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Summary

The property of sensitive dependence of chaotic systems/maps on its initial conditions is

being exploited in developing chaotic communication systems. Because of this property,

any change in control parameters or the initial conditions of the chaotic systems/maps

leads to an entirely different and uncorrelated trajectory. Chaotic communication systems

are developed with the aim of improved security.

In chaotic communication schemes, synchronization of transmitter and receiver chaotic

systems/maps has prime importance. Following the drive−response synchronization

scheme developed by Pecora and Carrol, researchers from different disciplines have sug-

gested several methods to achieve faster and accurate synchronization. One of the widely

studied method for chaotic synchronization is the coupled synchronization. It is shown

that the drive−response system is a special case of the coupled synchronization. Another

interesting aspect of the coupled synchronization is its similarity with the observer design

problems encountered in nonlinear control systems. In recent literature, many observer

design techniques are successfully applied for chaotic synchronization.

Extended Kalman filter (EKF) is a widely studied nonlinear observer for the synchro-

nization of chaotic systems/maps. In the presence of the channel noise, its performance

is found to be similar or better than the optimal coupled synchronization. However, it

is observed that the trajectories tend to diverge when EKF is applied to synchronize

ix



Summary x

chaotic maps with non−hyperbolic chaotic attractors (NCA). In Chapter 2, all plausi-

ble divergence behaviours of the EKF based scheme when it is applied to synchronize

Ikeda maps (IM) are analyzed in detail. A better understanding of this behaviour is

obtained through the study of homoclinc tangencies, dynamics of the posterior error

covariance matrix and the local Lyapunov exponents (LLEs) of the receiver IM. The

normalized mean square error (NMSE), total normalized mean square error (TNMSE),

and normalized instantaneous square error (NISE) are used for performance evaluation,

and are presented in Chapters 2, 3 and 4. The first two performance indices give an

idea about the synchronization error while the latter gives an idea about the speed of

synchronization.

To overcome the divergence of the trajectories encountered in the EKF based syn-

chronization, other nonlinear filtering methods such as unscented Kalman filter (UKF),

particle filter (PF) and nonlinear predictive filter (NPF) are proposed and studied. UKF

and PF are sequential Monte−Carlo methods. Using carefully sampled points from the

prior probability, the posterior density is approximated. UKF assumes that the prior den-

sity is Gaussian and uses unscented transform (UT) to approximate the posterior density.

Unlike UKF, the PF does not use the Gaussianity of the prior density. PF can deal with

any probability density and it allows complete representation of the posterior probability

density of the states. Using the PF, any statistical quantities (such as mean, modes,

kurtosis, and variance) can be computed. In Chapter 3, the performance of the UKF

and PF based methods in synchronizing IM, Lorenz and Mackey−Glass (MG) systems

are discussed in detail. Performance of the EKF based scheme is used for comparison.

NPF uses a very simple predictor corrector model for synchronization. The advan-

tages of the NPF are: (i) the model error is assumed unknown and is estimated as a

part of the solution, (ii) for a continuous system, it uses a continuous model to estimate

the states and hence avoids discrete state jumps, and (iii) there is no need to make

any assumptions on the prior density. In Chapter 4, the performance of the proposed

NPF based scheme is compared to the EKF based scheme. IM, Lorenz and MG systems

are used for the numerical evaluation. The condition for stability and an approximate

expression for the total normalized mean square error (TNMSE) are also derived.
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Symbolic dynamics (SD) is a coarse−grain representation of the dynamics of chaotic

systems/maps. SD based method are shown to be capable of providing high quality

synchronization. In Chapter 5, using the SD based synchronization of 1−D chaotic maps,

a novel dynamic encoding system is proposed for secure communication. This scheme is

secure and has the self synchronizing properties. A theoretical expression for the upper

bound of the bit error rate (BER) is derived for the new scheme. BER performances of

the new scheme is comparable to that of the binary phase shift keying (BPSK) system

at moderate signal to noise ratios (SNRs). The security aspect of the new system is also

analyzed in detail.

Time series generated from chaotic maps can be used as spreading codes (sequences)

for the direct sequence/spread spectrum (DS/SS) communication applications. It is an

inexpensive alternative to the linear feedback shift register (LFSR) sequences such as

m-sequences and Gold sequences. In Chapter 6, a novel DS/SS communication system

which exploits the complex nature of the IM is proposed. With this double spreading

DS/SS system, the effect of multiple access interference (MAI) is mitigated by choosing

spreading sequences with appropriate cross−correlation properties. The performance of

the system is assessed and demonstrated in multiuser environments by means of computer

simulation with additive white Gaussian noise (AWGN), Rayleigh fading, and selective

fading channel conditions. The proposed system significantly outperforms the Gold code

DS/SS BPSK system in synchronous channel conditions. In asynchronous case, the

improvement is substantial for low SNR values.
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Chapter 1
Motivation and Literature Survey

1.1 Introduction

Chaotic systems/maps are nonlinear systems which exhibit complex behaviour. In chaotic

systems, the state variables move in a bounded, non−periodic, random−like fashion.

A distinct property of chaotic dynamics is its long-term unpredictability. In systems

which exhibit chaotic dynamics, initial states which are very close to each other produce

markedly different trajectories1. This is referred to as sensitive dependence on initial

conditions [1]-[3]. In chaotic systems/maps, due to the sensitive dependence on initial

conditions, when nearby points are iterated the error is amplified in each iteration re-

sulting in uncorrelated trajectories.

1.2 Characteristics of Chaotic Dynamics

A dynamic system exhibits either one of the following characteristics when it is excited

by an external stimulus: (i) the system dissipates all its energy and settles down to a

stable point, (ii) it travels through a periodic orbit with time, or (iii) it diverges from

its initial point and becomes unstable eventually. A fourth class is the chaotic behaviour

where the dynamics exhibit a deterministic yet random−like behavior [4]. In chaotic

systems, the dynamics travel through a non−periodic orbit called a strange attractor.

1The points through which the system states travel in the state space are called the trajectories.

1
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These systems are characterized by three essential properties: (i) sensitivity to its initial

conditions, (ii) mixing, and (iii) dense unstable periodic points [1]. When nearby trajec-

tories evolve to result in uncorrelated trajectories, while forming the same attractor, the

dynamical system is said to possess sensitive dependance to initial conditions. Mixing

is the property of the states of a dynamic system to move from one point to another

in state space with non−zero measure (i.e. each point in state space is visited with a

non−zero probability) [1]. Every chaotic attractor is formed by a skeleton of unstable

periodic points with different periods. The trajectories generated from chaotic systems

have wide−band characteristics and noise−like appearance [3]. Chaotic dynamics have

found numerous applications in communication, digital water marking etc. [5]. In this

thesis, chaotic systems/maps are studied for their applications in communications.

1.3 Communication using Chaos

Chaotic time series, with their inherent wide−band and random−looking characteristics,

naturally qualify for secure communication applications. A communication scheme is

chaotic if a chaotic signal generator is used in the system to encode, spread or carry

the information signal [6][7]. These systems exploit the properties of chaotic dynamics

in one way or the other. There are many applications in which chaos can be used in

communication systems. Most widely studied methods are as follows.

i. Chaotic Masking: This scheme uses chaotic time series as wide-band carrier so

that coding and modulation can be accomplished together. In chaotic masking

(CM) [8], the weak information signal is added to a strong chaotic carrier. With

a synchronized chaotic system at the receiver, a local copy of the carrier signal is

generated and it is subtracted from the received signal to retrieve the information.

Here, the random−looking behavior is used to introduce security.

ii. Chaotic Modulation: In chaotic modulation, parameters of the chaotic sys-

tem/map at the transmitter are changed according to the information signal and

the resulting chaotic waveform is transmitted. At the receiver, these parameter

changes are tracked using appropriate methods and the information is retrieved [9].
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iii. Chaotic Shift Keying: In coherent schemes such as chaotic shift keying (CSK)

and chaotic on–off keying (COOK) [10]-[13], digital information is transmitted using

carrier signals generated by two different chaotic systems/maps. In CSK, output

from two chaotic systems/maps are switched according to the transmitted bit (‘0’

or ‘1’). In COOK, only one chaotic system is used to convey the information bits;

chaotic system/map is turned on or turned off according to the information bits.

In both cases, synchronized chaotic systems/maps at the receiver is used to retrieve

the information bits.

iv. Non−coherent Chaotic Shift Keying: To avoid the need of chaotic synchro-

nization, many non−coherent chaotic communication systems have been developed

(e.g. differential chaotic shift keying (DCSK) [14], frequency modulated DCSK

(FM−DCSK) [15], etc.). Since these schemes are non−coherent, only a portion

of the transmitted signal is used for carrying the information and rest are used to

retrieve the information. Hence, this class of communication schemes does not need

a synchronized chaotic system at the receiver.

v. Symbolic Dynamics: Symbolic representations of controlled chaotic orbits/ tra-

jectories produced can be used for developing communication schemes. By ma-

nipulating the symbolic dynamics (SD) of chaotic systems2/maps in an intelligent

way, the system produces trajectories in which digital information is embedded in

the corresponding SD [16][17]. Using appropriate synchronization techniques at the

receiver, the message can be retrieved.

vi. Direct Sequence Spread Spectrum: Another way of using chaotic systems/maps

in communication systems is to generate spreading codes from chaotic systems/maps.

Since chaotic signals are wide−band, non−periodic and noise−like, chaotic systems

offer an ample choice of spreading codes [18]-[20].

2For chaotic systems, the SD is obtained through the Poincare return map [16].
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1.4 Chaotic Synchronization

It is clear from the above discussion that in most of the chaotic communication schemes,

synchronization of the transmitter and the receiver chaotic systems/maps is essential for

reliable/accurate retrieval of information. Indeed, the use of synchronizing chaotic cir-

cuits for communication applications has evolved into an active area of research. Related

works of synchronization dates back to the research carried out by Fujisaka and Yamada

[21] in 1983. Pecora and Carroll [22] showed that chaotic systems can be synchronized

using the drive−response scheme. They showed that, by splitting the chaotic system into

drive and response systems, chaotic synchronization can be established if all the transver-

sal Lyapunov exponents of the response system are negative. Following this seminal work,

numerous methods have been proposed to synchronize chaotic systems/maps. A detailed

review of the present state of synchronization of chaotic systems/maps is available in

[23].

Among the various methods reported, coupled synchronization has attracted the most

interest [24]. If proper coupling is introduced between the transmitter and receiver sys-

tems, reliable synchronization can be established. Synchronization behaviours (speed

and accuracy) depend on the coupling strength. Coupling strength is selected such that

the local and global transversal Lyapunov exponents of the receiver systems become neg-

ative in noisy and noiseless situations, respectively [25]. Due to the similarity of coupled

synchronization scheme with the nonlinear observer design problem, there has been lot of

interest in applying nonlinear observer design schemes for the synchronization of chaotic

systems/maps [26]-[29].

Research results show that intervals of desynchronization bursts can appear in coupled

synchronization when noise is present in the system [27]. In [30], this behavior is explained

with the help of the existence of unstable periodic orbits of chaotic systems. In such

situations, an adaptive estimation of coupling strengths would be optimal. In fact, this

idea led to the application of stochastic estimation techniques for synchronization of

chaotic systems. In [31], stochastic control methods are applied for the synchronization

of chaotic systems.
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Extended Kalman filter (EKF) is one of the widely used stochastic estimation schemes

in nonlinear state estimation and tracking applications [32, Chapter 5]. In EKF, Kalman

filtering [32, Chapter 4] [33][34, Chapter 6] is applied to the linearized3 nonlinear function.

The use of EKF in synchronizing Lorenz systems is reported in [35]. Sobiski and Thorp

[36] used the EKF to develop parameter division multiple access (PDMA) communication

scheme. Application of EKF to synchronize chaotic maps is studied in [37]. Analytical

results for 1D and 2D chaotic maps are derived in [38]. However, a major disadvantage

of EKF is the error in function approximation. For highly nonlinear systems, this error

causes the divergence of trajectories leading to the burst of desynchronization behaviour

[39]-[42].

1.4.1 Divergence of EKF in Non−hyperbolic Chaotic Maps

Noise−induced escape from a chaotic attractor (CA) to another co−existing CA or a sta-

ble fixed point is observed in many non−hyperbolic chaotic attractors (NCAs) [43]. In

such systems, small perturbations get amplified near the primary homoclinic tangencies

(PHTs) and it may eventually take the system states from one CA to another CA or

to a fixed point. Homoclinic tangencies (HTs) are points where the stable and unstable

manifolds of an unstable periodic orbit meet tangentially. At these points, the pertur-

bations may get amplified by a factor of 100 to 1000 [43]. The most probable exit path

(i.e. the most probable set of points through which trajectories travel from one basin of

attractor to the other) and the mean exit time of such chaotic systems/maps give a mea-

sure of the system’s stability against weak noise perturbations. In Chapter 2, divergence

behaviour of the EKF based scheme applied to the synchronization of IM is analyzed in

detail. It is found that the trajectories originating from the CA is taken to a stable fixed

point. Since the EKF uses the first order Taylor series for approximating the nonlinear-

ities, large errors are introduced to systems with higher order nonlinearities. A possible

solution to overcome such difficulties is to apply filtering methods which introduce less

approximation errors. Accordingly, in this thesis, three nonlinear filtering algorithms are

proposed and applied for the synchronization of the chaotic systems/maps, namely, (i)

3Linearization is done using the first order Taylor series.
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the unscented Kalman filter (UKF), (ii) the particle filter (PF), and (iii) the nonlinear

predictive filter (NPF).

1.4.2 The Unscented Kalman Filter

Many alternatives to the EKF have been suggested to overcome the problems associated

with the approximation errors. If the noise is Gaussian, instead of approximating the

nonlinear function, one can approximate the posterior density itself [39]. UKF follows

this approach by using an unscented transform (UT). For this, with the knowledge of

the mean and covariance of the prior density, a set of points (called the sigma points)

are selected. Each sigma point is associated with a scalar weight. These points are

propagated through the nonlinearity and the resultant points are used to obtain the

approximate estimate the of mean and covariance of the posterior density [39][40]. If the

prior density is Gaussian, these filters can correctly estimate the mean and covariance of

the signal up to the third order compared to the first order approximation in the EKF

[40]. In [44][45], uses of UKF for the synchronization of chaotic systems in direct sequence

spread spectrum (DS/SS) applications are reported. Application of UKF to synchronize

polynomial systems is discussed in [46]. Noise reduction in chaotic signals using UKF

is reported in [47]. An expectation maximization based unscented Kalman smoother to

simultaneously estimate parameters of system along with the equalized chaotic signal is

reported in [48].

1.4.3 The Particle Filter

UKF relies on the Gaussianity of the prior density. This might be a very stringent

assumption for many nonlinear filtering problems. Particle filters (PFs) are a class of

nonlinear filters that do not require any assumption on the underlaying noise. It is based

on the sequential Monte−Carlo (MC) simulation method; a set of weighted samples

(particles) approximate the posterior distribution [49]. In Chapter 3, the UKF and PF

are applied for the synchronization of chaotic systems/maps. The EKF is used as a

reference for comparing the performance of the proposed algorithms. Synchronization

behaviours of Lorenz and Mackey−Glass (MG) systems and IM are studied.
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1.4.4 The Nonlinear Predictive Filter

NPF is based on a predictive tracking scheme first introduced by Lu [50]. In the NPF

based scheme, though the model error is unknown, it is estimated as part of the solution.

It uses a continuous model to determine the states and hence avoids any discrete state

jumps. A major advantage of NPF is that it does not assume Gaussianity of the posterior

probability unlike in EKF. In Chapter 4, the application of NPF to the synchronization

of various chaotic systems/maps is studied in detail. The performance of the proposed

scheme is compared with the EKF method. The well known Lorenz and MG systems as

well as IM are used for numerical evaluation of the performance.

1.5 Symbolic Dynamics

SD is defined as the coarse−grain description of the chaotic dynamics and has been used

for the analysis of chaotic systems [51]. It is the representation of the orbits (trajectories)

of dynamical systems by symbols selected from a finite alphabet. The state−space of the

system/map is partitioned and specific symbols are assigned for each of the partitions;

thus making the representation coarse−grain. Recently, SD is being used for secure

communication applications. In [16], chaotic communication by the feedback of SD is

proposed. Application of SD for differential chaotic shift keying (DCSK) is discussed

in [52]. SD based noise reduction and coding are proposed in [53], [54]. When the

transmitter and the receiver synchronizes with a synchronization error below certain

threshold, it is said to have high quality synchronization [55]. This is ideal for setting up

reliable secure communication. In [56], a high quality synchronization is achieved using

SD. The synchronization using SD is reformulated from an information theoretic point of

view in [57]. In Chapter 5, a novel secure digital communication scheme using the chaotic

SD is proposed. This scheme is similar to the self synchronizing stream ciphers. The

newly suggested system has well behaved bit error rates (BER) in additive white Gaussian

noise (AWGN) and multi−path channels. Moreover, existing coding and modulation

methods can be used to enhance the BER performance, if needed. In this scheme, the

synchronization information is sent periodically. Hence, dynamic degradation, where
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the finite precision computation makes the chaotic trajectories to become periodic after

certain iterations, is not observed.

1.6 Chaos based DS/SS Communication System

In DS/SS communication systems, each user is given a unique signal (spreading sequence)

having a bandwidth which is much higher than that of the information signal [58]. Hence,

the transmitted signal, after spreading, has less power spectral density and high band-

width relative to the original information signal. At the receiver, with the same (synchro-

nized) sequence, a correlation operation is performed on the received signal to retrieve

the information. These spreading sequences should possess minimal cross-correlation to

reduce the multiple access interference (MAI) as well as excellent auto−correlation for

synchronization and multi-path performance [59].

Many authors have shown that chaotic spreading sequences can be used as an in-

expensive alternative to the linear feedback shift register (LFSR) sequences such as m-

sequences and Gold sequences. In [18]-[20], the possibility of generating infinite number

of spreading sequences for a DS/SS communication system by means of 1D chaotic maps

is claimed. Simulation based comparisons between Gold sequences and the sequences

generated with coupled map lattice chaotic time series are also reported in [60] for a

synchronous DS/SS system. Analytical results for the applicability of chaotic sequences

for DS/SS systems are available in the literature for chaotic time series based communi-

cation systems [61]-[64]. Kohda and Tsuneda [65] reported that there exists a wide class

of ergodic maps with the equi−distributivity property (EDP) and their associated binary

functions with constant summation property (CSP). They have shown that independent

and identically distributed (i.i.d) binary spreading codes can be generated from these

maps which are optimal for quasi–synchronous communication channels [65]-[67]. The

generation and optimization of spreading sequences from piece-wise linear affine map

(PWLAM) have been analyzed by many researchers [5][68][69]. They have shown that

these systems can accommodate 15 to 20 % more users than the conventional systems

based on the pseudo noise (PN) sequences in asynchronous channel. In Chapter 6, a novel
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double spreading communication system which exploits the complex nature of the IM se-

quence is proposed. The idea is to select the spreading codes such that the interference

in quadrature phase is negated by the interference in the in−phase.

1.7 Major Contributions and Organization of this Thesis

From the above discussions, three key areas that can be identified in chaotic commu-

nication systems are: (i) synchronization of chaotic systems, (ii) application of SD to

secure communications, and (iii) application of chaotic time series to generate spreading

sequences for SS communication systems.

• For coherent chaotic communication schemes, synchronization of chaotic systems/maps

(at the transmitter and receiver) is the most important step. Hence, synchroniza-

tion of chaotic systems/maps is explored. Since filtering based synchronization

schemes come as handy tools, such methods are explored in detail.

• One of the main drawbacks of the existing chaotic communication systems is their

inability to perform in multi−path channel conditions. Using the SD of 1D chaotic

map, a novel secure chaotic communication scheme (which has similar properties

as of a chaotic stream ciphers) is proposed.

• In DS/SS communication systems, the MAI due to the correlation between the

spreading sequence (of the users) reduces the capacity. Complex nature of the IM

sequence is exploited to develop a novel DS/SS communication system.

The major contributions and organization of the thesis are as follows.

1. When the EKF based synchronization method is applied to chaotic systems/maps

with NCAs, large number of trajectories are found to be diverging. Reasons for

this divergence behaviour is attributed to two facts: (i) in NCAs with fractional

basin boundaries, small perturbations can get amplified and take the system states

to a co−existing point (or another chaotic) attractor and (ii) convergence of the

Kalman gain is different in different regions of the state space. This behaviour of



1.7 Major Contributions and Organization of this Thesis 10

the EKF based scheme, when it is applied to synchronize IM, is analyzed in detail

in Chapter 2. More insight into the behaviour is obtained by analyzing the local

Lyapunov exponents (LLEs) of the receiver system.

2. The main problem associated with the EKF based synchronization scheme is the

error introduced by the first order Taylor series state approximation and the diver-

gence behaviour observed in the NCAs. Other nonlinear filtering algorithms (with

lower approximation error capabilities) such as the UKF and the PF are proposed

and applied for the chaotic synchronization. A detailed study of these two filtering

based synchronization schemes is presented in Chapter 3.

3. The application of NPF to the synchronization of chaotic systems/maps is presented

in Chapter 4. The performance of the proposed scheme is compared with the EKF

method. Analytical results for the system stability are also derived.

4. In Chapter 5, a secure digital communication scheme using the SD is developed.

The BER characteristics are analyzed both numerically and theoretically. Unlike

other chaotic communication systems such as the CSK or DCSK, the proposed

scheme is bandwidth efficient. This scheme has self synchronization properties.

Moreover, the BER characteristics of the new system converges asymptotically to

that of the BPSK system at high SNRs. Security aspects the new scheme are also

discussed.

5. Chaotic maps have long been considered as a potential source of spreading codes for

SS communications. In Chapter 6, a new DS/SS communication scheme is devel-

oped which exploits the 2D complex chaotic IM as the new spreading sequence. By

selecting the in−phase and quadrature phase components appropriately, the pro-

posed system reduces the MAI effectively. The BER performance of the proposed

scheme is compared with that of the conventional Gold sequence BPSK schemes

with the help of computer simulations.



Chapter 2
Extended Kalman Filter for Chaotic

Synchronization: Analysis of Divergence

Behavior

2.1 Introduction

Extended Kalman filter (EKF) has been shown to be successful in synchronizing chaotic

systems/maps in stochastic environments. This ability of the EKF initiated a signifi-

cant research interest [35][28]. The EKF based scheme can be considered as a coupled

synchronization scheme which is capable of estimating the coupling strengths adaptively.

Chaotic systems with non−hyperbolic chaotic attractors (NCA) displays noise induced

escape from a chaotic attractor (CA) to another CA or a fixed point. In this chapter,

synchronization of Ikeda map (IM) which has NCA is analyzed.

This chapter is organized as follows. In Section 2.2, the chaotic synchronization as

a state estimation problem is discussed. The EKF is introduced in Section 2.3 from a

Bayesian point of view. In Section 2.5, the NCAs and noise induced escape found in such

systems are explained. Detailed discussion of different types of divergence behaviour

is given in Section 2.6. In Section 2.7, the numerical evaluation of the EKF based

synchronization of IM is presented. Concluding remarks are provided in Section 2.8.

11
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2.2 Synchronization of Chaotic Systems as a State Estima-

tion Problem

In a chaotic communication scheme, there are at least two chaotic systems/maps which

constitute the transmitter and the receiver systems. Chaotic signals are used as carrier

waveforms to transmit information from the transmitter to the receiver. To retrieve

this information effectively at the receiver, these two systems must be synchronized.

Here, synchronization referrers to the application of suitable mechanisms to establish

a relationship between the trajectories of the two systems. Because of the sensitive

dependence on the initial conditions, synchronization of chaotic systems, also known as

the chaotic synchronization is considered to be a difficult task.

Consider two chaotic systems given by the following set of equations:

ẋ(t) = f(x(t)) (2.1a)

˙̂x(t) = f(x̂(t)) (2.1b)

where x(t) = [x1(t), . . . , xn(t)]T and x̂(t) = [x̂1(t), . . . , x̂n(t)]T are the n−dimensional

state vectors of the transmitter and the receiver systems, respectively. ẋ(t) and ˙̂x(t)

are the derivatives of x(t) and x̂(t) with respect to time, t, respectively. In the above

equation, f = [f1(.), . . . , fn(.)]T is a smooth nonlinear vector−valued function. These

two systems are said to be synchronized if

lim
t→∞

||x(t) − x̂(t)|| = 0. (2.2)

From the transmitter only few (typically one) state variables are transmitted. These

signals are generally corrupted by the channel noise, v(t). The received signal is given

by

y(t) = h(x(t)) + v(t), (2.3)

where h(.) = [h1(.), . . . , hm(.)]T is a m−dimensional linear/nonlinear output function.

Similarly, an iterated chaotic map (discrete time chaotic system) based transmitter
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system can be modeled as

xk+1 = f(xk) (2.4a)

yk = h(xk) + vk, (2.4b)

where the transmitter state at the kth time instant is xk = [x1
k, . . . , x

n
k ]T and the corre-

sponding output is, yk = [y1
k, . . . , y

m
k ]T .

2.2.1 Coupled Synchronization

vk

h(xk)
xk = f(xk−1) K

x̂−
k = f(x̂k−1)

Delay

yk

h(x̂−
k )

x̂k

x̂−
k

Figure 2.1: Schematic of the coupled synchronization method.

Figure 2.1 shows the schematic of the coupled synchronization method. x̂−
k represent

the predicted value to which the correction K(yk − ŷk) is added. This results in the

receiver dynamics

x̂k = f(x̂k−1) + K(yk − ŷk), (2.5)

where ŷk = h(f(x̂k−1)). Another way to look at Eq.(2.5) is as a predictor corrector

filter. In general, a predictive filter predicts the subsequent states and corrects it with

additional information available from the observation. In conventional coupled synchro-

nization, if there is no channel noise vk, K is selected such that the global transversal

Lyapunov exponents 1 are negative. This enables the receiver to synchronize with the

1The Lyapunov exponents of a dynamic system are the quantities that characterize the rate of di-

vergence of the trajectories generated by infinitesimally close initial conditions under the dynamics [2,

Chapter 2].
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transmitter asymptotically. On the other hand if the channel is noisy, K is selected

such that the local transversal Lyapunov exponents are negative [27]. It is a good idea

to employ stochastic techniques for synchronization. Instead of keeping K constant, if

it is determined adaptively, the coupled synchronization will have a similarity with the

predictive filtering techniques such as the EKF. In the next section, the basic idea of the

stochastic estimation method, from which the EKF is developed, is discussed.

2.3 Stochastic Estimation of States

In stochastic state estimation methods, one would like to estimate the state variable xk

based on the set of all available (noisy) measurement y1:k = {y1, . . . ,yk} with certain

degree of confidence. This is done by constructing the conditional probability density

function (pdf), p(xk|y1:k) (i.e. the probability of xk given the observations y1:k) known

as the posterior probability. It is assumed that p(x0|y0) is available. In predictor cor-

rector filtering methods, p(xk|y1:k) is obtained recursively by a prediction step which is

estimated without the knowledge of current measurement, yk followed by a correction

step where the knowledge of yk is used to make the correction to the predicted values.

In the recursive computation of p(xk|y1:k), it is assumed that at time k−1, p(xk−1|y1:k−1)

is available. Using the Chapman−Kolmogorov equation [70], the prediction is estimated

as

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (2.6)

where the state transition is assumed to be a Markov process of order one and p(xk|xk−1,

y1:k−1) = p(xk|xk−1). To make the correction, one needs to make use of the information

available in the current observation, yk. Using Bayes’ rule

p(xk|y1:k) =
p(xk|y1:k−1)p(yk|xk)

p(yk|y1:k−1)
(2.7)

where the normalizing constant

p(yk|y1:k−1) =

∫

p(yk|xk)p(xk|y1:k−1)dxk (2.8)

Though closed form solutions of the above equations exist for a linear system with

Gaussian noise (e.g. Kalman filter [32, Chapter 5]), in general, for a nonlinear system,
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they are not available. However, one of the suboptimal filtering methods, the EKF is

found to be useful in many nonlinear filtering applications.

2.3.1 Extended Kalman Filter

The Kalman filter is an optimal recursive estimation algorithm for linear systems with

Gaussian noise [33]. A distinctive feature of this filter is that its mathematical formulation

is described in terms of the state−space concepts. One of the key features of the Kalman

filter is its applicability to both stationary and nonstationary environments. The EKF is

an extension of the Kalman filtering algorithm to nonlinear systems [32, Chapter 5]. The

system is linearized using first order Taylor series approximation. To this approximated

system, the Kalman filter is applied to obtain the state estimates. Consider a generic

dynamic system governed by

xk = f(xk−1,wk) (2.9a)

yk = h(xk,vk) (2.9b)

where the process noise, wk, and observation (measurement) noise, vk, are zero mean

Gaussian processes with covariance matrices Qk and Rk, respectively. This model be-

comes the system described in Eq.(2.1), if wk is zero and vk is additive such that h(xk,vk)

becomes h(xk) + vk.

In minimum mean square estimation (MMSE) the receiver computes x̂k, which is an

estimate of xk, from the available observations y1:k = [y1, . . . ,yk] such that the mean

square error (MSE), E
[
eT

k ek

]
(where ek = xk − x̂k), is minimized. The EKF algorithm

for the state estimation is given by [32, Chapter 5]

x̂k|k−1 = f(x̂k−1, 0), (2.10a)

Pk|k−1 = Fk−1Pk−1F
T
k−1 + WkQkW

T
k . (2.10b)

In the above equations, the notation k|k − 1 denotes an operation performed at time

instant, k, using the information available till k− 1. At k, x̂k|k−1 is the a priori estimate

of the state vector xk, Pk|k−1 is the a priori error covariance matrix, Fk−1 is the Jacobian

of f(.) with respect to the state vector xk−1 and Wk is the Jacobian of f(.) with respect
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to the noise vector wk. The EKF update equations are:

Kk = Pk|k−1H
T
k

{
HkPk|k−1H

T
k + VkRkV

T
k

}−1
(2.11a)

x̂k = x̂k|k−1 + Kk

(
yk − ŷk

)
(2.11b)

Pk = (I − KkHk)Pk|k−1 (2.11c)

where Kk is the Kalman gain, Hk is the Jacobian of h(.) with respect to x̂k|k−1, x̂k is the

a posteriori estimate of the state vector, Vk is the Jacobian of h(.) with respect to the

noise vector vk, and Pk is the a posterior error covariance matrix. When EKF is used

for synchronization of chaotic maps, Kk acts as the coupling strength which is updated

iteratively (Figure 2.2).

KkDelay

f(x̂k−1, 0)

x̂k|k−1

x̂k

h(x̂k|k−1, 0)

ŷk

yk

+

−

Figure 2.2: Schematic of extended Kalman filter

Convergence Analysis of EKF

Convergence analysis of Kk can be carried out by studying the convergence of Pk|k−1.

At any time instant k, according to the matrix fraction propagation of Pk|k−1, it can be

shown that [32, Chapter 4]

Pk|k−1 = AkB
−1
k , (2.12)

where Ak and B−1
k are factors of Pk|k−1. If Fk is nonsingular (i.e. the map is invertible),

Ak+1 and Bk+1 are given by the recursive equation as






Ak+1

Bk+1




 =






Fk + WkF
−T
k HT

k R−1
k Hk WkF

−T
k

F−T
k HT

k R−1
k Hk F−T

k











Ak

Bk




 . (2.13)
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From the above expression, it can be shown that, when there is no process noise (i.e.

Wk = 0) and Fk is contractive (i.e. the magnitudes of its eigenvalues are less than

one), Pk|k−1 will converge in time. However, inside the CA, the behaviour of Pk|k−1

is aperiodic [77]. When the EKF is used for the synchronization of NCAs with fractal

basin boundaries (for example the IM), these properties play a key role in deciding the

dynamics of the receiver system.

2.4 Terminology

2.4.1 Source, Sink and Saddle Fixed Points [2, Chapter 2]

There are different types of behaviors in dynamics. Among them, the most basic ones are

fixed points. As the name implies, the fixed points do not change under dynamics. There

are basically three types of fixed points namely, stable fixed points, unstable fixed points

and saddle points. A fixed point is a sink (also known as stable fixed point) if the points

near it are moved even closer to the fixed point under the dynamis. On the other hand,

with source fixed point (also known as unstable), nearby points repel from the source

under the dynamics. A third behaviour is called the saddle. Here, some nearby points

will be attracted while others are repelled from the fixed point under each iterations.

2.4.2 Stable and Unstable Manifolds [2, Chapter 2] and Homoclinic

Tangencies [43]

In simple terms, the set of points that converges to a saddle point is called a stable

manifold while the set of points that diverges from it is called an unstable manifold. An

n–Dimensional manifold is a set that locally resembles Euclidean space R
n. Homoclinic

tangencies (HTs) are points on the attractor where the stable and unstable manifolds

of a periodic orbit is tangent to each other. Primary homoclinic tangency (PHT) is a

HT where the perturbations are amplified both in forward and reverse iterations. In

Figure 2.3, stable and unstable manifolds and corresponding HTs of a saddle point p are

shown. Non hyperbolic chaotic systems/maps are systems with HTs. A hyperbolic CA

is an attractor with all the points are hyperbolic (i.e. the map has no eigenvalues with
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p

Stable manifold of p

Unstable manifold of p

Homoclinic tangencies of p

Saddle point (p)

Figure 2.3: Stable and unstable manifolds and HT of a fixed point

absolute value one at any point in the CA) whereas NCA is a chaotic attractor with HTs.

2.5 Noise Induced Escape from Non−Hyperbolic Chaotic

Systems/Maps

Noise−induced escape from a CA to another co−existing CA or a stable fixed point is

observed in many NCAs [43][71]-[73]. In such systems, small perturbations get amplified

near the PHTs and it may eventually take the system states from a CA to another CA

or to a fixed point. The most probable exit path and the mean exit time of such chaotic

systems give a measure of the system’s stability to weak noise perturbations.

In our studies, when the EKF algorithm is used to synchronize two IMs, three different

types of behaviours are observed. Firstly, when the initial estimate of the receiver states

fall in the basin of attraction of the stable fixed point of the IM, the subsequent iterations

take the states to the stable fixed point. Secondly, the receiver initially synchronizes

with the transmitter and after a few iterations, the receiver states move to the basin of

attraction of the stable fixed point. As before, further iterations take the system to the

stable fixed point. Thirdly, the receiver synchronizes with the transmitter. However,

intermittent bursts of desynchronization are observed. In other words, the attractor
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formed by the receiver dynamics is a smeared version of the transmitter attractor.

2.5.1 Primary Homoclinic Tangencies of Ikeda Map

The IM arises from the analysis of the passage of a pumped laser beam around a lossy

ring cavity [74]-[76]:

zk+1 = p + Bzkexp

[√
−1

(

φ − ω

1 + |zk|2
)]

, (2.14)

where zk is a complex−valued state variable with zk = xR
k +

√
−1xI

k. Here, xR
k is ℜ{zk}

and xI
k is ℑ{zk}. ℜ{.} and ℑ{.} give the real and imaginary parts of a complex variable,

respectively. For the set of parameters p = 0.92, B = 0.9, φ = 0.4 and ω = 6, this map

(shown in Figure 2.4) has a NCA, two unstable fixed points (P2 and P3) and a stable

fixed point (P1) [76]. Basins of attractions of CA and P1 are also shown in Figure 2.4.

The green area is the basin of attraction of the stable fixed point P1 whereas the white

area is the basin of attraction of CA. The HTs (yellow) and the most probable exit path

(red +) are shown in Figure 2.5.

2.6 Discussion

Three different divergence behaviours of the EKF algorithm, when it is used for the

synchronization of IMs, are discussed here. Experiments are carried out at a signal–to–

noise ratio (SNR) of 40dB. The SNR is defined by

SNR =
1
N

∑N
i=1 x2

i

σ2
, (2.15)

where σ2 is the variance of the noise and N is the total number of samples used for eval-

uation. For each of the observations, the transmitter (blue) and the receiver (magenta)

CAs are plotted.

2.6.1 Case-I: Convergence to a Stable Fixed Point

This type of divergence is shown in Figure 2.6. In this case, the initial estimate of the

receiver states fall within the basin of attraction of the stable fixed point P1. For the two
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Figure 2.4: The stable fixed point and CA (blue) of the IM. Basin of attraction for CA

(white) and P1 (green) are also shown.
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Figure 2.5: PHTs (yellow) and the most probable exit path (red+).

different basins of attractions (of CA and P1), the system behaves differently. An initial

estimate can be a point in the basin of attraction of P1 depending on the choice of P0

(i.e. the initial a posterior error covariance matrix), the transmitter and receiver states

and the channel noise. In the simulation studies, it is found that when P0 is changed,

a diverging trajectory may be brought back to the CA. However, there is no specific
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pattern observed for the choice of P0. If the receiver state happens to be in the basin

of attraction of P1 for a sufficiently long duration of time, Pk|k−1 contracts according

to Eqs. (2.12) and (2.13) and hence, Kk converges to zero. This affects the correction

added to the current receiver states by the EKF algorithm. If the contraction rate is

high as compared to the correction added, the receiver state finds its trajectory along

the stable manifold of P1 to the fixed point P1. If the initial computation of the receiver

state leads to a point that lies in the basin of attraction of P1, there is a high possibility

that the receiver states reach the stable fixed point eventually.

−2 −1 0 1 2 3 4 5
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−1

0

1

2

3

4
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ℑ{
z k
}
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P1

Figure 2.6: Transmitter and receiver CAs (Case-I).

2.6.2 Case-II: Synchronization with Divergence to a Stable Fixed Point

Figure 2.7 shows another type of divergence. Here, the receiver states follow the trans-

mitter states for few iterations in the beginning. After that, the states are taken to the

basin of attraction of P1. Initial state estimates of the EKF based scheme are very close

to the actual transmitter states. At some points, the error between the transmitter and

receiver states is amplified such that the receiver states find a path out of the basin of

attraction of CA. Since the IM has a NCA, the approximation errors, channel noise and

numerical errors can get amplified at the PHTs. If these errors are sufficiently high and

if Kk is relatively small, the EKF will not get enough time to push the system back to
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the CA. In hyperbolic attractors, as a result of the Shadowing Lemma [43], small per-

turbations do not cause the system to leave the attractor. Once the system states reach

the basin of attraction of P1, Pk|k−1 begins to contract. Hence, the state updates get

less importance and the system states follow the stable manifold of P1. In this case, it

is less likely that the receiver states will return to the CA. As discussed in [77], because

of the ergodic nature of the CA, Pk|k−1 and hence Kk vary aperiodically. When the

receiver states are in the CA, the state updates act as weak perturbations that cause the

divergence as shown in Figure 2.7.
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Figure 2.7: Transmitter and receiver CAs (Case-II).

2.6.3 Case-III: Synchronization with Intermittent Burst of Desynchro-

nization

A third situation (Figure 2.8) is where the receiver states follow the transmitter states

for most of the iterations. Since the receiver states are in the CA, Pk|k−1 and hence

Kk vary aperiodically. Again, the corrections made to the receiver states by the EKF

can get amplified at the PHTs. However, these perturbations take the system states to

points which are outside the CA, yet inside the basin of attractor of the CA. Moreover,

some of the transmitter states are not visited by the receiver. Since the receiver states

are inside the basin of attraction of the CA, the EKF brings the receiver states back to
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the transmitter states. As it can be observed from Figure 2.8, the CA formed by the

receiver is a smeared version of the transmitter CA. Many points are seen to be scattered

around the transmitter CA.
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Figure 2.8: Transmitter and receiver CAs (Case-III).

To study the speed of synchronization, the normalized instantaneous square error

(NISE(k)), defined by

NISE(k) =
1

N

n∑

i=1

(xi
k − x̂i

k)
2 (2.16)

is computed and plotted. Here, N is the total number of iterations and xi
k is the value

of ith state variable at the kth time instant. For NISE(k), the index k is dropped (while

plotting). The results are plotted on a log−log scale (Figure 2.9) to emphasize the

relevant regions of the graph, especially the initial iterations. From Figure 2.9, three

distinctive regions can be identified. Initially the NISE is very high. After few iterations,

the receiver states start following the transmitter states. This results in very small

instantaneous square error values. However, the receiver states are intermittently taken

out of the CA and bursts of desynchronization occurs. Accordingly, in the NISE curve,

intermitted bursts of increasing NISE values are observed in the third region.
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Figure 2.9: NISE performance of EKF based synchronization of IMs.

2.6.4 Behaviour of Local Lyapunov Exponents

Local Lyapunov exponents (LLEs) give us the information about how rapidly the pertur-

bations grow or shrink locally [75]. The variation of LLEs is significant when the value

of L is small. Thus, these exponents can be used for the analysis of local behaviour of

the chaotic systems/maps. The behaviour of the LLE of the trajectories at the receiver

for the three divergence behaviours discussed above are presented in Figure 2.10. As

expected, when the states are in the CA, the sum of the LLEs has fluctuating positive

and negative values. When the trajectory moves to the basin of attraction of the stable

point P1, the sum of the LLEs takes on negative values and it finally settles down to a

constant (negative) value. When examining Case-I (Figure 2.10 (a)), it is clear that the

sum of the LLEs are quickly becoming negative, implying that the receiver states are

moving towards the stable fixed point. In Case-II (Figure 2.10 (b)), the receiver states

are in the CA for a long period of time and therefore, the LLEs have positive and negative

values. However, this behaviour is changed suddenly when the system states move to

the fixed point (this happens at about 2800 iterations). In Case-III (Figure 2.10 (c)), on

the other hand, the receiver states are not escaping from the basin of attraction of the

CA and hence, the behaviour of the LLEs is the same as that of the initial portion of
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Case-II. These observations clearly substantiate the claims made in this chapter. Figure

2.11 shows the transmitter and receiver states after synchronization (after 500 iterations).

The straight line portion of the figure shows the synchronized regions of the trajectories,

whereas the scattered points show the desynchronized portion.
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Figure 2.10: Local Lyapunov exponents: (a) Case-I, (b) Case-II and (c) Case-III.
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Figure 2.11: Transmitter vs receiver states (xR and x̂R) after synchronization for EKF

based scheme.
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2.7 Synchronization Characteristics of IM

Two performance indices namely, NMSE and total NMSE (TNMSE) are used to study

the noise dependency of synchronization. The NMSEi between transmitter state (xi)

and receiver state (x̂i) is defined as

NMSEi =

N∑

k=1

(xi
k − x̂i

k)
2

N∑

k=1

(xi
k)

2

, (2.17)

where N is the number of iterations and the superscript i represents the index of the

state variable (i.e. the ith state variable). The total NMSE (TNMSE) is defined as the

sum of all the NMSEs corresponding to individual states

TNMSE =
n∑

i=1

NMSEi. (2.18)

To avoid the effect of initial transients, few hundred initial samples are discarded while

computing the NMSEs. At each SNR value, the experiment is repeated 50 times and

the average of the NMSEs and the TNMSEs are computed. These values are plotted in

Figure 2.12 on a semi−log scale.

To study the effect of noise on synchronization, NMSE and TNMSEs are plotted

against the SNR. SNR is changed from 35 to 60dB. This is because, for SNRs below

35dB, most of the trajectories are found to be diverging. At higher SNRs, although

there are diverging trajectories, they are relatively low. Hence, to avoid misleading

results, trajectories which are diverging are excluded from the computation of NMSE and

TNMSE. The NMSE and TNMSE values are given in Figures 2.12 and 2.13, respectively.

It can be seen that both NMSE and TNMSE values are noise dependent.

2.8 Conclusion

In this chapter, synchronization behaviours of IM using EKF are studied in detail. For

the EKF based synchronization, many of the receiver trajectories diverge at all SNRs.

This is explained with the fractal basin boundaries of IM where an NCA coexist with
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Figure 2.12: NMSE performance of EKF based scheme.
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Figure 2.13: TNMSE performance of EKF based scheme.

a stable fixed point. In addition, the EKF algorithm behaves differently in different

basins of attractions (basin of attractor of NCA and stable fixed point). As a result

of the converging nature of Kalman gain in the basin of attraction of the stable fixed

point and the presence of approximation errors and channel noise, it is observed that the

EKF based scheme is incapable of guaranteeing stable synchronization. At low SNRs

the number of diverging trajectories are large. At high SNRs, on the other hand, this
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number is significantly reduced and even in no noise case (infinite SNR), few diverging

trajectories are observed.

The synchronizing properties of the EKF based scheme are analyzed using the per-

formance indices such as the NISE, NMSE and TNMSE. The NISE converges after few

tens of iterations implying the receiver trajectory close to the transmitter trajectory.

However, desynchronizing bursts are observed even after trajectories are synchronized.

NMSE and TNMSE of the EKF are found to be noise dependent: with an increase in

SNR, these performance indices are found to be decreasing.



Chapter 3
Unscented Kalman Filter and Particle

Filter for Chaotic Synchronization

3.1 Introduction

From Chapter 2, it is found that the EKF exhibits divergence behaviour when it is

applied for the synchronization of chaotic maps with NCAs. The approximation error

introduced by the EKF together with the expansions of this error at the HTs makes the

system unstable and diverging trajectories are generated at the receiver. One way to

mitigate this problem is to use nonlinear filters with better approximation capabilities.

Unscented Kalman filter (UKF) and particle filter (PF), which result in lower approx-

imation errors, are proposed as alternatives to the extended Kalman filter (EKF). In

this chapter, both the filtering algorithms are applied to the synchronization of Lorenz

and Mackey−Glass (MG) systems and Ikeda map (IM) and the performance is analyzed

numerically. One can expect a better synchronization performance in terms of divergence

behaviour and synchronization errors (compared to that of the EKF based scheme). In

order to gauge the performance, normalized mean square error (NMSE), total normal-

ized mean square error (TNMSE), and normalized instantaneous square error (NISE) are

used as performance indices.

This chapter is organized as follows. In Section 3.2, the UKF algorithm is presented

in detail. Details of the PF algorithm is provided in Section 3.3. Results of the simulation

29
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studies are detailed in Section 3.4 followed by some concluding remarks in Section 3.5.

3.2 The Unscented Kalman Filter

The UKF algorithm was first introduced by Julier and Uhlmann in 1997 [39]-[41]. It is

essentially an approximation method to solve Eq.(2.7). UKF works based on the principle

of unscented transform (UT)[42].

3.2.1 Unscented Transform

In Figure 3.1, the UT of a random variable, u, which undergoes a nonlinear transforma-

tion (f(u)) to result in another random variable, v is shown. To calculate the statistics of

v, the ideal solution is to get posterior density, p(v), analytically from the prior density

p(u). The mean and covariance of v can also be computed analytically. However, this is

highly impractical in most of the situations because of the nonlinearity. UT is a method

for approximating the statistics of a random variable which undergoes a nonlinear trans-

formation. It uses carefully selected vectors (Ui), known as sigma points, to approximate

the statistics of the posterior density. Each sigma point is associated with a weight Wi.

The number of sigma points is 2n+1 where n is the dimension of the state vector. With

the knowledge of the mean (û) and covariance (Pu) of the prior density, these sigma

points are constructed as

(U0,W0) =

(

û,
κ

n + κ

)

; i = 0 (3.1a)

(Ui,Wi) =

(

û +
(√

(n + κ)Pu

)

i
,

1

2(n + κ)

)

; i = 1, . . . , n (3.1b)

(Ui,Wi) =

(

û−
(√

(n + κ)Pu

)

i
,

1

2(n + κ)

)

; i = n + 1, . . . , 2n (3.1c)

where κ is a scaling parameter and
(√

(n + κ)Pu

)

i
is the ith row or column of the

square root of the matrix, (n + κ)Pu. These sigma points are propagated through the

nonlinearity f(.) to obtain

Vi = f(Ui) for i = 0, 1, . . . , 2n. (3.2)
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Using the set of Vi, the mean (v̂) and covariance (Pv) of the posterior density is estimated

as

v̂ =
2n∑

i=0

WiVi (3.3a)

Pv =
2n∑

i=0

Wi (Vi − v̂) (Vi − v̂)T . (3.3b)

It is shown that the UKF based approximation is equivalent to a third order Taylor series

approximation if the Gaussian prior is assumed [40]. Another advantage of UT is that it

does not require the calculation of the Jacobian or Hessian.

Vi = f(Ui)

Mean of u

Covariance of u

True mean of v

True covariance of v

Estimated covariance of v

Estimated mean of v

Sigma points: Ui, i = 0, . . . , 2n

Sigma points: Vi, i = 0, . . . , 2n

Random variable v

Random varaible u

v = f(u)

Figure 3.1: Unscented transform.

3.2.2 Scaled UT

The SUT (SUT) is a generalization of the UT. It is a method that scales an arbitrary set

of sigma points but yet capture the mean and covariance correctly. The new transform

is given by

U ′

i = U0 + α (Ui − U0) for i = 0, . . . , 2n (3.4)
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where α is a positive scaling parameter. By this the distribution of the sigma points can

be controlled without affecting the positive definitive nature of the matrix, (n + κ)Pu.

A set of sigma points, {U = [U0, . . . ,U2n] ,W = [W0, . . . ,W2n]}, is first calculated

using Eq.(3.1) and then transformed into scaled sigma points,
{

U
′

=
[

U ′

0, . . . ,U
′

2n

]

,

W
′

=
[

W
′

0, . . . ,W
′

2n

]}

, by

U ′

i = U0 + α (Ui − U0) for i = 0, 1, . . . , 2n (3.5a)

W
′

i =







W0
α2 + (1 − 1

α2 ) i = 0

Wi

α2 i 6= 0
. (3.5b)

The sigma point selection and scaling can be combined to a single step by setting [41]

λ = α2(n + κ) − n (3.6)

and setting

U ′

0 = û

U ′

i = û +
(√

(n + λ)Pu

)

i
i = 1, . . . , n (3.7a)

U ′

i = û−
(√

(n + λ)Pu

)

i
i = n + 1, . . . , 2n (3.7b)

W
(m)
0 =

λ

n + λ
(3.7c)

W
(c)
0 =

λ

(n + λ)
+ (1 − α2 + β) (3.7d)

W
(m)
i = W

(c)
i =

1

2(λ + n)
for i = 1, 2, . . . , 2n. (3.7e)

Parameter β is another control parameter which affects the weighting of the zeroth sigma

point for the calculation of the covariance. Using SUT, the mean and the covariance can

be estimated as

v̂ =

2n∑

i=0

W
(m)
i V ′

i (3.8a)

Pv =

2n∑

i=0

W
(c)
i

(

V ′

i − v̂
)(

V ′

i − v̂
)T

(3.8b)

where V ′

i = f(U ′

i ).
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Guidelines on Selecting α, β and κ [41]

Selection of κ should be such that it should result in positive semidefiniteness of the

covariance matrix. Choosing κ ≥ 0 guarantees this and a good choice is κ = 0. Choose

0 ≤ α ≤ 1 and β ≥ 0. For Gaussian prior density, β = 2 is an optimal choice. Since α

controls the spread of the sigma points, it is selected such that it should not capture the

non−local effects when nonlinearities are strong.

3.2.3 Unscented Kalman Filter

UKF is an application of the SUT. It implements the minimum mean square estimates as

follows. The objective is to estimate the states xk, given the observations, y1:k. For this

the state random variable is redefined as the concatenation of the original state and noise

variables (i.e. xa
k =

[
xT

k wT
k vT

k

]T
with dimension na). The steps involved in UKF are

listed below.

Algorithm 1: Unscented Kalman Filter

• Initialization

x̂0 = E[x0]

P0 = E[(x0 − x̂0) (x0 − x̂0)
T ]

x̂a
0 =

[
x̂T

0 0 0
]T

Pa
0 =









P0 0 0

0 Q 0

0 0 R









• For k = 1, 2, . . .

– Calculate the sigma points:

X a
k−1 =

[

x̂a
k−1 x̂a

k−1 ±
√

(na + λ)Pa
k−1

]
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– Time update:

Xk|k−1 = f
(
X x

k−1,Xw
k−1

)

x̂k|k−1 =

2na∑

i=0

W
(m)
i X x

i,k|k−1

Pk|k−1 =

2na∑

i=0

W
(c)
i

[

X x
i,k|k−1 − x̂k|k−1

] [

X x
i,k|k−1 − x̂k|k−1

]T

Yk|k−1 = h
(

X x
k|k−1,X v

k|k−1

)

ŷk|k−1 =

2na∑

i=0

W
(m)
i Yi,k|k−1

– Measurement update:

Pŷkŷk
=

2na∑

i=0

W
(c)
i

[
Yi,k|k−1 − ŷk|k−1

] [
Yi,k|k−1 − ŷk|k−1

]T

Px̂kŷk
=

2na∑

i=0

W
(c)
i

[
Xi,k|k−1 − x̂k|k−1

] [
Yi,k|k−1 − ŷk|k−1

]T

Kk = Px̂kŷk
P−1

ŷkŷk

x̂k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)

Pk = Pk|k−1 − KkPŷkŷk
KT

k .

†††

It is shown in [40] that the approximation introduced by the UKF has more number

of Taylor series terms. The effect of the approximation errors is different for different

nonlinear systems. In some cases, if the nonlinearity is quadratic, approximation error

will not have any strong influence. However, as discussed in Chapter 2, when they are

chaotic maps with NCAs, it leads to the divergence of trajectories.

3.3 Particle Filters

Particle filters are sequential Monte−Carlo (MC) methods for nonlinear analysis. It

is a method to implement recursive Bayesian filter by MC simulations. This class of

filters can deal with any probability distributions and allows complete representation

of the posterior probability distribution of the states [49][78]. Hence, any statistical
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estimates such as mean, modes, kurtosis and covariance can be estimated numerically.

The key idea is to represent the required posterior density function by a set of random

samples with associated weights. As the number of samples become very large, this MC

characterization become close to the actual density [78].

3.3.1 Perfect Monte−Carlo Simulation

In MC simulation, the integral is mapped to a discrete sum by a set of weighted samples.

More precisely, the posterior density is approximated as

p̂(x0:k|y1:k) =
1

N

N∑

i=1

δ(x0:k − xi
0:k) (3.9)

where N is the number of particles, δ(.) is the Dirac delta function and {xi
0:k, i =

1, . . . , N} are the samples drawn from the posterior distribution. Hence any expecta-

tion of the form

I(fk) =

∫

fk(x0:k)p(x0:k|y1:k)d(xk) (3.10)

can be approximated as

Î(fk) =

N∑

i=1

fk(x
i
0:k) (3.11)

The law of large numbers guarantees that Î(fk) → I(fk) when N is sufficiently large.

One key requirement here is the need for sampling from the posterior density. However,

in most cases, this density may not be directly computable. Then one needs to resort to

importance sampling [78].

3.3.2 Importance Sampling

In PF, the key idea is to use the principle of importance sampling. In other words, sample

particles from a known distribution called the proposal distribution. It is achieved by

choosing an importance function, π(x0:k|y1:k), from which samples can be easily drawn.
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Let the expectation of a function fk be given as

I(fk) =

∫

fk(x0:k)
p(x0:k|y1:k)

π(x0:k|y1:k)
π(x0:k|y1:k)d(x0:k)

=

∫

fk(x0:k)
p(y1:k|x0:k)p(x0:k)

p(y1:k)π(x0:k|y1:k)
π(x0:k|y1:k)d(x0:k)

=

∫

fk(x0:k)
wk(x0:k)

p(y1:k)
π(x0:k|y1:k)d(x0:k). (3.12)

where

wk(x0:k) =
p(y1:k|x0:k)p(x0:k)

π(x0:k|y1:k)
. (3.13)

By drawing N samples from π(x0:k|y1:k), Eq.(3.12) can be approximated as

Î(fk) =
1
N

∑n
i=1 fk(x

i
0:k)wk(x

i
0:k)

1
N

∑N
i=1 wk(x

i
0:k)

=

N∑

i=1

fk(x
i
0:k)w̃k(x

i
0:k), (3.14)

where the unknown normalizing function p(y1:k) is avoided by normalizing the weights

as follows [79]

w̃k(x
i
0:k) =

wk(x
i
0:k)

∑N
j=1 wj(x

j
0:k)

. (3.15)

If π(xk|x0:k−1,y0:k) = π(xk|xk−1,yk), the importance density depends only on xk−1

and yk. In order to compute a sequential estimate of the posterior distribution at time

k, following recursive formula for the proposal distribution can be used

π(xk|yk) = π(xk−1|yk−1)π(xk|xk−1,yk). (3.16)

Hence the computation of w̃k(x
i
k) can be recursively done as

w̃k(x
i
k) =

p(yk|xi
k)p(xi

k)

π(xi
k−1|yk−1)π(xi

k|xi
k−1,yk)

= w̃k−1

p(yk|xi
k)p(xi

k|xi
k−1)

π(xi
k|xi

k−1,yk)
. (3.17)

Above equation [Eq.(3.17)] is the essence of the PF. Using the N samples drawn from

π(xi
k|xi

k−1,yk), the posterior density can be approximated numerically.
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Degeneracy of Sequential Importance Sampling

The sequential importance sampling (SIS) has a serious limitation. The variance of all

but one importance weights become zero after few iterations. This degeneracy implies

that the a large computational effort is devoted to updating particles whose contribution

to the approximation of p(xk|y1:k) is negligible. To avoid the degeneracy of the SIS

algorithm, re−sampling techniques are applied. The measure of degeneracy in PF is

done with the effective sample size Neff which is given by

Neff =
1

1 + Var(w̃k(x
i
k))

, (3.18)

where Var(.) denotes the variance. Re−sampling involves mapping the Dirac random

measure {xi
k, w̃k(x

i
k)} into an equally weighted random measure {xj

k, 1
N
}. This is done

by sampling the particles uniformly from the discrete set {xi
k, i = 1, . . . , N} with prob-

abilities {w̃(xi
k), i = 1, . . . , N} [80]. The re−sampling process is shown in Figure 3.2.

First, the cumulative density function (cdf) of {xi
k, w̃k(xi

k)} is constructed. p(i) is the

pdf of a uniform random variable. Sampling index i drawn from p(i) is projected onto

the distribution range and then onto the distribution domain. The intersection with the

domain constitutes the new sample index, j. In other words xj
k, is accepted as a new

sample. This is performed for N times to get a set of particles x̂i
k and corresponding

weights, 1
N

. Since index i is selected uniformly, there is a higher probability to select the

same j if the weight associated with jth index is large compared to others. The objective

of the overall process is to avoid particles with low importance weights and multiply (i.e.

make more copies) the particles with higher importance weights.

3.3.3 Choice of Proposal Distribution

Choice of the importance function (proposal distribution) plays a crucial role in the design

of PF. The importance function should be selected such that it minimizes the variance

of the importance weights [78]. One way to accomplish this is to use UKF to construct

the importance function. In this framework, the UKF approximates the optimal min-

imum mean square estimate (MMSE) estimator of the system state by calculating the

conditional mean of the state, given all of the observations. This is done recursively
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Figure 3.2: Re−sampling process.

by propagating the Gaussian approximation of the posterior distribution through time,

combining it at each time step with the new observation. Within the PF framework, a

separate UKF is used to generate and propagate a Gaussian proposal distribution for

each particle (i.e. π(xi
k|xi

k−1,yk) = N (x̄i
k, P̄

i
k). Here, N (µ, σ2) represents a normalized

Gaussian density with mean µ and variance σ2. x̄i
k and P̄i

k are the approximate esti-

mate of the mean and covariance obtained by the intermediate UKF step). The UKF

is used here because it has a better approximation capabilities and wider span. This

method is called unscented particle filter (UPF) [79]. In this chapter, UPF is used for

the synchronization of chaotic systems/maps. Steps involved in UPF are briefed next.

Algorithm 2: Unscented Particle Filter

1. Initialize: k = 0

• For i = 1, . . . , N , draw particles xi
k from the prior p(x0)

• Set

x̂i
0 = E[xi

0]

Pi
0 = E

[(
xi

0 − x̂i
0

) (
xi

0 − x̂i
0

)T
]

x̂
(i,a)
0 = E[x

(i,a)
0 ] =

[
x̂i

0 0 0
]
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P
(i,a)
0 = E

[(

x
(i,a)
0 − x̂

(i,a)
0

)(

x
(i,a)
0 − x̂

(i,a)
0

)T
]

=









Pi
0 0 0

0 Q 0

0 0 R









2. For k = 1, 2, . . .

• Importance sampling step

– For i = 1, . . . , N :

∗ Update the particle filter with the UKF

· Calculate sigma Points:

X (i,a)
k−1 =

[

x̂
(i,a)
k−1 x̂

(i,a)
k−1 ±

√

(na + λ)P
(i,a)
k−1

]

· Time update:

Xk|k−1 = f
(

X (i,x)
k−1 ,X (i,w)

k−1

)

x̂i
k|k−1 =

2na∑

j=0

W
(m)
j X (i,x)

j,k|k−1

Pi
k|k−1 =

2na∑

j=0

W
(c)
j

[

X (i,x)
j,k|k−1 − x̂i

k|k−1

] [

X (i,x)
j,k|k−1 − x̂i

k|k−1

]T

Y i
k|k−1 = h

(

X (i,x)
k|k−1,X

(i,v)
k|k−1

)

ŷi
k|k−1 =

2na∑

j=0

W
(m)
j Y i

j,k|k−1

· Measurement update:

Pŷkŷk
=

2na∑

j=0

W
(c)
j

[

Y i
j,k|k−1 − ŷi

k|k−1

] [

Y i
j,k|k−1 − ŷi

k|k−1

]T

Px̂kŷk
=

2na∑

j=0

W
(c)
j

[

X i
j,k|k−1 − x̂i

k|k−1

] [

Y i
j,k|k−1 − ŷi

k|k−1

]T

Kk = Px̂kŷk
P−1

ŷkŷk

x̄i
k = x̂i

k|k−1 + Kk

(

yk − ŷi
k|k−1

)

P̄i
k = Pi

k|k−1 − KkPŷkŷk
KT

k

∗ Sample xi
k from the importance density, N

(
x̄i

k,P
i
k

)

– Evaluate the importance weights to get
{
xi

k, w
i
k(x

i
k)
}
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– Normalize the importance weights to get
{
xi

k, w̃
i
k(x

i
k)
}

• Re−sample to get
{
x̂i

k,
1
N

}
(and corresponding set of Pi

k)

• Approximate the density with
{
x̂i

k,
1
N

}

†††

A schematic of the steps involved in PF is given in Figure 3.3. Assume that at time

k, there are N = 12 particles (xi
k) with associated importance weights, N−1. This is

the result of the intermediate UKF computations and sampling from N (x̄i
k, P̄

i
k). Now,

for each particle, the importance weights are computed recursively using Eq.(3.17) and

these weights are normalized. This results in weighted measure, {xi
k, w̃k(x

i
k)}. In this

figure, the size of the circle represents the weight associated with each particle. To avoid

the degeneracy, re-sampling is performed so that samples with small values of w̃k(x
i
k) are

discarded while samples with large values of w̃k(x
i
k) are multiplied. This forms a new set

of particles {x̂i
k, N−1}, which is an approximation of p(xk|y1:k). This is iteratively done

for each time step, k.

{xi

k
, 1

N
}

{xi

k
, w̃i

k
(xi

k
)}

{x̂i

k
, 1

N
}

{xi

k+1, 1
N

}

{xi

k+1, w̃i

k+1(x
i

k+1)}

p(xk|y1:k)

1. Computation of

Importance weights

2. Re−sampling

3. Inermediate
UKF computations

and sampling

Sample from N (x̄i

k+1, P̄i

k+1)

Figure 3.3: Schematic of PF.
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3.4 Results and Discussion

To assess the performance of the UKF and PF based synchronization schemes, simulation

studies are carried out on three different chaotic systems/maps: (i) IM, (ii) Lorenz

system, and (iii) Mackey−Glass (MG) system. These systems are chosen because of

the following reasons. The IM is chosen because it has non−negligible higher order

terms in its Taylor series approximation. The Lorenz system is one of the archetypical

chaotic systems commonly studied for chaotic synchronization, while, the complexity of

the chaotic attractor (in terms of the correlation dimension1) for the MG system can be

controlled by simply adjusting one of its parameters. Extensive computer simulations

are carried out and the results are discussed in detail in this section. In all the computer

simulations, the SNR is varied from -5dB to 50dB for the Lorenz and MG systems and

in the case of IM, it is varied from 35dB to 60dB. For these simulations, no specific

communication scheme is assumed. Also, for chaotic systems, it is assumed that analog

signals are transmitted and this signal is appropriately sampled at the receiver.

3.4.1 Case–I: IM

IM is already introduced in Section 2.5.1. The states of the IM are randomly initialized

and generated iteratively. From Eq.(2.14), it can be easily verified that the map has

non-negligible higher order terms in the Taylor series approximation due to the presence

of sine and cosine terms.

State xR is transmitted from the transmitter. Noise is added to this signal to pro-

duce the received signal y at different SNRs. At the receiver, the transmitter states are

estimated using this information. Figure 3.4 shows the transmitter state (xR) vs the

estimated receiver state (x̂R) when the UKF and PF (using 20 particles) algorithms are

used for synchronization (here the SNR is set to 50dB and the first 100 samples are

omitted while generating this plot). For the PF and UKF schemes, this plot is a straight

line implying perfect synchronization (or synchronization with negligible error) of the

1Correlation dimension of an attractor is a is a measure of the dimensionality of the space occupied

by a set of random points [75, Chapter 5]
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transmitter and the receiver systems.
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Figure 3.4: Transmitter vs receiver states (xR and x̂R) after synchronization for PF and

UKF based schemes (IM).

The synchronization speed of both algorithms are compared by computing the NISE

[Eq.(2.16)] and are illustrated in Figure 3.5. In 20 iterations the PF based scheme achieves

synchronization while the UKF based scheme needed almost 50 iterations to achieve it.

A faster synchronization means less overhead is needed for communication purposes. In

the case of the PF based synchronization scheme, the NISE settles down to a value of the

order 10−7. For the UKF based scheme on the other hand, this value is slightly higher.

The range of the NISE values provides an insight to the instantaneous deviation from

the synchronized trajectory. Here, the UKF based scheme has a larger spread of the

NISE values implying frequent departure from the synchronized trajectory, whereas as

in the case of the PF, the NISE curve is well behaved implying no intermittent burst of

desynchronization.

To compare the synchronization performance of the algorithms for different SNRs,

NMSEs and TNMSEs are computed and plotted on a semi−log scale (Figures 3.6 and

3.7). The performance of the EKF based scheme is used for comparison. The SNR is

restricted from 35dB to 60dB, since majority of the trajectories of the EKF based scheme

diverge for SNR values below 35dB. For the UKF based scheme, there are few trajectories
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Figure 3.5: Error dynamics of IM for the PF and UKF based schemes.

which are diverging even in the range of 35dB to 60dB. For the PF based scheme, no

trajectories are found to diverge in this range. However, a large number of trajectories

are found to be diverging at SNRs below 20dB. To avoid misleading results, only the

synchronized trajectories are considered for the calculation of NMSE, TNMSE and NISE.

The NMSE (Figure 3.6) of the UKF and PF based schemes are almost identical while

TNMSE (Figure 3.7) of the PF is slightly better than that of the UKF based scheme.

This implies that the estimation of the imaginary part of the state variable (xI
k) is more

accurate with PF compared to the UKF and EKF. In Table 3.1, the actual values of the

NMSEs are provided. For all the SNR values, the NMSEs of the UKF and PF based

schemes are almost similar. Considering the TNMSE performances and the fact that no

diverging trajectories are observed in the case of PF based synchronization, it makes an

appropriate choice for the synchronization of IM.

Table 3.1: NMSE of IM

SNR UKF PF

35 1.83e-04 1.85e-04

45 1.64e-05 1.69e-05

55 1.71e-06 1.62e-06
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Figure 3.6: NMSE of IM for the PF, UKF and EKF based schemes.
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Figure 3.7: TNMSE of IM for the PF, UKF and EKF based schemes.

3.4.2 Case–II: Lorenz System

The Lorenz system is a three dimensional vector field, φ(x, y, z) : R3 → R3, representing

the interrelation of temperature variation and convective motion [81]. The set of coupled
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differential equations representing the Lorenz system is given by

ẋ(t) = σ(y(t) − x(t)),

ẏ(t) = −x(t)z(t) + rx(t) − y(t), (3.19)

ż(t) = x(t)y(t) − cz(t),

where σ = 10, r = 28 and c = 8
3 are used to obtain the Lorenz attractor. The three

states (x, y and z) are randomly initialized and with the use of fourth order Runge−Kutta

method, the states are iteratively generated. The Lorenz attractor is shown in Figure

3.8.
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Figure 3.8: Lorenz attractor (σ = 10, r = 28 and c = 8
3).

For Lorenz system, the state x alone is transmitted and at the receiver all the three

states, x, y and z, are estimated. Figure 3.9 shows the graph of the state x of the

transmitter plotted against the state x̂ of the receiver for the UKF and the PF based

synchronization schemes. The linear relationship of the states for both the schemes shows

perfect synchronization of the transmitter and the receiver states.

The NISE for the PF and UKF based schemes is presented in Figure 3.10. For the

UKF based scheme, fast convergence is observed which takes about 10 iterations whereas

for the PF scheme, it takes almost 100 iterations to reach small NISE values. The steady

state convergence error is also relatively higher for the PF. A comparison with Figure



3.4 Results and Discussion 46

−20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

Transmitter State

R
ec

ei
v
er

S
ta

te

PF

UKF

Figure 3.9: Transmitter vs receiver states (x and x̂) after synchronization for the PF and

UKF based schemes (Lorenz system).
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Figure 3.10: Error dynamics of Lorenz system for UKF and PF based schemes.

4.8 reveals that both of these schemes converge faster than the EKF based scheme which

takes almost 1500 iterations. In Figure 3.11, NMSEs of the state x for the PF, UKF

and EKF based schemes are provided. Numerical values of the NMSE can be obtained

from Table 3.2. The corresponding TNMSE variation is illustrated in Figure 3.12. From

Figures 3.11 and 3.12 , it can be observed that while the NMSE and TNMSE of UKF and
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EKF have decreasing values of with increase in SNRs, these values of the PF saturate

to constant values at high SNRs. One possible explanation for this behaviour is the

numerical computations involved in determining the particles. Near the solution, the

elements of the covariance matrix P̂i
k will become small in values. This is because the

error variance become small near the solution. Moreover, the trajectories are locally

correlated. Hence the sigma points generated using these matrices will not be diverse

enough to capture the dynamics. This lack of diversity causes the error floor.
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Figure 3.11: NMSE of state x (Lorenz) for the PF, UKF and EKF based schemes.

Table 3.2: NMSE of the Lorenz system

SNR UKF PF

0 1.48e-02 1.68e-02

25 4.85e-06 2.81e-05

50 2.18e-08 1.39e-05
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Figure 3.12: TNMSE of Lorenz system for the PF, UKF and EKF based schemes.

3.4.3 Case–III: MG System

The MG system was originally proposed as a first order nonlinear delay differential equa-

tion to describe physiological control systems [82]. It is given by

ẋ(t) = −ax(t) +
bx(t − τ)

1 + x(t − τ)10
. (3.20)

This system is chaotic for values of b = 0.2, a = 0.1 and τ ≥ 17. An interesting feature of

this system is that its complexity (i.e. the correlation dimension) increases as τ increases.

For the generation of MG system, a delay differential equation solver is used [84, Chapter

4]. Figure 3.13 shows the MG attractor.

The MG system has only one state (x) which is transmitted through a noisy channel

and the received signal is used for synchronization. For this system, the simulations are

carried out for two different τ values (17 and 50). The transmitter vs the receiver states

after synchronization (τ = 17) is plotted in Figure 3.14 for both the schemes. A straight

line relationship shows the perfect synchronization of the transmitter and the receiver

states. However, for the EKF based scheme (see Figure 4.12), the graph is spread over

the entire area showing its inability to synchronize the trajectories. Figure 3.15 presents

the NISE characteristics of the PF and UKF based synchronization schemes. One can

easily see that the PF based scheme is able to provide quick synchronization. For the
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Figure 3.13: MG attractor (b = 0.2, a = 0.1 and τ = 17).
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Figure 3.14: Transmitter vs receiver states (x and x̂) after synchronization for EKF based

scheme (MG system).

UKF based scheme, although the initial values are very close, a complete synchronization

of the transmitter and the receiver trajectories happens only after about 100 iterations.

The value to which NISE settles down are different for the PF and UKF schemes.

The SNR vs NMSE for the PF, UKF and EKF based schemes for τ = 17 and 50 are

illustrated in Figure 3.16. Table 3.3 provides the values of the NMSEs. It can be seen



3.4 Results and Discussion 50

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

Iterations

N
IS

E

PF
UKF

Figure 3.15: Error dynamics of MG system for the PF and UKF based schemes.

that the PF based scheme is relatively insensitive to the increase in the complexity (in

other words, increase in the τ values) at higher SNR values. For instance, when τ = 17

and 50, the NMSEs of PF based scheme are almost the same. On the other hand, for the

UKF and EKF based schemes, noticeable differences in the NMSE values are observed for

different values of τ : when τ = 50, the NMSE is higher compared to when τ = 17. Here

again, the NMSE of the PF is higher than that of the UKF and it is clearly noticeable

at high SNRs and low values of τ . For low values of τ , the trajectories of MG system

are locally correlated. One needs more diverse samples for proper functioning of PF.

However, this is not the case with higher values of τ . The trajectories have less local

correlation causing the Frobenius norm of each covariance matrix (corresponding to each

sample) to shrink fast resulting in less diversity.

Table 3.3: NMSE of the MG system

SNR UKF (τ = 17) PF (τ = 17) UKF (τ = 50) PF (τ = 50)

0 9.48e-02 3.75e-02 1.54e-01 1.41e-01

25 1.12e-04 3.39e-04 1.74e-03 3.23e-04

50 3.35e-06 7.07e-06 1.45e-05 7.07e-06
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3.5 Conclusion

The EKF is one of the most widely investigated stochastic filtering methods for chaotic

synchronization. However, for highly nonlinear systems, it introduces approximation

errors causing unacceptable degradation in the synchronization performance. In this

chapter, two nonlinear filtering algorithms (PF and UKF) are proposed for the syn-

chronization of the chaotic systems/maps. The objectives here are twofold: (i) to get

faster synchronization and (ii) low synchronization errors. Both the PF and UKF based

schemes are able to meet these two requirements compared to the EKF based scheme.

These two algorithms are tested on two chaotic systems (Lorenz and MC systems) and

one chaotic map (IM). The main conclusions drawn from this study are as follows.

• For all the chaotic systems/maps studied, PF and UKF are able to give a fast and

accurate synchronization.

• Comparing the NISE, NMSE and TNMSE of the IM, PF has performed better

compared to the UKF and EKF.

• For the IM, the PF based scheme has additional advantage that no diverging tra-

jectories are observed, whereas for the EKF and UKF based schemes, diverging
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trajectories are observed.

• For proper operation of the PF based scheme, the particles should be diverse (sam-

pled from all areas of the state space). However, this fails when the PF is applied

to the synchronization of the Lorenz and MG systems causing the synchronization

error to be slightly higher compared to UKF.



Chapter 4
Nonlinear Predictive Filter for Chaotic

Synchronization

4.1 Introduction

Many alternatives to the EKF have been proposed for nonlinear estimation and tracking.

A simple and efficient method is the nonlinear predictive filter (NPF). It is widely used

in nonlinear control applications. The NPF algorithm is based on a predictive tracking

scheme first introduced by Lu [50]. Crassidis and Markley [85] modified the algorithm

for filtering applications. The NPF has several advantages over the EKF: (i) it uses a

continuous time model to estimate the states and hence avoids discrete state jumps, (ii)

no explicit assumption about the model error is required, and (iii) unlike EKF, it does

not assume Gaussianity of the posterior probability. In this chapter, NPF based scheme

for chaotic synchronization is proposed and analyzed in detail.

In the next section, the NPF scheme is discussed briefly. In Section 4.3, condition

for the stability of the NPF based scheme is derived. Theoretical upper bound for the

TNMSE is also derived. The numerical results are discussed in detail in the following

section (Section 4.4) and some concluding remarks are provided in Section 4.5.

53
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4.2 Nonlinear Predictive Filter

NPF is a predictive corrective filtering algorithm. With the current state information at

time t, the NPF predicts the output at a future instant, t + ∆t. The time step, ∆t, is

assumed to be sufficiently small. The error between this predicted value and the actual

value is calculated. Using this error, the NPF generates a control signal, which is added

to the current state as a correction, such that the prediction error is minimized. It is

assumed that the state and the output estimates are given by a preliminary model and

a to-be-determined model error vector (d(t)). The receiver model is given by

˙̂x(t) = f(x̂(t)) + G(x̂(t))d(t), (4.1a)

ŷ(t) = h(x̂(t)) (4.1b)

where G(x̂(t)) is the error distribution matrix. Using Taylor series, at time t, the model

output can be expanded as

ŷ(t + ∆t) = ŷ(t) + Ξ(x̂(t)) + Λs (x̂(t))d(t) (4.2)

where

Ξ(x̂(t)) = col
[ pi∑

j=1

∆tj

j!
Lk

f (hi)
]

(4.3a)

Λ = diag
[∆tpi

pi!

]

(4.3b)

s (x̂(t)) = col
[

Lgi
[Lpi−1

f (hi)]
]

. (4.3c)

Here, i = 1, . . . ,m, operators diag[.] and col[.] denote diagonal and column matrices,

respectively. pi is the order of the derivatives such that d(t) is explicitly available in the

expansion, Lj
f (hi) is the jth order Lie derivative [50] given by

L0
f (hi) = hi, (4.4a)

Lj
f (hi) =

∂Lj−1
f (hi)

∂x̂T (t)
f(x̂(t)), j ≥ 1, (4.4b)

and the Lie derivative within Eq.(4.3c) is given by

Lgi
[Lpi−1

f (hi)] =
∂Lpi−1

f (hi)

∂x̂T
j

G(x̂j). (4.5)
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The objective here is to find d(t) such that the following cost function1 is minimized:

J(d(t)) =
1

2
[y(t + ∆t) − ŷ(t + ∆t)]T R−1[y(t + ∆t) − ŷ(t + ∆)] +

1

2
d(t)T Wd(t). (4.6)

In the above equation, W and R are positive semi−definite weighting matrices. The

conditions for the selection of W and R are discussed in Section 4.3. When J(d(t)) is

minimized, the control signal, d(t), is obtained as

d(t) = −
{

[Λs(x̂(t))]T R−1Λs(x̂(t)) + W
}−1

[Λs(x̂(t))]T R−1[Ξ(x̂(t)) − y(t + ∆t) + ŷ(t)]. (4.7)

The block diagram of the NPF is depicted in Figure 4.1.

W R

y(t + ∆t)

ŷ(t + ∆t)

Predictor

Control

Signal
G (x̂(t))

Receiver
Chaotic
System

d(t)

h (x̂(t))

x̂(t)

Figure 4.1: Schematic of the NPF.

4.3 Stability Analysis

In chaotic communication schemes, typically, one state out of the n states of the chaotic

systems/maps are transmitted. Assume, G (x(t)) is independent of the states x(t). Also

assume h(.) is a vector h̄ = [h1, . . . , hm]. Here, hi, corresponding to the ith entry of h̄

takes the value 1 if the ith state variable is transmitted and 0 otherwise. This makes y(t)

and ŷ(t) to be a scalar quantity, y(t) and ŷ(t), respectively. In this case, G (x̂(t)) is a

1For chaotic maps, the objective function is written as J(dk) = 1
2
[yk+1 − ŷk+1]

T R−1[yk+1 − ŷk+1] +

1
2
dT

k Wdk.
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vector g = [g1, . . . , gn]T . Hence the control signal also becomes scalar given by

d(t) = −∆tcw−1gT h̄T r−1
{

ŷ(t) − ȳ(t + ∆t) + ∆th̄f(x̂(t))
}

, (4.8)

where the quantity c is equal to 1 − w−1gT h̄T
[
h̄gw−1gT h̄T + ∆t−2r

]−1
h̄g. w and r

are the weights used in Eq.(4.7). If one keeps w, r, and ∆t constants for a specific SNR

then, ∆tcw−1gT h̄T r−1 in the above equation will be a scalar constant, say M . It

is assumed that the noise, v(t), is additive and bandlimited with a variance σ2. Using

these assumptions, stability of the NPF based scheme is analyzed in this section. An

approximate expression for the total mean square error (TMSE) is also derived. Please

note that TMSE and TNMSE differs in a normalizing constant.

At time t, let the error between the transmitter and receiver system states be

e(t) = x(t) − x̂(t). (4.9)

The receiver output at any time, t, be ŷ(t) = h̄x̂(t). Expanding ŷ(t + ∆t) at ŷ(t), the

control signal, d(t), can be approximated as

d(t) = −M h̄
(

x̂(t) −
(
x(t) + ∆tf(x(t))

)
+ ∆tf(x̂(t))

)

+ Mv(t). (4.10)

The error dynamics, (ė(t)), is given by

ė(t) = ẋ(t) − ˙̂x(t) = f(x(t)) − f(x̂(t)) − gd(t) (4.11)

When the channel noise is small and the synchronization error is small (i.e. x̂(t) is close

to x(t)), linearizing at the transmitter trajectories x(t), e(t) can be given by

e(t) = Ae(t) + K(t)e(t) − Mgv(t) (4.12)

where A = −Mgh̄ and K(t) =
(
I−∆tMgh̄

)∂f(x(t))
∂x

. The solution (e(t)) of the above

stochastic differential equation is given by

e(t) = exp

(∫ t

t0

(A + K(τ)) dτ

)

e(t0) −
∫ t

t0

exp

(∫ t

τ

(A + K(s)) ds

)

Mgv(τ)dτ.

(4.13)
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Taking the expectation over the channel noise v(t), we get

E
[
eT (t)e(t)

]
= eT (t0)

[

exp

(∫ t

t0

Adτ +
t − t0
t − t0

∫ t

t0

K(τ)dτ

)]T

exp

(∫ t

t0

Adτ +
t − t0
t − t0

∫ t

t0

K(τ)dτ

)

e(t0) +

σ2

∫ t

t0

MgT

[

exp

(∫ t

τ

Ads +
t − τ

t − τ

∫ t

τ

K(s)ds

)]T

exp

(∫ t

τ

Ads +
t − τ

t − τ

∫ t

τ

K(s)ds

)

Mgdτ. (4.14)

For t → ∞, t−t0
t−t0

∫ t

t0
K(τ)dτ = (t − t0)K, where K =< K(τ) > is the average taken

over the Sinai-Bowen-Ruelle (SBR) measure [83]. If the real part of the eigenvalues

of the matrix
[

(A + K)T + (A + K)
]

are all negative, the first term becomes zero as

t → ∞. This is the necessary condition for the asymptotic stability of the NPF based

synchronization scheme. By replacing 1
t−τ

∫ t

τ
K(s)ds with K, we get

E
[
eT (t)e(t)

]
= eT (t0) exp

[(

(A + K)T + (A + K)
)

(t − t0)
]

e(t0) +

σ2

{∫ t

t0

MgT exp
[(

(A + K)T + (A + K)
)

(t − τ)
]

Mgdτ
}

(4.15)

As lim
t→∞

, the asymptotic error is given by

lim
t→∞

E
[
eT (t)e(t)

]
≈ −(Mσ)2gT

[

(A + K)T + (A + K)
]−1

g. (4.16)

Trace of lim
t→∞

E
[
eT (t)e(t)

]
gives an indication of the total mean square error (TMSE).

It depends on the channel noise, M (which in turns depends on g, h̄, ∆t, w and r), and

chaotic systems/maps (through K).

The TNMSE dynamics of the NPF based scheme is presented in Figure 4.2. Numerical

integration of the Eq.(4.13) is used to obtain this. The MC simulation results for 50

different initial conditions are averaged and presented in this graph. It can be seen that

the NPF is able to provide a low TNMSE for an arbitrarily large initial state error. After

almost 2000 iterations, the TNMSE is settling down to a very small value of the order

of 10−7. This observation ascertains the above argument that, if all the eigenvalues of

the matrix
[

(A + K)T + (A + K)
]

are negative, the TNMSE becomes independent of the

initial states. This condition is satisfied by following steps.
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Figure 4.2: TMSE for NPF based scheme (Lorenz system: using numerical integration

of Eq.(4.13)).

1. Select the prediction step, ∆t. This is selected such that the numerical integration

of the differential equation of the chaotic system is possible.

2. Set r = σ2.

3. Compute K numerically.

4. Select g and w so that the eigenvalues of the matrix,
[

(A + K)T + (A + K)
]

, will

have negative real parts.

In all the simulations carried out in this chapter, stability of the NPF is guaranteed by fol-

lowing first two steps listed above. Instead of computing the matrix
[

(A + K)T + (A + K)
]

and finding its eigenvalues, g is selected arbitrarily with positive values and then w is

adjusted such that the NPF converges eventually.

4.4 Results and Discussion

4.4.1 Case–I: IM

From the transmitter, the state xR is transmitted. Noise is added to this signal to

produce the received signal y at different SNRs. At the receiver, the transmitter states
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are estimated using this information. The performance of the NPF based scheme is

compared to that of the EKF based scheme. Figure 4.3 shows the transmitter state (xR)

vs the estimated receiver state (x̂R) when the NPF and EKF algorithms are used for

synchronization2. It can be seen that the relationship between the transmitter and the

receiver states is linear for the NPF based scheme which implies perfect synchronization

of the transmitter and the receiver. The corresponding picture for the EKF based scheme

is also shown in the same figure. Although a linear region is present in this figure, some of

the points are scattered around. This is due to the intermittent burst of desynchronization

experienced when the EKF is used3.
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Figure 4.3: Transmitter vs receiver states (xR and x̂R) after synchronization for NPF

based scheme (IM).

The synchronization speed of both the algorithms are compared by computing the

NISE [Eq.(2.16)] and are illustrated in Figure 4.4. It can be seen that, compared to the

EKF, the NPF based scheme achieves faster synchronization. When it is used, the NISE

converges to a very small value of the order of 10−7 and remains more or less the same

from thereon after about 40 iterations. In the case of the EKF, it takes more iterations

(few hundreds) to settle down to a smaller NMSE value (of the order of 10−8). However,

2Here the SNR is set to 50dB and the first 500 samples are discarded while generating this plot.
3Please refer the discussion in Section 2.6.3
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it can be observed that the EKF suffers from intermittent bursts of desynchronization.

One reason for this behavior can be attributed to the presence of hyperbolic tangencies

[43] as discussed in Section 2.6.3. This picture clearly shows that the NPF based scheme

synchronizes much faster and remains synchronized thereon.
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Figure 4.4: Error dynamics of IM for NPF and EKF based schemes.

To compare the performance of both the algorithms for different SNRs, NMSEs and

TNMSEs are computed and plotted on a semi−log scale (Figures 4.5 and 4.6). Here the

SNR is restricted from 35dB to 60dB. During the simulation studies, it is observed that

for the given set of parameters, the EKF is unable to synchronize certain trajectories

(outliers), whereas the NPF always synchronizes. It is also observed that at low SNRs

(below 35dB), the number of outliers are very high; in some cases, none of the trajectories

synchronize. Hence in this case the SNR values are restricted to 35dB and above. In

this range also divergence of trajectories is observed, however, they are only very few.

Hence to avoid misleading results, only the synchronized trajectories are considered for

the calculation of NMSE, TNMSE and NISE. From these figures, it can be seen that

the NPF based scheme has better performance than that of the EKF based scheme in

terms of both NMSE (Figure 4.5) and TNMSE (Figure 4.6). The NMSE and TNMSE

performances of the EKF based scheme are also shown in these figures. These values are

much higher than that of the NPF based scheme. A possible reason for this behaviour
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could be the intermittent bursts of desynchronization, which can be attributed to the

channel noise and the approximation errors. In Table 4.1, the NMSEs at different SNRs

are provided for both the schemes. From this table, it is clear that NPF has much better

NMSE performance compared to EKF.
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Figure 4.5: NMSE of state xR (IM) for NPF and EKF based schemes.
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Figure 4.6: TNMSE of IM for NPF and EKF based schemes.



4.4 Results and Discussion 62

Table 4.1: NMSE of IM

SNR EKF NPF

35 1.20e-02 3.08e-04

45 1.86e-03 3.08e-05

55 3.16e-04 3.12e-06

4.4.2 Case–II: Lorenz System

For Lorenz system, the state x alone is transmitted and at the receiver all the three states

(x, y and z) are estimated. From Eq.(3.19), it can be verified that the Lorenz system has

a quadratic nonlinearity and hence the linear approximation error should be minimum.

Hence, one could expect the performance of the NPF and EKF to be comparable. Figure

4.7 shows the graph of the state x of the transmitter plotted against the state x̂ of the

receiver of the NPF and the EKF based synchronization schemes. The linear relationship

of the states for both the schemes show perfect synchronization.
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Figure 4.7: Transmitter vs receiver states (x and x̂) after synchronization for NPF and

EKF based schemes (Lorenz system).

The NISE curves of both the synchronization schemes are presented in Figure 4.8.

From this figure, it can be seen that NPF converges faster (in about 1000 iterations)
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Figure 4.8: Error dynamics of Lorenz system for NPF and EKF based schemes.

compared to EKF which take almost 1500 iterations to converge. This implies that

the NPF based scheme synchronizes faster than the EKF based scheme. This figure also

shows that both the NPF and EKF based schemes have similar error dynamics. In Figure

4.9, NMSEs of state x for both the schemes are presented. The corresponding TNMSE

variation is illustrated in Figure 4.10. From both of these graphs, it can be observed that

the NPF always outperforms the EKF in synchronizing Lorenz systems (as the NMSE

and TNMSE values for the NPF based scheme are always smaller than that for the EKF

based scheme). Table 4.2 provides a closer look at the values of NMSE at different SNRs.

For all the SNRs considered, the NMSE of NPF is lower than that of EKF at least by

a factor of 10. This study shows that in the case of Lorenz systems also the NPF based

scheme has better synchronization properties compared to EKF.

Table 4.2: NMSE of Lorenz system

SNR EKF NPF

0 8.12e-01 4.89e-02

25 2.56e-03 1.55e-04

50 8.53e-06 5.55e-07
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Figure 4.9: NMSE of state x (Lorenz) for NPF and EKF based schemes.
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Figure 4.10: TNMSE of Lorenz system for NPF and EKF based schemes.

4.4.3 Case–III: MG System

The MG system has only one state (x) which is transmitted through a noisy channel

and the received signal is used for synchronization. For this system, the simulations are

carried out for two different τ values (17 and 100). The transmitter vs the receiver states

after synchronization (τ = 17) is plotted in Figure 4.11 for the NPF and the EKF based

schemes. From this figure, a linear relationship can be observed in the case of NPF which
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implies perfect synchronization of the transmitter and the receiver states. However, for

the EKF based scheme, the graph is spread over the entire area. Figure 4.12 presents the

NISE characteristics of both the synchronization schemes. For the NPF based scheme,

the NISE settles down to a very small value in few iterations (< 100). A short−lived

divergence (of the order of 10−5) is observed in the error dynamics. However, it quickly

settles down to a very small value. In the case of the EKF based scheme, even though

the NISE reduces after a few iterations, the reduction is only of the order of 10−1 and it

remains more or less at this level for the remaining iterations.
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Figure 4.11: Transmitter vs receiver states (x and x̂) after synchronization for NPF and

EKF based schemes (MG system).

The SNR vs NMSE for the NPF and EKF based schemes for τ = 17 and 100 are

illustrated in Figure 4.13. It can be seen that the performance of the NPF based scheme

is consistently much better than that of the EKF based scheme for SNR values above

15dB. Another observation is that the NPF based scheme is relatively insensitive to the

increase in the complexity (in other words, increase in the τ values). For instance, when

τ = 17 and 100, the NMSEs of NPF based scheme are almost the same. For the EKF

based scheme, on the other hand, a noticeable change in the NMSE values is observed for

different values of τ (17 and 100): when τ = 100, the NMSE is higher compared to when

τ = 17. It is also observed that the NMSE of EKF is insensitive to the SNR values while

NPF shows steadily declining NMSE values. The exact NMSE values for MG system for
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Figure 4.12: Error dynamics of MG system for the NPF and EKF based schemes.

different values of τ can be seen from Table 4.3.
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Figure 4.13: NMSE of state x (MG system) for NPF and EKF based schemes.

4.4.4 Parameter Mismatch

Since the NPF assumes modeling errors as a part of the state estimation, effect of para-

meter mismatch at the transmitter and receiver is studied in this section. In MG system,

this study is possible because its complexity can be controlled by the τ values. Here
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Table 4.3: NMSE of MG system for different values of τ (17 and 100)

SNR EKF (τ=17) NPF (τ=17) EKF (τ=100) NPF (τ=100)

0 5.34e-02 3.06e-01 9.75e-02 3.94e-01

25 1.72e-02 9.58e-04 5.10e-02 1.25e-03

50 2.25e-02 3.00e-06 8.18e-02 5.18e-06

complexity refers the complexity of the attractor which changes with τ . In this experi-

ment, the transmitter τ value is set to 50 while the corresponding value at the receiver

is set to 17. The NMSEs for the NPF and the EKF based synchronization schemes are

computed and are plotted in Figure 4.14. The NMSEs of the two schemes for the same

values of τ are also provided in the same graph for comparison. It can be seen that for

the NPF based scheme, the NMSEs for both cases (identical τs and different τs) are

almost similar, implying the insensitiveness of the scheme to the parameter change. In

the case of the EKF based scheme however, the parameter variation causes an increase

in the NMSE. Thus, these studies clearly show the superiority of the NPF based syn-

chronization method, even in the case of parameter mismatch between the transmitter

and the receiver.
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Figure 4.14: NMSE of MG system for different values of τ at transmitter for EKF and

NPF based schemes.
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4.4.5 Performance Comparison of EKF, UKF, PF and NPF

Table 4.4: Performance comparison for IM

Performance Indices EKF UKF PF NPF

Outliers Yes Yes No No

CC M M VH L

TS 150 80 11 30

NMSE 3.16e-04 1.71e-06 1.62e-06 3.12e-06

TNMSE 1.20e-03 7.90e-06 5.81e-06 5.72e-05

Table 4.5: Performance comparison for Lorenz system

Performance Indices EKF UKF PF NPF

Outliers No No No No

CC M M VH L

TS 1500 11 100 1000

NMSE 8.53e-06 2.18e-08 1.38e-05 5.55e-07

TNMSE 1.87e-05 7.47e-07 4.42e-05 1.45e-06

Table 4.6: Performance comparison for MG system (τ = 17)

Performance Indices EKF UKF PF NPF

Outliers No No No No

CC M H VH L

TS >1000 18 1 21

NMSE 2.25e-02 3.35e-06 7.07e-06 3.00e-06

In this section a comparison of the performances of EKF, UKF, PF and the NPF

algorithms are provided. Tables4 4.4 to 4.6 provide the comparison of all the filtering

based synchronization schemes studied in this thesis. Different aspects of synchroniza-

tion such as speed, mean square error, divergence behaviour (outliers) and computational

4Legend: Computational Complexity (CC), Low (L), Medium (M), Very High (VH) and Time to

synchronize (TS).
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complexity are compared. When EKF and UKF are applied for synchronization of IM,

outliers (i.e. diverging trajectories) are observed. Comparing the computational com-

plexity, for all the chaotic systems/maps considered, NPF has the lowest and PF has

the most. EKF and UKF have moderate computational requirements. From the tables,

comparing the time each scheme has taken for synchronization, it can be seen that the

PF has the fastest convergence for the IM and MG system but for Lorenz system, UKF

has the fastest convergence. NMSE and TNMSE studies of the IM reveals that these

values for the PF based scheme is the smallest among the four algorithms. For Lorenz

system, the NMSE and TNMSE performances of the UKF are found to be the lowest

compared to other methods. In the case of MG, the NMSE and TNMSE performances of

the UKF and PF are superior to the NPF based scheme at low SNRs. However, at high

SNRs, performance of the NPF based scheme is slightly superior to the other schemes. In

general, PF is found to be an appropriate method for the synchronization of the chaotic

systems/maps despite its computational complexity. NPF is a very simple algorithm

which can give performance close to the UKF and PF based schemes.

4.5 Conclusion

In this chapter, the NPF is proposed for synchronization of chaotic systems. There are

many advantages with the NPF. It does not require the computation of the Jacobian.

Other features of the NPF are: (i) the model error is assumed unknown and is estimated

as a part of the solution, (ii) it uses a continuous model to determine the state estimates

and hence avoids discrete state jumps, and (iii) there is no need to make Gaussianity

assumption of the a posterior error. The performance of the proposed scheme is compared

to the EKF, UKF and PF based schemes. The well known Lorenz and MG systems as well

as IM are used for numerical evaluation. Performance measures such as NMSE, TNMSE

and NISE are used for comparison. The main conclusions drawn from this study are as

follows

• It is observed that for all the systems, the NPF based scheme has better synchro-

nization properties over the EKF based scheme in terms of NMSE, TNMSE and
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NISE.

• For the IM based communication scheme, due to the presence of hyperbolic tan-

gencies, frequent divergence behaviour is observed when EKF is used for synchro-

nization, especially in the low SNR cases. No such anomaly is observed in the case

of NPF based scheme.

• When EKF and NPF are used to synchronize IM with different parameters at the

transmitter and receiver, it is observed that the NPF is able to give much lower

NMSE. For MG systems, when transmitter and the receiver have two different τ

values, the NPF based scheme provides a very small NMSE which is dependent on

the SNR, whereas the EKF based scheme fails to synchronize.

• Comparing the performance of NPF with the other filtering based schemes such as

the UKF and PF, it has less computational complexity. While the synchronization

time is comparatively higher for the NPF, the NMSE and TNMSE are on par with

that of the UKF and PF.



Chapter 5
Dynamical Encoding using Symbolic

Dynamics

5.1 Introduction

The sensitivity of chaotic systems/maps on its initial conditions and the parameters is

used to introduce the security where the latter being used as the secret key. However,

the applicability of conventional chaotic systems/maps in communication channels with

significant noise and multi−path is limited. Symbolic dynamics (SD) is defined as the

coarse−grain description of the chaotic dynamics and has been used for the analysis of

chaotic systems [51]. SD based methods are shown to provide high quality synchroniza-

tion.

Dynamical degradation1 is one of the main concerns when a stream cipher is imple-

mented on the digital computer [86]. In this chapter, a new self−synchronizing chaotic

stream ciphers is proposed using the symbolic dynamics based synchronization. In the

proposed system, the synchronization information is provided periodically. The theoret-

ical and numerical BER performances for the new system is obtained. These results are

compared with that of the binary phase shift keying (BPSK) and the CSK systems. Sta-

tistical tests are conducted to asses the security aspects of the proposed system. These

1When chaotic maps are implemented in digital computers, eventually all the trajectories become

periodic due to the finite precision computations.

71
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test results show that the proposed system has good statistical properties to qualify as

a random bit generator which in turn emphasizes the system security. The system’s

sensitivity to the changes in parameters is also studied.

This chapter is organized as follows. In Section 5.2, the CSK scheme is introduced.

A brief overview of SD and synchronization of chaotic maps using SD is given in Section

5.3. In Section 5.4, the proposed secure communication scheme is explained in detail. A

theoretical expression for the upper bound of the BER is derived and is also presented in

this section. Numerical results are discussed in Section 5.5 and this chapter is concluded

with some remarks in Section 5.6.

5.2 Chaotic Shift Keying

Chaotic System 1
xk = f(xk−1)

xk = −f(xk−1)

Chaotic System 2

vk

bk

Chaotic System 1
xk+1 = f(xk)

e1
k

e2
kChaotic System 2

xk = −f(xk−1)

Figure 5.1: Chaotic shift keying scheme.

Figure 5.1 shows a CSK scheme. It is one of the earliest chaotic communication

methods [87]. Most widely studied CSK system is the binary CSK in which two identical

chaotic systems/maps are used at the transmitter and the receiver. Depending on the

information bit (bk = ±1), one of these chaotic systems is selected and the state variable

corresponding to that system is transmitted. This state is corrupted by the channel noise,

vk, and is available at the receiver. The classical CSK receiver works on the assumption

that chaotic systems can typically synchronize an identically driven version of themselves

through a suitable coupling. In that case, the synchronized system results in a lower mean

square error with the received signal. But due to the inability of the other system to

synchronize with the driving system, the mean square error will be large. Hence, it is
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easy to decode the information by simply looking at the magnitude of the mean square

error. From Figure 5.1, if f(xk) is selected (say bit +1 is transmitted) the mean square

error E[(e1
k)

2] should be less than E[(e2
k)2] to decode the message correctly2. Otherwise,

the bit is detected incorrectly.

A skewed tent map and an inverted skewed tent map are used to obtain the two chaotic

systems at the transmitter [88]. The skewed tent map is given by

xk+1 = f(xk) =







2xk+1−a
a+1 for −1 ≤ xk ≤ a

2xk−1+a
a−1 for a ≤ xk ≤ 1

. (5.1)

The inverted skewed tent map is given by

xk+1 = −f(xk) =







a−2xk−1
a+1 for −1 ≤ xk ≤ a

1−2xk−a
a−1 for a ≤ xk ≤ 1

. (5.2)

These maps are defined in the interval [−1,+1]. The state spaces of the above two maps
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Figure 5.2: Sate spaces of the skewed tent maps (a = 0.43): (a) skewed tent map and

(b) inverted skewed tent map.

are shown in Figure 5.2. Exact copies of these maps are used at the receiver. However,

the initial conditions are uncertain. To keep the phase continuity, at the transmitter, the

last state of the map currently selected is used as the initial condition for the next bit

duration.
2Here ergodicity of the chaotic dynamics is assumed.
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5.3 Symbolic Dynamics

Symbolic dynamics is a coarse−grain description of the actual system dynamics [51]. It is

being widely applied for the analysis of chaotic systems/maps. By partitioning a chaotic

state−space into arbitrary regions, and labeling each region with a specific symbol, the

trajectories can be converted to a sequence of symbols. This coarse−grain formulation

of the system makes the deterministic nature of the dynamical system into a stochastic

one. Hence, such systems can be treated as Markov systems, which have finite topological

entropies.

Let the state−space (S) of the iterated chaotic map3 be partitioned into m disjoint

regions, β = {C}m
i=1, such that Ci∩Cj = ∅ for i 6= j and ∪m

i=1Ci = S. If one can assign

m alphabets (X = [X1, . . . ,Xm]), one each to each of the disjoint regions, the dynamics

of the system can be represented by a sequence of finite alphabet X. This sequence is

called the SD of the system/map. The entropy of the new information source is given by

Hβ
n = −

∑

Yi
n

P (Yi
n) log P (Yi

n), (5.3)

where P (Yi
n) is the probability to find a code word Yi

n of length n. The superscript i

in Eq.(5.3) represents a specific combination of symbolic sequence. The summation is

taken over all such possible sequences. The source entropy of a dynamical system is

hβ = lim
n→∞

hβ
n = lim

n→∞

1

n
Hβ

n . (5.4)

The Kolmogorov−Sinai entropy of the system is defined as [89, Chapter 4]

hKS = sup
β

hβ. (5.5)

From the above discussions, it is clear that an iterated chaotic map is an information

source with entropy hKS.

3For a chaotic system, corresponding discrete−time map can be obtained by the Poincare return map.
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5.3.1 SD of the Logistic Map

The logistic map [1] is one of the widely studied 1D maps; the dynamics of which is

governed by

xk+1 = µxk(1 − xk), (5.6)

where µ is a constant. For a range of values of µ, the logistic map has chaotic dynamics.

In this study µ = 4 is chosen for generating the map. The dynamics of logistic map is

defined in (0, 1). The state space representation and the partition to generate symbolic

dynamics are shown in Figure 5.3. If 0 < xk ≤ 0.5 symbol 0 is assigned and 1 is assigned

if 0.5 < xk < 1.
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Figure 5.3: Generating partition of the logistic map.

5.3.2 Synchronization using SD

Using the tent map with binary partition, the SD−based synchronization can be ex-

plained [57]. Consider the chaotic map described by Eq.(5.1). Assume that there is

no message transmitted and there is no channel noise. For an initial condition x0, let

X = [x0, . . . , xm−1] be the fiducial trajectory generated by Eq.(5.1). Here a finite length

trajectory is considered for simplicity. Let the corresponding binary trajectory be Xb
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of the same length (i.e. m) which is transmitted from the transmitter to the receiver.

At the receiver, an exact copy of the same map is available; but the initial condition is

unknown. The task is then to estimate the initial condition, x0, using Xb. Consider a sit-
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Figure 5.4: Synchronization using SD.

uation where only three bits are transmitted. From these three bits the initial condition

x0 needs to be estimated. Figure 5.4 shows this situation. A tent map with A = 0.5 is

used for this illustration. The state space is partitioned into two. If xk is between 0 and

0, then symbol 0 is assigned and symbol 1 is assigned otherwise. In this figure, shaded

regions are the areas in which xk may lie. Let Xb(0) = 1,Xb(1) = 0 and Xb(2) = 1. If one

has the knowledge only about Xb(2), he can conclude that x2 lies in between 0.5 and 1.

In Figure 5.4(b), the shaded area represents the pre-image of the interval [0.5, 1) under

the tent map4. Considering Xb(2) and Xb(1), a more accurate estimate about x1 can be

obtained, because if Xb(2) = 1, x1 should be either between 0.25 and 0.5 or between 0.5

and 1. However, Xb(1) = 0 indicates that x1 should be between 0 and 0.5. Taking this

into account one can conclude that x1 lies between 0.25 and 0.5. Here the estimation

error reduced by half the amount from the previous step (Note that in the previous step,

the variable of interest was x2). Since three bits are available to estimate x0, a more

accurate estimate can be obtained using similar construction (Figure 5.4(c)). This im-

plies, if m consecutive bits are considered for estimation, x0 can be estimated with an

estimation error less than 1
2m .

4Pre image of a set X for a particular iterative map is the set of points, Y , which are mapped to X

when the map is applied on Y .
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5.4 Dynamic Encoding

The schematic of the baseband representation of the proposed scheme is shown in Figure

5.5. The system has identical chaotic maps at the transmitter and the receiver. At the

transmitter, using the initial condition x0, the chaotic time series of length N is generated.

This is then converted to corresponding symbolic sequences, Xb. The filter block filters

out the first m bits for representing the initial condition. The remaining N −m bits are

used to code the binary information signal B of length N − m. Using the cryptographic

terminology, let B(k) be the plain text (the information that the transmitter wants to

send), Xb(m+ k) be the key (sequence generated from the chaotic map) and the Ymsg(k)

(subscript msg means it contains the message) be the cypher text. The encryption can

be done using the following operations.

Ymsg(k) = B(k) ⊕Xb(m + k), for k = 0, . . . , N − 1 − m. (5.7)

where ⊕ is the XOR operation. The purpose of the shuffler block is to hide the bits

conveying the initial condition Yinit = [Xb(0), . . . ,Xb(m − 1)]. The output is a binary

sequence Y of length N . The format of the transmitted sequence is shown in Figure 5.6.

The resultant sequence can be transmitted using conventional digital communication

techniques such as the BPSK or quadrature phase shift keying (QPSK).

At the receiver, signal corrupted by AWGN (vk) is available. Using conventional

matched filter receiver, the transmitted sequence can be estimated as Ŷ. The filter block

at the receiver uses the knowledge about the way Ymsg is hidden to separate Ŷmsg and

Ŷinit from the output of the matched filter. Using the synchronization method described

in subsection 5.3.2, the synchronizer estimates the initial conditions x̂0. These initial

conditions are used to reconstruct the symbolic sequence X̂b. The information signal is

then retrieved using the following equation:

B̂(k) = Ŷmsg(k) ⊕ X̂b(m + k), for k = 0, . . . , N − 1 − m. (5.8)

In order to decode these signals, the receiver should know three things– the chaotic

map employed, the initial condition and the control parameter of the chaotic map. By

selecting a new initial condition for each block transmission, large number of codes for
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encryption can be derived. It is worth noting that chaotic maps are capable of generating

i.i.d binary sequences [66] and hence the output sequence from the transmitter posses

randomness.

Chaotic
Map

Sybolic
Dynamics Filter Shuffler

Chaotic
Map

Sybolic
Dynamics Filter

MatchedFilter
Synchro-

B̂

X Xb

Xb(0) . . .Xb(m − 1)
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X̂b(m) . . . X̂b(N − 1)

Ŷmsg

Ŷx̂0 Ŷinit
nizer

Xb(m) . . .Xb(N − 1)

Modulation

(BPSK/QPSK)

Figure 5.5: Proposed communication system.

m Initial condition bits

N − m Encoded message bits

Figure 5.6: Format of the transmission sequence with interleaved initial condition.

5.4.1 Theoretical Upper Bound of the BER

It is clear from Figure 5.6 that there are two possibilities for the bit error to occur: (i)

the decoding information may be wrong which causes a wrong estimation of the initial

condition, and (ii) the detection of the message itself is wrong due to the noise.

To decode the message completely, all the m bits should be detected correctly. Let

the BER of the BPSK system, pb, be

pb = Q

(√

2Eb

N0

)

, (5.9)

where N0 is the noise power and Eb is the bit energy. Hence, the probability of wrongly
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detecting the sequence, ps, is

ps = 1 − (1 − pb)
m. (5.10)

Here, it is assumed that the symbolic alphabets are equiprobable. If a sequence is wrongly

detected, then the probability of wrong decision about the transmitted message, pd, which

is given by

pd = 0.5(1 − pb). (5.11)

The probability of error when the decoding information is wrong is given by

p1 = pdps = (1 − (1 − pb)
m) pd. (5.12)

Considering the second situation, where the first m bits are decoded correctly and the

message decoding is incorrect, the bit error probability is given by

p2 = (1 − ps)pb. (5.13)

Hence the total probability of error (BER) is given by

p = p1 + p2 = (1 − (1 − pb)
m) pd + (1 − ps)pb

= (1 − (1 − pb)
m) 0.5(1 − pb) + (1 − pb)

mpb

= 0.5(1 − pb) + (1 − pb)
m(1.5pb − 0.5). (5.14)

When the SNR is high, pb is close to zero and hence (1−pb)
m ≈ 1. Then from Eq.(5.14),

it can be clearly seen that the proposed system has a BER performance similar to that

of the BPSK communication system.

5.5 Results and Discussion

5.5.1 BER Analysis

Extensive numerical simulations are carried out to assess the performance of the proposed

secure communication system. Tent map, skewed tent map and logistic map are used for

the generation of chaotic sequences. 105 bits are transmitted for each SNR values and
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the corresponding BER is calculated. The experiments are carried out for simple AWGN

and frequency selective channels.

The BER performance of the proposed system for the AWGN channel is presented in

Figure 5.7. This performance is compared to that of the CSK and conventional BPSK

schemes. As expected, at lower SNRs (here, SNR is defined as Eb/N0), the BER of the

proposed scheme is relatively high. For instance, at an SNR value of 4dB, the proposed

method has a BER of 0.31 while CSK has a BER of 0.2 and BPSK has BER of 0.06. In

order to estimate the initial condition accurately, all the m symbols should be detected

correctly which is very unlikely in lower SNR values. However, when the BPSK achieves

a BER of 10−3, the BER performance of the proposed system starts following that of

the BPSK. For example, at 12dB SNR, the proposed system has a BER of 4 × 10−4.

The corresponding BER values of BPSK and CSK systems are 10−4 and 8.2 × 10−3,

respectively. This trend is observed for all the maps used for the simulation. It is also

interesting to note that even though the CSK based communication scheme has a slight

performance advantage over the proposed system in low SNR regions, at high SNR values

CSK is unable to provide fast BER decay. To see the asymptotic BER performances, the

upper bound of BER [derived in Eq.(5.14)] is plotted in Figure 5.8 along with that of the

BPSK system. It can be seen that when the SNR increases, the BER performance of the

proposed method closely follows that of the BPSK system. Although, such high SNRs

are possible only in theory, we can infer that the upper bound of BER of the proposed

system can be brought to an arbitrarily small value by appropriate coding schemes.

To test the applicability of the proposed algorithm to other maps, the experiment is

carried out for the skewed tent map and the logistic map. A similar behaviour is observed

here also. For low SNR cases, the BER is relatively high. As the SNR increases, the BER

curve of the proposed system closely follows that of the BPSK system. Some observations

are in order. As the inverse of the logistic map requires a square root, finite precision

algorithms can introduce approximation errors. In this experiment, initial conditions

have less precision compared to the computer and hence after computing the estimate of

the initial condition at the receiver, the high precision digits are discarded.

Most of the communication channels encountered in practice are band−limited and
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Figure 5.7: BER performance for AWGN channel.
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Figure 5.8: Theoretical BER curves of BPSK and the proposed method (AWGN channel).

frequency selective. To study the performance of the proposed system in such channels,

another set of simulations is carried out. Two different channel models discussed in [90,

Chapter 10] are considered. The first channel is a three−ray channel model with tap

weights [0.474, 0.815, 0.474] and the second channel is a five−ray channel with tap weights
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[0.227, 0.460, 0.688, 0.460, 0.227]. At the receiver end, the maximum likelihood sequence

estimation method (Viterbi Algoritm) is used to remove the inter symbol interference

caused by the channel. Simulation results are presented in Figures 5.9 and 5.10. The

proposed system behaves exactly as in the previous situation; at low SNRs it exhibit a

high BER and as the SNR increases the BER closely follows the BER curve of the BPSK

system. In the second channel condition as well, the proposed system has a fast BER

decay which can be observed from Figure 5.10. In all the simulations, irrespective of the

map used, BER curves have shown similar characteristics.
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Figure 5.9: BER performance for band−limited channel (Channel model-I).

5.5.2 Security Analysis

There are three ways by which security can be introduced in the system. Here, the

transmitter is first verified as source of the random bit sequence. Then, possible way to

hide the initial condition is discussed. To study the security of the proposed scheme, the

sensitivity of it to the control parameter variations is analyzed.
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Figure 5.10: BER performance for band−limited channel (Channel model-II).

Randomness of the Output Generated by the Transmitter

For this method to work, the message should not posses any specific pattern. In other

words, it should act like a random sequence. Statistical tests are conducted to asses the

randomness of such an encryption method using the statistical testing suite developed in

[91]. The results of the tests and the corresponding degrees of confidence are provided in

Table I. It can be seen that the proposed system passes all the statistical tests5 implying

that the output of this system has good randomness property.

Diffusion of the bits carrying initial conditions

It is clear from the above discussions that the initial condition of the chaotic map should

be available at the receiver in order to decode the message. One way to increase the

security is to diffuse information about the initial condition in a random fashion which

is known to the receiver a priori. This random pattern can be conveyed to the receiver

a priori or can be transmitted through a dedicated (secure) channel. For example this

pattern may be based on a linear feedback shift register (LFSR) where the initial state

5Test 12 has many Pvalues and hence it is omitted.
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Table 5.1: Statistical Test Results

No Test Pvalue Result

1 Frequency Test 0.042162 SUCCESS

2 Block Frequency Test 0.150647 SUCCESS

3 Run Test 0.455884 SUCCESS

4 Cumulative Sum Test 0.081931 SUCCESS

5 Fast Fourier Transform Test 0.602015 SUCCESS

6 Approximate Entropy Test 0.315695 SUCCESS

7 Linear Complexity Test 0.511244 SUCCESS

8 Longest Run of Ones Test 0.320249 SUCCESS

9 Overlapping Template Test 0.679082 SUCCESS

10 Rank Test 0.504374 SUCCESS

11 Universal Statistical Test 0.916838 SUCCESS

12 Non−periodic Template Test – SUCCESS

13 Serial Test 0.336143 SUCCESS

and the feedback connection can be conveyed to the receiver in a highly secure connection.

Precision

Other important parameter that can be used as the security feature is the precision at

which the chaotic generators are operating. It also include the length of the number

of bits (m) used to convey the initial conditions. In simulation studies, using proper

software codes, it is possible to adjust the precision to any value up to the maximum

value supported by the machine. If there is a slight error, the resulting trajectory would

become completely uncorrelated and produce an entirely different sequence [1]. This

prohibits the intruder to decode the message.

Knowledge of the chaotic map

Assume that the intruder somehow managed to extract the bits representing initial con-

ditions and the precision at the initial condition is specified. Now the question that needs
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to be answered is whether the intruder can decode the message. In order to decode the

message, the knowledge of the chaotic map is essential. It is also very important that

the communication system should be very sensitive to the changes in system parameters.

Figure 5.11, the parameter vs the BER performance is plotted. Clearly, if the difference

in parameter of the transmitter and receiver system is greater than 10−16, the BER is

high. If the parameter mismatch is below 10−16, it can be seen that the intruder can

decode the information easily as the BER is close to zero.
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Figure 5.11: Parameter mismatch vs BER.

Figure 5.12 shows the performance of the proposed scheme under parameter mis-

match. The parameter, A, of the transmitter tent map is set to 0.8. Assuming that the

receiver guessed this value approximately (say, A = 0.8 + 10−16), it is desirable to know

if the intruder is able to decode the message. This slight parameter mismatch makes the

receiver incapable of reconstructing the chaotic trajectory used generated at the trans-

mitter causing the receiver BER to remain at a high value. For a visual demonstration of

this effect, a picture6(shown in Figure5.13(a)) is transmitted from the transmitter after

encryption. Figure 5.13 (b) is the decrypted signal when the receiver has the correct

6This particular portrait of Sir Isaac Newton is taken from

http://en.wikipedia.org/wiki/Isaac Newton. This image is in the public domain.
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knowledge of the parameter. Figure 5.13 (c) is the decrypted message corresponding to

the use of wrongly guessed encryption key. It is clearly seen that the slight parameter

mismatch makes the receiver incapable of decoding the information correctly.
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Figure 5.12: BER performance under parameter mismatch.

Figure 5.13: (a) Original image (b) Receiver uses A = 0.8 (c) Receiver uses A = 0.8 +

10−16.

If one try to break the proposed system with brute force attack (i.e. trying each

parameter) he has to explore only 1016 values. This in fact can lead to a low security. To

improve the security, the method suggested in [92] can be used. Here, multiple chaotic

systems are used for the generation of the sequence used for encryption. Transmitter
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and the receiver schematic of the new system is shown in Figure 5.15(a) and Figure

5.15(b), respectively. At the transmitter there are L number of chaotic maps. Each

of them are initialized with x1
0, . . . , x

L
0 and has control parameter A1, . . . , AL. Initial

conditions x2
0, . . . , x

L
0 holds some deterministic relationships with x1

0. After converting

to its corresponding symbolic sequences, first m bits of each sequence is discarded. A

bit–wise XOR is done on the resultant sequence to produce a single stream of length

N − m. Shuffler mixes first m bit generated by the first chaotic map to get Y. Since

there is a relationship between x1
0 and the other initial conditions, the other values can

be computed at the receiver.

Chaotic Map -II
x2

0, A2

SD

SD

SD

X 1
b (m), . . . ,X 1

b (N − 1)

X 2
b (m), . . . ,X 2

b (N − 1)

XL
b (m), . . . ,XL

b (N − 1)

X 1
b (0), . . . ,X 1

b (m − 1)
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Y

xL

0 = fL−1(x1
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x1
0 = f1(x1

0)

.

.

.

Chaotic Map -I
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0, A1

xL
0 , AL

Chaotic Map -L

Figure 5.14: Schematic of the modified transmitter.

Since the current key space is [A1, . . . , AL], to do a brute force attack the intruder

has to search for 1016L values. By adjusting the L a balance can be achieved between

the required computational complexity and the security. Note that, the synchronizer

need to estimate only one initial condition and hence, the computational burden does

not increase significantly at the receiver when L become larger. In addition to this, the

relationship between the initial conditions also can be used as a secret to improve the

security.

From the above discussion it is clear that the proposed system assures certain level
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Figure 5.15: Schematic of the modified receiver.

of security which is ideal for places where moderate security is needed. This system can

be used in applications such as remote keyless entry system, video phone, and wireless

telephone etc. [93].

5.6 Conclusion

Synchronization of chaotic systems is an important step in implementing chaotic commu-

nication schemes. Especially in noisy environment, the application of SD to synchronize

chaotic systems is proved to be a good choice. In this work, using SD of the chaotic

maps, a new chaotic communication scheme is proposed. The information is dynamically

encoded using 1D iterated chaotic maps. The proposed method is tested for different

maps like tent map, skewed tent map and logistic maps. BER performance of the pro-

posed scheme is analyzed analytically and numerically. It is found that the BER of the

proposed communication scheme is comparable to that of the BPSK at moderately high

SNR. Overhead needed for the proposed communication scheme is very minimal. Sta-

tistical tests reveal that the proposed system qualifies as random binary source. The

sensitivity of the proposed system is also analyzed. This in effect emphasizes the security

of the proposed communication system.



Chapter 6
Spread Spectrum Communication System

using Ikeda Map

6.1 Introduction

In the last several years, increasing efforts have been devoted to study the possibility

of using chaotic dynamics to enhance the features of communication systems [10]-[11].

Chaos-based communication systems qualify as broadband systems in which the natural

spectrum of the information signal is spread over a very large bandwidth. This class of

systems are called spread spectrum (SS) communication systems since they make use of

a much higher bandwidth than that of the data bandwidth to transmit the information.

Among many SS communication schemes, investigations on wireless personal and com-

puter networks have recently addressed SS systems with direct sequence (DS) approach,

where users are multiplexed by orthogonal (or nearly orthogonal) spreading sequences

[94].

In this chapter, a new DS/SS communication scheme is proposed. Time series ob-

tained from 2D IM is used to generate the spreading sequences. The BER performance

of the proposed scheme is compared with that of the conventional Gold sequence BPSK

schemes with the help of computer simulations. Results show that the proposed system

has a noticeable improvement in BER performance in low signal to noise ratios (SNRs).

In Section 6.2 the transmitter and the receiver structure of the proposed system is

89



6.2 System Model 90

detailed. Spreading code generation from the IM is described in Section 6.3. Performance

of the proposed system under different channel conditions are analyzed in Section 6.4.

Some concluding remarks are provided in Section 6.5.

6.2 System Model

In this section, the system model of the proposed (double spreading DS/SS) system is

described in detail.

6.2.1 Transmitter

Consider a CDMA system with N number of active users. The transmitter model for

the proposed chaotic communication system of the nth user is illustrated in Figure 6.1.

The block diagram of the transmitter in pass band is given in Figure 6.1(a) and the

complex spreading operation is shown in Figure 6.1(b). The data is double spread and

it is transmitted using quadrature modulation system. Here, double spreading means

the information signal is spread using two separatespreading sequence and transmitted

using the inphase and quadrature phase components of the QPSK system. For the above

coded binary double spreading DS/SS scheme, the transmitted signal of the nth user is

given by

sn(t) = Anbn(t)cn(t) cos(ωct + θn) (6.1)

where An is the amplitude of the transmitted signal for the nth user, bn(t) is the phase

encoded information signal, cn(t) is the complex spreading waveform derived from the

IM ωc is the carrier frequency, and θn is the carrier phase. Further, ℜ[cn(t)] and ℑ[cn(t)]

in Figure 6.1(b) are the real and imaginary parts, respectively, of the complex spreading

signal cn(t), which is given by

cn(t) =
∞∑

k=−∞

cn
kpTc(t − kTc), (6.2)
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where {cn
k} ∈ {±1,±

√
−1} is the chip of complex spreading sequence cn of length Ns

(processing gain). pTc(t) is the rectangular pulse shaping function given by

pTc(t) =







1, 0 < t < Tc

0, otherwise
, (6.3)

and Tc is the chip duration. We assume that each code symbol is spread with Ns chips,

i.e. Tb = NsTc, where Tb is the bit duration. The encoded information signal can be

expressed as

bn(t) =

∞∑

k=−∞

bn
kpTb

(t − kTb), (6.4)

where {bn
k} ∈ {±1} is the information symbol sequence generated by the encoder, and

pTb
(t) is the rectangular pulse shaping function similar to pTc(t).

+Oscillator

sin(ωt)

bn(t)

cn(t)

90o

cn(t)

sn(t)

bn(t)
ℜ{cn(t)}

ℑ{cn(t)}

(a)

(b)

Figure 6.1: Transmitter model for the nth user in the proposed chaotic communication

system: (a) passband transmitter model, (b) complex spreading.
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6.2.2 Receiver

In general, the received signal r(t) can be expressed as

r(t) =

N∑

n=1

sn(t − τn) + ν ′(t) (6.5)

where τn is the sequence delay for each user and ν ′(t) is the complex AWGN. In a

synchronous system, τn can be set to zero without loss of generality. For asynchronous

system, τn can take any value between 0 and TcNs. The receiver model for the proposed

r(t)

(cn(t))H

ℜ
{

[cn(t)]H r(t)
}

yn
k

Figure 6.2: Receiver model for the nth user in the proposed chaotic communication

system.

chaotic communication system (for nth user) is illustrated in Figure 6.2. At the receiver

end, the de–spreading is performed by taking the dot product of the received signal with

(cn(t)) of the spreading sequence. The resultant signal is given by

ŷ(t) = [cn(t)]H r(t)

=
[

ℜ{cn(t)}T −
√
−1ℑ{cn(t)}T

] [

ℜ{r(t)} +
√
−1ℑ{r(t)}

]

= ℜ{cn(t)}T ℜ{r(t)} + ℑ{cn(t)}T ℑ{r(t)} +

√
−1
[

ℜ{cn(t)}T ℑ{r(t)} − ℑ{cn(t)}T ℜ{r(t)}
]

(6.6)

The cross correlation between the real and imaginary part of the spreading code is close

to zero, the imaginary part does not contain much bit energy. Hence only real part alone

is considered for the detection purpose. After sampling at an interval T , the received

signal, yn
k , for nth user can be written as

yn
k = 2Anbn

k +

N∑

l=1,l 6=n

Al(ρR,l + ρI,l)bl
k + νk, (6.7)
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where νk is the noise term due to the de–spreading. A synchronous channel with perfect

sequence acquisition for the desired user is assumed for the analysis.

From Eq.(6.7), it can be seen that the multiple access interference (MAI) term has

two cross–correlation terms ρR,l and ρI,l corresponding to the real and imaginary part of

the spreading sequence. If these terms are opposite in sign, the sum, ρR,l + ρI,l, can be

made smaller than the individual values. This property of the cross–correlation terms is

utilized for the MAI cancelation. Since the spreading sequences are generated using the

chaotic IM, with different initial conditions, a large number of sequences with the above

mentioned property can be identified and used.

6.3 Spreading Sequence Generation

The performance of DS/SS system depends primarily on the code properties and hence

there has been increasing effort to obtain spreading sequences with good cross-correlation

and auto−correlation properties [59, 94]. There are two broad class of spreading se-

quences which can be found in the current literature. They are: (i) PN sequence gen-

erated from linear shift registers (LFSR) such as m–sequences and Gold sequences, and

(ii) sequence generated from ergodic maps.

6.3.1 m- Sequences and Gold Sequences

Conventional DS/SS systems are based on the PN sequences such as m-sequences (max-

imum length sequences) and Gold sequences. The m- sequences can be generated from

LFSRs using the modulo-2 arithmetic [94]. A primitive polynomial of degree r is used

to get the maximum length sequence of period 2r − 1. If a pair of m-sequences called

preferred pair, is selected and modulo-2 addition of these two sequences and their phase

shifts are performed, it will result in a new set of sequences which are called Gold se-

quences [95]. Other sequences like Walsh sequences, Kasami sequences etc. are also in

use [59].
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6.3.2 Design of Spreading Sequence with Iterated Chaotic Maps

In this section, details of the generation of binary spreading sequences from iterated

chaotic maps are described. IM [Eq.(2.14)] is such a chaotic map and is used in generating

complex−valued spreading sequences in the proposed communication system.

6.3.3 Spreading Codes from IM

To construct chaotic spreading sequences for the proposed communication system, Eq.(2.14)

is used with initial conditions xR
0 and xI

0. Repeated application of the map generates two

sequences xR
k and xI

k. The real and imaginary parts of the chaotic spreading sequences

ℜ[cn] and ℑ[cn] of length Ns for the nth user can be obtained from the values of xR
k and

xI
k in the following way:

ℜ[cn] = sgn{xR,n − x̄R,n} and ℑ[cn] = sgn{xI,n − x̄I,n}, (6.8)

where xR,n and xI,n are vectors (formed from xR
k and xI

k) of length Ns, and x̄R,n and

x̄I,n are the average of these spreading sequences, respectively. The complex spreading

sequence is then constructed as cn = cR,n +
√
−1cI,n.

6.3.4 Optimum Selection of IM based Spreading Sequences

In this section, a detailed description of the method adopted for doing optimal selection

of spreading sequences from a large number of sequences generated using Eqs.(2.14) and

(6.8) is given. From a large group of sequences, a set of sequences (of length Ns = 31)

with better correlation properties are selected. Since a synchronous model with single

user correlator detector is analyzed, only the periodic cross–correlation properties of

the spreading sequences are considered [96]. The normalized periodic discrete cross-

correlation at a shift (τ) between the real part of nth and mth users’ spreading sequences

is defined as

ρn,m
τ =

1

Ns − τ

Ns−τ∑

k=0

cR,n
k cR,m

k+τ . (6.9)

The cross-correlation for the imaginary part of the spreading sequence can be defined in

a similar way.
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Pursley [96] showed that it is possible to express the average SNR at the receiver

output of a DS/SS system for the nth user as a function of the cross–correlation parameter

ρn,m and the power of AWGN present in the channel (N0); where n is the desired user, and

the other user are m = 1, . . . , N,m 6= n. Hence, we use the cross–correlation parameter

ρn,m (i.e.value of ρn,m
τ at τ = 0) as the criteria in choosing the desired number (N) of

spreading sequences from a large pool of sequences.

From a large pool of quadrature phase and in−phase sequences, two sequences are

selected randomly which forms the first in−phase and quadrature phase spreading se-

quences. Cross-correlation between these sequences and rest of the sequences are cal-

culated. Sequences with negative and positive correlation values are grouped and then

sorted. The sequences with lowest cross-correlation values from each group are selected

as the next pair of complex sequence. These steps are repeated until the required number

of sequences are obtained.

6.4 Results and Discussion

Computer simulations are carried out to evaluate the performance of a 31 chip IM based

double spreading scheme under different channel conditions. The BER performance of

the new system is compared with the 31 chip as well as the 63 chip Gold sequence based

BPSK systems. Since the proposed scheme uses the same amount of bandwidth as the

63 chip Gold sequence based BPSK system, comparison between the 31 chip IM based

double spreading system and 63 chip Gold sequence based BPSK system is justified. A

DS/SS communication system with 9 active users is considered for the simulation. Four

samples per chip and no perfect power control at the transmitter is assumed. The SNR

is varied from 0 to 14 dB for plotting the BER curves. For each SNR, individual BER

of each user is averaged in order to get the performance figure. The simulations are

conducted for synchronous (AWGN), asynchronous (AWGN), asynchronous fading, and

selective fading channel conditions.



6.4 Results and Discussion 96

6.4.1 Synchronous System

Figure 6.3 shows the BER performance of the proposed synchronous DS/SS system with

IM spreading sequences (31 chip) and the conventional system with the Gold sequence (31

and 63 chip) under AWGN. From this figure, it is very clear that the proposed scheme

significantly outperforms the conventional Gold sequence systems. The 63 chip Gold

sequence system requires a SNR of 10dB to achieve a BER of 10−3, while the proposed

system needs only 8dB. This merit figure is dominant in all SNR values and especially

at low SNRs (Here also SNR is defined as Eb/N0, where Eb is the bit energy and N0 is

the variance of the additive noise).
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Figure 6.3: BER curves under AWGN channel (Synchronous).

6.4.2 Asynchronous System

It is known that the uplink of a wireless communication system is essentially asynchro-

nous. Hence, the performances of the proposed system have to be evaluated under

asynchronous channel conditions. In this section, the BER performance of the proposed

system is compared with the other two systems in asynchronous channel, Rayleigh fading

channel and selective fading channel conditions. The delay, τn, of each user except the

desired user is made to vary uniformly between 0 to 4 × Ns. The simulation is carried
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out and the results are presented in Figs. 6.4, 6.5 and 6.6, respectively for asynchronous

case, Rayleigh fading channel, and selective fading channels.
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Figure 6.4: BER curves under AWGN channel (Asynchronous).

The BER performance of the proposed system is compared with the other two sys-

tems where all the parameters are kept unchanged as in the first experiment. However,

the users except the desired user are delayed by τn (uniformly between 0 to 4 × Ns)

amount. From Figure 6.4, it can be seen that, the proposed scheme achieves better BER

performance in low SNR with almost 2dB improvement. We also observe a crossing of the

BER curves of the new scheme with the 63 chip Gold code scheme at 11dB. Although the

performance of 63 chip Gold sequence BPSK system is better than the proposed system

at SNR greater than 11dB, the performance of the proposed scheme is noticeable in low

SNRs. A comparison with 31 chip Gold sequence based BPSK system reveals that the

new scheme is superior for all SNR values.

Asynchronous fading case is considered in this particular simulation. Rayleigh fading

occurs in a wireless transmission system where there is no direct signal component due

to line of sight. To determine the system performance under Rayleigh fading channel, it

is assumed that the transmitted signal propagates through Rayleigh faded radio chan-

nel with unity power [97]. Transmission is asynchronous and each user is undergoing
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Figure 6.5: BER curves under Rayleigh fading channel (Asynchronous).

independent fading. Results are shown in Figure 6.5. Here also it can be observed that

the new scheme outperform the conventional schemes at low SNR. The improvement is

almost 5dB around 0dB SNR. It can be observed that the proposed scheme is superior

to the 31 chip BPSK system almost everywhere.
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Figure 6.6: BER curves under selective fading channel (Asynchronous).
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Next, performance of the new scheme in multi-path channel conditions are evaluated

next. It is known that a RAKE receiver can be used in multi-path situations to improve

the performance of DS/SS system [98]. Three ray channel with exponential delay profile

was considered. Again the users are asynchronous and Rayleigh fading is assumed in all

the individual paths. The BER performance curve for the proposed system and other

conventional systems are presented in Figure 6.6. It can be seen that in low SNRs, the

proposed scheme outperforms the conventional schemes. When we compare 31 chip Gold

sequence and the proposed system, a huge difference in performance can be observed. As

in the previous figures there is a crossing of BER curves of proposed schemes and that

of 63 chip Gold code scheme at 13dB.

From all these simulation results, it can be seen that the proposed system performance

is much better than the conventional Gold sequence system, in general. In asynchronous

case, the performance improvement is very good in low SNR situations while in synchro-

nous case, proposed system considerably outperforms the conventional systems for all

SNR values. In synchronous case, the low bit error rate is attributed to the opposite sign

of MAI generated by the in phase and quadrature components. But in all the other cases,

it can be easily shown that the proposed system sends the same information through two

nearly uncorrelated channels. At the receiver, the output of these two channels are com-

bined and then the decision is made. This is in deed similar to the diversity combining

popularly used in digital communication systems [90, Chapter 14]. The improved BER

performances of the new scheme is attributed to the diversity combining gain.

6.5 Conclusion

In this chapter, a novel DS/SS communication system is proposed. This scheme exploits

the 2-D complex valued chaotic IM as the spreading sequences. The performance analysis

of the proposed scheme is evaluated numerically. The property of having opposite sign in

the cross–correlation values of the real and imaginary components of the complex spread-

ing sequence is utilized for the MAI cancelation. Such sequences are selected optimally

from a large set of complex sequences. A detailed description of the systematic procedure
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that is adopted to generate the IM based spreading sequences is presented. From the

simulation results, it is observed that the performance of the proposed system is superior

to that of the conventional system (with Gold sequence) under different channel condi-

tions. Specifically in synchronous case, better performance can be observed everywhere

while in all asynchronous situations, a noticeable improvement is achieved at relatively

low SNRs.



Chapter 7
Conclusion

Perhaps the most important lesson to be drawn from the study of nonlinear dynamical

systems over the past few decades is that even simple dynamical systems can give rise to

complex behavior (chaos) which is statistically indistinguishable from that produced by a

complex random process. Sensitive dependence on initial conditions is the most defining

characteristic of such chaotic systems. A distinct property of a chaotic process is its

long-term unpredictability. In mathematical terms, this property is referred to as the

sensitive dependence on initial conditions. A simple way to demonstrate this property is

to operate 2−D chaotic processes from slightly different initial conditions. Although the

two systems retain the same attractor pattern and chaotic invariants, they soon diverge

from each other.

Recently, the concept of communications using chaos has been widely explored.

Chaotic waveforms and sequences have many characteristics that are of interest in com-

munications, namely, wide-band power spectra, noise-like appearance, high complexity and

low cross−correlation. Recent research in chaos has caught the attention of communica-

tion system designers and developers as it promises to provide significant improvements

over the current systems in the all aspects mentioned above. The primary aim of imple-

menting chaos in communication systems is to increase the security of the transmitted

message. Unless the receivers have the keys (exact initial conditions and the parameters),

it would be almost impossible to intercept or decode the messages.

In this thesis, application of chaotic systems/maps for communications is explored.

101
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The objectives of this study are: (i) to analyze the divergence behavior of the EKF

based synchronization scheme when it is applied to the IM, (ii) to develop stable syn-

chronization methods such as the UKF, PF and NPF, (iii) to apply SD to develop new

chaotic digital communication systems which is multi−path resistant, and (iv) to gen-

erate spreading codes from complex chaotic systems such as the IM and analyze the

performance of such codes for different chaotic modulation schemes.

7.1 Chaotic Synchronization

Chaotic systems/maps have potential applications in secure communications due to their

wide−band nature. There are many forms of chaotic communication systems. The main

difficulty in implementing chaotic communication systems is the synchronization of the

transmitter and the receiver systems. This task will be even more formidable when the

channel and the measurement noises are present in the system. Stochastic methods are

applied to synchronize such systems. Nonlinear filters come as a handy tool in chaotic

synchronization due to their similarity with coupled synchronization. In this thesis, first,

the EKF based synchronization is analyzed in detail for the synchronization of chaotic

maps with NCAs such as IM. It is found that, in simple AWGN channels, the system

fails to synchronize due to the presence of such tangencies. In order to mitigate this issue

as well as to get better synchronization error characteristics, other nonlinear filtering

methods such as the UKF, PF and NPF are analyzed. The well known chaotic systems

such as Lorenz and MG systems as well as IM are used for performance evaluation.

7.1.1 Performance of the UKF and PF

The EKF is one of the most widely investigated stochastic filtering methods for chaotic

synchronization. However, for highly nonlinear systems, the EKF introduces approxima-

tion errors causing unacceptable degradation in the system performance. UKF has the

advantage that it has better approximation capabilities than EKF. Instead of approxi-

mating the nonlinear function, it tries to approximate the posterior density itself using a

UT of the random variable. PF are nonlinear filters capable of approximating any kind
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of posterior density. It uses the MC simulations for approximating the density. Since

there are no Gaussianity assumption about the posterior density, these filters are capable

of evaluating any densities. To get a faster and accurate synchronization, UKF and PF

based schemes are proposed and analyzed. Performance indices such as NISE, NMSE

and TNMSE are used to evaluate the performance of the proposed algorithm. The main

conclusions drawn from this study are as follows

• For all the chaotic systems/maps studied, PF and UKF are able to give a fast and

accurate synchronization.

• For IM, the PF based scheme has additional advantage that no diverging trajecto-

ries are observed.

• For proper operation of the PF based scheme, the particles should be diverse (sam-

pled from all the parts of the state space). However, this fails when the PF is applied

to the synchronization of the Lorenz and MG systems. Hence, the synchronization

error is relatively higher.

7.1.2 Performance of NPF

One of the widely studied nonlinear filtering method which does not need the Gaussianity

assumption of the noise is the NPF. One of the main advantages of NPF is its simplicity

when it is used for synchronization of chaotic systems. If properly designed, for NPF,

the approximation of chaotic nonlinearity is not required. Secondly, this method does

not need the computation of the Jacobian. Other advantages of the NPF are: (i) the

model error is assumed to be unknown and is estimated as a part of the solution, (ii)

it uses a continuous model to determine the state estimates and hence avoids discrete

state jumps, and (iii) there is no need to make Gaussianity assumption of the a posterior

error. The following conclusions can be drawn from the study.

• In all the simulations, the NPF based scheme gives a better error characteristics

(low values of NMSE and TNMSE).

• It also has faster convergence compared to the EKF based scheme.
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• Moreover, unlike in the EKF, no diverging trajectories are observed when NPF is

applied to the IM.

• Comparing the performance of NPF with the other filtering based schemes such as

the UKF and PF, it has lesser computational complexity. While NISE is compar-

atively higher for the NPF, the NMSE and TNMSE are on par with that of the

UKF and PF.

From these extensive studies, it can be concluded that the NPF is an ideal candidate

for synchronization of chaotic systems/maps with low computational requirement and

comparable mean square error performance (with UKF and PF). If faster synchronization

is needed, one can advice the use of either UKF or PF though their computational

complexity is higher compared to the NPF.

7.2 Application of SD to Communications

Synchronization of chaotic systems by the application of SD has the advantage that it

provides a high quality synchronization. Using SD of the chaotic maps, a new scheme for

secure communication is proposed in this thesis. The information is dynamically encoded

using 1D iterated chaotic maps. BER performance of the proposed scheme is analyzed

analytically and numerically. It is found that, at moderate SNRs, the proposed system

has BER performance that is similar to that of the conventional BPSK system and is

superior to that offered by the CSK communication scheme. Unlike CSK, the proposed

system demonstrated a better multi−path resistance. Statistical tests also reveal that

the proposed system qualifies as a random binary source. This in effect emphasizes the

security of the proposed communication system.

7.3 IM based DS/SS Communication System

An important quality of chaotic systems is its ability to generate information. This led the

researchers to apply chaotic time series for spread spectrum communication applications.

In this thesis, a novel DS/SS communication system is proposed. This scheme exploits
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the 2D complex valued chaotic IM as the spreading sequences. The performance analysis

of the proposed scheme is evaluated numerically. The property of having opposite sign

in the cross–correlation values of the real and imaginary components of the complex

spreading sequence is utilized for achieving MAI cancelation. The new system has very

low BER compared to the Gold code system with same bandwidth in synchronous AWGN

multiuser case. In the case of asynchronous and fading cases, at low SNRs, the proposed

system has a superior performance compared to the conventional system with Gold code

as the spreading sequence.

7.4 Future Directions

1. So far all the synchronization aspects are studied in a point to point communication

systems. It would be of great practical use to see how this synchronization methods

perform in multiuser environment.

2. In all the synchronization schemes discussed in this thesis, only one state of the

chaotic systems/maps is used for the synchronization. However, Taken’s embedding

theorem states that one can reconstruct the entire state space with a proper delay

embedding. A future work would be to use this theorem to develop synchronization

schemes and analyze their performance.

3. In this thesis, SD of 1−D maps are explored for secure digital communication

applications. However, as a future work, one could investigate the possibilities of

using the SD of higher dimensional maps to develop better secure communication

schemes.

4. Recent developments have highlighted that a statistical approach may greatly ben-

efit the study of correlation properties of discrete−time chaotic systems (maps). In

order to fully exploit the potential of chaotic systems in the field of communication,

it is required to evaluate the statistical properties of chaotic sequences. This will

lead to a systematic approach for the selection of code sequences instead of the

brute−force method used currently.
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