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Abstract 

Detecting the movement of endosomes after the pharmacological treatment to cells is 

an interesting topic in pharmacology research. This study seeks to provide a 

comprehensive and objective characterization of the changes with respect to the 

intensity of cell cytoplasm and number of endosomes within a cell. Previous works 

have demonstrated that some automated methods can detect certain types of cells in 

fluorescence microscope images with high accuracy. However, cells in microscope 

images are tend to overlap with blur edges and noises. The existing methods are not 

effective enough to detect the endosomes and cell outlines for our cell images. Thus in 

this thesis, we defined a set of metrics to measure the endosomes in cells. Then we 

propose a method based on edge detection, machine learning and active contour 

modeling to detect the endosomes in the cells and locate those detected endosomes by 

cells. Based on our method, we implement a tool which can assist biologists to 

compute the metrics of each cell easily and quickly. 
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1 Introduction 
Detailed knowledge of the changes of cells after pharmacological treatment is critical 

to a full understanding of its function. Fluorescence microscopy, with the method of 

fluorescence tagging, is the most active method to detect such changes. Biologists 

usually use microscopy images to discover diseases, protein changes, cell movements 

etc. However, there is an obvious problem of examining microscopy images by 

human. This is because when biologists examine the microscopy images, they are 

relying on their experience and knowledge. The result can not be repeated by other 

investigators. The process is also very time and labor consuming as the number of 

images increases. Therefore we aim to develop a method which can process such 

microscopy images quickly and effectively. The following figure shows an example 

cell image we are going to analyze. 

 

Figure 1: Cell image 

 

Figure 1 shows a image with multiple cells. The proteins inside the cell are 

tagged by fluorescence techniques. Biologist puts drugs on the surface of cell. After 

Endosomes

Cell membrane 

Cytoplasm 
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certain period of time, the drugs can move through the cell membrane which is a 

selectively permeable membrane into the cytoplasm. Then the tagged protein will 

become quite bright with the effect of drugs under the microscope. The microscopy 

images will show some relatively bright regions inside the cell, which are endosomes. 

 

According to the pharmacological study, the intensity of cytoplasm (referred to 

microscopy image) and the number of endosomes in one single cell will be different 

under different treatments. Thus, our objective is to determine the intensity ratio of 

endosome and cytoplasm of a cell and the number of endosomes per cell. 

Endosome 
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1.1  Related Works 

Endosome detection in cell images is a challenging task due to the complex nature of 

the cell tissue, and problems inherent to video microscopy. Object multiplicity, short 

range of grey levels, clutter, occlusion and non-random noise are some examples of 

the difficulties present in this kind of images. The diversity of cells also raises the 

difficulties of building up a universal solution in automatic cell segmentation 

problems. For example, the leukocyte and erythrocyte always have a consistent circle 

or elliptical shape with homogeneous intensity cytoplasm. Axon cells have very thick 

and clear cell membranes. Different neural cells have different protein sub-cellular 

patterns around their nucleolus. However, most of those cells on microscopy images 

share the following characteristics: 

 No matter what kind of cell tissue is, there are cytoplasm and membrane for each 

cell. Cytoplasm has different intensity from membrane. 

 The outline of all complete cells is an enclosed contour. 

 The gradient at the edge of cell will sharply changed from the cell interior. 

 

These characteristics are typically used as the basic features in cell image 

segmentation techniques. One common segmentation scheme is image thresholding 

[43, 48], which can be regarded as pixel classification. Other classical image 

segmentations include region-based segmentation, edge-based segmentation and etc. 

A good cell segmentation method always combines basic image segmentation 

techniques and achieves certain goals, such as track cell movement, monitor cell 

division, and etc. 

 

Cell segmentation techniques for single cell analysis aim to classify the patterns of 

sub-cellular structures in fluorescence microscope images. Assessment of protein 

sub-cellular location is crucial to proteomics efforts since localization information 

provides a context for a protein’s sequence, structure, and function [50]. Therefore, an 

accurate recognition of the patterns of major sub-cellular structures is necessary to 
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biomedical researches. The purpose of single cell analysis is to classify different 

organic cells based on their interior proteins. Typically each image in single cell 

analysis has only one cell but with different sub-cellular protein structures presented 

in this cell. Therefore, several features of proteins are defined to classify different 

sub-cellular protein structures, such as the number of fluorescent objects in one cell, 

the average number of above-threshold pixels per object, etc. Since different organic 

cells have different sub-cellular protein structures, once the sub-cellular protein 

structure can be recognized, the cells can also be recognized. Many popular data 

mining techniques are applied in sub-cellular protein recognition, such as Support 

Vector Machine [11], neural networks [19], statistical classifier [38], etc. Our cell 

images are not directly applicable to the single cell analysis because there are multiple 

cells on each image. However, we can apply the protein recognition techniques used 

in single cell analysis to find out the endosomes on entire image, and then locate them 

by cells.  

 

Cell segmentation techniques for multiple cells aim on cell tracking and cell 

outlining. The most systematic cell outlining method is Garrido’s method [18], which 

uses the traditional morphological methodologies and Hough transform algorithm 

followed by deformable template model. Level-set [36] is another approach, which 

segments the cell images based on the intensity intervals and minimization energy 

functional. Another approach is to apply texture feature extraction method on cell 

images to get the texture information, and then followed by the thresholding to detect 

the abnormal regions [3, 23, 37]. Besides those main approaches, there are many other 

cell segmentation methods, such as mean shift [15], gradient vector [39], etc. 

 

As we discussed in previous paragraphs, the protein recognition techniques, which 

are based on traditional image morphology and data mining techniques, can be 

applied to the endosome detection. On the other hand, the active contour algorithm 

used in multiple cell analysis can also be applied in our work to extract the cell 

outlines. Then we can locate the endosomes within a cell and compute the metrics for 
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each single cell. 

 

 

1.2  Contribution 

In this thesis, we propose a method which is based on Garrido’s method. The first step 

is to apply Canny edge detector on cell image to get the Canny edge result. This 

Canny edge result contains two classes of edges: endosome edge and cell membrane 

edges, or cell boundaries. Then we define the features for those edges and apply the 

classification techniques to classify those edges into endosome edges and 

non-endosome edges. In the third step, we utilize the endosome edges to get the 

approximate cell locations. After we extract the approximate cell locations, we apply 

improved active contour algorithm to get the cell boundary for each cell. Finally, we 

can compute the metrics per cell.  

 

In the following chapters, we first discuss the basic image segmentation 

techniques, such as edge-based segmentation, region-based segmentation, etc. Then 

we further analyze the details of some closely related previous research works done 

on cell image analysis. We will discuss Garrido’s approach [18], level-set algorithm 

[36] and Gabor filter [14], and analyze these approaches. After related work 

discussion, we will describe our method which has 3 main steps:  

1. Endosome detection with iterative training process.  

2. Initial cell location detection. 

3. Cell contour extraction.  

In the experiment studies, we first show the performance of endosome detection 

with iterative training, and then compute the metrics by our method vs. the result 

obtained manually. Conclusion will be drawn after the experiment result, followed by 

the future work. 
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2 Related Works 
Endosome detection in cell images is a quite new topic. There is no such literature 

found after a fair amount of search. However, many existing cell image analysis 

techniques can be utilized to solve this problem. Currently, there are a lot of works 

have been done on the cell image analysis [5, 13, 15, 17, 18, 25, 34, 36, 39, 40, 50], 

such as cell segmentation, cell tracking, sub-cellular recognition, tumor cell 

identification, etc. Those works involve traditionally image segmentation techniques, 

such as region-based or edge-based image segmentation, and advanced image 

segmentation techniques, such as texture extraction, pattern recognition, deformable 

template and etc.  

 

 In this chapter, we will first introduce the basic image segmentation techniques. 

After that, we will have a detailed discussion on the specific cell segmentation 

techniques.  

 

 

2.1  Basic Image Segmentation Techniques 

The principle goal of image segmentation is to partition an image into several regions 

that share some common features. Segmentation is very important in medical image 

processing and it has been used in many applications, such as vessel extraction, 

muscle measurements, bone classification, cancer pathology, tissue deformities, cell 

segmentations, etc. A wide variety of segmentation techniques has been proposed. 

However, there is no one standard segmentation technique can perfectly fit to all 

medical image problems. Different studies and different types of image data lead to 

different definition of the goal of segmentation. Therefore, different assumptions 

about the nature of images lead to different algorithm applied.  

 

The most common used segmentation techniques can be classified as two classes: 

region-based algorithm and edge based algorithm. The former looks for the regions 
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that fit the requirement of segmentation, whereas the latter looks for the edges of 

target object.  

 

 

2.1.1 Region-based techniques 

Thresholding is a very common region segmentation method [43, 48]. In this 

technique, a threshold is selected and the image is divided into two groups. One group 

contains all the pixels with values higher than the threshold, and the other group is all 

pixels with lower values. However, direct thresholding approaches are not applicable 

to our cell images, because the grey level intensity of a cell image does not vary only 

on the boundary, but also within cells and throughout the background. In general, 

thresholding is not an effective method. The region-based thresholding is also not 

applicable, because not all of the parts of the same tissue are equally stained. Brighter 

background regions may be misclassified as endosomes and darker endosomes may 

be misclassified as background.  

 

 Region growing [1] is another commonly used region-based segmentation 

technique. It starts with a pixel or a group of pixels that belong to the structure of 

interest. Then the neighboring pixels are examined and “similar” pixels will be added 

to the growing region. The similarity can be defined in various ways, and the most 

common definition is the intensity homogeneity. The advantage of region growing is 

that it can correctly segment those regions that have the same properties and are 

spatially separated. However, this technique requires seeds for region growing, which 

can only be provided by an operator or some automatic seed finding procedure [53].  

 

 The watershed algorithm [7] is a region-based technique that utilizes image 

morphology. An initial seed for each object and the circle enclosing the area well 

outside the object are selected. The bright pixels can be considered as mountain tops 

and the dark pixels can be considered as valleys. Then some valleys are punctured and 

submerged with water. The water will start to fill the valleys until it flows outside the 
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circle or stops flow. In this technique, each point in the circle will be dropped by a 

drop of water, if this drop of water can flow to the exterior marker, then it will be 

considered as an exterior of object, otherwise, it is an interior. 

 

The Tophat transform [16] is a morphological operation that uses the image 

opening or closing followed by subtraction. The endosomes actually are small bright 

regions on the relatively darker background. The shapes of endosomes are like circles 

or ellipses. Thus we can use a structure element that is larger than the extent of those 

regions to detect those endosomes. A structure element also called a kernel is a small 

rectangular grid that represents some basic shapes. For example, the structure element 

we used in the Tophat transform is a circle with radius of n. The following figure 

shows an illustration of a circle structure element with radius of 4 in 4x4 grids.  

 
Figure 2: Structure element of circle with radius of 4 

 

The image opening is a Min operation that removes those bright regions that are 

smaller in dimension than the structure element used in the operation. An opening is 

defined as erosion followed by a dilation using the same structure element for both 

operations. To compute the erosion of a binary input image by given structure element, 

we consider each of the foreground pixels in the input image in turn. For each 

foreground pixel (which we will call the input pixel) we superimpose the structuring 

element on top of the input image so that the origin of the structuring element 

coincides with the input pixel coordinates. If for every pixel in the structuring element, 

the corresponding pixel in the image underneath is a foreground pixel, then the input 

pixel is left as it is. If any of the corresponding pixels in the image are background, 
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however, the input pixel is also set to background value. Dilation is the dual of 

erosion, i.e. dilating foreground pixels is equivalent to eroding background pixels. 

After applying image opening operation, we can just subtract the image with the thin 

peaks cut off from the original image and it gives you just those peaks plus some low 

amplitude noise.  

 

 

2.1.2 Edge-based segmentation techniques 

Region-based segmentation techniques are always based on pixel intensity, and 

edge-based segmentation techniques are based on local pixel intensity gradient. A 

gradient is defined as the approximation of the first-order derivative of the image. 

Since the digital images all consist of discrete pixels, the continuous differentiation is 

not applicable in digital images. However, most gradient operators use convolutions 

to differencing images in order to get the gradient map of original image. The most 

common used gradient operators are Roberts [21], Prewitt [24], Robinson [41], Krisch 

[41], and Frei-Chen [42]. 

 

Many edge detection methods use a gradient operator, followed by a threshold 

operation on the gradient, in order to decide whether a pixel is on the edge [4, 44]. 

Therefore, the output of the edge detector is always a binary image where the white 

pixels or lines indicate where the edges are. The edge-based segmentation techniques 

are computationally fast and do not require a priori information about image content. 

However, it requires the selection of threshold, which is a difficult task. On the other 

hand, thresholding will raise the problem of broken edges. This means the edges do 

not enclose the object completely due to the variety of object shape, color, light and 

etc. To form a closed boundary of an object, a post processing step is required, which 

is called edge linking.  

 

The simplest approach of edge linking is to examine the neighboring edge pixels. 

If the edges have similar magnitude and direction, and the distance is close enough, 
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then a link can be established between these two edges. Generally speaking, edge 

linking is quite computationally expensive and not very reliable. One solution is to 

make the edge linking semiautomatic and ask a user to draw the edges when the 

automatic tracing becomes difficult. For example, Wang [46] developed a hybrid 

algorithm for MR cardiac cineangiography in which a human operator interacts with 

the edge tracing operation by using anatomic knowledge to correct errors. 

 

The peaks in the first-order derivative correspond to zeros in the second-order 

derivative, therefore, people also can use second-order derivative to find the edges. 

The most common technique using second-order derivative is the Laplacian operator. 

It will make a transition through zero at the edge pixels. Therefore, it is also known as 

zero-crossing. 

 

All edge detectors that are based on a gradient operator are very sensitive to 

noises. In most applications, a smoothing processing will be applied prior the edge 

detection in order to reduce the noise effect. Marr and Hildreth [33] proposed 

smoothing the image with a Gaussian filter before application of the Laplacian, also 

known as Laplacian of Gaussian. The advantage of Laplacian of Gaussian operator is 

that the edges of the objects are smoother and better outlined. Canny [6] proposed the 

same smoothing algorithm as Marr and Hildreth, but followed by a first-order 

derivative gradient operator. 
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2.2  Cell Segmentation Techniques 

There are many cell segmentation techniques, such as Garrido [18], Mukeherjee [36], 

Ray [39], McInerney [34], Debeir [15], etc. Among those techniques, there are three 

main approaches, which are deformable template, level-set algorithm and texture 

feature extraction.  

 

The deformable template model proposed by Garrido [18] is the most systematic 

method. The idea of this model is quite straightforward. Since every cell has 

membrane, and normally the cytoplasm inside the membrane appears darker or lighter 

than the outside environment. On the other hand, membrane also has different 

intensity from cytoplasm. So to extract single cells from a group of randomly 

distributed cells, they try to find the membranes first. After extracting the membranes, 

the cell outline can be drawn and approximate cell location can be found. A 

deformable template will be placed at each approximated cell location. With some 

preset criteria, those deformable templates will deform, grow and finally stop at the 

true membranes. In the end, each deformable contour will indicate a single cell. 

 

Mukherjee et al. [36] detect and track leukocyte by applying level set algorithm. 

Level set algorithm segment the image into different regions according to the intensity 

at each pixel. Every pixel will fall in a region in which all the pixels have similar 

intensities. Thus, the image after level-set segmentation looks like a level map, which 

is where the term “level-set” comes from. Based on the layers, a minimization energy 

function is applied to each segment within one layer to get the segment with minimum 

energy value. After that, the segment with global minimum energy value will be 

selected as cell outline. However, the assumptions of this method are the leukocyte 

must be nearly circular and cytoplasm is almost intensity homogeneous. 

 

Texture feature extraction is commonly used in the medical image feature 

extraction. One of the most popular signal processing based approaches for texture 
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feature extraction is the Gabor filters. Gabor filter enables texture feature filtering in 

the frequency and spatial domain. Turner [45] first implemented texture 

discrimination by using a bank of Gabor filters to analyze texture. A range of filters at 

different scales and orientations allows multi-channel filtering of an image to extract 

frequency and orientation information. Gabor filters are also used to model the 

response of the human visual system. Therefore, Gabor filter can be used to 

decompose the cell image into different sub-regions according to different texture 

features, such as different proteins, cell membranes, cell bond, etc. 

 

Neural network is another popular approach of sub-cellular structures recognition 

in recent years. The proteins in cell can be considered as patterns. Since different 

proteins will have different features, therefore, those patterns in the microscopy 

images will have different appearances. Those features can be extracted by some 

classical image segmentation or morphology methodologies, such as thresholding, 

watershed, edge detector, etc. Some texture feature extraction techniques are also used 

to extract the object features, such as Gabor filter, Wavelet transform, etc. With those 

features, researchers can build up a neural network classifier by applying the latest 

data mining techniques. Besides neural network classifier, Support Vector Machines 

(SVM), decision tree, Bayesian classifier, statistical classifier, almost all the popular 

classifiers have been integrated into cell image analysis, and achieve quite good 

performance in certain fields.  

 

There are some other methods which are proposed to solve certain cell image 

problems. Mean-shift algorithm is used to capture the changes of center point of a 

given region. An approach based on mean-shift algorithm is proposed by Debeir et al. 

[15], which is to track the process of migrating cell trajectories establishment through 

in vitro phase-contrast video microscopy. Fok et al. [17] use an elliptical Hough 

transform to roughly identify all the axon centers of nerve cells, and then apply active 

contour model to extract the boundaries of each axon. Ray uses a modified gradient 

vector flow, which is called motion gradient vector flow to track rolling leukocytes in 
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microscope.  

 

In this section, I will first go through three main approaches, which are Garrido’s 

method, level-set algorithm and Gabor filter approach. A full comparison and 

discussion on the Pros and Cons of those existing methods will be drawn in the end of 

this chapter. 

 

 

2.2.1 Garrido’s Method 

To address the automatic cell segmentation problem, Garrido presented a novel 

method, which is based on the deformable template. The images used in this paper are 

cytology images, which are acquired through a CCD camera adapted to an optical 

microscope and stained with the Papanicolau technique. There are three main 

characteristics are presented in this paper: 

 An absence of high contrast. It is well know that microscopical biomedical 

images have a short range of grey levels. 

 Many cluttered objects in a single scene. A high number of overlapping objects 

makes image segmentation difficult 

 Low quality. Traditional staining techniques like that of Papanicolau introduce a 

lot of in homogeneities into the images, where not all of the parts of the same 

tissue are equally stained. 

 

Garrido designed an automatic, complete and systematic segmentation method 

for those cell images with problems such as a short range of grey levels, clutter, 

occlusion and non-random noises. There are three steps, cell edge detection, cell 

location detection and deformable template evolution. Figure 4 shows the flow chart 

of Garrido’s method.  
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Figure 3: Flow chart of Garrido’s method 

 

The first step is to detect cell edges. The purpose of this step is to obtain the 

evidence of the cell locations. They use Canny edge detector [6], which is designed to 

be the optimal edge detector. It works in a multi-stage process. First of all the image is 

smoothed by Gaussian convolution, then Roberts Cross, which is a simple 2-D first 

derivative operator, is applied to the smoothed image. Edges give rise to ridges in the 

gradient magnitude image. The algorithm then tracks those ridges with control of two 

thresholds. The detail of Canny edge detector will be further discussed in next 

chapter. 

 

Before starting the locating process, they do a post-process to the edges. The 

post-process consists of preparing the chains and determining the location of the 

straight line segments. Both processes are quite straightforward. They just remove the 

joint point of every edge. Then if the maximum distance between each of the points 

along the chain and the given straight line segment is less than a given threshold, this 

chain is considered as corresponds to this straight line segment. 
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In step 2, Hough transform [2, 26] is applied to the edge image to estimate the 

location of cell center. They use an octagon with equal length of sides as the segment 

to define a circle, which is shown in the following figure: 

 

Figure 4: Segments to define a circle 

With a shape defined by n segments ri of length li (0 < i < n+1). If mi segments 

of length 
jiL  detected corresponding to tendence ri and referencing position p in the 

Hough transform accumulator, the value of evidence E(p) can be calculated as 

follows: 
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where p is any pixel in the image. li is the length of octagon’s side, which is equal to 

each other from i to n. mi is the chains considered as corresponding to a given 

tendence ri. Thus this formula is saying to get the evidence value at pixel p, we can 

draw a octagon centered at p, then find the chain segments detected in first step 

corresponding to the eight sides of this octagon. After that, we find the longest 

matched chain segment for each side, and times the coefficient ai and sum up them to 

get the evidence value. Those evidence values constitute the parameter space. After 

setting simple threshold to the parameter space, the estimated cell center can be 

obtained. 

R 
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The last step is to apply a deformable template model to find the real cell 

boundary. They use a deformable template with global shape constraints, which was 

proposed by Grenander [22, 31]. They define an external function involves of the 

stable edges and image gradients.  

 

This model is effective to the images with homogenous intensity in cytoplasm and 

with elliptical shapes of cell. However, for our cell images, there are a lot of 

endosome regions inside the cell, thus after applying canny edge detector, there will 

be many false edges detected inside cells. Those false edges actually are endosomes, 

and they can confuse Garrido’s model. Another problem of this model is the Hough 

transform they used in this paper. They will calculate every pixel to construct 

parameter space, which takes a lot of time to process. Fok [17] uses the same 

procedures as Garrido, but the difference is Fok’s image contains some interior noises 

and a very sharp and thick cell boundary. Therefore Fok do not need to concern cell 

boundary detection very much, and he just uses the standard active contour algorithm. 

So we are not going to discuss Fok’s model in details. 

 

 

2.2.2 Level Set Algorithm 

Level-set algorithm is a new approach in cell segmentation field. In mathematics, a 

level-set of a real-valued function f of n variables is a set of the form: 

( ) ( ){ }cxxfxx nn =,...,|,..., 11       (25) 

 where c is a constant. That is, it is the set where the function takes on a given 

constant value. When the number of variables is two, it is called level curve or 

contour line. It is a curve connecting points where the function has a same particular 

value. The advantage of the level set method is that one can perform numerical 

computations involving curves and surfaces on a fixed Cartesian grid without having 

to parameterize these objects. Also the level set method makes it very easy to follow 

shapes which change topology, for example when a shape splits in two, develops 
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holes, or the reverse of these operations. All these make the level set method a great 

tool for modeling the geographical objects. The medical images are always in grey 

level. Therefore people also can apply level-set algorithm by assuming those medical 

images as geographical images. 

 

Mukeherjee’s proposed a level-set based method [36], which is designed to detect 

the leukocyte and also track the movement of detected leukocyte. Since our images 

are not live cell images, so we do not need to concern about the tracking part, the 

interest part is only the detection of leukocyte. Level set morphology in leukocyte 

image segmentation refers to the binary umbra extracted from the image using a 

threshold decomposition of particular image intensity level. The leukocyte and level 

lines of this leukocyte are shown in Figure 8. Naturally, the binary umbra contains of 

collection of connected components that constitute objects in the image. The 

boundaries of these connected components are referred to as level lines. Each 

intensity level may have several connected components. Certainly, the leukocyte 

shape profile is embedded in any one or many of these level lines.  

 

Figure 5: (a) leukocyte. (b) level lines of leukocyte 

 

Mukeherjee proposed level-set based algorithm is because they assume two 

specific features of their leukocyte’s cell intensity profiles always hold: 

1) a typical boundary envelope in which the intensity profile is different from the 

cell cytoplasm and from the background, if not the entire boundary but at least for a 

significant part of the border; 

2) the leukocyte shapes are nearly circular, except for teardrop-like deformation 

(a) (b) 
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encountered when in contact with the endothelium [13]. 

 

Therefore, it is necessary to define an energy functional which can find the shape 

embedded in the level lines. To achieve this target, they consider detecting 

homogeneous regions with distinct boundary as the placement of a closed curve that 

maximizes image gradient at its boundary and intensity homogeneity for its interior. 

Given a parameterized curve Ci(s) = [X(s), Y(s)], s∈[0,1], that separates objects from 

the background, the energy functional for leukocyte capture should minimize the 

following function: 

∫ ∫∫ ∫∫ ∑
℘ ℘ ≠=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−∇−=
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i iC C
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Here the first term ( )dsIg∫ ∇
1

0
 integrates image gradient along the curve Ci. If 

this value is high, then it means the gradients on the curve are high. High gradient 

means sharp changes of the intensity, which is an indication of cell boundary. With a 

negative sign, this term can be minimized. 

The second term represents the homogeneity of the image region )( iC℘ , where 

H(x, y) is defined as following: 

2

2

2
)),((),(

σ
μ−

−=
yxIyxH       (27) 

 

(x, y) is the coordinate of pixels inside the closed curve, I(x, y) represents the 

intensity of this pixel, and μ is the intensity mean of this curve, σ is the intensity 

variance of this curve. If the cell interior is not homogenous, then the variance of 

interior should be high. Therefore the accumulated intensity difference between each 

pixel and average intensity value will also increase. With a negative sign, this value 

also can be minimized.  

 

They also assume the leukocytes are not overlapping to each other, therefore the 
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curves representing leukocytes can neither be intersecting nor circumscribed into one 

another. This assumption is represented as the third term in equation (27). The 

function Xj is the characteristic function for the jth
 curve representing a leukocyte 

boundary and is defined as: 

⎩
⎨
⎧

=
,0
,1

),( yxjχ  
otherwise

Cyxif j )(),( ∈℘
      (28) 

 

 )( jC℘  is the region bounded by curve Cj and N is the total number of leukocytes 

detected in the image. If a pixel (x, y) belongs to multiple curves delineating potential 

cells, ∑ jχ  increases. The summation is minimized in the case that there is no 

overlap between cell boundaries. Small value means highly possibility of this 

component being on top of all other overlapping component. 

 

 After define the energy functional, it is time to design the minimization algorithm. 

Since the image is segmented by level-set algorithm, so each layer represents an 

image that contains a lot of connected components. If we superimpose one layer on 

top of another layer, we can find a lot of overlapping connected components. For the 

overlapping components, Mukeherjee assigned them same label. So the problem 

became how to find the minimum energy functional component with same label.  

 

 The algorithm proposed by Mukeherjee is designed as follows: 

1. First eliminate subscale and above-scale components from original image. 

2. A set of level sets that contains all connected components are extracted from 

the image got from step 1. 

3. For different level sets, label the overlapping components with the same 

index. 

4. Calculate energy functional value for each component. 

5. For components with same label, find the one with minimum value. 

Thus those components with minimum values are the cells they wanted. 
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This method can quickly find the leukocyte in microscope. It is because of the low 

calculation complexity and fast minimization process. The image used in this method 

has the following features: 

1. Elliptical shape. 

2. Homogeneous interior and low noises. 

3. No cell occlusion and clutter. 

 

 

2.2.3 Gabor Filter 

Gabor filter is defined by harmonic functions modulated by a Gaussian distribution. It 

has received considerable attentions because it can approximate some functions of 

certain cells in the visual cortex of some mammals [14]. In addition, these filters have 

shown to posses optimal localization properties in both spatial and frequency domain 

and thus are well suited for texture segmentation problems [27, 28]. Investigators 

have successfully employed Gabor filters in a wide range of image-processing 

applications, including texture segmentation, document analysis, image coding, retina 

identification, target detection, fractal dimension measurement, edge detection, line 

characterization, and image representation [47]. Our endosome detection in cell image 

can also be considered as texture segmentation problem. This is because the 

endosomes and cytoplasm can be treated as two different textures, and Gabor filter is 

the optimal method for texture segmentation. Therefore, utilize Gabor filter to 

segment our cell images could be another approach. 

 

 A Gabor filter can be viewed as a sinusoidal plane of particular frequency and 

orientation, modulated by a Gaussian envelope. It can be written as: 

),(),(),( ,,, yxgyxsyxG σθψθψσ =       (29) 

 Where s(x, y) is a complex sinusoid, known as a carrier and g(x, y) is a 2-D 

Gaussian shaped function, known as envelope. X and y are the coordinates or pixel on 

image, so the pair (x, y) means one point on image. The complex sinusoid and the 
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Gaussian envelope are defined as follows, 

( )( )θθπψθψ sincos2exp),(, yxjyxs +=      (30) 
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whereψ is frequency, θ is orientation and σ is bandwidth. 

 

Therefore, Gψθσ(x, y) can be transferred to a complex number, which is defined as the 

following formula. 

),(),(),(,, yxjGyxGyxG IR +=θψσ      (32) 

The real part and imaginary part can be defined as: 

( )[ ]θθπψσ sincos2cos),(),( yxyxgyxGR +=      (33) 

( )[ ]θθπψσ sincos2sin),(),( yxyxgyxGI +=      (34) 

 

After define the Gabor filter, we can apply it to the sample image. This process is 

similar to the convolution. First set the size of Gabor filter, which is 2k+1. Then 

convolve the image with this Gabor filter pixel by pixel, which is defined as follows: 

( ) ( )∑∑
−= −=

++=
k

kj

k

ki
jiGjyixfyxG ,,),( ,, θψσ      (35) 

The real part and imaginary part of the above convolution formula can be written as: 
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where f(x, y) means the intensity of pixel (x, y). 

 

 After convolution with Gabor filter, each point will have a complex number 

calculated by Gabor filter. The energy for each point then can be defined as the square 
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of modulus, which is as follows: 

( ) ( )[ ] ( )[ ]22 ,,,,,,,,, θψσθψσ yxGyxGyxE IR +=     (38) 

 

Thus, to get the optimal solution of Gabor filter is to minimize E(x, y). There are 

three variables in this energy function, ψ,θ,σ. So the combination of those three 

variables which leads to the minimum value of E(x, y) is the optimal solution. After 

get the optimal solution from the sample image, this Gabor filter can be applied to the 

testing images. The similar textures in testing image will have same energy value as 

those in sample image. The noises or other textures in testing image will generate 

relatively higher energy value. Therefore, in the end of process, the textures in testing 

image which are different from sample image will show abnormal high intensity in 

the grey level result. So people can easily use some thresholding technique to find out 

those different textures. 
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2.3  Initial Study on Canny, Level-set Gabor & Tophat Methods 

To better understand the cell segmentation approaches, we implemented the Canny, 

Level-set Gabor and Tophat methods and apply them to the cell images. We also 

compare these methods with the straightforward thresholding, which is based on the 

intensity histogram. Let us look at the image intensity histograms first. The following 

figure shows the image intensity histogram for three types of treated cells. 
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Figure 6: Histogram of number of pixels per intensity 

  

From this histogram, we can see that the distributions of these three types of cells 

are quite similar to each other. That is why the simple thresholding technique will not 

work well on the cell images. The interesting thing is the low intensity bars. For 

5-treatment cells, there are no pixels under the intensity of 20. However this cannot be 

used as a feature to classify 5-treatment cells from other treatments. It is because in 

our 5-treatment images, no background was taken into the microscopy images, but for 

10-treatment and 20-treatment images, they both have quite large areas contain the 

background. 

 

Besides the thresholding method, we also implemented Canny detector, level-set 

method, Gabor approach and Tophat transform. The following figures show the result 

of those three initial approaches. 
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Figure 7: Different approaches to cell segmentation problem 

 

Figure 7 (a) is the cell cropped from the original image. Obviously, this cell is an 

elliptical cell, but cell top is occluded by another cell. Figure 7 (b) shows the result of 

(a) Original Image (a) Canny Result 

(c) Level-set Result (d) Gabor Result 

(e) Tophat Result 



 27

Canny detector. We can see that endosomes are captured nicely, and the cell outline is 

almost there. The only problem is the cell boundary is not well formed by straight 

lines. Figure 7 (c) shows the result of level-set algorithm. The red ellipse shows there 

are a lot of endosomes inside that region and no cell boundary over there. However, 

when we look at the original image, there is no endosomes there but a very clear cell 

edge. Figure 7 (d) shows the result of Gabor filter. The blue region indicates there are 

some obvious endosomes there, but actually they are just overlapping cell membranes. 

Figure 7 (e) shows the result of Tophat transform. Red regions indicate the endosome 

detected by Tophat transform.  

 

 We findthat the red region in level-set algorithm and the blue region in Gabor 

filter do not match. This because these two methods look for different features of 

images. Let us look at the intensity map of the original image first. 

 
Figure 8: Intensity map of original cell image 

 

Figure 8 shows the intensity map of original image. We found that the cell 

interior is much smoother than the cell edges. The endosomes are even lower than 

edge peaks. Therefore, when we apply Gabor filter to this cell. If we choose the 

cytoplasm as sample texture, the cell edge will give higher energy value than 

endosomes. This tells us the reason why Gabor filter gives us the cell occlusion part 

instead of endosomes. 
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 From the intensity map, we draw a horizontal line from left to right. The points 

along this horizontal line have different intensities, so we can draw a curve where the 

x-axis and y-axis are the x coordinate and intensity of those points respectively. 

Suppose we have the following curves: 

 

 

Figure 9: Different curve vs. same level set image 

 

 Curve 1 and curve 2 represent different textures. The texture of curve 1 is quite 

smooth, but the texture of curve 2 is quite rough. However, if the intensity level is set 

as like what Figure 9 shows, then these two textures will have exactly same level-set 

images, which is not true. The reason of this error is because level-set algorithm is 

highly depends on the intensity intervals. If we set the interval too large, then the 

level-set image cannot present the real texture information. But if we set the interval 

too small, a lot of fake objects will be generated. Therefore, in the initial result of 

level-set algorithm, there are a lot of fake endosomes detected. It is because the 

cytoplasm is just cross two level intensity intervals.  

 

For Tophat transform, there are two drawbacks. The first drawback is although it 

can find the location of endosomes, but the region detected cannot cover the entire 

endosome region. Many endosome pixels are missing. The second drawback is it 

contains a lot of tiny noises but misses some obvious endosomes. This is because 

many tiny noises are smaller than the structure element we used and some obvious 

endosomes have larger size than our structure element; therefore the Tophat transform 

Curve 2 

Curve 1 
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cannot remove the noises effectively but missed some big endosomes.  

 

 Canny detector’s result looks like the best one among those three initial results. It 

can capture most of the endosomes and cell edges. Since Canny detection is the first 

step of Garrido’s method, so we believe based on this edge segment image, Garrido’s 

method could be quite effective in next steps. Then we are going to use this method as 

the blueprint of our method.  

 

However, there are also two weak points of Garrido’s methods. Although the 

homogeneity of interior is not a critical requirement for this method, Garrido’s 

method is lack of the endosome detection, which is the first weak point of this method. 

Garrido’s image does not have endosomes in cells, so there are not many noises 

generated by canny detector. Most of the noises on Garrido’s image lie on edges or 

outside the cell, which will not affect the cell location approximation in the next step. 

But in our cell images, the number of endosomes is competitive to the number of cell 

edges, and those endosomes are treated as “noises” in Garrido’s method. So to fit 

Garrido’s method into our cell image, the first task is to temporally “remove” 

endosomes inside cells, after we get the approximate cell location, and then move 

them back. 

 

The second weak point of Garrido’s method is the active contour algorithm. 

Garrido just apply the standard active contour algorithm, which works perfect on their 

images. This is because cells on their images all have smooth and clear boundaries, so 

the standard active contour algorithm works very nicely. However, our cells normally 

do not have such clear and smooth boundaries. Instead, they always cluttered, with 

broken boundaries, blur edges, etc. This will lead the improper active contour 

evolution. So our second task is to improve the active contour algorithm to fit our cell 

characteristics.  

To overcome these two weak points, we need to improve Garrido’s method. For 

first weak point, we first tried two different methods, which are Tophat transform and 
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Canny detector. Then we use training process to improve the classification of 

endosomes and non-endosome objects. For second weak point, we propose a new 

energy term which can restrict the growing and shifting of active contour. The details 

will be presented in the following chapters. 
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3 Proposed Method 
Our cell images are taken by fluorescence microscope, which represent cytology 

stained with the fluorescent tagging technique. Compared with the cells images used 

in Garrido’s method, beside the characteristics of low contrast, cluttered objects and 

low quality, our cell images have the following features: 

1. Full of endosome. 

2. Irregular shape of cells.  

3. Broken cell edges. The cell edges are always broken and not smooth. 

4. Intensities are non-uniformly distributed. Due to the reflection of light, some 

parts of image are very bright, and some parts are very dark. 

5. Absence of inter-cell background regions. That is, cells are tightly cramped. 

 

The objective of our application is to calculate the intensity ratio of endosomes 

(summation & average) and cytoplasm in a single cell and count the number of 

endosomes for each cell. We formalize our metrics in the following table: 

 

Index Name Formula / Symbol Description 
1 Intensity Sum 
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Sum of the endosome 
intensity over the Sum of 
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Average intensity of 
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Table 1: Cell Metrics 
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The first metric gives the intensity sum ratio of endosomes and cytoplasm per cell. (x, 

y) is the coordinate of a pixel. p(x, y) defines a pixel with (x, y) as its coordinate. I(x, y) 

defines the intensity of p(x, y). Ne and Nc are the number of pixels of endosomes and 

cytoplasm per cell respectively. 

⎩
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χ , E is the set of endosome pixels and C 

is the set of cytoplasm pixels.  

  

In the previous chapter, we show that Garrido’s method is the most systemic 

method so far to analyze cell images. Therefore, we are going to design our method 

based on Garrido’s method. However, since the Garrido’s method is designed for cell 

segmentation and not endosome detection. Thus we need to apply some enhancements 

on Garrido’s method: 

1. Garrido only uses canny detector to get the cell boundaries. Our objective is to 

get the endosomes, so we can apply other pattern detector on the images to 

extract endosomes, for example, Tophat transform. 

2. Garrido’s method uses fixed cell template to match the cell edges detected by 

Canny detector to get initial cell locations. Since we are not going to utilize cell 

edges to detect initial cell locations due to the numerous endosomes, we cannot 

use Garrido’s approach. A new cell location approximation method is needed. 

3. Garrido’s method works on cells, whose interiors are almost homogenous. When 

they apply the active contour algorithm, there is no need to consider the noises 

inside cell. In our work we need to remove endosomes first before applying 

active contour algorithm. 

4. The Hough transform used in Garrido’s method is too expensive, because each 

pixel on the image will be examined whether there is a potential cell outline 

around it. Therefore we need to find some simple but effective enough method to 

find out the approximate cell locations. 
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Therefore, we propose our method as following: 

 

 

 

 

 

 

 

 

 

Figure 10: Flow chart of our method 

 

First, we apply Canny edge detector on original image to extract the outlines of 

cell edges and endosomes. Then we use iterative training process to classify cell edges 

and endosome segments from the line segments obtained in Canny edge detector. The 

third step is to utilize the endosomes we obtained after training to generate initial 

location of cells. Since the Hough transform used in Garrido’s method is too 

expensive, we propose our improved method to obtain the initial location efficiently. 

The last step is to apply active contour algorithm on the initial seeds to get the closed 

cell boundaries. When we have the endosomes and cell boundaries, we can easily 

compute the metrics. 

IMAGE 
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Endosomes Edges 
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In the first subsection, we will discuss how to get endosomes by applying Canny 

edge detector on the original images and how to classify those detected edges into 

endosome segments and non-endosome segments. In the second subsection, we will 

try to utilize the result of previous step to get the approximate cell locations. In the 

third subsection, we will start from the approximate cell locations to search for the 

complete cell boundaries by applying active contour based algorithm. 
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3.1  Endosome Detection 

Endosomes are the bright spots regions distributed in the cytoplasm. The endosomes 

are tagged proteins, and normally will reflect more lights from the microscope, thus 

the intensity is higher than the cytoplasm. There are also some bright spots located at 

the edge of cells. Those bright regions are not endosomes, they are just noises.  

 

The intuitive method of endosome detection is image thresholding, which is also 

a very common method in most image segmentation problems [24, 43]. However, the 

simple thresholding cannot give effective result to our cell images. This is because 

when microscope takes images of cells, normally there are some reflection regions in 

the scope. Therefore some regions appear very bright and some are very dark. The 

endosomes are usually not uniformly distributed and the intensity of endosomes is 

also not fixed within certain range. From the observation of the cell images, 

endosomes can be located anywhere in a cell. The following figures show the 

different locations of endosomes in cells: 

 
Figure 11: Four different endosome distribution 

(a) (b)

(c) (d)
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Figure 11 (a) shows that the endosomes are cramped at a small region of a cell, 

and are quite closed to the cell membrane. Figure 11 (b) shows the cells are 

overlapping, thus the endosomes appears just right on the cell edges. Figure 11 (c) 

shows the endosomes form a circle and Figure 11 (d) shows the endosomes are 

uniformly distributed in the cell.  

 

 

3.1.1 Endosome segments detection 

The endosomes have these characteristics: shape is circular or elliptical; intensity is 

higher than surrounding cytoplasm pixels and gradient around endosome is higher 

than background. Therefore, we can utilize these two characteristics to separate 

endosomes from cytoplasm and cell membranes. As discussed in the previous chapter, 

we adopt Canny detector for the pre-processing step. The Canny operator [6] takes as 

input a grey scale image, and produces as output an image showing the positions of 

tracked intensity discontinuities. First of all, the image is smoothed by Gaussian 

convolution, and then followed by 2-D first derivative operator, like Roberts Cross.  

 

 Gaussian convolution, also called Gaussian smoothing operator is a 2-D 

convolution operator that is used to “blur” images and remove detail and noise. In this 

sense it is similar to the mean filter, but it uses a different kernel that represents the 

shape of a Gaussian (bell-shaped) hump. The following equations show the 1-D and 

2-D forms of Gaussian distribution: 
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The following figure shows a 2-D Gaussian distribution example: 



 37

 
Figure 12: 2-D Gaussian distribution with mean (0, 0) and σ= 1 

Once a suitable kernel has been calculated, then the Gaussian smoothing can be 

performed using standard convolution methods, which is given as the following 

equation: 
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Where M and N are the width and height of input image, and the kernel K has m 

rows and n columns, then the size of the output image will have M-m+1 rows, and 

N-n+1 columns. Therefore, in equation (18), i runs from 1 to M-m+1 and j runs from 

1 to N-n+1. The 2-D Gaussian convolution can in fact be performed by first 

convolving with a 1-D Gaussian in the x direction, and then convolving with another 

1-D Gaussian in the y direction. In fact, the Gaussian is the only completely circularly 

symmetric operator which can be decomposed in such a way. 

 

Roberts Cross operator performs a simple, quick to compute, 2-D spatial gradient 

measurement on an image. It consists of a 2x2 convolution kernels as shown in 

following figure: 

 

Figure 13: Roberts Cross convolution kernels 
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The kernels can be applied separately to the input image with standard 

convolution method, to produce separate measurements of the gradient component in 

each orientation, and then combine together to find the absolute magnitude and 

orientation of the gradient at each point. The formulas are shown in the following 

equations: 

22 GyGxG +=         (4) 

4/3)/arctan( πθ −= GxGy        (5) 

 

After these two convolutions, the regions of the image with high first spatial 

derivatives will be highlighted. Edges give rise to ridges in the gradient magnitude 

image. Then the algorithm will track along the top of these ridges and set to zero all 

pixels that are not actually on the ridge top so as to give a thin line in the output. The 

tracking process is controlled by two thresholds: T1 and T2, with T1 < T2. If the 

magnitude is below T1, it is set to zero. If the magnitude is above T2, it is set as an 

edge. And if the magnitude is between the two thresholds, then it is set to zero unless 

there is a path from this pixel to a pixel with a gradient above T2. This tracking 

process helps to ensure that noisy edges are not broken up into edge fragments. Figure 

14 shows the segment detected by Canny detector. 

 
Figure 14: Result of Canny detector 
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With those detected edges, a post-processing is applied. This step is to remove the 

small segment and pruning the small branches from some big edges. If the length of 

segment is shorter than threshold, it will be discarded, and otherwise, it will be 

remained. Therefore, after first step, there are only those straight edge segments 

without branches left on the image. The next step is how to utilize those edge 

segments to estimate the approximate cell locations.  

 

 

3.1.2 Analyze segment features 

From Figure 14, we observe that most of endosomes are captured and the cell 

boundaries are also detected on the image. Thus the next step becomes how to 

separate endosome segments from boundary segments. In order to classify those 

segments into two classes: endosome segments and non-endosome segments, we 

propose six features that can be used in the data mining technique. The following 

figure shows how we define those features: 

 

Figure 15: Endosome segment of canny edge detector result 

1. Number of pixels in segment (size). The boundary segment always has more 

pixels than endosome segment. Thus we can set a threshold on the number of 

pixels per segment. 

2. Distance between ending point (gap). Some endosomes are open, like most 

boundary segments. However, the gap between ending points of endosomes are 

much less than of boundary segments. 

height 

Ending point 

Minimum 
rectangle 

width 
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3. Average minimum distance from each pixel to rectangle boundary (difference). 

The boundary segments are line-like segments, and on the other hand, endosomes 

are circle-like segments. So we can find a minimum rectangle just fit the segment. 

Then calculate the average minimum distance from each pixel on segment to the 

four sides of rectangle. Obviously, endosomes will have smaller average distance 

than boundary segments. 

4. Rectangle width/height ratio (ratio). Sometimes, the boundary segments are just 

orthogonal to the horizontal line or vertical line. For this case, we can calculate 

the width and height ratio of rectangle defined in previous feature. Low such ratio 

indicates an evidence of boundary segment. 

5. Average Co-distance (co-distance). Sometimes, the endosomes are tightly 

grouped together. This makes the endosome segments detected by canny detector 

ramose. There are always several branches in edge segments. But compare with 

those ramose endosome segments, edge segments always have a main branch 

which lasts quite long. On the other hand, the branches of endosome segments are 

quite close to each other, but edge segments do not have such characteristics. 

Figure 16 shows the different appearances of these two segments. 

 

 

Figure 16: Illustration of edge segment and endosome segment 

 

6. Neighbor Count. Some endosomes are like cotton wool, and they are the most 

difficult endosomes to capture by program due to their irregular shapes. However, 

they are quite close to those circle or ellipse shape endosomes. So we can count 

the number of circle or ellipse shape endosomes around cotton wool like 

endosomes. If there are many circle or ellipse shape endosomes near a cotton 

wool like endosome, we can say it is highly likely an endosome.  

Edge 
Segment 

Endosome 
Segment 
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We notice that not every endosome has all six features. For example, some 

endosome do not have two ending points, but has a tiny tail. On the other hand, we 

found that 90% of endosome segments in our cell images only have at most two 

ending points. Therefore, we can differentiate the endosomes by counting their ending 

points first. For endosomes with one or less than one ending points, we use ratio, 

difference and size as features. For endosomes with exactly two ending points, we use 

ratio, difference, gap and size as features. For endosomes with three or more than 

three ending points, we use ratio, neighbor count, co-distance and size as features. 

The following table shows the distribution of three endosome classes. 

 < 2 ending points = 2 ending points > 2 ending points 
# of endosomes 
segments per image 

283 (61.9%) 123 (27.0%) 51 (11.1%) 

Table 2: Distribution of different endosomes per image 

 

 

3.1.3 Training process 

After extracting the edge segments, we can apply the existing classification 

techniques to classify those edge segments into endosome segments and 

non-endosome segments. There are two steps in data classification, which are model 

building and data testing. In the first step, a model is built up which describes the 

characteristics of each pre-defined classes. Therefore, each tuple is assumed to belong 

to a predefined class, and an attribute called class label will indicate which class it 

belongs to. There are two types of classification, supervised and unsupervised. 

Supervised learning means the class label of each training sample is provided and it 

contrasts with unsupervised learning, also known as clustering, in which the class 

label of each training sample is not known. Obviously, we should adopt supervised 

learning, and we have two classes: endosome and non-endosome segment. The 

second step is quite straightforward, which is just applying this model to classify data. 

The predictive accuracy is always estimated to test the effectiveness of the classifier. 
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Accuracy of a classifier on a given test set is the percentage of test set samples that 

are correctly classified by the classifier. 

 

Since our feature sets are not very complicated, and the training data size is not 

very big, we choose the most common technique, decision tree. The basic algorithm 

for decision tree induction is a greedy algorithm that constructs decision trees in a 

top-down recursive divide-and-conquer manner [51, 52]. It is a flow-chart-like tree 

structure, where each internal node denotes a test on an attribute, each branch 

represents an outcome of the test, and leaf nodes represent classes or class 

distributions. In order to classify an unknown sample, the attribute values of the 

sample are tested against the decision tree. A path is traced from the root to a leaf 

node that has the class prediction for that sample. 

 

 The following figure shows the initial result of endosome and non-endosome 

classification by using decision tree. Red circles indicate the endosomes detected by 

program. The full experiments and comparisons of training process will be discussed 

in next chapter. 

 
Figure 17: Result of endosome detection 
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3.2  Approximate Cell Location 

The cell boundaries in the image are quite blur and tortuous, which can be seen from 

the result of canny edge detector. Thus we cannot trace the edge to get the cell 

locations directly. However, some characteristics of endosomes give us some hints to 

locate cell automatically. The first characteristics is that most endosomes are inside 

cells, and only a small portion of endosomes located at the cell boundaries due to cell 

overlapping. The second feature of endosomes is that usually endosomes from same 

cell are quite close to each other. Therefore, we can utilize the endosomes detected in 

the previous step to get the initial location of cells. 

 

First of all, we calculate the gravity point for each endosome. The gravity point is 

defined as the mean spatial value of x and y axis respectively. By given an object C, 

the gravity point is given by the following formula: 
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Where p(x, y) is the spatial vector of pixel p inside C, N(C) is the total number of 

pixels in C. 

 

Then we draw a circle around this gravity point, and assign different values to 

each point inside this circle. The value varies by the distance from the gravity point, 

which is defined as the following formula: 
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Where p is the given point, R is the radius of circle, d is the distance from gravity 

point, and λis the coefficient. Therefore, to a particular circle, the farther of the point 

is, the lower value will be assigned. For the overlapping circles, we just sum up the 

values. Since endosomes from same cell are more likely to be grouped together, so the 

value around the cell center will be relatively higher than the edges. The following 
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figure shows the simple illustration of this process: 

 

Figure 18: Illustration of assigning different values around gravity point 

 

After accumulating all the values, we can apply a simple thresholding to the 

valued image. Those regions with higher values will be separated from the lower 

value regions. The last step is just to calculate the gravity point for those higher value 

regions again to get the approximate cell locations. The following figure shows the 

result. 

 
Figure 19: Approximate cell locations 

 

The gray regions are the possible regions of cell center. The red circles are the 

detected endosomes and the blue lines are non-endosome segments. Some grey 

regions will be very close to each other. This is because the endosomes are not 

uniformly distributed among cytoplasm. So it is possible there are two groups of 

endosomes in one cell. However, we will put the active contour seed on every grey 

region. After the evolution of active contour, those cells with two or more than one 

…
 

Gravity Point 

Value decreases if 
point goes farther 
from the gravity point 
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active contour seeds will be covered by overlapping contours. Therefore, we provide 

the user interface to allow user to remove the duplicate contours.  
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3.3  Cell Boundary 

Cell boundary detection is the most complicated part in this cell segmentation 

problem. The edges between cells are very blur and cluttered. Almost every edge is 

shared by two or even three cells due to cell overlapping. Some cell’s membrane even 

looks like broken. Thus when we apply the traditional edge detector, for instance, 

Canny detector, most of the cell boundaries are broken. There are few complete 

closed cell contours in Canny segmentation result. However, since we already have 

the approximate cell centers, and know the most endosomes, with some evidence of 

cell boundaries, we can apply active contour algorithm.  

 

 

3.3.1 Standard active contour algorithm 

Deformable template or active contour, known as “snake” was proposed by Kass et al 

[30], in 1987. It deforms a contour to lock onto features of interest within an image. 

Usually the features are lines, edges, and/or object boundaries. Kass et al [30] named 

their algorithm as “snakes” because the deformable contours resemble snakes as they 

move.  

 

Given an approximation of the boundary of an object in an image, an active 

contour model can be used to find the actual boundary. An active contour is an 

ordered collection of n points in the image plane: 

},...{ 1 nvvV =         (10a) 

},...,1{),( , niyxv iii ==        (10b) 

 

The points in the contour iteratively approach the boundary of an object through 

the solution of an energy minimization problem. For each point in the neighborhood 

of vi, an energy term is computed: 

)()(int iextii vEvEE βα +=        (11) 
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Where Eint(vi) is an energy function dependent on the shape of the contour and 

Eext(vi) is an energy function dependent on the image properties, such as the gradient, 

near point vi. αand βare constants providing relative weighting of the energy terms. 

Ei, Eint and Eext are matrices. The value at the center of each matrix corresponds to the 

contour energy at point vi. Other values in the matrices correspond to the energy at 

each point in the neighborhood of vi. Each point, vi, is moved to the point, vi’, 

corresponding to the location of the minimum value in Ei. If the energy functions are 

chosen correctly, the contour, V, should approach, and stop at, the object boundary. 

 

There are two terms used in equation (11), internal energy and external energy. 

Internal energy function is intended to enforce a shape on the deformable contour and 

to maintain a constant distance between the points in the contour. We adopt two 

internal energy functions for our model, continuity energy and balloon force energy.  

)()()(int ibaliconi vbEvcEvE +=α       (12) 

 

The continuity energy term coerces a closed deformable contour into a circle. The 

formulation of the continuity energy  

2

11 )()(
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= iiijkijk vvvp
V

ve γ       (13) 

 

pik(vi) is the point in the image that corresponds spatially to energy matrix 

element ejk(vi). γ in (13) is the distance scale coefficient of vi and vi+1. For our case, 

the cell boundary is a closed contour, therefore we adopt theγ definition as follow: 

( )n
π

γ
2cos2

1
=          (14) 

 

Here the Г(V) is the average distance between points in V, which is defined by : 
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This term is a normalization factor, which is the average distance between points. 

The normalization can make Econ(vi) independent of the size, location, and orientation 

of V.  

 

A balloon force can be used on a closed deformable contour to force the contour 

to expand or shrink in the absence of external influences. A contour initialized within 

a uniform image object will expand under the influence of a balloon force until it 

nears the object boundary. Chalana et al. suggest an adaptive balloon force [8] that 

varies inversely proportionally to the image gradient magnitude. The adaptive balloon 

force is strong in homogeneous regions and weak near object boundaries, edges and 

lines. The energy term for each element, ejk(vi), in the matrix, Ebal(vi) is expressed as a 

dot product: 

))(()( ijkiiijk vpvnve −•=       (16) 

ni is the outward unit normal of V at point vi, which can be found by rotating the 

tangent vector, ti, by 90o: 
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The External energy function attracts the deformable contour to interesting 

features, such as object boundaries. Image gradient and intensity are obvious 

characteristics to look at. Shape and size are also commonly used as external energy 

functions. However, our cells have irregular shapes and different sizes. Therefore, we 

are not going to adopt these two constraints. The following external energy function is 

investigated: 

)()()( igradimagiext vgEvmEvE +=β       (18) 
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where Emag(vi) is an expression that attracts the contour to high or low intensity 

regions and Egrad(vi) is an energy term that moves the contour towards edges. m and g 

are provided to adjust the relative weights of the terms. 

  

Intensity energy and gradient energy are quite straightforward, which is given as 

the following equations. Intensity energy function returns the intensity of the given 

point, and gradient energy function returns the gradient magnitude of the given point. 

))(()( ijkijk vpIve =        (19) 

))(()( ijkijk vpIve ∇−=        (20) 

 

The energy functions should be scaled so that the neighborhood matrices contain 

comparable values. This process is referred to as regularization.  

 

Continuity energy is simply scaled by taking in the minimum value and 

maximum value in the matrix.  
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where emin(vi) and emax(vi) are the minimum and maximum valued elements in 

the matrix of Ei. 

  

Balloon force energy function is scaled by adapted to the image gradient 

magnitude. The formula is given as follows: 
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where 
max

I∇ is the maximum gradient magnitude in the entire image. The 

principle of the balloon force regularization behind this equation is to reduce the 

power when the contour approaches the object edge. When the contour is near the 
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edge, image gradient magnitude will increase dramatically compared to the center 

region of cell. Therefore, the second term of (36) will be reduced dramatically, and 

balloon force will have less power at the edge pixels. 

  

The regularization of intensity energy and gradient energy are quite similar. 

Both of them are scaled by the local maximum value or the global maximum value, 

depending on the parameter Iδ  and Gδ set. The formulas are shown as following 

equations: 
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 In general, active contour algorithm can be considered as an EM process, where E 

means “estimation” and M means “minimization”. Each point on the active contour 

will estimate the energy value in its neighbor points first. Then it chooses the point 

with minimum energy value as its new position. The standard active contour has the 

internal forces which push the contour outward and the external forces which pull 

back the contour. The internal forces include continuity force and balloon force. The 

external forces include the gradient and intensity barrier. The problem in our cell 

images is some cell has broken boundary. The standard active contour works on the 

closed object, but will fail on our cells with broken boundary. Thus we need find some 

other external forces to stop the active contour growing at the broken boundary. 

 

 

3.3.2 Gap leaking 

Gap leaking means the cell has a gap or many gaps on its boundary, sometimes quite 

small, but sometimes can be very big one. The gradient and intensity at the gap 

changes slightly. Thus the external energy, which is supposed to have greater power at 

the edge to stop the contour growing, will have limited power compared to internal 
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energy. In such case, the internal energy, especially the balloon force will have 

relatively strong power to push the contour outwards through the gap. We call this 

scenario gap leaking. 

 

To prevent such problem occurring, we introduce a new constraint to the internal 

energy function, which is the velocity vector. We define the velocity vector as follows: 

from previous position of active contour point i’ to current position i, draw a straight 

line. The i’ is the start point and i is the end point, and length of this straight line is the 

magnitude. When we need to render the next position of a contour point, we displace 

the rest contour points’ velocity vector to this point with magnitude divided by the 

distances. Then just do a simple vector summation to get reference velocity vector. 

After that, we assign increasing values from this vector. This process is shown as the 

following figure: 

 
Figure 20: Velocity vetor 

 

The following formula gives the formal definition of velocity vector: 

∑
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dj is the distance between j-th point to i-th point. We just assign different values to 

the pixels in the matrix according to this reference vector, which is shown in the 

following figure. 

Reference 
Vector 

… 
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Figure 21: Velocity vector matrix 

 

The formula is given as the follows: 

)()( jkrjkrjke λλβθθα −+−=       (44) 

 

Where the θjk is the spatial orientation of pixel ejk, θr is the spatial orientation 

of reference vector. λ r is the magnitude of reference vector, and λ jk is the 

magnitude of pixel ejk. αand βare balancing coefficient between the two terms. 

 

With this new constraint, we can have more power on the edges, even sometimes 

there is no physical edge existing. The reason we do not adopt shape constraint is cells 

in those images have ambiguous shapes, thus shape constraint is not applicable. 

 

 

3.3.3 Resample points 

One important aspect of parametric snake evolution is the discretization of the 

continuous contour. These discrete points on the snake are called snaxels. During the 

course of evolution the snaxels either grow apart or come close to each other. To 

avoid nonuniform sample spacing, one needs to resample the contour intermittently 

during the evolution. This resampling is usually done explicitly by choosing sample 

points uniformly during the snake evolution [49]. The cost of such explicit sampling 

is O(n), with n being the number of snaxels. 

 

 Since the resampling process represents a significant computational expense. 

Velocity 
vector matrix 

θ 

Reference 
Vector 

ejk 

λ

vi 
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Therefore, some researchers introduce shape, size or position constraints to active 

contour algorithm to eliminate the need for the explicit resampling and 

reparameterization of the snaxels. Those constraints will give higher penalty to those 

points which violate the preset template shape, normally circle or ellipse. Therefore, 

the points will not go further from each other. The active contour algorithm used in 

Garrido’s method also has this constraint, which is based on cyclic Markovian 

Gaussian density formula. However, for our cell images, we cannot apply shape, size 

and position constraints. This is because our cells do not have fix shape, size or 

positions. Therefore, we can only adopt the resampling method to solve the 

discretization problem. 

 

There are two resampling point methods. First method is quite trivial. We can 

always check the distances between each neighbor point pair. If the distance between 

neighboring points is less than the tolerance, we just remove one point. If the distance 

goes greater than the upper bound, we just insert one more point between these two 

points. This method is easy to implement but a bit time and memory consuming. 

 

The second method is called T-snake. McInerney’s utilizes T-snakes [35] to 

effectively segment complex anatomic structures from medical volume images as well 

as 2-D medical images. There are three components to the T-snakes formulation [35].  

 

The first component is a discrete form of a standard parametric snake. That is, a 

T-Snake behaves like a standard parametric snake between reparameterization and it 

is free to deform in any direction.  

 

The second component of T-snakes is the affine cell image decomposition 

(ACID). This ACID will decompose images into triangular grids, which is shown as 

the following figure: 
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Figure 22: T-Snake 

 

This figure shows a simplicial approximation (dashed line) of an object contour 

(solid line), using a Freudenthal triangulation. The model nodes (intersection points) 

are marked and the boundary triangles are shaded. 

 

The third component of T-snakes is the reparameterization process. This process is 

illustrated in the following figures: 

 

Figure 23: T-Snake reparameterization process 

 

Figure 23 (a) shows the initial state of reparameterization process, the shaded 

regions show examples of grid vertices that are turned on by the expanding contour. 

Figure 23 (b) shows the new inside grid vertices (white) added to the current inside 

vertices (dark). Figure 23 (c) shows the new contour after one deformation step 

showing new grid intersections, inside grid vertices, and boundary grid cells (gray 

shaded). Note that the contour points in (b) changed to those intersection points of 

(b) (c) (a) 
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contour and grid edges in (c).  

  

T-Snake is very useful when applying active contour algorithm to medical 

imaging problems, like retinal blood vessel detection and MR brain image 

segmentation. Due to the irregular shape of our cell images, this technique will also be 

useful during active contour evolution. 

 

The principles behind the two methods are same. After every evolution, check the 

point distribution along the contour. If points are getting further and further, then add 

new points; if points are getting closer and closer, and then merge them. In our 

method, we just adopt the first method, because it is easy to implement, and will not 

add complexity to snake’s implementation and unpredictability to its performance. 
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3.4  Summary 

In this chapter, we propose a new method based on Garrido’s method. There are three 

steps in this method. First we adopt Canny edge detector to retrieve object 

information from cell images. The segments generated by Canny edge detectors can 

be classified into two classes, which are endosomes and non-endosomes, according to 

their features. Therefore, we use the most common techniques in data mining, which 

is the iterative training based decision tree to set proper threshold dynamically.  

 

 In the second step, Garrido uses reformulated general Hough transform to get the 

approximate cell locations. We will not use Hough transform in this step because of 

two reasons: 

1. Time consuming. Hough transform will be applied to each pixel on the image 

which is very expensive. 

2. From the first step, we capture the endosomes already. An important feature 

for our cell image is endosomes are inside cells and grouped around the 

nucleus. 

Therefore, we can utilize the endosomes detected in the first step to get the 

approximate location of cells. This process will accumulate the pixel energy segment 

by segment, which will not involve a lot of calculation.  

 

 The third step is to get the cell outlines. In this step, active contour algorithm will 

be applied to the intermediate result from previous step. Each approximate cell 

location detected in second step will be put on an active contour seed. To overcome 

the gap leaking and discretization problem during the active contour evolution, we 

add two constraints to the standard “snake”. The first constraint is called velocity 

constraint, which will adjust the growing speed of each contour point to make it not 

go too far away from other contour points. The second constraint is the resampling 

constraint, which will adjust the distances between neighbor contour points to avoid 

points stretch or compression. 
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 The following figure shows the final result of our method. Blue contours are the 

outlines of cells and red circles are the endosomes detected. Although we cannot 

capture all the cells, we can get enough cells to calculate the metrics presented in the 

very beginning of this chapter.  

 

Figure 24: Final result of our method 
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4 Experiments and Discussion 
We conducted a series of experiments to illustrate our methodology. The images 

we used are in bitmap format, and file size is 1024x768 bit by bit. There are 35 

images in all. 8 images are cells without treatment, 9 images are cells with level-5 

treatment, 9 images are cells with level-10 treatment and 9 images are cells with level 

20 treatment. There are two sets of experiments. The first set of experiment 

demonstrates how the iterative training process increases the accuracy of endosome 

detection. The second set of experiments computes the set of metrics per cell and 

compare them with the metrics obtained from the manually markup cells. 

 

Before we run the experiments, we need a ground truth endosome image as the 

reference image. Therefore we manually mark out the endosomes in each image, and 

compare endosome detected by the program with the manually mark out endosomes. 

The following figure shows the manually mark out endosome image. The black 

regions are the manually mark out endosomes. We superimpose our detected 

endosomes to this manually mark out image. If the detected endosomes have most 

pixels covered by black regions, then we set this endosome as true endosome, 

otherwise it is a false positive case.  

 
Figure 25: Manually mark out image 
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4.1  Endosome Detection Training 

As we discussed in the previous chapter, due to the fuzzy cell boundaries and 

similar intensity profiles of endosomes and cell boundaries, the default classifier for 

endosome detection may not be ideal for all cell images. Therefore, we propose the 

iterative training process to improve the performance of endosome detection. We 

define two metrics to measure the endosome performance. The first metric is 

sensitivity, which is the ratio of true endosomes captured out of the total number of 

the manually mark out endosomes. The second metric is accuracy, which is the ratio 

of true endosomes captured out of the total detected endosomes.  

 

The iterative training process consists of three steps:  

1. Initial classification based on the default classifier. 

2. Iterative learning from user and rebuild classifier for each round of learning. 

3. Process whole batch of image with the rebuilt classifier. 

 

The first step is to apply the default classifier to the image and get the initial 

detection of endosomes. Then during each round of learning, user indicate the positive 

and negative sample endosomes based on the previous round leaning result. The 

program will read in the user input and rebuild the classifier. The adjusting of 

parameters is defined as follows: 

1. Size: Because endosomes are typically smaller than cell boundary edges, we 

choose the average value of minimum negative sample and maximum 

positive sample as the new threshold for the size. 

2. Gap: Endosomes have smaller gap than cell boundary edges, therefore, we 

choose the new gap as the same way as size 

3. Difference: Endosomes are like circles, and cell boundaries are like lines. 

Therefore, endosomes have smaller minimum distance to the coverage 

rectangle, so we choose the average value of minimum negative sample and 

maximum positive sample as the new difference value. 



 60

4. Ratio: This feature is to differentiate the vertical or horizontal cell boundaries 

from the endosomes. Therefore, endosomes have greater ratio than cell 

boundaries, because the coverage rectangles of endosomes are mostly like 

squares. Thus we choose the average value of maximum negative sample and 

minimum positive sample as the new threshold. 

5. Co-distance: Endosomes edges are more compact than cell boundaries edges, 

so we choose the average value of maximum negative sample and minimum 

positive sample as the new threshold. 

6. Neighbor count: More neighboring existing endosomes indicates high 

possibility of being endosomes. Therefore, we choose maximum negative 

sample and minimum positive sample as the new threshold. 

 

This training process will continue until the user is satisfied with the results of the 

classification. In the third step, the final classifier will be used for the endosome 

detection for the whole batch of images. We randomly pick one image as training 

image each time. We use the same default classifier for the initial classification. For 

each training image, we first select one cell to train the program. Then for each round 

of training, we add one more cell to the training data set, and process the rest of the 

images with the rebuilt classifier. Figure 26 shows the plots of the average accuracy 

and sensitivity after each round of training. 
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Figure 26: Avg. Accuracy vs. Sensitivity 
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Figure 26 shows that the average accuracy and sensitivity increases after three rounds 

of training. Then the accuracy and sensitivity stabilize at 74% and 80% respectively.  

 

 

4.2  Cell Boundaries Detection 

From the Figure 24, we noticed that the segmented cell boundaries contain many 

sharp corners. This is because fixed number of active contour pixels is used in the 

experiments. As an improvement, T-Snake can be implemented to detect cell 

boundaries. T-Snake highly depends on the affine cell image decomposition (ACID). 

The smaller the triangular grids are the more accurate contours can be detected by 

ACID. 

 

Another observation is some contours do not cover the entire cell but just half. This is 

due to the use of velocity vector constraint. The effect of velocity vector constraint is 

like a chain reaction. If the contour slows to grow at one point, the points beside this 

point will also be affected, i.e. slow down as well. If the initial seed is quite close to 

the cell boundary, the contour points near the boundary will stop after just a few 

rounds of evolution. The stop of those points will be accumulated quickly and spread 

to other points, so that the whole evolution process will be stopped unexpectedly.  

 

 

4.3  Metrics Computation 

In this section, we will compute the metrics which have been defined in the previous 

chapter. The ultimate target for our cell segmentation method is to compute the 

metrics per cell to help the biologists in biological research. According to the 

pharmacological study, the intensity of cytoplasm (referred to microscopy image) and 

the number of endosomes in one single cell is an indication of the effect of a drug 

treatment. Thus, we defined those five metrics to measure the changes among 

different drug treatment in Table 1 (Chapter 3). 
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We first compute the intensity sum ratio and number of endosomes in each cell. 

For each detected cell, the intensity of each endosome pixel is accumulated, and then 

divided by the sum of the intensity of each cytoplasm pixel. Table 3 shows the result 

of our method and the manually mark out result: 

 

Methods Avg. 
Intensity 
Sum Ratio 
per cell 

Avg. # of 
Endosomes 
per cell 

Avg. 
Intensity 
Ratio per 
cell 

Avg. 
Endosome 
Intensity 
per cell 

Avg. 
Cytoplasm 
Intensity 
per cell 

Automatic 
Cell 
Segmentation 

0.046993 12.62 1.259811 165 130 

Human 
Measurement 0.041685 15.35 1.293262 159 127 

Table 3: Metrics per cell 

 

Besides the metrics per cell, we also compute the metrics per image. The 

following figures show the individual metrics per image: 
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Average Cytoplasm Intensity
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Figure 27: Column chart for metrics per image 

Table 4 shows the average value, standard deviation for program computed and 

human computed metrics per image and the average difference between them. 

Methods Avg. 
Intensity 
Sum Ratio 
per image 

Avg. # of 
Endosomes 
per image 

Avg. 
Intensity 
Ratio per 
image 

Avg. 
Endosome 
Intensity 
per image 

Avg. 
Cytoplasm 
Intensity 
per image 

Automatic 
Cell 
Segmentati
on  

0.047084 12.14 1.264672 166 131 

Human 
Measureme
nt 

0.040513 15.33 1.303577 160 125 

 

Methods Std. Dev. of 
Intensity 
Sum Ratio 
per image 

Avg. # of 
Endosomes 
per image 

Std. Dev. of 
Intensity 
Ratio per 
image 

Std. Dev. of 
Endosome 
Intensity 
per image 

Std. Dev. of 
Cytoplasm 
Intensity 
per image 

Automatic 
Cell 
Segmentati
on  

0.004042 2.61 0.066376 11.88055 12.00035 

Human 
Measureme
nt 

0.008275 3.02 0.043908 13.66166 14.81202 
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Avg. Diff. of 
Intensity Sum 
Ratio per 
image 

Avg. Diff. of 
Endosomes 
per image 

Avg. Diff. of 
Intensity 
Ratio per 
image 

Avg. Diff. of 
Endosome 
Intensity per 
image 

Avg. Diff. of 
Cytoplasm 
Intensity per 
image 

0.008493 3.19 0.044882 6.77 8.39 

(c) Avg. Difference between automatic cell segmentation and human measurement 

Table 4: Metrics per image 

 

From the above tables, we find that our result is quite similar to the human 

measurement. Therefore, we conclude that our method is effective for our cell image 

segmentation problem. 
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5 Conclusion 
Cell image segmentation is an essential technique in medical imaging analysis. There 

are a lot of existing algorithms to solve this problem. However, there is no standard 

solution that can fit to all cell segmentation problems due to the variety of cells and 

microscopes. The most difficult part of our problem is the image provided tends to 

overlap with blur edges and noises. Besides those noises, there are a lot of endosomes 

within cells, which bring more difficulties to segmentation. Most of the traditional 

edge detector or active contour algorithms are not so effective to this particular image. 

Therefore we describe a method that based on Garrido’s method but with many 

improvements to solve the new cell segmentation problem. According to the 

biologists, the cell images with drug treatment will have the endosomes inside cell. 

How to give a proper measurement of the endosomes is a critical problem for 

biological studies. Therefore we proposed a method to provide assistance to biologists 

to obtain those measurements automatically.  

 

 The future work of this research work could be very challenging. There are two 

problems to solve. The first problem is in this batch of cell images, although the cells 

do not have clear boundaries, all the endosomes have quite clear and stable shapes. 

However, for some other cell images, the endosomes are not so clear. They always 

group very tightly and just located around the nucleus. Those endosomes look like 

cotton wool in the cells. Therefore the Canny detector cannot capture the endosomes 

directly. An image transform must be applied before the endosome detection, which is 

to make those “cotton wool” like endosomes clearer.  

 

 The second problem is how to differentiate the cell images under different drug 

treatments. Theoretically speaking, more drugs will produce more endosomes in cells. 

However, due to the fuzzy situations, such as overlapping cells, clutter cell boundaries, 

similar intensity profiles of endosomes and cell boundaries, etc. it is very difficult to 

make the program automatically classify the different drug treatments. 
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Appendix A: Cell Analysis Tool 
We use Visual C++ 6.0 to implement our tool. There are three main functions 

provided in our tool: (1) Endosome training, (2) Cell contour extraction, (3) Metrics 

computation. The following figure shows the user interface of our tool: 

 
Figure A1: Program interface 

 

User can use the default classifier to detect endosomes by selecting 

“Analyze->Training”, which is shown in Figure A2: 

 
Figure A2: Initial image processing 

 

 This method will detect the endosomes by the default classifier, and show them 

on the display panel. In Figure A3, the red segments are detected endosomes, purple 
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segments are confirmed edge segments and white segments are unknown segments. 

 

 

Figure A3: Result of endosome detection by default classifier 

 

User can enable the endosome editing mode by selecting “Options->Endosome 

training->Enable training mode” to iteratively train the endosome detection method, 

which is shown on the Figure A4. 

 

 

Figure A4: Enable training mode 

 

Once the user has enabled the training mode, he can add new endosomes or delete 

detected false endosomes by clicking on the display panel, which is shown on the 

Figure A5. The red dots are the newly added endosomes. User can also specify the 

size of newly added endosomes. After editing, user needs to drag the mouse to draw a 
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rectangle to tell the program where the learning region is. After specifying learning 

region, user can select “Options->Endosome training->Finishing Training” to let the 

program start classifier rebuilding process. 

 

 
Figure A5: Add and delete endosomes 

 

Once user is satisfied with the result endosome detection, he can extract the cell 

contour by selecting “Options->Extract cell contours”, which is shown in Figure A6: 

 

 

Figure A6: Cell contour extraction 

 

 The cell contours will be shown on the display panel, which are closed black 

contours on Figure A7. If user is not satisfied with the cell contour detection, he can 

delete that cell and add a new one manually. There are two types of metrics 

computation, metrics per cell and metrics per image. User can select 

“Options->Metrics->All Cells” to compute the metrics per image, or select single cell 

to compute metrics per cell. Figure A7 shows the metrics per image and per cell: 
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(a) Metrics per image 

 
(b) Metrics per cell 

Figure A7: Metrics per image and per cell 

 

 We also provide Save and Load function in our tool. Save function can save the 

endosome and cell information of current image into save file. Load function can load 

the endosome and cell information from the save file to resume previous cell analysis 

work.  


