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Summary

Due to recent growing popularity of humanoid robots in academia and industry, the

bipedal locomotion control has become a fundamental issue of legged robotics. In this

thesis, we develop a simple control strategy based on biological inspiration to control the

locomotion of a bipedal robot. The control strategy utilizes a set of coupled neural oscil-

lators to mimic the neural activities of the Central Pattern Generator (CPG) that is found

at the spinal cord of many vertebrate animals. The control strategy is tested on a ten De-

grees of Freedom (DOF) model of bipedal robot. Simulation results suggest that due to

the coupling of the neural oscillators of CPG and the feedback from the environment, the

algorithm can generate stable and coordinated walking patterns of the bipedal robot on

both level and uneven ground.

Keywords: bipedal robot, locomotion, central pattern generator, neural oscillator, motor

control
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Chapter 1

Introduction

1.1 Background

Bipedal robots have been drawing much attention during recent years. The boom of

bipedal robots can be traced back to 1970s when the late Professor Ichiro Kato and his

robotics group at Waseda University initiated the Cabot project. Cabot-1 was the first

life-size robot which demonstrated basic bipedal walking capability. Since then numer-

ous bipedal robots are being introduced by universities and research institutes as well as

companies like Honda [Hirai et al. (1998)] and Sony [Nagasaka et al. (2004)], for either

research or entertainment purposes.

However, despite the increasing number of bipedal robotics platforms, locomotion

control has not gained much significant advancement. To make bipedal robots walk sta-

bly and naturally is still a difficult engineering endeavor. Among those systems that

have been developed only a small fraction can achieve dynamic walking with high speed

[Plestan et al. (2003)].

The lack of locomotion capability has increasingly become a bottleneck for the de-
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Figure 1.1: Humanoid robots by companies and research institutes: Upper
left to right (life size) - Cabot-1 from Waseda University, Asimo from Honda
Co., NUSBIP II from Legged Locomotion Group, NUS. Lower left to right
(toy size) QRIO from Sony Co., VisiOn from Vstone Ltd., and ROPE IV from
Legged Locomotion Group, NUS

velopment of bipedal robots. This is very much attributed to the complexity of bipedal

mechanism for many reasons:

• Bipedal robots usually consist of many degrees of freedoms (DOF). A typical full
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configuration bipedal robot has a total number of twelve joints.

• Bipedal robots are essentially multi-input multi-output (MIMO) nonlinear system

with under-actuation. In addition, the dynamic of the robot is constantly changing

and is unstable. It is thus hard for modeling and controller synthesization.

• Within a walking cycle when the robot make transitions from single support phase

to double support phase, the interaction of the foot to the environment introduces

additional dynamics to the system, which is also hard to analyze.

• The walking control is subject to many high level performance indices as well.

The performance indices here are not as well-defined as conventional robotics systems.

And not meeting these indices may cause the whole control system to fail. One of the

basic performance indices for a bipedal robot is movement coordination and posture sta-

bility. Other indices usually includes smoothness of motion, energy efficiency, adapt-

ability to different ground condition and perturbation, actuator bandwidth and capacity

requirement, etc.

1.2 Motivation of Bipedal Locomotion Research

The advantage of legged robots over other kinds of robots is obvious. The legged locomo-

tion capability enables the robots greater versatility to maneuver complex and unstruc-

tured environments. A step of stairs could be easily cleared by legged robots, but it can

be very hard for a wheeled robot to overcome.

The bipedal locomotion is the most advanced form of legged locomotion. It is found

that animals with two legs show higher efficiency and better adaptability over multi-
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legged animals [Vaughan (2003)]. A bipedal robot need also fewer linkage structures and

actuators than a quadrupedal or hexapedal robot in order to walk.

Secondly, human being is bipedal. There are still many unanswered questions how

human walking is organized. The research into bipedal locomotion control for robots

helps us enhance our understanding of human walking in return.

And finally, giving consideration to the difficulties of developing a locomotion control

strategy, bipedal robot is a perfect testbed for advanced control technologies and novel

actuators.

1.3 Objective and Scope

Most locomotion control strategies so far are based on conventional control techniques.

These strategies are often model based. And because of the high non-linearity and dy-

namic characteristics, these control strategies often fail to realize a sustained stable bipedal

locomotion or the walking speed is too slow [Chevallereau et al. (2003)].

In this thesis, however, a different approach is taken as opposed to the model based

control strategy. We utilize the biomechanical and the neurological inspirations in biolog-

ical creatures as a general principle. The control strategy reproduces the neural activities

from biological central nerve system called Central Pattern Generator (CPG).

The understanding of animal and human locomotion has provided us abundant re-

sources to tap on when we design and control a bipedal robot. This approach is gain-

ing growing popularity among robotics researchers. And it has been proven that this

approach works decently well in decoupling a complex system which is hard to model

[Dietz (2003)].
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1.4 Contributions

The main contributions of the thesis are:

• Introduction of the bipedal locomotion and Central Pattern Generator (CPG) from

a biological perspective.

• Performance analysis of two widely accepted mathematical model of neural oscilla-

tor (NO). Development of a simple bipedal locomotion control algorithm utilizing

CPG that consists of four NO.

• Simulation and performance analysis of the control algorithm for a bipedal robot in

simulation environment. Demonstration of the robustness of the algorithm under

different environments and perturbation.

1.5 Thesis Organization

This thesis is organized into six chapters:

Chapter one introduces the scope and background of the bipedal locomotion research.

Chapter two gives a literature review on bipedal locomotion control. Several issues

on walking control are addressed and two control strategies are presented.

Chapter three discusses the motor control systems in biological world. The concept

of Central Pattern Generator is presented.

Chapter four presents two mathematical neuron models: Matsuoka neural oscillator

(NO) and Van del Pol oscillator, which are commonly adopted by researchers for locomo-

tion control. The basic properties of these two models are discussed.

13



Chapter five presents a control strategy that is based on CPG. The Matsuoka NO de-

scribed in Chapter four is utilized to construct the CPG. A posture stability controller for

ankle joints is also proposed in this chapter. Simulation results suggest the CPG model

can generate a robust and adaptable walking pattern for the bipedal robot under different

environment conditions.

Chapter six concludes the thesis and suggests future work.
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Chapter 2

Bipedal Walking Control

The past few decades have witnessed a growing popularity of legged robots, especially

bipedal robots that resemble human being. However the locomotion capability of the

bipedal robots still remains as one of the essential technical challenges.

In this chapter we give a general review of research activities on bipedal walking con-

trol.

2.1 Literature Review

A mainstream approach of bipedal walking is to decentralize the control of the bipedal

robot system into joint space and control each joint according to a prescribed reference

trajectory [Huang et al. (2001)]. Some researchers specify the precalculated trajectory by

observing human walking. However, since a bipedal robot has a very different mass

distribution and much fewer actuating degree of freedom (DOF) compared to its human

counterpart, the trajectory often needs to be modified significantly before it can be applied

to the robot.
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Another widely used approach is to apply sophisticated mathematical analysis of the

robot kinematics and dynamics [Westervelt et al. (2003)]. The concept of ZMP (Zero Mo-

ment Point) introduced by Vukobratovic et al. (1989) is often utilized to analyze the sta-

bility of the trajectory. But as a bipedal robot is a highly nonlinear dynamic system, the

analytical approach can only be applied to bipedal models with significant simplification.

Moreover, since a bipedal robot is interacting with its environment all the time during its

entire walking cycle, it makes the analysis even harder.

The difficulty of the trajectory-based approach has inspired some researchers to look

into the basics of the animal and human walking. This resulted in many biologically

inspired robots. Instead of prescribing a trajectory and letting the robot play it back,

these approaches focus on the limit cycle behavior of legged locomotion. It is shown

that limit-cycle-based motion control has a superior energy efficiency over the trajectory-

based control [Fukuoka et al. (2003)]. The passive dynamic walker presented in McGeer

(1990) is probably the first biologically inspired robot that utilizes the limit cycle behavior

of the locomotion. By placing the passive walker on a slope, the bipedal walker converts

its gravitational potential energy into kinematic energy to walk down the slope with-

out any actuation in the joints. Recently several new passive dynamic walkers has been

developed by MIT, Cornell and Delft University respectively [Collins et al. (2005)]. By

introducing actuation, these dynamic walkers can walk on level ground. And the limit

cycle behavior keeps the walking continuous.

Another group of biologically inspired robots are controlled by neural networks called

Central Pattern Generator (CPG). The concept of CPG originated from the neurophysio-

logical studies of vertebrate animals. Different forms of locomotion in animal life are char-

acterized as rhythmic coordinated movement of limbs. However, the seemingly repetitive

movement is under continuous subtle adaptations in a real-time manner which make it
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possible for the locomotion movement to be sustained in the presence of environments

changes such as a slope or a rough terrain. A CPG is a network of Neuron Oscillators

coupled by mutual inhibition which can be used to control the limb movement of the

robot and displays similar characteristics as life creatures. One example of legged robot

controlled by CPG is Tekken [Fukuoka et al. (2003)], a quadruped robot developed in Uni-

versity of Electro-Communications in Japan. The CPG is applied to a four legged dog-like

robot successfully and by changing some parameters in CPG, Tekken can fulfill different

gaits such as rambling and trotting. No further dynamic analysis is required, and no tra-

jectory is generated before hand and the robot is fully governed by the limit cycle behavior

of the neural activities. So far although the CPG approach has not been implemented on

any real bipedal robots yet, due mainly to actuator limitations, many simulations [Taga

et al. (1991); Miyakoshi et al. (1998) and Jiang et al. (2000)] have been carried out and the

results suggested that it can be a promising locomotion control methodology for bipedal

robots in the future.

2.2 Static and Dynamic Walking

A bipedal walking can be classified as either static walking or dynamic walking. In static

walking, the vertical projection of the Center of Gravity (CoG) of the robot always stays

within the supporting area formed by the edge of feet that is in contact with the ground.

In dynamic walking on the other hand, the CoG may leave the supporting area during

the single support phase (Fig. 2.1).

Early researches in bipedal locomotion mainly focused in static walking because of

its relative simplicity. However, one of the major drawbacks we can observe from static

walking is that the robot has to shift its CoG from one leg to the other during every double
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Figure 2.1: The CoG vertical projection during each support phase
for static and dynamic walking. Position and trajectory of CoG are
indicated by dot. The vertical projection of CoG trajectory is in-
dicated by arrowed line (in static walking) and curve (in dynamic
walking). Area of support during each phase is indicated by the solid
line of the polygons.

support phase and maintain it during the whole single support cycle. It greatly limits the

maximal walking speed achievable relative to dynamic walking. Furthermore, because

a bipedal robotics system is typically constructed with rigid structure and heavy load of

hardware especially actuators, the shift of CoG usually requires drastic body movements.

This usually makes the static gait look awkward and inefficient.

2.3 Zero Moment Point (ZMP)

In dynamic walking, the CoG projection no longer falls inside the supporting area. The

robot is statically unstable, but it may still maintain the dynamic equilibrium. A good
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Figure 2.2: ZMP

example of dynamic stable mechanism is a balanced inverted pendulum by finger tip, as

the supporting area is merely the contact point, and the CoG projection is always outside

the supporting area.

In order to analyze the dynamic stability of robots, Vukobratovic et al. (1989) intro-

duced the concept of ZMP (see Fig.2.2). Over the years different researchers use ZMP by

slightly different interpretations [Li et al. (1991); Mitobe et al. (2000) and Okumura et al.

(2003)]. But a well accepted definition of ZMP is given by Takanishi et al. (1985) as the

point on the ground whereby the total forces and moments generated by gravity, inertia

equals to zero:

FA + FR + msg = 0 (2.1)

−→
OA× FA + M o

A +
−→
OR× FR + +M o

R +
−→
OG×msg = 0 (2.2)

where
−→
OA,

−→
OR and

−→
OG are radius vectors from the coordinate origin to the ankle joint

A, ZMP point R and foot mass centre G respectively. ms is the foot mass. M o
A and M o

R are

angular moment at ankle and ZMP w.r.t the origin.

If we take the ZMP as the origin of the coordinate, Eq.2.2 can be written as:
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−→
AR× FA + MR

A + MR
R +

−→
GR×msg = 0 (2.3)

From the above equations we can see that, the bigger MA and the component of FA

along the
−−→
OX is, the bigger the distance of ZMP w.r.t. the origin will be. In the extreme

cases that the ZMP goes out the boundary of the foot area, the robot will tip over. This

because of the unidirectional property of the moment MR. If R is outside the supporting

area of the foot, MR could only be one direction (in the case shown in Fig.2.2, it is clock-

wise because the reaction force can only exists on the side of the foot which is resting on

the ground). Since all other terms in Eq.2.2 are in clockwise direction as well, Eq. 2.2 will

never be satisfied.

Thus the sufficient condition for the robot dynamic equilibrium is that the ZMP of the

robot always stays in the supporting area of the robot. The longer the distance of ZMP

w.r.t. the foot boundary is, the greater the stability margin of the robot.

In practice the force FA and moment MA at the ankle joint A are difficult to measure

directly. However, it can be derived indirectly by measuring the dynamics of all the upper

links of robot, and this gives the ZMP position in following equations:

xzmp =

∑n
i=1 mi(z̈i + g)xi −

∑n
i=1 miẍizi −

∑n
i=1 IiyΩ̈iy∑n

i=1 mi(z̈i + g)
(2.4)

yzmp =

∑n
i=1 mi(z̈i + g)yi −

∑n
i=1 miÿizi −

∑n
i=1 IixΩ̈ix∑n

i=1 mi(z̈i + g)
(2.5)

where mi is the mass of ith link, Iix, Iiy and Ω̈ix, Ω̈iy are the inertia and angular accel-

eration of ith link w.r.t. x-axis and y-axis [Huang et al. (2001)].
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Figure 2.3: Multi-link Model of bipedal robot. Left: Sagittal Plane. Right: Frontal Plane.

2.4 Inverse Kinematics

The most widely used control strategy for bipedal locomotion is based on inverse kine-

matics. Consider a bipedal robot shown in Fig. 2.3. Given the coordinates of the hip with

respect to the stance leg, the individual joint angles at both legs can be explicitly obtained.

The control of the walking pattern is translated from the Cartesian space to joint space.

In Fig. 2.3, A, B and C are predefined interpolation points of hip and D E and F of ankle

joint of the stance leg of a half walking cycle. Once these points are specified, the trajec-

tories for all joints of the stance leg can be easily calculated by the A − B − C trajectory

and trajectories for all joints of the swing leg can be calculated by the D−E−F trajectory

using inverse kinematics.

Inverse kinematics are being adopted by researchers mainly because it is a quick and

straightforward way to generate walking pattern. However the walking speed is much

limited by the model as it doesn’t take dynamics into consideration. Most walking pat-

terns generated by inverse kinematics are static walking.

21



Figure 2.4: Linear Inverted Pendulum Mode

2.5 Linear Inverted Pendulum

Kajita and Tani (1996) proposed a model of bipedal walking called Linear Inverted Pen-

dulum Mode(LIPM).

In LIPM, the walking cycle of the robot in sagittal plane is partitioned into two single

support phase of alternative stance legs, with an instantaneous double support phase

in between, during which the stance leg alternates. The bipedal robot during a single

support phase can be treated roughly as an inverted pendulum consisting of a mass with

a massless leg (stance leg).

The link length of the robot is variable such that the mass trajectory follows a con-

straint slope:

y = kx + yo (2.6)

By imposing such a constraint, the dynamics of the robot can be expressed in the

following motion equations:

kmẍ = f cos θ −mg (2.7)
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mẍ = f sin θ (2.8)

where f is the translation force along the stance leg. Remove f by combining Eq. 2.7

with 2.8, the model can then be expressed in a simple linear differential equation:

ẍ =
g

yc

x (2.9)

Solving the above equation gives the trajectory of the robot:

x(t) = x(0) cosh(
t

Tc

) + Tcẋ(0) sinh(
t

Tc

) (2.10)

ẋ(t) =
x(0)

Tc

sinh(
t

Tc

) + ẋ(0) cosh(
t

Tc

) (2.11)

The double support phase in LIPM is instantaneous. A full walking cycle is completed

by two consecutive single support phase of different stance legs. The foot placement of

the swing leg can be calculated by simple geometry such that the transition doesn’t result

in serious kinetic energy loss.

Based on the LIPM, the thigh-shank mechanism of the stance leg of the bipedal robot

can be treated as the pendulum with variable length. The knee joint is feedback controlled

to limit the hip joint to follow the constraint line. The hip joint is controlled to keep the

body upright. Fig.2.5 shows the tracking of the LIPM trajectory.

Ideally, given an initial velocity of the body, the mass will follow the prescribed trajec-

tory even without controlled torque at the ankle joint because of the imposed constraint.

However in real case this is not possible because of two main reasons. First, the model is

not perfect in capturing the full dynamics of the robot. Treating the body of the robot as
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a point mass and the assumption of massless leg can lead to this imperfection. The other

reason is that during each transition of stance leg, the impact of the foot with the ground

will inevitably result in certain amount of kinetic energy loss. Thus the ankle joint must

be controlled to track the prescribed trajectory in order to sustain the continuous walking

pattern (see Fig. 2.6).
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Chapter 3

Biological Locomotion

The common feature that various forms of locomotion in different animals shares is rhyth-

micity. How these walking patterns are generated and coordinated have been studied by

researches from various disciplines such as neurophysiology, biomechanics and anatomy.

This chapter gives a brief explanation of walking from the biological perspective. The

concept of CPG is introduced as a central motor control system for the locomotion.

3.1 Musculoskeletal System

Biological locomotion activities are carried out by musculoskeletal system. It consists of

two separate yet interrelated sub-systems: muscular system and exoskeletal system. The

musculoskeletal system functions as a basic kinetic and kinematic structure as well as

source of actuation.

The exoskeleton system is a set of rigid bones that forms the basic shape of the animal.

It provides physical support to the locomotor. Muscular system consists of skeletal mus-

cles that are attached to the exoskeletal system by tendons across joints. The contraction of
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Figure 3.1: Musculoskeletal System. Reprint from Sasha and Seyfarth (1996)

muscles drives the bones around the joint. Generally speaking, skeletal muscles are orga-

nized in pairs of opposite direction such that as one group of muscles contracts, the other

group stretches. These paired muscles are referred to as ”flexor” and ”extensor” muscles

depending on their functionality. At any given time, only one muscle is stimulated. This

property of muscle is called ”antagonism” [Kandel et al. (2000)].

Fig.3.1 shows the musculoskeletal system of insect and human being.

3.2 CPG as Motor Control System

The locomotion of animals can be characterized as a complex sequence of coordinated and

rhythmic contractions of skeletal muscles [Winter (1990)]. The sequence of the rhythmic
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muscular activities of flexor and extensor contraction constitutes a continuous walking

pattern.

Early neurophysiology studies hypothesized that these motor patterns are produced

by a complex network of neurons at the spinal cord. In Brown (1911) it is shown that cats

with a partially transected spinal cord will lose its basic walking capability. However, it

can still produce some rhythmic alternating contractions in ankle flexor and extensor. The

hypothesis is further proven as cats decerebrated at lower brain level are able to step on a

treadmill with an intact spinal cord. Thus it can be reasonably inferred that the rhythmic

motor pattern are generated at the spinal cord level.

After Brown’s seminal work, experiments conducted by many other researchers have

shown evidences that such neural network that produces the rhythmic output not only

exists in cats but also in many other vertebrate animals (for a detailed review, see Dietz

(2003)).

These neural networks in spinal cord that generate rhythmic motor pattern are gener-

ally referred to as Central Pattern Generator (CPG).

3.3 Properties of Biological CPG

3.3.1 Structure of Motor Neuron

CPG consists of vast number of neurons. Fig.3.2 shows a typical structure of motor neuron

at spinal cord. The neurons are interconnected by synapses. Cell body is also known as

Soma and is the main body of the neuron. Dendrites are trunks of numerous cellular

extensions, which receive nerve signals from other neurons. Axon is the output channel

of a neuron. Axon branches off further to a number of axon terminals, where synapses to
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Figure 3.2: Structure of a Typical Motor Neuron. Reprint from Kandel et al. (2000)

other neurons are connected.

3.3.2 Stretch-Reflex

The stretch reflex is most fundamental property of muscles. Consider a pair of flexor and

extensor muscles. When the flexor is contracted, the extensor is stretched because of the

skeletal structure. This stretch will give rise to an even faster contraction of the extensor

afterwards, in effort to regain its original length. Neuro-physiological studies suggest this

stretch reflex behavior is due to the interactive effect of the flexor and extensor neurons

[McMahon (1982)]. The monosynaptic connections between the two neurons makes them

inhibit each other. Since the flexor and extensor are connected to the same joint and act

in opposite directions, if both neurons are properly stimulated, an rhythmic oscillation at

29



the joint will emerge from the intermittent contractions of the two neurons.

The coupling of the counteractive neurons forms the basic unit of CPG. Because of

the oscillatory pattern it displays, the mutually inhibitive flexor/extensor neuron pair is

called a Neural Oscillator [Feng et al. (2005)].

3.3.3 Inter-neuron Connection

During the walking cycle of animals, a large number of muscles are involved. Since the

muscles are controlled by individual neurons of CPG, and neurons are hardly intelligent,

various properties of walking patterns such as coordinate and fixed phase lag must be the

result of the organization of CPG. This is realized in inter-neuron connections.

The way the CPG network is structured and the weight of synaptic connections be-

tween neurons in nature have been evolving and perfecting over the ages.

3.3.4 Afferent Feedback to CPG

Despite that complete rhythmic motor patterns can be generated by isolated CPG, the

actual motor pattern is constantly under regulation of afferent feedback [Grillner (1985)].

This feedback is established through monosynaptic connections from sensory neurons to

motor neurons of the CPG. The internal motor program of CPG is then updated with

information of the mechanical state of the limbs during their movement, thus making the

locomotion activity a closed-loop system. The afferent feedback ensures the same motor

pattern to be adaptable to different environment.
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3.4 Summary

The increasing understanding of biological CPG has been inspiring robotics researchers to

reproduce this biological motor control system in bipedal robot. However, the biological

CPG is very complex, often exceeding the minimum requirement to generate the output

motor pattern [Pearson (1993)]. Plus there are still many unanswered issues how exactly

CPG works, especially in human. It is thus neither practical nor necessary to have a

complete CPG model.

In the next chapter, two prevalent CPG models are introduced. The properties of the

models will be discussed and compared with biological CPG.
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Chapter 4

Modeling of CPG

The previous chapter discusses the basic principle that governs animal locomotion from

a biological perspective. The periodical and rhythmic activities in locomotion of animals

are generated by the Central Pattern Generator (CPG) at the spinal level. The concept

of CPG and its relevance to locomotion is introduced. The CPG is a network of Neural

Oscillators of mutually inhibiting neurons. To reproduce these oscillatory activities, a lot

of researchers have been actively searching for proper mathematical models of the neural

activities of CPG found in animals.

An individual neural oscillator is a couple of neurons that controls the extension (ex-

tensor neuron) and flexion (flexor neuron) of respective muscle. The flexor neuron and

extensor neuron take excitive and inhibitive stimulus from each other and from neurons

in other NO within the CPG network, as well as sensory stimulus feedback from the

dynamic system. Each neuron also has a self-adaptation feedback to prevent its output

becoming unbounded over time. The interconnection of these neurons and the dynamic

system results in a rhythmic and coordinated output of the NOs with fixed period and

phase difference [Friesen and Stent (1977)].
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In this chapter two mathematical neuron models are presented. They are the most

commonly adopted models by researchers in composing CPG network for bipedal loco-

motion. ASIMO

4.1 Matsuoka Neural Oscillator

4.1.1 Single Neuron Model

The first continuous-variable model of a single neuron was introduced by Morishita and

Yajima (1972), as is shown below in Eq. 4.1-4.2:

τ ẋ = −x +
∑

j

wjsj (4.1)

y = max(0, x− θ) (4.2)

where x is the membrane potential of the neuron, sj is jth input stimuli to the neuron and

wj is the synaptic connection weight of jth input, τ is the time constant, θ is the threshold

value under which the the neuron doesn’t fire, and y is the firing rate or output of the

neuron.

The model had been widely used because of its mathematical simplicity. However,

this model fails to deliver an essential characteristic of neuron in the real biological world.

For real neurons, after receiving a step input stimuli, its firing rate will normally increase

rapidly at first and then decrease gradually until it stabilizes at a lower level. This high-

pass filter effect of neuron is called self-adaptation as was introduced by Luciano et al.

(1978) and it plays an important role in the oscillatory activities. However, for the model

shown in Eq. (3.1)-(3.2), the firing rate of neuron doesn’t display such an adaptation, but

33



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t (time)

y
 (

o
u

tp
u

t 
o

f 
n

eu
ro

n
)

tau’=10
tau’=8
tau’=4
tau’=2

Figure 4.1: Step response of a single neuron with different value of self-adaptation rate.
for all curves, τ = 1, β = 2 and θ = 0

rather increases monotonically until x =
∑

wjsj .

Because of the limitation of the Morishita’s model, Matsuoka (1985) propose a mod-

ified neuron model, which takes the self-adaptation into account. The model is shown

below in Eq. (4.3)-(4.5):

τ ẋ = −x +
n∑

j=1

wjsj − βv (4.3)

τ ′v̇ = −v + y (4.4)

y = max(0, x− θ) (4.5)

where v is the inner state of the neuron that represents self-adaptation and τ ′ is the

time constant for the the adaptation.

Fig. 4.1 shows the step response of a neuron with different self-adaptation rates. For
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Figure 4.2: Step response of a single neuron with different value of β. for all curves, τ = 1,
and τ ′/β = 5

τ ′ = 10 and τ ′ = 8, the firing rate of the neuron is an over-damped response. And

τ ′ = 4 and τ ′ = 2 result in an oscillation. Considering the actual biological neuron doesn’t

display such an oscillation, it should be avoided when the parameters of the neuron are

to be decided.

To ensure that the firing rate of the neuron doesn’t oscillate with a step stimuli, fol-

lowing condition has to be satisfied:

(τ ′ − τ)2 ≥ 4τ ′τβ (4.6)

Another issue to be noted is that when β is small (with a constant τ ′/β) the neuron

is more subject to the constant input than the changing input (low-pass filter). Step

responses of various β is shown in Fig. 4.2. In the extreme case that β = 0, the self-

adaptation effect disappears and the model becomes Morishita’s neuron model.
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4.1.2 Mutually Inhibiting Network

Now we discuss a mutually inhibiting network that composes of i neurons, with intro-

duction of mutual inhibition between neurons, the single neuron model can be modified

slight as below. For simple of discussion, let θ = 0 and τ = 1 thus xi − θ and τ ’/τ are

replaced by xi and T :

ẋi = −xi +
n∑

j=1

wijyj + ui − βvi (4.7)

T v̇i = −vi + yi (4.8)

yi = g(xi) = max(0, xi) (4.9)

where wij (i 6= j) is the strength of inhibitory connection from the output of jth neuron to

ith neuron and is always positive. ui is a constant positive input to the ith neuron from

outside the network and
∑

wijyj represents the total input to the ith neuron from other

neurons within the network.

Several basic characteristics of the neuron model shown as Eq.(4.7)-(4.9) are defined

[Matsuoka (1985)]. These properties ensures the stability of oscillatory solutions for the

neuronal networks composes of multiple neurons shown above.

For Eq.(4.7)- (4.9), there exists a unique and bounded solution for any initial state

where t ≥ 0.

To prove the boundedness, solving Eq. (4.8) with respect to vi gives

vi(t) = vi(0)e−t/T + 1/T · e−t/T

∫ t

0

g(x(u))eu/T du (4.10)
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Since g(x) = max(0, xi) and is non-negative,

vi(t) ≥ −|vi(0)| (4.11)

Solving Eq. (4.7) with respect to xi gives

xi(t) = xi(0)e−t + ui(1−e−t)

−βe−t

∫ t

0

vi(u)eudu−
∑

j

wije
−t

∫ t

0

g(xk(u))eudu (4.12)

Applying Eq.(4.11) to Eq. (4.10), we obtain

xi(t) ≤ |xi(0)|+ ui + β|x′i(0) | (1− e−t) (4.13)

thus the upper bound of xi is obtained:

xi(t) ≤ |xi(0)|+ ui + β|vi(0)| (4.14)

Similarly, apply Eq.(4.14) to Eq.(4.10)

vi(t) ≤ |vi(0)|+ |xi(0)|+ ui + β|vi(0)| (4.15)

and applying Eq.(4.14) and Eq.(4.15) to Eq.(4.13) we can obtain the lower bound of xi

xi(t) ≥ −|xi(0)| − β(|vj(0)|+ |xi(0)|+ β|vi(0)|)
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Figure 4.3: Mutual inhibition network with two neurons suppress each other

−
∑

j

(wij(|xj(0)|+ ui + β|vj(0)|) (4.16)

From Eq.(4.14) and Eq.(4.16) the boundedness of the neuron model is proved.

4.1.3 Neural Oscillator of two-neuron network

Now we consider a mutually inhibited network consisting of two neurons(Fig. 4.3).

τ ẋi = −xi + wijyj + ui − βvi (4.17)

τ ′v̇i = −vi + yi (4.18)

yi = max(0, xi) (4.19)

where i = 1, 2 and j = 2, 1 for ith neuron.

Matsuoka (1987) has investigated the mathematical condition for the network to pro-

duce a stable rhythmic oscillation. By further extending the boundedness of the single

neuron model proved in previous section to a coupled neuronal network. The conditions

of sustained oscillation are given in the following inequations:
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w12/(1 + β) ≤ (u1/u2) and w21/(1 + β) ≤ (u2/u1) (4.20)

√
w12 · w21 ≥ 1 + τ/τ ′ (4.21)

These conditions imply a large adaptation rate β is necessary for the rhythmic oscil-

lation. If β = 0 any w12 and w21 will not satisfy the above conditions. The large mutual

inhibition defined by w12 and w21 and the threshold function govern the network so that

only one neuron can fire at a time and the alternation of firing neuron is caused by the

adaptation in the active neuron and the recovery of the dormant neuron because of the

decay of the inhibition from the active neuron (Fig. 4.4)

The frequency of the oscillation depends on the values of parameters τ , τ ′, w12, w21

and β. Fig. 4.5 shows the various neuron activities with different parameters. It can be

observed that the oscillation frequency has a positive correlation to the adaptation rate β

and negative correlation to the time constant of neuron τ , time constant of adaptation τ ′

and synaptic weight of mutual inhibition w12 and w21.
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Figure 4.6: Two types of four-neuron network. a: bilaterally symmetric network. b: com-
pletely symmetric network

This two-neuron network is the most simple mutually inhibited network that could

generate oscillatory rhythmic pattern. And because the property it displayed resembles

the neural activities in real biological world, it is widely accepted as a basic model of

neural oscillator (NO) for the muscle activities during locomotion. The two neurons gov-

erns the flexor and extensor muscle activity respectively and are often referred to as flexor

neuron and extensor neuron.

4.1.4 Four-neuron Network

Now we discuss mutually inhibited networks consisting of four neurons. Depending on

the synaptic connections, two different networks can be organized (Fig 4.6).

For network a, the sufficient condition for stable rhythmic oscillation can be obtained

similarly as the two-neuron network:

∑
j

wijuj/(1 + β) ≤ ui (4.22)
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√
wij · wji ≥ 1 + τ/τ ′ (4.23)

where i = 1− 4, j = 1− 4 and i 6= j

Matsuoka (1987) introduced the so-called structurally unstable network. Letting SUB

be a subset of neurons of a network. A SUB has no synaptic connection within it and

every neuron beyond SUB has at least one synaptic connection with neurons within SUB.

If there is no SUB in a network, it is thus called a structurally unstable network.By this

definition, network a doesn’t belong to the structurally unstable network, for we can

easily find two SUBs: SUB1 = {N1, N3} and SUB2 = {N2, N4}. This gives a sufficient

condition for sustained oscillation for mutually inhibited network consists of any number

of neurons.

Network b on the other hand, by definition is a structurally unstable network. For a

structurally unstable network, the rhythmic oscillation can be evoked even without adap-

tation given that the synaptic connection is strong. In this case, the alternation of firing

neurons is primarily governed by the inter neuron inhibitions rather than the adaptations

of the individual neurons.

Both networks a and network b can be treated as network with two NOs and in net-

work a, each type of neuron (either flexor neuron or extensor neuron) are inhibited by the

same type of neuron from the other NO, while in network b, both types of neurons are

inhibited by each other reciprocally. Since in biological world, different types of neurons

from different NO are not strongly correlated with each other, for practical consideration,

network a is more suitable for modeling neural activities of locomotion.
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4.2 Other Neural Oscillator Model

Except the Matsuoka model, another widely accepted NO model is based on Van der Pol

oscillators [Dietz (2003)]. Each Van der Pol Oscillator form a neuron which displays cer-

tain oscillatory behavior, and synaptic connections among oscillators forms the coupling

of the CPG.

4.2.1 Single Van der Pol Neural Oscillator

The oscillator is described by the well-known Van der Pol equation

ẍ− µ(ρ2 − x2)ẋ + g2x = 0 (4.24)

From Fig.4.7 we can see that compared to the Matsuoka NO where the neuron has

only positive output when it is firing and zero output when it is at rest, the output of

Van der Pol NO has both positive and negative values which oscillates in a continuous

manner. This is because the output in the Van der Pol NO is a summation of both flexor

and extensor neurons, which behaves in a completely opposite manner. The Matsuoka

NO will produce a similar sinusoidal oscillation pattern as well if we sum up the output

of extensor neuron with a positive value and the output of flexor neuron with a negative

value.

Different from Matsuoka NO model, the rhythmic oscillation of Van der Pol Oscillator

is inherently stable provided it is not initiated from a stable equilibrium point (i.e. (x, ẋ) =

(0, 0)). This can be observed from the limit cycle behavior shown in Fig. 4.8. The output

of the NO always fall into limit cycle within a few seconds regardless of where the initial

state of the NO starts from.
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The oscillation frequency of the NO output depends on the values of the parameters

of the NO as well. Fig. 4.9 shows the rhythms generated from different parameters. It

can be observed that the oscillation frequency has a strong negative correlation with ρ2

and weak negative correlation with µ and it is positively correlated with g2. In addition,

increase of ρ2 will give rise to an increased oscillation amplitude as well while changing

the value of µ and g2 doesn’t affect the amplitude of oscilliation significantly.

The inherent oscillatory property of Van der Pol NO displayed in Fig. 4.9 has inspired

many researchers choosing it as a good candidate as the neuron model to compose com-
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plicated networks. Bay and Hemami (1987) first investigated a network with four sets

of Van der Pol NOs. After that, many other researchers have successfully adopted Van

der Pol to achieve various forms of stable bipedal walking [Willer and Miranker (1993);

Jalics et al. (1997)]. A bipedal gait synthesized by CPG of four Van der Pol NO is given in

Appendix A.

4.3 Summary

In this chapter we discuss the basic biological principle of locomotion. The concept of

Central Pattern Generator (CPG) as a network of Neural Oscillators (NO) is introduced.

Two commonly used mathematical models of neural oscillators (NO) Matsuoka NO

and Van der Pol NO are then presented. These two models are commonly utilized to

simulate the neural oscillatory activities during animal locomotion.

Although the neural activities in real biological creatures are extremely complicated

and these NO models are somewhat primitive comparing with their biological counter-

parts, these models can still reproduce most of the characteristics of the neural activities

such as mutual inhibition and stable oscillatory pattern which are directly relevant to lo-

comotion. It is thus practical to apply these NOs to CPG models that can be utilized for

robot locomotion with decent similarity to biological CPG.

46



Chapter 5

Bipedal Locomotion Control using CPG

In the previous chapter, we present two mathematical neuron models. Properties of var-

ious CPG networks with multiple neural oscillators are presented. These CPG display a

decent resemblance to the biological neural activities.

In this chapter, we propose a simple architecture to control the locomotion of a bipedal

robot by utilizing a CPG network with four neural oscillators (NOs). The CPG network

is coupled with sensory feedback from the robot. The feedback makes the CPG and robot

entrained with each other. The simulation results suggest our proposed control architec-

ture can generate a smooth and continuous walking pattern for the bipedal robot.

5.1 Global Entrainment of Limit Cycle

A CPG shows a limit cycle behavior. A stable walking pattern should also display a

limit cycle of same frequency. However, the robot is a mechanical system with mass and

inertia, and the motor command generated by CPG may not be achieved by the robot

immediately.
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The CPG network shown in previous chapter is isolated CPG with synaptic connec-

tions from only within the network. Although it can generate continuous stable walking

pattern, there is no sensory information passed on from the robot to the CPG. This is

like a biological CPG without afferent neurons. By introducing a feedback pathway, we

complete our CPG network model.

The feedback provides a servo mechanism to monitor the actual limb movement against

the CPG output. The error signal then comes back to the CPG, updating internal state

variables of the individual neuron. In this way, the robot movement is entrained with the

limit cycle behavior of the CPG.

5.2 Proposed Control Architecture

In order to achieve stable bipedal locomotion, a general control architecture is proposed.

The neural activities generated by CPG network are synthesized as a part of locomotion

activity.

In the sagittal plane, a CPG network composed of four neural oscillators (NO) based

on Matsuoka neuron model is used to control the hip and knee joints of the robot. The

feedback pathway from the robot to the neurons has been introduced to the CPG model.

This results in a global entrainment between the rhythmic oscillation of the CPG and the

robot dynamics. The ankle pitch joints of the robot are controlled by a posture stablizer to

maintain the upright stability of the robot. Fig. 5.1 shows the sagittal control architecture.

To simply our discussion, no CPG is imposed in the frontal plane. Instead, we apply

a servo mechanism to maintain the lateral stability. A PD controller is used at ankle and

hip roll joints to prevent the robot from tipping over to the side during the walking cycle.
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Figure 5.1: Proposed control architecture in the sagittal plane for the bipedal robot
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The control architecuture we propose here has following properties:

• The three dimensional walking is decoupled into sagittal plane and frontal plane.

The rhythmic oscillatory pattern of neurons generated by the CPG is feedforward to

the hip and knee joints in the sagittal plane of the robot by the torque controller. In

the frontal plane, a simple servo mechanism with high gain PD controller is applied.

• The global entrainment of CPG and the dynamics of the robot is realized through the

feedback pathway from the the robot to the CPG. In the presence of this feedback,

the neural activities generated by the CPG network is adjusted according to the

robot kinetic and dynamic conditions on the real-time basis.

• The derivation of mathematical model of the robot is not necessary. The stability of

the locomotion is fully governed by the the stability of limit cycle behavior of the

CPG through global entrainment given that the parameters of the CPG and feedback

is properly chosen.

5.3 CPG network of four NOs

The CPG network (Fig.5.2) we discuss here utilizes four NOs. Each NO consists of two

Matsuoka neurons (flexor and extensor neurons). The mathematical functions of neurons

are given as below:

τiu̇{e,f}i = −u{e,f}i − βv{e,f}i − wefy{f,e}i

−
n∑

j=1

wijy{e,f}j − feed{e,f}i + u0 (5.1)

τ ′i v̇{e,f}i = −v{e,f}i + u{e,f}i (5.2)
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Figure 5.2: A Neural Oscillator with two mutual inhibiting neurons. For the CPG net-
work discussed here, four NOs are interconnected to control the hip and knee joint of the
bipedal robot in Sagittal plane

y{e,f}i = max{0, u{e,f}i} (5.3)

where u{e,f}i is the membrane potential of the ith (i = 1 − 4) extensor or flexor neuron.

and v{e,f}i is the state variable that defines self-adaptation of the neuron. β defines the

rate of self-adaptation.u0 is the external excitive input with a constant rate which initiates

the oscillatory activity of the neuron and maintains it at a certain level. τi and τ ′i are

time constant of the membrane potential and the self-adaptation of the neuron. wef is the

connecting weight of the extensor neuron and flexor neuron within a NO and wij is the

the connecting weight of cross-NO inhibition from neuron of the jth oscillator.

y{e,f}i is the output or firing rate of each neuron within the NO. It triggers the move-

ment of either the extensor muscle or the flexor muscle.The summation yi is defined as

the output of the NO (see Fig. 5.3).
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Figure 5.3: A single joint controlled by neural oscillator

feed{e,f}i is the term which defines sensory feedback from the robot. It is organized

such that it adjusts the temporal neuron activities of the CPG without overriding its rhyth-

mic oscillation. The feedback is a function of inertial angles and angular velocities of

joints. The inhibitive feedback makes the CPG entrained with the dynamic system of the

robot. Details of the sensory feedback are discussed in Subsection 5.5.2.

5.4 The Seven-link Bipedal Robot

In order to test the proposed control architecture, a seven-link three dimensional bipedal

robot is constructed in simulation environment as shown in Fig.5.4. The mass and geo-

metric distribution of each link is shown in Table 5.1.

The robot has a total of ten DOFs. For each leg, two DOFs (pitch and roll) are located

at each hip, one at the knee (pitch) and two at the ankle (pitch and roll). Each DOF is

actuated by a torque generator.
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Figure 5.4: Structure of the Bipedal Robot

Table 5.1: Geometric and Mass Distribution of the Bipedal Robot
Link Mass Moment of Inertia (Ixx, Iyy, Izz) Length
Trunk 1.000 [kg] 0.500, 0.050, 0.500 [kgm2] 0.120 [m]
Thigh 0.400 [kg] 0.005, 0.005, 0.0001 [kgm2] 0.080 [m]
Shank 0.400 [kg] 0.005, 0.005, 0.0001 [kgm2] 0.080 [m]
Foot 0.100 [kg] 0.001, 0.001, 0.000075 [kgm2] 0.075 [m]
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Figure 5.5: CPG-bipedal robot

5.5 Neural-musculoskeletal system

5.5.1 Forward Coupling

The feedforward coupling of the CPG and dynamic system of the robot is established by

using the output of CPG directly to control the torque in the respective joints. Our CPG

comprises of four NOs described in Eq.(5.1)-(5.3) controlling the hip and knee pitch joints

of each leg as shown in Fig.5.5. The control of ankle pitch joints are not included in the

CPG model. Instead, a posture stability controller is utilized. Four DOFs in the lateral

plane is controlled by PD controller to minimize its motion within the plane. The reason

CPG is not used for ankle pitch and the posture stability controller are discussed in detail

in Subsection 5.5.3

The output of the four NOs is then sent to the torque generator situated at the hip and

knee joints.

τ{l,r}h = kph(θ̂{l,r}h − θ{l,r}h) + kdh(0− θ̇{l,r}h) (5.4)
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τ{l,r}k = kpk(θ̂{l,r}h − θ{l,r}h) + kdk(0− θ̇{l,r}h) (5.5)

θ̂{l,r}h = ye{l,r}h − yf{l,r}h (5.6)

θ̂{l,r}k = ye{l,r}k − yf{l,r}k (5.7)

where ye{l,r}h, yf{l,r}h, ye{l,r}k and yf{l,r}k are the output of the extensor and and flexor

neurons of the hip NO and knee NO.

5.5.2 Sensory Feedback From Robot to CPG

In Section 5.1, we mentioned that sensory feedback feed{e,f}i of the ith neuron is essential

for the entrainment of CPG and the dynamic system of the robot.

Here in this thesis, we choose the feedback to be function of displacements of the

respective joints to their original position at the standing up position as well as the joint

velocities. It is activated at the respective joints only when the corresponding leg is in

support phase. The feedback can be expressed in the following equations:

feed{e,f}{l,r}h = {+,−}(Khp(θ{l,r}h − θ{l,r}h0) + Khdθ̇{l,r}h) (5.8)

feed{e,f}{l,r}k = {+,−}(Kkp(θ{l,r}k − θ{l,r}k0) + Kkdθ̇{l,r}k) (5.9)

where θ{l,r}h and θ{l,r}k are the current angle of hip and knee. θ{l,r}h0 and θ{l,r}k0 are

the initial hip and knee angle when the robot is standing upright. θ̇{l,r}h and θ̇{l,r}k are the

current angluar velocity of hip and knee. The sign of Eq.(5.8)-(5.9) depends on whether it

is an extensor feedback or flexor feedback. The physical meaning of the feedback is that
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when the knee and hip joints exceed the initial condition, it will generate an inhibitive

or excitive input to the flexor or extensor neuron. The feedback makes the CPG entrains

with the robot dynamics.

5.5.3 Posture Stability Controller

The ankle pitch joints of the robot are controlled by a local stability controller instead of

NOs of the CPG. This is because during the single support phase, the ankle joint of the

stance leg tends to be a passive joint which has a direct result in the posture stability. With

this philosophy in mind, a posture stability controller is applied to the ankle joint during

the single support phase.

τ{l,r}a = kp1(θ̂{l,r}a − θ{l,r}a) + kd1(0− θ̇{l,r}a)

+kp2(0− θtr) + kd2(0− θ̇tr) (5.10)

θ̂{l,r}a = θ{l,r}h + θ{l,r}k (5.11)

θ̂{l,r}a = θ{l,r}h + θ{l,r}k (5.12)

τ{l,r}a is the torque applied to left or right ankle joint, depending on which one is

current stance leg. θ{l,r}a and θ̇{l,r}a are the current angle and angular velocity values of

the ankle joints and θ{l,r}h and θ{l,r}k are the current angle values of the hip joints and knee

joints. θtr and θ̇tr are the inclination angle and rotational velocity of the trunk.
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5.5.4 Lateral Plane Control

The lateral plane control of the robot is quite simple, as it is can be roughly decoupled

from the sagittal motion [Chew and Pratt (2004)]. During each support leg exchange, a PD

controller is used to keep the motion in lateral plane as small as possible. The controller

can be expressed in the following equations:

τ{l,r}ar = kpar(0− θ{l,r}ar) + kdar(0− θ̇{l,r}ar) (5.13)

τ{l,r}hr = kphr(0− θ{l,r}hr) + kdhr(0− θ̇{l,r}hr) (5.14)

The gain of the PD controller is chosen by trial and error such that the motion in the

frontal plane is minimized.

5.5.5 Joint Limits Movement

A limit of maximum joint angles is imposed on the robot. There are two purpose of having

joint angle limits. Primarily the limits ensure that the robot can still maintain stability

when CPG generates a walking pattern that can not be realized by the robot without

falling down. Second, it prevent the robot from having unnautual limb movement as

compared with human. For this simulation the joint limit of the bipedal robot for the hip

is set to 30 degrees and the joint limit for the knee is set to 50 degrees prevent the posture

becoming unnatural.
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Figure 5.6: Snapshot of Yobotics! simulation environment

5.6 Simulation

Our simulation is carried out in Yobotics! environment. Yobotics! [Yob] is Java package

for simulating fully dynamic systems.

The ground is modeled as a spring damper system, with spring and damping co-

efficient being 40000N/m and 100Ns/m. The time interval Ts of the simulation is 0.5ms.

The key parameters of the CPG is shown in Table 5.2. Parameters of local controllers

such as the gains of posture stabilizer and torque controller as well as the high gain PD

controller at the frontal plane are shown in Table 5.3
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Table 5.2: Key Parameters of the CPG
Parameters Value
Number of NOs i = 4
Excitive input u0 = 5
Self-adaptation rate β = 3
Time constants of neuron τi = 0.15, τ ′i = 0.10
Cross-NO inhibition weight whk = wkh = 1.0, wrl = wlr = 2.0
Inhibition weight within NO wef = 2.0
synaptic weight of feedback pathway Khp = 0.2, Khd = 0.2, Kkp = 0.5, Kkd = 0.5

Table 5.3: Parameters of local controllers
Parameters Value
Torque controllers at hip (sagittal) kph = 300, kdh = 10
Torque controllers at knee (sagittal) kpk = 20, kdk = 0.5
Posture stabilizer at ankle (sagittal) kp1 = 50.0, kd1 = 1.0, kp2 = 25, kd1 = 1
Lateral PD controller at hip (frontal) kphr = 100.0, kdhr = 1
Lateral PD controller at ankle (frontal) kpar = 200.0, kdar = 2

The procedure of the simulation can be itemized as below:

1. Initialize the CPG by setting the parameters in Table 5.2 and the NOs starts the

oscillatory activity under external excitive input;

2. Output of the NOs is sent to the torque generator to control the robot;

3. The joint information is acquired and fed back to the CPG through feedback path-

way;

4. The updated CPG with sensory feedback is recalculated and the output of the NOs

is updated and sent to the torque generator;

5. Repeat 3) and 4) for the next time interval Ts.
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5.7 Result and Discussion

Using the parameters shown in Table II and Table III, the bipedal robot is able to walk

continuously. Fig.5.7 shows the snapshots of the robot within the first two steps. The

movement of the first two steps is a little awkward since the robot is starting from a

upright posture and the CPG is trying to entrain with the robot during initial few steps.

However our robot managed to maintain posture stability by the the local stability control

at the ankle. After three steps the CPG is fully entrained with the robot and a stable global

limit cycle begins to emerge.

5.7.1 Neural Activities During Walking

Fig.5.8 shows the neural activities of the CPG in radian when the robot is walking. As

we can see the output of NO is jerky at the beginning as it has to overcome the inertia of

the whole robot body from zero velocity. But it soon adapts to the walking robot and the

oscillation become stabilized. This is due to the sensory feedback from the robot which

imposes an entrainment between the robot dynamic system and the CPG.

Fig. 5.9 shows the output of the NOs with different membrane potentials while all

the rest of parameters remain the same. We can see that the bigger the u is, the lower

the frequency is the frequency of the oscillation. This conforms with the result of isolated

CPG shown in previous chapter. Relationship between the neural activities and other

parameters presented previously also holds valid in our simulation.

The outputs of the four NOs are directly used to control the torque generators at cor-

responding joints. Fig.5.10 and Fig.5.11 show the torque generated at the hip joint and

knee joint.
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Figure 5.7: Simulation result
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Figure 5.8: Neural activities of the CPG
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Figure 5.9: NO output with different membrane potentials. From up to down u = 6, u = 5
and u = 4
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Figure 5.10: Torque generated at hip

Figure 5.11: Torque generated at knee
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Figure 5.12: Torque generated at ankle

5.7.2 Ankle Joint

As described in the previous section, ankle joint is essential for the posture stability of the

robot. Before the CPG generates stable oscillation control signal to the robot, the posture

stability is maintained by the local controller at the ankle joint. The torque generated by

the stability controller is shown in Fig.5.12. We could notice that there is a sharp increase

in both legs during the first step. This is because the robot has to over come its inertia as

the walking starts and the walking speed increases from zero velocity.

5.7.3 Limit Cycle Behavior of the Bipedal Robot

Controlled by CPG, a limit cycle behavior is guaranteed given the robot’s posture stability

is not compromised before the CPG comes to stable oscillation. Fig.5.13 through 5.15

show the angles of each joint.
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Figure 5.13: Hip joint angles

Figure 5.14: Knee joint angles
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Figure 5.15: Ankle joint angles
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Figure 5.16: Limit cycle behavior of the hip joints
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Figure 5.17: Body velocity along the slope

In Fig.5.16, the phase diagrams of the hip joints are plotted. Both left and right hip start

from the origin and eventually converge to a constant oscillatory swinging motion. The

limit cycle is a result of the entrainment between the CPG and the robot dynamic system.

Similar limit cycle behavior can also be identified in knee and ankle joints, although the

ankle is not directly controlled by CPG.

5.8 Walking on the Slope

In this section we change the ground condition from the level ground to slope of aproxi-

mately 10o.

We let the robot start downslope first and then immediately upslope. All the parame-

ters of the CPG remain the same as shown in Table 5.2.
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The simulation shows a clear global entrainment of robot and CPG. Fig 5.17 is the

body velocity alone the slope. When the robot clears the downslope and starts climbing

upwards at 15 second, the forward movement of the robot begins to slow down. This

velocity change is mainly due to the drop of oscillation frequency as shown in Fig 5.18.

The downslope is easier for robot to walk forward because of gravity. The dynamic of

robot is thus taking advantage of this favorible condition and gives a positive feedback to

the CPG and the CPG updates its motor pattern accordingly. Likewise when the robot is

walking upslope, it is harder for the robot to catch up with the moter command generated

by CPG, and as a result, the CPG automatically adjust its oscillation frequency lower. In

between the downslope and upslope connections, the velocity appears to be unstabilized,

as is shown in Fig 5.17 between 15s to 20s. This is the transitional phase where the CPG

is adapting to the new ground condition.
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5.9 Summary

In this chapter, we discussed a four-compartmental CPG model and utilized it for loco-

motion control of a seven-link bipedal robot. The hip and the knee joints are controlled

directly by a torque generator by our CPG model to mimic the extension and flexion of

the muscle. We applied a posture stability controller to the ankle joint of the stance leg

to maintain the stability of the bipedal robot during single support phase. Simulation re-

sults indicate that the four-compartment CPG model can successfully generate a walking

pattern. And the global entrainment of CPG, the dynamic system of the bipedal robot can

be observed from the simulation.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a bipedal locomotion control strategy after the concept of CPG is proposed.

The CPG model utilizes a network of four Matsuoka neural oscillators for motor pattern

generation in sagittal plane. Local feedback controllers such as posture stabilizer and lat-

eral movement controller are supplemented to the general control architecture to ensure

the robot doesn’t tip over or fall side way. Although the CPG model used here is by far

a much simplified reproduction of the biological motor control system, the majority of its

property is preserved.

The advantages of CPG based control has over other control strategies is its simplicity.

In the controller synthesis, no complete or approximated model of the robot dynamics is

required. The inherent rhythmic oscillatory pattern of CPG and feedback pathway from

robot give rise to a global entrainment between the two. The stable coordinated walking

pattern emerges as a result of such entrainment. It even allows the robot to adapt different

walking patterns in different environment.
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6.2 Discussion of Future Work

A natural extension of the work presented here in this thesis is real life implementation

of CPG controlled bipedal robot. The simple model of neurons makes it easy to realize in

VLSI circuit. However, concerns mainly come from two aspects:

• Despite the CPG shown in Chapter Five has only four NOs, the system is compli-

cated and so far there is no systematic approach to search for proper parameters

for the CPG model. In the simulation, besides the basic conditions of sustained

oscillation discussed in Chapter Four, notion of symmetry is also used to confine

the search of CPG parameters within a much smaller number candidates. How-

ever there is no evidence that asymmetrical CPG will not result in similar sustained

rhythmic walking pattern.

• The second issue is the limitation of the hardware actuators. Nowadays, 80% of

bipedal robots are actuated by DC motors. As we see in the simulation, the actuation

of the bipedal robot is realized through torque generator. Moreover the actuators

are constantly interacting with the environment, they require broad bandwidth and

high back drivability which DC motors don’t have.

If above mentioned issues are well addressed, we are likely to see the CPG based

control become a mainstream locomotion control strategy for bipedal robots in the future.
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Appendix A

Locomotion Control with Van der Pol NO

The single NO model as Eq.4.24 shown in Chapter four is utilized to construct a four NOs

network. The coupling effect of the NOs result in a fixed phase lag between different

NOs. The four NO model can be expressed as below:

ẍ1 − µ1(ρ
2
1 − x2

a)ẋ1 + g2
1xa = q1 (A.1)

ẍ2 − µ2(ρ
2
2 − x2

b)ẋ2 + g2
2xa = q2 (A.2)

ẍ3 − µ3(ρ
2
3 − x2

c)ẋ3 + g2
3xa = q3 (A.3)

ẍ4 − µ1(ρ
2
4 − x2

a)ẋ1 + g2
4xa = q4 (A.4)

where

xa = x1 − λ21x2 − λ31x3 (A.5)
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Figure A.1: Network with four coupled Van der Pol NO.

xb = x2 − λ21x1 − λ31x4 (A.6)

xd = x3 − λ21x1 − λ31x4 (A.7)

xd = x4 − λ21x2 − λ31x3 (A.8)

x1, x2, x3 and x4 and xa, xb, xc and xd are the inner state of the NO. λij is the synaptic

weight of inhibitive connection from jth to ith NO.

The CPG network is organized such that one neuron is only inhibited by two neigh-

boring neurons but has no inhibitive connection to the fourth one (e.g.: NO1 receives

inhibition from NO2 and NO3 but no inhibition from NO4). Table A.1 shows the para-

meters values of Van der Pol NOs of the CPG.

The output of the NO is mapped directly to the hip and knee angles of (Fig. A.2).

The range of angular variability is set to be (−50o, 50o) for hip joint and (25o, 45o) for
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Table A.1: Parameters of of Van der Pol NOs
Parameters
µ1 = 1, µ2 = 2, µ3 = 1, µ4 = 2
ρ1 = 2, ρ2 = 1, ρ3 = 2, ρ4 = 1
g1 = 17, g2 = 20, g3 = 17, g4 = 20
q1 = 12, q2 = −20 q3 = 12, q4 = −20
λ13 = 0.2, λ31 = 0.2, λ12 = −0.2, λ21 = −0.2
λ24 = 0.2, λ42 = 0.2, λ34 = −0.2, λ43 = −0.2
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Figure A.2: Neural activities of four Van der Pol Bipedal
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Figure A.3: Stick diagram of bipedal robot

knee joint.

The stick diagram of the bipedal robot in one walking cycle is presented in Fig.A.3.

The CPG network shows a decent capability in generating the walking pattern.
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