism between the triangulation and the skin surface but also

performs excellently in practice.

Section 4.1 introduces the idea of integrating the advancing front methods into

the Delaunay triangulation for the skin meshing. Section 4.2 describes the sampling

theory of the skin surface and the concept of the restricted union of balls. Section 4.3

introduces the computation of the connected components for a skin surface. Section
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4.4 describes the meshing algorithm using restricted union of balls. Some triangula-

tion results are illustrated in Section 4.5. I conclude the chapter in Section 4.6.

4.1 The New Idea: Advancing Front Meets Delau-

nay Triangulation

Advancing front methods generate a surface mesh by adding triangles to the front

iteratively until the whole surface is triangulated. The advantages of the advancing

front methods include high efficiency and precise control over the mesh vertices place-

ment [60, 66, 89, 64]. However, there are two challenges resided in the front advancing

methods.

Firstly, it is challenging to handle the front collision problem. Although the Morse

function and its critical points enable the algorithm to detect the front collision effi-

ciently, the noisy critical points arising on the bumpy region of the surface complicate

this solution. We can apply the Morse-Smale complex to simplify these noisy critical

points but it results in robustness problem of the implementation. The reason is that

the arcs in the Morse-Smale complex are solutions of partial differential equations

(PDEs) with order 2 and the current methods for solving PDEs cannot give ana-

lytical solutions for such equations. Thus, we can only approximate the arcs in the

Morse-Smale complex by numerical methods. The accumulation of numerical errors

in the approximation leads to inconsistent critical points after eliminating noisy criti-

cal points inaccurately, which may fail the meshing algorithm described in Chapter 3.

For example, the algorithm in Chapter 3 fails to triangulate the molecular skin sur-

face illustrated in Figure 4.1 because the bumpy appearance on the surface resulted

in a large number of noisy critical points and a complicated Morse-Smale complex.

Secondly, advancing front methods do not provide any guarantees on mesh qual-

ity. As a result, it is necessary to introduce mesh refinement operations to improve
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Figure 4.1: The molecular skin model of HIV-2 protease.

the mesh quality as a post processing. The refinement procedure could be costly

operations that decrease the efficiency of the algorithm.

On the other hand, Delaunay mesh generators provide provable guaranteed mesh

quality and have robust and efficient implementations. Integration of the Delaunay

triangulation into advancing front methods suggests a new meshing algorithm that

captures the advantages of both front advancing and Delauany-based meshing meth-

ods. More precisely, we can use the advancing front methods to generate a good

sampling of the surface rather than the mesh itself. At the same time, the Delau-

nay triangulation of the sample points is computed and a subset of the Delaunay

triangulation is used to approximate the surface.

In order to generate high quality surface meshing, the sampling density usually

adapts to the surface curvature and guarantees a lower bound on the edge length in

the mesh. Next, I will introduce the ε-sampling of the skin surface and the restricted

union of balls for the density control in the meshing algorithm. I will also describe the

properties of the restricted Delaunay triangulation of the ε-sampling for the purpose

of surface mesh extraction.
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4.2 Sampling Theory of Skin Surfaces

I will use a special subset of the Delaunay triangulation of the sample points, namely,

the restricted Delaunay triangulation as the final surface mesh. In order to guarantee

the restricted Deluany triangulation to be homeomorphic to the surface, the closed

ball property needs to be satisfied. Cheng et. al [23] proved that the restricted De-

launay triangulation of an ε-sampling of the skin surface has the closed ball property

when ε is small enough. In this section, I will first introduce the definition of the

ε-sampling and the properties of its restricted Delaunay triangulation. Then, I de-

scribe the restricted union of balls to define an even ε-sampling.

ε-sampling of skin. A finite subset P ⊂ FB is an ε-sampling of FB if every point

x ∈ FB has a point p ∈ P such that their distance is at least ε̺(x). In other words,

for any point x ∈ FB, the sphere center at x with a radius ε̺(x) contains at least one

sample point. See Figure 4.2 for an example.

x

r = ε̺(x)

r

Figure 4.2: Definition of the ε-sampling of a smooth surface.

Homeomorphic Conditions. The restricted Delaunay triangulation is homeomor-

phic to the surface if it satisfies the closed ball property [50]. This implies that we

need a dense enough sample on the surface. For an ε-sampling on the skin with a

feasible ε value, its restricted Delaunay triangulation is homeomorphic to the skin
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surface. We refer to the results from Cheng et. al [23].

Thm. 4.2.1 Homeomorphism Theorem. If P is an ε-sampling of a skin surface FB

with 0 < ε < 0.279, the restricted Delaunay triangulation D′
P is homeomorphic to

FB.

The restricted Delaunay triangulation includes all the Delaunay triangles whose

Voronoi edges intersect the skin surface. For each triangle abc ∈ D′
P , see Figure 4.3,

its Voronoi edge passes through its circumcenter o and intersects the skin surface at a

point z. Moreover, the triangle abc has a small circumradius compared to local length

scale at its vertices and the distance between o and z has an upper bound as well.

The local length scale of the triangle abc is defined as ̺abc = min{̺(a), ̺(b), ̺(c)}. I

prove the following two lemmas to induce these two properties.

a b, c
o

z

Rabc

̺(o)

t

Figure 4.3: A restricted Delaunay triangle abc and its Voronoi edge. o is the cir-
cumcenter of triangle abc. z is the intersection of the Voronoi edge with the skin
surface.

Lemma 4.2.1 The cricumradius Rabc have an upper bound, namely,

Rabc <
ε

1 − ε
̺abc.

Proof. Assume ̺abc = ̺(a) < ̺(b), ̺(c). Since z is the intersection of the Voronoi

edge of triangle abc with the skin surface, we have ‖z − a‖ ≤ ε̺(a). According to the

curvature variation lemma in Section 2.2.3, we have ε̺(a) ≤ ε̺(z) + ε‖z − a‖. As a
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result,

‖z − a‖ ≤ ε

1 − ε
̺(a).

Since the triangle azo is a right angle triangle, we have Rabc ≤ ‖z−a||, which implies

the claim of the upper bound for Rabc.

Lemma 4.2.2 The distance between o and z is

‖o − z‖ ≤ ε2

2
̺abc.

Proof. Without loss the generality, let ̺abc = ̺(a) < ̺(b), ̺(c). According to the

definition of the ε-sampling on a skin surface, we have ‖z−a‖ ≤ ε̺(z). By curvature

variation lemma, we have 1
1+ε

̺abc ≤ ε̺(z).

When the vertices a, b and c lie on a sandwishing sphere with radius ̺(z) = 1
1+ε

̺abc

that passing through z, the distance between z and o is biggest. In this situation, we

have ‖o−z‖
‖z−a‖ = ‖z−a‖

2̺(z)
because the equality of the angle ∠zao and ∠ota. Therefore,

‖o − z‖ ≤ ‖z − a‖2

2̺(z)
≤ ε2

2
̺abc.

Lemma 4.2.2 was referred as Circumcenter Lemma. We use these two bounds as

the conditions to select candidate surface triangles from the Delaunay triangulation

of a partial sampling.

Theorem 4.2.1 tells us that an ε-sampling with small ε value can certify the correct-

ness of the topology of the restricted Delaunay triangulation. However, the restricted

Delaunay triangulation may include bad shaped triangles because two sample points

in an ε-sampling can be arbitrary close to each other. This leads to short edge length
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in the restricted Delaunay triangulation, which result in bad shaped triangles. See

Figure 4.2 for an example. Next, we introduce the restricted union of balls to define

an even ε-sampling that has restricted Delaunay triangulation with quality guaran-

tees.

Restricted Union of Balls. For each point p ∈ P , we define the γ-ball p̂ of p as

the open ball centered at p with a radius γ̺(p), in which γ is a positive constant

less than 1 and the ̺(p) is the local length scale at p. A γ-ball is empty if no other

sample point in P is inside the γ-ball. Each γ-ball intersects the skin surface with

a topological disk and the intersection of the skin and a union of a set of γ-balls is

called the restricted union of balls. The boundary of the restricted union of balls is a

set of closed curves consisting of a loop of arcs when the union of balls does not cover

the whole surface. A γ-ball that contributes to the boundary of the restricted union

of balls is called a boundary ball. See Figure 4.4 for an example.

r = γ̺(p), p ∈ P

r

r

Figure 4.4: The properties of a restricted Delaunay triangle.

We use the restricted union of balls to generate an ε-sampling of the skin surface.

We prove that the restricted union of balls without boundaries determines an ε-

sampling of the skin surface when the value of γ is small. We have the following

theorem.
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Thm. 4.2.2 Sampling Density Theorem. For a sampling P ⊂ FB, if its restricted

union of balls with γ ≤ ε
1+ε

covers the skin surface, P is an ε-sampling of the skin

surface FB.

Proof. Let x be any point on the skin surface. Since the restricted union of balls

covers the whole surface, we have at least one γ-ball â enclose x. We have the upper

bound for γ when x is on the boundary of â. In this case, ‖x − a‖ = γ̺(a).

By definition of the ε-sampling, we require ‖x − a‖ ≤ ε̺(x). Together with the

curvature property, we have γ̺(a) ≤ ε(̺(a) − γ̺(a)). That is, γ ≤ ε
1+ε

.

Theorem 4.2.2 implies that we can construct a restricted union of balls with 0 <

γ < 0.218 to obtain an ε-sampling with 0 < ε < 0.279, which suggests that we can

guarantee the surface mesh is homeomorphic to the skin surface.

If we require each γ-ball is empty, we can guarantee the length of an edge ab in

the surface mesh have a lower bound, that is,

‖a − b‖ ≤ γ̺ab,

in which the local length scale of the edge ab is defined as ̺ab = max{̺(a), ̺(b)}.

Together with the Lemma 4.2.1, we can guarantee a lower bound on the minimal

angle of the surface mesh, that is, arcsin( γ

2ε
(1 − ε)). This suggests that smaller γ

and ε mean better mesh quality if we ensure that they satisfy the upper bound. We

can choose the values of the γ and ε as small as possible. However, this would result

in more surface triangles. We should keep a balance between the mesh quality and

mesh size. For example, we chose γ = 0.15 and ε = 0.18 and achieved a lower bound

of 20◦ on the minimum angle.
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4.3 Components Computation

A skin surface consists of one or more disjoint components. The algorithm in this

chapter constructs the triangulation of the skin surface FB by meshing each com-

ponent individually. A component of a skin surface either corresponds to connected

components of dual complex KB or a void in KB because the skin body, body(B),

is homotopic to the underlying space of the dual complex KB [38]. Thus, we can

compute all the connected components of a skin surface by computing the connected

components and voids in the dual complex because the dual complex KB is a simpli-

cial complex, which support fast combinatorial algorithm for computational purpose.

It is trivial to compute the connected components in a simplicial complex. I will focus

on the computation of the voids in the dual complex KB.

The dual complex KB of B is a subcomplex of the weighted Delaunay triangula-

tion DB. A void in KB is the boundary of a collection of tetrahedra in the complement

of KB in terms of DB, that is, DB − KB. I use the incremental algorithm for Betti

numbers of simplical complex on the 3-sphere [34] to compute the voids in the dual

complex. In this section, I introduce the filtration of the subcomplex of DB firstly.

Then, I describe the incremental algorithm for the voids computation. Finally, I in-

troduce data structure used in the computation.

Filtration. A filtration is sequence of simplicial complex so that each complex is a

proper subcomplex of its successor. We can build a filtration of the subcomplex in DB

under the growth model we introduced in Section 2.1.4, namely, the alpha filtration,

which facilitates efficient constructions of the voids in KB.

Recall that we have four types of simplices in the Delaunay triangulation DB,

namely, vertices, edges, triangles and tetrahedra. Each simplex δX has a birth time

ζX that indicates the α value when δX enters the α-complex when the α is growing
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from −∞ to ∞. Assume the number of simplex in DB is t and we can order all the

simplex in DB with a sequence 〈δ1, δ2, δ3 · · · , δt〉 according to their birth time with

the following rule: For any δi = δX and δj = δY , i ≤ j if (i) ζX ≤ ζY or, (ii) ζX = ζY

and card(X) < card(Y ). The sequence 〈δ1, δ2, δ3 · · · , δt〉 is called a filter.

The alpha filtration is

∅ = K0 ⊂ K1 ⊂ K2 · · ·Km = DB,

where Ki = {δj |1 ≤ j ≤ i} and Ki−Ki−1 = δi for all 1 ≤ i ≤ m. Figure 4.5 illustrates

an example filtration.

Figure 4.5: A filtration from empty set to a tetrahedron.

Voids Computation. We represent a void in KB with a collection of tetrahedra in

DB − KB. To compute such a collection of tetrahedra, we scan the alpha filtration

backward. In particular, we store the alpha filter in a linear array T . For the number

of simplices in KB, m, all simplices δi, i ≤ m belong to the KB and the simplices after

position m belong to DB − KB. Starting from the last tetrahedron in the array T ,

we scan the triangles and tetrahedra in the array until the index m to compute the

voids. The voids computation is illustrated as following.
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Algorithm 4.1 VoidsComputation()

1: for i= t downto m+1 do
2: δ = T[i];
3: if δ is a tetrahedron then
4: Create a set and add δ to the set;
5: else if δ is a triangle then
6: Find the sets that contains the tetrahedra with δ as a face;
7: if There are two different sets are found then
8: Merge the two sets;
9: end if

10: end if
11: end for

The computation simulates the birth and growth of the voids as the α value de-

creases from ∞ to 0. When the algorithm terminates, we have a number of sets

consisting of tetrahedron. Each set represents a void except for a special set that

represents the unbounded parts of the complement of KB [34].

Union-Find Data Structure. The upper algorithm is supported by the union-find

data structure, which represents a collection of elements partitioned into pairwise

disjoint sets. The data structure supports the following types of operations.

• Add(e) : Add e as the only element of a new set {e}.

• Find(e): Determine and return the sets that contain e.

• Union(A, B): Merge the two sets A and B by their union.

In the algorithm 4.1, the elements are the tetrahedra and triangles in the array T

and each set represents a void. Since the union-find data structure support efficient

implementations, we can compute the voids in the dual complex very fast, which also

implies that we can compute all the connected components in a skin surface efficiently.

Next, we introduce the algorithm that generates quality meshes for each component

using restricted union of balls.
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4.4 Algorithm

I describe the algorithm triangulating each connected component in a skin surface

in this section. I will first give an overview of the algorithm. A few details in the

algorithm are described later.

4.4.1 Overview

For each component, we start from two seed triangles and insert new points along the

boundary of the restricted union of balls incrementally. Each newly inserted point is

located outside the current restricted union of balls. After a new point is inserted,

we compute the Delaunay triangulation and extract the small restricted Delaunay

triangles as the candidates for the surface triangulation. At the same time, the

restricted union of balls expands along the skin surface and the boundary is updated

until the whole surface is covered. The algorithm terminates when the restricted

union of balls covers the whole surface. Figure 4.6 shows the initial construction of

the restricted union of balls from two seed triangles.

Figure 4.6: The initial construction of the restricted union of balls.

Denote the current sampling point set as Pi and Delaunay triangulation of Pi

as Di. We choose all the small restricted Delaunay triangles in Di as the candidate

surface triangles, denoted as Si ⊂ Di. Ideally, Si could be a piecewise 2-manifold with

boundary that is an exact subset of the final surface mesh. However, we cannot achieve

88



this from a partial sampling and the candidate surface triangles Si is a superset of

the 2-manifold, which may include some false surface triangles resulting in tetrahedra

or non-manifold elements. These false surface triangles can be cleaned up when we

obtain an ε-sampling.

v

boundary of the restricted union of balls

boundary balls

the front

Figure 4.7: The vertex insertion in the algorithm.

With Pi, we insert a new point v to get Pi+1. Figure 4.7 illustrates a scenario of

a vertex insertion. Since the point v must be outside of the current restricted union

of balls, we identify the boundary balls to locate v. The boundary balls are found

by using a subset of the Delaunay edges in Si, namely, the front. Each front edge

is either a dangling edge in Si or an edge shared by two candidate triangles whose

normals form an angle larger than 90◦. The collection of all the γ-balls at the vertices

of the front edges includes all the boundary balls and a small number of interior γ-

balls. We can differentiate these interior balls in our point placement methods and

locate the new point v on the restricted Voronoi edge of a front edge whose vertices

γ-balls are boundary balls. Then, we maintain the Delaunay triangulation of Pi+1

and extract new candidate surface triangles. As a result, the collection of candidate

surface triangles grows from Si to Si+1 and the front advances to the unmeshed region.

We store the front in a queue Q and iteratively apply the above procedure until the

front Q is empty, that is, the restricted union of balls cover the whole surface. The
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pseudo code of the algorithm is illustrated as following.

Algorithm 4.2 DeloneSkinMesh()

1: while The boundary of restricted union of balls is not empty do
2: Find a front edge ab;
3: Locate a new point v according to ab;
4: Compute the Delaunay triangulation of Pi ∪ {v};
5: Extract the candidate surface triangles;
6: Update the front;
7: end while
8: Clean up the non-restricted Delaunay triangles from S;

The algorithm consists of four main steps, namely, locating a new vertex, updating

the Delaunay triangulation, extracting candidate surface triangles and updating the

front. When the restricted union of balls covers the surface and no more points can be

inserted, we get an ε-sampling and the collection of candidate triangles includes the

restricted Delaunay triangulation of the ε-sampling. We clean up the non-restricted

Delaunay triangles and get the final surface mesh. Next, we discuss these steps in

details.

4.4.2 Point Placement

Assume that we have a front edge ab whose γ-balls â and b̂ are boundary balls. We

aim to locate a new sample point v satisfying the following requirements:

• the point v should be outside the restricted union of balls;

• the γ-ball v̂ should be free of any sample point in Pi;

• the γ-ball v̂ should intersect the boundary balls â and b̂ deeper than tangentially;

• the point v will form at least one candidate surface triangles with the points in

Pi.

The first two requirements maintain the empty property of the γ-balls, which

avoids short edges in the mesh and implies that the algorithm will terminate. The

90



third requirement is to ensure the restricted union of balls covers the whole surface

once the algorithm terminates. The last one aims to maintain a valid front to guide

our future vertex insertion. These requirements imply that the distance from the

point v to a and b should be larger than γ̺ab but not too far from a and b. This

suggests that the points along the intersection between the skin and the boundary

balls â and b̂ would be a good choice. We argue that there is always a space to find a

point v satisfying these requirements before the algorithm terminates. In particular,

we can locate the point v on the restricted Voronoi edge of the front edge ab. See

Figure 4.8 as an example.

a b

v

w

‖wa‖ = ‖wb‖ > ε
1−ε

̺ab
γ̺(v)

y

γ̺(b)

γ̺(a)

m

Figure 4.8: Locate the new point v correspond to a front edge ab.

In Figure 4.8, ab is a front edge and its restricted Voronoi edge is the curve wy,

which is the intersection of the skin and the Voronoi polygon of ab with respect to

the points in Pi. The solid line circles represent the γ-balls and the point m is the

intersection point of the skin surface and the boundary of â and b̂ that is outside the

restricted union of balls. The point v is the point we intend to insert and edge va

and vb are the Delaunay edges of Di+1 after v is inserted. We demonstrate that point

v can be found on the curve wy around the point m. Since ab is a front edge, the

endpoint w is on the Voronoi edge of a Delaunay triangle abx in Di and abx is not a

candidate surface triangle. Thus, the circumradius Rabx of the triangle abx is greater
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than ε
1−ε

̺abx. It implies that ‖wa‖ = ‖wb‖ > ε
1−ε

̺abx, which means the point w is

outside â ∪ b̂ and far from the corner point m. As a result, we can find the point v

starting from m toward w along the curve wy.

The computation of the intersection curve wy between the skin and the Voronoi

polygon of edge ab is costly. Therefore, we use the projection of wy on the tangent

plane of the point a, namely, w′y′, to locate the point v. We denote the projection

of m on the line w′y′ as m′ and w′y′ is a line segments passing through the middle

point t of a and b. We find a point v′ on w′y′ start from t with a length slightly longer

than tm′. For instance, ‖tv′‖ = 1+
√

3
2

‖tm′‖ is a feasible choice in practice. We get the

point v by projecting v′ to the skin surface.

In the case where the vertices γ-balls of front edge ab is not boundary balls, the

point v we compute using the previous procedure must be inside the restricted union

of balls. We simply discard the point v and cancel the candidate surface triangles

attached to the edge ab. Next, we compute the Delaunay triangulation, Di+1, of

Pi ∪ {v}.

4.4.3 Computation of Delaunay Triangulation

We adapt the incremental flip algorithm to construct the Delaunay triangulation

Di+1 efficiently. The incremental flip algorithm was initially proposed by Lawson

[72]. The basic idea of the algorithm is the following. Let P be a set of n points in

R3, 4 < i < n and assume that the Delaunay triangulation of the first i points in

P is already constructed, called Di. Add the (i + 1)-th point to triangulation and

restore the Delaunayhood by flipping, this results in Di+1. Repeat this process until

i = n. A crucial step in the algorithm is the point location, which occurs when a

new point is added in to the triangulation. A directed acyclic graph (DAG) with the

history of all performed flips were used to speed up the point location. However, the

DAG structure results in large memory usage and complicated implementation. In
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our algorithm, we employ a straightforward yet fast way to locate point by taking

the advantage of our point sampling strategy.

Since the newly inserted point v corresponds to a front edge ab and is not far from

a and b, we simply search the tetrahedra in a certain region around ab. Particularly,

we choose a Delaunay triangle abd in the star of edge ab whose normal has minimal

difference with the normal of point v at the skin surface as a starting point. The point

v only belongs to one of the half spaces divided by the plane pass through triangle

abd, denote as H . If the triangle abd is a facet on the convex hull and there is no

points in Pi belonging to the half space H , the point v would be on the convex hull

also and we return the artificial tetrahedron connecting abd with the point at infinite.

Otherwise, there must be a tetrahedron enclosing v and we can find it by walking

through the triangles enclosed by a sphere centered at a and with a radius of 1.5

times of the length of edge va along the direction toward v. In general, the point v is

either a convex hull point or is enclosed by a tetrahedron attached to the start point

triangle. That is, we only need a constant time to locate the tetrahedron enclosing v,

which accelerate the construction of the Delaunay triangulation very much. Then, we

connect v to the vertices of the tetrahedron and perform flips to restore the Delaunay

property of the triangulation. Our implementation is based on the results of alpha

shape software [1, 49].

After the Delaunay triangulation Di+1 is accomplished, we extract the candidate

surface triangles. The Delaunay triangulation Di+1 differs from Di with the star of

v, which is a set of tetrahedra that include v as one of their vertices. Therefore, we

can only consider the triangles in the star of v for labeling new candidate surface

triangles.
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4.4.4 Extraction of Candidate Surface Triangles

We select candidate surface triangles according to two conditions, namely, the small

circumradius condition and restricted Delaunay condition. By“small” we mean the

circumradius Rabc of a Delaunay triangle abc is smaller than ε
1−ε

̺abc. For the re-

stricted Delaunay property, we not only require the Voronoi edge Vabc intersects the

skin surface but also need the distance between the intersection point z and the

circumcenter o is less than ε2

2
̺abc. The following pseudo code shows the procedure

ExtractCandidateTringles().

Algorithm 4.3 ExtractCandidateTriangles()

1: unmark all the triangles in Star(v)
2: while there is an unmarked triangle abc ∈ Star(v) do
3: if Rabc < ε

1−ε
̺abc then

4: if Vabc intersect the skin surface with a closest point z and ‖oz‖ < ε2

2
̺abc

then
5: mark abc as a candidate surface triangle;
6: else
7: mark abc as a non candidate surface triangle;
8: end if
9: else

10: mark abc as a non candidate surface triangle;
11: for the edge xy ∈ {ab, bc, ac} do
12: if ‖xy‖ > 2ε

1−ε
̺abc then

13: mark all the triangles in Star(xy) as non candidate surface triangles;
14: end if
15: end for
16: end if
17: end while

The small circumradius condition and restricted Delaunay condition ensure that

the candidate surface triangles include all the restricted Delaunay triangles in the

final restricted Delaunay triangulation of the ε-sampling. This argument is based on

the following two observations. First, the small Delaunay triangles would be always

Delaunay if we did not insert any point into its smallest circumsphere. It implies

that the points sampled in the future will not invalidate most existing candidate
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surface triangles. Second, the restricted Voronoi edge of a Delaunay triangle can

only become shorter after more points are sampled, which means that a restricted

Delaunay triangle in a partial mesh could become a non-restricted Delaunay triangle

but a non-restricted Delaunay triangle would never be a restricted Delaunay later.

We can accelerate the candidate surface extraction procedure by checking the edge

length of a large triangle. Since the longest edge of a triangle is as long as 2 times of

its circumradius, we can distinguish whether a Delaunay triangle is not a candidate

surface triangle if its edge is too long.

Finally, we update the front from the new candidate surface triangles by checking

each edge of a candidate triangle. If the edge is a dangling edge or shared by two

triangles with large normal angles, then we put the edge to the queue Q.

If the restricted union of balls covers the whole surface and no more points can be

added, the sample points P is an ε-sampling of the skin surface. We walk through all

the candidate surface triangles and clean up all the non-restricted Delaunay triangles.

The remaining triangles form the restricted Delaunay triangulation of the ε-sampling

P , which is a quality surface mesh approximating the skin surface.

4.5 Results

I implemented the algorithm on the PC platform with C++ and OpenGL as the

graphics library. I partially reuse prior software on Alpha shape [1] and Betti numbers

[34]. I triangulate a few large molecular skin models of proteins, especially several

molecules that the algorithm in Chapter 3 fails to generate the mesh because of the

noisy critical points in the Morse-Smale Complexes.

Figure 4.1 shows the molecular skin model of a protease molecule of the Human

Immunodeficiency Virus (HIV). Our algorithm triangulates this surface and produce

a mesh with a minimum angle 20.35◦. Since the surface of the molecule has a very
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bumpy appearance, our previous algorithm failed to triangulate this surface [25]. In

contrast to this, our current algorithm can handle the bumpy surface robustly. This

can be explained by two factors: first, we did not use the Morse-Smale complex in this

algorithm so that there are no accumulation of numerical error involved in the com-

putation; second, the robust and stable implementation of the alpha shape software

relieve us from the robustness worries associated with the Delaunay triangulation

computation.

Figures 4.9 and 4.10 show the molecular skin model of two molecules we randomly

choose from the protein data bank [2]. These results demonstrate that our meshing

algorithm generates a correct and precise representation of the surfaces of molecules.

We verify this by comparing the Betti numbers of the alpha shape and that of the

surface. The topological features such as genus and tunnels are preserved and detail

geometric feature like depressions and protrusions are approximated accurately. For

example, Figure 4.9(b) shows the magnified view of a small genus and Figure 4.10(b)

illustrates the magnified view of a cavity on the surface. The homeomorphism between

the mesh and the original surface and the accurate approximation are due to the ε-

sampling generated by the restricted union of balls. This also supports our arguments

that the molecular skin model is a better geometric model for the molecules such as

proteins and DNAs because it can enable us to achieve these two goals.

molecular no. triangles minimum angle computing
name in the mesh in the mesh time

200D(Figure4.9) 65,162 19.28◦ 00:01:35
1FG1(Figure4.10) 94,390 20.82◦ 00:02:41
HIV 2(Figure4.1) 226,758 20.35◦ 00:15:43

Table 4.1: Performance of the meshing algorithm using restricted union of balls.

Table 4.1 lists the statistics of the running time and mesh quality of the surface

meshes illustrated in this paper. All these experiments were run on a Pentium 4 PC.

These results indicate that our implementation performs robustly and achieves good
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mesh quality with reasonable speed.

4.6 Summary

This chapter describes an incremental mesh generation algorithm using restricted

union of balls for triangulating the molecular skin surfaces. The restricted union of

balls is the intersection of the skin surface and the union of a set of empty open balls

centered at the surface sample points. By judiciously choosing the radius of the balls

to adapt to the surface curvature, we obtain an even ε-sampling and the surface mesh

is the restricted Delaunay triangulation of the sampling, which is guaranteed to be

homeomorphic to the original surface. At the same time, we achieve guaranteed mesh

quality and reasonable efficiency.

Compared with the sweeping skin meshing algorithm, our current meshing algo-

rithm performed more robustly but had a lower efficiency because it computes the

Delaunay triangulation of all the sample points on the surface. Although we improve

the efficiency of locating the tetrahedron in the incremental construction of the De-

launay triangulation in a fast way, the edge flipping is still costly since the complexity

of the Delaunay triangulation of surface sample points can be O(n2), as shown by Jeff

Erickson[54]. Actually, any surface meshing algorithm using Delaunay triangulation

of the sample points would face this problem and perform even worse because they

use the DAG structure to locate the new vertex.

The mesh quality we achieved is worse than the previous methods, namely, the

sweeping skin meshing algorithm and dynamic skin triangulation algorithm in a small

scale. The main reason is that we do not use the costly refinement operations to

improve the mesh quality. We can achieve a better quality by choosing smaller γ

values. However, it would result in a large number of triangles in the mesh. Applying

the refinement operations on our result would be an option to achieve better qualities.
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(a) (b)

Figure 4.9: The molecular skin model of the molecule with PID:200D. Figure (a)
shows its surface model and (b) illustrates the zoomed mesh details of a small genus
in the box of (a).

(a) (b)

Figure 4.10: The molecular skin model of the molecule with PID:1FG1. Figure (a)
shows its surface model and (b) illustrates the zoomed mesh details of a cavity in the
box of (a).
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Chapter 5

Quality Tetrahedral Mesh

Generation for the Skin Body

This chapter develops mesh generation algorithm for building quality tetrahedral

meshes of the volumes bounded by the skin surface, which are desirable for the

electrostatic computation of macromolecules. Specifically, the algorithm generates

tetrahedral meshes that are the subsets of the Delaunay triangulation. By taking

the advantages of the skin surface meshing results in Chapter 3 and Chapter 4, the

algorithm starts by building a coarse tetrahedral mesh for the skin body. Next,

the algorithm applies the Delaunay refinement to improve tetrahedral quality with a

priority parameterized by the value of the distance function defined by the surface.

Together with the nice properties of the input surface mesh, we achieve an upper

bound on the radius-edge ratio of the tetrahedral mesh after the refinement. Finally,

we apply the sliver exudation algorithm to remove “slivers”. The algorithm termi-

nates with guarantees on the tetrahedral quality and an accurate approximation of

the original surface boundary.

Section 1 gives a brief introduction of the numerical methods for computing the

electrostatic property and defines the quality tetrahedral meshes. Section 2 reviews
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the Delaunay refinement methods and summarizes the main challenges for applying

the methods to reach our goal. Section 3 describes our meshing algorithm and ana-

lyzes its behavior. Experimental results are illustrated in Section 4 and the chapter

is concluded in Section 5.

5.1 Numerical Methods and Mesh Quality

Numerical methods approximate the solution of partial differential equations (PDE)

which model the physical phenomena in science and engineering such as heat trans-

fer, quantum mechanics and electrostatic property of the molecules. These methods

usually decompose the problem domain into simple pieces, namely, elements, and

approximate the solution of the PDE on each element. The shape of the element is

essential to the accuracy and stability of the approximation. In this section, I will

give a brief introduction of the finite element methods (FEM) for computing the elec-

trostatic property to motivate the study of tetrahedral mesh of the skin body. Then,

I introduce the measures of the tetrahedral mesh quality to define quality meshes for

the FEM methods.

Electrostatics Computation. Electrostatics potential is one of the fundamental

energy terms to model a molecular system. It defines the potential energy at a

particular location near a molecule created by the system of molecular charges. The

study of the electrostatic potential within a molecule or their interactions among

different molecules is necessary to investigate the protein folding and protein-protein

interactions. Thus, modeling and computation of the electrostatic of molecules have

become a central topic in the molecular modeling study [10]. Several methods have

been proposed to compute the electrostatics potential of molecules. The simplest

approach is to apply the Coulomb’s law with a fixed dielectric constant. This approach
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neglects the presence of a dielectric interface between the molecular interior and

the surrounding solvent. A relatively rigorous framework is to use the continuum

approach that models a molecule as a domain with low dielectric constant inside a

smooth surface boundary embedded in a continuous medium of solvent with high

dielectric constant [73].

The Poisson-Boltzmann equation(PBE) is one of the most popular continuum

approach to model the electrostatic of large molecules. In this method, the electro-

static potential φ(X) at a location X ∈ R3 is modeled with the following the Poisson

equation

−∇ · ǫ(X)∇φ(X) = ρ(X),

in which ǫ(X) is a spatially varying dielectric coefficient, and ρ(X) is the charge

distribution in the molecules. In particular, the dielectric coefficient ǫ(X) jumps by

one or two orders of magnitude at the interface between the inside the molecules and

the solvent. It results in the solution of the equation is quite sensitive to the boundary

definition of the molecular model [10].

Numerical methods are necessary to solve the PBE because the equation is a

non-linear partial differential equation of second order and analytical solutions are

not available. There are three types of numerical methods for solving the partial

differential equation including finite difference methods, boundary element methods

and finite element methods [59, 63, 75, 80, 84]. Finite difference methods employ

regular grid to subdivide the domain encompassing the molecule and its surroundings

so that the value of the solution can be evaluated at each grid point. However, the

Cartesian nature of the grids makes it impossible to locally increase the accuracy of

the solution in a specific region without increasing the resolution of the entire grid

[80]. The boundary element methods are limited to solve the simplified form of the
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PBE [75]. On the other hand, finite element methods offer the ability to solve the

PBE with controlled accuracy in specific regions of the problem domain [20]. A finite

element solver usually partitions the domain in three dimensions into a collection of

tetrahedra, namely, the finite element mesh. Then, the PBE is approximated by basis

functions on each tetrahedron and the solution is derived from a system of equations

formed by the basis functions. Specifically, the finite element method constructs a

4×4 matrix Kτ for each tetrahedron τ , namely, the element stiffness matrix. Let the

vertices of τ be i, j, k, l. Denote ℓkl as the edge length from k to l and θkl denote the

dihedral angle at the edge. The (i,j)-th entry of the matrix Kτ equals to

Kτ (i, j) = −ℓkl cot θkl,

and the diagonal entries are the inverse of the sum of all the entries in the row. It is

clear that when θ → 0◦ or θ → 180◦ , then cot θ → ∞. Large entries in the matrix

can result in large eigenvalues of the matrix, which affect the solution time and the

solution accuracy of the system of equations [91]. Therefore, the shape of tetrahedra

decomposing the molecular volume would be critical to solve the PBE accurately and

efficiently using finite element methods.

In summary, a quality volumetric mesh of molecules that conforms to its bound-

ary is desirable for the computation of the molecular electrostatic by solving the PBE

with finite element methods. However, it is still challenging to construct quality

tetrahedral meshes conforming to the boundary of the molecular model. Most of the

previous works used regular grids [84] or adaptive grids based on octree subdivisions

[99]. The mesh elements in these methods have a biased alignment to the axis and

cannot conform to the boundary surface accurately because the the resolution of the

grids can not be infinite fine. Delaunay meshes have no such problems and support ef-

ficient construction algorithms with quality guarantees [90]. The algorithm developed
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in this chapter can generate quality Delaunay tetrahedral meshes for macromolecules.

Next, we describe the measures that define a quality Delaunay tetrahedral mesh.

Tetrahedral Quality. A quality measure for tetrahedra is used to identify the poor

shape tetrahedra, that is, the tetrahedra with small or large dihedral angles. For a

Delaunay tetrahedral mesh, the circumradius to shortest edge ratio of a tetrahedron

is the most natural and elegant measure [78]. The circumsphere of a tetrahedron is

the unique sphere that passes through all its vertices. The center and the radius of

the circumsphere are referred as the circumcenter and circumradius of the tetrahe-

dron respectively. We denote r as the circumradius and l as the shortest edge of a

tetrahedron τ respectively. Thus, the length ratio of the circumradius of a tetrahe-

dron and the shortest edge, namely, the radius-edge ratio, is denotes as r
l
. We call a

tetrahedron τ is a skinny tetrahedron if its radius-edge ratio is larger than a constant

c > 1, that is, r
l
≥ c. Otherwise, we call the tetrahedron τ has ratio property c. A

tetrahedral mesh K has the ratio property for a constant c means that each τ ∈ K has

ratio property c. Most poor shape tetrahedra are characterized by their radius-edge

ratio. That is, their circumradius are much larger than their shortest edge and they

have large radius-edge ratio. Figure 5.1 (a), (b) and (c) illustrates the examples of

skinny tetrahedra.

(a) (b) (c) (d)

r

l

Figure 5.1: A classification of the bad shape tetrahedra.
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However, a tetrahedral mesh with bounded radius-edge ratio is not entirely free

of tetrahedra with bad angles. The sliver is the only type of bad shape tetrahedra

with bounded radius-edge ratio. The canonical sliver is formed by arranging four

equally spaced vertices around the equator of a sphere, then perturbing one of the

vertices slightly off the equator. See Figure 5.1 (d) for an example. The sliver can

have small radius-edge ratio as low as
√

2
2

but the dihedral angles can approach to 0◦

and 180◦. In this chapter, a tetrahedron is called a sliver if it has the ratio property c

and its minimum dihedral angle is smaller than a constant ς. The goal of the meshing

algorithm in this chapter is to generate tetrahedral meshes for the skin volume with

ratio property and free of slivers. In particular, the algorithm use Delaunay refinement

methods to construct a tetrahedral mesh with ratio property, then remove the slivers

with a post-processing procedure. Next, I introduce the Delaunay refinement method

and summarize the main challenges in applying the method to generate quality meshes

for the skin body.

5.2 Delaunay Refinement

Delaunay refinement methods generate quality tetrahedral meshes by placing new

mesh vertices carefully in the domain and maintaining the Delaunay triangulation

until all mesh elements meet the quality constraints. They performed excellently

in both theory and practice because of the elegant mathematical properties of the

Delaunay triangulation and efficient construction algorithm. In this section, I will re-

view the key idea behind the Delaunay refinement and the previous mesh generation

algorithms using Delaunay refinement. Then, I summarize the challenges in adapt-

ing the method to generate quality meshes for the volume bounded by the skin surface.

The Key Idea. The central operation of all the Delaunay refinement algorithms in
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three dimensions is to insert a vertex at the circumcenter of a poor shape tetrahedron

followed by edge flipping to maintain the Delaunay property. The vertex insertion

kills the poor shape tetrahedron because its circumsphere is no longer empty. By

iteratively applying the operation, the algorithm will eventually eliminate all the

poor shape tetrahedra or run forever. Fortunately, Delauany refinement algorithms

are always guaranteed to terminate if the poor shape tetrahedra are defined as the

skinny tetrahedra with radius-edge ratio greater than the constant c > 1. The reason

is that the newly created edges after the insertion of the circumcenter of a skinny

tetrahedron is at least as long as the shortest edge in the tetrahedron. See Figure

5.2 for an example in two dimensions. All the new edges created by the insertion of

t connected to t. Because t is the circumcenter of the triangle abc and there are no

other vertices in the circumsphere of abc before t is inserted, all the new edges are at

least a long as the circumradius of abc. Since the circumradius to shortest edge ratio

of the triangle abc is greater than c, so every new edge is at least c times the shortest

edge of abc.

t

a

b

c

t

a

b

c

Figure 5.2: The insertion of the circumcenter of a poor shape triangle. The Delaunay
property is maintained and all the new edges have length at least c times the shortest
edge of triangle abc.

Boundary Recovery. Another important issue in Delaunay refinement algorithms
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is the boundary recovery when they are applied to a domain specified by a set of

polygonal faces, line segments and vertices. In general, the boundary faces and seg-

ment are not in the initial Delaunay triangulation of all the boundary vertices. In

order to force these boundary faces and segments to appear in the final Delaunay

mesh, additional vertices lying on the boundary are necessary to be inserted. For ex-

ample, the algorithm can split the boundary segments into subsegments by inserting

the middle point of the segment once its diameter sphere is not empty. However, an

acute input angle on the boundary may result in infinite loops in such a boundary

recovery procedure. See Figure 5.3 for an example. Because the triangle contains

the vertex a is always a poor shape triangle and its circumcenter lies in the diameter

sphere of the subsegments, the splitting will run forever.

a
b

c

Figure 5.3: The boundary recovery fails when there is an acute input angle.

The Delaunay refinement methods have been studied widely in both two and

three dimensions. In three dimensions, most of the previous work concentrated on

the meshing the domain bounded by piecewise linear complex (PLC). In the follow-

ing, I review the previous work to identify the main challenges for my application of

the Delaunay refinement methods.
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Challenges. Although significant progress has been made in the Delaunay refinement

meshing algorithm in three dimensions, it is still challenging to apply the method to

meshing the domains bounded by smooth surfaces. Shewchuk [90] used the Delaunay

refinement to generate tetrahedral meshes for 3D domains bounded by a piecewise

linear complex. The algorithm eliminates poor quality tetrahedra by iteratively in-

serting their circumcenters. Consequently, the resulting mesh achieve an upper bound

on the radius-edge ratio, which is the ratio of the circumradius of a tetrahedron with

its shortest edge. However, the algorithm requires the PLC domain has no acute

input angles. This problem was addressed recently by Cheng et al. [29], in which

the algorithm generates Delaunay meshes for polyhedra with small input angles with

guarantees on the radius-edge ratio, except for the tetrahedra near the small input

angles. Bounded radius-edge ratio eliminates all kinds of bad shape tetrahedra except

slivers. Cheng et al. [28] introduced sliver exudation algorithm by assigning weight

to the mesh vertex such that the resulting weighted Delaunay triangulation is sliver

free. Subsequently, Edelbrunner et al. [47] perturb the points to clean up the slivers

in the mesh. However, both sliver removal algorithms cannot handle the boundaries

because they only applied to periodic sets. Recently, Cheng and Dey [27] combined

Delaunay refinement with sliver exudation to construct quality tetrahedra meshes for

polyhedra without acute input angles.

To conclude, the application of the Delaunay refinement to generate quality meshes

for the skin body needs to overcome the following obstacles. First, there is no general

piecewise linear representations for smooth surfaces defined by implicit or parametric

equations. Although a number of surface polygonization and triangulation algorithms

are available, none of them can guarantee the output surface meshes have no acute

angles. As a result, the boundary recovery algorithms used in Delaunay refinement

for polyhedra are not appliable for meshing the volumes of smooth surfaces. Second,

sliver removal algorithms devote further study for the domains bounded by smooth
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surfaces because Cheng and Dey’s algorithm [27] can not handle the boundaries with

acute input angles. Third, the mesh size analysis using local feature size of the PLC

is not suitable for analyzing the size of volumetric mesh of smooth surfaces. Instead,

the curvature and the local feature size of the smooth surface are important for the

analysis of the mesh density.

5.3 Algorithm

I present the algorithm to construct quality tetrahedral mesh for the volume bounded

by molecular skin surfaces in this section. The algorithm is divided into three stages,

namely, sculpture, prioritized Delaunay refinement, and sliver removal by pumping

vertices. The procedure of sculpture builds a initial tetrahedral mesh for the skin

body. Then, the algorithm improve the mesh quality by running Delaunay refinement

and sliver removal sequentially. I firstly introduce the initial tetrahedral mesh builds

from a surface mesh constructed by the algorithm in Chapter 4. Then, I describe the

prioritized Delaunay refinement methods and analysis the quality guarantees when

the refinement terminates. Finally, I adapt the sliver exudation algorithm to generate

sliver free quality tetrahedral meshes.

5.3.1 Initial Tetrahedralization of the Skin Body

An initial tetrahedralization of the skin body can be built on the base of the surface

triangulation generated by the algorithm in Chapter 4. Recall that the surface tri-

angulation D′
P is the restricted Delaunay triangulation of the ε-sampling P of the

skin surface FB. For each triangle abc ∈ D′
P , it is either a face on the convex hull

of P belonged to only one tetrahedron in the Delaunay triangulation DP of P or a

common face shared two tetrahedra in DP . For the triangle abc that is a face of only

one tetrahedron, the circumcenter of the tetrahedron must be inside the skin body.
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Otherwise, triangle abc is not a restricted Delaunay triangle. If the triangle abc is

shared by two tetrahedra, one of the tetrahedra must have its circumcenter inside

the skin body and the other has its circumcenter outside the skin body so that the

line segment passing through the two circumcenters intersect the skin surface. The

reason is also that triangle abc is a restricted Delaunay triangle and its dual Voronoi

is the line segment and it intersects the surface. As a result, the collection of all the

tetrahedra whose circumcenter lie inside the skin body forms a initial tetrahedraliza-

tion T0 of the skin body. Since the skin surface meshing algorithm built the Delaunay

triangulation of P , the initial tetrahedral mesh T0 can be easily obtained as a side

product.

However, there is no any guarantees on the quality of the tetrahedral mesh T0

although the mesh quality of the surface mesh has lower bound on its minimum

angle. Additional vertices inside the skin body are necessary to be inserted for quality

improvement. We can apply the Delaunay refinement for this purpose. In particular,

the challenges for such an application can be overcomed by utilizing the good surface

mesh quality and the nice properties of the restricted Delaunay triangulation of the ε-

sampling. Besides the properties described in Lemma 4.2.1 and Lemma 4.2.2, another

property of the surface mesh is that the dihedral angle of two neighboring surface

triangles has a lower bound, which is presented in the following Lemma.

Lemma 5.3.1 (Dihedral Angle Lemma) For two triangles abc, bcd ∈ D′
P with

shared edge bc, the dihedral angle at edge bc has a lower bound of π − 2arcsin 2ε
1−ε

.

Proof. Consider the two normals of triangle abc and bcd and their intersection at

the point t, see Figure 5.4. The dihedral angle at edge bc is equal to π−∠nabcnbcd, in

which ∠nabcnbcd is the acute angle formed by the two normals nabc and nbcd. Thus, the

claim would be true if we can prove the upper bound of the ∠nabcnbcd is 2arcsin 2ε
1−ε

.

Denote the normal of the skin surface at the vertex a as na. According to the
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nabc nbcd

Figure 5.4: The dihedral angle at the edge bc of two neighboring surface triangle abc
and bcd.

Triangle Normal Lemma in [23], we know ∠nabcna < arcsin 2Rabc

̺(a)
. Together with the

bound of the circumradius, Rabc < ε
1−ε

̺abc, which is claimed in the Lemma 4.2.1, we

have

∠nabcna < arcsin
2ε̺abc

(1 − ε)̺(a)
< arcsin

2ε

1 − ε
.

Similarly, we have ∠nbcdna < arcsin 2ε
1−ε

as well. The angle ∠nabcnbcd is largest when

the normal na is parallel the plane determined by nabc and nbcd. That is,

∠nabcnbcd ≤ ∠nabcna + ∠nbcdna < 2arcsin
2ε

1 − ε
,

which implies the lower bound claimed in the Lemma.

Lemma 5.3.1 implies that the tetrahedra formed by two neighboring would be a

sliver because the minimal dihedral angle of the tetrahedra would approach 0◦. At

the same time, the circumcenters of such tetrahedra lie close to the surface. For

all other tetrahedra in T0, their circumcenter lie far from the surface but near the

media axis of the surface. In order to maintain the surface triangulation stable in

the tetrahedral mesh of the skin body, we propose to insert new mesh vertices as far

as possible from the surface. In particular, we insert the new mesh vertices with a

priority parameterized by the distance function to the skin surface.
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Distance Function. Given a skin surface FB, the distance function to FB is defined

over R3 by assigning each point its distance to the surface, namely,

d(x) = infp∈FB
‖x − p‖, ∀x ∈ R3.

We approximate the function using the ε-sampling P of skin the skin surface, that

is,

d′(x) = minp∈P‖x − p‖, ∀x ∈ R3.

The approximation has been used by Dey et al.[35] to reconstruct the smooth

surface from a point cloud. We use the function value to parameterize the priority

for new mesh vertices insertion during the Delaunay refinement. The priority ensures

the additional mesh vertices are far from the surface and lie inside the skin body. As

a result, the surface mesh are always kept in the tetrahedral mesh of the skin body.

For the convenience of the discussion, we call the circumsphere of a surface triangle

abc the protecting ball of the abc. The union of the protecting balls of all the surface

triangles forms the protecting region. The inserting new mesh vertices are guaranteed

to be always outside the protecting region. Next, I describe the prioritized Delaunay

refinement algorithm to improve the mesh quality of the initial tetrahedralization T0.

5.3.2 Prioritized Delaunay Refinement

Delaunay refinement methods improve the mesh quality by inserting the circum-

centers of the poor shape tetrahedra incrementally. After each new mesh vertex is

inserted, the Delaunay triangulation is maintained and this process is repeated until

the mesh quality satisfies the constraints. The new mesh vertices can be inserted in

a random way or in a certain order. Shewchuk [90] inserted new mesh vertices with
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a priority parameterized by the radius-edge ratio. That is, the circumcenter of the

tetrahedron with largest radius-edge ratio is always inserted. This priority decreases

the number of inserting points in some cases. Edelsbrunner and Guoy [42] defined the

sink as the circumcenters that are contained inside their own tetrahedra. A circum-

center is inserted as a new mesh vertex only when it is a sink. The priority facilitates

parallel implementation of the Delaunay refinement.

We introduce a new priority parameterized by the distance function value of the

circumcenter. That is, the circumcenter t of a skinny tetrahedron τ that has the

largest distance d′(t) to the surface is inserted in each iteration of the Delaunay

refinement. The reason beyond this priority is that new mesh vertices are restricted

to be not too close to the surface and form bad shape tetrahedra during the refinement.

As a result, the circumcenters close to the media axis of the surface are inserted in high

priority to improve the mesh quality as much as possible. When the circumcenters

near the surface are necessary to be inserted, the mesh quality satisfies the quality

constraints because the input surface mesh has guaranteed quality. See Figure 5.5 for

an example in two dimensions. From left to right in the first row, the figures illustrate

the process of prioritized Delaunay refinement on the triangular mesh bounded by a

skin curve. The minimal angle in the rightmost figure has a lower bound of 30◦.

The Delaunay refinement adapts the incremental algorithm for Delaunay trian-

gulation computation. Starting from T0, each time a circumcenter ti is inserted and

forms four new tetrahedra with the faces of the tetrahedron in Ti−1 enclosing ti. The

Delaunay property are restored by edge flipping algorithm and we get the Delaunay

tetrahedral mesh Ti with mesh vertices Pi = Pi−1

⋃{ti}, for P0 = P . The procedure

is described in the following pseudo code.

We analyze the behavior of the Algorithm 5.1 to validate the termination and

quality guarantees of the prioritized refinement procedure. First, we prove that all

the inserted circumcenters lies inside the skin volume VB and outside the protecting
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(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Four Delaunay triangulations and the dual Voronoi diagrams restricted
by a skin curve generated by the prioritized Delaunay refinement.
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Algorithm 5.1 PDeloneRefine()

1: Test the radius-edge ratio for all the tetrahedra in T0 and push the skinny tetra-
hedron to a queue Q prioritized by their distance function value;

2: while Q 6= ∅ do
3: τ = ExtractMax(Q);
4: if the τ is a valid tetrahedron in Ti−1 with the circumcenter ti that falls outside

of the protecting region then
5: Compute the Delaunay triangulation of Pi = Pi−1 ∪ {ti};
6: Update the priority Q by adding the new skinny tetrahedra;
7: else
8: Continue;
9: end if

10: end while

region. This property ensures the input surface mesh is stable during the refinement

process. Then, we prove the refinement process terminates with a upper bound of

the radius-edge ratio c depending on the constant ε and γ that specifies the surface

mesh quality.

Lemma 5.3.2 (Bounded Circumcenters Lemma) Let t be the circumcenter of

a skinny tetrahedron τ ∈ Ti. The circumcenter t is contained in the underlying space

of Ti, namely, |Ti|.

Proof. We prove the lemma using the deductive method.

In the case of i = 0, the claim is true on the base of our sculpture procedure. Since

T0 consists of all the tetrahedra whose circumcenters lies inside the volume of the skin

surface VB. The difference between VB and |T0| is the space between the skin surface

and the surface triangles when the local shape of the surface is convex. According

to the dihedral angle Lemma 5.3.1, a tetrahedra with its circumcenter inside VB and

outside |T0| must be a sliver. And a sliver is never a skinny tetrahedron. Thus, the

claim is true when i = 0.

We assume the claim is true when i = k and prove all the circumcenters of

tetrahedra in Tk+1 are inside |Tk+1|. To get a contradiction, let a circumcenter t
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locates outside |Tk+1|. The circumcenter t must be a Voronoi vertex of a mesh vertex

q that either lie on the boundary or the interior of |Tk+1|. In the case of the mesh

vertex q lie inside |Tk+1|, one of the Voronoi edge of q must penetrate the surface

mesh and we denote the intersection with a surface triangle abc as u. As a result, the

point u must be inside the protecting sphere of abc and its distance to a is smaller

than the distance to q since q is always outside the protecting region. It contradicts

with the definition of the Voronoi cell for the point q. In the case of the mesh vertex

q is on the boundary, then t must be the circumcenter of a tetrahedron with its four

vertices on the boundary. It is impossible because all the new tetrahedra we created

during the refinement must connect to the newly inserted internal nodes. Thus, all

the circumcenters of tetrahedra in Tk+1 are inside |Tk+1| and the claim follows.

The Lemma 5.3.2 implies that the boundary of the tetrahedral mesh Tn conforms

to the input surface mesh. Next, we prove the algorithm terminates with bounded

radius-edge ratio for all the tetrahedra in Tn

Thm. 5.3.1 The algorithm terminates with quality tetrahedra mesh having ratio prop-

erty for the constant

c ≤ 2ε

γ(1 − ε)
.

Proof. We first prove the algorithm terminates. Since the algorithm only inserts

the circumcenters of tetrahedra with radius-edge ratio larger than 1, the edge length

of newly created edges during the Delaunay refinement never shrinks. In the other

words, the inter-vertices distances are bounded from below. Moreover, the algorithm

only inserts points in the domain and never deletes any points. As a result, the

algorithm must terminate because the volume of VB is finite.

Then, we prove the bound for the radius edge ratio. To get a contradiction,

we assume a tetrahedron τ has radius-edge ratio R
l

> 2ε
γ(1−ε)

when the algorithm
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tq

Rabc

Figure 5.6: A tetrahedron with its circumcenter inside a protecting sphere.

terminates. Then, the circumcenter t of τ must be inside a protecting sphere of a

surface triangle abc. See Figure 5.6. Let one of the vertices of τ be q, then we have

R = ‖t − q‖ < ‖t − a‖ < 2Rabc,

in which Rabc is the radius of the protecting sphere of triangle abc. According to

Lemma 4.2.1 we get

R <
2ε

(1 − ε)
̺abc. (5.1)

On the other hand, the length of the shortest edge of the tetrahedron τ must be

longer than the length of any edges on the boundary incident to a. That is,

l > ‖a − b‖ ≥ γ̺ab.
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According to the assumption,

R > l
2ε

γ(1 − ε)
> γ̺ab

2ε

γ(1 − ε)
=

2ε

(1 − ε)
̺ab. (5.2)

Since ̺abc ≤ ̺ab, Equation (1) and Equation (2) contradicts each other. As a result,

all the tetrahedra has ratio property for the constant c ≤ 2ε
γ(1−ε)

.

With feasible values for 0 < γ < 0.218 and 0 < ε < 0.279, a conservative lower

bound for c would be 3.5. Our experiments show that we can achieve a much better

bound of 1.5 on the radius-edge ratio.

However, slivers still frequently exist inside the tetrahedral mesh after the Delau-

nay refinement terminated with a bounded radius-edge ratio. Next, we adapt the

sliver exudation algorithm to remove the slivers.

5.3.3 Sliver Removal by Pumping Vertices

Given the Delaunay tetrahedral mesh Tn with ratio property c, the sliver exudation

algorithm assigns small weights to the mesh vertices so that the resulting weighted

Delaunay triangulation contains no slivers. This procedure can be understood by

considering the orthospheres of the tetrahedra incident to the gaining weight vertex

in the weighted Delaunay triangulation. See Figure 5.7 for an example in two dimen-

sions. Denote a vertex x with weight w2
x as x̂ and it can be considered as a sphere

centered at x with radius wx. As the weight of a vertex x increases, the weighted

distance between the orthosphere of the triangle xpq and x̂ decreases and vanishes

when the sphere x̂ is orthogonal to the orthosphere of xpq. To maintain the weighted

Delaunay triangulation, we need to flip the edge pq to ensure the orthospheres are

empty. We call such a weight a critical weight. Since a small change of the weight for

a vertex can result in dramatic change of the radius of the orthospheres, a feasible

weight value for a vertex incident to a sliver would remove the sliver. The weight
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Figure 5.7: Flip an edge to maintain the weighted Delaunay triangulation when the
weight of x increases.

assigned w2
x to a vertex x is required to be small comparing to the distance to its

closest neighbor, that is, w2
x ∈ [0, ω0N(x)], in which N(x) is the distance from x to its

nearest mesh vertices and ω0 is a constant less than one half. This condition ensures

that spheres do not intersect each other so that no vertices are deleted in the weighted

Delaunay triangulation. Moreover, the small weight assignment will not increase the

the radius-edge ratio of weighted Delaunay triangulation very much.

However, the sliver exudation algorithm only applies to the periodic point set,

which is an infinite set without boundary. In order to apply the algorithm to our

bounded domains, we only pump the non-boundary mesh vertices incident to a sliver.

Moreover, we further restrict the assignment of the weights not to challenge the

boundary. That is, the weight for x should be small enough so that the weighted

distance between x̂ with any protecting sphere is positive, which implies that the

boundary triangles will stay inside the weighted Delaunay triangulation. For the

slivers with four mesh vertices on the surface, we remove them from the tetrahedral

mesh directly. In our implementation, we use a threshold for ς = 5◦ and define a

tetrahedron as a sliver if its minimal dihedral angle smaller than ς and the radius-

edge ratio is smaller than 1.5. The following pseudo code illustrates the procedure of
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the sliver removal.

Algorithm 5.2 SliverRemoval()

1: for all slivers τ in Tn do
2: if τ ’s vertices set of {p, q, r, s} ⊂ P then
3: Remove the sliver τ from Tn;
4: else
5: for a mesh vertex t ∈ {p, q, r, s} and {t} * P do
6: w2

τ = pumpVertex(t);
7: Set the weight w2

τ to t and maintian the weighted Deluanay triangulation;
8: end for
9: end if

10: end for

The Algorithm 5.2 firstly checks if the four mesh vertices of a sliver are on the

boundary FB. If so, the sliver must have two neighboring surface triangular faces.

The reason is that the circumsphere of a sliver with four mesh vertices in other

configurations would not be empty, which contradicts with the Delaunay property.

According to Lemma 5.3.1, we can simply remove the sliver without influencing the

accuracy of the boundary approximation.

For a sliver with at least one boundary mesh vertex, we use the procedure pumpVer-

tex(t) to find the optimal weight for a non boundary vertex so that dihedral angles

are maximized locally. In particular, we look through all the critical weights in the

interval wt ∈ [0, ω0N(t)] that stimulate an edge flipping. We perform each flip and

compute the minimal dihedral angle of the tetrahedra incident to t after the flip. If

the minimal dihedral angle increases, the critical weight is recorded. When there is

no more feasible flips can be proceeded, we return the critical weight that maximize

the dihedral angle and restore all the flips performed after this critical weight. The

pseudo code of the procedure pumpVertex(t) is illustrated as following:

The Algorithm 5.3 uses a priority queue W to store the critical weights so that the

edge flips are performed in an order specified by the increasing weights. Each edge

flip is either a two to three flip that replace two tetrahedra sharing a link triangle
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Algorithm 5.3 pumpVertex(t)

1: Find all the triangles in the link of t that do not belong to RB(P ) and put them
to a list L;

2: For each triangle pqr ∈ L, compute the weight w2
i for t so that the weighted

distance between t̂i and the orthosphere of triangle pqr is 0; push wi to a priority
queue W if wi ≤ ω0N(t);

3: Compute the minimal dihedral angle incident to t and set it to ςτ ; set the initial
value for optimal wightwτ = 0;

4: while W 6= ∅ do
5: w = ExtractMin(W );
6: Perform an edge flip f(w) to maintain the weighted Delaunay triangulation;
7: Compute the minimal dihedral angle ς for all the tetrahedra in the star of t;
8: if ς > ςτ then
9: wτ = w

10: ςτ = ς;
11: end if
12: Update the priority queue W by computing new critical weight using the up-

dated link triangles of t;
13: Push the edge flip f(w) to a stack F and perform a revers flip correspondingly;
14: end while
15: Pop all the flips in F before f(wτ);
16: Return wτ ;

of t with three tetrahedra or vice visa. If an edge flip increases the dihedral angle,

the optimal weight and the minimal dihedral angle are updated. After each flip, the

link of t is updated and we push the new critical weights to the priority queue W .

All feasible flips are performed when the W is empty. We perform reverse flips to

restore the flips that do not increase the dihedral angle. That is, we replace three

tetrahedra with two if a two to three flips were performed or vice visa. This operation

is facilitated by a stack to store all the performed flips.

5.4 Results

We implemented the algorithm on the PC platform with C++ on the base of the

skin surface meshing software built by the authors. The construction of the Delaunay

triangulation and weighted Delaunay triangulation partially reuse the prior software
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on alpha shapes. One point worth noting here is the computation of the distance

function value for each circumcenter of a skinny tetrahedra. We utilize the Delaunay

triangulation of the input surface mesh vertices for this purpose. That is, we locate

the tetrahedron contains the circumcenter first and search its nearest neighbor locally.

We test our implementation to generate quality tetrahedral meshes for a few molecular

skin models. The experimental results show that the prioritized Delaunay refinement

performs excellently and it achieves an upper bound of 1.5 on the radius-edge ratio.

At the same time, the dual Voronoi diagram the Delaunay triangulation decompose

the volumes into well shaped convex polyhedra. See the second row of the Figure 5.5.

Such a decomposition may be useful for the numerical computations using control

volume methods. Moreover, our implementation of the sliver exudation algorithm

eliminates most of the slivers. Since the dense tetrahedral meshes are hard to be

visualized with two dimensional figures, we collect the statistic of the mesh quality

on two experiments.

Table 5.1 illustrates the statistics of the mesh quality for the molecule Crambin.

The input surface mesh includes 27,341 mesh vertices and 50,222 triangular faces.

The minimum angle in the surface mesh is 20.1◦. The Delaunay refinement takes

around 8 minutes on Pentium 4 PC to insert 26,709 vertices inside the volume and

improve the radius-edge ratio to 1.5. Totally 1,296 slivers exist in the final tetrahedral

mesh, in which 300 slivers have four vertices on the surface. After we performed the

sliver removal, only 13 slivers are left. The distribution of the radius-edge ratio and

minimal dihedral angle in the the coarse tetrahedral mesh before prioritized Delaunay

refinement T0, the mesh after the Delaunay refinement Tn and the final mesh after

the sliver removal T̂n is presented in the table 5.1.

Table 5.2 illustrates the statistics of the mesh quality for the molecule PdB7. The

display conventions are the same as in Table 5.1.
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r/l 0-1 1-1.5 1.5-2 2-3 ≥ 3
T0 2,675 4,451 3,327 25,570 47,726
Tn 117,854 138,609 2 0 0

T̂n 117,654 13,8258 12 0 0

ς(◦) 0-5 5-10 10-20 20-30 ≥ 30
T0 6,964 12,254 10,787 7,335 46,409
Tn 1,292 3,309 14,009 35,877 201,978

T̂n 13 212 14,479 39,566 201,654

Table 5.1: The distribution of the radius-edge ratio and minimal dihedral angles of
the tetrahedral mesh of the molecule Crambin.

r/l 0-1 1-1.5 1.5-2 2-3 ≥ 3
T0 244 405 366 8,131 14,025
Tn 20,296 27,061 1 0 0

T̂n 20,328 27,127 3 0 0

ς(◦) 0-5 5-10 10-20 20-30 ≥ 30
T0 1,801 3,914 3,314 1,676 12,466
Tn 245 702 2,627 6,402 37,382

T̂n 6 82 3,046 6,547 37,684

Table 5.2: The distribution of the radius-edge ratio and minimal dihedral angles of
the tetrahedral mesh of the molecule Pdb7.

5.5 Summary

In this chapter, I present an algorithm for generating quality tetrahedral mesh of the

skin body. The algorithm improves the mesh quality of a coarse mesh using Delau-

nay refinement prioritized by the distance function value followed by a sliver removal

process. The prioritized Delaunay refinement process terminates with guarantees on

the upper bound of the radius-edge ratio of the tetrahedral mesh. The experimental

results shows that an upper bound of 1.5 on the radius-edge ratio can be achieved,

which is much better than the theoretical bound. The sliver removal process re-

moves the slivers effectively and improves the minimal dihedral angle in the mesh.

The boundary of the final tetrahedral mesh also approximates the original surface

accurately.

We observe that the tetrahedral meshes generated by our prioritized Delaunay
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refinement are well graded from the experimental results. It would be interesting to

further analyze the gradedness and the complexity of the mesh using the distance

function and the local length scale of the surface. We are also interested in extending

our algorithm to generate quality tetrahedral meshes for the domain bounded by other

smooth surfaces. Since the input surface mesh may not have guaranteed quality and

may not be a subset of the Delaunay triangulation of the surface mesh vertices either,

we propose to insert points on the surface during the refinement process. Surface

mesh is updated locally and the mesh quality for the surface and volume are improved

simultaneously. A critical issue in this extension is to prevent infinitely many surface

points are added.
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Chapter 6

Skin Meshing Software and

Applications

The skin meshing software is implemented with graphical user interface (GUI) on

the Windows platform for the construction of skin surface triangulation, Delaunay

tetrahedralization of the skin body, alpha shapes and its pockets. The software is the

implementation of the meshing algorithms discussed in the previous chapters. The

skin meshing software is efficient, robust and user friendly [3]. Since the skin surface

lends itself as a desirable surface model of the molecules, the software serves as a

powerful computational tool for the study of the molecular shape and function.

In this chapter, I first introduce the software functionalities and demonstrate some

results generated by the software. Then, I describe the potential applications of the

software.

6.1 Skin Meshing Software

The skin meshing software is developed on the Windows platform with C++ language

and OpenGL as the graphics library [17]. The input is the coordinates of the centers
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and the radii of a set of spheres. In addition, the software can import the PDB files

downloaded from the Protein Data Bank [2] and extract the positions and van der

Waals radii of the atoms in the molecule specified by the PDB file as input. Users

can obtain the molecular skin model of the molecule by specifying parameters to set

the radius as
√

2 times the summation of the atom’s van der Waals radius and the

radius of the probe sphere, which is usually chosen as 1.4 Angstrom to represent the

water as solvent. The user interface of the software is illustrated in Figure 6.1.

Figure 6.1: The user interface of the skin meshing software.

The software outputs guaranteed quality meshes for both the surface and the vol-

ume of the skin surface specified by a set of spheres or the molecular skin model of

the input PDB file. Moreover, the software can compute the alpha shapes and the

pockets as well [41]. In the following, I describe the capabilities of the skin meshing

software using a few examples.

Surface Triangulation. Figure 6.2 shows a few examples of the skin surface gen-

erated by the skin meshing software. Figures 6.2 (a) and (b) illustrate two tubes

modeled by the skin surface. Each tube is defined by a set of spheres centered on the

a curve defined by a equation. Figure 6.2 (c) and (d) show the skin model of a cactus
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and a human hand respectively. These two models are defined by the inner poles,

which are set of spheres computed by the PowerCrust [7] using a set of sample points

one the surface. Figure 6.2 (e) illustrates the molecular skin model of a protein with

PID 1ach. The zoomed in view of the partial mesh in the rectangle in Figure 6.2 (e)

is showed in Figure 6.2 (f).

These results demonstrate that our meshing algorithms can generate homeomor-

phic surface triangulations for skin surfaces with arbitrary topology, for example, the

complicated nested knots shown in Figure 6.2(b). The reason is that the surface tri-

angulations generated by our algorithm are the restricted Delaunay triangulations of

ε-samplings of the skin surface, which have the closed ball property that guarantees

the homeomorphism. Moreover, the surface triangulations approximate the surface

geometry accurately. The topological features such as genus and tunnels in the molec-

ular models are preserved in the meshing results as well, as shown in Figure 6.2(f).

This result contrasts with the previous results in [9] that small genuses in a molecule

were usually wrongly triangulated.

molecular no. triangles minimum angle distribution(%)
name in the mesh 50◦-60◦ 30◦-50◦ 20◦-30◦ Less than 20◦

Pdb7(Figure3.7(b)) 24,336 59.46 40.30 0.24 0
HIV 2(Figure4.1) 226,758 56.22 43.54 0.24 0
1CHO(Figure1.4) 253,024 56.00 43.77 0.22 0.01

1ACB(Figure6.2(e)) 290,476 56.20 43.56 0.2397 0.0003

Table 6.1: The statistics of the minimum angle of the triangles in the surface mesh.

Table 6.1 lists the statistical results of the mesh quality of a few molecules illus-

trated in this thesis. The results indicate that our implementation achieved a better

bound on the minimum angle of the triangulation than the theoretical result. For

example, the minimum angle in the triangulation of pdb7 molecule is 27.02◦, which

is much better than the theoretical result 21◦. Moreover, most triangles in the mesh

are almost equilateral triangles, that is, more than 50% triangles in the mesh have
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(c) (d)

(e) (f)

Figure 6.2: Examples of the skin surface generated by the skin meshing software.
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minimum angles around 60◦. Only very few triangles have minimum angle less than

30◦. The high quality we achieved may be explained by two main factors: first, the

smoothness of the molecular skin model is crucial to generate quality meshes. It

would be problematic to guarantee a lower bound on the minimum angle of the tri-

angulation if the surface is not smooth. Second, our strategy of placing new mesh

vertices adaptive to the surface curvature creates well-shaped triangles.

molecular no. triangles minimum angle computing time
name Alg. 4 Alg. 3 Alg. 4 Alg. 3 Alg. 4 Alg. 3 dynamic
Pdb7 19,000 24,336 23.16◦ 27.02◦ 00:00:14 00:00:05 00:10:05

(Fig. 3.7 (b))
A − DNA 104,961 114,316 20.92◦ 24.12◦ 00:02:14 00:00:51 00:35:12
(Fig. 3.15)

GramicidinA 189,188 305,186 19.09◦ 24.37◦ 00:04:46 00:03:33 01:35:23
(Fig. 3.16)

HIV 2 226,758 N.A. 20.35◦ N.A. 00:05:36 N.A. N.A.
(Fig. 4.1)
1CHO 253,024 N.A. 19.16◦ N.A. 00:08:03 N.A. N.A.

(Fig. 1.4)
1ACB 290,476 N.A. 19.53◦ N.A. 00:10:08 N.A. N.A.

(Fig. 6.2 (e))

Table 6.2: Comparison of the performance between the two surface meshing algo-
rithms in Chapter 3 and Chapter 4.

Table 6.2 lists the statistical results of several surface meshes demonstrated in

the thesis, along with a comparison of the computation time between the algorithms

described in this thesis and the dynamic skin triangulation algorithm implemented by

Cheng [23]. All these experiments were run on a Pentium 4 PC. The results clearly

demonstrate that our algorithms achieved high efficiency. For example, the comput-

ing time of the molecule Gramicidin A decreased from more than 1 hour to 3 minutes.

The dramatic improvement of the efficiency can be explained by using the advancing

front method to avoid the costly computation of 3D Delaunay triangulation. More-

over, the usage of the Morse-Smale complex for solving front collision problems plays

an important part in preventing overlapping triangles efficiently. Conventional meth-
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ods to handle this problem are always time consuming because the potential collisions

are detected by frequently checking the distance of any two vertices on the front [60].

Comparing with the skin meshing algorithm using restricted union of balls, the adap-

tive sweeping skin meshing algorithm achieves an better mesh quality but generates

more triangles, as shown in the Table 6.2. On the other hand, the skin meshing

algorithm using restricted union of balls performs more robustly. That is, the skin

meshing algorithm using restricted union of balls can generate triangulations of a few

molecular models that fail the adaptive sweeping skin meshing algorithm. The main

reason for the failure is that the bumpy appearance of the surface results in a large

number of noisy critical points. During the simplification of these noisy critical points,

some critical points are removed wrongly because of the accumulation of numerical

errors in the approximation of the Morse-smale complex. The skin meshing algorithm

using restricted union of balls can handle the bumpy surface robustly because it does

not use the Morse-smale complex. Moreover, the robust and stable implementation

of the alpha shape software relieve us from the robustness worries associated with the

Delaunay triangulation computation.

Tetrahedralization of the Skin Body. The skin meshing software can gener-

ate quality tetrahedral meshes for the volumes bounded by skin surfaces using the

algorithm described in Chapter 5.

Figure 6.3 (a) shows an input surface mesh that is a triangulation of a sphere.

The cross section of the surface mesh and the initial tetrahedralization with a plane

are shown in Figure 6.3 (b) and (c) respectively. After the prioritized Delaunay

refinement is applied to the initial mesh, we obtain a tetrahedral mesh with bounded

radius-edge ratio, as shown in 6.3 (d). Five slivers still exist in the tetrahedral mesh

and they are eliminated by bumping the mesh vertices. Figure 6.3 (e) illustrates the

left slivers contained in the transparent boundary surface. Figure 6.3 (f) illustrates
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(g) (h)

Figure 6.3: Experiments result of the quality tetrahedral mesh generation.
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the result after the sliver removal. Another example of the tetrahedral meshes is

shown in Figure 6.3 (g). Its cross-section with a plane is shown in Figure 6.3 (h).

These results indicate that the tetrahedral meshes conform to the boundary sur-

faces meshes. This can be explained by two factors. First, the input surface meshes

are the subset of the Delaunay triangulation of an ε-sampling of the skin surface

so that we can build an initial tetrahedral mesh conforms to the boundary. Sec-

ond, the prioritized Delaunay refinement inserts new mesh vertices as far as possible

from the surface. Together with the good surface mesh quality, the tetrahedra next

to the boundary can satisfy the quality constraints without breaking the boundary.

This boundary conformness property is desirable when solving the Poisson-Boltzmann

equation with the finite element methods since the solution is sensitive to the bound-

ary. Moreover, the resulting tetrahedral meshes are well graded with good quality,

as shown in the Figure 6.3 (d) and (h). The experimental results also show that

our algorithm achieves much better bound on the radius-edge ratio of the tetrahedral

mesh in practice than the theoretical bound. For example, the lower bound of the

radius-edge ratio for the tetrahedral mesh in Figure 6.3 (h) is 1.2. The good quality

mesh can facilitate fast and accurate numerical methods for solving the partial dif-

ferential equations.

Cavities and Pockets of Molecular Skin Models. The skin meshing software

can also identify the geometrical features such as cavities and pockets of a molecular

skin model FB. A cavity of the skin FB is a void contained inside the skin surface,

which is a bounded component in the complement space of the skin body, namely,

R3 − body(B). A pocket of the skin FB refers to a concavity feature on the surface.

In particular, these concavities open up to the outside with narrow entrances. We

define the pockets of a skin surface as the intersections between the skin surface FB

and the pockets in the alpha shape KB. A pocket in the alpha shape KB is a portion
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of the complementary space R3 − ⋃

B that have some narrow entrances from the

outside [41].

Figure 6.4 (a) shows the van der Walls model of a protein molecule with PID 1scn.

The alpha shape specified by the molecule is shown in Figure 6.4 (b). The cavities

and pockets of the alpha shape are illustrated in Figure 6.4 (c). Either a cavity or a

pocket is a collection of the tetrahedra that do not belong to the alpha shapes but

are contained in the weighted Delaunay triangulation. A cavity differs from a pocket

in that the pocket has opens to the outside of the alpha shapes. Figure 6.4 (d) shows

the molecular skin model of the protein 1scn. The cross-section of the molecular skin

model is illustrated in Figure 6.4 (e) and the red color regions identify the cavities

inside the molecule. Figure 6.4 (f) illustrates the largest pocket on the surface of the

protein 1scn.

These results demonstrate that the skin meshing software generates desirable ge-

ometric representations for the molecules. First, the alpha shapes can be used to

compute geometric measures of a molecule, such as its volume and surface area [74].

Second, the pockets of the alpha shapes are elegant mathematical models for the

binding sites of the proteins. The definition of the pockets do not rely on the size of

the probe sphere and grid resolution so that they are free of the numerical issues in the

work like [68]. Third, the molecular skin model represents the shape of the molecule

better than the exiting surface models of molecules. On one hand, it represents the

geometry of the molecules more accurately than the van der Walls model because

the surface of the molecular skin model is smooth while the other is not. Moreover,

the cavities inside the molecules can be identified and represented only in the skin

model. These results also certify that the molecular skin model is a better geometric

model for the macro-molecules such as proteins and DNAs. Finally, the pockets of

the molecular skin model capture the concave geometric features on the surface of a

protein. These features are the key to study the function of the proteins.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Molecular models generated by the skin meshing software.
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In summary, the skin meshing software can be a powerful computational tool for

the study of geometric shapes and the functionalities of molecules. Next, I propose a

few potential applications of the skin meshing software.

6.2 Applications

The skin meshes generated by the skin meshing software have applications in com-

putational biology, geometric modeling and computer graphics. I will describe four

closely related applications, namely, molecular visualization, molecular shape analy-

sis, numerical computations, and computer graphics.

Molecular Visualization. Graphical models of a molecule provide valuable infor-

mation about the structure, physical and chemical properties, and biological functions

of the molecule [93]. The skin surface lends itself as a surface model for the macro-

molecules with desirable properties like smoothness and complementarity, which are

not shared by other models. The rendering of the skin surface meshes visualizes the

molecular shape with a smooth surface, as shown in Figure 6.5 (a). It complements

the current molecular visualization styles using ball-stick model, cartoon model and

etc. Moreover, the shape features like concavities can be identified on the skin model.

See 6.5 (b) for an example.

In addition, the skin meshes also facilitate the visualization of the molecular prop-

erties, such as atomic charge, electrostatic potential, polarization etc. We can encode

the information as color codes and texture maps over the skin surface to represent

these added dimensional properties. For example, the red colored regions on the sur-

face represent the areas with negative polarization and the blue colored regions have

positive polarization.
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(a) (b)

Figure 6.5: Molecular models of a protein. Figure (a) shows molecular skin model
with the cartoon model embedded inside and (b) illustrates the zoomed view of a
concavity on the surface.

Molecular Shape Analysis. The molecular shape plays an important role in the

process of the protein-ligand interactions. Reactions always occur when the shapes of

two proteins fit each other. To predict whether two proteins A and B would interact

each other, we can develop algorithms to find the best transformation of B such that

it best complements the protein A. That is, the surfaces of the protein A and B match

each other partially without intersections. A main issue involved in here is to improve

the efficiency of the searching algorithm because it is computationally infeasible to

rotate and translate one surface model for exploring every possible transformation

to match the other. We can match the essential geometric features on the surface

instead of matching the whole shape globally. For example, Agarwal et al. [4] uses

the critical points of a scalar function defined over the molecular surface to character-

ize the concavities and protrusions. The surface triangulations generated by the skin

meshing software facilitates efficient combinatorial algorithm to compute such geo-

metric features. As a result, the application of our skin meshes to the protein-ligand

docking problem can achieve high efficiency.

Moreover, the skin meshes are useful in the applications of finding the binding

sites of proteins. A binding site of a protein is the region on the protein surface where
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a ligand interacts with the protein, which are important to predict the protein-ligand

interactions [86]. According to the experimental results, the binding sites usually

located in the concavities such as the clefts and grooves on the surface of the proteins

[68]. As a result, the pockets on the skin surface would be positive conjectures for

the binding sites. There are always more than one pockets on a skin surface and we

need to filter the false positive ones. We can compute shape descriptors [8, 76, 88]

of the triangular patches representing the pockets. Then, we apply machine learning

methods on the existing true binding site database to derive rules that describe the

relationship between the true binding sites and the pockets of the skin surface. These

rules would suggest new methodologies to study the protein-ligand problem.

Numerical Computations. An important feature of the meshes generated by the

skin meshing software is that both the surface triangulation and the tetrahedralization

of the skin body have guaranteed quality. This property is desirable for the numerical

computations over the surface and the volume bounded by the surface because the

accuracy and stability of the solution with numerical methods depend on the mesh

quality. For example, the computation of the electrostatic potential of molecules by

solving the Poisson-Boltzmann equation(PBE).

The quality surface meshes facilitate the boundary element methods (BEM) to

solve the linear partial differential equations defined over the domain bounded by the

skin surface. The BEM methods exploit the fact that many differential equations

can be transformed into a set of integral equations over the boundary surface. With

a discrete approximation of the boundary, namely, the surface triangulation, the

solution of the integral equations can be approximated by the summation of the

integration over each triangle. This can be carried out by numerical quadrature, in

which the function value at each point inside the triangle is the linear interpolation of

the known value at the mesh vertices of the triangle. The interpolation error would
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be minimized when the minimal angle of the triangle is maximized. Since the surface

triangulation generated by the skin meshing software guarantees a lower bound on the

minimum angle and approximates the surface topologically correct and geometrically

accurate, I believe the solution of the BEM using the skin triangulation will be more

accurate.

The tetrahedral meshes of the skin body can be applied in the finite element

methods for solving the nonlinear PBE. There are three advantages of our tetrahe-

dral meshes over the structure grids used in the previous work [63, 84]. First, the

tetrahedral mesh is adaptive and well graded. In other words, the region inside the

domain is filled by large tetrahedra and the region near the boundary consists of

small tetrahedra. As a result, we have a smaller number of tetrahedra than that of

the grids to decomposing the domain, which implies a faster solution for the FEM

methods. Second, the boundary of tetrahedral mesh approximates the original sur-

face accurately. This property is important for accurate solution because the PBE

is sensitive to the boundary. Contrast with the numerical errors due to the limited

grid resolution in [84], our tetrahedral meshes conform to the boundary perfectly.

Finally, the tetrahedral mesh has guarantees on the radius-edge ratio and is free of

slivers. These properties are essential for the accuracy and convergency of the finite

element methods. As a result, the solution of PBE using the finite element meth-

ods over our tetrahedral mesh will achieve good agreements with experimental results.

Computer Graphics. The skin surface will be a supplementary representation for

the geometric objects with smooth surfaces. Currently, there are mainly two groups

of smooth surfaces: explicit and implicit surfaces [12]. The most popular explicit sur-

faces are parametric surfaces, for example, nonuniform rational B-splines(NURBS),

which are widely used in the computer graphics and computer aided design applica-

tions [55, 85]. The advantages of the parametric surfaces include ease of triangulating
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and multiresolution control. However, modeling the details on a surface needs a large

number of parametric surface patches. Other than parametric surfaces, implicit sur-

faces can model high degree of smoothness for arbitrary surfaces. They are capable

of deformation and ray tracing but can not be easily triangulated and parameterized

[16, 82].

The skin surface captures the advantages of both parametric surfaces and implicit

surfaces. On one hand, the skin surface is a piecewise quadratic surface that is capable

of being parameterized and triangulated. On the other hand, the skin surface can

be deformed freely with smooth transitions. Cheng et al. [24] had established a

new framework of automatic shape deformation based on the skin representation.

Therefore, the skin surface has the potential to be used widely in the applications

such as geometric design and computer animation [55, 82, 100]. Figure 6.6 illustrates

a foot and the Stanford Bunny represented by the skin surface.
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(a)

(b)

Figure 6.6: The skin model of a foot and the Stanford Bunny.
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Chapter 7

Conclusion

This thesis developed efficient algorithms to generate high quality surface and volu-

metric meshes for macromolecules. The meshes will improve the accuracy of protein-

ligand docking significantly. On one hand, the surface meshes facilitate efficient algo-

rithms to compute the alignments of two molecules with perfect shape matching. On

the other hand, the volumetric meshes are necessary to compute the electrostatic po-

tential of macromolecules with numerical methods. The electrostatic potential helps

to discriminate the real docking conformation from the set of alignments. As such,

this work is expected to advance the research in the field of drug development be-

cause accurate protein-ligand docking improves the efficiency of drug selections and

decreases the costs of experiments for drug tests simultaneously.

Besides the contribution to molecular modeling, this thesis also contributes to

the research in mesh generation in three aspects. First, the front collision problem

in advancing front methods is handled by employing the critical points of a Morse

function. Our experimental results show that the solution improves the efficiency of

advancing front meshing algorithms dramatically. Second, a new meshing algorithm

is developed by integrating the Delaunay triangulation into advancing front methods.

The algorithm captures the advantages of both front advancing and Delauany-based
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meshing methods. On one hand, the algorithm places mesh vertices incrementally

with precise control and performs efficiently. On the other hand, the algorithm pro-

vides provable guarantees on the mesh quality. Third, a variant of the Delaunay

refinement, namely, the prioritized Delaunay refinement, is applied to generate qual-

ity tetrahedral meshes for the volumes of smooth surfaces. The priority of new mesh

vertices insertion is parameterized by the distance function defined by the surface.

Such a priority enables the Delaunay refinement to generate well-graded tetrahedral

meshes that conform to their boundary. The well-graded and conformal tetrahedral

meshes improve the accuracy of the solution of numerical methods and accelerate the

convergency of the solvers [20].

Further investigation is expected in several aspects. First, we can extend our

sweeping meshing algorithm to triangulate the implicit surfaces. In such an exten-

sion, only one issue needs to be addressed, that is, the reformulation of the curvature

adaptive schema. One choice is to use the estimation of the local feature size to for-

mulate triangle size control constraints because its variation satisfies the one-Lipsitz

condition. Next, we can apply the sweeping algorithm to mesh a parametric sur-

face patch such as Nonuniform Rational B-Splines (NURBS) as well because quality

meshes for NURBS are desirable in current computer aided design studies [85]. The

boundaries of the surface patch can be first split to a collection of edges. These

edges work as the initial front and facilitate the application of our sweeping algo-

rithm because the surface patch is not a closed surface anymore and we cannot use

the minimum points. I believe these extensions would achieve similar meshing results

to our current results. Finally, the application of the skin surface is not limited to

molecular modeling. It is possible to investigate the application of the skin surfaces

in the computer graphics. Kruithof et al. [69] stepped toward this direction by ap-

proximating a simple smooth surface by a skin surface. Cheng and Tan [26] also

proposed a method to approximate polygonal objects with skin surfaces. Because the
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skin surface can be deformed freely with smooth transitions, the approximation of a

surface model with skin surfaces will give new insights for the computer animation

studies [82, 100].
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