
Dominant Skyline Query Processing

Zeng Yiming

Bachelor of Computing (First Class Honors)

National University of Singapore

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my parents.

Abstract

A skyline query retrieves from a given data set, a set of tuples that are not

dominated by any other tuples with respect to a set of dimensions. Skyline

computation has recently received a lot of attention from academia. In this

thesis, we explored two skyline variants, which are meaningful and interesting

when the skyline result set is either too large or too small. The first variant,

called the dominant skyline queries, retrieves skyline tuples that dominate

at least t other tuples. It is used to refine a large set of results to a smaller

and more interesting set of tuples. The second variant, called the tier-based

skyline queries, retrieves “skyline” points from tier 1 to tier k, where tier-k

points are skyline points when tier-1 to tier-(k-1) points are eliminated from

the input data set. It is meaningful when the skyline result set is too small.

We proposed several algorithms to solve these two variants respectively. We

have also conducted extensive experiments to study the performance of var-

ious algorithms. Through the experiments, we identified some interesting

trends and tradeoffs of these algorithms.

i

Acknowledgments

I would like to thank my research supervisor Dr. Chan Chee Yong for his

invaluable guidance, suggestions, and support throughout the course of this

thesis.

I also want to take this opportunity to thank my fellow lab mates. They

have offered their generous help and support to my research.

I am deeply grateful for my parents. Their love accompanies and encour-

ages me every moment. I would like to dedicate this work to them.

ii

Contents

1 Introduction 1

1.1 Syntax and Semantics of Skyline Queries 2

1.2 Motivations . 4

1.3 Problem Definitions . 5

1.3.1 Dominant Skyline Queries 6

1.3.2 Tier-based Skyline Queries 7

1.4 Related Work . 7

1.5 Contributions . 9

1.6 Organization of the Thesis . 11

2 Related Work 13

2.1 Existing Skyline Algorithms 13

iii

2.1.1 Block Nested Loop . 14

2.1.2 Linear Elimination Sort for Skyline 15

2.1.3 Divide and Conquer 16

2.1.4 Bitmap . 17

2.1.5 Index . 19

2.1.6 Nearest Neighbor . 21

2.1.7 Branch and Bound . 22

2.2 Skyline Variants and Their Algorithms 24

2.2.1 Thick Skyline . 25

2.2.2 Stable Skyline . 27

2.2.3 Skyline Computation in Streaming Databases 30

3 Dominant Skyline Queries 35

3.1 Insights of the Problem . 36

3.2 An Improved Two-step Approach 40

3.2.1 Step 1: Using BBS with Pruning 41

3.2.2 Step 2: Confirming Dominant Points with Heuristics . 47

3.2.3 Discussions . 56

iv

3.3 Dominant Skyline Experiments 57

3.3.1 Impact of Dimensionality 59

3.3.2 Impact of Threshold 62

3.3.3 Progressive Behaviors 66

3.3.4 Summary of Dominant Skyline Experiments 66

4 Tier-based Skyline Queries 68

4.1 Modifications of BBS . 69

4.1.1 Memory Management Issue with BBS 71

4.1.2 A Page Replacement Policy 71

4.1.3 TierBBS with In-memory R-tree 72

4.1.4 TierBBS with In-memory Linked-lists 73

4.1.5 TierBBS with Sorted In-memory Linked-lists 74

4.2 Determining Tier Ranges for Points 75

4.3 Determing Exact Tiers for Points 76

4.4 Tier-based Skyline Experiments 77

4.4.1 Impact of Dimensionality 78

4.4.2 Impact of Tier Level 80

v

4.4.3 Impact of Memory Size 81

4.4.4 Summary of Tier-based Skyline Experiments 83

5 Conclusion and Future Work 84

5.1 Conclusion . 84

5.2 Future Work . 86

vi

List of Figures

1.1 Example data set and skyline 2

1.2 Dominant skyline query example data set 6

2.1 Divide and conquer . 17

2.2 Nearest Neighbor example . 22

2.3 BBS algorithm . 24

2.4 n-of-5 encoding scheme of data set in Figure 1.1 32

3.1 Overlapping between a dominance region and an R-tree entry 40

3.2 DomBBS . 43

3.3 UpdateDP . 44

3.4 UpdateBiGraph . 44

3.5 Input and output of Step 1 based on BBS 47

vii

3.6 An extreme example showing that an entry should not receive

full weights from every overlapping point 49

3.7 Effect of exploring entries in Step 2 for a candidate dominant

skyline point . 51

3.8 Heuristic Function 1 assumes all points of ei are inside the

framed region . 52

3.9 Heuristic Function 2 assumes all points in ei are inside the

framed region . 53

3.10 Heuristic Function 3 assumes uniform distribution 54

3.11 Heuristic Function 4: exploring ei may make pj non-dominant 55

3.12 Input and output of Step 2 based on heuristic functions 55

3.13 Input and output of Step 2 based on scanning 56

3.14 Total evaluation time vs. dimensionality for independent data 59

3.15 Total evaluation time vs. dimensionality for anti-correlated data 60

3.16 Total evaluation time vs. dimensionality for correlated data . 61

3.17 Total evaluation time vs. dimension for independent data of

cardinality 500 K . 62

3.18 Total evaluation time vs. threshold for independent data . . . 63

3.19 Total evaluation time vs. threshold for anti-correlated data . . 64

viii

3.20 Total evaluation time vs. threshold for correlated data 65

3.21 Evaluation time vs. percentage of output for independent and

anti-correlated data . 67

4.1 BBS-based algorithm to answer tier queries 70

4.2 In-memory linked-lists to store the partial results 74

4.3 Total evaluation time vs. dimensionality for independent data 79

4.4 Total evaluation time vs. dimensionality for correlated data . 80

4.5 Total evaluation time vs. tier for independent data 81

4.6 Total evaluation time vs. tier for correlated data 82

4.7 Total evaluation time vs. memory size for independent data . 83

4.8 Total evaluation time vs. memory size for correlated data . . . 83

ix

List of Tables

1.1 Summary of skyline algorithms 10

1.2 Summary of existing skyline variants 10

2.1 Bitmap approach . 18

2.2 Index . 20

2.3 HouseListing . 29

3.1 Naive approach vs. enhanced approach 40

3.2 Categorization of four heuristic functions 51

3.3 Parameters of dominant skyline experiments and their abbre-

viations . 58

3.4 Result summary of dominant skyline experiment with varying

dimensionality . 59

x

3.5 Result summary of dominant skyline experiment with varying

dimensionality and input size of 500k tuples 62

3.6 Result summary of dominant skyline experiment with varying

threshold . 63

4.1 Parameters of tier-based skyline experiments and their abbre-

viations . 78

4.2 Result summary of tier-based skyline experiment with varying

dimensionality . 79

4.3 Result summary of tier-based skyline experiment with varying

number of tiers . 80

xi

Chapter 1

Introduction

A skyline query finds, in a relation, all tuples that are not dominated by any

other tuples in the same relation with respect to all the specified dimensions.

As an example, assume in Figure 1.1 that we have a set of hotels and for each

of them we record down its distance to downtown and rate. A user can ask for

hotels that offer a good rate and close to downtown, which is a typical skyline

query. Answering a skyline query is actually a multi-objective optimization

problem. It is a useful class of queries with which users can specify multiple

criteria (distance and rate in the example) for decision making. There may

rarely be just a single optimal answer (or answer set) fulfilling a skyline

query because a point optimal in every dimension rarely exists (e.g., hotels

closer to city center are usually more expensive). In Figure 1.1, all the

black points fulfill user’s criteria because there exists no hotel with a shorter

distance to downtown and offering lower rate, compared to any of the black

points. Furthermore, these black points are incomparable with each other,

1

because for any two of them, it is always the case that one point wins in

one dimension and the other wins in the other dimension. Typically, skyline

queries are formulated in the context of multi-dimensional Euclidean space

where the dominance relationship is minimum or maximum (the dominance

relationships in both dimensions of Figure 1.1 are minimum). Users can thus

specify their preference on a set of dimensions, to minimize a subset of them

and/or maximize the rest.

Figure 1.1: Example data set and skyline

1.1 Syntax and Semantics of Skyline Queries

The syntax and semantics of skyline queries were first formally presented

in [3]. The basic syntax of skyline queries is defined using the following

extension to SQL:

2

SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ...

SKYLINE OF d1 [MIN |MAX |DIFF] ... dn [MIN |MAX |DIFF].

The SKYLINE clause specifies the set of dimensions di’s that a user wants

to optimize, using three criteria. The MIN criterion indicates that the cor-

responding dimension should be minimized. The MAX criterion indicates

that the corresponding dimension should be maximized. The DIFF criterion

indicates that two tuples are not comparable if they have different values in

the corresponding dimension.

Assuming no duplicate tuples with respect to the skyline dimensions, the

“dominate” relation is defined as follows. A tuple pi is said to dominate

another tuple pj if

1. pi and pj have the same values for the DIFF dimensions, and

2. pi’s MIN dimensions are not greater than the same dimensions of pj’s,

and

3. pi’s MAX dimensions are not smaller than the same dimensions of pj’s.

All the tuples that are not dominated by any other tuples in the relation

form the skyline result set. The corresponding skyline query of Figure 1.1 is

SELECT * FROM hotels SKYLINE OF rate MIN distance MIN

The result is the set of all the black points (tuples). For simplicity, all

the discussions in this thesis will assume skyline computations using MIN

conditions on the dimensions; however, all methods discussed can be applied

3

to any combination of conditions.

1.2 Motivations

With a large input data set, the answer set to a skyline query may include also

a very large number of records. This is particularly the case when we have

skyline queries involving many dimensions. Users would be overwhelmed if

we dump all the skyline records to them without any further information.

To avoid this scenario, it is desirable to have some ways to rank the skyline

records according to certain criteria and return only the interesting skyline

records (i.e., skyline points above a certain ranking threshold) or return all

skyline records with their ranks.

There are many ways to define the ranking of points. One way to define

the ranking is to associate a preference function with the dimensions of the

data points, just as what is done in top-K queries [10, 4, 7, 16]. The difference

is that the question now becomes computing top-K skyline points. BBS [17]

can easily handle this by modifying the mindist definition to reflect the

preference function (i.e., the mindist of a point equals to the value of the

preference function applied to its dimensions).

Another way to define the ranking of a skyline point is based on the

number of points it dominates. We call it the dominating power of a skyline

point. Clearly, the value of the dominating power may range from zero to

the size of the data set minus one. Intuitively, a skyline point with a high

4

dominating power (i.e. dominates a large number of other points) is more

interesting than a skyline point with a relatively low dominating power.

On the other hand, we may have a small skyline result set. Possible

reasons are the input data set is small, or the data distribution is skewed. In

this case, users may be interested in not only the conventional skyline tuples

but also tuples that have properties similar to skyline tuples.

One way would be to retrieve tuples (not necessarily skyline) that are

dominated by at most t1 tuples, but dominate at least t2 other tuples. This

is a generalized problem of the skyline variant mentioned earlier based on

dominating power.

We can also define the dominance relation among tuples in terms of tier.

Tier-1 tuples are the conventional skyline tuples. Tier-2 tuples are skyline

tuples when tier-1 tuples are removed from the input data set. Tier-k tuples

are skyline tuples when tier-1 to tier-(k-1) tuples are removed from the input.

Tier-1 tuples are the most superior tuples. When such tuples are too few,

we may be interested in tuples that belong to higher tiers.

1.3 Problem Definitions

Based on the above observations, we define the problems that we are going

to solve formally. As mentioned earlier, we deal with two variants of the

conventional skyline problem.

5

1.3.1 Dominant Skyline Queries

Given a set of data records S, a skyline query Q, and a dominating power

threshold t, we want to retrieve all the records, each of which belongs to the

result of Q and dominates at least t other records in S. We call the number

of points dominated by a skyline point the dominating power of the skyline

point.

As an example, consider the two-dimensional data set in Figure 1.2, the

skyline points g, a, and e have dominating power 4, 3, and 0 respectively.

With this data set and skyline query, when the dominating power threshold is

set to 4, only point g will be returned as the answer. This problem is defined

in [17], but the solution included there (to be discussed in Section 3.1) is

naive.

Figure 1.2: Dominant skyline query example data set

6

1.3.2 Tier-based Skyline Queries

Given a set of data records S, a skyline query Q, and a tier threshold k, we

want to retrieve all the records that belong to any of tier-i where 1 ≤ i ≤ k.

Tier-1 records are the standard skyline records. Tier-i records are the skyline

records when the tier-1 to tier-(i-1) records are removed from the input data

set.

As an example, consider the data set in Figure 1.1. e, a, g, and h belong

to tier 1; b, c, and i belong to tier 2; f belongs to tier 3.

1.4 Related Work

The first variant, the dominant skyline queries, was introduced in [17] which

proposed the Branch and Bound algorithm for standard skyline computation.

However, the problem cannot be solved using the technique proposed in an

efficient manner. In this section, we give an overview of the algorithms to

compute standard skyline queries and some skyline query variants.

Skyline query is a subclass of preference queries [6, 12]. It provides a

means to compute preference queries efficiently.

The need for preference queries arises because traditional queries, which

ask for results that match users’ criteria exactly, cannot cope well with real

users’ demands. With all criteria specified, it is often the case that a query’s

result is empty as there is no exact match in the database. Leaving some

7

criteria unspecified will lead to the other extreme where users are flooded

with numerous irrelevant data [12]. Hence, we need a better query model.

With preference queries, users can specify fuzzy criteria and their relative

importance (i.e. prioritized preferences). The system is then expected to

find results that best match with users’ specifications. Consider the following

scenario. A family wants to rent a flat. They want a flat around 100m2,

preferably close to Suntec City, with rental between $1,300 and $1,500. The

housing database may not have an entry that satisfies all the conditions, i.e.

an empty result will be returned if the query is modeled as a traditional query,

despite the difficulty of writing it (due to the fuzziness). On the contrary, if

the query is modeled as a preference query, with extra specifications such as

the relative importance of the conditions (e.g., among the three conditions,

area is most important, price next, and location is least important), housing

records that best match the conditions may be found.

Being a more realistic query model, preference queries have a wider

range of applications such as personalized search engine and e-shopping ([1]).

Unfortunately, existing query platforms (e.g. SQL) lack of direct support

for preference queries. To catch up with the popularity, many researches

([5, 6, 10, 18]) try to extend the current query languages for preference query

handling. Skyline query is one of the most extensively studied sub-problems

of preference query. It corresponds to the Pareto preference constructor,

where every criterion is equally important. Also, standard skyline query as-

sumes that the records can be mapped to points in the Euclidean space, i.e.,

there is a total order in any single dimension.

8

The other subclass of preference queries, which is closely related to skyline

query, is the top-K query [10, 4, 7, 16]. Top-K query retrieves the best K

tuples that minimize a specific preference function. Each tuple is mapped

to a numeric value (called rank) using a scoring function. The top K tuples

with the highest ranks are included in the result. Top-K results may not be

in the skyline, and it changes when the input function changes.

Skyline queries are also related to several well-known problems in Geome-

try, including convex hull and nearest neighbor search. Convex hull contains

the subset of skyline points that may be optimal only for linear preference

functions (as opposed to any monotone function for general skyline [3]). Sev-

eral convex hull algorithms can be found in [2, 19]. Nearest neighbor queries

retrieve the closest points to an input point. The depth-first algorithm of

[20] branches down R-tree entries closest to the query point recursively. [13]

presents a similar recursive algorithm to find skyline points using nearest

neighbor search result.

The standard skyline computation has several important algorithms. Ta-

ble 1.1 gives an overview of them based on the techniques used. Table 1.2

summarizes some of the skyline variants which are detailed in Section 2.2.

1.5 Contributions

In this thesis, we proposed several algorithms to compute two variants of

the skyline query, the dominant skyline queries and the tier-based skyline

9

Algorithm Technique
Block Nested Loop [3] Pairwise comparisons

LESS [9] Pairwise comparisons with pre-sorting
Divide and Conquer [3] Chop up the data set into

smaller enough ones that can fit into
memory individually. Process each of them with

in-memory algorithms and merge them to
get final results.

Bitmap [21] Encode every dimension of every
tuple using bitmap. Get skylines using fast

bitwise computations.
Index [21] Group tuples according to their

minimum dimensions.
Sort each group and process top tuples

of all groups.
Nearest Neighbor [13] Use nearest neighbor search to find

skyline points which further divide the
space for recursive processing.

Branch and Bound [17] Always branch down the most
potential R-tree entries that may

contain skyline points. At the same time, prune
away dominated entries.

Table 1.1: Summary of skyline algorithms

Variant Overview
Thick Skyline [11] Retrieve skyline points and

their ε-neighbors
Stable Skyline [8] Extend the expressiveness of

standard skyline using EQUAL and BY
Streaming Skyline [15] Compute skyline points

in a streaming database

Table 1.2: Summary of existing skyline variants

10

queries.

A dominant skyline query, retrieves skyline tuples that dominate at least t

other tuples. It refines the skyline result set to a smaller and more interesting

set of tuples. We proposed several approaches to solve this variant effectively.

A tier-based skyline query retrieves “skyline” tuples within tier 1 to tier k.

It extends the conventional skyline result set to a larger and meaningful set of

tuples. We proposed three variants of algorithm based on Branch-and-Bound

Skyline algorithm [17].

We conducted extensive experiments to study the algorithms we pro-

posed. We investigated important parameters that affect the performance of

the algorithms. Through these experiments, we identified the effects that var-

ious parameters have on evaluation time. We also identified some interesting

tradeoffs among different approaches.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 gives an in-depth review of the existing algorithms for the stan-

dard skyline computation as well as some variants of the skyline problem.

We analyze the limits and strengths of each algorithm. It is worthwhile to see

how researchers re-formulate the problem to make it more interesting. Chap-

ter 3 details the discussions of the dominant skyline queries. It also includes

11

several algorithms to answer this type of queries. Chapter 4 provides the

algorithms to answer tier-based skyline queries. It also discusses the differ-

ences among the algorithms and the possible impacts on performances. The

experimental evaluation of various algorithms are also included in Chapter 3

and Chapter 4. Finally, we summarize the thesis in Chapter 5.

12

Chapter 2

Related Work

2.1 Existing Skyline Algorithms

Skyline query has been extensively studied over the past few years. Re-

searchers have proposed various algorithms, ranging from those that do not

need any index (e.g., Block Nested Loop [3], LESS [9]) to those utilize in-

dexes such as Bitmap (e.g., Bitmap [21]), B+-tree (e.g., Index [21]), and R-

tree (e.g., Nearest Neighbor [13], Branch and Bound [17]). Some algorithms

need to read the entire data at least once before returning the first result

(e.g., BNL, Divide-and-Conquer, Bitmap), others are able to start return-

ing results without a complete view of the data set (e.g., Nearest Neighbor,

Branch-and-Bound). Some algorithms can only answer skyline queries of a

predefined subset of dimensions efficiently (e.g., Index), others can do so with

respect to arbitrary dimensions (Nearest Neighbor, Branch-and-Bound).

13

2.1.1 Block Nested Loop

A straightforward way to compute the skyline points is to compare each point

with every other point; points that are not dominated by any other points are

in the skyline. Block Nested Loop ([3]) is built on this concept by scanning

the data file and keeping a list of candidate skyline points in memory. The

candidate list is initiated with the insertion of the first data point into it.

For subsequent point p, there are three cases:

Case 1 If p is dominated by any other point in the list, it is discarded as it

is not part of the skyline;

Case 2 If p dominates any point in the list, it is inserted into the list, and

all those dominated by p are removed from the list;

Case 3 If p is neither dominated nor dominates any other points in the list,

insert it into the list as it may be part of the skyline.

When the list keeps expanding, the memory may overflow. In that case,

all points falling in the third case (the first two cases do not increase the

list size) will go to a temporary file on disk. This fact necessitates the need

of multiple passes of BNL when memory size is small. Actually, after the

first pass, only points added to the candidate list before the creation of the

temporary list are certain to be part of the skyline. Those added to the

candidate list after the creation of the temporary list may not be skyline

points since they are not compared against points in the temporary list yet.

14

In the next pass of the algorithm, these points together with the ones in the

temporary list are treated as input and the above process starts all over again.

One of the most expensive steps in the algorithm is to compare a point with

the points in the candidate list. To reduce the number of comparisons, the

list is organized as a self-organizing list. When a point is found dominating

other points, it is moved to the top of the list. In this way, points with

high dominating power will stay on the top, and subsequent points will be

compared with them first.

The advantage of BNL is its wide applicability, since it can be used for any

dimensionality without indexing and sorting the data file. Actually, it can be

applied to other forms of preference constraints too as long as the preference

relation is specified over two tuples. The deficiencies of the algorithm are the

reliance on main memory and its inadequacy for progressive processing. If

the memory size is small, for large input, it may need numerous iterations to

compute the results. Also, it has to read the entire data file before it returns

the first skyline point.

2.1.2 Linear Elimination Sort for Skyline

In [9], the authors proposed an improved algorithm, called Linear Elimination

Sort for Skyline (or LESS for short), based on BNL. Prior to the computation

of skyline points, all the points are sorted first, according to the entropy,

which is
∑

i ln di, where di’s are the values of skyline dimensions. In this way,

no point in the stream can be dominated by any point that comes after it. It

15

also has the advantage of tending to push records that dominate many records

towards the beginning of the stream, assuming uniform distribution of points

in the space. In the sorting stage, it makes use of an elimination-filter (EF)

window that keeps points with small entropies, to efficiently eliminate many

dominated points. The EF window effectively reduces the size of the input

for the actual skyline computation later.

LESS performs better than BNL in spite of the additional sorting stage.

Once a point is put in the skyline-filter window, it is confirmed to be a skyline

point. Also, the introduction of the EF window efficiently eliminates many

points and hence reduce the input size for skyline computation.

2.1.3 Divide and Conquer

The Divide-and-Conquer algorithm [3] divides the data set into several par-

titions such that each partition fits in memory. Then any known in-memory

algorithms can be used to compute the partial skyline of each partition. Af-

ter that, the partial skyline results are merged to produce the final result.

It is interesting to note that certain partitions P can be ignored during the

merging process, as the partial skyline points in some other partitions already

dominates all points in P . An example would be the upper right partition

(dominated by the non-empty lower left partition) in Figure 2.1.

Divide-and-conquer algorithm is efficient only for small data sets that fit

in memory. For large data sets, the partitioning process requires reading and

writing the entire data set at least once, thus incurring significant I/O cost.

16

Figure 2.1: Divide and conquer

Also, like BNL, it is not suitable for on-line processing because it cannot

report any skyline until the partitioning phase completes.

2.1.4 Bitmap

Bitmap technique [21] encodes every point into an n-bit binary vector, where

n is the number of distinct values in all dimensions. Referring to the data set

in Figure 1.1, in the x dimension, there are totally 7 distinct values; in the

y dimension, there are totally 6 distinct values. So n = 6 + 7 = 13. Given

a point p, suppose that it is the ith smallest point in the x dimension, and

jth smallest point in the y dimension. Its bitmap representation would be

(11...1︸ ︷︷ ︸
7−i+1

00...0︸ ︷︷ ︸
i−1

, 11...1︸ ︷︷ ︸
6−j+1

00...0︸ ︷︷ ︸
j−1

). Table 2.1 shows the bitmap representations of the

set of data points in Figure 1.1. Now for a point, say c, we want to check if

17

id coordinates bitmap
a (2, 3) (1 1 1 1 1 1 0, 1 1 1 1 0 0)
b (3, 5) (1 1 1 1 1 0 0, 1 1 0 0 0 0)
c (4, 4) (1 1 1 1 0 0 0, 1 1 1 0 0 0)
e (1, 7) (1 1 1 1 1 1 1, 1 0 0 0 0 0)
f (6, 5) (1 1 0 0 0 0 0, 1 1 0 0 0 0)
g (4, 1) (1 1 1 1 0 0 0, 1 1 1 1 1 1)
h (7, 1) (1 0 0 0 0 0 0, 1 1 1 1 1 1)
i (5, 2) (1 1 1 0 0 0 0, 1 1 1 1 1 0)

Table 2.1: Bitmap approach

it is in the skyline. Note that in dimension 1, the least significant bit whose

value is 1 is bit 4; in dimension 2, the least significant bit whose value is 1

is bit 4 too. We check whether point c is a skyline point using the following

three steps.

Step 1 For each dimension, we search for the least significant bit whose value

is 1 and get the vertical bit-slice of that bit position (e.g., cx = 11110100

and cy = 10100111 as highlighted in bold in Table 2.1). The we perform

and operation of all the bit-slices. The result of this operation (e.g.,

cx ∧ cy=10100100) has the property that the nth bit is set to 1 if and

only if the nth point has value in each dimension less or equal to the

value of the corresponding dimension of the point under investigation

(e.g., point c).

Step 2 For each dimension, we take the next bit-slice of each bit-slice we

take in Step 1 (e.g.cx = 11010000 and cy = 10000111). Then we

perform or operation of these bit-slices. The result of this operation

(e.g., cx = 11010000 ∨ cy = 10000111 = 11010111) has the property

18

that the nth bit is set to 1 if and only if the nth point has some of its

dimension’s value less than the value of the corresponding dimension

of the point under investigation (e.g., point c).

Step 3 We perform the and operation of the bit operation results from Step

1 and Step 2. The result (e.g., 10100100 ∧ 11010111 = 10000100)

has the property that the nth bit is set to 1 if and only if the nth

point has each dimension’s value less or equal to the corresponding

dimension’s value of the point under investigation (e.g., point c) and

some of its dimension’s value is strictly less than the corresponding

dimension’s value of the point under investigation. And the points

these 1’s corresponding to are the points that dominate the current

point. Apparently, a skyline point should have a sequence of 0’s in

Step 3.

The Bitmap algorithm does not scale well when the data set size increases.

In terms of time, it needs to scan the whole data set first before encoding

each point using bitmap representation. In terms of space, it requires too

many bits to encode just one point when we have many distinct values in

each dimension. It is an I/O intensive algorithm.

2.1.5 Index

The Index method is proposed in [21]. It maintains d lists in which a point

p = (p1, p2, ..., pd) is assigned to the ith list (1 ≤ i ≤ d), if and only if its

19

List 1 List 2
e(1, 7) minC = 1 h(7, 1) g(4,1) minC = 1
a(2, 3) minC = 2 i(5, 2) minC = 2
b(3, 5) minC = 3 f(6, 5) minC = 5
c(4, 4) minC = 4

Table 2.2: Index

coordinate pi on the ith dimension is the minimum among all dimensions,

i.e., pi ≤ pj for all j 6= i. Points of each list is sorted in ascending order

of their minimum coordinate (minC, for short) and indexed by a B+-tree.

A batch in the ith list consists of points that have the same ith coordinate

(i.e., minC). The algorithm starts with loading the first batch of each list.

It picks and processes the one with minimum minC. The processing of a

batch involves computing the skyline points inside the batch, and, among

the computed points, adding the ones not dominated by any of the already-

found skyline points into the skyline list. After finishing processing a batch, it

loads the next batch from the same list into memory. Then from the batches

in memory, it again picks the one with the minimum minC and processes it.

The algorithm ends when all batches are processed or when the one of the

already found skyline points has its coordinates all smaller than the minC’s

of the next d batches. Table 2.2 shows the two lists for the two-dimensional

data set in Figure 1.1.

This method can return skyline points at the top of the lists fast, provided

the pre-processing of the data points (i.e., distributing points to the right lists

and building indexes for each list of points) can be done fast. However, it does

not support retrieval of skyline points on arbitrary subset of the dimensions.

20

In general, in order to support queries for arbitrary dimensionality subsets,

an exponential number of lists must be pre-computed.

2.1.6 Nearest Neighbor

Nearest Neighbor (NN) [13] first finds the nearest neighbor point of the origin

and partitions the space using that point. Then it inserts partitions that

may contain skyline points into a to-do list. While the to-do list is not

empty, it recursively does the same thing to every partition. As for the

data set in Figure 1.1, Figure 2.2 illustrates the first two recursive calls

to NN. Initially it finds the nearest neighbor (point a) to the origin, then

divides the universe into three partitions: (i) [0, 2)[0,∞) (i.e., subdivision

1 and 2), (ii) [0,∞)[0, 3) (i.e., subdivision 1 and 3) and (iii) (2,∞)(3,∞)

(i.e., subdivision 4). Subdivision 4 can be pruned since it is dominated by

point a. NN is applied on subdivision 1 and 2, followed by subdivision 1

and 3. For subdivision 1 and 2, the nearest neighbor is point e. Again,

e divides this partition into subpartitions. Those that may contain skyline

points (subdivision 1’ and 2’ and subdivision 1 and 3) will be explored using

NN next.

For data with more than two dimensions, NN’s performance is not sat-

isfactory because there is a lot of overlapping among the partitions. Also

the same skyline points may be found by some recursive applications of the

algorithm. Another serious problem is regarding the size of the to-do list. It

may exceed the size of the data set for as low as three dimensions.

21

(a) First call to partition the space (b) Second call to partition the space

Figure 2.2: Nearest Neighbor example

2.1.7 Branch and Bound

The Branch-and-Bound Skyline (BBS) algorithm is proposed in [17]. This

algorithm is able to output skyline points progressively. R-tree is used to

index the multi-dimensional tuples, although other indexing techniques can

be used too. Each intermediate entry (associated with Minimum Bounding

Region, or MBR for short) and leaf (associated with actual data point) of

the R-tree has a parameter called mindist, which represents the minimum

distance from the origin to the entry/leaf. The mindist of a data point equals

to the sum of all its coordinates and the mindist of an MBR equals to the

sum of all the coordinates of its lower left point.

The algorithm, shown in Figure 2.3, starts from the root of the R-tree and

insert the root entry to a heap (maintained according to mindist of all entries

in ascending order). The algorithm always tries to expand the entry on top

22

of the heap (i.e., the entry with smallest mindist) first and inserts its child

nodes to the heap if they are not dominated by any skyline points discovered

so far. On the other hand, if the top entry is found to be dominated by some

already-discovered skyline point, the algorithm simply removes it from the

heap without exploring it and goes to the next top entry on the heap. If the

top entry is actually a leaf node (i.e., a data point) and not dominated by

any skyline points obtained so far, that data point is a skyline point itself

and the skyline list expands. In this way, the skyline points are obtained

progressively in ascending order of their respective mindist. To speed up the

dominance checking process, an in-memory R-tree is built for all the skyline

points found so far. Whenever we need to check if an entry is dominated by

some already-found skyline point p, we simply check whether the lower left

corner of that entry falls in the dominance region of p, which is the rectangle

defined by p and the edges of the universe.

It is proved that BBS is I/O optimal (O(sh) where s is the size of the

result and h is the height of the R-tree), meaning that it visits only the nodes

that may contain skyline points and it does not access the same node twice.

They also justified that the memory requirement of BBS is Θ(s) where s is

the size of the skyline. The optimality of the algorithm lies in the ability to

prune intermediate entries of the R-tree if they fall in the dominance regions

of the already-found skyline points. These intermediate entries represent

groups of points that are definitely not in skyline. Hence, there is no need

to perform point-to-point comparison between skyline points and points in

these groups.

23

Algorithm BBS(T)
Input: T is an R-tree
Output: a set S of skyline points

1) initialize heap H, set S to be empty;
2) insert the root entry of T into heap H;
3) while (H is not empty) do
4) remove top entry e from H;
5) if (e is dominated by any point in S)
6) discard e;
7) else
8) if (e is an intermediate entry)
9) for each child entry ei of e
10) if ei is not dominated by some point in S
11) insert ei into H;
12) else
13) insert e into S;
14) return S;

Figure 2.3: BBS algorithm

2.2 Skyline Variants and Their Algorithms

More recently, the research community has focused on modified or extended

definitions of skyline, or skyline computation in non-standard databases. In

this section, we will see two variants of the skyline problems, namely the

thick skyline and stable skyline. We will also review one interesting skyline

computation algorithm, called streaming skyline, specifically applicable to

streaming databases.

24

2.2.1 Thick Skyline

[11] proposed an extended definition of skyline, called thick skyline. A thick

skyline includes not only the original skyline points, but also points within

their ε-neighborhood. Such thick skyline points have applications in real life.

For example, when a skyline hotel cannot be retrieved due to some reasons

(e.g., the hotel is fully booked, although it is the “best” according to user

specified criteria), users are usually willing to accept an alternative hotel that

is just slightly worse. Three algorithms have been proposed for this problem.

Sampling-and-Pruning algorithm tries to prune as many non-thick-skyline

points as possible so that the actual computation only needs to consider a

small amount of remaining points. The authors defined a strong dominating

relationship–a point p strongly dominates another point q if ∀i, 1 ≤ i ≤ d,

pi + ε ≤ qi (where d is the number of dimensions) and pi + ε < qi in at least

one dimension. Firstly, it randomly samples k mutually indifferent points

with high dominating capacity from the input. These k points are added to

the thick skyline list S temporarily. Then, in the pruning process, if a point

x is strongly dominated by a point s in S, it is removed. If it is not only a

dominated point but also an ε-neighbor of s, it is added to the neighbor list

of s. If x dominates s, s and x’s strongly dominated neighbors are removed

and x is added to the list. Finally, after the pruning process, the thick skyline

of a small amount of remaining points can be computed using any method

such as the Indexing-and-Estimating algorithm introduced below. Sampling-

and-Pruning is not a very interesting algorithm and the experiment results

showed its poor performance.

25

Indexing-and-Estimating algorithm is based on database indexes such as

B-tree, and a smart range estimate method on the batches in the “minimum

dimension” index used in [21]. The input points are partitioned into d lists

such that a point p = (p1, p2, ..., pd) is assigned to the ith list (1 ≤ i ≤ d) if

and only if pi is the minimum among all dimensions. Points in each list are

sorted in ascending order of their minimum coordinate (minC, for short).

It is proven in the paper that, if p = (p1, p2, ..., pd) is a skyline point in the

batch minC = pi of the ith list, then p does not have any ε-neighbor in jth

list (j 6= i) if (pj − pi) >
√

2ε. It is also proven that the ε-neighbors of p can

only exist in the batch range [pi − ε, pi + ε] of the ith list; and the batch

range [pj − ε, pj + ε√
2
] of the jth list (j 6= i). As a direct result, if a skyline

point p in the ith list is found, we only need to go back to find its ε-neighbors

in the current batch of the jth list minus a sliding window of length ε. The

algorithm initiates skyline list and ε-neighbors list, current batches, sliding

windows and the upper bound range to scan in each list. Each point p in the

minimum minCi is compared with the skyline list. If p is a skyline point, the

corresponding upper bound range is updated, and part of p’s ε-neighbor can

be found in the sliding windows, while the others are left to the remaining

accesses of the lists. When the skyline search finishes, the algorithm scans

the upper bound ranges for any remaining ε-neighbors. Finally, the skyline

points and their ε-neighbors are output as results.

The third algorithm called Microcluster-based algorithm partitions the

database into microclusters based on CF-tree [22]. Microcluster is a tech-

nique for compressing and summarizing large amount of points. For min-

26

ing of thick skyline, the database is partitioned into a set of microclusters

with radius ri (ri can be around ε) in the leaf nodes of an extended CF-

tree. Each non-leaf node represents a larger microcluster consisting of all

its sub-microclusters. One microcluster A dominates another microcluster

B, if the centroid of A dominates a virtual point in B whose coordinates

are the minimum values of all the points in B in each dimension. The al-

gorithm first identifies the microclusters that contain skyline points. These

skyline microclusters are obtained by traversing the CF-tree in ascending

order of mdist (the minimum distance from the microcluster to the origin),

and then inserted into a heap according to mdist. When all skyline mi-

croclusters have been identified, the algorithm finds the skyline points in

each microcluster. For all the skyline points found in one microcluster M , a

group ε-neighbors search is launched by searching ε-neighboring microclus-

ters. Points in the ε-neighboring microclusters are examined to see if they

are ε-neighbors of skyline points in M . Experimental results show that the

Indexing-and-Estimating and Microcluster-based algorithms outperform the

Sampling-and-Pruning algorithm.

2.2.2 Stable Skyline

As another variant of the skyline definition, [8] proposed two extensions to

the original definition. In addition to the existing MIN, MAX, and DIFF

criterion directives, they introduced a new criterion directive EQUAL and

a criterion modifier BY. The EQUAL criterion directive applied on some

27

attribute ai indicates that two tuples are not comparable if their ai values

are equal. This is just the opposite of the DIFF criterion directive which

specifies that two tuples are not comparable if their ai values are different.

The BY criterion modifier allows us to enforce a stronger criterion in judging

the dominance relation between two tuples. For example, the criterion price

MIN BY 5, 000 means that tuple A is better than tuple B only if A’s price

is at least $5,000 less expensive than B’s. These extensions increase the

expressiveness of the skyline operator. However, they also result in loss

of transitivity in semantics (to be discussed later). In particular, the BY

modifier even introduces cycles to the dominance relations.

How can EQUAL affect transitivity? An EQUAL operator prohibits tu-

ples having same values on the EQUAL dimensions to relate. In essence, it

punches holes in the partial order of the preference relation that would be

induced by the filter without its equal comparators, by making certain pairs

to tuples incomparable which would have been comparable otherwise. These

“holes” can violate transitivity. The other two properties of partial order,

namely irreflexivity and asymmetry, are still preserved, so the preference re-

lation is a DAG (Direct Acyclic Graph). As an example, let tuples A and

C have the same value on dimension d1, and tuple B have a different value

on attribute d1. Also A.d2 > B.d2 > C.d2. For the skyline clause “skyline

of d1 EQUAL, d2 MAX ”, A dominates B, B dominates C, but A and C are

incomparable. Only A is in the skyline set. However, when B is removed

from the input, C is also in the skyline set. In other words, the addition or

deletion of non-skyline tuples from the input can affect what the skyline set

28

id address price #bdrm cond
1 32 Dover Rd $356 K 4 4
2 11 Linden Dr $353 K 2 5
3 27 West Coast Rd $350 K 3 3

Table 2.3: HouseListing

is. This situation is referred to as the instability of skyline. As a remedy,

the authors redefined stability in the following way. A stable skyline set is

obtained by including all skyline points in the set first, and then iteratively

searching for points that are not dominated by any point already in the set.

The authors proved that in a finite number of iterations, a fixed set of points

will be found. This set is called the stable skyline set. The stable skyline set

is a superset of the original skyline set. When the skyline query induces a

partial order, the two sets are the same.

Cycles may be introduced in the dominance relations when we add the

BY clause to the criterion. As an example, consider the following skyline

query and the table HouserListing as in Table 2.3.

SELECT address, price, #bdrm, cond

FROM HouseListing

SKYLINE OF price MIN BY 5000, #bdrm MAX BY 2, cond MAX

BY 2

Tuple 1 dominates tuple 2, tuple 2 dominates tuple 3, and tuple 3 domi-

nates tuple 1. The preference relation is not even a DAG any more. It can

be assumed that user does not really intend to specify cyclic preference rela-

tions, and there is no suitable semantics for preference relations with cycles.

29

The way to remedy it is to add in a judiciously chosen skyline ground com-

parator, which is comparator without the BY modifier. The skyline clause

that contains a ground comparator, called a ground filter is guaranteed to

be cycle free. This purposely added ground comparator should perturb the

original preference relation as little as possible. It should, in essence, only

affect the cycles. Such a comparator is not unique and the author gave one

such comparator in the paper. The addition of the proper ground operator is

to approximate user’s intended preference relation by a cycle-free preference

relation.

This paper extends the skyline definition from a rather theoretical angle.

It enriches the semantics of skyline queries by introducing additional criterion

directive and modifier. However, it is not clear how efficiently the new skyline

query can be evaluated based on existing techniques.

2.2.3 Skyline Computation in Streaming Databases

An interesting algorithm to compute the skyline in a streaming database is

proposed in [15]. In particular, the authors studied the problem of skyline

computation with respect to the most recent N elements which can fit in the

main memory. They investigated two types of stream computation models:

n-of-N model and (n1, n2)-of-N model. The n-of-N model deals with the

computation of skyline of any most recent n (n ≤ N) elements. (n1, n2)-of-N

model is a generalization of the n-of-N model: instead of dealing with skylines

of the most recent n elements, it retrieves skylines between the most n2-th

30

recent element and the most n1-th recent element (for any n1 ≤ n2 ≤ N).

In the context of skyline computation in streaming database, a data ele-

ment e is redundant with respect to the most recent N elements if e is expired

(i.e. outside the most recent N elements) or is dominated by a younger el-

ement e′. The set of non-redundant elements RN are the minimum set of

elements that needs to be kept for n-of-N computation. An element e in RN

can be dominated by many other elements in RN that arrive earlier than e.

It is not necessary to keep all such dominance relations. Among these domi-

nance relations, only a small number of critical relations are needed. In RN ,

a dominance relation e′ → e is critical if and only if e′ is the youngest one

(but older than e) that dominates e. Hence, the dominance graph (the graph

that contains RN as the vertex set and the dominance relation as the edge

set) is a forest. To encode the graph is straightforward: every edge e′ → e

is represented by the interval (k(e′), k(e)], and every root e is represented

by the interval (0, k(e)], where k(e) means the element e arrives k(e)th in

the data stream. Given n for the n-of-N query, an element e in RN is in the

answer if and only if k(e) is the right end of an interval (a, k(e)] that contains

M −n+1, where M is the number of elements seen so far. Because the data

keeps streaming, the encoding scheme needs to be kept updated. When a

new element enew arrives, three steps are involved in maintaining the scheme.

1. If the oldest element eold in RN expires, remove it from RN , and also

remove the interval (0, k(eold)]. All intervals (k(eold), k(e)] need to be

updated to (0, k(e)].

31

2. Remove the intervals whose either end is dominated by enew, RN is also

updated by removing the dominated elements and adding in enew.

3. Find the element e that critically dominate enew, add (k(e), k(enew)],

or (0, k(enew)] if such an e does not exist, to the interval set.

Figure 2.4 shows the interval trees (in two different time instances) of the

data set in Figure 1.1 when N = 5, assuming that the elements arrives in

alphabetic order. We rename the elements using their arrival sequence for

easy reference. When only five elements have arrived, the interval tree is

shown on the left. When eight elements have arrived, earlier elements 1, 2

and 3 are expired and element 5 is dominated by younger elements. These

four elements are hence redundant and not needed in RN any more. The

update interval tree is shown on the right. With the encoding scheme well

(a) When five elements have arrived (b) When eight elements have arrived

Figure 2.4: n-of-5 encoding scheme of data set in Figure 1.1

maintained, the n-of-N queries can be answered efficiently because when

32

a new element enew arrives, only two types of changes may happen to the

current result set Sn. A data element e is deleted from Sn if enew dominates

e or e is expired. A data element e in RN is added to Sn if in the updated

dominance graph after inserting enew, one of the following two happens: 1) e

is enew and e′ such that k(e′) ≥ M − n + 1 and e′ → enew, or 2) e is critically

dominated by the just expired element e′′ in Sn and e′′ is not dominated by

enew.

For (n1, n2)-of-N queries, similar algorithms apply. However, we need

to keep all the most recent N elements PN instead of just RN . One extra

information to maintain for each element e is the oldest element e′ that

dominates e and arrives after e. Such elements are denoted by be. As in the

n-of-N query processing, the algorithm for (n1, n2)-of-N queries stabs the

intervals by M−n2 +1. For the right end element e of each stabbed interval,

they are the results for n-of-N queries. However, in (n1, n2)-of-N queries,

we still need to check if k(e) ≤ M − n1 + 1 < k(be). Only those e′s that also

satisfy this inequality are included in the result of (n1, n2)-of-N queries.

There are several problems concerning the efficiency and flexibility of the

algorithms. Efficiency is not guaranteed by a theoretically proven bound for

maintaining RN and the encoding scheme. When a new element enew arrives,

we need to find within RN those elements dominated by enew. Also we need

to find the element that critically dominates enew. These two operations are

done through building an in-memory R-tree. Due to the sophisticated cost

model of R-tree, it is unrealistic to have a proper bound for maintenance of

the encoding scheme. The other problem is that the current approach is not

33

able to answer skyline queries on arbitrary subset of the dimensions. This

is because the online determination of the critical dominance relationship

and building of the interval tree are all based on the assumption that the

skyline dimensions are known prior to data streaming. In fact, to handle

skyline queries on arbitrary dimensions, the algorithms need to maintain a

large number of interval trees, one for each possible subset of the dimensions.

This is not a practical solution because of the high cost, in terms of both

memory and time needed to maintain the structures.

34

Chapter 3

Dominant Skyline Queries

Dominant skyline queries are used to refine a large set of skyline points into

a smaller and more interesting set of points. Given a set of data records S,

a skyline query Q, and a dominating power1 threshold t, we want to retrieve

all the records, each of which belongs to the result of Q and dominates at

least t other records in S.

In this chapter, we firstly provide the insights of the problem. Then, we

propose and discuss in detail several two-step approaches based on prun-

ing techniques and heuristic functions. Lastly, we present the experimental

results of various algorithms.

1The dominating power of a skyline point is the actual number of points dominated by
the skyline point.

35

3.1 Insights of the Problem

Dominant skyline computation is different from the standard skyline com-

putation in the following way. In standard skyline computation, we only

need to retrieve skyline points and the dominated points can be discarded

as soon as possible. However, in this variant, we not only need to compute

the skyline points but also their dominating powers (or, at least the lower

bounds of their dominating powers). Dominated points cannot be discarded

too soon because they may be dominated by multiple skyline points, some

of which are yet to be discovered.

A naive way to compute this type of queries consists of two steps.

Step 1 Compute the skyline points with any of the known algorithms.

Step 2 Compute the dominating power of all skyline points by scanning the

whole data set.

This naive approach was proposed in [17]. Without this naive approach,

the existing algorithms cannot solve the dominant skyline queries efficiently.

Block Nested Loop

In Block Nested Loop approach, dominated points in earlier passes are

discarded. If they are dominated by skyline points discovered in later passes,

we have no way of counting the correct dominating powers of these skyline

points unless we store the dominated points somewhere in main memory or

disk.

36

LESS

Similar to BNL, LESS also needs to keep the dominated points for later

processing, which requires more iterations for the dominant skyline points

computation.

Bitmap

The Bitmap approach can handle the dominant skyline problem with a

small modification. For example, in Figure 1.2, after we find out that point

a is a skyline point, we want to know the dominating power of point a.

Firstly, as we did previously, we get ax = 10010000, ay = 10000111. Now we

compute ¬(ax∧ay) = 01111111. The result of this operation has the property

that the nth bit is set to 1 if and only if the nth point has value in some

dimension greater than the value of the corresponding dimension in point a.

Secondly, we get the bit-slices following the bit-slices we get previously (i.e.,

ax = 00010000, ay = 00000111). Now we compute ¬(ax ∨ ay) = 11101000.

The result of this operation has the property that the nth bit is set to 1 if

and only if the nth point has values in each dimension greater than or equal

to the values of the corresponding dimension in point a. Lastly, we perform

and operation of the two bit-slices (i.e., 01111111 ∧ 11101000 = 01101000).

The result of this operation has the property that the nth bit is set to 1 if

and only if the nth point is dominated by point a. Hence, the number of 1’s

in the result is the dominating power of point a.

However, as mentioned in Section 2.1.4, the algorithm has several short-

comings (e.g., I/O intensiveness) that render it unsuitable for processing

37

large input data. Also, the above mentioned technique can only be applied

after the skyline points are discovered.

Index

Index method distributes a point to a dimension list according to its

minimum dimension and computes skyline points from the top of all lists.

Skyline points reside near the top of the lists. However, there may not be

dominance relation between points on the top of one list and the points at

the bottom. Pair wise comparisons are needed between skyline points and

dominated points, to compute the dominating power of the skyline points.

Nearest Neighbor

When a skyline point is discovered, the dominance region of the point is

pruned from further consideration. However, the dominance regions of mul-

tiple skyline points overlap with each other, i.e., a point may be dominated

by several skyline points. If it is pruned early, we will overlook the possibility

that it may be also dominated by some of the yet-to-be-discovered skyline

points. Even if we do not prune them, the best we can do is still counting

the dominated points for each skyline point.

Branch and Bound

In the BBS algorithm, an intermediate R-tree entry is discarded immedi-

ately after it is found dominated by some skyline point. This entry may be

dominated by other skyline points that are yet to be discovered, similar to

NN case. Therefore, for dominant skyline computation, if we want to employ

38

BBS, we cannot discard such an entry even if it is found dominated.

A nice property of BBS is that when an R-tree entry is found dominated,

we do not have to branch down that entry further. We want to inherit this

property for computing dominant skyline points. One idea is to pre-compute

and store in each R-tree entry the number of points enclosed by that entry’s

MBR. We call it the size of an entry. When an entry is found dominated by

a skyline point p, we can increase the dominating power of p by the size of

the entry directly. By doing this, we can stop traversing down the subtrees

rooted at one entry once it is found dominated by a skyline point. The saving

is more significant if the entry is nearer to the root of the R-tree. However,

the dominance region of a skyline point may not contain an R-tree entry

completely, as illustrated in Figure 3.1. The dominance region of point g

overlaps with the R-tree entry on the left. In such a case where an entry is

not completely contained in the dominance region of a skyline point, we have

to branch down the entry further. A similar idea was proposed in [14], which

deals with answer approximation for aggregate queries (not skyline queries).

From the above discussion, it is clear that to solve the dominant skyline

problem efficiently is not a trivial task. None of the existing algorithms can

solve it without using the naive two-step approach. We want to improve

the naive approach with some pruning and heuristic techniques. Section 3.2

presents the ideas of our algorithms.

39

Figure 3.1: Overlapping between a dominance region and an R-tree entry

Naive two-step Approach Enhanced Approach
Step 1: compute skylines Step 1: compute skylines,

at the same time, output definite
dominant skyline points and
prune definite non-dominant

skyline points
Step 2: compute the Step 2: compute the

dominating powers of all dominating powers
skyline points of the remaining candidate

dominant skyline points

Table 3.1: Naive approach vs. enhanced approach

3.2 An Improved Two-step Approach

Table 3.1 compares the naive two-step approach with our proposed approach.

In essence, we push part of the work from Step 2 to Step 1 by trying to

determine as many dominant and non-dominant skyline points as possible in

Step 1 and confirm the rest of the dominant skyline points in Step 2. Note

that a dominant skyline point can be confirmed as long as the lower bound

of its dominating power exceeds the specified threshold.

40

3.2.1 Step 1: Using BBS with Pruning

Step 1 is based on BBS for its nice property mentioned in Section 3.1. How-

ever, to adapt to the problem specifically, we need the following parameters

maintained together with the the R-tree data structures.

Firstly, we associate a parameter called size with each R-tree entry. The

size of an R-tree entry is the number of points enclosed by the MBR corre-

sponding to the entry.

Secondly, we associate two parameters with a skyline point p.

LDP The lower bound of dominating power, calculated by summing the

sizes of all R-tree entries (processed so far) completely contained by p’s

dominance region.

UDP The upper bound of dominating power, calculated by adding to LDP,

the sizes of all R-tree entries (processed so far) that partially overlap

with p’s dominance region.

As an example, g.LDP = 2 and g.UDP = 5 in Figure 3.1.

In Step 1, we calculate the skyline points (making use of BBS), and at

the same time, output definite dominant skyline points and prune definite

non-dominant skyline points. Definite dominant skyline points are skyline

points with LDP ≥ t and definite non-dominant skyline points are skyline

points with UDP < t. Skyline points with LDP < t but UDP ≥ t are called

candidate dominant skyline points. After Step 1, all the candidate dominant

41

skyline points are grouped into a set P . Besides P , we also maintain a set E

of the R-tree entries that overlap2 with some point(s) in P . Note that there

is no parent-child or ancestor-descendant relations exist among all the R-tree

entries in E. That is to say, if an R-tree entry is found overlapping with a

candidate point, it will be inserted into E and not explored further until

perhaps in Step 2 later. The overlapping relation between ei’s in E and pj’s

in P can be modeled as a bipartite graph BiGraph. The two sets of vertices

comprise of elements from E and P respectively. An edge connecting one ei

with one pj represents their overlapping relation.

The pseudo code of Step 1 is depicted in Figure 3.2, Figure 3.3 and

Figure 3.4.

In algorithm DomBBS (Figure 3.2), as in BBS, we initialize the heap

H with the insertion of the R-tree root node into the heap (line 2). Set S

contains all the skyline points found so far. Set DefDom contains all the

definite dominant skyline points (i.e., dominant skyline points confirmed so

far). DefDom is a subset of S. While the heap is not empty, we remove the

top entry e (having the shortest mindist) from the heap (line 4) and examine

it. Firstly, we get, from S, the set of skyline points that dominate e (line

5). If e is indeed dominated by some already found skyline point (i.e., Dom

is not empty in line 6), we get from S −DefDom, the set of skyline points

whose dominance regions overlap with e’s MBR (line 7). Then, we update

the LDP and UDP of the related skyline points. If e is an intermediate

2By “a point overlaps with an entry”, we mean that the dominance region of the point
partially overlaps with the entry.

42

Algorithm DomBBS(T , t)
Input: T is an R-tree

t is a threshold
Output: DefDom is a set of definite dominant skyline points

BiGraph is a bipartite graph

1) initialize heap H, bipartite graph BiGraph, set S, DefDom to be empty;
2) insert the root node of T into heap H;
3) while (H is not empty)
4) remove top entry e from H;
5) Dom=points in S dominating e;
6) if (Dom is not empty)
7) Overlap=points in S −DefDom overlapping with e;
8) DefDom=UpdateDP(Dom, Overlap, e.size, t, DefDom);
9) if (e is an intermediate entry)
10) UpdateBiGraph(Overlap, {e}, BiGraph);
11) else //e is not dominated by any already found skyline points
12) if (e is an intermediate entry)
13) for each child ei of e
14) Dom=points in S dominating ei;
15) if (Dom is empty)
16) insert ei to H;
17) else
18) Overlap=points in S −DefDom overlapping with ei;
19) DefDom=UpdateDP(Dom, Overlap, ei.size, t, DefDom);
20) UpdateBiGraph(Overlap, {ei}, BiGraph);
21) else //e is a data point
22) insert e to S;
23) DomEntries=R-tree entries pruned earlier dominated by e;
24) OverlapEntries=R-tree entries pruned earlier overlapping with e;
25) for each entry ei in OverlapEntries
26) e.UDP+ = ei.size;
27) for each entry ei in DomEntries
28) e.LDP+ = ei.size;
29) e.UDP+ = ei.size;
30) if (e.LDP ≥ t)
31) add e to DefDom;
32) else
33) UpdateBiGraph({e}, OverlapEntries, BiGraph);
34) remove from BiGraph points whose UDP < t;
35) return < DefDom, BiGraph >;

Figure 3.2: DomBBS

43

Algorithm UpdateDP (Dom, Overlap, size, t, DefDom)
Input: Dom is the set of points dominating an R-tree entry

Overlap is the set of points overlapping with the R-tree entry
size is the size of the R-tree entry
t is the threshold
DefDom is the set of current definite dominant skyline points

Output: an updated DefDom

1) for each point p in Dom
2) if (p is not in DefDom)
3) p.LDP+ = size;
4) p.UDP+ = size;
5) if (p.LDP ≥ t)
6) add p to DefDom;
7) remove p from BiGraph;
8) if (Overlap is not empty)
9) for each point p in Overlap
10) p.UDP+ = size;
11) return DefDom;

Figure 3.3: UpdateDP

Algorithm UpdateBiGraph(Points, Entries, BiGraph)
Input: Points is a set of skyline points

Entries is a set of R-tree entries
BiGraph is the current bipartite graph

Output: an updated BiGraph

1) for each point p in Points
2) if (p is not in BiGraph)
3) add p to BiGraph;
4) for each entry e in Entries
6) compress e to e′;
7) add e’ to InMemRtrees;
8) if (e′ is not in BiGraph & e is not a point)
9) add e′ to BiGraph;
10) add edges between newly added Points and Entries in BiGraph;
11) return BiGraph;

Figure 3.4: UpdateBiGraph

44

R-tree entry (line 9), we update the bipartite graph accordingly (line 10),

as explained later in algorithm UpdateBiGraph. If, on the other hand, e is

not dominated by any already found skyline points (line 11), we deal with it

based on whether it is an intermediate R-tree entry. If e is an intermediate

entry (line 12), we explore the entry. For each child entry, we insert it into

the heap if it is also not dominated by any point in S (lines 15, 16). If a

child entry ei of e is dominated by some point in S, we get two sets of points

which dominate ei and overlap with ei respectively (lines 14, 18); update

the LDP and UDP for points in the two sets (line 19); and then update

BiGraph (line 20). If e is not an intermediate entry but a data point (line

21), then it is confirmed to be a skyline point. We insert e into S (line

22). Note that e’s dominance region may overlap with some entries pruned

earlier. Also, e may dominate entries pruned earlier. So we need to update

UDP and LDP of e (lines 25-29) with the size of the related pruned R-tree

entries. If e is hence confirmed dominant skyline point (line 30), e is included

in DefDom (line 31). Otherwise, e becomes one of the candidate dominant

skyline points and is added to BiGraph (line 33). Finally, after the heap

is empty, we pruned away skyline points with UDP < t, and return points

with LDP ≥ t (definite dominant skyline points), together with the bipartite

graph BiGraph (lines 34, 35). Note that InMemRtrees are maintained for

the pruned R-tree entries (or points). Indeed, two in-memory R-trees are

maintained. One in-memory R-tree is built on all the lower left corner points

of the pruned R-tree entries. The other in-memory R-tree is built on all the

upper right corner points of the pruned R-tree entries. These two in-memory

R-trees are kept for quick computation of the sets in line 23 and line 24.

45

To get the pruned entries (or points) dominated by a point e in line 23, we

just need to get all the lower left points enclosed by the dominance region

of e, which is a simple containment query on the first in-memory R-tree.

Similarly, to get the pruned entries (or points) overlapping with a point e in

line 24, we just need to get the set of all the upper right points enclosed by

the dominance region of e and substract from it the points we found in line

23.

The UpdateDP method (Figure 3.3) updates the LDP and UDP for

points in Dom unless they are already confirmed dominant, and UDP for

points in Overlap. The set Dom keeps points found dominating an R-tree en-

try e. The set Overlap keeps points whose dominance regions are found over-

lapping with e’s MBR. Finally, UpdateDP returns the updated list DefDom

of points with LDP ≥ t.

The UpdateBiGraph method (Figure 3.4) updates the in-memory R-trees

and the bipartite graph BiGraph. UpdateBiGraph adds a skyline point(or

skyline points) and the overlapping R-tree entries(or an R-tree entry, re-

spectively) into BiGraph when the overlapping relations are discovered in

DomBBS. In line 6, to compress an entry e essentially means to compute a

tuple <entry id, the lower left corner coordinates of e’s MBR, upper right

corner coordinates of e’s MBR, the size of e > from the entry e. After this

tuple is inserted into InMemRtrees (and perhaps BiGraph if e is an inter-

mediate entry), the actual entry can be removed from memory. Note that

we will never update BiGraph with more than one skyline point and more

than one R-tree entry at the same time.

46

Figure 3.5 shows the input to and output from Step 1.

Figure 3.5: Input and output of Step 1 based on BBS

3.2.2 Step 2: Confirming Dominant Points with Heuris-

tics

After Step 1, we have confirmed some definite dominant skyline points (with

LDP ≥ t) and pruned some definite non-dominant skyline points (with

UDP < t). We are left with a bipartite graph BiGraph consisting of a

set P of skyline points pi’s with LDP < t but UDP ≥ t and a set E of com-

pressed R-tree entries ei’s that overlap with the dominance regions of some

pi’s. In Step 2, we want to explore the ei’s in E, to confirm the remaining

dominant skyline points in P . We want to avoid exploring the same ei twice

if it overlaps with more than one candidate dominant skyline points.

We also hope to confirm the remaining definite dominant skyline points

while exploring as few ei’s as possible. The size of E keeps changing while

we are exploring the entries in E, because after exploring one entry ei, we

may add some/all of the child entries of ei to E, and we may also eliminate

some entries from E. How can exploring an entry ei eliminate some other

47

entries in E? An entry is eliminated from E if it is no longer needed for the

purpose of confirming the rest of the dominant skyline points. This happens

when all of the following three conditions are satisfied.

1. Exploring ei will make some points overlapping with ei definitely dom-

inant or non-dominant;

2. Making these points, say pj, definite will render exploring, for pj, other

entries that overlap with pj no longer necessary;

3. Some of these entries only overlap with pj.

If all of the three conditions are satisfied, then entries in condition 3 can be

removed from E after exploring ei.

With that in mind, it is obvious that a certain order of exploration of ei’s

will incur fewer number of page accesses (i.e., exploring fewer ei’s in E) than

other orders. We hope to weigh the ei’s so that always exploring the highest

weighed entry first will give us a good order of exploration (in terms of the

number of page visits). According to the observations mentioned earlier, an

entry is of greater value if exploring it can remove more other entries from E

and add fewer new entries to E. However, the latter is hard to predict unless

we actually explore the entry. Hence, we will weigh each entry according to

the former only. The ability of removing other entries relies on the “quality”

of points pj’s that overlap with ei. pj is “good” if pj overlaps with many

entries, each of which only overlaps with pj.

Let degreeei
of an ei in E be the number of points in P overlapping

48

with ei. The weight of a point Wpj
should be inversely proportional to

degreeei
for any ei’s overlapping with pj. In other words, for an ei overlap-

ping with pj, the smaller degreeei
is (i.e., fewer number of points overlap-

ping with ei), the better pj is. The reason is that, confirming such an pj is

more likely to eliminate those ei’s overlapping with it. Also, the weight of

a point Wpj
should be proportional to the number of ei’s overlapping with

pj. Hence, we use the following formula to calculate the weight of a point pj.

Wpj
=

∑
e′is connected with pj

1
degreeei

Figure 3.6: An extreme example showing that an entry should not receive
full weights from every overlapping point

Now, an entry ei is “good” if exploring it can confirm many overlapping

points (being dominant or non-dominant) and these points are “good” points.

It is natural to let ei receive weights from all points overlapping with it. We

need to address two questions here.

49

First question is that, does ei receive the full weight of every point over-

lapping with it? Consider the example in Figure 3.6, where ei overlaps with

many points. These points are all very good points because every one of

them only overlaps with ei. If ei receives full weights of all the points, ei

will be weighed very high, i.e., ei is an entry worth exploration. However,

exploring ei will not remove any any other entries at all because all the points

overlapping with ei only overlap with ei. To avoid mistakenly weighing such

entries too high, the amount of weight that ei receives from pj should be at

most Wpjei
=Wpj

− 1
degreeei

, which is the weight of pj minus the portion that

is contributed by ei itself. Following this formula, the amount of weight that

ei receives from every point overlapping with ei is zero.

The next question is that, does ei receive the full portion of Wpjei
for

every pj overlapping with ei? We propose four ways (based on heuristics) to

define the portion of weight σpjei
that ei receives from Wpjei

. These four ways

are all based on one common observation as depicted in Figure 3.7. Recall

that candidate skyline points have LDP < t and UDP ≥ t. As we explore

entries in Step 2, skyline points’ LDP s increase and UDP s decrease. If after

exploring an entry, we can bring down UDP below t or lift up LDP above

t, such an entry is “good” because by exploring it, we are able to confirm a

dominant or non-dominant skyline point.

The four heuristic functions can be categorized as in Table 3.2. Heuristic

Function 1 and 2 assume skewed distribution of points in MBRs while Heuris-

tic Function 3 and 4 assume uniform distribution. Heuristic Function 1 and

3 make the portion σpjei
larger if exploring ei is likely to make pj definitely

50

UDP

t

LDP

Figure 3.7: Effect of exploring entries in Step 2 for a candidate dominant
skyline point

Favoring entries Favoring entries
exploring which exploring which

may confirm may confirm
dominant points non-dominant points

Skewed Heuristic Function 1 Heuristic Function 2
distribution

Uniform Heuristic Function 3 Heuristic Function 4
distribution

Table 3.2: Categorization of four heuristic functions

dominant, estimated based on the respective distribution of points. On the

contrary, Heuristic Function 2 and 4 make σpjei
larger if exploring ei is likely

to make pj definitely non-dominant.

Heuristic Function 1

We assume that all points enclosed by entry ei’s MBR are in the dominance

region of point pj, i.e., the points are in the shaded region of Figure 3.8.

51

Figure 3.8: Heuristic Function 1 assumes all points of ei are inside the framed
region

Then

σpjei
=

1, if sizeei
≥ t− LDPpj

;

0, otherwise.

i.e., ei receives full weight of Wpjei
from pj if it can make pj definitely domi-

nant; zero otherwise. The intuition is that ei is a good entry with respect to

pj if exploring it can make pj definite dominant.

Heuristic Function 2

We assume that all points enclosed by entry ei’s MBR are not in the domi-

nance region of point pj, i.e., the points are in the shaded region of Figure 3.9.

Then

σpjei
=

1, if sizeei
≥ UDPpj

− t;

0, otherwise.

i.e., ei receives full weight of Wpjei
from pj if it can make pj definitely non-

dominant; zero otherwise. The intuition is that ei is a good entry w.r.t pj if

52

Figure 3.9: Heuristic Function 2 assumes all points in ei are inside the framed
region

exploring it can make pj definite non-dominant.

Heuristic Function 3

The previous functions assume that the distribution of the points within an

MBR is skewed. If we assume uniform distribution of points within an MBR,

we can get different σpjei
. Heuristic Function 3 and 4 exploit this.

Consider the example in Figure 3.10. Suppose the overlapping region

between ei and p1 contains enough points to make p1 definitely dominant

and the overlapping region between ei and p2 contains fewer points to make

p2 definitely dominant. ei should receive a larger portion of weight from

Wp1ei
and a smaller portion of weight from Wp2ei

. However, without actu-

ally exploring ei, we can only estimate the number of points contained in

the overlapping region of a skyline point and an entry. The estimated num-

ber, assuming uniform distribution of points within one MBR, is given as

53

Npjei
=

S(Ovlpjei)

S(ei)
×sizeei

, where S(Ovlpjei
) is the volume of the overlapping re-

gion between pj and ei and S(ei) is the volume of the MBR corresponding

to ei. According to the example in Figure 3.10, a natural way to define the

Figure 3.10: Heuristic Function 3 assumes uniform distribution

portion of weight that ei receives from a point pj is σpjei
=

Npjei

t−LDPpj
. In fact,

σpjei
can exceed 1, which means the estimated number of points contained in

the overlapping region is more than enough to make skyline point pj domi-

nant. This is one way to define the portion, which actually assumes that an

entry is “good” if exploring it can confirm many dominant skyline points.

It overlooks the fact that an entry is also “good” if exploring it can confirm

many non-dominant skyline points.

Heuristic Function 4

Consider the example in Figure 3.11. Suppose that sizee1+sizee2 < t ≤
UDPpj

, and the overlapping region of pj and ei contains fewer number of

points to make pj dominant. In this case, ei is also worth exploring since pj

54

can be confirmed non-dominant and therefore e2 can be eliminated from E.

The portion of weight that ei receives from pj in this case, can be defined as

σpjei
=

sizeei−Npjei

UDPpj−t
. As before, a good portion σpjei

is expected to exceed 1.

Figure 3.11: Heuristic Function 4: exploring ei may make pj non-dominant

Overall Weighing Function

Finally, we can weight an entry ei according to the following formula: Wei
=

∑
p′js connected with ei

σpjei
Wpjei

.

Figure 3.12 shows the input to and output from Step 2 based on heuristic

functions.

Figure 3.12: Input and output of Step 2 based on heuristic functions

55

Step 2 Using Scanning

Yet another alternative different from these heuristic functions based ap-

proaches is simply to use scanning in the second step. Remember after Step

1, we have confirmed some definite dominant skyline points and pruned away

some definite non-dominant skyline points. So in Step 2, we can also scan

the data set once more to confirm the rest of the dominant skyline points.

Figure 3.13 shows the input to and output from Step 2 based on scanning.

Figure 3.13: Input and output of Step 2 based on scanning

3.2.3 Discussions

In Step 1, when an entry is found dominated, it is compressed and then the

real entry itself is deleted from memory. If the entry overlaps with some can-

didate dominant skyline point, we may need to bring it back to memory again

in Step 2. To save these extra I/Os, one may think of caching all dominated

entries in memory, which demands a large amount of main memory. One

idea is to selectively caching some of them. However, it is hard to predict

which entries will be needed in Step 2 because some of them may actually

be removed by exploring other higher weighed entries. Note that, a lower

56

weighed entry (and therefore more likely to be removed from consideration)

in Step 2 overlaps with fewer number of points. Hence, we adopted a page

eviction policy that kicks out entries that overlap with the least number of

points first.

In Step 2, as explained earlier, there are four ways to define the portion of

weights that an entry ei receives from a point pj. It is not clear whether one

definition is more suitable than the rest for certain kinds of data distribution.

We explored this in Section 3.3 through experiments.

3.3 Dominant Skyline Experiments

In this section, we present the experimental results of various algorithms for

the dominant skyline computation. We used the generator in [3] to generate

the input data files. Here are some common characteristics of the input data.

Each tuple has d dimensions and one “bulk” attribute that is packed with

garbage characters to ensure that the tuple is of 100 bytes long. Following

the common methodology to study the performance of skyline query evalu-

ation, three types of data sets are generated: (1) Independent where the

attribute values of the tuples are generated using an uniform distribution; (2)

Coorelated which contain tuples whose attribute values are good in one di-

mension and are also good in other dimensions; (3) Anti-correlated which

contain tuples whose attribute values are good in one dimension but are bad

in one or all of the other dimensions. The experiments were performed on a

desktop PC running Fedora Core 4, with a Pentium IV 2.6 GHz CPU and 1

57

Parameter Abbreviation
Number of Dimensions d

Threshold Value t

Table 3.3: Parameters of dominant skyline experiments and their abbrevia-
tions

GB memory.

“BNL” refers to Block-Nested-Loop algorithm followed by scanning. “Naive”

refers to the naive two-step approach with BBS in Step 1 and scanning in Step

2. “RTree+Func1” refers to the improved two-step approach with heuristic

function 1. “RTree+Func2” refers to the improved two-step approach with

heuristic function 2. “RTree+Func3” refers to the improved two-step ap-

proach with heuristic function 3. “RTree+Func4” refers to the improved

two-step approach with heuristic function 4. “RTree+Scan” refers to the

improved two-step approach with scanning.

All the input data files, except the one used in Figure 3.17, contain 100,000

tuples. We investigated the performace impacts of dimensionality and thresh-

old value. We also examined the progressiveness of various algorithms. We

reserved 100 MB of the memory space for all the experiments in this section.

We use the abbreviations in Table 3.3 for the parameters that we vary for

different sets of experiments.

58

Dimension Independent Anti-correlated Correlated
2 12/13 49/50 3/3
3 66/72 438/713 6/6
4 377/405 85/4069 14/14
5 876/1127 2/13102 23/25
6 1281/2361 0/26455 19/20
7 1473/5189 0/41965 92/99
8 1006/10020 0/56121 103/119

Table 3.4: Result summary of dominant skyline experiment with varying
dimensionality

3.3.1 Impact of Dimensionality

In this set of experiments, t = 5, 000. Figure 3.14, Figure 3.15, and Fig-

ure 3.16 show the results of varying dimensions for independent, anti-correlated,

and correlated data respectively. Table 3.5 summarized the result size of this

set of experiments. For example, when d = 4, independent data set has 12

dominant skyline points out of 13 skyline points.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 3 4 5 6 7 8

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of Dimensions

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

Figure 3.14: Total evaluation time vs. dimensionality for independent data

In Figure 3.14, we observed the following.

59

1. When d > 5, RTree+Func approaches started to lose to BNL because

R-tree becomes inefficient as dimensionality increases.

2. RTree+Func approaches failed to finish evaluations when d ≥ 7 because

after Step 1, they all produced large bipartite graphs that could not fit

in the pre-allocated memory space. These approaches are not suitable

for processing of high dimensional data.

3. BNL won slightly over RTree+Scan when dimensionality was high.

This is mainly due to the inefficiency of R-tree in high dimensional

space.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 3 4 5 6 7 8

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of Dimensions

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

Figure 3.15: Total evaluation time vs. dimensionality for anti-correlated data

In Figure 3.15, we observed the following.

1. BNL is more sensitive to dimensionality increasing. It started to lose

to R-tree based improved approaches when d ≥ 5.

2. RTree+Scan won over RTree+Func approaches when d < 6. When

d ≥ 6, they had same evaluation time because there was no skyline

60

points left for Step 2 computations (i.e., all skyline points have been

confirmed, either dominant or non-dominant, after Step 1).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of Dimensions

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

Figure 3.16: Total evaluation time vs. dimensionality for correlated data

In Figure 3.16, we observed the following.

1. RTree+Func4 performed worst when d ≥ 6 because the heuristic func-

tion is more complicated and the function actually led to more entry

explorations in Step 2 (twice as much as the other functions).

2. All 4 heuristic function lost to BNL, because for correlated data, skyline

points usually have high dominating powers. BNL needs to scan only

a small portion of it to confirm all dominant skyline points.

3. BNL and RTree+Scan had similar evaluation time.

Figure 3.17 repeated the same experiment as in Figure 3.14 with data

set of 500,000 tuples. We observed similar trends except that 1)RTree+Func

61

Dimension Independent
2 13/13
3 112/113
4 451/461
5 1629/1731
6 4027/4664
7 8374/11549
8 12203/23248

Table 3.5: Result summary of dominant skyline experiment with varying
dimensionality and input size of 500k tuples

approaches ran out of memory earlier when d = 5; and 2)RTree+Scan per-

formed far worse than BNL due to the inefficiency of R-Tree in high dimen-

sional space. Table ?? summarized the result size of this set of experiments.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of Dimensions

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

Figure 3.17: Total evaluation time vs. dimension for independent data of
cardinality 500 K

3.3.2 Impact of Threshold

In this set of experiments, d = 3. Figure 3.18, Figure 3.19, and Figure 3.20

show the results of varying thresholds for independent, anti-correlated, and

62

Threshold Independent Anti-correlated Correlated
0 72/72 713/713 6/6

20000 64/72 0/713 6/6
40000 53/72 0/713 6/6
60000 40/72 0/713 6/6
80000 24/72 0/713 6/6
100000 0/72 0/713 0/6

Table 3.6: Result summary of dominant skyline experiment with varying
threshold

correlated data respectively. Table 3.6 summarized the result size of this

set of experiments. For example, when t = 0, independent data set has 72

dominant skyline points out of 72 skyline points.

 0

 5

 10

 15

 20

 25

 0 20000 40000 60000 80000 100000

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Threshold

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

Figure 3.18: Total evaluation time vs. threshold for independent data

In Figure 3.18, we observed the following.

1. The evaluation time of BNL and Naive approaches both increased with

threshold. When t ≥ 60 K, the two approaches need to scan almost

the entire data set to confirm dominant skyline points.

2. When t = 80 K, all the RTree+Func approaches have similar evaluation

63

time as BNL.

3. Function 3 turned out to be a slightly worse heuristic function than the

rest when t = 80 K. This function introduced more page explorations

than the rest.

4. For RTree-based improved approaches, when t = 10 K, Step 1 confirmed

that all skyline points were non-dominant and Step 2 was not executed.

 0

 50

 100

 150

 200

 0 20000 40000 60000 80000 100000

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Threshold

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

Figure 3.19: Total evaluation time vs. threshold for anti-correlated data

In Figure 3.19, we observed the following.

1. The evaluation time for Naive and BNL shot up sharply at t = 20 K. In

all the algorithms, we try to report a dominant skyline point as soon as

the lower bound of its power is above the specified threshold. For this

anti-correlated data set, no skyline point has dominating power above

20 K, which means that both Naive and BNL need a complete scan of

the data set to confirm the dominant skyline points.

64

2. When t 6= 0, for the rest approaches, almost all the skyline points

can be confirmed non-dominant as soon as Step 1 finishes. The only

exception happened with t = 20 K, where 40% of the skyline points

were still needed to be confirmed after Step 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 20000 40000 60000 80000 100000

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Threshold

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

Figure 3.20: Total evaluation time vs. threshold for correlated data

In Figure 3.20, we observed the following.

1. Naive and BNL had increasing evaluation time as threshold increased.

Remember that we report a dominant skyline as soon as the lower

bound of its power is above the threshold. When threshold increases,

dominant skyline points cannot be produced fast since we need to scan

more data.

2. RTree+Func approaches all finished evaluation fast regardless of the

threshold. It is because the number of skyline points is small (6 in

total), so the number of R-tree entries needed to be explored in Step 2

is small too.

65

3. When t ≤ 80 K, RTree+Scan had increasing evaluation time due to

the same reason as explained in Point 1. The evaluation time dropped

at t = 100 K because all skyline points were confirmed non-dominant

(with respect to a threshold value of 100 K) immediately after Step 1.

Scanning in Step 2 was skipped.

3.3.3 Progressive Behaviors

In this set of experiments, d = 5, and we use input data of 100,000 tuples.

Figure 3.21 shows the progressiveness feature of various algorithms for inde-

pendent and anti-correlated data. For independent data, t = 6, 000. There

are 842 dominant skylines out of 1127 skyline points. For anti-correlated

data, t = 1, 500 due to the skewed distribution of data points. There are

374 dominant skylines out of 13102 skyline points. We omitted the graph for

correlated data because all algorithms run very fast to compute dominant

skylines when the data distribution is correlated. All R-tree-based improved

approaches are able to start confirming results earlier than BNL, thanks to

the pruning technique used in Step 1.

3.3.4 Summary of Dominant Skyline Experiments

From the above experiment results, we see that Block Nested Loop approach

performs best when the input data is independent. RTree+Scan approach

works best when the input data is correlated or anti-correlated. There is no

66

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Percentage of reported points

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

(a) independent data

 0

 100

 200

 300

 400

 500

 600

 0 0.2 0.4 0.6 0.8 1

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Percentage of reported points

BNL
Naive

RTree+Func1
RTree+Func2
RTree+Func3
RTree+Func4
RTree+Scan

(b) anti-correlated data

Figure 3.21: Evaluation time vs. percentage of output for independent and
anti-correlated data

consistent winner among the four heuristic functions. Recall that Heuristic

functions 1 and 2 assume skewed distribution of data points within an MBR.

However, we do not see better performance using these two heuristics for

correlated or anti-correlated data sets. This is because data distribution

in the Euclidean space does not necessarily say anything about the data

distribution within a random R-tree MBR.

It is often the case that heuristics-based Step 2 does not yield a better

performance than a simple scanning based Step 2. In terms of progressive-

ness, RTree-based improved approaches are able to start outputting results

earlier.

67

Chapter 4

Tier-based Skyline Queries

This chapter provides detailed discussion on the second variant, i.e. tier-

based skyline queries, as defined in Section 1.3.2. Such a query retrieves

“skyline” points from tier-1 to tier-k. Tier-1 points are the traditional sky-

line points. Tier-k points are skyline points when tier-1 to tier-(k-1) points

are removed from the input. Tier-based skyline queries are useful when the

traditional skyline result set is too small. Before we go into the details of this

variant of skyline queries, let us see a generalized dominant skyline problem

of Chapter 3. It also deals with the case where the skyline result size is too

small.

When the result size of a skyline query is too small, we may want to

retrieve all tuples (not necessarily skyline) that are dominated by at most

t1 tuples, but dominate at least t2 tuples. It is a generalized definition of

the dominant skyline queries. When t1 = 0, it is indeed the definition of

68

dominant skyline queries.

However, this type of queries can be easily answered with a simple mod-

ification of DomBBS (Figure 3.2) algorithm. Recall that in DomBBS, we

keep all the already-found skyline tuples in a set S in memory. When the

top entry e of the heap is removed, e is checked against all the tuples in S.

If e is dominated by any tuple in S, it will not be explored in Step 1 any

more. Otherwise, the child entries of e would be added to the heap for future

processing. Now, to answer generalized dominant skyline queries, we keep

a tuple (not necessarily skyline) in S as long as it is dominated by no more

than t1 tuples already found in S. When the top entry e is removed from the

heap, it is checked against the tuples in S. If e is dominated by no more than

t1 tuples, e’s child entries will be added to the heap for later processing.

Since the above solution is trivial, we focus our discussion on the tier-

based skyline problem below.

4.1 Modifications of BBS

An obvious and naive approach to solve this tier-based queries is to compute

skyline points tier by tier, starting from tier 1 all the way up to tier k. Most

of the algorithms in Chapter 2 can be used to compute a tier of skyline tuples,

only after the previous tiers are removed from input. However, BBS can be

extended to solve this variant without using this naive approach.

Figure 4.1 shows the modified BBS algorithm to solve this tier-based

69

Algorithm TierBBS(T , k)
Input: T is an R-tree

k is the maximal tier to be retrieved
Output: a set S of skyline points in tier 1 to tier k

1) initialize heap H, set S to be empty;
2) insert the root entry of T into heap H;
3) while (H is not empty) do
4) remove top entry e from H;
5) D = {< p, tier(p) > |p ∈ S ∧ p dominates e};
6) tier(e) = max{tier(p)| < p, tier(p) >∈ D}+ 1;
7) if (tier(e) > k)
8) discard e;
9) else
10) if (e is an intermediate entry)
11) for each child entry ei of e
12) if ei is not dominated by any tier-k point in S
13) insert ei into H;
14) else
15) insert < e, tier(e) > into S;
16) return S;

Figure 4.1: BBS-based algorithm to answer tier queries

variant. We call the algorithm TierBBS. In line 4, when the top entry e

is removed from the heap, it is checked against all the already-found tier-i

(1 ≤ i ≤ k) skyline points in S, to determine (the lower bound of) the tier

(i.e., tier(e)) that e belongs to (line 5 to 6). If tier(e) ≤ k (line 9), e will be

explored further, similar to the BBS algorithm. If e is actually a point (line

14), then tier(e) will be the actual tier that e belongs to. We can add the

tuple < e, tier(e) > into S (line 15).

If e is a point (line 14), why does tier(e) computed in line 6 become the

actual tier of e? Suppose that the actual tier of e, tier′(e), is greater than

tier(e) which is computed in line 6. That is to say that there will be at least

70

one point, say e′, not yet found in S, but dominates e, with tier(e′) > tier(e).

However, according to BBS, entries are explored in increasing order of their

mindist. If e′ dominates e, e′ must be in S already, before e is explored.

4.1.1 Memory Management Issue with BBS

The modified algorithm in Figure 4.1 seems to be an easy solution to the tier-

based skyline queries. However, one issue associated with it is the possibility

of a large in-memory result set S. All the already found skyline points

ranging from tier 1 to tier k are kept in S, which future candidate points

will be compared against. When k, or the data set, or dimensions involved

in the query is large, S can be very large. Furthermore, in the original BBS

algorithm, S is managed using an in-memory R-tree, an index structure that

requires a much larger pool of memory pages to maintain. Therefore, a

practical solution must handle the memory overflow issue properly. That

means when the memory limit is reached, we need a page replacement policy

to decide which page to be removed from main memory first.

4.1.2 A Page Replacement Policy

With a large group of points scattered across different tiers, when a new point

arrives, we may have run out of space to accommodate the new point. In

this case, paging out some points is inevitable. A sensible guideline to decide

which points to be paged out is to remove points less capable of confirming

71

future points and their tiers. Because when a new point comes, if we have

in-memory points that can confirm this new point’s tier, we can immediately

confirm whether it is part of the final results or not. Hence, points capable

of confirming future points’ tiers are more important and should stay in

memory as long as possible. Intuitively, points in tier k should have the

highest importance. This is because if an entry, removed from the heap, is

dominated by any already-found point in tier k, then any points enclosed by

this entry will be in tier (k + 1) at least, so there is no need to explore this

entry further. If the entry is not dominated by any already-found point in

tier k, then some points enclosed by this entry may be in the result set, and

we need to explore the entry further. Points in lower tiers are less critical in

this sense. This is because whether or not an entry is dominated by such a

point, this entry may still include points in the result and hence needs further

exploration. However, tier-(k-1) points are intuitively more important than

tier-(k-2) points because they directly confirm tier-k points. From these

observations, a possible page eviction policy would be to page out points

that belong to the lowest tier first.

4.1.3 TierBBS with In-memory R-tree

Recall that in the standard BBS algorithm, partial skyline results are kept in

memory using an in-memory R-tree. The objective is to get a fast response

when we need to know whether an entry or a point (off the heap) is dominated

by any already-found skyline points. However, the page replacement policy

72

based on tiers is hard to be executed efficiently with such an in-memory R-

tree. This is because points are grouped into one R-tree leaf page based on

the their dimensional values, not on which tier they belong to. To page out

points in tier i may require a complete scan of the leaf pages to find out

all such points, which could be inefficient. Therefore, for in-memory R-tree

based memory management, we page out a random R-tree leaf when memory

is full.

4.1.4 TierBBS with In-memory Linked-lists

A possible modification is to abandon the in-memory R-tree approach, and

use a series of linked-lists to organize the in-memory points. Points belonging

to the same tier are put into the same linked-list. When a page needs to be

kicked out to disk, we always pick the list containing points in the lowest

tier. Figure 4.2 depicted this data structure.

Compared to the original R-tree based memory management, list based

memory management has its advantages and disadvantages. It is better not

only because it is easier to find points in a particular tier, but also because it

requires less memory pages to maintain the same number of points. Hence, it

is a light-weighted index structure compared to R-tree. However, with points

organized in lists, we may need to scan all the lists to decide the lower bound

of tier that an entry belongs to, unlike the way we do it with an in-memory

R-tree, where a containment query is all we need to find out all the points

that dominate the entry. List structure may therefore be slower with this

73

Figure 4.2: In-memory linked-lists to store the partial results

operation.

4.1.5 TierBBS with Sorted In-memory Linked-lists

We may also borrow the idea from LESS algorithm to maintain the lists

sorted according to
∏

i di where di are the values of skyline dimensions. In this

way, a strong point (i.e., may be able to dominate more points) will “float”

to the top of the list. It may accelerate the comparison. But maintaining

such sorted lists also incurs cost. In Section 4.4, we present experimental

results that explore this tradeoff.

74

4.2 Determining Tier Ranges for Points

When the main memory is large enough, no page eviction will occur, and the

exact tier of each result point can be confirmed immediately, as in lines 6 and

15 of Figure 4.1. However, when the result size does not fit in memory, paging

of result points occurs. Later points may hence have a range instead of an

exact number as their tiers. It is easiest to explain this using an example.

Let us say that we have some tier-1 points paged out, when a new point

comes, if it is not dominated by any in-memory points, we cannot say it is

a tier-1 point because it may or may not be dominated by the points paged

out already. In this case, we assign a temporary tier range [1, 2] to this

new point. Some later points dominated by this point may then have range

[2, 3]. Therefore, after TierBBS finishes execution, we may have a set of

points having tier ranges rather than exact tier numbers. This is a direct

consequence of page evictions.

The range for one point, say p, is determined by the following two steps.

Step 1 Compare p against all the in-memory points. Let D be the set con-

taining all the in-memory points that dominate p, i.e., D = {p′|p′ is in

memory and p′ dominates p}. Let LBp denote the lower bound of p’s

tier range and UBp denote the upper bound of p’s tier range1. Then

LBp = max{LBp′|p′ ∈ D}+ 1 and UBp = max{UBp′|p′ ∈ D}+ 1.

Step 2 Let Pruned be the set of points already paged out of memory when

1If the exact tier of an in-memory point p′ is known, then LBp′ = UBp′

75

p’s tier range is being determined. Then UBp = max(UBp
2, max{UBp′|p′ ∈

Pruned}+ 1).

4.3 Determing Exact Tiers for Points

After TierBBS finishes execution, the remaining task is to confirm the exact

tiers of those points who have been assigned temporary tier ranges due to

limited memory. Of course, points whose tier lower bounds are beyond k

need no further processing.

We adopt the BNL algorithm to confirm the remaining points P . But

first of all, we sort all the remaining points into ascending order according

to their
∑

i xi where xi’s are the skyline dimensions. This is to ensure that

a point will not be dominated by points appearing after it. The next step is

to confirm tier-i points from i = 1 to i = k. For tier i, we start with the top

point p from P , and compare it with the points already in tier i. There are

three possible cases.

Case 1 If the tier lower bound of p is greater than i, we skip p for tier i and

proceed with the point after p;

Case 2 If p is dominated by any point in tier i, we also skip p for tier i and

proceed with the next point;

Case 3 If p is not dominated by any point in tier i, we remove p from P

2this UBp is obtained in Step 1

76

and add it to tier i.

We are guaranteed in Case 3 that if p is not dominated by any point in

tier i, p belongs to tier i. This is because of the order in which the points

in P are preserved. Hence, the sorting stage of P is essential to ensure the

correctness of results.

4.4 Tier-based Skyline Experiments

In this section, we present the experimental results of three variants of al-

gorithm TierBBS as compared to algorithm BNL. “BBS-List” refers to the

algorithm TierBBS using in-memory linked-lists. “BBS-List+” refers to the

algorithm TierBBS using sorted in-memory linked-lists. “BBS-RTree” refers

to the algorithm TierBBS using in-memory R-tree.

All the input data files contain 1,000,000 tuples. Every tuple in the

input data is of 100 bytes long and two types of data sets, i.e. independent

and correlated are generated. We investigated the performace impacts of

dimensionality, maximum tier level, and memory size. The experiments were

performed on a desktop PC with Fedora Core 4, a Pentium IV 2.6 GHz CPU

and 1 GB memory. We use the abbreviations shown in Table 4.1 for the

parameters that we vary for different sets of experiments.

77

Parameter Abbreviation
Number of Dimensions d

Maximal Tier Level k
Main Memory Size m

Table 4.1: Parameters of tier-based skyline experiments and their abbrevia-
tions

4.4.1 Impact of Dimensionality

In this set of experiments, m = 1 MB and k = 4.

Figure 4.3 shows the results of varying dimensions for independent data.

When d < 5, BBS-List and BBS-List+ both have better performance than

BNL. Actually when d = 3, BBS-List and BBS-List+ both run eight times

faster than BNL; when d = 4, BBS-List and BBS-List+ run twice faster than

BNL. However, when d = 5, both BBS based algorithms using in-memory

linked-lists perform significantly worse than BNL. This is because 1 MB of

memory size becomes too small for five-dimensional data, and excessive pag-

ing occurs. When d = 2, BBS-RTree performs similarly as the other two BBS

based variants, and is better than BNL. However, it slows down drastically

when d ≥ 4. It is clear that for independent data, BBS based algorithms are

more sensitive to increase of dimension. Table 4.2 summarized the result size

of this set of experiments. For example, when d = 2, independent data set

has 15 tier − 1 skyline points, 18 tier − 2 skyline points, 35 tier − 3 skyline

points, and 41 tier − 4 skyline points.

Figure 4.4 shows the results of varying dimensions for correlated data.

BBS-List and BBS-List+ have only a very small, almost negligible, increase

78

Dimension Independent Correlated
2 15/18/35/41 2/1/3/2
3 112/243/408/536 6/9/9/17
4 533/1484/2541/3325 12/22/39/40
5 2169/6724/12978/20489 50/82/151/213

Table 4.2: Result summary of tier-based skyline experiment with varying
dimensionality

 0

 500

 1000

 1500

 2000

5432

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of Dimensions

BBS-List
BBS-List+

BBS-RTree
BNL

Figure 4.3: Total evaluation time vs. dimensionality for independent data

in evaluation time when dimension increases. This is because correlated

data has very small number of skyline points in every tier. When dimension

increases, this still holds. That results in very small increase of the number

of in-memory comparisons for BBS-List and BBS-List+. BBS-RTree has

noticable time increase when d = 5. This is the overhead cost due to the

data insertions and index structure maintenance for R-tree. When d < 5,

the in-memory R-tree has only 1 root page. When d = 5, the in-memory

R-tree has 8 pages in total. BNL has constantly increasing response time as

dimension increases.

79

 0

 5

 10

 15

 20

5432

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Number of Dimensions

BBS-List
BBS-List+

BBS-RTree
BNL

Figure 4.4: Total evaluation time vs. dimensionality for correlated data

number of tiers Independent Correlated
2 112/243 6/9
3 112/243/408 6/9/9
4 112/243/408/536 6/9/9/17
4 112/243/408/536/728 6/9/9/17/9

Table 4.3: Result summary of tier-based skyline experiment with varying
number of tiers

4.4.2 Impact of Tier Level

In this set of experiments, d = 3 and m = 1 MB.

Figure 4.5 and Figure 4.6 show the results for independent and correlated

data respectively. Table 4.3 summarized the result size of this set of exper-

iments. For example, when k = 2, independent data set has 112 tier − 1

skyline points and 243 tier − 2 skyline points.

In Figure 4.5, BBS-List and BBS-List+ perform better than the rest two

algorithms. They have small increases when tier number (k) increases. BBS-

RTree is more sensitive to tier number increase than BNL. Initially, BBS-

80

RTree has shorter response time than BNL; but when k ≥ 4, its evaluation

speed starts to slow down.

In Figure 4.6, TierBBS algorithms have better performance than BNL.

They show no significant increase in response time as tier number increases;

because the number of in-memory results is very small for correlated data.

BBS-RTree has higher index maintenance cost than BBS-List and BBS-

List+.

 0

 5

 10

 15

 20

 25

5432

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Maximum Tier Level

BBS-List
BBS-List+

BBS-RTree
BNL

Figure 4.5: Total evaluation time vs. tier for independent data

4.4.3 Impact of Memory Size

In this set of experiments, d = 3 and k = 4. We used the same data set as

before.

Figure 4.7 shows the results of varying main memory size for independent

data. The subfigure on the right shows a zoomed-in view with the y-scale

reduced. For BBS-List and BBS-List+, when the memory size is too small,

81

 0

 2

 4

 6

 8

 10

 12

5432

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Maximum Tier Level

BBS-List
BBS-List+

BBS-RTree
BNL

Figure 4.6: Total evaluation time vs. tier for correlated data

paging of in-memory results occurs excessively. Once the memory is big

enough, paging frequency reduces significantly, and the response time drops.

BBS-RTree needs a larger pool of memory pages to keep the same amount of

in-memory points than BBS-List/BBS-List+; that means BBS-RTree may

need more paging for the same amount of memory size. Also, R-tree has

higher maintenance cost than linked-lists. These are the reasons why BBS-

RTree performs worse than BBS-List and BBS-List+. On the contrary, BNL

has similar evaluation speed when the memory changes from 0.1 MB to 2

MB. BNL does not rely on memory as heavily as BBS-based algorithms.

Figure 4.8 shows the results of varying main memory size for correlated

data. We do not see the increase of memory size affect the response time

for BBS-List and BBS-List+ in this case. Correlated data always have the

smallest number of results hence it does not require as large memory as

independent or anti-correlated data does. For BNL, larger memory again

hurts the evaluation speed a bit.

82

 0

 200

 400

 600

 800

 1000

 1200

210.50.1

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Memory Size (MB)

BBS-List
BBS-List+

BBS-RTree
BNL

(a) zoomed-out view

 0

 5

 10

 15

 20

 25

 30

210.50.1

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Memory Size (MB)

BBS-List
BBS-List+

BBS-RTree
BNL

(b) zoomed-in view

Figure 4.7: Total evaluation time vs. memory size for independent data

 0

 1

 2

 3

 4

 5

 6

 7

 8

210.50.1

T
ot

al
 E

va
lu

at
io

n
T

im
e

(s
ec

)

Memory Size (MB)

BBS-List
BBS-List+

BBS-RTree
BNL

Figure 4.8: Total evaluation time vs. memory size for correlated data

4.4.4 Summary of Tier-based Skyline Experiments

From the above sets of experiments, we can draw the following conclusions.

In most of the cases, algorithm TierBBS with in-memory linked lists has the

best response time among all the algorithms. However, there is still a couple

of cases where this does not hold. For independent data, when d > 4, BNL

may perform better. The other case is when the memory size is too small,

I/O cost may be too high for BBS-based approaches.

83

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Skyline query is a sub-problem of the preference query. It provides a means

to compute preference queries. By imposing MIN, MAX, DIFF conditions on

a set of attributes, the query selects tuples that are indifferent to each other

but dominate the rest of the tuples. It is important for several applications

involving multi-criteria decision making. Recently, considerable attention is

drawn to improving the efficiency of computing skyline points and proposing

meaningful variants of and extensions to the conventional skyline queries.

In this thesis, we surveyed several important algorithms (i.e., Block Nested

Loop, LESS, Divide and Conquer, Bitmap, Index, Nearest Neighbor, Branch

and Bound) on the computation of conventional skyline points. We analyzed

the strengths and limitations of each algorithm. We also reviewed three sky-

84

line variants, namely the thick skyline, the stable skyline, and the streaming

skyline. It is worth studying the ways that researchers re-define the original

problem to make it more interesting.

We also explored two variants of the conventional skyline problem. The

first variant, called the dominant skyline, weighs a skyline tuple more superior

if it dominates more other (non-skyline) tuples ([17]). Given a data set S,

a skyline query Q, and a dominating power threshold t, a dominant skyline

query asks for skyline tuples that dominate at least t other tuples. It is a

useful way to summarize the skyline results when the size of the result set

is large. Records with high dominating power are usually more interesting

than those with relatively low dominating power. It turns out that this

dominant skyline problem cannot be easily solved using existing algorithms

in an efficient way, which makes the problem worth further exploration. We

proposed several two-step algorithms based on R-tree.

The second variant, called the tier-based skyline, tries to retrieve “sky-

line” tuples from tier 1 up to tier k where k is a parameter from the query.

Conventional skyline tuples are tier-1 tuples. Tier-k tuples are skyline tuples

when the tier-1 to tier-k tuples are removed from the input. When the tier-1

result is too small, users will probably be interested in tuples that belong to

higher tiers. This variant is used to retrieve more interesting tuples which

may not be in conventional skyline result. We proposed several algorithms

based on BBS, with differences in the in-memory housekeeping.

We also conducted extensive experiments to study the performances of

85

various algorithms. Through the experiments, we identified some interest-

ing results and tradeoffs among the algorithms. These again shed light for

possible future improvements and extensions.

5.2 Future Work

We proposed several two-step approaches for dominant skyline query pro-

cessing. From the experimental results, we see that Step 1, which is based

on some pruning techniques, showed definite better performance for earlier

confirmation of partial results. Step 2 based on heuristics did not show good

performance consistently. Possible reasons are: an in-memory bipartite graph

is not the best way to organize the candidate dominant skyline points and

their overlapping R-tree entries; heuristic-based approaches do not find the

optimal exploration sequence of R-tree entries. In the future, we may explore

more alternatives for the organization of candidate results and maybe other

heuristics.

For tier-based skyline query processing, we see that TierBBS with in-

memory linked-lists have the best performance in most of the cases. However,

this approach needs enough main memory to ensure its fast running time.

One possible alternative is to combine Block Nested Loop algorithm, which

needs a smaller memory, with this algorithm, so that we can selectively run

the better algorithm depending on the available memory size. And yet, we

may explore other possibilities to reduce its reliance on memory.

86

Recall that the motivation of proposing the dominant skyline problem is

to control the size of the result set. The DomBBS algorithm takes dominating

power threshold as an input parameter to indirectly constrain the result size.

Another direction to approach the problem is to construct an algorithm that

takes the desired result size K as an input parameter and compute the top-K

skyline points in terms of dominating power. However, this appears to be

a harder problem. Unlike a traditional top-K ([10, 4, 7, 16]) query where

an preference function exists, top-K dominant skyline query has no obvious

function exists for us to optimize. If we were to think along the line of the

DomBBS algorithm, we could use an arbitrary threshold to first determine

the skyline points whose upper bounds of dominating powers are below the

threshold. Excluding these points, if the number of the remaining skyline

points is greater than K, we know the top-K dominant skyline points are

among the remaining points. Otherwise, we need to use a smaller threshold.

Either way, more iterations of the algorithm are needed to proceed and hence

it could be too time-consuming. We need to think of a new algorithm for

this top-K dominant skyline problem. This can be an interesting direction

for future exploration. For tier-based skyline query processing, similarly,

we can specify the result size K prior to query processing. The TierBBS

algorithm computes skyline points tier by tier, so most probably when we

finish processing a certain tier, the result size is already greater than K. We

can then apply other criteria to filter the last tier of points.

87

Bibliography

[1] Rakesh Agrawal and Edward L. Wimmers. A framework for expressing

and combining preferences. SIGMOD Rec., 29(2):297–306, 2000.

[2] Christian Bhm and Hans-Peter Kriegel. Determining the convex hull

in large multidimensional databases. In DaWaK ’00: Proceedings of

the 2nd International Conference on Data Warehousing and Knowledge

Discovery, 2000.

[3] Stephan Brzsnyi, Donald Kossmann, and Konrad Stocker. The skyline

operator. In ICDE ’01: Proceedings of the 17th International Confer-

ence on Data Engineering, pages 421–430, Washington, DC, USA, 2001.

IEEE Computer Society.

[4] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng

Li, Ming-Ling Lo, and John R. Smith. The onion technique: indexing

for linear optimization queries. SIGMOD Rec., 29(2):391–402, 2000.

[5] Jan Chomicki. Querying with intrinsic preferences. In EDBT ’02:

Proceedings of the 8th International Conference on Extending Database

Technology, pages 34–51, London, UK, 2002. Springer-Verlag.

88

[6] Jan Chomicki. Preference formulas in relational queries. ACM Trans.

Database Syst., 28(4):427–466, 2003.

[7] Ronald Fagin. Fuzzy queries in multimedia database systems. In Pro-

ceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 1–10, Seattle, Washington, 1998.

[8] Parke Godfrey and Wei Ning. Relational preference queries via stable

skyline. Technical report, York University, Canada, 2004.

[9] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Maximal vector compu-

tation in large data sets. In VLDB ’05: Proceedings of the 31st Inter-

national Conference on Very Large Data Bases, pages 229–240. VLDB

Endowment, 2005.

[10] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. Prefer:

a system for the efficient execution of multi-parametric ranked queries.

In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international

conference on Management of data, pages 259–270, New York, NY, USA,

2001. ACM Press.

[11] Wen Jin, Jiawei Han, and Martin Ester. Mining thick skylines over large

databases. In PKDD ’04: Proceedings of the 8th European Conference

on Principles and Practice of Knowledge Discovery in Databases, pages

255–266, New York, NY, USA, 2004. Springer-Verlag New York, Inc.

[12] Werner Kieβling. Foundations of preferences in database systems. In

VLDB ’02: Proceedings of the 28th International Conference on Very

Large Data Bases, Hong Kong, China, 2002.

89

[13] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars

in the sky: An online algorithm for skyline queries. In VLDB ’02:

Proceedings of the 28th International Conference on Very Large Data

Bases, Hong Kong, China, 2002.

[14] Iosif Lazaridis and Sharad Mehrotra. Progressive approximate aggre-

gate queries with a multi-resolution tree structure. In SIGMOD ’01:

Proceedings of the 2001 ACM SIGMOD International Conference on

Management of Data, pages 401–412, New York, NY, USA, 2001. ACM

Press.

[15] Xuemin Lin, Yidong Yuan, Wei Wang, and Hongjun Lu. Stabbing the

sky: Efficient skyline computation over sliding windows. In ICDE ’05:

Proceedings of the 21st International Conference on Data Engineering,

pages 502–513, Washington, DC, USA, 2005. IEEE Computer Society.

[16] Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, and

Jeffrey Scott Vitter. Supporting incremental join queries on ranked

inputs. The VLDB Journal, pages 281–290, 2001.

[17] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An op-

timal and progressive algorithm for skyline queries. In SIGMOD ’03:

Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data, pages 467–478, New York, NY, USA, 2003. ACM

Press.

[18] Christos H. Papadimitriou and Mihalis Yannakakis. Multiobjective

query optimization. In PODS ’01: Proceedings of the twentieth ACM

90

SIGMOD-SIGACT-SIGART symposium on Principles of database sys-

tems, pages 52–59, New York, NY, USA, 2001. ACM Press.

[19] Franco P. Preparata and Michael Ian Shamos. Computational Geometry-

An Introduction. Springer-Verlag, New York, NY, USA, 1985.

[20] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest

neighbor queries. In SIGMOD ’95: Proceedings of the 1995 ACM SIG-

MOD International Conference on Management of Data, 1995.

[21] Kian-Lee Tan, Pin-Kwang Eng, and Beng Chin Ooi. Efficient progres-

sive skyline computation. In VLDB ’01: Proceedings of the 27th In-

ternational Conference on Very Large Data Bases, pages 301–310, San

Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[22] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an effi-

cient data clustering method for very large databases. SIGMOD Rec.,

25(2):103–114, 1996.

91

