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Summary

Over the last few decades, many specification languages have been proposed, targeting different

systems, different aspects of complex systems, and systems at differentstages of development. Two

complementary approaches have proven useful in practice. Logic-based formalisms like Z and CSP

are based on mathematical techniques which provide the means for defining notions like consistency,

completeness, and refinement. Diagrammatic notations like sequence charts orStatecharts are based

on visual transition diagrams and are widely accepted by industry. One challenge of designing com-

plex computer systems is to find benefiting formalisms from those that may vary significantly in

presentation and establish sound connections between them. A long-cherished goal of software

engineering is the mechanized synthesis of implementations from high-level specifications. An im-

portant part of this thesis is dedicated to the problem of synthesis. For system engineering starting

with state-based formal specification, we developed a method of synthesizing implementable finite

state machines from logic-based Object-Z models with history invariants. For system development

starting with scenario-based diagrams, we investigated ways of synthesizing distributed object sys-

tems from Live Sequence Charts without constructing the global state machine. By combining

the two approaches, we achieve the goal of generating implementations fromsystem specifications

with not only complicated control flow but also complex data structures. In addition, this thesis also

investigates sound transformations between different formalisms so that existing theory and tool

support can be reused for visualization and verification. Logic-basedmodels can be visualized by

diagrammatic languages like UML to allow easy grasp of essential facts. Usingtransformation tech-

niques, mature verification mechanisms can be reused over formalisms other than those intended to

discover design errors inexpensively. In a nutshell, we established various connections between

complementary formalisms, which provide constructive methods for system development.
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Chapter 1

Introduction and Overview

‘it would be of very little use without my shoulders.

Oh, how I wish I could shut up like a telescope!

I think I could,

if I only knew how to begin.’

- Alice’s Adventures in Wonderland, Lewis Carroll

1.1 Motivation and Goals

Specification languages and notations have much to offer in the achievementof technical quality

in system development. Precise notations and languages help to make specifications unambiguous

while improving intuitiveness, increasing consistency and making it possible todetect errors dur-

ing specification rather than implementation. Over the last few decades, many formal modeling

languages have been proposed [154, 81, 65, 32, 79, 161, 137, 134, 102, 83, 132, 2]. Different for-

malisms focus on different systems, different aspects of complex systems,and systems at different

stages of development. Some of them have proven successful in reducing development costs and

significantly enhancing quality and reliability [63].

1



1.1. MOTIVATION AND GOALS 2

Formal specification languages and notations can be distinguished by their description techniques.

The choice of description technique is important because it shapes the system development process.

Distinguished by description techniques, the formalisms can be divided into twocategories. One is

logic-based formalisms, including those that have a strict mathematical basis and are usually textual.

Logic-based formalisms are further divided into two groups1, state-oriented formalisms, including

VDM [83], Z [161], Object-Z [137], etc., and event-oriented formalisms,including Communicating

Sequential Processes (CSP [79]), Timed CSP [134],Π-calculus [132], etc. The other category is

visual formalisms, including diagrammatic modeling languages and notations. Twogroups of them

are of particular interest in this thesis. One is scenario-based diagrams, e.g., Message Sequence

Charts (MSC) [81] and its variations like Live Sequence Charts (LSC) [32]. The other group in-

cludes those based on the notion of state machines, including finite state machines, Statecharts [65],

Petri-net [119], Timed Automata [2], etc.

Both groups of formalisms have their unique strengths. Logic-based formalisms are strictly based on

mathematical techniques which provide the means of precisely defining notionslike consistency, re-

finement, completeness and, more relevantly, specification, implementation, andcorrectness. They

often have strong tool support to validate their models, e.g., FDR (Failure Divergence Refinement)

for CSP [128], Z/EVEs for Z [131]. Used early in the system development process, they can reveal

design flaws that otherwise might be discovered only during costly testing and debugging phases.

However, logic-based formalisms are relatively unpopular compared to visual formalisms. One

of the reasons is that they are used only by system engineers with relevant mathematical back-

ground [29]. By contrast, visual formalisms are easy to apply and therefore, widely accepted by

the industry. They are used throughout the system development process. In the early analysis stage,

scenario-based diagrams are used to specify patterns of interaction between agents as the manifesta-

tion of use cases. In the design stage, system design based on state machines specifies system behav-

iors precisely and may lead directly to implementation. In the testing stage, sequence diagrams are

1Besides these two groups, there are also properties-oriented formalisms including CafeObj [37], Larch [62] and

variants of temporal logic [105]. Because property-oriented formalisms lack the notion of state or event and need not to

be complete, they can not be used as a complete system specification fromwhich the implementation is derived.
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used to capture test cases. Visual formalisms with formal semantics also havetool support for simu-

lation and verification, e.g.,Play-Enginefor LSC [70], UPPAAL for Timed Automata [9]. However,

as intuition is the primary concern of diagrammatic languages, they can be overwhelming (for in-

stance, with large number of charts) and some are semi-formal (for instance, withad hocsymbols).

Therefore, they are often hard to reason about, and they may impede synthesizing implementations

from early analysis stage models.

Logic-based and visual formalisms rely on different description techniques and yet their unique

strengths naturally complement each other. Recent works on integrating specification languages

have evidenced that combinations of logic-based formalisms and visual formalisms can be used

to specify a wide range of systems [94, 43, 118, 55]. In this thesis, we explored complementary

interplays between logic-based and visual formalisms so that moreconstructivemethods than spec-

ification, for example specification development, analysis and evolution, canbe provided. The goal

is to maximally reuse mature formal modeling techniques and their tools to benefit thesoftware

development process. Ultimately, the following shall be achieved:

• Promote the usage of logic-based formal methods by connecting them to popular industrial

modeling languages.

• Extend the usage of existing mature tools to visualize, validate models in different modeling

languages.

• Mechanically generate implementable models all the way from early stage requirements.

One of the long-cherished goals of software engineering is the mechanized synthesis of imple-

mentations from high-level specifications. A main part of our work is dedicated to the problem

of synthesis. For system engineering starting with logic-based formalisms, astate-based modeling

language like Object-Z serves as an abstract and complete basis for synthesis of finite state machine

designs. We developed a method of synthesizing implementable finite state machines from logic-

based Object-Z models with history invariants. Thus, we achieve separationof concerns by mod-

elling the data and functional aspects, and automatically generating dynamic control flow which in
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term leads to prototype implementations. For system development starting with visual formalisms,

scenario-based sequence diagrams are often used as a high-level specification language to capture

system requirements in the early stage of system development. We explored ways of synthesizing

distributed object systems from LSC using theoretical results from CSP. The key point is that our

synthesis strategy works without constructing the global state machine so asto avoid state space

explosion. Lastly, we propose that logic-based and visual formalisms canbe used in combination

to specify industrial scale systems. By combining the two approaches, we achieve the goal of gen-

erating implementations from system models with not only intensive interactive behaviors but also

complex data structures. The challenge of automatically constructing an object-system, especially

a distributed one, from high-level specifications has been long recognized [122].

This thesis also explores semantic-based transformations between logic-based and visual formalisms

pursuing objectives including visualization and verification. The lightweightand intuitive comple-

mentary interplay is that logic-based models can be visualized by diagrammatic notions like UML

to allow easy grasp of essential facts. Reusing mature verification mechanism over formalisms other

than those intended allows discovery of design errors inexpensively. The challenge of such interplay

is to find benefiting formalisms from those that may vary dramatically in syntax andestablish sound

connections between them.

1.2 Thesis Outline and Overview

The main contribution of our work is the investigation of complementary connections between logic-

based formalisms and visual formalisms. The three objectives, namely visualization, verification

and synthesis, are presented in the order of their importance.

Chapter 2 is devoted to an overview of relevant specification languages which are shared among

the subsequent chapters. We review the Z specification language and its object-oriented extension

Object-Z as representatives of state-based formalisms. The classic CSP and its timed extension

Timed CSP are briefly introduced as examples of event-based process algebra. Introductions to



1.2. THESIS OUTLINE AND OVERVIEW 5

diagrammatic notations like sequence diagrams, state machines are scattered in the chapters where

they are relevant.

In Chapter 3, an intuitive yet effective complementary interplay is presented, i.e., visualize logic-

based specifications with UML diagrams. To demonstrate that visualization may be applied to both

state-based and event-based formalisms, we investigate an integrated formal specification language

named TCOZ and develop semantic-based transformation from TCOZ to both sequence diagrams

and state machines. Although visualization may be theoretically lightweight, it is highly practical

and we believe that it may improve the popularity of formal methods in industry.

Chapter 4 addresses the verification problem. The aim is to show that existingverification mech-

anisms can be effectively reused. Without building new tool support from scratch, we show that

LSC, as an example of visual formalisms, can be verified by using a mature model checker for

logic-based formalisms, namely FDR for CSP. In the other direction, verification of Timed CSP and

TCOZ using existing tools for visual formalisms like UPPAAL are briefly discussed.

Chapters 5, 6 and 7 are devoted to the problem of synthesis. We show thatlow-level design lan-

guages like state machines can be systematically synthesized from high-levelspecification. In Chap-

ter 5, we propose a way of synthesizing distributed designs from scenario-based specifications,

namely LSC. Mature theories developed for CSP are used to group local behaviors of each object

without constructing the global state machine. For system engineering starting with logic-based

formalisms, state-based modeling language like Object-Z serves as an abstract and complete basis

for synthesis of finite state machine designs. In Chapter 6, we present a systematic way of extract-

ing implementable system designs from Object-Z models with history invariants. InChapter 7, the

two approaches are combined so that we may achieve the goal of generating implementations from

system models with not only intensive interactive behaviors but also complexdata structures.

Lastly, Chapter 8 concludes this thesis with possible future research trends. For the sake of read-

ability, related works of this thesis are distributed to the relevant chapters. Figure 1.1 and 1.2 shows

the structure of the thesis.
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Figure 1.1: Visualization and verification
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Figure 1.2: Synthesis
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1.3 Publications from the Thesis

Most chapters of the thesis have been accepted in international refereed conference proceedings or

journals. The work in Chapter 3 Section 3.4 was presented atThe 4th International Conference

on Integrated Formal Methods IFM’04 (April 2004, Canterbury, UK)[48]. The work in Chapter 3

Section 3.3 was used as a basis for the paper presented atThe 4th International Conference on

Formal Engineering Methods ICFEM’02 (October 2002, Shanghai)[46]. The work in Section 4.1

was presented atThe 10th International Conference on Engineering of Complex ComputerSystems

ICECCS’05 (June 2005, Shanghai)[144]. The work in Chapter 4 Section 4.2 was used as a basis for

the paper presented atThe 6th International Conference on Formal Engineering Methods ICFEM’04

(November 2004, Seattle)[42]. Part of the work in Chapter 5 was presented atThe International

Symposium of Formal Methods Europe FM’05 (July 2005, Newcastle upon Tyne)[145]. The work in

Chapter 6 was presented atThe 10th International Conference on Engineering of Complex Computer

Systems ICECCS’05 (June 2005, Shanghai)[143]. The work in Chapter 7 has been published in

IEEE Transactions on Software Engineering[146].

Besides, part of Section 4.2 has been accepted for publication [44]. Part of Chapter 5 has been

submitted for publication [147]. I also made partial contributions to other publications [49, 151, 45,

96, 93, 155, 64] which are although related to this thesis, they can be considered as side-stories to

the impact of this thesis work.
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Chapter 2

Notations and Languages

‘Have you seen the Mock Turtle yet?’

‘No,’ said Alice.

‘I don’t even know what a Mock Turtle is.’

‘It’s the thing Mock Turtle Soup is made from,’ said the Queen.

- Alice’s Adventures in Wonderland, Lewis Carroll

In this chapter, representatives of logic-based formalisms are reviewed. Brief introductions to di-

agrammatic notations like sequence diagrams, state machines are scattered in later chapters where

they are relevant.

2.1 State-based Formalisms

The Z specification language [161] and its extension [50] are adopted asrepresentatives of state-

oriented specification languages. The reasons are that Z is widely knownand accepted, and well-

developed in terms of specification and refinement. Z-like syntax is used throughout the thesis to

formalize our work.

9
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2.1.1 The Z Language

In 1992, the Queen’s Award for Technological Achievement was conferred upon IBM United King-

dom Laboratories Limited and Oxford University Computing Laboratory for“the development and

use of an advanced programming method that reduces development costs and significantly enhances

quality and reliability”: namely, the Z specification language. Z is a state-basedformal specifica-

tion language based on the established mathematics of set theory and first-order logic. The set

theory used includes standard set operators, set comprehension, Cartesian products, and power sets.

Mathematical objects and their properties are further collected together in schemas: patterns of dec-

laration and constraint. Z has been used to specify data and functional models of a wide range of

systems [73], including transaction processing systems and communication protocols. It has been

standardized by ISO 13568:2002 [80].

One of the fundamental parts of Z logic is the logic of propositions and the logicof predicates. In

the Z notation, the two kinds (universal or existential) of quantified expression have a similar syntax:

Qx : R | c • p

whereQ is a quantifier (∀ or∃), x is the bound variable,R is the range ofx , c is the constraint andp

is the predicate. The optional constraintc restricts the set of objects under consideration: only those

objects inR that satisfyc are to be considered. The constraint takes on the role of a conjunction or

an implication, depending upon the quantifier concerned.

Example 2.1.1 (Quantified predicate)

∀ x : Z | x > 0 • ∃ y : N • y > x

whereZ is the set of integers andN is the set of natural numbers. The expression reads as: for all

integersx which are greater than 0, there exists a natural numbery which is greater thanx . end

The other fundamental part of Z logic is the set theory: specifications in Z find their meanings as

operations upon sets. Another characteristic of Z notation is its way of constructing definitions. In

the Z notation, there are several ways of defining an object. The simplest way is to declare it as a
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given type: for example, the declaration[Predicate] introduces a new basic type calledPredicate.

We may also define things by abbreviation, or by axiom.

Example 2.1.2 (Abbreviation definition)

Illumination == 0 . . 100

The abbreviation definition introduces a new nameIllumination for the set of natural numbers

ranging from 0 to 100. end

Example 2.1.3 (Axiom definition)

pythagorean : N × N ↔ N

∀ x , y , z : N • (x , y) pythagorean z ⇔ x ∗ x + y ∗ y = z ∗ z

The axiom defines a total relation among three natural numbers. A relation is aset of tuples. The

axiom reads as: the tuple((x , y), z ) is in setpythagorean if and only if x 2 + y2 = z 2. end

In addition, there are special mechanisms for free types and schemas. Free types are a more ele-

gant, concise alternative for specifying enumerated collections, compound objects, and recursively

defined structures.

Example 2.1.4 (Free type definition)The setN could be introduced in Z notations by the follow-

ing free type definition:

nat ::= 0 | succ〈〈nat〉〉

wheresucc is a constructor function. Every element ofnat is either 0 or the successors of a natural

number, and every element ofnat has a unique successor. end

In Z, the schema language is used to structure and compose descriptions: collating pieces of infor-

mation, encapsulating them and naming them for re-use. A schema contains a declaration part and a

predicate part. The declaration part declares variables and the predicate part expresses requirements

about the values of the variables.
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Example 2.1.5 (State schema)The following schema encapsulates the state information of a light

object.

Light

dim : Illumination

on : B

dim > 0 ⇔ on = true

whereB is the Boolean type. The declaration part declares two variables. The variabledim is the

illumination of the light object, ranging of value from 0 to 100 (in percent). Thevariableon is a

Boolean variable indicating whether the light object has been turned on or not. The predicate part,

referred to as a state invariant, places a constraint upon the values of thetwo variables, i.e., thedim

is non-zero if and only if the light object is on. end

A specification in Z typically consists of a number of state and operation schemas. A state schema

groups together state variables and defines the relationship that holds between their values, for

instance, theLight schema in example 2.1.5. An operation schema defines the relationship between

the ‘before’ and ‘after’ valuations of one or more state schemas upon anoperation. External inputs

to an operation schema are written as variables followed by a question mark in the declaration part.

Example 2.1.6 (Operation schema)The following operation schema defines the operationAdjust

by stating how the state variables of theLight schema are updated:

Adjust

∆Light

dim? : Illumination

on = true ∧ dim ′ = dim?

The variabledim? is an input from the environment. The state-update is expressed using a predicate

involving both primed and un-primed state variables. The primed variables denote the values of the

variables after the operation. We remark that ifdim? is zero, the state variableon will be set to

false because of the state invariant. end
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A large Z specification can be divided into packages. A package containsone state schema, one

initial schema which identifies the initial valuation of the state schema and a number of operation

schemas which update the state schema. A Z package thus identifies the state space of an object.

Example 2.1.7 (Z package)

Light

dim : Illumination

on : B

dim > 0 ⇔ on = true

Adjust

∆Light

dim? : Illumination

on = true ∧ dim ′ = dim?

TurningOn

∆Light

on = false ∧ dim ′ = 100 ∧ on ′ = true

TurningOff

∆Light

on = true ∧ dim ′ = 0 ∧ on ′ = false

LightInit

Light ′

dim ′ = 0 ∧ on ′ = false

These schemas constitute aLight package. The state invariant states that the light level is larger

than zero if and only if the light is on. The schema namedLightInit identifies the initial state of the

object, i.e., the light is off. Operation schemaTurningOn, TurningOn andAdjust are defined to

turn on or turn off the light or set the light level to a specific level. end

The glossary of Z notation is summarized in Appendix A. Z is a powerful language for specifying

data and functional models. However, it is not intended for description ofnon-functional properties,

such as usability, performance, size and reliability. Neither is it intended fortimed or concurrent

behaviors. There are other formal methods that are well suited for thesepurposes. Z may use

in combination with these methods to relate state and state-change information to complementary

aspects of design. Example combinations are presented in Section 3.2 and 7.2.
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2.1.2 Object-Z

Object-Z [50] is an object-oriented extension of the Z language. It has been developed by a team

of researchers at the Software Verification Research Center, University of Queensland. It improves

the clarity of large Z specifications through enhanced structuring. The mainObject-Z construct is

the class definition, which captures the object-oriented notion of a class by encapsulating a state

schema with all the operations which may affect its variables. As well as beingused to specify

objects, Object-Z classes can be directly reused in definitions of other classes. A class may be

specified as a specialization or extension of another class using inheritance.

An Object-Z class is represented syntactically as a named box with zero or more generic parameters.

There may be local types and constant definitions, at most one state schemaand one initial schema

written as INIT and zero or more operations. The declarations of the state schema are referred to

as state variables and the predicate as class invariants. The class invariant restricts the possible

valuations of the state variables. The initial schema identifies the possible initial valuations. An

operation is either an operation schema or a schema expression involving existing class operations

and schema operators.

Example 2.1.8 (Object-Z class)Figure 2.1 shows an Object-Z specification of a queue class, where

Package is a given type representing network communication packages. The internal structure of

a package is of no interest in the modeling. The queue is modeled as a sequence of packages as

defined in the (anonymous) state schema. The sequence is initially empty as specified in the INIT

schema. Operations are provided to allow items to join or leave the queue on a first-in/first-out basis.

This queue class models an incoming channel of a network router. The totalfunctionexpires tells

whether a package has expired (by examining certain flag bits in the package). A package is put

into the queue only if it is not expired and all packages in the queue may be later forwarded. end

Operation schemas in an Object-Z class are given a standard Z semantics, which is used to develop a

transition-system semantics [161]. The Z operation semantics is best viewedas describing a relation

between initial and final states of an operation. The Z precondition of an operation schema describes
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[Package]

Queue

↾(INIT, Join,Leave)

expires : Package → B

items : seqPackage

INIT

items = 〈 〉

Join

∆(items)
item? : Package

expires(item?) ⇒ items ′ = items

¬ expires(item?) ⇒ items ′ = items a 〈item?〉

Leave

∆(items)
item! : Package

items = 〈item!〉 a items ′

Figure 2.1: Object-Z class
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the initial states for which the outcome of the operation is properly defined. InZ semantics, if an

operation is applied outside its domain (the precondition), the system diverges. By contrast, Object-

Z adopts a blocking semantics. An operation can only occur when its precondition is satisfied.

When its precondition is not satisfied, the operation is said to beblocked, i.e., it is not available for

application. The blocking semantics is safer because there is no need for the specifier to check if

operations are sufficiently defined and, in the cases they are not, combinethem with appropriate

error handling. Another consequence of the blocking semantics is that Z refinement of an operation

by weakening pre-conditions is not applicable.

Definition 1 Let Operation be an operation schema. LetState be the state schema, andinputs

(outputs) be the list of inputs (outputs) associated with the operation. The precondition of the

operation, written as pre(Operation), is defined as:

pre(Operation) =̂ ∃State ′; outputs • Operation \ outputs

where the schemaOperation \ outputs may be obtained by existentially quantifying each compo-

nent inoutputs within Operation.

The precondition hides any components that correspond to the state after the operation, and any

outputs that happen to be present.

Definition 2 If a state (Statea )1 satisfies the precondition ofOperation, the postcondition of the

Operation from stateStatea , written as post(Operation,Statea) is:

post(Operation,Statea) =̂ Statea ∧ Operation

Example 2.1.9 (Precondition and postcondition)The precondition of operationAdjust in Exam-

ple 2.1.7 is:

pre(Adjust) =̂
∃ dim ′ : 0 . . 100; on ′ : B |

dim ′ > 0 ⇔ on ′ = true • – Invariant in Post-state
on = true ∧ dim ′ = dim? – Def. ofAdjust

1In this thesis, state and predicate are used interchangeably.
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Given the state wheredim > 0 ∧ on = true, the postcondition of the operationAdjust is:

post(Adjust , dim > 0 ∧ on = true) =̂
dim > 0 ⇔ on = true ∧ dim ′ > 0 ⇔ on ′ = true ∧ – invariant

dim > 0 ∧ on = true ∧ on = true ∧ dim ′ = dim?

The precondition and postcondition can be further simplified using predicatelogic. For instance,

the above postcondition can be simplified asdim ′ = dim?. end

The operations of a class form a named collection of relations, which determines a transition system

in which a given operation may fire exactly when its Z precondition is satisfied.The semantic model

thus consists of all the sequences of operations/events which can be performed by the transition

system.

Example 2.1.10 (Transition system semantics)The classQueue defines the following state tran-

sition system:

0 1 n

Join
Join

Join

... ...Join Join Join

LeaveLeaveLeave Leave

Join

For simplicity, the state is only distinguished by the number of packages in the queue since the

packages in the queue are considered identical in the modeling. end

The properties represented by a state transition system are referred to as safety properties. They

specify which state changes may occur but do not require that any state changes actually do occur.

Properties which state that a state change, or an operation, must occur are referred to as liveness

properties. Object-Z allows the specification of liveness properties by associating each class with

a history invariant in the form of a temporal logic formula. The history invariant restricts the set

of histories derived from the state of the class. The notion of history invariant was introduced
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in early versions of the Object-Z language [136, 51]. However, it is notincluded in the Graeme

Smith’s work [137] for practical reasons. We believe that the history invariant is an effective method

to strengthen the weak process control logic of Object-Z. For simplicity, the history invariant is

restricted to Linear-time Temporal Logic (LTL [120]) in this thesis. History invariants other than

standard LTL formulæ appearing in [136, 51] can be reframed in LTL by introducing auxiliary

variables.

Example 2.1.11 (Object-Z class with history invariant) The following is an Object-Z class with

history invariant:

FairBoundedQueue

Queue

max : N

23#items = 0

2#items ≤ max

This class is a subclass ofQueue, indicated by the first line in the class box. A state variablemax

is defined in the state schema, in addition to those defined in the state schema of classQueue. The

variablemax models the capacity of the queue. The state invariant (the last two lines) statesthat

the queue is eventually empty and the number of items in the queue is always bounded bymax .

The temporal operators2 and3 are borrowed from modal logic [53]. Intuitively,2 can be read as

‘always’ and3 as ‘eventually’. end

2.2 Event-based Formalisms

Hoare’s classic Communicating Sequential Process (CSP) and its timed extensions Timed CSP are

our choice of representatives for event-oriented formalisms.
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2.2.1 Communicating Sequential Processes

The notion of CSP was introduced in Tony Hoare’s classic paper [79]. The original language derives

its full name from the built-in syntactic constraint that processes belong to thesequential subset of

the language. A characteristic of CSP is that processes have disjoint local variables, which was

influenced by Dijkstra’s principle ofloose coupling[39]. CSP has passed the test of time. It has

been widely accepted and influenced the design of many recent programming and specification

languages including Ada [54], occam [110], Concurrent ML [126],BPEL4WS [84], and Orc [112].

CSP is a formal specification language where processes proceed fromone state to another by en-

gaging in events. Processes may be composed by using operators which require synchronization

on events, i.e., each component must be willing to participate in a given event before the whole

system makes the transition. Synchronous communication, rather than assignments to shared state

variables, is the fundamental means of interaction between agents. A CSP process is defined by

process expressions.

Definition 3 Let P denote all possible CSP processes. The syntax of a CSP process is defined as:

P ::= RUNΣ – replicated choice
| STOP – deadlock
| SKIP – termination
| ⊥ – divergence
| e → P – event prefixing
| P1〈| b |〉P2 – conditional choice
| P1 ⊓ P2 – internal choice
| P1 2 P2 – external choice
| P1 ||| P2 – interleaving
| P1 |[ Σ ]|P2 – generalized parallel
| P1 X ||Y P2 – alphabetized parallel
| ‖n

k=1
(Pk , Σk ) – replicated parallel

| P1; P2 – sequential composition
| P1 ▽e P2 – interrupt
| µX • P(X ) – recursion

RUNΣ is a process always willing to engage in any event inΣ. STOP denotes a process that dead-

locks and does nothing. A process that terminates is written as SKIP =̂ X → STOP, whereX is the
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termination event. The process⊥ is the most unpredictable and most uncontrollable of processes.

It behaves chaotically. A process which may participate in evente then act according to process

descriptionP is written ase → P . The evente is initially enabled by the process and occurs as

soon as it is requested by its environment, all other events are refused initially.

Diversity of behavior is introduced through choice operators. The conditional choiceP1〈| b |〉P2

behaves asP1 if the Boolean formulab is true and elseP2. The external choice operator (2) allows

a process of choice of behavior according to what events are requested by its environment2. For

instance, the process(a → P) 2 (b → Q) begins with botha andb enabled. The environment

chooses which event actually occurs by requesting one or the other first. Subsequent behavior is

determined by the event which actually occurred. Internal choice represents variation in behavior

determined by the internal state of the process. The processa → P ⊓ b → Q may initially enable

eithera or b or both, as it wishes, but must act subsequently according to which event actually

occurred. The environment cannot affect internal choice.

Example 2.2.1 (Simple vending machine)The following is a specification of a trivial vending ma-

chine.

VM =̂ coin → (coffee → STOP⊓ candy → STOP)

Eventcoin is the action of inserting a coin to the vending machine. After a coin is inserted, the

vending machine dispatchs a cup of coffee or a candy randomly and then stops reacting. end

The parallel composition of processesP1 andP2, synchronized on common events of their alphabets

X , Y (or a common set of eventsA) is written asP1 X ||Y P2 (or P1 |[A ]|P2). No sharing event

may occur unless enabled jointly by bothP1 andP2. When a sharing event does occur, it occurs in

bothP1 andP2 simultaneously and is referred to assynchronization. Events not sharing may occur

in eitherP1 or P2 separately but not jointly.

2External choice and temporal operator ‘always’ share the same symbol for historical reasons. In this thesis,2 is used

to denote external choice if not explicitly stated otherwise.
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The sequential composition ofP1 andP2, written asP1; P2, acts asP1 until P1 terminates by

communicating a distinguished eventX and then proceeds to act asP2. The termination signal is

hidden from the process environment and therefore occurs as soon as enabled byP1. The interrupt

processP1 ▽e P2 behaves asP1 until the first occurrence of evente, then the control passes to

P2. Recursion is used to give a finite representation of non-terminating processes. The process

expressionµX • P(X ) describes a process which contains a recursion pointX .

In general, the behavior of a process at any point in time may be dependent on its internal state

and this may conceivably take an infinite range of values. It is often not possible to provide a

finite representation of a process without introducing some notation for representing this internal

state. The approach adopted by CSP is to allow a process definition to be parameterized by state

variables. A definition of the formP(x ) represents a family of definitions, one for each possible

value ofx .

Example 2.2.2 (Vending machine)The following is a CSP specification of a more realistic vend-

ing machine:

VendingMachine(quote) =̂
drop?coin → VendingMachine(quote + coin)
2 [quota > 0] • release → releasecoin → VendingMachine(0)
2 [quota ≥ 80] • button?coffee → VendingMachine(quota − 80)
2 [quota ≥ 50] • button?candy → VendingMachine(quota − 50)

The vending machine dispatches either coffee or candy. A coffee costs80 cents and a candy costs

50 cents. The process is parameterized by the amount inserted by the user. A user may insert coins

repeatedly before requesting an item. He (she) may as well ask the machine torelease all coins

inserted so far. An item is dispatched only when sufficient coins have been inserted. A channel is a

method to group events. Two channels are used in this example,drop, button. A synchronization

on channeldrop represents an insertion of a coin. A synchronization on channelbutton represents

a request of an item. Eventrelease is the user request to release all the coins. end

Three mathematical models for CSP have been defined. In the traces model, aprocess is represented

by the set of finite sequences of communications it can perform, denoted astraces(P). In the
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stable failures model, a process is represented by its traces and also by its failures. A failure is

a pair(t , Σ), wheret is a finite trace of the process andΣ is a set of events it can refuse aftert

(refusal). The set ofP ’s failures is denoted asfailures(P). In the failures/divergences model [22],

a process is represented by its failures as well as its divergences, denoted asdivergences(P). A

divergence is a finite trace during or after which the process can perform an infinite sequence of

consecutive internal actions. Interested readers should refer to [128] for detailed definitions of the

three semantics models.

Three forms of refinement have been defined, corresponding to the three semantics models. Traces

refinement means traces containment. It is used for proving safety properties. Failures refinement

is normally used to prove failures-divergence refinement for divergence-free processes. Failures-

divergence refinement is used for proving safety, liveness and combinational properties, and also for

establishing refinement and equality relations between systems. Two processesP1,P2 are equiv-

alent, denoted asP1 = P2, if and only if failures(P1) = failures(P2) anddivergences(P1) =

divergences(P2). Equivalence of processes can be proved or disproved by appealing to algebraic

laws. The laws that are relevant to the works in this thesis include the following: the formal proof

of the laws can be found in [79] or [128],

P |[ Σ ]|RUNΣ = P – L1
P ‖ STOP = STOP – L2
P ‖ P = P – L3
P1 X ||Y P2 = P2 Y ||X P1 – L4
(P1 X ||Y P2) X∪Y ||Z P3 = P1 X ||Y∪Z (P2 Y ||Z P3) – L5

2.2.2 Timed CSP

The language of CSP and the semantics models introduced so far are appropriate for describing

and analyzing systems in terms of their possible sequences of events. All thesemantics models

deliberately abstracted away concerns about timing such as the precise time at which events occur.

Real-time systems, which can only be modeled and analyzed using a quantitativenotion of time, are

commonplace, for example traffic control, robotics, virtual reality, etc. TimedCSP is an extension

of the CSP language to specify and model real-time systems [125]. It extends ordinary CSP by
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introducing a capability to quantify temporal aspects of sequencing and synchronization. To the

standard CSP process operators, Timed CSP adds a number of time specificones, e.g., timed event

prefix, the delay, the timed interrupt and the timeout.

Definition 4 Let T denote the set of all possible timed CSP processes. The syntax of a Timed CSP

process is defined as:

T ::= P – CSP process
| e • t → T (t) – timed prefix

| e
t→ T – delay

| WAIT [t ] – wait
| T1 ▽{t} T2 – timed interrupt
| T1 ⊲{t} T2 – timeout

The optional timing parameter t of the timed prefix records the time, relative to the start of the

process, at which the evente occurs and allows the subsequent behaviorT (t) to depend on its

value. The processe t→ P delays processP by t time units after engaging in evente. A process

which allows no communications for periodd time units then terminates is written as WAIT [t ]. It is

used to delay a subsequent process for a specific number of time units.

The timed interruptT1 ▽{t} T2 initially behaves as processT1, and passes control to a subsequent

processT2 as soon as the time periodt has elapsed. The timeout process, written asT1 ⊲{t} T2,

passes control to a subsequent processT2 if no event has occurred in the primary processT1 by

some deadlinet .

In the operational semantics of Timed CSP [135], the semantics of a Timed CSP process is defined

by identifying how the process may evolve through time or by engaging in instantaneous events.

In the denotational semantics models, it is defined by stating the set of possibleobservations, e.g.,

traces, failures and timed failures [33]. Semantically, the only addition to the CSP language is the

process construct WAIT [d ]. Other timed related operators can be interpreted in terms of ordinary

CSP operators and the WAIT [d ] process [33]. For instance,

e
t→ T = e → (STOP ⊲{t} T )

T1 ⊲{t} T2 = T1 2 (WAIT [t ]; T2)
T1 ւ{t} T2 = T1 ▽ (WAIT [t ]; T2)
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Example 2.2.3 (Timed vending machine)The following is a specification of a timed vending ma-

chine.

TVendingMachine(quote) =̂

[quota = 0] • drop?coin
1→ TVendingMachine(coin)

2 [quota > 0] • (drop?coin
1→ TVendingMachine(quote + coin)

2 [quota > 0] • release → releasecoin → TVendingMachine(0)

2 [quota ≥ 80] • button?coffee
3→ TVendingMachine(quota − 80)

2 [quota ≥ 50] • button?candy
2→ TVendingMachine(quota − 50))

⊲{60} (releasecoin → TVendingMachine(0))

When variablequota is of value 0, the only action enabled is by communication through channel

drop, i.e., insert a coin. There is a delay of one time unit before the machine accepts the coin and

updates the variablequota. After that, the user may continue inserting coins or request the vending

machine to release all coins inserted thus far. Once sufficient coins havebeen inserted, the user may

request for either coffee or candy. Whenever the choice is made, the vending machine dispatches

the corresponding drink, taking a reasonable amount of time. If the user idles more than 60 seconds

after inserting a coin, the machine releases the coins. end



Chapter 3

Visualization

‘And what is the use of a book’, thought Alice.

‘without pictures or conversations?’

- Alice’s adventures in wonderland, Lewis Carroll

Visualization is more than a method of computing. It is a process of transforminginformation into

a visual form enabling the viewer to observe, browse, make sense, andunderstand the information.

Visualization typically employs computers to process the information and computerscreens to view

it using methods of interactive graphics, imaging, and visual design. It relies on the visual system to

perceive and process the information. The beauty of effective visualization is more than skin deep.

3.1 Introduction

Logic-based formalisms, either state-based ones like Z or event-based ones like CSP, are elegant and

precise. However, logic-based modeling often relies on heavy mathematicalnotations. It presents

a difficulty for the software engineers without relevant mathematical background, which we be-

lieve is one of the reasons why logic-based formal methods are relatively unpopular in industry.

25
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By contrast, diagrammatic notation like MSC, Statechart and UML are intuitive and easy to un-

derstand. They are widely accepted by the industry for system modeling and analyzing. Massive

amounts of human power and resources have been dedicated to system engineering based on those

graphical notations. In this chapter, we investigate ways of visualizing logic-based modeling using

visual diagrams. As well as showing essential facts, visualizing logic-based modeling using popular

graphic notations like UML diagrams makes it possible to reuse existing tool support for test case

generation, verification, code synthesis, etc.

This work has been based on the notion of Timed Communicating Object-Z (TCOZ[100]). TCOZ

is an effective integration of Timed CSP and Object-Z. It is capable of specifying systems with not

only complicated control flow but also complex data structures. Sound projections have been estab-

lished to visualize different viewpoints of the integrated modeling. The intra-object control flows

of TCOZ models are visualized using the notion of Statecharts [65]. The inter-object interaction is

visualized using Message Sequence Charts. Being based on an expressive language like TCOZ, we

are confident that the approach can be applied to other logic-based formalisms.

3.2 An Integrated Specification Language

TCOZ was introduced by Mahony and Dong in [100] to allow complete and coherent specification

of complex systems. It is a blending of Object-Z and Timed CSP. The basic structure of a TCOZ

document is the same as for Object-Z, which consists of a sequence of definitions, including type

and constant definitions in the usual Z style. TCOZ varies from Object-Z in the structure of class

definitions, which may include CSP channel and process definitions. Channels in TCOZ are de-

fined as communication interfaces between objects. All dynamic interactions between objects must

take place through the channel communication mechanism. The true power of TCOZ comes from

the ability to make use of Timed CSP primitives in describing the process aspects of an opera-

tion’s behavior. All operation definitions in TCOZ are Timed CSP process definitions. Operation

schemas are identified with terminating Timed CSP processes. The data-relatedaspects of TCOZ

are modeled using state bindings and the process-related aspects are modeled using event traces and
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refusals [101]. In the following, a simplified version of the Light Control System (LCS) [52] is used

as a running example to illustrate the features of TCOZ as well as to demonstratethe visualization.

3.2.1 Light Control System

LCS is an intelligent control system. It can detect the occupation of a building, and then turn on

or turn off the lights automatically. It is able to tune illumination (in percentage) in thebuilding

according to the outside light level. It consists of three components: a light, amotion detector

and a room controller. A typical system behavior is that when a user enters a room: the motion

detector senses the presence of the person, and then the room controller reacts by receiving the

current daylight level and turning on the light group with appropriate illumination setting. When a

user leaves a room (leaving it empty): the detector senses no movement, the room controller waits

for certain time units and then turns off the light group. In addition, the occupant can directly turn

on/off the light by pushing the button.

Light

dim : Illumination

on : B

INIT

dim = 0 ∧ on = false

TurningOn

∆(dim, on)

dim ′ = 100 ∧ on ′ = true

TurningOff

∆(dim, on)

dim ′ = 0 ∧ on ′ = false

ClassLight is an ordinary Object-Z class. An ordinary Object-Z class in TCOZ simply defines a

data type. It does not have its own thread of control. It is thus called as a passive class.
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ControlledLight

Light

button, dimmer : chan

ButtonPushing =̂ button?1 → ([dim > 0] • TurningOff

2 [dim = 0] • TurningOn)
DimChange =̂ [n : 0 . . 100] • dimmer?n → ([on] • dim := n 2 [¬ on] • SKIP)
MAIN =̂ µN • (ButtonPushing 2 DimChange); N

ClassControlledLight extendsLight class with channel and process definitions. The state schema

is extended with channel definitions. The channel definition specifies the communication interface

between the object and its environment. Channels defined in different classes with the same name

are connected implicitly. In this example,button anddimmer are channels connecting the light

to the environment and the room controller. The process definitions precisely state how the object

interacts with its environment through the interface and reacts to environmentinputs. Object-Z

operation schemas are treated as terminating processes in the process definitions. For instance, in

processButtonPushing , once there is a synchronization on channelbutton, if the light is on, the

operationTurningOff is invoked. State guards, written as[b] • P , is the short form for

P〈| b |〉STOP

whereb is a Boolean formula over the state variables and environmental inputs. A MAIN process

indicates an active object, which has its own thread of control. It determinesthe behavior of objects

of the active class after initialization. The classControlledLight is a typical example of TCOZ-style

specification of active agents.

MotionDetector

motion : chan
md : (Move | NoMove) sensor

NoUser =̂ md?Move → motion!1 → User

2 md?NoMove → WAIT 1; NoUser

User =̂ md?NoMove → motion!0 → NoUser

2 md?Move → WAIT 1; User

MAIN =̂ NoUser
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The motion detector detects movement in the room so is to tell whether some one is in or not. It

sends proper signals to the room controller periodically. This class has a trivial data structure. There

are no state variables and operation schemas. The keywordsensoridentifies a continuous-function

interface mechanism [103]. Internally,md takes the role of a CSP channel. The relationship be-

tween the public continuous-function variable and the internal channel is that whenever a value is

communicated on the internal channel at a timet , that value must be equal to the value of the con-

tinuous function at that time. Intuitively, synchronization on channelmd represents the output from

the movement sensor. Initially, the object behaves as specified by the processNoUser . If no move-

ment is detected, the object waits for 1 time unit and then continues to monitor signals from channel

md . If there is some movement, a signal is sent on channelmotion to inform the room controller

and then the object behaves as specified by the processUser . The processUser is similarly defined.

RoomController

dimmer ,motion : chan
odsensor : Illumination sensor
absent : T

olight : Illumination

Adjust

dim! : Percent ondimmer

dim! satisfy olight

Ready =̂ motion?1 → On

Regular =̂ µR • [n : 0 . . 100] • odsensor?n → Adjust ; dimmer !dim → R

On =̂ Regular ▽ motion?0 → OnAgain

OnAgain =̂ (motion?1 → On) ⊲{absent} Off

Off =̂ dimmer !0 → Ready

MAIN =̂ Off

The room controller communicates with the motion detector and the light through theshared chan-

nels. It takes in signals from the motion detector and sends proper signal tothe light. The relation

satisfy captures the relationship between daylight level and required illumination. The operation

Adjust outputs the desired light level, which is sent over channeldimmer to tune the light level.

The process expressions are complicated with mutual recursion, in additionto complex operators

like interrupt and time-out. Lastly, a light control system consists of the roomcontroller, the motion

detector and the light. The MAIN process is the parallel composition of the three instances specified

using a network topology, i.e., a graph-like way of specify communication structure in TCOZ [100].



3.2. AN INTEGRATED SPECIFICATION LANGUAGE 30

Two objects connected by a double-arrowed horizontal line may communicatethrough the channels

written over the line. In this example, the motion detector shares the channelmotion with the room

controller, and the room controller shares the channeldimmer with the light.

LCS

m : MotionDetector

l : ControlledLight

r : RoomController

MAIN =̂ ‖(m motion
¾ - r dimmer

¾ - l)

This modeling is elegant and precise, but not intuitive. The explicit behavior patterns of the Light

Control System are distributed among the class definitions.

3.2.2 Trace Model for TCOZ

The syntax of TCOZ process expression, written asTZE , is defined as the following (refer to

Definition 3 and 4 for comparison):

Definition 5 Let ZE represent Z expressions,ZS represent Z schemas,NAME represent all valid

character strings.

TZE ::= STOP | RUN | SKIP – primitives
| op〈〈ZS 〉〉 | ref 〈〈NAME 〉〉 – referencing
| ( . → )〈〈Σ × ZE × TZE 〉〉 – event prefixing
| WAIT〈〈ZE 〉〉 – delay
| ( • )〈〈ZS × TZE 〉〉 – state guard
| ( | )〈〈TZE × TZE 〉〉 – choice
| ( ▽e )〈〈TZE1 × TZE2〉〉 – interrupt
| ( || )〈〈TZE × Σ × Σ × TZE 〉〉 – parallel
| ( ||| )〈〈TZE × TZE 〉〉 – interleaving
| ( ; )〈〈TZE × TZE 〉〉 – sequential composition
| (µ • )〈〈NAME × TZE 〉〉 – recursion
| ( [ / ])〈〈TZE × Σ × Σ〉〉 – renaming
| ( \ )〈〈TZE × P Σ〉〉 – hiding
| ( ⊲{ } )〈〈TZE × ZE × TZE 〉〉 – timeout
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The semantic model for TCOZ is the infinite timed-states model which extends the Timed CSP’s in-

finite timed-failure model [101]. A system model specified using Statechart or sequence diagram is

characterized by the set of traces it may perform. Thus, a trace semanticsis sufficient for the discus-

sion on visualizing TCOZ models. In this section, we present a trace-basedsemantics simplifying

the infinite timed-failure model of TCOZ. The trace model is used as a guideline for developing

the mechanized projection. The main connection between the Object-Z model and the Timed CSP

model is that an Object-Z operation schemaop〈〈ZS 〉〉 may appear in the process expression as a

non-atomic terminating process. LetΣ be the set of all possible events.

[Σ]

A TCOZ event may be an update event (an invocation of an operation schema), a simple synchro-

nization, a channel communication, or a termination eventX. A trace is a (finite or infinite) sequence

of events. LetΣ∗ denote all possible traces that can be composed by events inΣ.

Σ∗ == seqΣ

Most of the process constructs in TCOZ are borrowed from Timed CSP. Thus, the trace model

assembles the trace semantics of CSP [79, 128].

traces : TZE → P Σ∗

The only trace of STOP is the empty one, and any sequence of events is a trace of RUN.

T1 traces(STOP) = {〈〉}
T2 traces(RUN) = Σ∗

A trace of (c.a → TZE ) may be empty, because〈〉 is a trace of the behavior of every process up

to the moment that it engages in its very first action. Every nonempty trace begins with c.a, and its

tail must be a possible trace ofTZE .

T3 traces(c.a → TZE ) = {〈c.a〉 a u | u ∈ traces(TZE )} ∪ {〈〉}

A trace of WAIT ZE is either an empty one or a delay ofZE time units. The eventwait(ze) is an

artificial event. It marks a time delay in the trace, which allows us to use timing constructs in MSC

and Statechart to visualize simple timing aspects of the system.
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T4 traces(WAIT ZE ) = {〈〉, 〈wait(ze)〉}

If the state guardZS evaluates to false, the only trace ofZS • TZE is the empty one. Every

nonempty trace must be a trace of the process expressionTZE . The state-guard, is typically used

to block or enable execution of an operation on the basis of an object’s local state (the instance’s

state).

T5 traces(ZS • TZE ) = traces(TZE ) ∪ {〈〉}

A trace of a process which offers a(n internal or external) choice of two process expressions must

be a trace of one of the alternatives. For internal choice, the choice is made upon the internal state

of the system. For external choice, the choice is made by the environment.

T6 traces(TZE1 | TZE2) = traces(TZE1) ∪ traces(TZE2)

A trace of(TZE1 ▽e TZE2) is a sequence event ofTZE up to the moment the evente occurs. Its

tail shall be a trace ofTZE2.

T7 traces(TZE1 ▽e TZE2) = {s a 〈e〉 a t | s ∈ traces(TZE1) ∧ t ∈ traces(TZE2)}

A trace of the parallel composition(TZE1 X ||Y TZE2) is composed by two traces, one from each

component, synchronizing on common events of their alphabets.

T8 traces(TZE1 X ||Y TZE2) =
⋃{s X ||Y t | s ∈ traces(TZE1) ∧ t ∈ traces(TZE2)}

where given two tracestr1 andtr2, tr1 X ||Y tr2 is a set of traces defined by the following; belowx

denotes a typical member ofX but notY andy is a typical member ofY but notX andz , z ′ are

typical members of bothX andY andz 6= z ′.

tr1 X ||Y tr2 = tr2 Y ||X tr1

〈〉 X ||Y 〈〉 = {〈〉}
〈〉 X ||Y 〈y〉 = {〈y〉}
〈x 〉 X ||Y 〈〉 = {〈x 〉}
〈〉 X ||Y 〈z 〉 = ∅

〈z 〉 X ||Y 〈〉 = ∅

〈x 〉 a tr ′1 X ||Y 〈z 〉 a tr ′2 = {〈x 〉 a tr | tr ∈ (tr ′1 X ||Y 〈z 〉 a tr ′2)}
〈z 〉 a tr ′1 X ||Y 〈z 〉 a tr ′2 = {〈z 〉 a tr | tr ∈ tr ′1 X ||Y tr ′2}
〈z 〉 a tr ′1 X ||Y 〈z ′〉 a tr ′2 = ∅

〈x 〉 a tr ′1 X ||Y 〈y〉 a tr ′2 = {〈x 〉 a tr | tr ∈ (tr ′1 X ||Y 〈y〉 a tr ′2)}
∪{〈y〉 a tr | tr ∈ (〈x 〉 a tr ′1 X ||Y tr ′2)}
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A trace of the sequential composition(TZE1; TZE2) is a sequence of events ofTZE1 up to the

momentTZE1 terminates by engaging in eventX. After that the trace continues with sequence

of events fromTZE2. This definition of sequential composition is known asstrong sequential

composition [6].

T9 traces(TZE1; TZE2) = {traces(TZE1) ∩ (Σ\{X})∗}
∪{s a t | s a 〈X〉 ∈ traces(TZE1) ∧ t ∈ traces(TZE2)}

The trace model for recursion is a fixed point definition. Refer to the detailed discussion in [79].

T10 traces(µX • TZE ) = ∪
n≥0

traces(F n(STOP))

Process constructs like SKIP or interleaving or timed interrupt can be defined in terms of other

primitive ones. The traces of process expressions involving those constructs, thus, can be deduced.

Example 3.2.1 (Traces ofButtonPushing) The following shows how we may compute the set of

traces for a process expression:

traces(ButtonPushing)
=̂ traces(button?1 → ([dim > 0] • TurningOff

2 [dim = 0] • TurningOn))

=̂ {〈button?1〉 a u | u ∈ traces([dim > 0] • TurningOff

2 [dim = 0] • TurningOn) ∪ {〈〉}} – byT3
=̂ {〈button?1〉 a u | u ∈ traces([dim > 0] • TurningOff )

∪traces([dim = 0] • TurningOn) ∪ {〈〉}} – byT6
=̂ {〈button?1,TurningOff 〉, 〈button?1,TurningOn〉, 〈button?1〉, 〈〉} – byT5

end

3.3 From TCOZ to Statecharts

TCOZ is well suited for presenting complete and coherent requirement specifications that com-

prehensively model various viewpoints for complex systems. Given an integrated model, one can

project it into consistent multiple views for specialized analysis. In this section, we are interested in

one particular viewpoint projection - the intra-object control flow perspective.



3.3. FROM TCOZ TO STATECHARTS 34

3.3.1 Projection

The notion of Statechart originated from Harel [65]. A Statechart diagram is an important modeling

notation in UML. It represents the behavior of entities capable of dynamic behavior by specifying its

response to the receipt of events. Typically, it is used for describing thebehavior of class instances.

The key idea for using UML Statecharts to visualize TCOZ is that TCOZ processes (operations)

are identified with states of UML Statecharts and TCOZ events/guards are identified with the state

transitions. In the following, we present a set of projection rules, which defines the Statechart

patterns for TCOZ process constructs.

STOP is identified with a state without outgoing transitions. Thus, a system run reaching the state

makes no further move unless the control is withdrawn from the composite statecontaining the state.

SKIP is identified with a final state so that once the state is reached, the control is taken away from

the composite state containing the state. Thus, the termination eventX is hidden. RUN is identified

with a state where there is a self-looping transition for each and every event in the alphabet. Thus,

the system may execute any sequence of events.

Example 3.3.1 (Visualization by Statechart)Given a process(run → STOP) ▽exception P , the

Statechart is generated as the following:

run Pexception

end

WAIT [d ] is identified with a composite state containing one initial state, i.e., pseudostate in UML

terms, and one final state. The two states are connected via a transition guarded with the condition

t == d , wheret is local clock.

[t == d]
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An operation is projected to a simple state. A process composed by sub-processes is projected to a

composite state. This way, we preserve the hierarchal structure of the process expression. A state

guard([guard ] • TZE ) is identified with a composite state containing an initial state and a state

corresponding toTZE . The initial state is connected to the other state via a transition guarded with

guard . Similarly, event prefixingc.e → TZE is identified with a composite state containing an

initial state and a state corresponding toTZE . The two states are connected by a transition labeled

with c.e from the initial state to the other state.

[guard] TZE

A choice(TZE1 | TZE2) is identified with a composite state where there are one initial state and

two states corresponding toTZE1 andTZE2. For external choice,TZE1 andTZE2 are often event

prefixing or state guard, and hence the transitions from the initial state are often guarded.

TZE1 TZE2

Interleaving(TZE1 ||| TZE2) is identified with a concurrent state where there are two independent

sub-routines. Parallel composition in general (TZE1 X ||Y TZE2) is identified with a concurrent

state with additional synchronization barriers (which makes it a synch state).

TZE1

TZE2
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Interrupt(TZE1 ▽e TZE2) is identified with two states corresponding toTZE1 andTZE2 respec-

tively, and a transition from the (edge of the) state corresponding toTZE1 to the (edge of the) state

corresponding toTZE2 labeled withe. Thus, once evente is engaged, the control is taken from the

state corresponding toTZE1 (which is a composite state) and transferred to the initial state of the

composite state corresponding toTZE2.

TZE1 TZE2e

Sequential composition(TZE1; TZE2) is identified with two states corresponding toTZE1 and

TZE2, and a transition from the state corresponding toTZE1 to the state corresponding toTZE2

labeled with nothing. Thus, once the system reaches the final state in the composite state corre-

sponding toTZE1, the control is transferred to the state corresponding toTZE2.

TZE1 TZE2

Recursion(µX • P(X )) is handled by connecting all transitions leading to the state correspond-

ing to X to the initial state ofP(X ). Our projection is restricted to regular processes, and thus

recursions which result in irregular processes are ignored.

Timeout(TZE1 ⊲{d} TZE2) is identified with a composite state where there are one initial state

and two states corresponding toTZE1 andTZE2. The transition from the initial state to the state

corresponding toTZE1 (TZE2) is labeled witht < d (t == d ). Thus, if d time units elapsed

before the control moves out from the initial state, the control moves to the state corresponding to

TZE2.

TZE1 TZE2t<d t=d
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Example 3.3.2 (Statechart forControlledLight) The MAIN process in classControlledLight is

visualized by the following Statechart:

TurningOff

TurningOn

[dim>0]

[dim=0]

button?1

Anonymous

[on]

[-on]

dimmer?n dim:=n

[n:0..100]

It is recommended to define an operation schema for every state update. However, assignments

permitted in the Timed CSP syntax may change the valuation of a state variable. Assignment, for

exampledim := n, is treated as an anonymous operation schema and projected to a simple state

where the assignment is identified with the entry action. end

3.3.2 Automation

In this section, we discuss how our projection is automated. The work in [150] has used XML

and XML schema to define a standard exchange format, named ZML, for Z-family languages (Z,

Object-Z and TCOZ). An XML Schema file was created for describing the structure of the Z-family

languages. It defines the contents of all elements, the order and cardinality of sub-elements, and

data types of the elements, etc. It serves as a good starting point for building lightweight tools based

on Z family language.

Example 3.3.3 (ZML) Figure 3.1 is a part of theControlledLight class model in ZML. The tag

nameidentifies the name of the class, i.e.,ControlledLight. The taginheritedClassindicates the

immediate super-class. The tagstateencodes the state schema, which has been skipped for space
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<classDef><name>ControlledLight</name>
<inheritedClass><name>Light</name></inheritedClass>
<state>...</state>
<operation>

<name>Main</name>
<processExpr>

<mu>N</mu>
<processExpr>

<processExpr>
<simpleProExp>ButtonPushing</simpleProExp>

</processExpr>
<proConnSym>externalChoice</proConnSym>
<processExpr>

<simpleProExp>DimChange</simpleProExp>
</processExpr>

</processExpr>
</processExpr>

</processExpr>
</operation>

</classDef>

Figure 3.1: XML markup of classControlledLight

saving. The tagoperationdefines a process with its name encoded in tagname. The tagprocessexpr

encodes the computational logic of the operation. In this example, it is a recursion (aµ function) of

a choice (indicated in a tag namedproConnSym) between two process expressions encoded in the

tags namedsimpleProExp. end

XMI (XML Metadata Interchange [130]) is an industry standard for storing and sharing object pro-

gramming and design information, allowing developers of distributed systems to share object mod-

els and other metadata over the Internet. Three key industry standards, XML (eXtensible Markup

Language), UML (Unified Modeling Language) and MOF (Meta Object Facility), are integrated in

XMI. XMI marries the OMG and W3C metadata and modeling technologies. Rational Rose 2001

from OMG [124] which supports XMI can generate UML diagrams once it imports XMI documents,

and it can also export XMI documents for any existing UML diagrams. This isvery useful for our

work. All we need is to generate the proper XMI documents from the TCOZ specification and make

use of facilities offered by tools like Rational Rose for visualization and possibly code generating.

The syntax definition of XMI for UML is specified in XMI 1.1 RTF UML DTD [130]. This DTD
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<?xml version = ’1.0’ encoding = ’ISO-8859-1’ ?>
<XMI xmi.version=’1.1’ xmlns:UML=’//org.omg/UML/1.3’>

<XMI.header> ... </XMI.header>
<XMI.content>

<UML.Model>
<UML.StateMachine> ... </UML.StateMachine>

</UML.Model>
<UML:Diagram> ... </UML:Diagram>

</XMI.content\>
</XMI>

Figure 3.2: XMI structure

file defines all entities and XMI syntax signatures for UML. An XMI file validated by UML.DTD

version 1.3 has the structure as in Figure 3.2.XMI.header contains general information like the

UML.DTD version. UML.StateMachine is the most important part ofUML.content , which

contains information about the Statechart.UML:Diagram is used to display the UML diagrams. It

contains the exact position of every displayable unit in the UML diagram.

The projection rules for translating TCOZ models (in XML) to UML Statecharts (in XMI) are

implemented by a JAVA application. To systematically build the Statecharts, the projection takes

place in stages. The first stage ispreparation, during which the XML representation of the TCOZ

model is fetched in and parsed class-by-class, operation-by-operation. The activities preformed are:

• Build up the operation table for each class and the variable table for each class.

• Associate each class with its corresponding super class. One class may have more than one

super class and it may invoke operations defined in different super classes.

• For each operation, identify itsprocessexpr which is the tag identifying the computational

logic for the operation. We check whether the operation is an operation schema. If it is, mark

this operation as a simple operation. Otherwise, we identify the type of theprocessexpr . For

each type ofprocessexpr , gather relevant information for the type.

The second stage isGeneration. For each active object, a new XMI file is created with the necessary

header information. A top level composite state named ‘Main’ is added to theStatemachine ,
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which corresponds to the MAIN process. An initial state is added to the top-level composite state.

Starting from the MAIN operation, we syntactically analyze theprocessexpr and apply the proper

projection rule to generate states and transitions. The challenge is that we maynot know which

projection rules could be used at some point. For example, if some other operation is invoked by

MAIN , shall we model the called operation as a simple state or a composite state? (At thispoint, we

may not be able to find out whether the called operation will consequently invoke other operations.)

Our remedy is to model all called operations as composite states and later replace those trivial

composite states by simple states.

The third stage issimplification. After the Statechart model is generated, a number of activities take

place to simplify the Statechart without changing its traces. For example, trivial composite states,

i.e., composite states that have at most one sub-state, are removed. We also check the Statechart

for violation of well-formedness rules. The last step is tolayout the diagrams nicely. We calculate

the exact positions of all the states, transitions and events/guards in a diagram. This is theoretically

irrelevant but practically very important. The following formulæ are used to calculate the width and

height of a composite state. LetW be the width,H be the height,M be the number of simple

states in the composite state,N be the number of composite states in the composite state.WSimple

(HSimple) is the default width (height) of a simple state.W1, · · ·WN are width for each composite

state in this composite state.H1, · · · ,HN is the height for each composite state in this composite

state.S is the default horizontal space between states.K is the default vertical space between states.

P is the width (or height) of an initial state andQ is the width (or height) of a final state.

W = max{
(√

M + 1
)
∗ (WSimple + S ) ,W1,W2, · · · ,WN } + 4S + P + Q

H = (
√

M + 1) ∗ (HSimple + K ) + (H1 + H2 + · · · + HN ) + N ∗ K

The calculation is done in a bottom-up manner because the size of the outer composite state depends

on the size of the inner one. Once we know the width and height, we place simplestates at the top

(
√

M simple states per row) and composite states at the bottom (one per row). Lastly, the XMI file

is generated.

Example 3.3.4 (Statecharts forMotionDetector and RoomController ) The following are the Stat-

echarts generated from the LCS specification (the first one for classMotionDetector and the second
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for classRoomController ). Simplification has been involved to make the Statecharts compact.

NoUser

md?Move

motion!1

md?NoMove

[t =1] md?NoMovemotion!0

[t =1]

md?Move

User

[n:0..100]

Adjustodsensor?n

dimmer!dim

Regular OnAgain

motion?0

On

motion?1

[t<absent]

motion?1

dimmer!0

Ready

Off

[t = absent]

end

3.4 From TCOZ to Scenarios

In this section, we are interested in another viewpoint projection - the communication and interaction

perspective. MSC [81] is a popular graphical notation for presenting interactive viewpoints of a

system. It is termed as sequence diagrams in the UML framework. We investigate the projection

from TCOZ (trace models) to MSC (process models). By identifying a set oftraces with MSC, the
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message1

message2

action

message3

msc example

input

output

inst1 inst2 inst3

Figure 3.3: Basic Message Sequence Chart

cause and effect relations between distributed events in concurrent systems are captured graphically.

A prototype projection tool is developed for generating MSCs automatically. By inserting class

invariants and operation constraints (as assertions) into the generated MSCs (execution scenarios),

system testing requirements can be obtained.

3.4.1 Message Sequence Chart

The language MSC is standardized by the International Telecommunication Union (ITU). It pro-

vides a means for visualization of the interaction of system components. The core of MSC is called

the Basic Message Sequence Chart (BMSC), which concerns communications and actions only.

Then, additional basic concepts like process creation, termination, time handling, incomplete mes-

sage events and conditions are added. Later, more complicated constructsare introduced. They are

inline expressions, MSC reference expressions and High-level Message Sequence Chart (HMSC),

which enrich MSC with intricate possibilities of describing complex systems.

Example 3.4.1 (Basic MSC)Figure 3.3 is an example of a BMSC. Each vertical line represents an

active component (Z.120 terminology, an instance) in the system. The frame (Z.120 terminology,
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parallel frame) represents the environment. Instances can interact with other instances by sending

messages, e.g.,message1, message2, message3. A message originated from the frame represents

an input from the unspecified environment, e.g.,input . Similarly, a message targeting the frame

is an output to the environment, e.g.,output . The square labeled withaction is a local action

performed by instanceinst2. end

The timing information is captured by the following two rules and their transitive closure: for each

message passing, the message output event precedes the corresponding message input event and for

each vertical line representing an instance, the time progresses from top tobottom. The two rules

and the transitive closure define a partial event ordering relation, whichcaptures the semantics of

BMSC [109].

High-level MSC can be constructed incrementally by referencing an MSC using its name (or equiv-

alently using inline expressions). MSC can be combined vertically, horizontally or alternatively.

Example 3.4.2 (High-level MSC)The chart in Figure 3.4 is a simple example of an HMSC. The

triangle at the top represents the starting point. The one at the bottom represents the ending point.

Each rounded rectangle abstracts an MSC. The semantics of the HMSC is captured by the process

expression(A ◦ C )⊛ ◦ (A ◦ B), where◦ denotes sequential composition and⊛ denotes infinite

iteration. end

Various constructors for composing MSCs are:alt for choices,seqfor sequential composition,par

for parallel composition,opt for optional,excfor exception andloop for iteration. Precise semantics

are developed for these key words.

Definition 6 An MSC reference expression is defined as the following:

MRE ::= ref 〈〈NAME 〉〉 | ǫ | δ – primitives
| ( ∓ )〈〈MRE × MRE 〉〉 – delayed choice
| ( || )〈〈MRE × MRE 〉〉 – delayed parallel
| ( ◦ )〈〈MRE × MRE 〉〉 – sequential composition
| ( )⊛〈〈MRE 〉〉 | ( )∞〈〈MRE 〉〉 – iteration
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A

CB

Figure 3.4: High-level Message Sequence Chart

An HMSC can reference other HMSCs or BMSCs by their names. The two most primitive con-

structs areδ and ǫ. The former does nothing at all and the latter terminates immediately. The

structural operatordelayed choice is written as∓. Graphically, it is a sub-chart marked with the

keywordalt. Thedelayed parallel is written as‖. The notion of sequential composition in MSC

is referred asweak sequential composition, denoted as◦. Given sequential composition of two

MSCs (saym1 andm2), interactions over shared instances inm2 is delayed until interactions inm1

completes. However, the execution of actions over instances not inm1 from m2 is allowed before

m1 has the option to terminate. The iteration operator⊛ is defined as any number of sequential

composition of a chart, whereas∞ is the unbounded repetition of a chart.

A number of semantic models have been developed for MSC. Examples are theoperational seman-

tics based on process algebra [6, 81], Petri nets [74], automata, etc. The informal MSC semantics

and formal process algebra semantics presented in [81] are adopted in this thesis. In [81], semantics

of various constructs of MSC are defined by sets of deduction rules. A deduction rule is of the form

H
C

whereH is a set of premises andC is the conclusion. Each individual premise and conclusion

are of the forms
a→ s ′ or s ↓ for arbitrarys, s ′ ∈ MRE anda ∈ A, whereA denotes all events

represented by atomic actions in MSC, i.e., message input, message output, local action and timer

events. For instance, no deduction rule is associated withδ because it does nothing. The only rule

associated withε is ε ↓, i.e., termination. The semantics of∓ is captured by the following rules:
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x ↓
[ DC1 ]

x ∓ y ↓
y ↓

[ DC2 ]
x ∓ y ↓

x
a→ x ′, y

a

6→
[ DC3 ]

x ∓ y
a→ x ′

x
a

6→, y
a→ y ′

[ DC4 ]
x ∓ y

a→ y ′

x
a→ x ′, y

a→ y ′

[ DC5 ]
x ∓ y

a→ x ′ ∓ y ′

The rulesDC1 andDC2 express that the delayed choice of the two processes has the option to

terminate if and only if at least one of the alternatives has this option.DC3 andDC4 express that

the delayed choice will behave as one of the options given that some initial event of this option takes

place.DC5 captures the idea that in case both of the alternatives are enabled, the choice is delayed.

The rest of the constructs are similarly defined [81].

3.4.2 Visualizing Traces

Given an active object, we can identify the set of possible traces by applying thetraces function to

the MAIN process. A trace can be transformed to a Basic MSC by identifying operation schemas

in TCOZ with MSC local actions and identifying channel communications in TCOZ with message

passing in MSC.

A TCOZ event is either an update event, a simple synchronization, a channel communication, or a

termination event, or await(d) event. Update events are distinguished from the others as they do not

require cooperation of the environment. They perform on a single instance. An MSC local action is

defined as an orderable single instance event requiring no cooperationfrom the environment. Update

events are identified with local actions in MSC. Synchronization and channel communication do

require cooperation either from the environment or other processes. Channel communications in

TCOZ are identified with message passing in MSC (message passing with a 0-capacity buffer). The

specialwait event is identified with the timer event in MSC. In particular, it is identified with a

timer set event in MSC and consequently associated with a timeout or reset event.

Example 3.4.3 (MSC fromControlledLight) Figure 3.5 is a Basic MSC visualizing a scenario of

LCS . Initially the light is off. Starting with MAIN , the processDimChange is executed. A message
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controlledlight
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button.1

dimmer.n

TurningOn

roomcontroller

Figure 3.5: Visualizing traces

dimmer?n from RoomControllerto ControlledLighttakes place. Becauseon is false, no action is

taken. ProcessButtonPushing is then activated by a message input event from channelbutton.

Action TurningOn is invoked. After that, no event occurs. end

Identifying the traces of a parallel composition of multiple processes, for example the MAIN pro-

cess of theLCS class, is computationally expensive. In our prototype, a set of traces for each

object (ControlledLight, MotionDector, RoomController) is generated independently. Traces from

different objects sharing the same sequence of communication over the shared channels are then

identified. Lastly, the corresponding communication is connected and visualized using MSCs. This

way, we make use of the full power of MSC’s partial ordering property,i.e., to leave the order of sin-

gle instance events from different instances unspecified. Thus, one MSC is capable of representing

a set of scenarios.

Example 3.4.4 (MSC fromLCS ) In theLCS class, active objectm (the motion detector) shares

the channelmotion with the active objectr (the room controller). Two matching traces, one gen-

erated from MAIN in classMotionDetector and one from MAIN in classRoomController , must

contain the same sequence of events on channelmotion.

〈md?NoMove,wait 1,md?Move,motion!1,md?NoMove,motion!0〉
〈dimmer !0,motion?1, odsensor?n,Adjust , dimmer !dim,motion?0〉

The above are a pair of matching traces. This interaction is visualized as in Figure 3.6. end
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dimmer.0
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1

Figure 3.6: Scenario of Light Control System

3.4.3 Visualizing Process Expression

Due to unbounded recursion (iteration) and non-determinism, the set of traces (and therefore the

generated BMSCs) for complex systems could be numerous or even infinite1. HMSC offers various

constructive operators to compose MSCs in a hierarchical, iterating and nondeterministic way. So

does CSP. Thus, it is natural to link process constructs in TCOZ with constructs in HMSC so that

we may visualize multiple or even infinite scenarios using a single chart.

The body of a TCOZ class is essentially a system of simultaneous equations defining a collection

of operations (processes). Each equation consists of a name and a TCOZ process expression. A

TCOZ class is identified with an MSC document, which consists of a set of MSCs. A TCOZ

process expression is identified with an MSC. A TCOZ process reference is identified with an MSC

reference.

The trace model of an MSC process expression is constructed according to the operational semantics

of MSC defined in [81]. Let functiontraces : MRE → P Σ∗ return the traces of the process

1In the LCS case study, 600+ traces are generated if we unfold each recursion 5 times.
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expression. Let functionP : TZE → MRE be the projection function from TCOZ to MSC. A

TCOZ process expression is projected to an MSC process expression ifthey are trace-equivalent.

∀ s : TZE ; t : MRE • P(s) = t ⇒ traces(s) = traces(t)

STOP means deadlock and does nothing. SKIP performs no action except termination. Two basic

constants, written asδ andε, play the same role in the process semantics of MSC. Thus, STOP is

identified withδ and SKIP is identified withε. Graphically, SKIP is drawn as an empty MSC.

traces(δ) = {〈〉}
traces(ε) = {〈X〉, 〈〉}

According to the deduction rules associated with the delayed choice, a traceof x ∓ y is either a

trace ofx or y . Therefore, the choice operators in TCOZ are projected to delayed choice in MSC.

Graphically, a choice in TCOZ is drawn as an MSC sub-chart marked asalt.

traces(x ∓ y) = traces(x ) ∪ traces(y)

Example 3.4.5 (HMSC fromControlledLight) Figure 3.7 shows the MSCs generated from the

MAIN process in classControlledLight . The choice betweenDimChange andButtonPushing

is captured by the delayed choice in the bottom chart, indicated by marking the sub-chart with the

keywordalt. Recursion is visualized as an infinite iteration in HMSC. end

Sequential composition in TCOZ is best described asstrong sequential composition, i.e., no

action from the later process can be executed before the earlier one hasthe option to terminate.

The sequential composition◦ that composes two MSCs vertically is described asweak sequential

composition. It allows execution of actions from the later chart before the earlier onehas the option

to terminate. However, if two MSCs involve only events on the same instances, the two notions

are identical. Sequential composition in TCOZ is identified with sequential composition in MSC.

Graphically, sequential composition of MSCs on the same instances is captured by putting the MSCs

one below the other.

MSC has a key wordexc for representing exceptions, however there is no formal rules definedin

[81] for it. Following the same style, we define the deduction rules forexc (written as ▽m ) as

follows.
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Figure 3.7: Scenarios of classControlledLight

x ↓
x ▽m y ↓

x
a→ x ′, y

a

6→ y ′

x ▽m y
a→ x ′ ▽m y

y
a→ y ′

x ▽m y
a→ y ′

In the processX ▽e Y , any timee takes place, the control is withdrawn fromX and transferred to

Y . Interrupt in TCOZ is identified with▽m in MSC with e as the initial event of the interrupting

process.

Example 3.4.6 (Interrupt in MSC) Figure 3.8 presents the MSC generated from process expres-

sionOn in RoomController . The eventmotion.0 is projected to the first communication in the

down portion of the sub-chart. end
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Figure 3.8: Interrupt in MSC

Delayed parallel composition defines the interleaving operator, i.e., no synchronization is required

and processes can interleave freely. Thus, interleaving in TCOZ (|||) is identified with delayed

parallel composition in MSC. In TCOZ, all dynamic interactions between activeobjects must take

place through the CSP channel communication mechanism. Graphically, giventwo MSCs (MSC1

andMSC2), the parallel composition is constructed by putting the MSCs in the same parallelframe

and connecting corresponding message output and message input events.

Besides the projection rules above, other constructs in TCOZ can be projected to MSC indirectly.

For instance,

P ⊲{t} Q = P 2 (WAIT t ; Q)

By identifying external choice with MSC delayed choice and WAIT t with timer events, timeout can

be identified with a delayed choice between the MSC forP and the MSC forQ with a timeout event

as the initial event ofQ . Moreover, TCOZ recursion can be resolved as iteration and interpreted by

a sequence of sequential compositions. TCOZ state-guard is identified with local condition in MSC.

Example 3.4.7 (Timeout in MSC) Figure 3.9 shows the MSC visualizing the processOnAgain in

the LCS example. end
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Figure 3.9: Timeout in MSC

3.4.4 Automation

The projection is automated by employing XML/XSL technology adopting a similar strategy as in

Section 3.3.2. MSC offers a standard text representation for the graphical notations. Thus, we de-

veloped an automatic transformation tool to project TCOZ models (in ZML) into MSC (in standard

text format). Building on the strength of ZML, our tool makes use of XML parser Xerces [59] to

extract information from TCOZ specifications. The mechanized projection isachieved by first im-

plementing a ZML parser, which takes in a specification model in ZML and buildsa virtual model

in the memory. This ZML parser can be reused for other projection tools, e.g., the transformation

from TCOZ to Timed Automata for timing analysis (refer to Section 4.2).

A trace generation module is built to automatically generate all possible traces from the specifi-

cation, and each trace is transformed to a BMSC by syntax rewriting. In the case of unbounded

recursion, users are asked for the number of times to resolve the iteration.An MSC interface is

built according to the MSC document structure, e.g., each MSC document contains multiple MSCs

and each MSC contains one or more instances. A transformation module is builtto get information

from the ZML parser, apply the proper projection rules and feed the outcome to the MSC interface.
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The projection rules are used as a design document and guide the construction of the algorithm in

the implementation. The outcome of our transformation tool is Z.120 standard textrepresentation

of MSC, which is ready to be taken as inputs for various tool supports forMSC. The same strategy

can be applied for implementing various transformation tools. For example, forthe timing analysis

purpose, a TCOZ specification can be transformed into Timed Automata, the same ZML parser can

be reused and we only need to build a Timed Automata interface and a new transformation module

(refer to Section 4.2).

Example 3.4.8 (Text representation of MSC)The following is the HMSC in standard text format,

generated from operation MAIN in classControlledLight :

msc ControlledLight ;
instance i1;

loop begin;
alt begin;

reference ButtonPushing ;
alt ;

reference DimChange;
alt end ;
loop end ;

endinstance;
endmsc;

end

In our prototype, we allow generation of test cases by adding assertionsto the generated MSC. Test

requirements can be used to develop test cases, test oracles and test drivers in a system development.

Specification based testing can play an important role in software engineering [127, 142]. Our goal

is to support automatic generation of test requirements from TCOZ specifications. Starting with

an HMSC, one can expand it into a set of BMSCs. For recursions, at least one iteration should

be covered by the expanded BMSCs. Upon creation of an instance, the TCOZ class initial state

condition is instrumented as an assertion at the start of the BMSC. For each instance in the system,

TCOZ class invariants are instrumented as assertions before and after every local action on the

BMSC instance. The pre/post-conditions of TCOZ operations are projected to assertions at the

entry/exit of the corresponding MSC actions.
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Figure 3.10: Test case

Example 3.4.9 (Test case)A test case generated from classControlledLight is captured in Fig-

ure 3.10 (the BMSC in Example 3.4.3 with assertions). Assertions are placed inthe dash-lined

box. The first assertion ensures the INIT schema is satisfied after creation of theControlledLight

instance. The second one asserts the post-condition of the operationTurningOn. In this example,

the pre-condition of the operation is simply true. end

Systematic test case generation allows specification-based testing of systemdesigns. For instance,

we may design a system using languages and notations which allow mechanizedgeneration of

executable codes, whilst document functional and dynamic system requirements using TCOZ spec-

ifications. Once executable codes have been generated from the designmodel, test cases generated

from TCOZ model may be used to systematically validate the code. One design language of special

interest is Communicating Transaction Processes (CTP [129]). CTP has been recently introduced

by Roychoudhury and Thiagarajan. It is an MSC-based formalism targeting reactive embedded

systems. Given a network of communicating sequential processes that synchronize on common ac-

tions, the key idea of the CTP model is to refine each common action into a set of sequence charts,

each with a precondition and a postcondition. The key feature of the CTP model is that it yields an

executable specification, e.g., SystemC program [61]. Thus, we may formally specify system re-

quirements using TCOZ specifications, whilst design the system as CTP models. A finite set of test
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cases is generated from the TCOZ specification. We may then guide and validate the execution of

the generated SystemC module using one test case at a time. By integrating the test case generation

and code synthesis algorithms, we may achieve on-the-fly testing. A full investigation is left to the

future work.

3.5 Summary

Visualization is an intuitive complementary interplay between logic-based formalisms and visual

formalisms. It is often theoretically lightweight, e.g., a simple trace model is sufficient for the

soundness discussion, but its practical implication is promising. Because it allows easy visualized

of essential facts, it may extend users of logic-based formalisms to system engineers without rele-

vant mathematical background. Visualization may promote the usage of logic-based formalisms in

industry because it links logic-based formal notations with well-accepted diagrammatic languages.

In order to link formalisms which vary vastly in syntax, we have to look at the semantics behind the

intuition of the language constructs. The work on visualization thus help us to deeply understand

the similarities and differences between different modeling languages.

There have been attempts to connect formal specifications with graphical notations, some of which

are evidenced in [12, 31, 34, 114]. A number of these works have been focused on formalizing

graphical notations using logic-based formalisms. For instance, Bolton andDavies [12] have given

a process semantics in CSP for UML activity diagrams. They use the process semantics to demon-

strate the consistency of the object model. Instead of solving the consistency problem of diagrams,

our work in this chapter aims at benefiting logic-based formalisms by connecting them to popular

graphical notations. Brooke and Paige developed a tool-supported graphical notation for Timed

CSP [21]. The difference between Brooke and Paige’s approach and ours is that we use existing

popular graphical notations instead of creating new ones. In [149], Dong et al visualized TCOZ

models with UML class diagrams. Our work focuses on dynamic behaviors ofobjects. Ng and

Butler [114] have developed a tool for visualizing CSP in UML for both the static architecture and

the dynamic behaviors. In our approach, we are particularly interested incapturing intra-object
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and inter-object dynamic behaviors. The characteristics of our work are that first our visualization

has been based on a rather complicated specification language, which makes it challenging as well

as valuable, and secondly our work has been connected to other practical problems like test case

generation.
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Chapter 4

Verification

The executioner’s argument was,

that you couldn’t cut off a head

unless there was a body to cut it off from.

- Alice’s Adventures in Wonderland, Lewis Carroll

Formal verification aims at establishing properties of system designs using logic, rather than just

testing or informal arguments. It involves formal specification of the requirement, formal modeling

of the implementation, and precise rules of inference to prove that the implementation satisfies

the specification. Formal verification reveals inconsistency of the specification and thus improves

the reliability of the product. The notion of model checking [28] has been widely accepted as a

successful means of formal verification. Model checking is a method forformally verifying finite-

state concurrent systems. The technique has been applied to a wide rangeof complex industrial

systems. Formal checking has a number of advantages over traditional approaches that are based on

simulation, testing, and deductive reasoning. In particular, model checking is automatic and usually

quite fast. Also, if the design contains errors, model checking will produce a counterexample that

can be used to pinpoint the source of the error.

Mature verification mechanism based on model checking has been developed for quite a number

57
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of specification languages, e.g., FDR for CSP [58], UPPAAL for Timed Automata [9]. Building

verification mechanisms for newly designed specification languages from scratch is time consuming

and repetitious. All the code for timely efficient verification needs to be implemented, for instance,

partial order reduction, data abstraction, etc. An inexpensive yet effective way of verification is to

reuse existing verification mechanisms. A semantics preserving transformation from the language

to the language supported by the verification mechanism is essential for the task. In this chapter, we

demonstrate formal verification based on transformation techniques.

4.1 Model Checking Live Sequence Charts

In this section, we show that tool support for logic-based formalisms can be reused to verify visual

formalisms. MSC [81] is widely used to describe scenarios that capture communication between

processes or objects. It is used in the early stages of system development. It has found its way

into many methodologies [81, 154]. However, MSC (both BMSC and HMSC) suffers from the

rather weak partial-order semantics that makes it incapable of capturing many kinds of behavioral

requirements. Moreover, MSC only captures example runs of the system and thus it is not suitable

to specify complete system behaviors. The notion of Live Sequence Chars (LSC) was introduced

by Damm and Harel [32] to overcome the shortcomings of MSC by adding liveness. LSC extends

MSC with constructs to distinguish scenarios that must happen from scenarios that may happen,

conditions that must be fulfilled from conditions that may be fulfilled, etc. Together with the no-

tion of symbolic objects and various high-level operators like bounded loop, if-then-else, LSC may

well be used to specify complicated inter-object system requirements. A software package named

Play-Enginehas been developed by Damm and Harel to interactively “play-in” and “play-out” sce-

narios [70]. However,Play-Enginedoes not support automatic verification of LSC. We believe that

it is important to expose inconsistencies of system requirements in the early stage of system devel-

opment. One effective approach to verify LSC models is via reusing existingmature model checkers

instead of building new ones from scratch.

Semantically, system behaviors specified by LSC correspond to CSP’s traces and failures. This
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close semantic correspondence makes FDR a potential model checker forLSC. The challenge is to

construct semantics preserving CSP models from LSC models systematically. In this section, we

investigate theoretical relations between LSC and CSP and develop an interpretation of LSC in CSP.

The investigation is more than of theoretical interest. Its practical implication is that tool support for

CSP can be reused to validate LSC models. In particular, FDR, a well-knownCSP model-checker,

is used for the verification.

4.1.1 Live Sequence Chart

There are two kinds of charts in LSC. Existential charts are mainly used to describe possible sce-

narios of a system in the early stage of system development, i.e., the same role played by MSC

except that existential charts are scoped. In later stages, knowledge becomes available about when

a system run has progressed far enough for a specific usage of the system to become relevant. Uni-

versal charts are then used to specify behaviors that should always be exhibited. A universal chart

is typically preceded with a pre-chart, which serves as the activation condition of the main chart.

Whenever a communication sequence matches the pre-chart, the system mustproceed as specified

by the main chart. A system run may activate a universal chart more than once and some of the

activations might overlap [108].

Example 4.1.1 (Universal chart) The following is a universal chart as part of the mobile phone

specification:

displayMenu

coverOpened

open

OpenCover

DisplayChipCoverUser

setDisplayMenu
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This scenarioOpenCoverillustrates the interaction between the objects when theuser opens the

cover . Once the cover is opened by the user, the main chart is activated. Thechip is notified that

thecover is opened. It then requests thedisplay to display the menu. Lastly, thedisplay carries out

a local actionsetDisplayMenu to initialize the menu screen. end

Let C be the set of all possible charts. LetE be the set of existential charts. LetU be the set of

universal charts. In this work, we assume that an LSC specification, denoted asS, consists of a set

of universal charts and existential charts. Throughout the section,c, e, u are used to denote a chart,

an existential chart, a universal chart respectively. LetB ⊂ C be the set of basic charts, i.e., Basic-

MSC [81]. LetΣ be the set of all possible events.Σ is partitioned into two groups, communication

messagesM , e.g.,coverOpened in Example 4.1.1 and local actionsA, e.g.,setDisplayMenu. A

communication eventm : M is followed by ‘?’ if it is an input event or ‘!’ if it is an output event.

A local actiona : A may be an assignment or a (local or external) function call. Each chartc is

associated with a set of visible events,Σc ⊂ Σ. Only events visible to a chart are constrained by

the chart. A chart typically consists of multiple instances (for instance,User , Cover , Chip and

Display), which are represented as vertical lines graphically. Letinstances : C → P Instances be

the function returning the set of instances appearing in the chart. Along witheach line, there are

a finite number of locations. A location carries the temperature annotation for progress within an

instance. Intuitively, locations can be thought as the joint points of instancelines and message lines.

In the following, we usei to denote an instance,li to denote a location on instancei , l0i to denote

the first location on instancei andlmax
i to denote the very last location on instancei . We write the

next location oflki along instancei in the same chart aslk+1
i .

A location may be labeled as either cold or hot. A hot location means that a systemrun reaching

this location has to move beyond. A system run may stay put at a cold location forever. Similarly,

messages and conditions are also labeled. A hot message must be received, whereas a cold one may

get lost. A hot condition must be met, whereas violation of a cold condition terminates the chart. A

location is labeled with a finite number of events (more than one if it is a co-region) and at most one

condition. LetLocation, Condition be the set of all possible locations and conditions respectively.

Function label : Location → P Σ labels a location with a finite number of messages and local
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actions. Functioncond : Location → Condition labels a location with a condition. If there is no

condition associated with the location, it returnstrue. Functioneval : Condition → B evaluates a

condition against the current valuation of the variables. Functiontemp : Condition → Cold | Hot

tells the temperature of a condition. Functiontemp : Location → Cold | Hot tells the temperature

of a location.

Example 4.1.2 (Mobile phone specification)The universal charts in Figure 4.1 and the one in Ex-

ample 4.1.1 constitute a self-containing set of scenarios, which specify a mobile phone specification.

This example is partially inspired by the phone system specification presentedin [71]. The system

consists of six participating objects, auser , thecover , thedisplay , thespeaker , thechip and the

environment where the incoming calls are from. Figure 4.1 illustrates scenarios of the system be-

sidesOpenCover, i.e., the user closes the cover, an incoming call arrives and the user picks up the

phone and talks. All vertical lines in the charts are dotted, which means that all locations along the

lines are cold and, therefore, the system may pause at any point of execution forever. This is possi-

ble because unexpected events like the battery runs out or the system breaks down may occur at any

time. The set of visible events for each chart are exactly those appearingin the diagram except the

scenarioTalk. The messageclose from the user to the cover is forbidden in the scenarioTalk, i.e., in

order to carry out the scenario successfully, the user should not close the cover before the scenario

completes. end

LSC also supports advanced MSC features like co-region, hierarchy,etc. Moreover, symbolic in-

stances and messages are used to group scenarios effectively. For adetailed introduction on a

complete list of features of LSC, refer to [70]. LSC is far more expressive than MSC, which makes

it capable of expressing complicated scenario-based requirements. However, we remark that the

ability to specify hot and cold messages, i.e., whether a message is required tobe received or may

get lost, is redundant because of the facility for describing hot and coldlocations. Essentially, the

temperature of the locations takes precedence over the temperature of messages, so whether or not

the message is received is determined entirely by the temperature of the message input. This ques-

tionable feature of LSC is recognized by Harel and Marelly who list the possible cases and conclude
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Figure 4.1: Mobile phone system scenarios
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that the temperature of messages has no semantic meaning [70]. Thus, in the following discussion,

the temperature of messages is discarded.

4.1.2 Semantics of Live Sequence Charts

The semantics of LSC is briefly discussed in [32] using skeleton automata andprogram-like pseudo-

codes. Only basic charts and pre-charts have been covered. To develop a sound interpretation of

LSC in CSP, a complete semantics is essential. This section is devoted to a trace-based denotational

semantics of LSC, which conforms to the original semantics in [32]. Our semantics completes theirs

by defining precisely the traces of a set of universal charts and existential charts.

We assume that all conditions are distributed because we believe that shared-condition is a prob-

lematic feature of LSC. In LSC, a condition is a Boolean expression over thevisible variables of

the chart. Therefore, some form of global variables is presupposed.This does not match the real-

ity of distributed systems. Nor does it conform to the Dijkstra’s principle ofloose coupling[39].

Objects in distributed systems have their own state space (local variables) and all communication

between objects would be via messages. We remark that shared-condition can be (partially) sup-

ported by rewriting it to a set of distributed conditions with extra synchronization. For simplicity, in

this section we also assume that no co-region is allowed and all messages aresynchronized. There

is nothing interesting about co-region except that it complicates the discussion. Asynchronous mes-

sage passing is supported by explicitly modeling the behavior of the buffers, e.g., First In First Out

(FIFO). A consequence of this assumption is that a message loss is captured as an infinitely long

delay of the forwarding by the buffer instead of alost message symbol. A hidden assumption is

that the size of the communication buffers is finite.

The semantics of a basic chartb is defined to consist of all runs compatible with the partial ordering

relation induced byb and its annotations. We define an automaton interpretation ofb completing

the skeleton automata in [32] and then define the languages ofb based on the automaton. A chart

induces a partial order over the events.

Definition 7 The partial order is defined as the smallest binary relation≪: Location ↔ Location
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satisfying the following axioms and closed under transitivity and reflexivity.

∀ lki : Location • lki ≪ lk+1
i – vertical

∀ l1, l2 : Location | l1 6= l2 •
∃m : M • m! ∈ label(l1) ∧ m? ∈ label(l2) ⇒ l1 ≪ l2 – horizontal
∃m : M • m! ∈ label(l1) ∧ m? ∈ label(l2) ⇒ l2 ≪ l1 – synchronous

The first axiom states that along each vertical line time progresses from topto bottom. The second

axiom states that message output event must precede the correspondingmessage input event. The

third handles synchronous message passing. An LSC chart is well-formed if the relation≪ is acyclic

(except trivial cyclic relation between locations connected by synchronous message passing). In the

rest of the thesis, we assume that all charts are well-formed. We define functionpreset to return the

set of locations that precede a given location in the relation≪.

preset : Location → P Location

∀ l : Location • preset(l) = {x : Location | x ≪ l ∧ ¬(l ≪ x )}

One of the basic concepts used for defining the semantics of LSC is the notionof a cut . A cut

through the chart represents the progress each instance has made in thescenario. Letcut be the

function which returns the set of all possiblecuts of a chart. Acut is a set of locations, one for each

instance, satisfying the following condition:

cut : C → P Location

∀ c : C • ∀ x : cut(c) • #(x ) = #instances(c) ∧ ∀ l : x •6 ∃ l ′ : x • l ′ ∈ preset(l)

Intuitively, it means no location in acut is preceded with another. We are now ready to define the

automaton which accepts exactly the language of a basic chart.

Definition 8 The automaton associated with basic chartb is defined asAb =̂ (Sb , S 0
b , Fb , Σb∪{τ},

Tb). Sb is the state space.Sb =̂ {Aborted ,Terminated ,Completed} ∪ Active whereActive

=̂ cut(b). S 0
b =̂

⋃
i{l0i } is the initial state.Fb is the set of final (accepting) states.

Fb =̂ {Aborted ,Terminated ,Completed} ∪ {s : cut(b) | ∀ l : s • temp(l) = Cold}
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Σb is the set of events appearing in the chart. The special eventτ denotes temporal progress along

a vertical line.Tb : Sb × Σb ∪ {τ} → Sb is the least transition relation satisfying the following:

D1 ∀ x : Σb • (Terminated , x ,Terminated) ∈ Tb

D2 ∀ x : Σb • (Completed , x ,Completed) ∈ Tb

D3 (
⋃

i{lmax
i }, τ,Completed) ∈ Tb

D4 s ∈ cut(b) ∧ ∃ lki : s • ∃ a : A •
(a ∈ label(lki ) ∧ eval(cond(lki )) = true ∧ lki 6= lmax

i )

⇒ (s, a, (s \ {lki }) ∪ {lk+1
i }) ∈ Tb

D5 s ∈ cut(b) ∧ ∃ lki , lpj : s • ∃m : M •
(m! ∈ lable(lki ) ∧ m? ∈ label(lpj ) ∧ lki 6= lmax

i ∧ l
p
j 6= lmax

j

∧ eval(cond(lki )) = true ∧ eval(cond(lpj )) = true)

⇒ (s,m, (s \ {lki , lpj }) ∪ {lk+1
i , lp+1

j }) ∈ Tb

D6 s ∈ cut(b) ∧ ∃ lki : s •
eval(cond(lki )) = false ∧ temp(cond(lki )) = Cold ⇒ (s, τ,Terminated) ∈ Tb

D7 s ∈ cut(b) ∧ ∃ lki : s •
eval(cond(lki )) = false ∧ temp(cond(lki )) = Hot ⇒ (s, τ,Aborted) ∈ Tb

The chart iscompletedif all instances have reached the very last location. It isterminatedif a cold

condition is violated, andabortedif a hot condition is violated. Otherwise, we say that the chart

is active, i.e., there exists acut through every instance in the chart. Initially, the chart is active

and all instances are at their first location. A state is accepting if and only if either it is completed

or terminated or aborted, or it is an active state where all instances are at acold location.D1 and

D2 state that all behaviors are allowed when a chart is terminated or completed.D3 states that a

chart is terminated only after all instances have reached their last locations. D4 andD5 state that a

local action or a message passing may occur only if the system can reach a new cut after engaging

in the communication event or local action. Whenever a cold condition is evaluated to false, the

chart terminates (D6). If the condition is labeledhot , the chart aborts so that no further behavior

is allowed (D7). No compositional operator offered by LSC is discussed in this definition.For a

chart with hierarchy, we can flatten the sub-charts by adding transitions connecting the initial and

Terminated state of the sub-chart to states in the automaton of the upper-level chart. For instance, a

conditional branch can be flattened by connecting the last state of the upper-level chart to the initial

states of both branches. As the flattening is a standard process, we omit thedetail in this definition.

Moreover, we adopt an interleaving semantics, e.g., no priority is associated with conditions, etc.
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A trace of the automatonAb is a sequence of events〈e1, · · · , ek , · · · en〉, where there exists a runs1,

e1, s2, · · ·, sk , ek , sk+1, · · ·, sn , en , sn+1 such thats1 = S 0
b andsn+1 ∈ Fb and for all1 ≤ k ≤ n

such that(sk , ek , sk+1) ∈ Tb . The language of the automatonAb , denoted asL(Ab), contains all

traces of the automatonAb .

Definition 9 The language of a basic chartb, denoted asLβ(b), is the language of the automaton

L(Ab). The executions ofb which complete the whole chart, denoted asFβ(b), contain the traces

of Ab which reach the stateCompleted once and once only.

The semantics of existential charts is different from that of basic charts because existential charts,

as universal charts, are scoped. Events invisible to the chart may occur freely between any two

successive events in an execution of the chart. Given a set of eventsΣi ⊆ Σ, a trace filter, denoted

astr ↾ Σi , satisfies the following conditions:

〈〉 ↾ Σi =̂ 〈〉
(i a tr ′) ↾ Σi =̂ i a (tr ′ ↾ Σi ), wherei ∈ Σi

(j a tr ′) ↾ Σi =̂ tr ′ ↾ Σi , wherej 6∈ Σi

In the following definition, forbidden events are properly handled, i.e., they are prevented from

occurring until the chart completes.

Definition 10 Let Σe be the set of events visible to an existential charte. The language ofe,

denoted asLǫ(e), is defined as:Lǫ(e) =̂ {tr : Σ∗ | tr ↾ Σe ∈ Lβ(e)}. The executions ofe which

travel through the whole chart, denoted asFǫ(e), is defined as:

Fǫ(e) =̂ {tr : Σ∗ | tr ∈ Lǫ(e) ∧ tr ↾ Σe ∈ Fβ(e)}

A tracetr is a fragment of tracetr ′, denoted astr in tr ′, if and only if tr is a sub-sequence oftr ′.

in : Σ∗ ↔ Σ∗

∀ tr , tr ′ : Σ∗ • tr in tr ′ ⇔ ∃ tr1, tr2 : Σ∗ • tr1
a tr a tr2 = tr ′

A universal chart is typically preceded with a pre-chart. Whenever anexecution completes the

pre-chart, the execution must proceed as specified by the main chart.
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Definition 11 Let p,m : B be the pre-chart and main-chart of a universal chartu. The language of

u is Lµ(u) satisfying the following:

Lµ(u) =̂ {tr : Σ∗ |6 ∃ tr1, tr2 : Σ∗ • tr1
a tr2 in tr ∧ tr1 ∈ Fǫ(p) ∧ tr2 6∈ Lǫ(m)}

Intuitively, a trace violates a universal chart if and only if it completes the pre-chart but fails to

conform to the main chart. By associating different sets of visible events to the pre-chart and main

chart, various kinds of forbidden events [70] can be handled properly.

An LSC specification consists of a set of universal charts and existential charts, i.e.,S ⊂ {x : C |
x ∈ U ∨ x ∈ E}. An implementation satisfies an LSC specification if and only if it always exhibits

behaviors allowed by the universal charts and it is capable of exhibiting at least one of the behaviors

captured by an existential chart.

Definition 12 An implementationI, whose executions are denoted astraces(I), satisfies an LSC

specificationS, denoted asI ² S, if and only if:

(traces(I) ⊆ ⋂
u∈S Lµ(u)) ∧ (∀ e ∈ S • Fǫ(e) ∩ traces(I) 6= ∅)

4.1.3 Operational Semantics of LSC in CSP

This section is devoted to a CSP modeling of LSC. With the operational semantics of CSP defined

in [135], the CSP modeling in a way defines an operational semantics for LSC. An intuitive way of

constructing CSP models from LSC models is by mimicking the states in the automaton associated

with a chart. However, mimicking the states is impractical because it requires constructing the

(unstructured) automata. Moreover, it results in an unreadable CSP model and thus creates barriers

to linking the verification results to the charts. We present our structure-preserving modeling using

a set of operational semantics rules in a bottom-up fashion. The key idea is of using a (bounded) set

of special synchronization events to monitor the completion of universal charts.

During a system run, a universal chart may be activated more than onceand some of the activations

may overlap. In general, there could be infinite overlapping activations ofthe same chart. Violation
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of a cold condition terminates one activation only. Therefore, it is necessary to distinguish different

activations (by associating each one with a unique identifier). In [17], Bontemps and Schobbens

have shown that every LSC has an equivalent deterministic Büchi automaton that contains at most

exponentially more states than there are locations in the LSC. A symmetry reduction shall always

make it possible to consider only a finite (and bounded) number of overlapping activations. Thus,

only a finite number of processes are necessary for monitoring overlapping activations, and they

can be reused for non-overlapping activations. In practice, large number of overlapping activations

of the same chart is unlikely because system behaviors are increasingly restricted as the number of

overlapping activations increases. In the following, we present a set of rules for constructing CSP

processes allowing no overlapping activations of the same chart. It can be readily extended to allow

finite overlapping activations. We remark that the assumption of finite overlapping activations is

reasonable comparing to strong assumptions like no overlapping activationsmade in [68].

The most primitive building blocks of LSC are locations. Along an instance in a chart, there are a

finite number of locations. Due to our assumption of no co-region, a location contains at most one

event and an optional condition. LetΣi
u be the set of events associated with instancei in chartu,

including forbidden events. In addition, each chart is associated with three groups of special events,

Σ′(u, x ) =̂ {teru .x , hcvu , synu .x} where the optionalx identifiers a sub-chart ofu. Eventteru .x

is engaged if and only if a cold condition is violated, either in the pre-chart orthe main chart, or

an unexpected event of the pre-chart is engaged. It is used to terminateall instances in a chart at

once. Eventhcvu is engaged only when a hot condition is violated so that the system is forced

to fail. This reflects the semantics of hot conditions. However, this is slightly problematic as the

intention of hot conditions is to make sure they are never violated. A hot condition is violated either

because there is inconsistency in the specification, e.g., wrong implementation of the local action,

or the system is insufficiently specified. In our approach, the CSP model checker, e.g., FDR, helps

to refine LSC specifications step by step so that all hot conditions hold all thetime. Eventsynu .x

is used to synchronize the entering or exiting of a chart or the sub-chartx among all participating

instances. LetMainLoca(u, i , l) be the process for locationl on instancei in the main chart of

chartu. Let MainLoca(u, i , l + 1) be the process of the next location. For the sake of readability,

the following processes are defined accordingly to the respective statesin Definition 8.
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Terminatedu =̂ RUNΣu

Completedu =̂ RUNΣu

Aborted =̂ STOP

Given that the condition labeled with locationl is cold and the location is not the last, if the condition

evaluates to true, the system engages in the event and proceeds to the next location, otherwise, it

engages in a special eventteru to signal all other instances in the chart. Processes for all other

instances in the chart are interrupted byteru and terminate. After engaging in the special event, the

process restores to the first location in the pre-chart so as to allow later activation of the chart.

R1 MainLoca(u, i , l) =̂
(label(l) → MainLoca(u, i , l + 1))〈| cond(l) |〉(teru → PreLoca(u, i , l0i ))

If the condition is cold and the location is the last, after engaging in the event, a special eventsynu

is synchronized by all instances in the chart before any of them terminates. If the location is in a

sub-chart of the main chart, then the eventsynu is replaced withsynu .x so that only participating

instances synchronize the termination of the sub-chart.

R2 MainLoca(u, i , l) =̂
(label(l) → synu → PreLoca(u, i , l0i ))〈| cond(l) |〉(teru → PreLoca(u, i , l0i ))

If the condition is hot and the location is not the last, a special eventhcvu is engaged if the hot

condition is violated so that all other instances in the chart are signaled to deadlock.

R3 MainLoca(u, i , l) =̂
(label(l) → MainLoca(u, i , l + 1))〈| cond(l) |〉(hcvu → Abortedu)

Lastly, if the condition is hot and the location is the last,

R4 MainLoca(u, i , l) =̂
(label(l) → (synu → PreLoca(u, i , l0i )))〈| cond(l) |〉(hcvu → Abortedu)

Similarly, we may construct the process for a locationl in the pre-chart. LetPreLoca(u, i , l) be the

process constructed for locationl on instancei in the pre-chart of chartu. If the instance is not in

the pre-chart, then all visible events are allowed to occur before it synchronizes with the rest of the

instance on entering of the main chart.

R5 PreLoca(u, i , l0i ) =̂
(synu → MainLoca(u, i , l0i ))

2 (2 e : Σi
u \ {teru , hcvu , synu} → PreLoca(u, i , l0i ))
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Given the locationl is in the pre-chart and is not the last, if the condition evaluates to false, then

the process signals all other instances in the chart and terminates. Otherwise, if the expected event

is engaged, the process proceeds to the next location, else, the process engages in the unexpected

event and terminates. Conditions are not distinguished as either hot or coldbecause hot conditions

have no semantic meaning in pre-charts.

R6 PreLoca(u, i , l) =̂
((label(l) → PreLoca(u, i , l + 1)) 2

(2 e : Σi
u \ {label(l), event(l0i ), teru , hcvu , synu} → teru → SKIP))

〈| cond(l) |〉(teru → SKIP)

If the location is the last, after engaging in the event, the instance waits for the synchronization for

termination and proceeds to the first location of the main chart.

R7 PreLoca(u, i , l) =̂
((label(l) → synu → MainLoca(u, i , l0i )) 2

(2 e : Σi
u \ {label(l), event(0), teru , hcvu , synu} → teru → SKIP))

〈| cond(l) |〉(teru → SKIP)

A location could be extended to a structuring construct, e.g., a sub-chart, abranching, etc. All LSC

structuring constructs have their exact images in CSP, e.g., process reference for sub-charts, choice

in CSP for branching, etc. However, in case of sub-charts, violation ofa cold condition terminates

the sub-chart only and thus we need to attach some identifier of the sub-chart to the eventteru .x so

that only the process for the sub-chart is terminated.

Let Instance(u, i) be the process for instancei in chartu. The process terminates whenever a

cold condition is violated in the chart and deadlocks whenever a hot condition is violated. Both are

captured using interrupt operators.

R8 Instance(u, i) =̂ (PreLoca(u, i , l0i ) ▽teru Instance(u, i)) ▽hcvu→ STOP

Let Chart(u) be the process for chartu. The process is an alphabetized parallel composition of the

processes of all instances in the chart. Whenever a hot condition is violated, the process deadlocks

and, therefore, the system deadlocks (refer to L2 in Chapter 2).

R9 Chart(u) =̂ ‖
i
(Instance(u, i), Σi

u ∪ {teru , hcvu , synu})
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An LSC specification consists of a finite number of universal charts, each constraining its visible

events. LetI be the process synthesized from the LSC specification. The process is the alphabetized

parallel composition of the processes of all universal charts in the specification.

R10 I =̂ ‖
u∈S

(Chart(u), Σu ∪ {teru , hcvu , synu})

We claim thatI is an implementation ofS. From the construction ofChart(u), it is clear that only

behaviors satisfying the chart are allowed, i.e.,whenever the pre-chartis matched, the system run

must proceed as specified by the main chart (R1,2,3,4), whenever a cold condition is violated, the

activation of the chart terminates (R8), whenever a hot condition is violated, the system deadlocks

(R8,9), etc. Because all activation shares the same set of visible events, system execution is con-

strained by all activations. Therefore,I only allows behaviors that satisfies all the charts (because of

the parallel composition). Lastly,Chart(u) only constraints its visible events (as it is alphabetized)

and other events are free to occur.

4.1.4 FDR Verification

In this section, we show how we solve the verification problem of LSC using an existing model-

checker instead of building one from scratch. Machine readable CSP processes, i.e., an ASCII based

variant of CSP [128], are constructed from LSC models and fed into FDRfor checking.

Using FDR, safety, liveness and combination properties can be verified by showing a refinement

relation from the constructed CSP model to the CSP process capturing the properties. Since this is

the standard usage of FDR, we focus on checking that is closely coupledwith our interpretation.

Our interpretation ensures that inconsistency between universal charts results in deadlock. FDR

is capable of telling whether a CSP program is deadlock-free. A counter example is presented

whenever the validation fails, which gives an important clue to the origin of theerror. There are

two sources of deadlock, one due to inconsistencies between universal charts and the other due

to violation of a hot condition. The former requires re-investigation of the system requirements.

The latter may suggest either there is some inconsistency or the system is under-specified and thus

more system requirements are necessary to constrain the state variables sufficiently. An existential
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chart is validated by constructing the corresponding CSP process and checking whether it contains

a trace allowed by the CSP model constructed from the universal charts.In addition, manual proof

may establish properties of the LSC model expressible with logical expressions over traces or trace-

refusal pairs.

Example 4.1.3 (Inconsistent universal charts)Figure 4.2 is presented in [68] as a typical example

of inconsistency between universal charts1. It is a part of the LSC specification of an automatic

railway system [32]. The objects participating in the scenarios arecruiser , car andcarHandler . In

the left chart, the messagesetDest sent from the environment to the car activates the chart, which

requires that following thedepartReq message,departAck is sent from the car handler to the car.

This message in turn activates the right chart, which requires the sending of engage from the car to

the cruiser before thestart andstarted messages are sent, while the left chart requires the opposite

ordering. end

The program in Figure 4.3 is constructed automatically by our supporting tool(manually simpli-

fied so as to improve readability). The first part of the program consists of channel definitions for

all communication events in the charts. The set of events visible to a chart areexactly those that

appear in the chart together with the forbidden events. The construction follows exactly the oper-

ation semantics rules. Because there is only one message in the pre-chart and we assume that the

internal computation is infinitely faster than the arrival of external stimulus, there is no overlapping

activations for this example.

FDR instantly reports that processSystem is not deadlock-free. A trace leading to deadlock is il-

lustrated as a counter example:〈departAck , setDest , departReq〉. The right chart is activated by

eventdepartAck . Right after that the left chart is activated by eventsetDest . This is possible be-

causesetDest is not constrained by the right chart. After eventdepartReq , the system deadlocks.

This deadlock situation is not what we expected. However, it does reveal an implicit assump-

tion that is not captured by the charts, i.e.,departAck occurs only aftersetDest anddepartReq

1More complicated examples are available at [148]
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Figure 4.2: Inconsistent universal charts

are engaged. This assumption can be embedded using a universal chart or the following pro-

cess: Env = setDest → departAck → Env . We refine the processSystem as the parallel

composition of the originalSystem andEnv . FDR reports instantly the expected deadlock trace:

〈setDest , departReq , departAck〉. This example reveals a complication due to implicit assump-

tions we often make on the system, which is an important issue in solving the synthesis problem.

In order to cope with large systems, CSP algebraic laws are used to simplify theconstructed pro-

cesses before feeding them into FDR. Compression methods available in FDRcan be applied as

well, as in Figure 4.3 (the first line). For instance, the optiondiamondrequires FDR to compress the

system usingdiamond elimination, i.e., a node-compression used to reduce the search space based

on partial order reduction. Our construction is extended to handle symbolicinstances and messages,

i.e., symbolic instances are modeled as processes with parameters and local definitions, symbolic

messages are modeled as typed channel events.

A CSP process is constructed from an existential chart similarly except that the process for the

existential chart deadlocks after the chart completes. This allows validationof existential charts
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transparent diamond, normalise

channel sync_setDest, sync_departAck, setDest, departRe q
departAck, start, started, engage

SetDestSigma(0) = {|sync_setDest,setDest,departReq,de partAck,start,
started,engage|}

SetDestSigma(1) = {|sync_setDest,start,started,engage |}
SetDestSigma(2) = {|sync_setDest,departReq,departAck| }

SetDestInst(0) = setDest -> sync_setDest -> departReq -> de partAck ->
start -> started -> engage -> SetDestInst(0)

[] departReq -> SetDestInst(0) [] departAck -> SetDestInst (0)
[] start -> SetDestInst(0) [] started -> SetDestInst(0)
[] engage -> SetDestInst(0)

SetDestInst(1) = sync_setDest -> start -> started -> engage -> SetDestInst(1)
[] start -> SetDestInst(1) [] started -> SetDestInst(1)
[] engage -> SetDestInst(1)

SetDestInst(2) = sync_setDest -> departReq -> departAck -> SetDestInst(2)
[] departReq -> SetDestInst(2) [] departAck -> SetDestInst (2)

SetDest = || x: {0..2}@ [SetDestSigma(x)] SetDestInst(x)

DepartSigma(0) = {|sync_departAck,departAck,engage,st art,started|}
DepartSigma(1) = {|sync_departAck,engage,start,starte d|}
DepartSigma(2) = {|sync_departAck,departAck|}

DepartInst(0) = departAck -> sync_departAck -> engage -> st art
-> started -> DepartInst(0)

[] engage -> DepartInst(0) [] start -> DepartInst(0)
[] started -> DepartInst(0)

DepartInst(1) = sync_departAck -> engage -> start -> starte d -> DepartInst(1)
[] engage -> DepartInst(1) [] start -> DepartInst(1)
[] started -> DepartInst(1)

DepartInst(2) = departAck -> sync_departAck -> DepartInst (2)
Depart = || x: {0..2}@ [DepartSigma(x)] DepartInst(x)

Sigma(0) = {|sync_setDest,setDest,departReq,departAck ,start,started,engage|}
Sigma(1) = {|sync_departAck,departAck,engage,start,st arted|}
Sigma(2) = {|setDest,departAck|}

Figure(0) = SetDest Figure(1) = Depart
System = || x: {0..1} @ [Sigma(x)] Figure(x)

{- ************** Assertions ************** -}
assert System :[deadlock free [FD] ]

Figure 4.3: Machine readable CSP example
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Receive&Talk

talk

speakerOff

startRing

open

incomingCall

CoverSpeakerChipUserEnv

Figure 4.4: Existential chart

using the notion of refinement. An existential chart is consistent with an LSC model if and only if

it specifies at least one trace which is consistent with the universal charts.

Example 4.1.4 (Existential chart) The dotted frame indicates that the chart in Figure 4.4 is an

existential chart. This chart captures the most common scenario of the mobile phone system: once

there is an incoming call, the speaker shall start to ring and the user shall open the mobile to talk.

The CSP process constructed for the existential chart in Example 4.1.4 is asthe following:

Instance(0) = incomingCall → talk → Stop

Instance(1) = open → talk → Stop

Instance(2) = incomingCall → startRing → speakOff → Stop

Instance(3) = startRing → speakerOff → Stop

Instance(4) = open → Stop

Existential = ‖4

x=0
(Instance(x ), Σx )

Σx contains exactly the events of the instance appeared in the chart. GivenSystem as the process

constructed from the universal charts of the phone system, FDR verifies thatSystem is trace-refined

by processExistential . Thus, we are certain that the existential chart is consistent with the universal

charts. In general, the notion of trace-refinement is too strong for validation of existential charts.

If the chart contains branches, we need to show the CSP constructed from the universal charts is

capable of exhibiting at least one system run allowed by the existential chart. end
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FDR can also be used to verify whether a property holds by showing a refinement relationship from

the candidate process to a CSP process capturing the property. We can verify safety requirements

by trace refinement and liveness requirements by failure/divergence refinement. Safety and liveness

properties may be expressed as universal charts or CSP processesintuitively. For example, we may

express a safety property as a universal chart (without pre-chart) containing only a hot condition

capturing the property. Formal derivation of CSP processes or LSC from temporal specifications

and vice versa are non-trivial research topics. The former was discussed in [10, 106] and the latter

in [89].

The construction is automated using XML and JAVA technology. There is not yet a standard in-

terchange format for LSC. The XML format used inPlay-Engineis not intended to exchange LSC

models. No schema or DTD definition is developed. A part of our work includes the development of

the first XML standard interchange format for LSC. We start with definingthe syntax of LSC using

both BNF grammar and XML schema. The BNF grammar is presented in AppendixB. The XML

schema and XML representation of the charts appeared in this chapter canbe found online [148].

Together with the XML schema, a parser and a transformation module is built using JAVA and an

existing XML parser [59] to parse XML representation of LSC models and construct CSP pro-

grams automatically. The output of the program is a machine readable CSP program with a set of

assertions, which is ready to be employed and verified in FDR.

4.2 Verification of Timed CSP and TCOZ

This section is devoted to a brief discussion on applying verification mechanisms for visual for-

malisms to validate logic-based formalisms using concrete examples. Timed CSP (and of course

TCOZ) aims at specifying complex real-time systems. However, there is no mechanical reasoning

support for Timed CSP models. Indeed, there has been little automation on reasoning logic-based

specification languages for real-time systems. One of the reasons is that logic-based formalisms like

Timed CSP and TCOZ are so expressive that they are beyond any efficient verification techniques.

For instance, Timed CSP allows specification of languages that are not regular or not even context-
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free, which makes model checking infeasible. In this section, we presentour attempt at verifying

Timed CSP and TCOZ specifications by reusing existing verification mechanisms.

In the field of visual formalism, Timed Automata [2] are often used to model real-time systems.

Timed Automata are finite state machines equipped with clocks. Its definition provides a general

way to annotate state transition graphs with timing constraints using finitely many real-valued clock

variables. In a timed automaton, each node is associated with an invariant, whilea transition is

labeled with a guard (a constraint on clocks), a synchronization action and a clock reset set (a set of

clocks to be reset). Intuitively, a timed automaton starts execution with all clocksinitialized to zero.

The automaton can stay at a node, as long as the invariant of the node is satisfied, with all clocks

increasing at the same rate. A transition can be taken if the values of the clocks fulfill the guard. By

taking the transition, all clocks in the clock reset set are set to zero, while the clocks not in the clock

reset set keep their values.

Example 4.2.1 (Timed Automaton) The following is a Timed Automaton modeling the behaviors

of adoor :

open?
x:=0

opened! close?
x:=0

closed opening open closing

x<=5

closed!
x==10

x<=10

A double-line circle indicates an initial state in the notion of Timed Automata. Initially, the system

is at stateclosed . After getting a request through channelopen, the system moves to theopening

state whilst resetting the local clockx . Theopening state is labeled with a state invariantx <= 5

so that the door takes at most 5 time units to open. After the door is opened, a message is sent over

the channelopened . At open state, a request on channelclose moves the system to stateclosing ,

which is labeled with a state invariant too. The transition out of stateclosing is guarded with the

conditionx == 10, and therefore the door takes exactly 10 time units to close. end
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Model checking of Timed Automata has been proven to be decidable [2]. There have been quite a

number of model checkers for Timed Automata [35, 30, 9]. UPPAAL [9] is one of the most success-

ful tools. It is a tool for modeling, simulation and verification of real-time systemsmodeled as a

network of timed automata. The properties are expressed as a restricted subset of Timed CTL [76].

UPPAAL is our choice of model-checker for verifying a network of timed automata because of its

efficiency (both for model-checking and simulation) as well as its wide recognition.

Real-time system requirements are often stated using high-level timing constraints like timeout,

timed interrupt. Those are regarded as common timing constraint patterns. For example, “atask

must complete withint time period” is a typical one (deadline). One problem of designing real-

time system using Timed Automata is the lack of high level composable graphical patterns. System

engineers thus often need to manually cast those timing patterns into a set of clock variables with

carefully calculated clock constraints. This process is time consuming and error prone. On the

other hand, Timed CSP (and TCOZ) is a good candidate for specifying complex real-time systems

because it offers a rich set of constructs that can directly capture those common timing patterns.

One interesting question is thus: can we build a set of Timed Automata patterns that correspond

to Timed CSP timing constructs? If such Timed Automata patterns can be formulated formally,

not only we can systematically translate Timed CSP to Timed Automata for validation, but also

Timed Automata can be used for compositional design. We thus investigated possible relationships

between Timed CSP and Timed Automata. A set of composable graphical patterns is defined based

on the Timed CSP hierarchical constructs.

Example 4.2.2 (Timed Automata patterns)The following figure demonstrates sequential compo-

sition of two Timed AutomataA1, A2:

A1 A2
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An automaton is abstracted as a triangle, the left vertex of this triangle or a circle attached to the left

vertex represents the initial state, and the vertical edge represents the terminal states. By linking the

terminal states ofA1 with the initial state ofA2, the control is passed fromA1 to A2 whenA1 goes

to its terminal state. The following is the Timed Automata pattern for time out:

x:=0

x<=t

A1

A2

x==t

The initial state of automatonA1 is labeled with state invariantx ≤ t , which guarantees the system

must go beyond the state aftert time units. If a transition is taken beforet time units, the control

remains in automatonA1. Otherwise, after exactlyt time units, automatonA1 times out and the

control is passed to automatonA2. end

A full list of Timed Automata patterns together with their formal definitions in Z is presented in [42].

These timed composable patterns provide a reusable high level library to facilitate a systematic en-

gineering process using Timed Automata as a design language. Furthermore, these patterns offer an

interchange media for transforming Timed CSP (and TCOZ) specifications intoa network of Timed

Automata, which allows reusing UPPAAL to verify Timed CSP (and TCOZ) specifications. The

projection from TCOZ to Timed Automata is automated using the same method presented in Sec-

tion 3.4.4, i.e., the ZML parser is reused and a Timed Automata interface and a new transformation

module are built for the task.

However, because UPPAAL aims at efficient verification based on the notion of model checking, it

puts strong restrictions on both the system models and properties to be verified. For instance, guard

conditions in Timed Automata can not compare the valuation of clocks. Moreover, the properties

supported by Timed Automata are limited to a small subset of Timed CTL [9]. In order to overcome
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those limitations, we investigate a complemental approach. The key idea is of using Constraint

Logic Programming (CLP [82]) as an underlying reasoner for real-timed systems modeled with

Timed CSP or TCOZ. We omit the details of the work (refer to [44]) because itis only loosely

connected to the scheme of the thesis.

4.3 Summary

In this chapter, we investigated the validation of visual and logic-based formalisms by reusing ex-

isting verification mechanisms. In order to demonstrate that model checkers for logic-based for-

malisms can be reused for verification of diagrammatic notations, we developeda CSP modeling of

LSC and then applied FDR to reveal inconsistency in LSC models. In the otherdirection, we ver-

ified logic-based formalisms Timed CSP and TCOZ using tool support for diagrammatic notations

Timed Automata.

As for related works, there have been attempts on formalizing LSC [85, 14]. In [14], Bontemps

and Heymans used Büchi automata to define the language expressed by a set of LSCs. They claim

that the standard algorithm for automata can be used to check consistency and refinement. However,

because automata are typically low-level and not structured, flattening high-level LSC into automata

suffers from the state explosion problem. CSP provides a rich set of compositional constructs. Our

work preserves the structure of the LSC model and avoids constructing the global state machine

both at the chart level or globally. Klose and Wittke [85] derive a similar timed Büchi automaton

to capture the semantics of an LSC chart in isolation. Our approach handlesmultiple charts and is

extensible. In [89], Kuglerel atprovided a semantics for a kernel subset of LSC using CTL∗, which

may be used in the development of tools for analyzing and executing LSC. However, no explicit

verification support has been discussed. Our CSP modeling of LSCs allows not only mechanized

verification of LSCs but also using CSP algebraic laws to solve the synthesisproblem of LSCs (refer

to Chapter 5).

Our work is also loosely related to works on formalizing, simulating, and validating MSCs/LSCs,

e.g., the simulation tool developed by Wangel at based on Constraint Logic Programming [156]
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and theoretical works on MSCs by Thiagarajan [91] and Mauwel at [109]. For CSP, thede facto

mechanized verification support is FDR. There is not yet a mechanized proving method for Timed

CSP. The main reason is the complexity of time, e.g., the timed trace and failure semantics of Timed

CSP is far more complex than those of CSP. As far as the authors know, the only attempt is Brooke’s

work on partial encoding Timed CSP in PVS [20], which relies on heavy user interaction.
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Chapter 5

Synthesis from Scenario-based

Specification

‘how am I to get in?’ asked Alice again, in a louder tone.

‘Are you to get in at all?’

said the Footman.

‘That’s the first question, you know.’

- Alice’s Adventures in Wonderland, Lewis Carroll

Synthesis (from the Greek words syn = plus and thesis = position) is commonlyunderstood to

be an integration of two or more pre-existing elements which results in a new creation. In the

software engineering literature, the termsynthesishas been broadly used, to denote different kinds

of problems. In the field of formal languages and temporal logics, thesynthesisproblem is well

defined, since the late 80s. For open systems, it is interpreted as building animplementation that

will preserve a specification against any malevolent environment [50], [51], [30], [52], [53], [22],

[54], [55]. The problem of synthesis for closed systems is synonymouswith satisfiability [56], [57].

In the realm of scenarios, the meaning ofsynthesisis somewhat vaguer, as the problem is always

left undefined and only algorithms are discussed [15]. The problem we address in this chapter

83
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is of generating implementations that will preserve an LSC specification (against any malevolent

environment if it interacts constantly with the unspecified environment).

5.1 Introduction

A major challenge of software engineering is to automatically generate low-level executable im-

plementations from high-level specifications. One high-level specificationof special interest is

scenario-based diagrams, which serve as an abstract and natural way of capturing inter-object sys-

tem requirements. Sequence diagrams have been a popular means of specifying scenarios of re-

active systems for decades. They have found their ways into many methodologies, e.g., Sequence

Diagrams in UML [154], MSC in Specification and Description Language (SDL) [81], etc. In

this work, we propose an approach to generate executable programs automatically from sequence

diagrams, in particular, Live Sequence Charts.

Before generating implementations from sequence diagrams, there are two problems to be solved.

The problem of verification is of exposing inconsistency between the diagrams. The problem of

synthesis is of deciding whether there exists a satisfying object system andif so, synthesize one au-

tomatically. The former has been addressed in Chapter 4. The latter is crucial in the development of

complex systems, as sequence diagrams serve as the manifestation of use cases and if synthesizable

they could lead directly to implementation. In the setting of classic MSC, the problemof synthesis

has been tackled by many researchers [5, 3, 87, 86]. The conclusionis that for reactive distributed

systems, synthesizing a distributed object system with precisely the set of behaviors could be impos-

sible because of its computational complexity as well as the notion of implied scenarios. Intuitively,

implied scenarios are additional behaviors that may be present in every distributed object system

which is consistent with the specified scenarios, i.e., the set of MSCs.

Example 5.1.1 (Implied scenarios)The charts presented in Figure 5.1 show a typical example of

an implied scenario (inspired by the example in [3]). The first two MSCs are the specification,

where the two eventsReq ,Ack may occur in either order. The third is an implied scenario, where
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Req

Ack

Ack

Req Req

Ack

A B BABA

Figure 5.1: Implied scenarios

the reception of both events is delayed. In the third scenario, as far as theobjectA orB can tell, both

of them are executing a specified scenario, i.e.,A executes accordingly as the first andB executes

accordingly as the second. end

In order to avoid the problem of implied scenarios, our synthesis is based on the notion of LSC. LSC

is rapidly recognized as a rather rich and useful extension of MSC. It offers a far more powerful

means for stating requirements for complex systems than MSC. It thus servesas an excellent basis

of mechanized analysis of scenarios, for example, the study of the synthesis problem. In LSC,

mandatory behaviors are specified using universal charts, which aredistinguished from possible

ones (as contrasted with MSC). In this work, we assume that an LSC specification contains a set of

universal charts, whereas existential charts are only used for specifying test cases. We thus avoid

the problem of implied scenarios (refer to the formal explanation in Section 5.6).

Despite the absence of implied scenarios, synthesis of a distributed object system from a set of

scenarios remains a hard problem. In general, the distributed synthesis problem is undecidable

in almost all interesting settings [122]. In order to deal with the great complexity, we developed

a synthesis method relying on using a finite set of special events to monitor global execution lo-

cally. Nevertheless, our method automatically synthesizes distributed implementations efficiently

and soundly. The key idea is to develop a CSP model of LSC and then use CSP’s algebraic laws to

transform the CSP model so that the local behaviors of each object are identified. The consequence

is that we may construct one process for every object in the system capturing exactly its roles in
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the system without constructing the global state machine. Lastly, distributed implementations are

synthesized based on the distributed processes straightforwardly.

5.2 CSP with Liveness

In the last chapter, modality on locations is ignored because there is not muchto verify about it. It

is however important that we capture the liveness constraint in the work onsynthesis. CSP lacks the

expressiveness to capture liveness, i.e., a process may wait infinitely long before engaging in one

of the enabled events. On the other hand, modality on locations in LSC constrains the execution of

the system by requiring that no instance is stuck at a hot location forever,i.e., events labeled with a

hot location must eventually be engaged. In order to capture the semantics of LSC using CSP, it is

necessary to amend the traditional trace semantics of CSP to capture liveness. We solve the problem

by distinguishingsignals from ordinary CSP events.Signals are events that must be observed in

the future state. The name,signal , is suggested by Davies. In his work [33], signals are used to

express broadcast communication effectively in Timed CSP.

Let Σ̂ ⊂ Σ be the set of all signals. For each ordinary evente, a signalê is registered. We

remark that signals play the same role as ordinary events, e.g., synchronizing with signals or events

obeying the CSP rules, except that they must be engaged eventually. In order to reflect the additional

constraint caused by signals, we define a filter function to eliminate behaviors from the CSP trace

model. The filter functionF is defined as the following:

F : P → P Σ∗

∀P1 : P • F(P1) = {tr : Σ∗ | tr ∈ traces(P1) ∧
6 ∃ tr ′ : Σ∗; ê : Σ̂ • tr ′ = tr a 〈ê〉 ∧ tr ′ ∈ traces(P1)}

Intuitively, a trace satisfies the liveness constraint if and only if all enabled signals have been en-

gaged. Despite the filter function, the mature semantics models of CSP are maintained. The notion

of signal captures (localized) liveness conditions in the same way as hot locations do. In the follow-

ing, modality on location is handled universally in our refined modeling of LSC using CSP. That is,
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events labeled with hot locations are modeled assignals, whereas events labeled with cold locations

are modeled as ordinary CSP events.

Example 5.2.1 (Signals)Let ŜKIP be the short form for̂X → STOP. The following shows how to

compute those traces that satisfy the liveness condition:

F(ŜKIP) = {(〈X̂〉,X ) | X ⊆ F(STOP)} = {〈X〉}
F(ê → P) = {(〈ê〉 a s,X ) | (s,X ) ∈ F(P)}

The trace ofŜKIP does not include the empty one because the eventX̂ shall be engaged eventually.

Similarly, a signal-prefixing shall not idle infinitely. end

5.3 Refined CSP Modeling of LSC

Our modeling of LSC using CSP in Section 4.1 is based on the assumption that there is no over-

lapping activations of the same chart. Using a finite pool of such processes, we may allow finite

overlapping activations. It is reasonable since our objective in the last chapter is efficient verifica-

tion of LSC models using FDR. In this section, we refine our modeling so that infinite overlapping

activations are not restricted as one of the principles of synthesis is that the synthesized design shall

be minimally restrictive so that further refinement is possible.

During a system run, a universal chart may be activated more than onceand some of the activations

may overlap. Therefore, it is necessary to distinguish different activations by associating each one

with a unique identifier. Lety : 1 . . n be the index of they-th activation of a chartu. Each chart is

associated with four groups of special events,Σ′(u, x , y) =̂ {teru .x .y , hcvu , synu .x .y , forku .y},

wherex is an optional identifier of the sub-chart. The special eventteru .x and synu .x used in

Section 4.1.3 are attached withy so that they are synchronized only among participating instances

of the y-th activation of the chart. Eventhcvu is engaged when a hot condition is violated. It is

irrelevant if the hot condition is violated in a sub-chart or a particular activation. Eventforku .y is

used to fork a new activation of chartu. Let Σ′(u) be the set of special events associated with chart

u, i.e.,Σ′(u) =̂
⋃

x

⋃
y Σ′(u, x , y). Let Σ′ be the set of all special events, i.e.,Σ′ =̂

⋃
u Σ′(u).
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The process for locationl on instancei in the main chart of they-th activation of chartu is denoted

asMainLoca(u, i , l , y). Let MainLoca(u, i , l + 1, y) be the process of the next.

R1’ MainLoca(u, i , l , y) =̂
(event(l) → MainLoca(u, i , l + 1, y))〈| cond(l) |〉(teru .y → Terminatedu)

wheretemp(cond(l)) = Cold andl 6= lmax
i

If the condition labeled withl evaluates to true, the system engages in the event and proceeds to

the next location, otherwise, eventteru .y is engaged to signal all other instances in the chart to

termination. Processes for all other instances in the activation of the chartare interrupted byteru .y

to terminate so that the activation of the chart terminates.

R2’ MainLoca(u, i , l , y) =̂
(event(l) → synu .y → Completedu)〈| cond(l) |〉(teru .y → Terminatedu)

wheretemp(cond(l)) = Cold andl = lmax
i

After engaging in the event, eventsynu .y is synchronized by all instances in the (activation of the)

chart before any of them completes.

R3’ MainLoca(u, i , l , y) =̂
(event(l) → MainLoca(u, i , l + 1, y))〈| cond(l) |〉(hcvu → Aborted)

wheretemp(cond(l)) = Hot andl 6= lmax
i

Eventhcvu is engaged if the hot condition is violated so that all other instances in the (activation of

the) chart are signaled to deadlock (refer toR10’). Lastly,

R4’ MainLoca(u, i , l , y) =̂
(event(l) → synu .y → Completedu)〈| cond(l) |〉(hcvu → Aborted)

wheretemp(cond(l)) = Hot andl = lmax
i

Let PreLoca(u, i , l , y) be the process constructed for locationl on instancei in they-th activation

of the pre-chart of chartu.

R5’ PreLoca(u, i , l0i , y) =̂

(2 e : Σi
u → PreLoca(u, i , l0i , y))

2 (forku?y → Forked |[ Σi
u ]|PreLoca(u, i , l0i , y + 1))

where instancei is not in the pre-chart ofu and
Forked =̂ µX • ((synu .y → MainLoca(u, i , l0i , y)) 2

(2 e : Σi
u → X )) ▽teru .y Terminatedu
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Before synchronizing the entering of the main chart and then behaving asspecified by the main

chart, the instance may engage in any event inΣi
u or synchronize on eventforku .y to fork a new

copy of the process (in case this chart is activated by engaging in eventsassociated with other

instances). The activation terminates whenever ateru .y event is engaged (due to either violation of

a cold condition or engaging in an unexpected event in the pre-chart).

R6’ PreLoca(u, i , l , y) =̂
(event(l) → PreLoca(u, i , l + 1, y)

2 (2 e : Σi
u \ {event(l)} → teru .y → Terminatedu))

〈| cond(l) |〉
teru .y → Terminatedu

where locationl is neither the first location nor the last.

If the condition evaluates to false, the process signals all other instances inthe chart and termi-

nates. Otherwise, if the expected event is engaged, the process proceeds to the next location, else,

the process engages in an unexpected event and puts no further constraint on the system (L1 in

Chapter 2).

R7’ PreLoca(u, i , l , y) =̂
(event(l) → synu .y → MainLoca(u, i , l0i , y)

2 (2 e : Σi
u \ {event(l)} → teru .y → Terminatedu))

〈| cond(l) |〉
teru .y → Terminatedu

where the location is not the first location but is the last.

After engaging in the event, the instance waits for the synchronization and then proceeds to the first

location of the main chart.

R8’ PreLoca(u, i , l0i , y) =̂
(event(l0i ) → forku !y → ((PreLoca(u, i , l1i , y) ▽teru .y Terminatedu)

|[ Σi
u ]|PreLoca(u, i , l0i , y + 1))

2 (2 e : Σi
u \ {event(l0i )} → PreLoca(u, i , l0i , y)))

2 (forku?y → ((Forked ▽teru .y Terminatedu)
|[ Σi

u ]|PreLoca(u, i , l0i , y + 1)))
〈| cond(l0i ) |〉

PreLoca(u, i , l0i , y)
where the location is the first but not the last and

Forked =̂ (event(l0i ) → PreLoca(u, i , l1i , y))

2 (2 e : Σi
u \ {event(l0i )} → Forked)
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A new process is forked whenever an expected event is engaged. This way, system runs that trig-

ger overlapping activations of the same chart are properly constrained. The special events are not

synchronized between different activations. Lastly,

R9’ PreLoca(u, i , l0i , y) =̂
(event(l0i ) → forku !y → synu .y →

(MainLoca(u, i , l0i , y) ▽teru .y Terminatedu)
|[ Σi

u ]|PreLoca(u, i , l0i , y + 1)

2 (2 e : Σi
u \ {event(l0i )} → PreLoca(u, i , l0i , y)))

2 (forku?y → ((Forked ▽teru .y Terminatedu)
|[ Σi

u ]|PreLoca(u, i , l0i , y + 1)))
〈| cond(l0i ) |〉

PreLoca(u, i , l0i , y)
where the location is the first and the last and

Forked =̂ (event(l0i ) → synu .y → MainLoca(u, i , l0i , y)

2 (2 e : Σi
u \ {event(l0i )} → Forked))

Whenever a chart is activated, the subsequent behavior of the systemis constrained by both the

process (for this activation) and the newly forked process (for any future activation) and, therefore,

remains valid (R5’,R8’,R9’ ). The processPreLoca(u, i , 0, y) allows, in general, infinite overlap-

ping activations of the same chart. LetInstance(u, i) be the process for instancei in chartu.

R10’ Instance(u, i) =̂ PreLoca(u, i , 0, 0) ▽hcvu Aborted

The process deadlocks whenever a hot condition is violated. Each chart consists of a finite number

of instances. LetChart(u) be the process for chartu.

R11’ Chart(u) =̂ ‖
i
(Instance(u, i), Σi

u ∪ Σ′(u))

The process is an alphabetized parallel composition of the processes of all instances in the chart.

Whenever a hot condition is violated, the process deadlocks and, therefore, the system deadlocks.

An LSC specification consists of a finite number of universal charts, each constraining its visible

events. LetI be the process synthesized from the LSC specification. The process is the alphabetized

parallel composition of the processes of all universal charts in the specification.

R12’ I =̂ ((‖
u∈S

(Chart(u), Σu ∪ Σ′(u))) \ Σ′) ‖ RUN

The RUN portion is added to make sure events which are not visible to any of the universal charts

(but may appear in some existential chart) can occur freely. ProcessI is an implementation ofS.

Formally,
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Theorem 5.3.1F(I) ⊆ ⋂
u∈S Lµ(u)

Skeleton of proof: From the construction ofChart(u), it is clear that only behaviors satisfying

the chart are allowed. Whenever a chart is activated, a new copy is forked to monitor subsequent

possible activation of the chart(R5’,R8’,R9’ ) and because all activation shares the same set of vis-

ible events, system execution is constrained by all activations. Because invisible events are not

constrained, they are free to occur between any consecutive occurrence of visible events. Because

events labeled with hot locations are mapped to signals, system runs stuck ata hot location are

filtered by the functionF . We skip the full proof as it is extremely lengthy. 2

Example 5.3.2 (Process synthesis)Part of the chartTalk (presented in Example 4.1.2) (instance

env , user , cover ) is interpreted as the CSP processes presented in Figure 5.2. The full construction

is available online [148]. end

5.4 Synthesis

This section is devoted to our solution for the synthesis problem. We first handle closed systems and

then discuss how to extend our approach to solve a restatement of the distributed synthesis problem

for open systems. Our synthesis makes use of the algebraic laws of CSP, i.e., L1-5 in Section 2.2

and the following derived ones. Law L6 is a direct consequence of law L4 and L5. Law L7 is the

generalized form of law L6.

(P1 X ||Y P2) X∪Y ||Z∪W (P3 Z ||W P4) = (P1 X ||Z P3) X∪Z ||Y∪W (P2 Y ||W P4) − L6

‖m

i=1
(‖n

j=1
(P j

i , Σj
i ),

⋃
j Σj

i ) = ‖n

j=1
(‖m

i=1
(P j

i , Σj
i ),

⋃
i Σj

i ) − L7

It is important that during synthesis the global state machine is never constructed. That is, we need

to identify a local process, equipped with local liveness conditions, for each object in the system

without first constructing the global one. In the following, we prove that inour context, it is sound

to associate the liveness condition (modality on locations) with the local processes instead of the

global process. Equivalently, we want to show that the following lemmas holdfor all P1,P2 : P.
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MainLoca(talk , env , 0, y) =̂ talk → syn.talk .y → RUN – byR4’
MainLoca(talk , user , 0, y) =̂ talk → syn.talk .y → RUN – byR4’
MainLoca(talk , cover , 0, y) =̂ syn.talk .y → RUN – byR4’
MainLoca(talk , chip, 0, y) =̂

speakOff → displayTime → syn.talk .y → RUN

MainLoca(talk , speaker , 0, y) =̂ speakOff → RUN

MainLoca(talk , displayer , 0, y) =̂
displayTime → setDisplayTime → RUN

PreLoca(talk , env , 0, y) =̂
(talk → PreLoca(talk , env , 0, y)) 2

(fork .talk .y →
(µX • (syn.talk .y → MainLoca(talk , env , 0, y)

2 talk → X )
▽ter .talk .y RUN) |[ talk ]|PreLoca(talk , env , 0, y + 1)) – byR5’

PreLoca(talk , user , 0, y) =̂
(open → fork .talk .y → syn.talk .y →

((MainLoca(talk , user , 0, y) ▽ter .talk .y RUN)
|[ open, close, talk ]|PreLoca(talk , user , 0, y + 1)))

2 (close → PreLoca(talk , user , 0, y))
2 (talk → PreLoca(talk , user , 0, y))
2 (µX • fork .talk .y →

(((open → syn.talk .y → MainLoca(talk , env , 0, y))
2 (close → X 2 talk → X )) ▽ccv .talk .y RUN)
|[ open, user , talk ]|PreLoca(talk , user , 0, y + 1)) – byR9’

PreLoca(talk , cover , 0, y) =̂
(open → fork .talk .y → ((PreLoca(cover , 1, y) ▽ter .talk .y RUN)

|[ open, close, coverOpened ]|PreLoca(talk , user , 0, y + 1)))
2 (close → PreLoca(talk , cover , 0, y))
2 (coverOpened → PreLoca(talk , cover , 0, y))
2 (µX • fork .talk .y → ((open → PreLoca(talk , cover , 1, y))

2 (close → X ) 2 (coverOpened → X )) ▽ter .talk .y RUN) – byR8’
PreLoca(talk , cover , 1, y) =̂

(coverOpened → syn.talk .y → MainLoca(talk , cover , 0, y))
2 (close → ter .talk .y → RUN) 2 (open → ter .talk .y → RUN) – byR7’

Figure 5.2: Synthesized processes
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Lemma 5.4.1 F(P1 X ||Y P2) ⊇ F(P1) X ||Y F(P2)

Proof: This lemma is proved by the following:

∀ tr : Σ∗ • tr ∈ F(P1) X ||Y F(P2)

⇒6 ∃ e1 : Σ̃ • (tr ↾ ΣP1
) a 〈e1〉 ∈ traces(P1) ∧6 ∃ e2 : Σ̃ • (tr ↾ ΣP2

) a 〈e2〉 ∈ traces(P2)

⇒6 ∃ e : Σ̃ • tr a 〈e〉 ∈ traces(P1 X ||Y P2)
⇒ tr ∈ F(P1 X ||Y P2) 2

Intuitively, Lemma 5.4.1 states that if both components cannot engage in a signal at certain point

of execution, then the composition cannot engage in the signal either. The reverse of Lemma 5.4.1

is not true. A counter example is:〈〉 is a trace ofF(P1 {â,b} ||{â,c} P2) but notF(P1) {â,b} ||{â,c}

F(P2), whereP1 =̂ (â → STOP 2 b → STOP) andP2 =̂ c → STOP.

Lemma 5.4.2 F(‖m

i=1
(‖n

j=1
(P j

i , Σj
i ),

⋃
j Σj

i )) ⊇ ‖n

j=1
(F(‖m

i=1
(P j

i , Σj
i )),

⋃
i Σj

i ) 2

Lemma 5.4.2 can be proved straightforwardly using law L7 and the generalized form of Lemma 5.4.1.

It states that we may rewrite the global liveness condition in terms of local liveness conditions

soundly, i.e., the accepting states of each object in the system can be identified locally without re-

ferring to the global state. We are now ready to synthesize distributed processes which group the

local behaviors of each object. For simplicity, we assume that all events appear in at least one of the

universal charts.

F(I) = F(‖
u∈S

(Chart(u), Σu ∪ Σ′(u)) \ Σ′) – R12’
= F(‖

u∈S
((‖

i
Instance(u, i), Σi

u ∪ Σ′(u)), Σu ∪ Σ′(u)) \ Σ′) – R11’
= F(‖

i
((‖

u∈S
(Instance(u, i), Σi

u ∪ Σ′(u))), (
⋃

i Σi
u) ∪ Σ′)) – L7

⊇ ‖
i
(F((‖

u∈S
(Instance(u, i), Σi

u ∪ Σ′(u)))), (
⋃

i Σi
u) ∪ Σ′) – Lemma 5.4.2

We remark that the underlined portion of the process identifies the local behavior of an object in the

system equipped with local liveness conditions (and(
⋃

i Σi
u) ∪ Σ′ is its alphabet). The soundness

is an immediate consequence of Theorem 5.3.1. If there are events that do not appear in any of

the universal charts (but do in some existential chart), we may localize themto the corresponding

instance processes straightforwardly.
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Figure 5.3: Unsatisfiable universal charts

So far, environmental objects are not distinguished from system objects.For instance, in Exam-

ple 5.3.2,user is considered as part of the system and the local process capturing its behaviors is

synthesized in the same way as for objectcover . Thus, we handle only closed systems but not

open systems, i.e., systems that interact with the environment frequently. Thesynthesis problem for

closed systems is often referred to as satisfiability, i.e., whether the languageof a specification is

non-empty, or equivalently if considering the environment as part of the system, whether there is a

benevolent environment in which some implementation can be deployed in orderto fulfill the spec-

ification. Synthesis for open systems, however, asks whether there is animplementation that can

be deployed in any malevolent environment. In literature, the synthesis problem for open systems

has long been recognized as a hard problem. It is even harder to synthesize distributed imple-

mentations without constructing the global state machine, i.e., undecidable in almost all interesting

settings [152, 98, 122, 99]. Thus, we take a lightweight approach to tackle the problem.

Figure 5.3 illustrates the intuition behind our method. It shows two simple universal charts of a

vending machine. This example is borrowed from [18], where it is used to illustrate the differ-

ence between synthesis of closed systems and synthesis of open systems.These two charts are

unsatisfiable under the assumption that the implementation should deploy in any environment and

user is considered as part of the environment. For instance, considering the following sequence of
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environmental events〈insert coin, select coffee, claim money〉, neither of the universal charts

can be satisfied. In practice, however, theclaim money event is typically blocked after event

select coffee and before eventinsert coin. In general, when system engineers design systems, im-

plicit assumptions on the environment are often made (enforced later by blocking the user-interface

at a certain time, using a queue to delay the arrival of the environmental events, etc.). Therefore,

instead of synthesizing an implementation that works in any environment (whichis certainly hard

to do and unlikely to be successful), we synthesize one that works in the intended environment. In

other words, we deal with a restatement of the synthesis problem for opensystems: given a (partial)

modeling of the environment and an LSC specification, build a distributed object system such that

for every refinement of the environment, the object system satisfies the LSC specification.

In our method, objects are partitioned into either environmental objects or system objects. Events

are also partitioned into either environmental events, written asE , or system events. An event is an

environmental event if and only if it is a local action of an environmental object or a communication

event which requires the participation of an environmental object. The system designer is asked

for a modeling of the intended environment, preferably using universal charts, which captures all

implicit assumptions on the environment. We may then synthesize implementations that can be

deployed in the intended environment or any refinement of it. Different from dealing with closed

systems, the implementation should not restrict the intended environment in any way.

Given the modeling of the environment, local processes for the environmental objects are firstly

synthesized in the same way that system objects are synthesized. We then verify that the synthe-

sized process for the environment (alphabetized parallel composition of all the environment objects),

denoted asEnv , simulates the user-supplied modeling, e.g.,ENV .

ENV ⊒ Env \ ((Σ \ E ) ∪ Σ′)

By hiding all internal communications and local actions and special synchronization, an implicit

assumption, i.e., the internal computation is infinitely faster than the incoming of external stimuli,

is enforced1. Using FDR, we may automatically verify the refinement relation of the two pro-

1Without the assumption, forbidden environmental events will not be possible.
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Figure 5.4: Environment modeling

cesses. This way, we make sure the implementation behaves correctly in the intended environment.

From another point of view, the processes synthesized for environmental objects are indeed system

processes which monitor the interaction between the environment and the system and trigger the

appropriate special events at the proper point of execution. The refinement relationship therefore

ensures that no interaction is missed.

Example 5.4.3 (Environment modeling) In the vending machine example, the assumption on the

environment (users) can be modeled as the universal chart presented in Figure 5.4. After inserting

the coin, the user shall either request coffee and wait for the coffee or claim the money and wait for

it. Thus, the eventclaim money is temporally disabled after the eventselect coffee. Semantically,

the chart is equivalent to the following CSP process.

ENV =̂ insert coin →
(select coffee → coffee → ENV 2 claim money → money → ENV )

end
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Figure 5.5: Workflow of the synthesis

5.5 Generating Implementations

An experimental tool has been implemented using XML and JAVA technology to automate our ap-

proach. One of the benefits of using CSP as an intermediate language is thatthere exist CSP-based

process oriented design patterns for concurrency implemented in JAVA , i.e., in programming engi-

neers’ terms, JAVA libraries for CSP. Two libraries are available, Communicating Threads for JAVA

(CTJ)2 and CSP for JAVA (JCSP) [158]. We implemented our approach using the JCSP package

mainly for its support of barrier synchronization. After identifying the local behaviors of each

object, executable codes are generated by translating the distributed processes to JAVA programs

making use of CSP-like constructs provided by JCSP.

The schematic workflow of the synthesis is illustrated in Figure 5.5. An italic fontindicates works

under development, e.g., a user-friendly drawing panel for user to introduce and refine LSC models

and associate objects with local data variables, a pre-processing module totranslate the JAVA code

2www.ce.utwente.nl/javapp/information/Communicating_ Java_Threads/Default.html
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generated from class diagrams drawn in Rational Rose [124], etc. The class skeleton is either

generated from user inputs to the drawing panel (where users have to introduce the object type

before adding an object instance to the system, introduce a local data variable before using it in the

condition, etc.), or generated from class diagrams using Rose and pre-processed. The data aspects

of an object are defined as a separate class. That way, we allow multiple instances of the same object

type in the system.

Every local action or condition is implemented as a method in the respective class. Therefore, the

system makes a method call whenever a local action or a condition is encountered during execution.

The implementation detail of the methods is supplied by the user. For each objectin the class, a

separate class is defined to realize its local dynamic behaviors. Each object is associated with a set of

channels for communicating with the rest of system and a set of synchronization barriers to realize

the CSP-style synchronization betweenInstance(u, i). Each communication event is associated

with a channel definition. Its occurrence in the charts is translated into aread(), write() operation

on the respective channel. In JCSP, we may specify the capacity of the channel as either 0 or more,

which saves us the work of modeling the buffers for asynchronous communication.

Each shared event betweenInstance(u, i), either a communication event or local action, is asso-

ciated with a synchronization barrier. The shared event is only engagedafter the respective barrier

is synchronized by all instances whose alphabet includes the event. Thespecial events,teru , hcvu ,

synu , andforku , are implemented as synchronization barriers at the system level since theysynchro-

nize different objects. We remark thathcvu is redundant for the purpose of simulation as we may

terminate the JAVA virtual machine whenever a hot condition is violated and proper information is

displayed. Simple timing requirements in LSC likesettimer andtimeout are supported using the

CSTimer offered by JCSP.

Example 5.5.1 (Code generation)The high-level program generated for objectChip is presented

in Figure 5.6. There is a direct mapping between the programs and the processes. For instance, the

first part of the top-most class contains channel definition, one for each event in the alphabet. After

that, there is declaration for each object in the system. The system is the parallel composition of the
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class PhoneSystem implements CSProcess {
//Barriers for synchronization of entering and exiting
private Barrier barrier_OpenCover = new Barrier ();
private Barrier barrier_CloseCover = new Barrier ();
private Barrier barrier_Receive = new Barrier ();
private Barrier barrier_Talk = new Barrier ();

public void run () {
//Channels connecting objects
One2OneChannel open = new One2OneChannel ();
One2OneChannel coverOpened = new One2OneChannel ();
......
//Components in the system
User inst_User = new User (open, close, talk);
Cover inst_Cover = new Cover (open, coverOpened, close, cov erClosed);
Chip inst_Chip = new Chip (coverOpened, displayMenu, cover Closed,

displayTime, incomingCall, startRing, displayCallerID, speakerOff);
Speaker inst_Speaker = new Speaker(startRing, speakerOff );
Display inst_Display =

new Display(displayMenu,displayTime,displayCallerID) ;
Env inst_Env = new Env(incomingCall, talk);
//System initialization
CSProcess[] parArray = new CSProcess[]

{inst_User,inst_Cover,inst_Chip,inst_Speaker,inst_D isplay,inst_Env};
Parallel sys = new Parallel (parArray);
sys.run();

}
} class Cover implements CSProcess {

//Channel and barrier definitions
......
//Sub-processes
private Cover_OpenCover OpenCover;
private Cover_CloseCover CloseCover;
private Cover_Talk Talk;
//Data
private Cover_Data data = new Cover_Data();
//Channels
public Controller (One2OneChannel open, One2OneChannel c overOpened,

One2OneChannel close, One2OneChannel coverClosed) {
......
OpenCover = new Cover_OpenCover (data,open,coverOpened) ;
CloseCover = new Cover_CloseCover (data,close,coverClos ed);
Talk = new Cover_Talk (data,open,coverOpened,close);

}
public void run () {

new Parallel (new CSProcess[]{OpenCover,CloseCover,Tal k}).run();
}

}

Figure 5.6: Example synthesized JAVA program
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instance threads. The dynamic behaviors of each object is encapsulatedin its class definition. end

5.6 Summary

Compared with Hoare’s grand challenge on verifying compilers [78], mechanized generation of

programs from high-level specification is an alternative and equally challenging approach to correct

programs. This work can as well be viewed as a way of achieving Harel’sdream as in [66], i.e.,

synthesizing codes all the way from scenarios. In [17], Bontemps and Schobbens showed that

both verification and synthesis of LSC are computationally expensive in theirtheoretical study. For

the verification problem, our solution is to make use of existing mature model checker instead of

building one from scratch which allows applying mature techniques for the hard task. Our solution

to the synthesis problem replies on using a set of additional events. The key idea is of using the

bounded set of synchronous events to monitor global execution locally, and yield a distributed design

without constructing the global state machine. In general, our approach issound and as complete

as possible (some assumptions due to practical concerns may harm the completeness, e.g., finite

overlapping activations of the same chart). The main contribution of this workincludes a complete

system engineering method that automates the generation of implementation all the way from LSC,

a set of generalized interpretation rules, and a lightweight approach to handle open systems, etc.

Being based on LSC, our method avoids implied scenarios. It is explained in the following using

CSP notions. Let{Mj } where1 ≤ j ≤ n be the set of MSCs. LetM i
j where1 ≤ i ≤ m be the

process capturing the behavior of instancei in the chartMj . An implementation of the specification

shall therefore exhibit exactly the following behaviors:

(‖m

i=1
(M i

1 , Σi
1)) 2 (‖m

i=1
(M i

2 , Σi
2)) 2 · · · 2 (‖m

i=1
(M i

n , Σi
n))

whereΣi
j contains exactly the events of the instance appeared in the chartMj . The distributed object

system inferred from a set of MSCs should be composed of finite state processes modeling each of

the objects appeared in the scenarios. Each object should exhibit as sequences of events at least all

scenarios projected to the time line of that component. Formally, the behavior ofan object shall

at least exhibit the behaviors captured by the following expression:M i
1 2 M i

2 2 · · · 2 M i
n . The
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existence of implied scenarios may be explained using CSP algebraic laws as the following (proved

by T6 andT8 in Section 3.2.2):

traces((‖m

i=1
(M i

1 , Σi
1)) 2 (‖m

i=1
(M i

2 , Σi
2)) 2 · · · 2 (‖m

i=1
(M i

n , Σi
n)))

⊆ traces(‖n

i=1
(M 1

1 2 M 1
2 2 · · · 2 M 1

n , Σi)))

whereΣi contains all events of objecti . The occurrence of additional scenarios is because the

scenario-based model describes allowed system behaviors from a global, system-wide perspective,

whereas in the distributed object processes each agent acts locally based on local information. Con-

trasted with MSC, which captures only examples of system behaviors, an LSC universal chart spec-

ifies mandatory behaviors. In other words, a universal chart constrains all behaviors of the system.

Therefore, the precise behaviors of an implementation are captured by theparallel composition (in

contrast to choice) of the universal charts (refer toR12’). If an instancei is missing from an MSC

Mj , no event regarding this instance can be engaged in the scenario, i.e.,Σi
j = ∅. However, the

semantics of universal charts state that a universal chart constrainsonly its visible events and in-

visible events can occur infinitely between any two consecutive occurrence of visible events, i.e.,

M i
j = RUNΣi

j
. This serves as the basis of our transformation in Section 5.4.

As for related works, the synthesis problem of MSC has been studied extensively [5, 3, 87, 153, 86,

87, 72]. The synthesis problem of LSC was initially discussed by Harel and Kugler in [68], in which

they tackled the problem by defining the notion of consistency of LSC models.Their approach starts

with constructing aglobal system automatonand decomposes it by different means (refer to [68]

for details). Their approach suffers from the state explosion problem due to the construction of the

global system automaton, which is often of huge size because of the distributed nature of LSC and

the underlying weak partial order semantics. The characteristic of our work is that we use CSP

algebraic laws to identify local behaviors of each object without ever constructing the global state

machine.

In [18], Bontemps, Schobbens and Löding discussed the synthesis problem for a small subset of

LSC (LSC without conditions, structuring constructs, modalities on locations and messages). They

proposed a game-based semantics for LSC, which leads to the notion of consistency of their LSC.

Their work is later extended to handle all LSC constructs but unbounded loop in [13]. In our
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approach, almost all LSC constructs are supported except complex time-related ones, which deserve

a complicated discussion and thus are left to the future works. We remark that the same result can

be derived using automata (e.g., Büchi Automata [23]) with a painfully complicated procedure.

In [17], Bontemps and Schobbens investigated the complexity of various problems associated with

LSC. The results are pretty negative, i.e., they showed that centralized model-checking of LSC is

Co-NP-complete, the distributed model-checking is PSPACE complete and the distributed realiza-

tion problem is undecidable. In our work, we use a set of special events(bounded by the maximum

number of overlapping activation of the universal charts and the numberof the universal charts) to

avoid undecidability. Thus, our work can be viewed as a lightweight approach. In [69], Harel, Ku-

gler and Pnueli re-investigated the synthesis problem of LSC by adopting alightweight approach as

well, i.e., they generate Statecharts from LSC and then verify them for correctness, and thus avoid

undecidability. A similar approach is evidenced in [16], where Bontemps andEgyed proposed a

technique coupling translation and verification to cope with undecidability. We remark that such

an approach certainly works for our approach as well except that wemust deal the complexity of

model-checking of complicated distributed systems. In addition, there is the work in [85], which

synthesizes a timed B̈uchi Automaton from a single chart only. What makes our goal both harder

and more interesting is in the treatment of a set of charts, not just a single one.

Besides, a remotely related problem known as controller synthesis has been studied for many years

both from a computer science and control-theoretic perspective [27, 23, 121, 122, 99, 123]. How-

ever, the research on controller synthesis has been focused on automata but not scenario-based

specification languages like LSC.



Chapter 6

Synthesis from State-based Specification

The Caterpillar was the first to speak.

‘What size do you want to be?’ it asked.

‘Oh, I’m not particular as to size,’

Alice hastily replied;

‘only one doesn’t like changing so often, you know.’

- Alice’s Adventures in Wonderland, Lewis Carroll

In the last chapter, we offered a mechanized way of generating prototype implementations for sys-

tem engineering starting with scenario-based specification. The approach is of special interest be-

cause scenario-based diagrams are widely used as a specification language in early stage of system

development. However, both LSC and MSC have limited expressiveness in specifying data and

functional aspects of complex systems. Formal specification languages likeZ/Object-Z offer an

alternative state-based high-level system modeling. They can be used in early stages of system de-

velopment to specify a data and functional model of the system, and therefore serve as another good

starting point for synthesis of implementation.

The notion of separation of concerns is a common technique to fight complexityin system devel-

opment. A practical approach is to focus on system functionalities before modeling the dynamic

103
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control flow of the system. An early stage data model typically contains a set of objects/classes, data

variables and the associated abstract operations in each class. Those models can be documented us-

ing Class Diagrams or formally modeled as Object-Z [161, 137] specifications. In this chapter, we

investigate ways of synthesizing implementable designs (i.e., a control program in the form of finite

state machines) from Object-Z specifications.

6.1 Introduction

Object-Z with history invariants can present precise and abstract models for complex systems. A

system design in Object-Z is relieved from behavioral aspects of the system. The system behav-

ior patterns are implicitly embedded within state/operational constraints and, additionally, history

invariants. However, without explicit system behavior representations,it is difficult to implement

such abstract models. Thus, we propose a sound and systematic approach to automatically extract

explicit implementable system behaviors, as a control program to restrict thesequences of invo-

cation of operations, from Object-Z specifications. The ultimate goal of ourwork is to generate

implementations from high-level designs in Object-Z automatically.

An Object-Z specification captures safety requirements by specifying class invariants and pre/post-

conditions for data operations. Liveness requirements are captured byhistory invariants. We gener-

ate finite state machines that are guaranteed to satisfy both sets of requirements. Additionally, be-

cause Object-Z distinguishes external variables (variables followed by aquestion mark) from state

variables, it can be used to model open systems. Crucial requirements foropen systems are also

to be satisfied by the synthesized state machines, i.e., the state machines should not introduce fresh

deadlocks and should work correctly in any environment. We call such state machines realizations

of the Object-Z specification.

In order to handle Object-Z specifications with infinite data space, a predicate abstraction schema

is developed to build an abstract finite state machine from an Object-Z specification. All behaviors

of the concrete Object-Z specification is allowed in the abstract state machine.The number of

abstract states is bounded by the number of predicates for abstraction. Aweak abstract relation is
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used so that the abstraction can be automated by general theorem provers like PVS [117] paying a

reasonable price. Furthermore, the raw state machine is refined to satisfy additional requirements.

Finally, an Object-Z specification is realized as a finite state machine with its transitions as guarded

function calls. The soundness is proved by showing that there is a fair simulation relation from the

realization to the specification. A tool is implemented in JAVA to demonstrate our method.

The reason why our approach is beneficial is twofold. Firstly, finite state machines are closer to

implementations than Object-Z models, i.e., they are implementable. In our setting, a complete im-

plementation of the system may be generated if the implementation of each operationin isolation

is supplied. This conforms to one of the principles of object-oriented analysis and design, i.e., pro-

cedural thinking should be postponed as long as possible. Secondly, our realization is “minimally”

restrictive so that further refinements are possible without breaking anyof the requirements.

6.2 Extracting Raw State Machine

In this section, we discuss how to extract a finite state machine realization froman Object-Z class. A

finite state machine is an abstract machine that has only a finite constant amountof memory. It can

be viewed as a flattened UML Statechart. There are finite many states and each state has transitions

to states. Transitions are triggered by observable events. Additionally, there are one or more initial

states and final states.

Definition 13 A state machine1 is a 6-tupleM =̂ (S ,S0,F , Σ,T , I ) whereS is a set of states,

S0 ⊆ S is a set of initial states,F ⊆ S is a set of accepting states,Σ is the alphabet andT :

S × Σ → S is a transition function andI labels each state with a Boolean formula over a given set

of propositions.

The Boolean formula labeled with a state is also referred to as state invariant. Graphically, an initial

state is indicated by an arrow from nowhere. A double-lined circle represents an accepting state. A

1It is also referred as labelled Kripke Structure.
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run of the state machine,〈s1, e1, s2, e2, · · · , si , ei , si+1, · · ·〉, is an alternating sequence of states and

events subject to the following:∀ i : N | i ≥ 1 • (si , ei , si+1) ∈ T ands1 ∈ S0. An accepting run

is a finite run ending with an accepting state or an infinite one where some accepting state repeats

infinitely. A state is reachable if and only if there is a finite run that reaches it. For simplicity, all

states subsequently mentioned are reachable. Afalse state, i.e., a state labeled withfalse, is always

removed.

Definition 14 Given two state machinesMi =̂ (S ,S0,F , Σ,T , I ) wherei ∈ {1, 2}, a state ma-

chineM =̂ (S ,S0,F , Σ,T , I ) is the product, written asM1 ‖ M2 if M .S =̂ M1.S × M2.S

and M .S0 =̂ M1.S0 × M2.S0 and M .F =̂ M1.F × M2.F and M .Σ =̂ M1.Σ ∪ M2.Σ and

M .I =̂ {((s1, s2) 7→ M1.I (s1) ∧ M2.I (s2))} andT is the least subset ofS × Σ × S satisfy-

ing the following conditions:

• (s1, s2) ∈ M .S ∧ (s1, e, s ′1) ∈ M1.T ∧ e 6∈ M2.Σ ⇒ ((s1, s2), e, (s ′1, s2)) ∈ M .T
• (s1, s2) ∈ M .S ∧ (s2, e, s ′2) ∈ M2.T ∧ e 6∈ M1.Σ ⇒ ((s1, s2), e, (s1, s

′
2)) ∈ M .T

• (s1, s2) ∈ M .S ∧ (s1, e, s ′1) ∈ M1.T ∧ (s2, e, s ′2) ∈ M2.T
⇒ ((s1, s2), e, (s ′1, s

′
2)) ∈ M .T

The parallel composition is symmetric and associative. The indexed productof multiple state ma-

chines is written as‖
i
Mi wherei is the index.

Definition 15 Let Mi =̂ (S ,S0,F , Σ,T , I ) where i ∈ {1, 2} be two state machines. A total

relationR : M1.S → M2.S is a fair simulation fromM1 to M2 if it satisfies the following:

C1 ∀ s : M1.S0 • R(s) ∈ M2.S0

C2 ∀(s1, e, s2) ∈ M1.T ; s ′1 : M2.S | R(s1) = s ′1 •
∃ s ′2 : M2.S • (s ′1, e, s ′2) ∈ M2.T ∧ R(s2) = s ′2

C3 ∀ s : M1.F • R(s) ∈ M2.F

Informally, C1 states that there is one initial state inM2 corresponding to every initial state inM1.

C2 states ifM1 can engage in an event at certain state,M2 should be able to simulate the transition

at the corresponding state.C3 guarantees that all final states inM1 are simulated inM2. A similar

definition appeared in [41]. Later development can be found in [75]. Ifthere is a fair simulation
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relation fromM1 to M2, thenM2 fair trace-containsM1, i.e., it is possible to generate byM2 every

fair sequence of operations that can be generated byM1. The notion of fair trace-containment is

robust with respect to LTL [75].

6.2.1 Predicate Abstraction

As introduced in Chapter 2, the operations of a class form a named collectionof relations, which

determine a transition system in which an operation may fire exactly when its Z precondition is

satisfied. Due to the blocking semantics of Object-Z, an operation is blocked outside its precondi-

tion. The semantic model of an Object-Z class consists of all the sequences of operations/events

which can be performed by objects of the class. The implicit behavioral model of an Object-Z class

can be expressed as the following CSP process: letBehavior be the process capturing all possible

behaviors of instances of the class,

Behavior =̂ µR •
([pre(Operation1)] • Operation1 2

[pre(Operation2)] • Operation2 2

· · · 2

[pre(Operationn)] • Operationn); R

The state space of an Object-Z class may be infinite. For example, aQueue object may contain

infinite items. However, an implementable control structure may only contain a finitenumber of

control states. It restricts the behaviors of an object (specified by an Object-Z class) based abstract

interpretations of the data variables. For instance, Figure 6.1 is an abstract interpretation ofQueue

objects in which only the number of items (not the actually content) in the queue is concerned. We

present a method to calculate predicate abstraction of an Object-Z class.

Given a finite set of predicatesP (in terms of the state variables) for abstracting an Object-Z class,

the set of abstract states, denoted asSa , contains conjunctions of subsets of the predicates inP :

Sa =̂ {x | ∃X ⊆ P • x =
∧

(X ∪ {¬ e | e ∈ P \ X })}

An abstract state groups all possible valuation of the state variables satisfying the predicatex . For

instance, the state labeled with#items > max in Figure 6.1 groups all instances of state schema
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#items=0

max>=#items>0

#items>max

Join

Leave

Join

Leave
Leave

Join
Join Join

Figure 6.1: Abstraction ofQueue

in Queue where the number of items initems is greater thanmax . For simplicity, we require that

the set of predicates for abstraction includes the predicate in the initial schema.

Example 6.2.1 (Abstract states)Let P =̂ {#items = 0, #items ≤ max}. The set of abstract

states is (assumingmax > 0):

Sa =̂ {#items = 0,max ≥ #items > 0, #items > max}

The abstract state#items = 0 ∧ #items > max has been removed because it is infeasible. The

abstract initial state ofQueue class isS(INIT) =̂ #items = 0. end

Given an operation, it is necessary to find out the abstract states wherean operation can be invoked

without violating its precondition and the abstract states which can be reached by applying the

operation. We define a functionW to compute the weakest formula overP which implies a given

predicatep.

W : Predicate → P Predicate

∀ p : Predicate • W(p) = {x ∈ Sa | x ⇒ p}

The motivation is that ifp is the precondition of an operation, thenW(p) is the largest set of abstract

states where the operation can be invoked without violating its precondition. In addition, we define

a functionS to compute the abstract states where a given predicate might be true.

S : Predicate → P Predicate

∀ p : Predicate • S(p) = Sa \W(¬ p)
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If p is the postcondition of an operation at a state, thenS(p) is the set of abstract states that may

be reached by applying the operation at the state. FunctionS works by pruning all states where the

predicate is proved to be false. Thus, all states where the predicate is trueare present in the result,

together with states where we are uncertain if the predicate is true.

FunctionS is used to automatically construct abstractions of an Object-Z specification. The INIT

schema is abstracted asS(INIT), so that every possible initial state is grouped in the abstract initial

state. We calculate abstraction of an operation by abstracting its preconditionand postcondition.

The precondition is replaced byS(preOperation), i.e., all abstract states where the operation might

be applied. We remark that this way the abstract finite state machines allows morebehaviors (than

usingW(preOperation)). It remains sound because of the blocking semantics (contrasted with Z

semantics of precondition), i.e., it is no harm to apply an operation outside its domain.

Example 6.2.2 (Abstract precondition) The abstract precondition of operationLeave is:

S(pre Leave) =̂ S((∃ items ′ : seqPackage; item! : Package •
items = 〈item!〉 a items ′) \ {item!}) – def. of pre

=̂ Sa \W((∀ items ′ : seqPackage; item! : Package •
items 6= 〈item!〉 a items ′) \ {item!}) – def. ofS

=̂ Sa \ {#items = 0} – def. ofW
=̂ {max ≥ #items > 0, #items > max}

Thus, operationLeave is applicable only at the two abstract states where#items > 0. end

For each abstract statesa : Sa satisfying the abstract precondition, we calculate the abstract post-

condition asS(post(Operation,Sa)) so that all possible post-states are reachable in the abstract

finite state machine.

Example 6.2.3 (Abstract postcondition)

S(post(Leave,max ≥ #items > 0))

=̂ S(#items ≤ max ∧ #items > 0 ∧ items = 〈item!〉 a items ′)

=̂ Sa \W(#items > max ∨ #items ≤ 0 ∨ items 6= 〈item!〉 a items ′)
=̂ Sa \ {#items ′ > max}
=̂ {max ≥ #items ′ > 0, #items = 0}
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The above computes the postcondition of operationLeave at the abstract state wheremax ≥
#items > 0. end

We abstract every operation in the class to construct an abstract graph. For instance, the abstraction

of theQueue class defines the state transition system in Figure 6.1. Note that abstraction introduces

non-determinism and spurious sequences of operations. For example, applying theJoin operation

at the middle state may result in a state where the number of items in the queue is larger thanmax

or no larger thanmax .

However, both functionW andS in our context (first order logic) are undecidable, i.e., we may not

be able to tell if a predicate is true at a state due to the limited power of proving. The remedy is to

compute approximations of the functions. The key idea is that an approximationof the functionW
shall contain at most the set of abstract states inW(p), whereas the approximation of the function

S shall contain at least states inS(p). Therefore, our abstraction is robust with respect to Object-Z

refinement, i.e., strengthening post-condition. In our prototype, we make use of the theorem prover

PVS [117] to compute such approximations in order to construct an abstract state machine by paying

a reasonable prize. Despite the limited power of proving, an abstract state transition system covers

all possible sequences of operations of the concrete one.

Definition 16 Given a set of predicatesP , Ma =̂ (S ,S0,F , Σ,T , I ) is an abstraction of the Object-

Z class only ifS =̂ Sa andS0 =̂ S(INIT) andF =̂ S andΣ is the set of operation schemas andI

labels a state with itself andT =̂ {(s1, e, s2) : S ×Σ×S | s1 ∈ S(pre(e)) ∧ s2 ∈ S(post(e, s1))}.

6.2.2 Generating Raw State Machines

Our method begins with constructing a finite Büchi automaton from the history invariant. An

efficient tool to convert LTL formulæ into optimized Büchi automata is Somenzi and Bloem’s

Wring [140]. For example, Figure 6.2 shows the Büchi Automaton constructed from the LTL

formulæ in theFairBoundedQueue class. Both states are initial states. The state labeled with

#items = 0 is a final state. Transitions are not labeled in Büchi Automata.
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#items<=max #items=0

Figure 6.2: B̈uchi Automaton

Definition 17 A Büchi automaton is a 5-tuple(S ,S0,T ,F , I ) whereS is a finite set of states,

S0 ⊆ S is a set of initial states,T : S × S is a transition relation,F ⊆ S is a set of final states and

I is a labeling function which labels a state with a Boolean formula.

Meanwhile, a raw finite state machine is constructed from the Object-Z class asdiscussed in Sec-

tion 6.2.1. We require that the predicates for abstraction include propositions in the history invariants

and the initial schema. Every state in the raw state machine is a final state because in Object-Z se-

mantics, an object may wait infinitely long before applying an enabled operation. The product of

the state machine and the Büchi automaton is then constructed.

Definition 18 A state machine(S ,S0,T ,F , Σ, I ) is a product of a state machineM and a B̈uchi

automatonB if it satisfies the following condition:Σ =̂ M .Σ, I =̂ M .I and,

S =̂ {(ss , sb) : M .S × B .S | M .I (ss) ⇒ B .I (sb)}
S0 =̂ {(is , ib) : M .S0 × B .S0 | M .I (is) ⇒ B .I (ib)}
T =̂ {((s1

s , s1
b ), e, (s2

s , s2
b )) : S × Σ × S | (s1

s , e, s2
s ) ∈ M .T ∧ (s1

b , s2
b ) ∈ B .T}

F =̂ {(fs , fb) : M .F × B .F | M .I (fs) ⇒
∧

B .I (fb)}

Informally, a state in the B̈uchi automaton is unified with a state in the state machine if their labeling

is consistent. Because all predicates in the history invariant are used forabstraction, the consistency

testing of two states is a straightforward existence checking, i.e., whether theset of predicates

labeled with a state is a subset of those of the other state. A state of the product is an initial state if

and only if it is unified by two initial states. A labeled transition in the raw state machine is allowed
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0<#items<=max

#items=0

Join

JoinJoin

Leave

Leave

Join

Figure 6.3: Product of the state machine and automaton

in the product if and only if there is a transition between the same starting state and ending state in

the Büchi Automaton. For instance, Figure 6.3 is the product of the state machine inFigure 6.1 and

the Büchi automaton in Figure 6.2.

6.3 Refining the Finite State Machine

A finite state machine is a (sound) realization of an Object-Z specification if the INIT schema is sat-

isfied at every initial state, every operation is engaged with its precondition/postcondition fulfilled,

and the history invariants are satisfied. For open systems, two additional requirements are crucial.

A1: The finite state machine should not introduce any fresh deadlocks.

A2: The finite state machine is not allowed to restrict the actions of the environment.

Both requirements have been discussed in various works of control theory [123, 98]. The first

requirement is commonly referred as nonblocking. The second requirement is essential for systems

constantly interacting with its environment. Informally, it requires that the state machine should be

able to function correctly regardless of the environment. In this section, wepresent a systematic way

of generating finite state machines that satisfy both the Object-Z specification and the two additional

requirements.
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6.3.1 Pruning Raw State Machines

The product of the raw state machine and the Büchi automaton satisfies the Object-Z specification

with the history invariant. However, it may not be a valid realization of the Object-Z specification.

There are two sources of possible errors. Firstly, because of requirementA2, any finite state machine

which satisfies the specification by restricting behaviors of the environmentis not valid.

Example 6.3.1 (Problematic realization)The following is a problematic realization of instances

of classFairBoundedQueue presented in Section 2.1.2:

Join

#items=0

This finite state machine satisfies the safety properties of the Object-Z specification since it only

contains part of the behaviors captured by the state machine in Example 2.1.10. By requiring that

all item? from the environment are expired, the queue remains empty all the time and thustrivially

satisfies the history invariant. end

It is easy to see that synthesis of such a realization is not helpful at all. Such realization is removed

systematically from the product by pruning states and transitions violating requirementA1 and

A2. Secondly, abstraction introduces spurious sequences of events/operations. In the abstract state

machine, an operation may be applied at states where its precondition is not satisfied or invocation

of an operation may lead to states not satisfying the concrete postcondition. To solve the problem,

each transition is equipped with a guard condition (if necessary) in the verylast step. Formally,

Definition 19 Let P be the product ofMa and the B̈uchi automatonB . A state machineM =̂
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(S ,S0,F , Σ,T , I ) is a realization if it satisfies the following conditions:

A1 ∀(s1, s
′
1) : M .S ; s2 : Ma .S ; e : Ma .Σ • (s1, e, s2) ∈ Ma .T ⇒

∃(s3, s
′
3) : M .S ; e ′ : Ma .Σ • ((s1, s

′
1), e

′, (s3, s
′
3)) ∈ M .T

A2 ∀(s1, s
′
1), (s2, s

′
2) : M .S ; s ′3 : Ma .S ; e : Ma .Σ •

((s1, s
′
1), e, (s2, s

′
2)) ∈ M .T ∧ (s1, e, s3) ∈ Ma .T ∧

e is uncontrollable ats1 ⇒ (∃ s3 : Ma .S • (s1, s
′
1), e, (s3, s

′
3) ∈ M .T )

Informally, A1 states if a state is not a deadlock state, it shall not be a deadlock state in the real-

ization. The operations enabled at a state are partitioned into two sets, controllable operations and

uncontrollable operations. An operation is uncontrollable at a state if its postcondition depends on

environmental inputs. For example, theJoin operation at the initial state of the state machine in

Figure 6.3 is uncontrollable. An operation at a state is controllable if it is not uncontrollable. We

remark that an operation may be controllable at a state but uncontrollable at another. This is differ-

ent from works on supervisory control [123] as events in our context are complicated computations.

A2 states if a target state is reachable from a source state by applying an uncontrollable operation,

the target state shall be reachable too in the realization.

In the following, we present the pruning algorithm that prunes states and transitions from the product

recursively so as to construct a minimally restrictive (if possible) finite state design. For every

reachable states, we shall check if it satisfies requirementA2. If it does not, i.e., there is an

uncontrollable actione at s whose post-states have been partially removed, all transitions froms

labeled withe are pruned at once. Intuitively, an uncontrollable operation shall be forbidden at a

state if allowing it may result in violation of the history invariant (given certain environment inputs).

If a state is a fresh deadlock state, the state is pruned along with all its incoming and outgoing

transitions. Pruning transitions may create new deadlock states. A state may violateA2 after some

of its immediate successor states get pruned since some of its outgoing transitions are pruned too.

Therefore, the pruning must be applied recursively.

The algorithm is presented in Figure 6.4. Lines 1 to 4 declares the variables.VariableSuccessor is

the set of the initial states, which can be viewed as immediate successor states of an imaginary single

‘initial’ state. During pruning, variablePath shall contain the states in the path from an initial state

to the current state (inclusive). It is empty initially. State machineProduct , Raw represents the
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void Prune () {
1. let Successor := the set of initial states;
2. let Path := an empty set;
3. let Product := the product state machine;
4. let Raw := the abstract state machine;
5. Pruning(Successor, Path, Product, Raw);
6. ExistDesign(Product);
}

boolean Pruning (Successor, Path, Product, Raw) {
1. let Done := an empty set;
2. while (true)
3. if (Successor = Path union Done) return true;
4. let s := a state in Successor but not in Path or Done;
5. Add s into Done;
6. let childStatePruned := false;
7. while (!childStatePruned)
8. for all uncontrollable actions e at s
9. if (!A2(Product, Raw, e, s))
10. prune all transitions labeled with e from Product;
11. endif
12. endfor
13. if (!A1(Product, Raw, s))
14. prune s from Product;
15. return false;
16. endif
17. let Children := immediate_successors(Product, s);
18. if (Children is not empty)
19. Add s to Path;
20. if (!Prune (Children, Path, Product, Raw))
21. childStatePruned := true;
22. endif
23. endif
24. endwhile
25. endwhile
}

Figure 6.4: Pruning algorithm
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product and the abstract finite state machine respectively. Line 5 invokesour recursive procedure

of pruning. All four variables are passed as parameters. In the procedurePruning , the first line

declares a local variableDone as a local holder of processed states (out ofSuccessor ). Line 3

checks if all states inSuccessor have been processed, and returns true if every state inSuccessor is

also in eitherPath or Done. If a state is inPath, it is a common ancestor of all states inSuccessor .

A state inSuccessor but not inPath or Done is chosen at line 4. At line 7, we have another loop.

The intuition is that the state shall be checked repeatedly until none of its decedent states is pruned.

Lines8 . . 12 verifies if the state satisfiesA2. The functionA2(Product ,Raw , e, s) returns true if

all possible environment inputs to operatione at s is handled properly. Lines13 . . 16 states that

if the state is a fresh deadlock state, then the pruning backtracks by returning false, i.e., the parent

state shall be checked again because one of its child states has been pruned. If the state satisfies

both A1 andA2, its child states are retrieved (line 17). Line 20 is a recursive method call. Ifthe

recursive call returns false, it means some child state has been pruned and thus the state has to be

re-examined. Otherwise, all decedent states have been pruned successfully and thus we are done

with the state. Line 6 in procedureprune checks if there is a design after removing unreachable

states and states leading to no accepting state from the pruned state machine. There is a design (the

pruned state machine) if and only if the pruned state machine has at least oneinitial state and one

reachable accepting state.

The correctness of the algorithm is an immediate consequence of the fact that a state is not pruned

if and only if it satisfies both requirements and all reachable states from it are not pruned. The

algorithm converges because the states and transitions are finite and it backtracks only when a state

is pruned. We may further improve the efficiency making use of the fact thatif a state satisfies both

A1 andA2 and all states reachable from it do too, then it will never be pruned.

Example 6.3.2 (Pruning) If we specify the history invariant forQueue as2(#items = 0), the

product of the raw state machine and the Büchi automaton is the finite state machine in Exam-

ple 6.3.1. After pruning, there is no initial or accepting state left (the transitionis pruned because

of violation of A2 and the state is pruned because of violation ofA1). Therefore, we conclude that

there is no realization for such a specification. end
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6.3.2 Calculating Guard Condition

The last step is to calculate a proper guard condition for each transition. A guarded transition can be

applied only when its guard condition is satisfied. A guard condition guarantees that an operation is

applied only when its precondition is satisfied. Moreover, part of a nondeterministic choice may get

pruned in the pruning process. The remaining transitions are, therefore, constrained by restricting

its postcondition. This is not directly implementable. Thus, a state guard is use to make sure that a

transition is applied only when it will reach the desired postcondition.

Let WP be the weakest precondition operator introduced in [40]. Given an operationOperation

and a source statesa and a statesb that can be reached fromsa by applyingOperation, the weakest

precondition is defined as (a similar problem on the weakest precondition semantics of Z has been

addressed in [25]):

WP(Operation, sa , sb)
=̂ (∃State ′; outputs • Operation) ∧ (∀State ′; outputs • (Operation ∧ sa) ⇒ sb)

The first part of the condition guarantees the termination of the operation. The second part guar-

antees the postcondition. Intuitively, if the weakest precondition is satisfiedby the valuation of the

state variables before applying the operation, then the desired post-state isguaranteed to be reached.

Example 6.3.3 (Weakest precondition)The guard condition forJoin operation at the initial state

of the state machine in Figure 6.3 to remain at the same state is:

WP(Join, #items = 0, #items = 0)
=̂ (∃ items ′ : seqPackage • (expires(item?) ⇒ items ′ = items) ∧

(¬ expires(item?) ⇒ items ′ = items a 〈item?〉)) ∧
(∀ items ′ : seqPackage • (#items = 0 ∧ (expires(item?) ⇒ items ′ = items) ∧

(¬ expires(item?) ⇒ items ′ = items a 〈item?〉)) ⇒ #items ′ = 0)
=̂ ∀ items ′ : seqPackage • ((expires(item?) ∧ items ′ = 〈 〉) ∨

(¬ expires(item?) ∧ items ′ = 〈item?〉)) ⇒ #items ′ = 0
=̂ ∀ items ′ : seqPackage • #items ′ = 0 ∨ expires(item?) ∨ items ′ = 〈item?〉
=̂ expires(item?)

The first deduction is due to the definition of weakest precondition and the second is due to the one

point rule. Thus, the transition is guarded withexpires(item?). end



6.3. REFINING THE FINITE STATE MACHINE 118

[#items>1]

[#items=1]

[#items<max]
[−expires(item?)]

[expires(item?)]
Join

Join
Join

Leave
Leave

NonemptyEmpty

Figure 6.5: Realization ofFairBoundedQueue

If the weakest precondition turns out to befalse, it means that there is no way that we can guarantee

that the transition ends up with the desired state. This is normally due to internal nondeterminism,

i.e., some information is not present at the abstract level. Such transitions are pruned. The pruned

state machine with guard conditions forFairBoundedQueue is in Figure 6.5. States are labeled

with names to improve readability.

Example 6.3.4 (Composed Object-Z class)

Multiplexer

↾(INIT, Join1, Join2,Transfer1,Transfer2,Leave)

input1, input2 : FairBoundedQueue

output : Queue

INIT

input1.INIT ∧ input2.INIT ∧ output .INIT

Join1 =̂ input1.Join
Join2 =̂ input2.Join
Transfer1 =̂ input1.Leave ‖ output .Join
Transfer2 =̂ input2.Leave ‖ output .Join
Leave =̂ output .Leave

2#output .items ≤ output .max

We use a multiplexer example to show how our method works for composed classes. A multiplexer

is made up of three bounded queues, two as incoming channels and one as an outgoing channel.
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It can be viewed as a network router which gets packages from two different sources and forwards

those which have not expired yet. All packages in the incoming channels are eventually forwarded to

the outgoing channel. The history invariants include those inherited from theFairBoundedQueue.

The predicates for abstraction include those in the history invariant and initial schema. They are:

{#input1.items = 0, #input1.items ≤ input1.max

#input2.items = 0, #input2.items ≤ input2.max}

Only operations defined or promoted in this class are concerned. For operations composed using

operation operators, the process of calculating preconditions and postconditions can be simplified

by considering the structure of an operation (refer to chapter 14 in [161]). We remark that an

uncontrollable operation may become controllable when the object composes with other objects. For

example, operationoutput .Join is initially uncontrollable (at all states) when we considerQueue

class along. It becomes controllable as in operationTransfer because all packages from either of

the incoming channels are not expired. The final finite state machine realizedfrom Multiplexer is

presented in Figure 6.6. end

6.4 Discussion

This section is devoted to a discussion on remaining issues on the approach,for instance the sound-

ness, a prototype implementation and a practical implication of the approach.

6.4.1 Soundness

A state machine is a realization of an Object-Z specification if and only if it satisfies the following

condition: all operations are applied when its precondition and postconditionare satisfied (A3), all

possible sequence of operations satisfies the history invariant (A4), A1 andA2. A3 is guaranteed by

guarding each transition with a condition stronger than its precondition (the weakest precondition).

In the process of pruning the product, all fresh deadlock states, and states and transitions violating

A2 are pruned. It is straightforward to verify that bothA1 andA2 are satisfied. To proveA4,
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Join1 2

1 4

3

[#output.items<output.max]

[#output.items<output.max]

[−expires(item?)]
Join2

[−expires(item?)]

[−expires(item?)]

[#output.items<output.max]

[#output.items<output.max]

[−expires(item?)]

Transfer2
Transfer1

Join1

Transfer2

Join2
Transfer1

3:

Join1

[#output.items>0] Leave
[expires(item?)] Join2
[expires(item?)] Join1

[#output.items>0] Leave
[expires(item?)] Join2
[expires(item?)] Join1

[#output.items>0] Leave
[expires(item?)] Join2
[expires(item?)] Join1

[expires(item?)]

1:

#output.items<output.max
input2.max>=#input2.items>0
#input1.items=0

#output.items<output.max
#input2.items=0
#input1.items=0

4:

2:

#output.items<output.max
input2.max>=#input2.items>0
input1.max>=#input1.items>0

input1.max>=#input1.items>0
#output.items<output.max

#input2.item=0

[#output.items>0] Leave
[expires(item?)] Join2

Figure 6.6: Realization ofMultiplexer

we show that there is a fair simulation relation from our realization to the product of the state

transition system defined by an Object-Z specification and the Büchi automaton representing its

history invariant (the specification). The notion of fair trace-containmentis robust with respect to

LTL. Therefore, we may conclude thatA4 is satisfied.

Theorem 6.4.1 LetMc be the product of the (concrete) transition system determined by the Object-

Z specification and the B̈uchi automaton representing the history invariant. LetMr be a realization

constructed using our method.Mc fairly simulatesMr .

Proof. We claim that the following total relation is a fair simulation relation fromMr to Mc .

R =̂ {(r , c) : Mr .S × Mc .S | c is a state whereMr .I(r) is true}

C1 is an immediate consequence of the fact that the initial condition is included in the predicates for

abstraction. In the abstraction process, an abstract state is identified as an initial state if and only if

the initial condition is satisfied. Because the weakest condition calculated in thelast step is stronger

than the precondition, an operation is applied only when its predication is satisfied. Engaging in an
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operation may appear to reach more states than it could because the postcondition is weakened. This

causes no problem because local actions will be replaced by concrete implementations which satisfy

their pre/postcondition specifications. Though there may be infeasible pathes in the synthesized

implementation, an operation may reach a successor state only if the postcondition is satisfied at

the successor state, i.e., there is a corresponding transition inMc . Thus,C2 is true. A state inMr

is a final state if it satisfies the fair constraint. All simulating states of the state satisfies the fair

constraint (definition ofR). Thus,C3 is true. We conclude thatMc fairly simulatesMr . 2

6.4.2 Automation

Our method is automated by experimental tool in JAVA . The inputs are an Object-Z class specifi-

cation in its XML representation [150], along with an optional set of predicates for abstraction. By

default, the predicates include those in the history invariant and the INIT schema. The predicate

abstraction is automated with the help of PVS [117]. Lemmas are generated automatically from the

Object-Z specification for calculating the abstract INIT schema, precondition and postcondition of

each operation. In general, the number of lemmas is exponential to the numberof the predicates.

A number of tricks are used to reduce the abstract state space, e.g., removing false states by con-

sidering co-relation between the predicates. PVS is invoked in batch mode to prove the lemmas

automatically without user interaction. We believe that it is unlikely that a user would like to prove

the lemmas interactively for complex systems. To further speed up the abstraction so as to handle

complex systems, a more loop-free proving strategy thangrind (the highest-level command in PVS)

is used to prove each lemma in a limited amount of time.

PVS is used to automatically compute an approximation of theS function. Given a predicatep,

we generate a PVS lemma for each abstract state to check if the predicates labeled with the state

implies¬ p. A file containing all lemmas (in standard PVS syntax) is generated by our tool.Users

may interactively prove the lemmas or more rationally let PVS do automatic proving.Either way,

the proof result is written to a log file (in the latter case, the log file is namedorphaned-proofs.prf

by default). The log file is then processed to construct the abstract model.S(p) is computed as

the set of abstract states where¬ p is not implied true (the corresponding lemma is unsuccessfully
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proved). A lemma is not proved either because it is not true or PVS is not powerful enough to prove

it. Therefore, we compute an approximation ofS(p). Givenp as the postcondition of an operation,

S(p) identifies the set of abstract states that may be reached by applying the operation.

A raw state machine is constructed from the proving result. It is then composed with the B̈uchi

automata generated from Wring [140]. The product is pruned using ourpruning algorithm. If there

is at least one initial state and at least one reachable final state left, the pruned state machine is

equipped with guard conditions and presented to users as a realization. However, computing the

weakest precondition involves eliminating dashed variables. Variable elimination in our context is

in general undecidable. Yet an interesting enough subset is decidable where there is no nonlinear

integer arithmetic and no shielded variables occurring inside uninterpreted terms. PVS is currently

lacking such a procedure. However, we can always use PVS to prove-check a manually constructed

stronger guard.

More features on connecting our tool to existing tools for state machine like structures will be

offered. For example, we plan to generate an XMI [130] representationof our state machines so

that they can be exchanged and visualized using tools like Rational Rose [124]. We may also

generate codes for Rhapsody [67] so that we may simulate the model and synthesize working code

from the Object-Z specification if the implementation of each operation is supplied(and tested by

checking the precondition and postcondition) by the user.

6.4.3 Event-based Controllers for State-based Plants

A good principle for modeling complex control systems is to separate system functionalities from

control aspects in the early system design stage. For instance, a system engineer may typically iden-

tify the set of objects/classes in a system, data variables and operations in each class before experi-

menting with control flows to ensure critical system properties. Such early stage functional designs

are typically documented as UML class diagrams [154] or mathematical models likeZ/Object-

Z [161, 50], B [1]. In later stages, event-based formalisms, e.g., CSP [79] and Pi-calculus [132], can

be used to specify complicated control flows, i.e., order of applying the operations, conditions to
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guard the invocation of operations, etc. Designing such control flows is timeconsuming and error-

prone. Given a system functional state-based design and abstract important system properties, can

event-based controllers be automatically generated so that the controller can orchestrate the system

functions to satisfy the properties?

A related problem known as controller synthesis has been studied for manyyears [27, 23]. The

problem of synthesizing controllers is of finding a controller that restricts the behavior of a given

process in order to satisfy given constraints on sequences of actions executed by the process. A

rich set of theories has been developed [121, 122, 99]. We believe that mature development on

controller synthesis can be applied to automatically synthesize control flows based on a precisely

defined system functional model. Such approach is beneficial becausean event-based controller

is implementable [133], contrary to state-based specifications. Moreover,a ‘minimum’ restrictive

controller may be synthesized so that system engineers may further restrict it without violating the

critical properties. For instance, data and functional requirements may bespecified using Object-

Z, asplants. We may then automatically synthesize prototype controllers in CSP to control the

Object-Z specification. Without repeating the techniques, we illustrate the method using the vending

machine example.

Example 6.4.2 (Object-Z plant) Figure 6.7 shows an Object-Z class modeling a typical vending

machine.Request andCoins are user-defined primitive types representing possible user requests

and acceptable coins to the machine. In the state schema, two state variables,quota andreq , are

defined to record the amount inserted by a user and the user’s currentrequest. Irrelevant information

like the location of the vending machine, total coins in the vending machine are abstracted away.

Four operations are specified, namelyInsertCoin, ReleaseCoin, Request andDispatch. Each

operation is defined in terms of its effects on the state variables and inputs/outputs relations from/to

the environment. A user may increasequota by InsertCoin or setreq by Request . Or a user may

ask the machine toDispatch an item or toReleaseCoin. In theInsertCoin schema, variablecoin?

models the coins inserted. end

Our method is to reuse the abstraction schema to construct an abstract state machine from the
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VendingMachine

Request ::= Nil | Candy | Coke

Coins == {10, 20, 50, 100}

quota : Z

req : Request

INIT

quota = 0 ∧ req = Nil

InsertCoin

∆(quota)
coin? : Coins

quota ′ = quota + coin?

ReleaseCoin

∆(quota, req)

quota > 0
quota ′ = 0 ∧ req ′ = Nil

Request

∆(req)
req? : Candy | Coke

req = Nil ∧ req ′ = req?

Dispatch

∆(req , quota)

req 6= Nil ∧ req ′ = Nil

(req = Candy ∧ quota ′ = quota − 50) ∨
(req = Coke ∧ quota ′ = quota − 80)

Figure 6.7: Object-Z specification of vending machine
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quota>=0
quota<80
req = Nil

quota>=80
req != Nil

Request

InsertCoin

ReleaseCoin

Dispatch

*

InsertCoin,ReleaseCoin,Request

Figure 6.8: State machine specification

Object-Z model, compute the product of the abstract state machine and the abstract behavioral sys-

tem requirements (which plays the same role as the history invariant), apply thepruning algorithm

to construct a finite state controller, and lastly express the controller using CSP processes. In our ap-

proach, anyproperty that can be represented as finite state machine is acceptable. The simplest kind

is an automaton or automata-like model (Kripke Structure, Finite State Machine with/without datap-

ath). More importantly, temporal logic formulæ can be considered asproperty . In [26], Linear-time

Temporal Logic is extended to refer to temporal properties of both state andevent based on Labelled

Kripke Structure, called State/Event LTL (SELTL). In our setting, temporal formulæ that concern

both state and event information are allowed. For example, an invariant property concerning both

state and event is2(quota ≥ 80 ∧ req 6= Nil → Dispatch), which says whenever no less than

80 cents are inserted and the user has made a request, the vending machinedispatches. For simple

invariant properties (specified as temporal logic formulæ using no negationand only universal quan-

tification over computation sequences/trees), Büchi Automata with all states as accepting states can

be constructed, which is treated as finite state machines.

Example 6.4.3 (Finite state machine specification)Figure 6.8 is a finite state machine specifica-

tion. Two safety properties are captured. One isG(quota ≥ 80 ∧ req 6= Nil → Dispatch). The

other is that the variablequota shall always be non-negative so that negative profit for the vending

machine is impossible. end
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The same pruning algorithm is applied to decide whether there is a controller and if there is, synthe-

size one automatically. After pruning, we synthesize event-based controllers from the pruned finite

state machine. Synthesizing CSP process expressions from the finite state machine is straightfor-

ward, e.g., [107]. An intuitive approach is to mimic the states, i.e., one processis defined for each

node in the finite state machine. The main process is defined as a non-deterministic choice of the

initial nodes.

Example 6.4.4 (Controller of the vending machine)The following is a CSP controller of the vend-

ing machine:

P1 =̂ ([quota + coin? < 80 ∨ req = Nil ] • InsertCoin; P1)
2 ([quota + coin? ≥ 80 ∧ req 6= Nil ] • InsertCoin; P2)
2 ([quota > 0] • ReleaseCoin; P1)
2 ([quota < 80] • Request ; P1)
2 ([quota ≥ 80] • Request ; P2)
2 ([(req 6= Nil ∧ quota ≥ 80) ∨ (req = Candy ∧ quota ≥ 50)] •

Dispatch; P1)
P2 =̂ InsertCoin 2 ReleaseCoin

MAIN =̂ P1

The pruned state machine contains two states. The process capturing behaviors patterns at the initial

state is written asP1. All operations can be invoked at the state. The state guards guarantee that the

state variables at the state satisfying the conditionquota ≥ 0 ∧ ¬(quota ≥ 80 ∧ req 6= Nil). The

behavior patterns at the other state are captured in processP2. The MAIN process is identified with

the process for the initial state, in particularP1. We remark that the CSP controller composed with

the Object-Z specification constitutes to a TCOZ specification. end

6.5 Summary

The contribution of the work is twofold. Firstly, we developed a systematic method to abstract an

Object-Z specification on a class base. Such a method is useful for verification of Object-Z spec-

ifications as well. Secondly, we developed an effective way of realizing an Object-Z specification

as finite state machines, i.e., constructing a control program to guide the execution of the Object-Z
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specification. By treating each transition as a function call and implementing each operation in iso-

lation, we may generate executable codes from the specification. Moreover, an experimental tool is

developed to realize the method.

A less restrictive controller would allow more possible further refinement. Our method works by

pruning those sequences of operations that fail the specification or the additional requirements.

Therefore, it is naturally ‘minimally’ restrictive. However, a minimum restrictive controller in gen-

eral may not exist. An example can be found in [98].

Our work is related to works on abstraction and controller synthesis. Abstraction techniques are

now widely considered useful and even necessary for successfulverification. It has been discussed

in various works on model-checking software, e.g., Graf’s work on property preserving abstrac-

tions for transition systems [97] and Ball’s work on abstraction of C programs[7]. Though partially

inspired by Graf’s work, our abstraction schema is highly coupled with Object-Z semantics. The ab-

straction schema is closely related to the work in [139], where Smith and Winter proposed a similar

predicate abstraction for totalized Z specifications. Their aim is to verify safety temporal properties

of Z specification. The difference between their abstraction and ours is that our predicate abstrac-

tion applies to Object-Z specifications (therefore, we do not assume operations to be totalized) and,

more importantly, is automated by PVS. The latter is essential for complex systems.

Our work is also related to works on deriving an automata representation from Z/Object-Z for

specification-based testing [38, 113, 77, 116]. Dick and Faivre in [38] derived an automata repre-

sentation from a Z specification for generating test cases. Murray in [113] formally derived a finite

state machine of an Object-Z specification for the same purpose. Their works focus on extracting a

finite set of behaviors for testing (partial coverage). Our work focuses on extracting implementable

finite state models from Object-Z specification. By contrast, we guarantee allbehaviors are properly

constrained.

The part of work on deriving a finite state representation from the data object is related to early

works on using processes to represent data structures by Nierstraszand Brinksma in [19, 115]. Our

work is also inspired by works on controller synthesis both from computer science and control-
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theoretic perspective. The line of work goes back to the realization problem [27] formulated by

Church and later solved by Büchi and Landweber [23]. During the past decade, there has been a

vigorous revival of this area. Various problems associated with partial observability, controllability

and hierarchical control have been addressed as evidenced in [121, 122, 99]. However, previous

works on controller synthesis are all based on automata-like structures withtrivial data states. Our

work applies to applications with complicated data and functional requirements.



Chapter 7

From Scenarios with Data to

Implementations

‘Do you mean that you think you can find out the answer to it?’

said the March Hare.

‘Exactly so,’ said Alice.

‘Then you should say what you mean,’

the March Hare went on.

- Alice’s Adventures in Wonderland, Lewis Carroll

Behavior modeling plays an important role in software engineering. It is the basis of system devel-

opment methods like system specification, design, code generation, testing and verification. Two

complementary approaches for modeling behavior have been shown to be useful in practice. One

is interaction-based, which focuses on global interactions between system components, e.g., MSC,

LSC. The other is state-based modeling, which concentrates on the internalstates of individual

components, e.g., Z and VDM [83]. In Chapter 5, we investigated ways of generating distributed

processes from interaction-based modeling, namely LSC. In Chapter 6, we addressed the problem of

synthesizing implementable designs from state-based modeling, namely Object-Z. Industrial scale

129
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systems often have not only complex data structure but also intensive interactive behaviors. In this

chapter, a combination of the two approaches is proposed so that we may synthesize implementa-

tions all the way from LSC models equipped with complex data structures.

7.1 Introduction

In order to formally specify complex systems, we propose a combination of interaction and state-

based modeling, namely Live Sequence Chart and Z specification. That is, a complete system

specification shall consist of two separate parts: an LSC part for capturing interactions between

system components and a Z part for modeling the data and functional aspects. The significant and

novel aspect of the combination is that it combines the modeling power of both and thus can be used

to specify systems beyond the capability of either one. Moreover, such combined specifications

contain sufficient information for synthesis of distributed implementable systemdesign.

State-based modeling naturally complements interaction-based modeling, and thus it is no doubt that

a smooth integration of them shall be beneficial. LSC is a rather rich extensionto MSC that allows

specification of not only possible behaviors, but also mandatory behaviors. We choose Z over other

state-based modeling language because Z is widely known and accepted aswell as well-developed

in terms of specification, refinement, etc. The Z language is favored over Object-Z because Z is

relatively simply structured and the class structure (as well as inheritance and polymorphism) in

Object-Z may serve as an unnecessary complication.

Synthesis from specifications like scenario-based diagrams or various automata is showed to be

extremely hard [121, 122, 68, 88]. Our problem is further complicated bythe complex data structure

underlying the scenarios. Due to the high complexity of the problem, our primary aim is to discover

a practical way of synthesizing sound (and not necessarily complete) implementations. To the best

of our knowledge, our work is the first attempt to synthesize low-level implementations from a

combination of interactive-based modeling and state-based modeling.

We take a step-by-step approach. Firstly, a distributed object system is synthesized from the LSC
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universal charts. The local actions in the charts are treated as abstract events, as we did in Chapter 5.

The global state machine is never constructed during the steps so as to avoidstate space explosion.

Meanwhile, an abstract finite state machine is constructed from the Z model using automated pred-

icate abstraction [7, 97], which allows us to grasp the behaviors of the objects based on a finite

set of assertions. The abstraction method presented in Chapter 6 is augmented to cope with Z se-

mantics. Secondly, the distributed object system is refined on an object basis to satisfy data-related

requirements. Thus, the preconditions of the local actions (Z operations)and hot conditions in the

LSC model will never be violated. Additional crucial properties for open systems, like nonblocking

and uncontrollability of the environment, are also taken into account. Finally, we may synthesize

executable implementations by generating code from the refined finite state machine (the design).

Our method is implemented as a JAVA application.

7.2 Integrating Live Sequence Chart and Z

State-based modeling language like Z and interaction-based modeling languages like LSC naturally

complement each other. LSC lacks the expressiveness to capture complicated data and functional

behaviors. Local actions are often ignored or treated as abstract events in the study of the verification

and synthesis problem of LSC. Examples are the works in [68, 18] and our work in Chapter 5. Local

data variables are often implicitly associated with the objects. They may appear inthe conditions

or get updated by the local actions. However, there is no way to specify exactly how the local

actions update the local variables and what the data space of the object is,except using concrete

implementations, which we think is undesirable as sequence diagrams are usedin the early stage of

system development. On the other hand, in Z specification, the system behavior patterns are often

implicitly embedded within various state/operational constraints. Without explicit system behavior

representation, it is difficult to analyze or implement those abstract models. Zis not intended for

timed or concurrent behaviors [161]. It lacks the expressiveness tocapture dynamic interactive

behaviors between the components in the system.

A combination of LSC and Z shall constitutes a powerful modeling language covering a wider
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range of systems. Thus, we propose a simple yet effective integration ofLSC and Z. We require

that a combined system specification shall consist of two parts. One is a setof LSC universal

charts, which specify mandatory interaction scenarios between system components. The other is a

Z specification, which specifies the data and functional models associated with the objects in the

system. In particular, each object in the LSC model with non-trivial data states is associated with a

Z package in the Z part. Each local action in the LSC model is defined in the respective Z package

as a Z operation schema. Conditions in the LSC model may only mention variables defined in the

respective Z state schema in addition to external inputs.

System modeling shall start with identifying scenario-based system requirements, from which the

universal charts are constructed. During the process, the system engineer slowly decides the data

variable and local actions for each object. The designer’s intension of the local action can be nat-

urally documented as pre/postcondition pairs. Later, the designer may specify each local action

using Z operation schema to formally state how each local action updates the data state. This way, a

complete system specification is built. In the following, the same Light Control System is used as a

running example to show how it may be specified using a combination of LSC andZ packages, and

how an implementation may be synthesized from the specification.

Example 7.2.1 (Universal charts of Light Control System)Figure 7.1 captures a typical scenario

of the LCS. When a user enters a room: the motion detector senses the presence of the person, and

the room controller reacts by sensing the current daylight level and adjusting the light with appro-

priate illumination if the light is already on. Figure 7.2 illustrates another scenarioof the LCS.

Whenever a user leaves a room (leaving it empty), the detector senses nomovement. The room con-

troller waits for a safe number ofnomotion to make sure the room is empty and then turns off the

light. There are a number of important features of LSC presented in the chart, i.e., hot location, hot

condition and forbidden events. The forbidden events require that in order to complete this scenario,

no movement should be detected before the chart ends and the light is eventually turned off before

it is turned on again. The rest of the scenarios are presented in Figure 7.3, in which the occupant

may directly turn on/off the light by pushing the button or the system may adjust the illumination of

the light. end
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Tune

get.outsidedim

Env

set.dim

PeopleIn

motion

RoomControllerMotionDetector Light

on

Adjust

Figure 7.1: Scenario of the LCS:PeopleIn

LightMotionDetector RoomController

turnoff

Forbidden 

PeopleOut

motion

nomotion

nomotion

nomotion

TurnOff

on = false

TurnOn

Figure 7.2: Scenario of the LCS:PeopleOut
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TurnOn

dim > 0

turnon

LightUser

TurnOn

dim = 0

TurnOff

turnoff

TurnOff

LightUser

Tune

set.dim

get.outsidedim

Env

RegularAdjust

RoomController Light

Adjust

on

Figure 7.3: Scenarios of the LCS

After identifying the universal charts, the data variables and local computation of each object be-

come clear. No local action is associated with instanceMotionDetector , which suggests that it has

trivial data state. The Z package associated with theLight andRoomController are illustrated in

the following.

Example 7.2.2 (Z package ofLight) The Z package of thelight contains the following schemas.
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Light

dim : Illumination

on : B

dim > 0 ⇔ on = true

Adjust

∆Light

dim? : Illumination

on = true ∧ dim ′ = dim?

TurningOn

∆Light

on = false ∧ dim ′ = 100 ∧ on ′ = true

TurningOff

∆Light

on = true ∧ dim ′ = 0 ∧ on ′ = false

LightInit

Light ′

dim ′ = 0 ∧ on ′ = false

end

Example 7.2.3 (Z package ofRoomController ) The Z package of theroom controllercontains

the following schemas.

RoomController

dim : 0 . . 100
RoomControllerInit

RoomController ′

dim ′ = 0

Tune

∆RoomController

outsidedim? : 0 . . 100

(outsidedim? ≤ 20 ∧ dim ′ = 100) ∨
(outsidedim? > 20 ∧ dim ′ + outsidedim? = 100)

The variabledim in the state schema represents the light level (inroom controller’s knowledge).

Initially, it is of value 0. The operationTune computes the desired light level according to the

outside light level. end

Example 7.2.4 (Combined specification ofLCS ) All instances in Figure 7.1,7.2,7.3 with non-trivial

data states are associated with Z packages, i.e., theLight package for theLight object and the
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RoomController package for theRoomController object. Local actions likeAdjust , TurnOn,

TurnOff , Tune, are defined as operation schemas in the respective package. Therefore, the Z

specification and the LSC model constitute an integrated specification of the LCS. end

The result is a rigid system architecture, which has its advantages: the dataand functional model

and the interaction-based model remain orthogonal throughout development, and so can be analyzed

or refined separately using existing tools and methods. Once both parts stabilize, the integrated

specifications shall contain sufficient information on both data and controlaspects of the system,

which allows us to automatically synthesize implementable designs. Graphically, links from an

instance in the chart to its Z state schema, and links from local actions to Z operation schemas shall

be provided, e.g., the Z schema is shown in the popup window once the instance is highlighted and

so are the operation schemas.

7.3 Synthesis of Distributed Object System

In this section, a distributed object system is synthesized from the universal charts. For the time

being, local actions are treated as abstract events. The synthesized object system is refined in the

next section to handle data-related requirements. The synthesis is closely related to the construction

in Chapter 5. However, because we have to store the data-related requirements for later refinement,

finite state machines instead of CSP processes are constructed. State invariants are used to store

data requirements. Moreover, using finite state machines allows us to reuse our work in Chapter 6.

There are a number of principles to identify a good synthesis strategy. Firstly, the synthesis should

be robust with the notion of data refinement [161, 111] so that the synthesized design remains valid

after refinement of the Z operations. Secondly, the global state machine should not need to be

constructed in order to avoid the state explosion problem. This is essential for notations like LSC,

which has a distributed nature and an underlying partial order semantics. Above all, the synthesized

design should be consistent with the specification.
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7.3.1 Synthesizing Local State Machines

We start with constructing a state machine for each instance in a single chart. Given a basic chart

m (a main chart or a sub-chart of a main chart without hierarchy), letM i
m =̂ (S ,S0,F , Σ,T , I ) be

a state machine synthesized from instancei in chartm. The basic idea is to construct one state for

each location. Thus,S is the set of states corresponding to the set of locations along the instance.

S0 contains exactly the state corresponding to the first location.F contains the states corresponding

to the cold locations. For each location labeled with a cold condition, an additional state labeled

with the negation of the condition is constructed so that if the condition is violated,the additional

state is reached. The only transition enabled at the additional state is labeled with a synchronization

barrier, which is used to terminate the (activation of) the chart. For each location labeled with a

hot condition, the condition is labeled with the respective state and no additional state is added.

This prevents behaviors that might violate the hot condition from happening. Besides, there is a

transition(s1, e, s2) in T if the location corresponding tos2 is next to the location corresponding

to s1 which is labeled withe. After reaching the very last location of the chart (the bottom line),

the state machine behaves freely so that it puts no further constraint overthe system. Such a state

machine constrains a single activation of the basic chart.

A hierarchical chart can be flattened as finite state machines straightforwardly. Figure 7.4 presents

a universal chart containing a conditional branch. It is part of the LSC specification of a lift con-

trol system. Whenever the lift approaches the next floor, theshaft sends a messagearriving to

controller . Thecontroller refreshes its knowledge of the current level by updating its local vari-

ablepos. A hot condition stating that the value ofpos (a local variable representing the current

level) must be within its range is asserted. Thecontroller decides whether to stop at the next floor.

If the conditiontoStop is true, i.e., the next level is requested internally or requested externally with

the right direction, theshaft stops and thedoor is opened and the respective request is cleared.

Otherwise, the lift continues traveling in the same direction.

Example 7.3.1 (State machine forShaft) The state machine presented in Figure 7.5 captures the

behaviors ofShaft in the main. EventsArrive.x .main andArrive.x .sub1 are barriers used to syn-
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arriving
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stop
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toStop

ClearReq

SetStateHolding

Figure 7.4: Scenario of Lift Control System

chronize the entering or exiting of the main chart or a sub-chart among all participating instances.

Variablex is an identifier which distinguishes different activations of the same chart. Therefore,

only participating instances in the same activation of the chart are synchronized. Whenever the

chart completes (reaching the filled circle), all events inΣi
m can be engaged freely (indicated by a

transition labeled with *). Only transitions labeled with visible events are constructed since transi-

tions concerning invisible events are free to occur by the definition of parallel composition. end

Example 7.3.2 (State machine forController ) The state machine presented in Figure 7.6 is syn-

thesized for instanceController . The hot condition is labeled with the state right after local action

UpdatePos. After entering the sub-chart, two states are reached, one labeled with condition toStop
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Figure 7.5: State machine forShaft
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0<=pos<N toStop

-toStop
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Figure 7.6: State machine forController

and the other labeled with its negation. Thus, the conditional branch is effectively flattened. In

general, state machines for hierarchical charts can be constructed from the state machines for the

sub-charts. end

A universal chartu is associated with two sets of synchronous barriers, namelyu.x .y .conVio and

u.x .y wherex is a counter uniquely identifying an activation of chartu, andy is the identifier of a

sub-chart. Thex component is necessary because there could be multiple or even infinite overlap-

ping activations of the same chart. For instance, trace〈nomotion,nomotion,nomotion〉 triggers
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three overlapping activations of the chartPeopleOut. Eventu.x .y is used to synchronize the enter-

ing or exiting of sub-charty in chartu among those participating instances. Eventu.x .y .conVio is

engaged if and only if a cold condition in sub-charty is violated in thex -activation ofu. It is the

only event which can be engaged at the state labeled with the negation of a cold condition. Other

instances in the chart are ready to engage in this event all the time (a transitionlabeled with this

transition is enabled at every state in the state machine for other instances).

The state machine for an instance in the pre-chart is similarly constructed. However, because a

universal chart puts no constraint over the system before entering the main chart, the state machine

synthesized from the pre-chart shall allow all possible behaviors, andat the same time monitor

communication sequences that may match the pre-chart. LetM i
p =̂ (S ,S0,F , Σ,T , I ) be the state

machine synthesized from instancei in the pre-chartp. There is a transition(s1, e, s2) in M i
p .T

if the location corresponding tos2 is next to the location corresponding tos1, which is labeled

with e. In addition, a transition(s1, e ′, smax ) is constructed for every evente ′ in Σi
u \ {e}, where

smax is the state corresponding to the last location on instancei in themainchart (the filled one).

Intuitively, the pre-chart progresses whenever an expected eventis engaged, whereas an unexpected

event aborts the activation of the chart. Because hot condition in pre-chart has no semantic meaning,

all conditions in pre-charts are treated as cold conditions. Lastly, the state corresponding to the last

location in the pre-chart is identified with the state corresponding to the first location in the main

chart so that once the pre-chart is completed, the main chart is reached.

Example 7.3.3 (State machines for instances in PeopleOut)Figure 7.7 shows the state machines

synthesized for instances in the chart showed in Figure 7.2. The alphabet of each state machine

includes the forbidden events. The forbidden events are allowed to occur before entering the main

chart. Once a communication sequence matches the pre-chart, the state machine synchronizes en-

tering of the main chart. All states in the pre-chart are accepting as the state machine shall not

constrain the system execution before entering the main chart. end

The state machines constructed so far only monitor a single activation of the chart. A trace which

triggers multiple activations of the same chart is not properly constrained. For instance, the state
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Figure 7.7: State machines for instances inPeopleOut
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machines in Figure 7.7 may execute the following trace:

〈nomotion,motion,nomotion,nomotion,nomotion,TurnOff 〉

It is however not allowed by the chart in Figure 7.2 because the three consecutivenomotion? trig-

gers another activation of the chart. The remedy is to identify the filled state withthe initial state

so that the state machine is reused for later activations. However, such state machines still can

not constrain overlapping activations. Though there could be infinite overlapping activations of the

same chart, only finite copies of such state machines are required to monitor allthe activations.

In [17], Bontemps and Schobbens have shown that every LSC has an equivalent deterministic B̈uchi

automaton that contains at most exponentially more states than there are locations in the LSC. A

symmetry reduction shall always make it possible to consider only a finite (andbounded) number

of overlapping activations. Therefore, only a finite copies of the state machines are necessary for

monitoring overlapping activations, and they can be reused for non-overlapping activations. In prac-

tice, large number of overlapping activations is unlikely because system behaviors are increasingly

restricted as the number of overlapping activations increases. There is often a natural limit on the

number of overlapping activations. For instance, there could be at most three overlapping activation

of chartPeopleOutbecause the main chart shall complete before the fourthnomotion event. A

simple analysis shall tell the maximum number of activations allowed by a chart.

Example 7.3.4 (Final state machine)The state machine presented in Figure 7.8 is synthesized

from RoomController in scenarioPeopleOut. It monitors thex -activation of the chart. The state

machine is augmented with a special synchronization barrierfork .x , which is used internally to ac-

tivate a new copy of the state machine whenever it moves beyond the initial state. Because there are

at most three overlapping activations of the chart, three copies of the statemachine withx ranging

from 0 to 2 are constructed. The copy withx = 0 does not have the first state. The copy withx = 2

does not have the state wherefork .3 can be engaged because there is no fourth copy to be forked.

The product of the three copies are computed as showed in Figure 7.9. The very last state (the

one composed by three filled state) is identified with the initial state so as to allow non-overlapping

activation. We remark that the final state machine can be further reduced using standard techniques
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Figure 7.8: State machines for instanceRoomController

like bi-simulation reduction [56], etc. For instance, all states labeled with event fork are removed

since they contribute nothing to system behaviors. end

We remark that the product of the state machines for all instances in the chart, ‖
i
M i

u , refines the

chart, i.e., all accepting runs of the state machine satisfy the chart. An immediate consequence

is that the product of the state machines for all the universal charts,‖
u
‖

i
M i

u , refines the LSC

specification, i.e., only behaviors satisfying all the universal charts areallowed. Because the parallel

composition operator is symmetric and associative, the following rule is established. LetM i
LSC be

the local behaviors of an objecti .

‖
u
‖

i
M i

u =̂ ‖
i
‖

u
M i

u =̂ ‖
i
M i

LSC

Due to the above transformation, the local behaviors of an object are determined without construct-

ing the global state machine. For example, the behaviors of theRoomController are captured by

the product of the state machines synthesized from all the universal charts. We skip the formal

soundness proof. In previous chapters, we have formally defined a trace-based denotational seman-

tics for LSC, and then developed a sound interpretation of LSC in the classicnotion of CSP [79]. By

transforming CSP interpretations of the LSC model using its algebraic laws, thelocal behaviors of

each object are grouped together as a set of distributed processes. Abisimulation relation between
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Figure 7.9: State machine synthesized for instanceRoomController

the synthesized state machine and the transition system interpretation of the distributed processes

would prove the soundness of the synthesis. Alternatively, we may definea similar set of algebraic

laws in terms of finite state machines and prove the soundness directly.

So far, we handle only closed systems but not open systems. Synthesis for open systems asks

whether there is an implementation that can be deployed in any malevolent environment. To avoid

the undecidability of the distributed synthesis problem for open systems, the same lightweight ap-

proach presented in Section 5.4 is adopted. The synthesized state machine for the environment

(parallel composition of all state machines for environment objects) is verified to be equivalent to
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(or simulates) the user-supplied modeling of the environment.

7.4 Refinement of the Distributed Object System

In our combined specification, local actions are defined as operation schemas, which could be im-

plemented by a series of computations constrained by pre/post-condition. Itis necessary to refine

the distributed object system so as to guarantee that a local action is only engaged with its precon-

dition satisfied, a hot condition shall be satisfied in all circumstance, etc. However, it is difficult to

tell if a certain assertion is true after a series of local computations simply because the state space of

a Z specification may often be infinite. The problem is further complicated as Z operation schema

may take inputs from the environment, which can not be controlled by the system. Our remedy

is predicate abstraction, as applied in Chapter 6 for extracting finite state realizations of Object-Z

specifications. Predicate abstraction allows us to interpret and then restrict the behaviors of an ob-

ject based on an abstract view of the data variables, which is essential for our synthesis since an

implementable control structure may only contain a finite number of control states.

The abstraction method used in Chapter 6 is amended for abstracting Z packages. In Z semantics,

the result of applying an operation outside its precondition is divergence.Thus, in abstraction of a Z

package, an operation must be applied at states where its precondition is satisfied. Moreover, in the

abstraction interpretation, we guarantee that applying an operation may reach all states where the

postcondition may be satisfied. This way, our abstraction is robust with respect to Z data refinement,

i.e., weakening precondition and strengthening postcondition. The abstract machine is then used to

refine the distributed object system synthesized from the LSC model on an object basis. Invocation

of operations that might violate its precondition or result in a state violating a hotcondition is

systematically pruned.

In order to guarantee the correctness of the synthesized design, we require that the set of predi-

cates for abstraction includes all conditions in the universal charts (as well as the predicate in the

initial schema for simplicity). A finite state abstraction of a Z package is built by abstracting both

its initial schema and its operation schemas. Because only sound designs areof interest, a local



7.4. REFINEMENT OF THE DISTRIBUTED OBJECT SYSTEM146

Adjust

TurnOn

TurnOff
dim=0, on=false dim>0, on=true

Adjust

Figure 7.10: Abstraction of theLight package

action shall be invoked only when we are certain no assertions will be violated. Thus, the pre-

condition of the operation is abstracted asW(pre(Operation)) and its postcondition is abstracted

asS(post(Operation, sa)), wheresa is an abstract state satisfying the abstract precondition. In-

tuitively, by replacing the precondition with a more restrictive one, we make sure no precondition

shall be violated. By replacing the postcondition with a less restrictive one, we make sure that no

hot conditions shall be violated in all circumstances.

Definition 20 Given a set of predicatesP , M i
Z =̂ (S ,S0,F , Σ,T , I ) is an abstraction of the Z

package associated with objecti only if S =̂ Sa andS0 =̂ W(initial condition) andF =̂ S andΣ

is the set of operation schemas in the package andI labels a state with itself andT =̂ {(s1, e, s2) :

S × Σ × S | s1 ∈ W(pre(e)) ∧ s2 ∈ S(post(e, s1))}.

Example 7.4.1 (Abstraction of Z package)Assume the set of predicates for abstracting theLight

package is{dim = 0, on = false, dim > 0}, the set of abstract states contains two states:Sa =̂

{dim = 0 ∧ on = false, dim > 0 ∧ on = true}. The abstract initial state is exactly the state

wheredim = 0 ∧ on = false. OperationAdjust is abstracted by computing the following:

W(pre(Adjust))
=̂ W(∃ dim ′ : Illumination; on ′ : B | dim ′ > 0 ⇔ on ′ = true •

on = true ∧ dim ′ = dim?) – def. of Precon.
=̂ {dim > 0 ∧ on = true} – def. ofW

S(post(Adjust , dim > 0 ∧ on = true))
=̂ S(dim > 0 ⇔ on = true ∧ dim ′ > 0 ⇔ on ′ = true ∧

dim > 0 ∧ on = true ∧ on = true ∧ dim ′ = dim?)
=̂ {dim ′ = 0 ∧ on ′ = false, dim ′ > 0 ∧ on ′ = true}
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Figure 7.11: Scenario of the LCS:UserAdjust

Thus, the abstract operationAdjust is enabled only at the abstract state whereon is true, from which

both abstract states can be reached. We skip the abstraction of the other operations in the package.

Figure 7.10 shows the resultant state machine. end

After constructing the abstract state machine from the Z package, the product of M i
LSC andM i

Z is

computed. By removing states labeled with false, we guarantee that no precondition or hot condi-

tion is violated. However, the problem is complicated by the uncontrollability of theenvironment

because removing states may put restrictions over inputs from the environment, which is problem-

atic. For instance, if we allow the user to adjust the illumination by setting it to certainvalues,

captured by the universal chart in Figure 7.11. It requires that afteroperationAdjust , dim > 0

must hold. Intuitively, we know that this hot condition may not be satisfied because the user may set

the dim to 0 and hence accidentally turn off the light (due to the state invariant).Another important

property for open systems is nonblocking, i.e., the design should not introduce any fresh deadlock.

The pruning algorithm presented in Chapter 6 is reused to determine whetherthere is a satisfying

design, and synthesizes one if possible by refining the product state machine.

Example 7.4.2 (Pruning state machine)Figure 7.12 presents the state machine for instanceLight

in scenarioUserAdjust. The product of the state machines in Figure 7.10 and Figure 7.12 is pre-
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Figure 7.12: State machine synthesized from instanceLight in UserAdjust
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Figure 7.13: Product state machine

sented in Figure 7.13 (where one state labeled with false has been removed). The pruning algorithm

is then applied. The * state is removed becauseAdjust is uncontrollable at the state and the state

labeled withon = false ∧ dim = 0 is not reachable from the * state by applyingAdjust while

it does in Figure 7.10. Thus, line 10 of the algorithm presented in Section 6.3 applies so that the

transitions labeled withAdjust are removed. The *** state is removed because it is not reachable

any more. The ** state is removed because it becomes a fresh deadlock state and thus line 14 of the

algorithm applies. After removing states leading to no accepting state, the resultant state machine

is shown in Figure 7.14. It is a valid design for closed systems since there are one initial state and

accepting states. Intuitively, the design guarantees that the chartUserAdjustis satisfied by requiring

it is never activated. However, ifuser is considered as part of the environment, then there is no

way to prevent users from activating the chart by sending messageadjust .dim. In our approach,

the synthesized modeling ofUser has failed to be a simulation of the default modeling (where users
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TurnOn

TurnOff

Figure 7.14: Pruned state machine

can initiate any communication at any time). Thus there is no design satisfying this chart. end

In the following, we briefly discuss the soundness of the techniques usedin this section. In Sec-

tion 7.3.1, we have shown that the state machines constructed are consistentwith the LSC model

treating local actions as abstract events. We now argue that the refined state machines satisfy both

the LSC model and the Z model. First of all, by Definition 20, local actions can only be engaged

within in their (strengthened) domain. Engaging in a local action may appear to reach more states

than it could because the postcondition is weakened. This causes no problem because local actions

will be replaced by concrete implementations which satisfy their pre/postcondition specification.

Though there may be infeasible pathes in the synthesized implementation, an operation may reach a

successor state only if the postcondition is satisfied at the successor state.The point is that using the

weakened postcondition, we can detect possible violation of hot conditionsearly in the synthesis

process (instead of at run-time). The product of the state machines synthesized from the LSC model

of an object and the abstract state machine of the Z package, thus, satisfies both the LSC model and

the data requirements. During the pruning process, transitions and states are pruned. It is easy to

verify that the pruned state machine is fairly simulated by the original one. Fairsimulation implies

fair trace containment. Thus, the pruned state machine is consistent with the specification.

7.5 Automation

We implemented a prototype to experiment with our approach using standard case studies. The

experiment tools presented in Chapter 5 and Chapter 6 are reused. The input to our experimental
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tool is an XML representation of the Z model and an XML representation of the LSC model. As

discussed in Section 6.3.2, a transition in the pruned state machine may be constrained by restricting

its postcondition in the pruned state machine, which is not implementable. Two different remedies

have been explored. The first remedy is to guard each invocation of the action with a proper guard

condition as we did in Section 6.3.2. For partially pruned nondeterministic choices, the transitions

shall be guarded with the weakest precondition that guarantees the reachability of the desired state.

After that, executable implementation can be synthesized straightforwardly withthe implementation

of each local actions supplied by users. As long as the implementation of localactions conforms to

its precondition/postcondition specification, our synthesized prototype remains sound. However, a

reasonable guard condition must not involve any primed variables. Computing the weakest precon-

dition requires elimination of the primed variables, which is in general undecidable. Therefore, this

remedy is unlikely to be fully automated. The other remedy is to generate a set ofproof obligations

for nondeterministic choices which are partially pruned. When the user provides an implementation

of the operation, the proof obligations are verified (or tested) in addition to the pre/post-condition

so as to make sure the operation satisfies the more restrictive post-condition at the system states.

Our approach is designed to handle complex systems. During the first step,we synthesize a dis-

tributed object system from the LSC model without constructing the global state machine. Later,

we limit the number of overlapping activations of the same chart as a way to further reduce the size

of the local state machines. For instance, all universal charts exceptPeopleOutallow no overlapping

activations in the LCS example. Computing the product of multiple state machines (‖
i
M i

u ) explic-

itly is expensive, e.g., the state machine for instanceLight contains 760 states without any reduction.

Therefore we reuse existing CSP-based process oriented design patterns for concurrency [158] to

generate structural prototypes.

To handle systems with infinite data space, we adopt predicate abstraction to construct an abstract

view of system behaviors in terms of finite assertions. In general, the size of the abstract state

machine is exponential in the number of predicates for abstraction. It is the most time-consuming

operation in our method. However, it remains affordable because only one Z package is abstracted at

a time and there are unlikely to be large number of conditions concerning one object. Our abstraction
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method constructs an abstract state graph by paying a reasonable price.In our prototype, a sound

approximation of the functionW andS is used. To further speed up the abstraction as well as

to guarantee termination of the proving, every lemma is proved in a limited amount oftime. The

time limit is set as a user option. The date aspect of the LCS example is slightly trivial. As for

reference, in a vending machine example where there are state variables with infinite domain and

multiple operation schemas, all together 190 lemmas are generated and all 105 provable lemmas

are proved without user interaction in minutes. The lift control system is alsomodified to handle

system with arrays of variables (refer to [148] for detail). In addition, anumber of tricks have

been used to reduce the abstract state space, for instance removing a false state by considering

co-relation between the predicates and the state invariant before abstract. The complexity of our

pruning algorithm is polynomial time in terms of the number of states. So are the operations we

perform over the state machine. Thus, they are carried out in reasonably speedy fashion.

7.6 Summary and Discussion

In this work, we present a systematic way of synthesizing designs from a combination of state-

based modeling and interaction-based modeling, namely Z and LSC. Our contribution is threefold.

Firstly, we propose an intuitive integration of Z model and LSC model, which is capable of modeling

systems with not only complicated data structures but also complex interactive behaviors. Secondly,

we develop a systematic way of synthesizing distributed finite state designs all the way from the

combined specifications. Thirdly, we developed an experimental tool to automate our method. One

of the possible future works is to generate implementations other than JAVA programs from the

synthesized design, for example SystemC [61] or Spec# [8]. We may as well formally explore the

notion of refinement in terms of the combined interaction and state-based modeling. For instance,

we may investigate how refinement in the B method may cooperate with refinement inLSC so that

implementation can be deduced step by step from the combined specification.

The integration of the Z specification language and LSC is related to works onintegrated specifi-

cation languages [160, 102, 157, 138, 24, 36]. The characteristic ofour work is that we provide
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a synthesis method in addition to system specification. Our synthesis method may suffer from be-

ing over-restrictive sometimes. One of the reasons has already been mentioned in Section 7.3.1.

Another reason is that because our pruning applies on an object basis,valid designs requiring co-

operation of multiple system objects are not possible. For instance, inputs to an operation from

other system components are controllable if we consider the global state machine. For example,

in Figure 7.1, the value ofdim from RoomController is actually never 0 from the whole system’s

view. Disallowing such designs is a sacrifice we have to make if we do not construct the global state

machine. The third reason is the limited power of proof systems. The effectiveness of the predicate

abstraction, e.g., fewer spurious behaviors, depends on the proving power. Spurious behaviors may

result in pruning valid designs. For instance, if the abstraction suggests that applying an uncontrol-

lable operation may result in an undesired state from a given state whereasin fact it cannot, then the

uncontrollable operation will be prohibited from happening. Nevertheless, our approach serves as a

promising method to apply synthesis techniques to complicated system specifications, and it can be

applied to other integrations of state-based and interaction-based modeling as well.



Chapter 8

Conclusion

‘Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to’, said the cat.

‘I don’t much care where’ said Alice.

‘Then it doesn’t matter which way you go’, said the Cat.

‘So long as I get somewhere, ’ Alice added as an explanation.

‘Oh, you’re sure to do that,’ said the Cat,

‘if you only walk long enough.’

- Alice’s Adventures in Wonderland, Lewis Carroll

In this chapter, we summarize the main contributions of this thesis and present possible directions

for further research.

8.1 Contributions

The scheme of this thesis is to identify and study formal specification languages which are comple-

mentary to each other in terms of visualization, verification or synthesis. We explored many well-

established languages and notations so as to identify the similarity and difference between them.

153
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Transformation techniques are then used to connect those complementary ones for practical pur-

poses. Our approach is however not restricted to particular languagesor notations. It demonstrates

general complementary relationships between logic-based formalisms and visual formalisms.

The works presented in this thesis can be fully integrated with other softwareproducts and processes

all along system development life cycle. For instance, visualization (Chapter 3) offers graphical

representation of logic-based system models in the specification stage. Thework on verification

reveals inconsistency of the system specification. The works on synthesis provides a constructive

method for connecting the specification, design, and implementation stage. In the following, we

discuss the detailed contributions of this thesis.

This thesis successfully demonstrated that though logic-based formalisms and visual formalisms

may vary vastly in syntax, they may often share a common semantic basis like tracesemantics.

Based on the common semantic basis, sound transformation from logic-basedspecifications to di-

agrammatic notations allows visualization of logic-based models. The author believes that logic-

based formalisms are a more precise and thus safer means for stating systemrequirements than

diagrams. Mechanized visualization allows system engineering starting with logic-based formalism

enjoy the visual power of modeling languages like UML.

Detecting inconsistency in system specifications is vital in the process development process. It is

commonly known that the earlier the inconsistency and errors are exposed, the more resource and

human effort are saved for implementation of the desired software system. This thesis developed

verification methods for both logic-based formalisms and visual formalisms using transformation

techniques. It has been shown that existing mature model checkers can be applied to formalisms

other than those intended effectively.

Verification based on the transformation technique is inexpensive yet effective. It has been applied

to a large scale of languages and notations. Our research has influenced research activities on

applying formal methods languages and tools to the web domain. For instance,Liu el at developed

a Timed Automata semantics for orchestration of web service so thatOrc specification [112] can be

transformed to Timed Automata and consequently verified by UPPAAL [47]. Dongel at developed
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a tools environment for reusing formal methods tool for proving web ontology [45]. Sunel at

developed a transformation from web services to LSC so as to usePlay-enginefor simulation and

verification [151].

One of the ultimate goals for software engineering is to automatically generate low-level implemen-

tations from high-level specification. A main contribution of this thesis is the investigation on this

automated development process. Systematic ways of generating prototypesfrom state-based spec-

ifications (e.g., Object-Z), or scenario-based diagrams (e.g., Live Sequence Chart), or combination

of both (e.g., Live Sequence Chart combined with Z specification) have been developed. This thesis

discussed the complexity dealing with the problem of synthesis and compared our methods with

existing approaches. To the best of our knowledge, the synthesis workpresented in this thesis is

the first attempt to mechanically generate prototypes from specifications of systems with intensive

interactive behaviors as well as complicated data and functional requirements.

8.2 Future Research Trends

The following topics, arising out of this thesis, seem worthy of future research.

This thesis developed a number of tools providing support for various tasks, which form a near-

complete framework for system specifying, verifying, developing, and testing. Each link in Fig-

ure 1.1 illustrates an automated transformation in the name of either visualization orverification.

Figure 1.2 shows the tools developed in the work of synthesis. The two figures serve as a blueprint

of the framework we shall develop as one of the future works. The framework shall allow system

specification or design using user favored modeling techniques like Z, Object-Z, CSP, MSC, LSC,

or any combination of them. Thus, we shall develop friendly user interfacefor editing logic-based

specifications as well as drawing diagrams. Alternatively, we shall support system designs created

externally using existing popular tools like UML editing tools. For works on verification, we shall

hide underlying reasoning details and connect analysis results to the levelof user specification. Hints

for refining the specification shall be highlighted properly, e.g., using different fonts for logic-based

specification or using emphasized drawing for visual specification. For instance, verification results
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of LSC models from FDR shall automatically feed back to the user. Any counter example will be

displayed graphically so as to guide the refinement of the LSC model. Once thisis done, users with

little or no knowledge of CSP or FDR may benefit.

In the work on synthesis, few timing issues have been discussed. One of the challenging tasks

is to investigate whether our works on synthesis extend to system specifications with qualitative

timing behaviors. For instance, we shall investigate whether the approach presented in Chapter 5

handles LSC with typical timing events. Timed CSP seems to be a promising media to carry out

the discussion since the symmetry and transitivity laws of parallel composition hold in Timed CSP

as well. However, a global shared clock is inevitable in the context of LSC,which presents a real

challenge for the distributed synthesis. Similarly, we shall extend our work presented in Chapter 6

so that the history invariant may contain explicit time variables. In general, timedsynthesis remains

as a tough research task [104].

In our works on synthesis of implementations, prototypes in JAVA are mechanically generated. We

shall improve our code generation to aim at product quality programs. Issues like code optimization,

code reusability, shall be taken into account. We remark that it would be as straightforward and of

more use to generate implementation in programming languages other than JAVA . Two of them are

of particular interest. One is SystemC [61]. The reasons are, SystemC supports high-level modeling,

hardware-software partitions, and it is easy to implement different channel types in SystemC. The

other is Spec# [8] because it offers a facility to write specifications that capture programmer inten-

tions about how methods and data are to be used and the compiler emits run-time checks to enforce

these specifications. This capability offers a sound way of enforcing (shared) hot conditions.

In Chapter 7, we briefly mentioned that our method is robust with respect to Zdata refinement. A

challenging task is to formally explore the notion of refinement in terms of the combined interac-

tion and state-based modeling. For instance, what kinds of data refinementshall co-exist with the

notion of refinement in LSC. The latter typically means expanding a sub-chart with more details. In

particular, we may investigate how refinement in the B method [92] may cooperate with refinement

in LSC so that implementation can be derived step by step from the combined specification.
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[130] F. Ruiz, A. Vizcáıno, F. Garćıa, and M. Piattini. Using XMI and MOF for Representation

and Interchange of Software Processes. InDEXA Workshops 2003, pages 739–744. IEEE

Computer Society, 2003.

[131] M. Saaltink. The Z/EVES System. In J. P. Bowen, M. G. Hinchey, and D. Till, editors,

ZUM’97: Z Formal Specification Notation, volume 1212 ofLecture Notes in Computer Sci-

ence, pages 72–85. Springer, 1997.

[132] D. Sangiorgi and D. Walker.The Pi-Calculus. Cambridge University Press, 2004.

[133] B. Scattergood.The Semantics and Implementation of Machine-Readable CSP. PhD thesis,

Oxford University, 1998.

[134] S. Schneider, J. Davies, D. M. Jackson, G. M. Reed, J. N. Reed, and A. W. Roscoe. Timed

CSP: Theory and practice. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,

editors,Real-Time: Theory in Practice, volume 600 ofLecture Notes in Computer Science,

pages 640–675. Springer, 1992.

[135] S. A. Schneider. An Operational Semantics for Timed CSP. InProceedings of the Chalmers

Workshop on Concurrency, 1991, pages 428–456. Report PMG-R63, Chalmers University of

Technology and University of G̈oteborg, 1992.

[136] G. Smith.An Object-Oriented Approach to Formal Specification. PhD thesis, University of

Queensland, 1992.

[137] G. Smith. The Object-Z Specification Language. Advances in Formal Methods. Kluwer

Academic Publishers, 2000.

[138] G. Smith and J. Derrick. Specification, Refinement and Verification of Concurrent Systems-

An Integration of Object-Z and CSP.Formal Methods in System Design, 18(3):249–284,

2001.

[139] G. Smith and K. Winter. Proving Temporal Properties of Z Specifications Using Abstraction.

In D. Bert, J. P. Bowen, S. King, and M. Waldén, editors,ZB 2003, volume 2651 ofLecture

Notes in Computer Science, pages 260–279. Springer, 2003.



8.2. FUTURE RESEARCH TRENDS 171
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Appendix A

Glossary of Z Notation

This appendix presents a glossary of the Z notation used in this thesis. The glossary is based on the

glossary of Z notation presented in Hayes [73] with modifications to reflect more closely the more

recent Z notation of Spivey [141].

Mathematical Notation

Definitions and declarations

Let x , xk be identifiers and letT ,Tk be non-empty, set-valued expressions.

LHS == RHS Definition ofLHS as syntactically equivalent toRHS .

LHS [X1,X2, . . . ,Xn ] == RHS

Generic definition ofLHS , whereX1,X2, . . . ,Xn are variables denoting

formal parameter sets.

x : T A declaration,x : T , introduces a new variablex of typeT.

173



Appendix A. Glossary of Z Notation 174

x1 : T1; x2 : T2; . . . ; xn : Tn

List of declarations.

x1, x2, . . . , xn : T == x1 : T ; x2 : T ; . . . ; xn : T

[X1,X2, . . . ,Xn ] Introduction of free types namedX1,X2, . . . ,Xn .

Logic

Let P ,Q be predicates and letD be a declaration or a list of declarations.

true, false Logical constants.

¬ P Negation: “notP ”.

P ∧ Q Conjunction: “P andQ”.

P ∨ Q Disjunction: “P or Q or both”.

P ⇒ Q == (¬ P) ∨ Q

Implication: “P impliesQ” or “if P thenQ”.

P ⇔ Q == (P ⇒ Q) ∧ (Q ⇒ P)

Equivalence: “P is logically equivalent toQ”.

∀ x : T • P Universal quantification: “for allx of typeT , P holds”.

∃ x : T • P Existential quantification: “there exists anx of typeT such thatP holds”.

∃
1
x : T • P Unique existence: “there exists a uniquex of typeT such thatP holds”.

∀ x1 : T1; x2 : T2; . . . ; xn : Tn • P

“For all x1 of typeT1, x2 of typeT2, . . . , andxn of typeTn , P holds.”
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∃ x1 : T1; x2 : T2; . . . ; xn : Tn • P

Similar to∀.

∃
1
x1 : T1; x2 : T2; . . . ; xn : Tn • P

Similar to∀.

∀D | P • Q ⇔ ∀D • P ⇒ Q

∃D | P • Q ⇔ ∃D • P ∧ Q

t1 = t2 Equality between terms.

t1 6= t2 ⇔ ¬ (t1 = t2)

Sets

Let X be a set;S andT be subsets ofX ; t , tk terms;P a predicate; andD declarations.

t ∈ S Set membership: “t is a member ofS ”.

t 6∈ S ⇔ ¬ (t ∈ S )

S ⊆ T ⇔ (∀ x : S • x ∈ T )

Set inclusion.

S ⊂ T ⇔ S ⊆ T ∧ S 6= T

Strict set inclusion.

∅ The empty set.

{t1, t2, . . . , tn} The set containing the values of termst1, t2, . . . , tn .

{x : T | P} The set containing exactly thosex of typeT for whichP holds.

(t1, t2, . . . , tn) Ordered n-tuple oft1, t2, . . . , tn .
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T1 × T2 × . . . × Tn

Cartesian product: the set of all n-tuples such that thek th component is of

typeTk .

first(t1, t2, . . . , tn)

== t1

Similarly, second(t1, t2, . . . , tn) == t2, etc.

{x1 : T1; x2 : T2; . . . ; xn : Tn | P}
The set of all n-tuples(x1, x2, . . . , xn) with eachxk of typeTk such thatP

holds.

{D | P • t} The set of values of the termt for the variables declared inD ranging over

all values for whichP holds.

{D • t} == {D | true • t}

P S Powerset: the set of all subsets ofS .

P
1
S == P S \ {∅}

The set of all non-empty subsets ofS .

F S == {T : P S | T is finite}
Set of finite subsets ofS .

F
1
S == F S \ {∅}

Set of finite non-empty subsets ofS .

S ∩ T == {x : X | x ∈ S ∧ x ∈ T}
Set intersection.

S ∪ T == {x : X | x ∈ S ∨ x ∈ T}
Set union.
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S \ T == {x : X | x ∈ S ∧ x 6∈ T}
Set difference.

⋂
SS == {x : X | (∀S : SS • x ∈ S )}

Intersection of a set of sets;SS is a set containing as its members subsets

of X , i.e. SS : P(P X ).

⋃
SS == {x : X | (∃S : SS • x ∈ S )}

Union of a set of sets;SS : P(P X ).

#S Size (number of distinct members) of a finite set.

Numbers

R The set of real numbers.

Z The set of integers (positive, zero and negative).

N == {n : Z | n ≥ 0}
The set of natural numbers (non-negative integers).

N1 == N \ {0}
The set of strictly positive natural numbers.

m . . n == {k : Z | m ≤ k ∧ k ≤ n}
The set of integers betweenm andn inclusive.

min S Minimum of a set; forS : P
1

Z,

min S ∈ S ∧ (∀ x : S • x ≥ min S ).

max S Maximum of a set; forS : P
1

Z,

max S ∈ S ∧ (∀ x : S • x ≤ max S ).
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Relations

A binary relation is modelled by a set of ordered pairs hence operators defined for sets can be used

on relations. LetX , Y , andZ be sets;x : X ; y : Y ; S be a subset ofX ; T be a subset ofY ; and

R a relation betweenX andY .

X ↔ Y == P(X × Y )

The set of relations betweenX andY .

x R y == (x , y) ∈ R

x is related byR to y .

x 7→ y == (x , y)

{x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn}
== {(x1, y1), (x2, y2), . . . , (xn , yn)}
The relation relatingx1 to y1, x2 to y2, . . . , andxn to yn .

domR == {x : X | (∃ y : Y • x R y)}
The domain of a relation: the set ofx components that are related to some

y.

ranR == {y : Y | (∃ x : X • x R y)}
The range of a relation: the set ofy components that somex is related to.

R1
o
9
R2 == {x : X ; z : Z | (∃ y : Y • x R1 y ∧ y R2 z )}

Forward relational composition;R1 : X ↔ Y ; R2 : Y ↔ Z .

R1 ◦ R2 == R2
o
9
R1

Relational composition. This form is primarily used whenR1 andR2 are

functions.

R∼ == {y : Y ; x : X | x R y}
Transpose of a relationR.
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id S == {x : S • x 7→ x}
Identity function on the setS .

Rk The homogeneous relationR composed with itselfk times: givenR :

X ↔ X ,

R0 = id X andRk+1 = Rk o
9
R.

R+ ==
⋃{n : N1 • Rn}

=
⋂{Q : X ↔ X | R ⊆ Q ∧ Q o

9
Q ⊆ Q}

Transitive closure.

R∗ ==
⋃{n : N • Rn}

=
⋂{Q : X ↔ X | id X ⊆ Q ∧ R ⊆ Q ∧ Q o

9
Q ⊆ Q}

Reflexive transitive closure.

R(| S |) == {y : Y | (∃ x : S • x R y)}
Image of the setS through the relationR.

S ⊳ R == {x : X ; y : Y | x ∈ S ∧ x R y}
Domain restriction: the relationR with its domain restricted to the setS .

S −⊳ R == (X \ S ) ⊳ R

Domain subtraction: the relationR with the elements ofS removed from

its domain.

R ⊲ T == {x : X ; y : Y | x R y ∧ y ∈ T}
Range restriction toT .

R −⊲ T == R ⊲ (Y \ T )

Range subtraction ofT .

R1 ⊕ R2 == (domR2 −⊳ R1) ∪ R2

Overriding;R1,R2 : X ↔ Y .
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Functions

A function is a relation with the property that each member of its domain is associated with a unique

member of its range. As functions are relations, all the operators defined above for relations also

apply to functions. LetX andY be sets, andT be a subset ofX (i.e. T : P X ).

f t The functionf applied tot .

X 7→ Y == {f : X ↔ Y | (∀ x : domf • (∃
1
y : Y • x f y))}

The set of partial functions fromX to Y .

X → Y == {f : X 7→ Y | domf = X }
The set of total functions fromX to Y .

X 7 Y == {f : X 7→ Y | (∀ y : ranf • (∃
1
x : X • x f y))}

The set of partial one-to-one functions (partial injections) fromX to Y .

X  Y == {f : X 7 Y | domf = X }
The set of total one-to-one functions (total injections) fromX to Y .

X 7→→ Y == {f : X 7→ Y | ranf = Y }
The set of partial onto functions (partial surjections) fromX to Y .

X →→ Y == (X 7→→ Y ) ∩ (X → Y )

The set of total onto functions (total surjections) fromX to Y .

X → Y == (X →→ Y ) ∩ (X  Y )

The set of total one-to-one onto functions (total bijections) fromX to Y .

X 7 7→ Y == {f : X 7→ Y | f ∈ F(X × Y )}
The set of finite partial functions fromX to Y .

X 7 7 Y == {f : X  Y | f ∈ F(X × Y )}
The set of finite partial one-to-one functions fromX to Y .
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(λ x : X | P • t) == {x : X | P • x 7→ t}
Lambda-abstraction: the function that, given an argumentx of typeX such

thatP holds, gives a result which is the value of the termt .

(λ x1 : T1; . . . ; xn : Tn | P • t)

== {x1 : T1; . . . ; xn : Tn | P • (x1, . . . , xn) 7→ t}

disjoint[I ,X ] == {S : I 7→ P X | ∀ i , j : domS • i 6= j ⇒ S (i) ∩ S (j ) = ∅}
Pairwise disjoint; whereI is a set andS an indexed family of subsets ofX

(i.e. S : I 7→ P X ).

S partitionsT == S ∈ disjoint∧ ⋃
ranS = T

Sequences

Let X be a set;A andB be sequences with elements taken fromX ; anda1, . . . , an terms of type

X .

seqX == {A : N1 7→ X | (∃n : N • domA = 1..n)}
The set of finite sequences whose elements are drawn fromX .

seq∞ X == {A : N1 7→ X | A ∈ seqX ∨ domA = N1}
The set of finite and infinite sequences whose elements are drawn fromX .

#A The length of a finite sequenceA. (This is just ‘#’ on the set representing

the sequence.)

〈〉 == {}
The empty sequence.

seq
1
X == {s : seqX | s 6= 〈〉}

The set of non-empty finite sequences.
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〈a1, . . . , an〉 = {1 7→ a1, . . . ,n 7→ an}

〈a1, . . . , an〉 a 〈b1, . . . , bm〉
= 〈a1, . . . , an , b1, . . . , bm〉
Concatenation.

〈〉 a A = A a 〈〉 = A.

head A The first element of a non-empty sequence:

A 6= 〈〉 ⇒ head A = A(1).

tail A All but the head of a non-empty sequence:

tail (〈x 〉 a A) = A.

last A The final element of a non-empty finite sequence:

A 6= 〈〉 ⇒ last A = A(#A).

front A All but the last of a non-empty finite sequence:

front (A a 〈x 〉) = A.

rev 〈a1, a2, . . . , an〉
= 〈an , . . . , a2, a1〉
Reverse of a finite sequence;rev 〈〉 = 〈〉.

a/AA = AA(1) a . . . a AA(#AA)

Distributed concatenation; whereAA : seq(seq(X )). a/〈〉 = 〈〉.

A ⊆ B ⇔ ∃C : seq∞ X • A a C = B

A is a prefix ofB . (This is just ‘⊆’ on the sets representing the sequences.)

squash f Convert a finite function,f : N 7 7→ X , into a sequence by squashing its

domain. That is,squash{} = 〈〉, and if f 6= {} thensquash f = 〈f (i)〉 a

squash({i} −⊳ f ), wherei = min(domf ). For example,squash{2 7→
A, 27 7→ C , 4 7→ B} = 〈A,B ,C 〉.
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A ↾ T == squash(A ⊲ T )

Restrict the range of the sequenceA to the setT .

Axiomatic definitions

Let D be a list of declarations andP a predicate.

The following axiomatic definition introduces the variables inD with the types as declared inD.

These variables must satisfy the predicateP. The scope of the variables is the whole specification.

D

P

Generic definitions

Let D be a list of declarations,P a predicate andX1,X2, . . .Xn variables.

The following generic definition is similar to an axiomatic definition, except that thevariables in-

troduced are generic over the setsX1,X2, . . .Xn .

[X1,X2, . . .Xn ]
D

P

The declared variables must be uniquely defined by the predicateP .

Free types

X ::= ident1 | ident2〈〈S 〉〉

Free types allow a new free setX to be introduced as well as defining constructors to generate

elements of the type. The constructors may either be an identifier (ident1) which is an element of

the new type, or a constructor function (ident2) which is a function taking an argument of typeS

and returning an element of the new type. Distinct values of arguments to constructor functions
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return distinct elements of the free type, and distinct constructors generate distinct elements. The

constructors generate all the elements of the type.
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Schema Notation

Schema definition

A schema groups together a set of declarations of variables and a predicate relating the variables. If

the predicate is omitted it is taken to be true, i.e. the variables are not further restricted. There are

two ways of writing schemas: vertically, for example,

S

x : N

y : seqN

x ≤ #y

and horizontally, for the same example,

S == [x : N; y : seqN | x ≤ #y ]

Schemas can be used in signatures after∀, λ, {...}, etc.:

(∀S • y 6= 〈〉) ⇔ (∀ x : N; y : seqN | x ≤ #y • y 6= 〈〉)

{S} Stands for the set of objects described by schemaS . In declarationsw : S

is usually written as an abbreviation forw : {S}.

Schema operators

Let S be defined as above andw : S .

w .x == (λS • x )(w)

Projection functions: the component names of a schema may be used as

projection (or selector) functions, e.g.w .x is w ’s x component andw .y is

its y component; of course, the predicate ‘w .x ≤ #w .y ’ holds.
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θS The (unordered) tuple formed from a schema’s variables, e.g.θS contains

the named componentsx andy .

Compatibility Two schemas are compatible if the declared sets of each variable common

to the declaration parts of the two schemas are equal. In addition, any

global variables referenced in predicate part of one of the schemas must

not have the same name as a variable declared in the other schema; this

restriction is to avoid global variables beingcapturedby the declarations.

Inclusion A schemaS may be included within the declarations of a schemaT , in

which case the declarations ofS are merged with the other declarations of

T (variables declared in bothS andT must have the same declared sets)

and the predicates ofS andT are conjoined. For example,

T

S

z : N

z < x

is equivalent to

T

x , z : N

y : seqN

x ≤ #y ∧ z < x

The included schema (S) may not refer to global variables that have the

same name as one of the declared variables of the including schema (T).

Decoration Decoration with subscript, superscript, prime, etc: systematic renaming of

the variables declared in the schema. For example,S ′ is

[x ′ : N; y ′ : seqN | x ′ ≤ #y ′].

¬ S The schemaS with its predicate part negated. For example,

¬ S is [x : N; y : seqN | ¬ (x ≤ #y)].



Appendix A. Glossary of Z Notation 187

S ∧ T The schema formed from schemasS andT by merging their declarations

and conjoining (and-ing) their predicates. The two schemas must be com-

patible (see above).

GivenT == [x : N; z : P N | x ∈ z ], S ∧ T is

S ∧ T

x : N

y : seqN
z : P N

x ≤ #y ∧ x ∈ z

S ∨ T The schema formed from schemasS andT by merging their declarations

and disjoining (or-ing) their predicates. The two schemas must be compat-

ible (see above). For example,S ∨ T is

S ∨ T

x : N

y : seqN
z : P N

x ≤ #y ∨ x ∈ z

S ⇒ T The schema formed from schemasS andT by merging their declarations

and taking ‘predS ⇒ predT ’ as the predicate. The two schemas must be

compatible (see above). For example,S ⇒ T is

S ⇒ T

x : N

y : seqN
z : P N

x ≤ #y ⇒ x ∈ z

S ⇔ T The schema formed from schemasS andT by merging their declarations

and taking ‘predS ⇔ predT ’ as the predicate. The two schemas must be

compatible (see above). For example,S ⇔ T is
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S ⇔ T

x : N

y : seqN
z : P N

x ≤ #y ⇔ x ∈ z

S \ (v1, v2, . . . , vn)

Hiding: the schemaS with variablesv1, v2, . . . , vn hidden – the variables

listed are removed from the declarations and are existentially quantified in

the predicate. The parantheses may be omitted when only one variable is

hidden.

S ↾ (v1, v2, . . . , vn)

Projection: The schemaS with any variables that do not occur in the list

v1, v2, . . . , vn hidden – the variables are removed from the declarations and

are existentially qualified in the predicate. For example,(S ∧ T ) ↾ (x , y)

is

(S ∧ T ) ↾ (x , y)
x : N

y : seqN

(∃ z : P N •
x ≤ #y ∧ x ∈ z )

The list of variables may be replaced by a schema; the variables declared

in the schema are used for projection.

∃D • S Existential quantification of a schema.

The variables declared in the schemaSthat also appear in the declarations

D are removed from the declarations ofS. The predicate ofSis existentially

quantified overD. For example,∃ x : N • S is the following schema.
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∃ x : N • S

y : seqN

∃ x : N •
x ≤ #y

The declarations may include schemas. For example,

∃S • T

z : N

∃S •
x ≤ #y ∧ z < x

∀D • S Universal quantification of a schema.

The variables declared in the schemaSthat also appear in the declarations

D are removed from the declarations ofS. The predicate ofSis universally

quantified overD. For example,∀ x : N • S is the following schema.

∀ x : N • S

y : seqN

∀ x : N •
x ≤ #y

The declarations may include schemas. For example,

∀S • T

z : N

∀S •
x ≤ #y ∧ z < x

Operation schemas

The following conventions are used for variable names in those schemas which represent operations,

that is, which are written as descriptions of operations on some state,

undashed state before the operation,
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dashed state after the operation,

ending in “?” inputs to (arguments for) the operation, and

ending in “!” outputs from (results of) the operation.

The basename of a name is the name with all decorations removed.

∆S =̂ S ∧ S ′

Change of state schema: this is a default definition for∆S . In some spec-

ifications it is useful to have additional constraints on the change of state

schema. In these cases∆S can be explicitly defined.

ΞS =̂ [∆S | θS ′ = θS ]

No change of state schema.

Operation schema operators

preS Precondition: the after-state components (dashed) and the outputs (ending

in “!”) are hidden, e.g. given,

S

x?, s, s ′, y ! : N

s ′ = s − x? ∧ y ! = s ′

preS is,

preS

x?, s : N

∃ s ′, y ! : N •
s ′ = s − x? ∧ y ! = s ′

S ; T Schema composition: if we consider an intermediate state that is both the

final state of the operationS and the initial state of the operationT then
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the composition ofS andT is the operation which relates the initial state

of S to the final state ofT through the intermediate state. To form the

composition ofS andT we take the pairs of after-state components ofS

and before-state components ofT that have the same basename, rename

each pair to a new variable, take the conjunction of the resulting schemas,

and hide the new variables. For example,S ; T is,

S ; T

x?, s, s ′, y ! : N

(∃ ss : N •
ss = s − x? ∧ y ! = ss

∧ ss ≤ x? ∧ s ′ = ss + x?)
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Appendix B

Syntax of Live Sequence Chart

< LSCSpec > ::= lscspec < ChartDefList >< InstVariList > endlscspec

An LSC specification contains a set of charts and a list of variables.

< ChartDefList >

::=< ChartDef >; < ChartDefList >|

< ChartDef > ::=< ExtChartDef >|< UnvChartDef >

A chart is a universal one or an existential one.

< ExtChartDef >

::= extchart < LSCName >< InstDefList > endextchart

An existential chart is identified with its name and made up of a set of

instances.

< UnvChartDef >

::= unvchart

< LSCName >< PrechartDef >< InstDefList >

endunvchart

A universal chart is preceded with a pre-chart.

193
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< PrechartDef >

::= prechart < InstDefList > endprechart

A pre-chart contains a set of instances.

< InstDefList > ::=< InstDef >; < InstDefList >|

< InstDef > ::= instance < InstName >< LocationDefList > endinstance

An instance has a name and is made of a sequence of locations.

< LocationDefList >

::=< LocationDef >; < LocationDefList >|

< LocationDef >

::= hotlocation < HotLocationDef > endhotlocation |
coldlocation < ColdLocationDef > endcoldlocation |
subchart < Subchart > endsubchart

A location is either a hot one or a cold one or a compositional one.

< HotLocationDef >

::=< EventDef >|< CoregionDef >|< ConditionDef >

A hot location may be labeled with an event, a condition or a coregion.

< ColdLocationDef >

::=< EventDef >|< CoregionDef >|< ConditionDef >

< SubchartDef >

::=< LocationDefList >

A sub-chart contains a sequence of locations.

< CoregionDef >

::= coregion < EventDefList > endcoregion

A coregion may contain multiple events.
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< EventDefList >

::=< EventDef >; < EventDefList >|

< ConditionDef >

::= hotcondition < Condition > endhotcondition |
coldcondition < Condition > endcoldcondition

< EventDef > ::=< ActionDef >|< MessageDef >|< TimerEventDef >

An event labeled with a location is either an local action or a message or a

timer event.

< ActionDef > ::= action < Action > endaction

< MessageDef > ::= hotmessage < HotMessageDef > endhotmessage |
coldmessage < ColdMessageDef > endcoldmessage

A message can be either hot or cold.

< TimerEventDef >

::=< SetTimerDef >|< TimeOutDef >|< EndTimerDef >

A timer event is either a set timer event or a time out or an end timer event.

< HotMessageDef >

::=< InputDef >|< OutputDef >

A message event is either an input or output.

< ColdMessageDef >

::=< InputDef >|< OutputDef >

< SetTimerDef >

::= settimer < Clock >< Duration > endsettimer

< TimeOutDef >

::= timeout < Clock > endtimeout
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< EndTimerDef >

::= endtimer < Clock > endendtimer

< InputDef > ::= input < Message > from < InstID > endinput

< OutputDef > ::= output < Message > to < InstID > endoutput

< InstID > ::=< InstName >| env

< InstVarList > ::= instvari < InstName >< VarList > endinstvari

< VarList > ::=< VarDef >; < VarList >|

< VarDef > ::= vari < Variable >< TypeDef > endvari

< Action > ::= setstate < Variable >< Value > endsetstate


