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SUMMARY

Rag1 (recombination activating gene 1) plays a key role in V(D)J recombination and 

vertebrate adaptive immunity. Besides immune organs, Rag1 transcripts have also been 

detected in the nervous system of vertebrates, where its function is not known. To 

investigate whether Rag1 is functional and what role it could play in the nervous system, 

we initiated a study with zebrafish. 

Firstly, we examined fluorescent transgenic zebrafish with laser scanning confocal 

microscopy, to document the expression of Rag1 at single cell resolution.   

Using a Rag1:GFP line, we found that Rag1 was selectively expressed in many parts of 

the nervous system. The strongest expression appeared in the olfactory system, where

Rag1-driven GFP was restricted only to a subset of microvillous OSNs (olfactory sensory 

neurons), which projected their axons to the lateral olfactory bulb. Experiments on RAG1 

depleted fish (by morpholino or mutagenesis) demonstrated that axon pathfinding and 

amino acid detection in the olfactory system did not require RAG1. Rag1-driven GFP was 

also expressed in other parts of the nervous system, and restricted to subsets of neurons. 

These included RGCs (retina ganglion cell) and amacrine cells in the eye, cristae hair 

cells in the ear, some dorsal interneurons in spinal cord, and neurons in optic tectum, 

cerebellum and hypothalamus. By immunofluorescence, the RAG1 protein was detected 

in a portion of retinal and olfactory neurons, predominantly in the nucleus. 

Rag2, an indispensable partner of Rag1 in V(D)J recombination, was also detected in the 

nervous system, but was not co-expressed with Rag1. Both Rag2-driven GFP and DsRed 
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showed clear expression in the olfactory epithelium, which, however, was restricted to a 

group of ciliated OSNs projecting to ventral glomeruli.  

To seek evidence for a neuronal function of Rag1, we carried out a microarray study and 

compared the overall gene expression between Rag1 mutants and wt siblings, either in the 

olfactory epithelium of adults, or in the anterior regions of 3 day-old larvae. 

The experiment with RNA isolated from adult olfactory rosettes revealed broad and 

complicated changes of gene expression. They mainly indicated an overall increase of 

innate immunity, activation of secondary responses upon infection, and a neuronal 

degeneration that was likely a consequence of the immune responses. All of these 

changes were possibly caused by the loss of adaptive immunity, which corresponds to 

Rag1’s immune function. Rag1’s neuronal function still remains obscure.  

In the microarray with 3 dpf larvae, the transcription of one clone, named 12158, was 

revealed to be associated with Rag1 integrity. This was also confirmed by RT-PCR. 

All in all, our expression analysis suggests that Rag1 is unlikely to mediate DNA 

rearrangement similar to V(D)J recombination in the nervous system. Instead, it may play 

some other function in selected groups of neurons. Our microarray experiments revealed 

the global effect of Rag1 deficiency and suggested some candidates for Rag1 downstream 

genes in neurons. 
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1

CHAPTER 1   INTRODUCTION 

1.1 The Rag genes

Rag1 and Rag2 (recombination activating gene 1 and 2) are well-known key players in 

V(D)J recombination, an essential process for developing adaptive immunity. They are 

found only in jawed vertebrates, and are thought to have evolved from ancient 

transposases. Consistent with their essential function in the immune system, they are 

highly conserved among different species. Although Rag genes were identified as 

lymphoid-specific genes, they are also detected in nervous system. This has attracted a lot 

of interest, but its significance is still poorly understood. 

1.1.1 Rag function in the immune system 

One of the intriguing features of the vertebrate adaptive immune system is its ability to 

generate specific responses to a tremendous number of antigens. The basis of this 

capability is the highly diversified B-cell receptor (immunoglobulin) and T-cell receptor 

proteins, which physically bind to specific target antigens and direct humoral or cellular 

responses to these stimuli (Fig. 1-1) (Bruce Alberts, 2002). 

In the germline genome, immunoglobulin (Ig) and T-cell receptor (TCR) loci are 

composed of dispersed multiple variable (V), joining (J), and diversity (D) gene 

segments. For assembly of a complete antigen receptor gene, one V, one J and in some 

cases one D gene segment are joined by V(D)J recombination to create an exon that 

encodes the antigen binding portion. After transcription, this V(D)J exon is spliced to the 

exons encoding the constant region, producing the mature mRNA and subsequently the 

receptor polypeptide (Fig. 1-2) (Bruce Alberts, 2002; Fugmann et al., 2000; Gellert, 

2002). Therefore,  each  receptor  polypeptide contains  a  variable  region  and a  constant         
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region (Fig. 1-1). The variable regions created through V(D)J recombination directly 

provide the diversity of antigen receptors. The process of gene rearrangement via 

recombination is strictly regulated in a lineage-, locus- and stage-specific manner. The B 

cells and T cells rearrange specifically the immunoglobulin and T cell receptor genes 

respectively. The assembly of TCR  genes happens earlier than TCR  genes during T 

cell development; IgH genes are assembled before IgL genes in developing B cells 

(Bassing et al., 2002). And, all of the rearrangements occur in the context of allelic 

exclusion. For example, a mature B cell expresses only one of its two IgH and one of its 

multiple IgL alleles (Gorman and Alt, 1998). This ensures that any mature T cell or B cell 

expresses only one type of antigen receptor.  

V(D)J recombination is targeted by specific recombination signal sequences (RSSs) that 

lie adjacent to each gene segment. These RSSs consist of conserved heptamer (consensus 

5’-CACAGTG) and nonamer elements (consensus 5’-ACAAAAACC) separated by a 

poorly conserved 12 or 23 nucleotides spacer. According to the length of its non-

conserved spacer, an RSS is referred as 12-RSS or 23-RSS. Efficient V(D)J 

recombination take place only between a 12-RSS and a 23-RSS, a phenomenon known as 

the 12/23 rule (Fig. 1-3) (Fugmann et al., 2000; Gellert, 2002). 

The process of V(D)J recombination can be considered as two phases, cleavage and 

joining. In the first phase, the two RSSs are recognized by the recombination machinery 

and form the synaptic complex, where DNA is cleaved precisely between the RSSs and 

their flanking coding element. In this process, the recognition of two RSSs and the 

cleavage of double strands DNA are mainly processed by RAG1 and RAG2 proteins;

high-mobility-group protein 1 and 2 (HMG1/2) enhance the  formation of synapsis and 

DNA cleavage. To cleave the DNA, RAG proteins bind to both RSSs and introduce a 

nick precisely at the 5’ border of the heptamer of each RSS. This leads to the exposure of 
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a 3’-hydroxyl group on the coding flank, which subsequently attacks a phosphodiester 

bond on the other DNA strand and produces a covalently sealed hairpin coding end. The 

other side of the break remains as 5’ phosphorylated blunt end, which terminates in the 

heptamer of the RSS and is referred as the signal end (Fig. 1-3) (Gellert, 2002). The 

second phase is a joining phase. Initially the four RAG-liberated DNA ends remain 

associated with RAG in a stable post-cleavage synaptic complex (PSC), which is 

important for coupling the cleavage and joining stages of V(D)J recombination (Ramsden 

et al., 1997). Then the factors that mediate non-homologous DNA end joining (NHEJ) are 

recruited and repair the DNA breaks. Ku70 and Ku80 are firstly recruited and form a 

complex at the double strand break (DSB) ends. They may play a function in protecting 

the broken DNA (Jones and Gellert, 2001; Walker et al., 2001). After the Ku complex, 

DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and Artemis are recruited, 

but only to the coding ends. Within a complex, Artemis is phosphorylated by DNA-PKcs 

and acts as an endonuclease in cleaving the RAG-generated hairpins (Le Deist et al., 

2004; Meek et al., 2004). At last, XRCC4 and DNA ligase 4 join and catalyze the ligation 

for both the coding ends and signal ends (Bassing et al., 2002). At this step, TdT (terminal 

deoxynucleotidyl transferase) is involved in the coding end joining and attributes the 

junction diversity by adding extra nucleotides (Komori et al., 1993). Therefore, the 

coding ends form imprecise coding joints and signal ends are fused as precise signal 

joints. (Fig.1-4) (Bassing et al., 2002; Jung and Alt, 2004).  

Both Rag1 and Rag2 are essential for V(D)J recombination. Mice with either Rag gene 

depleted are completely defective in V(D)J recombination and produce no mature T cell 

and B cell (Mombaerts et al., 1992; Shinkai et al., 1992). RAG proteins are relatively 

large. For example, murine RAG1 and 2 consist of 1040 aa and 527 aa respectively. Full-

length RAG1 and RAG2  protein  are difficult to express  and  purify  in vitro.  Instead, a
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truncated “core” version of RAG1 and RAG2 are soluble and were found to retain all 

DNA cleavage activity in both in vivo and in vitro assays (Sadofsky et al., 1994; Silver et 

al., 1993). Thus biochemical characterization of RAG1 and 2 has largely focused on the 

core region of RAG1 (384-1008 aa) and RAG2 (1-387 aa). While the contribution of 

RAG2 to the V(D)J recombination is not clear, many aspects of core RAG1 and its 

function in V(D)J recombination are known. A catalytic triad of three residues, the DDE 

(aspartate-aspartate-glutamate) motif in RAG1 core region, is found essential for DNA 

cleavage. Mutation of any of the three residues (D600, D708, or E962) abolishes 

recombination of extra-chromosomal substrates in vivo as well as RSS cleavage by the 

purified protein (Kim et al., 1999; Landree et al., 1999). The core region of RAG1 also 

mediates the recognition of 12-RSS and 23-RSS. Two individual domains, the nomamer-

binding domain and the central domain, were found to carry specific affinity to the 

conserved nonamer and heptamer elements of RSS respectively. In addition, the central 

domain also functions to recruit RAG2 to the recombination complex (Fig.1-5. B and C) 

(De and Rodgers, 2004).  

Little is known about the non-core region of RAG proteins, however, available evidence 

clearly illustrate their importance in RAG function. The core RAG proteins perform 

V(D)J recombination less efficiently than the full-length proteins in the transgenic mice 

(Akamatsu et al., 2003; Dudley et al., 2003; Liang et al., 2002). Furthermore, the 

pathogenesis of some human SCID (severe combined immunodeficiency) and Omenn 

syndrome is linked to mutations in the non-core regions, e.g. at the N-terminal of RAG1 

or C-terminal of RAG2 (Santagata et al., 2000; Schwarz et al., 1996; Villa et al., 2001). 

Recently an E3 ubiquitin ligase activity was assigned to a RING finger motif in the N-

terminal non-core region of RAG1 (Fig.1-5. B and C), although its relationship with 

V(D)J recombination remains unknown (Yurchenko et al., 2003).  





10

1.1.2 Rag genes may originate from ancient transposases. 

A 25-year-old hypothesis that proposes a transposon-related beginning for the 

evolutionary origin of Rag genes and V(D)J recombination is highly favored (Brandt and 

Roth, 2004; Chatterji et al., 2004). It has been supported by many features of the Rag

genes and V(D)J recombination. (i) In most species, including Xenopus, chicken, mouse 

and human, Rag genes do not contain introns in their open reading frame. Only the Rag1

genes in zebrafish, fugu and rainbow trout are known to contain introns (Hansen and 

Kaattari, 1995; Willett et al., 1997). The compact nature of Rag genes suggests that they 

may evolve from a small transposable element. (ii) The unusual arrangement of RSSs in 

Ig and TCR loci (flanking to the V, D, J coding elements and being cut off during DNA 

recombination) highly resembles the inverted repeat sequences at either end of a 

transposon (Schatz, 2004). (iii) The DDE motif is an active catalytic site for a large 

family of transposases. It is highly conserved in the RAG1 core region among different 

species and is required for DNA cleavage during the V(D)J recombination (Jones and 

Gellert, 2004). (iv) The formation of hybrid joints in the recombination process and the 

way that RAG1 nicks the transferred strand and carries out strand transfer also exhibit 

similar biochemical features to transposition (Jones and Gellert, 2004). Furthermore, this 

hypothesis is strongly strengthened by the discovery of RAG-mediated transposition. 

Although RAG-mediated transposition was found to be inefficient in vivo (Messier et al., 

2003; Schatz, 2004), the core regions of RAG1 and RAG2 indeed are able to carry out 

transposition in vitro (Agrawal et al., 1998; Hiom et al., 1998). 

Some literature suggests that both Rag genes might have been introduced into the 

vertebrate genome by a horizontal transfer of a single ancient transposon. In the genome 

of all vertebrate species examined, Rag1 and Rag2 lie immediately adjacent to each other, 

separated only by a few kb in opposite orientation (Fig.1-5. A). No significant sequence 
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homology is found between these two genes, indicating that they are unlikely to be 

derived from gene duplication. These striking features suggest that Rag1 and Rag2 might 

have entered the genome of a vertebrate ancestor at the same time, possibly by the 

insertion of a single transposable element (Schatz, 2004). Moreover, Rag genes are found 

only in jawed vertebrates from the level of sharks (Bernstein et al., 1996; Greenhalgh and 

Steiner, 1995; Schluter and Marchalonis, 2003), and no close homolog of either Rag gene 

has been found in the lower eukaryotes (jawless vertebrates and invertebrates). The 

evolutionary discontinuity also indicates that Rag genes might have entered the vertebrate 

genome via a horizontal gene transfer event.  

Data from other studies, however, have been used to propose that Rag1 and Rag2 might 

have been introduced into the vertebrate lineage by separate events. The transposases 

encoded by DNA transposons from the Transib superfamily have been found to be 

significantly similar to the Rag1 core region, with an identity of 25~30% at the amino 

acid level (Kapitonov and Jurka, 2005). In addition, Transib transposons carry a pair of 

38-bp terminal inverted repeats consisting of a conserved 5’-CACAATG heptamer and an 

AAAAAAATC-3’ nonamer separated by a variable 23-bp spacer, which is highly similar 

to RSSs; Transib transposons prefer GC-rich regions and generate 5-bp target site 

duplication during transposition, both of which also have been found in RAG-mediated 

transposition. But different from the Rag locus that always contains both Rag1 and Rag2 

genes, the Transib transposons identified so far encode only one protein, the Rag1 “core”-

like transposase. No homologous sequence to the 5’ non-core Rag1 or to Rag2 has been 

located in Transib transposons. And no Rag2-like sequence has been found in the recently 

sequenced genomes, such as those from sea urchin, lancelet, hydra and sea anemone, 

which contain the Transib transposon and the Rag1-like sequence. One interpretation of 

this data is that Rag1 evolved from a fusion of once separate proteins and originated 

separately from Rag2 (Kapitonov and Jurka, 2005).  
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1.1.3 Diversity and conservation of Rags among organisms 

Rag genes have been found in almost all jawed vertebrates examined so far, including 

those species that appeared in the last 4 million years and are mostly still prevalent on the 

earth (Bernstein et al., 1996; Schatz, 2004). Despite the broad distribution and the long 

period of evolution, Rag genes are highly conserved.  

The basic organization of Rag locus in genome has remained among different species.   

(i) Rag1 and Rag2 genes are always located next to each other in opposite direction, 

although the size of the entire Rag locus and the length of the intergenic region between 

Rag1 and Rag2 vary in different organisms (Fig.1-5. A) (Peixoto et al., 2000). (ii) In most 

species the entire open reading frame and 3’ UTR is fitted into a single exon. Introns have 

been only found in the Rag1 gene of fishes. According to their position within Rag1

coding sequence, two types were delineated. One is small and located in the N-ternimal 

part; the other lies in the middle and is relatively large. Chondrostei and Neopterygii 

fishes lack the first small intron, while teleosts have both (Venkatesh et al., 1999).   

The protein sequences of both RAG1 and RAG2 are highly conserved in sharks, fish, 

amphibians, birds and mammals. The similarity of RAG1 proteins among different 

species is between 60~90%. Compared to RAG1, RAG2 is less conserved, with similarity 

ranging from 50% to 80%. The matches within RAG2 protein are mostly distributed 

evenly over the whole sequence, whereas in RAG1 protein, the N-terminal one third 

protein is significantly more divergent than the C-terminal two third (Frippiat et al., 2001; 

Schluter and Marchalonis, 2003; Willett et al., 1997). More detailed comparison between 

gene sequences in several organisms defines 6 distinct homology domains within the 

RAG1 protein (Bernstein et al., 1996). The strongly conserved fifth and sixth homology 

regions have been found to be indispensable for processing the recombination of RSS-

substrate in vitro. The first and second homology regions are unnecessary in episomal 
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recombination, but are important for binding of nucleopore protein and potentially 

function in transportation of RAG1 into the nucleus. Homology region 3 contains a RING 

zinc finger motif, but its function, aside from acting as an E3 ligase (Yurchenko et al., 

2003), still remains elusive. The region 4 has not been well-characterized. 

The high-extent conservation of RAG protein sequences, genomic organization and gene 

structures indicates that the functions, as well as the regulation of Rag genes are 

important. It correlates well with the evolutionary stability of other components of 

adaptive immunity, which provides a great benefit for vertebrates. The diversity, despite 

the conservation of Rag genes, indicates the shaping of evolution and can be used as an 

indicator of evolutionary changes. A comparison of Rag genes across different species 

can suggest conserved structures that are potentially important for function. This may 

help us to understand any unknown functions and regulation of Rag genes. 

1.2 Rags in the nervous system 

1.2.1 The expression of Rag genes in the nervous system  

Rag genes were initially identified as lymphoid-specific factors. Indeed, Rag genes are 

strongly expressed in immune organs of every jawed vertebrate species that have been 

tested so far. In mice, the co-expression of two Rag genes is found within the bone 

marrow and thymus (Oettinger et al., 1990) . In Xenopus, besides the thymus and bone 

marrow, slight expression of Rags was detected in the kidney of adult frog (Greenhalgh et 

al., 1993). In chickens, the transcripts of both Rag1 and Rag2 have been found in the 

thymus, and Rag2 alone in Bursa of Fabricius (Pickel et al., 1993). In fish the expression 

of Rag genes is also confirmed in thymus and kidney (Hansen and Kaattari, 1996; Peixoto 

et al., 2000; Schluter and Marchalonis, 2003; Willett et al., 1997). Furthermore, within the 

immune organs Rag genes expression has only been found in the precursor B and T cells 
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where V(D)J recombination occurs, not in cells from other stages of lymphoid 

development (Lieber et al., 1987). 

The conserved, highly restricted expression of Rag genes in the immune system correlates 

well with their function in V(D)J recombination. Because of their ability to rearrange the 

genome, Rag genes are dangerous, as unwanted rearrangement can be oncogenic. It 

would have become critical to keep Rag genes under tight regulation and expressed only 

in those cells that require their function (Barreto et al., 2001). In light of this, it is 

intriguing that the expression of Rag1 was also detected in the brain and retina in a range 

of organisms. As early as 1991, David Baltimore’s group reported the detection of Rag1

transcripts in the murine central nervous system (CNS), by RT-PCR, in situ hybridization 

and Northern blot analysis. As revealed by in situ hybridization, the expression of Rag1 in 

the mouse brain is widespread at a low level and most apparent in postnatal cerebellum 

and hipocampal formation. The Rag2 transcripts, in contrast, were not detected by in situ 

hybridization and Northern blot analysis, and were only sporadically amplified by RT-

PCR (Chun et al., 1991).  

It was noticed for long time that the nervous system and immune system are both extreme 

complex, diverse and able to maintain memory. Rag genes and V(D)J recombination 

provide the major foundation of the immune diversity, while the mechanism to generate 

neuronal diversity is poorly understood. Further comparison between the nervous system 

and immune system revealed a variety of signaling molecules, transcription factors, cell 

surface antigens and receptors common for both systems (Boulanger and Shatz, 2004; 

Farrar et al., 1987; Loconto et al., 2003; Tordjman et al., 2002; Wekerle, 2005). This 

suggests that the two systems may use a similar strategy to achieve their diversity, and 

possibly also to encode memory. Given the central role of Rag1 in V(D)J recombination, 



15

its expression in the mouse brain directly raised the hypothesis that Rag1 may mediate a 

similar DNA rearrangement process in the nervous system.  

To test whether Rag genes play a function in mediating the site-specific recombination in 

the nervous system, transgenic mice carrying a modified RAG substrate were generated. 

These mice carried an inverted LacZ gene, driven by a universal promoter and flanked 

by a pair of RSSs, so that the RAG-recombination machinery can flip the LacZ gene 

at RSS sites and allow the promoter to transcribe LacZ. The translated protein, -

galactosidase, could be further detected by the substrate, X-gal. The results from these 

studies were exciting. Besides staining in the immune system, which was expected, 

X-gal staining was specifically detected in the brain and spinal cord among various non-

lymphatic tissues. The distribution of X-gal labeling was widespread, but neither diffuse 

nor random. In the brain,  more than 70 nuclei and tracts were selectively labeled 

(Abeliovich et al., 1992; Matsuoka et al., 1991). Similar studies were also carried out 

independently by two other groups. However, Tonegawa’s group concluded that the 

expression of LacZ is due to the region- and neuron-specific backward transcription 

(Abeliovich et al., 1992); Honjo’s group was unable to find any evidence of DNA 

recombination in the brain (Kawaichi et al., 1991). In addition, Papaioannou’s group 

reported that the Rag1-knockout mice showed no obvious neuroanatomical and 

behavioral abnormalities (Mombaerts et al., 1992), which does not suggest that Rag1 is 

functional in neurons. 

The search for further evidence in support of “neuronal recombination” has proven very 

difficult, and no supporting data was produced in the following several years. In 1999, 

using transgenesis, Shuo Lin’s group reported that the Rag1 gene was also expressed in 

the zebrafish nervous system, in olfactory sensory neurons. They further confirmed the 

Rag1 expression in olfactory epithelium by in situ hybridization and RT-PCR (Jessen et 
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al., 1999). This largely strengthened the report of Rag1 transcripts in murine CNS, and 

led to the serious examinations of this phenomenon in other species. In 2000, when Rag

genes of puffer fish were cloned, Rag1 was detected in the brain and retina by RT-PCR 

(Peixoto et al., 2000) . In 2001, salamander Rag1 was detected in the brain and retina by 

RT-PCR and in situ hybridization, although in a much less amount compared to its 

expression in thymus and kidney (Frippiat et al., 2001). These data indicate that the 

expression of Rag1 in the nervous system is conserved among vertebrate species and 

suggest a function.  

1.2.2 A brief overview of the nervous system 

The nervous system is the most complex organ system in animals, and makes them 

distinguishable from other living organisms. Because of the nervous system, animals are 

able to receive information about the internal and external environments, to interpret it 

and make decisions, and to organize and carry out action. According to these functions, 

the nervous system is categorized as sensory system, integrating system and motor system 

respectively (Delcomyn, 1998). The structural organization of the nervous system is 

distinctive in different animals. But on general, they all can be divided into central and 

peripheral parts. The central nervous system (CNS) consists of the brain and the spinal 

cord (or nerve cord for invertebrates), which contains the main portion of neural tissue in 

the body and mostly carries out the function of integration. The peripheral nervous system 

(PNS) is defined to cover all neural tissues that lie outside the CNS, including the sensory 

and motor system. It functions in sensing stimuli, transmitting signals and carrying out 

response action (Delcomyn, 1998). 

The structural and functional unit of the nervous system is the neuron. A neuron usually 

consists of a cell body (also called soma) containing the nucleus, one long process (axon) 

to transport information away from the cell body, and many short branches (dendrites) to 
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convey information toward the cell body (Delcomyn, 1998). The terminals of axon and 

dendrites can be extensively branched, and simultaneously connect many branches from 

many other neurons. The specialized connections between neural branches, called 

synapses, enable signal transmission between neurons and therefore establish neuronal 

communication (De Robertis, 1967; Jessell and Kandel, 1993). Based on function, 

neurons are classified into three types. Sensory neurons receive environmental stimuli and 

send out signals. Motor neurons deliver output signal to muscles or glands, and trigger 

action. Interneurons, in a general sense, refer to neurons that not belong to the class of 

sensory and motor neurons (Delcomyn, 1998). They transmit signals between neurons, 

and largely correspond to the integrative function of nervous system. Through specific 

synapses, these neurons build up the nervous system into a vast network with intricate 

connections, which functions in information communication. 

1.2.3 Questions about the neuronal function of Rag1 

The conserved expression of Rag1 in the nervous system among vertebrates apparently 

indicates a function. Questions about this are interesting, but challenging. So far, the 

description and analysis of Rag1’s neuronal expression is limited, and the presence of 

Rag2 in CNS is uncertain, largely due to the weak transcription of Rags in the nervous 

system. Rag genes are unique to vertebrates, thus may attribute some vertebrate specific 

features to the nervous system. Comparison between vertebrate and invertebrate nervous 

system revealed some difference. For example, the DsCAM (Down syndrome cell 

adhesion molecule) to generate neuronal diversity in Drosophila is not a diverse molecule 

in vertebrates. However, this provides no clear clue as to a possible role for Rag1. So far, 

it is not clear whether Rag1 is functional, and what its function in the nervous system 

could be. To investigate these issues, models and techniques that provide higher 

sensitivity are required.  
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1.3 Advantages of using zebrafish 

1.3.1 Zebrafish as a model for developmental and genetic research in vertebrates 

Our understanding of many aspects of life has benefited from studies on model 

organisms. Each organism provides different advantages in laboratory experiments, but 

also has its own limitations. The fruit fly Drosophila melanogaster and nematode worm 

Caenorhabditis  elegans have proven extraordinarily suitable for mutagenesis screens 

(forward genetics). Many fundamental signaling pathways in development were 

established from the analysis of mutated fly and worms, such as EGF (epidermal growth 

factor)/RAS (rat sarcoma), Notch, DPP (decapentaplegic)/SOG (short gastrulation) 

signaling pathways (Jorgensen and Mango, 2002; St Johnston, 2002). But these 

organisms are invertebrates; they cannot be used for studying vertebrate-specific features, 

such as a complex brain, notochord, multi-chambered heart, neural crest cells and kidney. 

Among models organisms, the mouse is a high vertebrate, which has been studied for 

more than 60 years and with it many exquisite methods have been established. But with 

this model it is difficult to study the early embryogenesis that occurs within the mother’s 

uterus. Furthermore, an individual female produces a limited number of progeny, which 

makes the mouse also not suitable for genetic screens. In recent years, more and more 

animals have been explored and developed as research models. Among them, a small 

tropical fish, zebrafish (Danio rerio) has become an important model organism for 

biological research within the last decade. 

Firstly noticed by George Streisinger, the zebrafish carries many features that are well 

suited for genetic and developmental studies. The embryos of this fish develop externally 

and are optically transparent. This provides easy access to all developmental stages, and 

facilitates embryological experiments and rapid screens of live embryos by morphology. 

Researchers can examine early embryogenesis without disrupting development. Zebrafish 
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are also robust and prolific breeders in the laboratory. Individual females can produce 

hundreds of progeny on a regular basis all year round and the young generation grows 

fast; they can reach sexual maturity in 3 months (Detrich et al., 1999; Grunwald and 

Eisen, 2002). Taking advantage of these features, many mutagenesis and genetic screens 

have been carried out. Just from the first two large-scale chemical mutagenesis screens, 

nearly 2000 mutations have been isolated. The phenotypic analyses of embryonic 

development in the obtained mutants were published in an entire issue of Development in 

Dec 1996 (Driever et al., 1996; Haffter et al., 1996). 

Other studies demonstrate that zebrafish is also suited for cellular studies of vertebrate 

embryonic development. The embryos are simple and small. Their transparent cells are 

accessible for manipulative experiments, such as injection, ablation and transplantation 

(Mizuno et al., 1999). Moreover newly-developed tools greatly increased the utility of 

zebrafish as an experimental model. The zebrafish genome has been partially sequenced 

by the Sanger Center (Jekosch, 2004); full-length cDNA and multiple microarrays are 

available for expression profiling analysis (Lo et al., 2003; Ton et al., 2002); anti-sense 

morpholino oligonucleotides provide a method for reverse genetic studies (Nasevicius 

and Ekker, 2000). These advances enabled developmental and genetic research using 

zebrafish to be carried out with higher speed and more detail, and parallely expanded the 

studies on zebrafish to several other fields, including drug screens (Zon and Peterson, 

2005), human disease studies (Ackermann and Paw, 2003; Dooley and Zon, 2000; Shin 

and Fishman, 2002) and neuroscience (Bilotta and Saszik, 2001; Malicki, 2000). 

1.3.2 Advantages of zebrafish in experimental neuroscience research 

Before zebrafish, frog tadpole, lamprey and some mammals were used for neuronal 

studies. Compared to them, zebrafish provides special advantages and is used as a model 

for neuronal experiments. Its externally fertilized, small transparent embryo is perfectly 
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suited for microscopic observations, which is further strengthened by the efficient 

transgenesis with fluorescent proteins under the control of various promoters. Fluorescent 

transgenic zebrafish enables in vivo observation of a particularly labeled cell or organ in 

detail, as well as the distribution pattern or the dynamics of gene expression through 

development (Kawakami, 2004; Tallafuss and Bally-Cuif, 2003); and also helps in 

addressing co-localization with simultaneous labeling of several genes in multiple colors. 

Besides transgenic labeling, small-molecule dyes also improve the observation studies of 

zebrafish. Lipophilic fluorescent dyes, which diffuse only within the labeled cells and 

could label neural axons, have been shown to be particularly useful in examining 

neuronal connections. Loading two different dyes (DiI and DiO) respectively into the 

anterior and posterior sides of eye, and checking the labeled retinal ganglion cell axons in 

the brain, has been used in genetic screens and defined many mutants defective in the 

retinal-tectal projections (Haffter et al., 1996). Introducing fluorescent labeling also 

benefits the observation of in vivo neuronal activity. For example, Calcium green is 

sensitive to the intracellular calcium concentration and fluoresces accordingly, and thus is 

used as an indicator of calcium change in neural cells. With Calcium green, studies of 

zebrafish has significantly improved the understanding of calcium signaling during in

vivo development (Ashworth, 2004). For all of these labeling methods, the well-

established laser scanning confocal microscopy technique provides a major means to 

observe, record and reconstruct the labeled details. With confocal microscopy, one can 

focus on a layer of tissue and obtain clean signal without the interference of out-of-focus 

labeling (Paddock, 2000). Given the complex structure of the nervous system and neural 

cells, the detailed direct observation of intact embryos or tissue with fluorescent labeling 

is significantly beneficial to neurobiological studies. In addition to observation, the small 

transparent zebrafish larvae also provide the possibility for precise manipulations, which 

is also useful in neuronal experiments. For example, non-invasive photo-ablation of 
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individual neurons in intact living fish will help to define accurate correlations between 

neurons and behaviors (Fetcho and Liu, 1998).  

As a vertebrate model, zebrafish has a nervous system whose organization is highly 

similar to that of mammals. The understanding of in vivo neuronal properties from 

zebrafish, which is difficult to obtain from other models, can be an important reference 

for neurobiological studies on mammals. 

1.4 Our aim for this study 

Very few studies have described the expression of Rag1 in the nervous system, and its 

function remains unknown. As a step towards understanding the role of Rag1 in 

vertebrate nervous system, we have initiated a study using the zebrafish, with most 

analysis being concentrated on the olfactory system. We have attempted to define 

precisely where the gene is expressed, the extent of its co-expression with Rag2, and the 

effect of its absence. 
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CHAPTER 2   MATERIALS AND METHODS 

2.1 Constructs 

pCS2_5’RAG1-EGFP 

First strand cDNA was synthesized from pooled 6 dpf larval RNA using random 

decamers. From this cDNA, a 350 bp 5’ Rag1 DNA fragment was amplified by PCR with 

Pfu DNA polymerase (Promega) using primer Rag1a and Rag1b. The PCR product was 

then digested with Hae III, phosphorylated with PNK (polynucleotides kinase; NEB) and 

inserted into Smal I site of pEGFP-N1 (Clontech). In the resultant construct, 5’ Rag1

cDNA, including 5’ UTR and partial coding sequence, was ligated to the downstream 

EGFP in the same reading frame. From this sequence, a fusion protein can be translated 

from the Rag1 start codon.  

For in vitro transcription, the entire 5’RAG1-EGFP fragment was cut out with Not I and 

Bgl II (the Not I end was blunted with Klenow) and cloned into BamH I and Stu I sites of  

pCS2 (Rupp et al., 1994). From this construct, 5’ RAG1-GFP fusion mRNA was 

synthesized from SP6 promoter for testing a morpholino, Rag1-mo1, which targets the 

Rag1 ATG region. 

pCS2_fullRAG1-EGFP  

A full length zebrafish Rag1 cDNA clone was obtained from RT-PCR in this lab. First 

strand cDNA was synthesized with random decamers, PCR was done with the Expand 

High Fidelity PCR system (Roche, Cat# 1732650). The entire Rag1 cDNA could not be 

amplified in a single PCR reaction. Instead, 2 partial cDNA fragments were obtained 

separately. The 5’ part was amplified with primer Rag1a and Rag1d, while the 3’ part was 

amplified with primer Rag1c and Rag1-endR-BamH I (in this primer the Rag1 stop codon 
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was replaced with a BamH I site). Both were further sub-cloned into pGEM-T Easy 

vector (Promega, Cat# A1360), and several individual clones were picked out and 

sequenced. According to the published wt Rag1 sequence, we chose the clone 37 (for 5’ 

part) and 7 (for 3’ part) for Spe I digestion. Spe I site is unique in the inserts as well as in 

the vector. From clone 37, a small fragment was cut off; the large portion of 5’ Rag1

remained together with the vector. From clone 7, a large 3’ Rag1 fragment was released 

and inserted to the clone 37. Thus we joined the two parts to generate a full length Rag1

cDNA clone. This construct was named as pGEM-Te_fullRAG1. 

To fuse to GFP, the full length Rag1 cDNA (~3.2 kb) was released from this construct by 

Not I and BamH I, with the Not I end blunted; the pGEM-T Easy backbone (~3 kb) was 

opened by Pvu I digestion and separated from the Rag1 band. The previous 

pCS2_5’RAG1-EGFP construct was chosen as a recipient vector. It was digested with 

EcoR I, blunted and then digested with BamH I. The previous Rag1 full length cDNA 

was ligated to this vector and thus replaced the 5’ Rag1 fragment and fused to the EGFP 

in the new construct, pCS2_fullRAG1-EGFP. It was used to synthesis the full length 

RAG1-GFP fusion mRNA. 

pCS2_RAG1797stop

The PCR-based QuickChange site-directed mutagenesis (Stratagene) was used to 

introduce a C  T mutation in Rag1. It turned the 797 arginine into a stop codon. 

Using 5 ng pCS2_fullRAG1-EGFP plasmid DNA as template, the mutation was 

introduced by a PCR with primers zfRag1_site-mut F and zfRag1_site-mut R, annealing 

at 55°C and cycling for 13 times. After Dpn I digestion, 2 µl PCR product was used for 

electroporation. 6 individual clones were picked out. 4 of them showed expected results 
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in allele-specific PCR, and were confirmed by sequencing to be successfully 

mutagenized. 

pFBDa_2xUAS 

pFBDa is a plasmid modified from pFastBac DUAL vector (Invitrogen). The original 

plasmid was sequentially digested with Smal I and Stu I. The small fragment was 

removed, while the remaining vector was self-ligated. This modification removed both 

P10 and Polyhedrin promoters and left the multiple cloning sites (MCS) in the vector. 

UAS-unc76GFP fragment was cut from pBalphatubGalUASuncGFP (a gift from Dr. 

Reinhardt Koster) (D'Souza et al., 2005) by Stu I and Not I and cloned into Pvu II site of 

the pFBDa. Another UAS fragment was amplified from the same plasmid using SJ UAS 

primers, digested with Spe I and Not I, and then inserted into Spe I and Not I sites of the 

same vector. It resulted in a construct containing two UAS fragments in opposite 

directions. One drives unc76 fused to GFP, the other one can be used to drive any gene of 

choice. Thus the GFP can serve as a position indicator, and will not disturb the structure 

and function of the gene being tested. 

pFBDa_UAS:uncGFP/UAS:Rag1 

The full length Rag1 cDNA was released from pGEM-Te_fullRAG1 with Not I digestion 

and cloned into the Not I site of the pFBDa_2xUAS construct. In the resultant construct 

Rag1 was driven by one UAS and GFP was driven by another UAS. Thus Rag1 and GFP 

will be activated by GAL4 at the same time, and GFP can be used as a visible indicator 

for Rag1 expression. 
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pRag2:GFP & pRag2:DsRed  

A ~7 kb 5’ Rag2 DNA fragment was obtained from the BAC clone 33K19 (Incyte 

Genomics Inc) by Xho I/Eag I digestion (Jessen et al., 2001a), and was sub-cloned into 

the Xho I and Eag I sites of pBlueScript II KS (Stratagene). This fragment contained a 

small part of the Rag2 5’ coding sequence. At the 5’ of the start codon, a nearby Stu I site 

was found to be unique within this fragment. To remove the Rag2 coding sequence, the 

small fragment between Stu I and Eag I was replaced with a PCR-generated shorter 

fragment (with primer Rag2.Eag1), which covered the region between Stu I and the start 

codon and ended with an artificial Eag I site. 

EGPF from pEGFP-N2 (Clontech) and DsRed from pDsRed-N1 (Clontech) were inserted 

respectively into Eag I site of the above construct. After that, a 2.6 kb PCR fragment from 

Rag-intergenic region was cloned into the Sac II site at 3’ of EGFP or DsRed.  

2.2 Fish stock 

Rag1:GFP line: a transgenic line kindly provided by Dr. Suo Lin (Jessen et al., 1999). It 

carries a PAC, in which the Rag1 coding sequence was replaced with GFP (GFPmut3, 

U73901). 

Rag1 mutant line: a zebrafish mutant line kindly provided by Dr. Brigitte Walderich 

(Wienholds et al., 2002). It carries a C  T mutation that results a premature stop codon 

at 797aa of RAG1.

Rag2:GFP line: a transgenic line generated in this lab, with the previous pRag2:GFP 

construct. It carries a EGFP under the 7 kb Rag2 promoter fragment.  

Rag2:DsRed line: a transgenic line generated in this lab, with the previous pRag2:DsRed 

construct. It carries a DsRed gene under the same Rag2 promoter fragment. 
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OMP:DsRed line: a transgenic line generated in this lab, with the construct kindly 

provided by Dr. Masayoshi Mishina (Yoshida et al., 2002). It carries a DsRed gene driven 

by an OMP (olfactory marker protein) promoter fragment.  

2.3 Transgenesis 

Sperm-mediated transgenesis was carried out as described previously (Jesuthasan and 

Subburaju, 2002).  

For conventional transgenesis, 40~60 ng/µl DNA was injected into one-cell stage 

embryos, and progeny of injected fish were screened for fluorescence.  

2.4 Imaging 

The confocal microscopes used are Zeiss LSM 510 inverted, Zeiss Meta LSM 510 

inverted, Zeiss Meta LSM 510 up-right and Bio-Rad. 

Live zebrafish embryos and larvae were embedded in 1.5 % low-melting agarose 

(BioRad) and imaged with a Zeiss LSM 510 laser scanning confocal microscopy, using 

40x (0.8 NA) or 63x (1.2 NA) water immersion objectives.  

Isolated olfactory bulbs from larvae were imaged with a 20x (0.5 NA) water immersion 

objective.

Isolated olfactory rosettes and forebrains from adults were embedded in 3% 

methylcellulose in a glass-bottom dish (MatTek, Part# P35G-0-14-C), and imaged with 

10x or 20x objectives using an inverted confocal microscope.  

2.5 Lipophilic tracing of olfactory neurons 

A saturated stock solution of DiI or Di8ANEPPQ (Molecular Probes) was prepared in 

ethanol. DiI was diluted 1:1000 in E3, while Di8ANEPPQ was diluted 1:5000, just before 
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use. Larvae were placed in this solution in mesh baskets for 3 minutes, and then rinsed 

several times in fresh E3. Bodipy labeling was carried out as described (Dynes and Ngai, 

1998).

2.6 Antibodies and immunofluorescence 

2.6.1 RAG1 and RAG2 antibodies 

Rabbit polyclonal antibodies against the C-terminus of zebrafish RAG1 (amino acids 

1042~1057), and the C-terminus of zebrafish RAG2 (amino acids 517~530) were 

generated by ZYMED Laboratory Inc. The RAG1 peptide antigen 

(CEETPEEADNSLDVPDF-COOH) was synthesized by Tufts University Core Facility; 

the RAG2 peptide antigen (CMTPAKKTFLRRLFD-COOH) was synthesized by 

ZYMED Laboratory Inc.  

To test for specificity, the antibodies were incubated overnight at 4˚C with the 

corresponding antigen peptides at a concentration of 66.6 µg/ml. After a 30 minute spin at 

16 000g, the supernatant was used for labeling thymocytes, which had been dissected 

from freshly killed 2~4 week-old zebrafish using tungsten needles.  

2.6.2 Immunofluorescence on cryo-sectioned tissue 

Brains from 3 month-old Rag1:GFP fish was dissected out in L-15 medium (Sigma), 

fixed in 4% PFA, embedded in tissue freezing medium (Jung, Cat# 0201-08926) and 

sectioned on a cryostat (Leica, CM3050S). The sections were incubated in rabbit anti-

GFP (1:200) followed by Alexa488 anti-rabbit (1:300). Nuclei were stained with 

propidium iodide.
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2.6.3 Immunofluorescence on neurons from retina  

Retina from 3 day-old Rag1:GFP fish was dissected out in L-15 medium and dispersed 

with a mouth pipette (Sigma, Cat# A-5177). Cells were transferred to a polylysine-coated 

(50 µg/ml) glass-bottom dish (MatTek, Part# P35G-0-14-C), and kept in L-15 medium at 

room temperature for 40 minutes to allow them to settle and adhere. They were then fixed 

in 4% PFA, rinsed with PBS, permeablized with 0.2% Triton X-100, incubated with 

1:200 anti-zfRAG1 (rabbit, Zymed) and 1:50 anti-GFP (mouse; Molecular Probes), 

followed by 1:300 Alexa568 anti-rabbit and 1:300 Alexa488 anti-mouse (Molecular 

Probes). Nuclei were stained with 100 ng/ml Hoechst.  

2.6.4 Immunofluorescence on olfactory neurons

 4 day-old Rag1:GFP fish were fixed in 4% PFA-PBS for 10 minutes. The olfactory 

epithelium was dissected out in Ringer’s solution and transfered on Superfrost/Plus slides 

using a mouth pipette (Sigma Cat# A-5177). Extra solution was removed and the 

olfactory epitheliums were left to semidry and adhere to the slide. A drop of Ringer’s 

solution was added and a cover slip was used to squash the epithelium gently, thus 

dispersing the cells and allowing them to adhere to the slide. The cover slip was gently 

removed and the cells were re-fixed in 4% PFA/PBS for another 5 minutes. They were 

then rinsed with PBS and permeabilized with 1% Triton X-100. The following antibodies 

were used: anti-zf RAG1 (rabbit, 1:200), anti-GFP (mouse, 1:50; Molecular Probes), anti 

G o (guinea pig, 1:200), G q and G olf (both rabbit, 1:200; Santa Cruz Biotech). The G o

antibody [40] was made to a region of the protein that is 100% conserved between 

Drosophila (residues 345-354) and zebrafish. For detection, 1:500 Cy3 anti-guinea pig, 

1:300 Alexa 568 anti rabbit and 1:300 Alexa 488 anti mouse (Molecular Probes) were 

used. Nuclei were stained with 100 ng/ml DAPI.  
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2.6.5 Immunofluorescent labeling of glomeruli  

The brain of 4-day old Rag1:GFP fish larvae was dissected out in Ringers’ solution and 

fixed for 1 hour in 4% PFA-PBS. Whole-mount antibody labeling was carried out using 

standard procedures, using the SV2 antibody (Developmental Studies Hybridoma Bank) 

at 1:500 dilution, and the Alexa 546 goat anti-mouse antibody (Molecular Probes) at 

1:500 dilution.

2.7 in situ hybridization 

2.7.1 Probe synthesis 

A ~1.5 kb Rag1 cDNA fragment was amplified by RT-PCR and cloned into pBlueScript 

II SK (Stratagene). From correct transformants, plasmids were purified, and linearized by 

BamH I for anti-sense probe synthesis with T7 RNA polymerase (NEB), or by Xho I for 

sense probe synthesis with T3 RNA polymerase (NEB). 

For Rag2 a 855 bp cDNA fragment was amplified and cloned into pGEM-T Easy vector 

(Promega). Then colony-PCR (35 cycles) was carried out to verify the transformants and 

amplify the inserts. Correct PCR products were cleaned up using QIAquick spin columns 

(Qiagen). The PCR product amplified with primer M13-20 Forward and Rag2a was used 

for anti-sense probe synthesis, while PCR product produced with M13-20 Forward and 

Rag2d was used for sense probe synthesis. Both sense and anti-sense RNA probe were 

synthesized using T7 RNA polymerase (NEB). 

DIG-labeled probe was synthesized with DIG RNA labeling Mix (Roche).  

2.7.2 Whole-mount in situ hybridization 

Pre-processing of samples
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3 dpf PTU treated wt larvae were fixed in 4% PFA/PBS at 4°C for overnight. The fixed 

samples were then washed with PBST at room temperature twice for 10 min, followed by 

dehydration with series washes of 30%, 50%, 70% and 100% methanol/PBST and stored 

at -20°C for at least 20 min. At this step, samples can be stored for months. 

To start the in situ hybridization, the samples were rehydrated by series of washes with 

70%, 50% and 30% methanol/PBST, with incubation at each step for 5 min, and re-fixed 

with 4% PFA/PBS at room temperature for 20 min. After wash with PBST, these samples 

were treated with 10 µg/ml proteinase K for 30 min at room temperature with agitation, 

and then re-fixed with 4% PFA/PBS for 20 min.  

Hybridization 

The re-fixed samples were washed with PBST twice for 5 min, and incubated in 

hybridization buffer (refer to Appendix 1) at 55°C for 3~5 hrs for pre-hybridization. 

Meanwhile, 0.5 µg/ml DIG-labeled RNA probe was denatured in hybridization buffer at 

70°C for 5 min, and then immediately chilled on ice. The pre-hybridization buffer was 

removed, and the sample was incubated in hybridization buffer containing the probe, with 

agitation at 55°C overnight. In the second day, the probes were removed and the samples 

were washed sequentially with 2x SSCT and 0.2x SSCT at 68°C for 10 min. 

Antibody staining 

At room temperature, the samples were washed with PBST, and then incubated with 10% 

BCS/PBS for 2 hrs. The blocking buffer was then removed, the samples were incubated 

with 1:2000 diluted anti-DIG-AP (alkaline phosphotase conjugated anti-DIG antibody; 

Roche) at 4°C overnight. In the third day, the samples were washed with PBST, twice for 

10 min, followed with buffer 9.5 T wash, also twice for 10 min; and then incubated with 

substrate BM purple (Roche Cat# 1442074) in darkness at room temperature. The 

developing was stopped when intense signal was seen.  
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2.7.3 TSA modification  

A signal amplification step was adapted by using the TSA (Tyramide Signal 

Amplification) biotin system (NEN Cat# NEL700A) to replace the antibody staining step 

and enhance the sensitivity of in situ hybridization. After post-hybridization wash, the 

samples were washed in TNT wash buffer, and then blocked with TNB blocking buffer, 

incubated with anti-DIG-POD (instead of anti-DIG-AP), followed by incubation in 

biotinyl tyramide at room temperature for 15 min to amplify the signals. The conjugated 

biotin was then detected with Alexa 568-Streptavidin (Molecular Probes).    

2.8 Microinjection  

DNA injection 

40~70 ng/µl plasmid DNA in H2O was injected into the animal pole of one-cell stage 

embryos. The injection volume was approximately 1 nl, which was also used for mRNA 

and morpholino injections. 

mRNA injection 

Using SP6 mMESSAGE MACHINE (Ambion Cat# 1340), mRNA was synthesized in 

vitro, diluted as ~50 ng/µl in DEPC treated H2O, and injected into the yolk of one-cell 

stage embryos. 

Morpholino injection 

Morpholinos (Gene-Tools) were diluted in H2O and injected into the yolk of one-cell 

stage embryos. 50~100 embryos were injected with each morpholino, in concentration 

ranging from 0.2 to 1.0 µM. The following morpholinos were used in this study:                         

Rag1-mo1: 5’-TTCTCCATGGCGTCAGCTTATTCTC-3’ (targets the Rag1 start codon). 

Rag1-mo2: 5’-TATTATACTCACTTGAGAAGATTCA-3’ (targets the donor site of the 
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first intron of Rag1). Rag1-mo3: 5’-TCTTGGCAGTACCTTGCATCATTGC-3’ (targets 

the donor site of the second intron of Rag1).

2.9 PCR 

In my work, a general PCR reaction was run with 0.5 µM primers, 15 mM MgCl2 and 200 

µM of each dNTP, in a 0.2 ml PCR tube (Axygen) or 96-well PCR plates (MJ Research) 

sealed with Scotch tape. The volume for each PCR reaction ranged from 15 to 40 µl. 

Colony-PCR 

This is a PCR method specified to amplify a fragment directly from colonies on plates. It 

is normally used to screen for positive transformant colonies. The concentration of 

primers and dNTPs in PCR Mix were decreased to 0.1 µM and 80 µM respectively, so 

that good PCR products can be used directly in a sequencing reaction. Normally PCR 

master Mix was distributed into 96-well PCR plate as 25 µl per well. Individual colonies 

were picked with clean tooth-picks and briefly dipped into the PCR Mix in one well. 

Then, the entire PCR plate was sealed and run for 36 cycles in a themocycler. 50°C 

generally works as the annealing temperature for most primers and this method generally 

works for amplifying a fragment up to 2 kb.  

2.10 Electrophoresis 

According to the size of purpose DNA, 1~3% agarose / TAE gel containing 1:250 Gelstar 

(Molecular Probes) was used for electrophoresis. The voltage used ranged from 5 to 8 

V/cm.  

To monitor the quality of total RNA, the electrophoresis with 1.2% agarose gel was used. 

Before loading, ~ 1 µg total RNA was mixed with 2x RNA loading buffer (Ambion), 



33

heated at 70°C for 3 min, and chilled  immediately on ice. The gel was normally run at 

8V/cm for 15 ~ 20 min. 

2.11 Electroporation 

Preparation of competent cells 

E. coli Top10 stain was generally used for routine cloning during the course of this study. 

To prepare the competent cells for electroporation, 1 liter LB medium was inoculated 

with 1/100 volume of fresh overnight culture, and shaken at 37°C, 250 rpm until the 

OD600 of the culture reached about 0.6. The culture was then chilled on ice for 15 ~ 30 

min, followed by spinning at 4°C, 4000x g for 5 min to harvest cells. The cell pellet was 

washed with 1 liter cold water, 0.5 liter cold water and 20 ml cold 10% glycerol serially. 

Spinning was repeated to collect cells from each wash. At last, the pellet was resuspended 

with 10% cold glycerol in a final volume of 2 ~ 3 ml, aliquot as 40 µl per tube, frozen in 

liquid nitrogen and stored at -80°C. 

Electro-transformation 

An aliquot of the frozen competent cells was thawed gently on ice. 1~2 µl DNA (ligation 

product can be used directly) was added into the cell suspension, mixed and transfered 

into a pre-chilled electroporation cuvette (Bio-Rad). Cuvettes with 0.1 cm gap were 

pulsed with 1.8 KV, 200  and 25 F; cuvettes with 0.2 cm gap were pulsed with 2.5 

KV, 200  and 25 F. After the pulse, 1 ml SOC medium was added into the cuvette 

immediately; then the cells were transferred into a tube and allowed to recover at 37°C 

for 1 hr. At last, an appropriate amount of culture was spread on plates containing 

corresponding antibiotics to select correct transformants.  
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2.12 Storage of glyceral stock 

Fresh overnight culture was mixed with 65% glycerol solution as 1:1, and frozen at -

80°C.

2.13 Genotyping  

2.13.1 Genotyping of the Rag1 mutant zebrafish 

We identified the Rag1 mutant zebrafish (Wienholds et al., 2002) by genotyping, because 

they showed no morphological phenotype. The adult homozygous Rag1 mutant fish are 

viable and fertile, but sensitive to the infection caused by fin-clip, thus we chose to 

identify them by genotyping their progenies. 

Adult fish to be tested were crossed with wt fish in a single-pair manner. From the 

progenies, DNA was isolated from 8 individual embryos. With these DNA, either allele-

specific PCR or sequencing was carried for genotyping. When all of tested embryos carry 

the mutant allele, the tested parent is likely to be a homozygous mutant; when they carry 

only wt alleles, the tested fish should be a wt sibling; if some embryos are wt and some 

are heterozygotes, the tested parent fish is surely a heterozygote.  

2.13.2 DNA  isolation from individual embryos 

3~6 dpf single embryos were anesthetized with MS222 (tricaine; Sigma Cat# A-5040) in 

E3 water and transferred into 96-well PCR plates as 1 fish per well. Then the E3 water 

was removed and replaced with 50 µl TE buffer containing 200 g/ml proteinase K. The 

plates containing fish in proteinase K were sealed and incubated at 55 C for 1~2 hour, 

95°C for 5 minutes, and then short-spun. 2 l of the clear liquid from each sample were 

used for one PCR reaction. 
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2.13.3 DNA isolation from clipped caudal fins 

Individual adult fish was anesthetized with MS222 (tricaine; Sigma Cat# A-5040), taken 

out from water using a plastic spoon, and placed in a clean Petri dish. From each fish 1/3 

caudal fin was cut with a pair of clean scissors. The fish was then released to a tank with 

fresh water, and kept individually until being identified. The clipped fin was transferred 

into 100 µl TE buffer containing 200 µg/ml proteinase K and 5% Chelex-100 (BioRad 

Cat#1432832) (Yue and Orban, 2001), incubated for 2 hour at 55°C with agitating, and 

then heated at 95°C for 5 minutes to inactivate the proteinase K. The debris was spun 

down, and 2 µl clear supernatant was used for each PCR reaction.  

2.13.4 Allele-specific PCR  

This is a PCR-based method, which is designed to distinguish the single-nucleotide 

difference between the Rag1 mutant and wt allele(Kawakami and Hopkins, 1996). Totally 

four primers were used. Rag1E1 is the only forward primer. It works with Rag1f, a primer 

common for both mutant and wt alleles, to amplify a 770 bp band from Rag1 3rd exon. 

This band is used as an amplification control. Rag1wtR and Rag1mutR are allele-specific 

reverse primers. Rag1wtR contains a G at 3’ end and matches only to wt allele; while 

Rag1mutR is almost same to Rag1wtR except containing a A at 3’ end, which matches 

only to the Rag1 mutant allele. PCR with Rag1wtR and Rag1E1 amplifies a 218 bp band 

only from wt allele; while Rag1mutR and Rag1E1 amplify a 218 bp band only from 

mutant allele. 

In the allele-specific PCR, Rag1E1, Rag1f and Rag1wtR were used in one reaction to 

verify the presence of wt allele; whereas Rag1E1, Rag1f and Rag1mutR were used in 

another reaction to confirm the presence of Rag1 mutant allele. PCR conditions (mainly 

the annealing temperature and the ratio of primers) were stringently optimized so that the 
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Rag1wtR only amplify the wt allele and the Rag1mutR only amplify the Rag1 mutant 

allele, although the templates contain only a single-nucleotide difference. In both 

reactions the 770 bp band between Rag1E1 and Rag1f should be obtained robustly.  

To test for the wt allele, 0.5 l Rag1E1, 0.5 l Rag1wtR, 0.3 l Rag1f and 0.2 l dNTP 

(10mM for each) were used for each 25 µl reaction, which was annealed at 67 C and run 

for 27 cycles. To test for the Rag1 mutant allele, 0.5 l Rag1E1, 1 l Rag1mutR, 0.2 l

Rag1f and 0.3 l dNTP (10mM for each) were used in one reaction, and the PCR was 

annealed at 68.5 C and run for 32 cycles. 

2.13.5 Direct sequencing from PCR products 

A 25 µl PCR reaction, with 80 µM dNTP and 80 nM of each primer, was run for 35 

cycles and checked by electrophoresis. When a single band was clearly shown in the 

reaction, 1 µl PCR product was used directly in a sequencing reaction. For genotyping 

Rag1 mutant, primer Rag1E1 and Rag1f were used for PCR, and Rag1E1 was used for 

sequencing.

2.14 RNA isolation:  

From larvae 

Freshly laid eggs were collected and raised in E3 water at density of 50~75 fish 

per 6 cm Petri dish. Larvae at desired stage were anesthetized with MS222 

(tricaine, Sigma Cat# A-5040). Each 10 fishes were transferred with a mouth 

pipette (Sigma Cat# A-5177) into 250 µl Trizol (Invitrogen, Cat# 15596-018) 

containing 0.5 µg/ml glycogen, and were homogenized with pellet pestle motor 

(Kontes Cat# 749540-0000) immediately. 
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From 3 dpf fish heads 

Rag1 mutants and wt sibling embryos were collected and raised as above. At 3 

dpf, the larvae were anesthetized, and the fish heads were cut behind the ear in 

Ringer’s solution using tungsten needles. 10 fish heads were pooled and 

transferred to 250 µl Trizol containing 0.5 µg/ml glycogen, and homogenized 

immediately.  

From adult olfactory rosettes, retina or brain 

Individual adult fish was killed by immersion ice into water. The fish head was 

cut off with a blade on a piece of tissue towel, and transferred into Ringer’s 

solution. Under dissecting microscope, desired parts of tissue were dissected out 

using forceps or tungsten needles, transferred into a tube containing 250 µl Trizol 

with 0.5 µg/ml glycogen, and then homogenized immediately. For olfactory 

rosettes, 4 rosettes were pooled and homogenized in 250 µl Trizol containing 0.5 

µg/ml glycogen. 

After being kept at room temperature for 5 minutes, the above lysates (250 µl per tube) 

were kept on ice until the sample collection finished. Then 4 tubes of the lysates were 

combined, subjected to RNA isolation directly, or kept at -80°C for later use. 

RNA isolation followed the Trizol protocol provided by Invitrogen 

(http://www.invitrogen.com/content/sfs/manuals/15596026.pdf). 

2.15 RT-PCR 

2.15.1 DNase I treatment 

10 µl 10x DNase I buffer, 1 µl RNase-free DNase I (Roche) and 1 µl RNase inhibitor 

were used in a 100 µl reaction containing <50 µg total RNA. The reaction was incubated 
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at 37°C for 30 min. 5 µl 0.5M EDTA, 12.5 µl 4M LiCl and 375 µl chilled ethanol were 

then added and mixed. To facilitate RNA precipitation, the mixture was kept at -80°C for 

40 min or longer. Then the RNA was pellet down by spinning at 4°C for 30 min. 

2.15.2 First strand cDNA synthesis 

First strand cDNA was synthesized with oligo dT20-VN or random decamer from 1~ 3 µg 

total RNA (DNase I treated), using Superscript II reverse transcriptase (Invitrogen). The 

working procedures followed the manual provided by Invitrogen 

(http://www.invitrogen.com/content/sfs/manuals/superscriptII_pps.pdf)

2.15.3 Semi-quantitative RT-PCR 

To confirm the expression difference of candidate genes between Rag1 mutants and wt 

siblings, semi-quantitative RT-PCR was carried out. Using PrimerSelect (from DNAstar 

software package), a pair of primers were designed for each gene to work at 50~55°C and 

amplify a 300~800 bp fragment. With these primers, PCR was carried out to amplify the 

candidate genes fragment from both Rag1 mutants and wt siblings, using HotStartTaq 

DNA polymerase (Qiagen). To avoid the saturation of amplification, three batches of 

PCR product (10 µl each) was taken out from each reaction when it was cycled for 25, 28 

and 31 times respectively, and then used for electrophoresis. The amount of input cDNA 

was monitored by the amplification of -actin. –RT control was always kept for every 

reaction to monitor the contamination of genomic DNA. Used primers were listed in 

Appendix 4.  

2.15.4 5’ RACE for 12158 

The 5’RACE of 12158 was adapted from the Smart RACE method from Clontech 

(http://www.clontech.com/clontech/techinfo/manuals/PDF/PT3269-1.pdf). First strand 
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cDNA was synthesized using 0.5 µM smart3 and 0.5 µM 12158R1. From that, a PCR 

using UPM (universal primers mix) primer mixture and 12158R2 was run under a touch-

down program (from 68 to 50°C).  The PCR product was diluted and used for the 

following nested PCR, which was run with primers 5smart3 and 12158R3. Two 12158 

clones were obtained from this reaction. Primers used are listed in Appendix 3 and 4. 

2.15.5 Real-time RT-PCR 

To confirm and quantitate the reduction of 12158 expression in Rag1 mutant zebrafish, 

real-time PCR was carried out using the iCycler iQ real-time detection system (Bio-Rad). 

Totally 3 pair of primers were used in this experiment. Actin-rtF and actin-rtR were used 

to amplify a 161 bp fragment from -actin cDNA. This was used to monitor cDNA input 

and normalize data. 12158-rtF and 12158-rtR were used to amplify a 133 bp fragment 

within the original part of 12158 cDNA; while 12158-rpF2 and 12158-rpR were used for 

amplifying a 164 bp fragment within the part newly cloned by RACE in 12158B., 

1:75,000 diluted Sybr Green (Molecular Probes) was used in PCR reactions to monitor 

the accumulation of DNA product. Annealing temperature, Mg2+, primer and template 

concentration were optimized sequentially for each pair of primers. 2.5 mM MgCl2 and 

0.3 µM primers were found optimal for all of the three pairs of primers; 56°C, 54°C and 

58°C were used respectively at annealing step for actin-rtF/R, 12158-rtF/R and 12158-

rpF/R. Primers used are listed in Appendix 4.  

2.15.6 RT-PCR with DEG kit 

RNA from 3 dpf Rag1 mutant and Wt sibling fish were used to synthesis the first strand 

cDNA, which were diluted 1 in 50 and used for PCR with annealing control primers 

(ACPs, from GeneFishing DEG kit). Totally 10 pairs of ACPs (a to j) were used in PCR 

according to the manual provided with the kit. PCR products were analysis by 
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electrophoresis with 2% agarose gel containing 0.5 g/ml EB. The differentially 

amplified PCR products were extracted from the gel using QIAGEN gel extraction kit, 

and ligated into pGEM-T Easy vectors (Promega). The ligation products were then 

transformed into Top10 strain E. coli by electroporation, and spread on LB plate 

containing IPTG and X-gal. Individual white colonies were screened by colony-PCR. 

Only the PCR products with expected length were sequenced. The consensus sequence of 

majority colonies from one clone was used for designing a pair of primers. Semi-

quantitative RT-PCR with these primers was used to confirm the expression difference 

between Rag1 mutants and Wt siblings. 

2.16 Microarray 

2.16.1 Construction and hybridization of the zebrafish microarray 

The microarray construction, cDNA synthesis and labeling, hybridization and data 

acquisition were done in the Microarray Core Facility of Kimmel Cancer Center (KCC) 

in Thomas Jefferson University (TJU). The zebrafish oligonucleotide probes used in our 

microarray experiments were designed by Compugen and synthesized by Sigma-Genosys. 

For each gene, one 65-mer 5’ amine modified oligo was synthesized. Totally, each 

microarray chip containes 19200 spots, including 172 -actin spots for positive controls, 

2792 blanks for negative controls, and 16236 spots printed with oligos representing 

different genes. Estimated by LEADS clusters, the entire set of oligos covers 15,806 unique 

genes of zebrafish (http://www.labonweb.com/).

Total RNA were extracted from pooled 3 dpf fish heads (100~300 for each pool), or from 

pooled adult olfactory rosettes (32~48 for each pool) using Trizol reagent (refer to 2.14). 

For each experiment, 3 pairs (wt vis Rag1 mutants) of independently isolated total RNA, 

~10 µg for each samples, were collected in our lab and sent to KCC in TJU. Each of the 
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RNA samples was reverse-transcribed into biotin-labeled 1st strand cDNA, and then 

hybridized to an individual slide. The hybridization signals on the slide were further 

detected by Streptavidin-Alex conjugates. Thus in each experiment, six RNA sample was 

labeled individually, hybridized to six microarray chips, and the resultant six sets of data were 

collected respectively.

2.16.2 Microarray data analysis 

The obtained microarray data were mainly processed with GeneSpring (Agilent 

Technologies) in our lab. Firstly, the background intensity individually measured for each 

spot was subtracted from the foreground signal intensity, to give a spot intensity for 

calculating the expression. Next, to control the variance between different hybridizations, Per-

chip normalization was done according to the 50th percentile of all measurements in that 

sample, e.g. each spot intensity was divided by the 50th percentile of that chip; and the 

resultant data is further controlled by Per-gene normalization: each gene was divided by the 

median of its measurements in all samples. Then, signals with intensity lower than twice of 

the blanks in every hybridization were filtered out. 

At this stage, the data quality and reproducibility were examined. For each experiment, 6 

individual hybridizations were grouped into 3 pairs so that each of them contains 1 wt and 1 

Rag1 mutants hybridization result (Table 1). The overall distribution of the 3 pairs of data was 

examined in RI (ratio-intensity) scatter plot. In the RI plot, Log2(Rag1/wt) ratio for each 

element on the array was displayed as a function of the Log10(wt*Rag1) product intensity, 

thus revealing intensity-dependent effect in the Log2(ratio) measurement. Further more, 

reproducibility among different hybridizations was examined by comparing logarithm ratios 

between two different pairs of samples in a plot. If the two pairs of data are perfectly 

reproduced, the ratio obtained from them should be equal, and the corresponding genes 

should locate along the line x = y in the plot. With reasonable imperfection, genes that 
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distribute close to this line are also acceptable. But the data scattering far from the x = y line 

will be considered as non-reproducible. 

To enhance the identification of the most relevant genes, we focused only on data 

showing more than two fold changes between Rag1 mutant and wt. The following 

statistic significance analysis was carried out with ANOVA (analysis of variance) and 

SAM (significance analysis of microarray). 

The most recent annotations of the significants were obtained from Silicon-Genetics 

using the GeneSpider function in the GeneSpring software, and supplemented with the 

annotation database of GIS (Genome Institute of Singapore, http://giscompute.gis.a-

star.edu.sg/~govind/zebrafish/ ). 
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CHAPTER 3   RESULTS_ PART 1         Analysis of Rag Expression in 

Zebrafish Nervous System 

3.1 Expression of Rag1 and 2 in the zebrafish early embryo 

At early stages, zebrafish embryos develop very fast. Around 10 hpf (hours post 

fertilization), some cells start to differentiate and establish the nervous system. Using RT-

PCR we checked the expression of Rag genes at early embryonic stages. Total RNA was 

isolated at different stages from pooled wt (wild type) zebrafish embryos (n=10 for each 

sample); expression of Rag1, Rag2 and -actin (as a control) was examined by semi-

quantitative RT-PCR; a parallel control without RTase (reverse transcriptase) during the 

first strand cDNA synthesis was kept for inspecting the amplification from genomic 

DNA. 

Surprisingly, the transcripts of both Rag1 and Rag2 were detected within 24 hpf (Fig. 3-

1). Even at 3 hpf, when the zygotic transcription has just initiated (Kane and Kimmel, 

1993), certain amount of both Rag1 and Rag2 were detected. The expression level of both 

Rag genes drops down around 8 hpf, and begins to increase steadily afterwards. In 

contrast, the expression level of -actin continuously increases with the embryo growth. 

We next examined Rag1:GFP and Rag2:GFP transgenic zebrafish. The Rag1:GFP line 

was generated by Shuo Lin’s group (Jessen et al., 1999). It carries a modified PAC, in 

which Rag1 coding sequence was replaced by GFP. Given the large size of the PAC, it is 

likely that most, if not all, Rag1 regulatory elements are present and play a role in 

regulating the GFP expression. The Rag2:GFP fish was generated in our lab. They carry 

EGFP driven by Rag2 promoter. We found that the transgenic embryos indeed fluoresce 

weakly within 24 hpf. Before 10 hpf, GFP was present evenly among cells, but not in the 

yolk  (Fig. 3-2A-D).  Then GFP  was  gradually   restricted  to some areas.  At  24  hpf, 
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Rag1-driven GFP was present in the olfactory pit (Fig. 3-5A,B), the ventral part of 

forebrain (Fig. 3-2E) and somites (Fig. 3-2F), while Rag2-driven GFP was diffuse within 

whole neuronal tube (Fig. 3-2G).  

These data suggest that Rag genes are expressed at early stages of zebrafish development 

in a broader range than previously reported.  

3.2 Rags transcripts were detected in zebrafish larval nervous system by 

RT-PCR and in situ hybridization  

At 3 dpf (days post fertilization), the nervous system of the zebrafish larvae is almost 

established. To examine the expression of Rag genes in the nervous system, we carried 

out RT-PCR using RNA isolated from the eye and brain of 3 dpf fish (Fig.3-3A, B). Rag1

transcripts were detected in both eye and brain. Rag2 was detected in the brain, and at 

very low level in the eye. Amplifications of -actin were used as controls. Rag1 and Rag2

are not yet expressed in thymus and kidney at 3 dpf (Willett et al., 1997), which rules out 

the possibility that the positive result in RT-PCR might come from the contamination of 

lymphocytes in brain and eye. 

We also carried out whole-mount in situ hybridization with DIG labeled Rag1 anti-sense 

RNA probe. To use the newly formed thymus as a positive control for Rag1 staining, we 

chose 4 dpf larvae for experiment. Hybridization with anti-sense Rag1 probe showed 

strong staining in thymus and olfactory pit in these fish (Fig. 3-3C, D), whereas no 

obvious signal can be seen in other organs.  

To increase the sensitivity of detection, we combined the TSA (Tyramide Signal 

Amplification) technique with in situ hybridization and used a fluorescent streptavidin 

(Aexa568-conjugated)  to  achieve  better  resolution  under  confocal  microscopy.  After  
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hybridization, only the thymus (Fig. 3-3D arrows) and olfactory pit (Fig. 3-3D 

arrowheads) were stained over whole fish. A combination of in situ hybridization with the 

Rag1 probe and immunofluorescence with an antibody against GFP on the Rag1:GFP

fish revealed partial overlap of Rag1 and GFP at cellular level in the olfactory pit (Fig. 3-

3E arrows). The total number of GFP positive cell in the staining (27+9) is much less than 

that detected in the live Rag1:GFP fish (91+15) olfactory pit, suggesting that the tissue or 

the antigens were damaged during the staining process. This might lead to the incomplete 

overlap of staining in the olfactory pit (Fig. 3-3E). 

Shuo Lin’ group has successfully detected Rag2 expression in the olfactory epithelium at 

the larval stages by in situ hybridization. To achieve higher resolution, we carried out the 

TSA modified in situ hybridization with DIG-labeled Rag2 anti-sense RNA probe, but 

with the 4 dpf larvae, we failed to detect any apparent signal except in thymus. This 

suggests that the transcription of Rag2 in olfactory pit is at a very low level, which might 

beyond the detection of in situ hybridization when the experiment is not perfectly 

optimized.  

However, technical improvement of in situ hybridization seems not provide the potential 

to increase detection sensitivity significantly. Both Shuo Lin’s group (Jessen et al., 2001a; 

Jessen et al., 1999) and our group have detected the Rag1 expression in larval olfactory 

pit by in situ hybridization, but both of us did not notice signals in other parts of the 

nervous system. Whereas, revealed by our RT-PCR, Rag genes are also expressed in 

retina and brain. These suggest that Rag1 and 2 are transcribed in other parts of the 

nervous system at a level even lower than that in the olfactory epithelium, and in situ

hybridization is not sufficient to detect them. To study the detailed expression of Rag

genes in the entire nervous system, a more sensitive approach is required. One possibility 

is the analysis of Rag-driven reporters in transgenic fish.  
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3.3 Transgenesis reveals that Rag1 is expressed in a restricted manner in 

the zebrafish nervous system 

To identify which regions of the nervous system might express Rag1, we re-examined the 

Rag1:GFP line in detail. We found that in fact Rag1 is expressed in only a subset of 

OSNs, and in many other parts of the zebrafish nervous system.  

3.3.1 Expression of Rag1-driven GFP in zebrafish olfactory epithelium is 

restricted to a subset of microvillous neurons 

3.3.1.1 The zebrafish olfactory system 

The olfactory system is an important chemosensory system, which enables animals to 

perceive diverse chemical stimuli in the environment. Usually it is composed of a pair of 

peripheral olfactory epithelia (OE) in nasal cavities and a pair of olfactory bulbs (OB) in 

the forebrain. The OE arises outside the central nervous system (CNS) from an olfactory 

placode (a thickening of the ectoderm), a thin columnar epithelium that is four or five 

cells high. In adult zebrafish, as in other teleosts, the OE is a rosette with lamellae 

radiating from a midline raphe. Each lamella contains both sensory and non-sensory area. 

The sensory portion lies close to the central raphe, while the non-sensory area covers the 

distal part of the lamella (Fig. 3-4A, B) (Byrd and Brunjes, 1995; Morita and Finger, 

1998).

Despite the difference of structures, the basic organization of zebrafish olfactory system is 

similar to that of mammals (Byrd and Brunjes, 1995). The sensory portion of the 

peripheral OE contains a large number of olfactory sensory neurons (OSN), which have 

dendrites exposed to the epithelial surface and send axons to the ipsilateral OB. In 

mammals, each OSN expresses a single allele of one odorant receptor (OR) from a large 

gene family (Chess et al., 1994). The selectively expressed ORs are present on dendrites 
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exposed to the external world, as well as on axon tips extending into the brain (Barnea et 

al., 2004; Menco et al., 1997). The interaction of odorants and OR on the dendrites 

surface triggers a cascade of intracellular signals. In most OSNs a receptor-coupled G olf  

protein is activated and stimulates type III adenylyl cyclase to produce second messenger 

cAMP (Bakalyar and Reed, 1990), which then triggers opening of the cyclic nucleotide-

gated cation channels (OCNC) (Dhallan et al., 1990; Firestein et al., 1991; Goulding et 

al., 1992). The resultant action potential is sent through axons to the OB (Levy et al., 

1991; Prasad and Reed, 1999; Reed, 1992). Guidance of these axons is tightly controlled 

by a combination of factors, including the odorant receptors themselves as well as other 

proteins (Cutforth et al., 2003; Singer et al., 1995).  

The overall projection of OSNs is highly ordered. Firstly, it follows a “zone-to-zone 

projection” principle. The OE is divided into four spatially segregated zones that are 

defined by the expression of OR and other molecules, like OCAM (olfactory cell 

adhesion molecules).  Similar zonal organization is also preserved in the OB. OSNs 

expressing a given OR are distributed within one zone in the OE and send their axons to 

the corresponding zone in the OB (Ressler et al., 1993; Vassar et al., 1993). Secondly, the 

axons projection follows the “glomerular convergence” principle. A glomerulus is 

typically a spherical neuropil where the incoming axons terminate and synapse with the 

dendrites of second-order neurons. From one OE, all OSNs expressing a given OR, 

although distributed randomly within a zone, normally converge their axons to a single 

glomerulus in the ipsilateral OB (Fig. 3-4C) (Mombaerts et al., 1996; Wang et al., 1998; 

Yoshihara and Mori, 1997). Moreover, the relative positions of glomeruli in the OB are 

constant among individuals (Baier and Korsching, 1994). As a result of this well-ordered 

projection, chemical information is presented to the brain as spatial map composed of 

activated glomeruli in the OB (Rubin and Katz, 1999; Uchida et al., 2000).  
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These are common features of the main olfactory system among many vertebrates. In 

some higher eukaryotes a distinct accessory olfactory system, comprising the 

vomeronasal organ (VNO) and accessory olfactory bulb (AOB), is specialized in the 

perception of pheromones (Brennan, 2001; Halpern and Martinez-Marcos, 2003). Some 

pheromonal responses, however, are also detected by specialized cells that lie in the main 

olfactory epithelium (MOE) (Restrepo et al., 2004). The pheromone-detecting cells in 

both MOE and VNO are microvillous neurons. They are morphologically distinguishable 

from the major type of OSNs in MOE, which are ciliated cells and known to mediate the 

detection of volatile odorants in mammals. Ciliated and microvillous OSNs utilize 

different families of receptors and G-proteins, and respond to different classes of odorants 

(Bargmann, 1997; Dulac and Axel, 1995; Matsunami and Buck, 1997; Prasad and Reed, 

1999).

Teleosts, including zebrafish, do not have a separate vomeronasal system. Both general 

odorants and intra-species pheromones are detected by the MOE, where morphologically 

diverse OSNs , including ciliated, microvillous and crypt neurons, are intermingled 

(Asano-Miyoshi et al., 2000; Hansen and Zeiske, 1998). However, among these 

intermixed cells, a strong correlation exists between cell morphology, distribution in the 

height of OE, expression of receptor class and G-protein type, ligand spectrum and target 

location in the OB (Hansen et al., 2004; Hansen et al., 2003; Morita and Finger, 1998). 

Tall ciliated OSNs usually have their nuclei located in the basal half of the OE and extend 

slender dendrites to the epithelial surface. They express receptors similar to those found 

in MOE of mammals, express the G olf subunit, and respond to amino acids or 

nucleotides. Microvillous neurons are relatively short, situated within the superficial half 

of the OE and carry small apical endings. They express receptors belonging to the V2R 

family (which are largely restricted to the VNO in mammals), express G o, G q or G i-3 
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subunit, and respond to pheromones, amino acids or bile acids (Lipschitz and Michel, 

2002). Crypt neurons have been found only in fish OE (Hansen and Finger, 2000). They 

have a distinct ovoid shape, contain G o or G q in the apical region and are located in the 

basal and sensory segments within the OE (Hansen et al., 2004; Hansen et al., 2003). 

Their function is not known yet. 

3.3.1.2 Expression of Rag1-driven GFP in zebrafish OSNs 

To understand the expression of Rag1 in the zebrafish olfactory system, we imaged the 

Rag1:GFP fish at high magnification. We found that very few OSNs start fluorescing 

around 22 hpf, when the olfactory placode is still a simple single-layered epithelium. In 

addition, these cells carry newly extending short axons (Fig. 3-5A), when they appear as 

GFP-positive. Given the fact that zebrafish OSNs start to express OR and mature from 22 

hpf to 3 dpf (Hansen and Zeiske, 1993), this suggests that GFP driven by the Rag1

promoter is turned on among the earliest batch of OSNs. With fish growth, the number of 

GFP positive cells in the OE increased and the GFP positive axons extended (Fig. 3-5B). 

These fluorescent axons reached the OB at 2 dpf and relatively stable projections were 

established at 3 dpf (Fig. 3-5C, D). At this stage, two kinds of GFP positive cells were 

visible in OE, bright and dim. Surprisingly, all of the bright GFP labeled axons from one 

OE converged to a single target in the lateral region of the ipsilateral OB (Fig. 3-5D, F, 

arrows), while the dim GFP positive axons terminated at the adjacent area (Fig. 3-5D, F, 

arrowheads). Staining with the synaptic vesicle maker SV2 (Buckley and Kelly, 1985) 

confirmed that the intense GFP-positive target is a glomerular neuropil (Fig. 3-5G). The 

projection of bright GFP axons in OB remains stable and visible in vivo until at least one 

month, as determined by the direct observation in live Rag1:GFP fish. 

In adult zebrafish, the expression of Rag1:GFP was also detectable in the olfactory 

system. Most GFP positive OSNs have their cells bodies close to the apical surface in the 
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OE and carry dendrites of intermediate length; a few cells, however, have their soma deep 

in the epithelium (Fig. 3-6A, B). GFP positive axons project only to the lateral area of 

OB, as can be seen in dissected forebrains (Fig. 3-6C, E) or using immunofluorescence on 

sections (Fig. 3-6D). A subset of axons projecting to a target in the lateral OB contained 

high levels of GFP (Fig. 3-6E), which is similar to the GFP positive projection in larvae. 

These observations suggest that some aspects of Rag1:GFP expression established in the 

embryo remain in adulthood.  

3.3.1.3 Characterization of Rag1:GFP positive OSNs 

Zebrafish OSNs have dendrites exposed to the outside, which can take up lipophilic dyes 

dissolved in water. Then, diffusion of this dye in the entire cells, including the axons, can 

make the whole structure of OSNs visible (Dynes and Ngai, 1998). We stained the 

Rag1:GFP fish with DiI. When higher concentration of DiI (1:1000 dilution) was used, 

the OE was heavily stained and many axon targets (glomeruli) in the OB were labeled 

(Fig. 3-7A, B, arrow). However, the target of GFP positive axons was hardly labeled with 

DiI (Fig. 3-7B, arrowheads). When the Rag1:GFP fish was stained with less 

concentration of DiI (1:5000 dilution), the labeled OSNs in the OE can be clearly seen. 

We found that DiI rarely labeled the strong GFP expressing neurons (13.8%, n=58; Fig. 

3-7C). This indicates that the GFP positive cells have lower accessibility to outside, 

which was confirmed later by another experiment (done by S.Bulchand): even when 

incubated in Di8ANEPPQ, a lipophilic dye with higher solubility, only a limited number 

(53.8%, n=26) of GFP positive cells were labeled (Fig. 3-7D, E) (Feng et al., 2005). 

With a construct provided by Dr Masayoshi Mishina, we generated a stable transgenic 

line expressing tau-DsRed under the control of the OMP (olfactory marker protein) 

promoter fragment. In this fish, tau-DsRed is expressed in most OSNs except for a sub- 

population  projecting  to a lateral  area in the  developing  OB  (Yoshida et al., 2002). By 
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crossing to Rag1:GFP fish, we obtained the double transgenic fish, 

OMP:tauDsRed/Rag1:GFP. In the OE of these fish, Rag1:GFP was detected in a distinct 

population of OSNs that have shorter cell body than tauDsRed positive neurons (Fig. 3-

8). OMP is known to be a marker of the ciliated OSNs. Rag1:GFP expressing cells were 

OMP-negative and showed different morphology, indicating that they are not ciliated 

OSNs. 

We next tried the immunofluorescence with antibodies to different G-alpha subunits. 

Cells with strong GFP expression were found to be negative in all G olf, G o and G q

staining (Fig. 3-9). Crypt cells or other neurons that were labeled by the G q antibody 

were GFP-negative (Fig. 3-9D, E). 36 out of 85 neurons containing G o expressed GFP at 

low levels (Fig. 3-9A-C), while the remaining cells had no GFP. An additional 13 cells 

had low GFP expression, but did not express G o. The absence of G olf and G q indicate 

that these Rag1:GFP cells are not ciliated or crypt neurons, while the heterogeneity in 

G o expression suggests that they could be microvillous neurons, but heterogeneous in 

some respects. 

3.3.1.4 Summary 

In larval stages, Rag1:GFP positive OSNs send axons to only few glomeruli, while DiI 

labeled OSNs project to many glomeruli, indicating that GFP labeled neurons account 

only for a subset OSNs. The strong GFP expression in the OE appears to define a special 

sub-population of OSNs of zebrafish, which have less access to the external environment, 

are OMP-negative and G olf, G o and G q -negative; the dim GFP-expressing cells are 

OMP, G olf, G q -negative, but heterogeneous in G o expression. In adulthood, the 

projection of GFP positive axons is still restricted to the lateral region in OB; the GFP 

expressing  OSNs  are  located mainly at the apical layer in OE. The absence of OMP and 
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G olf, as well as apical localization in adult OE indicate that these Rag1:GFP expressing 

cells are microvillous OSNs.  

In addition, first few GFP positive OSNs fluoresce around the time when their axons 

extend out; suggesting that Rag1 is expressed in these neurons at the post-mitotic stage, 

thus its function probably is irrelevant to the early neurogenesis of OSNs. 

All together, these data indicate a selective expression of Rag1 among OSNs, and suggest 

that Rag1 may play a role in specifying a particular group of neurons in olfactory system, 

but is unlikely to have a general function in neurogenesis or in olfactory function. 

3.3.2 Rag1-driven GFP is selectively expressed in many parts of the zebrafish 

nervous system 

To further understand the selective expression of Rag1 indicated by the observation in 

olfactory system, careful examination was carried out in other parts of zebrafish, which 

revealed that in fact Rag1 is selectively expressed in many parts of the nervous system. 

3.3.2.1 Eye 

Similar to other vertebrates, the zebrafish retina is composed of seven major cell types: 

rod and cone photoreceptors, bipolar cells, amacrine cells, ganglion cells, horizontal cells 

and Müller glia. These cells are arranged precisely in three major layers, ganglion cell 

layer (GCL), inner nuclear layer (INL) and outer nuclear layer (ONL) (Fig. 3-10A, B) 

(Dyer and Cepko, 2001; Neumann, 2001). Neurogenesis in the zebrafish retina is initiated 

with retina ganglion cells (RGC) around 30 hpf. It starts from ventral center, close to the 

optic stalk, and spreads as a wave towards the peripheral retina. This is followed with the 

second and third waves of differentiation in the inner (INL) and outer nuclear layer 

(ONL). These neurogenesis waves are mainly controlled by a short-range signal, Sonic 
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Hedgehog (Neumann and Nuesslein-Volhard, 2000). The overall laminar architecture of 

zebrafish retina is essentially established by 60 hpf (Malicki, 2000). 

In Rag1:GFP fish, GFP signals in the retina start to show up around 48 hpf, mainly in 

ganglion cell layer and amacrine cell layer (Fig. 3-10C). The axon bundles that extend 

from RGCs to the contralateral optic tectum in the midbrain also contain GFP (Fig. 3-

10C, arrow). With fish growth, the fluorescence in RGCs and their axons gradually 

dimmed down. From 3 dpf onwards, there were very few fluorescent cells in the GCL. 

Amacrine cells turned on GFP expression slightly later than RGCs. The peak of 

expression appeared around 52 hpf, when the expression in the RGC layer began to 

decrease. At 8 dpf (the last time point examined1), the GFP signal remained strong in 

amacrine cell layer (Fig. 3-10D, arrow) and the inner plexiform layer, which contains 

axons extended from amacrine cells (Fig. 3-10D, arrowhead). In RGC layer very few 

GFP positive cells were visible, and they are probably not RGCs but displaced amacrine 

cells, because they send axons to the IPL instead of optic tectum. No GFP was detected in 

the bipolar cell layer and outer nuclear layer. With an antibody, GFP was also detected in 

sections of 21 dpf fish retina, mainly restricted to the amacrine cell layer (data not 

shown).

These observations indicate that in zebrafish retina the expression of Rag1 is transient in 

the developing RGC, but is relatively stable in the amacrine cell layer. 

3.3.2.2 Ear 

The ear of zebrafish develops from an ectodermal thickening, the otic placode, 

whichbecomes visible from 16 hpf.  This placode cavitates and forms the otic vesicle, the  

1 Zebrafish eyes start to be covered with heavy black pigments (melanophore) from 28 hpf. To image 
the internal structure of the live fish eye, 0.003% 1-phenyl-2-thiourea (PTU) in 10 % Hank’s saline is 
routinely used to block the melanophore formation. But PTU is a hormone inhibitor, and will harm the 
fish if the treatment lasts too long. So no image was obtained from live fish older than 8 dpf. 





64

Figure 3-10. Expression of Rag1-driven GFP in zebrafish retina. 

(A) A section of a zebrafish larval eye at 76 hpf, showing the characteristic lamination of 
a vertebrate retina (Neumann, 2001). GCL: ganglion cell layer; IPL: inner plexiform 
layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; 
RPE: pigmented epithelium of the retina. (B) Schematic representation of the vertebrate 
retina structure. The seven main classes of cell types found in the vertebrate retina (rod 
and cone photoreceptors, bipolar cells, ganglion cells, amacrine cells, horizontal cells and 
Müller glia) are organized into three distinct cellular layers (Dyer and Cepko, 2001). 
Photoreceptor cell bodies (rods and cones) make up the outer nuclear layer (ONL) of the 
retina. They receive stimuli and transmit signals through bipolar cells, whose cell bodies 
are found in the inner nuclear layer (INL), to the ganglion cells. From the ganglion cell 
layer (GCL), these signals make their way along the optic nerve to the brain. (C, D) GFP 
is expressed in the retina of Rag1:GFP fish. (C) At 2dpf, GFP was expressed in the retina 
ganglion cell layer (gcl) and amacrine cell layer (a). The axon bundles (arrow) from RGC 
to brain were visible. (D) At 8 dpf, the expression of GFP dropped down in the ganglion 
cell layer, but was maintained in the amacrine cell layer (arrow) and inner plexiform layer 
(arrowhead). a: amacrine cell layer; b: bipolar cell layer; *: skin auto-fluorescence. Bar = 
100 µm (C); 20 µm (D). 
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larval ear of zebrafish. Each otic vesicle contains five sensory patches of epithelium, two 

maculae and three cristae, which consist of groups of hair cells and supporting cells (Fig. 

3-11A). Hair cells are the sensory neurons that transduce small movements triggered by 

sound or body dis-equilibrium into an electrical signal. The hair cells in the maculae 

differentiate from about 24 hpf, whereas in cristae they become visible between 42 and 74 

hpf (Haddon and Lewis, 1996; Whitfield et al., 2002). 

Besides the ear, hair cells also exist in zebrafish lateral line. The lateral line is a unique 

sensory system in fish and amphibians, which is specialized in detecting changes in the 

motion of water. It comprises a set of neuromasts, where hair cells form the core and are 

surrounded by support cells (Ghysen and Dambly-Chaudiere, 2004).  

In Rag1:GFP fish, only 3 clusters of hair cells that locate in the cristae of otic vesicle 

express GFP (Fig. 3-11B). The hair cells in the maculae and lateral line do not fluoresce.   

3.3.2.3 Brain 

The zebrafish brain shares many common features with other vertebrate brains in 

patterning during development. They all start with the progressive subdivision of the 

neural tube. The constrictions along the neural tube form the primordia of the 

telencephalon, diencephalon, midbrain and hindbrain rhombomeres (Kimmel, 1993). 

Each of them undergoes further morphogenesis and all work together as a functional 

brain. The molecular regulatory mechanism behind the morphogenesis of the zebrafish 

brain also shows evident similarity with other vertebrate brains. For example, a zinc-

finger transcription factor krox-20, which was initially found in mouse embryos 

(Wilkinson et al., 1989) and is known to be expressed in the rhombomere r3 ands r5 and 

play an  important  role  in  hindbrain patterning in all examined vertebrate embryos, was  
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also identified in zebrafish and has been proven to play the same role (Costagli et al., 

2002; Moens and Prince, 2002; Oxtoby and Jowett, 1993). 

As a vertebrate model for developmental neurobiology research, zebrafish shows growing 

importance. Pioneering works by Kimmel on the embryonic brain (Kimmel, 1993) and 

Wullimann on the postembryonic and adult zebrafish brain (Rupp et al., 1996) have 

contributed a lot to our understanding of the organization of the zebrafish brain. However, 

detailed knowledge about neural development in postembryonic zebrafish brain is still 

limited, and this places a constraint on a full description of where Rag1 is expressed.

At early stages, the zebrafish brain develops very fast. Around 24 hpf, scaffold of tracts 

and commissures of primary neurons have formed (Kimmel, 1993). By 72 hpf, the further 

sculptured brain primordia are more integrated by neuronal connections and some 

functions have been enabled (Mueller and Wullimann, 2005; Westerfield, 2000). In the 

brain of Rag1:GFP fish, the earliest GFP signal appears in the hypothalamus of the 

ventral diencephalon around 26 hpf. Between 48 to 54 hpf, many other parts of the brain 

start to fluoresce. The most prominent one is the optic tectum in the midbrain, which is 

the primary higher-order brain structure for visual processing in zebrafish (Rupp et al., 

1996). RGCs in the retina send their axons into 10 distinct arborization fields (AFs) in the 

contralateral forebrain and midbrain. Among these AFs the largest is optic tectum, e.g. 

AF10 (Burrill and Easter, 1994). Rag1:GFP was expressed in many neurons in the optic 

tectum. Most of them extend long GFP-positive processes radially into the tectal neuropil 

(Fig. 3-12C). These signals start to show up around 46 hpf, reach their expression peak 

around 52 hpf, then gradually drop down. In addition to the optic tectum, the Rag1:GFP

are also expressed in several other parts in the brain, including hypothalamus (Fig 3-

12D), cerebellum (Fig 3-12C), two groups of cells that symmetrically located in the 
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forebrain (fig.3-12B), and two groups of cells (close to the skin, not shown) and an axon 

bundle at the level of the otic vesicle (Fig 3-12C).  

The adult brain is not transparent, so GFP expression could not be examined in detail in 

live tissue. Immunofluorescence with an antibody against GFP on sections showed that in 

the adult zebrafish brain some neurons still express Rag1:GFP. In the tectum GFP was 

detected in a layer specific manner (Fig. 3-12E). In the central part of the midbrain, some 

groups of neurons, which could not be identified, were also GFP positive (Fig. 3-12F). 

When Rag1 transcripts were detected in the mouse brain in 1991, it was shown by in situ

hybridization that Rag1 was intensely expressed in hippocampal formation and 

cerebellum (Chun et al., 1991). Our above observations indicate that Rag1 is selectively 

expressed in the zebrafish brain, which is consistent with this report. But further 

comparison is largely blocked because of the limited anatomical information in zebrafish.  

3.3.2.4 Spinal cord 

In the trunk, expression of Rag1:GFP was found only in some spinal interneurons. Their 

cell bodies lie in the dorsal part of the neural tube, while axons extend ventrally and form 

a bundle near the ventral midline of the spinal cord. These features are very close to those 

found in the commissural  bifurcating lateral neuron (CoBL, Fig. 3-13)(Bernhardt et al., 

1990; Downes et al., 2002). 

3.4 Immunofluorescence confirmed the selective expression of Rag1 in 

neuronal nucleus 

To confirm the fidelity of the reporter gene in Rag1:GFP transgenic fish and to 

characterize the distribution of endogenous RAG1 protein among zebrafish neurons, an 

antibody against the C-terminal 15 amino acids of zebrafish RAG1 protein was generated. 
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Figure 3-12. Expression of Rag1-driven GFP in zebrafish brain. 

(A) The dorsal view of a 4 dpf fish head. Colored patches indicate different parts of the 
brain (Mathieu et al., 2002). (B-D) Images of live Rag1:GFP larval fish. (B) Dorsal view 
of the forebrain of an 8-day old fish. Two groups of cells, on either side of the midline, 
express GFP (arrowheads). The expression level in these cells is lower than olfactory 
sensory neurons, where the signal is saturated in this image. (C) Dorsal view of the 
tectum of a 3-day old fish, with many fluorescing tectal neurons. In the hindbrain, an 
axon bundle (arrowhead) at the level of the otic vesicle, is the only labeled structure. (D) 
Dorsal view of the midbrain/hindbrain boundary at 3 dpf; with labeling of discrete, deep 
structures (caudal hypothalamus; arrow). (E, F) Expression of Rag1 in adult zebrafish, as 
detected by anti-GFP immunofluorescence on brain sections of transgenic fish. (E) A 
sagital section through the tectum, with numerous GFP-positive cells projecting into the 
tectal neuropil. (F) A section through the cerebellum, showing a cluster of GFP-positive 
cells. Nuclei are stained with propidium iodide.   op: olfactory pit; ot: optic tectum; cb: 
cerebellum; ov: otic vesicle; Hc: caudal hypothalamus; tn: tectal neuropil; *: skin auto-
fluorescence. Bar = 50 µm (B, E, F); 100 µm (C, D). 
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The specificity of this antibody was tested on thymocytes from 2 week-old zebrafish, in 

which Rag1 is intensely expressed. This antibody stains the thymocytes, and its activity is 

specifically abolished by the pre-absorption with the synthesized RAG1 C-terminal 

peptide (Fig. 3-14A, B).  

Using this antibody together with an antibody against GFP, we carried out double 

immunofluorescence. Olfactory epithelia and retina from 3-4 dpf zebrafish were dissected 

out, dispersed on slides, fixed and double labeled. In both experiments, some cells were 

clearly labeled by RAG1 antibody, with staining mainly in the nucleus; and among these 

cells there was a clear overlap of RAG1 (red) and GFP (green) immunofluorescence (Fig. 

3-14C-H). From 3 experiments on OE, 100 out of 105 cells that carried high level of GFP 

were found to be RAG1 positive. The overlap of GFP and endogenous RAG1 protein 

proves that the GFP expression in Rag1:GFP transgenic zebrafish is a reliable indicator 

for endogenous RAG1. 

RAG1 protein has been heavily studied for more than 20 years. Its transcripts in the 

murine nervous system were also noticed fifteen years ago. But so far there had been no 

direct evidence showing the presence of RAG1 protein in the nervous system. Our 

antibody staining on the dispersed zebrafish neurons is the first evidence for the presence 

of RAG1 protein in neurons, predominantly in the nuclei.  

3.5 Transgenesis shows that Rag2 is expressed in subsets of neurons 

distinct from Rag1 

In the immune system, RAG2 works together with RAG1 to cleave and rejoin DNA at 

specific signal sequences (RSS), which leads to the rearrangement of genomic DNA and 

the assembly of Ig and TCR genes (Gellert, 2002; Kim et al., 2000). In this process RAG2

was shown to stabilize  and  enhance RAG1’s function in the DNA- protein complex, and 





74

possibly to play an essential role in the joining step (Qiu et al., 2001). When Rag2 was 

knocked out, V(D)J recombination was completely blocked and no mature T cells and B 

cells were produced in mice (Shinkai et al., 1992). Consistent with its indispensable 

function, RAG2 has been reported to be present and functional together with RAG1 in 

immune organs among different organisms. To establish whether in the nervous system 

Rag1 plays a function similar to the V(D)J recombination in the immune system, we 

chose to check whether Rag2 is co-expressed with Rag1 in neurons. Rag1 was known to 

be expressed at very low level in the nervous system, where Rag2 could not be detected 

by traditional in situ hybridization in the mouse (Chun et al., 1991). To achieve higher 

sensitivity, we examined transgenic fish that carry GFP or DsRed under the zebrafish 

Rag2 promoter. 

3.5.1 Rag2 is expressed in a group of ciliated OSNs  

Firstly, sperm-mediated transgenesis was carried out (Jesuthasan and Subburaju, 2002). 

The zebrafish Rag2 promoter, a ~7 kb fragment immediately upstream of Rag2 coding 

sequence, was cloned and used to express DsRed in the Rag1:GFP line. Expression of 

DsRed in the thymus at 5 dpf was used as an indicator of successful transgenesis. In fish 

with co-expression of GFP and DsRed in thymocytes (Fig. 3-15B), very little overlapping 

expression was seen in the olfactory pit (Fig. 3-15C).  

To confirm this observation, stable transgenic lines containing GFP or DsRed driven by 

Rag2 promoter were generated. Totally one Rag2:GFP line and two Rag2:DsRed lines 

were examined. All these fishes showed the expression of reporter gene in thymus from 4 

dpf (Fig. 3-16A). But the reporter expression in nervous system is different between 

DsRed and GFP fish. Both DsRed lines carried only few fluorescent neurons in the larval 

stage; and the red fluorescence in OSNs began to show up around 2 dpf. In contrast, in 

the Rag2:GFP line, the  fluorescence  wa s detected in many parts of nervous system, and 
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GFP was visible in the olfactory pit before 24 hpf. It is known that after translation, 

DsRed protein takes longer time than GFP to fold and oligomerize before it can fluoresce 

(Sacchetti et al., 2002). This might lead to the different expression of DsRed and GFP, 

even though they are under the same Rag2 promoter fragment. Nevertheless, in both 

cases, the expression pattern of Rag2-driven reporters was distinct from that seen with the 

Rag1 promoter.  

In the larval olfactory pit, Rag2:GFP is expressed in many cells at a relatively low level. 

The overall expression reaches its peak at 2 dpf (Fig. 3-16B), then gradually becomes 

weak. This is different from the Rag1:GFP embryos, whose GFP expression in a group of 

OSNs remains strong. Among the GFP positive cells in Rag2:GFP fish OE, some cells do 

express GFP at higher level than others. But, different from Rag1:GFP fish, no distinct 

projection is formed with the GFP positive axons at this stage. Furthermore, different 

from Rag1:GFP positive OSNs (refer to 3.1.3.1) that didn’t express OMP, some 

Rag2:GFP positive cells in OE also express OMP:DsRed in the double transgenic fish 

(Fig. 3-16D).  

In the Rag2:DsRed lines, only few red fluorescent OSNs are visible at larval stage, and 

they  do not overlap with GFP positive OSNs in the Rag1:GFP/Rag2:DsRed double 

transgenic fish (Fig. 3-16C).   

The expression of Rag2-driven reporters was also examined in the adult olfactory system. 

Both the DsRed and GFP are expressed in a subset of OSNs which carry slender dendrites 

and have soma located in the basal OE (Fig. 3-17A). These morphological features 

suggest that they are ciliated OSNs (refer to 3.1.3.1). Imaging of the dissected OB 

revealed that these OSNs project their fluorescent axons to only few glomeruli in the 

ventral OB (Fig. 3-17B). Both Rag2:DsRed lines were crossed to Rag2:GFP fish for 

generating double transgenic fish,  and they  all showed  overlapping  expression  with the 
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Rag2:GFP. In the OE, red and green fluorescence are partially overlapped among OSNs, 

while in the OB, red and green axons project to same sets of glomeruli, although some 

terminals are not double labeled (Fig. 3-17C-E). This indicates that the Rag2 promoter 

drives the reporters in the same group of OSNs in all these three transgenic lines, and 

suggests that the expression is not due to the genomic context of integration. 

The cell morphology, location and axon projection of these Rag2-positive OSNs are all 

different from the Rag1:GFP expressing OSNs. This was further confirmed by 

observation of adult fish labeled with both Rag2:DsRed and Rag1:GFP. From the 

overview of the olfactory rosette, the Rag2 positive cells (red) mainly occupied the 

middle part of the lamella, while the Rag1 positive cells (green) distributed broadly along 

the lamella, with higher density at the narrow region close to the central raphe (Fig. 3-

18A). Under high magnification, the Rag2:DsRed expressing OSNs were seen to be 

embedded deeper from the apical surface and carry long narrow dendrites; whereas 

Rag1:GFP positive OSNs were mainly located at the apical half of the OE and had 

relatively short small dendrites(Fig. 3-18B, C). In the OB, Rag2:DsRed positive axons 

converge to only few ventral glomeruli; while Rag1:GFP labeled axons project to the 

broad lateral region (Fig. 3-18D). 

Based on these observations we speculate that the expressions of Rag1 and Rag2 in the 

olfactory system are not co-localized; they are restricted to different subsets of OSNs. 

3.5.2 Rag2 is expressed distinctly from Rag1 in many parts of zebrafish nervous 

system

In other parts of the nervous system, very few neurons express Rag2:DsRed and they do 

not co-localize with Rag1:GFP in the double transgenic fish. Rag2:GFP showed obvious  
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expression in many parts of nervous system, and thus was examined in detail at larval 

stages.

In the retina, only a very low level of GFP was detected in the bipolar layer (Fig. 3-19A), 

different from the restricted expression of Rag1:GFP in RGCs and amacrine cells. 

According to the relative position of lens and outer pigment layer, we combined the retina 

images of Rag1:GFP fish and Rag2:GFP fish in pseudocolor, which illustrates the non-

overlapping expression of GFP under the two different promoters (Fig. 3-19B).  

Rag2:GFP was also seen in the brain (Fig. 3-19C, D), but very few cells expressed GFP 

brightly. In the forebrain, a group of GFP positive cells were located at the posterior part 

of the telencephalon, where no Rag1:GFP cells were seen. Some Rag2:GFP expressing 

cells also appeared in the hypothalamus and optic tectum, where also many Rag1:GFP

neurons were located. Co-localization of Rag1 and Rag2 in brain cells could not be 

determined, because Rag2:DsRed could not be detected here.  

In the trunk, many cells express Rag2:GFP in the spinal cord, but at different levels. 

Some motoneurons, which have cell bodies in the ventral spinal cord and carry axons 

innervating myotomes, express higher level of GFP (Fig. 3-19E). These neurons are 

different from those expressing Rag1:GFP, which are located in the dorsal spinal cord 

and do not project axons to myotomes. 

These observations indicate that the expression of Rag2 and Rag1 are not correlated in the 

zebrafish nervous system, thus Rag1 is unlikely to play the same role (e.g. mediating 

V(D)J recombination) in the nervous system as it does in immune system. 
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3.5.3 RAG2 antibody failed to detect signals in the olfactory epithelium 

An antibody was also generated against the C-terminal 15 amino acids of zebrafish 

RAG2. Its binding to isolated thymocytes (known to express high level of Rag2) can be 

abolished by pre-absorption with the antigen peptide, indicating that this antibody labels 

the thymocytes specifically (Fig. 3-20). But, using this antibody on the dispersed 

olfactory epithelium, we failed to detect any specific signal, but only dim and broad 

staining. RAG2 protein in OSNs may thus be present at very low level (i.e. below our 

detection limit), or the mRNA may not be translated. 

3.5.4 Summary 

Shuo Lin’s group has showed the presence of Rag1 and Rag2 in zebrafish OSNs and 

speculate that they are concurrently expressed (Jessen et al., 2001b; Jessen et al., 1999). 

In our study, analysis of Rag2 expression was based on a similar promoter. But our 

detailed observation of three transgenic lines revealed that the expression of Rag2 in 

zebrafish OE is distinct from Rag1 expression. Two Rag genes are restricted to different 

subsets of OSNs. In a broader view, Rag2 is detected in many parts of the nervous 

system. In the caudal hypothalamus and optic tectum, Rag2 maybe co-localized with 

Rag1 in some neurons, which, however, can not be confirmed. We lack the information 

on endogenous RAG2 protein distribution. This might be solved with another high-

quality antibody. But it could not be done here due to time constraint.

Nevertheless, our observation indicates that, as a general rule, Rag2 is not co-localized 

with Rag1 in the nervous system. This suggests that Rag1 is unlikely to mediate a V(D)J-

like DNA recombination in the nervous system, nor to function in general neurogenesis, 

but might be involved in the function of some groups of neurons.  
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3.6 No obvious neuronal defect was detected when RAG1 was depleted 

3.6.1 Depletion of RAG1 doesn’t affect the axon targeting of the GFP positive 

OSNs

Within one OE, OSNs with the same identity, which is specified by the odorant receptor 

together with other proteins, always converge their axons to the same glomerulus in the 

OB (Wang et al., 1998). The high-level of Rag1 in a subpopulation of OSNs that project 

to one glomerulus raises the possibility that RAG1 is itself somehow involved in 

specifying the identity and hence the targeting of these neurons. To investigate this issue, 

we examined the effect of RAG1 depletion on the projection of these OSN. 

3.6.1.1 Effect of knocking-down RAG1 by morpholinos 

Morpholinos are chemically modified oligonucleotides. They are assembled from four 

different subunits, each of which contains one of the four genetic base (Adenine, 

Cytosine, Guanine and Thymine) linked to a 6-membered morpholinine ring instead of 5-

membered ribose or deoxyribose in natural RNA and DNA. They thus keep the base-

stacking abilities of natural genetic material. Morpholinos have been shown to bind to and 

block translation of mRNA in vitro, in tissue culture cells, and in vivo among several 

organisms (Heasman, 2002). From 2000, it became an important reverse genetic tool in 

zebrafish (Nasevicius and Ekker, 2000). In our study we used this approach to examine 

Rag1’s function in nervous system, mainly focusing on the olfactory system. 

Three morpholinos were used to knockdown RAG1. The first morpholino (mo1) was 

targeted to the start codon of Rag1. However, the use of internal ATGs, which has been  

reported for some forms of Omenn’s syndrome in human (Santagata et al., 2000), might 

obscure the effects of the mo1. Thus we designed and tested two more morpholinos, mo2 
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and mo3, which target to splice donor sites of the first and second exons of Rag1 coding 

sequence respectively (Fig. 3-22A). 

Rag1-mo1, the morpholino against Rag1 start codon, was tested using a fusion of the 

Rag1 5’-end to GFP. Injection of mRNA for the fusion alone led to a strong green 

fluorescence (Fig. 3-21A1), whereas co-injection with the Rag1-mo1 suppressed the 

fluorescence (Fig. 3-21A3). A standard control morpholino was also tested and had no 

effect (Fig. 3-21A2). These results demonstrate that Rag1-mo1 can target the Rag1 5’ part 

and block the translation of the fusion protein.  

Unexpectedly, injection of mo1 into Rag1:GFP fish caused a reduction in the level of 

GFP, despite there being a 8 nucleotide contiguous mismatch between mo1 and the 

transgene (Fig. 3-21C). The decrease of GFP in OE was evident for the first three days 

after injection (Fig. 3-21B), and recovered from the 4th day. To check whether the 

reduction of GFP is a direct consequence of mo1 injection, we cloned the transgene 

fragment from Rag1:GFP line (including the putative mo1 binding site) and generated 

mRNA by intro transcription. After injection into embryos, the mRNA was translated into 

GFP (Fig. 3-21D1); while in the embryos co-injected with mo1, the GFP signal was 

reduced in a dosage-dependent manner. This confirmed that the injection of mo1 directly 

reduced GFP level in the Rag1:GFP fish, presumably because the mismatch is contiguous 

and exclusively at one end of the morpholino. Despite the reduction in fluorescence, 

convergence of labeled axons to the lateral glomerulus persisted (Fig. 3-21B2; 15 

embryos imaged at high magnification). Aside from the decrease in GFP expression, no 

other defect could be detected.

The second morpholino (mo2) was designed  to target  the  splice donor site of the  first 

exon (Fig. 3-22A).  Injection  of  this  morpholino  led  to  failure  in  splicing out the first 
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Figure 3-21. The effect of RAG1 depletion on the olfactory projection, revealed by 
the morpholino against Rag1 ATG region.

(A) A morpholino against the Rag1 ATG region (Rag1-mo1) blocked the translation of 
mRNA encoding the 5’ end of Rag1 fused to EGFP. (A1) An embryo injected with the 
mRNA expresses the fusion protein and shines the green fluorescence. (A2) Co-injection 
with the control morpholino didn’t affect the translation of the fusion protein. (A3) When 
co-injected with Rag1-mo1, the mRNA couldn’t be translated into the fluorescent fusion 
protein. (A4) An uninjected embryo was imaged as a control. (B) Rag1-mo1 reduced the 
GFP expression in the Rag1:GFP fish. (B1) Olfactory neurons labeled with GFP under 
the Rag1 promoter, with brightly labeled axons projecting to a single target (arrowhead), 
at 3 dpf. (B2) In a transgenic embryo injected with mo1, axons still project to the same 
target (arrowhead), but the intensity of GFP fluorescence is reduced. (C) Rag1-mo1 was 
designed against the Rag1 ATG region. It partially matches to the 5’ region of the 
transgene GFP in the Rag1:GFP fish. (D) Rag1-mo1 reduces the translation of the 
transgene GFP mRNA, which contains the indicated 5’ region. (D1) An embryo injected 
with the mRNA encoding the transgene GFP. (D2-4) Embryos co-injected with the 
trasngene GFP mRNA and Rag1-mo1. The GFP translation was reduced by the Rag1-
mo1 in a dosage-dependent manner.  
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intron, which was revealed by RT-PCR (Fig. 3-22B) and confirmed by sequencing (data 

not shown). The consequent aberrant mRNA contains a stop codon within the un-spliced 

intron. Monitored by RT-PCT, the effect of Rag1-mo2 was maintained until 2 dpf, and 

dropped down from 3 dpf. Injections of 0.8 µM caused slight non-specific morphological 

abnormalities, such as small eyes, but no defect in the projection of GFP positive axons 

was detected at 3 dpf (data not shown). Since the mo2 effect only last to 2 dpf, we can not 

rule out the possibility that the projection of GFP-positive axons formed after the RAG1 

depletion was recovered. 

Injection of the third morpholino (mo3), which was designed to the donor site of the 

second exon, resulted in loss of the normal transcript and stronger abnormalities (not 

shown). Less abnormality was seen when a mixture of mo2 and mo3 was injected. Using 

RT-PCR, the morpholino effect on mRNA splicing was examined for different dosage 

and ratios. It was found that injection of a mixture with high concentration of mo2 and 

mo3 led to a dramatic loss of normally spliced Rag1 mRNA till 3 dpf (Fig. 3-23B, 

highlighted with red brackets). However, the weak amplification of the un-spliced mRNA 

(Fig. 3-23B, in blue brackets) indicates that the Rag1-mo3 not only blocked the splicing 

of the second intron, but also introduced abnormal splicing events. That resulted in some 

short aberrant amplification, which was confirmed by the amplification using primers that 

amplify across both introns (Fig. 3-23B, highlighted with green brackets). Among the 

injected fish, those injected with 0.6 µM mo2 and 0.6 µM mo3 showed least abnormality, 

and they showed no defect in axon projection of the Rag1 expressing OSNs (n=50).

3.6.1.2 Analysis of zebrafish Rag1 mutant 

As  an  additional  step  in  analyzing  the  role of Rag1 in  establishing  the  olfactory 

projection, a Rag1  mutant line  was examined. This line of fish carries  a C T mutation, 
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which turns R797 into a stop codon in the catalytic domain of RAG1 core region and 

abolishes RAG1 function (Wienholds et al., 2002). The Rag1 mutant fish are 

immunodeficient, but viable and fertile.  

We examined the entire olfactory projection. Firstly, the live, transparent larvae were 

exposed to freshly diluted lipophilic tracer Di8ANEPPQ. In these fish, only the neurons 

exposed to the water took up the dye, which then diffused and labeled the axon 

projections. The labeling pattern in the OB was examined directly under confocal 

microscope. The staining in Rag1 mutants and wt siblings were carefully compared, but 

no obvious difference could be seen (Fig. 3-24A). Secondly, the larval forebrains, 

including olfactory bulbs, were isolated and labeled with SV2 antibody. This is a marker 

for synaptic vesicles and labels the glomeruli. Consistently, the SV2 staining didn’t reveal 

any obvious difference between Rag1 mutants and wt siblings. The lateral neuropil 

structure that is innervated by neurons expressing high level of GFP still could be 

visualized in the mutants (Fig. 3-24C-E). These data indicates that Rag1 is not required 

for path finding of OSN axons. 

3.6.2 No other neuronal defect was detected in Rag1 mutant fish 

The odor-evoked activity of the OSNs was examined by Calcium imaging (Friedrich and 

Korsching, 1997) in the Rag1 mutant fish and wt siblings. The results showed that the 

amino acid evoked activity, which predominantly locates in the ventral lateral region of 

the OB, where also the Rag1:GFP positive axons target to, was present in the Rag1 

mutants (done by Bulchand S, Yaksi E and Friedrich R. W; refer to the attached paper) 

(Feng et al., 2005). 

Furthermore, this Rag1 mutant fish was also crossed to Shh:GFP and islet:GFP

transgenic  fish. Shh (sonic  hedgehog)  is  a  signaling   molecule  that  plays   important 
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functions in many developmental processes including the differentiation of many types of 

neurons. Thus Shh-driven GFP labels many neurons in the transgenic fish (Shkumatava et 

al., 2004). Islet is a transcription factor that is mainly expressed in motoneurons, and thus 

its promoter drives GFP expression in many motoneurons (Higashijima et al., 2000). We 

obtained the transgenic Rag1 mutant fish for both lines, but no obvious alteration was 

detected in the morphology and pattern of GFP expression (data not shown). This 

indicates that global neuronal development and patterning in the Rag1 mutant fish is 

normal. 

We also tried to cross the Rag1 mutants with the Rag1:GFP fish, but failed to get the 

transgenic mutant fish. The reason is not clear.  

During maintenance of the Rag1 homozygote mutant fish, no obvious defect was detected 

in response to tapping or sudden movement of objects in the visual field. They also 

appeared to swim normally. 

3.7 Conclusions 

Using transgenesis we found that Rag1 is selectively expressed in the zebrafish nervous 

system. The most intriguing expression appeared in the olfactory system, where the 

Rag1:GFP signal was restricted to a subset of microvillous OSNs and their axons, which 

projected only to the ventral lateral OB. This region of the bulb has been shown to be 

innervated by neurons expressing TRPC2, a member of microvillous neurons (Sato et al., 

2005). In addition, the Rag1:GFP was also detected in RGCs and amacrine cells in retina, 

cristae hair cells in ear, some dorsal interneurons in spinal cord, and some neurons in the 

optic tectum, hypothalamus and cerebellum.  

In transgenic fish, reporters driven by a Rag2 promoter fragment were also found to be 

expressed in the nervous system, but did not appear to correlate with the expression of 



95

Rag1:GFP. Both Rag2:GFP and Rag2:DsRed showed clear labeling in the OE, but the 

signal appeared restricted to a group of ciliated OSNs, which sent their axons to a few 

ventral glomeruli. Observation in other parts of the nervous system also did not support 

the correlation between two Rag genes. 

Immunofluorescence confirmed the selective presence of RAG1 in retinal and olfactory 

neurons, predominantly in the nucleus, but failed to detect RAG2. 

Furthermore, the depletion of RAG1, either by morpholino or by mutagenesis, did not 

alter the olfactory projection and amino acids detection. There was also no other obvious 

morphological and behavioral defects noticed when RAG1 was depleted.  

Thus we conclude that Rag1 is expressed in a selective manner in the zebrafish nervous 

system; its expression is not correlated with Rag2; and the expression of Rag1 is not 

required for path finding as well as amino acids detection of OSNs. This strongly 

suggests that Rag1 is unlikely to mediate a V(D)J-like DNA recombination in the nervous 

system. Any function of Rag1 is likely to be specific to subsets of neurons.  
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CHAPTER 4   RESULTS_PART 2                       Searching for Rag1

Downstream Genes in the Nervous System by Microarray 

4.1 Two sets of microarray experiments were done to search for Rag1-

downstream genes in the nervous system 

As indicated by the previous observations in Rag1:GFP fish, Rag1 appears to be expressed in 

a subset of neurons in many parts of the nervous system. To seek evidence for a function, we 

carried out microarray experiments. 

Microarray hybridization is a technology developed in the past several years and has now 

become a standard tool in genomics research. It normally involves a large number of DNA 

probes, which are immobilized to a solid surface in a very high density, and a set of labeled 

DNA or cNDA samples, usually in a mixture, to hybridize to the probes. Thus massive 

complementary bindings between the immobilized probes and samples are parallely 

determined, providing a platform for scientists to study tens of thousands of genes at once. 

This technology has been successfully used in monitoring expression of many thousands of 

genes simultaneously, polymorphism screening and genotyping on a genomic scale(Ramsay, 

1998; Schena et al., 1998). 

We used this approach to screen for genes with expression changes in Rag1 mutant fish. The 

Rag1 mutant fish carry a point mutation in the catalytic domain of the RAG1 core region, 

which thus generates a premature stop cordon and abolishes RAG1’s function. This fish has 

been shown to be unable to rearrange T-cell receptor genes (Wienholds et al., 2002). By 

global comparison of gene expression between Rag1 mutants and wt siblings, we set out to 

find genes with altered expression in the nervous system of Rag1 mutant fish. 

The microarray that we used is an oligonucleotide microarray, which is built from the 

Compugen/Sigma-Genosys oligo sets (http://www.labonweb.com/). Comparing to cDNA, for 
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which each clone has its own hybridization character, oligos are easier to be designed to have 

similar hybridization temperature and binding affinity, and therefore produce a meaningful 

result.

Totally two sets of microarray hybridization were done. One was carried out with RNA 

samples from anterior parts of 3 dpf larva; and the other was done with RNA from adult 

olfactory rosettes. Using larva at 3 dpf should allow us to access the main tissues in the 

nervous system, which is roughly established at 3 dpf; and at the same time avoid the 

interference of defects in the immune system, which starts to develop at 4 dpf. We also chose 

the adult olfactory rosette, because it is a peripheral sensory organ, which hardly contains 

immune tissues and expresses a significant level of Rag1 in the adult. 

For both larva and adult OE experiments, 3 pairs of total RNA samples were isolated 

independently and sent for hybridization. All of these RNA samples showed two clear bands 

of rRNA on electrophoresis gel (Fig. 4-1), indicating that their quality is acceptable. 

4.2 Data normalization and statistical analysis  

4.2.1 Data preprocess and normalization 

Our microarray experiments were done in the Microarray Core Facility of the Kimmel Cancer 

Center (KCC) in Thomas Jefferson University. We obtained the raw data and carried out 

processing and analysis mainly with GeneSpring, a microarray analysis software purchased 

from Agilent Technologies. 

Firstly, the signal intensity was subtracted to background to give a spot intensity for 

calculating the expression. Then from the subtracted spot intensity, we performed data 

normalization. This is to adjust the hybridization intensity obtained from individual chips so 

as to exclude systematic errors that might be introduced by imprecise probe input, 

inconsistent  wash  or  some  imperfection  in  microarray  chip  production.  In  the  literature,  
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several methods have been utilized for this purpose and their advantages and flaws have been 

discussed. Basically, normalization can be done according to the global intensity on an array, 

or according to a set of invariant genes, such as housekeeping genes or internal controls 

(Leung and Cavalieri, 2003). For two-color hybridization, two sets of probes are labeled with 

two different fluorescence dyes respectively, which usually introduce the difference in dye 

incorporation efficiency. To reduce the dye-related bias problem, a method called locally 

weighted scatterplot smoothing (LOWESS) normalization was developed and is widely 

accepted (Leung and Cavalieri, 2003; Quackenbush, 2002). Our microarray was hybridized 

with single-colored cDNA. Dye-related bias is not a problem. Therefore, we chose the default 

Per-chip and Per-gene normalization provided by GeneSpring to control the variance between 

different samples (for details, refer to Chapter 2.15)

Next, to avoid the interference of the basal level of noise, signals with intensity lower than 2 

folds of the blanks in every sample were removed from the data for further analysis, which 

are 5496 and 3562 measurements for larvae and adult OE microarray respectively (Table 2). 

At this stage, the remained normalized data of every chip distributed around “1” (the 

normalized median intensity) symmetrically, indicating that the data obtained from different 

hybridizations are globally comparable (Fig. 4-2).  

For each experiment, 6 individual hybridizations were grouped into 3 pairs (Table 1). Their 

overall distribution of ratio-intensity was examined in RI (ratio-intensity) scatter plot. In our 

experiments, no obvious intensity-dependent bias was seen, but some variance existed among 

the 3 pairs of data (Fig. 4-3).  

To further examine the reproducibility of these data, we compared the logarithm ratios 

between two different pairs of samples in a plot. With reasonable imperfection, genes that 

distribute close to the line x = y are acceptable, while the data scattering far from the x = y 

line will be considered as non-reproducible. Generally they will not pass through the 

following statistical analysis. We did the comparison for pair 1 vis pair 2 and pair 1 vis pair 3



Table 1. Microarray experiments design. 

Conditions 

Experiments

Pairs
Wt siblings Rag1 mutants 

Pair 1 1 wt 1 Rag1 

Pair 2 2 wt 2 Rag1 
Microarray               

with RNA from 3 dpf 
larval heads 

Pair 3 3 wt 3 Rag1 

Pair 1 1 wt 1 Rag1 

Pair 2 2 wt 2 Rag1 
Microarray               

with RNA from adult  
olfactory epithelium 

Pair 3 3 wt 3 Rag1 
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(Fig. 4-4). It was shown that most data are reproducible between these three pairs of data, and 

only a small group of signals varied too much in pair 2. We tried and found that removing 

these data for significance analysis did not change the following result.

4.2.2 Statistical significance analysis  

For microarray experiments, the large volume of data and complicated intrinsic variation 

make it necessary to recruit a statistical method to extract biological information 

systematically. Our experiments were carried out to detect the difference in expression 

between two conditions. Theoretically the differentially expressed genes can be referred 

to by a fixed threshold cut-off method, but it is inefficient. The main reason is the 

numerous variations occurred during a microarray experiment. Although some systemic 

variations can be removed by proper normalization, but random sample to sample 

variations are mostly beyond notice and control. Thus it is essential to have replicates in a 

microarray experiment. The variation in a gene expression, which is obtained from the 

replication, enables statistic analysis for computing a possibility of differential 

expression. This has been proven more powerful and reliable than the simple fold changes 

in determining the significants. The combination of both also has been used, in which the 

cut-off according to fold changes narrows down the data set and strengthens the following 

statistic analysis. Here we did our analysis in this way to enhance the identification of the 

most relevant genes, e.g. only data showing more than two fold changes in expression 

between wt and Rag1 mutants were picked for significance statistic analysis. 

Many statistic method have been developed for microarray significance analysis (Cui and 

Churchill, 2003). We used the ANOVA model provided by GeneSpring and the SAM 

program proposed by Tusher et al. in Stanford University. 
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ANOVA (analysis of variance) is an approach that can be applied to cDNA microarray 

data from any experimental design. In complicated microarray experiment with multiple 

categorical factors, such as sex, age and genotype arranged as eight conditions in a 2 by 2 

by 2 factorial design, ANOVA is a powerful model to address difference among 

conditions. In this model, the relative expression of a gene is calculated according to the 

overall measurements in a chip and the weighted average expression of that gene over all 

samples in the experiment (Cui and Churchill, 2003; Kerr and Churchill, 2001). It is also 

suitable to the analysis of single-colored microarray.  

Using one-way ANOVA provided by GeneSpring, we tested data obtained from both 

larvae microarray and adult OE microarray. For the larvae experiment, 15 clones pass the 

test (p<0.05); for the adult OE experiment, 341 was selected (p<0.05) as significant 

differently expressed (Table 2; Fig. 4-5). 

To verify these results, another well-accepted statistic analysis method SAM (significance 

analysis of microarray) was used. The SAM program utilizes a FDR (false discovery rate) 

concept to control the possibility of a non-differentially expressed gene to be chosen as a 

significant. Based on the FDR, users can choose the cut-off of significance by tuning a 

parameter  (delta), so to balance the result between having false positives and losing true 

significants. We obtained the SAM (2.0 version) program from the web (http://www-

stat.stanford.edu/~tibs/SAM/index.html) and used it in analysis of the above normalized 

and intensity-filtered adult OE microarray data (total 12674 measurements). The  was 

set as 0.89 to produce 341 significants with more than 2 fold change in expression (the 

number produced in ANOVA analyses). Within these genes, the FDR computated by  

SAM is 1.22% (Fig. 4-6A). Comparing the 341 significants produced in SAM and 

ANOVA, we found that they are 93.3% overlapped (Fig. 4-6B). This indicates that both 

of the results are largely reliable. 
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4.3 Interpretation of the adult OE microarray result  

The significant differently expressed 341 genes produced in the ANOVA analysis from 

adult OE microarray were annotated with the information obtained from NCBI (National 

Center for Biotechnology Information), TIGR (The Institute for Genomic Research) and 

Silicon Genetics. These 341 genes contain 28 well-known genes and 311 ESTs that 

mostly haven’t been characterized.  

The EST clones were found to be obtained from different libraries, some of which are 

tissue-specific. From a summary that classified these ESTs according to their sources and 

up- or down-regulation in the Rag1 mutant fish, we noticed that genes from fin, embryo, 

testis, ovary and heart libraries were equivalently up- or down-regulated; whereas genes 

from kidney and regenerating fins were largely up-regulated, and genes from some 

neuronal tissue, including brain, retina and olfactory epithelium, were mostly down-

regulated (Fig. 4-7). This is consistent with our understanding. In mutant fish, the mutated 

RAG1 failed to mediate V(D)J recombination and support the adaptive immunity. To 

compensate this loss, the innate immunity, including several general host defense 

systems, was up-regulated when infection occurred. The kidney is an immune organ, 

producing a lot of immune molecules, including those functioning in the adaptive 

immunity as well as those mediating innate immunity. The biased up-regulation of ESTs 

from kidney (30 of 40) might correspond to the up-regulation of innate immunity. 

Zebrafish fin is a tissue that generally is not related to immunity. But during its 

regeneration, some stress-responding genes are activated. The large up-regulation of 

ESTs obtained from regenerated fins (16 of 23) might correlate to the stress response that 

had been triggered in the Rag1 mutant fish.  

However further interpretation of the microarray data is largely blocked by the limited 

annotation  (only  28  well-known  genes  from  341)  and  poor  characterization  of   the  
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majority of ESTs. To circumvent this problem, information obtained from homologous 

genes in other organisms was given to the uncharacterized ESTs to assign putative 

function. This helped to annotate additional 182 ESTs. While this might introduce some 

errors, it provides a potential overview and better understanding of the microarray results. 

4.3.1 Expression alteration in the Rag1 mutant fish was detected at different 

regulation levels. 

With the functional information, including both known and putative, the consequence of 

loss of RAG1 in adult zebrafish was revealed to be broad and complicated. Expression 

alteration was detected among genes functional in different regulation levels, including 

genome maintenance, transcription regulation, translation regulation and protein 

processing (Table 3).  

In the genome level, Mcm3, a gene that controls DNA replication and its correlation with 

cell cycle, was up-regulated; EST homologues of Tep1, a protein component that 

functions in adding a new telomere to the chromosome end, methyltransferase Dnmt3bl

and CpG DNA methylase, which might have function in modifying the genome and 

affecting transcription by methylation, were down-regulated. At the transcription level, 

many transcription factors were found to be significantly changed in expression. These 

include the increase of an EST homologous to Brf1, a general activator of RNA 

polymerase III; as well as the decrease of homologues of Nrip2, a negative regulator of 

transcription from RNA polymerase II promoter, NF-YB, a factor that binds to CCAAT 

motif in promoters and stimulates transcription, and Bteb1, a transcription activator 

selectively recognizing tandem repeats of GC box in promoters. At the translation level, 

an EST homolog of Bzw2, a factor that functions in activating translation initiation, was 

found up-regulated. At the post-translation level, EST homologues of P4Ha2 and AP-B

were  up-regulated.  P4Ha2encodes  a  component  of  an enzyme  that catalyses the  post 
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translational formation of 4-hydroxyproline in collagen and other proteins; AP-B is an 

enzyme that catalyses the release of N-terminal Arg and Lys from oligopepetides.  

The overall consequence of these complex changes is not clear from this view. These 

genes might participate in different biological processes that occur in different type of 

cells. Next, we tried to interpret the result by grouping genes according to their biological 

function and expression changes. 

4.3.2 Innate immunity was largely up-regulated in the Rag1 mutant fish 

Among the function alterations that have been noticed in the Rag1 mutant fish, the most 

obvious change is the significant up-regulation of Rag1-independent innate immunity. It 

can be understood as a compensatory consequence of the loss of RAG1, and has been 

indicated by the biased up-regulation of ESTs from kidney.  

Besides the specific adaptive immunity, which is mediated by RAG proteins and has been 

depleted in the Rag1 mutant fish, vertebrate hosts are also equipped with a general 

defense system, the innate immunity. It includes complement system, inflammation and 

interferon-mediated immune response. The complement system mainly functions in 

attacking the membrane of microbial cells. It can be indirectly activated by the antibody-

antigen binding through the classical pathway, or directly activated by the 

polysaccharides in microorganisms, which is known as the alternative pathway (Bruce 

Alberts, 2002). Inflammation is a defense reaction of living tissue to injury. Through 

multiple interactions, it enables localization and removal of the irritant (Cruse, 1999). 

Interferons are a group of proteins that function in immune modulation. By activating a 

response cascade, they can enhance the ability of macrophages to destroy viruses, bacteria 

and tumor cell (Cruse, 1999). 

Totally,  59  from  341 genes  were  identified to be  functional  in  the  immune response, 
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excluding MHC class I molecules whose difference in expression was introduced by a 

polymorphism (data not shown), and antigen receptors (TCR and Ig) that are directly 

assembled by RAG-mediated V(D)J recombination (refer to Chapter 1.2). From these 59 

genes, 54 were up-regulated in the Rag1 mutant fish (Table 4; Fig. 4-8), which include 6 

ESTs similar to different complement components; 2 genes (Irf7 and Stat1) and 9 ESTs 

that are relevant to interferon function or homologous to interferon induced proteins; as 

well as 10 EST clones that respectively resemble Flap, Pbef, Tnf and different Galectins,

a group of genes that are involved in the inflammatory response. These molecules mainly 

function in triggering the immune response. The up-regulation of innate immunity was 

also reflected in the expression alteration of downstream responding molecules. An 

indispensable step in the development of immune response is the migration of leukocytes 

from blood to target tissue. This process involves the regulation and reorganization of 

cytoskeleton (Vicente-Manzanares and Sanchez-Madrid, 2004). In our microarray, the 

EST homologues of Epb41l3, a structural constituent of actin cytoskeleton, and Plecktrin

2, a molecule that contributes to the lamellipodia formation during cell migration, were 

up-regulated. These changes might correspond to the cytoskeleton reorganization 

triggered by immune response, while other explanations also remain possible. 

Among the innate immune reactions, inflammation usually causes a series of 

consequences, including cell damage and cell adhesion breakdown, which then trigger the 

secondary responses to eliminate the damaged tissue, repair it with new cells and 

reconstruct the cell adhesion. Repetitive infection and chronic inflammation may induce 

an overall up-regulation of apoptosis and cell proliferation, as well as a fast turnover of 

cell adhesion matrix. 

Cornifelin is a gene associated with the epidermal hyperproliferation that usually is 

caused by a chronic inflammatory disease. In Rag1 mutant fish, 2 EST homologues of 
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cornifelin were found to be up-regulated, indicating the presence of chronic inflammation. 

It is likely caused by the loss of RAG1 and adaptive immunity, and to which the increase 

of innate immunity failed to compensate. In addition to cornifelin, EST homologues of 

another 4 genes that function in stimulating cell proliferation were also found to be up-

regulated in the Rag1 mutant fish. Epiregulin and Epiprofin are genes functional in the 

epithelia cell proliferation; Tspan-3 regulates the proliferation and migration of 

oligodendrocytes; N-myc plays a critical role in promoting the proliferation of 

undifferentiated neuroblasts and is notably associated with neuroblastomas (Kobayashi et 

al., 2006; Rudie Hovland et al., 2001). Consistenly, an EST similar to Rbbp6, which 

encodes a retinoblastoma tumor suppressor (pRB) protein that suppress cellular 

proliferation, is down-regulated. These suggest a compensatory increase of cell 

proliferation in response to the chronic inflammation caused by immune defect.  

In addition, the expression alteration observed in apoptosis related genes also indicates 

the presence of chronic inflammation. Caspb (Caspase b), an EST homologue of Card4

(Caspase recruitment domain 4) and NACHT, which are gene triggering the apoptosis, 

are up-regulated; whereas Tradd, a gene that stimulates and blocks apoptosis through two 

different pathways, and 2 EST homologues of Ddit4, a gene that functions in protecting 

cells from hypoxia and H2O2-triggered apoptosis, were down-regulated. These suggest a 

general increase of apoptosis, which might be involved in the constitutive clearance of the 

inflamed tissue.  

Furthermore, alteration in expression of cell adhesion molecules also supports the 

presence of repetitive infection and inflammation. Collagen in the extracellular matrix is 

mainly found in a fibrillar form, which provides the stiff resilient part of many tissues 

(Wess, 2005). Two clones that correspond to Mmp13, the interleukin-1 induced 

collagenase 3  that  mediate the degradation of collagen, were up-regulated. While the  up  
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regulation was also seen in the expression of EST homologues of Mfap4, an extracellular 

matrix protein that binds to collagen, and P4Ha2 that encodes a component of the key 

enzyme in collagen synthesis. These changes indicate a fast turnover of collagen, e.g. 

both the degradation and synthesis were up regulated, in the Rag1 mutant fish, which 

usually associated with inflammation (Havemose-Poulsen and Holmstrup, 1997).   

Besides these changes, two enzymes that function in the general host defense system 

against a wide range of bacteria, Mpx and Lyz, were also up-regulated. Mpx (myeloid 

specific peroxidase) catalyses the production of many toxic intermediates in enhancing 

the microbicidal activity of polymorphonuclear leukocytes; Lyz (lysozyme C) has a 

primary bacteriolytic function and may associate with the monocyte-macrophage system 

to enhance their immune activity. 

4.3.3 Expression of a large group of neuronal genes decreased in the Rag1

mutants

The second large group of genes that were altered in the Rag1 mutant fish is relevant to 

neuronal functions (Table 5). First of all, genes involved in neuronal differentiation were 

mostly down-regulated. These include Her6 and EST homologues of Siah2, Stmn4, 

S100a, Ndr2. Her6 is a zebrafish homologue of mammalian Hes-1, which encodes a HLH 

factor. Persistent expression revealed Hes-1’s function in suppressing neurogenesis 

(Tomita et al., 1996), while in the Hes-1 null mutant mice, postmitotic neurons appeared 

prematurely (Ishibashi et al., 1995). Recently, Hes-1 is found to be transiently up-

regulated upon the differentiation of neuronal cells, which is thought to be critical in 

controlling the proper timing of neurogenesis (Axelson, 2004; Grynfeld et al., 2000).

Siah2 encodes an E3 ubiquitin ligase that is required for the specification of r7 

photoreceptor cell in the eye. Stmn4 encodes a Stathmin like protein RB3, which is 

mainly  expressed  in mature  neurons  and may  play a  role in  activity  induced neuronal  
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plasticity and neuronal differentiation (Beilharz et al., 1998; Ozon et al., 1999). S100a 

encodes a protein that belongs to a large subfamily of EF-hand Ca2+-binding proteins. 

These proteins are known to associate with differentiated neurons (Donato, 2001), and 

their immunoactivity has been detected in zebrafish crypt olfactory neurons (Germana et 

al., 2004). Ndr2, a member of the NDR subfamily of serine/theonine protein kinases, has 

been proven to have a function in regulating the structural process of differentiating and 

mature neurons (Stork et al., 2004). These changes indicate a decrease of neural 

differentiation.

Consistently, several genes involved in neurite growth were also found to be down-

regulated. These include Thy1 and 3 ESTs homologous to Ulk1/2 (unc-51-like kinase 1 

and 2). Thy1 is an abundant neuronal glycoprotein in mammals, and is known to be 

implicated in axon regeneration and outgrowth (Barlow et al., 2002). Ulk, the mammalian 

homologue of Unc-51 from C. elegans, is also known to play a role in neurite extension 

(Okazaki et al., 2000).

Furthermore, many genes functional in neuronal signaling and synapses, which mainly 

are functions of mature neurons, were found to be down regulated in the Rag1 mutants. 

This is also consistent with the decrease of neural differentiation. The decreased neuronal 

signaling molecules include 5 different odorant receptors (Or2.1, Or2.6, Or2.7, Or3.1 and 

Or9.1), Ocnc and an EST homologue of an orphan receptor. Odorant receptors (OR) 

enable the recognition of odorants, where the Ocnc is a part of the signal cascade 

downstream of ORs. The orphan receptors belong to the nuclear hormone receptor family, 

but their function in the brain hasn’t been well elucidated. In neuronal synapses, Syp1

(Synaptophysin 1) is one of the most abundant protein of the synaptic vesicle membrane 

(Thiel, 1993); Vamp2 (Synaptobrevin 2) is the major SNARE protein of synaptic vesicles 

(Quetglas et al., 2000); Syt (Synaptotagmin) is a Ca2+ sensor that directly couples the Ca2+
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influx and synaptic vesicles fusion (Koh and Bellen, 2003); and Cplx2 (Complexin 2) is 

the modulator of the synaptic vesicle release (Hu et al., 2002). They are all required for 

fast Ca2+-triggered synaptic vesicle exocytosis. In our microarray result, 3 individual 

clones representing Vamp2, 2 ESTs similar respectively to Syt1 and Syt11, 1 EST 

homologue of Syp1 and 1 EST homologue of Cplx2 were found to decrease significantly 

in the Rag1 mutants. In addition, EST homlogues of several membrane transporting 

ATPase and pump molecules, including H+-transporting ATPase, Ca2+-transporting 

plasma membrane ATPase and solute carrier family 6, were also found to be down-

regulated.

Besides these, Chga (chromogranin A) and Eno2 (enolase 2), which have long been used 

as markers for neurons and neoplastic neuroendocrine cells (De Block et al., 2004), were 

also down-regulated.  

All in all, from 39 genes that are classified as neuronal genes, 36 were down-regulated. 

This strongly suggests a degeneration of the nervous system, which might be caused by 

infections. Accumulated data has revealed that infection and injury triggered increase of 

immunity, especially the complement system, may selectively cause neural damage and 

trigger neuronal degeneration in CNS (Lucas et al., 2006; van Beek et al., 2003). This 

suggests that the neuronal degeneration, revealed by the microarray in OE, might be 

caused by chronic infection in the Rag1 mutant fish. There is no direct evidence for this 

in the PNS, and the possibility that Rag1 has a direct function in regulating neuronal 

genes cannot be ruled out. 

4.3.4 Other alterations in the Rag1 mutant fish 

Expression change of other genes was also noticed in the Rag1 mutant fish. A small 

group of ESTs homologous to GTPase and relevant regulators, including Rhobtb1, Rgs2,
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Sept3 and Rasrgp1, were found to be up-regulated in the Rag1 mutant fish. But, since 

these molecules are known to function in many different biological processes, the 

implication of these changes is not clear. Similarly, inhibin b, integrin and Cxcr4 play 

multiple functions in both immune and nervous system, thus their decrease in the Rag1

mutants is also difficult to explain.  

In addition, a few ESTs similar to genes required in maintaining adult fertility, including 

Tesk2, Pl10 and Ptx3, were found to be down-regulated in the Rag1 mutant fish. Tesk2

and Pl10 are two genes enriched in male germ lines and play important role in 

spermatogenesis (Leroy et al., 1989; Rosok et al., 1999). Ptx3 is a tumor necrosis factor 

(TNF)-stimulated gene, playing important role in inflammation as well as female fertility 

(Garlanda et al., 2005; Salustri et al., 2004). Here we list Ptx3 as a fertility gene, because 

its expression change is different from the increase of immune genes, but similar to the 

decrease of fertility relevant genes. The overall down-regulation of these genes in the 

Rag1 mutants revealed by microarray is consistent with our observation that the Rag1

mutant homozygote fish are fertile, but their fertility is maintained for only 3~5 months 

(data not shown), which is much shorter compared to wt siblings (1~2 years) 

(Westerfield, 2000). By current knowledge, these alterations are not directly linked to the 

immunity changes in the mutants. Whether they are an unknown consequence of the 

immune defect, or linked to an unknown function of Rag1, still remains elusive. 

4.3.5 Summary 

Our microarray results revealed broad and complicated alterations of gene expression in 

adult olfactory rosettes. These included an overall increase of innate immunity, activation 

of secondary responses (e.g. enhanced apoptosis, cell proliferation and cell adhesion 

turnover), which is known and expected in a tissue under infection (The mutant fish are 

not  housed  in  a  specific  pathogen  free  environment.).  Meanwhile,  a  large  group  of  
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neuronal genes were also found to be down-regulated in the mutants, indicating a 

neuronal degeneration. As suggested by the literature, this may be caused by the 

increased immune responses. Thus all of these changes were possibly consequences of 

the loss of adaptive immunity, which corresponds to Rag1’s immune function. Rag1’s 

neuronal function remains obscure.  

4.4 Characterization of 12158, a candidate downstream gene of Rag1 

4.4.1 Two versions of 12158 were cloned 

Clone 12158 was one of the significants picked up by 2 fold change cut-off from 3 dpf 

larvae microarray experiment. Its expression change between wt and Rag1 mutants was 

confirmed by RT-PCR, thus it was analyzed in detail.  

The 12158 clone was generated from a zebrafish EST BI865569, which contains 243 bp 

nucleotides and a putative polyA tail. From this sequence we did 3’RACE and obtained 2 

clones, 12158A and 12158B (Fig. 4-9A). 12158A contains additional 160 bp nucleotides 

at 5’ of the original EST sequence (Fig. 4-9B). The entire fragment can  be amplified by 

PCR from genomic DNA, but not from cDNA (Fig. 4-9C), which indicates that the 5’part 

of 12158A might be picked up from genomic DNA in the RACE reaction. 12158B 

contains a longer 5’ fragment (656 bp; Fig. 4-9D), which is totally different from 

12158A. With primers covering both the newly-cloned and previously identified 

sequences, 12158B can be amplified from both cDNA and genomic DNA. The 

amplifications from cDNA confirmed the decreased expression of 12158 in the Rag1

mutant fish (Fig. 4-9E). Surprisingly, the PCR product amplified from cDNA and 

genomic DNA for 12158B are same. This suggests that the 5’ part of 12158A was not 

amplified from an intron, but from another allele, which was not transcribed. 
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Figure 4-9. 5’ RACE of clone 12158.  

(A) By 5’RACE, two PCR bands containing the original 12158 sequence were amplified. 
(B) Sequence of clone 12158A. The original 12158 sequence is colored in black; the 
newly cloned sequence is in red. Name and locations of the relevant primers are 
indicated. (C) With primers A-F1 and R2, clone 12158A can be amplified from genomic 
DNA (the PCR), but not from cDNA (the RT-PCR). (D) Sequence of clone 12158B. The 
original 12158 sequence is in black; the newly cloned sequence is in blue. Name and 
locations of the relevant primers are indicated. (E) By RT-PCT, 12158B was amplified 
with 3 pairs of primers, and its decreased expression in Rag1 mutant was confirmed in all 
of these reactions. -actin was used as loading control. –RT controls were not shown. 
With primers B-F2 and R2, a band with equal length (526 bp) was also amplified from 
genomic DNA (the PCR).  
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4.4.2 12158B might be evolved from transposition of a LINE element in the 

12158A allele 

Blast search with the 12158B sequence picked up a BAC clone, CH211-206E6. As 

revealed by GeneScan analysis, 12158B matches to the 3’ UTR of a predicted protein, 

which contains a reverse transcriptase domain (rvt; Fig. 4-10C, red bar). Further Blast 

search revealed that the predicted ORF and 3’UTR contain several highly repetitive 

sequences (Fig. 4-10B) that match to zebrafish genome at more than 100 locations with 

more than 90% identity (data not shown). Consistently, in the zebrafish EST database, the 

predicted ORF matches to hundreds of clones, suggesting high abundance of this 

transcript (Fig. 4-10D); 12158B, which matches to 3’UTR of the predicted ORF, appears 

to be a chimera in transcription. The newly cloned 5’ part (Fig. 4-11A, blue box) was 

equally abundant as the ORF (Fig. 4-11B), while the 3’original part (Fig. 4-11A, grey 

box) was rarely transcribed and only appeared in the original EST clones (Fig. 4-11B). 

This observation suggests that in some situations the 5’ part might be transcribed 

independently of the 3’ 12158 sequence, although the joined transcript of the predicted 

ORF and 12158 has been proven here by RT-PCR (Fig. 4-10E). One possible explanation 

is that the 5’ predicted ORF and UTR belong to a repetitive element that is also located 

and transcribed in other loci. This is further supported by real-time PCR. The 

amplification with primer rtF and rtR (designed to amplify the 3’ 12158 sequence; Fig. 4-

11A) confirmed the decrease of 12158 expression in Rag1 mutant fish (Fig. 4-11C, F); 

whereas the amplification with rpF and rpR (for amplifying the 5’ repetitive part of 

12158B; Fig. 4-11A) didn’t show significant difference between Rag1 mutant and wt 

sibling (Fig. 4-11D, F). This indicates that the 5’ repetitive part was not unique to the 

12158B, but exists in many other transcripts, whose total expression level was not 

significantly decreased in Rag1 mutants. All of these results suggest that the 12158B 

allele contains a repetitive element. 
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Furthermore, in the BAC CH21-206E6, RepeatMasker analysis revealed a LINE element 

CR1-1 (5005 bp) at the 5’ of 12158B, and two parts of a HE1 SINE element in the 

regions flanking to the CR1-1.  LINE and SINE stand for long and short interspersed 

repetitive elements respectively. They are both mobile genetic elements, which normally 

comprise a significant part of the genome in higher eukaryotes. Both LINEs and SINEs 

are retrotransposons, but LINEs range from 3 to 7 KB in length and each contains an 

ORF to encode a reverse transcriptase; whereas SINEs are only 100 ~ 500 bp in length 

and do not encode any protein (Deininger and Batzer, 2002).  CR1 (chicken repeat 1)  

family LINE elements have been found in many organisms and are suggested to be an 

ancient repetitive element (Hodgetts, 2004). HE1 is a newly identified SINE family, 

which is designated for higher elasmobranch family 1(Ogiwara et al., 1999). Alignment 

of BAC CH21-206E6 (representing the 12158B allele) and 12158A revealed two 

homologous regions separated by a 5034 bp fragment (Fig. 4-12). The CR1-1 element is 

located in this 5034 bp region, while the flanking regions that match to 12158A contain 

the two parts of the HE1. Rejoining the separated two parts of this HE1 perfectly forms a 

complete HE1 as it is in 12158A allele, which suggests that 12158B allele is evolved 

from transposition of a CR1-1 element in the middle of a HE1 element in 12158A allele. 

This is further supported by sequencing of PCR products, which revealed that the 

genomic sequences flanked 12158A were identical to the corresponding regions in the 

BAC CH21-206E6, and a two-nucleotide repeat AC appears precisely in the junctions at 

both sides of the 5034 bp fragment (Fig. 4-12A), indicating target specificity of the 

transposition. In addition, by Blast search CR1-1 element was found highly abundant in 

zebrafish genome, whereas the flanking sequences were unique to the CH21-206E6 clone 

(Fig. 4-13). Thus we propose that this 5034 bp fragment in 12158B allele was resulted 

from a transposition of CR1-1 into 12158A allele, and the transcription of this CR1-1 was 

carried out to the downstream flanking region, which lead to the expression of 12158.   
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4.4.3 The two versions of 12158 are two alleles in the same locus 

Next, we examined whether the 12158A and the stably transposed 12158B locate in the 

same locus of zebrafish genome. By PCR screening with DNA from clipped fins, we 

identified some 12158A positive adult fishes. They were crossed as single-pairs, and the 

progenies were tested by A-F1/R1 PCR. In a population of progeny from a single pair of 

parents, the amplifications with A-F1/R1 are positive in ~75% embryos (35/48, Fig.4-14), 

which fit perfectly with the Mendellian principles of inheritance(Klug, 2000) and suggest 

that the 12158A allele is single-copied in the genome. The same batch of progenies was 

also tested by the PCR with primers B-F2/R2 and the result showed that also 75% of the 

embryos (36/48) are positive (Fig.4-14A). Thus both 12158A and 12158B are likely to be 

single-copy alleles. If 12158A and 12158B are located in the same locus, among a 

haploid of genome, whenever 12158A is positive, 12158B should be negative, vise versa.

We thus built a model (Fig. 4-14B). A+(b-) stands for 12158A positive allele, which is 

also 12158B negative; B+(a-) stands for 12158B positive and 12158A negative. By 

Mendel’s segregation postulate for single-paired factors(Klug, 2000), a pair of 

heterezygote parents A+(b-) /B+(a-) should give 25% A+(b-)/A+(b-), 25% B+(a-)/B+(a-) and 

50% A+(b-) /B+(a-) progenies. Since in PCR test, both homozygote and heterozygote are 

present as positive, there will be 75% 12158A positive (A+) and 75% 12158B positive 

(B+) and 50% double positives among these progenies. Indeed, among the ~75% 12158A 

positives and 75% 12158B positives, we found that 23 from 48 (~50%) are double 

positives (Fig. 4-14C). This fits well with the proposed model and strongly suggests that 

12158A and 12158B are single copy alleles in the same locus among the genome. Thus 

we speculate that 12158B is evolved from a transposition of CR1-1 into 12158A allele.
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4.4.4 12158 transcript is down-regulated in Rag1 mutant fish 

12158A allele was found only in the wt siblings population, but not in the Rag1 mutants 

(n = 285). The down-regulation of 12158 in Rag1 mutant fish was revealed by microarray 

and confirmed by RT-PCR (Fig. 4-9E), even though the Rag1 mutants are all 12158B 

homozygotes, while among the wt siblings, some fish carry only one allele of 12158B. 

The reason behind this is not clear. 

Progenies from the incross of 12158A positive fish were examined, and no defect in 

morphology and viability was detected, although at least 25% among them should be 

12158A homozygote embryos, which do not carry CR1-1 element in this locus and 

produce no 12158 transcripts. This suggests that the presence of CR1-1 element in this 

locus and the 12158 transcripts are not essential. But whether they play any non-essential 

function remains elusive. 

4.5 Summary 

Comparing Rag1 mutants and wt siblings, our microarray experiments revealed the global 

effect of Rag1 deficiency on gene expression and suggested some candidates of Rag1

downstream genes in the nervous system. 

In adult olfactory rosettes, alterations of gene expression are broad and complicated. They 

mainly indicated an overall increase of innate immunity, activation of secondary 

responses upon infection, and a neuronal degeneration that was likely a consequence of 

the immune responses. All of these changes were possibly caused by the loss of Rag1 in 

immune system; Rag1’s function in the nervous system was not clear.  

In the microarray with 3 dpf larvae RNA, difference between Rag1 mutants and wt 

siblings was little. The transcription of a clone, 12158, was revealed to be decreased in 
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the Rag1 mutants, which was also confirmed by RT-PCR. Further characterization 

revealed that 12158 is a part of the transcript of a CR1-1 repetitive element. The reason 

behind the association of its transcription and Rag1 integrity is not clear.    



138

CHAPTER 5 DISCUSSION

5.1 Hypothesis about DNA recombination in the nervous system 

One obvious hypothesis to explain the neuronal expression of Rag1 is: a RAG-mediated 

genomic recombination, similar to V(D)J recombination in the immune system, also 

exists in the nervous system. This was proposed 15 years ago and was heavily debated 

since then. 

5.1.1 The presence of DNA rearrangement in the nervous system 

The strongest support for the above hypothesis comes from the studies on transgenic 

mice. They carried an inverted LacZ gene flanked with RSSs so that the RAG-mediated 

recombination will flip and activate the LacZ gene. In these mice, the translated -

galactosidase activity and rearranged DNA were only detected in the nervous system and 

immune organs (Matsuoka et al., 1991). This strongly suggests that DNA rearrangement, 

possibly similar to the V(D)J recombination, exists in the nervous system. However, 

using the same approach, Tonegawa’s group speculated that the activation of LacZ gene 

is due to special backward transcription (Abeliovich et al., 1992); Honjo’s group was 

unable to detect DNA rearrangement in the mouse brain (Kawaichi et al., 1991).  So far, 

there is still no evidence to further prove whether the recombination detected in 

Matsuaka’s work are relevant to RAG1 protein or not, or if endogenous sequences are 

rearranged. Moreover, no neuronal and behavioral defect was seen in the Rag1-knockout 

mice (Mombaerts et al., 1992), which did not support the idea about Rag1’s function in 

neurons.

The same RSS-LacZ reporter cassette has also been used in P19 cells for the same 

purpose (Kawabata et al., 2004). The -galactosidase activity was detected specifically 
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during retinoic acid induced neural differentiation. Further analysis revealed that the 

activation of LacZ is more likely due to DNA re-integration, rather than the RSS-

mediated recombination. This suggests that an alternative, less stringent DNA 

recombination might occur specifically during neural differentiation. 

There is also other evidence for the presence of neuronal DNA recombination. As we 

know, the non-coding signal ends are often excised as circular DNA molecules in V(D)J 

recombination, which can be used as an indicator for DNA recombination events 

(Okazaki et al., 1987; von Schwedler et al., 1990). Similar extrachromosomal circular 

DNA have also been found in Drosophila embryo (Degroote et al., 1990), Xenopus

embryo (Cohen and Mechali, 2001), human bone marrow (Lou et al., 1993) and 

mammalian cell lines (Stanfield and Helinski, 1986; van Loon et al., 1994). They are 

possibly generated from genomic DNA via mechanisms including reverse transcription, 

replicon misfiring or DNA recombination. Recently, Suzuki’s group detected some 

circular DNA molecules in mouse brain tissue (Maeda et al., 2004). Although the 

formation mechanism and significance are not clear, the stage specificity revealed by 

clone BC-1 and the genomic deletion detected at this locus suggest that a neurogenesis-

specific DNA rearrangement might exist. 

5.1.2 Mutations in NHEJ pathway cause the increase of neural apoptosis  

Data obtained from the NHEJ (non-homologous end-joining) pathway mutants has been 

proposed as another support for the neuronal DNA recombination hypothesis. 

Un-repaired double–strand breaks (DSBs) of genomic DNA may cause cell death. In 

eukaryotic cells, DSBs can be repaired by either homologous recombination or non-

homologous end-joining (NHEJ) pathway. NHEJ is particularly engaged to repair the 

RAG-labered DSB during V(D)J recombination. Mutations in NHEJ components, 
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including XRCC4, DNA ligase IV, Ku 70, Ku 80 and DNA-PKs, cause the failure of 

V(D)J recombination and lead to premature death of lymphocytes. Intriguingly, analysis 

of mice embryo carrying these mutations also revealed an aberrant increase of neural 

apoptosis, which likely to be caused by the un-repaired DSBs (Gao et al., 1998; Sekiguchi 

et al., 1999). DSBs can be induced in mammalian cells by various mechanisms, including 

RAG-mediated cleavage. The expression of Rag1 in the nervous system raised the 

possibility that RAG proteins generate DSBs in neural cells as the first step for DNA 

recombination.  

However, some recent evidence, including our unpublished data, indicates that Rag1 is 

irrelevant to the increase of neural apoptosis in those NHEJ mutants. When we knocked-

down XRCC4 and DNA-ligase IV in zebrafish early embryo using anti-sense morpholino, 

the increased apoptosis was detected by TUNEL staining at 24 hpf (Cole and Ross, 2001), 

mainly in neural tube (data not shown). This does not correlate with the Rag1 expression. 

According to our observation of the Rag1:GFP fish, Rag1 is mainly expressed in the 

olfactory pit, ventral part of brain and somites, not in the neural tube around 24 hpf (refer 

to 3.1.2). This suggests that Rag1 is not the cause of increased cell death in neural tube of 

these fish. Furthermore, we couldn’t detect any Rag1-specific DSBs in zebrafish nervous 

system, either by immunofluorescence with antibodies against phosphorylated histone -

H2AX and NBS1 (Nijmegen breakage syndrome protein) (Chen et al., 2000), nor by the 

end-labeling with TdT (data not shown). These data were consistent with the observation 

that a mutation in Rag1 does not suppress the neural apoptosis phenotype in NHEJ 

mutants (Sekiguchi et al., 1999). 

Although the direct cause has not been revealed, other data have suggested that the 

intense neuronal DSBs revealed in the NHEJ mutants are being tightly monitored. ATM 

(ataxia telangiectasia mutated protein) is a kinase of p53. Both of them are involved in 
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monitoring DSBs and mediating the apoptosis triggered by damaged DNA. In mutant 

mice, the deficiency of p53 and ATM was found to be able to rescue the abnormal 

neurogenesis caused by NHEJ mutations, but not the immune defect in these mutants 

(Gao et al., 2000; Lee et al., 2000b). Consistently, p53- and ATM-deficient mice show 

other types of neuronal abnormalities, neurobehavioral disorders and ataxia respectively 

(Amson et al., 2000; Borghesani et al., 2000). These data indicate a function of p53 and 

ATM in preventing the accumulation of neurons carrying damaged DNA, suggesting that 

DSBs are generated during neurogenesis under tight control and proper repair of these 

DSBs is critical. This also supports the presence of neurogenesis-specific DNA 

rearrangement, since the generation and repair of DSBs could be a part of the process.  

5.1.3 Neuronal diversity  

Unlike the immune system, the mechanisms to create diversity and complexity in the 

nervous system are largely remained unknown. Some neuronal molecules were found 

highly diverse and thus were regarded as the candidate substrates of the proposed 

“neuronal DNA recombination”. Two popular examples are the odorant receptors (OR) 

and protocadherins (Pcdh).

5.1.3.1 OR genes  

Odorant receptor (OR) genes form the largest gene family in the mammalian genome 

(Buck and Axel, 1991; Dugas and Ngai, 2001; Glusman et al., 2001; Godfrey et al., 2004; 

Zhang and Firestein, 2002). However, from such a large, highly dispersed repertoire, each 

olfactory sensory neuron (OSN) expresses only one OR gene in a mutually exclusive and 

monoallelic manner (Serizawa et al., 2004; Shykind, 2005). The expression of Rag1 in 

the zebrafish olfactory epithelium, whose organization is highly similar to that in 
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mammals, suggests that DNA rearrangement is a possible mechanism for the regulation 

of OR genes. 

However, in our study, the selective expression of Rag1 in a sub-population of neurons in 

the OE (refer to 3.3.1) indicates that Rag1, and therefore RAG1-mediated DNA 

recombination, do not play essential role, such as the regulation of OR genes, in every 

OSN.  And the fact that knocking-down Rag1 didn’t affect the axon projection of the 

Rag1-possitive neurons further confirmed that Rag1 doesn’t play a role in regulation of 

OR genes, which is involved in the axon projection of OSNs. 

This is consistent with the studies reported in 2004 (Eggan et al., 2004; Li et al., 2004). 

Jaenisch’s and Mombaerts’s groups independently cloned mice from post-mitotic OSN 

nuclei. These mice expressed a normal range of OR genes instead of the expected single 

subtype of OR in the donor OSN, in contrast to the mice cloned from lymphocyte nuclei, 

which express the one type of antigen receptor in whole body (Hochedlinger and 

Jaenisch, 2002). This excludes the DNA rearrangement model for OR gene activation. 

Now, more and more data support a new model. By sequence comparison of mouse and 

human genomes, a 2-kb homology (H) region far upstream of the MOR28 OR gene 

cluster was found to be critical in activating the downstream OR genes (Nagawa et al., 

2002), indicating that a cis-acting locus control region (LCR) activates the OR genes. 

After an OR has been chosen, a negative feedback mechanism is proven essential in 

maintaining the mutual exclusive expression of the OR: the functional OR proteins were 

postulated to prevent further activation of other OR genes in the cells (Lewcock and 

Reed, 2004; Serizawa et al., 2003; Shykind et al., 2004). These are thus two parts of the 

theory: stochastic selection of an OR gene is mediated by a cis-acting LCR; negative 

feedback regulation by the OR gene product suppresses other OR genes and stabilizes the 
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chosen one. Together they ensure the maintenance of the one neuron-one receptor rule in 

the olfactory system (Serizawa et al., 2004). 

5.1.3.2 Protocadherins  

Protocadherins (Pcdh) are another family of genes that have been regarded as putative 

substrates of DNA recombination in the nervous system.  

In both human and mice, the Pcdh- , ,  genes are clustered and display a striking 

genomic organization, which highly resembles the immunoglobulin and T-cell receptor 

loci (Wu et al., 2001). Especially in the Pcdh-  and clusters, large variable (V) exons 

are tandemly arranged and followed by three small constant region exons. Each of the V 

exons separately joins a constant exon to generate diverse Pcdh mRNA. Recent studies 

located a conserved regulatory motif upstream of the each V exon and proposed a 

multiple promoter and cis-alternative splicing model (Wang et al., 2002). But the high 

rate of somatic mutations of Pcdh molecules and a significant number of DSBs within 

Pcdh locus in the mouse cerebral cortex, still indicate that DNA rearrangement in Pcdh

genes might exist (Yagi, 2003). 

5.1.4 Our data suggest a modification for the old hypothesis 

5.1.4.1 The restricted expression in zebrafish nervous system does not support a 

universal function of Rag1 in all neurons 

As revealed by transgenesis and confirmed by immunofluorescence in our study, the 

expression of Rag1 was restricted to subsets of neurons in zebrafish nervous system (refer 

to Chapter 3). It appears in sensory organs (the OE, retina and otic vesicle) as well as the 

CNS (the spinal cord and brain), but only restricted to particular subsets of neurons (e.g., 

the microvillous OSNs in OE, RGC and amacrine cells in the retina, crista hair cells in the 
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otic vesicle and dorsal interneurons in the spinal cord). The selective expression of Rag1

in the OE was maintained till adulthood. These observations indicate that any function of 

Rag1 is not common for all neurons. 

5.1.4.2 The non-overlap expression between Rag1 and Rag2 among neurons does not 

support the presence of neuronal V(D)J recombination  

A critical requirement for V(D)J recombination in the immune system is the presence of 

RAG2 protein. Rag2 transcripts had been detected in zebrafish OSNs by Shuo Lin’ group 

(Jessen et al., 2001b). We independently generated 3 transgenic lines to examine the 

expression of Rag2 in the nervous system and to examine if Rag1 and Rag2 are co-

expressed. It was clearly seen in OE that the Rag2-driven reporters are not correlated with 

the Rag1 expression. All three Rag2 transgenic lines express the reporter in the same 

subset of ciliated OSNs, which project to a few glomeruli in the ventral OB. These OSNs 

are distinct from the Rag1:GFP expressing microvillous OSNs in cell morphology, cell 

location and axon projection. The expression of Rag2-driven reporters was also found in 

other parts of the nervous system at larval stages, but no obvious correlation with Rag1 

expression was detected. These data suggest that Rag1 is unlikely to mediate V(D)J 

recombination in the nervous system. 

5.1.4.3 Summary 

Although several issues have been clarified, the nervous recombination model still 

remains a possibility. Our studies suggest that a modification of the old hypothesis is 

required. A universal DNA recombination, which acts via a mechanism similar to V(D)J 

recombination and is essential in creating the diversity in whole nervous system, is 

unlikely to exist. Instead, an alternative Rag1-independent or selective Rag1-mediated 

somatic DNA rearrangement in some neurons might occur. 
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5.2 The maturity and identity of the Rag1:GFP positive neurons in olfactory 

epithelium

5.2.1 GFP-positive olfactory neurons are mature 

Given the fact that in the immune system Rags are expressed in immature lymphocytes 

undergoing V(D)J recombination, the presence of Rag1 in a sub-population of neurons in 

olfactory epithelium (OE) raised a possibility that these cells are also immature neurons, 

which might undergo a type of Rag1-dependent genomic rearrangement. But further 

examination demonstrates that the Rag1-positive cells in OE are mature neurons.  

Mature olfactory sensory neurons (OSN) are bipolar cells. They extend axons to olfactory 

bulb (OB) to form synapses with second-order neurons in glomeruli and terminate the 

knob-like dendrites with cilia or microvilli on the epithelial surface to sense chemical 

odorants (Farbman, 1994). By our observations, the Rag1:GFP positive neurons in the 

OE are bipolar cells. Most of them have a visible GFP-positive axon extending to the OB. 

These axons terminate at a few targets in the OB and the projection structures are 

relatively stable. The co-localization with the synapse marker SV2 proves that those GFP-

positive targets are glomeruli. The dendritic end of the Rag1:GFP positive cells are 

exposed to the epithelial surface, although with lower accessibility than those GFP-

negative OSNs. When fish was left in the water containing lipophilic dye such as DiI or 

Di8, the OSNs exposed to the water will take up these dyes and get labeled. Among the 

massive number of labeled cells, some GFP-positive cells also became stained and the 

staining could be traced to the axon terminal. The bipolar structure suggests that these 

GFP positive cells are mature OSNs. 

In addition, the apical-basal position of the Rag1:GFP cells in adult OE suggests that they 

are mature OSNs. The proliferation, differentiation and death of neurons proceed 
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throughout life in the olfactory epithelium. Globose progenitor cells located in the basal 

layer undergo mitotic division and continually produce pro-neurons, which migrate 

apically in the epithelium, and then grow axon and dendrites, ultimately reach their 

maturity and become OSNs (Beites et al., 2005; Byrd and Brunjes, 2001; Farbman, 1994). 

By our observations, the Rag1:GFP positive neurons are located in apical layer in the 

adult OE. This resembles the distribution of mature neurons, not immature neurons.  

We tried to further clarify this issue using immunofluorescence with an antibody against 

GAP-43, a maker for immature neurons. But the antibody showed a lot of non-specific 

staining and failed to work on zebrafish OSNs. Nevertheless, even without molecular 

confirmation, the bipolar cellular structure and apical localization still strongly indicate 

that these Rag1:GFP positive cells in olfactory epithelium are mature sensory neurons. 

5.2.2 The Rag1:GFP positive cells in OE are microvillous OSNs  

In teleosts OE, there are three morphologically different types of OSNs: ciliated, 

microvillous and crypt cells. The Rag1:GFP positive OSNs in adult are mainly located in 

the apical half of the adult OE, with a relative short dendrites and small apical endings. 

This cellular morphology and position along the apical-basal axis of OE strongly 

resemble the microvillous OSNs described in catfish and goldfish (Hansen et al., 2004; 

Hansen et al., 2003).  

Microvillous and ciliated OSNs are the two major types of neurons in the OE. Several 

lines of evidence suggest that they express different signal transduction machineries and 

project axons to different region in the OB (Hamdani et al., 2001; Hansen et al., 2003; 

Morita and Finger, 1998). In zebrafish, the ciliated OSNs express OR-type odorant 

receptors, cyclic nucleotide-gated channel A2 subunit, olfactory marker protein (OMP), 

and project axons mostly to the dorsal and medial regions of the OB; whereas the 
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microvillous OSNs express V2R-type receptors, transient receptor potential channel C2 

(TRPC2), and project axons to the lateral region of the OB. Furthermore, it has been 

shown recently that axons from different types of OSNs target different glomeruli in a 

mutually exclusive manner, from a very early stage (Sato et al., 2005). In our study we 

noticed that the Rag1:GFP positive neurons are OMP-negative; they show distinct 

morphology from OMP-positive OSNs, which are mainly ciliated neurons; from 

embryonic stage to adulthood, the Rag1:GFP positive axons target to a distinct set of 

glomeruli in the lateral OB, which highly resembles the axonal projection pattern of 

TRPC2 positive microvillous OSNs (Sato et al., 2005). 

The cell morphology of OSNs was also known to correlate with the expression of G 

proteins. Ciliated OSNs express G olf, while microvillous OSNs are heterogenous in 

carrying G o and G q (Hansen et al., 2004; Hansen et al., 2003). We checked the 

expression of different G  subunit in these GFP expressing neurons and found that all 

GFP positive cells are G olf negative, G q negative, but heterogeneous in carrying G o. It 

is consistent with the former observations and suggests that these GFP positive cells are 

not ciliated, but microvillous OSNs.  

Despite that the expression of OR genes, odorants spectrum and the related behavior 

haven’t been tested; the cell morphology, position in the OE, the absence of OMP and 

G olf, as well as the axonal projection to the lateral OB, all strongly suggest that these 

Rag1:GFP positive cells are microvillous OSNs. 

5.3 The regulations of Rag expression 

5.3.1 Rag genes are under complicated regulation 

In the immune system, Rag1 and Rag2 are expressed in a stringent lineage- and stage-

specific manner, which is essential for the proper control of V(D)J recombination. This 
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manner of Rag expression is accomplished through transcription regulation as well as 

post-translational modification.  

Examination of the Rag locus has revealed an unusual complicated regulatory mechanism 

for both Rag1 and Rag2 transcription, which is still not fully understood. Firstly, studies 

on human and mouse have shown that Rag1 and Rag2 core promoters alone are not 

sufficient to drive the lymphoid-specific expression of reporter genes in vitro. Rag1

promoters in human and mouse are highly conserved and active in both lymphoid and 

non-lymphoid cell lines (Brown et al., 1997; Zarrin et al., 1997). The Rag2 promoter from 

human shows robust activity in both lymphoid and non-lymphoid cell lines (Fong et al., 

2000), whereas the mouse Rag2 promoter is lymphoid specific and behaves differentially 

in B and T cells (Lauring and Schlissel, 1999). Secondly, the tissue- and stage-specificity 

of Rag1 and 2 expression is accomplished by a selective usage of a series of cis elements. 

Several distal regulatory elements have been identified in the Rag2 side of the locus. In 

mouse, a proximal enhancer, 2.6 kb 5’ upstream of Rag2, confer specific expression of 

Rag1 and Rag2 in B-lymphoid, but not in T- or non-lymphoid cell lines (Wei et al., 

2005); whereas a distal element, 8 kb 5’ of Rag2, is able to direct reporter expression in 

both B and T cell lines (Monroe et al., 1999; Wei et al., 2002). In addition, a distal 

silencer at Rag1 side was found in human and zebrafish to restrict Rag1 expression to 

immune tissue (Jessen et al., 1999; Zarrin, 1998). Thirdly, other careful studies further 

demonstrate that the two Rag genes, closely linked and convergently transcribed, actually 

undertake an unusual coordinate regulation in immune system. In the mouse, a 55 kb 

region, covering both Rag1 and Rag2, 10 kb 5’ of Rag2 and 20 kb 5’ of Rag1, is 

sufficient to direct both Rag1 and Rag2 expression in pro-B, pre-B and DN T cells (CD4-

CD8- double negative T cells), but not in DP T cells (CD4+ CD8+ double positive T cells) 

(Yu et al., 1999). Subsequent analysis revealed that, within this region, the intergenic 

segment between Rag1 and Rag2 contains a Runx-dependent silencer, which suppresses 
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Rag expression in DP T cells; whereas out of this region, a cis element between 71 and 86 

kb 5’ of Rag2 serves as an anti-silencer to counteract the silencing effect, and thus is 

essential for Rag expression in DP T cells (Yannoutsos et al., 2004). Besides these, 

another element located 20~25 kb 5’ of Rag2, has been independently shown to be 

necessary for optimal expression of both Rag genes in developing B cells (Hsu et al., 

2003).

Besides the complicated transcription regulation, post-translational modification is also 

involved in controlling the level of RAG proteins. In 1993, Desiderio’s group found that 

RAG2 was regulated at protein level by phosphorylation (Lin and Desiderio, 1993). 

Subsequent studies refined and expanded this conclusion. RAG2 protein is 

phosphorylated by cyclin A-associated CDK2 at Thr-490 (mouse RAG2), which is 

located within a conserved signal sequence S/T-P-X-K/R (Li et al., 1996; Lin and 

Desiderio, 1994). The Thr-490 phosphorylation mediates the translocation of RAG2 from 

nucleus to cytoplasm and triggers its subsequent degradation through the 

ubiquitin/proteasome system (Mizuta et al., 2002). Since cyclinA/CDK2 activity 

increases sharply at the G1/S boundary, is maintained until M phase entry and eliminated 

at G0/G1 phase, the RAG2 accumulation and V(D)J recombination are thus coupled to 

the cell cycle, specifically at G0/G1 phase (Lee and Desiderio, 1999).  

Some studies suggest that RAG1 protein might undergo post-translational regulation as 

well. As measured by pulse-chase, RAG1 is a short-lived protein, with a half life of 15 

minutes (Sadofsky et al., 1993). Recent assignment of the E3 ligase function to the N-

terminal RING domain of RAG1 and discovery of Rag1 auto-ubiquitylation further 

suggested that Rag1 might undergo auto-regulation (Jones and Gellert, 2003; Yurchenko 

et al., 2003), although the possibility that RAG1 RING domain ubiquitylates RAG2 and 

leads to its degradation also exists (Sadofsky, 2004). 
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5.3.2 Mis-regulation of Rags and consequence 

Systematic tight regulation stringently restricts RAG proteins to specific cell lineages at 

specific developmental stages and phase of the cell cycle, where and when V(D)J 

recombination is required. RAG proteins themselves have endonuclease activity(McBlane 

et al., 1995). The RAG complex is able to recognize a collection of diverse RSSs, the so-

called cryptic RSSs, which has been estimated to be frequent in normal genome (Lewis et 

al., 1997). Mis-regulation of Rags at any level might lead to serious consequences, such 

as translocation. 

Demongeot’s group generated transgenic mice that carries ubiquitously and constitutively 

co-expressed Rag1 and Rag2 (Barreto et al., 2001). In these mice a severe block in both B 

and T cell lymphopoiesis was detected, indicating that down-regulation of Rags at proper 

stages is also essential for lymphocyte development. Furthermore, these mice died 

between three and four weeks, much shorter than the normal lifespan of two years. This 

phenotype is similar to that reported in the NHEJ (non-homologous end-joining) mutant 

mice, suggesting the presence of an excess of un-repaired DSBs (double strand break). 

These DSBs might be generated through the mis-recognization of abundant cryptic RSSs 

(that normally are not exposed to RAGs) by the ectopically expressed RAGs. 

Consistent with that, enforced expression of RAG2 throughout the cell cycle is associated 

with accumulation of aberrant recombination products, which were also formed in the 

NHEJ mutants (Lee and Desiderio, 1999). 
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5.3.3 Implications of Rags regulation 

5.3.3.1 The presence of RAG2 in the OE 

To examine the expression of Rag2 in detail, we generated Rag2 transgenic zebrafish in 

this study. These fish carried EGFP or DsRed under the control of a ~7 kb Rag2 promoter 

fragment. Totally, 3 independent lines that showed the expected reporter expression in 

thymus from 4 dpf were examined: one Rag2:GFP line and two Rag2:DsRed lines. All 

these three lines similarly expressed the reporter in a subset ciliated OSNs, which project 

their axons to a few ventral glomeruli. In the fish that carry both Rag2:GFP and 

Rag2:DsRed, the red and green OSNs partially overlapped, whereas the red and green 

glomeruli are completely co-localized. This suggests that the GFP and DsRed are 

expressed in the same subset of OSNs; their partial overlapping within this group of cells 

might be caused by difference in their stability and post-translational processing. The 

consistent expression in 3 different lines rules out the possibility that the restricted 

expression of Rag2-driven reporter in a subset OSNs comes from the integration of the 

transgene in different genomic locations (Wakimoto, 1998). 

Another possible artificial effect might be introduced by the use of a truncated Rag2

promoter. However, Rag2 transcripts has been detected by both Shuo Lin and us in 

zebrafish OE, which proves that endogenous Rag2 is transcribed in the OE; also the 

truncation of a promoter and loss of regulatory elements normally lead to expanded gene 

expression. This is opposite to the restricted expression of Rag2 in zebrafish OE 

suggested by the transgenics. Hence, unless the promoter used contains a silencer 

element, the transcription activity seen in the OE is probably real. 

The post-translational regulation of RAG2 is unlikely to be reflected by this transgenesis. 

Thus the fidelity of the reporter gene still remains to be examined. To confirm it at 
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protein level, we generated an antibody against a 15-aa peptide antigen within zebrafish 

RAG2. This antibody recognized thymocytes specifically, but failed to stain any OSNs. 

Thus whether endogenous RAG2 proteins exist in neurons still remains an open question.  

5.3.3.2 Specific expression of Rag1 in the nervous system 

Compared to the broad yet restricted distribution of Rag1 in the nervous system, Rag1

can hardly be detected in other tissues. We have checked skin and muscle by confocal 

microscope and RT-PCR. Consistent with the reports in mice (Chun et al., 1991) and 

amphibian (Frippiat et al., 2001), no Rag1 was detected in these tissues of zebrafish 

larvae. This suggests that the expression of Rag1 in the nervous system is specific, not a 

consequence of loss of control. 

5.3.3.3 Ectopic over-expression of Rag1 showed no effect on neurons

The ubiquitous constitutive expression of both Rag1 and Rag2 caused early death and 

immune defect of the host. Since the immune defect in Rag-depleted mice showed no 

effect on the host lifespan, the early death of these mice should be caused by other 

reasons. By the phenotype similarity between these mice and the NHEJ mutants, it was 

proposed that ectopically expressed Rags might cause neuronal defect and lead to the 

early death of host (Barreto et al., 2001). In addition, the selective presence in the nervous 

system (Chun et al., 1991) (also refer to our data in Chapter 3) indicates that Rag1 might 

have some functions restricted to a group of neurons, thus the ectopic expression might be 

intolerable for other neurons. 

To clarify this possibility, we tried to over-express Rag1 in neurons using the GAL4/UAS 

system (Scheer and Camnos-Ortega, 1999). We constructed the plasmid 

pFBDa_UAS:uncGFP/ UAS:Rag1, in which two UAS elements drive GFP and zebrafish 

Rag1 separately, so that GFP will be turned on parallely to Rag1 and indicate its over-
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expression. This plasmid was injected into one-cell stage embryos together with the 

pHuC:GAL4 plasmid, which carries GAL4 driven by a neural specific HuC promoter 

(Park et al., 2000). 1-day after injection, RNA was isolated from these embryos and used 

for RT-PCR to monitor the Rag1 over-expression. As indicated by the amplification with 

a pair of primers within Rag1 coding sequence, the Rag1 mRNA level was significantly 

increased in the injected embryos (Fig. 5-1). Parallely, some injected embryos were kept 

for observation. At 2-day after injection, GFP was clearly seen in some well differentiated 

neurons, but no obvious morphological defect was noticed. 

Another approach was also used to over-express Rag1. GFP was ligated to the C-terminus 

of the full length Rag1 cDNA. From this sequence, RAG1-GFP fusion mRNA was 

transcribed and injected into one-cell stage embryos, in which GFP signal was examined 

to monitor the presence of the RAG1-GFP fusion protein. In the injected embryos, some 

faint GFP expression was distinguishable, but no morphological phenotype was detected 

at early stages. The presence of faint GFP indicates that the fusion mRNA was made 

properly and fusion protein was translated. However, it remains to be examined whether 

the ectopically expressed Rag1 is subjected to post-translational control. 

5.3.3.4 The Rag1 mutant rescue experiments 

The above two approaches have also been applied to Rag1 mutants to achieve a rescue. 

Several putative Rag1 downstream genes (revealed by the microarray with larval tissue), 

including the 12158 (refer to 4.4), were examined to verify the rescue effect. But in both 

experiments, the pFBDa_UAS:uncGFP/ UAS:Rag1 and pHuC:GAL4 mixed plasmid 

injection and the RAG1-GFP fusion mRNA injection, no obvious rescue was detected by 

RT-PCR (data not shown).  
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There are several possible reasons. 1) Since the expression of Rag1 in neurons is highly 

restricted, the random mosaic expression provided by plasmid and mRNA injection was 

not sufficient to rescue the Rag1 deficiency, which is only critical in a group of neurons. 

2) The expression provided by plasmid and mRNA is transient, possibly initiate from 

3~5hpf and fade on 2~3 dpf. As revealed by transgenesis, Rag1 is expressed in different 

sets of neurons at different time, most of them appearing from 2 dpf onwards. Thus the 

above transient expression may not sufficient to rescue the Rag1 deficiency all the time. 

3) It is also possible that the Rag1 mutants contain some other mutations in their genome, 

which contribute to the decrease of those candidate genes.  

To prove that a gene is a specific downstream target of Rag1, the rescue experiment is 

necessary. A good choice is to generate a transgenic Rag1 mutant line, which carries a wt 

Rag1 allele as a transgene. Considering the complicated regulation of Rag1, it may be 

safe to introduce a BAC clone covering the Rag locus as a transgene. But this could not 

be done in this study due to the time constrains. 

5.3.4 The understanding of Rag is far from complete 

Although Rag genes were identified as early as in 1989 (Jung and Alt, 2004; Schatz et al., 

1989), current studies on Rags are still refining our understanding.  

Firstly, Rags function seems not to be restricted to the immune system. Besides the 

previously described Rags expression in the nervous system, low level Rag1 or Rag2

transcripts also have been detected in zebrafish ovary (Willett et al., 1997), Xenopus

oocytes (Greenhalgh et al., 1993) and mouse early embryo (Hayakawa et al., 1996). This 

is consistent with our observation that the Rags transcripts are present in zebrafish early 

embryo. Moreover, our RT-PCR was done with zebrafish externally developed embryos, 

detection of Rag1 in mouse blastocytes was confirmed by in situ hybridization 
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(Hayakawa et al., 1996). These ruled out the doubt that the Rag signals in oocytes and 

ovary might come from blood-borne cells. However, the function of Rags in germ cells 

and early embryo is not clear. The presence of partially joined Ig gene in shark germ cell 

genome suggests that Rags might work as a recombinase at this stage (Lee et al., 2000a).  

Secondly, the properties of RAG1 and RAG2 are still under investigation. So far, V(D)J 

recombination is the only sequence-directed DNA rearrangement found in vertebrates. It 

is initiated with the recognization of specific RSS by the RAG complex. However, this 

recognization is not simple, because RSSs are highly variable, inspite of the specificity of 

recombinase targeting. In an alignment of RSSs from different species, all four 

nucleotides were observed at 22 of 28 12-RSS positions and 34 of 39 23-RSS positions. 

In mice, fewer than 16 % of RSSs carry consensus heptamers and nonamers; none 

contains a consensus spacer sequence. Currently, the mechanism for the RAG complex to 

recognize such diverse RSSs with significant specificity is not clear (Cowell et al., 2004). 

In addition, some studies suggest that RAG complex may have a function in recognizing 

other sequence or structure in the genome. Cyptic RSSs are also diverse and exist 

frequently in non-Ig and TCR loci of genomes (Lewis et al., 1997). They are not adjacent 

to V, D and J gene segments, but may also be recognized by RAG complex. Some of 

them were shown to have physiological functions, such as chromosome translocation and 

receptor editing (Davila et al., 2001; Fanning et al., 1998), which were suspected to be 

RAG-mediated. Meanwhile, other studies demonstrated that the RAG complex is 

involved in cleaving a non-B-form DNA structure within Bcl-2 Mbr locus (containing no 

RSSs) of human chromosome. This cleavage might subsequently lead to the reciprocal 

translocation between chromosome 14 and 18, which was found to be the most common 

chromosomal abnormality in human cancer (Raghavan et al., 2004). 
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Thirdly the conserved Rag locus is undergoing further characterization. Besides the well 

studied Rag1 and Rag2 genes, many conserved cis-elements have also been identified in 

this locus and have revealed a complicated regulatory mechanism for Rag1 and Rag2, but 

so far the characterization is not enough to fully explain the regulation of Rags.

Moreover, another evolutionarily conserved gene, NWC (which means “very interesting’ 

in Polish), was identified within Rag locus recently (Cebrat et al., 2005). It spreads over a 

distance of 70 kb, with gene structures highly conserved among mouse, human, 

chimpanzee and dog. In non-lymphoid tissue, NWC is ubiquitously expressed under 

control of a promoter located in the Rag intergenic region; whereas in T and B 

lymphocytes, it is regulated by the Rag1 promoter (Cebrat et al., 2005). Studies of this 

new gene have just been initiated; further characterization and examination of this gene 

and its relationship to Rags should reveal more interesting knowledge. 

5.4 About the microarray experiments 

5.4.1 Implications of our experiments 

5.4.1.1 Immune interference in isolating Rag1 downstream neuronal genes 

Our microarray with RNA isolated from adult olfactory rosettes revealed broad and 

complicated changes in genes expression in the Rag1 mutant fish. These changes 

reflected the expected increase of innate immunity, activation of corresponding secondary 

responses (e.g. enhanced apoptosis and cell proliferation), as well as neuronal 

degeneration.

As suggested by the literature, the neuronal degeneration might be also a consequence of 

the increase of innate immunity. It was speculated for long time and strengthened 

recently, that immune response, especially the complement-mediated inflammation, may 

occur in CNS and selectively cause neuronal degeneration (Lucas et al., 2006; van Beek 
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et al., 2003). Normally the CNS is protected by the BBB (brain blood barrier), and in 

CNS inflammation mediators are expressed, if any, at very low level. Only in response to 

injury, infection or disease, which rarely occurs in CNS, is inflammation activated. So far, 

inflammation has been known to associate with the neuronal degeneration in many CNS 

diseases (Lucas et al., 2006; van Beek et al., 2003).  The olfactory rosette is a sensory 

organ in PNS. It has not been proposed that inflammation causes neuronal degeneration in 

PNS. However, this might be because the efficient repair masks the phenomenon. In Rag1

mutants, the repair response may not have been sufficient to repair the repetitive 

infections that occurred in the olfactory rosette, and thus causes chronic inflammation. 

This might make the neuronal degeneration become apparent. Furthermore, those 

neuronal genes down-regulated in the Rag1 mutants are relevant to many different 

biological functions, and their combined loss is more likely to occur in a neuronal 

degeneration rather than in a decrease of a specific function. Thus we speculate that the 

decrease of neuronal genes in the Rag1 mutants was mainly an indirect consequence of 

the adaptive immune deficiency. Using adult Rag1 mutants for the microarray introduced 

interference of the immune defect. A clear analysis of Rag1’s neuronal function may 

require a mosaic rescue experiment, in which the immune defect of the Rag1 mutants is 

rescued, for example, by kidney-transplantation (Langenau et al., 2004). 

To avoid the effect of immune deficiency, we had tried a microarray with RNA isolated 

from the larvae at 3 dpf, when the adaptive immune system hasn’t initiated, but the 

nervous system is largely established. However, from this experiment only 15 genes were 

identified to be significantly changed by ANOVA analysis, and 14 of them are poorly 

annotated ESTs. The computation result with the SAM program is highly similar, 

suggesting that between wt and Rag1 mutants, very little difference can be detected by 

microarray at this stage. This is likely due to the fact that a lot irrelevant tissue, such as 

non-neural tissue and non-Rag1-expressing neural tissue, were included in the 
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microarray, where they diluted and masked the possible neuronal function of Rag1.

Further purification of Rag1-expressing tissue might improve the microarray result, but 

this is technically difficult currently.  

5.4.1.2 Gene expression beyond the tissue restriction  

In our adult OE microarray, RNA used for hybridization was extracted from isolated adult 

olfactory rosettes. However, minority of genes, which are known to be enriched and 

functional in other tissue, were also present and showed expression changes in this 

microarray result. For example, Tesk2 and Pl10, two genes expressed in testis and known 

to function in spermatogenesis; Siah2, a gene encoding an E3 ubiquitin ligase and 

required for the specification of r7 photoreceptor cells in the eye, were found to be 

present in wt olfactory samples, but decreased in the Rag1 mutant rosettes. This suggests 

an unknown function of these genes in the OE. But, currently no evidence is available to 

verify these results. 

5.4.2 Microarray with zebrafish 

Zebrafish is an important vertebrate model for developmental and genetic studies. In 

recent years, the genome sequencing project and several EST (expressed sequence tag) 

projects accumulated a large amount of genomic information and also established 

zebrafish as a genomic model. High intensity microarray for genome wide gene 

expression analysis has been established for zebrafish, and has been used in mapping the 

transcriptom profiles during different embryonic stages (Mathavan et al., 2005) and 

systematic analysis of the downstream effect of a mutated gene (Qian et al., 2005; 

Sumanas et al., 2005). However, ESTs, the major contributors in zebrafish microarray (in 

our experiments, 14309 from 16399 oligo probes were designed from EST sequences), 

are still poorly annotated. This largely preventes further analysis of the microarray result, 
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and limits the usage of microarray in zebrafish. In our experiments, the original 

annotation of the Compugen-Sigma oligo set was out of date. The most recent annotations 

were obtained from Silicon-Genetics using the GeneSpider function in the GeneSpring 

software, and supplemented with the annotation database of GIS (Genome Institute of 

Singapore, http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/ ), which combined 

recent annotations from several databases (including Entrez Gene, Zebrafish UniGene 

Cluster and Zebrafish Gene Index) and was used in a recent publication (Mathavan et al., 

2005). After all of these efforts, there were still 131 genes from 341 significants totally 

un-annotated. These may contain a critical clue for the neuronal function of Rag1. Further 

effort on the characterization of these ESTs might thus be of use.  

5.5 Abundant polymorphism in zebrafish genome 

5.5.1 Abundant nucleotide sequence polymorphism revealed by GeneFishing 

technology 

Before we started the microarray experiments, we have tried another approach to search 

for Rag1-downstream genes in the nervous system. This is a RT-PCR based differential 

screening with a set of specially designed degenerate primers (GeneFishing, DEG kit). 

These primers, named as ACPs (annealing control primers), contain three parts. The 

regulator between the core and the universal sequence plays the key role in annealing of 

each portion to a template, thus increases the specificity and fish out differentially 

expressed genes.  

To avoid immune system effects, RNA from 3 dpf embryos was used. RT-PCR products 

differentially amplified from Rag1 mutant and Wt siblings were sub-cloned and 

sequenced. From this, a pair of internal primers were designed and used in RT-PCR to 

confirm the expression difference.  
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The RT-PCR with ACP primers looked promising. Some different amplifications were 

detected between Rag1 mutants and Wt siblings (Fig. 5-2A, B; red and green 

arrowheads), and they were reproducible in different PCR reactions (Fig. 5-2A, B; red 

arrowheads). But, RT-PCR with internal primers designed from the cloned fragments 

didn’t show any significant difference between Rag1 mutants and Wt siblings (Fig. 5-2C). 

This indicates that the difference displayed in the RT-PCR with ACP primers might come 

from nucleotide sequence polymorphism between Rag1 mutants and Wt siblings. Totally 

20 clones were checked. None of them confirmed the expression difference. This suggests 

that sequence polymorphism in the zebrafish genome is abundant, and that this approach 

is unsuitable.  

5.5.2 A repetitive element generated polymorphism was found in 12158 locus 

Clone 12158, which was picked out from the larva microarray as a gene down-regulated 

in the Rag1 mutant, was also found to be polymorphic among wt siblings. Two alleles 

(12158A and 12158B) were identified to be single-copy alleles at the same locus in 

zebrafish genome (Fig. 4-11C, D). Comparison between these two alleles indicates that 

12158B is generated from the insertion of a repetitive element CR1-1 in the 12158A 

allele (refer to Chapter 4.4). Thus the 12158B can be considered as a repetitive element 

generated polymorphic allele in this locus. 

5.6 Overall conclusion 

Using transgenesis and immunofluorescence, we found that Rag1 is expressed in the 

zebrafish nervous system in a selective manner, which does not correlate with the Rag2

expression indicated by transgenesis. These data strongly suggest that Rag1 in the 

nervous system is unlikely to mediate DNA rearrangement similar to V(D)J 

recombination in the immune system, but may play a role restricted to subsets of neurons.  
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Overall gene expressions in adult olfactory rosettes were compared between Rag1

mutants and wt siblings by microarray. The complicated changes revealed in the 

experiment indicated an overall increase of innate immunity, activation of secondary 

responses, and a neuronal degeneration that was also likely a consequence of the increase 

of innate immunity. In the microarray with 3 dpf larvae RNA, the transcription of clone 

12158 was revealed to be associated with Rag1 integrity, which was also confirmed by 

RT-PCR.

All in all, our expression analysis suggests that Rag1 may play a function in selected 

groups of neurons; our microarray experiments revealed the global effect of Rag1

deficiency and some candidates for Rag1 downstream genes in neurons.  
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Appendix 1
                                                    SOLUTIONS 

100x E3 water 

29.2 g NaCl, 1.27 g KCl, 4.85 g CaCl2·2H2O, 8.13 g MgSO4·7H2O in 1 liter 

Ringer’s solution 

116 mM NaCl, 2.9 mM KCl, 1.8 mM CaCl2, 5 mM pH7.2 HEPES (Sigma Cat# H-

4034)

Hank’s saline 

137 mM NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 0.44 mM KH2PO4, 1.3 mM CaCl2,

1.0 mM MgSO4, 4.2 mM NaHCO3

PTU

0.003% 1-phenyl-2-thiourea in 10% Hank’s Saline 

LB medium 

20 g bacto-trypton, 5 g bacto-yeast extract, 0.5 g NaCl, pH7.0 in 1 liter 

SOC medium 

LB medium plus 20 mM glucose and 10 mM MgCl2

Glycerol solution 

65% glycerol, 0.1 M MgSO4, 25 mM Tris-HCl pH8.0 

dNTPs

10 mM of each dATP, dCTP, dGTP and dTTP in H2O

50x TAE 

242 g Tris base, 57.1 ml acetic acid, 50 mM EDTA pH8.5 in 1 liter 

6x Loading buffer 

I. 0.25% orange G, 30% glycerol in water 

II. 0.25% bromophenol blue, 0.25% xylene cyanol FF,  30% glycerol in water 
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10x DNase I buffer 

200 mM  pH8.0 Tris-HCl, 20 mM MgCl2 and 500mM KCl 

PBS

8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, pH7.4 in 1 liter. 

PBST

PBS plus 0.1% Tween-20 

20x SSC 

3 M NaCl, 0.3 M sodium citrate 

SSCT

SSC plus 0.1% Tween-20 

Buffer pH9.5 

1 M Tris, 1M MgCl2, pH 9.5; add 0.1% Tween-20 before use 

4% PFA/PBS 

Add 10 g PFA powder and 100 µl 10 M NaOH into 200 ml PBS, heat at 60°C and stir 

to dissolve the PFA. Then let it cool down to room temperature, adjust the pH to 7.4 

with HCl and top up with PBS to 250 ml. Store at 4°C (or -20°C for long time). 

Hybridization buffer for in situ 

50% Formamide (Sigma Cat# F-9037), 5x SSC, 9.2 mM citric acid pH6.0, 50 µg/ml 

Heparine (Sigma Cat# H-9399), 500 µg/ml tRNA (Sigma Cat# R-6625), 0.1% Tween-

20

TNT

100 mM pH7.5 Tris-HCl, 150 mM NaCl, 0.05% Tween-20 

TNB

100 mM pH7.5 Tris-HCl, 150 mM NaCl, 0.5% blocking reagent (NEN) 
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  Appendix 4

Primers for 12158 locus characterization 

PRIMER NAME PRIMER SEQUENCE REMARKS 

   
12158-F AACCGAAGCACCTGGAGGAT 12158 

12158-R AGTCCCACGTTGTATTTCTTTATTTG `` 

12158A-F1 AGTCCCACGGTTTAGTCTCG `` 

12158A-F2 GGCCCTTTTCAACCTTTTCACT `` 

12158A-R AATACTCTGCAGCCATACGGTTCT `` 

12158B-F1 GCAGAGTACGCGGGCAGATTAG `` 

12158B-F2 ATAAACCACGGCGAATGAAT `` 

12158-R2 GTTCCGTTGTTATCACCAGTTAGC `` 

12158-R3 GCCTTTGTTCGCGTGGGTAT `` 

12158-rpF2 TGCCCAACTGAGTCTGGTTC for Real-Time PCR 

12158-rpR TTAATCATTACTGAGAGTTCAAACACTG `` 

12158-rtF TTGAATTGAATGACTTACAGAGCA `` 

12158-rtR GTTCCGTTGTTATCACCAGTTAG `` 

actin-rtF TCGAGCAGGAGATGGGAACC `` 

actin-rtR CTCGTGGATACCGCAAGATTC `` 
   
















