
Name: Gu Tao
Degree: Doctor of Philosophy
Dept: Department of Computer Science
Thesis Title: A Semantic Approach for Scalable and Self-organized Context-aware
Systems

Abstract

In this thesis, we investigate and study on a set of core infrastructure services to

simplify the task of building reliable and scalable context-aware applications in

pervasive computing environments. Particularly, we focus on two problems:

Providing a scalable and robust context lookup service in wide-area networks, and an

efficient context processing mechanism. To tackle these problems, we propose a

semantic P2P overlay network for efficient context lookup, and a distributed logical

reasoning mechanism for context interpretation. We carry out comprehensive

simulations to evaluate the performance of the proposed overlay network. The results

show that our system possesses good scalability, better search efficiency and low

overlay maintenance overhead. We also develop a working prototype system to

demonstrate how our proposed techniques work in a practical way, and build several

typical context-aware applications on top of our prototype. Our experiences show that

our system works effectively in a real-world setting and the application development

process is greatly simplified.

Keywords: Context-aware computing, Context model, Context ontologies, Semantic

P2P lookup, Query routing, Subscription, Context reasoning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A SEMANTIC APPROACH FOR SCALABLE AND

SELF-ORGANIZED CONTEXT-AWARE SYSTEMS

GU TAO

NATIONAL UNIVERSITY OF SINGAPORE

2005

A SEMANTIC APPROACH FOR SCALABLE AND

SELF-ORGANIZED CONTEXT-AWARE SYSTEMS

GU TAO
(B.Eng., HUST and M.S., NTU)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2005

 i

Acknowledgements

I would like to thank my supervisors, Dr. Pung Hung Keng (Associate Professor,

School of Computing, National University of Singapore), Dr. Andreas Fasbender

(Director of Ericsson Cyberlab Singapore) and Dr. Zhang Daqing (Institute of

Infocomm Research). Their guidance, experience and encouragement have been

invaluable for my research. I appreciate all of their support, suggestions and

comments throughout the work. I also want to thank Dr. Dong Jin Song and Dr. Ooi

Wei Tsang for their many useful comments and their time in reviewing this thesis.

I would like to thank all members in the Networks Systems and Services Lab

(previously named Center for Internet Research) including He Jun, Peng Bin, Zhou

Lifeng, Feng Yuan, Qian Haichun and Yao Jiankang. In particular, I would like to

thank Edmond Tan who has been spending his time discussing with me some research

and implementation issues related with this work.

Last but not least, I would like to thank my parents, Gu Weiyi and Wang Meiyun, my

sister Gu Qi for their unwavering support and encouragement. My special thanks go

to my wife Yang Yanfang. I am indebted to my wife Yanfang and my two lovely kids,

for their love, and for more than I will ever be able to express.

 ii

Table of Contents

Acknowledgments...i

Table of contents..ii

Summary ..vii

Publications...ix

Papers submitted for review..xi

List of tables...xii

List of figures... xiii

1 Introduction ...1

1.1 Understanding context in pervasive computing ...2

1.1.1 Context definition ..2

1.1.2 Characteristics of context information...3

1.2 Functional requirements of system's infrastructure for context-aware

computing...6

1.3 Problem statement ..10

1.4 Our Approach ...12

1.4.1 Ontology-based context modeling ...12

1.4.2 A semantic Peer-to-Peer overlay ...12

1.4.3 Distributed context reasoning ..15

1.4.4 Research methodology...15

1.5 Thesis contributions and outline...16

2 Related work ...18

2.1 Context-aware systems ...18

2.1.1 Existing infrastructure-based systems..19

2.1.2 Summary ..24

2.2 Information retrieval...25

2.2.1 The centralized approach ...25

 iii

2.2.2 The P2P approach ..25

2.2.2.1 Unstructured P2P systems..26

2.2.2.2 Structured P2P systems...28

2.2.2.3 Semantic P2P systems..29

2.2.3 Summary ..32

3 Context modeling and reasoning...33

3.1 Motivation and our context modeling approach...33

3.2 An ontology-based context model..34

3.3 Context ontologies..35

3.4 Context reasoning ...37

3.4.1 Ontology reasoning..37

3.4.2 User-defined rule-based reasoning ..38

3.4.3 Reasoning performance and discussion ...39

3.5 Summary...41

4 P2P context lookup..43

4.1 Architecture overview ..43

4.2 Ontology-based semantic clustering...46

4.3 ContextBus ...49

4.3.1 Bootstrapping...51

4.3.2 Routing...52

4.3.3 Discussion ..52

4.4 Semantic Context Space ...53

4.4.1 Peer placement ...53

4.4.2 Cluster naming scheme ..55

4.4.3 Ring construction ...55

4.4.4 Cluster splitting and merging...56

4.4.5 The routing algorithm ..58

4.4.6 Subscription ...63

4.4.7 Peer dynamics and failure..66

4.5 Performance evaluation and comparison..67

4.5.1 Simulation model ...68

4.5.2 Performance metrics ..70

 iv

4.5.3 Simulation results ..70

4.5.3.1 Search efficiency...70

4.5.3.2 Overheads ...73

4.5.3.3 Clustering effects ..75

4.5.3.4 Selection of shortcuts..78

4.5.3.5 Load balancing..79

4.6 Summary...79

5 Cost-aware selective flooding ...81

5.1 Related work...83

5.2 Neighborhood link cost measurement ..86

5.3 Basic routing algorithm ..87

5.4 Routing decision mediation ..91

5.5 The main algorithm ..92

5.6 A case study..95

5.7 Performance evaluation ..98

5.7.1 Simulation model and metrics ...98

5.7.2 Simulation results ..99

5.8 Summary...101

6 Prototype implementation ...102

6.1 Overview ..103

6.2 Bootstrapping..104

6.2.1 Semantic cluster mapping ..105

6.2.2 SWebCache..107

6.2.3 Connection ...109

6.2.4 Reference registration ..113

6.3 Message receivers...114

6.4 Message forwarding and processing...115

6.4.1 Message forwarding...116

6.4.2 Message processing ...117

6.5 Search and subscription ..118

6.5.1 Query types ..119

6.5.2 Query messages ...119

 v

6.5.3 QueryHit messages ..120

6.5.4 Subscriptions..121

6.6 LookupClient ..122

6.6.1 Initiating queries ..123

6.6.2 Receiving query responses...123

6.7 Context Producer ..123

6.7.1 Initiating queries ..124

6.7.2 Sensor management ...125

6.7.3 Context data management..127

6.7.4 Query management ..128

6.7.4.1 Local context lookup...128

6.7.4.2 Subscription acceptance..129

6.7.4.3 Subscription response ...130

6.8 Context Interpreter..131

6.8.1 Deduced query registration ..132

6.8.2 Rule management...133

6.8.2.1 Determination of matching rules ...134

6.8.2.2 Rule instantiation ...134

6.8.3 Deduced query management..135

6.8.4 Context data reasoning...136

6.8.4.1 Internal query generation ..136

6.8.4.2 High-level context data derivation..136

6.9 Development of context-aware applications ..137

6.9.1 SCS APIs ...138

6.9.2 Sample context-aware applications..138

6.9.2.1 SmartHome application ...139

6.9.2.2 ShoppingAssistant application...145

6.9.3 Other scenarios and ongoing work ..147

6.10 Prototype evaluation ...148

6.10.1 The prototype testbed...148

6.10.2 Bootstrapping...151

6.10.3 Dynamic characteristic ...153

6.10.4 Query response time ..154

6.10.5 Query processing capability...157

 vi

6.10.6 Improving deduced query processing ..158

6.10.7 Memory consumption for deduced query processing............................162

6.10.8 Validation of our simulation model ...163

6.11 Summary...164

7 Conclusion and future work ..165

7.1 Summary...165

7.2 Future work...166

Bibliography ..170

Appendix A – The upper ontology and a set of domain-specific ontologies.............180

Appendix B – User-defined rules in the SmartHome application190

Appendix C – An example of domain-specific context ontologies such as grocery

store, book store and child care center used in the ShoppingAssistant

application..192

Appendix D – Sample queries used in prototype evaluations197

 vii

Summary

The advancement of context-aware computing allows users, devices and services to

be aware of and automatically adapt to their physical and computational environments.

In recent years, many context-aware systems have been built to meet the required

levels of autonomy and flexibility for advanced applications. Context information

plays a key role in proliferating and enmeshing computation into our lives.

In this thesis, we aim to provide infrastructure support for designing scalable and self-

organized context-aware systems, and easing the development of context-aware

applications over multiple context spaces. We identify a set of core services – context

lookup and context processing, coupled with a context representation model, and

propose solutions for each of them. For context modeling, we propose an ontology-

based model to represent context information in a machine-understandable and

machine-processable fashion. For context lookup, we propose a semantic P2P overlay

network to provide users and applications with an efficient lookup service. We

develop various techniques to meet scalability and dynamicity requirements such as

an ontology-based semantic clustering scheme for fast semantic abstraction, a one-

dimensional ring space for reducing overlay maintenance cost and enabling efficient

routing, cluster splitting and merging for self-scaling to number of context producer

peers, a cost-aware selective flooding algorithm for minimizing redundant query

messages, and a context push service for notifying context consumers about changes

quickly. For context processing, we propose a distributed logical reasoning approach

to interpret various contexts. Through logical reasoning, we are able to raise the level

of context abstraction based on users' or applications' needs. Context reasoning is

 viii

done in a distributed fashion because a centralized reasoning engine may not be

scalable (due to the single processing bottleneck and the single point of failure).

Comprehensive simulations show that our proposed lookup system offers better

search efficiency and incurs low overlay maintenance overhead when comparing with

other similar systems. It has good scalability and load balancing characteristics, and is

self-organized in nature. We develop a working prototype system to demonstrate how

our proposed techniques work practically. The evaluation results of the prototype

show that our system works effectively in a real-world setting. We also develop

several typical context-aware applications to illustrate the development process. Our

experiences show that the application development process is greatly simplified with

our approach. This is because the application developers need only focus on

application-level tasks without wasting time and efforts on low-level details.

 ix

Publications

[1] J. K. Yao, T. Gu, and H. K. Pung. A Jini-based Service Location Manager in

OCTOPUS. In Proceedings of the 7th IASTED International Conference on

Internet and Multimedia Systems and Applications (IMSA 2003), Honolulu,

Hawaii, August 2003.

[2] T. Gu, H. C. Qian, J. K.Yao, and H. K. Pung. An Architecture for Flexible

Service Discovery in OCTOPUS. In Proceedings of the 12th IEEE

International Conference on Computer Communications and Networks

(ICCCN 2003), Dallas, Texas, October 2003.

[3] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An Ontology-based

Context Model in Intelligent Environments. In Proceedings of Communication

Networks and Distributed Systems Modeling and Simulation Conference

(CNDS 2004), San Diego, California, January 2004.

[4] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology Based Context

Modeling and Reasoning using OWL. In Proceedings of Workshop on

Context Modeling and Reasoning (CoMoRea 2004), in conjunction with the

Second IEEE International Conference on Pervasive Computing and

Communications (PerCom 2004), Orlando, Florida, March 2004.

[5] T. Gu, H. K. Pung, and D. Q. Zhang. A Bayesian Approach for Dealing with

Uncertain Contexts. In Proceedings of the Second International Conference on

Pervasive Computing (Pervasive 2004), in the book "Advances in Pervasive

Computing" published by the Austrian Computer Society, vol. 176, ISBN 3-

85403-176-9, Vienna, Austria, April 2004.

[6] T. Gu, H. K. Pung, and D. Q. Zhang. A Middleware for Context-Aware

Mobile Services. In Proceedings of IEEE Vehicular Technology Conference

(VTC 2004), Milan, Italy, May 2004.

[7] T. Gu, H. K. Pung, and D. Q. Zhang. Towards an OSGi-Based Infrastructure

for Context-Aware Applications in Smart Homes. IEEE Pervasive Computing,

Vol. 3, Issue 4, 2004.

 x

[8] T. Gu, H. K. Pung, and D. Q. Zhang. A Service-Oriented Middleware for

Building Context-Aware Services. Elsevier Journal of Network and Computer

Applications (JNCA), Vol. 28, Issue 1, pp. 1-18, January 2005.

[9] T. Gu, H. K. Pung, and J. K. Yao. Towards a Flexible Service Discovery.

Elsevier Journal of Network and Computer Applications (JNCA), Vol. 28,

Issue 3, pp. 233-248, May 2005.

[10] T. Gu, E. Tan, H. K. Pung, and D. Zhang. ContextPeers: Scalable Peer-to-Peer

Search for Context Information. In Proceedings of the International Workshop

on Innovations in Web Infrastructure (IWI 2005), in conjunction with the 14th

World Wide Web Conference (WWW 2005), Japan, May 2005.

[11] T. Gu, E. Tan, H. K. Pung, and D. Zhang. A Peer-to-Peer Architecture for

Context Lookup. In Proceedings of the International Conference on Mobile

and Ubiquitous Systems: Networking and Services (MobiQuitous 2005), San

Diego, California, July 2005.

[12] T. Gu, H. K. Pung, and D. Zhang. A Peer-to-Peer Overlay for Context

Information Search. In Proceedings of the 14th IEEE International Conference

on Computer Communications and Networks (ICCCN 2005), San Diego,

California, October 2005.

[13] T. Gu, H. K. Pung, and D. Zhang. A P2P Context Lookup Service for Multiple

Smart Spaces, In Proceedings of the International Conference on Mobile

Systems, Applications, and Services (Mobisys 2006), Poster paper. Uppsala,

Sweden, June 2006.

[14] T. Gu, H. K. Pung, and D. Zhang. A Hierarchical Semantic Overlay for P2P

Search. In Proceedings of the INFOCOM 2006, Poster paper. Barcelona,

Spain, April 2006.

 xi

Papers Submitted for Review

[1] T. Gu, H. K. Pung, and D. Zhang. Information Retrieval in Schema-Based P2P

Systems. Submitted to a journal.

[2] T. Gu, H. K. Pung, and D. Zhang. A Peer-to-Peer Approach to Context

Interpretation in Pervasive Computing Environments. Submitted to a

conference.

[3] T. Gu, H. K. Pung, and D. Zhang. ContextPeers: a Distributed Context

Lookup System in Pervasive Computing. Submitted to a journal.

[4] T. Gu, H. K. Pung, and D. Zhang. Minimizing Search Cost in Unstructured

P2P Systems. Under preparation for a journal.

 xii

List of Tables

Table 3.1: A partial RDFS and OWL rule set... 38

Table 3.2: A partial user-defined rule set.. 39

Table 5.1: Node x's routing table .. 87

Table 6.1: Various connection flags ... 112

Table 6.2: The results for the bootstrap process ... 152

Table 6.3: Results on time-to-stability (without backup links)................................... 154

Table 6.4: Different methods for deduced query processing...................................... 159

 xiii

List of Figures

Figure 1.1: Overview of a typical context-aware infrastructure 7

Figure 3.1: A partial context ontology written in OWL ... 35

Figure 3.2: A two-tier approach to context ontologies ... 36

Figure 3.3: A partial definition of domain-specific ontologies..................................... 37

Figure 3.4: Performance of context reasoning.. 40

Figure 3.5: Reasoning comparison ... 41

Figure 4.1: An example of semantic cluster mapping .. 48

Figure 4.2: Overview of the ContextBus architecture .. 49

Figure 4.3: One-dimensional ring structure .. 54

Figure 4.4: Query routing ... 60

Figure 4.5: Pseudocode of the search algorithm... 61

Figure 4.6: Subscription acceptance policy .. 64

Figure 4.7: Fraction of nodes contacted per query ... 71

Figure 4.8: Search path length .. 72

Figure 4.9: The effect of parallel search in SCS... 73

Figure 4.10: Search cost.. 74

Figure 4.11: Maintenance cost.. 75

Figure 4.12: Search path length vs. cluster size M ... 76

Figure 4.13: Search cost vs. cluster size M ... 76

Figure 4.14: Costs of node joining/leaving and cluster splitting/merging vs. cluster

size M .. 77

Figure 4.15: Shortcuts... 78

Figure 4.16: Routing load ... 79

 xiv

Figure 5.1: Unnecessary query messages in a Gnutella-like network 82

Figure 5.2: Link cost measurement and exchange messages.. 86

Figure 5.3: Optimized paths for a 3-loop with source node x....................................... 88

Figure 5.4: Optimized paths for a 4-loop with source node x....................................... 90

Figure 5.5: Optimized paths for an n-loop where n = 5.. 91

Figure 5.6: Main CASF algorithm.. 94

Figure 5.7: A case study.. 96

Figure 5.8: Effectiveness of the CASF algorithm... 99

Figure 5.9: Bandwidth consumption... 101

Figure 6.1: Classes responsible for connecting to the SCS network 105

Figure 6.2: Screen shot of an SWebCache.. 109

Figure 6.3: Structures of Join and JoinReply messages.. 110

Figure 6.4: Screen shot of connections ... 113

Figure 6.5: Classes responsible for message forwarding and processing................... 116

Figure 6.6: Structure of Query message ... 120

Figure 6.7: Structure of QueryHit message .. 120

Figure 6.8: Class diagram of LookupClient.. 122

Figure 6.9: Classes responsible for context data and query management 124

Figure 6.10: GUI of Context Producer for searching and subscribing context data... 125

Figure 6.11: GUI of Context Producer for sensor management 126

Figure 6.12: GUI of Context Producer for sensor value selection.............................. 127

Figure 6.13: Screen shot of a subscription response... 131

Figure 6.14: Classes responsible for context data reasoning 132

Figure 6.15: Screen shot of incoming subscriptions for all deduced queries in a

Context Interpreter .. 133

 xv

Figure 6.16: Screen shot of the SmartHome application .. 141

Figure 6.17: A sample rule for context reasoning in the SmartHome application 143

Figure 6.18: Skeleton of the code in the SmartHome application 144

Figure 6.19: Scenario of the ShoppingAssistant application 145

Figure 6.20: The physical layout of our prototype testbed ... 149

Figure 6.21: An example of the ring space constructed during the evaluations 150

Figure 6.22: Response time for non-deduced queries... 156

Figure 6.23: Response time for deduced queries .. 156

Figure 6.24: ContextPeer query processing capability ... 158

Figure 6.25: Deduced query processing time ... 160

Figure 6.26: Memory consumption for the different methods.................................... 162

 1

CHAPTER 11

IN T R O D U C T I O N

Emerging pervasive computing technologies provide "anytime, anywhere" computing

by decoupling users from devices [1]. They enable applications to perform tasks on

behalf of users. To allow the user to concentrate on his/her tasks, applications must be

capable of operating in highly dynamic environments. Therefore, all entities (such as

devices, services and agents) in a pervasive environment must be aware of their

contexts, and automatically adapt to changing contexts. This is known as context-

aware computing. Context information is a key for propagating and enmeshing

computation into our lives, and exhibiting the required levels of autonomy and

flexibility in context-aware computing.

The concept of context-aware computing has been around for many years; many

researchers have studied this topic and developed various context-aware applications

to demonstrate their benefits in different aspects to human livings. For examples, a

context-aware mobile phone should automatically into a silence mode when entering

a live concert hall; a context-aware message forwarding application could selectively

display instant messages based on the sender and the nature of the message; in a smart

home environment, a wall-mounted display could turn on and display relevant

information to an approaching user; in health and elderly care applications, an alert to

hospital emergency could be triggered whenever the blood pressure of a patient being

monitored exceeds a certain threshold, or a reminder message could be sent to a

patient at home to remind him taking medicine according to a doctor's e-prescription.

Other examples of context-aware applications include conference assistants, shopping

assistants, context-aware tour guides and community applications.

 2

Early context-aware system prototypes such as Active Badges [2] and Cyberguide [3]

demonstrated the benefits of combining sensing technologies with computational

power in provisioning context-awareness to various applications. However, these

systems have also shown that it is still extremely difficult to design, develop and

maintain robust context-aware applications [4]. The difficulties are primarily due to

the lack of adequate infrastructure support [5]. There are a number of issues that must

be resolved in a context-aware infrastructure, including handling diverse and

potentially unreliable sensor data, dealing with context acquisition and representation,

maintaining system interoperability, and resolving the basic difficulties involved in

building a reliable distributed system, etc.

1.1 Understanding context in pervasive computing

The term context is widely used with a variety of meanings. In this section, we define

the meaning of "context" and "context information" to be used throughout this thesis.

We also identify some characteristics of context information that are important to the

design of context-aware systems.

1.1.1 Context definition

Context has commonly been characterized as an application's environment or

situation [6][7]; and as a combination of features of the execution environment,

including computing, user and physical features [8]. Dey provides the following

definition [9], which is perhaps now the most widely accepted definition:

Context is any information that can be used to characterize the situation of an entity.

An entity is a person, or object that is considered relevant to the interaction between

a user and an application, including the user and application themselves.

 3

In this thesis, we follow the basic definition of context information proposed by Dey.

Particularly, we view context information as a set of data, which can be acquired

directly from sensors and users, or be derived through some appropriate means.

Examples of context information may include user information (name, address, role,

etc.), location (coordinate, temperature, etc.), computational entity (device, network,

application, etc.), and user activity (scheduled activities, deduced activities, etc.)

1.1.2 Characteristics of context information

Appropriate exploitations of the characteristics of context information can lead to a

better management and use of context information. In the following, we discuss a

number of key characteristics of context information and their implications to the

design of context-aware systems.

i. Context information is widely distributed and highly heterogeneous.

Context information is typically spread over a wide-area network and across different

application domains. They may include a wide range of information resources of

which only a small subset (such as sensed context information) are used in earlier

context-aware applications. More recent applications usually combine multiple types

of context information in their design, such as sensed context information with non-

sensed context information. Non-sensed context information can be classified into

user-defined context information and derived context information. User-defined

context information is often obtained directly from users or applications. Derived

context information is obtained through derivation mechanisms, such as an

aggregation of multiple sources of context data or interpretation of low-level explicit

contexts to obtain a higher level of abstraction. The integration of context information

 4

from such diverse sources will naturally lead to extreme heterogeneity, in terms of the

type of context data and application domains.

To have heterogeneous context information spreading over a network, an appropriate

context model should be used to represent different types of context information so as

to achieve better interpretability and information sharing across different application

domains.

ii. Context information exhibits a range of temporal characteristics

Context information exhibits a range of temporal characteristics, as pointed out by

Henricksen in [10]. It can be classified into static and dynamic information.

Intuitively, static information describes persistent properties and usually remains

unchanged in its lifetime, such as a person's date of birth or the type of a computing

device. In contrast, dynamic information can be highly volatile; for example,

relationships between colleagues typically endure for months or years while a person's

location and activity often change from one minute to the next. Sensed context

information is often dynamic, and is usually updated frequently in response to

continuous or periodic sensor output.

The dynamicity of context information implies that context-aware systems need to

detect and react quickly to context changes. Traditional pull-based context acquisition

techniques may not scale well in the presence of frequent changes of context; push-

based techniques are preferred instead. Moreover, the latter also incurs less overhead

to the system; and how to minimize these overhead is critical to the design of context-

aware systems.

 5

iii. Context information is interrelated and has different levels of precisions

Any context information derived from a source is likely to be related to information

originated from that source. The original information is usually low-level, explicit

context information. For example, a derived person's current activity may depend on

his/her current location, time and date, and his/her surrounding environmental

contexts; such as lighting, noise level, and etc. The interrelationship of context

information suggests that we can derive context information based on low-level and

explicit context information through derivation mechanisms such as logic reasoning.

Context information is imprecise [10]; different types of context information exhibit

different levels of precision. Static context information is usually assigned with a

higher degree of precision, whereas dynamic context information may become staled

if not updated frequently. For example, sensed context information is prone to

inaccuracies as a result of sensing errors, network failures or limitations inherent

within the sensing technology. In addition, when context data changes rapidly, the

delays introduced by the distribution processes and the interpretation processes (that

transforms sensor output into high-level context information) can lead to loss of

accuracy. Derived context information is largely determined by the properties of input

context data; it usually inherits most inaccuracies of its origins. Additionally, the use

of brittle heuristics or the reliance on crude sensor inputs for inferring high-level

context information would lead to further errors. Therefore, it is inevitable that a well-

design context-aware system must also deal with uncertainties of context information.

iv. Sensed context information is normally bound to its producer

Context information can be viewed as a general network resource. However, some

restrictions arise when context information is stored in a network. Sensed context

 6

information is usually bound to its providers [11]. This is because sensed data is

tightly controlled by the type and location of a physical sensor. For example, we can

attach an RFID receiver which is located in a meeting room to a PC and connect this

PC to the Internet. Since the RFID receiver can keep track of any RFID-tagged object

(e.g., a person wearing a RFID tag), this PC can be viewed as a context producer node

which is capable of providing the location context of users (such as John is located in

this room). Subsequently, this location context (i.e., someone is in this room) can be

stored in the node. It is also possible to store this location context in other nodes in the

network; however, the cost of updating user's location context can be very high

especially when the mobility of the person is higher. Hence, an appropriate context

storage model needs to store context data close to where it is generated in the network

[4] (i.e., near the source node).

1.2 Functional requirements of system's infrastructure for context-

aware computing

Research in context-aware computing faces many challenges due to increasing

autonomy of the services, dynamic computing environment, variety of user

requirements and various resource limitations. Over time, the research approach has

been shifted from being application-centric to being infrastructure-centric. The former

is characterized by a horizontal software architecture in which the functions of

context-awareness are tightly coupled with a specific set of applications

[2][3][12][13]; the latter offers context-aware functions as horizontal common

infrastructure services (also known as 'context-aware middleware')

[14][15][16][17][4][18][19], including our earlier work – SOCAM [20]. In this thesis

work, we adopt the infrastructure-based approach to design context-aware systems.

 7

We illustrate the layered structure of a typical context-aware infrastructure in Figure

1.1, and briefly discuss the functionalities of a context-aware infrastructure and the

research challenges they pose.

Figure 1.1: Overview of a typical context-aware infrastructure

i. Context representation

A common model for representing context information is the foundation of any

context-aware system. A well-defined context model should have the ability to

represent and capture different characteristics of context information such as

uncertainty, and provide a common platform for sharing and processing context

information across different context-aware systems and domains. As we will survey in

Section 2.2, many existing context models lack the above features.

ii. Context acquisition

Context acquisition is a mechanism to acquire context data from various sources,

including physical sensors, database servers or web services. As we will discuss in

Section 2.1, compared to earlier context-aware systems [2][3][12][13][14][15],

 8

current context-aware systems [16][17][4][18][19] including our earlier architecture

[20], possess the capability to obtain contexts from heterogeneous sources by

decoupling low-level sensings with high-level context usages. This approach typically

deploys a component called a widget or a context producer to acquire context data.

iii. Context processing

Context processing is to manipulate and process context information. The challenge

of context processing is how to manipulate context information at different levels

(from simple manipulation to sophisticated manipulation) to better meet application

requirements. As we will discuss in Section 2.1, most existing systems manipulate

context information in a simple way, such as aggregating or merging interrelated

context information and transforming different context information. Recent context-

aware applications tend to deal with high-level contexts such as recognition of human

activities. Hence, some advanced interpretation techniques are required to process

related context information to derive high-level and implicit contexts.

iv. Context storage and lookup

Context storage and lookup are mechanisms through which context producers store

their contexts in a network, so that both users and applications can subsequently

locate them across the network. Context lookup typically disseminates context

information using synchronous queries and asynchronous notifications. For any

context-aware application, context lookup (also known as context discovery) is

usually the first step to be taken before users and applications can utilize context

information. Most current context-aware infrastructures either do not support context

lookup or relying on other existing general techniques for locating context, as we will

discuss in Section 2.1. While general discovery techniques offer the basic support for

 9

discovering context, they have not taken into account of the characteristics of context

information (discussed in Section 1.1.2) in their designs; hence, the resulting system

performance will be compromised. The issues we need to consider for context lookup

include: How does the lookup system scale well with large numbers of entities in

wide-area networks? How to minimize the overhead of the lookup system in the

presence of dynamic joining and leaving of context producer nodes? Furthermore,

context lookup is tightly coupled with how context data is stored in the network,

which is either centrally or distributedly. Clearly, the architecture and context storage

model will affect the context lookup.

v. Uncertainty management

As we have discussed in Section 1.1.2, context information is imperfect due to the

limitation of sensing technology, the dynamics of context information, and the

accuracy of context processing. How to handle uncertain contexts and solve context

conflict has been addressed in many context-aware infrastructures [21][22][23][24].

The reliability and usability of context-aware solutions depends partly on how well

uncertainties in context information could be handled satisfactorily. Many research

have been initiated to investigate this problem [21][22][23][24], which is beyond the

scope of this thesis. However, we will have a provision in our context model [25] for

representing uncertainty of contexts, which may be useful for future work.

vi. Context adaptation

Since context information is dynamic, context-aware applications consuming such

information are expected to be able to adapt or response to their changes. Little work

has been done to incorporate mechanisms for supporting adaptation. We do not

elaborate this issue further as it is beyond the scope of this thesis.

 10

vii. Privacy management

Privacy is an important design issue in pervasive computing. A common approach

toward privacy is to provide anonymity or to keep personal information secret from

others. The challenge here is that, from a computer science perspective, privacy is not

a purely technical issue, but also involves aspects of legislation, corporate policy, and

social norms [17]. Furthermore, privacy is a malleable concept in practice, based on

individual perceptions of risks and benefits.

1.3 Problem statement

This thesis addresses the problem of the provision of context-aware infrastructure

support for collaborative context-aware applications over multiple context spaces. It

provides a set of core infrastructure services – wide-area context lookup and

distributed context reasoning, coupled with a context representation model. The

specific problems we seek to address may be briefly summarized as follows:

 How to provide a scalable context lookup service in multiple context spaces.

 How to provide a distributed context reasoning service that is feasible to be

applied in multiple context spaces.

 How to provide a common context model that supports the two core services

(wide-area context lookup and distributed context reasoning) and enables context

sharing between context-aware applications over multiple context spaces.

The reasons that we focus on the two core services are two folds. Firstly, the goal of

context-aware computing is to acquire and utilize context information to build

applications that are appropriate to people, place, time, events, etc [27]. Context data

 11

required by collaborative context-aware application may be spread across multiple

domains in a wide-area network. Hence, wide-area context lookup is the primary task

to accomplish for any context-aware infrastructures that aims for simplifying the

building of collaborative context-aware applications in multiple context spaces. In

addition, advanced context reasoning techniques are necessary to increase the level of

flexibility of such applications. Secondly, as surveyed in Section 2.1, little work has

been done in addressing the above problems in multiple context spaces. Most of

existing context-aware infrastructures adopt a centralized approach for context lookup.

This approach works efficiently in a single context space; however, it may not scale

well in multiple context spaces. Many decentralized lookup systems in peer-to-peer

(P2P) computing, as surveyed in Section 2.2.2, could be applied in wide-area context

lookup. However, in the design of context lookup, we should take into account of the

impacts of different characteristics of context information. For example, frequent

changes of context producer nodes and their context data, or storing sensed context

data away from its source producer node may incur a large amount of communication

overhead, etc. We will further elaborate on these issues related to wide-area context

lookup in Section 1.4.2. Logic reasoning has been proposed to use in context-aware

computing such as in [20][18]; and has shown its usefulness and flexibility to derive

high-level contexts from low-level contexts. However, as surveyed in Section 2.1,

existing centralized or server-based reasoning systems may not scale well in multiple

context spaces. Considering the dynamicity of context information, distributed

context reasoning can be more challenging. For example, since the reasoning engines

can be embedded into the nodes in multiple domains, how to design both pull and

push-based mechanisms to support the reasoning task. Prior to the above two core

services, a common context model has to be established. Our context model aims to

 12

provide supports for wide-area context lookup and distributed context reasoning. In

the next section, we will outline our approaches and highlight the research issues with

respect to each of these problems

1.4 Our Approach

In this section, we present our approach to address each of the problems mentioned

above; a more detailed discussion of our approaches and a comparison to other

approaches will be presented in the related work section.

1.4.1 Ontology-based context modeling

We propose an ontology-based context model [28] in which contexts are represented

as RDF triples. We leverage the advantage of RDF-based data model, for example,

RDF data is machine-understandable and machine-processable. The main benefits of

this model are: First, it is based on an open standard, and hence, not proprietary to any

particular system or platform. Second, it provides the fundamental model for

interpreting context data using logical reasoning. We also propose a hierarchical

design for context ontology, which is essential for both context lookup and reasoning

in multiple context spaces.

1.4.2 A semantic peer-to-peer overlay

To provide a scalable context lookup service over multiple context spaces, we

propose Semantic Context Space (SCS) [29][30], a semantic P2P overlay network in

which context data is organized and retrieved according to their semantics. The basic

idea is to cluster peers based on their data semantics and organize them in a structured

P2P overlay network for efficient routing. In SCS, context data is represented by a

collection of RDF triples based on a set of schemas (i.e., context ontologies). These

 13

triples, in various domains, logically represent the semantics of the context data. Each

context data can be viewed as a point in a multi-dimensional Semantic Context Space.

Context data is stored in a distributed manner in various context producer nodes

where the data is generated. Pieces of context data which are semantically similar are

"tied" together in SCS so that they can be retrieved by a context query which has the

same semantics. As a result, the system is able to forward a query to nodes, which are

likely to contain the relevant context data. This allows for a lower network load and

better search performance.

While the basic idea may appear simple, there are several critical issues that have to

be considered in order to make our proposed scheme work effectively in multiple

context spaces. First, with the increasing use of large amounts of context data by

various applications in pervasive computing, scalability is the most important issue to

consider in the design of any context-aware system. A well-designed overlay network

needs to scale and adapt to the growth of context data. Second, as context data

exhibits a range of temporal characteristics, overlay maintenance cost may rise due to

the frequent changes of peers and their data. How to minimize overlay maintenance

cost is a challenge in the design of the navigation and search mechanisms. Third, due

to the dynamic nature of peers in context-aware systems, mapping context data and

queries to semantic clusters may incur large overheads for the network. How to

extract and obtain the semantics from both context data and queries efficiently and

precisely with less overheads is critical. Fourth, as context data exhibits the

characteristics of heterogeneity, the number of domains to group various context data

and specify queries can be potentially large in real-life applications. As a result, the

number of semantic clusters in SCS could be large. Thus, a well-designed overlay

network needs to be able to facilitate efficient search in a high-dimensional context

 14

space without incurring large overheads. Finally, as context data may change rapidly

in context-aware environments, it is important to notify context consumers

automatically whenever changes occur. Hence, it is important to facilitate an event

notification mechanism to adapt to changes in SCS.

To address these issues, we propose the following techniques in SCS:

 Upon joining the system, peers are grouped and arranged into a one-dimensional

ring space where various semantic clusters are organized and interconnected. The

ring structure enables the mapping of clusters in a k-dimensional semantic space

to a one-dimensional semantic space1, and hence reduces overlay maintenance

overhead.

 We propose a cluster encoding scheme that enables the system to adapt to the

number of peers by splitting or merging clusters. This scheme provides for a

system of good scalability and load balancing characteristics. It also enables the

use of parallelism in our system when searching for data within a semantic cluster.

 We use ontology-based metadata to extract the semantics of data and queries, and

group peers into various semantic clusters. This technique can map data and

queries to the appropriate semantic cluster(s) with minimum computational

overhead despite peers joining/leaving the network frequently and the data

changing often.

 We deploy both pull and push services in SCS. Context consumers can submit

either search requests or subscription requests. The latter allows context

consumers to be notified whenever data changes occur.

1 A semantic space refers to a network in which data are orgnanized based on their semantics.

 15

 Aiming to minimize unnecessary query messages caused by the blinding flooding

mechanism used by nodes within a cluster, we propose a Cost-Aware Selective

Flooding (CASF) technique [31] to reduce redundant query messages. This

technique makes use of two-hop neighborhood and link cost information to ensure

that only necessary messages are flooded across the network. With less query

messages generated, system scalability can be further improved.

1.4.3 Distributed context reasoning

In SCS, we propose a logical reasoning approach to interpret various types of context

data and their properties, and derive high-level and implicit contexts from low-level

and explicit contexts. Using the rule-based logical reasoning, we are able to raise the

level of context abstraction according to users' or applications' requirements. Our

earlier results [20] show that logical reasoning is a computationally intensive process.

Hence, a centralized reasoning engine may not scale up well because of the

processing bottleneck and the single point of failure. Therefore, we adopt a distributed

approach to context reasoning. The reasoning engines can be embedded into various

nodes across different domains with each reasoning engine performing reasoning

tasks using a subset of logical rules and context data in a subset of domains.

1.4.4 Research methodology

In this thesis, we adopt an experimental research method – both simulation and

prototype – to evaluate our system. We use simulation to evaluate the routing and

clustering techniques of SCS on a large scale and compare the performance with other

approaches. To assess practical issues in a real-world setting, we build a prototype

system to demonstrate the working principles of our proposed techniques such as

ontology-based semantic mapping, SCS overlay construction, routing, and push and

 16

pull services. We conduct performance measurements over the prototype system and

use the results to calibrate our simulation models. To validate our infrastructure-based

system, we also develop several typical context-aware applications both in a single

domain and across multiple domains. We show how our system eases the

development process and enables the fast prototyping of various context-aware

applications.

1.5 Thesis contributions and outline

In summary, this thesis makes the following key contributions:

 We propose a set of core infrastructure services to support and simply the building

and maintaining of collaborative context-aware applications in multiple context

spaces. The core services are wide-area context lookup and distributed context

reasoning, coupled with an appropriate context model.

 We propose an ontology-based context model that provides an open platform for

sharing context information across different domains and enables interoperability

of context information exchange. We also propose a hierarchical design of context

ontology for enabling semantic context lookup and logical reasoning in multiple

context spaces.

 We propose a semantic P2P overlay network named SCS to provide users and

applications with an efficient context lookup service. We design various

techniques to meet the requirements of scalability and dynamicity, such as an

ontology-based semantic mapping scheme for fast semantic abstraction, one-

dimensional ring space for reducing overlay maintenance cost and efficient

routing, cluster splitting and merging for self-scaling to number of context

 17

producer peers, cost-aware selective flooding for minimizing redundant query

messages, a context push service for notifying context consumers about changes

quickly.

 We demonstrate the practicality of our system by developing a working prototype

system and implementing various techniques, including distributed context

reasoning. The evaluation results of the prototype show that our system works

effectively in a real-world setting.

 Based on our prototype system, we design and build several typical context-aware

applications in both a single context space and multiple context spaces to validate

our infrastructure-based system. Our experiences show that the development

process is greatly simplified. Application developers need only focus on

application-level tasks without wasting time and efforts on low-level details.

The rest of the thesis is organized as follows. Chapter 2 surveys relevant context-

aware systems and information retrieval systems, and discusses how our approach

differs from others with respect to context modeling, lookup and processing. Chapter

3 describes our ontology-based context model and presents our earlier experimental

results for context reasoning. Chapter 4 describes our semantic P2P overlay network

in detail and presents the simulation results from a range of experiments. Chapter 5

describes the Cost-Aware Selective Flooding technique and presents the simulation

results. In Chapter 6, we describe our prototype implementation of SCS and evaluate

the prototype in close-to-real scenarios. We also demonstrate a number of context-

aware applications in the chapter. Chapter 7 concludes the thesis and identifies

possible future work. Supplemental materials are contained in the appendices.

 18

CHAPTER 22

RE L A T E D WO R K

This chapter surveys and discusses existing context-aware systems developed for

building various context-aware applications. We evaluate each of them and show how

our work differs from previous work. We discuss the three aspects (context modeling,

lookup and processing) of the systems surveyed, and compare them with that of our

approach. We also discuss the existing information retrieval techniques which has

inspired us to the design of SCS – a semantic P2P context lookup system.

2.1 Context-aware systems

There are generally two approaches to build context-aware systems: the application-

specific vertical approach and the infrastructure horizontal approach. Many earlier

context-aware systems focused on building specific context-aware applications in a

particular domain by using the former approach. Although these systems provide real

application examples to demonstrate the usefulness and potential benefits of context-

aware systems, they are difficult to develop and maintain. Recent work in context-

aware systems shifts many of the complex functionalities from applications to

infrastructures, thereby simplifying the construction of robust applications. The

infrastructures perform tasks such as context acquisition, context representation,

persistent storage of context information within servers, context interpretation,

dissemination to applications using synchronous queries and asynchronous

notifications, adaptation, and context privacy control. In the next section, we survey

existing infrastructure-based systems and discuss their strengths and weaknesses. We

 19

summarize our findings and discuss how our approach is related to and different from

them in Section 2.1.2.

2.1.1 Existing infrastructure-based systems

Schilit et al. [14] pioneered the development of infrastructure support for context-

aware computing, by proposing an architecture comprising distributed context servers

called environment servers and user agents. The architecture partitions the context

description among the servers and agents, which stores context information in the

form of simple environment variables. Environment severs maintain information

related to domains such as rooms, project groups or other logical or physical entities

while user agents record context information for each user. In this work, a small set of

context information, i.e., environmental contexts, is used and represented by a simple

context model represented in the form of text variables. The context information is

stored in a centralized server. For context lookup service, the user or application

simply query the centralized server. However, the simple name-value pairs for

representing context data may not meet the level of expressiveness as required by

users and applications. In addition, a centralized server may become a bottleneck

when scaling to a large number of users and applications in multiple context spaces.

In Cooltown [13], a web-based system for context-awareness was proposed.

Cooltown embeds context information within a web-based framework, associating

each entity (a people, place, and thing) with a description retrievable via a URL. A

simple location-based discovery mechanism is used for context lookup, which

involves the use of beacons to transmit the URL of the local environment wirelessly.

Cooltown also provides data transfer between entities so that a user could discover

devices and objects present in the environment. Its context model is informal as

 20

arbitrary information can be embedded in the web pages. This feature, together with

the restrictive discovery mechanism (which is based on the assumption that only

information about the local environment is required at any time), limits the utility of

the model [26]. Rather than presenting HTML-based context data for people, SCS

uses RDF-based data for processing by machines. We also focus on context lookup

issues, aiming to provide a scalable lookup service over multiple context spaces in a

wide-area network.

The Context Toolkit, developed by Dey et al. [15], provides a software framework

and a number of reusable components to support rapid prototyping of sensor-based

context-aware applications. The toolkit defines the following abstract component

types: widgets, which function as software wrappers for sensors; interpreters, which

raise the level of abstraction of context information to better match application

requirements; and aggregators, which collect different types of context information

related to a single entity. Widgets incorporate context information using the persistent

storage of a relational database, and implement an information model based on simple

attributes. By drawing upon standard libraries of reusable components that instantiate

these three abstract types, programmers can easily build applications to enable

context-ware behavior. In their work, Dey et al. identified several important

functionalities that should be supported by any context-aware infrastructure include

context acquisition, context interpretation, and context aggregation. The context

interpreter is able to raise the abstract level of context information, for example,

transforming raw location coordinates to a building and room number. The Context

Toolkit focuses less on the issues of context lookup by assuming the priori knowledge

about the presence of a widget or a context broker. Similar to the concept of context

interpreter in the Context Toolkit, SCS uses logical reasoning to derive high-level

 21

contexts for applications. In addition, we have identified that context lookup is one of

the core services in any context-aware infrastructure, and propose various techniques

to address the issues of context lookup in the presence of multiple context spaces.

Chen et al. proposed a platform, named Solar [16], to support context acquisition,

aggregation and dissemination. This infrastructure is based on the use of a graph

abstraction to specify the structure of their context framework. The graph components

are sources, representing sensors and operators, representing processing components

that perform interpretation and aggregation. Context information traverses the graph

in the form of event streams. Applications produce textual specification of their

context requirements in the form of graphs. In response, Solar creates the required

operators and event subscriptions. Solar also provides a policy driven data

dissemination service based on a multicast tree. Context events are pushed to users

and applications through an application-level multicast tree. A policy propagates in

the overlay with the receiver's subscription request so the policy embeds in every

node of the dissemination path, and multiple receivers' requests incrementally

construct the multicast tree. While Solar focuses more on a context notification

service, SCS provides both pull and push services to better meeting application

requirements. SCS takes a P2P approach by semantically clustering context producers

into a structured P2P overlay for efficient lookup. For context interpretation, Solar

introduces an operator which performs processing functions over incoming context

events, such as converting GPS coordinates in location events into ZIP codes. In

contrast, SCS uses a more expressive context model based on RDF and a logical

reasoning approach for context interpretation.

 22

Hong et al. [4] proposed the Confab infrastructure, which includes the following three

features to simplify the task of building context-aware applications: (i) a flexible and

distributed data store to make it easy to model, store and disseminate context data; (ii)

a context specification language for declaratively stating and processing context needs;

and (iii) reasonable and customizable privacy mechanisms to help protecting context

data of end-users. The context storage consists of a logical context data model, which

provides a logical representation of context information and a physical data store

where the context data is actually stored. While the context service in SCS shares the

similar idea of distributed context storage of Confab in which the context data is kept

close to where it was generated and where it is likely to be used [4], our emphasis is

more on how to provide a scalable P2P lookup service for users and applications over

a possible wide area involving multiple context spaces. Our P2P model also takes into

account the characteristics of context information (e.g., dynamic, sensed context is

bound with its producer, etc.). In addition, the RDF-based context model in SCS has

additional advantages such as basing on an open standard specification language

platform, whereas the proprietary context specification language in Confab may limit

the utility of the model.

Chen et al. [19] proposed the CoBrA infrastructure for context representation,

knowledge sharing and user's privacy control. CoBrA provides a centralized model

where context information is shared by all devices, services and agents in a smart

space. A set of ontologies written in OWL have been developed for an intelligent

meeting room. CoBrA also defines different access control models for protecting the

privacy of users. An access control model consists of a set of inference rules that

CoBrA uses to grant permission for revealing a user's contextual information.

Recently, Chen et al. have also initiated an effort to define standard ontologies for

 23

ubiquitous and pervasive applications [32]. Although many issues are to be resolved

before standardization of ontologies is fessible, we believe their efforts will lead to

wider use of ontologies in context-aware computing. The key difference between the

ontological model in SCS and the one in CoBrA is that we use a two-tier design,

leading to a more flexible use of context ontologies. CoBrA uses a centralized server

called Context Broker to store context information for a single context space; context

lookup is done by querying the server. In contrast, SCS takes a decentralized

approach to context lookup in multiple context spaces.

Ranganathan et al. [18] developed a middleware infrastructure to enable context

awareness in ubiquitous computing environments. They proposed a context model

which is based on first-order logical predicate and marked up in DAML. DAML

encoded context ontologies are used to ensure semantic interoperability between

different agents, as well as between different ubiquitous computing environments.

They used logical reasoning and machine learning techniques to decide application

behavior. The middleware is implemented on top of CORBA [33], and uses CORBA

Naming Service and CORBA Trading Service for context discovery. This requires the

advertisement and request to be constructed in the form of a CORBA object. SCS also

adopts an ontology-based approach for context modeling; in addition, the context

model in SCS addresses issues such as context classification, dependency, quality and

uncertainty. The ontological model of SCS is designed such that it can be easily

extended. Rather than looking at context discovery issues in an application domain,

SCS emphasizes more on cross-domain issues and proposes a fully de-centralized

lookup service. Further more, while the reasoning approach in SCS is based on first-

order logic approach similar to that of [18][19], we study the feasibility of applying

context reasoning in pervasive computing, and propose distributed context reasoning

 24

where each context interpreter only maintains a subset of user-defined rules based on

its capability in an application domain.

Wang et al. [80] proposed a pervasive computing infrastructure named Semanitc

Space that exploits Semantic Web technologies to support explicit representation,

expressive querying, and flexible reasoning of contexts in smart spaces. Their

infrastructure facilitates pervasive computing applications with context-awareness in a

single smart space. While SCS also exploits Semantic Web technologies for context

model and reasoning [28], we aim at providing efficient lookup and distributed

context reasoning in multiple smart spaces. The key difference is that we take a

decentralized approach to context-awareness while Semanitc Space is basically a

centralized infrastructure.

2.1.2 Summary

Context lookup has not been adequately addressed in all the works surveyed so far,

issues related to cross-domains lookup have not been treated at all. This is not

surprising as most context-aware infrastructures have been proposed for single

context space, and have adopted a centralized approach for context lookup, such as in

[18][19]. This approach has limitations such as a single processing bottleneck, which

ultimately leads to a scalability problem; and a single point of failure, which

undermines system robustness. This approach also requires system administration at

the centralized server. In contrast, the emerging P2P computing model seems to

provide a more effective approach for overcoming the limitations we have just noted,

and may potentially offer many advantages to be mentioned later. Any node of a P2P

system can be both a client and a server. Though nodes may associate with different

administrative domains, they are usually not centrally managed and administered.

 25

Nodes may also join and leave the system dynamically. Motivated by the advantages

of P2P systems, we propose a semantic P2P model for context lookup in multiple

context spaces. In the next section, we survey some important lookup related

techniques in the information retrieval literature, and focus our discussion on P2P

information retrieval.

2.2 Information retrieval

In this section, we survey and discuss the related work on information retrieval

systems. We discuss the pros and cons of each system, and highlight how our

approach is different from existing P2P systems.

2.2.1 The centralized approach

Many centralized repositories and lookup systems have been implemented to support

storing, indexing and querying RDF documents, such as RDFDB [34], RDFStore [35],

Jena [36] and Sesame [37]. These centralized RDF repositories typically use in-

memory or database-supported processing, and files or a relational database as the

back-end RDF triple store. RDFDB supports an SQL-like query language while

RDFStore and Jena support SquishQL-style RDF query languages. These systems are

simpler to design and work reasonably fast for low to moderate number of RDF

triples. However, their centralized processing approach is not appropriate for context

lookup in multiple context spaces as we have discussed in previous sections.

2.2.2 The P2P approach

P2P approaches have been proposed to overcome some of the limitations of

centralized approach; they have gained popularity due to their better scalability, fault-

tolerance and self-organizing characteristics. Hence, P2P is a suitable technology for

 26

the development of lookup systems. P2P systems can be generally categorized into

unstructured, structured and semantic P2P systems; they are discussed in the

following sub-sections.

2.2.2.1 Unstructured P2P systems

Unstructured P2P systems can be further classified into hybrid systems, pure systems

and super-peer systems.

Hybrid P2P systems such as Napster [38] rely on centralized index servers for

searching, but its information transfers are still conducted in a P2P fashion. Hence,

peers are equal in downloading information only. While centralized search is

generally more efficient than distributed search, the cost incurred on the single node

housing the centralized index is very high, in addition to the potential shortcomings of

performance bottleneck and single point of failure.

Pure P2P systems such as Gnutella [39] and Freenet [40] do not impose any constraint

on data placement and network topology. These systems rely on some form of

message flooding to search for resources. For example, Gnutella adopts a breath-first

approach to flood requests while Freenet uses a depth-first approach. To prevent the

high cost of flooding the entire network, both systems use a time-to-live (TTL)

mechanism to limit the scope of a search. However, they tend to be inefficient as

query messages are still flooded indiscriminately (i.e., blind-flooding) to the network.

The network traffic generated by complete flooding is making the system unscalable.

Another important source of inefficiency is the bottlenecks caused by the very limited

capabilities of some peers. However, these systems have been widely deployed in real

life because of their flexibility, simplicity, and that they require no complex state

information at each node.

 27

Super-peer systems such as KaZaA [41] consist of super-peers and their clients. A

super-peer is a node that acts as a centralized server to a subset of clients. Clients

submit queries to their super-peers and receive results from it. Super-peers are also

connected to each other as peers in a pure P2P system; they route messages over this

P2P overlay network, and submit and answer queries among themselves or on behalf

of their respective clients. Super-peers are equal in terms of search, and all peers

(including clients) are equal in terms of information download. Super-peer systems

have many advantages over hybrid and pure P2P systems. First, the search is much

faster in super-peer networks since the search of information is now done at a smaller

set of super-peers, each of which has indexed information for its set of peers. For

example, a search which takes O(N) time on a pure/hybrid P2P network, takes O(N/M)

time on a super-peer network (where M is the average number of peers connected to a

single super-peer) [41]. This partly eliminates the problem of message flooding

typically associated with a pure P2P system. Also, super-peers, which are designed to

be more reliable and trustworthy, can monitor the client activities of all peers

connected to them. This ensures that malicious activities can be controlled across the

network. In a pure P2P system, every peer is given equal responsibility irrespective of

its computing/network capabilities. This can quickly lead to deterioration of

performance due to network fragmentation caused by less capable nodes being added

to the network. This problem is alleviated in a super-peer system, as only relatively

powerful computers with sufficient network bandwidth are assigned the status of

super-peers. This ensures that the super-peer network divides loads according to the

capability of peers, leading to overall better performance.

In summary, unstructured P2P systems allow peers to interconnect freely, making it

easy to handle the dynamic changes of peers and their data. These systems do not

 28

impose any structure on the managed resources, and hence have low overlay

maintenance overhead. However, a query has to be flooded to all nodes in the network

including those nodes that do not have relevant data. The blind flooding mechanism

used without any restriction on the scope of flooding can become very inefficient

because of excessive redundant messages. Above all, the fundamental problem that

makes search in these systems difficult is that data is distributed randomly in the

overlay network with respect to its semantics. Given a search request, the system

either has to search all the nodes or run a risk of missing relevant data.

2.2.2.2 Structured P2P systems

Structured P2P systems such as Chord [42], Content-Addressable Networks (CAN)

[43], Tapestry [44] and Pastry [45] typically implement distributed hash tables (DHTs)

and use hashed keys to direct a lookup request to specific nodes by leveraging a

structured overlay network among peers. In these systems, objects are associated with

a key that can be produced by hashing the object name. Nodes have identifiers which

share the same space as the keys. Each node is responsible for storing a range of keys

and corresponding objects. The nodes maintain an overlay network, with each node

having several other nodes as neighbors. When a lookup (key) request is issued from

one node, the lookup message is routed through the overlay network to the node

responsible for the key. Different DHT-based systems construct different overlay

networks and employ different routing algorithms. They can guarantee completing

lookup in a logarithmic number of steps – O(logN) or O(dN1/d) hops and each node

only maintains the information of O(logN) or d neighbors for a network of size N,

where d is the dimension of the hypercube organization of the network. Therefore,

they provide very good scalability.

 29

However, the placement of data in these systems is tightly controlled based on

distributed hash functions, and the overlay maintenance overhead is high in more

dynamic networks. As context data is mobile and dynamic due to frequent joining to

or leaving from the system by peers and changes of context, a higher maintenance

overhead for updating relevant information in DHT-based overlay networks is

inevitable. Moreover, as sensed context data is usually bound with its producer, it may

not be desirable to place/store context data to a particular node based on the hash

value. For example, a user's current location data (e.g., at home) should be stored in a

node at/near his/her home rather than in a node which may be far away based on the

hash value of the data.

Some RDF lookup systems are based on structured DHT-based P2P systems such as

RDFPeers [46] – a scalable and distributed RDF repository proposed by Cai et al.

RDFPeers is organized into a multi-attribute addressable network (MAAN) [47]

which extends Chord to efficiently answer multi-attribute and range queries. When an

RDF triple is inserted into the network, it is stored three times, as a globally-known

hash function is applied to its subject, predicate, and object. Queries can then

efficiently be routed to those nodes in the network where the triples in question are

known to be stored if they exist. However, the overlay maintenance cost is high in this

system in the presence of dynamic peer joining and leaving. In addition, storing each

RDF triple multiple times in the network increases storage cost.

2.2.2.3 Semantic-based P2P systems

Piazza [48] is a P2P data management system that supports interoperation of both

XML and RDF data sources. It addresses the issue of heterogeneity in P2P systems at

the schema level, and allows for information sharing with different schemas relying

 30

on local mappings between schemas. Piazza is based on the pure P2P architecture.

Nejdl et al. proposed Edutella [49][50] which provides an RDF-based metadata

infrastructure for P2P applications. The system builds upon peers that use explicit

schemas to describe their contents. They use super-peer based topologies, in which

peers are organized in hypercubes to route queries. The hypercube topology is similar

to a Gnutella-like unstructured P2P network, with the key advantage that each node in

the hypercube topology only receives a query once. However, in these two systems,

queries have to be flooded to every node, making the system difficult to scale.

Therefore, intelligent routing and network organization strategies are needed in such

networks, to enable queries be routed to a semantically chosen subset of peers.

Crespo et al. [51] proposed the concept of Semantic Overlay Networks (SONs) in

which peers are grouped by the semantic relationships of documents they store. Each

peer stores additional information about content classification and route queries to the

appropriate SONs, increasing the chances that matching objects will be found quickly

and reducing the search load on nodes that have unrelated content. The study in [52]

uses probabilistic analysis to show that multiple overlays, with each devoted to a

particular kind of objects, can improve search performance considerably. However,

the study does not address the routing issue as it ignores the link structure within an

overlay network and represents an overlay network simply by the set of nodes in it.

The maintenance cost in SONs may become more expensive when the number of

SONs increases. While we adopt the basic idea of semantic clustering, we impose

certain link structures on semantic clusters to facilitate both intra-cluster and inter-

cluster routing. We also aim to reduce the overlay maintenance cost incurred by using

high-dimensional overlays.

 31

Tang et al. [53] applied classical Information Retrieval techniques to P2P systems and

built a decentralized P2P information retrieval system called pSearch. The system

makes use of a variant of CAN to build the semantic overlay and uses Latent

Semantic Indexing (LSI) [54] – an extension of Vector Space Model (VSM) [65], to

map documents into term vectors in the space. Li et al. [55][79] built a semantic small

world (SSW) network in which peers with semantically close data are clustered based

on term vectors computed using LSI. They proposed an adaptive space linearization

technique, and constructed link structures based on small world network theory. The

small world network model was originally introduced by Kleinberg [56]. He proposed

a two-dimensional grid where every node maintains four links to each of its closest

neighbors and one long distance link to a node chosen from a probability function. He

showed that a query can be routed to any node in O(log2n) hops, where n is the total

number of nodes in the network. Manku et al. [57] extended Kleinberg's small world

construction by applying distributed hash tables and showed that with s (k > 1) links

per node, the routing latency reduces to O(k
1 log2n).

Our work is inspired by the small world network model. The SCS overlay network

not only maps a k-dimensional semantic space to a one-dimensional semantic space

(through the ring structure), but also allows peers to be grouped into sub-clusters in a

semantic cluster (through the cluster encoding scheme) to better meet the scalability

requirement and to facilitate parallel search. To route queries across clusters in SCS,

we select two long distance links, which are located at certain positions of the ring

space instead of choosing one randomly, as in the small world network model.

Through simulation, we show how these two long distance links improve search

efficiency with a varying number of semantic clusters. Furthermore, we propose the

use of schema-based metadata to extract data semantics, which incurs a lower

 32

overhead than LSI does. We show how these ideas can be applied in a semantic-based

P2P lookup system for locating context information in multiple context spaces.

2.2.3 Summary

We have discussed previously a number of P2P information retrieval approaches. In

these systems, semantic-based P2P systems allow users and applications to retrieve

information that are semantically close to the query. Efficient semantic-based search

is also a key determinant to system scalability.

We use a semantic P2P overlay as our basic design approach, and aim to provide a

scalable, self-organized context lookup system in multiple context spaces. Our

proposed ontology-based semantic clustering technique has several advantages as

compared to other semantic extraction techniques such as VSM and LSI (used in

[53][55][79]). The formal design of ontologies minimizes the problems of synonyms

and polysemy incurred by VSM. Based on ontologies, data and queries can be

mapped to appropriate semantic clusters directly without costly computation as in LSI,

yet the same precision is retained. While we share the similar idea of semantic

clustering as in SONs, we impose certain link structures on semantic clusters for

routing queries efficiently and reducing overlay maintenance cost. We will describe

and evaluate our proposed techniques in detail and compare the performance of our

system to SONs in Chapter 4.

 33

CHAPTER 33

CO N T E X T MO D E L I N G A N D RE A S O N I N G 2

A model for context representation model should be well established to support

context lookup and reasoning services. In this chapter, we first describe the

motivation of our modeling approach and propose an ontology-based context model,

and then we present results of our earlier study on context reasoning based on our

context model.

3.1 Motivation and our context modeling approach

In existing context-aware systems, contexts are often described as strings in

documentations or modeled as software (e.g., Java) objects. This representation model

is not expressive enough, and may depend on its software platform. We propose an

ontology-based context model, which allows us to represent context data and its

semantics independent of programming language, underlying operating system or

application domains. The main benefit of this model is that it enables formal analysis

of domain knowledge for context reasoning using first-order logic, temporal logic,

and other methods.

In our context model, context data is described by ontologies written in OWL [59] –

the web ontology language proposed by W3C's Web Ontology Working Group for the

Semantic Web [58]. We have chosen OWL to realize our context model and to define

our context ontologies for three reasons. First, it is more expressive compared to other

2 The contents of this chapter have been presented in Papers 3 and 8 in the author's publication list.

 34

ontology languages such as RDFS [60]. Second, it has the capability of supporting

semantic interoperability for the exchange and sharing of context knowledge between

different systems; it also enables automated reasoning be used by automated

processes. Third, DAML+OIL [61] has been merged into OWL to become an open

W3C standard.

3.2 An ontology-based context model

In our model, contexts are represented as first-order predicate calculus. The basic

model has the form of a RDF triple, Predicate(subject, value), in which:

 subject ∈S*: set of subject names, e.g., a person, a location or an object.

 Predicate∈V*: set of predicate names, e.g., is located in, has status, and etc.

 value ∈ O*: set of all values of subjects in S*, e.g., the living room, open, close,

empty, and etc.

For example, Location(John, bathroom) represents John is located in the bathroom,

Temperature(kitchen, 120) represents the temperature of the kitchen is 120ºF, and

Status(door, open) represents the door's status is open, etc.

The basic context model can be extended to form a complex context or a set of

contexts by combining the predicate and Boolean operations (union, intersection and

complement). For example, FoodPreference(familyMembers, foodItems), i.e., all

family members' food preferences are a list of food items, can be represented as

FoodPreference(John, FoodList_1) U FoodPreference(Alice, FoodList_2) U

FoodPreference(Tom, FoodList_3).

 35

The structures and properties of context predicates are described in an ontology which

may include descriptions of classes, properties and their instances. The ontology is

written in OWL as a collection of RDF triples, each statement being in the form

(subject, predicate, object), where subject and object are the ontology's objects or

individuals, and predicate is a property relation defined by the ontology. An example

is shown in Figure 3.1.

Figure 3.1: A partial context ontology written in OWL

3.3 Context ontologies

In this section, we present our design of context ontologies. We adopt a two-tier

approach to design our context ontologies. This approach is based on the design

principle of easy extensibility of context ontologies. In addition, the two-tier approach

allows us to perform context reasoning in a distributed fashion. Distributed context

reasoning can overcome the major obstacles of centralized reasoning as we will

discuss in the next section. Our context ontologies are divided into the common upper

ontology for the general concepts, and domain-specific ontologies for different sub-

domains. The common upper ontology is a high-level ontology which captures

 36

general contexts of the physical world in pervasive computing environments. The

domain-specific ontologies are a set of low-level ontologies which define the details

of general concepts and their properties.

For example in Figure 3.2, the upper ontology defines the basic concepts of person,

location, activity, device, network and application. The class ContextEntity provides

an entry point of reference for declaring the upper ontology. One instance of

ContextEntity exists for each distinct user or service. Each instance of ContextEntity

has a set of descendant classes of Person, Location, Activity, Device, Network and

Application. The details of these basic concepts and their properties are defined in the

domain-specific ontologies, which are partially shown in Figure 3.3. The definitions

of the common upper ontology and a set of domain-specific ontologies can be found

in Appendix A.

Figure 3.2: A two-tier approach to context ontologies

 37

Figure 3.3: A partial definition of domain-specific ontologies

3.4 Context reasoning

In this section, we describe the details of context reasoning and present our earlier

experiments on the feasibility study of applying logical reasoning in context-aware

computing. We use logical reasoning which is based on first-order-logic to reason

about context data. There are two kinds of logical reasoning in our system: ontology

reasoning and user-defined rule-based reasoning. We discuss them in the following

sections.

3.4.1 Ontology reasoning

Ontology reasoning is responsible for checking class consistency and implied

relationship, asserting inter-ontology relations when integrating or switching domain-

specific ontologies.

Ontology reasoning includes RDFS reasoning and OWL reasoning. RDFS reasoning

supports all the RDFS entailments described by the RDF Core Working Group. OWL

 38

reasoning supports OWL/lite [59], which includes constructs such as relations

between classes (e.g., disjointness), cardinality (e.g., "exactly one"), equality,

characteristics of properties (e.g., symmetry), and enumerated classes. A set of RDFS

and OWL rules needs to be pre-specified; an example is shown in Table 3.1.

TABLE 3.1: A PARTIAL RDFS AND OWL RULE SET

subClassOf
(?A rdfs:subClassOf ?B), (?B rdfs:subClassOf ?C) ->

(?A rdfs:subClassOf ?C)

subPropertyOf
(?A rdfs:subPropertyOf ?B), (?B rdfs:subPropertyOf ?C) ->

(?A rdfs:subPropertyOf ?C)

TransitiveProperty
(?P rdf:type owl:TransitiveProperty), (?A ?P ?B), (?B ?P ?C) ->

(?A ?P ?C)

Disjointness (?C owl:disjointWith ?D), (?X rdf:type ?C), (?Y rdf:type ?D) ->

(?X owl:differentFrom ?Y)

InverseOf (?P owl:inverseOf ?Q), (?X ?P ?Y) -> (?Y ?Q ?X)

3.4.2 User-defined rule-based reasoning

User-defined rule-based reasoning provides forward chaining, backward chaining and

a hybrid execution model. The forward-chaining rule engine is based on the standard

RETE algorithm [63]. The backward-chaining rule engine uses a logic programming

engine similar to Prolog engines. A hybrid execution mode performs reasoning by

combining both forward-chaining and backward-chaining engines. Table 3.2 shows a

partial rule set based on the forward-chaining rule engine.

 39

TABLE 3.2: A PARTIAL USER-DEFINED RULE SET

(?user rdf:type socam:Person), (?user, socam:locatedIn, socam:Bedroom), (?user,

socam:hasPosture, 'LIEDOWN'), (socam:Bedroom, socam:lightLevel, 'LOW'),

(socam:Bedroom, socam:doorStatus, 'CLOSED') -> (?user socam:status 'SLEEPING')

(?user rdf:type socam:Person), (?user, socam:locatedIn, socam:BathRoom),

socam:WaterHeater, socam:status, 'ON'), (socam:BathRoom, socam:doorStatus, 'CLOSED') -

> (?user socam:status 'SHOWERING')

(?user rdf:type socam:Person), (?user, socam:locatedIn, ?room), (socam:TV,

socam:locatedIn, ?room), (socam:TV, socam:status 'ON') -> (?user socam:status

'WATCHINGTV')

3.4.3 Reasoning performance and discussion

To study the feasibility of applying logical reasoning in context-aware computing, we

evaluate the performance of context reasoning by running the context reasoning

engine on a Pentium II 600MHz PC. In our prototype, the context engine takes about

521 ms to load 96 context instances from various internal context producers, and it

takes about 20 ms to merge these instances with the ontology. The context reasoning

process takes about 1.9 seconds to derive high-level contexts. The context engine is

able to answer queries for derived contexts at the average rate of a few milliseconds

per query. This result shows that logical reasoning is a computationally intensive

process and it may create a bottleneck when it is applied to pervasive computing

domain. Many current pervasive devices may not be able to run the context engine.

 40

To study reasoning performance over difference scales of context knowledge, we

extend the home-domain ontology. In the experiment, we create five datasets with

different sizes of classes and instances. The context engine validates and parses these

OWL expressions into RDF triples and performs the reasoning task. For each dataset,

we measure its average runtime. The result in Figure 3.4 shows that the runtime is

appropriately linear in the scale of context knowledge. Based on this observation, we

are able to improve overall performance by splitting the context reasoning process.

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

no. of classes and instances

ru
nt

im
e

(s
)

Figure 3.4: Performance of context reasoning

To have a better understanding of the reasoning performance, we study the reasoning

process by comparing the two kinds of reasoning which are currently supported –

ontology reasoning and user-defined rule-based reasoning. We measure the runtime of

the two processes with respect to the different scale of context knowledge as shown in

Figure 3.5. The experiment result shows the time taken for ontology reasoning is

much more than that for user-defined rule-based reasoning. This is probably due to

the large set of rules used in ontology reasoning whereas user-defined rule-based

reasoning uses fewer rules. As the rule set for ontology reasoning remains unchanged

 41

once defined, we are able to perform ontology reasoning in advance of a context

query.

0

2

4

6

8

0 500 1000 1500 2000 2500 3000

no. of classes and instances

ru
nt

im
e

(s
)

ontology reasoning
user-defined rule-based reasoning

Figure 3.5: Reasoning comparison

Based on these experiments, we observe that logical reasoning is a computationally

intensive process. Deploying a centralized reasoning engine to reason about context

data in an application domain, which has a large number of context knowledge and

user-defined rules, may result in poor reasoning performances. Distributed reasoning,

where many reasoning engines are deployed in the system based on an application's

requirements, can significantly ease the burden of processing and reduce memory

consumption. The above experiments motivate us to deploy a distributed approach for

context reasoning.

3.5 Summary

In this chapter, we have proposed an ontology-based context model to represent

context data. As we have mentioned, the objective of our context model is to establish

the foundation for our context-aware architecture. We limit our context model to

providing the basic representation model and designing an appropriate context

 42

ontologies. There remain numerous areas for future work. First, how to represent

context classification, dependency, quality of context and uncertainty, and how to use

these representations to reason about context data and solve context conflicts. Many

reasoning techniques reported in the AI literature, such as probabilistic logic,

temporal logic and Bayesian networks, can be applied to perform various context

reasoning tasks. Second, privacy management in context-aware computing is an

important issue. While many researchers such as Hong [17] and Chen [19] have

focused on providing a management framework and solving interaction issues with

users and applications, handling context privacy within the basic context model has

not received enough attention yet. We believe by embedding privacy enforcing

mechanisms into the basic model will allow context privacy issues be managed more

efficiently. We will further discuss these issues in Chapter 7.

In this chapter, we have also evaluated the performance of logical and found it

computational intensive. The experimental results have promoted us to propose a

distributed approach to context reasoning. We will study and evaluate the distributed

reasoning of our prototype implementation in Chapter 6. In the next chapter, we will

describe the design of our P2P context lookup service in multiple context spaces.

 43

CHAPTER 44

P2P CONTEXT LOOKUP3

In this chapter, we describe the P2P context lookup service in SCS. We first present

an overview of SCS, followed by a detailed description of the various techniques we

propose. Finally, we present the performance results of SCS obtained from a range of

simulations. For ease of discussion, we use the terms node and peer interchangeable

in the rest of the thesis.

4.1 Architecture overview

In SCS, a large number of nodes are arranged and self-organized into a semantic

overlay network, in accordance with their semantics. A user or an application can act

as a context producer, a context consumer, or both. Context producers provide various

context data for sharing whereas context consumers submit their context queries and

receive query results. Upon their creations, context producer peers are clustered

according to their data semantics and mapped into a semantic cluster in SCS. Each

peer is responsible for managing its own context data corresponding to a semantic

cluster and publishing the data indices to peers in other semantic clusters. Each index

serves as a node pointer to the physical location of the node where the context data is

stored. The peers within the same cluster are interconnected and may be organized

using any overlay structure. There is no restriction on the type of overlay used within

a cluster. Upon receiving a context query, a peer first pre-processes the query and

obtains the information about the semantic cluster associated with the query, and then

3 The contents of this chapter have been presented in Papers 11, 12 and 14 in the author’s publication
list. The extension of this chapter has been submitted to a journal.

 44

routes the query to an appropriate cluster in SCS. When the query reaches the

designated cluster, it floods the query to all peers within the cluster. Peers that receive

the query do a local search and report the index of the context data that the query is

searching for. Each peer maintains a local context data repository which supports

RDF-based semantic query using RDQL [64].

There are several critical issues to be addressed in the design of SCS. First, to

facilitate semantic context search, we need to extract semantics from both context

data and queries, and cluster peers in accordance with their data semantics. One

solution is to use VSM from the Information Retrieval literature. The semantics of

data objects can be abstracted and identified by Term Vectors. Each element of the

vector represents a particular attribute or a term associated with the data object with

weight reflecting the importance of that term in the given document. The semantic

matching between context data and query is measured by computing the cosine of the

angle between their vectors. However, VSM suffers from two problems: synonymy (a

data object can be referred to in many ways) and polysemy (terms having more than

one meaning). LSI aims to overcome these problems; however, the high

computational and memory requirements of LSI and its inability to compute an

effective dimensionality reduction in a supervised setting limit its applicability [66].

In this paper, we propose using ontologies as semantic metadata to extract data

semantics, and arrange peers into various semantic clusters. The formal design of

ontologies minimizes the problems of synonyms and polysemy. Based on ontologies,

context data and queries can be mapped to appropriate semantic clusters directly

without costly computation as in LSI while the same precision is retained. Then, in

SCS, peers should be organized in such a way that those with semantically similar

data are grouped together. To enable navigation and search across semantic clusters,

 45

an intuitive solution is to construct k-dimensional semantic clusters by connecting

each peer to all dimensions of the corresponding clusters. However, this approach

incurs high maintenance cost for a high-dimensional semantic space due to the highly

dynamic nature of peers in context-aware systems. To address this problem, we

cluster peers and organize them into a ring space which maps a k-dimensional

semantic space into a one-dimensional semantic space. Each peer in SCS keeps track

of a node in each of its two adjacent clusters (i.e., neighbor clusters) so that all

clusters can be interconnected in a ring fashion and navigation across different

clusters becomes possible. To enable a query request to reach other semantic clusters

quickly, each peer also keeps track of a certain number of shortcuts. Next, we need to

retain all the good properties of a well-designed overlay network such as scalability,

load balancing and fault tolerance. To address these issues, we propose a cluster

encoding scheme which allows sub-clustering within a semantic cluster. Peers can be

sub-clustered within a semantic cluster; the cluster splitting and merging mechanisms

can be invoked so that the system can self-adapt to the number of peers. This scheme

also enables us to search context data in parallel within a semantic cluster to improve

search efficiency further.

We describe the ontology-based clustering technique in Section 4.2, and in Section

4.3, we present a simple solution to constructing a k-dimensional space, through

which peers may connect to all dimensions of clusters. In Section 4.4, we describe the

one-dimensional ring structure in detail, including peer placement, cluster naming,

cluster splitting/merging, the routing algorithm and subscription.

 46

4.2 Ontology-based semantic clustering

In this section, we describe how to use ontology to extract the semantics of both data

and queries by using an example of context ontologies. As compared to attribute-

value pairs, this context model has the advantage of enabling semantic representation

and logic reasoning. The semantics of context data are represented by schema, i.e.,

context ontology. Various sets of context data are structured and classified according

to these ontologies. This ontological structure is also exploited to extract query

semantics and formulate context queries. We adopt a two-tier hierarchy in the

ontology design as described in Section 3.3. The upper ontology which defines

common concepts is shared by all peers. Each peer can define its own concepts in its

lower layer ontologies. Different peers may store different sets of lower layer

ontologies based on their application needs. An example of the ontological structure

in context-aware systems is shown in Figure 3.4 in Section 3.3. The leaf nodes in the

upper ontology are used as semantic clusters to cluster peers, and denoted as a set E =

{Service, Application, Devices, . . .}. Each of these pre-defined semantic clusters are

assigned a unique ID upon their presence in the overlay network.

Mapping computation is done locally at each peer. For the mapping of RDF data, a

peer needs to define a set of lower layer ontologies and store them locally. Upon

joining SCS, a peer first obtains the upper ontology and merges it with its local lower

layer ontologies. Then it creates instances (i.e., RDF data), and adds them into the

merged ontology to form its local knowledge base. A peer can map its local data into

one or more semantic clusters by extracting predicates of RDF triples. For example,

as shown in the merged ontology in Figure 4.1(a), we can map predicate locatedIn

into semantic cluster IndoorSpace by checking its rdfs:range if the predicate is of

 47

type ObjectProperty. If the predicate is of type DataTypeProperty, for example,

lightLevel, we will check its rdfs:domain to get the class – Location. As Location is

not a leaf node in the upper ontology, we need to find out its subclasses/superclasses

until the leaf nodes are reached. Finally, lightLevel is mapped into both the

IndoorSpace and OutdoorSpace semantic clusters. To provide more precise mapping,

we make use of the subject and object of an RDF data triple. Let SCnsub , SCnpred and

SCnobj where n = 1, 2, . . . denote the semantic clusters extracted from the subject,

predicate and object of a data triple respectively. Unknown subjects/objects (which

are not defined in the merged ontology) or variables are mapped to E. If the predicate

of a data triple is of type ObjectProperty, we obtain the semantic clusters using

(SC1predU SC2pred U ... SCnpred) I (SC1objU SC2obj U ... SCnobj). If the predicate of a

data triple is of type DatatypeProperty, we obtain the semantic clusters using

(SC1subU SC2sub U ... SCnsub) I (SC1predU SC2pred U ... SCnpred). Examples 1 and 2 in

Figure 4.1(a) show the RDF data triples about the location and light level in a

bedroom provided by a producer peer. In Example 2, we first obtain the semantic

clusters from both the subject and predicate, and then intersect their results to get the

final semantic cluster – IndoorSpace.

 48

I

I

U

IU U

Figure 4.1: An example of semantic cluster mapping

A query follows the same procedure to obtain its semantic cluster(s), but it needs all

the sets of lower layer ontologies. In real applications, users may create duplicate

properties in their lower layer ontologies which conflict with the ones in the upper

ontology. For example, the upper ontology defines the rdfs:range of predicate

locatedIn as Location whereas the lower layer ontology defines its rdfs:range as

IndoorSpace. To resolve this issue, we create two merged ontologies, one for

clustering peers and the other for clustering queries. If such a conflict occurs, we

select the affected properties defined in the lower layer ontology to generate the

merged ontology for clustering peers' data, and select the affected properties defined

in the upper ontology to generate the merged ontology for clustering queries. With

this scheme, a peer can extract the semantics of its data triples more precisely, based

on its lower layer ontology without losing generality for queries. For example,

predicate locatedIn may have the rdfs:range of IndoorSpace (underlined in Figure

4.1(a)) in the merged ontology for clustering peers' data and have the rdfs:range of

Location (underlined in Figure 4.1(b)) in the merged ontology for clustering queries.

 49

Data triple <socam:John socam:locatedIn socam:Bedroom> will be mapped to

IndoorSpace, and query <socam:John socam:locatedIn ?x> will be mapped to

IndoorSpace and OutdoorSpace rather than only IndoorSpace. This is most likely the

case in real life applications.

4.3 ContextBus

In this section, we present a simple approach – ContextBus [30] to construct a k-

dimensional semantic space. ContextBus is an overly network where each ContextBus

ties and manages context producer nodes with semantically similar data. Hence, one

can view the address of a ContextBus as the index to the same category of context

information. By visiting those nodes on one ContextBus or multiple ContextBuses in

parallel or in some order, context queries can be resolved quickly. The basic idea of

ContextBus is similar to SONs. ContextBus allows each peer to connect to all

dimensions of the corresponding semantic clusters to facilitate navigation and search

across these clusters. As shown in Figure 4.2, upon creation, each node may join a

semantic cluster (i.e., ContextBus) by creating a physical connection to an existing

peer in the cluster. A peer may participate in one or more semantic clusters,

depending on the semantics of the context data it stores.

Figure 4.2: Overview of the ContextBus architecture

 50

We recognize that peers have different capability constraints, such as maximum node

degree (i.e., number of active connections per node). There are basically two classes

of peers based on this constraint: high-degree and low-degree. Let M be the maximum

degree of a node and C be the total number of semantic clusters in the system. A peer

node is called a high-degree node if M ≥ C and a low-degree node if M < C. For a

high-degree node, the bootstrap process ensures that it is connected to all semantic

clusters. For a low-degree node, we first connect the node to those semantic clusters

which are semantically similar to the context data stored in the node. This is to ensure

that all the producer nodes within a semantic cluster are interconnected to each other,

so that they can be searched by a query. We then assign at least one remaining

connection of the node to a high-degree node. In this case, the high-degree node can

act as a bridge (note: we call it BridgePeer as shown in Figure 4.2) for the low-degree

node, so that a query can be routed to any other semantic clusters that the low-degree

node is not able to reach by itself. Each peer keeps and maintains a list of direct (i.e.,

one-hop) neighbors. Upon receiving a query, a node extracts the semantic cluster(s)

from the query and determines which semantic cluster to forward the query to. A

high-degree node is able to forward a query to any semantic cluster, and a low-degree

node, if it does not connect to the desirable semantic cluster directly, may forward the

query to a high-degree node for the query to be forwarded to the appropriate semantic

cluster. Once the query reaches the desirable semantic cluster, it will be flooded to all

nodes within the cluster.

In the rest of this section, we describe the bootstrapping process of the ContextBus

architecture and the routing process. We also discuss the drawbacks of this solution.

 51

4.3.1 Bootstrapping

When a new node is created, it first goes through a bootstrapping process to join the

network. A bootstrap server maintains information of available nodes for a certain

region. A node's entry in the bootstrap server is a pair, <nodeID, nodeClass>,

indicating the node's ID and its class (high-degree or low-degree). Entries are grouped

according to the ContextBuses that nodes participate in. Multiple entries may exist

across different ContextBuses as nodes may join multiple ContextBuses.

When a node, say x, joins a ContextBus, it first obtains one or more existing nodes in

this ContextBus from the bootstrap server, and then connects to each of these nodes.

These node's IDs are stored in node x's routing table. A high-degree node will be able

to join all the ContextBuses it wishes to join. A low-degree node will not be able to

do so due to its limited number of available connections. In this case, we first satisfy

those ContextBuses that provide the same type of context data as provided by the

node, and then assign the remaining connections other ContextBuses. This ensures

that a query for a particular type of context data reaches all nodes providing that type

of context data. Here, we assume that the maximum degree of a low-degree node is

more than the number of ContextBuses providing the same type of context data as the

node does. For the assignment of the remaining connections, a low-degree node must

connect to at least one high-degree node. This ensures that a low-degree node is able

to route queries to any ContextBus, either by itself or through a high-degree node.

Recently, researchers in [67] realized the topology mismatching problem limits the

performance of various search and routing techniques. To ensure that ContextBuses

mirror the physical network as much as possible, we perceive that it is more efficient

to perform topology optimization within each ContextBus upon a node joining or

 52

leaving. This optimization requires the knowledge of link costs between every two

nodes. In [68], a technique is proposed to determine these link costs, using the latency

between each node to multiple servers. This technique may be employed to optimize

ContextBus topologies.

4.3.2 Routing

Upon entry to the system, each node x creates a routing table containing a set of node

IDs that are grouped according to ContextBus IDs. These nodes are the direct (or one-

hop) neighbors of node x. As a high-degree node connects to at least one node in each

ContextBus, it can forward any query to any ContextBus. If a query is generated at a

low-capacity node, it forwards the query to a high-degree node if the query is destined

for ContextBuses that it cannot connect to directly. In this case, the high-degree node

acts as a bridge for the low-degree node, routing the query to the appropriate

ContextBuses. The query is then flooded within a ContextBus using Cost-Aware

Selective Flooding, which we will describe in Chapter 5.

4.3.3 Discussion

This approach works well (as we will demonstrate later in our simulation in Section

4.5.3) when the dimensionality of SCS (i.e., the number of semantic clusters in SCS)

is reasonably low. However, the maintenance cost rises when the number of semantic

cluster increases. In addition, as the ratio of low-degree nodes to high-degree nodes

increases, a processing bottleneck may form at the high-degree nodes, and hence,

search efficiency decreases.

 53

4.4 Semantic Context Space

To deal with the efficiency concern of ContextBus as we discussed in Section 4.3.3,

we present here a new approach to reduce maintenance cost, and facilitate efficient

navigation and search in a high-dimensional semantic context space. In SCS, nodes

are organized in such a way that those with semantically similar data are grouped into

a semantic cluster. To enable navigation and search across semantic clusters, an

intuitive solution is to construct k-dimensional semantic clusters by connecting each

node to all dimensions of the corresponding semantic clusters such as in [51] and [30].

However, overlay maintenance cost rises when the number of semantic clusters

increases because each node needs to maintain more nodes in its routing table. We

seek to resolve the problem by using a one-dimensional ring structure to construct the

overlay network, which enables mapping from a k-dimensional semantic context

space into a one-dimensional semantic context space.

4.4.1 Peer placement

Upon joining SCS, a node needs to join an appropriate semantic cluster. We use the

ontology-based semantic clustering technique to extract the semantics of its local

RDF data and then map it to a semantic cluster(s). A node may have more than one

data set each could be mapped into a different semantic cluster. We refer the semantic

cluster of its biggest data set as the major semantic cluster, and the semantic clusters

of its remaining data sets as the minor semantic clusters. We place a node into its

major semantic cluster, and publish the indices of each minor data to its

corresponding minor semantic clusters. This is to ensure a query reaches all the

potential nodes which have the same semantics as that of the query. A node publishes

the indices of its data to the minor semantic cluster(s) as follows: It selects a random

 54

node in each of its minor semantic clusters, and places its indices (i.e., reference

pointers) in these nodes. For example, as shown in Figure 4.3, Peer 1 publishes its

index to semantic cluster SC1 by putting its index to a random node – Peer 3 in SC1.

As a result, a semantic cluster consists of a set of interconnected nodes which are

grouped based on their semantics; and a collection of indices are also stored in these

nodes.

Figure 4.3: One-dimensional ring structure

The above scheme has several positive effects. For example, if a node has

homogeneous data in its local repository, most of its data is categorized into one

corresponding semantic cluster, therefore reducing the cost of publishing data indices.

This is likely to be the case in real applications. Furthermore, many applications are

designed in such a way that a node is likely to query for data available in its nearby

nodes. By placing a node into one particular semantic cluster based on the category of

its majority data, a query can be resolved very efficiently. Note that while we have

only elaborated the joining of a single semantic cluster, the same principle can be

applied by any node for joining multiple semantic clusters.

 55

4.4.2 Cluster naming scheme

To interconnect different semantic clusters, we use one-dimensional ring structure.

With this ring structure, a k-dimensional semantic space can be linearized. To place

semantic clusters into a ring, we need to design an appropriate cluster naming scheme.

In SCS, we distinguish the concepts of cluster and semantic cluster. A cluster refers

to a partition that consists of a set of nodes grouped together, such as C0 in Figure 4.3

(Note: a cluster is also referred to a sub-cluster in this thesis). A semantic cluster

refers to a set of clusters corresponding to the same semantics. For example, cluster

C0, C1, C2, and C3 belong to semantic cluster SC0. We propose our cluster naming

scheme as follows: A Cluster ID which is represented by a k-bit binary string (where

k = m + n) is a unique ID that identifies a cluster in SCS. The first m-bit binary string

(we call it Semantic Cluster ID) is used to identify a semantic cluster. Hence, an SCS

can have a maximum of 2k clusters and 2m semantic clusters. An example of an SCS

which assumes k = 5 and m = 3 is illustrated in Figure 4.3. The rationale behind this

naming scheme is that, for a given query, we need to obtain the appropriate Semantic

Cluster ID (rather than Cluster ID) to match the same semantics of the query.

Semantic clusters can be viewed as an additional layer on top of actual clusters.

Partitioning peers within a semantic cluster into a set of sub-clusters also provides

better load balancing and enables parallel search within the same semantic cluster.

4.4.3 Ring construction

To construct SCS, each node in SCS creates and maintains a set of node entries in its

routing table for message routing. A node, say x, first decides which semantic cluster

to participate in. It then picks a cluster randomly within this semantic cluster to join

by connecting to a number of nodes in this cluster. These node entries (called x's

 56

neighbors in its own cluster) will be maintained in x's routing table. Node x also

creates and maintains two node entries in each of its adjacent clusters. We call these

two nodes x's neighbors in its adjacent clusters. Each node joins the network by

performing this operation, resulting in all the clusters being linked linearly in a ring

fashion. Maintaining two neighbors in adjacent clusters for every node in SCS also

ensures that a query generated at any node can reach any other cluster by navigating

the ring space. However, queries have to be passed around the ring space linearly,

either clockwise or anticlockwise, until the destination semantic cluster is reached.

This approach may not be efficient when the number of semantic clusters is large. To

accelerate search across semantic clusters, node x maintains a set of links to nodes in

other semantic clusters except the two adjacent clusters. These nodes provide

shortcuts (similar to long contacts in the small world network) for x to route a query

to other semantic clusters quickly. For example, in Figure 4.3, x creates and keeps

track of two shortcuts: one points to the opposite semantic cluster (i.e., shortcut to

Peer 5) and the other points to the semantic cluster located in a quarter of the ring

space (i.e., shortcut to Peer 6). In the process of cluster splitting and merging or when

a new semantic cluster is inserted into the ring space, a node needs to update its

neighboring nodes in both its own cluster and its adjacent clusters. However, a node

only needs to update its shortcuts upon the insertion or deletion of a semantic cluster

as a shortcut points to an appropriate semantic cluster rather than a cluster.

4.4.4 Cluster Splitting and Merging

The operations of cluster splitting and merging enable SCS to adapt and scale to a

large number of nodes. Let M represent maximum cluster size. If the size of a cluster

exceeds M, the splitting process is invoked to split the cluster into two. A simple way

 57

of cluster splitting is to partition a cluster into two clusters of equal size without

considering load distribution in the two clusters such as in Chord. To balance the load

during splitting and merging, each node maintains a CurrentLoad which measures the

node's current load in terms of the number of RDF triples and data indices the node

stores. When node x joins the network, it sends a join request message to an existing

node, say y. If y falls into the same semantic cluster that x wishes to join, x joins the

cluster by connecting to y if its cluster size is below M; otherwise, y directs the

request to a node, say z, in the semantic cluster that x wishes to join, and x connects to

z if its cluster size does not exceed M. If the cluster size exceeds M, node y or z (called

an initial node) initiates the splitting process. The initial node first obtains a list of all

nodes in the cluster, which is sorted according to their CurrentLoads. Then it assigns

these nodes in the list to the two sub-clusters alternately. After splitting, we obtain

two clusters of relatively equal load. The initial node is also responsible for generating

a new cluster ID for each of the two sub-clusters. To obtain a new cluster ID, each

node maintains a bit split pointer which indicates the next bit to be split in the n-bit

binary string (where n = k - m). For example, in Figure 4.3, we assume m = 3, n = 2,

and there exists a cluster C4 in the network. Initially the bit split pointer points to the

most significant bit of the n-bit string. When cluster splitting occurs, the bit pointed

by the bit split pointer is split into 0 and 1, and the pointer is moved forward to the

next bit in the n-bit string. Therefore, we obtain cluster IDs C4 and C6, which

correspond to the same semantic cluster SC1. Cluster C4 or C6 can be further split

into C4 and C5 or C6 and C7, and finally the bit split pointer is set to null, indicating

no cluster splitting is allowed. The same mechanism follows for insertion of a new

semantic cluster in SCS. A semantic cluster can be split into a maximum number of 2n

 58

clusters. After splitting, a node updates its cluster ID, the bit split pointer, and the

neighbor lists in both its own cluster and its adjacent clusters.

When node x leaves the network, it first checks whether its cluster size has fallen

below a threshold Mmin. If the current size is above Mmin, x simply leaves the network

by transferring its indices to a randomly selected node in its cluster. Otherwise, this

cluster needs to be merged into one of its neighboring clusters within the same

semantic cluster. The leaving node triggers cluster merging, which is an inversed

process of cluster splitting. To obtain the newly merged cluster ID, the bit split

pointer moves backwards by 1 bit in the n-bit string, and the bit pointed to by the bit

split pointer is set to 0. The nodes in the merged cluster need to perform the same

updating as in the splitting process. For the selection of Mmin, a simple method is to let

Mmin = 1 so that cluster merging is invoked when the last node in a cluster leaves.

However, if there is only one node in a cluster, this node may become a hot spot as all

the nodes in its two adjacent clusters have links to it. The actual value of Mmin should

be determined by the statistics of nodes joining and leaving within this cluster. If the

last node in a semantic cluster leaves, it initiates two messages to all the nodes in its

two adjacent clusters, informing them to update their neighbor lists. Subsequently, the

semantic cluster will be removed from SCS.

4.4.5 The routing algorithm

In this section, we describe the routing operation in SCS. As described above, each

node in SCS maintains a routing table with a set of node entries (in the form of a pair

<NodeID, ClusterID>) in its own cluster, two adjacent clusters and another two

semantic clusters. It also keeps state information about its own cluster, consisting of a

k-bit ClusterID (where k = m + n) which indicates the cluster it resides in, and

 59

ClusterSize which specifies the current size of its cluster. Upon receiving a query,

node x first obtains the destination semantic cluster ID (denoted as D), which is

extracted from the query. Then node x checks whether D falls into its own semantic

cluster by comparing D against the most significant m-bits of its ClusterID. If that is

the case, x floods the query to all the nodes in its own cluster, and also forwards the

query to the nodes in its adjacent clusters corresponding to D. The first node in a

cluster that receives the query is always responsible for forwarding the query to its

adjacent cluster(s) corresponding to D. This is achieved by turning on a special bit –

the first-node flag that is appended to the query message (more details can be found in

Section 6.5.2). In this way, search can be performed in parallel within a semantic

cluster. The forwarding processes are recursively carried out until all the clusters

corresponding to D have been covered and all nodes in each of the clusters have

received the query. Every node, upon receiving a query, checks its local data

repository and returns the matched data and indices. For example, as illustrated in the

top of Figure 4.4(a), if a query is initiated at Peer 1 with D = SC0, Peer 1 first

forwards the query to its neighboring node in its right adjacent cluster – C1, and then

floods the query to all the nodes in its own cluster – C0. The same process is repeated

in cluster C1, C2 and C3. If D falls into node x's adjacent semantic cluster, for

example, in the case of a query generated at Peer 2 with D = SC3 as shown in the

bottom of Figure 4.4(a), Peer 2 will forward the query through its left neighboring

node towards SC3. When the query reaches the destination semantic cluster, it will be

flooded to all sub-clusters – C14 and C12 in SC3. If D neither falls into node x's own

cluster nor its adjacent semantic cluster, x relies on its shortcuts to route the query. A

query can be routed to a semantic cluster which is closer to the destination semantic

cluster quickly with the help of these shortcuts.

 60

Figure 4.4: Query routing

In the design of these shortcuts, we have several options. We need to decide which

semantic cluster a shortcut should point to and how many shortcuts each node should

maintain. One strategy is to create a small number of random shortcuts (i.e., distant

nodes) that is similar to the long contact in the small world network. Each node can

have s shortcuts (s ≥ 1) with the tradeoff that the cost of creating and maintaining

these shortcuts is proportional to s. Upon receiving a query, if the distance between D

and the semantic cluster that its shortcuts point to falls below a threshold – a preset

minimum distance in terms of number of hops – the query is forwarded to the closest

semantic cluster and hops towards the destination semantic cluster. If not, x selects a

shortcut randomly, and forwards the query to the shortcut. The same process is

invoked until the distance to D is below the threshold.

Our approach is based on the observation that a ring space can be equally divided into

several partitions. Each node maintains two shortcuts (s = 2) that are used to partition

the ring space. For example, we can partition a 2m semantic space where m = 3 into

four by creating two shortcuts: one pointing to the opposite semantic cluster and

another pointing to the semantic cluster located in a quarter of the ring space. Given

the maximum cluster size M, the system can have a total of M·2m+n-1 nodes when Mmin

 61

= 1. Let Cx denote the cluster where x resides, and SCx denote the semantic cluster

that Cx corresponds to. SCx can be obtained by truncating Cx to m bits from the most

significant bit. The two semantic clusters SChalf and SCquarter that x's shortcuts point to

are denoted as (SCx + 2i) mod 2m, where i = m - 1, m - 2. To initial a search, x obtains

D based on a query and checks which cluster range (partitioned by x's shortcuts) D

falls into. Then node x forwards the query to the closer semantic cluster through its

shortcut. If D is closer to SCx, node x forwards the query across its adjacent cluster

towards D. A query takes a maximum of 2 + 2m-3 hops to reach the destination

semantic cluster.

Assuming the longest shortcut point to 1/p (p=2i,i=0,1,…) of the ring.

Obtain the destination semantic cluster D based on the query q.

if dist(SCx, D) ≤ p
m

4
2 then

 forward q to x's adjacent cluster towards D;

else if D falls into [SCx, SCquarter] or [SCquarter, SChalf] or [SChalf, SCx] then

 forward q to the semantic cluster that is closer to D

end if

Figure 4.5: Pseudocode of the search algorithm

The search algorithm is shown in Figure 4.5. To illustrate, consider Figure 4.4(b),

where Peer 1 generates a query and computes the destination semantic cluster as SC5.

Peer 1 first realizes that SC5 falls into the interval [SC4, SC0] and SC4 is close to SC5.

Then Peer 1 forwards the query to Peer 5 at C17. As SC5 falls into [SC4, SC6] and

C24 is closer to SC5 as compared to C17, Peer 5 forwards the query to SC6 through

its quarter shortcuts. Finally, the query reaches SC5 and is then flooded in both C22

and C20.

The more shortcuts created to partition the ring space, the finer the granularity we

gain to locate the destination semantic cluster. As a result, we achieve better search

 62

performance in terms of fewer routing hops. However, more shortcuts imply a higher

cost of creating, updating and maintaining the shortcuts. In SCS, we set the number of

shortcuts to two for the reasoning of keeping overlay maintenance cost low. To

partition the ring space in a finer granularity when the number of semantic clusters m

increases, we can place the longest shortcut into different points in SCS. The other

shortcut always points to the middle semantic cluster between SCx and the semantic

cluster that the longest shortcut points to. For example, if we place the longest

shortcut to one-quarter of the ring, the ring space is divided by eight, and so on. We

will evaluate our design decisions in various settings through simulation in Section

4.5.3.4. These shortcuts reduce network diameter and transform the network into a

small world with a polylogarithmic search path length. More generally, the following

theorem obtains the search path length for SCS.

Theorem 1 Given a m-dimensional SCS of N nodes, with maximum cluster size M,

number of bits to identify sub-cluster n and number of shortcuts s, the average path

length for routing across semantic clusters is O(
s
1 log2(22 −⋅ nM

N)1/m).

Proof: We follow a process similar to that in [56] to prove the theorem. In [56],

Kleinberg proved that the optimal setting for shortcuts is fx = 1/xm, where m is the

dimensionality. Thus, in SCS, a peer chooses another peer at distance x as one of its

shortcuts using the pdf: fx = 1/xm for x ∈ [r, 1] where r, the minimum distance of a

shortcut, is the average diameter of a semantic cluster (i.e., the maximum number of

hops between two arbitrary to nodes in a semantic cluster). The average size of a

semantic cluster is
2
M 2n-1, there are altogether 22 −⋅ nM

N semantic clusters in the

system, and each semantic cluster takes charge of N
M n 22 −⋅ portion of the whole

 63

semantic space on average. Therefore, the diameter of each partition r is

approximately (N
M n 22 −⋅)1/m.

We extend the small world network model from 2-dimensional space to m-

dimensional space. We use unit data space in SCS. Since each subspace has side

length r on average, there are 1/r subspaces along each side. The distance between

two clusters along a dimension is the range of [1, 2, ... , 1/r]. Thus, we separate the

search process into phases 1, 2, ... , log(1/r). Let d be the distance from a query

message's current node to the destination, and di = 1/2i. Search is at phase i if di+1 ≤ d

< di. Phase i ends when the message is forwarded to a peer less than di+1 distance

away from the destination. The set of peers less than di+1 distance away from the

destination is denoted as Di+1, whose volume is d m
i 1+ . The largest distance from a peer

at phase i to a peer in set Di+1 is di + di+1. Since a peer has s shortcuts, the probability

that a peer at phase i has contacts to set Di+1 is at least s·d m
i 1+ ·

1++ ii ddf =)/1log(rc
s

⋅

where c is a constant that depends on m. Therefore, a query message

requires s
rc)/1log(⋅ steps to reach the next phase on average. Since there are in total

log(1/r) phases, the total search path length is O(
s
1 log2(22 −⋅ nM

N)1/m). □

4.4.6 Subscription

In addition to search requests which pull data from the network on a one-time basis,

SCS enables consumers to issue subscription requests to the network and be notified

when data changes over a period of time. When a subscription request is generated, it

is first mapped to a semantic cluster (D) and then forwarded to all nodes in D. The

mapping and routing processes of a subscription request are identical to a search

 64

request. When a node in D receives a subscription request, it checks its local RDF

data and decides whether it should accept the request. For example, an application can

subscribe the event John is in the bedroom in the RDF triple form of <socam:John

socam:locatedIn socam:Bedroom> to the network and trigger an action when this

event occurs. As this RDF triple may not exist in the network (John may be in some

other places) at the time of receiving a request, the subscription request may end up

with no producers. To avoid losing potential producers or ending up with many

irrelevant producers, we employ the subscription acceptance policy as shown in

Figure 4.6, and illustrate how it works in context-aware computing and sensor

network domains.

Given a subscription request in the form of a RDF triple pattern <Subs,

Preds, Objs>, a variable in the RDF triple represents any arbitrary

constant.

Let <Subl, Predl, Objl> represents any RDF triple in a peer's local data

set called L.

accept = false; //initialization

for each RDF triple in L

 if Preds is of DatatypeProperty && ((Subs == Subl) ∩ (Preds == Predl))

 == true then

 accept = true;

 break;

 else if Preds is of ObjectProperty &&((Preds == Predl) ∩ (Objs == Objl))

 == true then

 accept = true;

 break;

 end if

end for

if accept == true then

 accept the subscription request;

else

 reject the subscription request;

end if

Figure 4.6: Subscription acceptance policy

 65

Based on this policy, a producer peer attempts to match a subscription request against

its local RDF data. This policy works for a subscription request in the form of any

RDF triple pattern whose subject, predicate or object may take variables. Although

predicates can be specified as variables, this situation seldom occurs since users or

applications are always in favor of more specific events in real-life applications. We

now consider the case that a predicate is specified in a subscription request. If a

subscription request's predicate is of type DatatypeProperty, a producer peer

determines if its local RDF data contains triple(s) with the same subject-predicate pair

as in the request. For example, for a given subscription request <socam:Bedroom

socam:lightLevel 'LOW'>, a producer peer will accept the request if there exists a

RDF triple with subject "socam:Bedroom" and predicate "socam:lightLevel" in its

local data. If a subscription request's predicate is of type ObjectProperty, a producer

peer determines if its local RDF data contains triple(s) with the same predicate-object

pair as the request. For example, for a given subscription request <socam:John

socam:locatedIn socam:Bedroom>, a producer peer will accept the request if there

exists a RDF triple with subject "socam:locatedIn" and predicate "socam:Bedroom"

in its local data.

To understand the rationale behind these decisions, consider a subscription request in

the form of the RDF triple <Subs, Preds, Objs>. Such a triple may be obtained from

raw data generated by a sensor, which could be physical or virtual. In the domain of

sensor networks, a predicate always corresponds to a sensor type. For example,

"socam:locatedIn" corresponds to a physical location sensor and

"socam:participateIn" corresponds to a virtual activity sensor. If Preds is of

DatatypeProperty, Subs should correspond to the target this sensor is monitoring

while Objs should correspond to the sensor output. For example, the RDF triple of

 66

<socam:Bedroom socam:lightLevel 'LOW'> can be interpreted as the output of a light

level sensor monitoring the bedroom's light level. If a producer peer's local RDF data

contains at least one triple with the Subs-Preds pair, it can infer that this producer peer

has the type of sensor specified by this pair. Hence, we can conclude that this

producer peer can provide triples of this same subject-predicate pair. On the other

hand, if Preds is of ObjectProperty, Objs should correspond to the target this sensor is

monitoring while Subs should correspond to the sensor output. In this case, the

producer can provide triples with the same Subs-Preds pair as in the subscription

request.

Once a producer peer accepts a subscription request, it keeps monitoring the request.

Whenever a change/event occurs (i.e., an RDF triple is added or removed), the

producer peer notifies the subscribers when the RDF triple matches the subscription

request. An RDF triple <Subc Predc Objc> is said to match the subscription request if

(Subc == Subs) ∩ (Predc == Preds) ∩ (Objc == Objs) == 1. The routing of

notification traces the exact path of the subscription request in the reverse direction. A

subscriber can unsubscribe an event by sending an unsubscription request directly to

the producers.

4.4.7 Peer dynamics and failure

In dynamic environments, a node may join and leave the system freely. In SCS, to

keep track of its neighboring nodes, a node maintains a number of additional backup

links for every link a node has. The approach has been used in many other P2P

systems such as Pastry and CAN. However, in a highly dynamic system, detecting

link failure during query routing can introduce additional overhead. Moreover, in the

event of all its backup links fail, a node has to re-establish its neighboring links during

 67

search, and this affects search performance. With this approach, a node needs to

inform its neighboring nodes about its leaving and transfer its indices to a randomly

selected node in its cluster before leaving. Another approach is that each node

periodically sends a keep-alive message to each neighboring node such as the ping

message in Gnutella-like overlay networks. If no response is received, the

neighboring node is assumed dead, and a new link needs to be established. Failure

detection is done in an off-line manner to avoid affecting search performance, but this

may increase the overall traffic. In this approach, a node is not required to inform its

neighboring nodes before its leaving. A node leaves the system by simply transferring

its indices. In the above two approaches, when a node is involved in the back route of

a subscription, it has to transfer its back route information to a node in its cluster or

inform the subscriber about its leaving. Both the above two approaches have their

pros and cons, which have to be evaluated carefully before applying to any real-life

application. In the following evaluations, we rely only on backup links to study how

well SCS performs in the presence of failure.

4.5 Performance evaluation and comparison

In this section, we use simulation to evaluate the effectiveness of SCS and compare

SCS with SONs and Gnutella. We show the simulation results of setting various

variables such as m, n, M and shortcut positions, and justify our choices. We first

describe our simulation model and the performance metrics. Then we report the

results obtained from a range of experiments.

 68

4.5.1 Simulation model

To simulate SCS in a more realistic environment, we create two types of network

topologies in our model: physical topology and P2P overlay topology. The physical

topology represents a real-world Internet topology; the P2P overlay topology is built

on top of the physical topology. All peer nodes are a subset of nodes in the physical

topology. Previous studies have shown that both Internet physical topologies [69] and

P2P overlay topologies [77] follow small world and power law properties. We use

BRITE [78] to generate these topologies which are based on the AS model since it has

both small world and power law properties.

We define the parameters used in our simulation as follows: N is network size (i.e.,

the total number of nodes in the network); M is maximum cluster size (i.e., maximum

number of nodes in a cluster); k (k = m + n) is the number of bits to represent a

Cluster ID, where the first m-bit binary string is used to identify a Semantic Cluster

ID , and the last n-bit binary string is used to identify a sub-cluster ID.

The simulation starts with having a pre-existing node in the network and then

performing a series of join operations invoked by incoming nodes. A node joins a

semantic cluster based on its local data and publishes its data indices. Various sets of

RDF data are mapped into different semantic clusters and each semantic cluster is

associated with a unique ID ranging from 0 ~ 2m. RDF data stored in each peer may

be heterogeneous or homogeneous. To evaluate the capability of handling

heterogeneous data in SCS, we introduce a parameter β, which is the ratio of the

number of semantic clusters corresponding to all the local data stored in a node to the

maximum number (2m) of semantic clusters. β falls into the range of 1/2m to 1. When

β = 1/2m, it implies that a node has homogeneous RDF data in its local repository

 69

which is exactly mapped to one particular semantic cluster in SCS. When β = 1, it

implies that a node has heterogeneous RDF data which maps to all the semantic

clusters; however, this case is unlikely to happen in real-life applications. In our

experiments, we set β to 1/2m, 0.25 and 0.5 respectively. The semantic cluster(s) are

selected in random by each node according to β. A node also selects a random node in

each of its minor semantic clusters to publish its indices if necessary. When a cluster

exceeds the maximum size M, it is split into two. This operation may be performed

recursively until the number of sub-clusters reaches 2n. When the network reaches a

certain size, a mixture of node joining and leaving is invoked to simulate the dynamic

characteristic of the overlay network. Each node is assigned with a query generation

rate, which is the number of queries that it may generate per unit time. In our

experiments, each node generates queries at a constant rate. If a node receives queries

at a rate that exceeds its capacity to process them, the excess queries are queued in its

buffer until the node is ready to read the queries from the buffer. Data are randomly

replicated on nodes at a fraction α. A query is selected randomly among different

semantic clusters. When a node initiates a query, it is first mapped to a particular

semantic cluster, then routed to the destination semantic cluster and flooded to all the

sub-clusters in parallel. In our simulation study, we use a Gnutella overlay network to

organize nodes within a sub-cluster. The average outgoing degree of a node in its sub-

cluster is set to 4 by default, and shortcuts are set to half and quarter of the ring space

unless otherwise specified. For the simplicity of generating RDF data in our

simulation model, we use a set of keywords to represent RDF data triples; different

sets of keywords correspond to different semantic clusters.

 70

4.5.2 Performance metrics

In our simulation, we use the following performance metrics to measure the

effectiveness of SCS:

Fraction of nodes contacted per query is the average fraction of nodes contacted for a

query. It captures the efficiency of a lookup system. A smaller fraction of nodes

implies less overhead in the network.

Search path length is the average number of hops traversed by a query to the

destination.

Search cost is the average number of query messages incurred during a search

operation in the network.

Maintenance cost is the average number of messages incurred as a result of a node

joining or leaving the network. It includes the costs of node joining and leaving,

cluster splitting and merging, and index publishing. We measure these costs in terms

of number of messages.

Routing load is the average number of query messages that a node processes.

We present our simulation results in the following sections. For each experiment, we

run the simulator 10 times. The average results of the 10 runs are presented.

4.5.3 Simulation results

4.5.3.1 Search efficiency

The efficiency of executing a search request is captured in the fraction of nodes

contacted and the search path length in the search. In SCS, the nodes contacted per

 71

query contain N/2m nodes and the nodes pointed to by a set of indices. Figure 4.7 plots

the fraction of nodes contacted per query when n is set to 0 (i.e., parallel search in a

semantic cluster is disabled) and the number of semantic clusters is varied from 20 to

28. The values are obtained by taking the average over various network sizes.

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256

fr
ac

tio
n

of
 n

od
es

 c
on

ta
ct

ed
 p

er
 q

ue
ry

number of semantic clusters (2m)

Gnutella
SCS with β = 1/2m

SCS with β = 0.25
SCS with β = 0.5

Figure 4.7: Fraction of nodes contacted per query

As expected, the fraction of nodes contacted per query decreases in proportion to 1/2m.

For SCS with β equals to 0.25 and 0.5, the number of nodes to be contacted is a

quarter, and half of the nodes respectively. This is because besides contacting all the

nodes in the destination semantic cluster, SCS has to contact the nodes in other

semantic clusters pointed to by their indices. Due to the randomness of a peer's

selection of semantic clusters and nodes to publish its indices, the fraction of nodes

contacted is almost identical to β. Note that for a search request, Gnutella has to

contact every node in the network. In the case of SONs, this fraction is equal to C /

Cmax, where C is the average number of SONs each node participates in and Cmax is

the maximum number of SONs in the system. SONs only contacts a fraction of the

nodes depending on C . The smaller the value of C , the fewer the number of nodes

 72

that are contacted for a query. With fewer nodes contacted by SCS and SONs, the

network traffic load incurred by a query is also reduced.

Figure 4.8 compares the search path lengths of SCS, SONs and Gnutella when

network size N is varied from 28 to 213. We disable the clustering effect by setting M

to 1 for SCS since SONs and Gnutella do not have any clustering feature. We also

disable parallel search within a semantic cluster by setting n to 0. Hence, network size

is N = 2m-1. Since M = 1 and n = 0, there is no flooding within a semantic cluster. As

shown in Figure 4.8, the search path lengths for both SCS and SONs increase slowly

with network size when comparing to Gnutella, confirming that search path is bound.

The search path length for SCS is almost identical to the one for SONs, showing SCS

is of the same search effectiveness as SONs. In the case of a peer having

heterogeneous local data (i.e., β = 0.25 or 0.5), the search path length is almost

identical to the case of a peer having homogeneous local data (i.e., β = 1/2m). This

shows that homogeneous data in a peer does not have any negative effect on SCS in

terms of search path length. This is because a peer can directly contact the node(s) in

other semantic clusters using a set of indices that point to them.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 256 512 1024 2048 4096 8192

se
ar

ch
 p

at
h

le
ng

th

number of nodes

Gnutella
SONs

SCS with β = 1/2m

SCS with β = 0.25
SCS with β = 0.5

Figure 4.8: Search path length

 73

In SCS, we explore the parallel search mechanism within a semantic cluster. We

evaluate the parallel search effect by comparing SCS and SONs. We set up a network

with m = 4 and vary network size N from 210 to 213. We set n to 2 and 3 respectively

for SCS; as a result, a semantic cluster is split into two when the size exceeds N/25 and

N/26. Hence, a search can be performed in parallel among these sub-clusters. Figure

4.9 shows that the parallelism in SCS effectively reduces search path length in

comparison with SONs. The result also shows that the parallel search effect increases

(i.e., search path length decreases) with respect to n. The results in both Figure 4.8

and 4.9 show that search path length in SCS is sensitive to 2m and n, but not to β.

 0

 50

 100

 150

 200

 250

 300

 1024 2048 4096 8192

se
ar

ch
 p

at
h

le
ng

th

number of nodes

SONs
SCS (n=2, β = 0.5)

SCS (n=2, β = 0.25)
SCS (n=2, β = 1/2m)
SCS (n=3, β = 1/2m)

Figure 4.9: The effect of parallel search in SCS

4.5.3.2 Overheads

In this experiment, we evaluate search overhead by comparing search costs among

SCS, SONs and Gnutella. We set m to 5 (i.e., the number of semantic clusters is 32, as

suggested by the result from Section 4.5.3.3), and n to 0 (parallel search is disabled),

and vary network size N from 28 to 213. As shown in Figure 4.10, the search cost of

Gnutella increases rapidly when network size grows. In contrast, SCS and SONs

significantly reduce search cost with the setting of 32 semantic clusters. We repeat the

 74

experiment by turning on the parallel search mechanism (i.e., n = 2 and 3) while

keeping other settings. We obtain results similar to those in the case where n = 0. This

confirms that the parallel search mechanism in SCS does not incur extra search

overhead. When β = 0.25 or 0.5, search cost increases because search requests have to

reach nodes in other semantic clusters (other than D), which are pointed to by a set of

indices.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 256 512 1024 2048 4096 8192

se
ar

ch
 c

os
t (

10
3)

number of nodes

Gnutella
SONs; 32 clusters

SCS (β = 1/2m); 32 clusters
SCS (β = 0.25); 32 clusters
SCS (β = 0.5); 32 clusters

Figure 4.10: Search cost

We also evaluate and compare the maintenance cost of SCS and SONs in this

experiment. The maintenance cost of SONs only contains the cost of nodes joining

and leaving. As shown in Figure 4.11, the maintenance cost of SONs increases rapidly

when the number of dimensions (i.e., semantic clusters) grows. This is because the

required number of outgoing degrees for a node in SONs increases in proportion to

dimension. In the case of SCS (M = 32 and n = 2 in this experiment), the maintenance

cost of a node consists of the costs of node joining and leaving, cluster splitting and

merging and index publishing. The maintenance cost in SCS also increases with

respect to the dimension, but with a much slower rate. In the case of heterogeneous

data stored in peers (i.e., β = 0.25 or 0.5), maintenance cost increases with the rise in

 75

index publishing cost; however, it is still much lower than that in SONs as shown in

Figure 4.11. This confirms our design goal of reducing maintenance overhead

incurred by using high-dimensional semantic overlay networks.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 4 8 16 32 64 128 256

m
ai

nt
en

an
ce

 c
os

t

number of semantic clusters (2m)

SONs
SCS with β = 1/2m

SCS with β = 0.25
SCS with β = 0.5

Figure 4.11: Maintenance cost

4.5.3.3 Clustering effects

In this section, we evaluate the effect of clustering in SCS by varying cluster size M

from 20 to 210. We first evaluate the effect of cluster size on search path length by

setting a network of size N to 210. We turn off parallel search within a semantic cluster

by setting n to 0, and allow no data duplication in SCS. Hence all clusters are

semantic clusters. We also set β to 1/2m as we focus on cluster operations in this

section. Figure 4.12 plots the search path length in SCS when M increases from 20 to

210. The search path length across clusters increases while the search path length

within clusters decreases with larger cluster sizes (note that there are 210 clusters in

the network when M = 1 and only one cluster when M = 210). This is because with a

fix network size, the total number of clusters in SCS decreases with larger cluster

sizes. Figure 4.12 suggests that the search path length achieves its minimum when the

 76

number of semantic cluster equals 32, 16 and 8, corresponding to M = 32, 64 and 128

respectively.

0

10

20

30

40

50

1 2 4 8 16 32 64 128 256 512 1024

cluster size M

se
ar

ch
 p

at
h

le
ng

th

search path length w ithin semantic clusters
search path length across semantic clusters

0

10

20

30

40

50

Figure 4.12: Search path length vs. cluster size M

With the same setting as in the previous experiment, we evaluate the search cost for

within clusters and across clusters respectively. From Figure 4.13, we observe that

search cost in SCS increases rapidly from a point where M = 16. This is because of

the effect of blind flooding within a cluster.

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

cluster size M

se
ar

ch
 c

os
t

search cost w ithin semantic clusters
search cost across semantic clusters

1

10

100

1000

10000

Figure 4.13: Search cost vs. cluster size M

 77

We plot the cost of node joining/leaving and cluster splitting/merging over different

cluster sizes in Figure 4.14. As there are fewer clusters in SCS with larger cluster

sizes, a new node requires a smaller number of hops to join the network. Therefore,

the cost of joining/leaving decreases with respect to M. Cluster splitting and merging

also occur less frequently with larger cluster size, resulting in lower cluster

splitting/merging cost.

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64 128 256 512 1024co
st

 o
f n

od
e

jo
in

in
g/

le
av

in
g,

cl
us

te
r

sp
lit

tin
g/

m
er

gi
ng

cluster size M

Figure 4.14: Costs of node joining/leaving and cluster

splitting/merging vs. cluster size M

From the results in this section, we observe that the setting of 16 and 32 semantic

clusters provides a good tradeoff between search efficiency and overhead. With larger

cluster sizes, search path length and cost of node joining/leaving and cluster

splitting/merging are not as sensitive to M as compared to search cost. Note that we

set n to 0 in the experiments in this section. If the parallel search mechanism is turned

on (i.e., n > 0), search path length can be further reduced as a query can be flooded in

parallel in a semantic cluster. To further reduce the search cost incurred by blind

flooding within a cluster in a Gnutella-like network, the Cost-Aware Selective

Flooding technique (to be described in Chapter 5) can be used.

 78

4.5.3.4 Selection of shortcuts

In this experiment, we evaluate the effect of different shortcuts in SCS and compare

them to the random shortcut which is originally used in the small world network

model. We started a network with the size of 210 nodes. Each semantic cluster has

only one node, with cluster size M set to 1 and n to 0. Hence, the search path length

for intra-semantic cluster routing equals 0. We select two shortcuts –either fix-points

or random-points in the network, and vary the location of the longest shortcut. The

other shortcut always points to the middle semantic cluster between the semantic

cluster where a node resides in and the semantic cluster that the longest shortcut

points to. We plot the search path length for inter-semantic cluster routing with

various semantic clusters in Figure 4.15. Compared to fix-point shortcuts, random

shortcuts work well in low dimensional semantic context spaces, but perform worse

in larger semantic context spaces. The location of fix-point shortcuts depends on the

number of semantic context spaces. Among these shortcuts, the 1/8 shortcut seems to

provide a balance for the size of semantic context spaces below 512.

Figure 4.15: Shortcuts

 79

4.5.3.5 Load balancing

We study load balance in SCS from the aspects of data load, index load and routing

load. Since data load (i.e., in terms of number of context data triples) and index load

(i.e., in terms of number of indices) are balanced under the uniform distribution of

context data, we present only the result of routing load in this section. We evaluate the

routing load per node in a network, setting m to 3, n to 2 and M to 64. The average

outgoing degree per node is set to 4 within a semantic cluster. A lookup query is

drawn randomly among all the semantic clusters. Each node initials a lookup

uniformly at random. Figure 4.16 shows that the routing load distribution across

various nodes is relatively well balanced.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

fr
ac

tio
n

of
 n

od
es

routing load

SCS

Figure 4.16: Routing load

4.6 Summary

We have presented our design of a semantic P2P context lookup system, with the

design of various techniques such as an ontology-based semantic clustering scheme, a

clustering naming scheme, parallel search, and push and pull operations, explained in

detailed. Peers are self-organized into a one-dimensional ring space based on the

 80

semantics of context data stored in each node. Cluster splitting and merging may be

triggered when nodes join/leave the network or when data changes. We have also

conducted extensive simulations to evaluate the performance of our proposed SCS

system. The simulation results show that SCS offers good search performance and

low overlay maintenance overhead as compared to SONs. Our system also exhibits

good scalability and load balancing characteristics. In addition to our simulation, we

have also developed the prototype system, and used the real measurement data to

validate and calibrate our simulation model. We will describe the validation of our

simulation model in Section 6.10.8.

In SCS, we group nodes with the same semantic together in a semantic cluster. A

semantic cluster can be further split into multiple sub-clusters. In the design of a

grouping technique, we should also consider to group nodes into a sub-cluster based

on their proximity. If close-by nodes can be grouped together into a sub-cluster, query

routing will be more efficient. To ensure the SCS overlay topology maps the

underlying physical topology, further studies and evaluations need to be conducted

and will be addressed in our future work.

In the current design of SCS, we assume using a Gnutella-like overlay to organize

peers within a sub-cluster. In a Gnutella-like overlay network, a query is forwarded to

all neighbors of a node. This blind flooding mechanism may generate a large amount

of query messages in the network. In the next chapter, we will propose the Cost-

Aware Selective Flooding algorithm to address this issue, and aim to provide a

general solution to improving the scalability of unstructured P2P systems.

 81

CHAPTER 55

COST-AWARE SELECTIVE FLOODING4

The blind flooding mechanism used in an unstructured P2P overlay network simply

forwards a query to all the neighbors of a node. Such a mechanism may generate a

large volume of unnecessary traffic in the network, and hence render the system not

scalable. In recent years, many researchers have conducted studies on P2P traffic in

the real world. For example, Ripeanu [70] analyzed the Gnutella network and showed

that the blind flooding mechanism generates 330TB/month in a Gnutella network with

50,000 nodes and 36% of the total traffic is user-generated traffic (i.e., query

messages). This is because the flooding-based routing mechanism generates a large

amount of unnecessary traffic. It also incurs additional processing overhead at each

node, and hence renders unstructured P2P systems far from scalable.

The causes for the problem are twofold. First, a query may be forwarded to multiple

paths that are merged to the same node. As a result, a node may receive the same

query multiple times. For example, as illustrated in Figure 5.1(a), D receives the same

query three times as the query is forwarded along link LAD, LCD and LBD. In this case,

only one of the paths is necessary, and messages generated along the other paths are

redundant. Second, two neighboring nodes (nodes C and D in Figure 5.1(b)) may

forward the same query message to each other if they have not received the query

from each other before.

4 The contents of this chapter have been presented in Paper 10 in the author's publication list. The
extension of this chapter will be submitted to a journal.

 82

Figure 5.1: Unnecessary query messages in a Gnutella-like network

In the current design of SCS, we use a flooding-based routing mechanism to forward

a query within a sub-cluster. As a consequence, excessive messages generated per

query may render the system not scalable if we choose a larger cluster size. In this

chapter, we propose the Cost-Aware Selective Flooding (CASF) technique that aims

to reduce redundant query messages and improve system scalability. The basic

principle of this technique is that, given a query, a node performs the CASF algorithm

locally to compute and obtain a set of optimized paths using link cost information

within its neighborhood to forward its query rather than forwarding the query to all its

neighbors. CASF is performed by nodes in other relevant neighborhoods to determine

a subset of forwarding paths in the whole overlay network. We define the

neighborhood of a node, say x, as all its direct neighbors (1-hop neighbors of x) and

the neighbors' neighbors (2-hop neighbors of x). CASF operates in three phases:

neighborhood link cost measurement, basic routing algorithm, and routing decision

mediation.

The rest of the chapter is organized as follows. We describe related work in Section

5.1. We then discuss the details of the CASF operations in Section 5.2, 5.3 and 5.4.

We describe the main CASF algorithm in Section 5.5, and present a case study In

Section 5.6. We present our simulation results in Section 5.7, and summarize the work

in Section 5.8.

 83

5.1 Related work

In this section, we survey and discuss previous work related to flooding in

unstructured P2P overlay networks. There have been continuous efforts to improve

flooding in Gnutella-like P2P systems.

In Random Walks [71], a node forwards its query message to k randomly chosen

neighbors. The performance of this algorithm is highly variable. Success rates and hits

vary greatly depending on network topology and the random choices made. In

Directed BFS [72], a peer selects a subset of its neighbors to forward its query based

on statistic information such as the neighbors that have returned the largest number of

results received from previous queries. Iterative Deepening [72] or Expanding Ring

[71] uses consecutive BFS searches at increasing depths, and works well when the

search termination condition relates to a user-defined number of hits and it is possible

that a small range of flooding will satisfy the query. In some cases, it may produce

even bigger loads than the standard flooding mechanism. These flooding algorithms

can reduce the total number of query messages compared to the standard flooding

mechanism since queries are forwarded to a selected subset instead of all neighbors.

However, the search may not be reliable as not all the nodes are covered by the query.

Our CASF algorithm aims to reduce the message overhead of blind flooding directly

while guaranteeing the search scope, especially in a dynamic network environment.

In super-peer systems such as Morpheus [73] and current Gnutella implementation, a

super-peer acts as a centralized server to a subset of clients. It maintains the indices of

its client peers and conducts searching and locating on behalf of its clients among

super-peers. These super-peers connect to each other forming a Gnutella overlay

network. With the expanding scale of the P2P systems, the inefficiency of flooding in

 84

super-peer networks remains a grave concern. The cost of maintaining indices at a

super-peer can be very high in a dynamic network. In Local Indices [74], each node

indexes the files stored at all nodes within a certain radius r and can answer queries on

behalf of all of them. The success rate is high since each node indexes many peers.

However, message production in Local Indices is comparable to that of the flooding

mechanism although the processing time is much smaller because not every node

processes the query. The scheme also requires a flood in a radius r whenever a node

joins/leaves the network or updates its local repository, and hence the overhead is

potentially larger for dynamic environments. In Routing Indices (RIs) [75], a node

forwards its query to a subset of its neighbors based on its local RIs. A RI is a data

structure (and associated algorithms) that returns a list of neighbors for a given query,

ranked according to their goodness for the query. The notion of goodness reflects the

number of documents in nearby nodes. While RIs are bandwidth-efficient, they still

require flooding in order to be created and updated; maintaining RIs could be very

costly in highly dynamic networks. Moreover, stored indices can be inaccurate due to

thematic correlations, over-counts or under-counts in context partitioning and network

cycles.

Some researchers realized that topology mismatching is one of the key problems

which cause excessive network traffic and limit search performance. For example, in

LTM [67], each node detects and cuts most of the inefficient and redundant links, and

creates new links to its closer neighbors. While this technique is efficient in reducing

overall traffic and improving query performance, the cutting and creation of links for

nodes in a global scale incurs a large amount of overhead. Such overhead may

increase in a more dynamic network as LTM needs to be performed frequently to

make the overlay network mirrors the physical network.

 85

Multipoint Replaying [76] restricts the number of re-transmitters in wireless ad hoc

networks as much as possible by efficiently selecting a small subset of neighbors

which covers (in terms of 1-hop radio range) the same network region which the

complete set of neighbors does. Only nodes chosed as forwarding neighbors (known

as MPRs) rebroadcast the flooding message. The authors proposed a heuristic for the

selection of MPRs. However, a node in a wireless ad hoc domain has a fix link pattern

– a node always treats the nodes in its radio radius as its 1-hop neighbors and the link

costs to all its 1-hop neighbors are identical, whereas a node in a wired network may

have different link costs to its 1-hop neighbors. Hence, the algorithm for choosing

MPRs does not apply directly to our case.

In summary, the CASF algorithm aims to reduce redundant query messages incurred

by the blind flooding mechanism and improve system scalability for unstructured P2P

overlay networks. CASF is a distributed algorithm; it only uses local information –

link cost of 1-hop and 2-hop neighbors. While one-hop/two-hop neighbors and their

link cost have been used in many other techniques such as in [67], as far as we know,

no one has exploited topology patterns (i.e., 3-loop, 4-loop and n-loop) in a

neighborhood, and use them to compute a set of optimized paths to forward queries.

Many systems use flooding can easily adopt CASF to improve the scalability of their

system.

 86

5.2 Neighborhood link cost measurement

Figure 5.2: Link cost measurement and exchange messages

To measure and obtain the link costs of a node to all its direct neighbors, we define a

link cost measurement message. The message format is shown in Figure 5.2. Each

node in the system periodically sends this message to all its direct neighbors. This

message contains the source node's IP address and the timestamp at the point this

message is flooded. Upon receiving this message, a node can compute the link cost

from the source node to itself by computing the difference between the source

timestamp and the time it receives this message. This message is discarded by each

node upon receipt.

To obtain the link costs of a node to all its neighbors' neighbors, we define a link cost

exchange message. The message format is also shown in Figure 5.2. Each node

periodically sends this message to all its direct neighbors. This message contains the

source node's IP address, all its direct neighbors' IP addresses and the link costs of the

source node to all its direct neighbors. When a node, say x, receives this message, it

knows all the direct neighbors of the source node and their respective link cost

information. Node x then stores the link costs to its direct neighbors, and also the link

costs to its neighbors' neighbors in its routing table, as shown respectively in the first

and the second column of Table 5.1.

 87

TABLE 5.1: NODE X'S ROUTING TABLE

Direct Neighbor, y y's Neighbors

<nodeIDy1, costy1> <nodeIDy11, costy11>, <nodeIDy12, costy12>, …

<nodeIDy2, costy2> <nodeIDy21, costy21>, <nodeIDy22, costy22>, …

… …

5.3 Basic routing algorithm

The P2P overlay topology within a node's neighborhood can vary in different ways.

We recognize that there exist three fundamental cases: 3-loop, 4-loop and n-loop. We

define a loop as a group of nodes linked together in a ring fashion. A loop may consist

of three or more nodes, and may be closed or open. In particular, we call a closed loop

with three or four nodes 3-loop or 4-loop respectively. We shall refer all other types

of loops (containing five nodes or more, either closed or open) as n-loop. A node uses

the CASF algorithm to compute and select a set of optimized forwarding paths with

respect to these loops. CASF consists of the basic routing algorithm which computes

the paths for one loop, and routing decision mediation which combines the decisions

for all the loops. We now describe the basic routing algorithm for each type of loops.

The basic routing algorithm follows the least-cost principle, which means that it is

desirable to forward a query along a set of least-cost paths. A source node, say x, is

able to detect a 3-loop if the two direct neighbors of x are direct neighbors of each

other. For example, in Figure 5.3, node x detects a 3-loop as B and C (both direct

neighbors of x) are also direct neighbors of each other. For a 3-loop with source node

x, x computes and selects a set of optimized paths (shown as solid arrows for various

cases in Figure 5.3) based on the link costs d1, d2 and d3. The paths are selected

 88

based on a minimum set of least-cost paths to ensure that a query reaches B and C

quickly without redundant messages. For example, in Case 1 of Figure 5.3, a query is

only forwarded along the links xC and CB as d1 > d2 + d3. This contrasts with the

blind flooding mechanism where the same query message is flooded along the paths

xC, CB, Bx and xB (shown as dotted arrows), resulting in the messages on Bx and xB

being redundant. As for other cases in Figure 5.3, CASF avoids two redundant

messages as well.

Figure 5.3: Optimized paths for a 3-loop with source node x

To forward a query along the paths that are determined by CASF, we introduce two

lists: non-forwarding list (nf) and expected list (ex). The nf list contains the node IDs

of neighbors to which a query should not be forwarded (we call these neighbors non-

forwarding nodes). The ex list contains the IDs of nodes (which may or may not be

neighbors) that are expected to receive the query from another path (we call these

neighbors expected nodes). Queries should also not be forwarded to nodes in the ex

list. When receiving a query, each node executes the CASF algorithm and may add

new entries into or delete existing entries from the nf and ex lists which are appended

to the query message. The lists are subsequently retrieved by the receiver node and

used for forwarding decisions. The lifetime of an entry in the nf list is always 1 hop,

and hence this entry is purged upon use. Each entry in the ex list has a corresponding

 89

TTL value which define the number of hops this entry can be used. An entry in the ex

list will be purged either upon use or when its TTL equals zero.

For example, as shown in Case 3 of Figure 5.3, source node x computes and knows

that both xB and xC are the optimized links to forward a query (i.e., q1) along. Node x

forwards the list nf(B) to node C to inform C not to forward the query to B, and the

list nf(C) to node B to inform B not to forward the query to C. For clarity, we only

show the entries in the nf and ex lists which are added with respect to a loop with node

x. The same reason applies in Figure 5.4 and Figure 5.5. In Case 1 of Figure 5.3, node

x discovers that xC and CB are the optimized links and decides to forward a query to

C only. Source node x adds itself to the ex list and set its TTL value to 2. When node

C receives the query, it executes the algorithm and decreases the TTL value of x by 1.

Then node C forwards the query with the list ex(<x, 1>) to node B. Node B does not

forward the query back to x as x is the sender. When the query reaches node B, it

decreases the TTL value of x to 0 and remove node x from the ex list. Hence, node B

does not forward the query back to x along the path Bx.

A 4-loop with source node x is detected if the two direct neighbors of x share a

common direct neighbor. For example, in Figure 5.4, node x detects a 4-loop as B and

C (both direct neighbors of x) share a common direct neighbor D. The optimized

paths for a 4-loop with source node x and the appropriate nf and ex lists associated

with the query (i.e., q1) for different cases are shown as solid arrows in Figure 5.4. In

the case of equality for Cases 1 and 2, since both choices have the same effect, we

arbitrarily fix the routing path to that in Case 1. The same reasoning applies in Cases

3 and 4. In all cases, two redundant messages are removed as compared to the blind

 90

flooding mechanism. For example, in Case 1, the two redundant messages along the

paths BD and DB (shown as dotted arrows) are removed.

x B

C D

d1

d3

case 1:
d1 + d2 d3 + d4

x B

C D

d1

d3

case 2:
d3 + d4 > d1 + d2

x B

C D

d1

d3

case 3:
d4 d1 + d2 + d3

x B

C D

d1

d3

case 4:
d1 > d2 + d3 +d4

q1 with [nf(D)]

q1 with [ex(<B,1>)]

q1 with [ex(<C,2>)]

q1 with [ex(<x,3>)]

q1 with [ex(<x,2>)]q1 with [ex(<x,1>)]

Figure 5.4: Optimized paths for a 4-loop with source node x

The neighbors of node x for which no 3-loop or 4-loop is detected are considered to

be part of an n-loop. Figure 5.5 shows an example of n-loop where n = 5. Node x

detects an n-loop as B and C are neither direct neighbors of each other nor share a

direct neighbor, and then forwards the query with the appropriate ex lists along both

paths. As shown in Figure 5.5, two redundant messages along the paths ED and DE

are removed. The same method applies in the case of n = 6. For an n-loop where n ≥ 7

and there is no sub-loop within it, the algorithm is not able to remove redundant

messages as we limit the scope of neighborhood information to two hops. However,

this case seldom occurs in a P2P overlay network. As a result, the TTL value of the

 91

entries in case of an n-loop is set to 4. We will give the justification of this choice in

Section 5.4.

Figure 5.5: Optimized paths for an n-loop where n = 5

5.4 Routing decision mediation

In the Gnutella-like overlay topology, a node's neighborhood may contain a 3-loop, a

4-loop, an n-loop or any combination of these loops. A node, say x, will perform loop

detection with respect to each of its neighbors. For each loop detected, the basic

routing algorithm as we have described in the previous section is performed to obtain

a sub-decision for that particular link. These sub-decisions is then mediated to a final

forwarding decision, which would determine whether the query should be forwarded

to a particular direct neighbor of node x.

In essence, the algorithm determines a subset of direct neighbors that node x should

forward its query to. Routing decision mediation follows the two principles below:

 Node x forwards a query to a direct neighbor if and only if the computation for

every loop detected with respect to that neighbor yields a positive forwarding sub-

decision to that neighbor.

 92

 If the computation for at least one loop concludes with a negative forwarding sub-

decision to that neighbor, node x will not forward the query to that neighbor.

To understand the intent behind decision mediation, we note that a negative

forwarding sub-decision signifies that there is a more favorable alternative path to the

destination node than the current path being considered for a particular loop. On the

other hand, a positive forwarding sub-decision indicates that the path being

considered is the best possible path for a particular loop. Thus, a single negative sub-

decision is sufficient to nullify the effect of all other sub-decisions (even if all of them

are positive) as it is able to offer a better path than what the other loop computations

suggest as the best. As the decision mediation is performed throughout the lifetime of

a query flood, the query is thus flooded along a path that is almost optimized.

5.5 The main algorithm

The main CASF algorithm combines both the basic routing algorithm and routing

decision mediation. We now present an overview of the main CASF algorithm which

is shown in Figure 5.6. Let N represent the set of all direct neighbors of a node, say x.

Upon receiving a query message q, node x starts to execute the CASF algorithm. First,

it extracts the nf and ex lists appended to q. We denote these lists as the sender's nf

and ex lists respectively. These lists will be used for making decisions. The ex list will

also be forwarded to all neighbors later. Note that these lists are empty if q is initiated

at node x. Node x also decreases the TTL values of all entries in the sender's ex list by

1. Node x than performs loop computation with respect to each of its direct neighbors

such as n, provided n is not in the sender's nf or ex lists. If n is found to be in the

sender's nf or ex lists, its entry is purged. The loop computation involves detecting a

particular loop, updating the nf and ex lists for n, and setting the variable

 93

forwarding_decision which represents the forwarding decision along the link from x

to n. If x's sender is a member of a particular loop and the link from the sender to x is

part of that loop, no loop computation is necessary. This is because the result of the

loop computation done previously by the sender has determined the forwarding

decision for that loop. Note that forwarding_decision is a variable shared by all the

loop computations with respect to n. It is set to true if all the loops desire to forward q

along the link from x to n, or false when at least one loop does not desire to do so.

This is where routing decision mediation takes place. Finally, the loop computation

for each direct neighbor n of x concludes with a forwarding decision that determines

whether q should be forwarded to n. All direct neighbors that node x decides to

forward to are placed in a list known as the forwarding_list with their respective nf

and ex lists.

After loop computation has been done for all direct neighbors of node x, node x

begins post-processing which consists of the combination of nf and ex lists and the

cleaning up of the ex list. For those direct neighbors of x in the forwarding_list, node

x combines their ex and nf lists with those of the sender. Subsequently all the entries

with zero TTL values in the ex list are purged. Those n-loop entries of node n which

are not in the forwarding_list are also removed since they will not be used. When all

the entries in the forwarding_list are finalized, the query message is forwarded to all

direct neighbors of node x in the forwarding_list together with their corresponding nf

and ex lists.

 94

node x obtains sender’s nf and ex from the query message q;
decrease TTL of all entries in sender's ex by 1;

/*node x performs computation for each direct neighbor n */
for each n ∈ N do
 if (n ∈ sender's nf) then purge n from sender's nf;
 else if (n ∈ sender's ex) then purge n from sender's ex;
 else
 forwarding_decision ← true; //the forwarding decision from x to n
 for each direct neighbor m of n do
 perform loop detection;
 update nf and ex lists for n based on link-cost;
 update forwarding_decision;
 if (forwarding_decision == false) then
 break;
 endfor
 if (forwarding_decision == true) then
 add n, nf, ex to forwarding_list; //keep nf and ex for each n
 endif
 endif
endfor

/* combination of nf and ex lists */
combine n's nf and ex with the sender's nf and ex;

/* cleanup of ex */
purge all entries in sender's ex with TTL = 0;
if n is not in forwarding_list then
 remove all n-loop entries of n from all ex in forwarding_list;
endif

/* forward */
forward q to all direct neighbors in forwarding_list;
End

Figure 5.6: Main CASF algorithm

CASF is a distributed algorithm; it does not require a global view of the entire

network. Instead, each node has a limited view of the network within the scope of its

neighborhood. This gives rise to the possibility of redundancy when n-loops with 7

nodes or more (with no sub-loops within) exist, as a result of limited neighborhood

information. In order to reduce this possibility, the scope of neighborhood information

needs to be increased. However, this would incur greater computation complexity and

storage overhead at each peer. Therefore, there is a tradeoff between the scope of

neighborhood information and the degree of redundancy reduction. An overlay

topology with a large number of n-loops which have no smaller sub-loops contained

within them can only exist when many nodes have only two neighbors each (i.e., node

 95

degree = 2). However, the study in [77] showed that P2P overlay topologies follow

the small world property of having large clustering coefficients (i.e., average of

fraction of edges connecting neighbors of a node) and short average path lengths

between two nodes. In fact, based on their observations in the study, the node degree

of a real Gnutella overlay is approximately between 4 and 20. Hence, a large number

of n-loops without smaller sub-loops contained within them is unlikely to happen. Our

simulation studies show that maintaining neighborhood information within a scope of

two hops provides a good tradeoff between overhead cost and performance, owing to

the fact that a large number of n-loops in a Gnutella-like topology is rare.

5.6 A case study

In this section, we concretize the discussion of the CASF algorithm with an example

topology consisting of 25 nodes, 45 links and their associated link costs as shown in

Figure 5.7. This topology, which is adapted from [67], shows a typical Gnutella-like

P2P overlay network. The link costs in the overlay are randomly assigned. We will

demonstrate how a node executes the CASF algorithm and obtains a set of optimized

links to forward a query with the example. We use l(a,b) to denote a link from node a

to node b, and use 3-loop(a,b,c) to denote a 3-loop that involves node a, b and c. The

query originates from node 1. We illustrate this example based on the execution

timeline.

 96

Figure 5.7: A case study

The overlay network is first constructed by a sequence of node joining operations.

Upon joining the network, each node periodically sends link cost measurement and

exchange messages to all its direct neighbors. Each node then creates and updates its

routing table which contains its 2-hops neighbors and their associated link costs

(shown aside each link in Figure 5.7). Node 1 starts to execute CASF by analyzing

each of its direct neighbors. For example, first we consider link l(1,2) to node 2.

Based on its routing table, node 1 detects 3-loop(1,2,4), 3-loop(1,3,2) and 4-

loop(1,8,3,2) with respect to node 2. For each loop detected, the loop computation is

performed to update its nf and ex lists and the sub-decision according to the basic

routing algorithm described in Section 5.2. Note that the sender's nf and ex lists are

empty as the query initiates at node 1. For example, if we consider 3-loop(1,2,4), node

4 is added to the nf list as nf(4). In addition, node 1 detects several n-loops, for

example, n-loop(1,3,6,13,2), and adds <6,3> to the ex list as ex(<6,3>). For each of

the n-loops, the ex list is updated as necessary. As the computation for all the loops

 97

concludes a positive forwarding decision to node 2, node 2 is added to the

forwarding_list with the associated nf(3,4) and ex(<6,3>,<19,3>…) lists.

We now consider the link l(1,8) with respect to node 8. As the loop computation for

3-loop(1,8,3) yields a negative forwarding sub-decision, node 1 does not forward the

query to node 8. This is because one negative sub-decision is sufficient to negate the

final forwarding decision based on the principle of routing decision mediation. The

same process is repeated for all other direct neighbors of node 1. Finally, node 1

forwards the query to all the entries in the forwarding_list.

When node 2 receives the query, it first extracts the sender's nf and ex lists and then

performs the loop computation for those direct neighbors which are not in the sender's

nf and ex lists. In this case, node 2 computes for node 12 and 13 only as node 3 and 4

are in the sender's nf list. As a result, node 2 does not forward the query to node 3 and

4. Considering link l(2,12) with respect to node 12, node 2 detects 3-loop(2,13,12)

and 4-loop(2,12,19,4). As both loop computations conclude the positive forward

decision to node 12, node 12 is added to the forwarding_list with nf(13) and

combined ex(<6,2>,<19,2>…). Note that entries 3 and 4 are removed from the nf list

upon use and entries in the ex list are decreased by one. The computation for the rest

of the nodes is similar to what we have discussed above. The final outcome following

the execution of CASF by all the nodes is shown in Figure 5.7. Large arrows indicate

forwarding decisions common to both the blind flooding mechanism and the CASF

algorithm while small arrows indicate forwarding decisions pertaining to the blind

flooding mechanism alone.

 98

5.7 Performance evaluation

In this section, we use simulations to evaluate the effectiveness of CASF, and

compare its performance to blind flooding in a Gnutella overlay network. We first

describe our simulation model and the metrics. Then we report the simulation results

from a range of experiments.

5.7.1 Simulation model and metrics

In our simulation, we assign degrees to nodes based on the power-law distribution as

the study in [77] has shown that Gnutella networks follow the power-law property.

We have two types of network topologies in our model: physical topology and P2P

overlay topology. The physical topology represents the real-world Internet topology.

The P2P overlay topology is built on top of the physical topology. The link cost

between two nodes in the overlay is calculated based on the shortest physical path

between these two nodes.

Each node x is also assigned a query generation rate, which is the number of queries

that node x generates per unit time. In our experiments, each node generates queries at

a constant rate. If a node receives queries at a rate that exceeds its capacity to process

them, the excess queries are queued in its buffer until the node is ready to read the

queries from the buffer. Queries are modeled as searches for different keywords

stored randomly at each node. Keywords are randomly replicated on nodes at a

fraction α. Thus, querying for a keyword with fraction α implies that a query hit can

be found at a fraction α of all the nodes in the system.

To measure the effectiveness of the CASF algorithm, we use the following

performance metrics:

 99

Number of messages per query: the number of query messages generated when

executing a lookup request in the network. We aim to minimize the number of

messages forwarded by each node while ensuring search completeness.

Search completeness: the ratio of the number of nodes contacted per query to the total

number of nodes in the network. The value of this metric lies in the range 0 to 1.

Bandwidth consumption: the total bandwidth consumed in terms of bytes per second.

5.7.2 Simulation results

The goal of the CASF mechanism is to reduce redundant query messages as much as

possible. In this experiment, we evaluate CASF by issuing a complete search request

to a Gnutella overlay network. We compare the number of query messages incurred

by the Gnutella protocol and by CASF and present the result based on the overlay

network of 4000 nodes in Figure 5.8. The comparison shows that CASF reduces the

average number of query messages significantly by about 60% as compared to blind

flooding in the Gnutella protocol.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5

N
um

be
r

of
 M

es
sa

ge
s

pe
r

Q
ue

ry
 (

x1
03)

Number of Queries (103)

Gnutella
CASF

Figure 5.8: Effectiveness of the CASF algorithm

 100

The search completeness when using CASF equals 1. This result verifies that CASF

can guarantee every node in the overlay receives the query. The query response time

when CASF is used is almost the same as the time taken when the standard Gnutella

protocol is used. These results show that the CASF algorithm can significantly reduce

redundant query messages without undermining search performance.

In this experiment, we evaluate all the possible overheads of the CASF algorithm. The

overhead of CASF falls into two aspects: processing overhead and traffic overhead.

The processing overhead is trivial as compared to the Gnutella protocol. Hence, we

present the result of traffic overhead only. CASF uses two additional messages and

adds nf and ex lists to the original Gnutella query message. In the experiment, we

measure the network traffic incurred by Gnutella and CASF respectively in terms of

number of bytes generated per second. We set the number of neighbors to 4. Figure

5.9 shows that CASF consumes less bandwidth compared to Gnutella. The two

messages we created only generates about 3.5% of the total traffic. The bandwidth

consumed by query messages is also reduced as expected. These results show that the

additional overhead introduced by CASF only constitutes a small percentage of total

network traffic.

 101

Figure 5.9: Bandwidth consumption

5.8 Summary

In this chapter, we have proposed the CASF algorithm to reduce redundant query

messages incurred by the blind flooding mechanism in an unstructured P2P overlay

network. The simulation results show that CASF significantly reduces redundant

query messages while ensuring search completeness. The processing overhead is

trivial and the traffic overhead is very low as compared to the Gnutella protocol. Note

that while we intend to use CASF to forward a query in sub-clusters in the current

design of SCS, CASF can be applied to any flooding-based P2P system. Hence, the

CASF algorithm provides a potential solution to improving the scalability of

unstructured P2P systems. In the next chapter, we will present our design of the SCS

prototype system and the evaluation results based on our testbed.

 102

CHAPTER 66

PROTOTYPE IMPLEMENTATION5

In this chapter, we present our design and implementation of various techniques

proposed in SCS. The objective of this prototype is to demonstrate the working

principle of SCS in a real-world setting and provide a basis for assessing practical

issues. The prototype also enables us to conduct performance experiments aiming to

validate and calibrate our simulation model. To demonstrate how application

developers could benefit from the infrastructure services of SCS, we also present

several typical context-aware applications based on a set of APIs implemented in our

prototype system. The details of the development process are presented in this chapter

as well.

The presentation of this chapter is outlined as follows. Section 6.1 provides an

overview of the SCS prototype. Section 6.2 presents the bootstrapping

implementation including semantic clustering, web cache, connection and reference

registration. Section 6.3 describes the implementation of message receivers. We

describe message forwarding and processing in Section 6.4, followed by the search

and subscription services in Section 6.5. Next, we present the implementations for the

LookupClient, the Context Producer and the Context Interpreter. In Section 6.9, we

illustrate the application development process with several typical context-aware

applications. We present the results of performance measurement of the prototype in

Section 6.10.

5 The contents of this chapter have been presented in Paper 13 in the author's publication list. The
extension of Paper 13 has been submitted to a journal.

 103

6.1 Overview

The prototype system implements the core system components realizing various

techniques presented in Chapter 3 and Chapter 4. These include the context model,

ontology-based semantic clustering, the construction of one-dimensional ring space,

cluster splitting and merging, query routing, push and pull services, and context

reasoning. A peer (also known as ContextPeer) can act as context producer, context

consumer, or both in SCS. There are typically three types of ContextPeers in our

system:

Context LookupClient: A LookupClient obtains context data from the network by

issuing queries to a context producer. The context producer hence acts as a proxy to

resolve queries for the LookupClient. The LookupClient is not required to participate

in the SCS overlay network since it does not provide any context data.

Context Producer: Context producers usually contain context data, and hence they

participate in the SCS overlay network. They usually provide low-level context data

which is obtained from physical and software sensors. The functionalities of a context

producer includes converting raw sensor data into RDF triples, managing the context

data and the context ontologies it stores, managing subscription queries and

subscribers, routing and responding to context queries from LookupClients. Queries

can be generated at context producers as well.

Context Interpreter: A context interpreter is a special type of context producer. It has

all the functionalities of a context producer. In addition, a context interpreter has the

capability to derive high-level context data from low-level context data by using a

 104

built-in logical reasoning engine and a set of user-defined rules. The reasoning engine

is implemented using Jena2 – HP's Semantic Web Toolkit [62].

The SCS prototype system is implemented in Java using SDK 1.4.1. In the following

sections, we present the implementation details of our prototype system.

6.2 Bootstrapping

When a ContextPeer starts, it first goes through the bootstrapping process which

consists of a series of operations, i.e., semantic cluster mapping for local context data,

obtaining an existing peer in the system by SWebCache operations and initiating

connections to other peers in SCS. The class diagram of the bootstrapping process

(shown in Figure 6.1) illustrates the various classes and their relationships.

 105

6.2.1 Semantic cluster mapping

The semantic clusters in SCS are predefined in the upper context ontology. We have

shown an example of the upper ontology in Figure 3.4 in Section 3.3. The leaf nodes

in the upper ontology are used as semantic clusters to group ContextPeers. Each of

these pre-defined semantic clusters is assigned a unique ID upon its presence in the

SCS overlay network.

To determine which semantic cluster a ContextPeer should join, we create two

structures, known as ClusterHierarchy and ClusterMap. ClusterHierarchy maps

Figure 6.1: Classes responsible for connecting to the SCS network

 106

OWL classes to their associated semantic clusters. It does this by tracing the hierarchy

of classes as defined in the upper ontology. ClusterMap maps predicates defined in

the upper ontology to their associated OWL classes. If a predicate is a

DatatypeProperty (i.e., it describes the subject), it is mapped to the OWL class of its

domain. On the other hand, if a predicate is an ObjectProperty (i.e., it describes the

object), it is mapped to the OWL class of its range.

ClusterHierarchy and ClusterMap are created with respect to the context data

provided by the ContextPeer. Subsequently, the predicates associated with the context

data are mapped to OWL classes using the ClusterMap, and are further mapped to the

appropriate semantic cluster(s) using ClusterHierarchy. For the semantic mapping of

context data, the method getPeerClusters is invoked with an ontological model as

input argument. This method creates and maintains a HashMap called

clusterTripleCount, which maps a semantic cluster to the number of triples

corresponding to the semantic cluster by iterating through all triples in the model.

Upon successful execution, the method returns a vector containing all the semantic

cluster IDs corresponding to all the context data in the input model. The first element

in this vector indicates the ID of the semantic cluster corresponding to the majority of

the context data, which we call the major semantic cluster; the rest of the semantic

clusters are known as minor semantic clusters. A ContextPeer should join the major

semantic cluster in SCS and create references to all its minor semantic clusters.

Context queries follow a similar mapping process to determine the corresponding

semantic cluster by invoking the method getTripleClusters. This method returns all

the semantic cluster(s) associated with the query triple. Context producers and

interpreters require the semantic cluster mapping for both context data and queries

 107

whereas LookupClients only require the mapping for context queries as they do not

provide any context data.

6.2.2 SWebCache

When a ContextPeer joins its major semantic cluster, it first contacts a known

bootstrap server which stores and maintains information about existing peers in SCS.

We call this server an SCS Web Cache or SWebCache for short. In our prototype, we

use one bootstrap server for simplicity reason, however, multiple bootstrap servers

may exist; and each ContextPeer is required to know at least one of them to join the

SCS. A ContextPeer obtains information of an existing ContextPeer by issuing a

hostfile request to an SWebCache. The SWebCache responds to the request with the

IP address of an existing ContextPeers and its related information. The ContextPeer

then parses the response and stores it in its local HostCache. The HostCache is a data

structure that holds information about currently connected ContextPeers. All

SWebCache operations are handled by the GetHostsFromCache instance.

An SWebCache supports main operations such as hostfile request, urlfile request and

SWebCache updating.

Hostfile request: This operation returns a ContextPeer randomly that is currently

participating in the SCS overlay network with their respective information.

Information for each ContextPeer is represented as a 3-tuple of the form

(<IPAddress>, <Port>, <SID>). <IPAddress> represents the IP address

of the ContextPeer, <Port> is the port at which the ContextPeer listens to for

incoming connections, and <SID> is a string containing the semantic cluster ID the

 108

ContextPeer is currently part of. A hostfile request is invoked with the following

URL request string, where <swebcacheURL> is the URL of the SWebCache:

<swebcacheURL>?hostfile=1

An SWebCache responds to a hostfile request by returning a 3-tuple resembling

<IPAddress>:<Port>,<SID>.

Urlfile request: This operation returns a list of other known SWebCache URLs. An

SWebCache responds to a urlfile request by returning a list of known SWebCache

URLs. A urlfile request is invoked with the following URL request string:

<swebcacheURL>?urlfile=1

SWebCache updating: Upon successfully joining the overlay, each ContextPeer can

perform an SWebCache update to add information about itself to the SWebCache.

This is done by using the following URL request string:

<swebcacheURL>?client=SCS&version=1.0&ip=<IPAddress>

:<Port>&sid=<SID>

If the update is successful, the SWebCache responds with either "OK" or "Host

updated", depending on whether the SWebCache has previously known this

ContextPeer.

An SWebCache also collects and displays statistical information related to the current

state of the SCS overlay such as the IP addresses and port numbers of existing

ContextPeers, Cluster IDs, the semantic cluster(s) and associated IDs, and the number

of peers in a semantic cluster. Each peer is required to update an SWebCache of its

statistical information when it joins the SCS overlay network. This process, however,

 109

is only used for our evaluations and experiments; it is not required in a real SCS

system. The screen shot of an SWebCache is shown in Figure 6.2.

Figure 6.2: Screen shot of an SWebCache

6.2.3 Connection

Upon obtaining an existing node in SCS, the ContextPeer that wishes to join the

overlay network initiates a connection to the existing node and then send a Join

message to this node. The format of the Join message is shown in Figure 6.3.

 110

Figure 6.3: Structures of Join and JoinReply messages

The existing node is responsible for routing the Join message to a random node say z

in the semantic cluster which the ContextPeer wishes to join. Then node z returns a

JoinReply message (as illustrated in Figure 6.3) with information of a set of nodes:

one or more neighboring node(s) in the cluster the ContextPeer joins, one neighboring

node in the left adjacent cluster (short left contact), one neighboring node in the right

adjacent cluster (short right contact) and one or more nodes in other semantic clusters

(long contacts). These information are obtained through operations implemented as

methods getNeighbors, getShortLeftContact, getShortRightContact and

getLongContacts. Node z invokes each of these methods and sends the requests

(RandomNeighs, RandomShortLeftContact, RandomShortRightContact,

RandomLongContact) through its neighbor, the short left/right contact and the long

contact. Upon successful execution, a set of nodes are obtained and returned to the

joining ContextPeer.

Messages in SCS, e.g., JoinMessage, are implemented as instances of subclasses of

the abstract Message superclass. The Message superclass encapsulates the fields that

are common to all messages, namely the message GUID, payload type, hops and

 111

payload length in the message header. It also stores the payload and a reference to the

Connection from which the message originated. The classes implementing the

different messages such as JoinMessage, JoinReplyMessage, SearchMessage,

SearchReplyMessage, RandomNeighsMessage, RandomShortLeftContactMessage,

RandomShortRightContactMessage, RandomLongContactMessage and

RandomReferenceHostsMessage extend Message by defining different payload

structures. They also provide methods for flattening a message to render it suitable for

sending over the network, and for expanding a message after it is received from the

network.

When a ContextPeer receives a JoinReply message, it obtains a set of nodes to

connect to and its OutgoingConnectionManager starts to initiate outgoing connections

to these nodes. For each connection attempt, the OutgoingConnectionManager sends

the connect string:

 SCS CONNECT\r\n

This connect string is followed by other headers indicating the local ContextPeer's IP

address, port and SID.

When a remote ContextPeer receives a connection request via its

IncomingConnectionManager, it verifies whether it falls into the maximum number of

connections. If the remote ContextPeer accepts the connection request, it responds

with:

 SCS CONNECT OK\r\n

A connection is then established between the local and remote ContextPeers.

Information for each such successful connection is stored in a Connection object. The

 112

flags indicating various types of connections are listed in Table 6.1 (note that

reference connection which is indicated with the flag CONN_REFERENCE need not to

be created during the bootstrap). The structure known as the ConnectionList stores all

the active Connections.

TABLE 6.1: VARIOUS CONNECTION FLAGS

Flags value

CONN_NEIGHBOR 0

CONN_SHORT_LEFT_CONTACT 1

CONN_SHORT_RIGHT_CONTACT 2

CONN_LONG_CONTACT 3

CONN_REFERENCE 4

There are also similar flags to indicate incoming connections or outgoing connections.

An incoming connection and an outgoing connection may share the same Connection

object if the two end hosts are the same. The number of incoming and outgoing

connections for each ContextPeer may be specified in accordance with its capacity.

Upon successfully joining the SCS overlay network, a ContextPeer keeps these

connection objects in its routing table called HostCache. All ContextPeers in its

HostCache are listed in the context producer's GUI with their IPs, Types, Modes and

current Cluster IDs. The GUI also shows that the semantic cluster the ContextPeer

joined in the "Semantic cluster joined" box and the cluster ID in the "ContextPeer

Cluster ID" box. A screen shot is shown in Figure 6.4.

 113

Figure 6.4: Screen shot of connections

6.2.4 Reference registration

After joining its major semantic cluster, a ContextPeer needs to register itself with all

its minor semantic clusters. It invokes the method getReferenceHosts to randomly

select reference hosting nodes of minor semantic clusters to store the index of the

ContextPeer. This method in-turn sends the RandomReferenceHostsMessage to the

network. Upon successful execution, a set of reference hosting nodes are obtained and

returned to the ContextPeer. Then the ContextPeer initiates the outgoing reference

connections to these nodes to register itself to all its minor semantic clusters. The

reference connection string is shown below:

SCS REFERENCE_REGISTER\r\n

If the remote ContextPeer accepts the reference registration request, it responds with:

 114

SCS REFERENCE_REGISTER OK\r\n

When a ContextPeer successfully registers itself with all its minor semantic clusters,

its IP address and the associated semantic cluster are stored in the remote

ContextPeer's randomHostList which basically is a HashTable structure containing

the mapping between semantic clusters (i.e., minor semantic clusters) to nodes; then

the connections are terminated. These reference connections are activated during a

search request or a subscription request.

6.3 Message receivers

Different message receivers are defined to handle different types of messages. There

are five types of message receivers, namely JoinMessageReceivers,

RandomContactMessageReceivers, SearchMessageReceivers,

SearchResponseReceivers and InternalSearchResponseReceivers. Message receivers

are activated via callback methods. All message receivers implement the

MessageReceiver interface, which defines the structure of these callback methods.

The various receivers are outlined as follow:

JoinMessageReceiver: A JoinMessageReceiver implements receiveJoin(), which is

defined as a callback method and is invoked when a Join message is received.

RandomContactMessageReceiver: A RandomContactMessageReceiver implements

receiveRandomContact(), which is defined as a callback method and is invoked when

a RandomNeighsMessage, RandomShortLeftContactMessage,

RandomShortRightContactMessage or RandomLongContactMessage is received.

SearchMessageReceiver: A SearchMessageReceiver implements receiveSearch(),

which is the primary callback method invoked when a Query message is received.

 115

Both Context Producers and Context Interpreters use SearchMessageReceiver as they

both provide context data and hence must be able to respond to queries. However, the

implementation of receiveSearch() for Context Producers is different from that of

Context Interpreters.

SearchResponseReceiver: In the same manner, a SearchResponseReceiver implements

receiveSearchReply(), which is the primary callback method being invoked when

receiving a QueryHit message.

InternalSearchResponseReceiver: An InternalSearchResponseReceiver also

implements receiveSearchReply(), albeit in a different manner from that of a

SearchResponseReceiver. An InternalSearchResponseReceiver is only utilized by

Interpreters to receive responses for internal queries, which are in essence, premises

required for context data reasoning.

6.4 Message forwarding and processing

Each ContextPeer implements a Router that is responsible for forwarding messages

received from the network to other nodes. In addition, the Router also processes

messages locally within the ContextPeer. Each ContextPeer keeps track of each Query

message received by storing appropriate entries, such as the GUID and the associated

semantic cluster ID of Query messages, in its CacheTable. The Router will not

forward or process the message if its GUID has existed in the CacheTable. The class

diagram of message forwarding and processing in Figure 6.5 illustrates various

classes and their relationships.

 116

Figure 6.5: Classes responsible for message forwarding and processing

6.4.1 Message forwarding

Different types of messages are forwarded according to different forwarding rules.

A Join message is forwarded to a node in its HostCache whose CID (i.e., cluster ID)

is closer to the CID in the message payload. When the Join message reaches a node

whose CID matches the CID in the message payload, the node invokes the

RandomContactMessageReceiver method to initiate a RandomNeighsMessage, a

RandomShortLeftContactMessage, a RandomShortRightContactMessage and a

RandomLongContactMessage to its neighbors, short left contact, short right contact

and long contacts respectively. A node receiving any of these messages selects and

returns a node randomly in its cluster.

A ContextPeer follows a similar rule to forward a Query message. When a Query

message reaches the destination semantic cluster, it is forwarded to all the clusters in

 117

that semantic cluster. This is done using a flag called isFirstFlag that indicates

whether it is the first node in a cluster receiving the query. This flag is set to True by

default. When the first node in the destination semantic cluster receives the Query

message, it immediately forwards the message with the isFirstFlag remains as True to

a node in its adjacent cluster, but it changes this flag to False and forward the Query

message to all its neighbors in its HostCache. The first node in the adjacent cluster

follows the same rule to forward the Query message until the next cluster until all

clusters of the semantic cluster receive the query. Any node that receives the Query

message with the isFirstFlag equal to False can only forward it to all neighbors in its

HostCache (i.e., they are in the same cluster). If a ContextPeer receives a Query

message whose CID matches the CID of a node entry in randomHostList, it initiates a

reference connection with the flag CONN_REFERENCE to this node. Upon

successfully creating the connection, the ContextPeer puts the connection object into

the referenceConnectionList, which is an instance of the ReferenceConnectionList.

The Query message is forwarded to this reference connection as well. The reference

connection is terminated upon receiving the results from the remote ContextPeer. In

the case of a subscription request, the reference connection is not terminated if the

remote ContextPeer accepts the request until an unsubscription request is received.

A QueryHit message is forwarded only to the neighbor that has sent the

corresponding Query message.

6.4.2 Message processing

In addition to message forwarding, the Router is also responsible for invoking

callback methods of appropriate message receivers to enable ContextPeers to process

Query and QueryHit messages received from the network.

 118

Query messages are handled by the SearchMessageReceiver referenced to by the

Router. For QueryHit messages, the Router maintains a structure called the

OriginateTable that maps query GUIDs to their SearchResponseReceivers. An entry

is added to the OriginateTable each time a Query message is generated and sent to the

network. When the Router receives a QueryHit message from the network, it looks up

the OriginateTable to check whether the message is in response to a query sent by the

local ContextPeer. If the QueryHit's GUID exists in the OriginateTable, the

corresponding SearchResponseReceiver is activated.

6.5 Search and subscription

In SCS, an RDQL string specifies a query's criteria. The RQDL string contains a

triple pattern which enables statements that match the pattern to be returned as results.

A triple pattern is structured like a statement, but its subject, predicate or object may

take various values.

Before a query is sent to the network, it goes through a mapping process. For

convenience, the subject, predicate and object of the query criteria's triple pattern will

be referred to as the query's subject, predicate and object respectively in the remaining

sections.

To initiate a search or subscription, a SearchSession is created. The SearchSession

contains references to the query criteria, the semantic cluster that the query is mapped

to, and the SearchResponseReceiver that is capable of handling replies from the

network corresponding to the query. The SearchSession then sends the query to the

SCS overlay network. This is handled by the SearchSession's SendThread internal

class, which sends the query to the relevant Connections.

 119

6.5.1 Query types

Queries in SCS can be broadly classified into two types: non-deduced and deduced.

Non-deduced queries request for low-level context data, which is provided directly by

sensors connected to Context Producers. Context Producers are only able to respond

to non-deduced queries. On the other hand, deduced queries request for high-level

data, which is derived from low-level context data. Such queries require reasoning,

and thus, only Context Interpreters are capable of handling them.

6.5.2 Query messages

There are four different types of query messages in SCS, i.e., search requests,

subscription requests, unsubscription requests and internal queries. A search request is

issued only when a one-time response from the network is required. A subscription

request enables a query to be subscribed to the network and a response be returned

whenever there is a change in the relevant context data. When a Context Producer or a

Context Interpreter receives a subscription request and decides to accept the request, it

caches the query in the subscription request and responds to that query whenever

there is a change in the context data. An unsubscription request does exactly as its

name suggests; it instructs Context Producers and Context Interpreters to discard the

corresponding subscription if they are currently maintaining it. An internal query is

similar to a subscription request, but is issued exclusively by Context Interpreters to

monitor context data for context reasoning. Internal queries are unsubscribed in

exactly the same manner as unsubscription requests.

The structure of a Query message is illustrated in Figure 6.6. The query type field

enables Query messages be differentiated into four types, namely search requests (00),

subscription requests (01), unsubscription requests (10) and internal queries (11). The

subscriber IP field contains the IP address of the ContextPeer that is subscribing to the

 120

query. This field is only applicable for subscription requests and internal queries, and

is not used for search requests. The first-node flag indicates whether the ContextPeer

is the first node in a cluster. The reference flag indicates whether the connection is a

normal connection or a reference connection. The destination CID field stores the

semantic cluster ID that the query is mapped to.

Figure 6.6: Structure of Query message

6.5.3 QueryHit messages

For subscribed queries, the context data being monitored is usually subjected to

changes. It is thus necessary to have two kinds of QueryHit messages, namely a

QueryHit add (0) to indicate the presence of statements in QueryHit, and a QueryHit

remove (1) to indicate the absence of statements in QueryHit. To differentiate these

two kinds of QueryHit messages, a QueryHit type field is added to the QueryHit

message. The structure of the QueryHit message is illustrated in Figure 6.7. The

subscription flag field indicates True if this query hit is in response to a subscribed

query. The hit count field indicates the number of hits returned. The IP address and

port fields indicate the responding ContextPeer's IP address and port number. The last

field contains the results.

Figure 6.7: Structure of QueryHit message

 121

6.5.4 Subscriptions

Subscription and Subscriber are two data structures used in SCS to support query

subscriptions. A Subscription holds information for an active query subscription while

a Subscriber maintains information pertaining to a ContextPeer that is actively

subscribing to a particular query. Each Subscriber instance keeps the subscription

request GUID, the subscriber's IP address and a timer value. The latter is only used

for non-subscribed deduced queries. Subscribers can be either normal subscribers or

internal subscribers; the former refers to LookupClients that subscribe to non-internal

queries while the latter refers to Context Interpreters that subscribe to internal queries.

Three types of Subscriptions exist, namely OutgoingSubscriptions,

IncomingSubscriptions and OutgoingInternalSubscriptions. An OutgoingSubscription

is created by a LookupClient for each outgoing subscription request that it issues to

the network. It holds an outgoing subscribed query's GUID, criteria and a model that

stores the responses received for the outgoing subscribed query. An

IncomingSubscription stores an incoming subscribed query's criteria, its associated

CID and a list of subscribers (either normal or internal) subscribing to that incoming

subscribed query. When a subscription request is accepted by a Context Producer or a

Context Interpreter, it checks whether an IncomingSubscription with similar criteria

already exists. If such an IncomingSubscription exists, a new subscriber

corresponding to the subscription request is added to that IncomingSubscription.

Otherwise, a new IncomingSubscription is created, and the new subscriber added to it.

Thus, only one IncomingSubscription is necessary for multiple subscription requests

with the same criteria. An OutgoingInternalSubscription is maintained by a Context

Interpreter for each internal query it sends to the network. Each

OutgoingInternalSubscription maintains the internal query GUID and criteria, and

 122

also a list containing the GUID and criteria of each deduced query that requires the

internal query.

6.6 LookupClient

The functionality of a LookupClient includes initiating context queries according to

the application's requirements, sending queries to a Context Producer, and returning

the results to the application. The class diagram containing the major classes in the

LookupClient is shown in Figure 6.8.

Figure 6.8: Class diagram of LookupClient

 123

6.6.1 Initiating queries

A LookupClient needs to contact a Context Producer to obtain context data from the

SCS overlay network. The LookupClient initiates a SearchSession to send a query to

an existing Context Producer in SCS. The Context Producer serves as a proxy to

resolve queries for the LookupClient. Before a query is sent, it is mapped to the

appropriate semantic cluster(s) by means of the ClusterMap and ClusterHierarchy. If

the query is a search request, the query is sent immediately to the network. However,

if the query is to be subscribed, the LookupClient first creates an

OutgoingSubscription. Subsequently, it issues a subscription request to the overlay

network.

6.6.2 Receiving query responses

When receiving a QueryHit message, a LookupClient extracts the payload of the

message by using SearchResponseReceiver's receiveSearchReply() method. Usually,

the method is defined either to display the contents of the QueryHit for debugging

purposes or to pass it to an application for further handling, such as the activation of

actuators.

6.7 Context Producer

A Context Producer includes all the functionalities provided by the LookupClient. In

addition, it provides query routing, sensor management, context data management and

query management. The class diagram related to these functionalities of a Context

Producer is shown in Figure 6.9.

 124

Figure 6.9: Classes responsible for context data and query management

6.7.1 Initiating queries

Similar to a LookupClient, a Context Producer can initiate both search queries and

subscription queries. A screen shot is shown in Figure 6.10 to illustrate the GUI for

initiating a search query or a subscription query. Users can choose to initiate a search

request by typing an RDQL query in the "Search" box and clicking the "Search"

button, or a subscription request by typing an RDQL query, selecting the "Subscribe"

box and clicking the "Search" button. The results for a search request will be

displayed in the "Responses" table whereas the results for a subscription request will

be displayed in the "Outgoing Subscription" tab (described in Section 6.7.4.3).

 125

Figure 6.10: GUI of Context Producer for searching and subscribing context data

6.7.2 Sensor management

Various hardware or software sensors can be connected to a Context Producer. Any

type of sensor may be used, as long as the appropriate wrapper is written to convert

raw data from the sensor into RDF statements.

In this prototype implementation, we use software sensors to emulate hardware

sensors such as location sensors, light level sensors and device status sensors. These

software sensors can be added to or removed from a Context Producer easily. A

screen shot of some of these software-emulated sensors is shown in Figure 6.11 and

Figure 6.12. Figure 6.12 illustrates the GUI for attaching or detaching various sensors

to a Context Producer. Figure 6.12 illustrates the GUI for selecting different values

for the attached sensors. Each type of sensor is capable of generating a specific type

of raw sensor data. The raw sensed data is then converted to an RDF statement by the

Context Producer. For example, an RFID location software sensor can generate

sensed data <RoomID RFID_John>, where RoomID represents the ID of a

bedroom and RFID_John represents the RFID sensor attached to a person – John.

 126

Upon receiving the sensed data, the Context Producer converts it to the RDF

statement <socam:John socam:locatedIn ′Bedroom′>, representing the

fact that John is currently located in the bedroom, and then store the RDF statement

into its local context data repository. We have built in various software-emulated

sensors in the prototype: location sensor, light sensor, noise sensor, device sensor,

phone status sensor, door status sensor, temperature sensor, human count sensor,

inventory sensor, calendar emulator and clock emulator.

Figure 6.11: GUI of Context Producer for sensor management

 127

Figure 6.12: GUI of Context Producer for sensor value selection

6.7.3 Context data management

Each Context Producer maintains a local context data repository which supports RDF-

based semantic querying using RDQL. This repository is realized by Jena Models.

Jena Models are also used to store ontologies for context data. A Jena Model provides

methods for the addition and removal of context data and for querying. It also

provides a set of operations to combine itself with other Jena Models. In addition, a

ModelChangedListener may be attached to a Model to monitor changes in the Model,

particularly with respect to context data addition and removal. Model-based context

data management falls under the responsibility of the ContextManager.

 128

The ContextManager maintains a few Jena Models. These Jena Models store context

data ontologies, static context data and sensed context data. Static context data refers

to context data that does not change frequently, such as the spatial information of

buildings (e.g., John's bedroom is located in John's house). Sensed context data refers

to data obtained from software sensors (e.g., John is located in John's bedroom). Such

data is typically dynamic and changes frequently.

Besides providing accessor and mutator methods for the individual Jena Models, the

ContextManager also combines all the models into a base model which is used for

local lookup. Ontology reasoning is performed on this base model. This is to be

distinguished from the rule-based reasoning done by Context Interpreters. The former

performs reasoning on context ontologies while the latter performs reasoning on

context data based on a set of user-defined rules.

As sensed context data changes frequently, the ContextManager attaches a

ModelChangedListener to the sensed context data Model to monitor these changes.

This is especially important for responding to incoming subscribed queries and will be

explained in the next section.

6.7.4 Query management

Query management involves three steps: local context lookup, subscription

acceptance and subscription response. The first step applies to both unsubscribed and

subscribed queries while the second and third steps apply only to subscribed queries.

6.7.4.1 Local context lookup

When a Context Producer receives a Query message, its payload is extracted by its

SearchMessageReceiver. If the Query message is mapped to a non-deduced semantic

 129

cluster, the SearchMessageReceiver then performs a local context lookup in the

ContextManager's base model. If the lookup returns non-empty results, a QueryHit

message is then constructed using the Query message's GUID and the returned results,

and subsequently sent to the SCS overlay network. Queries mapped to deduced

semantic clusters are ignored by the Context Producer as it is not capable of

performing context data reasoning.

6.7.4.2 Subscription acceptance

If the Query message happens to be a subscription request, the Context Producer

determines whether it should accept the request based on the subscription acceptance

policy described in Section 4.4.5.

Based on this policy, the Context Producer attempts to match the subscription request

against the context data in its base model. If the request's predicate is a

DatatypeProperty, the Context Producer determines if its base model contains

statements with the same subject-predicate pair as the request. For example, for a

given subscription request <socam:Bedroom socam:lightLevel 'LOW'>,

the Context Producer accepts the request if there exists a statement with subject

"socam:Bedroom" and predicate "socam:lightLevel" in its base model.

Similarly, if the predicate is an ObjectProperty, the Context Producer determines if its

base model contains statements with the same predicate-object pair as the request. For

example, for a given subscription request <socam:John socam:locatedIn

socam:Bedroom>, the Context Producer accepts the request if there exists a

statement with subject "socam:locatedIn" and predicate "socam:Bedroom" in

its base model.

 130

If the Context Producer accepts the subscription request, an IncomingSubscription is

constructed or updated as necessary.

6.7.4.3 Subscription response

Whenever a change occurs with respect to sensed context data, the

ModelChangedListener informs the ContextManager of the RDF statement that has

been added or removed. Subsequently, the ContextManager scans through all

IncomingSubscriptions and identifies those that are affected by the change. This is

done in the following manner: Let the added or removed RDF statement be

<subjectc, predicatec, objectc>. Let the RDF triple pattern of a

particular IncomingSubscription's criteria be <subjectsr, predicatesr,

objectsr>. Define the Boolean variable isAffectedc as:

isAffectedc = (subjectc == subjectsr) ^ (predicatec ==

predicatesr) ^ (objectc == objectsr)

where ^ denotes the logical AND operation. A variable can take the value of any

arbitrary constant and is thus equal to any constant value. An IncomingSubscription is

affected by a change c if isAffectedc is true. For each affected

IncomingSubscription, the ContextManager sends QueryHit messages to all its

subscribers to supply them with the updated context data. The QueryHit messages

sent are QueryHit adds if c is the addition of a statement or QueryHit removes if c is

the removal of a statement. The screen shot of a subscription response is shown in

Figure 6.13.

 131

Figure 6.13: Screen shot of a subscription response

6.8 Context Interpreter

A Context Interpreter includes all the functionalities provided by a Context Producer.

In addition, a Context Interpreter provides context reasoning service. This section

describes the internal operation of a Context Interpreter including deduced query

registration, rule management, deduced query management and context data

reasoning. The class diagram related to the functionalities of context reasoning in a

Context Interpreter is shown in Figure 6.14.

 132

+getMatchingRules(in q : Query)
+instantiateRule(in q : Query, in r : Rule)

RuleManagerQuery Rule

IncomingSubscription

IncomingSubscription$Susbcriber
-ruleManager : RuleManager

ContextInterpreter

OutgoingInternalSubscription

#receiveSearchReply(in searchReply : SearchReplyMessage)

InternalSearchResponseReceiver

-connection : ContextPeer
-receiver : InternalSearchResponseReceiver

InternalSearchSession

-contextInterpreter : ContextInterpreter
ContextPeer

#receiveSearch(in s : SearchMessage)

SearchMessageReceiver

-contextPeer : ContextPeer
-searchReceiver : SearchMessageReceiver

Router

SearchMessage

* 1 1 *

SearchReplyMessage

*

1

+run()

Thread InternalSearchSession$SendThread

1

1

Figure 6.14: Classes responsible for context data reasoning

6.8.1 Deduced query registration

All deduced queries are required to register as incoming subscription requests in a

Context Interpreter. In another words, they are treated as subscribed queries,

regardless of whether they are subscribed or not. This is because the requested high-

level context data is not usually available immediately as the necessary premises must

 133

be obtained by the Context Interpreter before the high-level context data can be

generated. The Context Interpreter constructs or updates an IncomingSubscription for

each deduced query. The screen shot of incoming subscriptions for all the deduced

queries in a Context Interpreter is shown in Figure 6.15. As shown in the figure, all

deduced queries are listed in the "Incoming Subscribed Queries" table with the

originator's IP address.

Figure 6.15: Screen shot of incoming subscriptions for all deduced queries in a Context

Interpreter

6.8.2 Rule management

A Context Interpreter performs reasoning on low-level context data using a set of

defined rules. These rules are encapsulated by Rule objects and are managed by a

RuleManager. A Jena rule takes the form:

[<RuleName>: <Premise1> … <Premisen> -> <Conclusion>]

<RuleName> specifies the name of the rule. <Premise1> … <Premisen> are

triple patterns representing the premises that make the conclusion true.

 134

<Conclusion> is a triple pattern that specifies the high-level statement generated

when all premises are satisfied.

Rules are specified in a rule file. The RuleManager reads this file, creates the

corresponding Rule objects and stores them. Besides storing the rules, the

RuleManager also provides methods for determining the matching rules for a query,

as well as instantiating a rule with respect to a query.

6.8.2.1 Determination of matching rules

A query's subject is said to match the rule conclusion's subject if any of the following

three conditions are true:

 the query's subject is a variable

 the rule conclusion's subject is a variable

 both the query's subject and the rule conclusion's subject are not variables and are

equal

A query's object is said to match the rule conclusion's object in the same manner. If

the query's predicate is the same as that of the rule conclusion, and both the subject

and object of the query match those of the rule conclusion, the rule is said to match

the query. Given a query, a RuleManager is able to return all matching rules for the

query by performing the checks above on all the rules it manages.

6.8.2.2 Rule instantiation

The instantiation of a rule involves binding all variables in the rule with respect to a

binding environment. This binding environment is constructed using the query and

the rule conclusion. For each rule conclusion with a predicate matching that of the

query, two bindings will potentially be added to the binding environment. If the

query's subject is not a variable, a binding that binds the rule conclusion's subject to

 135

the query's subject will be added to the binding environment. This applies similarly to

the query's object.

6.8.3 Deduced query management

When a Context Interpreter receives a Query message, its payload is extracted by the

Context Interpreter's SearchMessageReceiver. If the Context Interpreter identifies the

Query as a deduced query, the Query is further processed. Deduced queries are treated

differently from non-deduced queries. In particular, all deduced queries are treated as

subscribed queries, regardless of whether they are subscribed or not. This means that

the Context Interpreter constructs or updates an IncomingSubscription for each

deduced query. This is done because the requested high-level context data is not

usually available immediately as the necessary premises must be obtained by the

Context Interpreter before the high-level context data can be generated. Thus, the

Context Interpreter has to cache the deduced query while it attempts to obtain the

necessary premises. However, since non-subscribed deduced queries are not true

subscriptions, the Context Interpreter sets a timer value for the Subscriber instance

corresponding to the ContextPeer that sent the query, allowing it to time out when the

timer value expires. The Context Interpreter is unable to answer the deduced query if

it is unable to generate the necessary high-level context data before the timer value

expires. Subsequently, the Subscriber that timed out will be removed. On the other

hand, if the Context Interpreter successfully answers the query before the timer value

expires, the corresponding Subscriber object will be removed immediately.

Subscribed deduced queries do not make use of the timer value.

 136

6.8.4 Context data reasoning

A Context Interpreter performs context data reasoning using the ContextInterpreter

class. Context data reasoning involves four phases. These phases are determination of

matching rules, rule instantiation, internal query generation and high-level context

data derivation. The first two phases are handled by the RuleManager (discussed in

Section 6.8.2).

6.8.4.1 Internal query generation

After the RuleManager has completed all the necessary rule operations, a set of

premises for all the rules that match the deduced query is obtained. The

ContextInterpreter generates an internal query for each of these premises. Internal

queries are analogous to subscribed queries. If an internal query has not been sent to

the network before, the ContextInterpreter creates a new

OutgoingInternalSubscription and adds the GUID and criteria of the deduced query to

it. Otherwise, the details of the deduced query are simply added to the existing

OutgoingInternalSubscription corresponding to the internal query. If a new

OutgoingInternalSubscription is created, the internal query is subsequently sent to the

network via InternalSearchSession.

6.8.4.2 High-level context data derivation

Before context data derivation can take place, a rule-based reasoner (subsequently

referred to as the rule reasoner) and a Model containing the necessary premises

(subsequently referred to as the premise model) are required. When a Context

Interpreter starts up, its ContextInterpreter constructs the rule reasoner using all the

rules managed by the RuleManager and creates a new empty premise model.

 137

Premises received from the network in the form of responses for internal queries are

placed in the premise model. The ContextInterpreter can create an inference model by

attaching the rule reasoner to the premise model. The inference model contains high-

level statements derived by the rule reasoner from the premises in the premise model.

A lookup can be done against the inference model in the same manner as normal

models.

Each time the Context Interpreter receives a premise from the network, the

corresponding InternalSearchResponseReceiver is activated. The

InternalSearchResponseReceiver instructs the ContextInterpreter to add the new

premise to the premise model and rebuild the inference model. Subsequently, the

ContextInterpreter does a lookup against the inference model with respect to each

deduced query that requires the new premise. The relevant deduced queries can be

determined by using the information stored in the OutgoingInternalSubscription for

the internal query corresponding to the received premise. A QueryHit is sent to the

appropriate subscribers for each deduced query that can be answered.

6.9 Development of context-aware applications

In the previous sections of this chapter, we have presented the details of our prototype

implementation. In this section, we describe how application developers can make use

of the SCS prototype to build various context-aware applications. First, we describe a

set of APIs provided by our SCS prototype system. Then we present several typical

context-aware applications we have developed to illustrate the development process

and the use of APIs. Finally, we point out some other application scenarios and

highlight our ongoing work in application development.

 138

6.9.1 SCS APIs

The SCS prototype system defines a set of APIs for application developers to make

use of the functionalities of SCS and build various context-aware applications. These

APIs provide basic functionalities such as joining the SCS network, initiating queries

and receiving results. These methods are defined in the SCSAPI class and include the

following methods:

 connect() and disconnect()

These methods allow an application to connect to the SCS overlay network via a

ContextPeer.

 search(String query)

This method enables an application to search for context data in the SCS overlay

network.

 subscribe(String query) and unsubscribe(String query)

These methods allow an application to subscribe a query to SCS as well as cancel

a subscription.

 reply(String response)

This is a callback method that is invoked by the ContextPeer when a response for

a query is received. It in turn invokes the reply(String response) method defined in

an application (this method is defined in the ScsApp interface which the

application must implement).

6.9.2 Sample context-aware applications

Various context-aware applications can be built by using the SCS APIs. In this section,

we describe two typical context-aware applications we have developed to demonstrate

the different functionalities of SCS and how the development process can be made

easier with the SCS APIs.

 139

6.9.2.1 SmartHome application

The SmartHome application enables users to monitor home appliances, activities and

provide intelligent services in smart home environments. These are typically context-

aware applications that people envision to realize context-aware computing. We

describe some of the application scenarios implemented in the SmartHome

application below:

We follow through a day in John's house where John, his wife Mary and their

son Tom live. When any of these residents arrives home, the SmartHome

application detects his/her presence and plays a voice greeting such as "Good

Evening, John!" in accordance with the current time of the day. If John

proceeds to his bedroom, turns the light off and takes a short nap, the

SmartHome application deduces that John is currently sleeping and proceeds

to switch his mobile phone to silent mode and turn on the "Do Not Disturb"

indicator on his bedroom door. Meanwhile, Tom goes to the living room and

switches on the television. Shortly after, the fixed line phone rings. As the

SmartHome application notes that the phone is ringing while Tom is watching

television, it proceeds to lower the television volume so that Tom can answer

the call without distraction. In the evening, Mary prepares dinner and the

family makes their way to the dining room. The SmartHome application then

deduces that they are having dinner and starts playing the dinner music for the

day, filling the dining room with enjoyable, ambient music. If anyone's

birthday falls on that day, the SmartHome application then chooses to play the

"Happy Birthday" song . . .

 140

The GUI of the SmartHome application is shown in Figure 6.16. The application is

able to connect to the SCS overlay network and disconnect from it, send search

requests and subscription requests to the network and receive responses for them as

well as execute action plans when certain context events occur. Specifically, in the

example above, the application monitors and subscribes different types of context data

such as a person's location (i.e., John's location), room activities (i.e., the dining room

activity), device statuses (i.e., television status), and physical environment (i.e.,

bedroom light level). The application fires actions based on a set of context data

subscribed, i.e., playing music when the family is having dinner in the dining room,

decreasing the television volume when someone is watching television and the phone

is ringing, etc. The action criteria are shown in the "Conditions" box and the name of

the action is shown in the "Actions" box. Apart from the built-in subscription requests,

users can also initiate a one-time search request to the network from the "Search" tab

which has a similar GUI as the Context Producer.

 141

Figure 6.16: Screen shot of the SmartHome application

To make use of the SCS APIs, each application must implement the ScsApp interface,

which specifies two methods:

 reply(String response)

This callback method is called by the SCS API when a response is received

from the SCS network.

 updateConnectionStatus(boolean connected)

This callback method is called by the SCS API when a response is received

from the SCS network.

 142

In order to start monitoring the dining room activity, the SmartHome application

subscribes to the query:

"SELECT ?x WHERE

(<http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom>

 <http://www.comp.nus.edu.sg/socam/JohnHome#roomActivity>

 ?x)"

by calling the subscribe() method in the SCS API. Monitoring is stopped by calling

the unsubscribe() method. This is a type of deduced query that is then routed to a

context interpreter responsible for the same type of deduced query. The context

interpreter derives the high-level contexts based on a set of user-defined rules. One of

the rules is shown in Figure 6.17 (the rule format has been re-arranged for user

readability) whereas the rest of the rules are listed in Appendix B. Based on this rule,

if John, Mary and Tom are located in the dinning room, the dining room has three

persons and the current time is evening, the context interpreter is able to derive that

the dining room is having the room activity – FAMILY_DINNER.

 143

Figure 6.17: A sample rule for context reasoning in the SmartHome application

In this application, the reply() method is implemented to invoke the fireActionPlan()

method, which starts an action plan according to the response received from the

network. In this case, fireActionPlan() invokes playDinnerMusic() when the statement

"<http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom>

<http://www.comp.nus.edu.sg/socam/JohnHome#roomActivity>

′FAMILY_DINNER′"

is received. playDinnerMusic() then executes the appropriate code to play the dinner

music for the day. The skeleton of the code in the SmartHome application is shown in

Figure 6.18. As we can see for the code, application developers only need to specify

their context queries that are of interest and define the required callback methods.

Hence, they are able to put more development efforts into defining application-

 144

specified actions and the application's GUIs. We have run the SmartHome application

in various network setups including the testbed which is described in Section 6.10.

Figure 6.18: Skeleton of the code in the SmartHome application

 145

6.9.2.2 ShoppingAssistant application

Figure 6.19: Scenario of the ShoppingAssistant application

Shopping assistant is another typical context-aware application which involves cross-

domain context information as shown in Figure 6.19. It provides helpful shopping

suggestions for users. In this example, we implement the following application

scenario:

While John is away at work, Mary decides to go shopping. She brings along

her portable ShoppingAssistant and drives to town. Shortly after, Mary arrives

at her favorite grocer, Fresh Storage. Her ShoppingAssistant recognizes that

Mary is near one of her favorite shops. It then queries the network for items

that have to be purchased. At home, the Kitchen Inventory Manager monitors

the refrigerator inventory and deduces items that require purchasing as well as

the number to purchase for each item, by checking the current quantities of

items against their preset required quantities. The Kitchen Inventory responds

 146

to the ShoppingAssistant, suggesting that a dozen eggs and two cartons of

fresh milk should be purchased. Meanwhile, the Center Inventory Manager

(which manages the inventory of items in Mary's child care center) responds

to the ShoppingAssistant, indicating that ten boxes of cereals and three reams

of printing paper should be purchased. The ShoppingAssistant then queries

the Fresh Storage Information Service for the pricing and availability of the

items suggested for purchase. After determining that the eggs, milk and

cereals are available, the ShoppingAssistant alerts Mary and displays a table

showing the items suggested for purchase at Fresh Storage (eggs, milk and

cereals but not paper), with their respective quantities and prices. After

purchasing the items, Mary drops by the child care center and then makes her

way back home.

The development process is quite similar to the one in the SmartHome application,

and hence, we will not go into details. However, we highlight here that cross-domain

context data is used in this application, i.e., inventory data from the Kitchen Inventory

Manager at home as well as from the Center Inventory Manager at Mary's child care

center, merchandise data from the grocery store and book store, location data which

changes from one store to another store, etc. Different namespaces are allowed in SCS

and can be used to differentiate the domain. Application developers can define their

own context ontology and data by specifying their namespaces. For example, one may

use "http://www.comp.nus.edu.sg/socam/JohnHome" as the namespace

for John's home, and others may use

"http://www.comp.nus.edu.sg/socam/ChildCare" as the namespace

for Mary's child care center. An example of definition of domain-specific context

ontologies used in this application such as grocery store, book store and child care

 147

center are listed in Appendix C. Through this application, we demonstrate that SCS

works effectively in cross-domain context-aware applications.

6.9.3 Other scenarios and ongoing work

Many other context-aware applications can make use of the SCS APIs. For example,

we describe a MeetingAssistant scenario as follows:

At 9.00 a.m., John leaves home for work and drives to his office. In the office,

the MeetingAssistant (which keeps track of predefined meeting schedules,

prepares meetings and provides reminder services) notes that there is a

meeting scheduled at 10.00 a.m. to be held between John and his colleagues at

the Singapore office and their counterparts at the Sydney office, hosted by the

Singapore office. The MeetingAssistant determines all registered participants

of this meeting, which include John and his colleague Steve, and queries the

network for their respective locations. John's PersonalAssistant (which acts as

his personal information manager) responds that John is in his car. Thus, the

MeetingAssistant sends a Short Message Service (SMS) to him, reminding

him of the upcoming meeting at 10.00 a.m. The EmployeeMonitor (which

keeps track of the locations of employees in the office) also responds,

indicating that Steve is at his desk in the office. The MeetingAssistant

proceeds to send a pop-up meeting reminder to Steve's desktop screen instead

of sending an SMS to him. By 9.55 a.m., all participants in Singapore and

Sydney have taken their seats in the respective offices. The

MeetingRoomMonitors (which monitor meeting room activity) in both offices

deduce that a meeting has started in their respective locations and inform the

MeetingAssistant and its counterpart in Sydney. The MeetingAssistant

 148

proceeds to dim the lights, switch on the projector and communications

equipment and attempts to establish a connection with the office in Sydney.

Meanwhile, its counterpart prepares the meeting room in Sydney. When the

meeting concludes and all participants have left the meeting venues, the

MeetingRoomMonitors deduce that the meeting has ended and inform both

MeetingAssistants. Both MeetingAssistants then proceed to shut down all

equipment and turn off all lights.

In continuing efforts to demonstrate the useful features of the SCS prototype system, I

am currently supervising two university students to develop various context-aware

applications. Particularly, we will focus more on building cross-domain context-aware

applications and exploring all the useful features provided by the SCS prototype.

6.10 Prototype evaluation

We conduct a series of experiments to evaluate the SCS prototype system. The

purpose of this evaluation is to test the prototype performance in close-to-real

scenarios and to validate and calibrate our simulation model which has been evaluated

previously. In this section, we present our evaluation results. First, we describe the

setup of our prototype testbed, followed by the results obtained from a series of

experiments such as bootstrapping, dynamic characteristic, query response time,

query processing capability, deduced query processing time and memory consumption.

Finally, we use the evaluation results to validate and calibrate our simulation model.

6.10.1 The prototype testbed

We set up the prototype testbed which consists of eight ContextPeers (seven Context

Producer peers and one Context Interpreter peer) in the NUS campus network. Most

 149

of the ContextPeers run on Pentium 800MHz desktop PCs with 256MB memory

except one runs on a Pentium 1GHz desktop PC with 256MB memory, and another

which runs on a 2.4GHz laptop with 512MB memory. SWebCache runs in a separate

desktop PC. The physical layout of our prototype is shown in Figure 6.20. All the

ContextPeers are connected to the NUS campus network. Each ContextPeer will be

assigned a public IP address upon plugging in to the NUS campus network. The

laptop uses a WLAN connection whereas the rest of the PCs use LAN connections.

W
ireless Link

Figure 6.20: The physical layout of our prototype testbed

We create a set of context ontologies and context data whose semantics correspond to

semantic clusters: IndoorSpace, Person, DeducedActivity, OutdoorSpace,

Merchandise, Time and Device. These context ontologies and data have actually been

used in the SmartHome and ShoppingAssistant applications. Each ContextPeer stores

the upper context ontology and one or more domain-specific context ontologies.

Context data stored in each ContextPeer may correspond to one or more semantic

clusters. Before the evaluation starts, we need to place context ontologies and context

data at each ContextPeer. We use two data placement schemes: homogeneous data

 150

and heterogeneous data. In the earlier scheme, each ContextPeer stores its local data

which corresponds to one particular semantic cluster. In the later scheme, each

ContextPeer stores its local data which corresponds to multiple semantic clusters. The

evaluation starts by connecting each ContextPeer to the SCS network. The statistics of

the SCS overlay network will be displayed on SWebCache in the bootstrapping server

PC. We have shown a sample screen shot of SWebCache in Figure 6.2 in Section

6.2.2. The SCS overlay network is constructed when ContextPeers randomly join the

network. A ContextPeer obtains the IP of an existing ContextPeer from the bootstrap

server. We test the bootstrap process by connecting the eight ContextPeers to the

network in different joining orders, hence the structure of the ring space obtained may

differ from one to another. Figure 6.21 shows one example of the ring spaces captured

during the evaluations. Most of the results presented in this section are based on this

ring space.

Figure 6.21: An example of the ring space constructed during the evaluations

For the homogeneous data scheme, the parameter β equals 0.2 since the total number

of semantic clusters is 5. In the case of the heterogeneous data placement, we specify

 151

that the context data which is stored at each ContextPeer corresponds to 2 or 3

semantic clusters on average, and hence β equals 0.5. In the evaluation, we set m to 4,

n to 4 and M to 2 (m is the number of bits representing semantic clusters, n is the

number of bits representing sub-clusters and, M is the cluster size). Context queries

are randomly generated at each ContextPeer. Context queries can be non-deduced

queries, for example:

SELECT ?x WHERE

(<http://www.comp.nus.edu.sg/socam/JohnHome#John>

<http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn>

?x)

or deduced queries, for example:

SELECT ?x WHERE

(<http://www.comp.nus.edu.sg/socam/JohnHome#Tom>

<http://www.comp.nus.edu.sg/socam/ConOnt#participateIn>

?x)

A full set of context queries used in the evaluation is listed in Appendix D. Different

context queries are routed in the SCS overlay network and results are returned to the

requestors if context data is available in the network. In the following sections, we

present our evaluation results.

6.10.2 Bootstrapping

When a ContextPeer starts, it first goes through the semantic clustering mapping

process to identify which semantic cluster to join. The mapping process is done by

iterating each of the RDF data triples and identifying its corresponding semantic

cluster. Then the ContextPeer chooses the major semantic cluster to join. On average,

 152

the program initialization process takes about 4.26 seconds, and the mapping process

for each RDF data triple takes about 0.251 ms. The initialization process involves

reading and merging the ontology files stored locally and generating internal data

structures for mapping. It is done only once when a peer starts and is only repeated if

there is a change in these ontologies. The computation cost of the semantic cluster

mapping process in SCS is much lower than the computation cost of LSI (the results

can be found in [53]). Upon joining the network, each node creates and maintains the

connections to one neighboring node in its own cluster (if available), two short

contacts in its two adjacent (left and right) clusters and one long contact (if available)

in any other semantic cluster. We also evaluate the ring construction and the cluster

splitting/merging operations in our prototype by forcing a ContextPeer to join and

leave different semantic clusters. ContextPeers join and leave the system smoothly.

The joining process involves initiating the Join message, connecting to those nodes in

the JoinReply message received and registering its reference if needed. The results for

different steps in the bootstrap process are summarized in Table 6.2. Note that the

reference registration process is only required for the experiment setup of β = 0.5.

TABLE 6.2: THE RESULTS FOR THE BOOTSTRAP PROCESS

Processes Average Time Taken

Program Initialization 4.26 s

Semantic Clustering Mapping 0.251 ms/RDF triple

Joining Process (for β = 0.2) 2.56 s

Joining Process (for β = 0.5) 2.98 s

 153

6.10.3 Dynamic characteristic

We also evaluate the dynamic characteristic of the ring space in our prototype by

forcing ContextPeers to join and leave different semantic clusters randomly. Since we

set M to 2 in this evaluation, cluster splitting occurs when the cluster size is greater

than 2 as more ContextPeers join the cluster. When the last node leaves, the cluster is

merged with its neighboring sub-cluster (within the same semantic cluster). The

ContextPeer joining/leaving and cluster splitting/merging processes run smoothly in

our prototype. For testing the dynamic characteristic of the ring space, we introduce a

parameter: time-to-stability. We define the steady state of ContextPeer as the state in

which a ContextPeer maintains live connections to at least one neighboring node, one

left contact, one right contact, at least one long contact as well as reference hosting

nodes (the nodes storing its index). The steady state of a ContextPeer may collapse if

one of the following events occurs:

 Its neighboring node(s) or short left/right contacts or long contact(s) leave the

network or some of these nodes change their major semantic clusters (due to

changes in their local context data).

 Reference hosting node(s) leave the network or change their major semantic

clusters.

Queries routing may be affected when ContextPeers are not in the steady state. The

time-to-stability parameter is measured from the time when the steady state of a

ContextPeer collapses until it reaches the steady state again. We measure the time-to-

stability of the affected ContextPeers for different test cases (for β = 0.5 only) and the

results are summarized in Table 6.3 (note that no backup links are used in these cases).

In the experiments, the number of neighboring nodes and the number of long contacts

 154

are set to 1 respectively. In Case 1, the affected ContextPeer is required to initiate a

RandomNeighsMessage or RandomShortLeftContactMessage or

RandomShortRightContactMessage or RandomLongContactMessage to the network

and start to connect to the nodes in the reply messages. In Case 2, the affected

ContextPeer needs to initiate a RandomReferenceHostsMessage and re-register itself

to the nodes in the reply message.

TABLE 6.3: RESULTS ON TIME-TO-STABILITY (WITHOUT BACKUP LINKS)

Test Cases (for β = 0.5, without backup
links)

Average Time-
To-Stability

Case 1: The neighboring node or short
left/right contact or long contact
leaves the network or changes its
major cluster or cluster
splitting/merging occurs

271 ms per
connection

Case 2: Reference hosting nodes leave/change 87 ms per
reference

In a highly dynamic SCS network, peers leave and join frequently; this may result in

relapse rate very high. A high relapse rate may affect query routing in SCS. To

prevent this, we use a backup link for each type of connections. Once the steady state

collapses, a ContextPeer can switch to the backup link immediately for the affected

connection. With this backup scheme, we can minimize the disruption to query

routing in the highly dynamic SCS network where peers frequently leave and join.

6.10.4 Query response time

In this experiment, we measure the query response time of the prototype system. The

purpose of this experiment is to analyze the important factors which affect the query

response. We also compare the SCS prototype system with the ContextBus

architecture. In the experiment, we randomly select non-deduced queries and deduced

 155

queries from the query pool listed in Appendix D, and measure the average response

time for both types of queries. The query response time can be broken down into three

portions: query mapping, query processing and communication. Query mapping is the

time taken by a ContextPeer to map a query to the appropriate semantic cluster(s).

Query processing is the time taken by a Context Producer to process a non-deduced

query or the time taken by a Context Interpreter to process a deduced query. For a

Context Producer, query processing involves performing a local lookup against the

base model. In the case of a Context Interpreter, query processing involves rule

processing, internal query generation and high-level context data derivation and

lookup. Communication represents the time taken for queries and their responses to

travel over the network. For non-deduced queries, it is the sum of the time taken to

send a query from the LookupClient to the Context Producer and the time taken to

send the query's response from the Context Producer back to the LookupClient. For

deduced queries, besides communication between the LookupClient and the Context

Interpreter, also included is the additional time taken for the Context Interpreter to

send internal queries to Context Producers as well as for the Context Producers to

send appropriate internal query responses (i.e., premises) back to the Context

Interpreter. In this experiment, we also measure the query response time for the

ContextBus architecture. The testbed setup is the same as for the SCS prototype. The

context ontologies and data placement for ContextBus are the same as the one for the

case of β = 0.5 in the SCS prototype. The results are shown in Figures 6.22 and 6.23.

 156

Response Time for Non-deduced Queries

0

10

20

30

40

50

query mapping query processing communications

Ti
m

e
(m

s)

ContextBus

SCS (β = 0.2)

SCS (β = 0.5)

Figure 6.22: Response time for non-deduced queries

Response Time for Deduced Queries

0

100

200

300

400

500

600

700

Query Mapping Query Processing Communications

Ti
m

e
(m

s)

ContextBus

SCS (β = 0.2)

SCS (β = 0.5)

Figure 6.23: Response time for deduced queries

On average, the total query response time of SCS from the perspective of the

LookupClient is 83.5ms for a non-deduced query and 1108 ms for a deduced query.

The average query response time of ContextBus is 78.9ms for a non-deduced query

and 1066 ms for a deduced query. The results for these two architectures are similar in

 157

term of query response time in the current testbed setup. As we can see from the

above results, the processing time for query mapping can be ignored; the costs of

query processing and communication are the major factors. The response time for a

deduced query is longer than that for a non-deduced query because the worst case

scenario is assumed, i.e., the Context Interpreter's premise model is empty and all

premises have to be obtained from the network by issuing internal queries. If the

Context Interpreter is already maintaining certain incoming subscribed queries, the

response time for further queries may be much lower as some of the premises required

by the new queries may already be present in the premise model. We will investigate

and analyze this issue further in Section 6.10.6. For the SCS prototype, the

communication cost of non-deduced queries in the case of β = 0.5 is slightly higher

than that in the case of β = 0.2 could be due to the extra communication costs incurred

by reference connections. Communication time for a deduced query is higher than

that of a non-deduced query as this time includes the time taken for internal queries

and their respective responses to travel over the network. In a real application scenario,

communication costs are highly network dependent especially in a wide-area network.

6.10.5 Query processing capability

This section evaluates the capability of the Context Producer and Context Interpreter

to process simultaneous queries. We conduct two experiments. In the first experiment,

the LookupClient continuously sends a varying number of queries to the Context

Producer by randomly picking them from a large query pool which is generated based

on the list in Appendix D. The second experiment is similar to the first, but the

LookupClient continuously sends deduced queries to the Context Interpreter instead.

We measure the average processing time for both experiments. Figure 6.24 plots

 158

average query processing time against number of simultaneous queries. When a

logarithmic scale is used for both axes, both graphs display a linear relationship. This

shows that the capabilities of both Context Producer and Context Interpreter scale

well to number of queries.

ContextPeer Query Processing Capability

1

10

100

1000

10000

100000

1000000

2 4 8 16 32 64 128 256 512 1024 2048

Number of Simultaneous Queries

Q
ue

ry
 P

ro
ce

ss
in

g
Ti

m
e

(m
s)

Producer Query Processing Capability
(for Non-deduced Queries)
Interpreter Query Processing Capability
(for Deduced Queries)

Figure 6.24: ContextPeer query processing capability

6.10.6 Improving deduced query processing

In Section 6.10.4, we have analyzed and identified that query processing and

communication are the two main factors that affect query performance in SCS. In this

section, we propose and evaluate different methods aiming to improve performance in

processing deduced queries.

We propose four possible methods to handle deduced queries in a Context Interpreter:

(Table 6.4 summarizes these four methods)

 Method A – Pre-subscribe all premises: The Context Interpreter analyzes all the

rules it maintains and sends internal queries to the network for all possible

 159

premises upon startup. It also derives all possible high-level context data

corresponding to all the rules it stores.

 Method B – Internal queries are not shared: For each deduced query received,

the Context Interpreter sends internal queries for all relevant premises and

unsubscribes these internal queries when the deduced query is answered. Internal

queries are not shared between rules.

 Method C – Internal queries are shared: This method is similar to Method B,

but internal queries are shared between rules. The Context Interpreter only sends

an internal query if it has not already been sent and only unsubscribes an internal

query if there are no deduced queries pending to be answered that require that

internal query.

 Method D – Pre-subscribe certain premises /Internal queries are shared: This

method is a combination of Methods A and C. The Context Interpreter pre-

subscribes the premises of the rules corresponding to frequent deduced queries

and uses Method C for the rules corresponding to infrequent deduced queries.

TABLE 6.4: DIFFERENT METHODS FOR DEDUCED QUERY PROCESSING

Method Pre-subscription
Internal
Subscription

Sharing

A (Pre-subscribe all
 premises)

B (Internal queries are
 not shared)

C (Internal queries are
 shared)

D (Pre-subscribe certain
premises/Internal

 queries are shared)

We evaluate the effectiveness of each method in this experiment (the setup is based

on β = 0.2). Method A is performed by manually placing the necessary high-level

 160

statements in the Context Interpreter's inference model beforehand. Thus, the Context

Interpreter responds to deduced queries in the same way as a Context Producer does

with non-deduced queries. Method C is performed by checking for internal queries

that have already been sent and only initiating internal queries if they have not been

sent before. Method B is performed by removing the check for internal queries that

have already been sent. Hence, duplicated internal queries may be sent over the

network. Method D is performed by manually placing a portion of all possible high-

level statements in the Context Interpreter's inference model beforehand. Note that we

use one-third of the high-level statements in this experiment, the ratio should be

computed based on the query statistics obtained from real scenarios)

10

100

1000

10000

100000

2 4 8 16 32 64

Number of Deduced Queries

D
ed

uc
ed

 Q
ue

ry
 P

ro
ce

ss
in

g
Ti

m
e

(m
s)

Method A: Pre-subscribe all premises

Method B: Internal queries are not shared

Method C: Internal queries are shared

Method D: Pres-ubscribe certain premises / Internal
queries are shared

Figure 6.25: Deduced query processing time

Figure 6.25 plots the processing time of deduced queries for different methods. It can

be seen that Method A gives the shortest response time. This is because the Context

Interpreter process reasoning rules, internal query pre-subscription and high-level

 161

context data derivation beforehand. The result for Method A is similar to the non-

deduced query processing time for the Context Producer in Figure 6.24. Method B

performs the worst as the worst-case scenario is assumed (i.e., the Context Interpreter

has to issue an independent internal query for each of the premises).

Although the response time for Method A is very low, it may not scale if the Context

Interpreter maintains too many rules. This is because the Context Interpreter would

have to maintain a very large number of internal subscriptions at all times. In addition,

many irrelevant internal queries may be sent to the network, thus increasing the

network load unnecessarily. Also, the Context Interpreter may have to periodically

resend all internal queries to ensure that it is able to obtain premises from Context

Producers that have just joined the network. Method B removes the need for the

Context Interpreter to keep track of the internal queries it sends to the network and

ensures that the premises obtained are fresh as internal queries are only sent when

deduced queries are received. However, this method is inefficient as it generates many

redundant internal queries, which increase the network load and the response time for

deduced queries. Method C provides a good compromise between Methods A and B.

Although its response time is greater than that of Method A, it generates a

significantly smaller number of internal queries compared to both Methods A and B

and thus reduces the network load. In addition, the premises obtained are also fresh as

the internal queries are subscribed on demand as it is with Method B. Method D

improves the response time of Method B by pre-subscribing the premises for deduced

queries that are popular. It requires the Context Interpreter to keep track of and

maintain the statistics of deduced queries received and deploy an algorithm to decide

which queries should be pre-subscribed beforehand. This method needs to be further

 162

studied in our future work. In the current SCS prototype, Method C is selected to

handle the deduced query processing.

6.10.7 Memory consumption for deduced query processing

In the previous section, we have evaluated four methods for handling deduced queries

and analyzed their respective communication costs. In this section, we evaluate the

memory consumption of the different methods. We assume the same experimental

setup as in Section 6.10.6. Figure 6.26 plots the memory consumption in term of MB

(megabytes) for the above four methods.

0

5

10

15

20

25

30

35

Method B:
Internal queries

not shared

Method D:
Presubscribe /

Internal queries
are shared

Method C:
Internal queries

are shared

Method A:
Presubscribe all

premises

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Figure 6.26: Memory consumption for the different methods

Among them, Method A consumes the most memory. This is because in Method A,

the Context Interpreter has to maintain internal subscriptions for all internal queries it

has pre-subscribed to. Method B consumes the least memory because the Context

Interpreter does not need to maintain pre-subscribed internal queries as all internal

queries are subscribed on demand. The memory consumption of Method C and

Method D fall between that of Methods A and B. Clearly, there is a tradeoff between

query response time and memory consumption. This evaluation also reveals that the

 163

computing device that runs the Context Interpreter does require certain hardware

capabilities (i.e., processing power and memory) apart from certain software platform

capabilities. Some embedded computing device may not be capable of running the

Context Interpreter, for example, mobile phone, etc. Further studies are needed on

deploying our SCS prototype into embedded devices.

6.10.8 Validation of our simulation model

In the last few sections, we have presented the evaluation results obtained from our

prototype system. In this section, we will use some of these results to validate our

simulation models.

First, we set up the simulation based on the SCS prototype testbed (shown in Figure

6.21). In the simulation, we follow the same setup as the prototype testbed. We create

eight ContextPeers in the overlay network. The propagation delay between every two

ContextPeers is configured based on the measurements from the prototype testbed.

We also use two data placement schemes: β = 0.2 and β = 0.5; however, context data

triples are replaced as keywords in the simulation. Each set of keywords corresponds

to different semantic clusters. Context queries are modeled as searches for specific

keywords. We test this simulation model by running the same procedure as for the

prototype system, such as starting the bootstrap process, constructing the ring space,

initiating queries and receiving results. We obtain the same ring space as in the

prototype as well as similar results in terms of query routes, search path length and

search cost as in the prototype. This confirms that our simulation model can predict

the behavior of the prototype system.

Next, we use some of the evaluation results such as the time taken for mapping and

processing a context query in the Context Producer, which are obtained from the

 164

prototype system, to re-run the experiments in Section 4.5.3.1 and 4.5.3.2. We obtain

similar results, as described in the above two sections. We do not test for deduced

queries because of the complexity of developing a reasoning engine in our simulator.

6.11 Summary

In this chapter, we have described the implementation of our SCS prototype in detail.

We have also measured the performance of our prototype and reported the results.

Our experimental results indicate that the SCS prototype works practically and

achieves fair good performance in real scenarios. In addition, our experiences on

developing sample context-aware applications in an application domain or cross

multiple domains show that the application development can be greatly simplified

based on the SCS APIs. We believe the SCS system can have a significant practical

impact on building a large variety of context-aware applications in multiple context

spaces.

 165

CHAPTER 77

CO N C L U S I O N S A N D FU T U R E WO R K

This chapter concludes the thesis with a summary of our research contributions and

outlines several directions for future work.

7.1 Summary

In this thesis, we address the problem of the provision of context-aware infrastructure

support for collaborative context-aware applications over multiple context spaces. We

aim to provide infrastructure support for designing scalable and self-organized

context-aware systems in multiple context spaces, facilitating context-aware

application development, and conducting a thorough and rigorous evaluation of our

system. We provide a set of core infrastructure services – wide-area context lookup

and distributed context reasoning, coupled with a context representation model.

For context modeling, we have proposed an ontology-based context model and two-

tier context ontologies.

For context lookup, we have proposed a semantic P2P overlay network named SCS to

provide users and applications with an efficient lookup service. We have designed

various techniques in SCS including:

 an ontology-based semantic mapping scheme for fast semantic abstraction,

 a one-dimensional ring space for reducing overlay maintenance cost and enabling

efficient routing,

 166

 cluster splitting/merging for self-scaling to number of nodes,

 cost-aware selective flooding for minimizing redundant query messages, and

 a context push service for notifying context consumers of context changes quickly.

For context processing, we have proposed a distributed logical reasoning approach to

interpret various contexts. Through logical reasoning, we are able to raise the level of

context abstraction based on users' or applications' needs. Context reasoning is done

in a distributed fashion so that reasoning engines can be embedded into different

application domains.

We have implemented and evaluated the SCS system using both simulation and

prototype. The evaluation results show that SCS works effectively in both simulation

and practice. The SCS system is self-organized and scalable to the growth and

changes of nodes. It also has better search efficiency and low overlay maintenance

overhead. Our experiences of developing context-aware applications using the SCS

prototype show that the development process can be greatly simplified. Application

developers need only focus on application-level tasks without wasting time and effort

on low-level details of acquiring context data from multiple context spaces.

7.2 Future work

In this thesis, we have mainly focused on context lookup, which is a fundamental

service supporting context-aware systems and applications. Further investigations and

studies are needed to explore and utilize the features in our context model and deploy

 167

distributed context reasoning in reality. We present here some directions for our

future research6:

Performance evaluation over the global internet involving multiple domains

To further study our prototype system in the Internet setting, we are working to set up

and run ContextPeers in other organizations outside the NUS campus network, or

even in different countries. Furthermore, we are currently designing and developing

various context-aware applications over multiple context spaces.

Deployment of physical sensors

Due to the limitations of our research facilities and available resources, the current

SCS prototype system is lack of the deployment of physical sensors. Instead, we

create software sensors to emulate the behaviors of physical sensors. We will seek

external funding and supports to deploy real sensors into our SCS prototype and

further evaluate our system.

Interoperability of context ontology models

Although our two-tier context ontology approach allows a certain degree of

interoperability between different context-aware systems over multiple context spaces,

there are often cases where there are multiple ways to model the same information.

Different ontologies may model the same concepts in different ways. This may be due

to differences in the perspectives of different systems, different developers, different

professions, etc. In order for different context-aware systems to share context

information that commits to heterogeneous ontologies, ontology interoperability

6 Based on this thesis work, we applied for and successfully got a 3-year research grant from Agency
for Science, Technology and Research (A-star) under the Ultra Wide Band – Sentient Computing
(UWB-SC) program. Many of these research directions will be addressed in this project.

 168

mechanisms are needed to map terms in one ontology to their equivalents in other

ontologies. We believe such mechanisms can great improve the interoperability of the

SCS system, and hence our system can be potentially deployed in a wide range of

applications and domains.

Uncertainty management

Uncertainty management is important for ensuring the robustness of context-aware

applications. In our earlier attempt [25], we have extended our basic context model by

incorporating probabilistic information, and used the Bayesian network to reason

about uncertain contexts. More extensive studies are needed, such as how to acquire

probabilities, and how to use other techniques to reason about these probabilities.

Privacy in context model

The privacy issue has been recognized as an important research area in pervasive

computing. Existing work [17][19] has focused on providing a management

framework and solving interaction issues with users and applications. We observe that

context privacy can be embedded into the basic context model. It should be more

efficient to manage and handle context privacy issues from the ground up.

Deploying ContextPeers to mobile and embedded devices

As an increasing effort to embed computing into mobile devices and users, context-

aware computing is emerging as part of our lives in the future. To enable users and

applications to benefit from our system, it is desirable to deploy and integrate

ContextPeers to mobile and embedded devices such as PDAs, cell phones, etc. Many

practical issues need to be investigated and studied further. For example, different

mobile and embedded devices may require different software platforms for their

 169

applications. Since our system is based on Java, it is easy to port and integrate the

functionalities of a ContextPeer into different software platforms. Another critical

requirement is computing resources such as processing power and memory. Again,

more investigation and studies are needed to address these practical issues.

Embedded context reasoning

We envision that it will be more useful to embed context reasoning into mobile and

embedded devices. As we have studied in this thesis, logical context reasoning is

really a computationally intensive process and it is difficult to embed into mobile

devices. One of the solutions is that we can design and customize a logical reasoning

engine specifically for mobile and embedded devices. This customized reasoner

enables logical reasoning to be performed at resource-constraint devices with the

tradeoff of limited reasoning functionalities. The customized reasoner can be designed

in such a way that it contains a minimum set of core components and some

reconfigurable components. Users and applications can choose optional components

based on their own requirements. Other solutions such as reasoning agents for mobile

and embedded devices can also be considered.

 170

Bibliography

[1] Henricksen K, Indulska J, Rakotonirainy. An Infrastructure for Pervasive

computing: Challenges. In Proceedings of the Workshop on Pervasive

computing (INFORMATIK 2001), Viena, September 2001.

[2] Roy Want, Andy Hopper, Veronica Falcao, Jonathon Gibbons. The Active

Badge Location System. Journal of ACM Transactions on Information

Systems, Vol. 10, No. 1, pp 91-102, January 1992.

[3] Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson.

Rapid Prototyping of Mobile Context-Aware Applications: The Cyberguide

Case Study. In Proceedings of the 2nd ACM International Conference on

Mobile Computing and Networking (MobiCom 1996), November 1996.

[4] Jason I. Hong and James A. Landay. An Infrastructure Approach to Context-

Aware Computing. Journal of Human-Computer Interaction , Vol. 16, 2001.

[5] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile

Computing Research. Technical Report TR2000-381, Dartmouth College,

November 2000.

[6] R.Hull, P.Neaves and J. Bedford-Roberts. Towards Situated Computing. In

Proceedings of the 1st International Symposium on Wearable Computers,

Cambridge, October 1997.

[7] P.J. Brown. The Stick-e Document: A Framework for Creating Context-aware

Applications. Electronic Publishing, Palo Alto, 1996.

[8] B. Schilit, N. Adams and R. Want. Context-aware Computing Applications. In

Proceedings of the Workshop on Mobile Computing Systems and Applications,

Santa Cruz, December 1994.

 171

[9] A. K. Dey. Understanding and Using Context. Journal of Personal and

Ubiquitous Computing, 5(1):4-7, February 2001.

[10] Henricksen K, Indulska J, Rakotonirainy A. Modeling Context Information in

Pervasive Computing Systems. In Proceedings of the 1st International

Conference on Pervasive Computing (Pervasive 2002), Zurich, August 2002.

[11] Wolfgang Kellerer, Anthony Tarlano. Mobile P2P Overlay for Context-Aware

Computing. In Dagstuhl Seminar Peer-to-Peer-systems and Applications,

March 2004.

[12] http://aire.csail.mit.edu/.

[13] T. Kindberg and J. Barton. A Web-based Nomadic Computing System.

Journal of Computer Networks, 35(4):443–456, 2001.

[14] Shilit, B.N. A Context-Aware System Architecture for Mobile Distributed

Computing. Ph.D. thesis, Department of Computer Science, Columbia

University, 1995.

[15] Dey, A.K., Salber, D. Abowd, G.D. A Conceptual Framework and a Toolkit

for Supporting the Rapid Prototyping of Context-Aware Applications. Anchor

article of a special issue on Context-Aware Computing, Journal of Human-

Computer Interaction, Vol. 16(2-4), pp. 97-166, 2001.

[16] Guanling Chen and David Kotz. Solar: An Open Platform for Context-Aware

Mobile Applications. In Proceedings of the 1st International Conference on

Pervasive Computing (Pervasive 2002), Switzerland, June 2002.

[17] Jason Hong. An Architecture for Privacy-Sensitive Ubiquitous Computing.

PhD thesis, University of California at Berkeley, Computer Science Division,

Berkeley, 2005.

 172

[18] Anand Ranganathan and Roy H. Campbell. A Middleware for Context-Aware

Agents in Ubiquitous Computing Environments. In Proceedings of the

ACM/IFIP/USENIX International Middleware Conference (Middleware 2003),

Rio de Janeiro, Brazil, June 2003.

[19] Harry Chen, Tim Finin, Anupam Joshi. Semantic Web in the Context Broker

Architecture. In Proceedings of the 2nd IEEE International Conference on

Pervasive Computing and Communications (PerCom 2004), Orlando FL.,

March 2004.

[20] T. Gu, H. K. Pung, D. Q. Zhang. A Service-Oriented Middleware for Building

Context-Aware Services. Elsevier Journal of Network and Computer

Applications (JNCA), Vol. 28, Issue 1, pp. 1-18, January 2005.

[21] Dey, A., Manko., J., Abowd, G. Distributed mediation of imperfectly sensed

context in aware environments. Technical Report GIT-GVU-00-14, Georgia

Institute of Technology, 2000.

[22] G. Judd, P. Steenkiste. Providing Contextual Information to Pervasive

Computing Applications. In Proceedings of the 1st IEEE Conference on

Pervasive Computing and Communications (PerCom 2003), Fort Worth, Texas,

March 2003.

[23] Hui Lei, Daby M. Sow, John S. Davis, II, Guruduth Banavar and Maria R.

Ebling. The design and applications of a context service. Journal of ACM

SIGMOBILE Mobile Computing and Communications Review, vol 6, no. 4, pp

44-55, 2002.

[24] Anand Ranganathan, Jalal Al-Muhtadi, Roy H. Campbell. Reasoning about

Uncertain Contexts in Pervasive Computing Environments. IEEE Pervasive

Computing, pp 62-70, Apr-June 2004 (Vol.3, No 2).

 173

[25] T. Gu, H. K. Pung, D. Q. Zhang. A Bayesian Approach for Dealing with

Uncertain Contexts. In Proceedings of the Second International Conference on

Pervasive Computing (Pervasive 2004), in the book "Advances in Pervasive

Computing" published by the Austrian Computer Society, vol. 176, ISBN 3-

85403-176-9, Vienna, Austria, April 2004.

[26] Karen Henricksen, Jadwiga Indulska. A Framework for Context-Aware

Pervasive Computing Applications. PhD Thesis, the University of Queensland,

September 2003.

[27] Heer, J., A. Newberger, C. Beckmann, and J.I. Hong. Liquid: Context-Aware

Distributed Queries. In Proceedings of the 5th International Conference on

Ubiquitous Computing (Ubicomp 2003). Springer-Verlag. pp. 140-148, Seattle,

Washington, October 2003.

[28] T. Gu, X. H. Wang, H. K. Pung, and D. Q. Zhang. An Ontology-based

Context Model in Intelligent Environments. In Proceedings of Communication

Networks and Distributed Systems Modeling and Simulation Conference

(CNDS 2004), San Diego, California, January 2004.

[29] T. Gu, H. K. Pung, and D. Zhang. A Peer-to-Peer Overlay for Context

Information Search. In Proceedings of the 14th IEEE International Conference

on Computer Communications and Networks (ICCCN 2005), San Diego,

California, October 2005.

[30] T. Gu, E. Tan, H. K. Pung, and D. Zhang. A Peer-to-Peer Architecture for

Context Lookup. In Proceedings of the International Conference on Mobile and

Ubiquitous Systems: Networking and Services (MobiQuitous 2005), San

Diego, California, July 2005.

 174

[31] T. Gu, E. Tan, H. K. Pung, and D. Zhang. ContextPeers: Scalable Peer-to-Peer

Search for Context Information. In Proceedings of the International Workshop

on Innovations in Web Infrastructure (IWI 2005), in conjunction with the 14th

World Wide Web Conference (WWW 2005), Japan, May 2005.

[32] Harry Chen, et al. SOUPA – standard Ontology for Ubiquitous and Pervasive

Applications, http://pervasive.semanticweb.org, 2004.

[33] OMG. The Common Object Request Broker: Architecture and Specification

Version 3.0.3. OMG Technical Document Number formal/2004-03-12, 2004.

[34] R.V.Guha. rdfDB: An RDF Database. http://guha.com/rdfdb.

[35] RDFStore. http://rdfstore.sourceforge.net.

[36] B. McBride. Jena: Implementing the RDF Model and Syntax specification. In

Proceedings of the 2nd International Workshop on the Semantic Web, May

2001.

[37] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic

Architecture for Storing and Querying RDF and RDF Schema. In Proceedings

of the 1st International Semantic Web Conference, Sardinia, Italia, June, 2002.

[38] Napster website. http://www.napster.com.

[39] Gnutella website. http://www.gnutella.com.

[40] Freenet website. http://freenet.sourceforge.net.

[41] KaZaA website. http://www.kazaa.com.

[42] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A

Scalable Peer-to-Peer Lookup Service for Internet Applications. In Proceedings

of the Conference of the Special Interest Group on Data Communication

(SIGCOMM 2001), 2001.

 175

[43] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable

Content Addressable Network. In Proceedings of the Conference of the Special

Interest Group on Data Communication (SIGCOMM 2001), 2001.

[44] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.

Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for Service

Deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–

53, January 2004.

[45] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location

and Routing for Large-scale Peer-to-Peer Systems. Lecture Notes in Computer

Science, 2218:161–172, November 2001.

[46] Min Cai, Martin Frank. RDFPeers: A Scalable Distributed RDF Repository

based on A Structured Peer-to-Peer Network. In Proceedings of the 13th

International World Wide Web Conference (WWW 2004), New York, May

2004.

[47] M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A Multi-attribute

Addressable Network for Grid Information Services. In Proceedings of 4th

International Workshop on Grid Computing, 2003.

[48] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management

Infrastructure for Semantic Web Applications. In Proceedings of the 12th

International World Wide Web Conference (WWW 2003), Budapest, Hungary,

May 2003.

[49] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, and

M. Palm. Edutella: A P2P Networking Infrastructure based on RDF. In

Proceedings of the 11th International World Wide Web Conference (WWW

2002), Hawaii, USA, May 2002.

 176

[50] Wolfgang Nejdl, Martin Wolpers, Wolf Siberski, Alexander L¨oser, Ingo

Bruckhorst, Mario Schlosser, and Christoph Schmitz. Super-Peer-Based

Routing and Clustering Strategies for RDF-based Peer-to-Peer Networks. In

Proceedings of the 12th International World Wide Web Conference (WWW

2003), Budapest, Hungary, May 2003.

[51] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P

Systems. Technical report. Stanford University.

[52] E. Cohen, A. Fiat, and H. Kaplan. A Case for Associative Peer to Peer

Overlays. Journal of ACM SIGCOMM Computer Communication Review,

33(1):95–100, January 2003.

[53] C. Q. Tang, Z. C. Xu, and S. Dwarkadas. Peer-to-Peer Information Retrieval

Using Self-Organizing Semantic Overlay Networks. In Proceedings of the

Conference of the Special Interest Group on Data Communication (SIGCOMM

2003), Karlsruhe, Germany, August 2003.

[54] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.

Harshman. Indexing by Latent Semantic Analysis. Journal of the American

Society of Information Science, 41(6):391–407, 1990.

[55] M. Li, W. C. Lee, Anand Sivasubramaniam, and D. L. Lee. A Small World

Overlay Network for Semantic Based Search in P2P. In Proceedings of the

Second Workshop on Semantics in Peer-to-Peer and Grid Computing, in

conjunction with the World Wide Web Conference, May, 2004.

[56] J. Kleinberg. The Small-World Phenomenon: an Algorithm Perspective. In

Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000.

 177

[57] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in

a Small World. In Proceedings of the 4th USENIX Symposium on Internet

Technologies and Systems, pp 127-140, Mar 2003.

[58] Tim Berners-Lee, James Hendler, Ora Lassila. The Semantic Web. Scientific

American, May 2001.

[59] M.Smith, C. Welty, and D. McGuinness. Web Ontology Language (OWL)

Guide. August 2003.

[60] Dan Brickley, R.V. Guha. RDF Vocabulary Description Language 1.0: RDF

Schema. World Wide Web Consortium, January 2003.

[61] Ian Horrocks. DAML+OIL: a Reasonable Web Ontology Language. In

Proceedings of the 8th International Conference on Extending Database

Technology (EDBT), Prague, March 2002.

[62] Jena2. http://www.hpl.hp.com/semweb/jena2.htm.

[63] C.L Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object

Pattern Match Problem. Artificial Intelligence, 1982.

[64] RDQL, http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

[65] M. Berry, Z. Drmac, and E. Jessup. Matrices, Vector Spaces, and Information

Retrieval. Journal of SIAM Review, 41(2):335–362, 1999.

[66] G. Karypis and E. Han. Fast Supervised Dimensionality Reduction Algorithm

with Applications to Document Categorization and Retrieval. In Proceedings of

the 9th ACM International Conference on Information and Knowledge

Management, pp 12-19, New York, US, 2000.

[67] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang. Location-Aware Topology

Matching in P2P Systems. In Proceedings of the IEEE Conference on

 178

Computer Communications (INFOCOM 2004), Hong Kong, China, March

2004.

[68] Z. Xu, C. Tang, and Z. Zhang. Building Topology-Aware Overlays using

Global Soft-State. In Proceedings of International Conference on Distributed

Computing Systems (ICDCS 2003), 2003.

[69] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger.

Network Topology Generators: Degree-Based vs. Structural. In Proceedings of

the Conference of the Special Interest Group on Data Communication

(SIGCOMM 2002), 2002.

[70] M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the Gnutella Network:

Properties of Large-Scale Peer-to-Peer Systems and Implications for System

Design. IEEE Internet Computing, 2002.

[71] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in

Unstructured Peer-to-Peer Networks. In Proceedings of ACM International

Conference on Supercomputing, pages 84–95, June 2002.

[72] B. Yang and H. Garcia-Molina. Efficient Search in Peer-to-Peer Networks. In

Proceedings of International Conference on Distributed Computing Systems

(ICDCS'02), July 2002.

[73] Morpheus website. http://morpheus.com/.

[74] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Networks.

In Proceedings of International Conference on Distributed Computing Systems

(ICDCS'02), July 2002.

[75] A. Crespo and H. Garcia-Molina. Routing Indices for Peer-to-Peer Systems. In

Proceedings of International Conference on Distributed Computing Systems

(ICDCS'02), July 2002.

 179

[76] Amir Qayyum, Laurent Viennot, and Anis Laouiti. Multipoint Relaying: An

Efficient Technique for Flooding in Mobile Wireless Networks. Technical

Report RR-3898, INRIA, February 2000.

[77] S. Saroiu, P. Gummadi, and S. Gribble. A Measurement Study of Peer-to-Peer

File Sharing Systems. In Proceedings of Multimedia Computing and

Networking (MMCN 2002), 2002.

[78] BRITE, http://www.cs.bu.edu/brite/.

[79] M. Li, W. C. Lee, and Anand Sivasubramaniam. Semantic Small World: An

Overlay Network for Peer-to-Peer Search. In Proceedings of the International

Conference on Network Protocols (ICNP), 228-238, October, 2004.

[80] Wang, X., Dong, J.S., Zhang, D., Chin, C.Y., Hettiarachchi, S.R. Semantic

Space: An Infrastructure for Smart Spaces. IEEE Pervasive Computing

Magazine (2004) 32–39.

 180

Appendix A: The upper context ontology

<rdf:RDF
 xmlns="http://www.comp.nus.edu.sg/socam/ConOnt#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:socam="http://www.comp.nus.edu.sg/socam/ConOnt#"
 xml:base="http://www.comp.nus.edu.sg/socam/ConOnt#">

 <owl:Class rdf:ID="ContextEntity"/>

 <owl:Class rdf:ID="Activity">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="DeducedActivity">
 <rdfs:subClassOf rdf:resource="#Activity"/>
 </owl:Class>

 <owl:Class rdf:ID="ScheduledActivity">
 <rdfs:subClassOf rdf:resource="#Activity"/>
 </owl:Class>

 <owl:Class rdf:ID="CompEntity">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="Application">
 <rdfs:subClassOf rdf:resource="#CompEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="Device">
 <rdfs:subClassOf rdf:resource="#CompEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="Service">
 <rdfs:subClassOf rdf:resource="#CompEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="Location">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="IndoorSpace">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Location"/>
 </rdfs:subClassOf>
 <owl:disjointWith>
 <owl:Class rdf:about="#OutdoorSpace"/>
 </owl:disjointWith>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#lightLevel"/>
 </owl:onProperty>
 <owl:allValuesFrom
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:Restriction>

 181

 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty rdf:about="#noiseLevel"/>
 </owl:onProperty>
 <owl:allValuesFrom
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:Class rdf:ID="OutdoorSpace">
 <rdfs:subClassOf rdf:resource="#Location"/>
 <owl:disjointWith rdf:resource="#IndoorSpace"/>
 </owl:Class>

 <owl:Class rdf:ID="Merchandise">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>

 <owl:Class rdf:ID="Time">
 <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="startTime">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="endTime">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#Activity"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasParticipant">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="participateIn">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#DeducedActivity"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="locatedIn"
 rdf:type="http://www.w3.org/2002/07/owl#TransitiveProperty">
 <rdfs:domain rdf:resource="#ContextEntity"/>
<!--
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:domain rdf:resource="#CompEntity"/>
 <rdfs:domain rdf:resource="#Merchandise"/>
 <rdfs:domain rdf:resource="#Person"/>

 182

-->
 <rdfs:range rdf:resource="#Location"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="lastLocatedIn"
 rdf:type="http://www.w3.org/2002/07/owl#TransitiveProperty">
 <rdfs:domain rdf:resource="#ContextEntity"/>
<!--
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:domain rdf:resource="#CompEntity"/>
 <rdfs:domain rdf:resource="#Merchandise"/>
 <rdfs:domain rdf:resource="#Person"/>
-->
 <rdfs:range rdf:resource="#Location"/>
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="spatialContains"
 rdf:type="http://www.w3.org/2002/07/owl#TransitiveProperty">
 <rdfs:domain rdf:resource="#Location"/>
 <rdfs:range rdf:resource="#ContextEntitiy"/>
 <owl:inverseOf rdf:resource="#locatedIn"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="use">
 <rdfs:domain rdf:resource="#Activity"/>
 <rdfs:range rdf:resource="#CompEntity"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="own">
 <rdfs:domain rdf:resource="#Person"/>
 <rdfs:range rdf:resource="#CompEntity"/>
 </owl:ObjectProperty>

</rdf:RDF>

A set of domain-specified ontologies

<!DOCTYPE rdf:RDF [
 <!ENTITY socam "http://www.comp.nus.edu.sg/socam/ConOnt#">
]>

<rdf:RDF
 xmlns="http://www.comp.nus.edu.sg/socam/JohnHome#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:socam="http://www.comp.nus.edu.sg/socam/ConOnt#"
 xml:base="http://www.comp.nus.edu.sg/socam/JohnHome#">

 <owl:Class rdf:ID="SystemTime">
 <rdfs:subClassOf rdf:resource="&socam;Time"/>
 </owl:Class>

 <owl:Class rdf:ID="SystemDate">
 <rdfs:subClassOf rdf:resource="&socam;Time"/>
 </owl:Class>

 <owl:Class rdf:ID="DeducedQuantity">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>

 183

 </owl:Class>

 <owl:Class rdf:ID="Showering">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="DeducedMeeting">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="DeducedParty">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="Sleeping">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="WatchingTV">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="ScheduledDinner">
 <rdfs:subClassOf rdf:resource="&socam;ScheduledActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="ScheduledMeeting">
 <rdfs:subClassOf rdf:resource="&socam;ScheduledActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="ScheduledParty">
 <rdfs:subClassOf rdf:resource="&socam;ScheduledActivity"/>
 </owl:Class>

 <owl:Class rdf:ID="JBuilder">
 <rdfs:subClassOf rdf:resource="&socam;Application"/>
 </owl:Class>

 <owl:Class rdf:ID="PowerPoint">
 <rdfs:subClassOf rdf:resource="&socam;Application"/>
 </owl:Class>

 <owl:Class rdf:ID="RealPlayer">
 <rdfs:subClassOf rdf:resource="&socam;Application"/>
 </owl:Class>

 <owl:Class rdf:ID="AlarmClock">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 <owl:Class rdf:ID="DVDPlayer">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 <owl:Class rdf:ID="Fridge">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 <owl:Class rdf:ID="Light">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 184

 <owl:Class rdf:ID="Phone">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 <owl:Class rdf:ID="Projector">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 <owl:Class rdf:ID="TV">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 <owl:Class rdf:ID="WaterHeater">
 <rdfs:subClassOf rdf:resource="&socam;Device"/>
 </owl:Class>

 <owl:Class rdf:ID="Building">
 <rdfs:subClassOf rdf:resource="&socam;IndoorSpace"/>
 </owl:Class>

 <owl:Class rdf:ID="Door">
 <rdfs:subClassOf rdf:resource="&socam;IndoorSpace"/>
 </owl:Class>

 <owl:Class rdf:ID="Room">
 <rdfs:subClassOf rdf:resource="&socam;IndoorSpace"/>
 </owl:Class>

 <owl:Class rdf:ID="Yard">
 <rdfs:subClassOf rdf:resource="&socam;OutdoorSpace"/>
 </owl:Class>

 <owl:Class rdf:ID="Adult">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 </owl:Class>

 <owl:Class rdf:ID="Child">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Elderly">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Milk">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="Eggs">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="Cereals">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>

 185

 </owl:Class>

 <owl:Class rdf:ID="Paper">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="altitude">
 <rdfs:domain rdf:resource="&socam;Location"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="humidity">
 <rdfs:domain rdf:resource="&socam;Location"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="latitude"
 rdf:type="http://www.w3.org/2002/07/owl#FunctionalProperty">
 <rdfs:domain rdf:resource="&socam;Location"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="longitude">
 <rdfs:domain rdf:resource="&socam;Location"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="temperature"
 rdf:type="http://www.w3.org/2002/07/owl#FunctionalProperty">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <rdfs:domain rdf:resource="&socam;Location"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="weather">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;OutdoorSpace"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="windSpeed">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;OutdoorSpace"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lightLevel">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;IndoorSpace"/>
 <socam:rangevalue>OFF</socam:rangevalue>
 <socam:rangevalue>LOW</socam:rangevalue>
 <socam:rangevalue>MEDIUM</socam:rangevalue>
 <socam:rangevalue>HIGH</socam:rangevalue>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="noiseLevel">

 186

 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;IndoorSpace"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="curtainStatus">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#Room"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="doorStatus">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <socam:rangevalue>CLOSED</socam:rangevalue>
 <socam:rangevalue>OPEN</socam:rangevalue>
 <rdfs:domain rdf:resource="#Room"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="numberOfPersons">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#Room"/>
 <socam:rangevalue>0</socam:rangevalue>
 <socam:rangevalue>1</socam:rangevalue>
 <socam:rangevalue>2</socam:rangevalue>
 <socam:rangevalue>3</socam:rangevalue>
 <socam:rangevalue>4</socam:rangevalue>
 <socam:rangevalue>5</socam:rangevalue>
 <socam:rangevalue>6</socam:rangevalue>
 <socam:rangevalue>7</socam:rangevalue>
 <socam:rangevalue>8</socam:rangevalue>
 <socam:rangevalue>9</socam:rangevalue>
 <socam:rangevalue>10</socam:rangevalue>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="roomActivity">
 <rdfs:domain rdf:resource="#Room"/>
 <rdfs:range rdf:resource="&socam;DeducedActivity"/>
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="windowStatus">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#Room"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="deviceStatus">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <socam:rangevalue>ON</socam:rangevalue>
 <socam:rangevalue>OFF</socam:rangevalue>
 <rdfs:domain rdf:resource="&socam;Device"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasInterval">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#AlarmClock"/>
 </owl:DatatypeProperty>

 187

 <owl:DatatypeProperty rdf:ID="phoneStatus">
 <rdfs:subPropertyOf rdf:resource="#deviceStatus"/>
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <socam:rangevalue>IDLE</socam:rangevalue>
 <socam:rangevalue>RINGING</socam:rangevalue>
 <rdfs:domain rdf:resource="#Phone"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="age"
 rdf:type="http://www.w3.org/2002/07/owl#FunctionalProperty">
 <rdfs:domain rdf:resource="&socam;Person"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="birthday">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="firstName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="fullName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="gender">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="homeAddress">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="instantMessageID">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="lastName"
 rdf:type="http://www.w3.org/2002/07/owl#FunctionalProperty">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="middleName">

 188

 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="mobilePhoneNum">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="nickName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="personStatus">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="RFID"
 rdf:type="http://www.w3.org/2002/07/owl#FunctionalProperty">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="role">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="title">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Person"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="deviceID"
 rdf:type="http://www.w3.org/2002/07/owl#FunctionalProperty">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Device"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="deviceName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Device"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasTime">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#SystemTime"/>
 <socam:rangevalue>MORNING</socam:rangevalue>
 <socam:rangevalue>AFTERNOON</socam:rangevalue>

 189

 <socam:rangevalue>EVENING</socam:rangevalue>
 <socam:rangevalue>NIGHT</socam:rangevalue>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasDate">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#SystemDate"/>
 <socam:rangevalue>Jan01</socam:rangevalue>
 <socam:rangevalue>Jan02</socam:rangevalue>
 <socam:rangevalue>Feb01</socam:rangevalue>
 <socam:rangevalue>Mar01</socam:rangevalue>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandiseID">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandiseName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandisePrice">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasInventoryQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 <socam:rangevalue>0</socam:rangevalue>
 <socam:rangevalue>1</socam:rangevalue>
 <socam:rangevalue>2</socam:rangevalue>
 <socam:rangevalue>3</socam:rangevalue>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasRequiredQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="hasQuantityToBuy">
 <rdfs:range rdf:resource="#DeducedQuantity"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:ObjectProperty>

</rdf:RDF>

 190

Appendix B: User-defined rules in the SmartHome application

[userStatus_SLEEP:(?user rdf:type
http://www.comp.nus.edu.sg/socam/ConOnt#Person),(?user,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn,
http://www.comp.nus.edu.sg/socam/JohnHome#Bedroom),(http://www.comp.n
us.edu.sg/socam/JohnHome#Bedroom, rdf:type
http://www.comp.nus.edu.sg/socam/JohnHome#Room),(http://www.comp.nus.
edu.sg/socam/JohnHome#Bedroom,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn,http://www.comp.nus
.edu.sg/socam/JohnHome#Home),
(http://www.comp.nus.edu.sg/socam/JohnHome#Bedroom,
http://www.comp.nus.edu.sg/socam/JohnHome#lightLevel, 'LOW') ->
(?user http://www.comp.nus.edu.sg/socam/ConOnt#participateIn
'SLEEPING')]

[userStatus_WATCHING_TV:(?user rdf:type
http://www.comp.nus.edu.sg/socam/ConOnt#Person), (?user,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn, ?room),(http://www
.comp.nus.edu.sg/socam/JohnHome#DVDPlayer,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn, ?room),(http://www
.comp.nus.edu.sg/socam/JohnHome#TV,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn, ?room),(http://www
.comp.nus.edu.sg/socam/JohnHome#TV,
http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus
'ON'),(http://www.comp.nus.edu.sg/socam/JohnHome#DVDPlayer,
http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus 'OFF') ->
(?user http://www.comp.nus.edu.sg/socam/ConOnt#participateIn
'WATCHING_TV')]

[userStatus_WATCHING_MOVIE:(?user rdf:type
http://www.comp.nus.edu.sg/socam/ConOnt#Person), (?user,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn, ?room),(http://www
.comp.nus.edu.sg/socam/JohnHome#DVDPlayer,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn, ?room),(http://www
.comp.nus.edu.sg/socam/JohnHome#TV,
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn, ?room),(http://www
.comp.nus.edu.sg/socam/JohnHome#TV,
http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus
'ON'),(http://www.comp.nus.edu.sg/socam/JohnHome#DVDPlayer,
http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus 'ON') ->
(?user http://www.comp.nus.edu.sg/socam/ConOnt#participateIn
'WATCHING_MOVIE')]

[roomActivity_FAMILY_BREAKFAST:(http://www.comp.nus.edu.sg/socam/John
Home#John http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#Mary
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#Tom
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#DiningRoom
http://www.comp.nus.edu.sg/socam/JohnHome#numberOfPersons
'3'),(http://www.comp.nus.edu.sg/socam/JohnHome#CurrentTime
http://www.comp.nus.edu.sg/socam/JohnHome#hasTime 'MORNING') ->
(http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom

 191

http://www.comp.nus.edu.sg/socam/JohnHome#roomActivity
'FAMILY_BREAKFAST')]

[roomActivity_FAMILY_LUNCH:(http://www.comp.nus.edu.sg/socam/JohnHome
#John http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#Mary
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#Tom
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#DiningRoom
http://www.comp.nus.edu.sg/socam/JohnHome#numberOfPersons
'3'),(http://www.comp.nus.edu.sg/socam/JohnHome#CurrentTime
http://www.comp.nus.edu.sg/socam/JohnHome#hasTime 'AFTERNOON') ->
(http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom
http://www.comp.nus.edu.sg/socam/JohnHome#roomActivity
'FAMILY_LUNCH')]

[roomActivity_FAMILY_DINNER:(http://www.comp.nus.edu.sg/socam/JohnHom
e#John http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#Mary
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#Tom
http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn
http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom),(http://www.com
p.nus.edu.sg/socam/JohnHome#DiningRoom
http://www.comp.nus.edu.sg/socam/JohnHome#numberOfPersons
'3'),(http://www.comp.nus.edu.sg/socam/JohnHome#CurrentTime
http://www.comp.nus.edu.sg/socam/JohnHome#hasTime 'EVENING') ->
(http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom
http://www.comp.nus.edu.sg/socam/JohnHome#roomActivity
'FAMILY_DINNER')]

 192

Appendix C: An example of domain-specific context ontologies such

as grocery store, book store and child care center used in the

ShoppingAssistant application

The ontology for grocery store

<!DOCTYPE rdf:RDF [
 <!ENTITY socam "http://www.comp.nus.edu.sg/socam/ConOnt#">
]>

<rdf:RDF
 xmlns="http://www.comp.nus.edu.sg/socam/GroceryStore#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:socam="http://www.comp.nus.edu.sg/socam/ConOnt#"
 xml:base="http://www.comp.nus.edu.sg/socam/GroceryStore#">

 <owl:Class rdf:ID="Adult">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 </owl:Class>

 <owl:Class rdf:ID="Child">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Elderly">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Eggs">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="Milk">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="Cereals">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="DeducedQuantity">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="merchandiseID">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 193

 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandiseName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandisePrice">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasInventoryQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <socam:rangevalue>0</socam:rangevalue>
 <socam:rangevalue>1</socam:rangevalue>
 <socam:rangevalue>2</socam:rangevalue>
 <socam:rangevalue>3</socam:rangevalue>
 <socam:rangevalue>4</socam:rangevalue>
 <socam:rangevalue>5</socam:rangevalue>
 <socam:rangevalue>6</socam:rangevalue>
 <socam:rangevalue>7</socam:rangevalue>
 <socam:rangevalue>8</socam:rangevalue>
 <socam:rangevalue>9</socam:rangevalue>
 <socam:rangevalue>10</socam:rangevalue>
 <socam:rangevalue>11</socam:rangevalue>
 <socam:rangevalue>12</socam:rangevalue>
 <socam:rangevalue>24</socam:rangevalue>
 <socam:rangevalue>36</socam:rangevalue>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasRequiredQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="hasQuantityToBuy">
 <rdfs:range rdf:resource="#DeducedQuantity"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:ObjectProperty>

</rdf:RDF>

The ontology for book store

<!DOCTYPE rdf:RDF [
 <!ENTITY socam "http://www.comp.nus.edu.sg/socam/ConOnt#">
]>

<rdf:RDF
 xmlns="http://www.comp.nus.edu.sg/socam/BookStore#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:socam="http://www.comp.nus.edu.sg/socam/ConOnt#"
 xml:base="http://www.comp.nus.edu.sg/socam/BookStore#">

 194

 <owl:Class rdf:ID="Adult">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 </owl:Class>

 <owl:Class rdf:ID="Child">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Elderly">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Paper">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="DeducedQuantity">
 <rdfs:subClassOf rdf:resource="&socam;DeducedActivity"/>
 </owl:Class>

 <owl:DatatypeProperty rdf:ID="merchandiseID">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandiseName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandisePrice">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasInventoryQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <socam:rangevalue>0</socam:rangevalue>
 <socam:rangevalue>1</socam:rangevalue>
 <socam:rangevalue>2</socam:rangevalue>
 <socam:rangevalue>3</socam:rangevalue>
 <socam:rangevalue>4</socam:rangevalue>
 <socam:rangevalue>5</socam:rangevalue>
 <socam:rangevalue>6</socam:rangevalue>
 <socam:rangevalue>7</socam:rangevalue>
 <socam:rangevalue>8</socam:rangevalue>
 <socam:rangevalue>9</socam:rangevalue>
 <socam:rangevalue>10</socam:rangevalue>
 <socam:rangevalue>11</socam:rangevalue>
 <socam:rangevalue>12</socam:rangevalue>
 <socam:rangevalue>24</socam:rangevalue>
 <socam:rangevalue>36</socam:rangevalue>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>

 195

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasRequiredQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="hasQuantityToBuy">
 <rdfs:range rdf:resource="#DeducedQuantity"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:ObjectProperty>

</rdf:RDF>

The ontology for child care center

<!DOCTYPE rdf:RDF [
 <!ENTITY socam "http://www.comp.nus.edu.sg/socam/ConOnt#">
]>

<rdf:RDF
 xmlns="http://www.comp.nus.edu.sg/socam/ChildCare#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:socam="http://www.comp.nus.edu.sg/socam/ConOnt#"
 xml:base="http://www.comp.nus.edu.sg/socam/ChildCare#">

 <owl:Class rdf:ID="Adult">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 </owl:Class>

 <owl:Class rdf:ID="Child">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Elderly"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Elderly">
 <rdfs:subClassOf rdf:resource="&socam;Person"/>
 <owl:disjointWith rdf:resource="&socam;Child"/>
 <owl:disjointWith rdf:resource="&socam;Adult"/>
 </owl:Class>

 <owl:Class rdf:ID="Milk">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="Eggs">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="Paper">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>
 </owl:Class>

 <owl:Class rdf:ID="Cereals">
 <rdfs:subClassOf rdf:resource="&socam;Merchandise"/>

 196

 </owl:Class>

 <owl:DatatypeProperty rdf:ID="merchandiseID">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandiseName">
 <rdfs:range
rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="merchandisePrice">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasInventoryQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 <socam:rangevalue>0</socam:rangevalue>
 <socam:rangevalue>1</socam:rangevalue>
 <socam:rangevalue>2</socam:rangevalue>
 <socam:rangevalue>3</socam:rangevalue>
 <socam:rangevalue>4</socam:rangevalue>
 <socam:rangevalue>5</socam:rangevalue>
 <socam:rangevalue>6</socam:rangevalue>
 <socam:rangevalue>7</socam:rangevalue>
 <socam:rangevalue>8</socam:rangevalue>
 <socam:rangevalue>9</socam:rangevalue>
 <socam:rangevalue>10</socam:rangevalue>
 <socam:rangevalue>11</socam:rangevalue>
 <socam:rangevalue>12</socam:rangevalue>
 <socam:rangevalue>24</socam:rangevalue>
 <socam:rangevalue>36</socam:rangevalue>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="hasRequiredQuantity">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="hasQuantityToBuy">
 <rdfs:range rdf:resource="#DeducedQuantity"/>
 <rdfs:domain rdf:resource="&socam;Merchandise"/>
 </owl:ObjectProperty>

</rdf:RDF>

 197

Appendix D: Sample queries used in prototype evaluations

Non-deduced queries:

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#John>
<http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#John>
<http://www.comp.nus.edu.sg/socam/JohnHome#mobilePhoneNum> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#John>
<http://www.comp.nus.edu.sg/socam/JohnHome#role> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#John>
<http://www.comp.nus.edu.sg/socam/JohnHome#birthday> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#John>
<http://www.comp.nus.edu.sg/socam/JohnHome#age> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Mary>
<http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Mary>
<http://www.comp.nus.edu.sg/socam/JohnHome#mobilePhoneNum> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Mary>
<http://www.comp.nus.edu.sg/socam/JohnHome#role> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Mary>
<http://www.comp.nus.edu.sg/socam/JohnHome#birthday> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Mary>
<http://www.comp.nus.edu.sg/socam/JohnHome#age> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Tom>
<http://www.comp.nus.edu.sg/socam/ConOnt#locatedIn> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Tom>
<http://www.comp.nus.edu.sg/socam/JohnHome#mobilePhoneNum> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Tom>
<http://www.comp.nus.edu.sg/socam/JohnHome#role> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Tom>
<http://www.comp.nus.edu.sg/socam/JohnHome#birthday> ?x)

 198

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Tom>
<http://www.comp.nus.edu.sg/socam/JohnHome#age> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom>
<http://www.comp.nus.edu.sg/socam/JohnHome#lightLevel> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Bedroom>
<http://www.comp.nus.edu.sg/socam/JohnHome#lightLevel> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#LivingRoom>
<http://www.comp.nus.edu.sg/socam/JohnHome#lightLevel> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Bathroom>
<http://www.comp.nus.edu.sg/socam/JohnHome#lightLevel> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom>
<http://www.comp.nus.edu.sg/socam/JohnHome#numberOfPersons> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#MainDoor>
<http://www.comp.nus.edu.sg/socam/JohnHome#doorStatus> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#CurrentTime>
<http://www.comp.nus.edu.sg/socam/JohnHome#hasTime> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#CurrentDate>
<http://www.comp.nus.edu.sg/socam/JohnHome#hasDate> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#MobilePhone>
<http://www.comp.nus.edu.sg/socam/JohnHome#phoneStatus> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#FixedLinePhone>
<http://www.comp.nus.edu.sg/socam/JohnHome#phoneStatus> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#WaterHeater>
<http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#ElectricOven>
<http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#TV>
<http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#DVDPlayer>
<http://www.comp.nus.edu.sg/socam/JohnHome#deviceStatus> ?x)

 199

Deduced queries:

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#John>
<http://www.comp.nus.edu.sg/socam/ConOnt#participateIn> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Mary>
<http://www.comp.nus.edu.sg/socam/ConOnt#participateIn> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#Tom>
<http://www.comp.nus.edu.sg/socam/ConOnt#participateIn> ?x)

SELECT ?x WHERE
(<http://www.comp.nus.edu.sg/socam/JohnHome#DiningRoom>
<http://www.comp.nus.edu.sg/socam/ConOnt#roomActivity> ?x)

