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Summary

Over the last few decades, many specification languages have bgmseuip targeting different
systems, different aspects of complex systems, and systems at diffterges of development. Two
complementary approaches have proven useful in practice. LogecHb@snalisms like Z and CSP
are based on mathematical techniques which provide the means for defitiomggsiike consistency,
completeness, and refinement. Diagrammatic notations like sequence clsateoharts are based
on visual transition diagrams and are widely accepted by industry. Ofleradp@of designing com-
plex computer systems is to find benefiting formalisms from those that may vanficagtly in
presentation and establish sound connections between them. A londielegisal of software
engineering is the mechanized synthesis of implementations from high-leafisations. An im-
portant part of this thesis is dedicated to the problem of synthesis. Rensgsngineering starting
with state-based formal specification, we developed a method of syntlgesigilementable finite
state machines from logic-based Object-Z models with history invariants.yBtems development
starting with scenario-based diagrams, we investigated ways of synthediziributed object sys-
tems from Live Sequence Charts without constructing the global state neacBiyp combining
the two approaches, we achieve the goal of generating implementationsysbem specifications
with not only complicated control flow but also complex data structures. ditiad, this thesis also
investigates sound transformations between different formalisms so tisihg@xheory and tool
support can be reused for visualization and verification. Logic-basmtkls can be visualized by
diagrammatic languages like UML to allow easy grasp of essential facts. Wamgjormation tech-
nigues, mature verification mechanisms can be reused over formalisms athénalse intended to
discover design errors inexpensively. In a nutshell, we establish@ougaconnections between

complementary formalisms, which provide constructive methods for systeefogenent.
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Chapter 1

Introduction and Overview

‘it would be of very little use without my shoulders.
Oh, how | wish | could shut up like a telescope!
| think | could,
if I only knew how to begin’

- Alice’s Adventures in Wonderlandewis Carroll

1.1 Motivation and Goals

Specification languages and notations have much to offer in the achievefrteshnical quality
in system development. Precise notations and languages help to make apecfionambiguous
while improving intuitiveness, increasing consistency and making it possildetert errors dur-
ing specification rather than implementation. Over the last few decades, mangl fmodeling
languages have been proposed [154, 81, 65, 32, 79, 161, 187103 83, 132, 2]. Different for-
malisms focus on different systems, different aspects of complex sysa@chsystems at different
stages of development. Some of them have proven successful in rgdissielopment costs and

significantly enhancing quality and reliability [63].
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Formal specification languages and notations can be distinguished byekeiipdion techniques.
The choice of description technique is important because it shapes thegyesvelopment process.
Distinguished by description techniques, the formalisms can be divided intoaiggories. One is
logic-based formalisms, including those that have a strict mathematical bdsiseamsually textual.
Logic-based formalisms are further divided into two groypssate-oriented formalisms, including
VDM [83], Z [161], Object-Z [137], etc., and event-oriented formalisims|uding Communicating
Sequential Processes (CSP [79]), Timed CSP [184¢alculus [132], etc. The other category is
visual formalisms, including diagrammatic modeling languages and notationsgroups of them
are of particular interest in this thesis. One is scenario-based diagramsiMessage Sequence
Charts (MSC) [81] and its variations like Live Sequence Charts (LSE) [3he other group in-
cludes those based on the notion of state machines, including finite state nsa&tattecharts [65],

Petri-net [119], Timed Automata [2], etc.

Both groups of formalisms have their unique strengths. Logic-based lismsaare strictly based on
mathematical techniques which provide the means of precisely defining nik®osensistency, re-
finement, completeness and, more relevantly, specification, implementatioopraaectness. They
often have strong tool support to validate their models, e.g., FDR (Failwerd@nce Refinement)
for CSP [128], Z/EVES for Z [131]. Used early in the system develogmescess, they can reveal
design flaws that otherwise might be discovered only during costly testohgl@ougging phases.
However, logic-based formalisms are relatively unpopular compared talvisrmalisms. One
of the reasons is that they are used only by system engineers with rtetegéimematical back-
ground [29]. By contrast, visual formalisms are easy to apply and threxefvidely accepted by
the industry. They are used throughout the system development pracdise early analysis stage,
scenario-based diagrams are used to specify patterns of interacticeebedgents as the manifesta-
tion of use cases. In the design stage, system design based on stateesigpéagifies system behav-

iors precisely and may lead directly to implementation. In the testing stage, secdieagrams are

!Besides these two groups, there are also properties-oriented formatishading CafeObj [37], Larch [62] and
variants of temporal logic [105]. Because property-oriented formelick the notion of state or event and need not to

be complete, they can not be used as a complete system specificationtirdmthe implementation is derived.
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used to capture test cases. Visual formalisms with formal semantics alstobasepport for simu-
lation and verification, e.gRlay-Enginefor LSC [70], UppAAL for Timed Automata [9]. However,
as intuition is the primary concern of diagrammatic languages, they can bshmlering (for in-
stance, with large number of charts) and some are semi-formal (for iestaith ad hocsymbols).
Therefore, they are often hard to reason about, and they may impethe siging implementations

from early analysis stage models.

Logic-based and visual formalisms rely on different description teckesigund yet their unique
strengths naturally complement each other. Recent works on integratodicgtion languages
have evidenced that combinations of logic-based formalisms and visumahliems can be used
to specify a wide range of systems [94, 43, 118, 55]. In this thesis, wr®ed complementary
interplays between logic-based and visual formalisms so that com®ructivemethods than spec-
ification, for example specification development, analysis and evolutioheanovided. The goal
is to maximally reuse mature formal modeling techniques and their tools to benesibftineare

development process. Ultimately, the following shall be achieved:

e Promote the usage of logic-based formal methods by connecting them t@pomlustrial

modeling languages.

e Extend the usage of existing mature tools to visualize, validate models in diffecateling

languages.

e Mechanically generate implementable models all the way from early stageewmgunits.

One of the long-cherished goals of software engineering is the mecHasyn¢hesis of imple-
mentations from high-level specifications. A main part of our work is deeit#o the problem
of synthesis. For system engineering starting with logic-based formalisstateabased modeling
language like Object-Z serves as an abstract and complete basis faggmhfinite state machine
designs. We developed a method of synthesizing implementable finite state nsafcbmdogic-

based Object-Z models with history invariants. Thus, we achieve sepaddtemmcerns by mod-

elling the data and functional aspects, and automatically generating dynamiiol dtow which in
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term leads to prototype implementations. For system development starting wigh fasualisms,
scenario-based sequence diagrams are often used as a high-miftation language to capture
system requirements in the early stage of system development. We explaysdisynthesizing
distributed object systems from LSC using theoretical results from CSPkéy point is that our
synthesis strategy works without constructing the global state machinetscassid state space
explosion. Lastly, we propose that logic-based and visual formalismbeaised in combination
to specify industrial scale systems. By combining the two approaches,hievathe goal of gen-
erating implementations from system models with not only intensive interacthevimes but also
complex data structures. The challenge of automatically constructing art-spfgem, especially

a distributed one, from high-level specifications has been long recag){ii22].

This thesis also explores semantic-based transformations between legitaral visual formalisms
pursuing objectives including visualization and verification. The lightwedgitt intuitive comple-
mentary interplay is that logic-based models can be visualized by diagrammiiticsiike UML
to allow easy grasp of essential facts. Reusing mature verification mechawés formalisms other
than those intended allows discovery of design errors inexpensivadyciallenge of such interplay
is to find benefiting formalisms from those that may vary dramatically in syntaxstadlish sound

connections between them.

1.2 Thesis Outline and Overview

The main contribution of our work is the investigation of complementary conmectietween logic-
based formalisms and visual formalisms. The three objectives, namely vaiaizverification

and synthesis, are presented in the order of their importance.

Chapter 2 is devoted to an overview of relevant specification langualies are shared among
the subsequent chapters. We review the Z specification language abgeits-ariented extension
Object-Z as representatives of state-based formalisms. The classicndS& éimed extension

Timed CSP are briefly introduced as examples of event-based processaalgntroductions to
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diagrammatic notations like sequence diagrams, state machines are scatteeechimptiers where

they are relevant.

In Chapter 3, an intuitive yet effective complementary interplay is predente, visualize logic-
based specifications with UML diagrams. To demonstrate that visualization enagyied to both
state-based and event-based formalisms, we investigate an integrateldsfmenification language
named TCOZ and develop semantic-based transformation from TCOZ todmpikrsce diagrams
and state machines. Although visualization may be theoretically lightweight, it iyhpghctical

and we believe that it may improve the popularity of formal methods in industry.

Chapter 4 addresses the verification problem. The aim is to show that existifigation mech-
anisms can be effectively reused. Without building new tool suppon oratch, we show that
LSC, as an example of visual formalisms, can be verified by using a maturel iwloecker for
logic-based formalisms, namely FDR for CSP. In the other direction, verdicaf Timed CSP and

TCOZ using existing tools for visual formalisms likePBAAL are briefly discussed.

Chapters 5, 6 and 7 are devoted to the problem of synthesis. We sholeviHat/el design lan-
guages like state machines can be systematically synthesized from highplegiication. In Chap-
ter 5, we propose a way of synthesizing distributed designs from sodresed specifications,
namely LSC. Mature theories developed for CSP are used to group kelcaVviors of each object
without constructing the global state machine. For system engineering gtaiitim logic-based
formalisms, state-based modeling language like Object-Z serves as artasttaomplete basis
for synthesis of finite state machine designs. In Chapter 6, we presgstieanstic way of extract-
ing implementable system designs from Object-Z models with history invarian@hdpter 7, the
two approaches are combined so that we may achieve the goal of gegpérgilamentations from

system models with not only intensive interactive behaviors but also cordptexstructures.

Lastly, Chapter 8 concludes this thesis with possible future researctsiréid the sake of read-
ability, related works of this thesis are distributed to the relevant chaptigngeFl.1 and 1.2 shows

the structure of the thesis.
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1.3 Publications from the Thesis

Most chapters of the thesis have been accepted in international abfemeference proceedings or
journals. The work in Chapter 3 Section 3.4 was presentéchat4th International Conference
on Integrated Formal Methods IFM’04 (April 2004, Canterbury, UKB]. The work in Chapter 3
Section 3.3 was used as a basis for the paper presenifdieatth International Conference on
Formal Engineering Methods ICFEM’02 (October 2002, Shangf#8). The work in Section 4.1
was presented dthe 10th International Conference on Engineering of Complex CompBystems
ICECCS’05 (June 2005, ShanghHiy4]. The work in Chapter 4 Section 4.2 was used as a basis for
the paper presentedHhe 6th International Conference on Formal Engineering Methods IZ1PE
(November 2004, Seattlg2]. Part of the work in Chapter 5 was presentedla¢ International
Symposium of Formal Methods Europe FM’05 (July 2005, Newcastle Tipne)145]. The work in
Chapter 6 was presentedTdte 10th International Conference on Engineering of Complex Computer
Systems ICECCS’05 (June 2005, ShangfiiB]. The work in Chapter 7 has been published in

IEEE Transactions on Software Engineeriig6].

Besides, part of Section 4.2 has been accepted for publication [44f.ofP@hapter 5 has been
submitted for publication [147]. | also made partial contributions to other pafidics [49, 151, 45,
96, 93, 155, 64] which are although related to this thesis, they can b&leced as side-stories to

the impact of this thesis work.
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Chapter 2

Notations and Languages

‘Have you seen the Mock Turtle yet?’
‘No, said Alice.
‘I don't even know what a Mock Turtle is
‘It's the thing Mock Turtle Soup is made from, said the Queen.

- Alice’s Adventures in Wonderlandewis Carroll

In this chapter, representatives of logic-based formalisms are revieBrgef introductions to di-
agrammatic notations like sequence diagrams, state machines are scattereccimafatters where

they are relevant.

2.1 State-based Formalisms

The Z specification language [161] and its extension [50] are adoptesbessentatives of state-
oriented specification languages. The reasons are that Z is widely kanodvaccepted, and well-
developed in terms of specification and refinement. Z-like syntax is usedgthoat the thesis to

formalize our work.
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2.1.1 The Z Language

In 1992, the Queen’s Award for Technological Achievement waseroadl upon IBM United King-
dom Laboratories Limited and Oxford University Computing Laboratorytloe development and
use of an advanced programming method that reduces developmentbsigraficantly enhances
quality and reliability”: namely, the Z specification language. Z is a state-bfasathl specifica-
tion language based on the established mathematics of set theory anddirstegric. The set
theory used includes standard set operators, set comprehensisi@aproducts, and power sets.
Mathematical objects and their properties are further collected togethdrémss: patterns of dec-
laration and constraint. Z has been used to specify data and functionalsyafch wide range of
systems [73], including transaction processing systems and communicatioegis. It has been

standardized by 1ISO 13568:2002 [80].

One of the fundamental parts of Z logic is the logic of propositions and the tdgicedicates. In

the Z notation, the two kinds (universal or existential) of quantified exmasave a similar syntax:

Qr:R|cep

where@ is a quantifier{ or 9), = is the bound variable? is the range of, c is the constraint angd
is the predicate. The optional constradnestricts the set of objects under consideration: only those
objects inR that satisfyc are to be considered. The constraint takes on the role of a conjunction or

an implication, depending upon the quantifier concerned.

Example 2.1.1 (Quantified predicate)

Ve:Z|z>0e3dy:Ney>z

whereZ is the set of integers arid is the set of natural numbers. The expression reads as: for all

integerse which are greater than 0, there exists a natural numlvenich is greater tham.  end

The other fundamental part of Z logic is the set theory: specifications indZtfieir meanings as
operations upon sets. Another characteristic of Z notation is its way ofraatiag definitions. In

the Z notation, there are several ways of defining an object. The simpdgsiswio declare it as a
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given type: for example, the declarati@fredicate] introduces a new basic type callédedicate.

We may also define things by abbreviation, or by axiom.

Example 2.1.2 (Abbreviation definition)

Tlumination == 0..100

The abbreviation definition introduces a new nal@mination for the set of natural numbers

ranging from 0 to 100. end

Example 2.1.3 (Axiom definition)

‘ pythagorean : N X N «+» N

‘ Va,y,z:Ne (z,y) pythagorean z & rxx +y*xy =z %2

The axiom defines a total relation among three natural numbers. A relatioseisoh tuples. The

axiom reads as: the tupléz, y), z) is in setpythagorean if and only if 22 + y? = 22. end

In addition, there are special mechanisms for free types and schenesstypes are a more ele-
gant, concise alternative for specifying enumerated collections, cordpmhjacts, and recursively

defined structures.

Example 2.1.4 (Free type definition) The setN could be introduced in Z notations by the follow-
ing free type definition:

nat ::= 0 | succ{(nat))

wheresucc is a constructor function. Every elementmaft is either O or the successors of a natural

number, and every element ofit has a unique successor. end

In Z, the schema language is used to structure and compose descriptitbaisng pieces of infor-
mation, encapsulating them and naming them for re-use. A schema contaiiai@tion part and a
predicate part. The declaration part declares variables and the pieguiicbexpresses requirements

about the values of the variables.
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Example 2.1.5 (State schema} he following schema encapsulates the state information of a light

object.
__ Light

dim : Illumination
on: B

dim > 0 < on = true

whereB is the Boolean type. The declaration part declares two variables. Tiabdladim is the
illumination of the light object, ranging of value from 0 to 100 (in percent). Vagableon is a
Boolean variable indicating whether the light object has been turned oot.ofl he predicate part,
referred to as a state invariant, places a constraint upon the valuestwbthariables, i.e., thdim

is non-zero if and only if the light object is on. end

A specification in Z typically consists of a number of state and operation schelrstate schema
groups together state variables and defines the relationship that holdsebetfweir values, for
instance, the.ight schema in example 2.1.5. An operation schema defines the relationship between
the ‘before’ and ‘after’ valuations of one or more state schemas upopamation. External inputs

to an operation schema are written as variables followed by a question maekdedlaration part.

Example 2.1.6 (Operation schema)The following operation schema defines the operatidjust

by stating how the state variables of théyht schema are updated:

__ Adjust
ALight
dim? : Illumination

on = true A dim' = dim?

The variabledim? is an input from the environment. The state-update is expressed usiadiegte
involving both primed and un-primed state variables. The primed variablegeltre values of the
variables after the operation. We remark thatif.? is zero, the state variablen will be set to

false because of the state invariant. end
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A large Z specification can be divided into packages. A package corgamstate schema, one
initial schema which identifies the initial valuation of the state schema and a nuinbeeration

schemas which update the state schema. A Z package thus identifies theatatefsm object.

Example 2.1.7 (Z package)

_ Light _ Adjust

dim : Illumination A Light

on : B dim? : Illumination

dim > 0 & on = true on = true N\ dim’ = dim?

TurningOn TurningOff

ALight ALight

on = false N\ dim’ = 100 A on' = true on = true A dim’ =0 A on’ = false
_ LightInit

Light'

dim’ = 0 A on' = false

These schemas constitutelaght package. The state invariant states that the light level is larger
than zero if and only if the light is on. The schema nameghtInit identifies the initial state of the
object, i.e., the light is off. Operation scherfiarningOn, TurningOn and Adjust are defined to

turn on or turn off the light or set the light level to a specific level. end

The glossary of Z notation is summarized in Appendix A. Z is a powerful laggudor specifying
data and functional models. However, it is not intended for descriptiooffunctional properties,
such as usability, performance, size and reliability. Neither is it intendetinf@d or concurrent
behaviors. There are other formal methods that are well suited for fhepeses. Z may use
in combination with these methods to relate state and state-change information termemiary

aspects of design. Example combinations are presented in Section 3.2 and 7.2
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2.1.2 Object-Z

Object-Z [50] is an object-oriented extension of the Z language. It has developed by a team
of researchers at the Software Verification Research Center, iditywef Queensland. It improves
the clarity of large Z specifications through enhanced structuring. The @lgect-Z construct is
the class definition, which captures the object-oriented notion of a class by enledipgua state
schema with all the operations which may affect its variables. As well as lusied to specify
objects, Object-Z classes can be directly reused in definitions of othesesla®h class may be

specified as a specialization or extension of another class using inheritanc

An Object-Z class is represented syntactically as a named box with zero eig@oeric parameters.
There may be local types and constant definitions, at most one state sehdmie initial schema
written as NIT and zero or more operations. The declarations of the state schemaearedad
as state variables and the predicate as class invariants. The class tmestdots the possible
valuations of the state variables. The initial schema identifies the possible iligtions. An
operation is either an operation schema or a schema expression involistiggeglass operations

and schema operators.

Example 2.1.8 (Object-Z class)Figure 2.1 shows an Object-Z specification of a queue class, where
Package is a given type representing network communication packages. The insénungture of

a package is of no interest in the modeling. The queue is modeled as a ce@fgrackages as
defined in the (anonymous) state schema. The sequence is initially emptycédiedpe the NIT
schema. Operations are provided to allow items to join or leave the queue stria/first-out basis.

This queue class models an incoming channel of a network router. Théutébn expires tells
whether a package has expired (by examining certain flag bits in the pgckagackage is put

into the queue only if it is not expired and all packages in the queue may bédatarded. end

Operation schemas in an Object-Z class are given a standard Z semahiitsisused to develop a
transition-system semantics [161]. The Z operation semantics is best veéavaescribing a relation

between initial and final states of an operation. The Z precondition of @aabpn schema describes
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[Package]

__ Queue
[(INIT, Join, Leave)

’ expires : Package — B

items : seqPackage

_INIT
items = ()
—Join
A(items)

item? : Package

expires(item?) = items’ = items

— expires(item?) = items’ = items ~ (item?)

— Leave
A(items)
item! : Package

items = (item!) ~ items’

Figure 2.1: Object-Z class
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the initial states for which the outcome of the operation is properly defined. semantics, if an

operation is applied outside its domain (the precondition), the system divaBgeontrast, Object-
Z adopts a blocking semantics. An operation can only occur when its mitioonis satisfied.

When its precondition is not satisfied, the operation is said toldeked i.e., it is not available for
application. The blocking semantics is safer because there is no nee@ fpdbifier to check if
operations are sufficiently defined and, in the cases they are not, cothkimewith appropriate
error handling. Another consequence of the blocking semantics is tledingment of an operation

by weakening pre-conditions is not applicable.

Definition 1 Let Operation be an operation schema. Lgtate be the state schema, anthuts
(outputs) be the list of inputs (outputs) associated with the operation. The precanditithe
operation, written as pt@peration), is defined as:

pre( Operation) = 3 State’; outputs e Operation \ outputs

where the schem@peration \ outputs may be obtained by existentially quantifying each compo-

nent inoutputs within Operation.

The precondition hides any components that correspond to the state aftgpdhation, and any

outputs that happen to be present.

Definition 2 If a state State,)" satisfies the precondition @peration, the postcondition of the
Operation from stateState,,, written as postOperation, State,) ISs:

post Operation, State,) = State, A Operation

Example 2.1.9 (Precondition and postcondition)The precondition of operatioAdjust in Exam-

ple 2.1.7 is:

pre( Adjust) =
Idim’ : 0..100; on' : B |
dim’ > 0 < on’ = true e — Invariant in Post-state

on = true N\ dim' = dim? — Def. of Adjust

n this thesis, state and predicate are used interchangeably.



2.1. STATE-BASED FORMALISMS 17

Given the state wheréim > 0 A on = true, the postcondition of the operatiotdjust is:

pos( Adjust, dim > 0 A on = true) =
dim > 0 & on = true A dim’ > 0 < on' = true A — invariant
dim > 0 A on = true A on = true A dim’ = dim?

The precondition and postcondition can be further simplified using predmgite For instance,

the above postcondition can be simplifieddas.’ = dim?. end

The operations of a class form a named collection of relations, which deesmimansition system
in which a given operation may fire exactly when its Z precondition is satisfiee semantic model
thus consists of all the sequences of operations/events which canfbenet by the transition

system.

Example 2.1.10 (Transition system semanticsJ he classQueue defines the following state tran-

sition system:

Join
Join Join

Join Join —® - —— Join Join —p» -

Leave Leave/ \ Leave/

Leave

For simplicity, the state is only distinguished by the number of packages in thee cpilece the

packages in the queue are considered identical in the modeling. end

The properties represented by a state transition system are referrecafety properties. They
specify which state changes may occur but do not require that any ktatges actually do occur.
Properties which state that a state change, or an operation, must oegefared to as liveness
properties. Object-Z allows the specification of liveness properties dxycading each class with
a history invariant in the form of a temporal logic formula. The history invdriastricts the set

of histories derived from the state of the class. The notion of history ismviawas introduced
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in early versions of the Object-Z language [136, 51]. However, it isimdtided in the Graeme
Smith’s work [137] for practical reasons. We believe that the historyriaaéis an effective method
to strengthen the weak process control logic of Object-Z. For simplicity, i$terly invariant is
restricted to Linear-time Temporal Logic (LTL [120]) in this thesis. Historyairnants other than
standard LTL formulee appearing in [136, 51] can be reframed in LTL bypducing auxiliary

variables.

Example 2.1.11 (Object-Z class with history invariant) The following is an Object-Z class with

history invariant:

__ FairBoundedQueue
Queue

maz : N

OO#items =0
O#items < max

This class is a subclass @fueue, indicated by the first line in the class box. A state variahle:

is defined in the state schema, in addition to those defined in the state schenss Ghelac. The
variablemax models the capacity of the queue. The state invariant (the last two lines) thiates
the queue is eventually empty and the number of items in the queue is alwaydeldooymaz.
The temporal operatorg and<> are borrowed from modal logic [53]. Intuitively] can be read as

‘always’ and<> as ‘eventually’. end

2.2 Event-based Formalisms

Hoare’s classic Communicating Sequential Process (CSP) and its timediexsehisned CSP are

our choice of representatives for event-oriented formalisms.



2.2. EVENT-BASED FORMALISMS 19

2.2.1 Communicating Sequential Processes

The notion of CSP was introduced in Tony Hoare's classic paper [#8].ofiginal language derives
its full name from the built-in syntactic constraint that processes belong teetiigential subset of
the language. A characteristic of CSP is that processes have disjoihvéo@bles, which was
influenced by Dijkstra’s principle dbose coupling39]. CSP has passed the test of time. It has
been widely accepted and influenced the design of many recent progrgraminspecification

languages including Ada [54], occam [110], Concurrent ML [1BREL4WS [84], and Orc [112].

CSP is a formal specification language where processes proceedfi®istate to another by en-
gaging in events. Processes may be composed by using operators aduidte rsynchronization
on events, i.e., each component must be willing to participate in a given egtorelihe whole

system makes the transition. Synchronous communication, rather thannasstgrio shared state
variables, is the fundamental means of interaction between agents. A G&3piis defined by

process expressions.

Definition 3 Let P denote all possible CSP processes. The syntax of a CSP processés! desfi

P ::= RuNyg — replicated choice
| Stop — deadlock
| SkiIp — termination
| L — divergence
| e—P — event prefixing
| Pi{b)Ps — conditional choice
| PPy — internal choice
| P1OP — external choice
| Pil|| P2 — interleaving
| Pi|[X]] P2 — generalized parallel
| Pixl|ly P2 — alphabetized parallel
|, (P, ) — replicated parallel
|  Py; P — sequential composition
| Py V. Py — interrupt
| pX e P(X) — recursion

RUNy; is a process always willing to engage in any eventinStop denotes a process that dead-

locks and does nothing. A process that terminates is writtekesS v — STOP, wherey' is the
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termination event. The processis the most unpredictable and most uncontrollable of processes.
It behaves chaotically. A process which may participate in evethien act according to process
descriptionP is written ase — P. The evente is initially enabled by the process and occurs as

soon as it is requested by its environment, all other events are refusellijinitia

Diversity of behavior is introduced through choice operators. Thelitonal choiceP;( b |) P,
behaves a®; if the Boolean formula is true and elsé’;. The external choice operatan) allows

a process of choice of behavior according to what events are tequeg its environmest For
instance, the procesa — P) O (b — @) begins with botha and b enabled. The environment
chooses which event actually occurs by requesting one or the otherSibsequent behavior is
determined by the event which actually occurred. Internal choice septe variation in behavior
determined by the internal state of the process. The pracessP M b — () may initially enable
either a or b or both, as it wishes, but must act subsequently according to which avarally

occurred. The environment cannot affect internal choice.

Example 2.2.1 (Simple vending machine)The following is a specification of a trivial vending ma-

chine.

VM = coin — (coffee — STOPT1 candy — STOP)

Event coin is the action of inserting a coin to the vending machine. After a coin is inserted, th

vending machine dispatchs a cup of coffee or a candy randomly andtdpmirsacting. end

The parallel composition of processesand P, synchronized on common events of their alphabets
X, Y (or acommon set of event$) is written asP; x ||y P2 (or Py |[ A]| P2). No sharing event
may occur unless enabled jointly by bath and P,. When a sharing event does occur, it occurs in
both P; and P> simultaneously and is referred to sgchronizationEvents not sharing may occur

in either P, or P, separately but not jointly.

2External choice and temporal operator ‘always’ share the samiedayor historical reasons. In this thesis s used

to denote external choice if not explicitly stated otherwise.
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The sequential composition df; and P,, written asP;; P,, acts asP; until P; terminates by
communicating a distinguished everitand then proceeds to act &. The termination signal is
hidden from the process environment and therefore occurs as s@mabled byP;. The interrupt
processP; V. P> behaves a$; until the first occurrence of evemt then the control passes to
P,. Recursion is used to give a finite representation of non-terminating §sese The process

expression. X e P(X) describes a process which contains a recursion point

In general, the behavior of a process at any point in time may be defdenléts internal state
and this may conceivably take an infinite range of values. It is often nesiple to provide a
finite representation of a process without introducing some notation foesepting this internal
state. The approach adopted by CSP is to allow a process definition todyeqtarized by state
variables. A definition of the fornP(z) represents a family of definitions, one for each possible

value ofz.

Example 2.2.2 (Vending machine)The following is a CSP specification of a more realistic vend-
ing machine:

VendingMachine(quote) =

drop?coin — VendingMachine(quote + coin)

O [quota > 0] e release — releasecoin — VendingMachine(0)

O [quota > 80] e button?coffee — VendingMachine(quota — 80)

O [quota > 50] e button?candy — VendingMachine(quota — 50)
The vending machine dispatches either coffee or candy. A coffee 8stsnts and a candy costs
50 cents. The process is parameterized by the amount inserted by th& user may insert coins
repeatedly before requesting an item. He (she) may as well ask the machelease all coins
inserted so far. An item is dispatched only when sufficient coins haveibserted. A channel is a
method to group events. Two channels are used in this example, button. A synchronization
on channellrop represents an insertion of a coin. A synchronization on chanrién represents

a request of an item. Eventlease is the user request to release all the coins. end

Three mathematical models for CSP have been defined. In the traces nudekss is represented

by the set of finite sequences of communications it can perform, denoted@s(P). In the
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stable failures model, a process is represented by its traces and also d&ijuitssf A failure is
a pair(t¢,>), wheret is a finite trace of the process abdis a set of events it can refuse after
(refusal). The set oP’s failures is denoted a&iilures(P). In the failures/divergences model [22],
a process is represented by its failures as well as its divergencededasdivergences(P). A
divergence is a finite trace during or after which the process canrpeda infinite sequence of
consecutive internal actions. Interested readers should refer&pfidr2detailed definitions of the

three semantics models.

Three forms of refinement have been defined, corresponding to #e2gamantics models. Traces
refinement means traces containment. It is used for proving safetyrpespd-ailures refinement
is normally used to prove failures-divergence refinement for divergdree processes. Failures-
divergence refinement is used for proving safety, liveness andioatidnal properties, and also for
establishing refinement and equality relations between systems. Two ggeégsP, are equiv-
alent, denoted a®, = P, if and only if failures(Py) = failures(Ps) and divergences(Py) =
divergences(Ps). Equivalence of processes can be proved or disproved by appé¢alaigebraic
laws. The laws that are relevant to the works in this thesis include the followhegiormal proof

of the laws can be found in [79] or [128],

P|[Z]|RuNs —p —L1
P || Stop = STOP -L2
PP —p ~13
P x|y P2 =Py yllx P - L4
(P1 x|y P2) xuyllz Ps=P1 x||yuz (P2 v|lz P3)  —L5

2.2.2 Timed CSP

The language of CSP and the semantics models introduced so far ar@régipréor describing
and analyzing systems in terms of their possible sequences of events. Abrtrentics models
deliberately abstracted away concerns about timing such as the precisé titmetaevents occur.
Real-time systems, which can only be modeled and analyzed using a quantitaifreof time, are
commonplace, for example traffic control, robotics, virtual reality, etc. TIQE® is an extension

of the CSP language to specify and model real-time systems [125]. It extdthary CSP by
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introducing a capability to quantify temporal aspects of sequencing arghsyrization. To the
standard CSP process operators, Timed CSP adds a number of time spedfie.g., timed event

prefix, the delay, the timed interrupt and the timeout.

Definition 4 Let T denote the set of all possible timed CSP processes. The syntax of a Tirked CS

process is defined as:

T .= P — CSP process
| ecet— T(t) — timed prefix
| e T — delay
| WAIT[¢] — wait
| Ty v{t} T» — timed interrupt
| Tio{t} T — timeout

The optional timing parameter t of the timed prefix records the time, relative totaineo$ the
process, at which the eventoccurs and allows the subsequent behavidr) to depend on its
value. The process Lp delays proces# by t time units after engaging in eveat A process
which allows no communications for periatime units then terminates is written asaW(¢]. Itis

used to delay a subsequent process for a specific number of time units.

The timed interruptl; v{t} T, initially behaves as process, and passes control to a subsequent
processT» as soon as the time perigchas elapsed. The timeout process, writteVas{t} 7>,
passes control to a subsequent procEs# no event has occurred in the primary procégsby

some deadline.

In the operational semantics of Timed CSP [135], the semantics of a Timed I6&sp is defined

by identifying how the process may evolve through time or by engaging in i@staous events.

In the denotational semantics models, it is defined by stating the set of pasis#igleations, e.g.,
traces, failures and timed failures [33]. Semantically, the only addition to tiel&@®8juage is the
process construct T [d]|. Other timed related operators can be interpreted in terms of ordinary
CSP operators and theAN [d] process [33]. For instance,

eL T = e — (STOP>{t} T)
Ty D{t} T, =T 0 (WAIT[t]; Tg)
T /{t} Ty =T,V (WAlT[t]; TQ)



2.2. EVENT-BASED FORMALISMS 24

Example 2.2.3 (Timed vending machine)The following is a specification of a timed vending ma-
chine.
T'VendingMachine(quote) =
[quota = 0] e drop?coin 4 TVendingMachine(coin)

O [quota > 0] e (drop?coin 4 TVendingMachine(quote + coin)
O [quota > 0] e release — releasecoin — T VendingMachine(0)

O [quota > 80] e button? coffee 2, TVendingMachine(quota — 80)

O [quota > 50] e button?candy 2 TVendingMachine(quota — 50))
>{60} (releasecoin — TVendingMachine(0))

When variablequota is of value 0, the only action enabled is by communication through channel
drop, i.e., insert a coin. There is a delay of one time unit before the machinetadbepcoin and
updates the variableuota. After that, the user may continue inserting coins or request the vending
machine to release all coins inserted thus far. Once sufficient coindbkawanserted, the user may
request for either coffee or candy. Whenever the choice is madeetiténg machine dispatches
the corresponding drink, taking a reasonable amount of time. If the ussmtbre than 60 seconds

after inserting a coin, the machine releases the coins. end



Chapter 3

Visualization

‘And what is the use of a book’, thought Alice.
‘without pictures or conversations?’

- Alice’s adventures in wonderlantewis Carroll

Visualization is more than a method of computing. It is a process of transfolinfmignation into

a visual form enabling the viewer to observe, browse, make sensenaedstand the information.
Visualization typically employs computers to process the information and comgu&sns to view
it using methods of interactive graphics, imaging, and visual desigridsmn the visual system to

perceive and process the information. The beauty of effective vistializis more than skin deep.

3.1 Introduction

Logic-based formalisms, either state-based ones like Z or event-basgtikenCSP, are elegant and
precise. However, logic-based modeling often relies on heavy mathematiedions. It presents
a difficulty for the software engineers without relevant mathematical vaakgl, which we be-

lieve is one of the reasons why logic-based formal methods are relatimplypular in industry.

25
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By contrast, diagrammatic notation like MSC, Statechart and UML are intuitideeasy to un-
derstand. They are widely accepted by the industry for system modelthgralyzing. Massive
amounts of human power and resources have been dedicated to sygteeeeng based on those
graphical notations. In this chapter, we investigate ways of visualizing-leaged modeling using
visual diagrams. As well as showing essential facts, visualizing logieeba®deling using popular
graphic notations like UML diagrams makes it possible to reuse existing topbsuijor test case

generation, verification, code synthesis, etc.

This work has been based on the notion of Timed Communicating Object-Z (TOWAH. TCOZ
is an effective integration of Timed CSP and Object-Z. It is capable ofifyag systems with not
only complicated control flow but also complex data structures. Soundgtians have been estab-
lished to visualize different viewpoints of the integrated modeling. The irtjaeb control flows
of TCOZ models are visualized using the notion of Statecharts [65]. Theabject interaction is
visualized using Message Sequence Charts. Being based on arsesplasguage like TCOZ, we

are confident that the approach can be applied to other logic-basedliems.

3.2 An Integrated Specification Language

TCOZ was introduced by Mahony and Dong in [100] to allow complete anérertt specification
of complex systems. It is a blending of Object-Z and Timed CSP. The basatis&wf a TCOZ
document is the same as for Object-Z, which consists of a sequencerifides, including type
and constant definitions in the usual Z style. TCOZ varies from Object-Zeirstitucture of class
definitions, which may include CSP channel and process definitions. n€lsaim TCOZ are de-
fined as communication interfaces between objects. All dynamic interactibmedreobjects must
take place through the channel communication mechanism. The true pow€Qat gomes from
the ability to make use of Timed CSP primitives in describing the process aspestisapera-
tion’s behavior. All operation definitions in TCOZ are Timed CSP procefigittens. Operation
schemas are identified with terminating Timed CSP processes. The data-esipéats of TCOZ

are modeled using state bindings and the process-related aspects aedmeitg event traces and
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refusals [101]. In the following, a simplified version of the Light Contrgét&m (LCS) [52] is used

as a running example to illustrate the features of TCOZ as well as to demonisaaisualization.

3.2.1 Light Control System

LCS is an intelligent control system. It can detect the occupation of a bujldimg) then turn on
or turn off the lights automatically. It is able to tune illumination (in percentage) irbthiging

according to the outside light level. It consists of three components: a lighpteon detector
and a room controller. A typical system behavior is that when a userseatesom: the motion
detector senses the presence of the person, and then the room condaidts by receiving the
current daylight level and turning on the light group with appropriate illutidmesetting. When a
user leaves a room (leaving it empty): the detector senses no movemewpitheantroller waits
for certain time units and then turns off the light group. In addition, the cacupan directly turn

on/off the light by pushing the button.

— Light

dim : Illumination
on : B

_INIT
dim = 0 A on = false

— TurningOn
A(dim, on)

dim’ =100 A on/ = true

— TurningOff
A(dim, on)

dim’ =0 A on’ = false

ClassLight is an ordinary Object-Z class. An ordinary Object-Z class in TCOZ simplyndsfa

data type. It does not have its own thread of control. It is thus called assave class.
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__ControlledLight
Light

button, dimmer : chan

ButtonPushing = button?1l — ([dim > 0] e TurningOff

O [dim = 0] ® TurningOn)
DimChange = [n : 0..100] e dimmer?n — ([on] @ dim := n O [ on] e SKIP)
MAIN = pu N e (ButtonPushing O DimChange); N

ClassControlledLight extendsLight class with channel and process definitions. The state schema
is extended with channel definitions. The channel definition specifiesthencnication interface
between the object and its environment. Channels defined in differeseslasth the same name
are connected implicitly. In this exampléytton and dimmer are channels connecting the light

to the environment and the room controller. The process definitions phgsiste how the object
interacts with its environment through the interface and reacts to envirorinpris. Object-Z
operation schemas are treated as terminating processes in the proaggtsrgefiFor instance, in
processButtonPushing, once there is a synchronization on channglon, if the light is on, the

operationTurningOff is invoked. State guards, written @ e P, is the short form for

P{b|Stopr

whereb is a Boolean formula over the state variables and environmental inputsaiN lrocess
indicates an active object, which has its own thread of control. It deterrthiedsehavior of objects
of the active class after initialization. The claSsntrolledLight is a typical example of TCOZ-style

specification of active agents.

_ MotionDetector

motion : chan
md : (Move | NoMove) sensor

NoUser = md?Move — motion!l — User
O md?NoMove — WAIT 1; NoUser
User = md?NoMove — motion!0 — NoUser
O md?Move — WAIT 1; User
MAIN = NoUser
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The motion detector detects movement in the room so is to tell whether some one isan dt
sends proper signals to the room controller periodically. This class hiaghdata structure. There
are no state variables and operation schemas. The keyweasbridentifies a continuous-function
interface mechanism [103]. Internally;d takes the role of a CSP channel. The relationship be-
tween the public continuous-function variable and the internal channehtismtienever a value is
communicated on the internal channel at a tim#hat value must be equal to the value of the con-
tinuous function at that time. Intuitively, synchronization on channélrepresents the output from
the movement sensor. Initially, the object behaves as specified by thespfacUser. If no move-
ment is detected, the object waits for 1 time unit and then continues to monitolssigma channel
md. If there is some movement, a signal is sent on channgton to inform the room controller

and then the object behaves as specified by the prdéess The procesd/ser is similarly defined.

__RoomController
_ Adjust
dimmer, motion : chan dim! : Percent on dimmer
Zgljz;zj():rﬂf Illumination sensor dim! satisfy olight
olight : Illumination

Ready = motion?1l — On

Regular = R o [n:0..100] ® odsensor?n — Adjust; dimmer!dim — R
On = Regular V motion?0 — OnAgain

OnAgain = (motion?l — On) >{absent} Off

Off = dimmer!0 — Ready

MAIN = Off

The room controller communicates with the motion detector and the light througiéined chan-
nels. It takes in signals from the motion detector and sends proper sigihal fight. The relation
satisfy captures the relationship between daylight level and required illuminatioa.opbration
Adjust outputs the desired light level, which is sent over chanfielmer to tune the light level.
The process expressions are complicated with mutual recursion, in addittmmplex operators
like interrupt and time-out. Lastly, a light control system consists of the roamtroller, the motion
detector and the light. The MN process is the parallel composition of the three instances specified

using a network topology, i.e., a graph-like way of specify communicatioctstrelin TCOZ [100].
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Two objects connected by a double-arrowed horizontal line may commuticategh the channels

written over the line. In this example, the motion detector shares the chawaitieln with the room

controller, and the room controller shares the chaanebner with the light.

—LCS

m : MotionDetector
[ : ControlledLight
r : RoomController

MAIN = H(m motion r dimmer l)

This modeling is elegant and precise, but not intuitive. The explicit behgatierns of the Light

Control System are distributed among the class definitions.

3.2.2 Trace Model for TCOZ

The syntax of TCOZ process expression, written7d&F, is defined as the following (refer to

Definition 3 and 4 for comparison):

Definition 5 Let ZE represent Z expressionss represent Z schema¥AME represent all valid

character strings.

T/E .

STOP | RUN | SKIP

op((ZS)) | ref (NAME))

(e — (2 x ZE x TZE))
WAIT (ZE))

_e _){(ZS x TZE))

_ | )(TZE x TZE))

_ Ve ,) << TZFE, x TZE2>>

L O)UTZE x £ x ¥ x TZE))
NI D)UTZE x TZE))

. )(TZE x TZE))

(e _)(NAME x TZE))
[/ DETZE x £ x 5))
\)UTZE x PX))
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The semantic model for TCOZ is the infinite timed-states model which extends thd T8¥e's in-
finite timed-failure model [101]. A system model specified using Statechadaquence diagram is
characterized by the set of traces it may perform. Thus, a trace semaistigcient for the discus-
sion on visualizing TCOZ models. In this section, we present a trace-lsesegntics simplifying
the infinite timed-failure model of TCOZ. The trace model is used as a guideimeeiveloping
the mechanized projection. The main connection between the Object-Z maliddeamimed CSP
model is that an Object-Z operation schems(ZS)) may appear in the process expression as a

non-atomic terminating process. Letbe the set of all possible events.

%]

A TCOZ event may be an update event (an invocation of an operatiomsgdha simple synchro-
nization, a channel communication, or a termination evenA trace is a (finite or infinite) sequence

of events. Let* denote all possible traces that can be composed by events in

X ==seqx

Most of the process constructs in TCOZ are borrowed from Timed CBi#s, Tthe trace model

assembles the trace semantics of CSP [79, 128].

‘ traces : TZE — P X*

The only trace of $opPis the empty one, and any sequence of events is a tracenf R

T1 traces(StoP) = {()}
T2 traces(RUN) = X*

A trace of c.a — TZFE) may be empty, becausg is a trace of the behavior of every process up
to the moment that it engages in its very first action. Every nonempty tradesbeih c.a, and its

tail must be a possible trace GZF.
T3 traces(c.a — TZE) = {{(c.a) " u | u € traces(TZE)} U{()}
A trace of WAIT ZFE is either an empty one or a delay Bf time units. The evenwait(ze) is an

artificial event. It marks a time delay in the trace, which allows us to use timingreetsin MSC

and Statechart to visualize simple timing aspects of the system.
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T4 traces(WAIT ZE) = {(), (wait(ze))}

If the state guardZS evaluates to false, the only trace B85 e TZF is the empty one. Every
nonempty trace must be a trace of the process expre§sigh The state-guard, is typically used
to block or enable execution of an operation on the basis of an object’s local state (the ie&tanc
state).

T5 traces(ZS e TZE) = traces(TZE) U {()}

A trace of a process which offers a(n internal or external) choice ofgx@cess expressions must
be a trace of one of the alternatives. For internal choice, the choice is upeth the internal state
of the system. For external choice, the choice is made by the environment.

T6 traces(TZE, | TZEy) = traces(TZEy) U traces(TZE»)

Atrace of(TZE, V. TZE,) is a sequence event GiZE up to the moment the eventoccurs. Its
tail shall be a trace of ZE5.

T7 traces(TZEy Ve TZE;) = {s " (e) "t | s € traces(TZE1) A t € traces(TZE3)}

A trace of the parallel compositiai’'ZE; x ||y TZE-) is composed by two traces, one from each
component, synchronizing on common events of their alphabets.

T8 traces(TZE) x ||y TZE2) = U{s x||v t | s € traces(TZEy) N t € traces(TZE»)}

where given two traces- andiry, try x ||y tr2 is a set of traces defined by the following; below
denotes a typical member &f but notY andy is a typical member ol but notX andz, 2" are

typical members of botliX and Y andz # 2'.

t?"lxﬂytrg = tro y||X try

O xlly O ={0}

O xlly (v) ={(y}

(z) x[ly () = {{z)}

(0 xlly (2) =0

() x Iy {) =0

() ] x|y (2) " try = {{@) " tr [ tr e (tr x|ly (2) 7 tr5)}
( Uy~ | tr e ol xly )

(

(

y) " try ={{z) "t | tre (ir x|y (y) " try)}
U{(y) " tr [ tr e ((z) 7 tri x|y tr2)}
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A trace of the sequential compositiof'ZE,; TZE,) is a sequence of events GIZE; up to the
momentTZFE, terminates by engaging in evevit After that the trace continues with sequence
of events fromTZF,. This definition of sequential composition is known @gong sequential
composition [6].

T9 traces(TZEy; TZEy) = {traces(TZEy) N (X\{v })*}
U{s " t| s (V) € traces(TZEy) N t € traces(TZE»)}

The trace model for recursion is a fixed point definition. Refer to the ddtdikezussion in [79].

T10 traces(p X o TZE) = U, <o traces(F™(STOP))

Process constructs likek®8 or interleaving or timed interrupt can be defined in terms of other

primitive ones. The traces of process expressions involving thosérgotss thus, can be deduced.

Example 3.2.1 (Traces ofButtonPushing) The following shows how we may compute the set of

traces for a process expression:

traces(ButtonPushing)
= traces(button?l — ([dim > 0] ® TurningOff
0O [dim = 0] @ TurningOn))
= {(button?1) " u | u € traces([dim > 0] ® TurningOff

O [dim = 0] ® TurningOn) U {()}} —byT3
= {(button?1) " u | u € traces([dim > 0] ® TurningOff)
Utraces([dim = 0] @ TurningOn) U {()}} —byT6
= {(button?1, TurningOff), (button?1, TurningOn), (button?1), () } —byT5
end

3.3 From TCOZ to Statecharts

TCOZ is well suited for presenting complete and coherent requiremenifispgons that com-
prehensively model various viewpoints for complex systems. Given agraigzl model, one can
project it into consistent multiple views for specialized analysis. In this sectierare interested in

one particular viewpoint projection - the intra-object control flow pectipe.
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3.3.1 Projection

The notion of Statechart originated from Harel [65]. A Statechart dimgs an important modeling
notation in UML. It represents the behavior of entities capable of dynanhiawier by specifying its
response to the receipt of events. Typically, it is used for describinigehavior of class instances.
The key idea for using UML Statecharts to visualize TCOZ is that TCOZ jggE=® (operations)
are identified with states of UML Statecharts and TCOZ events/guards atdietbwith the state
transitions. In the following, we present a set of projection rules, whigfinds the Statechart

patterns for TCOZ process constructs.

Storis identified with a state without outgoing transitions. Thus, a system runingpttte state
makes no further move unless the control is withdrawn from the compositestatening the state.
SKIP is identified with a final state so that once the state is reached, the contratisaalay from
the composite state containing the state. Thus, the termination &vierttidden. RIN is identified
with a state where there is a self-looping transition for each and every ieviire alphabet. Thus,

the system may execute any sequence of events.

Example 3.3.1 (Visualization by Statechart)Given a proces$run — STOP) V cyeeption P, the

Statechart is generated as the following:

.—run—»@}exceptiw—»@

end

WAIT[d] is identified with a composite state containing one initial state, i.e., pseudostate in UML
terms, and one final state. The two states are connected via a transitidedjuath the condition

t == d, wheret is local clock.

[0—[t== () J
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An operation is projected to a simple state. A process composed by sutspesds projected to a
composite state. This way, we preserve the hierarchal structure ofdbegsrexpression. A state
guard([guard] e TZE) is identified with a composite state containing an initial state and a state
corresponding td'ZE. The initial state is connected to the other state via a transition guarded with
guard. Similarly, event prefixingc.e — TZFE is identified with a composite state containing an
initial state and a state correspondingigE. The two states are connected by a transition labeled

with c.e from the initial state to the other state.

A choice(TZE, | TZE,) is identified with a composite state where there are one initial state and

two states corresponding t67F, and TZFE». For external choicel'ZE, and TZE, are often event

prefixing or state guard, and hence the transitions from the initial statétareguarded.

TZE1 TZE2

Interleaving( TZE; ||| TZE>) is identified with a concurrent state where there are two independent
sub-routines. Parallel composition in generdV{; x ||y TZE>) is identified with a concurrent

state with additional synchronization barriers (which makes it a synch state)
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Interrupt(TZE, v. TZE») is identified with two states correspondingT&E, and TZE, respec-
tively, and a transition from the (edge of the) state correspondiriyZiB, to the (edge of the) state
corresponding td@'ZE, labeled withe. Thus, once event is engaged, the control is taken from the
state corresponding t&ZFE; (which is a composite state) and transferred to the initial state of the

composite state correspondingT&Fks.

TZE1 e TZE2

Sequential compositioNTZE,; TZE,) is identified with two states corresponding 1&FE; and
TZE,, and a transition from the state correspondindgtoF; to the state corresponding tB7F»
labeled with nothing. Thus, once the system reaches the final state in thesitergtate corre-

sponding toTZE,, the control is transferred to the state correspondingA@s,.

TZE1 TZE2

Recursion(n X e P(X)) is handled by connecting all transitions leading to the state correspond-
ing to X to the initial state ofP(X). Our projection is restricted to regular processes, and thus

recursions which result in irregular processes are ignored.

Timeout(TZE, »{d} TZE,) is identified with a composite state where there are one initial state
and two states corresponding 1&E, and TZFE,. The transition from the initial state to the state
corresponding tdI'ZE, (TZE») is labeled witht < d (t == d). Thus, if d time units elapsed

before the control moves out from the initial state, the control moves to tteeieresponding to

TZE,.
TZE1 t<d—@)—t=d TZE2
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Example 3.3.2 (Statechart forControlledLight) The MAIN process in clas€'ontrolledLight is

visualized by the following Statechart:

button?1 [n:0..100]

TurningOff Anonymous

[dim>0]

o

. @ —immen dim:=n
[dim=0] TurningOn

1)
|

It is recommended to define an operation schema for every state updatevétpassignments
permitted in the Timed CSP syntax may change the valuation of a state variabignmsst, for
exampledim := n, is treated as an anonymous operation schema and projected to a simple state

where the assignment is identified with the entry action. end

3.3.2 Automation

In this section, we discuss how our projection is automated. The work il H&used XML
and XML schema to define a standard exchange format, named ZML, flamidy languages (Z,
Object-Z and TCOZ). An XML Schema file was created for describing thettre of the Z-family
languages. It defines the contents of all elements, the order and ditydiaub-elements, and
data types of the elements, etc. It serves as a good starting point for buigitweight tools based

on Z family language.

Example 3.3.3 (ZML) Figure 3.1 is a part of th€'ontrolledLight class model in ZML. The tag
nameidentifies the name of the class, i.€ontrolledLight The taginheritedClassndicates the

immediate super-class. The tatateencodes the state schema, which has been skipped for space
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<classDef><name>ControlledLight</name>
<inheritedClass><name>Light</name></inheritedClass>
<state>...</state>
<operation>
<name>Main</name>
<processExpr>
<mu>N</mu>
<processExpr>
<processExpr>
<simpleProExp>ButtonPushing</simpleProExp>
</processExpr>
<proConnSym>externalChoice</proConnSym>
<processExpr>
<simpleProExp>DimChange</simpleProExp>
</processExpr>
</processExpr>
</processExpr>
</processExpr>
</operation>
</classDef>

Figure 3.1: XML markup of clas€'ontrolledLight

saving. The tagperationdefines a process with its name encoded im@ge The tagorocessexpr
encodes the computational logic of the operation. In this example, it is asreofa. function) of
a choice (indicated in a tag namptbConnSymbetween two process expressions encoded in the

tags namedimpleProExp end

XMI (XML Metadata Interchange [130]) is an industry standard forispand sharing object pro-
gramming and design information, allowing developers of distributed systerhatte sbject mod-
els and other metadata over the Internet. Three key industry standdids(eXtensible Markup
Language), UML (Unified Modeling Language) and MOF (Meta Objedcilfg), are integrated in
XMI. XMI marries the OMG and W3C metadata and modeling technologies. RafRose 2001
from OMG [124] which supports XMI can generate UML diagrams once idrtgopXMI documents,
and it can also export XMI documents for any existing UML diagrams. Thigiig useful for our
work. All we need is to generate the proper XMI documents from the TQé2Zification and make
use of facilities offered by tools like Rational Rose for visualization andiphscode generating.

The syntax definition of XMl for UML is specified in XMI 1.1 RTF UML DTD [X8. This DTD
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<?xml version = '1.0’ encoding = ’'ISO-8859-1' ?>
<XMI xmi.version="1.1" xmIns:UML="//org.omg/UML/1.3’>
<XMl.header> ... </XMl.header>
<XMl.content>
<UML.Model>
<UML.StateMachine> ... </UML.StateMachine>
</UML.Model>
<UML:Diagram> ... </UML:Diagram>
</XMl.content\>
</XMI>

Figure 3.2: XMl structure

file defines all entities and XMI syntax signatures for UML. An XMl file valieé by UML.DTD
version 1.3 has the structure as in Figure XRIll.header contains general information like the
UML.DTD version. UML.StateMachine is the most important part ddML.content , which
contains information about the StatechatML:Diagram is used to display the UML diagrams. It

contains the exact position of every displayable unit in the UML diagram.

The projection rules for translating TCOZ models (in XML) to UML Statechairis{MI) are
implemented by aAVA application. To systematically build the Statecharts, the projection takes
place in stages. The first stagepigparation during which the XML representation of the TCOZ

model is fetched in and parsed class-by-class, operation-by-operatie activities preformed are:

e Build up the operation table for each class and the variable table for eash cla

e Associate each class with its corresponding super class. One class veayntiee than one

super class and it may invoke operations defined in different supeseslas

e For each operation, identify itsrocessexpr which is the tag identifying the computational
logic for the operation. We check whether the operation is an operati@mscHf it is, mark
this operation as a simple operation. Otherwise, we identify the type gfrthessexpr. For

each type oprocessexpr, gather relevant information for the type.

The second stage 3eneration For each active object, a new XMl file is created with the necessary

header information. A top level composite state named ‘Main’ is added tStdiemachine
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which corresponds to the MN process. An initial state is added to the top-level composite state.
Starting from the M\IN operation, we syntactically analyze theocessezpr and apply the proper
projection rule to generate states and transitions. The challenge is that weotlayow which
projection rules could be used at some point. For example, if some othextiopeis invoked by
MAIN, shall we model the called operation as a simple state or a composite state? pairhisve

may not be able to find out whether the called operation will consequentliérather operations.)
Our remedy is to model all called operations as composite states and lateerépbae trivial

composite states by simple states.

The third stage isimplification After the Statechart model is generated, a number of activities take
place to simplify the Statechart without changing its traces. For example] trongposite states,
i.e., composite states that have at most one sub-state, are removed. Weealsthe Statechart
for violation of well-formedness rules. The last step isaypoutthe diagrams nicely. We calculate
the exact positions of all the states, transitions and events/guards in ardiaghnis is theoretically
irrelevant but practically very important. The following formulee are useditoutate the width and
height of a composite state. L&V be the width,H be the heightM be the number of simple
states in the composite stafé,be the number of composite states in the composite skEf&mple
(HSimple) is the default width (height) of a simple staté/, - - - Wy are width for each composite
state in this composite statéf;, - - -, Hy is the height for each composite state in this composite
state.S is the default horizontal space between staiéss the default vertical space between states.
P is the width (or height) of an initial state argglis the width (or height) of a final state.

W = maz{(VM + 1) « (WSimple + ), Wi, Wa, -+, Wi} +48 + P + Q

H=(M+1)*(HSimple + K) + (Hy + Hy +---+ Hy) + N x K
The calculation is done in a bottom-up manner because the size of the outersitensjpate depends
on the size of the inner one. Once we know the width and height, we place stafde at the top
(v'M simple states per row) and composite states at the bottom (one per row), trasiMI file

is generated.

Example 3.3.4 (Statecharts forMotionDetector and RoomController) The following are the Stat-

echarts generated from the LCS specification (the first one for tlas®n Detector and the second
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for classRoom Controller). Simplification has been involved to make the Statecharts compact.

NoUser
User
d’7M0v [t 1]
motion!1
md’?NoMove md’>Move
[t 1 motlon'O md?NoM ov
(6]
ﬁeady \

Regular OnAgain
9
?odsensor n motion20 k[kabsentPQ

[n:0..100] dlmmer'dlm

—h
-

[©)
=1

‘ motion?1
k [t = absent] >/
g'— -
motlon?J\.

- -
\\ dlmmer!O\.

end

3.4 From TCOZ to Scenarios

In this section, we are interested in another viewpoint projection - the comatiori@and interaction
perspective. MSC [81] is a popular graphical notation for presentitegantive viewpoints of a
system. It is termed as sequence diagrams in the UML framework. We invedtiigaprojection

from TCOZ (trace models) to MSC (process models). By identifying a sehoés with MSC, the
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msc example
instl inst2 inst3
— — ——
——input-
messaget—P>
message2—P>|
action ——outputI»
< message3
I ; I

Figure 3.3: Basic Message Sequence Chart

cause and effect relations between distributed events in concurstairsyare captured graphically.
A prototype projection tool is developed for generating MSCs automaticalfyinBerting class
invariants and operation constraints (as assertions) into the generatesl (@&-cution scenarios),

system testing requirements can be obtained.

3.4.1 Message Sequence Chart

The language MSC is standardized by the International Telecommunication (mU). It pro-
vides a means for visualization of the interaction of system components.oféeftMSC is called
the Basic Message Sequence Chart (BMSC), which concerns commimmécand actions only.
Then, additional basic concepts like process creation, termination, timdirfggaridcomplete mes-
sage events and conditions are added. Later, more complicated constelicisoduced. They are
inline expressions, MSC reference expressions and High-levelddessequence Chart (HMSC),

which enrich MSC with intricate possibilities of describing complex systems.

Example 3.4.1 (Basic MSC)Figure 3.3 is an example of a BMSC. Each vertical line represents an

active component (Z.120 terminology, an instance) in the system. The fiad20(terminology,
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parallel frame) represents the environment. Instances can interacttivihinstances by sending
messages, e.gnessagel, message2, message3. A message originated from the frame represents
an input from the unspecified environment, eiggut. Similarly, a message targeting the frame
is an output to the environment, e.@ytput. The square labeled withction is a local action

performed by instancénst2. end

The timing information is captured by the following two rules and their transitiveurks for each
message passing, the message output event precedes the coirgspmsdage input event and for
each vertical line representing an instance, the time progresses fromlogdm. The two rules
and the transitive closure define a partial event ordering relation, vdaiptures the semantics of
BMSC [109].

High-level MSC can be constructed incrementally by referencing an M81g its name (or equiv-

alently using inline expressions). MSC can be combined vertically, horithpotaalternatively.

Example 3.4.2 (High-level MSC) The chart in Figure 3.4 is a simple example of an HMSC. The
triangle at the top represents the starting point. The one at the bottomeeisrése ending point.
Each rounded rectangle abstracts an MSC. The semantics of the HMS&useckby the process
expression4 o C')® o (A o B), whereo denotes sequential composition arddenotes infinite

iteration. end
Various constructors for composing MSCs aa#t:for choices seqfor sequential compositiompar
for parallel compositionpptfor optional,excfor exception andbopfor iteration. Precise semantics

are developed for these key words.

Definition 6 An MSC reference expression is defined as the following:

MRE = ref(NAME)) | €| ¢ — primitives
| ( F)(MRE x MRE)) — delayed choice
| (|| O){MRE x MRE)) — delayed parallel
| (Lo ){(MRE x MRE)) — sequential composition
e

YO(MRE)) | (L)*°(MRE)) — jteration
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Figure 3.4: High-level Message Sequence Chart

An HMSC can reference other HMSCs or BMSCs by their names. The two pniogitive con-
structs arej ande. The former does nothing at all and the latter terminates immediately. The
structural operatotielayed choice is written asF. Graphically, it is a sub-chart marked with the
keywordalt. The delayed parallel is written as||. The notion of sequential composition in MSC

is referred asweak sequential composition, denoted as. Given sequential composition of two
MSCs (saym; andms), interactions over shared instancesripis delayed until interactions im;
completes. However, the execution of actions over instances nof fnrom my is allowed before

my has the option to terminate. The iteration operatois defined as any number of sequential

composition of a chart, whereas is the unbounded repetition of a chart.

A number of semantic models have been developed for MSC. Examples ageaifagtional seman-
tics based on process algebra [6, 81], Petri nets [74], automata, letdnfbrmal MSC semantics
and formal process algebra semantics presented in [81] are adoptexitivetis. In [81], semantics
of various constructs of MSC are defined by sets of deduction ruleedadlion rule is of the form

% where H is a set of premises and is the conclusion. Each individual premise and conclusion
are of the forms % s’ or s | for arbitrarys, s’ € MRE anda € A, whereA denotes all events
represented by atomic actions in MSC, i.e., message input, message outpuciioraand timer
events. For instance, no deduction rule is associatedoAiicause it does nothing. The only rule

associated with is ¢ |, i.e., termination. The semantics sfis captured by the following rules:
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The rulesDC'1 and DC2 express that the delayed choice of the two processes has the option to
terminate if and only if at least one of the alternatives has this opfiari3 and DC4 express that
the delayed choice will behave as one of the options given that some inéial efthis option takes
place.DC’5 captures the idea that in case both of the alternatives are enabled, iteishuzlayed.

The rest of the constructs are similarly defined [81].

3.4.2 \Visualizing Traces

Given an active object, we can identify the set of possible traces byiagphe traces function to
the MAIN process. A trace can be transformed to a Basic MSC by identifying opestiiemas
in TCOZ with MSC local actions and identifying channel communications in TCQH message

passing in MSC.

A TCOZ event is either an update event, a simple synchronization, a dr@mmunication, or a
termination event, or aait(d) event. Update events are distinguished from the others as they do not
require cooperation of the environment. They perform on a single inst&cMSC local action is
defined as an orderable single instance event requiring no coopdratiothe environment. Update
events are identified with local actions in MSC. Synchronization and chaonemunication do
require cooperation either from the environment or other procesdesnn€l communications in
TCOZ are identified with message passing in MSC (message passing wittpacltgduffer). The
specialwait event is identified with the timer event in MSC. In particular, it is identified with a

timer set event in MSC and consequently associated with a timeout or reset ev

Example 3.4.3 (MSC fromControlledLight) Figure 3.5 is a Basic MSC visualizing a scenario of
LCS. Initially the light is off. Starting with MAIN, the proces®im Change is executed. A message
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msc LCS1
controlledlight roomcontroller
—/ —

[ ——dimmer.n————

——button.

TurningOn
]

Figure 3.5: Visualizing traces

dimmer?n from RoomControlleito ControlledLighttakes place. Because is false, no action is
taken. ProcesSuttonPushing is then activated by a message input event from chabungbn.

Action TurningOn is invoked. After that, no event occurs. end

Identifying the traces of a parallel composition of multiple processes, famele the M\IN pro-
cess of theL.CS class, is computationally expensive. In our prototype, a set of tracesafth
object ControlledLight MotionDector RoomControlley is generated independently. Traces from
different objects sharing the same sequence of communication over tfeel stheannels are then
identified. Lastly, the corresponding communication is connected and visdaiging MSCs. This
way, we make use of the full power of MSC'’s partial ordering propéry, to leave the order of sin-
gle instance events from different instances unspecified. Thus, &t&i¥icapable of representing

a set of scenarios.

Example 3.4.4 (MSC fromLCS) In the LCS class, active object: (the motion detector) shares
the channemotion with the active object (the room controller). Two matching traces, one gen-
erated from M\IN in classMotionDetector and one from MIN in classRoomController, must
contain the same sequence of events on channébn.

(md?NoMove, wait 1, md? Move, motion!1, md? NoMove, motion!0)

{dimmer!0, motion?1, odsensor?n, Adjust, dimmer!dim, motion?0)

The above are a pair of matching traces. This interaction is visualized asurerdd. end
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Figure 3.6: Scenario of Light Control System

3.4.3 Visualizing Process Expression

Due to unbounded recursion (iteration) and non-determinism, the setcettfand therefore the
generated BMSCs) for complex systems could be numerous or even inflHSC offers various
constructive operators to compose MSCs in a hierarchical, iterating areteministic way. So
does CSP. Thus, it is natural to link process constructs in TCOZ with cmtstin HMSC so that

we may visualize multiple or even infinite scenarios using a single chart.

The body of a TCOZ class is essentially a system of simultaneous equatiamiagle collection
of operations (processes). Each equation consists of a name andAgrG€ess expression. A
TCOZ class is identified with an MSC document, which consists of a set of MFCICOZ
process expression is identified with an MSC. A TCOZ process refeiisidentified with an MSC

reference.

The trace model of an MSC process expression is constructed aagtdive operational semantics

of MSC defined in [81]. Let functioniraces : MRE — PY* return the traces of the process

In the LCS case study, 600+ traces are generated if we unfold eagisicc5 times.
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expression. Let functio® : TZE — MRE be the projection function from TCOZ to MSC. A
TCOZ process expression is projected to an MSC process expresiiey dre trace-equivalent.

Vs: TZE; t : MRE e P(s) =t = traces(s) = traces(t)

Stop means deadlock and does nothingisperforms no action except termination. Two basic
constants, written a§ ande, play the same role in the process semantics of MSC. Thusp &

identified withd and XiIp is identified withe. Graphically, &ip is drawn as an empty MSC.

traces(0) = {()}
traces(e) = {(v'), () }

According to the deduction rules associated with the delayed choice, adfrace y is either a
trace ofx or y. Therefore, the choice operators in TCOZ are projected to delayadecimoMSC.
Graphically, a choice in TCOZ is drawn as an MSC sub-chart markatt.as

traces(z F y) = traces(z) U traces(y)

Example 3.4.5 (HMSC from ControlledLight) Figure 3.7 shows the MSCs generated from the
MAIN process in clasg'ontrolledLight. The choice betwee®imChange and ButtonPushing
is captured by the delayed choice in the bottom chart, indicated by markinghbhehart with the

keywordalt. Recursion is visualized as an infinite iteration in HMSC. end

Sequential composition in TCOZ is best describeds@sng sequential composition, i.e., no
action from the later process can be executed before the earlier orieehaption to terminate.
The sequential compositianthat composes two MSCs vertically is describedvask sequential
composition. It allows execution of actions from the later chart before the earliehasehe option
to terminate. However, if two MSCs involve only events on the same instan@sjythnotions
are identical. Sequential composition in TCOZ is identified with sequential catigyrosr MSC.
Graphically, sequential composition of MSCs on the same instances is achipyypatting the MSCs

one below the other.

MSC has a key wor@éxcfor representing exceptions, however there is no formal rules deifined
[81] for it. Following the same style, we define the deduction rulesefar(written as v,,, ) as

follows.
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msc ButtonPushing
ControlledLight

——1
—button. >
alt msc DimChange
< dim=0 > ControlledLight RoomController
——1 ——1
TurningOn
g <€— dimmer.n
TurningOff

F

ButtonPushing DimChange

Figure 3.7: Scenarios of clag®nitrolledLight
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In the processt V. Y, any timee takes place, the control is withdrawn frakhand transferred to
Y. Interrupt in TCOZ is identified withv,, in MSC with e as the initial event of the interrupting

process.

Example 3.4.6 (Interrupt in MSC) Figure 3.8 presents the MSC generated from process expres-
sion On in RoomController. The eventmotion.0 is projected to the first communication in the

down portion of the sub-chart. end
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msc On
RoomController MotionDetector
——1 ——1

exc

[ msc Regular ]

<@—motion.0

[ msc OnAgain ]

Figure 3.8: Interrupt in MSC

Delayed parallel composition defines the interleaving operator, i.e., ndwsymization is required
and processes can interleave freely. Thus, interleaving in TGDZq identified with delayed
parallel composition in MSC. In TCOZ, all dynamic interactions between aotijects must take
place through the CSP channel communication mechanism. Graphically,tgiweViSCs (/.S
and MS(,), the parallel composition is constructed by putting the MSCs in the same pé#naathed

and connecting corresponding message output and message ingat even

Besides the projection rules above, other constructs in TCOZ can betaejw MSC indirectly.

For instance,

Po{t} Q=P O (WAIT t; Q)

By identifying external choice with MSC delayed choice andiW ¢ with timer events, timeout can
be identified with a delayed choice between the MSCH@nd the MSC for) with a timeout event
as the initial event of). Moreover, TCOZ recursion can be resolved as iteration and inteddogte

a sequence of sequential compositions. TCOZ state-guard is identified vatlctondition in MSC.

Example 3.4.7 (Timeout in MSC) Figure 3.9 shows the MSC visualizing the procéssigain in
the LCS example. end
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msc OnAgain

RoomController MotionDetector
—— ——
alt )
<t motion.1
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Figure 3.9: Timeout in MSC

3.4.4 Automation

The projection is automated by employing XML/XSL technology adopting a similategy as in
Section 3.3.2. MSC offers a standard text representation for the gedyploiations. Thus, we de-
veloped an automatic transformation tool to project TCOZ models (in ZML) int&€NI8 standard
text format). Building on the strength of ZML, our tool makes use of XMLgearXerces [59] to
extract information from TCOZ specifications. The mechanized projectianhgeved by first im-
plementing a ZML parser, which takes in a specification model in ZML and baildgual model
in the memory. This ZML parser can be reused for other projection tools,teegtransformation

from TCOZ to Timed Automata for timing analysis (refer to Section 4.2).

A trace generation module is built to automatically generate all possible tramastlie specifi-
cation, and each trace is transformed to a BMSC by syntax rewriting. Inabe af unbounded
recursion, users are asked for the number of times to resolve the iter&ipMSC interface is
built according to the MSC document structure, e.g., each MSC documetatic® multiple MSCs
and each MSC contains one or more instances. A transformation module i®géttinformation

from the ZML parser, apply the proper projection rules and feed themédo the MSC interface.
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The projection rules are used as a design document and guide the ctiostai the algorithm in
the implementation. The outcome of our transformation tool is Z.120 standarcefessentation
of MSC, which is ready to be taken as inputs for various tool support8I8€. The same strategy
can be applied for implementing various transformation tools. For examplgdiming analysis
purpose, a TCOZ specification can be transformed into Timed Automata,nttee&AdL parser can
be reused and we only need to build a Timed Automata interface and a nefetnaaison module

(refer to Section 4.2).

Example 3.4.8 (Text representation of MSC)The following is the HMSC in standard text format,
generated from operation MN in classControlledLight:

msc ControlledLight;
instance 11;
loop begin;
alt begin;
reference ButtonPushing;
alt;
reference DimChange;
alt end,;
loop end;
endinstance;
endmsc;

end

In our prototype, we allow generation of test cases by adding assetaitims generated MSC. Test
requirements can be used to develop test cases, test oracles angeesima system development.
Specification based testing can play an important role in software engig¢€&2in, 142]. Our goal
is to support automatic generation of test requirements from TCOZ spéoifisa Starting with
an HMSC, one can expand it into a set of BMSCs. For recursions, sit de iteration should
be covered by the expanded BMSCs. Upon creation of an instance QO& Tlass initial state
condition is instrumented as an assertion at the start of the BMSC. For eghda in the system,
TCOZ class invariants are instrumented as assertions before and aftgrl@val action on the
BMSC instance. The pre/post-conditions of TCOZ operations are prdjéotassertions at the

entry/exit of the corresponding MSC actions.
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msc LCS1

controlledlight roomcontroller
——

</ dim=0 and on=false 3

dimmer.nr————

—button.

<" dim=100 and on=true -

_________________

Figure 3.10: Test case

Example 3.4.9 (Test case) test case generated from cla€sntrolledLight is captured in Fig-
ure 3.10 (the BMSC in Example 3.4.3 with assertions). Assertions are pladbé mhash-lined
box. The first assertion ensures tha1 schema is satisfied after creation of tfientrolledLight

instance. The second one asserts the post-condition of the opefatiaingOn. In this example,

the pre-condition of the operation is simply true. end

Systematic test case generation allows specification-based testing of siestigms. For instance,
we may design a system using languages and notations which allow mechgaizemtion of
executable codes, whilst document functional and dynamic systemeewgrits using TCOZ spec-
ifications. Once executable codes have been generated from the aexlgh test cases generated
from TCOZ model may be used to systematically validate the code. One desigratgnof special
interest is Communicating Transaction Processes (CTP [129]). CTPeleasrecently introduced
by Roychoudhury and Thiagarajan. It is an MSC-based formalismttaggeeactive embedded
systems. Given a network of communicating sequential processes tieategize on common ac-
tions, the key idea of the CTP model is to refine each common action into a s=judrece charts,
each with a precondition and a postcondition. The key feature of the CTRlngatiat it yields an
executable specification, e.g., SystemC program [61]. Thus, we mayIfprspacify system re-

quirements using TCOZ specifications, whilst design the system as CTP mAdeiie set of test
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cases is generated from the TCOZ specification. We may then guide anatedhe execution of
the generated SystemC module using one test case at a time. By integrating)thsdageneration
and code synthesis algorithms, we may achieve on-the-fly testing. A fulitigegion is left to the

future work.

3.5 Summary

Visualization is an intuitive complementary interplay between logic-based formalsnd visual

formalisms. It is often theoretically lightweight, e.g., a simple trace model is suffi¢ie the

soundness discussion, but its practical implication is promising. Becaugmnis &asy visualized
of essential facts, it may extend users of logic-based formalisms to sysgneers without rele-
vant mathematical background. Visualization may promote the usage of lagédformalisms in
industry because it links logic-based formal notations with well-accepteplatianatic languages.
In order to link formalisms which vary vastly in syntax, we have to look at tinessgics behind the
intuition of the language constructs. The work on visualization thus help usedplylunderstand

the similarities and differences between different modeling languages.

There have been attempts to connect formal specifications with grapbiegioms, some of which
are evidenced in [12, 31, 34, 114]. A number of these works have fe@eised on formalizing
graphical notations using logic-based formalisms. For instance, Boltobawids [12] have given
a process semantics in CSP for UML activity diagrams. They use the greessantics to demon-
strate the consistency of the object model. Instead of solving the congigteriidem of diagrams,
our work in this chapter aims at benefiting logic-based formalisms by congetg&gm to popular
graphical notations. Brooke and Paige developed a tool-supportpficganotation for Timed
CSP [21]. The difference between Brooke and Paige’s approatioans is that we use existing
popular graphical notations instead of creating new ones. In [149gRbal visualized TCOZ
models with UML class diagrams. Our work focuses on dynamic behavioobjetts. Ng and
Butler [114] have developed a tool for visualizing CSP in UML for both tfagis architecture and

the dynamic behaviors. In our approach, we are particularly interestedpituring intra-object
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and inter-object dynamic behaviors. The characteristics of our werkhait first our visualization
has been based on a rather complicated specification language, whichiheialenging as well
as valuable, and secondly our work has been connected to other @ractiblems like test case

generation.
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Chapter 4

Verification

The executioner’'s argument was,
that you couldn’t cut off a head
unless there was a body to cut it off from.

- Alice’s Adventures in Wonderlandewis Carroll

Formal verification aims at establishing properties of system designs ugjity tather than just
testing or informal arguments. It involves formal specification of the requémt, formal modeling
of the implementation, and precise rules of inference to prove that the impldaroarsatisfies
the specification. Formal verification reveals inconsistency of the spaagincand thus improves
the reliability of the product. The notion of model checking [28] has beerelyidccepted as a
successful means of formal verification. Model checking is a methofbforally verifying finite-
state concurrent systems. The technique has been applied to a wideofaoagaplex industrial
systems. Formal checking has a number of advantages over traditipnahapes that are based on
simulation, testing, and deductive reasoning. In particular, model chgeskautomatic and usually
quite fast. Also, if the design contains errors, model checking will pregucounterexample that

can be used to pinpoint the source of the error.

Mature verification mechanism based on model checking has been deddtopquite a number

57
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of specification languages, e.g., FDR for CSP [58pPdAL for Timed Automata [9]. Building
verification mechanisms for newly designed specification languages @@tk is time consuming
and repetitious. All the code for timely efficient verification needs to be implésdeffor instance,
partial order reduction, data abstraction, etc. An inexpensive yattefé way of verification is to
reuse existing verification mechanisms. A semantics preserving transfannfratio the language
to the language supported by the verification mechanism is essential foskhdrtehis chapter, we

demonstrate formal verification based on transformation techniques.

4.1 Model Checking Live Sequence Charts

In this section, we show that tool support for logic-based formalisms earused to verify visual
formalisms. MSC [81] is widely used to describe scenarios that capture coizamion between
processes or objects. It is used in the early stages of system devetopineas found its way
into many methodologies [81, 154]. However, MSC (both BMSC and HM&@gis from the
rather weak partial-order semantics that makes it incapable of capturingkimals of behavioral
requirements. Moreover, MSC only captures example runs of the sysighas it is not suitable
to specify complete system behaviors. The notion of Live Sequences QIHa€C) was introduced
by Damm and Harel [32] to overcome the shortcomings of MSC by addingda® LSC extends
MSC with constructs to distinguish scenarios that must happen from soeilaat may happen,
conditions that must be fulfilled from conditions that may be fulfilled, etc. Togrewith the no-
tion of symbolic objects and various high-level operators like bounded léten-else, LSC may
well be used to specify complicated inter-object system requirements. tasefpackage named
Play-Enginehas been developed by Damm and Harel to interactively “play-in” ang/“pld” sce-
narios [70]. HoweverPlay-Enginedoes not support automatic verification of LSC. We believe that
it is important to expose inconsistencies of system requirements in the egdyadtaystem devel-
opment. One effective approach to verify LSC models is via reusing existatgre model checkers

instead of building new ones from scratch.

Semantically, system behaviors specified by LSC correspond to CSEés taad failures. This
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close semantic correspondence makes FDR a potential model check&dom he challenge is to
construct semantics preserving CSP models from LSC models systematioalhys kection, we
investigate theoretical relations between LSC and CSP and develop amgtdatgn of LSC in CSP.
The investigation is more than of theoretical interest. Its practical implicationtisablesupport for

CSP can be reused to validate LSC models. In particular, FDR, a well-k@&Mmodel-checker,

is used for the verification.

4.1.1 Live Sequence Chart

There are two kinds of charts in LSC. Existential charts are mainly usedstwide possible sce-
narios of a system in the early stage of system development, i.e., the saméayaeé py MSC

except that existential charts are scoped. In later stages, knowledgmbs available about when
a system run has progressed far enough for a specific usage gteego become relevant. Uni-
versal charts are then used to specify behaviors that should alwaghibited. A universal chart
is typically preceded with a pre-chart, which serves as the activationtmmadf the main chart.

Whenever a communication sequence matches the pre-chart, the systepronaest as specified
by the main chart. A system run may activate a universal chart more th@namd some of the

activations might overlap [108].

Example 4.1.1 (Universal chart) The following is a universal chart as part of the mobile phone

specification:

OpenCover

User Cover Chip Display

open

: coverOpened :

displayMenu

setDisplayMen
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This scenariddpenCoveiillustrates the interaction between the objects whemuttee opens the
cover. Once the cover is opened by the user, the main chart is activatedchThes notified that
the cover is opened. It then requests thiaplay to display the menu. Lastly, th&splay carries out

a local actionsetDisplayMenu to initialize the menu screen. end

Let C be the set of all possible charts. L&tbe the set of existential charts. Li&tbe the set of
universal charts. In this work, we assume that an LSC specificatioote asS, consists of a set
of universal charts and existential charts. Throughout the sectjenu are used to denote a chart,
an existential chart, a universal chart respectively. B&t C be the set of basic charts, i.e., Basic-
MSC [81]. LetX be the set of all possible events.is partitioned into two groups, communication
messaged/, e.g.,coverOpened in Example 4.1.1 and local actions e.g.,setDisplayMenu. A
communication event: : M is followed by *?" if it is an input event or ‘!I" if it is an output event.
A local actiona : A may be an assignment or a (local or external) function call. Each ehart
associated with a set of visible even, C Y. Only events visible to a chart are constrained by
the chart. A chart typically consists of multiple instances (for instati&ey, Cover, Chip and
Display), which are represented as vertical lines graphically.ibetances : C — P Instances be
the function returning the set of instances appearing in the chart. Alongeatth line, there are
a finite number of locations. A location carries the temperature annotatiomdgrgss within an
instance. Intuitively, locations can be thought as the joint points of instarezand message lines.
In the following, we use to denote an instancé,to denote a location on instan@;elzO to denote
the first location on instanceand/"** to denote the very last location on instaric&Ve write the

next location ofl* along instance in the same chart a@§ ™.

A location may be labeled as either cold or hot. A hot location means that a spsteraaching
this location has to move beyond. A system run may stay put at a cold locaterefo Similarly,
messages and conditions are also labeled. A hot message must bedeghameas a cold one may
get lost. A hot condition must be met, whereas violation of a cold condition tetesitlae chart. A
location is labeled with a finite number of events (more than one if it is a co-regimhat most one
condition. LetLocation, Condition be the set of all possible locations and conditions respectively.

Functionlabel : Location — P X labels a location with a finite number of messages and local
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actions. Functiontond : Location — Condition labels a location with a condition. If there is no
condition associated with the location, it retutnge. Functioneval : Condition — B evaluates a
condition against the current valuation of the variables. Funetion : Condition — Cold | Hot
tells the temperature of a condition. Functi@myp : Location — Cold | Hot tells the temperature

of a location.

Example 4.1.2 (Mobile phone specification)The universal charts in Figure 4.1 and the one in Ex-
ample 4.1.1 constitute a self-containing set of scenarios, which specifyilempbbne specification.
This example is partially inspired by the phone system specification presarfiéd. The system
consists of six participating objects,aer, the cover, the display, the speaker, the chip and the
environment where the incoming calls are from. Figure 4.1 illustrates scer@drtbe system be-
sidesOpenCoveri.e., the user closes the cover, an incoming call arrives and the userygdke
phone and talks. All vertical lines in the charts are dotted, which meanslithatations along the
lines are cold and, therefore, the system may pause at any point eftiexeforever. This is possi-
ble because unexpected events like the battery runs out or the systm Bogvn may occur at any
time. The set of visible events for each chart are exactly those appéatimg diagram except the
scenariolalk. The messagelose from the user to the cover is forbidden in the scenaalk, i.e., in
order to carry out the scenario successfully, the user should nat tlescover before the scenario

completes. end

LSC also supports advanced MSC features like co-region, hieragthyMoreover, symbolic in-
stances and messages are used to group scenarios effectively. detailad introduction on a
complete list of features of LSC, refer to [70]. LSC is far more expvestsian MSC, which makes
it capable of expressing complicated scenario-based requirementsevelpwe remark that the
ability to specify hot and cold messages, i.e., whether a message is requiredeiteived or may
get lost, is redundant because of the facility for describing hot andlooidions. Essentially, the
temperature of the locations takes precedence over the temperature ajesges® whether or not
the message is received is determined entirely by the temperature of the enieggdag This ques-

tionable feature of LSC is recognized by Harel and Marelly who list theiptescases and conclude
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CloseCover
User Cover Chip Display
close
coverClosed
displayTime
setDispIayTim
Receive
Env Chip Speaker Display
incomingCall »
startRing :
displayCallerID :
setDisplayCalle
Talk
Env User Cover Chip Speaker Display
open : : startRing :
coverOpened
speakerOff
‘ talk ‘ ‘ ‘ . displayTimer
setDisplayTimer|
Forbidden Elements
LSC close

Figure 4.1: Mobile phone system scenarios
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that the temperature of messages has no semantic meaning [70]. Thus alotan§ discussion,

the temperature of messages is discarded.

4.1.2 Semantics of Live Sequence Charts

The semantics of LSC is briefly discussed in [32] using skeleton automataegem-like pseudo-
codes. Only basic charts and pre-charts have been covered. doplevsound interpretation of
LSC in CSP, a complete semantics is essential. This section is devoted to aasackedenotational
semantics of LSC, which conforms to the original semantics in [32]. Our se&reaompletes theirs

by defining precisely the traces of a set of universal charts and etigteharts.

We assume that all conditions are distributed because we believe thad-sloadtion is a prob-
lematic feature of LSC. In LSC, a condition is a Boolean expression overisitde variables of
the chart. Therefore, some form of global variables is presuppddad.does not match the real-
ity of distributed systems. Nor does it conform to the Dijkstra’s principléoose couplind39].
Objects in distributed systems have their own state space (local variabtea)l @emmunication
between objects would be via messages. We remark that shared-condititre ¢partially) sup-
ported by rewriting it to a set of distributed conditions with extra synchraiozaFor simplicity, in
this section we also assume that no co-region is allowed and all messagga@rmnized. There
is nothing interesting about co-region except that it complicates the disnugsynchronous mes-
sage passing is supported by explicitly modeling the behavior of the buffers First In First Out
(FIFO). A consequence of this assumption is that a message loss is dapsuaa infinitely long
delay of the forwarding by the buffer instead of@at message symbol. A hidden assumption is

that the size of the communication buffers is finite.

The semantics of a basic charis defined to consist of all runs compatible with the partial ordering
relation induced by and its annotations. We define an automaton interpretati@gncoimpleting
the skeleton automata in [32] and then define the languagk®a$ed on the automaton. A chart

induces a partial order over the events.

Definition 7 The partial order is defined as the smallest binary relation.ocation < Location
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satisfying the following axioms and closed under transitivity and reflexivity.

Y1 : Location e IF < [FF1 — vertical

Vi, l: Location | I} # Iy ®
Im : M e m! € label(ly) A m? € label(l) = | < b — horizontal
Im : M e m! € label(ly) A m? € label(l) = b < | — synchronous

The first axiom states that along each vertical line time progresses froto bamjitom. The second
axiom states that message output event must precede the correspoedisgge input event. The
third handles synchronous message passing. An LSC chart is wellddfthe relation< is acyclic
(except trivial cyclic relation between locations connected by syndu®message passing). In the
rest of the thesis, we assume that all charts are well-formed. We deficgdiupreset to return the

set of locations that precede a given location in the relation

‘ preset : Location — P Location

‘ V1 : Location e preset(l) = {z : Location | v < I N ~(l < z)}

One of the basic concepts used for defining the semantics of LSC is the wbtioout. A cut
through the chart represents the progress each instance has madsdarthgo. Letcut be the
function which returns the set of all possiklets of a chart. Acut is a set of locations, one for each

instance, satisfying the following condition:

‘ cut : C — P Location

‘ Ve:CeVa: cut(c) @ #(x) = #instances(c) ANVI:z oAl 1z ol € preset(l)

Intuitively, it means no location in aut is preceded with another. We are now ready to define the

automaton which accepts exactly the language of a basic chart.

Definition 8 The automaton associated with basic chastdefined asl, = (.S, S,?, Fy, Sy U{t},
Ty). Sy is the state spaceS, = {Aborted, Terminated, Completed} U Active where Active

= cut(b). SP = U, {10} is the initial stateF, is the set of final (accepting) states.

Fy, = {Aborted, Terminated, Completed} U {s : cut(b) | V1 : s e temp(l) = Cold}
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3y is the set of events appearing in the chart. The special evéahotes temporal progress along

a vertical line.Ty : S, x ¥, U {71} — S, is the least transition relation satisfying the following:

D1 Vz:X, e (Terminated, x, Terminated) € T
D2 YV :%, e (Completed, x, Completed) € Ty
D3 (U™}, 7, Completed) € Ty
D4 secut(b)Aazk seJda:Ae
(a € label(IF) A eval(cond(IF)) = true A IF # 19%)
= (.0, (s \ () U LI T e T,
D5 sEcut(b)/\Ellk P:sedm:Me
(m! e lable(lg) A m? € label(If) A IF £ 1mar p 1P # 1
A eval(cond(IF)) = true A eval(cond(lp)) true)
= (s, ( \{lk IH U, lpH}) €Ty
D6 s € cut(b) A Ellk
eval(cond( )) false A temp(cond(IF)) = Cold = (s, T, Terminated) € T},
D7 s e cut(b )/\Ellk
eval(cond(IF)) = false A temp(cond(IF)) = Hot = (s, T, Aborted) € Ty

The chart icompletedf all instances have reached the very last location. #iminatedif a cold
condition is violated, an@bortedif a hot condition is violated. Otherwise, we say that the chart
is active i.e., there exists aut through every instance in the chart. Initially, the chart is active
and all instances are at their first location. A state is accepting if and onihéret is completed

or terminated or aborted, or it is an active state where all instances a@ht cation.D1 and

D2 state that all behaviors are allowed when a chart is terminated or comp@8estates that a
chart is terminated only after all instances have reached their last locaDdrandD5 state that a
local action or a message passing may occur only if the system can reashcatrafter engaging

in the communication event or local action. Whenever a cold condition is ¢edlua false, the
chart terminates6). If the condition is labeledot, the chart aborts so that no further behavior
is allowed D7). No compositional operator offered by LSC is discussed in this definitiam.a
chart with hierarchy, we can flatten the sub-charts by adding transitamsecting the initial and
Terminated state of the sub-chart to states in the automaton of the upper-level charistamce, a
conditional branch can be flattened by connecting the last state of thelegpkchart to the initial
states of both branches. As the flattening is a standard process, we odstdiien this definition.

Moreover, we adopt an interleaving semantics, e.g., no priority is assbeigteconditions, etc.
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A trace of the automatoH, is a sequence of events,, - - -, ek, - - - €,), Where there exists a rus,
€1, 82, *y Sky Cky Sk41s ** % Sny €ny Snt1 SUCh thatsy = SP ands, 41 € F,andforalll <k <n
such that(sg, e, sk+1) € Tp. The language of the automateh, denoted a<L(A}), contains all

traces of the automatas,.

Definition 9 The language of a basic chartdenoted a£3(b), is the language of the automaton
L(Ayp). The executions of which complete the whole chart, denoted/agb), contain the traces

of A, which reach the stat€ompleted once and once only.

The semantics of existential charts is different from that of basic chatosuse existential charts,
as universal charts, are scoped. Events invisible to the chart may foeely between any two
successive events in an execution of the chart. Given a set of evgnis®, a trace filter, denoted

astr | 3;, satisfies the following conditions:

(1% =)
@) 1E, =07 (' [ 3;), wherei € &,
(Gt 13, =’ | 8, wherej € %
In the following definition, forbidden events are properly handled, i.ey #re prevented from

occurring until the chart completes.

Definition 10 Let 3. be the set of events visible to an existential chartThe language o€,
denoted a£(e), is defined asL.(e) = {tr : ¥* | tr | ¥, € Lg(e)}. The executions of which
travel through the whole chart, denotedfse), is defined as:

Fele)={tr: X" | tre Le) Nr X, € Fgle)}

A tracetr is a fragment of tracer’, denoted agr in tr/, if and only if ¢r is a sub-sequence of’.

‘ _in XN e X

‘ Vir,tr' : X* e trin tr' < Jtry, try : X* e try T tr T try = tr’

A universal chart is typically preceded with a pre-chart. Wheneveexatution completes the

pre-chart, the execution must proceed as specified by the main chart.
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Definition 11 Letp, m : B be the pre-chart and main-chart of a universal chaifhe language of

u is L, (u) satisfying the following:

L,(u)={tr: X" |Atry, try : % e try " tryin tr A try € Fe(p) A tra & Lo(m)}

0
Intuitively, a trace violates a universal chart if and only if it completes treeghart but fails to
conform to the main chart. By associating different sets of visible event&tpréichart and main

chart, various kinds of forbidden events [70] can be handled plsoper

An LSC specification consists of a set of universal charts and exidtehads, i.e.S C {z : C |
z €UV z € E}. Animplementation satisfies an LSC specification if and only if it always exhibits
behaviors allowed by the universal charts and it is capable of exhibitiegst one of the behaviors

captured by an existential chart.

Definition 12 An implementatior, whose executions are denotediases(Z), satisfies an LSC

specificatiorS, denoted a% £ S, if and only if:

(traces(Z) C Nyes Lu(u)) A (Ve € S o Fe(e) N traces(T) # )

4.1.3 Operational Semantics of LSC in CSP

This section is devoted to a CSP modeling of LSC. With the operational semah@&Podefined
in [135], the CSP modeling in a way defines an operational semantics forAis@tuitive way of
constructing CSP models from LSC models is by mimicking the states in the automsataiasesd
with a chart. However, mimicking the states is impractical because it requiredrgoting the
(unstructured) automata. Moreover, it results in an unreadable CSR aratithus creates barriers
to linking the verification results to the charts. We present our struct@sepring modeling using
a set of operational semantics rules in a bottom-up fashion. The key ideasigg a (bounded) set

of special synchronization events to monitor the completion of universatsch

During a system run, a universal chart may be activated more tharaodcgome of the activations

may overlap. In general, there could be infinite overlapping activatiotteecdame chart. Violation
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of a cold condition terminates one activation only. Therefore, it is nepessdistinguish different
activations (by associating each one with a unique identifier). In [17htdops and Schobbens
have shown that every LSC has an equivalent determinigtchBautomaton that contains at most
exponentially more states than there are locations in the LSC. A symmetry redsktib always
make it possible to consider only a finite (and bounded) number of ovémapgtivations. Thus,
only a finite number of processes are necessary for monitoring ovartppptivations, and they
can be reused for non-overlapping activations. In practice, largdauof overlapping activations
of the same chart is unlikely because system behaviors are increasatyigted as the number of
overlapping activations increases. In the following, we present af sates for constructing CSP
processes allowing no overlapping activations of the same chart. ltecagadily extended to allow
finite overlapping activations. We remark that the assumption of finite oy@rgactivations is

reasonable comparing to strong assumptions like no overlapping activatadesin [68].

The most primitive building blocks of LSC are locations. Along an instance imaatcthere are a
finite number of locations. Due to our assumption of no co-region, a locatiotains at most one
event and an optional condition. LEth be the set of events associated with instancechartu,
including forbidden events. In addition, each chart is associated witl giioeips of special events,

Y (u,z) = {tery.z, hcvy, syn,.x} where the optionat identifiers a sub-chart af. Eventter,.z

is engaged if and only if a cold condition is violated, either in the pre-chatti@main chart, or

an unexpected event of the pre-chart is engaged. It is used to terralhmistances in a chart at
once. Eventhcuv, is engaged only when a hot condition is violated so that the system is forced
to fail. This reflects the semantics of hot conditions. However, this is slightdplpmatic as the
intention of hot conditions is to make sure they are never violated. A hotittmmés violated either
because there is inconsistency in the specification, e.g., wrong implementatienlocal action,

or the system is insufficiently specified. In our approach, the CSP mbdeker, e.g., FDR, helps

to refine LSC specifications step by step so that all hot conditions hold dihtlee Eventsyn,,.z

is used to synchronize the entering or exiting of a chart or the sub-¢clartong all participating
instances. LetVainLoca(u,1,l) be the process for locatiohon instance; in the main chart of
chartu. Let MainLoca(u, i,l + 1) be the process of the next location. For the sake of readability,

the following processes are defined accordingly to the respective stddesinition 8.



4.1. MODEL CHECKING LIVE SEQUENCE CHARTS 69

Terminated, = RUNg,
Completed,, = RUNy,,
Aborted = STOP
Given that the condition labeled with locatiérs cold and the location is not the last, if the condition
evaluates to true, the system engages in the event and proceeds tottloeatgon, otherwise, it
engages in a special evetitr, to signal all other instances in the chart. Processes for all other
instances in the chart are interruptedtby, and terminate. After engaging in the special event, the
process restores to the first location in the pre-chart so as to allow létextmn of the chart.
R1 MainLoca(u,i,l) =
(label(1) — MainLoca(u, 4,1+ 1))( cond(l) )(ter, — PreLoca(u,i,1?))
If the condition is cold and the location is the last, after engaging in the evepéciaseventyn,,
is synchronized by all instances in the chart before any of them terminitiés location is in a
sub-chart of the main chart, then the evemt,, is replaced withsyn,,.2 so that only participating
instances synchronize the termination of the sub-chart.
R2 MainLoca(u,i,l) =
(label (1) — syn, — PreLoca(u,i,1?)){ cond(l) |)(ter, — PreLoca(u,i,l?))
If the condition is hot and the location is not the last, a special ekent is engaged if the hot
condition is violated so that all other instances in the chart are signaleddtodka
R3 MainLoca(u,i,l) =
(label(l) — MainLoca(u,i,l+ 1)){ cond(l) )(hcv, — Aborted,)
Lastly, if the condition is hot and the location is the last,
R4 MainLoca(u,i,l) =
(label(l) — (syn, — PreLoca(u,i,12)))( cond(l) )(hcv, — Aborted,,)
Similarly, we may construct the process for a locatiégmthe pre-chart. LePreLoca(u, i, ) be the
process constructed for locatidon instance in the pre-chart of chart. If the instance is not in
the pre-chart, then all visible events are allowed to occur before it sgnides with the rest of the
instance on entering of the main chart.

R5 PreLoca(u,i,10) =
(syn, — MainLoca(u, 1, 1))

y Uy by

O (Oe: X\ {tery, hcvy, syn,} — PreLoca(u, i,1?))

s Uy by
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Given the location is in the pre-chart and is not the last, if the condition evaluates to false, then
the process signals all other instances in the chart and terminates. Othéftvis expected event
is engaged, the process proceeds to the next location, else, thespeogeges in the unexpected
event and terminates. Conditions are not distinguished as either hot drvextddse hot conditions
have no semantic meaning in pre-charts.
R6 PreLoca(u,i,l) =
((label(l) — PreLoca(u,i,l+ 1)) O

(Oe: 8\ {label(l), event(19), tery, hevy, syn, } — ter, — SKIP))
( cond(l) )(ter, — SKIP)

If the location is the last, after engaging in the event, the instance waits foyrikcbrenization for
termination and proceeds to the first location of the main chart.
R7 PreLoca(u,i,l) =
((label(l) — syn, — MainLoca(u,i,1?)) O

(O e : ¢\ {label(l), event(0), tery, hcvy, syny,} — ter, — SKIP))
( cond(l) ) (ter, — SKIP)

A location could be extended to a structuring construct, e.g., a sub-cltmmanehing, etc. All LSC
structuring constructs have their exact images in CSP, e.g., proceshoefdor sub-charts, choice
in CSP for branching, etc. However, in case of sub-charts, violati@noold condition terminates
the sub-chart only and thus we need to attach some identifier of the stttiectiee eventer, .z so

that only the process for the sub-chart is terminated.

Let Instance(u, i) be the process for instangein chartu. The process terminates whenever a
cold condition is violated in the chart and deadlocks whenever a hot caméitioolated. Both are

captured using interrupt operators.

R8 Instance(u,i) = (PreLoca(u,i,1?) Ve, Instance(u,i)) Vpey, — STOP

Let Chart(u) be the process for chaut The process is an alphabetized parallel composition of the
processes of all instances in the chart. Whenever a hot condition is diplageprocess deadlocks

and, therefore, the system deadlocks (refer to L2 in Chapter 2).

R9 Chart(u) = H (Instance(u, ), %%, U {tery, hevy, syny})

7
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An LSC specification consists of a finite number of universal chartd) eanstraining its visible
events. Lef be the process synthesized from the LSC specification. The processipliabetized

parallel composition of the processes of all universal charts in théfigagion.

R10 7 = Hues(ChaTt(u), Y, U {tery, hcvy, syny})

We claim thatZ is an implementation af. From the construction ofhart(u), itis clear that only
behaviors satisfying the chart are allowed, i.e.,whenever the preishadtched, the system run
must proceed as specified by the main ch@dt,?,3,94, whenever a cold condition is violated, the
activation of the chart terminateR8), whenever a hot condition is violated, the system deadlocks
(R8,9), etc. Because all activation shares the same set of visible eventsnsggteution is con-
strained by all activations. TherefotEpnly allows behaviors that satisfies all the charts (because of
the parallel composition). Lastly;hart(w) only constraints its visible events (as it is alphabetized)

and other events are free to occur.

4.1.4 FDR Verification

In this section, we show how we solve the verification problem of LSC usingxisting model-
checker instead of building one from scratch. Machine readable Gfegzes, i.e., an ASCII based

variant of CSP [128], are constructed from LSC models and fed into fobBhecking.

Using FDR, safety, liveness and combination properties can be verifistidwing a refinement
relation from the constructed CSP model to the CSP process capturingpfiertes. Since this is
the standard usage of FDR, we focus on checking that is closely cowjtledur interpretation.

Our interpretation ensures that inconsistency between universds abaults in deadlock. FDR
is capable of telling whether a CSP program is deadlock-free. A courgnme is presented
whenever the validation fails, which gives an important clue to the origin oéth@. There are

two sources of deadlock, one due to inconsistencies between uhigbests and the other due
to violation of a hot condition. The former requires re-investigation of thetesy requirements.
The latter may suggest either there is some inconsistency or the systemrispadiéed and thus

more system requirements are necessary to constrain the state variffilEnty. An existential
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chart is validated by constructing the corresponding CSP processankicg whether it contains
a trace allowed by the CSP model constructed from the universal chragtddition, manual proof
may establish properties of the LSC model expressible with logical expnsssier traces or trace-

refusal pairs.

Example 4.1.3 (Inconsistent universal charts)Figure 4.2 is presented in [68] as a typical example
of inconsistency between universal chartdt is a part of the LSC specification of an automatic
railway system [32]. The objects participating in the scenariogs@r&er, car andcarHandler. In

the left chart, the messagetDest sent from the environment to the car activates the chart, which
requires that following th&epartReq messagedepartAck is sent from the car handler to the car.
This message in turn activates the right chart, which requires the serfdéingaye from the car to

the cruiser before th&art andstarted messages are sent, while the left chart requires the opposite

ordering. end

The program in Figure 4.3 is constructed automatically by our supportingrwenhually simpli-
fied so as to improve readability). The first part of the program consiistsannel definitions for
all communication events in the charts. The set of events visible to a chaekacdy those that
appear in the chart together with the forbidden events. The constructiow$ exactly the oper-
ation semantics rules. Because there is only one message in the prenchast assume that the
internal computation is infinitely faster than the arrival of external stimulesetis no overlapping

activations for this example.

FDR instantly reports that procesgstem is not deadlock-free. A trace leading to deadlock is il-
lustrated as a counter examplelepartAck, setDest, departReq). The right chart is activated by
eventdepartAck. Right after that the left chart is activated by eveatDest. This is possible be-
causesetDest is not constrained by the right chart. After evelapartReq, the system deadlocks.
This deadlock situation is not what we expected. However, it does Irameanplicit assump-

tion that is not captured by the charts, i.@epartAck occurs only aftersetDest and departReq

More complicated examples are available at [148]
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. setDest | |
e | ' departAck __--
S e i
cruiser car carHandler cruiser car carHandler
departReq
departAck engage
start start
started started
engage

Figure 4.2: Inconsistent universal charts

are engaged. This assumption can be embedded using a univerdabrchize following pro-
cess: Env = setDest — departAck — FEnv. We refine the procesSystem as the parallel
composition of the originabystem and Env. FDR reports instantly the expected deadlock trace:
(setDest, departReq, departAck). This example reveals a complication due to implicit assump-

tions we often make on the system, which is an important issue in solving the sigrpheblem.

In order to cope with large systems, CSP algebraic laws are used to simplifpiiseructed pro-
cesses before feeding them into FDR. Compression methods available icd&DIBe applied as

well, as in Figure 4.3 (the first line). For instance, the opd@mondrequires FDR to compress the
system usingliamond eliminationi.e., a node-compression used to reduce the search space based
on partial order reduction. Our construction is extended to handle symibsiances and messages,

i.e., symbolic instances are modeled as processes with parameters ancfodabis, symbolic

messages are modeled as typed channel events.

A CSP process is constructed from an existential chart similarly excepthbarocess for the

existential chart deadlocks after the chart completes. This allows validatieristential charts
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transparent diamond, normalise

channel sync_setDest, sync_departAck, setDest, departRe
departAck, start, started, engage

SetDestSigma(0) = {|sync_setDest,setDest,departReq,de
started,engage|}

SetDestSigma(1l) = {|sync_setDest,start,started,engage

SetDestSigma(2) = {|sync_setDest,departReq,departAck|

SetDestlnst(0) = setDest -> sync_setDest -> departReq -> de
start -> started -> engage -> SetDestInst(0)

partAck,start,

I}
}

partAck ->

[] departReq -> SetDestInst(0) [] departAck -> SetDestInst ©)

[] start -> SetDestInst(0) [] started -> SetDestInst(0)
[l engage -> SetDestInst(0)

SetDestInst(1) = sync_setDest -> start -> started -> engage
[] start -> SetDestInst(1) [] started -> SetDestlnst(1)
[l engage -> SetDestlInst(1)

SetDestInst(2) = sync_setDest -> departReq -> departAck ->

-> SetDestlnst(1)

SetDestlnst(2)

[l departReq -> SetDestiInst(2) [] departAck -> SetDestlnst 2)

SetDest = || x: {0..2}@ [SetDestSigma(x)] SetDestInst(x)

DepartSigma(0) = {|sync_departAck,departAck,engage,st
DepartSigma(l) = {|sync_departAck,engage,start,starte
DepartSigma(2) = {|sync_departAck,departAck|}

Departinst(0) = departAck -> sync_departAck -> engage -> st
-> started -> Departinst(0)
[l engage -> Departinst(0) [] start -> Departinst(0)
[] started -> Departinst(0)
Departinst(1) = sync_departAck -> engage -> start -> starte
[l engage -> Departinst(1) [] start -> Departinst(1)
[] started -> Departinst(1)
Departinst(2) = departAck -> sync_departAck -> Departinst
Depart = || x: {0..2}@ [DepartSigma(x)] Departinst(x)

Sigma(0)
Sigma(1)
Sigma(2)

{|sync_setDest,setDest,departReq,departAck
{|sync_departAck,departAck,engage,start,st
{|setDest,departAck|}

Figure(0) = SetDest Figure(l) = Depart
System = || x: {0..1} @ [Sigma(x)] Figure(x)

{_ Kkkkkkkkkkkkhkk Assertlons kkkkkkkkkkhkkkk _}

assert System :[deadlock free [FD] ]

art,started|}

di}

art

d -> Departinst(1)

)

,Start,started,engage|}
arted|}

Figure 4.3: Machine readable CSP example
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Receive&Talk
Env User Chip Speaker Cover
incomingCall
startRing
open
speakerOff
talk

Figure 4.4: Existential chart

using the notion of refinement. An existential chart is consistent with an LSd&hifoand only if

it specifies at least one trace which is consistent with the universabkchar

Example 4.1.4 (Existential chart) The dotted frame indicates that the chart in Figure 4.4 is an
existential chart. This chart captures the most common scenario of the mbbiie pystem: once
there is an incoming call, the speaker shall start to ring and the user skalklog mobile to talk.

The CSP process constructed for the existential chart in Example 4.1.this fadlowing:

Instance(0) = incomingCall — talk — Stop
Instance(1) = open — talk — Stop
Instance(2) = incomingCall — startRing — speakOff — Stop
(3)
)

Instance(3) = startRing — speakerOff — Stop
Instance(4) = open — Stop

Ezistential = Hizo(fnstcmce(z), ¥y)

3, contains exactly the events of the instance appeared in the chart. Gjvem as the process
constructed from the universal charts of the phone system, FDR edlifieSystem is trace-refined
by procesdizistential. Thus, we are certain that the existential chart is consistent with thersalive
charts. In general, the notion of trace-refinement is too strong for v@lidaf existential charts.
If the chart contains branches, we need to show the CSP construstedHe universal charts is

capable of exhibiting at least one system run allowed by the existentidl char end
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FDR can also be used to verify whether a property holds by showingenedint relationship from
the candidate process to a CSP process capturing the property. Werifgrsafety requirements
by trace refinement and liveness requirements by failure/divergefinement. Safety and liveness
properties may be expressed as universal charts or CSP procesgaly. For example, we may
express a safety property as a universal chart (without pra}at@taining only a hot condition
capturing the property. Formal derivation of CSP processes or L&€ iemporal specifications
and vice versa are non-trivial research topics. The former wasgdisdun [10, 106] and the latter
in [89].

The construction is automated using XML ana/d technology. There is not yet a standard in-
terchange format for LSC. The XML format usedRitay-Engineis not intended to exchange LSC
models. No schema or DTD definition is developed. A part of our work iregutle development of
the first XML standard interchange format for LSC. We start with defitiegsyntax of LSC using
both BNF grammar and XML schema. The BNF grammar is presented in AppBndike XML
schema and XML representation of the charts appeared in this chaptbe ¢éannd online [148].
Together with the XML schema, a parser and a transformation module is hiniff disvA and an
existing XML parser [59] to parse XML representation of LSC models amistuct CSP pro-
grams automatically. The output of the program is a machine readable C&Rmprwith a set of

assertions, which is ready to be employed and verified in FDR.

4.2 \erification of Timed CSP and TCOZ

This section is devoted to a brief discussion on applying verification mechari® visual for-
malisms to validate logic-based formalisms using concrete examples. Timed GEBf @urse
TCOZ) aims at specifying complex real-time systems. However, there is noamieehreasoning
support for Timed CSP models. Indeed, there has been little automationsmmireg logic-based
specification languages for real-time systems. One of the reasons is thétdsgd formalisms like
Timed CSP and TCOZ are so expressive that they are beyond anyreffieiéication techniques.

For instance, Timed CSP allows specification of languages that are ndireg not even context-
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free, which makes model checking infeasible. In this section, we presergttempt at verifying

Timed CSP and TCOZ specifications by reusing existing verification mechanisms

In the field of visual formalism, Timed Automata [2] are often used to modelthesd-systems.
Timed Automata are finite state machines equipped with clocks. Its definition peogideneral
way to annotate state transition graphs with timing constraints using finitely manyataad clock
variables. In a timed automaton, each node is associated with an invariant,anthélesition is
labeled with a guard (a constraint on clocks), a synchronization actaba alock reset set (a set of
clocks to be reset). Intuitively, a timed automaton starts execution with all cloitiedized to zero.
The automaton can stay at a node, as long as the invariant of the nodefisdsatigth all clocks
increasing at the same rate. A transition can be taken if the values of the &liftkthe guard. By
taking the transition, all clocks in the clock reset set are set to zero, whilddbks not in the clock

reset set keep their values.

Example 4.2.1 (Timed Automaton) The following is a Timed Automaton modeling the behaviors

of a door:

closed opening open closing

open? > < > opened! > < > close?
x:=0 x:=0

X<=5 x<=10

closed!
x==10

A double-line circle indicates an initial state in the notion of Timed Automata. Initialeyststem
is at stateclosed. After getting a request through channgkn, the system moves to theening
state whilst resetting the local cloek The opening state is labeled with a state invariank= 5
so that the door takes at most 5 time units to open. After the door is openedsageés sent over
the channebpened. At open state, a request on channgbse moves the system to statévsing,
which is labeled with a state invariant too. The transition out of state@ng is guarded with the

conditionz == 10, and therefore the door takes exactly 10 time units to close. end
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Model checking of Timed Automata has been proven to be decidable [2reTHave been quite a
number of model checkers for Timed Automata [35, 30, %PRAL [9] is one of the most success-
ful tools. It is a tool for modeling, simulation and verification of real-time systemsleled as a
network of timed automata. The properties are expressed as a restriocted sLiTimed CTL [76].
UPPAAL is our choice of model-checker for verifying a network of timed automataumez of its

efficiency (both for model-checking and simulation) as well as its wide m&tog.

Real-time system requirements are often stated using high-level timing cotsstigentimeout
timed interrupt Those are regarded as common timing constraint patterns. For exampek“a
must complete withirt time period” is a typical onedeadline). One problem of designing real-
time system using Timed Automata is the lack of high level composable graphitainsa System
engineers thus often need to manually cast those timing patterns into a seatlofat@mbles with
carefully calculated clock constraints. This process is time consuming amdpgone. On the
other hand, Timed CSP (and TCOZ) is a good candidate for specifyinglermgal-time systems
because it offers a rich set of constructs that can directly capture tt@mmon timing patterns.
One interesting question is thus: can we build a set of Timed Automata pattetreothespond
to Timed CSP timing constructs? If such Timed Automata patterns can be formuteiedllf,
not only we can systematically translate Timed CSP to Timed Automata for validatibraldm
Timed Automata can be used for compositional design. We thus investigatgtilpaslationships
between Timed CSP and Timed Automata. A set of composable graphical pastdefined based

on the Timed CSP hierarchical constructs.

Example 4.2.2 (Timed Automata patterns) The following figure demonstrates sequential compo-

sition of two Timed Automatal, As:

Al A2
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An automaton is abstracted as a triangle, the left vertex of this triangle ofl@aitached to the left
vertex represents the initial state, and the vertical edge representatinealestates. By linking the
terminal states ofi; with the initial state ofd,, the control is passed from; to A, whenA; goes

to its terminal state. The following is the Timed Automata pattern for time out:

X<=t A2

O x:=0 x==t

Al

The initial state of automaton; is labeled with state invariant < ¢, which guarantees the system
must go beyond the state aftetime units. If a transition is taken befotgime units, the control
remains in automatord ;. Otherwise, after exactly time units, automator; times out and the

control is passed to automatah. end

A full list of Timed Automata patterns together with their formal definitions in Z ispreed in [42].
These timed composable patterns provide a reusable high level librarylimfa@ systematic en-
gineering process using Timed Automata as a design language. Furthetmeseepatterns offer an
interchange media for transforming Timed CSP (and TCOZ) specificationa imgbwvork of Timed
Automata, which allows reusing RPAAL to verify Timed CSP (and TCOZ) specifications. The
projection from TCOZ to Timed Automata is automated using the same method preseBiec-
tion 3.4.4, i.e., the ZML parser is reused and a Timed Automata interface andteamsformation

module are built for the task.

However, because RPAAL aims at efficient verification based on the notion of model checking, it
puts strong restrictions on both the system models and properties to bedvétidianstance, guard
conditions in Timed Automata can not compare the valuation of clocks. Morethneproperties

supported by Timed Automata are limited to a small subset of Timed CTL [9]. kerdodovercome
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those limitations, we investigate a complemental approach. The key idea is gf @sirstraint
Logic Programming (CLP [82]) as an underlying reasoner for real-tinystemis modeled with
Timed CSP or TCOZ. We omit the details of the work (refer to [44]) becaugeadnly loosely

connected to the scheme of the thesis.

4.3 Summary

In this chapter, we investigated the validation of visual and logic-basedalams by reusing ex-
isting verification mechanisms. In order to demonstrate that model checkelgfc-based for-
malisms can be reused for verification of diagrammatic notations, we deveddp8& modeling of
LSC and then applied FDR to reveal inconsistency in LSC models. In the ditleetion, we ver-
ified logic-based formalisms Timed CSP and TCOZ using tool support foratimgatic notations

Timed Automata.

As for related works, there have been attempts on formalizing LSC [85, Ib4][L4], Bontemps
and Heymans usediBhi automata to define the language expressed by a set of LSCs. [@lmy ¢
that the standard algorithm for automata can be used to check consisteltefinement. However,
because automata are typically low-level and not structured, flattenindenighLSC into automata
suffers from the state explosion problem. CSP provides a rich set ofasitigmal constructs. Our
work preserves the structure of the LSC model and avoids construcengldbal state machine
both at the chart level or globally. Klose and Wittke [85] derive a similar tim&dHB automaton
to capture the semantics of an LSC chart in isolation. Our approach handlggle charts and is
extensible. In [89], Kugleel at provided a semantics for a kernel subset of LSC using™CWhich
may be used in the development of tools for analyzing and executing LS@e\éo, no explicit
verification support has been discussed. Our CSP modeling of LSCssatlotwonly mechanized
verification of LSCs but also using CSP algebraic laws to solve the synfitesiem of LSCs (refer

to Chapter 5).

Our work is also loosely related to works on formalizing, simulating, and valigafi8 Cs/LSCs,

e.g., the simulation tool developed by Waelgat based on Constraint Logic Programming [156]
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and theoretical works on MSCs by Thiagarajan [91] and Malat [109]. For CSP, thele facto
mechanized verification support is FDR. There is not yet a mechanipethgrmethod for Timed
CSP. The main reason is the complexity of time, e.g., the timed trace and failuretmsroéfimed
CSP is far more complex than those of CSP. As far as the authors know|yhettempt is Brooke’s

work on partial encoding Timed CSP in PVS [20], which relies on heavyingseraction.
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Chapter 5

Synthesis from Scenario-based

Specification

‘how am | to get in?’ asked Alice again, in a louder tone.
‘Are you to get in at all?’
said the Footman.
‘That's the first question, you know!

- Alice’s Adventures in Wonderlandewis Carroll

Synthesis (from the Greek words syn = plus and thesis = position) is commadisrstood to
be an integration of two or more pre-existing elements which results in a natiare In the
software engineering literature, the tesynthesisias been broadly used, to denote different kinds
of problems. In the field of formal languages and temporal logicssymthesiproblem is well
defined, since the late 80s. For open systems, it is interpreted as buildingpi@Ementation that
will preserve a specification against any malevolent environment [5Q], [30], [52], [53], [22],
[54], [55]. The problem of synthesis for closed systems is synonymithssatisfiability [56], [57].

In the realm of scenarios, the meaningsghthesiss somewhat vaguer, as the problem is always

left undefined and only algorithms are discussed [15]. The problemdaeess in this chapter

83
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is of generating implementations that will preserve an LSC specification &gaig malevolent

environment if it interacts constantly with the unspecified environment).

5.1 Introduction

A major challenge of software engineering is to automatically generate lowdgeeutable im-
plementations from high-level specifications. One high-level specificatiospecial interest is
scenario-based diagrams, which serve as an abstract and natyrafl @@pturing inter-object sys-
tem requirements. Sequence diagrams have been a popular meansifgfrgpscenarios of re-
active systems for decades. They have found their ways into many méibado e.g., Sequence
Diagrams in UML [154], MSC in Specification and Description Languagel(S[B1], etc. In
this work, we propose an approach to generate executable progréonsasically from sequence

diagrams, in particular, Live Sequence Charts.

Before generating implementations from sequence diagrams, there areofvlenps to be solved.
The problem of verification is of exposing inconsistency between the atiagr The problem of
synthesis is of deciding whether there exists a satisfying object systeihsamsynthesize one au-
tomatically. The former has been addressed in Chapter 4. The latter id anubdevelopment of
complex systems, as sequence diagrams serve as the manifestation segsenchf synthesizable
they could lead directly to implementation. In the setting of classic MSC, the pralifiegnthesis
has been tackled by many researchers [5, 3, 87, 86]. The concladiuat for reactive distributed
systems, synthesizing a distributed object system with precisely the sdtafibes could be impos-
sible because of its computational complexity as well as the notion of impliedrsaenatuitively,
implied scenarios are additional behaviors that may be present in evéiipudiesd object system

which is consistent with the specified scenarios, i.e., the set of MSCs.

Example 5.1.1 (Implied scenarios)The charts presented in Figure 5.1 show a typical example of
an implied scenario (inspired by the example in [3]). The first two MSCs aesprecification,

where the two event&eq, Ack may occur in either order. The third is an implied scenario, where
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A B A B A B
C—— [ ] [ ] —— —— ——

Req—»> — Ack Ack/

— Ack Req —P>] ><Req\
C— [ ] [ ] —— —— ——

Figure 5.1: Implied scenarios

the reception of both events is delayed. In the third scenario, as faralsjdwA or B can tell, both
of them are executing a specified scenario, deexecutes accordingly as the first aBdexecutes

accordingly as the second. end

In order to avoid the problem of implied scenarios, our synthesis is bawstbe motion of LSC. LSC
is rapidly recognized as a rather rich and useful extension of MSQfeltsoa far more powerful
means for stating requirements for complex systems than MSC. It thus saraasexcellent basis
of mechanized analysis of scenarios, for example, the study of the si;ifireblem. In LSC,
mandatory behaviors are specified using universal charts, whictistireguished from possible
ones (as contrasted with MSC). In this work, we assume that an LSC sp#oifi contains a set of
universal charts, whereas existential charts are only used foif\gpgdest cases. We thus avoid

the problem of implied scenarios (refer to the formal explanation in Sectign 5.6

Despite the absence of implied scenarios, synthesis of a distributed ojgéemsfrom a set of
scenarios remains a hard problem. In general, the distributed synthebiemris undecidable
in almost all interesting settings [122]. In order to deal with the great coritplexe developed
a synthesis method relying on using a finite set of special events to monital gedcution lo-
cally. Nevertheless, our method automatically synthesizes distributed implemestafiizciently
and soundly. The key idea is to develop a CSP model of LSC and then #sg &gebraic laws to
transform the CSP model so that the local behaviors of each objectemtified. The consequence

is that we may construct one process for every object in the systenricagpéxactly its roles in
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the system without constructing the global state machine. Lastly, distributednmaptations are

synthesized based on the distributed processes straightforwardly.

5.2 CSP with Liveness

In the last chapter, modality on locations is ignored because there is nottmuelify about it. It

is however important that we capture the liveness constraint in the wakrahesis. CSP lacks the
expressiveness to capture liveness, i.e., a process may wait infinitglypé&dare engaging in one
of the enabled events. On the other hand, modality on locations in LSC dosgtra execution of
the system by requiring that no instance is stuck at a hot location foim/egvents labeled with a
hot location must eventually be engaged. In order to capture the semdriti8€ aising CSP, it is
necessary to amend the traditional trace semantics of CSP to capturedivdfeesolve the problem

by distinguishingsignals from ordinary CSP eventsSignals are events that must be observed in
the future state. The nameignal, is suggested by Davies. In his work [33], signals are used to

express broadcast communication effectively in Timed CSP.

Let S C X be the set of all signals. For each ordinary event signale is registered. We
remark that signals play the same role as ordinary events, e.g., syna@hgamith signals or events
obeying the CSP rules, except that they must be engaged eventualigemreflect the additional
constraint caused by signals, we define a filter function to eliminate bebdwion the CSP trace
model. The filter functiorf is defined as the following:

‘ F:P—PX*

VPy:PeF(P)={tr:X*|tre€ traces(P1) A
Atr' 5% :S e tr' = tr ™ (8) A tr' € traces(Py)}

Intuitively, a trace satisfies the liveness constraint if and only if all emhbignals have been en-
gaged. Despite the filter function, the mature semantics models of CSP are neainiEie notion
of signal captures (localized) liveness conditions in the same way asdatioios do. In the follow-

ing, modality on location is handled universally in our refined modeling of LSIG@QUCSP. That is,
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events labeled with hot locations are modelediasals, whereas events labeled with cold locations

are modeled as ordinary CSP events.

Example 5.2.1 (Signals)Let SkIP be the short form fow” — Stop. The following shows how to
compute those traces that satisfy the liveness condition:

F(SKiP) = {((vV), X )IXCJE(STOP}—H i
Fle— P)={((e) " s X)| (s, X) € F(P)}

The trace ofSkiP does not include the empty one because the avestiall be engaged eventually.

Similarly, a signal-prefixing shall not idle infinitely. end

5.3 Refined CSP Modeling of LSC

Our modeling of LSC using CSP in Section 4.1 is based on the assumption tretshmer over-
lapping activations of the same chart. Using a finite pool of such pragessemay allow finite
overlapping activations. It is reasonable since our objective in the liagtter is efficient verifica-
tion of LSC models using FDR. In this section, we refine our modeling so thattafiverlapping
activations are not restricted as one of the principles of synthesis is ésyithesized design shall

be minimally restrictive so that further refinement is possible.

During a system run, a universal chart may be activated more tharaodcsome of the activations
may overlap. Therefore, it is necessary to distinguish different dicth@aby associating each one
with a unique identifier. Ley : 1 .. n be the index of the-th activation of a chart.. Each chart is
associated with four groups of special evett§u, z,y) = {ter,.z.y, hcvy, syny,.z.y, forky,.y},
wherez is an optional identifier of the sub-chart. The special event.z and syn,.z used in
Section 4.1.3 are attached wighso that they are synchronized only among participating instances
of the y-th activation of the chart. Everitcv,, is engaged when a hot condition is violated. It is
irrelevant if the hot condition is violated in a sub-chart or a particular atitm. Eventfork,.y is

used to fork a new activation of chart Let>'(u) be the set of special events associated with chart

u,i.e, ¥ (u) =U, U, X (u,z,y). LetY be the set of all special events, i.E!,= {J, ¥'(u).
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The process for locatiohon instance in the main chart of theg-th activation of chart, is denoted
asMainLoca(u,1,1,y). Let MainLoca(u, i,]+ 1,y) be the process of the next.
R1' MainLoca(u,i,l,y) =

(event(l) — MainLoca(u,i,l+ 1,y)){ cond(l) )(tery.y — Terminated,)
wheretemp(cond(l)) = Cold andl # [***

If the condition labeled witH evaluates to true, the system engages in the event and proceeds to
the next location, otherwise, evetdr,.y is engaged to signal all other instances in the chart to
termination. Processes for all other instances in the activation of theareartterrupted byer, .y
to terminate so that the activation of the chart terminates.

R2" MainLoca(u,i,1,y) =

(event(l) — syny.y — Completed,)( cond(l) |)(ter,.y — Terminated,,)
wheretemp(cond(l)) = Cold andl = ["**

After engaging in the event, evesin,, .y is synchronized by all instances in the (activation of the)

chart before any of them completes.

R3’ MainLoca(u,i,l,y) =
(event(l) — MainLoca(u,i,l+1,y))( cond(l) |)(hcv, — Aborted)
wheretemp(cond(l)) = Hot andl # ["**

Eventhcu, is engaged if the hot condition is violated so that all other instances in thegiaati of

the) chart are signaled to deadlock (refeRtt0’). Lastly,

R4’ MainLoca(u,i,1,y) =
(event(l) — syny.y — Completed,)( cond(l) |)(hcv, — Aborted)
wheretemp(cond(l)) = Hot andl = [***

Let PreLoca(u, 1,1, y) be the process constructed for locatiamn instance in the y-th activation

of the pre-chart of chati.

R5 PreLoca(u,i,1?,y) =
(Oe: Xt — PreLoca(u,i,1?,y))
O (fork,?y — Forked |[ ! ]| PreLoca(u,i,1?,y + 1))
where instance is not in the pre-chart of, and
Forked = 1 X o ((syn,.y — MainLoca(u,i,1?,y)) O

(Oe: X, — X)) Vier,.y Terminated,
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Before synchronizing the entering of the main chart and then behavisgezsfied by the main
chart, the instance may engage in any everiinor synchronize on everfork,.y to fork a new
copy of the process (in case this chart is activated by engaging in exsstsiated with other
instances). The activation terminates whenevera y event is engaged (due to either violation of

a cold condition or engaging in an unexpected event in the pre-chart).

R6’ PreLoca(u,i,l,y) =
(event(l) — PreLoca(u,i,l+ 1,y)
O (Oe: X\ {event(l)} — tery.y — Terminated,))
{ cond(1) )
tery.y — Terminated,
where locatiori is neither the first location nor the last.

If the condition evaluates to false, the process signals all other instanties @hart and termi-
nates. Otherwise, if the expected event is engaged, the processgsdodhe next location, else,
the process engages in an unexpected event and puts no furtheraicore the system (L1 in

Chapter 2).

R7' PreLoca(u,i,l,y) =
(event(l) — syny.y — MainLoca(u, 1,19, y)
O(Oe: X\ {event(l)} — tery.y — Terminated,))
{ cond(l) )
tery.y — Terminated,
where the location is not the first location but is the last.

After engaging in the event, the instance waits for the synchronization andgticeeds to the first

location of the main chart.

R8' PreLoca(u,i,1?,y) =
(event(lY) — fork,'y — ((PreLoca(u,i,l},y) Vier,, Terminated,)
[[3%]] PreLoca(u,i,19,y + 1))
O (De: X\ {event(1?)} — PreLoca(u,i,1?,y)))
O (fork,?y — ((Forked Vter, ., Terminated,)
[[% ]| PreLoca(u, i, 12,y + 1)))
{ cond(15) )
PreLoca(u,i,12, )
where the location is the first but not the last and
Forked = (event(l?) — PreLoca(u,i,1},y))
O (De: XL\ {event(1?)} — Forked)
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A new process is forked whenever an expected event is engagedway system runs that trig-
ger overlapping activations of the same chart are properly constrairfexispecial events are not
synchronized between different activations. Lastly,

R9' PreLoca(u,i,1?,y) =
(event(19) — fork,ly — syny,.y —
(MainLoca(u,i,1?,y) Vier,, Terminated,)
[[3% ]| PreLoca(u, i,19,y + 1)
O (™De: X\ {event(l?)} — PreLoca(u,i,1?,y)))

s Uy b

O (fork,?y — ((Forked Ve, ., Terminated,)
(2, ]| PreLoca(u, i, 1, y + 1)))
{ cond(1) )
PreLoca(u, i,1?,y)
where the location is the first and the last and
Forked = (event(l?) — syn,.y — MainLoca(u, 1,19, )
O (De: XL\ {event(1?)} — Forked))
Whenever a chart is activated, the subsequent behavior of the sigstamstrained by both the
process (for this activation) and the newly forked process (for atwrd activation) and, therefore,
remains valid R5’,R8",R9’). The process’reLoca(u, 1,0, y) allows, in general, infinite overlap-
ping activations of the same chart. Lietstance(u, i) be the process for instan¢én chartuw.

R10' Instance(u,i) = PreLoca(u,i,0,0) Ve, Aborted

The process deadlocks whenever a hot condition is violated. Eachcamaists of a finite number
of instances. LeChart(u) be the process for chaat
R11" Chart(u) = Hi(Instance(u, i), 2L UY (u))

The process is an alphabetized parallel composition of the processksnstances in the chart.
Whenever a hot condition is violated, the process deadlocks and,dherdfe system deadlocks.
An LSC specification consists of a finite number of universal chartd) eanstraining its visible
events. Lef be the process synthesized from the LSC specification. The processipltabetized
parallel composition of the processes of all universal charts in théfgadion.

R12' T = (||, s(Chart(u), S, US/(w))) \ %) || RUN

The RuN portion is added to make sure events which are not visible to any of thersal\eharts
(but may appear in some existential chart) can occur freely. Prdciesan implementation of.

Formally,
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Theorem 5.3.1 F(Z) C Nyes £,(w)

Skeleton of proof: From the construction ofhart(u), it is clear that only behaviors satisfying
the chart are allowed. Whenever a chart is activated, a new copykisdfdo monitor subsequent
possible activation of the chaRp’,R8’,R9’) and because all activation shares the same set of vis-
ible events, system execution is constrained by all activations. Becatsblg events are not
constrained, they are free to occur between any consecutive encarof visible events. Because
events labeled with hot locations are mapped to signals, system runs stadkoalocation are

filtered by the functior=. We skip the full proof as it is extremely lengthy. O

Example 5.3.2 (Process synthesigyart of the charffalk (presented in Example 4.1.2) (instance
env, user, cover) is interpreted as the CSP processes presented in Figure 5.2. Thenilumion

is available online [148]. end

5.4 Synthesis

This section is devoted to our solution for the synthesis problem. We firdtdalosed systems and
then discuss how to extend our approach to solve a restatement of theutkstisignthesis problem
for open systems. Our synthesis makes use of the algebraic laws of CSPli%in Section 2.2
and the following derived ones. Law L6 is a direct consequence of karld L5. Law L7 is the

generalized form of law L6.

(P1 x|ly P2) xuyllzuw (Ps z|lw Pa) = (P1 x|z P3) xuz|lyow (P2 v [lw Pa) — L6
17 (P U2 = [ (17, (P20, U =) -
It is important that during synthesis the global state machine is never cotestra hat is, we need
to identify a local process, equipped with local liveness conditions, doh @bject in the system
without first constructing the global one. In the following, we prove thaiuncontext, it is sound
to associate the liveness condition (modality on locations) with the local mesdsstead of the

global process. Equivalently, we want to show that the following lemmasfbolll P, P, : P.
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MainLoca(talk, env,0,y) = talk — syn.talk.y — RUN —byR4’
MainLoca(talk, user,0,y) = talk — syn.talk.y — RUN — byR4’
MainLoca(talk, cover,0,y) = syn.talk.y — RUN —byR4’

(
MainLoca(talk, chip,0,y) =
speakOff — displayTime — syn.talk.y — RUN
MainLoca(talk, speaker,0,y) = speakOff — RUN
MainLoca(talk, displayer,0, y) =
displayTime — setDisplayTime — RUN
PreLoca(talk, env,0,y) =
(talk — PreLoca(talk, env,0,y)) O
(fork.talk.y —
(n X o (syn.talk.y — MainLoca(talk, env,0,y)
O talk — X)
Vter.talk.y RUN) |[ talk ]| PreLoca(talk, env, 0,y + 1)) —byR5’
PreLoca(talk, user,0,y) =
(open — fork.talk.y — syn.talk.y —
((MainLoca(talk, user,0,y) Vier taik.y RUN)
[ open, close, talk ]| PreLoca(talk, user,0,y + 1)))
O (close — PreLoca(talk, user,0,y))
O (talk — PreLoca(talk,user,0,y))
O (uX e fork.talk.y —
(((open — syn.talk.y — MainLoca(talk, env,0,y))
0 (close — X O talk — X)) Veo.tatky RUN)
|[ open, user, talk || PreLoca(talk, user,0,y + 1)) —byR9’
PreLoca(talk, cover,0,y) =
(open — fork.talk.y — ((PreLoca(cover,1,y) Vier taik.y RUN)
|[ open, close, coverOpened || PreLoca(talk, user,0,y + 1)))
O (close — PreLoca(talk, cover,0,y))
O (coverOpened — PreLoca(talk, cover,0,y))
O (uX e fork.talk.y — ((open — PreLoca(talk, cover,1,y))
O (close — X)) O (coverOpened — X)) Vier taik.y RUN) —byR8’
PreLoca(talk, cover,1,y) =
(coverOpened — syn.talk.y — MainLoca(talk, cover,0,y))
O (close — ter.talk.y — RUN) O (open — ter.talk.y — RUN) —byR7

Figure 5.2: Synthesized processes
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Lemma5.4.1 F(P; x||y P2) 2 F(P1) x ||y F(P2)
Proof: This lemma is proved by the following:
Vir:X*etre F(P1) x|y F(P2)
=Ae X e (trXp) " (e) € traces(P1) ANBey: X e (tr | Bp,) " (e2) € traces(Py)

=Ae:Yetr™ (e)c traces(Py x|y P2)
:>t7“€f(P1)(||y PQ) O

Intuitively, Lemma 5.4.1 states that if both components cannot engage in & aigreatain point
of execution, then the composition cannot engage in the signal eithereVése of Lemma 5.4.1
is not true. A counter example i$} is a trace otF (P15, |5 oy P2) butnotF(P1) 5y Il o
F(P3), whereP; = (a — StopO b — STOP) and P, = ¢ — STOP.

n

Lemma 5.4.2 (|| (||, (P121).U; £0) 2 || (F (||, (PL.£1). U, ) 0

Lemma 5.4.2 can be proved straightforwardly using law L7 and the genet&biza of Lemma 5.4.1.
It states that we may rewrite the global liveness condition in terms of localds& conditions
soundly, i.e., the accepting states of each object in the system can be iddotfily without re-

ferring to the global state. We are now ready to synthesize distribute@gmes which group the
local behaviors of each object. For simplicity, we assume that all evenémappat least one of the

universal charts.

F(T) = F(|| s (Chart(u), 2, U (u)) \ ) -R12’
= .7-"(Hues((Hi Instance(u, i), 3 U Y/ (u)), %, U (u)) \ ¥) —-R1YT
= .7-"(‘|Z,((Hues(1nstance(u, i), %8 UX (u)), (U; ) ux)) -L7
2 HZ( ((Hues(Instance(u, i), 28 UY (u))), (U; 2%) ux) —Lemmab5.4.2

We remark that the underlined portion of the process identifies the locaVtoetof an object in the
system equipped with local liveness conditions (dnd>%,) U X' is its alphabet). The soundness
is an immediate consequence of Theorem 5.3.1. If there are events that dppear in any of
the universal charts (but do in some existential chart), we may localize tinéme corresponding

instance processes straightforwardly.
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User VM User VM
insert_coin insert_coin |
select_coffee claim_money
coffee B money
forbids forbids
] money ] ] coffee ]

Figure 5.3: Unsatisfiable universal charts

So far, environmental objects are not distinguished from system objEotsinstance, in Exam-
ple 5.3.2,user is considered as part of the system and the local process capturingpagidos is
synthesized in the same way as for objeeter. Thus, we handle only closed systems but not
open systems, i.e., systems that interact with the environment frequentlgyiitinesis problem for
closed systems is often referred to as satisfiability, i.e., whether the langtiaggpecification is
non-empty, or equivalently if considering the environment as part ofytbies, whether there is a
benevolent environment in which some implementation can be deployed intoradill the spec-
ification. Synthesis for open systems, however, asks whether therarnigpdementation that can
be deployed in any malevolent environment. In literature, the synthesiteprdbr open systems
has long been recognized as a hard problem. It is even harder to sigethistributed imple-
mentations without constructing the global state machine, i.e., undecidable irt aliioteresting

settings [152, 98, 122, 99]. Thus, we take a lightweight approach téetttoi problem.

Figure 5.3 illustrates the intuition behind our method. It shows two simple uaiveharts of a
vending machine. This example is borrowed from [18], where it is used tstridite the differ-
ence between synthesis of closed systems and synthesis of open sy$tess. two charts are
unsatisfiable under the assumption that the implementation should deploy invargnerent and

user is considered as part of the environment. For instance, consideringlibwihg sequence of
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environmental eventsinsert_coin, select_coffee, claim_money), neither of the universal charts
can be satisfied. In practice, however, tfeim_money event is typically blocked after event
select_coffee and before eventusert_coin. In general, when system engineers design systems, im-
plicit assumptions on the environment are often made (enforced later irddbe user-interface

at a certain time, using a queue to delay the arrival of the environmentatisewtc.). Therefore,
instead of synthesizing an implementation that works in any environment (Mghadrtainly hard

to do and unlikely to be successful), we synthesize one that works in theledeenvironment. In
other words, we deal with a restatement of the synthesis problem forsygams: given a (partial)
modeling of the environment and an LSC specification, build a distributedtahjstem such that

for every refinement of the environment, the object system satisfies Besp&cification.

In our method, objects are partitioned into either environmental objects mnsyabjects. Events
are also partitioned into either environmental events, writtell,a® system events. An event is an
environmental event if and only if it is a local action of an environmentalailgea communication
event which requires the participation of an environmental object. Thersydesigner is asked
for a modeling of the intended environment, preferably using universats, which captures all
implicit assumptions on the environment. We may then synthesize implementationshlaé ¢
deployed in the intended environment or any refinement of it. Differemhfdealing with closed

systems, the implementation should not restrict the intended environment iregny w

Given the modeling of the environment, local processes for the envirdah@rjects are firstly
synthesized in the same way that system objects are synthesized. We tifiethee the synthe-
sized process for the environment (alphabetized parallel compositidirited anvironment objects),

denoted ag/nv, simulates the user-supplied modeling, eEjV,V'.

ENV J Env \ (Z\E)UY)

By hiding all internal communications and local actions and special synidation, an implicit
assumption, i.e., the internal computation is infinitely faster than the incoming ohaktimuli,

is enforced. Using FDR, we may automatically verify the refinement relation of the two pro-

Lwithout the assumption, forbidden environmental events will not beilpless
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insert_coin—m|

— select_coffee—»
et coffee

—— claim_money—»
<€—— money

Figure 5.4: Environment modeling

cesses. This way, we make sure the implementation behaves correctly in tiiethenvironment.
From another point of view, the processes synthesized for envirdairadjects are indeed system
processes which monitor the interaction between the environment and teensysd trigger the
appropriate special events at the proper point of execution. Thenedint relationship therefore

ensures that no interaction is missed.

Example 5.4.3 (Environment modeling) In the vending machine example, the assumption on the
environment (users) can be modeled as the universal chart preseriigure 5.4. After inserting
the coin, the user shall either request coffee and wait for the coffelaion the money and wait for

it. Thus, the eventlaim_money is temporally disabled after the evewtiect_coffeec. Semantically,

the chart is equivalent to the following CSP process.

ENV = insert_coin —
(select_coffee — coffee — ENV O claim_money — money — ENV')

end
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—— LSC Editing Panel . Rose RT Class Diagran
Convert LSC to XML " . Generate Java with Ros

Y o B Yoo
‘ LSC in XML ‘ e Java Skeleton from Ros

Feed Back Veri. Result

Parse XML|using Xerces Generate Ja‘fa Classes

Pro-process

‘ Internal Rep. of LSC ‘

Translate LSC 0 mCSP o )
Translate to Dis. Processes R N Y

‘ Machine Readable CS‘P ‘ Distributed Processes‘ ‘ Class Skeleton in Jave%

Generate Behavioral Java Code

‘ Executable Java Implementations ‘

Figure 5.5: Workflow of the synthesis

5.5 Generating Implementations

An experimental tool has been implemented using XML amgh Xechnology to automate our ap-
proach. One of the benefits of using CSP as an intermediate languagetietieatxist CSP-based
process oriented design patterns for concurrency implementedan de., in programming engi-
neers’ terms,AVA libraries for CSP. Two libraries are available, Communicating Threadsxfer J
(CTJY and CSP for &va (JCSP) [158]. We implemented our approach using the JCSP package
mainly for its support of barrier synchronization. After identifying the losahaviors of each
object, executable codes are generated by translating the distributexggedo AVA programs

making use of CSP-like constructs provided by JCSP.

The schematic workflow of the synthesis is illustrated in Figure 5.5. An italicifafitates works
under development, e.g., a user-friendly drawing panel for user talidteand refine LSC models

and associate objects with local data variables, a pre-processing modhaesiate the Al/A code

2www.ce.utwente.nl/javapp/information/Communicating_ Java_Threads/Default.html
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generated from class diagrams drawn in Rational Rose [124], etc. [ake skeleton is either
generated from user inputs to the drawing panel (where users havedduce the object type
before adding an object instance to the system, introduce a local dathledrédore using it in the
condition, etc.), or generated from class diagrams using Rose andquesped. The data aspects
of an object are defined as a separate class. That way, we allow multifgledas of the same object

type in the system.

Every local action or condition is implemented as a method in the respective Clasefore, the
system makes a method call whenever a local action or a condition is enealidiging execution.
The implementation detail of the methods is supplied by the user. For each wbijketclass, a
separate class is defined to realize its local dynamic behaviors. Eachisljgesociated with a set of
channels for communicating with the rest of system and a set of synchtimmibarriers to realize
the CSP-style synchronization betweBtstance(u, 7). Each communication event is associated
with a channel definition. Its occurrence in the charts is translated intedd), write() operation

on the respective channel. In JCSP, we may specify the capacity ofahealas either 0 or more,

which saves us the work of modeling the buffers for asynchronous congation.

Each shared event betweémstance(u, i), either a communication event or local action, is asso-
ciated with a synchronization barrier. The shared event is only engdtgrdhe respective barrier

is synchronized by all instances whose alphabet includes the evensp&bial eventsier,, hcv,,
syn.,, andfork,, are implemented as synchronization barriers at the system level sincgytiatyo-

nize different objects. We remark thatv, is redundant for the purpose of simulation as we may
terminate the AvA virtual machine whenever a hot condition is violated and proper information is
displayed. Simple timing requirements in LSC likgtimer andtimeout are supported using the

CSTimer offered by JCSP.

Example 5.5.1 (Code generation)The high-level program generated for objé&tip is presented
in Figure 5.6. There is a direct mapping between the programs and thespescé&-or instance, the
first part of the top-most class contains channel definition, one fdr @aent in the alphabet. After

that, there is declaration for each object in the system. The system is tilelgamaposition of the
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class PhoneSystem implements CSProcess {
/[Barriers for synchronization of entering and exiting
private Barrier barrier_OpenCover = new Barrier ();
private Barrier barrier_CloseCover = new Barrier ();
private Barrier barrier_Receive = new Barrier ();
private Barrier barrier_Talk = new Barrier ();

public void run () {
/IChannels connecting objects
One20neChannel open = new One20neChannel ();
One20neChannel coverOpened = new One20neChannel ();
/IComponents in the system
User inst_User = new User (open, close, talk);

Cover inst_Cover = new Cover (open, coverOpened, close, cov erClosed);
Chip inst_Chip = new Chip (coverOpened, displayMenu, cover Closed,

displayTime, incomingCall, startRing, displayCallerID, speakerOff);
Speaker inst_Speaker = new Speaker(startRing, speakerOff );

Display inst_Display =
new Display(displayMenu,displayTime,displayCallerID)
Env inst Env = new Env(incomingCall, talk);
//System initialization
CSProcess[] parArray = new CSProcess|[]

{inst_User,inst_Cover,inst_Chip,inst_Speaker,inst_D isplay,inst_Env};
Parallel sys = new Parallel (parArray);
sys.run();

}

} class Cover implements CSProcess {
/[Channel and barrier definitions
//Sub-processes
private Cover_OpenCover OpenCover;
private Cover_CloseCover CloseCover;
private Cover_Talk Talk;

//Data

private Cover_Data data = new Cover_Data();

/IChannels

public Controller (One20neChannel open, One20neChannel ¢ overOpened,

One20neChannel close, One20neChannel coverClosed) {
OpenCover = new Cover_OpenCover (data,open,coverOpened)
CloseCover = new Cover_CloseCover (data,close,coverClos ed);
Talk = new Cover_Talk (data,open,coverOpened,close);

}
public void run () {
new Parallel (new CSProcess[[{OpenCover,CloseCover,Tal k}).run();

}

Figure 5.6: Example synthesizeavd program
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instance threads. The dynamic behaviors of each object is encapsolageclass definition. end

5.6 Summary

Compared with Hoare’s grand challenge on verifying compilers [78], @gizked generation of
programs from high-level specification is an alternative and equally cluaig approach to correct
programs. This work can as well be viewed as a way of achieving Hahedam as in [66], i.e.,
synthesizing codes all the way from scenarios. In [17], Bontemps ahdiBens showed that
both verification and synthesis of LSC are computationally expensive inthiegiretical study. For
the verification problem, our solution is to make use of existing mature modekehestead of
building one from scratch which allows applying mature techniques for tieethak. Our solution
to the synthesis problem replies on using a set of additional events. Vhddeis of using the
bounded set of synchronous events to monitor global execution loaadlyjeld a distributed design
without constructing the global state machine. In general, our approaduisl and as complete
as possible (some assumptions due to practical concerns may harm theteopgsee.g., finite
overlapping activations of the same chart). The main contribution of this imohkdes a complete
system engineering method that automates the generation of implementation alitfrenwv LSC,

a set of generalized interpretation rules, and a lightweight approacmttbehapen systems, etc.

Being based on LSC, our method avoids implied scenarios. It is explained fioltbwing using
CSP notions. Le{;} wherel < j < n be the set of MSCs. LeMji wherel < ¢ < m be the
process capturing the behavior of instanaethe chartl/;. An implementation of the specification
shall therefore exhibit exactly the following behaviors:

(|2, (£, 20) O (||, (M3, 25) O -+~ 0 (|1 (M, 1))

whereE_;ﬁ contains exactly the events of the instance appeared in the/dhatfthe distributed object
system inferred from a set of MSCs should be composed of finite stategg®s modeling each of
the objects appeared in the scenarios. Each object should exhibitiesnseg of events at least all
scenarios projected to the time line of that component. Formally, the behavior albject shall

at least exhibit the behaviors captured by the following expressigho M} O --- O M. The
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existence of implied scenarios may be explained using CSP algebraic lavesfakawing (proved
by T6 andT8 in Section 3.2.2):

traces( H (M, %8)) ” MQ,EZ -0 (Hil(Mﬁazﬁ)))
C tmces(” (M1 oMiO---O M1 21)))

where X’ contains all events of objeat The occurrence of additional scenarios is because the
scenario-based model describes allowed system behaviors fromad, gigdtem-wide perspective,
whereas in the distributed object processes each agent acts locatlyddseal information. Con-
trasted with MSC, which captures only examples of system behaviors,@uhi8ersal chart spec-
ifies mandatory behaviors. In other words, a universal chart ainstall behaviors of the system.
Therefore, the precise behaviors of an implementation are captured pgriles| composition (in
contrast to choice) of the universal charts (refeRt®’). If an instance is missing from an MSC
M;, no event regarding this instance can be engaged in the scenari@ji.e.,@. However, the
semantics of universal charts state that a universal chart constralings visible events and in-
visible events can occur infinitely between any two consecutive ocagrehvisible events, i.e.,

Mji = RUNy;:. This serves as the basis of our transformation in Section 5.4.
J

As for related works, the synthesis problem of MSC has been studietsaely [5, 3, 87, 153, 86,

87, 72]. The synthesis problem of LSC was initially discussed by HaceKaigler in [68], in which

they tackled the problem by defining the notion of consistency of LSC motleést approach starts
with constructing aglobal system automataand decomposes it by different means (refer to [68]
for details). Their approach suffers from the state explosion problsrtalthe construction of the
global system automatpwhich is often of huge size because of the distributed nature of LSC and
the underlying weak partial order semantics. The characteristic of otk iwdhat we use CSP
algebraic laws to identify local behaviors of each object without evestcocting the global state

machine.

In [18], Bontemps, Schobbens anéding discussed the synthesis problem for a small subset of
LSC (LSC without conditions, structuring constructs, modalities on locatindsv@essages). They
proposed a game-based semantics for LSC, which leads to the notionsigteany of their LSC.

Their work is later extended to handle all LSC constructs but unboundsgsdito[13]. In our
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approach, almost all LSC constructs are supported except complexdiateerones, which deserve
a complicated discussion and thus are left to the future works. We remaithéhsame result can

be derived using automata (e.gij@i Automata [23]) with a painfully complicated procedure.

In [17], Bontemps and Schobbens investigated the complexity of varialdgmns associated with
LSC. The results are pretty negative, i.e., they showed that centralizeel4ctoetking of LSC is
Co-NP-complete, the distributed model-checking is PSPACE complete and ttieutésl realiza-
tion problem is undecidable. In our work, we use a set of special efleoisided by the maximum
number of overlapping activation of the universal charts and the nuafliee universal charts) to
avoid undecidability. Thus, our work can be viewed as a lightweight amproln [69], Harel, Ku-
gler and Pnueli re-investigated the synthesis problem of LSC by adoptigigt@eight approach as
well, i.e., they generate Statecharts from LSC and then verify them foeataess, and thus avoid
undecidability. A similar approach is evidenced in [16], where BontempsEgyed proposed a
technique coupling translation and verification to cope with undecidability. éieark that such
an approach certainly works for our approach as well except thabhwst deal the complexity of
model-checking of complicated distributed systems. In addition, there is tHeiw@85], which
synthesizes a timedighi Automaton from a single chart only. What makes our goal both harde

and more interesting is in the treatment of a set of charts, not just a single one

Besides, a remotely related problem known as controller synthesis hastoeed for many years
both from a computer science and control-theoretic perspective [24,223 122, 99, 123]. How-
ever, the research on controller synthesis has been focused on tutmmanot scenario-based

specification languages like LSC.



Chapter 6

Synthesis from State-based Specification

The Caterpillar was the first to speak.
‘What size do you want to be?’ it asked.
‘Oh, I'm not particular as to size,
Alice hastily replied;
‘only one doesn't like changing so often, you know.

- Alice’s Adventures in Wonderlandewis Carroll

In the last chapter, we offered a mechanized way of generating pretotygementations for sys-
tem engineering starting with scenario-based specification. The appioatspecial interest be-
cause scenario-based diagrams are widely used as a specificatiomgamgearly stage of system
development. However, both LSC and MSC have limited expressiveneg®difysng data and

functional aspects of complex systems. Formal specification languages/Gigect-Z offer an

alternative state-based high-level system modeling. They can be usadyistages of system de-
velopment to specify a data and functional model of the system, and thesefive as another good

starting point for synthesis of implementation.

The notion of separation of concerns is a common technique to fight compilexafstem devel-

opment. A practical approach is to focus on system functionalities befodelmg the dynamic

103
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control flow of the system. An early stage data model typically contains d ebjerts/classes, data
variables and the associated abstract operations in each class. Tliede cam be documented us-
ing Class Diagrams or formally modeled as Object-Z [161, 137] specificatinrikis chapter, we
investigate ways of synthesizing implementable designs (i.e., a control pragthe form of finite

state machines) from Object-Z specifications.

6.1 Introduction

Object-Z with history invariants can present precise and abstract madatsrhplex systems. A
system design in Object-Z is relieved from behavioral aspects of thensysthe system behav-
ior patterns are implicitly embedded within state/operational constraints aniipadtly, history

invariants. However, without explicit system behavior representatibissdifficult to implement

such abstract models. Thus, we propose a sound and systematiccipioreaitomatically extract
explicit implementable system behaviors, as a control program to restrisetiences of invo-
cation of operations, from Object-Z specifications. The ultimate goal ofaauk is to generate

implementations from high-level designs in Object-Z automatically.

An Object-Z specification captures safety requirements by specifying icteariants and pre/post-
conditions for data operations. Liveness requirements are captuigdtbgy invariants. We gener-
ate finite state machines that are guaranteed to satisfy both sets of requseAudtitionally, be-

cause Object-Z distinguishes external variables (variables followedjogstion mark) from state
variables, it can be used to model open systems. Crucial requiremermpeiorsystems are also
to be satisfied by the synthesized state machines, i.e., the state machines shimitddauce fresh

deadlocks and should work correctly in any environment. We call sutd stachines realizations

of the Object-Z specification.

In order to handle Object-Z specifications with infinite data space, a ptedibatraction schema
is developed to build an abstract finite state machine from an Object-Z spé#oificAll behaviors
of the concrete Object-Z specification is allowed in the abstract state machhee.number of

abstract states is bounded by the number of predicates for abstractiveakdabstract relation is
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used so that the abstraction can be automated by general theorenspit@/&VS [117] paying a
reasonable price. Furthermore, the raw state machine is refined to sdti#iprzal requirements.
Finally, an Object-Z specification is realized as a finite state machine with its transsétoguarded
function calls. The soundness is proved by showing that there is a faitegiorurelation from the

realization to the specification. A tool is implemented AvAl to demonstrate our method.

The reason why our approach is beneficial is twofold. Firstly, finite statehimas are closer to
implementations than Object-Z models, i.e., they are implementable. In our settingptet®im-
plementation of the system may be generated if the implementation of each opérasiolation
is supplied. This conforms to one of the principles of object-oriented asaysl design, i.e., pro-
cedural thinking should be postponed as long as possible. Secondigabization is “minimally”

restrictive so that further refinements are possible without breakingfahg requirements.

6.2 Extracting Raw State Machine

In this section, we discuss how to extract a finite state machine realizatiomfr@bject-Z class. A
finite state machine is an abstract machine that has only a finite constant ashmerhory. It can

be viewed as a flattened UML Statechart. There are finite many states dnst&achas transitions
to states. Transitions are triggered by observable events. Additionallg,dhe one or more initial

states and final states.

Definition 13 A state machinteis a 6-tupleM = (S, Sy, F, X, T, I) whereS is a set of states,
So C S is a set of initial statesf’ C S is a set of accepting states, is the alphabet and’ :
S x ¥ — S is a transition function andl labels each state with a Boolean formula over a given set

of propositions.

The Boolean formula labeled with a state is also referred to as state invarraphiGally, an initial

state is indicated by an arrow from nowhere. A double-lined circle reptesan accepting state. A

Ltis also referred as labelled Kripke Structure.
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run of the state machinés; , e1, s, €2, - -, 8;, €;, si4+1, - - ), IS @n alternating sequence of states and
events subject to the followingti : N | ¢ > 1 e (s, ¢, 8:41) € T ands; € Sy. An accepting run

is a finite run ending with an accepting state or an infinite one where sometiaccsiate repeats
infinitely. A state is reachable if and only if there is a finite run that reachesoit simplicity, all
states subsequently mentioned are reachabfalsA state, i.e., a state labeled wiftise, is always

removed.

Definition 14 Given two state machine¥l; = (S, Sy, F',%, T,I) wherei € {1,2}, a state ma-
chineM = (S, 5, F,%, T,I) is the product, written a3/, || My if M.S = M;.S x My.S

andM.Sy = M.Sy x My.Sg and M.FF = M.F x My.F andM.> = M;.¥> U My.> and
M.I = {((s1,82) — Mi.I(s1) N Ma.I(s2))} and T is the least subset &f x ¥ x S satisfy-

ing the following conditions:

(s1,82) € M.S A (s1,e,8]) € Mh1.T N ed My X = ((s1,52),¢€,(81,%)) € M.T

. 1)
o (s1,8) € M.SA (s2,e,8) € Ma. T Ned Mi.X = ((s1,82),¢€,(s1,85)) € M. T
o (s1,8)€ M.SA(s1,e,8) € M. T A (s2,e,85) € Ma. T

= ((s1,82),¢,(s1,85)) € M. T

The parallel composition is symmetric and associative. The indexed profiomailtiple state ma-

chines is written a'HZ_ M, wherei is the index.

Definition 15 Let M; = (S, S, F, %, T,I) wherei € {1,2} be two state machines. A total

relationR : M,.S — M5.S is a fair simulation from\M{; to M, if it satisfies the following:

Cl Vs:M.5e R(S) € Ms.S

c2 V(Sl, 6,82) < Ml.T; Si : MQ.S ’ R(Sl) = 8{ °
Jsh: My.S e (s, e,85) € Ma. T AN R(s2) = 85

C3 Vs:M.Fe R(S) € My . F

Informally, C1 states that there is one initial statefify corresponding to every initial state i .
C2 states ifM; can engage in an event at certain stafe,should be able to simulate the transition
at the corresponding stat€3 guarantees that all final statesify are simulated in/;. A similar

definition appeared in [41]. Later development can be found in [75]hdfe is a fair simulation
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relation fromaf; to Mo, then M, fair trace-containd/y, i.e., it is possible to generate by, every
fair sequence of operations that can be generatetifhy The notion of fair trace-containment is

robust with respect to LTL [75].

6.2.1 Predicate Abstraction

As introduced in Chapter 2, the operations of a class form a named colledtietations, which
determine a transition system in which an operation may fire exactly when itscanmition is
satisfied. Due to the blocking semantics of Object-Z, an operation is blockseifie its precondi-
tion. The semantic model of an Object-Z class consists of all the sequehopsrations/events
which can be performed by objects of the class. The implicit behavioral ebda Object-Z class
can be expressed as the following CSP procesg3detvior be the process capturing all possible
behaviors of instances of the class,

Behavior = p R o
([pre( Operationy )| @ Operation; O
[pre( Operations)] @ Operationy O
-0
[pre( Operation,,)] e Operationy,); R

The state space of an Object-Z class may be infinite. For examge.cae object may contain
infinite items. However, an implementable control structure may only contain a finitéer of
control states. It restricts the behaviors of an object (specified bybgarZ class) based abstract
interpretations of the data variables. For instance, Figure 6.1 is an dlisteapretation ofQueue
objects in which only the number of items (not the actually content) in the queoadcemed. We

present a method to calculate predicate abstraction of an Object-Z class.

Given a finite set of predicatd? (in terms of the state variables) for abstracting an Object-Z class,
the set of abstract states, denotedascontains conjunctions of subsets of the predicate3:in

Se={z|IXCPez=A\XU{-e|lecP\X})}

An abstract state groups all possible valuation of the state variables wafife predicate:. For

instance, the state labeled withitems > maz in Figure 6.1 groups all instances of state schema
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Join Join
Join
Join Join

#items=0 Leav Leave #items>max
Leave

max>=#items>0

Figure 6.1: Abstraction of)ueue

in Queue where the number of items iitemns is greater thamnaxz. For simplicity, we require that

the set of predicates for abstraction includes the predicate in the initiahsche

Example 6.2.1 (Abstract states)Let P = {#items = 0, #items < maz}. The set of abstract

states is (assumingaz > 0):

Sa = {F#items = 0, max > #items > 0, #items > mazx}

The abstract statgitems = 0 A #items > maz has been removed because it is infeasible. The

abstract initial state ofucue class iSS(INIT) = #items = 0. end

Given an operation, it is necessary to find out the abstract states ameperation can be invoked
without violating its precondition and the abstract states which can be kdighapplying the
operation. We define a functiory to compute the weakest formula ovBrwhich implies a given
predicatep.

‘ W : Predicate — P Predicate

‘ V' p : Predicate e W(p) ={z € S, | = p}

The motivation is that ip is the precondition of an operation, thi#¥(p) is the largest set of abstract
states where the operation can be invoked without violating its preconditi@ddition, we define
a functionS to compute the abstract states where a given predicate might be true.

‘ S : Predicate — P Predicate

‘ V' p : Predicate @ S(p) = S, \ W(—p)
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If p is the postcondition of an operation at a state, t§én) is the set of abstract states that may
be reached by applying the operation at the state. FunStiworks by pruning all states where the
predicate is proved to be false. Thus, all states where the predicate &drpessent in the result,

together with states where we are uncertain if the predicate is true.

FunctionS is used to automatically construct abstractions of an Object-Z specification INTT
schema is abstracted 8$INIT), so that every possible initial state is grouped in the abstract initial
state. We calculate abstraction of an operation by abstracting its precorsatitiopostcondition.

The precondition is replaced I8(pre Operation), i.e., all abstract states where the operation might
be applied. We remark that this way the abstract finite state machines allowdetaeéors (than
usingW(pre Operation)). It remains sound because of the blocking semantics (contrasted with Z

semantics of precondition), i.e., it is no harm to apply an operation outsidenitaido

Example 6.2.2 (Abstract precondition) The abstract precondition of operatidaave is:

S(pre Leave) = S((Fitems’ : seqPackage; item! : Package o

items = (item!) ™ items’) \ {item!}) — def. of pre
= S, \ W((V items’ : seqPackage; item! : Package o
items # (item!) 7 items’) \ {item!}) — def. of§

= 5, \ {#items =0} — def. of W
= {max > #items > 0, #items > maz}

Thus, operatiorLeave is applicable only at the two abstract states whgigems > 0. end

For each abstract statg : S, satisfying the abstract precondition, we calculate the abstract post-
condition asS(pos{ Operation, S,)) so that all possible post-states are reachable in the abstract

finite state machine.

Example 6.2.3 (Abstract postcondition)

S(pos{ Leave, max > #items > 0))
= S(#items < mazx A #items > 0 A items = (item!) ™ items’)
So \ W(#items > mazx V #items < 0V items # (item!) ™ items’)
So \ {#items’ > maz}
{maz > #items’ > 0, #items = 0}

11
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The above computes the postcondition of operatienve at the abstract state wherear >

#items > 0. end

We abstract every operation in the class to construct an abstract gi@pistance, the abstraction
of the Queue class defines the state transition system in Figure 6.1. Note that abstractioluges
non-determinism and spurious sequences of operations. For exapplgng the Join operation
at the middle state may result in a state where the number of items in the queuerishamgeax

or no larger thannaz.

However, both functiorr) ands in our context (first order logic) are undecidable, i.e., we may not
be able to tell if a predicate is true at a state due to the limited power of proviregrefhedy is to
compute approximations of the functions. The key idea is that an approxintdtiba function/y
shall contain at most the set of abstract stated/ifp), whereas the approximation of the function
S shall contain at least statesdi{p). Therefore, our abstraction is robust with respect to Object-Z
refinement, i.e., strengthening post-condition. In our prototype, we makefule theorem prover
PVS [117] to compute such approximations in order to construct an abstimée machine by paying

a reasonable prize. Despite the limited power of proving, an abstract stas#itbn system covers

all possible sequences of operations of the concrete one.

Definition 16 Given a set of predicatés, M, = (S, Sy, F', X, T, I) is an abstraction of the Object-
Z class only ifS = S, andSy, = S(INIT) andF = S and¥ is the set of operation schemas dnd

labels a state with itself antl = {(s1, e, s2) : S XX xS | s1 € S(pree)) A s2 € S(poste, s1))}.

6.2.2 Generating Raw State Machines

Our method begins with constructing a finitéidi automaton from the history invariant. An
efficient tool to convert LTL formulae into optimizediBhi automata is Somenzi and Bloem’s
Wring [140]. For example, Figure 6.2 shows thé@dBi Automaton constructed from the LTL
formulee in theFuirBoundedQueue class. Both states are initial states. The state labeled with

#items = 0 is a final state. Transitions are not labeled iicBi Automata.
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#items<=max #items=0

Figure 6.2: Richi Automaton

Definition 17 A Blichi automaton is a 5-tupleS, Sy, T, F', I) where S is a finite set of states,
So € S is a set of initial states]" : S x S is a transition relationf” C S is a set of final states and

I is a labeling function which labels a state with a Boolean formula.

Meanwhile, a raw finite state machine is constructed from the Object-Z clafisa@ssed in Sec-
tion 6.2.1. We require that the predicates for abstraction include propgsititime history invariants
and the initial schema. Every state in the raw state machine is a final statedéetc@lgect-Z se-
mantics, an object may wait infinitely long before applying an enabled operaifibe product of

the state machine and th&i€hi automaton is then constructed.

Definition 18 A state machinéS, Sy, T, F, %, I) is a product of a state machiné and a Bichi

automatonB if it satisfies the following condition. = M .%, I = M.I and,

S ={(ssysp) : M.S x B.S | M.I(ss) = B.I(sp)}

SU = {(is, ib) : M.So X B.So ‘ M.I(’Zs) = B.I(ib)}

T={((sl s}), e (s2,82): S xETx S| (sl es2)e M.TA (s},st) € B.T}
F={(fs,fp): M.F x B.F | M.I(fs) = ANB.I(fy)}

Informally, a state in the Bchi automaton is unified with a state in the state machine if their labeling
is consistent. Because all predicates in the history invariant are useblsiwaction, the consistency
testing of two states is a straightforward existence checking, i.e., whetheeth& predicates
labeled with a state is a subset of those of the other state. A state of the fagoduénitial state if

and only if it is unified by two initial states. A labeled transition in the raw state madkiallowed
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. Join Atemsz
Joi

Figure 6.3: Product of the state machine and automaton

in the product if and only if there is a transition between the same starting sthending state in
the Blichi Automaton. For instance, Figure 6.3 is the product of the state macHtiguire 6.1 and

the Bichi automaton in Figure 6.2.

6.3 Refining the Finite State Machine

A finite state machine is a (sound) realization of an Object-Z specification ifiteschema is sat-
isfied at every initial state, every operation is engaged with its preconditistefpndition fulfilled,

and the history invariants are satisfied. For open systems, two additiop@ements are crucial.

A1: The finite state machine should not introduce any fresh deadlocks.

As: The finite state machine is not allowed to restrict the actions of the environment.

Both requirements have been discussed in various works of contralythE23, 98]. The first
requirement is commonly referred as nonblocking. The second requitésressential for systems
constantly interacting with its environment. Informally, it requires that the stathima should be
able to function correctly regardless of the environment. In this sectiopregent a systematic way
of generating finite state machines that satisfy both the Object-Z specificatidhetwo additional

requirements.
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6.3.1 Pruning Raw State Machines

The product of the raw state machine and tlield automaton satisfies the Object-Z specification
with the history invariant. However, it may not be a valid realization of the Qifespecification.
There are two sources of possible errors. Firstly, because of epggintA,, any finite state machine

which satisfies the specification by restricting behaviors of the environisiant valid.

Example 6.3.1 (Problematic realization) The following is a problematic realization of instances

of classFuairBoundedQueue presented in Section 2.1.2:

#items=
Join

This finite state machine satisfies the safety properties of the Object-Z sataifisince it only
contains part of the behaviors captured by the state machine in Example. BY.1€quiring that
all item? from the environment are expired, the queue remains empty all the time antdivially

satisfies the history invariant. end

It is easy to see that synthesis of such a realization is not helpful at al r@alization is removed
systematically from the product by pruning states and transitions violatingresgentA; and
As. Secondly, abstraction introduces spurious sequences of evendgiope In the abstract state
machine, an operation may be applied at states where its precondition igisi¢dar invocation
of an operation may lead to states not satisfying the concrete postconditi@alve the problem,

each transition is equipped with a guard condition (if necessary) in thdagrgtep. Formally,

Definition 19 Let P be the product ofM, and the Bichi automatorB. A state machiné/ =
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(S, 5, F,%, T,I)is arealization if it satisfies the following conditions:

Al Y(s1,81): M.S; s9: M,.S; e: My X o (s1,e,8) € M,. T =
(s, 84): M.S; e : M, o ((s1,51),€,(s3,85)) € M.T
A2 Y(s1,81),(s2,85) : M.S; s My.S; e: Mg.X @
((s1,87),€,(s2,85)) € M.T A (s1,€e,83) € Myg. T A
e is uncontrollable a$ = (3 s3 : M,.S o (s1,51),€,(s3,85) € M.T)

Informally, Al states if a state is not a deadlock state, it shall not be a deadlock state ilthe re
ization. The operations enabled at a state are partitioned into two sets,lledateroperations and
uncontrollable operations. An operation is uncontrollable at a state if itsqraditon depends on
environmental inputs. For example, thiein operation at the initial state of the state machine in
Figure 6.3 is uncontrollable. An operation at a state is controllable if it is ncbninollable. We
remark that an operation may be controllable at a state but uncontrollalietaea This is differ-

ent from works on supervisory control [123] as events in our cdratexcomplicated computations.
A2 states if a target state is reachable from a source state by applying artrofiable operation,

the target state shall be reachable too in the realization.

In the following, we present the pruning algorithm that prunes statesamsitions from the product
recursively so as to construct a minimally restrictive (if possible) finite stasigd. For every
reachable state, we shall check if it satisfies requiremef®. If it does not, i.e., there is an
uncontrollable actiore at s whose post-states have been partially removed, all transitions from
labeled withe are pruned at once. Intuitively, an uncontrollable operation shall tiediden at a
state if allowing it may result in violation of the history invariant (given certaivinment inputs).

If a state is a fresh deadlock state, the state is pruned along with all its incomihguagoing
transitions. Pruning transitions may create new deadlock states. A state Hag A after some

of its immediate successor states get pruned since some of its outgoing tranasigqoruned too.

Therefore, the pruning must be applied recursively.

The algorithm is presented in Figure 6.4. Lines 1 to 4 declares the varidalesble Successor is
the set of the initial states, which can be viewed as immediate successor tat@naginary single
‘initial’ state. During pruning, variablé’ath shall contain the states in the path from an initial state

to the current state (inclusive). It is empty initially. State machireduct, Raw represents the
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void Prune () {

1. let Successor := the set of initial states;

2. let Path := an empty set;

3. let Product := the product state machine;

4, let Raw := the abstract state machine;

5. Pruning(Successor, Path, Product, Raw);

6. ExistDesign(Product);

}

boolean Pruning (Successor, Path, Product, Raw) {

1. let Done := an empty set;

2. while (true)

3. if (Successor = Path union Done) return true;

4, let s := a state in Successor but not in Path or Done;
5. Add s into Done;

6. let childStatePruned := false;

7. while (!childStatePruned)

8. for all uncontrollable actions e at s

9. if (!A2(Product, Raw, e, s))

10. prune all transitions labeled with e from Product;
11. endif

12. endfor

13. if ('{Al(Product, Raw, s))

14. prune s from Product;

15. return false;

16. endif

17. let Children := immediate_successors(Product, s);
18. if (Children is not empty)

19. Add s to Path;

20. if ('"Prune (Children, Path, Product, Raw))
21. childStatePruned := true;

22. endif

23. endif

24, endwhile

25. endwhile

}

Figure 6.4: Pruning algorithm
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product and the abstract finite state machine respectively. Line 5 ineake®cursive procedure
of pruning. All four variables are passed as parameters. In the guoeBruning , the first line
declares a local variabl®one as a local holder of processed states (oubofcessor). Line 3
checks if all states iSuccessor have been processed, and returns true if every staftedeessor is
also in eitherPath or Done. If a state is inPath, it is a common ancestor of all statesnccessor.

A state inSuccessor but not in Path or Done is chosen at line 4. At line 7, we have another loop.
The intuition is that the state shall be checked repeatedly until none of itdelgcgtates is pruned.
Lines8 .. 12 verifies if the state satisfies2. The functionA2( Product, Raw, e, s) returns true if

all possible environment inputs to operatierat s is handled properly. Line$3 .. 16 states that

if the state is a fresh deadlock state, then the pruning backtracks byingtfaise, i.e., the parent
state shall be checked again because one of its child states has beed. dftthe state satisfies
both Al andA2, its child states are retrieved (line 17). Line 20 is a recursive method cahe If
recursive call returns false, it means some child state has been pnoté¢hus the state has to be
re-examined. Otherwise, all decedent states have been prunedsfuttgeand thus we are done
with the state. Line 6 in procedupgune checks if there is a design after removing unreachable
states and states leading to no accepting state from the pruned state mabbneds & design (the
pruned state machine) if and only if the pruned state machine has at leasit@istate and one

reachable accepting state.

The correctness of the algorithm is an immediate consequence of the taatsttade is not pruned
if and only if it satisfies both requirements and all reachable states frore ihatrpruned. The
algorithm converges because the states and transitions are finite anktiabks only when a state
is pruned. We may further improve the efficiency making use of the faciftaatate satisfies both

Al andA2 and all states reachable from it do too, then it will never be pruned.

Example 6.3.2 (Pruning) If we specify the history invariant foQueue as(#items = 0), the
product of the raw state machine and thicBi automaton is the finite state machine in Exam-
ple 6.3.1. After pruning, there is no initial or accepting state left (the transgignuned because
of violation of A2 and the state is pruned because of violatioAbf. Therefore, we conclude that

there is no realization for such a specification. end
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6.3.2 Calculating Guard Condition

The last step is to calculate a proper guard condition for each transitionared transition can be
applied only when its guard condition is satisfied. A guard condition guaganiat an operation is
applied only when its precondition is satisfied. Moreover, part of a nenaénistic choice may get
pruned in the pruning process. The remaining transitions are, theretorstrained by restricting
its postcondition. This is not directly implementable. Thus, a state guard is usekéosmia that a

transition is applied only when it will reach the desired postcondition.

Let WP be the weakest precondition operator introduced in [40]. Given aratipe Operation
and a source statg and a state, that can be reached frosg by applyingOperation, the weakest
precondition is defined as (a similar problem on the weakest preconditicaingies of Z has been

addressed in [25]):

WP(Operation, s, Sp)
= (3 State’; outputs @ Operation) N (V State’; outputs e (Operation A sq) = sp)

The first part of the condition guarantees the termination of the operatioa.sécond part guar-
antees the postcondition. Intuitively, if the weakest precondition is satisfi¢ke valuation of the

state variables before applying the operation, then the desired post-gfaseaateed to be reached.

Example 6.3.3 (Weakest precondition)The guard condition foroin operation at the initial state

of the state machine in Figure 6.3 to remain at the same state is:

WP(Join, #items = 0, #items = 0)
= (Fitems’ : seqPackage o (expires(item?) = items’ = items) A
(— expires(item?) = items’ = items ™ (item?))) A
(Vitems’ : seqPackage o (#items = 0 A (expires(item?) = items’ = items) N\
(— expires(item?) = items’ = items  (item?))) = #items’ = 0)
= Vitems' : seqPackage o ((expires(item?) A items = ()) V
(= expires(item?) A items’ = (item?))) = #items’ =0
Vitems' : seqPackage ® #items’ = 0V expires(item?) V items’ = (item?)
expires(item?)

1

The first deduction is due to the definition of weakest precondition ancettand is due to the one

point rule. Thus, the transition is guarded wittpires(item?). end



6.3. REFINING THE FINITE STATE MACHINE 118

[expires(item?)]
Join

Figure 6.5: Realization ofairBounded Queue

If the weakest precondition turns out to fidse, it means that there is no way that we can guarantee
that the transition ends up with the desired state. This is normally due to intemaéterminism,
i.e., some information is not present at the abstract level. Such transitepsuared. The pruned
state machine with guard conditions fBuirBoundedQueue is in Figure 6.5. States are labeled

with names to improve readability.

Example 6.3.4 (Composed Object-Z class)

__ Multiplezer
[(INIT, Joiny, Joing, Transfery, Transfers, Leave)

inputy, inputy : FairBoundedQueue
output : Queue

_INIT
inputy ANIT A inputs. INIT A output.INIT

Joing = inputy.Join

Joing = inputy.Join

Transfer; = inputy.Leave || output.Join
Transfers = inputy. Leave || output.Join
Leave = output. Leave

O# output.items < output.mazx

We use a multiplexer example to show how our method works for composedslassultiplexer

is made up of three bounded queues, two as incoming channels and om@uatg@ng channel.
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It can be viewed as a network router which gets packages from twoetiffeources and forwards
those which have not expired yet. All packages in the incoming chanmetyantually forwarded to
the outgoing channel. The history invariants include those inherited frofidh@&ounded Queue.

The predicates for abstraction include those in the history invariant and sdtiama. They are:
{#input,.items = 0, #inputy.items < input;.maz
#Hinputy.items = 0, #inputs.items < inputy. maz}
Only operations defined or promoted in this class are concerned. Fatiops composed using
operation operators, the process of calculating preconditions ancdpd#tons can be simplified
by considering the structure of an operation (refer to chapter 14 in))[16d/e remark that an
uncontrollable operation may become controllable when the object compitkesiver objects. For
example, operationutput.Join is initially uncontrollable (at all states) when we considgreue
class along. It becomes controllable as in operafibisfer because all packages from either of
the incoming channels are not expired. The final finite state machine realwed\/ultiplezer is

presented in Figure 6.6. end

6.4 Discussion

This section is devoted to a discussion on remaining issues on the apdarachktance the sound-

ness, a prototype implementation and a practical implication of the approach.

6.4.1 Soundness

A state machine is a realization of an Object-Z specification if and only if it sati#feefollowing
condition: all operations are applied when its precondition and postconditeosatisfied 4s3), all
possible sequence of operations satisfies the history invardaht4,; and A,. A3 is guaranteed by
guarding each transition with a condition stronger than its precondition (takegeprecondition).
In the process of pruning the product, all fresh deadlock states,tares sind transitions violating

A are pruned. It is straightforward to verify that bath and A, are satisfied. To provely,
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[expires(item?)] Joinl
[expires(item?)] Join2
[#output.items>0] Leave

[expires(item?)] Joinl|
[expires(item?)] Join
[#output.items>0] Leave

[expires(item?)] Joinl
[expires(item?)] Join2
[#output.items>0] Leave

Transferl

1: #inputl.items=0

! ! 2: #input2.item=0
#input2.items=0

) [expires(item?)] Joinl inputl.max>=#inputl.items>0
#output.items<output. max [expires(item?)] Join2 #output.items<output.max

3: #inputl.items=0 [#output.items>0] Leave 4: inputl.max>=#inputl.items>0

input2.max>=#input2.items>0 input2.max>=#input2.items>0
#output.items<output.max #output.items<output.max

Figure 6.6: Realization ab/ultiplexer

we show that there is a fair simulation relation from our realization to the ptaofuthe state
transition system defined by an Object-Z specification and tiiehBautomaton representing its
history invariant (the specification). The notion of fair trace-containneerbust with respect to

LTL. Therefore, we may conclude thdyt; is satisfied.

Theorem 6.4.1 Let M. be the product of the (concrete) transition system determined by the Object-
Z specification and the iBhi automaton representing the history invariant. etbe a realization
constructed using our methodll.. fairly simulatesM,..

Proof. We claim that the following total relation is a fair simulation relation fréfn to M..

R={(r,c): M,.S x M..S | cis a state wherél,.Z(r) is true

C1is animmediate consequence of the fact that the initial condition is included imgtiEates for
abstraction. In the abstraction process, an abstract state is identifiedretiad state if and only if
the initial condition is satisfied. Because the weakest condition calculated|asttetep is stronger

than the precondition, an operation is applied only when its predication is sdtiihgaging in an



6.4. DISCUSSION 121

operation may appear to reach more states than it could because the gitistc@weakened. This
causes no problem because local actions will be replaced by concré¢enierations which satisfy
their pre/postcondition specifications. Though there may be infeasiblespithibe synthesized
implementation, an operation may reach a successor state only if the postecoiglgatisfied at
the successor state, i.e., there is a corresponding transitidn.imhus,C2 is true. A state inVl,
is a final state if it satisfies the fair constraint. All simulating states of the statdiestige fair

constraint (definition oR ). Thus,C3 is true. We conclude thatl . fairly simulatesM,.. O

6.4.2 Automation

Our method is automated by experimental toolAwal. The inputs are an Object-Z class specifi-
cation in its XML representation [150], along with an optional set of prad&for abstraction. By
default, the predicates include those in the history invariant andnhiedchema. The predicate
abstraction is automated with the help of PVS [117]. Lemmas are generateagaictdly from the
Object-Z specification for calculating the abstragttl schema, precondition and postcondition of
each operation. In general, the number of lemmas is exponential to the nafrtherpredicates.
A number of tricks are used to reduce the abstract state space, e.g.jngifadse states by con-
sidering co-relation between the predicates. PVS is invoked in batch modevi® fhe lemmas
automatically without user interaction. We believe that it is unlikely that a usatdiiike to prove
the lemmas interactively for complex systems. To further speed up the dlmstrag as to handle
complex systems, a more loop-free proving strategy thamni (the highest-level command in PVS)

is used to prove each lemma in a limited amount of time.

PVS is used to automatically compute an approximation ofSHanction. Given a predicatg,
we generate a PVS lemma for each abstract state to check if the predicales faith the state
implies— p. A file containing all lemmas (in standard PVS syntax) is generated by ourlisets
may interactively prove the lemmas or more rationally let PVS do automatic proEitlger way,
the proof result is written to a log file (in the latter case, the log file is naonpdaned-proofs.prf
by default). The log file is then processed to construct the abstract m&de).is computed as

the set of abstract states whefe is not implied true (the corresponding lemma is unsuccessfully



6.4. DISCUSSION 122

proved). A lemma is not proved either because it is not true or PVS is matnha enough to prove
it. Therefore, we compute an approximationifp). Givenp as the postcondition of an operation,

S(p) identifies the set of abstract states that may be reached by applying tadiape

A raw state machine is constructed from the proving result. It is then cordpesie the Hichi
automata generated from Wring [140]. The product is pruned usingroming algorithm. If there
is at least one initial state and at least one reachable final state left, thedpstate machine is
equipped with guard conditions and presented to users as a realizatiarevéfp computing the
weakest precondition involves eliminating dashed variables. Variable eliminatiour context is
in general undecidable. Yet an interesting enough subset is decidhbte there is no nonlinear
integer arithmetic and no shielded variables occurring inside uninterpretaed. tBVS is currently
lacking such a procedure. However, we can always use PVS to-phmek a manually constructed

stronger guard.

More features on connecting our tool to existing tools for state machine liketgtes will be
offered. For example, we plan to generate an XMl [130] representafionr state machines so
that they can be exchanged and visualized using tools like Rational R24g [WWe may also
generate codes for Rhapsody [67] so that we may simulate the modelrthésiye working code
from the Object-Z specification if the implementation of each operation is sup@liettested by

checking the precondition and postcondition) by the user.

6.4.3 Event-based Controllers for State-based Plants

A good principle for modeling complex control systems is to separate systectidoalities from
control aspects in the early system design stage. For instance, a sysfieeee may typically iden-
tify the set of objects/classes in a system, data variables and operatiowh icla&ss before experi-
menting with control flows to ensure critical system properties. Such gadyg $unctional designs
are typically documented as UML class diagrams [154] or mathematical modelg/{iMgject-
Z[161, 50], B [1]. In later stages, event-based formalisms, e.g., CHRfid Pi-calculus [132], can

be used to specify complicated control flows, i.e., order of applying theatipaes, conditions to
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guard the invocation of operations, etc. Designing such control flows iscimgsuming and error-
prone. Given a system functional state-based design and abstractani®ystem properties, can
event-based controllers be automatically generated so that the contrallerctestrate the system

functions to satisfy the properties?

A related problem known as controller synthesis has been studied for yeany [27, 23]. The
problem of synthesizing controllers is of finding a controller that restricsotthavior of a given
process in order to satisfy given constraints on sequences of ackeosted by the process. A
rich set of theories has been developed [121, 122, 99]. We believentitare development on
controller synthesis can be applied to automatically synthesize control flasesllon a precisely
defined system functional model. Such approach is beneficial beaauseent-based controller
is implementable [133], contrary to state-based specifications. Morem\minimum’ restrictive
controller may be synthesized so that system engineers may furthertriégstitbout violating the
critical properties. For instance, data and functional requirements magduified using Object-
Z, asplants. We may then automatically synthesize prototype controllers in CSP to control the
Object-Z specification. Without repeating the techniques, we illustrate the chesimg the vending

machine example.

Example 6.4.2 (Object-Z plant) Figure 6.7 shows an Object-Z class modeling a typical vending
machine. Request and Coins are user-defined primitive types representing possible user requests
and acceptable coins to the machine. In the state schema, two state varablesandreq, are
defined to record the amount inserted by a user and the user’s aageest. Irrelevant information

like the location of the vending machine, total coins in the vending machine ateeted away.
Four operations are specified, naméhgertCoin, ReleaseCoin, Request and Dispatch. Each
operation is defined in terms of its effects on the state variables and inputg&refations from/to

the environment. A user may increageta by InsertCoin or setreq by Request. Or a user may

ask the machine t®ispatch an item or toRelease Coin. In the InsertCoin schema, variableoin?

models the coins inserted. end

Our method is to reuse the abstraction schema to construct an abstract sthieenfiiom the



6.4. DISCUSSION 124

— VendingMachine
Request ::= Nil | Candy | Coke
Coins == {10, 20,50, 100}

quota : 7
req : Request

_INIT
quota = 0 A req = Nil

__InsertCoin
A(quota)
coin? : Coins

quota’ = quota + coin?

__ReleaseCoin
A(quota, req)

quota > 0
quota’ = 0 A req’ = Nil

_ Request
A(req)
req? : Candy | Coke

req = Nil A req’ = req?

__ Dispatch
A(req, quota)

req # Nil A req’ = Nil
(req = Candy A quota’ = quota — 50) V
(req = Coke N\ quota’ = quota — 80)

Figure 6.7: Object-Z specification of vending machine
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Dispatch

InsertCoin

Reques InsertCoin,ReleaseCoin,Request

*—quota>=0 ReleaseCoin  quota>=8
quota<80 req != Nil
req = Nil

Figure 6.8: State machine specification

Object-Z model, compute the product of the abstract state machine and trezabshavioral sys-
tem requirements (which plays the same role as the history invariant), apgyuhieg algorithm

to construct a finite state controller, and lastly express the controller uSRg@cesses. In our ap-
proach, anyroperty that can be represented as finite state machine is acceptable. The simplest kin
is an automaton or automata-like model (Kripke Structure, Finite State Machin@wthtbut datap-
ath). More importantly, temporal logic formulee can be considered@srty. In [26], Linear-time
Temporal Logic is extended to refer to temporal properties of both statevemtl based on Labelled
Kripke Structure, called State/Event LTL (SELTL). In our setting, tempfmanulae that concern
both state and event information are allowed. For example, an invarigmentyaconcerning both
state and event is)(quota > 80 A req # Nil — Dispatch), which says whenever no less than
80 cents are inserted and the user has made a request, the vending rdesglatehes. For simple
invariant properties (specified as temporal logic formulae using no negattbanly universal quan-
tification over computation sequences/treesicid Automata with all states as accepting states can

be constructed, which is treated as finite state machines.

Example 6.4.3 (Finite state machine specificationrigure 6.8 is a finite state machine specifica-
tion. Two safety properties are captured. On&igjuota > 80 A req # Nil — Dispatch). The
other is that the variableuota shall always be non-negative so that negative profit for the vending

machine is impossible. end
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The same pruning algorithm is applied to decide whether there is a contradldithare is, synthe-
size one automatically. After pruning, we synthesize event-based corgriotéen the pruned finite
state machine. Synthesizing CSP process expressions from the finite sthieeria straightfor-
ward, e.g., [107]. An intuitive approach is to mimic the states, i.e., one prazdséined for each
node in the finite state machine. The main process is defined as a non-deti&moioge of the

initial nodes.

Example 6.4.4 (Controller of the vending machine)The following is a CSP controller of the vend-

ing machine:

Py = ([quota + coin? < 80 V req = Nil] ® InsertCoin; Pi)
O ([quota 4 coin? > 80 A req # Nil] o InsertCoin; Ps)
O ([quota > 0] ® ReleaseCoin; Pr)
O ([quota < 80] e Request; Py)
O ([quota > 80] e Request; Ps)
O ([(req # Nil A quota > 80) V (req = Candy N quota > 50)] e

Dispatch; Pr)
Py = InsertCoin O ReleaseCoin
MAIN = P,

The pruned state machine contains two states. The process capturingpbepatterns at the initial
state is written ag’;. All operations can be invoked at the state. The state guards guaraaitéeeth
state variables at the state satisfying the conditiosta > 0 A —(quota > 80 A req # Nil). The
behavior patterns at the other state are captured in préted$he MAIN process is identified with
the process for the initial state, in particuldgs. We remark that the CSP controller composed with

the Object-Z specification constitutes to a TCOZ specification. end

6.5 Summary

The contribution of the work is twofold. Firstly, we developed a systematic ndetih@abstract an
Object-Z specification on a class base. Such a method is useful for atoifiof Object-Z spec-
ifications as well. Secondly, we developed an effective way of realizin@laject-Z specification

as finite state machines, i.e., constructing a control program to guide thatiexeaf the Object-Z
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specification. By treating each transition as a function call and implementitgop&cation in iso-
lation, we may generate executable codes from the specification. Moraovexperimental tool is

developed to realize the method.

A less restrictive controller would allow more possible further refinement. @ethod works by
pruning those sequences of operations that fail the specification odtitoaal requirements.
Therefore, it is naturally ‘minimally’ restrictive. However, a minimum restrietaontroller in gen-

eral may not exist. An example can be found in [98].

Our work is related to works on abstraction and controller synthesis. @digin techniques are
now widely considered useful and even necessary for successifitation. It has been discussed
in various works on model-checking software, e.g., Graf's work omp@ry preserving abstrac-
tions for transition systems [97] and Ball's work on abstraction of C progfd]. Though partially
inspired by Graf’s work, our abstraction schema is highly coupled withézjesemantics. The ab-
straction schema is closely related to the work in [139], where Smith and Wirtdeoged a similar
predicate abstraction for totalized Z specifications. Their aim is to veritgé&imporal properties
of Z specification. The difference between their abstraction and ourati®tin predicate abstrac-
tion applies to Object-Z specifications (therefore, we do not assumetigparto be totalized) and,

more importantly, is automated by PVS. The latter is essential for complex systems.

Our work is also related to works on deriving an automata representatiom ZyObject-Z for
specification-based testing [38, 113, 77, 116]. Dick and Faivre ihd88ved an automata repre-
sentation from a Z specification for generating test cases. Murray 8] fa@dmally derived a finite
state machine of an Object-Z specification for the same purpose. Theis Yoaks on extracting a
finite set of behaviors for testing (partial coverage). Our work fesum extracting implementable
finite state models from Object-Z specification. By contrast, we guaranteetaiiors are properly

constrained.

The part of work on deriving a finite state representation from the dgecis related to early
works on using processes to represent data structures by Nietih&rinksma in [19, 115]. Our

work is also inspired by works on controller synthesis both from compuiense and control-
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theoretic perspective. The line of work goes back to the realization prof€] formulated by
Church and later solved byiBhi and Landweber [23]. During the past decade, there has been a
vigorous revival of this area. Various problems associated with patiE@mability, controllability

and hierarchical control have been addressed as evidenced in1f22199]. However, previous
works on controller synthesis are all based on automata-like structuretriwighdata states. Our

work applies to applications with complicated data and functional requirements.



Chapter 7

From Scenarios with Data to

Implementations

‘Do you mean that you think you can find out the answer to it?’
said the March Hare.
‘Exactly so, said Alice.
‘Then you should say what you mean,
the March Hare went on.

- Alice’s Adventures in Wonderlandewis Carroll

Behavior modeling plays an important role in software engineering. It isdbis lof system devel-
opment methods like system specification, design, code generation, testfinvgrfication. Two
complementary approaches for modeling behavior have been shown setug in practice. One
is interaction-based, which focuses on global interactions betweemsgstaeponents, e.g., MSC,
LSC. The other is state-based modeling, which concentrates on the inséaites of individual
components, e.g., Z and VDM [83]. In Chapter 5, we investigated waygmdémting distributed
processes from interaction-based modeling, namely LSC. In Chapterdjavessed the problem of

synthesizing implementable designs from state-based modeling, namely Objrdt&trial scale

129
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systems often have not only complex data structure but also intensiveciiteraehaviors. In this
chapter, a combination of the two approaches is proposed so that we nthgsiye implementa-

tions all the way from LSC models equipped with complex data structures.

7.1 Introduction

In order to formally specify complex systems, we propose a combination ohatien and state-
based modeling, namely Live Sequence Chart and Z specification. Thatc@mmplete system
specification shall consist of two separate parts: an LSC part for riagtunteractions between
system components and a Z part for modeling the data and functionataspble significant and
novel aspect of the combination is that it combines the modeling power of bdttihas can be used
to specify systems beyond the capability of either one. Moreover, sunhined specifications

contain sufficient information for synthesis of distributed implementable sydé&sign.

State-based modeling naturally complements interaction-based modeling, aitdstho doubt that
a smooth integration of them shall be beneficial. LSC is a rather rich extetutsM8C that allows
specification of not only possible behaviors, but also mandatory bailsaviée choose Z over other
state-based modeling language because Z is widely known and acceptelll @s well-developed
in terms of specification, refinement, etc. The Z language is favored dviectzZ because Z is
relatively simply structured and the class structure (as well as inheritamtteaymorphism) in

Object-Z may serve as an unnecessary complication.

Synthesis from specifications like scenario-based diagrams or vanwosata is showed to be
extremely hard [121, 122, 68, 88]. Our problem is further complicatatié&gomplex data structure
underlying the scenarios. Due to the high complexity of the problem, our priamaris to discover
a practical way of synthesizing sound (and not necessarily complete)nraptations. To the best
of our knowledge, our work is the first attempt to synthesize low-level imphtatiens from a

combination of interactive-based modeling and state-based modeling.

We take a step-by-step approach. Firstly, a distributed object systemtigesized from the LSC
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universal charts. The local actions in the charts are treated as aleseats, as we did in Chapter 5.
The global state machine is never constructed during the steps so as tetateigpace explosion.
Meanwhile, an abstract finite state machine is constructed from the Z madglaugomated pred-
icate abstraction [7, 97], which allows us to grasp the behaviors of thetstjased on a finite
set of assertions. The abstraction method presented in Chapter 6 is aeigrtwecope with Z se-
mantics. Secondly, the distributed object system is refined on an objéstdaatisfy data-related
requirements. Thus, the preconditions of the local actions (Z operatonshot conditions in the
LSC model will never be violated. Additional crucial properties for opgstems, like nonblocking
and uncontrollability of the environment, are also taken into account. Finalynay synthesize
executable implementations by generating code from the refined finite staténmétie design).

Our method is implemented asa/4 application.

7.2 Integrating Live Sequence Chart and Z

State-based modeling language like Z and interaction-based modeling lasdikad SC naturally
complement each other. LSC lacks the expressiveness to capture ctéeaptieta and functional
behaviors. Local actions are often ignored or treated as abstrats@véhe study of the verification
and synthesis problem of LSC. Examples are the works in [68, 18] andlark in Chapter 5. Local
data variables are often implicitly associated with the objects. They may appier donditions
or get updated by the local actions. However, there is no way to spedistlg how the local
actions update the local variables and what the data space of the obgatépt using concrete
implementations, which we think is undesirable as sequence diagrams aig tieedarly stage of
system development. On the other hand, in Z specification, the systenidrgbatterns are often
implicitly embedded within various state/operational constraints. Without expyisies behavior
representation, it is difficult to analyze or implement those abstract modetsna intended for
timed or concurrent behaviors [161]. It lacks the expressivenesspture dynamic interactive

behaviors between the components in the system.

A combination of LSC and Z shall constitutes a powerful modeling languageriog a wider
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range of systems. Thus, we propose a simple yet effective integratib8®fand Z. We require
that a combined system specification shall consist of two parts. One isa E8IC universal
charts, which specify mandatory interaction scenarios between systapooents. The other is a
Z specification, which specifies the data and functional models associétethes objects in the
system. In particular, each object in the LSC model with non-trivial datassim#esssociated with a
Z package in the Z part. Each local action in the LSC model is defined in theatdge Z package
as a Z operation schema. Conditions in the LSC model may only mention variahiesdlin the

respective Z state schema in addition to external inputs.

System modeling shall start with identifying scenario-based system rewgnts, from which the
universal charts are constructed. During the process, the sysggneenslowly decides the data
variable and local actions for each object. The designer’s intensioredddal action can be nat-
urally documented as pre/postcondition pairs. Later, the designer maijyspach local action
using Z operation schema to formally state how each local action updateddrstata. This way, a
complete system specification is built. In the following, the same Light Contrste8yis used as a
running example to show how it may be specified using a combination of LSZ padkages, and

how an implementation may be synthesized from the specification.

Example 7.2.1 (Universal charts of Light Control System)Figure 7.1 captures a typical scenario
of the LCS. When a user enters a room: the motion detector senses thecpretéhe person, and
the room controller reacts by sensing the current daylight level andtaajuthe light with appro-
priate illumination if the light is already on. Figure 7.2 illustrates another scewéribe LCS.
Whenever a user leaves a room (leaving it empty), the detector sensesament. The room con-
troller waits for a safe number afornotion to make sure the room is empty and then turns off the
light. There are a number of important features of LSC presented in tine icba hot location, hot
condition and forbidden events. The forbidden events require thadler tw complete this scenario,
no movement should be detected before the chart ends and the light isadyeturned off before

it is turned on again. The rest of the scenarios are presented in Fig@ @ ¥Which the occupant
may directly turn on/off the light by pushing the button or the system may adj@dtamination of
the light. end
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Figure 7.2: Scenario of the LC8eopleOut



7.2. INTEGRATING LIVE SEQUENCE CHART AND Z 134
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Figure 7.3: Scenarios of the LCS

After identifying the universal charts, the data variables and local ctatipn of each object be-
come clear. No local action is associated with installegion Detector, which suggests that it has

trivial data state. The Z package associated withitiyt and Room Controller are illustrated in

the following.

Example 7.2.2 (Z package ofLight) The Z package of thight contains the following schemas.
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_ Light _ Adjust
dim : Illumination A Light
on : B dim? : Illumination
dim > 0 & on = true on = true N\ dim' = dim?
_ TurningOn _ TurningOff
A Light A Light
on = false N\ dim’ = 100 A\ on/ = true on = true A\ dim’ =0 A on’ = false
__ LightInit
Light'
dim’ =0 A on’ = false

end

Example 7.2.3 (Z package oRRoomController) The Z package of theoom controllercontains

the following schemas.

RoomController _ RoomControllerInit
(d?jm :0..100 RoomController’
dim’ =0
_ Tune
A RoomController

outsidedim? : 0 .. 100

(outsidedim? < 20 A dim’ = 100) V
(outsidedim? > 20 A dim' + outsidedim? = 100)

The variabledim in the state schema represents the light leveldom controlleis knowledge).
Initially, it is of value 0. The operatiorfune computes the desired light level according to the

outside light level. end

Example 7.2.4 (Combined specification of.C'S) Allinstances in Figure 7.1,7.2,7.3 with non-trivial

data states are associated with Z packages, i.e.Liftg package for thelight object and the



7.3. SYNTHESIS OF DISTRIBUTED OBJECT SYSTEML36

RoomController package for theRoomController object. Local actions likeddjust, TurnOn,
TurnOff, Tune, are defined as operation schemas in the respective package. oreethe Z

specification and the LSC model constitute an integrated specification of the LC end

The result is a rigid system architecture, which has its advantages: tharghfanctional model
and the interaction-based model remain orthogonal throughout devetgpmd so can be analyzed
or refined separately using existing tools and methods. Once both paitzetahe integrated
specifications shall contain sufficient information on both data and com$pects of the system,
which allows us to automatically synthesize implementable designs. Graphically,ftork an
instance in the chart to its Z state schema, and links from local actions to Z@timmeschemas shall
be provided, e.g., the Z schema is shown in the popup window once the imstanghlighted and

so are the operation schemas.

7.3 Synthesis of Distributed Object System

In this section, a distributed object system is synthesized from the ualwdrarts. For the time
being, local actions are treated as abstract events. The synthesjeetisyistem is refined in the
next section to handle data-related requirements. The synthesis is cllagdglito the construction
in Chapter 5. However, because we have to store the data-relateceragnts for later refinement,
finite state machines instead of CSP processes are constructed. Stasmisvane used to store

data requirements. Moreover, using finite state machines allows us to rausertt in Chapter 6.

There are a number of principles to identify a good synthesis strategylyRinge synthesis should
be robust with the notion of data refinement [161, 111] so that the syn#itedesign remains valid
after refinement of the Z operations. Secondly, the global state machinédshot need to be
constructed in order to avoid the state explosion problem. This is essentradtdions like LSC,

which has a distributed nature and an underlying partial order semanticseAll, the synthesized

design should be consistent with the specification.
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7.3.1 Synthesizing Local State Machines

We start with constructing a state machine for each instance in a single chaah &basic chart
m (a main chart or a sub-chart of a main chart without hierarchy\gt= (S, So, F, %, T, I) be

a state machine synthesized from instahgechartm. The basic idea is to construct one state for
each location. Thus§ is the set of states corresponding to the set of locations along the instance.
Sop contains exactly the state corresponding to the first locafibcontains the states corresponding
to the cold locations. For each location labeled with a cold condition, an addistate labeled
with the negation of the condition is constructed so that if the condition is viol#tedadditional
state is reached. The only transition enabled at the additional state is laliledsynchronization
barrier, which is used to terminate the (activation of) the chart. For eactidoclabeled with a
hot condition, the condition is labeled with the respective state and no addlitiate is added.
This prevents behaviors that might violate the hot condition from happerBegides, there is a
transition(sy, e, s2) in 7' if the location corresponding t, is next to the location corresponding
to s; which is labeled withe. After reaching the very last location of the chart (the bottom line),
the state machine behaves freely so that it puts no further constraintheveystem. Such a state

machine constrains a single activation of the basic chart.

A hierarchical chart can be flattened as finite state machines straightfiywigigure 7.4 presents

a universal chart containing a conditional branch. It is part of th€ kBecification of a lift con-

trol system. Whenever the lift approaches the next floor,sthgt sends a messageriving to
controller. The controller refreshes its knowledge of the current level by updating its local vari-
able pos. A hot condition stating that the value pbs (a local variable representing the current
level) must be within its range is asserted. Thetroller decides whether to stop at the next floor.

If the conditiontoStop is true, i.e., the next level is requested internally or requested externally with
the right direction, theshaft stops and theloor is opened and the respective request is cleared.

Otherwise, the lift continues traveling in the same direction.

Example 7.3.1 (State machine foiShaft) The state machine presented in Figure 7.5 captures the

behaviors ofShaft in the main. Eventslrrive.z.main and Arrive.z.subl are barriers used to syn-
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Figure 7.4: Scenario of Lift Control System

chronize the entering or exiting of the main chart or a sub-chart amonguiitipating instances.
Variable z is an identifier which distinguishes different activations of the same chdamerefore,
only participating instances in the same activation of the chart are synzbdonWhenever the
chart completes (reaching the filled circle), all eventXjp can be engaged freely (indicated by a
transition labeled with *). Only transitions labeled with visible events are cattstsince transi-

tions concerning invisible events are free to occur by the definition oflpacamposition.  end

Example 7.3.2 (State machine foilController) The state machine presented in Figure 7.6 is syn-
thesized for instanc€ontroller. The hot condition is labeled with the state right after local action

UpdatePos. After entering the sub-chart, two states are reached, one labeled wittion toStop
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Figure 7.6: State machine fa@rontroller

and the other labeled with its negation. Thus, the conditional branch igiedfgcflattened. In
general, state machines for hierarchical charts can be constructedheostate machines for the

sub-charts. end

A universal chart, is associated with two sets of synchronous barriers, namely;.con Vio and
u.z.y Wherez is a counter uniquely identifying an activation of chartandy is the identifier of a
sub-chart. The: component is necessary because there could be multiple or even infinitEpeve

ping activations of the same chart. For instance, t{aeenotion, nomotion, nomotion) triggers
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three overlapping activations of the chBgopleOut Eventu.x.y is used to synchronize the enter-
ing or exiting of sub-chary in chartu among those participating instances. Event.y.con Vio is
engaged if and only if a cold condition in sub-charis violated in thez-activation ofu. It is the
only event which can be engaged at the state labeled with the negation lof @oodition. Other
instances in the chart are ready to engage in this event all the time (a trateltedad with this

transition is enabled at every state in the state machine for other instances).

The state machine for an instance in the pre-chart is similarly constructedevdn because a
universal chart puts no constraint over the system before enteengdin chart, the state machine
synthesized from the pre-chart shall allow all possible behaviors,atiide same time monitor
communication sequences that may match the pre—charIM];& (S, S0, F,%, T, I) be the state
machine synthesized from instantén the pre-charp. There is a transitiofs;, e, s2) in Mp".T

if the location corresponding ts, is next to the location corresponding &9, which is labeled
with e. In addition, a transitiorsy, €', s;,qz ) is constructed for every eveantin X% \ {e}, where
Smaz 1S the state corresponding to the last location on instariceghe main chart (the filled one).
Intuitively, the pre-chart progresses whenever an expected svemgaged, whereas an unexpected
event aborts the activation of the chart. Because hot condition in prttdis no semantic meaning,
all conditions in pre-charts are treated as cold conditions. Lastly, the stagsponding to the last
location in the pre-chart is identified with the state corresponding to the featiém in the main

chart so that once the pre-chart is completed, the main chart is reached.

Example 7.3.3 (State machines for instances in PeopleOuBigure 7.7 shows the state machines
synthesized for instances in the chart showed in Figure 7.2. The alpbfabach state machine
includes the forbidden events. The forbidden events are allowed to betare entering the main
chart. Once a communication sequence matches the pre-chart, the stateersgnbhronizes en-
tering of the main chart. All states in the pre-chart are accepting as the stabénmahall not

constrain the system execution before entering the main chart. end

The state machines constructed so far only monitor a single activation ofdinie éhtrace which

triggers multiple activations of the same chart is not properly constrainedingtance, the state
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Figure 7.7: State machines for instance®&opleOut
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machines in Figure 7.7 may execute the following trace:

{nomotion, motion, nomotion, nomotion, nomotion, TurnOff)

It is however not allowed by the chart in Figure 7.2 because the threscotivenomotion? trig-
gers another activation of the chart. The remedy is to identify the filled statettvdtinitial state
so that the state machine is reused for later activations. However, siehsiahines still can
not constrain overlapping activations. Though there could be infinitdagp@ng activations of the
same chart, only finite copies of such state machines are required to monitioe alttivations.
In [17], Bontemps and Schobbens have shown that every LSC hagiaalent deterministic Behi
automaton that contains at most exponentially more states than there are paatioa LSC. A
symmetry reduction shall always make it possible to consider only a finitebamadded) number
of overlapping activations. Therefore, only a finite copies of the statédimas are necessary for
monitoring overlapping activations, and they can be reused for nomapyéng activations. In prac-
tice, large number of overlapping activations is unlikely because systbavioes are increasingly
restricted as the number of overlapping activations increases. Theitenisaonatural limit on the
number of overlapping activations. For instance, there could be at rmestdkierlapping activation
of chartPeopleOutbecause the main chart shall complete before the fowsthotion event. A

simple analysis shall tell the maximum number of activations allowed by a chart.

Example 7.3.4 (Final state machine)The state machine presented in Figure 7.8 is synthesized
from RoomController in scenarioPeopleOut It monitors thez-activation of the chart. The state
machine is augmented with a special synchronization bairiérz, which is used internally to ac-
tivate a new copy of the state machine whenever it moves beyond the initialBtateuse there are

at most three overlapping activations of the chart, three copies of therstaténe withz ranging

from O to 2 are constructed. The copy with= 0 does not have the first state. The copy with- 2

does not have the state whefte’.3 can be engaged because there is no fourth copy to be forked.
The product of the three copies are computed as showed in Figure 7e9vem last state (the
one composed by three filled state) is identified with the initial state so as to allceveolapping

activation. We remark that the final state machine can be further redsagglstandard techniques
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Figure 7.8: State machines for instar@eom Controller

like bi-simulation reduction [56], etc. For instance, all states labeled withtgweh are removed

since they contribute nothing to system behaviors. end

We remark that the product of the state machines for all instances in the #p&f; refines the
chart, i.e., all accepting runs of the state machine satisfy the chart. An immediaequence
is that the product of the state machines for all the universal chHigtﬁ,i M, refines the LSC
specification, i.e., only behaviors satisfying all the universal chartalbnwed. Because the parallel
composition operator is symmetric and associative, the following rule is estdblislet)/} o be

the local behaviors of an objetit
Il 22 = {0 M= ] Mise

Due to the above transformation, the local behaviors of an object anerdesel without construct-
ing the global state machine. For example, the behaviors oktlwen Controller are captured by
the product of the state machines synthesized from all the universas.ch&le skip the formal
soundness proof. In previous chapters, we have formally definegdexbased denotational seman-
tics for LSC, and then developed a sound interpretation of LSC in the clastsin of CSP [79]. By
transforming CSP interpretations of the LSC model using its algebraic lawkdalebehaviors of

each object are grouped together as a set of distributed procesbesmalation relation between
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the synthesized state machine and the transition system interpretation of thrigidtprocesses
would prove the soundness of the synthesis. Alternatively, we may defimilar set of algebraic

laws in terms of finite state machines and prove the soundness directly.

So far, we handle only closed systems but not open systems. Synthesigefo systems asks
whether there is an implementation that can be deployed in any malevolentrengind To avoid
the undecidability of the distributed synthesis problem for open systemsaihe lightweight ap-
proach presented in Section 5.4 is adopted. The synthesized state machine énvironment

(parallel composition of all state machines for environment objects) is \etidi®e equivalent to
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(or simulates) the user-supplied modeling of the environment.

7.4 Refinement of the Distributed Object System

In our combined specification, local actions are defined as operatiemssh which could be im-
plemented by a series of computations constrained by pre/post-conditismetessary to refine
the distributed object system so as to guarantee that a local action is oalyeshgith its precon-
dition satisfied, a hot condition shall be satisfied in all circumstance, etcetwit is difficult to
tell if a certain assertion is true after a series of local computations simplysedae state space of
a Z specification may often be infinite. The problem is further complicated gmeFation schema
may take inputs from the environment, which can not be controlled by thensysBair remedy
is predicate abstraction, as applied in Chapter 6 for extracting finite stditzatiees of Object-Z
specifications. Predicate abstraction allows us to interpret and thentrédstrimehaviors of an ob-
ject based on an abstract view of the data variables, which is essent@lrfgynthesis since an

implementable control structure may only contain a finite number of control states

The abstraction method used in Chapter 6 is amended for abstracting Apacka Z semantics,
the result of applying an operation outside its precondition is divergdruses, in abstraction of a Z
package, an operation must be applied at states where its precondititisfiscaMoreover, in the

abstraction interpretation, we guarantee that applying an operation nay akatates where the
postcondition may be satisfied. This way, our abstraction is robust witbecegpZ data refinement,
i.e., weakening precondition and strengthening postcondition. The atsi@abine is then used to
refine the distributed object system synthesized from the LSC model dpject basis. Invocation

of operations that might violate its precondition or result in a state violating admdition is

systematically pruned.

In order to guarantee the correctness of the synthesized designguieerthat the set of predi-
cates for abstraction includes all conditions in the universal charts ¢dssthe predicate in the
initial schema for simplicity). A finite state abstraction of a Z package is built Isyrabting both

its initial schema and its operation schemas. Because only sound desigifsraerest, a local
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Figure 7.10: Abstraction of théight package

action shall be invoked only when we are certain no assertions will be viblafbus, the pre-
condition of the operation is abstracted)d¥pre( Operation)) and its postcondition is abstracted
asS(post Operation, s,)), Wheres, is an abstract state satisfying the abstract precondition. In-
tuitively, by replacing the precondition with a more restrictive one, we make 130 precondition
shall be violated. By replacing the postcondition with a less restrictive oaenake sure that no

hot conditions shall be violated in all circumstances.

Definition 20 Given a set of predicateB, Mg = (5,8, F,%, T,1) is an abstraction of the Z
package associated with objeainly if S = S, andSy = W(initial condition) andF = S andx:
is the set of operation schemas in the packageldatiels a state with itself anfl = {(s1, e, s2) :

Sx3XxS|s €W(prde)) A sa € S(poste, s1))}.

Example 7.4.1 (Abstraction of Z package)Assume the set of predicates for abstractinglifyét
package i dim = 0, on = false, dim > 0}, the set of abstract states contains two statgs=
{dim = 0 A on = false,dim > 0 A on = true}. The abstract initial state is exactly the state

wheredim = 0 A on = false. Operationddjust is abstracted by computing the following:

W(pre(Adjust))
= W(3 dim’ : Illumination; on' : B | dim’ > 0 < on' = true e
on = true A\ dim’ = dim?) — def. of Precon.
= {dim >0 A on = true} — def. of W

S(pos{ Adjust, dim > 0 A on = true))
= S(dim > 0 < on = true A dim' > 0 < on’ = true A
dim > 0 A on = true A on = true A dim’ = dim?)
= {dim' =0 A on’ = false, dim’ > 0 A on' = true}
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Thus, the abstract operatichi/just is enabled only at the abstract state whetés true, from which
both abstract states can be reached. We skip the abstraction of the meheians in the package.

Figure 7.10 shows the resultant state machine. end

After constructing the abstract state machine from the Z package, thegbrafdV/; ;. and M}, is
computed. By removing states labeled with false, we guarantee that nangitemo or hot condi-
tion is violated. However, the problem is complicated by the uncontrollability oktivironment
because removing states may put restrictions over inputs from the envingnaiéch is problem-
atic. For instance, if we allow the user to adjust the illumination by setting it to cevidires,
captured by the universal chart in Figure 7.11. It requires that efierationAdjust, dim > 0
must hold. Intuitively, we know that this hot condition may not be satisfiedlse the user may set
the dim to 0 and hence accidentally turn off the light (due to the state invarfambther important
property for open systems is nonblocking, i.e., the design should not irtecahy fresh deadlock.
The pruning algorithm presented in Chapter 6 is reused to determine wiiathers a satisfying

design, and synthesizes one if possible by refining the product staténmach

Example 7.4.2 (Pruning state machine)Figure 7.12 presents the state machine for instdrgk:

in scenarioUserAdjust The product of the state machines in Figure 7.10 and Figure 7.12 is pre-
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Adjust

on=true

—PO— UserAdjust.m ain—b@— Adjust

UserAdjust.main

Figure 7.12: State machine synthesized from instdnggt in UserAdjust

ﬁadjust. dim ?—ﬁUserAdjust. m ain—?D\

TurnOn TurnOff TurnOn TurnOff TurnOn TurnOff

on=true and dim>0
adjust.dim? UserAdjust.mai Adjust

UserAdjust.mai

Figure 7.13: Product state machine

sented in Figure 7.13 (where one state labeled with false has been rembivegyuning algorithm

is then applied. The * state is removed becadggust is uncontrollable at the state and the state
labeled withon = false A dim = 0 is not reachable from the * state by applyidg;just while

it does in Figure 7.10. Thus, line 10 of the algorithm presented in Sectionplza so that the
transitions labeled withddjust are removed. The *** state is removed because it is not reachable
any more. The ** state is removed because it becomes a fresh deadlwcaraiehus line 14 of the
algorithm applies. After removing states leading to no accepting state, tHarestate machine

is shown in Figure 7.14. It is a valid design for closed systems since thearinitial state and
accepting states. Intuitively, the design guarantees that theldbarfdjustis satisfied by requiring

it is never activated. However, ifser is considered as part of the environment, then there is no
way to prevent users from activating the chart by sending messgget.dim. In our approach,

the synthesized modeling @fser has failed to be a simulation of the default modeling (where users
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TurnOff

- P

TurnOn

Figure 7.14: Pruned state machine

can initiate any communication at any time). Thus there is no design satisfyindghthis ¢ end

In the following, we briefly discuss the soundness of the techniquesingbd section. In Sec-
tion 7.3.1, we have shown that the state machines constructed are consitiethe LSC model
treating local actions as abstract events. We now argue that the rettedrschines satisfy both
the LSC model and the Z model. First of all, by Definition 20, local actions cdy lme engaged
within in their (strengthened) domain. Engaging in a local action may appeaatt imore states
than it could because the postcondition is weakened. This causes henpiodcause local actions
will be replaced by concrete implementations which satisfy their pre/postcamdigiecification.
Though there may be infeasible pathes in the synthesized implementation raticopeay reach a
successor state only if the postcondition is satisfied at the successoil s@mint is that using the
weakened postcondition, we can detect possible violation of hot cond@@mg in the synthesis
process (instead of at run-time). The product of the state machine®sia®ti from the LSC model
of an object and the abstract state machine of the Z package, thus, sai¢fiehe LSC model and
the data requirements. During the pruning process, transitions and s@t@siaed. It is easy to
verify that the pruned state machine is fairly simulated by the original one skaidation implies

fair trace containment. Thus, the pruned state machine is consistent withettigcsypion.

7.5 Automation

We implemented a prototype to experiment with our approach using standsedsalies. The

experiment tools presented in Chapter 5 and Chapter 6 are reused. pUhéoirour experimental



7.5. AUTOMATION 150

tool is an XML representation of the Z model and an XML representationef 8C model. As

discussed in Section 6.3.2, a transition in the pruned state machine may baioealdby restricting

its postcondition in the pruned state machine, which is not implementable. Tweedifiemedies
have been explored. The first remedy is to guard each invocation ottioa avith a proper guard
condition as we did in Section 6.3.2. For partially pruned nondeterministic chdloe transitions
shall be guarded with the weakest precondition that guarantees ttnabdéyg of the desired state.
After that, executable implementation can be synthesized straightforwardIyheitimplementation

of each local actions supplied by users. As long as the implementation ofilctgahs conforms to
its precondition/postcondition specification, our synthesized prototypeimersaund. However, a
reasonable guard condition must not involve any primed variables. Corgpbgrweakest precon-
dition requires elimination of the primed variables, which is in general undele@d&herefore, this
remedy is unlikely to be fully automated. The other remedy is to generate ametadfobligations

for nondeterministic choices which are partially pruned. When the useid@®an implementation
of the operation, the proof obligations are verified (or tested) in additionet@it&/post-condition

S0 as to make sure the operation satisfies the more restrictive post-contlihiersgstem states.

Our approach is designed to handle complex systems. During the firsingegynthesize a dis-
tributed object system from the LSC model without constructing the globed stachine. Later,
we limit the number of overlapping activations of the same chart as a waytteefueduce the size
of the local state machines. For instance, all universal charts eReepteOutllow no overlapping
activations in the LCS example. Computing the product of multiple state maclﬂpéfﬁjo explic-
itly is expensive, e.g., the state machine for instalgé¢ contains 760 states without any reduction.
Therefore we reuse existing CSP-based process oriented desigmgpédteconcurrency [158] to

generate structural prototypes.

To handle systems with infinite data space, we adopt predicate abstractiomstouct an abstract
view of system behaviors in terms of finite assertions. In general, the bittee @bstract state
machine is exponential in the number of predicates for abstraction. It is teetime-consuming
operation in our method. However, it remains affordable because oal¥ package is abstracted at

atime and there are unlikely to be large number of conditions concerningopeet.cOur abstraction



7.6. SUMMARY AND DISCUSSION 151

method constructs an abstract state graph by paying a reasonablelpigee. prototype, a sound
approximation of the functioy andS is used. To further speed up the abstraction as well as
to guarantee termination of the proving, every lemma is proved in a limited amotimef The
time limit is set as a user option. The date aspect of the LCS example is slightly. tthgafor
reference, in a vending machine example where there are state variathlesfivite domain and
multiple operation schemas, all together 190 lemmas are generated and atbtable lemmas
are proved without user interaction in minutes. The lift control system isratsdified to handle
system with arrays of variables (refer to [148] for detail). In additiomuanber of tricks have
been used to reduce the abstract state space, for instance removieg stdite by considering
co-relation between the predicates and the state invariant before abJtneccomplexity of our
pruning algorithm is polynomial time in terms of the number of states. So are thetops we

perform over the state machine. Thus, they are carried out in redgapeedy fashion.

7.6 Summary and Discussion

In this work, we present a systematic way of synthesizing designs froombioation of state-
based modeling and interaction-based modeling, namely Z and LSC. Oubatiotr is threefold.
Firstly, we propose an intuitive integration of Z model and LSC model, whicapable of modeling
systems with not only complicated data structures but also complex interaghiggibrs. Secondly,
we develop a systematic way of synthesizing distributed finite state designg allathfrom the
combined specifications. Thirdly, we developed an experimental tool tonattoour method. One
of the possible future works is to generate implementations other #han grograms from the
synthesized design, for example SystemC [61] or Spec# [8]. We mayI|bfomeally explore the
notion of refinement in terms of the combined interaction and state-based ngpdeatininstance,
we may investigate how refinement in the B method may cooperate with refineme®Ciso that

implementation can be deduced step by step from the combined specification.

The integration of the Z specification language and LSC is related to workgenrated specifi-

cation languages [160, 102, 157, 138, 24, 36]. The characteristiarofvork is that we provide
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a synthesis method in addition to system specification. Our synthesis methodiffiesyfrom be-
ing over-restrictive sometimes. One of the reasons has already been medntioSection 7.3.1.
Another reason is that because our pruning applies on an object Wa&sgesigns requiring co-
operation of multiple system objects are not possible. For instance, inputsdpesation from
other system components are controllable if we consider the global staténeaéior example,
in Figure 7.1, the value ofim from RoomController is actually never O from the whole system'’s
view. Disallowing such designs is a sacrifice we have to make if we do netremnthe global state
machine. The third reason is the limited power of proof systems. The eHaetg of the predicate
abstraction, e.g., fewer spurious behaviors, depends on the prawver.pSpurious behaviors may
result in pruning valid designs. For instance, if the abstraction suggestsgplying an uncontrol-
lable operation may result in an undesired state from a given state whefaesit cannot, then the
uncontrollable operation will be prohibited from happening. Neverthetegsapproach serves as a
promising method to apply synthesis techniques to complicated system specificatid it can be

applied to other integrations of state-based and interaction-based modelirgdj.a



Chapter 8

Conclusion

‘Would you tell me, please, which way | ought to go from here?’
‘That depends a good deal on where you want to get to’, said the cat.
‘| don’t much care where’ said Alice.
‘Then it doesn’t matter which way you go’, said the Cat.
‘So long as | get somewhere, * Alice added as an explanation.
‘Oh, you're sure to do that, said the Cat,
‘if you only walk long enough!

- Alice’s Adventures in Wonderlandewis Carroll

In this chapter, we summarize the main contributions of this thesis and presssible directions

for further research.

8.1 Contributions

The scheme of this thesis is to identify and study formal specification langwageh are comple-
mentary to each other in terms of visualization, verification or synthesis. Ylerex many well-

established languages and notations so as to identify the similarity and difelbetween them.

153
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Transformation techniques are then used to connect those complememarjoo practical pur-
poses. Our approach is however not restricted to particular langoagesations. It demonstrates

general complementary relationships between logic-based formalisms aatifeisnalisms.

The works presented in this thesis can be fully integrated with other sofpwedects and processes
all along system development life cycle. For instance, visualization (Chaptaffers graphical
representation of logic-based system models in the specification stagevofken verification
reveals inconsistency of the system specification. The works on sygffresides a constructive
method for connecting the specification, design, and implementation stagee folldwing, we

discuss the detailed contributions of this thesis.

This thesis successfully demonstrated that though logic-based formalismgsaial formalisms
may vary vastly in syntax, they may often share a common semantic basis likesénaeatics.
Based on the common semantic basis, sound transformation from logicdy@ssfications to di-
agrammatic notations allows visualization of logic-based models. The authovesetieat logic-
based formalisms are a more precise and thus safer means for stating sygter@ments than
diagrams. Mechanized visualization allows system engineering starting withdaged formalism

enjoy the visual power of modeling languages like UML.

Detecting inconsistency in system specifications is vital in the process deveid process. It is
commonly known that the earlier the inconsistency and errors are expbgethore resource and
human effort are saved for implementation of the desired software systhisthEsis developed
verification methods for both logic-based formalisms and visual formalismg tisinsformation

techniques. It has been shown that existing mature model checkere @opled to formalisms

other than those intended effectively.

Verification based on the transformation technique is inexpensive ettigl. It has been applied
to a large scale of languages and notations. Our research has influesearch activities on
applying formal methods languages and tools to the web domain. For instanes at developed

a Timed Automata semantics for orchestration of web service s@thaspecification [112] can be

transformed to Timed Automata and consequently verified bpAAL [47]. Dongel at developed
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a tools environment for reusing formal methods tool for proving web ogyo[d5]. Sunel at
developed a transformation from web services to LSC so as telageenginefor simulation and

verification [151].

One of the ultimate goals for software engineering is to automatically generatevelumplemen-
tations from high-level specification. A main contribution of this thesis is thestiyation on this
automated development process. Systematic ways of generating protiotypetate-based spec-
ifications (e.g., Object-Z), or scenario-based diagrams (e.g., LiveeBegqlChart), or combination
of both (e.g., Live Sequence Chart combined with Z specification) haxe dbeveloped. This thesis
discussed the complexity dealing with the problem of synthesis and comparedethods with
existing approaches. To the best of our knowledge, the synthesispsesknted in this thesis is
the first attempt to mechanically generate prototypes from specificatioystehss with intensive

interactive behaviors as well as complicated data and functional requiteme

8.2 Future Research Trends

The following topics, arising out of this thesis, seem worthy of futureaese

This thesis developed a number of tools providing support for varioks tagich form a near-
complete framework for system specifying, verifying, developing, asting. Each link in Fig-
ure 1.1 illustrates an automated transformation in the name of either visualizatenifazation.
Figure 1.2 shows the tools developed in the work of synthesis. The twe$igarve as a blueprint
of the framework we shall develop as one of the future works. The frameshall allow system
specification or design using user favored modeling techniques like Zc@bje&€SP, MSC, LSC,
or any combination of them. Thus, we shall develop friendly user inteftacediting logic-based
specifications as well as drawing diagrams. Alternatively, we shall suppstem designs created
externally using existing popular tools like UML editing tools. For works orifigation, we shall
hide underlying reasoning details and connect analysis results to theflesselr specification. Hints
for refining the specification shall be highlighted properly, e.g., usingmifft fonts for logic-based

specification or using emphasized drawing for visual specification. Btanoe, verification results
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of LSC models from FDR shall automatically feed back to the user. Any coertenple will be
displayed graphically so as to guide the refinement of the LSC model. Ongs dluse, users with

little or no knowledge of CSP or FDR may benefit.

In the work on synthesis, few timing issues have been discussed. One ohd#ilenging tasks
is to investigate whether our works on synthesis extend to system specificatith qualitative

timing behaviors. For instance, we shall investigate whether the approasénped in Chapter 5
handles LSC with typical timing events. Timed CSP seems to be a promising mediayt@aar
the discussion since the symmetry and transitivity laws of parallel compositldrirh®imed CSP

as well. However, a global shared clock is inevitable in the context of M8;h presents a real
challenge for the distributed synthesis. Similarly, we shall extend our wedepted in Chapter 6
so that the history invariant may contain explicit time variables. In general, taymtiesis remains

as a tough research task [104].

In our works on synthesis of implementations, prototypesiim Jare mechanically generated. We
shall improve our code generation to aim at product quality programseddie code optimization,
code reusability, shall be taken into account. We remark that it would beaaghgforward and of
more use to generate implementation in programming languages othertkanio of them are
of particular interest. One is SystemC [61]. The reasons are, Systerp@r&ipigh-level modeling,
hardware-software partitions, and it is easy to implement different ehaymes in SystemC. The
other is Spec# [8] because it offers a facility to write specifications thattioa programmer inten-
tions about how methods and data are to be used and the compiler emits rundirke twhenforce

these specifications. This capability offers a sound way of enforchrayésl) hot conditions.

In Chapter 7, we briefly mentioned that our method is robust with respectii&refinement. A
challenging task is to formally explore the notion of refinement in terms of the icaubnterac-
tion and state-based modeling. For instance, what kinds of data refinsha@hto-exist with the
notion of refinement in LSC. The latter typically means expanding a sulisefthrmore details. In
particular, we may investigate how refinement in the B method [92] may caepeith refinement

in LSC so that implementation can be derived step by step from the combinaticgimn.
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Appendix A

Glossary of Z Notation

This appendix presents a glossary of the Z notation used in this thesisloBsany is based on the

glossary of Z notation presented in Hayes [73] with modifications to reflect wiosely the more

recent Z notation of Spivey [141].

Mathematical Notation

Definitions and declarations
Let z, ;. be identifiers and lef’, T}, be non-empty, set-valued expressions.

Definition of LHS as syntactically equivalent tBHS.

LHS == RHS
LHS[Xy, X5, ..., X,] == RHS
Generic definition ofLHS, whereX;, X5, ..., X,, are variables denoting
formal parameter sets.
z: T A declarationy : T, introduces a new variableof typeT.

173
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21T 20 To; oo oyt Ty

List of declarations.

[ TR A ==z :T;2:T; ...5 2y T
(X1, Xo, ..., X,] Introduction of free types namel;, Xo, ..., X,,.
Logic

Let P, @) be predicates and |é2 be a declaration or a list of declarations.

true, false Logical constants.

- P Negation: “notP”.

PAQ Conjunction: “P and Q".

PV Q Disjunction: “P or @ or both”.
P=Q ==(P)VQ

Implication: “P implies Q" or “if P then@”.

P& Q == (P= Q)N (Q=P)

Equivalence: P is logically equivalent ta))”.

Ve:TeP Universal quantification: “for alk of type 7', P holds”.

dx:TeP Existential quantification: “there exists arof type T such thatP holds”.
Jz:TeP Unique existence: “there exists a uniquef type 7" such thatP holds”.
Vay: Ty ag:To; oot 2y Ty @ P

“For all z; of type Ty, 2, of type Ty, ..., andz, of type T},, P holds.”
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Aoy : Ty 20 To; ooy 2 Ty @ P
Similar toVv.
dym T Ty ooy @y Ty@ P
Similar toV.
VD|Peq@ SVDeP=Q
3D | PeQ =3JDePAQ
1=ty Equality between terms.
t # ty & (th=ty)
Sets

Let X be asetS and T be subsets okX’; ¢, t;, terms;P a predicate; and declarations.

ted Set membership:t‘is a member of”.
t¢ S S (ted)
SCrT &S Vr:SezeT)
Set inclusion.
ScT SSCTAS#T

Strict set inclusion.

I} The empty set.
{ti,ta, ..., tn} The set containing the values of termst,, .. . , t,.
{z:T| P} The set containing exactly thoseof type 7" for which P holds.

(ti, 2y ...y tp) Ordered n-tuple ofy, o, . .., t,.



Ty x Tox...x T,

first(ti, ta, ..., ty)

{iL‘liTl; €T TQ;

{D|Pet}

{D et}
PS

P, §

FS

F, S

SNT

SuT
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Cartesian product: the set of all n-tuples such thakthecomponent is of

type T,.

Similarly, second(t1, ta, ..., t,) == t2, €tc.

s @y T | P}
The set of all n-tuplegz, , 2o, . . . , z,,) with eachay, of type T} such thatP
holds.

The set of values of the tersrfor the variables declared i ranging over

all values for whichP holds.

=={D | true o t}

Powerset: the set of all subsetssf

—=P5\ {2}

The set of all non-empty subsets®f

=={T:PS| Tisfinite }

Set of finite subsets of.

—=F5\{2)

Set of finite non-empty subsets 6f

=={z: X|zeSAnzeT}

Set intersection.

=={z: X |zeSVvzeT}

Set union.
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S\T =={z: X|zeSANxgT}

Set difference.

Nnss =={z: X|(VS:S55ezel)}
Intersection of a set of setS§S is a set containing as its members subsets

of X,i.e.SS:P(PX).

Uuss =={z:X|(35:55ez€9)}
Union of a set of sets$S : P(P X).

#S Size (number of distinct members) of a finite set.
Numbers

R The set of real numbers.

7 The set of integers (positive, zero and negative).

N =={n:Z|n>0}

The set of natural numbers (non-negative integers).

N, —= N\ {0}

The set of strictly positive natural numbers.

m..n =={k:Z|m<kANk<n}

The set of integers betweemn andn inclusive.

min S Minimum of a set; forS : P, Z,

minS e€SANz:Sexr>minbS).

max S Maximum of a set; foiS' : P, Z,

max S € SANz:S ez <mazs).



Relations
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A binary relation is modelled by a set of ordered pairs hence operatfineddor sets can be used

on relations. LetX, Y, andZ be setsy : X; y: Y; S be asubset ok’; T be a subset of’; and

R arelation betweelX and Y .

X <Y

xr =y

{z1 — y1,22 — yo,...

domR

ranRk

Ry g Ry

R10R2

R/\/

——P(X x Y)

The set of relations between and Y.

==(z,y) € R
x is related byR to y.

== (SL‘, Z/)

y T, yn}
== {(Z’l, 2/1)7 ($2, 3/2)7 ceey (xm yn)}
The relation relating; to y, 2 t0 4o, ..., andz, t0 y,.

=={z:X|3y:YezRy)}
The domain of a relation: the setwtomponents that are related to some

V.

=={y:Y|(Fz:Xez Ry}

The range of a relation: the setywEomponents that somas related to.

=={z:X;2:Z|3y:YexRiyANyRoz)}

Forward relational compositiol}; : X <« Y; Ry: Y « 7.

== R2 8 Rl
Relational composition. This form is primarily used whgnand R, are

functions.

=={y:Y;2:X|z Ry}

Transpose of a relatioR.



idS

Rk

R+

R*

R(S)

S <R

S<9R

R T

ReT

R1 @ Ry
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=={z:S ez 1}

Identity function on the sef.

The homogeneous relatioR composed with itselfc times: givenR :
X « X,
R’ =id X andR**! = RF g R.

== U{n:NloR"}
=MQ: X ->X|RCQAQ:sQCQ}

Transitive closure.

=={n:NeR"}
=MN{Q: X = X[dXCQARCQAQ3QCQ}

Reflexive transitive closure.

=={y:Y|(3z:Sez Ry}
Image of the sef through the relatiork.

=={z: X;y:Y|zeSAz Ry}

Domain restriction: the relatioR with its domain restricted to the sst

== (X\S)<R
Domain subtraction: the relatioR with the elements of removed from

its domain.

=={z: X;y: Y|z RyNnyeT}

Range restriction td".

==Rp> (Y \T)

Range subtraction of'.

== (domRz g Rl) U Ry
Overriding; Ry, Ry : X < Y.
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Functions

A function is a relation with the property that each member of its domain is assberdtea unique
member of its range. As functions are relations, all the operators defirm@ dor relations also

apply to functions. LefX and Y be sets, and” be a subset ok (i.e. 7' : P X).
ft The functionf applied tot.

X oY == {f: XY |{Vz:domfe(J,y:Yeuxfuy))}

The set of partial functions fronY to Y.

X—-Y =={f: X - Y |domf = X}

The set of total functions fronX to Y.

X Y =—={f: X+ Y|(Vy:ranfe (3 z: X ez fy))}

The set of partial one-to-one functions (partial injections) fr&no Y.

X—Y =={f: X = Y |domf =X}

The set of total one-to-one functions (total injections) frénto Y.

X Y =={f: X+ Y|ranf =Y}

The set of partial onto functions (partial surjections) franio Y.

X =Y =X-+»Y)N(X—-Y)

The set of total onto functions (total surjections) frafto Y.

X —Y = X—=>Y)N(X —Y)

The set of total one-to-one onto functions (total bijections) fdrto Y.

XY ——{f: X+ YV|feFXx V)

The set of finite partial functions fromX to Y.

X e Y ——{f: X — Y |feFXx Y)}

The set of finite partial one-to-one functions fromto Y.



Az:X|Pet)

()\1‘1 : Tl;

disjoint, X|

S partitions T
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=={z:X|Pezr—t}
Lambda-abstraction: the function that, given an argumerittype X such

that P holds, gives a result which is the value of the term

:Th | Pet)

=={z:Ty; ...; zp: Ty | Pe(x1,...,2,) — t}

=={S:I+»PX|Vij:domSei#j=Si)NS(y) =2}
Pairwise disjoint; wherd is a set and an indexed family of subsets of

(e.S: 1+ PX).

== § edisjointA JranS =T

Seqguences
Let X be a set;A and B be sequences with elements taken frdmanday, . . ., a, terms of type
X.
seqX =={A:N;y - X |(In:Nedomd =1..n)}
The set of finite sequences whose elements are drawnXrom
seq X =={A:N; - X | Ae€seqgX vdomA =N;}
The set of finite and infinite sequences whose elements are drawnkfrom
#A The length of a finite sequenck (This is just %’ on the set representing
the sequence.)
(0 == {}
The empty sequence.
seq X == {s:seqX | s # ()}

The set of non-empty finite sequences.
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<(11,...,(1n> :{1'_>a17"'7n'_>a/n}

<a1,...,an>/\<bla--wbm>
= (al,...,an,b1,---7bm>
Concatenation.
NN A=47() = A

head A The first element of a non-empty sequence:

A # () = head A = A(1).

tail A All but the head of a non-empty sequence:
tail ((z) ~ A) = A.

last A The final element of a non-empty finite sequence:

A% () = last A= A(#A).

front A All but the last of a non-empty finite sequence:
front (A7 (x)) = A.

rev {(ay, az, ..., ap)
= (an,. .o, a2, a1>
Reverse of a finite sequencey () = ().
~/AA =AA(1) " ... AA(#AA)
Distributed concatenation; whered : seqsed X)). /() = ().
ACRB &3dC:seq X e AT (C=28
Aisaprefix of B. (This is just T’ on the sets representing the sequences.)
squash f Convert a finite functionf : N + X into a sequence by squashing its

domain. That issquash{} = (), and if f # {} thensquash f = (f(i)) ™
squash({i} < f), wherei = min(domf). For examplesquash{2 —
A27T— C,4— B} = (A, B, C).
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AT ==squash(A > T)
Restrict the range of the sequenédo the setT'.

Axiomatic definitions

Let D be a list of declarations arféla predicate.
The following axiomatic definition introduces the variablebirwith the types as declared D.
These variables must satisfy the predidat@he scope of the variables is the whole specification.
‘ D
P

Generic definitions

Let D be a list of declaration$} a predicate and;, X, ... X,, variables.
The following generic definition is similar to an axiomatic definition, except thawér@bles in-
troduced are generic over the satg Xo, ... X,,.

—[X1, X0, ... X,1]
D

P

The declared variables must be uniquely defined by the preditate

Free types

X = identl | ident2({(S))

Free types allow a new free s¥tto be introduced as well as defining constructors to generate
elements of the type. The constructors may either be an identdiemtQ) which is an element of
the new type, or a constructor functioid€nt? which is a function taking an argument of tyfe

and returning an element of the new type. Distinct values of arguments strgoior functions
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return distinct elements of the free type, and distinct constructors gergistinct elements. The

constructors generate all the elements of the type.
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Schema Notation

Schema definition

A schema groups together a set of declarations of variables and agieedilating the variables. If
the predicate is omitted it is taken to be true, i.e. the variables are not furtigctexd. There are

two ways of writing schemas: vertically, for example,

S
z: N
y : segN

z < #y

and horizontally, for the same example,

==[z:N; y:seqN | z < #y]

Schemas can be used in signatures aftex, {...}, etc.:

(VSey# ()& (Va:N; y:sedqN |z <#yey#())

{S} Stands for the set of objects described by schémia declarationsy : S

is usually written as an abbreviation far: {S}.
Schema operators

Let S be defined as above and: S.

w.x ==(AS ex)(w)
Projection functions: the component names of a schema may be used as
projection (or selector) functions, e.@.x is w’s  component and.y is

its y component; of course, the predicate t < #w.y’ holds.



0S

Compatibility

Inclusion

Decoration
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The (unordered) tuple formed from a schema’s variables g& . gontains

the named componenisandy.

Two schemas are compatible if the declared sets of each variable common
to the declaration parts of the two schemas are equal. In addition, any
global variables referenced in predicate part of one of the schemas mus
not have the same name as a variable declared in the other schema; this

restriction is to avoid global variables beingpturedby the declarations.

A schema$ may be included within the declarations of a schefan
which case the declarations 8fare merged with the other declarations of
T (variables declared in botsi and 7" must have the same declared sets)
and the predicates & and T are conjoined. For example,

T
S
z: N

z2 <z

is equivalent to

T
z,z: N
y : seqN

r<#H#yANz<z

The included schemeS( may not refer to global variables that have the

same hame as one of the declared variables of the including schgma (

Decoration with subscript, superscript, prime, etc: systematic renaming of

the variables declared in the schema. For exanffiles

[2" :N; ' :sedN | 2" < #y].

The schema' with its predicate part negated. For example,

—Sis[z:N; y:sedN | - (z < #y)).
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SANT The schema formed from schem&sind 7' by merging their declarations
and conjoining (and-ing) their predicates. The two schemas must be com-
patible (see above).

GivenT ==[z:N; z:PN |z € z], SATis
~_SAT
z: N

y : seqgN
z: PN

r<#yANz €z

Sv T The schema formed from schem@&snd T' by merging their declarations
and disjoining (or-ing) their predicates. The two schemas must be compat-

ible (see above). For examplg,v T'is

_SvT
z:N
y : segN
z: PN

r<F#yVzrez

S=1T The schema formed from schem@&snd T' by merging their declarations
and taking ‘predd = pred7” as the predicate. The two schemas must be

compatible (see above). For exame= T is

_S=T
z: N
y : segN
z: PN

r<H#Hy=1z€z

S T The schema formed from schem@&snd T' by merging their declarations
and taking ‘pred> < pred7” as the predicate. The two schemas must be

compatible (see above). For exampes T is



S\ (vi,v2,...

Sf(1)177127--~

dD e S

s Un)

, Vn)
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_Se T
z:N
y : segN
z: PN

r<#y&s ez

Hiding: the schem&' with variablesuvy, v, . .., v, hidden — the variables
listed are removed from the declarations and are existentially quantified in
the predicate. The parantheses may be omitted when only one variable is
hidden.

Projection: The schemé& with any variables that do not occur in the list
v, v2, . . ., v, hidden —the variables are removed from the declarations and
are existentially qualified in the predicate. For exampten T') | (z, y)
is
—(SAT) [ (z,y)
z: N
y : seqN

(32 :PNe
r<#YyNz€z)

(%]

The list of variables may be replaced by a schema; the variables declared

in the schema are used for projection.

Existential quantification of a schema.
The variables declared in the scheBthat also appear in the declarations
D are removed from the declarationsfThe predicate dbis existentially

quantified oveD. For exampled z : N e S is the following schema.
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__Jz:Ne§
y : seqgN
dz:Ne

T < #y

The declarations may include schemas. For example,

35 eT
z: N

3S e
r<#H#yANz<z

VDeS Universal quantification of a schema.
The variables declared in the scheBithat also appear in the declarations
D are removed from the declarations®fThe predicate ofis universally
quantified oveD. For exampley = : N e S is the following schema.
_Vz:Nef§
y : segN

Vz:Ne
T < #y

The declarations may include schemas. For example,

_ VSeT
z: N

VS e
r<F#HFyANz<cz

Operation schemas

The following conventions are used for variable names in those schenasnepresent operations,

that is, which are written as descriptions of operations on some state,

undashed state before the operation,
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dashed state after the operation,
ending in “?” inputs to (arguments for) the operation, and

ending in “I” outputs from (results of) the operation.

The basename of a name is the name with all decorations removed.

AS =SAS
Change of state schema: this is a default definitionX¥ér. In some spec-
ifications it is useful to have additional constraints on the change of state

schema. In these casAsS can be explicitly defined.

[1]
wn

= [AS |68 = 6S]

No change of state schema.

Operation schema operators

preS Precondition: the after-state components (dashed) and the outputsyendin

in “I") are hidden, e.g. given,

S
z?,8,8,y ' N

!/

s=s—a?ANyl=s

pres is,
__preS
z?,s: N
ds’,y!:Ne
s=s—z?ANyl=4¢
S; T Schema composition: if we consider an intermediate state that is both the

final state of the operatiof and the initial state of the operatidi then
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the composition of5 and 7' is the operation which relates the initial state

of S to the final state ofl" through the intermediate state. To form the
composition ofS and T' we take the pairs of after-state components of
and before-state components ‘Bfthat have the same basename, rename
each pair to a new variable, take the conjunction of the resulting schemas,

and hide the new variables. For examle, T is,

S, T
z?,s,8,y N
(Iss:Ne

ss=s—x? ANyl = ss
Ass<z?ANs =ss+1?)
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Appendix B

Syntax of Live Sequence Chart

< LSCSpec > 2= Iscspec < ChartDefList >< InstVarilist > endlscspec

An LSC specification contains a set of charts and a list of variables.

< ChartDefList >
=< ChartDef >; < ChartDefList >|

< ChartDef > =< BExtChartDef >|< UnvChartDef >

A chart is a universal one or an existential one.

< EzxtChartDef >
= extchart < LSCName >< InstDefList > endextchart
An existential chart is identified with its name and made up of a set of

instances.

< UnvChartDef >
= unwvchart
< LSCName >< PrechartDef >< InstDefList >
endunvchart

A universal chart is preceded with a pre-chart.

193



< PrechartDef >

< InstDefList >

< InstDef >
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== prechart < InstDefList > endprechart

A pre-chart contains a set of instances.

=< InstDef >; < InstDefList >|

= instance < InstName >< LocationDefList > endinstance

An instance has a name and is made of a sequence of locations.

< LocationDefList >

< LocationDef >

=< LocationDef >; < LocationDefList > |

::= hotlocation < HotLocationDef > endhotlocation |
coldlocation < ColdLocationDef > endcoldlocation |
subchart < Subchart > endsubchart

A location is either a hot one or a cold one or a compositional one.

< HotLocationDef >

=< FventDef >|< CoregionDef >|< ConditionDef >

A hot location may be labeled with an event, a condition or a coregion.

< ColdLocationDef >

< SubchartDef >

< CoregionDef >

=< FventDef >|< CoregionDef >|< ConditionDef >

::=< LocationDefList >

A sub-chart contains a sequence of locations.

2= coregion < FventDefList > endcoregion

A coregion may contain multiple events.
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< PFventDefList >
=< FventDef >; < EventDefList >|

< ConditionDef >
::= hotcondition < Condition > endhotcondition |

coldcondition < Condition > endcoldcondition

< FventDef > =< ActionDef >|< MessageDef >|< TimerEventDef >

An event labeled with a location is either an local action or a message or a

timer event.
< ActionDef > = action < Action > endaction
< MessageDef > ::= hotmessage < HotMessageDef > endhotmessage |

coldmessage < ColdMessageDef > endcoldmessage

A message can be either hot or cold.

< TimerEventDef >
=< SetTimerDef >|< TimeOutDef >|< EndTimerDef >

A timer event is either a set timer event or a time out or an end timer event.

< HotMessageDef >
=< InputDef >|< OutputDef >

A message event is either an input or output.

< ColdMessageDef >
=< InputDef >|< OutputDef >

< SetTimerDef >

1= settimer < Clock >< Duration > endsettimer

< TimeOutDef >

1= timeout < Clock > endtimeout



< EndTimerDef >

< InputDef >

< OutputDef >

< InstlD >

< InstVarList >

< VarList >

< VarDef >

< Action >
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= endtimer < Clock > endendtimer

= input < Message > from < InstID > endinput

2= output < Message > to < InstID > endoutput

=< InstName >| env

= nstvart < InstName >< VarList > endinstvart

=< VarDef >; < VarList >|

== wvart < Variable >< TypeDef > endvari

1= setstate < Variable >< Value > endsetstate



