
PROBABILISTIC MODELING AND REASONING IN 

MULTIAGENT DECISION SYSTEMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ZENG YIFENG 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NATIONAL UNIVERSITY OF SINGAPORE 
 

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




 

PROBABILISTIC MODELING AND REASONING IN 

MULTIAGENT DECISION SYSTEMS 

 
 
 
 
 
 

ZENG YIFENG 

(M. ENG., Xia’men University, PRC) 

 

 

 

 

A THESIS SUBMITTED  

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY  

DEPARTMENT OF INDUSTRIAL AND SYSTEMS 

ENGINEERING 

NATIONAL UNIVERSITY OF SINGAPORE 

2005





I 

Acknowledgements 

As I will soon get my PHD degree from the NUS, I would like to express my heartfelt 

gratitude to the many people who I am indebted to. 

First and foremost, I would like to thank my supervisor, professor Poh Kim Leng. He has 

offered many fresh insights on how I should conduct my research work. Besides, he has 

also helped me in writing some comprehensive and well-motivated academic papers. I am 

grateful to his advice, encouragement and patience under his supervision.  

I would also like to thank professor Leong Tze Yun. She has been supporting my research 

work and research activities since I joined the Biomedical Decision Engineering (BiDE) 

group four years ago. She has pointed out many mistakes in earlier versions of this 

dissertation, and given many valuable suggestions on the revision. I must also 

acknowledge professor Marek J. Druzdzel in University of Pittsburgh (U. S.), who has 

offered great advice on a part in this dissertation. He has been helping the building of my 

academic career.  

My colleagues at the BiDE group, including Li Guoliang, Jiang Changan, Liu Jiang, Chen 

Qiongyu, Rohit, Yin Hongli, Ong Chenhui, Zhu Peng, Zhu Ailing, Xu Songsong, and Li 

Xiaoli, has all asked interesting questions in my presentation, and offered helpful 

comments on my research. I have enjoyed their company in our trips to meetings and 

conferences abroad.  



II 

My juniors, including Cao Yi, Wang Yang, Wu Xue, Guo Lei, and Wang Xiaoying, have 

been painfully reading the earlier versions of this dissertation. They has put much effort 

into the correction of confusing sentences, and given useful remarks on my research.   

The members of the system modeling and analysis laboratory (SMAL), including Han 

Yongbin, Liu Na, Liu Guoquan, Zhou Runrun, Xiang Yanping, Lu Jinying, Bao Jie, and 

Aini, have spent a lot of time with me during my stay in Singapore. We have all got along 

very well. The lab technician, Tan Swee Lan, has provided an easy and convenient work 

space for us. I will memorize the happy time there for ever.  

Last but certainly the most important, I owe a great debt to my family members: my wife 

Tang Jing, my father, my mother, and my brother. Their love and continual support on all 

levels of my life are priceless.  

 

 

 
 
 



III 

Table of Contents 

1 Introduction ........................................................................................... 1 

1.1 Background and Motivation .................................................................................1 

1.2 The Multiagent Decision Problem........................................................................3 

1.3 The Application Domain ......................................................................................4 

1.4 Objectives and Methodologies..............................................................................5 

1.5 Contributions ........................................................................................................6 

1.6 Overview of the Thesis .........................................................................................7 

2 Literature Review ................................................................................ 11 

2.1 Bayesian Networks and Influence Diagrams......................................................11 

2.1.1 Bayesian Networks and Multiply Sectioned Bayesian Networks ..............11 

2.1.2 Influence Diagrams and Multiagent Influence Diagrams...........................19 

2.2 Intelligent Agents and Multiagent Decision Systems.........................................27 

2.3 Learning Bayesian Network Structure from Data ..............................................31 

2.3.1 Basic Learning Methods .............................................................................33 

2.3.2 Advanced Learning Methods......................................................................36 

2.4 Summary.............................................................................................................39 

3 Model Representation.......................................................................... 41 

3.1 Agency and Influence Diagrams.........................................................................41 

3.2 Multiply Sectioned Influence Diagrams and Hyper Relevance Graph...............43 

3.2.1 Multiply Sectioned Influence Diagrams (MSID) .......................................46 



IV 

3.2.2 Hyper Relevance Graph (HRG) ................................................................. 49 

3.3 Model Construction............................................................................................ 53 

3.3.1 MSID and HRG.......................................................................................... 53 

3.3.2 Modeling Process ....................................................................................... 54 

3.4 An Application ................................................................................................... 56 

3.4.1 Case Description......................................................................................... 57 

3.4.2 Model Formulation..................................................................................... 58 

3.5 Summary ............................................................................................................ 63 

4 Model Verification................................................................................65 

4.1 The Introduction ................................................................................................. 65 

4.2 Foundation of Symbolic Verification................................................................. 67 

4.3 Symbolic Verification of DAG structure ........................................................... 68 

4.3.1 Basic Concepts ........................................................................................... 69 

4.3.2 DPs with Algebraic Description................................................................. 70 

4.3.3 Find DC ...................................................................................................... 74 

4.3.4 Complexity Analysis .................................................................................. 75 

4.3.5 Dealing with Verification Failure............................................................... 77 

4.4 Symbolic Verification of Agent Interface .......................................................... 77 

4.4.1 Process of Symbolic Verification............................................................... 78 

4.4.2 Complexity Analysis and Further Discussion ............................................ 81 

4.4.3 Dealing with Verification Failure............................................................... 83 

4.5 Pairwise Verification of Irreducibility of D-sepset ............................................ 84 

4.6 Summary ............................................................................................................ 86 



V 

5 Model Evaluation................................................................................. 87 

5.1 The Introduction .................................................................................................87 

5.2 Cooperative Reduction Algorithms ....................................................................88 

5.2.1 Legal Transformation .................................................................................89 

5.2.2 Local and Global Elimination Sequence ....................................................91 

5.2.3 Global Elimination Sequence .....................................................................96 

5.2.4 C-Evaluation and P-Evaluation ................................................................104 

5.2.5 Summary...................................................................................................111 

5.3 Distributed evalID Algorithm...........................................................................113 

5.3.1 Evaluation Network ..................................................................................114 

5.3.2 Multiple Evaluation Networks..................................................................120 

5.3.3 Distributed evalID Algorithms .................................................................122 

5.4 Indirect Evaluation Algorithm..........................................................................125 

5.4.1 Algorithm Design .....................................................................................126 

5.4.2 Evaluation of SARS Control Situation .....................................................127 

5.5 Comparison on the Three Evaluation Algorithms ............................................129 

5.6 Summary...........................................................................................................131 

6 Case Study .......................................................................................... 133 

6.1 Decision Scenario .............................................................................................133 

6.2 Model Formulation ...........................................................................................136 

6.3 Model Verification............................................................................................140 

6.3.1 Verification of DAG Structures ................................................................140 

6.3.2 Verification of D-sepset............................................................................142 



VI 

6.3.3 Verification of Irreducibility .................................................................... 143 

6.4 Model Evaluation ............................................................................................. 145 

6.4.1 Solve I1 ..................................................................................................... 146 

6.4.2 Solve I2 ..................................................................................................... 147 

6.4.3 Solve I3 ..................................................................................................... 147 

6.4.4 Solve I4 ..................................................................................................... 148 

6.4.5 Solve I5 ..................................................................................................... 148 

6.4.6 Solve the MSID........................................................................................ 149 

6.5 Summary .......................................................................................................... 151 

7 Block Learning Bayesian Network Structures from Data ..............153 

7.1 The Challenge................................................................................................... 153 

7.2 Block Learning Algorithm ............................................................................... 155 

7.2.1 Generate Maximum Spanning Tree ......................................................... 156 

7.2.2 Identify Blocks and Markov Blankets of Overlaps .................................. 157 

7.2.3 Learn Overlaps ......................................................................................... 161 

7.2.4 Learn Blocks and Combine Blocks .......................................................... 162 

7.3 Experimental Results........................................................................................ 165 

7.3.1 Experiments on the Hailfinder Network .................................................. 166 

7.3.2 Experiments on the ALARM Network .................................................... 173 

7.4 Theoretical Discussion ..................................................................................... 176 

7.5 Further Discussion............................................................................................ 179 

7.6 Summary .......................................................................................................... 182 

8 Conclusion and Future Work ............................................................185 



VII 

8.1 Conclusion ........................................................................................................185 

8.2 Future Work......................................................................................................191 

Reference................................................................................................... 193 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



VIII 

 

 

 

 

 

[This page intentionally left blank] 

 
 



IX 

Summary 

Multiagent decision problems under uncertainty are complicated by large dimensions and 

agency features. New techniques for solving decision problems involving multiple agents 

are the focus of current research because existing approaches are unable to address such a 

large and complex decision problem and no effective methods can be utilized. To address 

a multiagent decision problem, I investigate probabilistic graphical model representation 

and evaluation methods as well as Bayesian learning algorithms. Bayesian learning 

algorithms help the construction of graphical decision models. The main challenging work 

is to solve a distributed decision problem involving multiple agents. In addition, learning a 

large Bayesian network structure from small data sets is a more complex task. 

I proposed a new framework, including Multiply Sectioned Influence Diagrams (MSID) 

and Hyper Relevance Graph (HRG), to represent multiagent decision problems. This 

framework extends influence diagrams and considers properties of multiple agents. MSID 

is a probabilistic graphical decision model encoding agency features and is able to adapt to 

the changing world for its distributed design while HRG quantifies organizational 

relationships in multiagent systems. Then, I presented a symbolic method to verify a valid 

representation of MSID and HRG. This novel method exploits the algebraic property of 

probabilistic belief networks as well as the domain knowledge.  

After that, I developed three evaluation algorithms to solve proposed decision models. The 

three evaluation algorithms are categorized into two groups: one is a direct approach that 

includes cooperative reduction algorithms and multiple evaluation networks; the other is 

an indirect approach based on rooted cluster tree algorithms. These algorithms designed in 



 

X 

a distributed fashion adopt some optimization strategies to ensure information consistency 

in the evaluation process. A case study on disease control involving multiple nations or 

communities in the medical domain was used to demonstrate the practical value of model 

representation and model evaluation algorithms. The results indicated that the new 

framework of MSID and HRG could represent a multiagent decision problem and the 

three evaluation algorithms are effective and efficient. 

In addition, I investigated the issue of learning large Bayesian network structures in order 

to build a probabilistic decision model from data. Adopting the divide and conquer 

strategy, a novel learning algorithm, called block learning algorithm, was designed to 

learn a large network structure from a small data set. Instead of learning a whole network 

structure directly, the block learning algorithm learns individual blocks that constitute a 

final structure.  Experimental results on two golden networks (ALARM and Hailfinder 

networks) showed that this new algorithm could be scaled up to learn a sizable network 

structure from a small data set and the algorithm is easily configured in the 

implementation. Hence the block learning algorithm provides a foundation to develop a 

unifying Bayesian learning framework. 

All results show that my proposed methodologies could be used to solve multiagent 

decision problems. These methods could be generalized to solve many decision problems 

in practice such as the decision problem of disease control in the medical domain.  
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1 Introduction 

Decision making in our daily lives often involves a group of persons who cooperate to 

achieve their goals. This decision problem can be modeled as a multiagent decision 

problem in which each agent acts cooperatively to achieve the best expected outcome 

in uncertain environments. The uncertainty, the dynamic nature of decision scenario 

and the unique attributes of multiple agents make it hard to solve a multiagent decision 

problem. Hence, it is worthwhile to investigate some effective and efficient 

methodologies to solve the problem.  

1.1 Background and Motivation 

A simple decision problem is often related to a person’s scope of perception. In a large 

social network composed of many individuals, decisions are beyond any individual’s 

scope and tend towards a group decision that is more valuable. Decision making in 

uncertain environments mainly concerns decision problems in which a number of 

agents are involved. Making a good decision in a multiagent system is particularly 

complicated when both the nature of decision scenario and the attributes of multiple 

agents have to be considered.  

Research in decision analysis, artificial intelligence, operations research, and other 

disciplines has led to various techniques for analyzing, representing, and solving 

decision problems in uncertain environments. Most of these techniques make use of a 
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graphical probabilistic model, such as influence diagrams (Howard & Matheson 1984), 

limited memory influence diagrams (Lauritzen & Vomlelova 2001), unconstrained 

influence diagrams (Jensen & Vomlelova 2002), and sequential influence diagrams 

(Jensen et al. 2004). They provide a compact and informative representation for 

modeling decision problems in an uncertain setting. However, these techniques lack 

the ability to tackle multiagent decision problems because they are oriented to the 

single agent paradigm without considering the features of multiple agents.  

Recently, achievements in the multiagent reasoning system have cast light on research 

about multiagent decision problems. Most work, such as Multiply Sectioned Bayesian 

Networks (MSBN, Xiang 2002), focuses on the communication and reasoning in 

multiagent systems. They have successfully developed a distributed and coherent 

framework for solving probabilistic inference problems in multiagent systems.  This 

framework lays out a foundation for the research on the multiagent decision making.  

The work on solving decision problems involving multiple agents benefits the building 

of intelligent decision systems. The construction of intelligent decision systems is 

always a burdensome task in a large knowledge domain. Existing approaches are not 

able to build such large decision systems in practice. Hence, a flexible framework with 

powerful evaluation algorithms is needed for an effective design of general 

methodologies for dealing with a large and complex knowledge domain. Case studies 

will show the practical value of my proposed techniques. On the other hand, a new 

learning algorithm is utilized to build a large probabilistic model from a data set, which 

enriches learning techniques that drive model construction.  
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1.2 The Multiagent Decision Problem 

This work addresses multiagent decision problems in which agents reside in a 

distributed, but connected setting and they cooperate to make decisions on the basis of 

certain organizational relationships. 

Some characteristics of this decision scenario are as follows: 1) Agents are distributed 

geographically or physically. Each agent is an independent entity in the world. It is not 

easy and reasonable to merge them into a single object. 2) Agents are cooperative. 

Although each agent is an independent entity, it still needs some cooperation for 

solving a certain decision problem. The cooperation is based on public information that 

they share. 3) Agents’ privacy is protected. Although agents are in a cooperative 

setting, they intend to hold their privacy. 4) Agents’ decisions and observations are 

interleaved; however, their interactions follow a sequential order. In a distributed 

environment, agents need some observations from their adjacent agents to support 

decision making. 5) Agent’s organizational relationships exist. In a cooperative 

decision problem, an agent may need some information for its decision making while 

this information could only be obtained from its adjacent agents. Thus, a certain 

organizational relationship exists among these agents. Meanwhile, this kind of 

organizational relationship could be described by the relation between the information 

property and the supported decisions. 6) Agents seek their individual objectives while 

they expect a cooperative solution. In a distributed decision problem, every agent has 

its own goal since it is selfish. It wants to make the best decision on its own through 

the cooperation in which it could access some requisite information. For a cooperative 

solution globally, agents contribute by releasing honest and up to date information 

through which they expect to help the decision making in their adjacent agents. Hence, 

in this kind of decision scenario, what cooperative agents do concern is the shared 
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information. They are unwilling to compromise their own utility with the consideration 

of others’ decisions.  

Accordingly, a complex and large knowledge domain complicates the multiagent 

decision problem. The agency features, such as privacy and organizational 

relationships, make the decision problem more intractable although these features 

enrich the decision scenario. 

1.3 The Application Domain 

Medicine is a very rich domain for multiagent decision making. While the multiagent 

decision problems that I address are general, the application domain that I examine is 

focused on the policy design involving multiple communities or nations in medical 

decision making. Differing from medical decision making on diagnostic test and 

therapy planning (Leong 1994), the decision problem that I deal with is more related to 

policy design for disease control. The large domain with multiple decision entities, the 

uncertain information about disease and the intricate organizational relationships in the 

domain complicate a policy design process. Furthermore, decision making in a 

distributed and cooperative setting requires a trade-off among multiple objectives. 

Hence, the disease control involves both uncertain domain knowledge and the 

properties of multiple decision entities.  

In the disease control domain, multiagent decision making will not only consider the 

uncertain environment, but also take into account the information exchange among the 

interacting units. The uncertain environment and the personal judgments comprise 

uncertain information in the domain. The complex relationships among associated 

decision entities determine the accessibility of public information and individual 
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objectives in collective actions. For instance, in Severe Acute Respiratory Syndrome 

(SARS) control (http://www.who.int/csr/sars/en/), multiple nations would share some 

information, like current status of SARS, and hold together aiming at alleviating the 

damage of SARS; although each nation has her own interest and private consideration.  

1.4 Objectives and Methodologies 

The goal of this thesis is to establish new methodologies for solving the multiagent 

decision problem, as well as develop novel techniques for learning large Bayesian 

network structures from a small data set. To achieve this goal, I carry out several 

stages as follows: 

First of all, it is to build a new flexible framework. The main advantage of this 

decision-theoretic framework lies in its capability for representing a large knowledge 

domain in a distributed way. Furthermore, it adapts to a changing decision scenario by 

self-organizing its components. Hence, this adaptive framework should support large 

and complex decision systems in the changing world.  

Then, it is to encode agency properties into a new representation. To personalize real 

decision making, this new framework is to be enriched with some properties of 

multiple agents. It not only describes the environment, but also reflects the 

characteristics of decision makers in a decision scenario. This agency approach must 

make probabilistic decision models more meaningful by strengthening their linkage 

with artificial intelligence concepts. 

After that, some evaluation algorithms are to be developed to solve the model. 

Extended from basic methods for solving single agent based decision models, these 
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evaluation algorithms will be improved by overcoming some “bottleneck” issues of 

existing approaches. Its effectiveness and efficiency will be shown in practical case 

studies. Aiming at solving a large and complex decision model, these algorithms could 

improve the existing approaches and could be implemented. 

Finally, a novel technique is to be proposed to learn large Bayesian network structures 

from a small data set. Adopting the divide and conquer strategy, the learning algorithm 

will solve a learning problem step by step. Some experiments are to be designed to 

show its learning ability. Armed with good strategies, this new learning algorithm is 

comparable to some typical learning algorithms and may be implemented in a 

commercial tool. 

This study will address the issue of multiagent decision making under uncertainty with 

probabilistic graphical decision models. Hence, the explored area is confined to 

uncertainty in artificial intelligence and mostly concerns decision-theoretic systems. 

The existing techniques relevant to this work are influence diagrams, Bayesian 

networks and multiagent decision systems. This context will be illustrated in Chapter 2. 

1.5 Contributions 

The major contributions of this work are as follows: 

Firstly, I have proposed a new probabilistic graphical model, as well as a relevance 

graph, to represent a multiagent decision problem under uncertainty. This framework is 

proposed for its ability to encode agency properties and for its capability to model a 

large and complex decision problem. It will facilitate decision modeling languages to 

solve a general class of decision problems. 
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Secondly, I have established a symbolic method to verify a probabilistic graphical 

decision model. By holding an algebraic view on the model, this approach breaks the 

traditional mold of graph-theoretic verification methods. These results will provide a 

unique insight into the research on probabilistic graphical decision models. 

Thirdly, I have developed three evaluation algorithms for solving a decision model. 

Extended some basic evaluation algorithms for the single agent paradigm, these 

algorithms are shown to be effective and efficient. To demonstrate their utility, I 

formalize a case study in the disease control domain to highlight the capabilities and 

limitations of each approach. These results clearly illustrate evaluation strategies and 

will also contribute toward the design of adaptive solver systems. 

Fourthly, I have presented a new algorithm on learning large Bayesian network 

structures from a small data set. Adopting the divide and conquer strategy, this 

learning algorithm has shown good performance in a series of experiments. A learning 

tool with an implementation of this novel algorithm will be put into practical use. 

Finally, this research has provided insights into the representation, verification, and 

evaluation of multiagent decision problems. It also investigates the issue of learning 

Bayesian network structure. These methodologies can be generalized for addressing a 

class of general decision problems. 

1.6 Overview of the Thesis 

This chapter has given a concise introduction to some basic concepts in the field of 

decision analysis, reviewed some major work related to the topics addressed in this 
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dissertation, and roughly described the methodologies used and the overall 

contributions. 

The rest of this thesis is organized as the following: 

Chapter 2 introduces related work involving various graphical decision models and 

evaluation algorithms used in these representations. Most of the current work on 

Bayesian network structure learning is also covered. 

Chapter 3 presents a graphical multiagent decision model to describe multiagent 

decision problems. The main characteristics of this new representation are highlighted 

and the model construction procedures are discussed in terms of a simple case. 

Chapter 4 proposes a symbolic method to verify the decision model. The foundation 

and detailed operations in this approach are fully described. In addition, the complexity 

problem associated with this method is also analyzed and some measures are proposed 

to handle the verification failure problem. 

Chapter 5 presents three evaluation algorithms to solve the new decision model 

proposed in Chapter 3. The comparison of these three algorithms shows their strengths 

on solving different graphical structures of the decision model. 

Chapter 6 focuses on a decision problem in the medical domain. The whole solution 

procedures involving model representation, model verification, and model evaluation 

are described in detail. 

Chapter 7 proposes a novel learning algorithm to learn a large Bayesian network 

structure from a small data set. Some experimental results and theoretical analysis 

demonstrate a good performance of this new learning approach. The new learning 
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method also benefits the building of probabilistic graphical models from non-context 

decision problems. 

Chapter 8 summarizes this dissertation by discussing the contributions and limitations 

of the whole work. It also suggests some possible directions for future research. 
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2 Literature Review 

This chapter briefly surveys some related work: Bayesian networks and multiply 

sectioned Bayesian networks, decision modeling with influence diagrams and 

multiagent influence diagrams, intelligent agent and multiagent decision making, and 

Bayesian network structure learning. The survey focuses on the major techniques on 

which this work is based and serves as a basis to a more detailed analysis on the 

capabilities and limitations of the existing approaches.  

2.1  Bayesian Networks and Influence Diagrams 

The concepts of Bayesian networks and influence diagrams are fundamental elements 

in the probabilistic modeling and reasoning. They provide basic ideas and techniques 

for the probabilistic expert systems and are to a large segment of the uncertainty in 

artificial intelligence (AI) community what resolution theorem proving is to the AI 

logic community.  

2.1.1 Bayesian Networks and Multiply Sectioned Bayesian Networks 

2.1.1.1 Bayesian Networks 

A Bayesian network (Pearl 1988) is a compact representation of a joint probability 

distribution over a set of random variables. Formally, a discrete Bayesian network (BN) 

is a pair ),( PG  consisting of a directed acyclic graph (DAG) G  and a multiplicative 

factorization of the joint probability distribution P . Each node Gx∈ , which is called 
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chance node in a BN, corresponds to a discrete variable x  framed with a conditional 

probability distribution ))(( xxp π  :)(( xπ parents of variable x )  that composes P  over 

the domain ∏
∈

=
Gx

xxpP ))(( π . An arc between each pair of nodes indicates an influence 

or causal relationship between the corresponding variables. A Markov blanket of node 

Gx∈  is composed of parents, children of node x  and parents of children of node x . 

Figure 2.1 shows an example of BN.  

 

Figure 2.1: A BN 

The BN consists of seven nodes },,,,,,{ gfedcba and arcs between some of them. Each 

value of a node in the BN has one conditional probability distribution given a 

configuration of the values of its parents, such as node a  with a conditional probability 

),( cbap . A DAG structure and conditional probabilities in a BN define a unique 

factorization of a joint probability distribution in the domain. For example, in Figure 

2.1, the BN gives the joint probability distribution as 

follows: ),()()(),()()()(),,,,,,( eagpadpepcbapbfpcpbpgfedcbaP = . The Markov blanket 

of node a  includes nodes },,,,{ egdcb . 

b c 

a f 

d g 

e 
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One important concept in Bayesian networks is d-separation (Geiger & Pearl 1989). 

The d-separation encodes the independence relations specified by a DAG and follows 

the criterion below: 

Definition 2.1: Let G  be a directed acyclic graph. If X , Y , and Z  are disjoint subsets 

of the nodes in G , then X  and Z  are said to be D-Separated given Y  if there does not 

exist a trail between a node in X  and a node in Z  s.t.:  

1. For every intermediate node w  in a converging connection (head-to-head), 

either Yw∈  or w  has a descendant in Y . 

2. For every intermediate node w  in a serial (head-to-tail) or diverging (tail-to-tail) 

connection, Yw∉ . 

If X  and Z  are not D-Separated given Y , then we say the X  and Z  are D-Connected 

given Y . Each trail satisfying the conditions above is called active; otherwise, it is said 

to be blocked. For example, node c  and node d  are D-Separated given node a .  

Probabilistic reasoning is one of the most important issues which should be considered 

in a Bayesian network framework; this task, however, has been proved to be NP-hard 

(Cooper 1990). In the past two decades, various methods have been proposed for 

inference in Bayesian networks. In general, these methods are divided into two groups: 

exact approaches and approximate approaches. The exact approach includes the 

junction tree method (Lauritzen & Spiegelhalter 1988; Jensen et al. 1990; Shafer 1996; 

Madsen & Jensen 1998), loop cutset conditioning method (Pearl 1988; Suermondt & 

Cooper 1991), direct factoring method (Li & Ambrosio 1994), variable elimination 

method (Dechter 1996) and so on. 
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Both the junction tree and loop cutset conditioning methods are based on the Kim and 

Pearl’s message passing algorithm (Pearl 1988; Neapolitan 1990; Russell & Norvig 

2003). The loop cutest conditioning method converts a general Bayesian network into 

multiple simpler polytrees. Each polytree performs the message passing algorithm 

resulting in a final combined answer. While the junction tree method transforms a 

general Bayesian network into one clustering tree with some graph operations such as 

moralization, triangulation, and so on, the propagation launches a message passing 

algorithm. The direct factoring and variable elimination methods view the inference as 

one combinatorial optimization problem. They target the query variables and 

marginalize (sum) out the rest of the variables one by one from the product of a small 

subset of probability distributions.  

The approximate approach includes the search based inference (Henrion 1991; Poole 

1993) and simulation based inference, like the logic sampling (Henrion 1988), 

likelihood sampling (Fung & Chang 1989; Shachter & Peot 1992), Gibbs sampling 

(Jensen 2001), self-importance sampling and heuristic-importance sampling (Shachter 

1989), adaptive importance sampling (AIS-BN, Cheng & Druzdzel 2000), backward 

sampling (Fung & Favero 1994), and importance sampling using evidence pre-

propagation (EPIS-BN, Yuan & Druzdzel 2003).  The search based inference method 

approximates the posterior probability of query variables by summing a small subset of 

joint probability values that contains most of the probability mass. On the other hand, 

the simulation based methods use Monte Carlo sampling techniques to simulate a 

sufficient number of cases and compute the posterior probability from them. Other 

approximate inference methods have also been proposed. These include the state space 

abstraction (Wellman & Liu 1994), localized partial evaluation (Draper 1995), and 

removal of weak arcs (Kjærulff 1994). 
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In general, the exact inference methods provide precise results, but require a lot of 

computational costs. In practice, currently, the exact algorithms using junction tree are 

good enough for most small to medium sized networks, up to three dozens of nodes or 

even larger. However, the performance of the exact algorithms largely depends on the 

connectivity of networks. For large networks, or networks that are densely connected, 

approximate algorithms are preferred. As with exact inference methods, the 

approximate inference methods are also proved to be NP-hard within an arbitrary 

tolerance (Dagum & Luby 1993). If evidence being conditioned upon is not too 

unlikely, these approximate approaches converge fairly quickly. Currently, both AIS-

BN and EPIS-BN have very good performance even with unlikely evidence.  

Accordingly, the approximate inference methods are good complements of the exact 

inference approaches for the propagation in Bayesian networks, especially for 

Bayesian networks with a large size. 

To deal with some special cases, some extensions to Bayesian networks have been 

proposed. For example, the dynamic Bayesian networks (DBN, Nicholson 1992; 

Nicholson & Brady 1992; Russell & Norvig 2003), probabilistic temporal networks 

(Dean & Kanazawa 1989; Dean & Wellman 1991), dynamic causal probabilistic 

networks (Kjærulff 1997) and modifiable temporal belief networks (MTBN, Aliferis et 

al. 1995, 1997) model the change over time. These BNs, such as DBN and MTBN, are 

temporal extensions of BNs to facilitate normative temporal and casual modeling 

under uncertainty. They have a joint BN model encoding every time slice so that they 

could overcome the drawback of BNs which are not designed to model temporal 

relationships explicitly. Specifying some real problems, other extensions of Bayesian 

networks also appeared such as the probabilistic similarity networks (Heckerman 

1990), hierarchical Bayesian networks (Srinivas 1994), object-oriented Bayesian 
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networks (OOBN, Koller & Pfeffer 1997) and probabilistic relational models (PRM, 

Koller & Pfeffer 1998; Koller 1999; Getoor 2001; Heckerman et al. 2004). The 

probabilistic similarity networks have many advantages in solving a large knowledge 

domain in which some variables are related to many mutually exclusive and exhaustive 

variables. The hierarchical Bayesian network models hierarchical knowledge in a tree 

structure so that the search space of models is reduced. The object-oriented Bayesian 

network uses Bayesian network fragments to describe the probabilistic relations 

between attributes of an objective in a large and complex domain. However, it is 

unable to model the uncertainty about structures. The probabilistic relational model 

evolves from OOBN and represents relationships between multiple instances of the 

same object class. It introduces uncertainty into database schema resulting in a 

combination of probabilistic reasoning and entity-relational schema in databases. 

The above mentioned work is still around the probabilistic representation and 

propagation in the single agent paradigm, which leads to its failure in treating 

multiagent reasoning problems effectively. 

2.1.1.2 Multiply Sectioned Bayesian Networks 

Orienting towards the multiagent reasoning problem, the representation of multiply 

sectioned Bayesian networks (MSBN, Xiang et al. 1993; Xiang 2002) is considered as 

the milestone for solving the probabilistic reasoning in a multiagent system. It provides 

a coherent framework for probabilistic reasoning in cooperative multiagent distributed 

interpretation systems. It aims to solve a large and complex knowledge domain by 

dividing the domain into several subnets each of which is related with an intelligent 

agent. With a distributed fashion, an MSBN allows the privacy protection of intelligent 
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agents and the active communication in a multiagent system. Formally, the definition 

of an MSBN is given as follows (Xiang 2002). 

Definition 2.2: An MSBN M  is a triplet ),,( PGN . ii NN U=  is the total universe where 

each iN  is a set of variables. ii GG U=  is a hypertree structure where nodes of each 

DAG iG  are labeled by elements of iN . Let x  be a variable and )(xπ  be all parents of 

x  in G . For each node x , exactly one of its occurrence (in a iG  containing )(}{ xx πU ) 

is assigned ))(( xxP π , and each occurrence in other DAGs is assigned a constant table. 

iGi PP Π=  is a joint probability distribution, where each 
iGP  is the product of the 

probability tables associated with nodes in iG . A triplet ),,(
iGiii PGNS =  is called a 

subnet of M . Two distinct subnets iS  and jS  are said to be adjacent if iG  and jG  are 

adjacent in G . 

It can be seen that an MSBN comprises a set of Bayesian networks that share some 

common nodes. Here, the common nodes compose an interface S  between adjacent 

Bayesian networks associated to individual agents. One important property of the 

interface in an MSBN is stated as follows: the adjacent agents are independently 

conditioned on the observation of states in the interface which is the only channel for 

all their communication. Consequently, the definition of a d-sepset is followed to 

implicate the agent interface.  

Definition 2.3: Let G  be a directed graph such that a hypertree over G  exists. A node 

x  contained in more than one subgraph with its parents )(xπ  in G  is a d-sepnode if 

there exists one subgraph that contains )(xπ . An interface S  is a d-sepset if every Sx∈  

is a d-sepnode. 
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An example of an MSBN is shown in Figure 2.2.  The MSBN is a DAG which 

comprises two local BNs, namely 0BN  and 1BN , each of which represents an 

individual agent’s reasoning engine. Through common nodes },,{ cba  coding their 

public information, these two agents communicate with each other to obtain a full and 

consistent reasoning in a multiagent system. In Figure 2.2, common nodes },,{ cba  are 

also d-sepnodes since all of their parents reside in one local BN. For example, the 

parents of node b  are nodes { }ad ,  which are in 1BN , the only parent of node a  is node 

d  in 1BN  while the parents of node c  are nodes { }gb,  residing in 0BN . Hence, these 

common nodes form a d-sepset between 0BN  and 1BN  in the MSBN. 

 

Figure 2.2: An MSBN 

The definition of an MSBN addresses the issue of cooperative agents reasoning in a 

compact model. Considering some properties of intelligent agents, an MSBN shows a 

smart extension of the single agent based Bayesian Networks.  

Once a multiagent MSBN is constructed, agents may perform probabilistic inference 

through coherent communication initiated by some observations. The inference 

methods in an MSBN are extensions of those for the single agent based Bayesian 
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networks. For example, the linked junction forest method (Xiang 1994) compiles each 

subnet into a junction tree, called a local junction tree, and converts each d-sepset into 

a junction tree, called a linkage tree. Then, the message passing algorithm is used in a 

junction tree for a general Bayesian network. Other propagation methods in an MSBN 

include the distributed forward sampling (Xiang 2002) extending the logic sampling 

(Henrion 1988), the distributed cutset conditioning (DCC, Xiang 2003) extending the 

loop cutset conditioning method in general Bayesian networks (Pearl 1988), the 

distributed Markov sampling (DMS, Xiang 2003) extending the Gibbs sampling 

(Jensen 1996), and so on. 

With its distributed framework and efficient inference methods, an MSBN provides a 

good solution for a multiagent reasoning problem. On the other hand, it does not 

address the problem of decision making in a multiagent system. However, it provides a 

foundation to develop a representation of multiagent decision problems. 

2.1.2 Influence Diagrams and Multiagent Influence Diagrams 

2.1.2.1 Influence Diagrams 

An influence diagram (Howard & Matheson 1984) is a graphical modeling language 

that represents the probabilistic inference and decision analysis model. An influence 

diagram describes the dependencies in decision analysis and specifies the states of 

information for which independencies can be assumed to exist. It can be considered as 

a Bayesian network augmented with decision nodes D  and a value node v . Formally, 

an influence diagram is defined as follows (Zhang et al. 1994). 

Definition 2.4: An influence diagram is a pair ),( PGI =  whose elements are defined as 

follows: 
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1. ),( ANG =  is a DAG such that }{vDCN UU⊆ , where C  and D  are disjoint, and 

the following conditions are satisfied: 

(a) The value node v  is a sink node which has no successors; 

(b) A directed path only consisting of all the decision nodes D  exists in G ; 

(c) Each decision node and its parents are parents to all of its subsequent decision 

nodes; 

2. DCiiPP U∈= }{  is a collection of families iP  of conditional probability 

distributions )( )(ixxp π , with one distribution for each configuration of )(ixπ . 

It can be seen that an influence diagram is a two-layer representation with a qualitative 

level and a quantitative level. At the qualitative level, it is a directed acyclic graph G  

with three types of nodes: chance nodes C , decision nodes D  and a value node v . At 

the quantitative level, a frame of numerical data iP  is associated with each node. At the 

same time, it is noticed that there are some constraints in the definition. Condition (b) 

implies a single decision maker should perform the decisions in a chronological order. 

Condition (c) is referred to as the no-forgetting constraint that information available at 

the time of one decision must be available at the time of all subsequent decisions.  An 

influence diagram is always termed as a regular one when it satisfies all of the above 

constraints (Zhang 1994). 

For example, one influence diagram is shown in Figure 2.3.  The decision maker 

selects one alternative indicated in decision node d  according to the evaluation of 

expected values corresponding to combinations of different outcomes in value node v . 
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Figure 2.3: An Influence Diagram 

In an influence diagram, an arc from a chance node to a decision node is called 

information arc which indicates chance nodes should be observed before the decision 

making. Simultaneously, the chance nodes are called observed nodes, denoted as the 

information set )(DI . An arc between chance nodes and value nodes or chance nodes 

is called influence arc which indicates chance nodes should affect their downstream 

nodes. Similarly, the descendants of decision node D , denoted as the set )(DDes , are 

affected when decisions are made. For example, in Figure 2.3, the arc 1 is an 

information arc while the arc 2 is an influence arc. The information set for decision d  

is },{)( cbdI = and },{)( vedDes = depends on the outcome of decision d . 

Currently, one relevant research issue is to determine requisite probability nodes 
idRP  

and requisite observation nodes 
idRO  for decision node id  in an influence diagram. 

Requisite probability nodes are those nodes for which conditional probability 

distributions might be required to compute the utilities of decision node  id  given other 

nodes. Requisite observation nodes are those observation nodes for which conditional 

probability might be needed to compute the utilities of decision node  id  given other 

nodes. Thus far, two approaches have appeared: one is the Decision Bayes-ball 

procedure (Shachter 1998, 1999) and the other is the refined Decision Bayes-ball 
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procedure (Nielsen 2001). Both approaches are based on simple techniques that stem 

from d-separation (Druzdzel & Suermondt 1994). The second procedure decides a 

minimum set of relevant value nodes for decision nodes beforehand so that the set of 

required nodes found in the procedure is more compact. Hence the basic Decision 

Bayes-ball procedure to construct the sets of requisite probability nodes 
idRP  and 

requisite observation nodes 
idRO  in an influence diagram with separable value nodes 

V  and decision node },,,,{ 1 mi dddD LL=  is described here.  

[Decision Bayes-ball] 

FOR Iterate backwards for each earlier decision node },,,{ 1 mii dddDd LL=∈ , 

1,,Lmi = , DO 

1. Let )}}(\)({{ 1+= iii dDesdDesVV I  if mi < ; otherwise )}({ ii dDesVV I=  ; 

2. Run Bayes-ball algorithm on YX , where }{
1+

=
idi ROVX U  if mi < , otherwise 

iVX = , and )}({ ii dIdY U= , in the influence diagram while ignoring any 

information arcs; 

FOR every Xx∈  DO 

a) Visit x  from a parent or child, or both; 

b) If Yx∉  and the visit to x  is from a child; 

i. If the top of x  is not marked, then mark its top and visit each of its 

parents; 

ii. If the bottom of x  is not marked, then mark its bottom and visit each 

of its children; 

c) If the visit to x  is from a parent; 

i. If Yx∈ and the top of x  is not marked, then mark its top and visit each 

of its parents; 
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ii. If Yx∉  and the bottom of x  is not marked, then mark its bottom and 

visit each of its children; 

d) Mark x  as visited and let xXX \= . 

END 

3. If decision node id  is not marked as visited then the decision is irrelevant to 

decision makers’ value; 

4. 
idRP  consists of all of the nodes marked on top starting with decision node md ; 

5. 
idRO  consists of all of the nodes in )( idI  marked as visited. 

END 

According to the analysis (Shachter 1998, 1999), the time computational complexity of 

Decision Bayes-ball algorithm is linear in the number of nodes and incident arcs into a 

node in an influence diagram. 

In addition to the above research issues, evaluation algorithms for solving influence 

diagrams have been discussed in detail in much literature (Garcia & Druzdzel 2004). A 

basic and effective approach for solving a regular influence diagram is a reduction 

algorithm (Shachter 1986, 1988). The reduction algorithm simplifies the solving 

process by removing nodes from influence diagrams one by one. Some basic 

operations are involved in the reduction algorithms such as node removal and arc 

reversal. An improved reduction algorithm that avoids the operation of arc reversal 

was proposed in potential influence diagrams (Ndilikikesha 1994). It seems that these 

two algorithms are effective and easy to be implemented; however, determining an 

optimal elimination order in a reduction algorithm has been shown to be NP-hard 

(Cooper 1987).  
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Noticing the close relationships between Bayesian networks and influence diagrams, 

Shachter & Peot (1992) initiated research on an indirect method for solving influence 

diagrams through two steps. First, an influence diagram is transformed into a Bayesian 

network using the Cooper’s transformation (Cooper 1988). Then, a probabilistic 

propagation is performed in the Bayesian network to obtain final decisions.  

Two years later, Jensen et al. (1994) proposed the HUGIN architecture for solving 

influence diagrams that is based on the message passing in a strong junction tree. A 

strong junction tree representation of an influence diagram I  is identified from its 

triangulated graph (Nielsen 2001): 

1. Remove all informational arcs from I ; 

2. Moralize I  and remove all value nodes resulting in the graph mI ; 

3. Triangulate mI  by eliminating the variables with a strong elimination order. 

A strong junction tree T  is composed of the cliques identified from the triangulated 

graph. Of all these cliques in T , at least one distinguished clique R  is called a strong 

root, such that for each pair ( 1C , 2C ) of adjacent cliques in T , it is true if 1C  is closer to 

R  than 2C , there exists a partial order with nodes in the separator 21 CC I  preceding 

nodes in 12 \ CC .  

After that, the strong junction tree is initialized by attaching each clique with the 

probability potential and the utility function from the influence diagram and activated 

to perform the message passing procedure. Message passing proceeds by absorbing 

messages that contain both a probability potential CΦ  and a utility function CΨ  

associated to the clique C  from the leaves towards the strong root. A clique can pass 
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the message to its parent clique only if it has received the message from all of its 

children cliques.  

Let iC  and jC  be neighbouring cliques with separator jiij CCS I= . Then absorption 

from iC  to jC  is involved with the following procedures: Firstly, to calculate the 

probability potential and the utility function passed through separator ijS : 

j

ijj

ij C
SC

S Φ=Φ Μ
\

 and 
jj

ijj

ij CC
SC

S Ψ⋅Φ=Ψ Μ
\

 (where for chance variables, the symbol 

Μ equals to the sum operation; while for decision variables, it equals to the max 

operation); Secondly, to attach the clique iC  with the new '
iCΦ  and '

jCΨ :  

ijii SCC Φ⋅Φ=Φ '  and 
ij

ij

ij
S

S
CC Φ

Ψ
+Ψ=Ψ ' .  

Finally, the optimal policy for a decision variable can be obtained from the potentials 

associated with the closest clique to the strong root in T .  

The strong junction tree algorithm for solving influence diagrams adopts the approach 

of message passing in Bayesian network inference when it transforms the decision 

model into a tree composed of cliques. Each clique is solved with the outcome of 

probabilities or utilities which are further transmitted and compose final policies. 

Influence diagrams involve with only one decision maker in a symmetric decision 

problem. However, it provides a standard presentation to be extended to solve other 

types of decision problems, such as the Dynamic Influence Diagram (DID, Tatman & 

Shachter 1990), Valuation Bayesian Networks (VBS, Shenoy 1992), Multilevel 

Influence Diagrams (MLID, Wu & Poh, 1998), Time-ctitical Dynamic Influence 

Diagrams (TDID, Xiang & Poh, 1999), Limited Memory Influence Diagrams (LIMID, 



Chapter 2: Literature Review 
 

26 

Lauritzen & Vomlelova  2001), Unconstrained Influence Diagrams (UID, Jensen & 

Vomlelova  2002), and Sequential Influence Diagrams (SID, Jensen et al. 2004). 

The above mentioned work has solved many kinds of decision problems. For instance, 

the DID models a temporal decision problem, the TDID solves a time-critical dynamic 

decision problem, and both UID and SID handle an asymmetric decision problem. 

However, all these model representations orient towards the single agent paradigm. 

This research work is insufficient to deal with the multiagent decision problem. 

2.1.2.2 Decision Networks and Multiagent Influence Diagrams 

To deal with decision problems involving with multiple agents, Zhang et al. (1994) 

proposed decision networks by lifting some constraints of influence diagrams. On 

representation, as with influence diagrams, decision networks still adopt traditional 

modeling strategies: describing the whole decision scenario in one model. Hence, the 

model size is intractable when the decision scenario becomes large and complex. On 

evaluation, one of the best evaluation algorithms, called evalID  algorithm, was 

proposed in decision networks (Zhang 1998). Adopting the divide and conquer 

strategy and Bayesian network inference methods, the evalID  algorithm partitions 

decision networks into several parts and solves each part individually with Bayesian 

network inference methods. Thus, it overcomes the “bottleneck” of evaluation 

approaches for solving decision problems with a large dimension. In all, a 

representation of decision networks without considering the properties of multiple 

agents still lacks the ability to describe a large and complex multiagent decision 

problem; however, the evalID  evaluation algorithm is a good basis for developing 

efficient and effective evaluation algorithms for solving a general decision problem. 



Chapter 2: Literature Review 

27 

Multi-agent Influence Diagram (MAID, Koller & Milch 2001) is considered as a 

milestone regarding the research work on multiagent decision problems. It focuses on 

the representation of games and tries to find Nash Equilibria (Nash 1950) in the games 

with some strategies. A MAID extends the formalisms of Bayesian networks and 

influence diagrams to represent game problems involving multiple agents. To take 

advantage of independence structures in a MAID, a qualitative notion of strategic 

relevance is defined to find a global equilibrium through a series of relatively simple 

local computations. Since the goal of MAID is to represent and solve games involving 

multiple agents, its solution strategies specify only on game problem that is a subnet of 

decision problem. Furthermore, the MAID represents the whole decision scenario 

within one decision model so that it lacks the ability to handle a complex and larger 

problem domain.. 

Tracing the evolution of influence diagrams, it is found that some disadvantages still 

exist on the representation when the multiagent decision problems are to be solved. 

Two of these deficiencies are highlighted: one is that some properties of multiple 

agents, such as privacy and sociality, have not been considered; the other is that no 

effective and efficient methods have been proposed to cope with large and complex 

problem domains. 

2.2 Intelligent Agents and Multiagent Decision Systems 

With the development of computer network and distributed computing technology 

based on network, the research of intelligent agents and multiagent systems has been a 

new focus in the field of computer science (Wooldridge & Jennings 1995; Wiess 1999). 

An intelligent agent has the following attributes: 1) Reactivity: It can sense the 



Chapter 2: Literature Review 
 

28 

environment and act responsively; 2) Autonomy: It does not need human intervention; 

3) Social and collaborative behavior: It can work with other agents or humans toward a 

common goal; 4) Inferential capability: It proactively seeks to meet its goals, including 

analyzing its environment; 5) Temporal continuity: Its identity and state persist over 

long periods; 6) Adaptivity: It can learn and improve with experience. In addition, one 

of the most outstanding characters residing in an intelligent agent is the privacy. 

Agents have the intention to protect their own privacy and only disclose the necessary 

information under some agreements. This feature does match some phenomena in the 

practical world. For example, an individual computer system or others, which could be 

considered as an agent, is often designed by different vendors who are not willing to 

release full details of their system design. Consequently, it is challenging work to make 

workable integrated systems without knowing details of individual systems.  

A single intelligent agent only displays an individual intelligence, which is not a focus 

of artificial intelligence. One of the primary goals in artificial intelligence is to analyze, 

represent, and control the behaviors of intelligent agents, including belief reasoning 

and decision making, in a dynamic and uncertain environment. Not only does it focus 

on the individual agent’s intelligence but also on the multiple agents’ intelligence. 

Thus, research on multiagent systems is more promising. A multiagent system (Wiess 

1999) can be viewed as an agent organization (by analogy with human organization) or 

as an artificial society or organization. It has, like a human organization evolving in a 

certain environment, goals to achieve and agents operate together to achieve these 

goals. Meanwhile, the individual agents are self-organized with certain types of 

relationships. For more complete characterizations and formalizations, five 

relationships are identified (Zambonelli et al. 2001): 1) Control: It identifies the 

authority structures with a system; 2) Peer: It identifies agents of equal status; 3) 
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Benevolence: It identifies agents with shared interests; 4) Dependency: It identifies the 

ways in which one agent may rely on another; 5) Ownership: It delimits organizational 

boundaries. Hence, with the bonding of a certain organizational relationship, multiple 

agents would cooperate to make decisions in a multiagent system, which is called 

multiagent decision systems. 

The traditional research on multiagent decision systems focuses on the Cooperative 

Distributed Problem Solving (CDPS) which studies how loosely-coupled networks of 

problems solvers can work together to solve problems that are beyond their individual 

capabilities (Durfee et al. 1989a, 1989b). The main issues to be addressed in CDPS 

include the task sharing, result sharing, and coordination. Some progress has been 

achieved such as contract net for task sharing (Smith 1977, 1980a, 1980b; Smith & 

Davis 1980), coordination through partial global planning (Durfee 1988, 1996). 

Meanwhile, a large amount of research efforts have been invested in multiagent 

decision systems, such as the protocol or mechanism design in agents’ interactions and 

agents’ communication languages (Wooldridge 2002). The classic application is in 

distributed sensing (Lesser & Erman 1980; Durfee 1988). For example, Lesser’s well-

known Distributed Vehicle Monitoring Testbed (DVMT) provides a ground for many 

of today’s multiagent system development techniques. Other applications consist of 

multiagent information retrieval systems (Wellman et al. 1996), policy modeling by 

multiagent simulation (Downing et al. 2001) and so on. 

One of the most important elements in multiagent decision systems is the interaction 

among multiple agents which have their own sphere of influence (Jennings 2000). In 

most of current literature, the study of multiagent encounters is oriented towards game 

theory (Von Neumann & Morgenstern 1947). In general, Nash equilibrium is sought in 
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order to guide what agents should do in any given scenario. Usually, two strategies 1s  

and 2s  are said to be in a Nash equilibrium between agent i  and agent j  if : 1) under 

the assumption that agent i  plays 1s , agent j  can do not better than play 2s ; and 2) 

under the assumption that agent j  plays 2s , agent i  can do not better than play 1s . 

Hence, neither agent has any incentive to deviate from Nash equilibrium. Without 

doubt, much research effort goes to the topic of searching for Nash equilibrium in 

multiagent interactions. An insightful summary could be found in (Mckelvey & 

McLennan1996; Von Stengel 2002). Concerning my research topics, I care more about 

solving games with probabilistic graphical models, such as MAID. The approach is 

called graphical models for games.  

The classical work on graphical models for games is on game trees (Fudenberg & 

Tirole 1991). A game tree represents agents’ actions within internal nodes and utility 

value of outcomes within terminal nodes along with each branch. Hence, a game tree 

has the curse of dimensions and obscures certain important structure that is often 

present in real world game scenarios. To overcome these disadvantages of a game tree, 

La Mura’s work on Expected Utility Networks (EUNs, La Mura & Shoham 1999) and 

Game networks (G nets, La Mura 2000) incorporate both the probabilistic and utility 

independence in a multiagent game setting. La Mura defined a notion of strategic 

independence, and used it to break up the game into separate components so that it 

facilitates an economical method for computing all equilibria in the game. On another 

aspect, a variety of algorithms for identifying equilibria in a game have also appeared. 

The TreeNash algorithm (Kearns et al. 2001a, 2001b) exploits the locality of 

interaction that always exists in complex multiagent games described compactly in a 

graphical structure. It also assumes that each agent’s reward function depends on the 

actions of a subset of agents rather than all other agents’ actions. The multiagent 
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algorithms (Vickrey & Koller 2002) use variable elimination methods to solve 

graphical games.Here, a kind of gradient ascent algorithm was also proposed to 

determine the equilibria profile. However, the running times of these algorithms 

depend on the tree-width of the graph and these algorithms require multiple 

interactions and no bound is currently known on the number of interactions required. 

Recently, the continuous method (Blum et al. 2003) exploits game structures and 

follows a trajectory of equilibria of perturbed games until the equilibrium of the 

original game is found. A simple method (Ryan et al. 2004) formulates game problems 

as a feasibility program and adopts some approaches, such as the general back-tracking 

algorithm for solving Constraint Satisfaction Problem (CSP, Dechter 2003), to search 

all equilibria in a game.  

All of the above research work on multiagent decision systems is of a game-theoretic 

orientation.  It intends to seek a kind of equilibrium among multiple agents and to help 

analyze their interactions with the aim to design a suitable strategy or protocol in 

multiagent systems.  

2.3 Learning Bayesian Network Structure from Data 

Influence Diagrams can be considered as Bayesian networks consisting of only chance 

nodes, with the addition of decision nodes and value nodes. The construction of 

influence diagrams is to identify influence or information relationships between any 

pair of chance nodes, decision nodes and value nodes. In general, determining 

influence relationships between chance nodes is one of the most difficult tasks in the 

probabilistic graphical model construction. Hence, building Bayesian networks from a 
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domain becomes a popular research focus in the past two decades. It indirectly helps 

the construction of influence diagrams or other graphical decision models. 

A Bayesian network that is made up of structures and parameters can be built either 

through domain knowledge or from data. The first approach is called Bayesian 

network construction from domain knowledge while the second one is called Bayesian 

network learning from data. Constructing Bayesian networks from domain knowledge 

is a little subjective because of experts’ judgment, which often results in inconsistent 

networks. Moreover, it is difficult to elicit dependence relationships and variable 

probabilities from domain experts. Consequently, much effort has been made to devise 

some engines for learning Bayesian networks from data. 

In general, approaches for learning Bayesian networks are categorized according to 

two cases: 1) whether the structure is known or unknown; and 2) whether the data set 

is complete or incomplete. When the structure is known, the problem becomes a 

parameter learning problem; otherwise, the problem becomes a structure learning 

problem when the structure is unknown beforehand (Neapolitan 2004). It is also 

possible to learn structures and parameters together from data. However, learning 

structures is much more difficult than learning parameters. An incomplete data set 

complicates the learning problem while a complete data set alleviates the learning 

difficulty. The problem I address leans towards the issue of learning Bayesian network 

structures from a complete data set also called learning Bayesian network structures 

from data. 

In this section, I would like to briefly review some typical techniques for learning 

Bayesian network structures. I will discuss some basic learning methods which provide 
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foundations to various learning algorithms, and some advanced learning methods 

which are well designed recently. 

2.3.1 Basic Learning Methods 

The basic learning approaches which appeared in the last decade provide basic ideas 

for learning Bayesian networks. Based on these concepts various learning approaches 

have been developed. The task of learning Bayesian network structures is to find an 

accurate structure that best fits the observed data. This task is hard because the number 

of possible networks in the search space is super-exponential in the number of nodes in 

Bayesian networks. The learning becomes intractable when the size of Bayesian 

networks increases. For example, 10 variables in Bayesian networks result in 4.2x1018 

possible searched structures (Glymour & Cooper 1999). Thus, a lot of heuristic search 

approaches have been proposed to speed up the search in the structure space by finding 

a local optimal structure. 

The methods for learning structures are generally classified into two groups: scoring 

based search and constraint based search. In the first approach, the algorithms view the 

learning as an optimization problem. They try to find a structure that can best explain 

dependence relationships among attributes in the data set based on some scoring 

criteria, such as the Bayesian scoring method (Cooper & Herskovits 1992; Madigan & 

Raftery 1994; Buntine 1994; Buntine 1996; Geiger & Heckerman 1995; Heckerman 

1995; Heckerman 1996; Ramoni & Sebastiani 1997; Friedman & Koller 2000), 

minimum description length method (Bouckaert 1993; Suzuki 1993; Lam & Bacchus 

1994; Friedman & Goldszmidt 1996; Suzuki 1996; Tian 2000) or entropy based 

method (Herskovits 1991; Steck 2000; Rebane & Pearl 1987; Herskovits & Cooper 

1990; De Campos 1998). For example, the Bayesian score (Cooper & Herskovits 1992) 
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for measuring the learned Bayesian network G  is its posterior probability given the 

database D : )(/),()( DPDGPDGp hh =  where hG  denotes the hypothesis of the Bayesian 

network structure. Later, the BDe metric (Bayesian metric with Dirichlet priors and 

equivalence) (Heckerman et al. 1995) evolves from the search for the network with the 

largest posterior probability given Dirichlet priors over network structures and 

parameters.  

The typical scoring based algorithms include the K2 algorithm (Cooper & Herskovits 

1992), the HGC algorithm (Heckerman et al. 1994), the WKD algorithm (Wallance et 

al. 1996) and some heuristic algorithms such as genetic algorithm and evolutionary 

programming (Larranaga et al. 1996; Larrañaga et al. 1996; Myers et al. 1999; Wong 

et al. 1999), simulated annealing (Chickering et al. 1995), tabu search (Bouckaert 1995; 

Muntenau & Cau 2000) and ant colony optimization (de Campos et al. 2002). Since 

the search space in the scoring based approach is always large, local search methods 

are imposed in some common algorithms (Buntine 1991; Chickering et al. 1995; 

Heckerman et al. 1995; de Campos et al. 2003). The main idea of local search based 

methods is to decide the “neighbor” structure of each node. A common definition of 

“neighbor” refers to all structures that can be generated from the current structures by 

adding, deleting or reversing a single arc, subject to the acyclicity constraint. For 

instance, the K2 algorithm (Cooper & Herskovits 1992) first initializes nodes with no 

parents, but with a prior order; then incrementally adds parents to increase the score of 

the resulting structure. When no addition of a single parent can increase the score, it 

stops adding parent nodes. On another aspect, the heuristic algorithm, like genetic 

algorithm (Larranaga et al. 1996), starts from a network with or without node ordering. 

Then it performs some operations with mutation or crossover operators, until the score 

does not increase with these operations. Another typical learning algorithm is greedy 
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search (Chickering 2002a). Greedy search starts at a specific point (an initial structure) 

in the structure space, considers all the nearest neighbors, and moves to the neighbor 

that has the highest score. If no neighbor has a higher score than the current point (i.e. 

a local maximum is reached), the algorithm is terminated. In Chickering’s work 

(Chickering 1996), it shows that greedy search with random restarts can produce better 

models than a heuristic algorithm. Furthermore, Chickering (Chickering 1996; 

Chickering 2002b) provides a theoretic justification of the greedy search method and 

exploits the concept of equivalence classes of Bayesian network structures to facilitate 

the search process. Two classes of Bayesian network structures are said to be 

equivalent if their distributions represented by their corresponding graphical structures 

are equal (Chickering 2002b).   

In the constraint based approach, the algorithms try to infer the structure by identifying 

dependencies from data through some conditional independency (CI) tests. In fact, the 

CI tests are statistical tests on the data set. In order to use the results to reconstruct the 

structure, some assumptions have to be made. The assumptions of causal sufficiency 

and causal Markov condition ensure the reconstruction of causal models given data, 

such as detecting the existence of edges between nodes and orienting their directions. 

The assumption of faithfulness provides the justification of a constraint based approach 

for recovering Bayesian networks from data (Spirtes et al. 1993). The typical methods 

include the Wermuth-Lauritzen algorithm (Wermuth & Lauritzen 1983), boundary 

directed acyclic graph algorithm (Pearl 1988), the SGS algorithm (Spirtes et al. 1990), 

the IC algorithm (Pearl & Verma 1991), the PC algorithm (Spirtes et al. 1993). Most 

of these proposed learning algorithms, such as the IC and PC algorithms, find 

dependency structures from data by conducting CI tests to identify and/or orient arcs 

between each pair of nodes. Hence, their complexity, like the complexity of the SGS 
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algorithm, increases exponentially with the number of variables of the domain. The 

complexity of the PC algorithm, which is considered as more efficient and popularly 

used in many experiments, also increases exponentially with the degree of any node in 

Bayesian networks (Spirtes et al. 1993). 

There are also some hybrid algorithms that use a combination of constraint based and 

scoring based approaches (Singh & Valtorta 1993; Singh & Valtorta 1995; Spirtes & 

Meek 1995; Dash & Druzdzel 1999; Acid & De Campos 2000; Acid & De Campos 

2001; De Campos et al. 2003). For instance, a clever method in Dash and Druzdzel’s 

work (Dash & Druzdzel 1999) uses a constraint based method to search a space of 

equivalent networks; then borrows the Bayesian score to evaluate the candidate models.  

It can be seen that much progress has been made on learning Bayesian network 

structures. However, most of these approaches do not aim at learning large Bayesian 

networks with hundreds or thousands of variables. Furthermore, when the size of the 

data set is quite small, the structure learning problem becomes more intractable. This is 

especially true for the constraint based methods, where the reliability of CI tests 

decreases when there is insufficient data. Here, the methods discussed above are 

ranked as basic learning methods. Hence the challenging work of learning large 

Bayesian networks from a small data set disables most of basic learning methods. 

2.3.2 Advanced Learning Methods 

The advanced learning approaches appear in recent years. They comprise much current 

insightful research work on the edge of learning techniques. Some of them adopt well-

designed strategies and focus on the challenging work of learning a large Bayesian 

network (from a small dataset), such as the Sparse Candidate algorithms (SC, 

Friedman et al. 1999), the Three Phases Dependency Analysis algorithm (TPDA, 
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Cheng et al. 2002), the Max-min Bayesian networks (MMBN, Tsamardinos et al. 2003) 

and module networks (Segal et al. 2003). 

The SC algorithm (Friedman et al. 1999) learns possible parents of each variable to 

recover the whole network. However, in an unknown structure, it is difficult to set the 

possible number of parent variables. Hence, many iterative learning processes have to 

be performed to obtain a final optimal network. In the same year, an incremental 

learning algorithm (Castelo & Siebes 1999) was proposed to learn a large Bayesian 

network. This algorithm first groups several clusters of nodes in the network; then 

recovers the whole network incrementally. However, it is only effective for a sparse 

Bayesian structure and it is hard to set the cluster size.  

The TPDA algorithm (Cheng et al. 2002) is a typical constraint based learning 

algorithm that is based on information theory completely. It divides the learning 

process into three phases: drafting, thickening and thinning. In the first two steps it 

outputs a graph that catches all dependence between two nodes based on the criteria of 

mutual information. In the third step, it identifies some conditional independence 

relationships for each pair of nodes and removes the corresponding arcs to recover a 

final structure. The TPDA algorithm has been successfully implemented in the 

learning tool of Belief Network Power Constructor (BNPC, Cheng et al. 2002). The 

SC and TPDA algorithms are able to learn a medium Bayesian network efficiently and 

may have the potential ability to learn a large Bayesian network.  

Two more promising algorithms for solving the challenging work are max-min 

Bayesian networks and learning module networks.  The MMBN algorithm learns the 

Markov blanket of each node to recover the whole network. Each local structure in 

Bayesian networks is discovered in a relatively large sample size in comparison with 
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the size of a local structure, which makes the learned result more robust. However, the 

MMBN algorithm is suitable for learning a sparse structure in which a large number of 

nodes are prohibited in the Markov blanket. Otherwise, this algorithm is always not 

quite efficient when a large local network contains numerous nodes from the Markov 

blanket of each node. The other algorithm in learning module networks emphasizes a 

set of variables that display some common features in the data set. Then, it clumps 

these variables into some modules and learns each module individually. After this it 

combines local modules to recover the final network. To ensure global optimization for 

the combination, it is unavoidable that some constraints exist in this algorithm. For 

example, it requires that all nodes in the same module must have the same parents.  

Recently an inclusion-driven learning approach (Castelo & Kocka 2003) has been 

proposed to learn Bayesian networks from a large dataset with 10,000 cases or so. This 

new method utilizes partial orders encoded in conditional independencies, called 

inclusion order, and searches the space of equivalent classes of Bayesian networks. 

The idea is unique; however, it does not claim the ability to learn a large Bayesian 

network from a small data set.  

It can be seen that the challenging work is still unsolved although research on the topic 

of learning Bayesian network structures in the past two decades has achieved much 

progress. It is intractable for basic methods to learn large Bayesian network structures. 

On the other hand, some deficiencies still exist in advanced approaches for learning 

large Bayesian network structures from a small data set. 



Chapter 2: Literature Review 

39 

2.4 Summary 

Many researchers have exerted their effort on the topics that I will investigate in this 

dissertation. They have proposed different representations to better capture 

characteristics of decision problems, and developed various kinds of approaches for 

learning Bayesian network structures from data. Based on this research work, I have a 

solid foundation to study my research topics and carry out continuous research work. 

This chapter gives a concise review of a variety of topics related to decision making, 

multiagent decision systems and Bayesian network structure learning. Some terms and 

concepts are introduced for a better understanding of the discussion in subsequent 

chapters of this dissertation. 
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3 Model Representation 

This chapter provides the formal definition of Multiply Sectioned Influence Diagrams 

(MSID) and Hyper Relevance Graph (HRG), followed by an intuitive description, and 

then makes use of an example to illustrate the utilization of MSID and HRG in 

representing a multiagent decision problem, that is a distributed decision problem 

involving multiple agents. This chapter introduces the important properties of MSID 

and HRG, and describes the model construction process as well.  

3.1 Agency and Influence Diagrams 

A good representation or model is a channel which should convey full information 

about a problem domain in an intuitive and logical manner. It is required to capture the 

characters of domain scenario. In some decision domains, agency is implicated in 

some graphical decision models such as the mature representation language of 

influence diagrams. It can be inferred that some common abstract foundations should 

exist between agency and graphical decision models although they have been studied 

separately in two parallel fields for a long time. 

Intelligent agent has been a key concept in both AI and the main stream of computer 

science. The agent-based technology plays an important role in software engineering. 

In the past decades, the theory and application of agents have been well developed. As 

for agency theory, many models or architectures for characterizing agents have been 
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proposed. From an ideally theoretical and more practical perspective, the Belief-

Desire-Intention (BDI) agent model is widely accepted and implemented in many 

fields (Rao & Georgeff 1995; Wooldridge & Jennings 1995; Wooldridge 2002). 

In the field of decision science, some concepts, such as rational decision making and 

normative decision systems, are always discussed. Influence diagram has been a 

compact graphical model for representing decision problems under uncertainty. It 

guides how to arrive at an optimal decision with respect to the preference of a decision 

maker and the states of an uncertain environment. Accordingly, it is possible and 

reasonable to model agents as influence diagrams in order to solve decision problems 

in the agent-based system. In fact, the logical framework residing in both BDI agent 

and influence diagrams does match with each other because both of them are based on 

the essence of rational persons and want to solve decision problems with a rational 

attitude. 

A BDI model shows the information attitude (Belief) and pro-attitude (Desire and 

Intention) of an agent. In detail, beliefs are related to the information on which an 

agent thinks about the world it occupies. This information not only includes the agent’s 

knowledge on what is the world, but also includes its attitude on what happens in the 

world. Intentions can be seen as states of affairs that an agent has committed to bring 

about. States of affairs are updated with agents’ actions or performances. Desires or 

goals are objectives that an agent wants to realize while objectives reflect agents’ 

preferences. 

In an influence diagram, chance nodes describe states of the environment which 

intelligent agents are involved in. Hence, it is related to agents’ knowledge and 

represents agents’ beliefs. Decision nodes provide decision options and indicate the 
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sequential actions that an agent will perform. Finally, value nodes represent the 

criterion against which different outcomes are evaluated. Thus utility nodes represent 

agents’ preferences and determine the final optimal path that an agent should follow. 

The above description shows that there are some corresponding implications between 

variables or nodes (Henceforth, I shall make no distinction between variables and 

nodes.) in influence diagrams and properties of intelligent agents. It shows again that 

an influence diagram is a desirable alternative to model an agent-based decision 

problem under uncertainty. 

3.2 Multiply Sectioned Influence Diagrams and Hyper Relevance 

Graph 

Influence diagram is a well-designed probabilistic graphical model for representing an 

uncertain decision problem. However, it is only for a single agent paradigm so that it 

does not have a powerful ability for representing a distributed decision problem 

involving multiple agents, also called a multiagent decision problem, such as the 

following complex decision problem in the medical domain. 

[Medical Domain] 

Severe Acute Respiratory Syndrome (SARS) is a serious infectious disease that 

could potentially develop into an epidemic or even an endemic. Its outbreak 

causes unexpected loss everywhere in the world. Its uncertain and various 

sources have frustrated the medical community and policy makers. Beyond all 

doubt, it needs the collaborative effort of multiple nations concerning their own 

local as well as global benefits.  
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This is one decision problem of policy design for controlling the SARS to decrease 

both social and economical loss in the world. The decision problem involves many 

nations or communities, even those without the outbreak of the SARS. These involved 

nations are collectively seeking good solutions to control the SARS in the whole 

community in order to avoid more loss. They would share some valuable information 

such as some available SARS reports. However, to protect privacy, the involved 

nations could not release all of their own information in the cooperation. Summarily, 

an individual privacy protection nation seeks its best decision while it has a full, 

correct and consistent observation in a situation. They cooperatively solve a decision 

problem in a distributed way. This kind of decision problems is what I call multiagent 

decision problems. Intuitively, a multiagent decision problem always relates to a large 

knowledge domain since it concerns a complex decision problem involving multiple 

agents. The potential approach for solving multiagent decision problems should extend 

traditional graphical decision models as well as exploit features of multiple agents. 

The aforementioned decision scenario could not be solved using traditional methods of 

influence diagrams and extensions of the representation which have been reviewed in 

Chapter 2, such as the DID, VBS, MLID, TDID, LIMID, UID, SID, and decision 

networks. Two major reasons are stated. Firstly, those formalisms emphasize the single 

agent based decision problem. Thus they do not consider cooperation among multiple 

agents and properties of multiple agents such as agents’ privacy and organizational 

relationships. Secondly, those graphical models are not scalable. The multiagent 

decision problem is a large and complex decision problem so that it is hard to 

concisely represent a large number of elements and their relationships within a single 

decision model. 
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The most relevant work to my topic is the representation of MSBN. As an extended 

model from Bayesian networks, an MSBN is a set of local Bayesian networks 

connecting through the linkage of d-sepset. In my work, the concept of d-sepset is 

extended to represent an intersection among adjacent subnets such as local Bayesian 

networks, and not just between each pair of subnets. Furthermore, for a concise 

representation of intricate interactions among adjacent agents, an irreducible d-sepset 

is defined. An irreducible d-sepset is a set of d-sepnodes which encode the necessary 

information. The necessary information includes the requisite information and the 

supporting information for agents’ decision making. The requisite information is 

encoded either in requisite probability nodes or in requisite observation nodes and is 

required for agents’ decision making. Both of these required nodes belong to d-sepsets. 

The supporting information, also encoded in d-sepnodes, is not required for agents’ 

decision making; however, this information supports their decision making. For 

example, an agent may give the complementary information to its adjacent agents who 

cannot access this information by themselves. Hence an irreducible d-sepset not only 

provides a concise representation, but also indicates the most economical information 

for supporting decision making in multiagent decision problems. 

The representation of a multiagent decision problem requires a new graphical decision 

model extending from the basic decision models such as influence diagrams. On the 

other hand, an MSBN provides a coherent framework for multiple agents reasoning 

although it does not address the decision making problem. This work provides a 

foundation to define an MSID based on both the influence diagrams and the MSBN 

formalism. 
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3.2.1 Multiply Sectioned Influence Diagrams (MSID) 

Definition 3.1: An MSID I  is a set of influence diagrams jI  such that each diagram 

jI  represents an agent j  and the shared chance nodes among adjacent diagrams 

kji III ,,, L  comprise an irreducible d-sepset  kijS L . 

For instance, for two agents i  and j , the MSID is denoted by ji III U= . The d-sepset 

between influence diagram iI  and influence diagram jI  is denoted by ijS ( ji ≠ ).  It 

can be seen that the MSID U
j

jII =   involves two concepts: an agent-based influence 

diagram jI  and an irreducible d-sepset kijS L . 

In brief, an MSID is a set of local influence diagrams that reflect an individual agent’s 

knowledge, actions and preference. Agents communicate with each other through a d-

sepset that indicates public information. Except for the shared information in the d-

sepset, other information is protected in each local influence diagram. The shared 

information indicates agents’ beliefs on their environment. It may be affected by 

agents’ actions. Sometimes the information can also exert its influence on agents’ 

behavior. To make a consistent representation in an MSID, Bayesian networks 

representing agents that are only information collecting entities without actions or 

behaviors are called degenerated influence diagrams. Consequently, an MSID is a 

hybrid probabilistic graphical model that could be a combination of Bayesian networks 

and influence diagrams. In this sense, an MSBN is a special case of MSID in which all 

agents do not make decisions and are represented by local Bayesian networks. 

The definition of MSID implies that an MSID should comply with three constraints: 

DAG structure, d-sepset of agent interface and irreducible d-sepset. The first constraint 
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prohibits any directed cycle in an MSID. This is a graphical structure requirement in 

probabilistic decision models following logical thinking in decision analysis (Robert & 

Terry 2001). An MSID is a sizable decision model characterizing a large and complex 

knowledge domain. Multiple agents have consistent thinking including causal 

relationships on the same observation. Although their observations and decisions are 

interleaved with each other, a sequential order exists in their interaction. The second 

constraint requires that nodes shared by local influence diagrams should be d-

sepnodes, which means that all parents of a public node should be included in the same 

local influence diagram. This constraint protects agent’s privacy and indicates that an 

agent can decide its actions using local information only when the information in the 

d-sepset is known. The final constraint is to ensure the compactness of MSID, and to 

remove any redundant information. The information, including the requisite 

information and the supporting information, encoded in a d-sepset between two agents, 

is just what the two agents are willing to share. Unnecessary information would 

complicate a model representation and confound the necessary information. 

Besides the qualitative properties of MSID on DAG structure, an MSID also represents 

a set of joint probability distributions encoded in an individual influence diagram. This 

is to say ∏ ∏∏
∈

==
j DCxj

j
jj

xxPPP )))(((
U

π  where ∏
∈ jj DCx

xxP
U

))(( π  is a collection of 

conditional probability distributions for node x  (belonging to either the set of decision 

nodes jD  or the set of chance nodes jC ) given its parents )(xπ . For node x  in d-sepset, 

exactly one of its occurrences (in an jI  containing )(}{ xx πU ) is assigned ∏
∈ jIx

xxP ))(( π  

while each occurrence in other local influence diagrams is assigned a uniform potential, 
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such as 1. In this way, an MSID is able to ensure a consistent representation of joint 

probability distributions. 

In the aforementioned SARS decision problem, each nation or community can be 

considered as an individual agent that is modeled as a local influence diagram. Figure 

3.1 shows the MSID that represents this multiagent decision problem concerning the 

SARS control. The MSID is defined as U
3,2,1=

=
j

jII . In this MSID, there are three local 

influence diagrams )3,2,1,( =jI j  that represent three agents )3,2,1,( =jA j  respectively 

(Agent A1: Nation 1; Agent A2: Nation 2 and Agent A3: Nation 3). Each local influence 

diagram describes an individual agent’s knowledge that formalizes an agent’s 

judgments on the situation. The three agents share some public information 

represented as grey color nodes { }cba ,,  such as the WHO (World Health Organization) 

report on the SARS, status of transmission customers and the SARS report from a 

certain nation (not all involved nations would like to release this information). The 

information { }cba ,,  indicates agents’ common beliefs on the same observation. Among 

this information, the information },{ ba  is not affected by agents’ decisions while the 

information c  is affected by agent A1’s decision 2d . Furthermore, their privacy, like 

the SARS report from its own nation and states of hospital facilities (some nations 

have to hide these information for their own benefit), is protected in local influence 

diagrams such as g  in A1, k  in A2, and l  in A3. The actions of agents are represented 

as decision nodes in corresponding local influence diagrams such as temperature 

checking at entries ( 1d  in 1I ), home quarantine policy ( 2d  in 1I ), experiments of 

SARS virus ( 1d  in 2I ) and overseas tour policy ( 1d  in 3I ). The benefit for each agent 

is defined as utility functions represented by utility nodes in the MSID. In Figure 3.1, 

some agents can make decisions independently with the known information in the d-
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sepset. For example, with the known information c  between 1I  and 3I , A3 will make 

the decision 1d  without considering any effect of A1’s actions. 

 

 
 

Figure 3.1: An MSID for the SARS Control 

3.2.2 Hyper Relevance Graph (HRG) 

An MSID has the ability of representing a multiagent decision problem concerning the 

six characters of this decision scenario I discussed in the previous chapter. However, it 

does not explicitly describe the property of organizational relationships among 

multiple agents such as the required information for decision making. Moreover, in an 

uncertain and dynamic environment, agents have to be regrouped to adapt to a new 

surrounding.  In this process, it is the organizational relationship that guides multiple 

agents to construct an updated multiagent system. In Zambonelli’s work (Zambonelli 

et al. 2001), five types of organizational relationships (Control, Peer, Benevolence, 

Dependency and Ownership) between agents were discussed. However, from the 

viewpoint of decision making and information flow in a multiagent system, these 
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relationships can be classified into only two types: Control and Communication. Hence, 

the concept of Hyper Relevance Graph (HRG) is introduced to represent the 

information implicated in the relationship. 

Definition 3.2: A Hyper Relevance Graph (HRG) Η is composed of three types of 

nodes: rectangular, triangular and oval nodes, and arcs between them. A rectangular 

node denotes an individual agent jA  associated with local influence diagram jI   in an 

MSID. A triangular node denotes the shared information C  in d-sepset S  that is 

required for an agent’s decision D . An oval node denotes the shared information C  in 

d-sepset S  that is not required by any agent’s decision D .   

With the elements in an HRG, two kinds of basic relevance graphs, called Control 

Relevance Graph and Communication Relevance Graph, can be built as shown in 

Figure 3.2. Each is associated with a function that implies an organizational 

relationship in a multiagent system. 

1. Control Relevance Graph is associated with a function 

},,{),,(Re 1 mkji ccdAAq L= , which indicates that the set of requisite information 

},,{ 1 mcc L  agent iA  provides is required for agent jA ’s decision kd . It signifies 

the Control relationship.  

2. Communication Relevance Graph is associated with a function 

},,{),( 1 nji ccAASup L=  which indicates that the set of supporting information 

},,{ 1 ncc L  flowing between agent iA  and agent jA  supports their decision 

making; however, this information is not required for any of their decisions. It 

signifies the Communication relationship. 
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Figure 3.2: Two Basic Relevance Graphs 

In a control relevance graph, the set of requisite information },,{ 1 mcc L  flows from 
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MSID and the organizational relationships in the problem domain. For example, the 

HRG based on the MSID in Figure 3.1 is shown in Figure 3.3. The HRG in Figure 3.3 

clearly shows that agent 1A  controls agent 3A ’s decision 1d  with the information c , 

representing that the nation 1’s SARS report affects overseas tour policies in nation 3. 

Furthermore, the information c  is affected by agent 1A ’s decision 2d . Thus it is said 

that agent 1A ’s decision 2d  exerts an influence on agent 3A ’s decision 1d . The HRG 

also shows that agent 2A  controls agent 1A ’s decision 1d  with the information b , 

representing that temperature checking decisions at nation 1’s border crossing are 

affected by the status of citizens from nation 2. In this case, agent 2A  affects agent 

1A ’s decision 1d  by its judgment that is not affected by agent 2A ’s decision 1d . 

Besides the public information },{ cb , these nations share the public information a  that 

conveys the indication of the WHO report on the SARS. However, this information is 

not the requisite one for agents’ decision making. In other words, the HRG gives a full 

picture of the relationships among the three nations modeled as agents 1A , 2A , and 3A .  

The HRG in Figure 3.3 indicates that multiple nations are able to arrive at a good 

decision on the SARS control with some cooperation, even without a central control 

from the WHO.   
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Figure 3.3: The HRG for the MSID in Figure 3.1 

3.3 Model Construction 

Model construction is a model refinement process with the aim to characterize decision 

scenarios in a compact and accurate model. It requires some guidelines to facilitate the 

building of a reliable and exact model.  

3.3.1 MSID and HRG 

An MSID represents both the knowledge of the environment and the properties of 

intelligent agents while an HRG characterizes the organizational relationships in the 

multiagent system. Evolving over time, intelligent agents are regrouped according to 

new relationships represented in the HRG. Consequently, the MSID should be rebuilt 

based on the updated HRG. 

Triangular and oval nodes in an HRG have the exact chance nodes that can be obtained 

from a d-sepset in an MSID. Elements in the HRG could be driven from a well-built 

MSID through either Decision Bayes-ball or refined Decision Bayes-ball procedure. 

These two procedures could obtain the required chance nodes, including requisite 
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observation nodes and requisite probability nodes, for corresponding decision nodes. 

These required chance nodes and the corresponding decision nodes are elements in 

triangular nodes of the HRG. Except for these chance nodes, other nodes in the d-

sepset belong to elements in oval nodes. Extracted from a knowledge domain, the 

organizational relationships related with two functions are confirmed in the HRG. On 

another aspect, when an HRG is reorganized because of dynamic organizational 

relationships in a multiagent system, it will lead to a reconstruction of the MSID. For 

instance, it is to refine (decreasing or increasing) chance nodes in the d-sepset and to 

reorient their relevance (adding or removing arcs) to decision nodes. Accordingly, the 

MSID and HRG are regulated with each other to arrive at an elaborate framework.   

A compact MSID requires that a d-sepset should be irreducible, which depends on the 

relationship between intelligent agents. The information flowing through the d-sepset 

is just what intelligent agents want according to their organizational relationships. The 

necessary information is composed of the requisite information and the supporting 

information which indicate the control relationship and the communication 

relationship between agents respectively. An HRG is the exact model which could 

encompass all the implications concerning the irreducibility of d-sepset. Hence it is 

able to help the constraint (irreducibility of d-sepset) checking and the reconstruction 

of an MSID.  

3.3.2 Modeling Process 

The MSID, together with the HRG, provides the basic elements to represent a large, 

complex and distributed decision problem involving multiple agents. These two 

models could be built from a certain decision domain in a simultaneous or a sequential 

way. 
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1) Simultaneous Approach: It is to build the MSID and HRG from domain 

knowledge at the same time as shown in Figure 3.4 (a). In this way, both of the 

initial models are built from decision scenarios directly. It is inevitable that the 

model construction process incorporates much subjective consideration from 

domain experts. After that, the two models go through the verification process 

and do a further refinement. Finally, the refined MSID and HRG is output 

when they are considered and satisfied by domain experts. The final model 

should be valid and represent the real decision scenario accurately. 

2) Sequential Approach: It is to build the MSID and HRG from domain 

knowledge in a sequential way as shown in Figure 3.4 (b). An MSID is 

constructed directly from the domain knowledge while an HRG is produced 

based on the built MSID. In this way, it avoids much inconsistency between the 

initial two models. Finally, after model verification and further refinement, the 

satisfied models of the MSID and HRG are generated.  

It can be seen that model construction is an iterative refinement process that requires 

both an objective step of model verification and a subjective step of model elicitation 

from domain knowledge. In Chapter 4, model verification will be discussed in length. 

Since model elicitation from domain knowledge largely depends on the subjective 

thinking on the domain, it is hard to figure out a formal elicitation approach. However, 

if a model is elicited from data in the domain, there exist many mature methods. I will 

focus on this topic in Chapter 7. 



Chapter 3: Model Representation 
 

56 

 

Figure 3.4: Modeling Approaches 

3.4 An Application 

Multiagent decision problems are rather common and essential in our daily lives. They 

are dominant in some specific problem domains such as military defense, air control, 

medicine and so on. The MSID and HRG together provide a flexible, compact and 

distributed framework for representing these kinds of decision problem. Besides the 

aforementioned medical domain from which I have developed the corresponding 

decision models, the maritime security domain also attracts my attention. In this 

section, I will investigate one decision scenario in this domain and build decision 

models of MSID and HRG that will be referred to in Chapter 4. 

Unsatisfied 
Satisfied 

Satisfied 
Unsatisfied 

Output 

Output 

Generate 
MSID 

Generate 
HRG 

Verify Models 

Refine Models 

Generate 
MSID 

Generate 
HRG 

Verify Models 

Refine Models 

Domain 
Knowledge 

Domain 
Knowledge

a) Simultaneous Approach 

b) Sequential Approach 



Chapter 3: Model Representation 

57 

3.4.1 Case Description 

A multiagent decision problem could be formulated as a typical decision scenario in 

the maritime security domain: 

[Maritime Security Domain] 

The issue of coast safety has long been a focus in the maritime security 

domain. The task of an information collection center on the land is to ensure 

the coast safety and ships’ normal activities along the coastline as well as to 

monitor the status of entry into a harbor. In a long and broad coast, all kinds 

of ships may leave and enter the coast at any time. For example, a navy ship 

may go on its rounds on patrols or to invigilate reported incidents in the sea, 

and a commercial ship may be carrying tourists for sightseeing or other 

pleasure activities. As they share a common space, these ships have to 

cooperate with each other in order to achieve their respective missions and 

goals. An information collection center conveys some public information, 

such as the weather information and the report on the condition and status of 

sea, to a navy ship and a commercial ship. A navy ship may report back to 

headquarters after it has observed any unusual happenings out there, such as 

the abnormal status of sea and the unexpected performance of a commercial 

ship. In the follow-up, the navy ship may decide to intercept the ship if the 

navy ship is in good function and in a favorable position corresponding to this 

ship. A commercial ship, on the other hand, must focus on its navigation and 

take appropriate actions in reaction to the conditions of sea. For example, a 

commercial ship may decide to seek help from the authorities when it feels 

that its position is being endangered concerning the sea condition. This action 
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transmits the information of its behavior to a navy ship. Also, the commercial 

ship may adjust its work type, such as changing a tour line, when it does a full 

evaluation of its mechanism function. While all these activities are going on, 

public information should be accessible to them when operating in this area. 

The above is an example encoded with a distributed decision problem involving 

multiple agents (ships). There are two kinds of ships, namely a navy ship and a 

commercial ship, and an information collection center. All of them share some 

common information such as the weather information. Meanwhile, a commercial ship 

shares the information of its performance with a navy ship. However, for privacy 

protection, both a commercial ship and a navy ship would not release publicly the 

information of their function and their position in the sea. On another aspect, agents 

have their individual objectives, but their decisions and observations are interleaved 

within multiple agents. For instance, a commercial ship needs the information of the 

sea condition to make the decision on seeking help; and a navy ship needs to be 

informed of the performance of a commercial ship before it takes the action of doing a 

report. Accordingly this is a typical multiagent decision problem. Decision models of 

MSID and HRG have the ability and capability to represent this decision problem. 

3.4.2 Model Formulation 

According to the above decision scenario in the maritime security domain, the 

Information Collection Center (ICC), Navy Ship (NS) and Commercial Ship (CS) are 

considered as an individual agent, and organized into a multiagent system. Each of 

them is described as an (degenerated) influence diagram ( 1I , 2I  and 3I ) respectively 

in an MSID. Some of the variables representing uncertainty and decisions are tabulated 

as shown in Table 3.1. 
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After variables are identified in the problem description, models of MSID and HRG 

can be built simultaneously as shown in Figures 3.5 and 3.6 respectively. As I 

discussed earlier, the HRG can be obtained in two ways. One is to produce the HRG 

according to the implication of MSID. After that, the HRG is verified with the domain 

knowledge. The other method is to produce the HRG with regard to the problem 

description, then to verify it with respect to a constructed MSID. Here I adopt the 

second approach and will discuss its verification in Chapter 4. 
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Table 3.1: Variable Identification of Agents ICC, NS and CS 

Information Collection Center in the land (ICC) 
a) Uncertainty 

Uncertainty Weather 
(w) 

Condition 
of Sea 

(c) 

Status of 
Entry 

(e) 

Status of 
Sea 
(s) 

Other 
Information 

(i) 
Good Good Blocked Normal Authentic Outcomes Bad Bad Unblocked Abnormal Inauthentic 

 
 
Navy Ship (NS) 

a) Uncertainty 

Uncertainty Weather 
(w) 

Condition 
of Region 

(cr) 

Position of 
Self 
(ps2) 

Performance of 
CS 
(pp) 

Function 
(f2) 

Good Good Favorable Expected Good Outcomes Bad Bad Unfavorable Unexpected Bad 

Uncertainty 
Status of 

Sea 
(s) 

Normal Outcomes Abnormal 
 
b) Decision                                                                  c) Utility Value 

Decision Intervene 
(in) 

Report 
(re) 

Yes Yes Alternatives No No 
 
 
Commercial Ship (CS) 

a) Uncertainty 

Uncertainty Weather 
(w) 

Condition of 
Sea 
(c) 

Position of 
Self 
(ps1) 

Behavior of 
Self 
(pp) 

Function 
(f1) 

Good Normal Danger Normal Good Outcomes Bad Abnormal Safety Abnormal Bad 
 
b) Decision                                                                  c) Utility Value 

Decision Work Type 
(wt) 

Ask Help 
(ah) 

Old Yes Alternatives New No 
 
 

Utility v2 
in re Attributes f2 pp 

Utility v1 
c f1 Attributes wt  
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Figure 3.5: An MSID for Agents ICC, CS and NS 

 

 

Figure 3.6: An HRG for Agents ICC, CS and NS 
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In Figure 3.5, agent ICC is modeled as a degenerated influence diagram 1I  in the 

MSID. It provides public information to agents NS and CS, and does not make any 

decision. Agents NS and CS take some actions based on their observations. Agents’ 

privacy, like agents’ functions and position, are protected in corresponding local 

influence diagrams. From the HRG in Figure 3.6, it is noticed that agents ICC, NS and 

CS share the public information w . This public information affects agents’ 

observations; however, this information does not control agents’ decisions. On the 

other hand, some information from agent ICC controls decisions of agents NS and CS. 

For example, agent ICC controls agent NS’s decisions },{ rein  with the information s  

and controls agent CS’s decisions },{ wtah  with the information c . At the same time, it 

is noticed that the information },{ sc  is not affected by agent ICC’s decisions because 

agent ICC is only an information collection center. In contrast, agent CS controls agent 

NS’s decisions },{ inre  with the information pp  while this information is affected by 

agent CS’s decision ah . It indicates that agent CS’s decision ah  exerts an influence on 

agent NS’s decisions },{ inre , which just matches the domain knowledge. Thus it can be 

seen that the HRG explicitly describes the organization relationships among multiple 

agents through quantifying the information support for decision making. 

From the representation of MSID and HRG, it seems that this framework is flexible 

and scalable since the model is designed in a distributed manner. It could solve a 

decision problem in the changing world. For example, in the maritime security domain, 

any new ship that enters the invigilated region could be modeled as a new local 

influence diagram that would be added into the existing MSID without damaging other 

components. On the other hand, currently, the model representation of MSID lacks the 
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ability to handle game problems since it requires a sequential order between decisions 

and observations among multiple agents. 

3.5 Summary 

Multiagent decision problems are difficult to be addressed by current representation 

languages in probabilistic graphical models so that new methodologies need to be 

proposed. This chapter provides a formal definition of the MSID and HRG which 

could be utilized to represent a distributed decision problem involving multiple agents 

in an uncertain environment. At the same time, this chapter describes many 

opportunities of real world applications such as the policy design for avoiding more 

loss due to the SARS in 2003 and ship models in the maritime security domain. 

The content in this chapter serves as a basis for the discussion in the following chapters.  
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4 Model Verification 

Multiply Sectioned Influence Diagrams (MSID), together with Hyper Relevance 

Graph (HRG), is a distributed and cooperative probabilistic graphical model to 

represent multiagent decision problems. As shown in the definitions in Chapter 3, the 

representations of MSID and HRG should satisfy three constraints: DAG structure, d-

sepset of agent interface and irreducible d-sepset. Thus model construction involves 

one important process of model verification which will be illustrated in this chapter. 

4.1 The Introduction 

Model verification is an old but not obsolete topic in the engineering area and is an 

essential process in practical applications (Cousot 2005). The aim of model 

verification is to ensure a valid and reliable model. In general, model validation and 

verification can be conducted through expert evaluation, data evaluation, and some 

model consistency checking, such as finding and resolving conflicts by forming a 

consistency matrix. In expert systems or knowledge based systems, model verification 

always depends on both the knowledge of domain experts and the skills of model 

builders. It is desirable that a valid and reliable model be generated from the problem 

domain and this model can characterize the domain knowledge accurately and 

conformably. 



Chapter 4: Model Verification 
 

66 

In Chapter 3, I have proposed graphical decision models of Multiply Sectioned 

Influence Diagrams (MSID) and Hyper Relevance Graph (HRG). An MSID represents 

a decision problem involving multiple agents in a distributed and flexible fashion 

while an HRG encodes the organizational relationships in the multiagent system. From 

the definition, it can be seen that the MSID and HRG should obey the three constraints 

such as the DAG structure, d-sepset of agent interface, and irreducible d-sepset. 

Both distributed decision making and compact model representation require that the 

MSID and HRG observe a set of constraints. These constraints need to be verified 

before model evaluation with the aim to avoid “garbage-in-garbage-out”. In addition, 

the verification process is a cooperative task for multiple agents whose knowledge is 

encoded into local influence diagrams individually. Since agents are autonomous and 

built by different vendors, agents’ privacy should be protected. Hence, verification of 

these constraints raises a challenge.  

In the field of decision analysis, a traditional approach to verify a graphical model 

involves a detailed study on its graphical structure, like a graphical verification on 

DAG in an MSBN (Xiang 1998; Xiang & Chen 2002). The method requires a good 

knowledge on graph theory that always frustrates the novices. To relieve a knowledge 

repertory with graph theory, a symbolic method is proposed to deal with the model 

verification. The method considers the verification in an algebraic view that 

characterizes a factorization joint probability in an MSID. Furthermore, to enrich 

model verification, the issue of verification failure is investigated with some useful 

comments on model correction. 
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4.2    Foundation of Symbolic Verification   

Basically, like influence diagrams, an MSID represents decision problems from two 

points of view. One is a graphical structure G , which is a DAG; the other is a Joint 

Probability Distribution (JPD) P , which is a set of multiplication of the factorization 

product of conditional probabilities of nodes given their parents, like a recursive 

factorization in Bayesian networks (Pearl 1998; Shachter et al. 1990; Wong & Wu 

2002) , 

i.e. ∏ ∏∏
∈

==
j DCxj

j
jj

xxPPP )))(((
U

π    

where jC  and jD  are sets of chance and decision nodes in local influence diagrams jI . 

Essentially, the two viewpoints on an MSID display the same knowledge about a 

problem domain and are consistent with each other. Taking advantage of this situation, 

it is reasonable and possible to verify the structure by its corresponding part, like JPD. 

Hence a new approach, called symbolic verification, deserves to be studied. 

From a graphical perspective, an MSID is a set of local DAG structures (for influence 

diagrams) that defines a DAG globally; however, from a symbolic view, it is a set of 

individual JPD 
jIP  associated with local influence diagrams. Furthermore, with the 

form of conditional probability, an individual JPD 
jIP  can be rewritten as 
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where x  is a chance node or a decision node in local influence diagrams. 
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It is evident that the denominator of last term in Equation (4.1) implies parents of 

nodes while the numerator includes a family of nodes. Collectively, they provide us 

with the parental information on nodes in local influence diagrams, which is consistent 

with the structural information. Conveniently, Equation (4.1) is called the algebraic 

description of local influence diagrams which provides a foundation to a symbolic 

verification. 

4.3 Symbolic Verification of DAG structure 

The first constraint, DAG structure, means that there should be no directed cyclic paths 

in an MSID. The verification task is to ensure a global DAG structure in an MSID 

although local influence diagrams are identified as a true DAG. The symbolic method 

takes some basic operations based on the algebraic description of local models to test 

the DAG structure in an MSID, 

Theorem 4.1: An MSID without value nodes has the same DAG property as the 

original MSID. 

Proof. An MSID includes three types of nodes: chance nodes, decision nodes and 

value nodes. Since a value node is a sink node without outgoing arcs in an MSID, it 

cannot belong to any part of a directed cyclic path. Removing the value node ensures 

the DAG property in an MSID. ▌ 

With Theorem 4.1, in the process of DAG structure verification, value nodes in an 

MSID can be removed safely. After removing value nodes and considering decision 

nodes as chance nodes in an MSID, the MSID has the same structure as an MSBN 
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which is a set of local Bayesian networks. Here, a symbolic verification method, 

instead of graphical methods, will be carried out in an MSBN. 

4.3.1 Basic Concepts 

Verification of DAG structure involves a global testing of directed cyclic paths in an 

MSBN.  It is clear that if a directed cyclic path exists in an MSBN, the path must 

include d-sepnodes shared by adjacent subnets. This path is called a D-Cycle and is 

defined as follows:  

Definition 4.1: A D-Cycle ( DC ) is a cyclic directed path that includes at least one d-

sepnode globally. 

Simarly,  a directed path in a local subnet is called a D-Path ( DP ). It is likely to be a 

part of a D-Cycle. The formal definition is as follows:      

Definition 4.2: A D-Path ( DP ) is a directed path in a local subnet in which both the 

source and sink nodes are d-sepnodes.      

In each subnet, concerning the relationships between pairs of d-sepnodes, two types of 

d-sepnodes can be classified as follows.      

Definition 4.3: A D-Head ( DH ) set is composed of d-sepnodes that have out-going 

arcs in iI .  I use the notation { }ycaDH ,, L=   to denote the D-Head set.      

Definition 4.4: A D-Tail ( DT ) set is composed of d-sepnodes that have incident arcs 

in iI .  I use the notation { }zdbDT ,, L=  to denote the D-Tail set.      

When one d-sepnode belongs to both a DH  and a DT , it is called a symmetric node. 

The corresponding nodes in the DH  and the DT  are called a symmetric type of this d-
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sepnode, denoted by m   and m . Thus, in each subnet, elements from a DH  to a DT  

respectively compose one DP . These DPs  are formed into a set, denoted as  

DTzdbDHycazydcbaDPs ∈∈•⊗⊗•⊗•= ,,,;,,,)()()( LLL   

where the two operators •  and ⊗  are defined as follows:      

Denotation 4.1: Operator •  denotes that there must be a DP  between an element in a 

DH  and an element in a DT . 

Denotation 4.2: Operator ⊗  denotes that there may be another DP  whose nodes are 

from different DPs .       

Operator •  has a higher priority compared with operator ⊗  and is denoted by ⊗• f .  

4.3.2 DPs with Algebraic Description  

From Equation (4.1), the JPD in each subnet can be expressed as follows: 

∏
=

=
n

j j

jj
I xp

xxp
P

i

1 ))((

))(,(

π

π
.                                                                                                 (4.2)  

Obviously, the fact that ))(( jxp π  equals to 1 implies node jx  is a root node in iI .       

Based on the definition of operators, firstly, some possible DPs  could be described in 

each subnet. From Equation (4.1), ))(( jj xxp π  indicates that there is a directed path 

from )( jxπ  to jx .  After that, based on Equation (4.2) and some operations (defined 

later), DPs  could be obtained for each subnet.   
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The example network as shown in Figure 4.1 is used to illustrate some operations. This 

example has the same structure as that in Xiang’s work (Xiang 1998) and its DAG 

structure has been well discussed and analyzed by graphical methods.  

 

Figure 4.1: An Example Network 

Considering the three DAGs ( 1I , 2I  and 3I ) in Figure 4.1, each iI  is a subnet in an 

MSBN. Using Equation (4.2), the JPD of each subnet is written as follows: 
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The DH  and DT  sets for each subnet iI   are as follows: 

{ }aIDH =)( 1 , { }bIDT =)( 1 ; { }jbaIDH ,,)( 2 = , { }kaIDT ,)( 2 = ; { }kIDH =)( 3 , { }jIDT =)( 3 .   

These DH  and DT  sets can be identified based on an algebraic description of each 

subnet. It involves the following operations:      

Cancel Node: Nodes The operation of node canceling goes on when a node finds itself 

in other terms.     
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Identify DH: For each d-sepnode in the denominator of each term in Equation (4.2), 

the d-sepnode is in a DH  if it can be cancelled by the same node in the numerator of 

the same term; otherwise, it is not in a DH .  For example, in Equation (4.3), the d-

sepnode a  in the ),( fap  can be cancelled by a  in the ),,( facp . Hence the d-sepnode 

a  is in a DH .       

In fact, if only the d-sepnode is included in the denominator, the d-sepnode should be 

in a DH . 

Identify DT: For each d-sepnode in the numerator of each term in Equation (4.2) 

whose denominator does not equal to 1, the d-sepnode is in a DT  if it cannot be 

cancelled by the same node in the denominator of the same term; otherwise, it is not in 

a DT . For example, in Equation (4.3), the d-sepnode b  in the ),( dbp  is not cancelled 

by the )(dp . Hence the d-sepnode b   is in a DT .  

It should be noted that during the DH  identifying operation, the final result is a union 

of all identifications. For example, in Equation (4.4), although d-sepnode a   in the 

numerator ),,,( najmp  can be cancelled by the ),,( najp  in the term 
),,(

),,,(
najp

najmp , it is 

still in a DT  because it cannot be cancelled in the term 
)(
),(

lp
lap . It is seen that a  and a  

are symmetric types of d-sepnode a  . A d-sepnode in the numerator of the term whose 

denominator equals to 1 must be in a DH . Hence, a DP  will begin with these DH  

nodes.      

A DP  in each subnet can be identified through the above denotations and the 

following operations. For example, Equation (4.3) for subnet 1I  could be rewritten as 

follows. 
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Beginning with the DH  node a  the operations will be described as follows:  

↑↑↑ )(
),(

)(
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),,(

1
)(

dp
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cp
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fap
facpap

OOO                                                                                 (4.6)     

Operation 4.1: Let symbol O  denote that a node in the numerator of a term tries to 

find itself in the denominator of another term.  

It is clear that the first node subjected to operation 4.1 must be a DH  node.      

Operation 4.2: Let symbol ↑  denote that a node in the denominator tries to cancel 

the same node in the numerator and lets its children find themselves in the next 

operation O .      

For example, in the second term of Equation (4.6), nodes a  and f  will cancel node a   

and node f  in the denominator and only node c   remains. Hence, node c  will perform 

the operation O  in the third term and so on. 

Hence, a selected DH  node performs these two operations alternately until it meets a 

DT  node in the numerator and the operation cannot be performed any more. For 

example, in Equation (4.6), the DH  node a  meets the DT  node b  and no operation 

can be performed any more.      

The termination of these operations produces a DP , such as the DP  in Equation 

(4.6): .)( baDPs •=   

So far, for 1I , 2I  and 3I , DPs  formed based on Equations (4.3 ~ 4.5) are as follows:  

1I : )(1 baDPs •=                                                                                                          (4.7) 
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2I : )()(2 kbajDPs •⊗•=                                                                                            (4.8)  

3I : )(3 jkDPs •=                                                                                                         (4.9)  

4.3.3 Find DC 

The DAG verification is to ensure that there is no DC  in an MSBN. Hence all DPs  

from local subnets should be integrated to test whether there is a DC  globally. An 

integration of DPs  composes some DC  Candidates ( DCC ).  The steps are illustrated as 

follows.      

Firstly, integrate DPs  from potential shared subnets and form each corresponding 

DCC  with a DP  which only includes their shared d-sepnodes. For example, the 

combination of Equations (4.7-4.9) generates one DCC .  

)()()()( jkkbajbaDCC •⊗•⊗•⊗•=                                                                             (4.10)  

Secondly, find a DC  by absorbing symmetric nodes in both sides of operator ⊗  such 

as )()()()( jaabajba •⊗•≡•⊗• . Hence a  and a  will be absorbed. Moreover, the 

action of absorbing is not limited by the number of symmetric nodes. It means that one 

DH  node can absorb more than one DT  node and vice versa. If all the nodes in a DCC  

are absorbed completely, there is at least one DC  in the MSBN; otherwise no DC  

exists.      

Finally, verify a DAG structure. If there is no DC  in the MSBN, the overall structure 

of the MSBN is a DAG; otherwise it is not a DAG structure.      

Theorem 4.2: A DC  exists in an MSBN if and only if nodes in all DCCs  are absorbed 

completely.  
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Proof. If a DC  exists in an MSBN, each node in DCC  must be a symmetric node. 

They are on both sides of operator ⊗  and will be absorbed. Thus all the nodes in 

DCC must and will be absorbed totally. Conversely, if all nodes in a DCC  are absorbed 

completely, it indicates that every node has two symmetric types on both sides of 

operator ⊗  and each type of this node is connected with another node by operator • . 

According to the priority of the operator ⊗• f , there must be a DP among these 

relative nodes, and these DPs  are formed into a DC . For instance, in Equation (4.10), 

although in the second term { })()( kbaj •⊗•  it is unknown whether nodes a  and b  are 

connected; however, the connection is confirmed from the first term { })( ba • . 

Consequently, all the nodes are connected to form a DC  in an MSBN. ▌      

For the aforementioned example, nodes in Equation (4.10) are absorbed completely.  

Hence there must be a DC  in the MSBN and a DAG structure of the MSBN is not held.  

This conclusion can be verified through the graphical structure in Figure 4.1.   

4.3.4 Complexity Analysis  

Based on the operations described above, a symbolic verification of DAG structure in 

an MSID can be described in the following steps: 

 [Symbolic DAG Verification] 

1) Convert an MSID into an MSBN; 

2) Describe each subnet with the algebraic form; 

3) Identify DH  and DT ; 

4) Find DP  and build DPs ; 
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5) Integrate DPs  into DCCs ; 

6) Find DC  in each DCC ; 

7) Verify the DAG structure. 

To analyze the complexity of the symbolic verification, some notations are assumed as 

follows (Xiang 1998):  

m : the maximum number of nodes in each subnet;  

t : the maximum cardinality of node adjacency in each subnet;  

k : the maximum number of d-sepnodes shared by subnets;  

n : the total number of subnets in an MSBN.  

It is observed that )(kο  d-sepnodes need to be identified in each subnet. Hence, in Step 

3, a total of )(nkο  d-sepnodes are identified in an MSBN. For each d-sepnode, )(mtο  

nodes in each subnet have to be searched during the process of finding DP . Thus the 

complexity of Step 4 is )(nkmtο . The most time-consuming part resides in Step 5 where 

n2  DCCs  may be formed. Fortunately, in practice, the number of subnets in an MSBN 

is not so large. In Step 6, each node in a DCC  will search )(nkο  nodes during the 

operation of absorbing. Hence the complexity of Step 6 is )( 22knο .     

The algorithm will be executed by the cooperation of agents associated with subnets. 

In order to protect the privacy of each agent, each agent performs Steps 2 ~ 4 

individually. Then, they will provide only DPs  for further verification. Hence the last 

two steps are executed by a coordinator agent that may be a computer or a human. In 

this way, the algorithm can be performed in a distributed and centralized mode and 

protects the privacy of the agents. 
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4.3.5 Dealing with Verification Failure 

Verification fails when there are some DCs  in an MSID.  In this case, it is expected to 

identify the violated subnets with the aim of correcting the structure. Based on the 

symbolic approach, the problem of verification failure is investigated in this section.   

The verification of DAG structure depends on the DC  test in each DCC . This means 

that the verification fails once there is a DC  in any DCC . Thus it is the subnets whose 

DPs  comprise a DCC  that cause the failure. Furthermore, these subnets can be 

identified by tracing back in Step 5 during the verification process. For example, the 

DAG structure is not ensured in Figure 4.1. One DC  has been found. At the same time, 

in Step 6, it is known that a DCC  is shared by 1I , 2I  and 3I . Hence it is the combined 

structure of 1I , 2I  and 3I  that leads to the failure of verification. The related subnets 

need to be modified for the DAG structure. 

In Step 5, it is known that the larger the set of DPs  for each subnet, the larger the set of 

DCCs  and the more likely the failure can happen. Hence, the subnet with the largest set 

of DPs  has more chances to cause failure. Thus the corresponding subnets that share 

the DCCs  must be checked and the structure should be corrected. Based on this point, 

it is expected to decrease the cardinality of the set of DT  or DH  in each subnet, which 

will decrease the cardinality of the set of DPs . 

4.4 Symbolic Verification of Agent Interface 

The second constraint, d-sepset of agent interface, requires that every node in the agent 

interface be a d-sepnode, which indicates that all of its parents should be included in at 

least one local influence diagram.  
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Theorem 4.3: An MSID without value nodes has the same d-sepset property as the 

original MSID. 

Proof. Since a value node is a sink node without outgoing arcs in an MSID, it cannot 

become parents of public nodes in an agent interface. Removing it ensures the d-sepset 

property in an MSID. ▌ 

In addition, only chance nodes in an MSID are included in the agent interface. Thus, 

when considering decision nodes as chance nodes in an MSID, the method of 

verification of d-sepset is similar to that in an MSBN. Here, based on an algebraic 

description of local influence diagrams, a symbolic method is proposed to deal with 

the verification and the issue of verification failure is also investigated. 

4.4.1 Process of Symbolic Verification 

Testing d-sepnode in an agent interface involves two main processes: one is to identify 

parents of a common (or public) node; the other is to find and judge whether there is a 

local subset that includes all the parents of this common node.  

As the agents’ privacy must be protected, only the information of common nodes is 

shared. To illustrate my approach, an example is shown in Figure 4.2. Each subnet jI  

is a local BN (subnet) in the MSBN after removing value nodes and transforming 

decision nodes into chance nodes in an MSID. 
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Figure 4.2: Another Example Network 

 
Step 1: (Algebraic Description) By Equation (4.2), each subnet can be described as 

follows: 
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Step 2: (Identify Parent Set) In the term
))((

))(,(
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π

, for each subnet, if a public node 

jx  in the numerator cannot be cancelled in the denominator, nodes in the denominator 

of this term must be the parents of jx  that are elements of )( jxSPS  (Sub-Parent Set). A 

PS  (Parent Set) of each public node jx  is an integration of )( jxSPS  for node jx  in 

each local subnet, denoted as )()( j
i

Ij xSPSxPS
iU= . 

For example, for the local subnet 1I , public nodes are nodes { }zyx ,,  between 1I  and 2I  . 

Hence, based on Equation (4.11), parents of node x  are identified as follows.      
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In the term 
)(
)(

xp
zxp , node x  in the numerator )(zxp  can be cancelled by node x  in the 

denominator )(xp , but in another term 
)(
)(

yp
xyp , node x  in the numerator )(xyp  cannot be 

cancelled by node x  in the denominator )(yp . On all accounts, the sub-parent set is 

{ }yxSPS I =)(
1

 in the local subnet 1I .       

The same operation required by node x  is executed on other local sets based on 

Equations (4.11 ~ 4.14). The SPS  for node x  is as follows: { };)(
2

yxSPS I =  

{ };)(
3

wxSPS I =  { }wxSPS I =)(
4

. 

By the operator of union, the PS  for node x  in the MSBN is { }wy, , denoted as 

{ }wyxPS ,)( = .  

For the sake of the privacy protection of each agent, an SPS  should not present details 

about the private nodes in local subnets, including the name of the private nodes. 

During the process, the notation ijε  is used to implicate the j th private node in iI . In 

this way, the SPS  that the agent provides does not refer to the details about its privacy.      

Step 3: (D-Testing) In Step 2, a PS  of each public node is identified; in this step, it is 

to find whether there is a local subnet that includes all the parents of a public node. It 

means that judging the condition of a d-sepnode depends on whether there is an 

iISPS equal to a PS .       

Proposition 4.1: If an agent interface between adjacent agents is a d-sepset, for each 

public node in the agent interface, there is no fewer than one 
iISPS that equals to a PS . 

The proof is trivial.  
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Proposition 4.2: If there are more than one )( jI xSPS
i

 including node ijε , then the node 

jx  must not be a d-sepnode. 

Proof.  Assume one local DAG includes a node ijε  , )( jIij xSPS
i

∈ε  and one of its 

adjacent DAG includes another node kjε , )( jIkj xSPS
k

∈ε . As it is known that any agent 

does not include private nodes of other agents, imxSPS jIij m
≠∉ ),(ε  and 

kmxSPS jIkj m
≠∉ ),(ε , no local DAG including both ijε  and kjε can be found. Thus the 

difference set between any 
iISPS  and a PS  will not be empty. The condition of d-

sepnode is not obeyed. ▌      

The operation difference between two sets is employed to make a comparison between 

an 
iISPS  and a PS . The empty set of the difference between any 

iISPS and a PS  

implies that they are equal and contain the same elements.      

For example, the PS  of node x  is { }wy, . However, the 
iISPS  of node x  are as follows: 

}{
1

ySPSI = , }{
2

ySPSI = , }{
3

wSPSI =  and }{
4

wSPSI = . There is no empty set between any 

iISPS and the PS . Hence node x  is not a d-sepnode, which causes the agent interface to 

be an invalid d-sepset.  

4.4.2 Complexity Analysis and Further Discussion 

The complete agent interface verification process in an MSID is performed 

symbolically in the following steps: 

[Symbolic Verification of Agent Interface] 

1) Remove value nodes and transform decision nodes into chance nodes in an 

MSID; 
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2) Describe each subnet in an MSBN with the algebraic form; 

3) Identify a PS  of every public node in an agent interface; 

4) Test the condition of d-sepset. 

To analyze the complexity of the symbolic verification process, the following 

notations (Xiang & Chen 2002) are assumed:  

s : the maximum number of adjacent agents to any agent; 

 t : the maximum cardinality of nodes in a local subnet (DAG); 

 k : the maximum number of nodes in an agent interface;  

n : the total number of agents.      

In the third step of the algorithm, )(kο  nodes in the agent interface must be checked on 

)(tο  nodes in a local DAG. At the same time, )(nο  agents should perform the process. 

Hence the complexity is )(ntkο . In the last step, there are )(kο  PSs  that need to be 

checked with )(sο  SPSs . Consequently, the complexity is )(nskο .      

From the complexity analysis, it seems that the main factors having a large effect on 

the algorithm complexity are variables t  (the maximum cardinality of nodes in a local 

DAG) and n  (the total number of agents). For a large and complex domain, their 

product is just the same as the sum of nodes in an MSBN after an MSID has been pre-

processed. Hence, the point is how to partition a large domain into several small local 

subnets, which gives a hint for further research on the topic of partitioning a large 

domain. At least, a reasonable method should consider the effect on the algorithm 

complexity.       
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For the same reason, an individual agent will provide only the SPS  of its own to a 

coordinator agent that will deal with the D-Testing operation and make a final decision. 

The introduction of a coordinator agent that may be a computer or a human being is 

necessary for privacy protection because, except the coordination agent, all other 

agents have no idea about a PS . At the same time, the introduction is helpful for the 

dealing with verification failure. 

4.4.3 Dealing with Verification Failure 

When the verification of d-sepset fails through a symbolic verification in D-Testing, 

there should be no empty difference set between any SPS  and a PS . One measure is 

proposed to fix this problem.      

Firstly, find the largest cardinality of )( jI xSPS
k

, named as )( jI xLSPS
k

. It is known that 

no fewer than one )( jI xSPS
k

 equals to a PS  if the condition of d-sepnode is satisfied. 

One way to correct the verification failure is to let a more promising )( jI xSPS
k

,  such 

as )( jI xLSPS
k

, be equal to the PS . 

Secondly, identify elements in the difference set between )( jI xLSPS
k

 and a PS . If the 

element ε  is identified, only the local subnet including the element ε  should be 

corrected; otherwise, other subnets that share the element should be referred to. 

However, the problem of correcting an MSID structure to satisfy the d-sepset condition 

is related to other constraints of the MSID. It must be considered in an overall way. 
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4.5 Pairwise Verification of Irreducibility of D-sepset 

The irreducibility of d-sepset is to ensure the compactness of MSID and HRG, and to 

remove any redundant information in this model representation. The irreducibility of 

d-sepset depends on organizational relationships among agents and information 

flowing through the d-sepset. The information should be composed of the requisite 

information and the supporting information (for agents’ decision making) which 

indicate the control and communication relationships among agents respectively. An 

HRG is just an effective framework that can be used to test this constraint. Hence, the 

verification of two basic relevance graphs in an HRG is discussed as follows. 

Control Relevance Graph: Figure 3.2 (a) shows the Control relationship between 

agent iA  and agent jA  denoted by the function },,{),,(Re 1 mkji ccdAAq L= . To 

verify the irreducibility of a d-sepset amounts to testing whether the information 

(encoded in) },,{ 1 mcc L  agent iA  provides belongs to the required information 

for agent jA ’s decision kd . 

It is known that the procedures Decision Bayes-ball and refined Decision Bayes-ball 

could be used to obtain the required information for any decision node in an influence 

diagram. Through these procedures, the information },,{ 1 mcc L  required for agent jA ’s 

decision kd  can be obtained. Assuming Control is a unique relationship between agent 

iA  and agent jA  and the d-sepset is ijS ; thus, lityIrreducibidAAqS
k

kjiij ⇔⊆U ),,(Re . 

Communication Relevance Graph: Figure 3.2 (b) shows the Communication 

relationship between agent iA  and agent jA  denoted by the 

function },,{),( 1 nji ccAASup L= . The irreducibility of d-sepset means that the 

information passing through a d-sepset is the supporting information that both 
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agent iA  and agent jA  could access; however, this information is not required 

for their decision making. The verification depends on the domain knowledge. 

For example, domain expert could tell what kind of information is unavailable 

to one agent while its adjacent agents could provide such kind of information. 

Assuming Communication is the unique relationship between agent iA  and 

agent jA , and the d-sepset is denoted as ijS ; therefore, 

lityIrreducibiAASupS jiij ⇔⊆ ),( . 

Mixed relationships (both control and communication) between agent iA  and agent jA  

exist with an integrated verification as follows.   

lityIrreducibi

AASupdAAqdAAqS ji
k k

kijkjiij

⇔

∪∪⊆ )),())),,(Re()),,(Re(((U U
                           (4.15) 

For example, given the MSID in Figure 3.5, the d-sepsets are },{12 wsS = , },{23 ppwS =  

and },{13 cwS = .From the procedure of Decision Bayes-ball, nodes },{ cs  are required for 

decisions of agents NS and CS respectively. The cases are characterized as 

cahAAq CSICC =),,(Re , cwtAAq CSICC =),,(Re , ppinAAq NSCS =),,(Re , ppreAAq NSCS =),,(Re , 

sinAAq NSICC =),,(Re , and sreAAq NSICC =),,(Re . Assuming the irreducibility of d-sepset 

and according to the Equation (4.15), it follows that wAASup ji =),(  where 

CSNSICCji ,,, =  and ji ≠ . Based on this analysis, the HRG can be produced as shown 

in Figure 3.6. 

At this time, the HRG could be evaluated by domain experts whether it realistically 

reflects the actual knowledge domain. If it does, the irreducibility of d-sepset is 

verified; otherwise, the HRG will be modified. The modeling process is iterative until 

both the HRG and the MSID are acceptable. 
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The complexity of verification process lies in the procedure Decision Bayes-ball that is 

analyzed in detail in some literature (Shachter 1998; Nielsen 2001). It will not be 

discussed here. One feature of this verification process is a combination of both MSID 

and HRG which makes full use of knowledge domain. It verifies the fact that a valid 

and meaningful representation is essentially related with the problem domain. 

4.6 Summary 

Verification of a graphical decision model is essential in the cycle of decision analysis. 

The representation of MSID and HRG describes a multiagent decision problem in a 

distributed and cooperative framework. Its definition is accompanied by three 

constraints: DAG structure, d-sepset of agent interface and irreducible d-sepset.  

In this Chapter, I proposed a symbolic method for the verification of DAG structure 

and d-sepset of agent interface in an MSID.  It utilizes an algebraic description in an 

MSID. The symbolic method is cooperative while protecting agents’ privacy in the 

verification process. My method has the ability to provide essential information when 

verification fails (i.e., a global cycle is detected) to correct the offending parts of the 

network. Furthermore, it provides an alternative view, so called an algebraic angle, on 

the research of an MSID. For the verification of irreducible d-sepset, a pairwise 

approach is designed with the consideration of the MSID structure and the HRG 

implication. It ensures that the decision model could represent a real decision problem 

accurately. 
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5 Model Evaluation 

The aim of decision analysis is to provide optimal policies to decision makers based on 

an evaluation of valid and accurate models which fully represent the corresponding 

decision scenario. The output of solving decision models largely depends on the 

effectiveness and efficiency of evaluation algorithms which have been designed to 

decode models. In the previous chapters, valid decision models of MSID and HRG 

have been developed to represent multiagent decision problems. This chapter will 

discuss three evaluation algorithms in detail to solve these proposed decision models.  

5.1 The Introduction 

Multiagent decision problems refer to a kind of distributed decision problems 

involving multiple agents in an uncertain environment. Within such a decision problem, 

there are intricate interactions between observations and decisions of multiple agents. 

For example, one agent’s observations may have an influence on other agents’ 

decisions which in turn may affect more of other agents’ decisions. Moreover, agents’ 

features, such as their privacy and organizational relationships, should not be lost in 

their interactions. An individual agent seeks the best decision while it has a full, 

correct and consistent observation in the situation through the communication with its 

adjacent agents. As one of the characters of a multiagent decision problem indicates 

agents seek their individual objectives while they expect a cooperative solution.  



Chapter 5: Model Evaluation 
 

88 

Solving a multiagent decision problem is to find out individual objectives of agents in 

a distributed setting cooperatively. An individual agent has its own goal and wants to 

make the best decision after obtaining a full and consistent observation from its 

adjacent agents. The motivation of their cooperation is to access the full and consistent 

information in order to maximize their own utility as well as to release the relevant and 

honest information in order to help their partners’ decisions. Hence, the core of this 

cooperation is the accessibility of the full, consistent and honest public information. 

This decides that potential approaches for solving multiagent decision problems should 

be a cooperative method in a distributed setting. 

In Chapter 3, the representation of MSID and HRG has been proposed to model 

multiagent decision problems. An MSID is a distributed graphical decision model 

which connects local influence diagrams together through d-sepsets while an HRG 

explicitly represents the information support for decision making in the MSID. Model 

evaluation is to solve an MSID to produce optimal decisions with the consideration of 

the implication of an HRG. 

In this chapter, three evaluation algorithms, called a cooperative reduction algorithm in 

Section 5.2, a distributed evalID  algorithm in Section 5.3 and one indirect evaluation 

algorithm in Section 5.4, are proposed to solve an MSID.  

5.2 Cooperative Reduction Algorithms 

A direct method for solving influence diagrams adopts some basic operations, such as 

node removal and arc reversal, to reduce a full decision model according to a node or 

variable elimination sequence (Olmsted 1983; Shachter 1986, 1988). A potential 

approach for solving an MSID could extend the basic reduction algorithm. Since an 
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MSID is a set of local influence diagrams connected by d-sepnodes, a cooperative 

reduction algorithm shall be constructed to coordinate the evaluation of local influence 

diagrams through a cooperative evaluation on d-sepnodes. In this way, local influence 

diagrams are ensured to have a consistent and full evaluation with each other in the 

process of solving an MSID. Hence, a reduction algorithm for solving an MSID is said 

to be cooperative if d-sepnodes could be evaluated simultaneously. 

To formalize a cooperative reduction algorithm, the relevant issues, such as model 

transformation and node elimination sequence, should be investigated in an MSID. In 

this section, firstly, the concept of a legal transformation is defined in an MSID. Then, 

a local elimination sequence in local influence diagrams and a global elimination 

sequence for d-sepnodes are investigated respectively. A global elimination sequence 

is the cornerstone of a cooperative reduction algorithm. The validity and efficiency of 

an elimination sequence are discussed in detail. Finally, a cooperative reduction 

algorithm is further studied based on different data representations of an MSID. 

5.2.1 Legal Transformation 

The basic operations, such as node removal and arc reversal, transform an original 

MSID into a series of interim MSIDs in a cooperative reduction algorithm till the 

MSID is solved finally. To ensure no loss of relevant information, a legal 

transformation is defined as the one that satisfies both the semantic level and the 

strategic level. The semantic level is satisfied when an interim MSID is a new MSID 

that follows three constraints: DAG structure, d-sepset of agent interface and 

irreducibility of d-sepset. The strategic level is satisfied when the optimal strategies for 

a final MSID, together with the associated partial strategies (recording the decision 
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functions upon removing a decision node), could comprise the optimal strategies for 

the original MSID.  

Model transformation through basic operations involves an update of both graphical 

structures and associated data. Both of them have an effect on the transformation 

process, even on a specific transformation operation. For the graphical structure, a 

certain elimination sequence could be identified and it guides the transformation 

process. For the associated data, different data representations in a decision model 

could have different operations in a reduction algorithm. Recently, two kinds of data 

representations, namely conditional probability tables c  (Howard & Matheson 1984) 

and potential representation Ψ  (Ndilikikesha 1994), allow the joint probability 

distribution of an MSID to be defined as follows. 

))((∏∏∏ ==
j i

jiji
j

I xxcPP
j

π  or )(∏∏∏ Ψ==
j i

ji
j

I xPP
j

 

where )( jixπ  are parents of node jix  in local influence diagrams jI .  

For instance, the Ψ  representation could avoid the operation of arc reversal in a 

reduction algorithm when compared with the c  representation. This could help to 

design different evaluation strategies in a cooperative reduction algorithm for solving 

an MSID. For convenience, the evaluation of an MSID based on the c  representation 

is called C-Evaluation while the evaluation based on the Ψ  representation is called P-

Evaluation. Hence, a legal model transformation has to be verified with respect to the 

C-Evaluation and the P-Evaluation respectively. 
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5.2.2 Local and Global Elimination Sequence 

5.2.2.1 Foundation 

The goal of evaluating influence diagrams is to find an optimal strategy iδ  for each 

decision node id  and to maximize an expected utility function µ . The computation is 

based on the following expression: 

∑∑ −− =
ni

ni
i

c
nini

c
dd

id ddccccPcdc µδ ),,,,,,,(maxmaxarg),,,( 111121 LLLLL  

where µ  is the utility function specified by value node v ; ic  and id  are chance nodes 

and decision nodes respectively in influence diagrams. 

To obtain optimal strategies, variables are eliminated by the operator in a certain order 

in the computation. A legal elimination sequence is acceptable if all nodes are 

eliminated by following a partial order of chance nodes in information sets and 

decision nodes (Nielsen & Jensen 1999). However, determining an optimal elimination 

sequence has been shown to be NP hard (Cooper 1987). Instead of providing such an 

elimination sequence, I investigate the issue on the efficiency and validity of an 

elimination sequence in both local influence diagrams and a global MSID. An 

elimination sequence is said to be legal if it is acceptable. On the other hand, an 

elimination sequence is said to be efficient if it could avoid some expensive operations, 

such as arc reversal, as much as possible.  

The idea of identifying an elimination sequence in influence diagrams was mentioned 

in some previous work (Shachter 1986; Rege & Agogino 1988); however, it has not 

been formalized and highlighted in a reduction algorithm. In reality, a good 

elimination sequence could avoid some unnecessarily expensive operations, such as 
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arc reversal, to save the computational cost. For solving an MSID, a cooperative 

reduction algorithm should emphasize the development of an efficient and legal 

elimination sequence.  

5.2.2.2 Elimination Sequence  

Terminology: Consider (local) influence diagrams ),,( vDCI 1 where there are n  nodes 

including chance nodes C , decision nodes D  and value node v .    

t : Time to represent the latest influence diagram that has all updated data, new 

evidences or observations; 

>< yx, : A directed arc from node x  to node y , where )( DCx U∈ , }){( vDCy UU∈ . 

Node x  is called a direct predecessor of node y , denoted by )(Pr yex = , while node y  

is a direct successor of node x , denoted by )(xSucy = ; 

))((Pr xeNum , ))(( xSucNum : The number of direct predecessors  and successors of node x  

respectively; 

),( yx : A directed path from node x  to node y , where )( DCx U∈ , }){( vDCy UU∈ ; 

},{)( ><= yxxyI , Dy∈ : An information set for decision node y ; 

},{)( ><= yxxyC , }{vCy U∈ : An influence set for chance node or value node y ; 

)(xf : An index function for node x . Each node x  is associated with a unique integer 

number },,1{ ni L∈ in the node list, denoted by ixf =)( . It is the order of node x  in a 

node list; 

                                                 
1 To avoid complex denotations, subscripts specifying local influence diagrams are omitted. Since a 
regular influence diagram is considered, only one value node exists. 
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R1: Rule 1: Set )()( lk cfcf <  if there exists an arc >< lk cc , ;  

R2: Rule 2: Set )()( lk cfcf <  if ))(())(( lk cSucNumcSucNum > ;  

)(tNL : A node list at time t . A node list is generated in an ascending order of )(xf ;  

)(tES : A relative elimination sequence at time t . It is generated by sorting nodes 

(excluding value node) in a descending order with index function )(xf .  

),( xtES : An order for node x in an elimination sequence )(tES  at time t . It follows 

)(),( xfnxtES −= .  

),( xtBES : A base order for node x  in an elimination sequence )(tES  at time t . It is the 

earliest order in which node x  can be removed. 

),( xtES  and ),( xtBES  are always abbreviated as )(xES  and )(xBES  without considering 

time t . 

The process GSL  (Generate Sequences Locally) to generate an efficient legal 

elimination sequence in local influence diagrams is divided into the following steps. 

Step 1: Pick up decision nodes Ddi ∈  and value node v  to compose an initial node list 

)(tNL  denoted by },,,,{ 1 vddd mi LL  in which )()()( 1 vfdfdf m <<<L  exists; 

Step 2: Identify the information set )( idI  for a decision node Ddi ∈  and the influence 

set )(vC for the value node v . (1) When node ))(()( I I
i

idIvCx∈ , ))(min()( idfxf <  is 

set; (2) When node )(vCx∈  but )( idIx∉ , )()()( vfxfdf i <<  is set. Here node x  is 

categorized into )(vC ; (3) When node I
i

idIx )(∈  but )(vCx∉ , ))(min()( idfxf <  is set; 
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(4) When nodes )(, idIyx ∈  or )(, vCyx ∈ , two alternatives are available. The first 

alternative is to follow R1 and R2. The second one is to set either )()( yfxf <  or 

)()( xfyf < . After that, the node list )(tNL  is updated as 

}),(,),(,,),(,,),({ 11 vvCddIddIddI mmii LL  after inserting )( idI . Finally, the ),( xtBES  is 

generated for all nodes as follows; 

⎪
⎩

⎪
⎨

⎧
=

∈+−
=

;,0
;,

);(,1)()))(((
),(

otherwise
vxn

dIdxxfdIdfMax
xtBES

UU

 

Step 3: Identify the influence set )( icC  for chance node )()( vCdIc ii U∈  where Ddi ∈ . 

(1) When node I
i

icCx )(∈  where )(vCci ∈ , ))(min()( icfxf <  is set; (2) When node 

I
i

icCx )(∈  where )( ii dIc ∈  but )(vCci ∉ , )))((min()())(max( xSucfxfdf j <<  is set; (3) 

When nodes )(, icCyx ∈ , R1 and R2 are followed; otherwise, either )()( yfxf <  or 

)()( xfyf <  is set arbitrarily. After that, the node list )(tNL  is updated until all nodes ic  

are exhausted; 

Step 4: Repeat step 3 until all chance nodes )( ii cCc ∈  are exhausted; 

Step 5: Generate an elimination sequence )(tES . 

The basic idea of the process GSL  is based on decision windows in influence diagrams. 

In Step 1, decision nodes are identified based on a chronological order in influence 

diagrams. After that, in Step 2, it deals with nodes in both an information set and an 

influence set. The first case ensures a valid operation imposed on nodes that precede a 

value node. The second case indicates a removal of a node that is near the value node. 

The third case is based on the chronological order of associated decision nodes. The 
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fourth case considers nodes in the same information set or influence set. The rule R1 

indicates the removal of a node that is near the value node. The rule R2 avoids an 

operation imposed on a node with multiple successors so that a large amount of 

computation cost is saved. After Step 2, the earliest elimination order for a node, 

namely a base order, could be driven. In Step 3, it considers all nodes in an influence 

set. The first case removes a node near the value node. The second case ensures 

subsequent valid operations imposed on the decision node. The third case considers 

nodes in the same influence set. The two rules R1 and R2 are followed with the same 

aim. Step 4 enters a loop and searches all the nodes in an influence set. Finally, in Step 

5, an elimination sequence is produced according to the index function. 

Lemma 5.1: If regular influence diagrams are pruned (by removing barren nodes), the 

process GSL  to generate an elimination sequence always terminates. 

Proof. Without barren nodes and with a finite number of nodes in a regular influence 

diagram that has a directed acyclic graphical structure, the process GSL  terminates 

after searching all chance nodes in the fourth step. ▌ 

Theorem 5.1: The elimination sequence generated in the process GSL  is legal. 

Proof. Step 1 and Step 2 deal with the elimination sequence of decision node Ddi ∈  

and chance node )( idIx∈ . In the second step, all the nodes in the information set are 

assigned a lower index function than their corresponding decision nodes. In this way, 

the elimination sequence order satisfies the partial order of chance nodes in the 

information set and decision nodes. Thus it is acceptable. ▌  

Theorem 5.2: The elimination sequence generated in the process GSL  is efficient. 

Proof. It will be discussed in the C-Evaluation and the P-Evaluation respectively. ▌ 
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5.2.3 Global Elimination Sequence  

A cooperative reduction algorithm is a cooperative evaluation of local influence 

diagrams in an MSID. The cooperation is valid only if there is a global elimination 

sequence for d-sepnodes since an MSID connects local graphs through the linkage of 

d-sepset. In the previous section, a legal elimination sequence )(tES j ( mj L1= ) is 

produced through the process GSL  in each local influence diagram jI . Each local 

elimination sequence could generate a specific elimination sequence locally for d-

sepnodes. It is unknown whether a global elimination sequence for d-sepnodes does 

exist in an MSID since different elimination sequences for d-sepnodes always happen 

in local influence diagrams.  

 

Figure 5.1: An MSID of I1 and I2 

For instance, in Figure 5.1, the MSID adopts the c  representation. The two local 

influence diagrams 1I  and 2I  share d-sepnodes },{ cb . Through the process GSL , either 

},,,,{)( 111 vbadctES =  or },,,,{)( 111 vabdctES =  is obtained in 1I ; and 

},,,,,{)( 222 vcdebftES =  is obtained in 2I . Both elimination sequences in 1I  indicate 

that node c  should be removed after node b . However, node c  has to be removed 
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before node b  in 2I  based on },,,,,{)( 222 vcdebftES =  . Consequently, a cooperative 

reduction algorithm does not exist since there is no global elimination sequence for d-

sepnodes. This problem motivates my investigation on a global elimination sequence 

for d-sepnodes in an MSID. 

5.2.3.1 Elimination Sequence for D-sepnodes 

A final elimination sequence in local influence diagrams is always not unique since 

flexible elimination orders may be assigned to nodes in the process GSL . It is difficult 

to determine an absolute elimination order for each node. However, in the first two 

steps of the process GSL , a legal elimination sequence should be generated for both 

decision nodes and chance nodes in information sets. This legal elimination sequence 

outputs a base elimination order )(xBES  which is the foundation of a final elimination 

sequence for all nodes. Concerning the base elimination order )(xBES , nodes with a 

zero value have a flexible relative elimination order while nodes with a non-zero value 

have a fixed relative elimination order in a final elimination sequence. Hence a global 

elimination sequence for d-sepnodes should be developed according to the base order. 

Furthermore, only those d-sepnodes with a non-zero base elimination order should be 

considered since they may constrain their elimination sequence among local influence 

diagrams.  

Assuming that d-sepnodes, mjxx jnj ,,1},,,{ 1 LL = , are considered in local influence 

diagrams jI , the global elimination order can be generated in the process GER  

(Generate Elimination Order) below. 

Step 1: Divide d-sepnodes },,{ 1 jnj xx L  into two sets according to a base elimination 

order )(xBES . One set, defined as a flexible set },,{ jljk xx L , includes nodes having 
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0)( =xBES ; the other set, defined as a fixed set },,{ jsjr xx L , includes nodes having 

0)( >xBES . If a fixed set is empty, the process GER  terminates. Any global elimination 

sequence could be an output; 

Step 2: Sort the fixed set },,{ jsjr xx L  in an ascending order of ),( xtBES  to obtain a 

new set }{ )1( jsrjjrj xxxDS pLpp += ; 

Step 3: Collect all mjxxxDS jsrjjrj LpLpp 1},{ )1( == + , to compose a rough 

elimination graph as shown in Figure 5.2;  

 

Figure 5.2: Rough Elimination Graph 

In Figure 5.2, a large rectangular node indicates a node (in the above long frame) 

shared by some local influence diagrams (indicated in the below small frame). An 

arrow is triggered when its tail nodes are removed. For example, in Figure 5.2, nodes 

rx  and )1( +rx  are shared by local influence diagrams jI  and iI . Following the direction 

of the arc in Figure 5.2, it indicates that node rx  must be removed before node )1( +rx . 

In a rough elimination graph, a node is to be removed if and only if all of its incident 

arcs are triggered. An arc is triggered when its tail node, such as node rx , is removed. 

(Similarly, node )1( +rx  is called head node.) This trigger rule helps us identify a global 

elimination sequence in Step 4. 
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Step 4: Identify a global elimination sequence for d-sepnodes in a rough elimination 

graph built in Step 3. 

Step 4.1: Test the existence of a global elimination sequence for d-sepnodes. This 

is to confirm the possibility of a cooperative reduction algorithm for solving an MSID. 

The method is to check directed cycles in a rough elimination graph. If there is a 

directed cycle in a rough elimination graph, a global elimination sequence does not 

exist. The process GER  terminates here. Thus there is no cooperative reduction 

algorithm. 

Step 4.2: Build a global elimination graph for d-sepnodes. Firstly, detect a pair of 

nodes that are connected with multiple directed paths. These paths exist since, after the 

test in Step 4.1, an elimination graph that has no directed cycle remains. Secondly, 

build a global elimination graph. This graph is built when a directed arc between the 

detected pair-wise nodes is removed.  

Step 4.3: Obtain a global elimination sequence for d-sepnodes. A global 

elimination sequence is identified through searching multiple paths from source nodes 

to sink nodes in a pruned elimination sequence graph. All nodes in a directed path 

from a source node to a sink node compose an “island” i  of an elimination sequence, 

denoted as }{ )1( srri xxxGES pLpp += . In general, a global elimination sequence is 

made out of several islands of elimination sequences because multiple directed paths 

always exist between a source node and a sink node as well as multiple source nodes 

and sink nodes always exist in a final elimination graph. Hence a global elimination 

sequence is produced as follows U
i

iGESGES = , where i  is the island number.  
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The process GER  depends on the pruning on an elimination graph to obtain a global 

elimination sequence. In the first three steps, a rough elimination graph only describes 

d-sepnodes which have a non-zero base elimination order since they coordinate the 

evaluation of local influence diagrams. The case that all d-sepnodes have a flexible 

relative elimination order in their associated local influence diagrams could output any 

global elimination sequence which may refer to any local elimination sequence 

obtained in the process GSL . This output global elimination sequence would not make 

any local elimination sequence invalid. In Step 4.1, a unique elimination sequence for 

d-sepnodes would not cause any directed cycle in a rough elimination graph. Hence, 

testing the existence of a global elimination sequence is equivalent to checking 

directed cycles. After the existence of a global elimination sequence is confirmed, the 

approach of pruning arcs is utilized to build a global elimination graph in Step 4.2. A 

directed arc is removed between a pair of nodes if there are multiple paths connecting 

these two nodes in a rough elimination graph. Since no operation happens with the arc 

between this pair of nodes, the arc removal is to ensure a head node to be triggered at a 

later time when other paths are followed. In Step 4.3, multiple paths in an elimination 

graph are considered. Every path shows a cooperation of local influence diagrams to 

remove d-sepnodes. Finally, a global elimination sequence GER  is generated.  

Theorem 5.3: A global elimination sequence generated in the process GER  allows a 

cooperative reduction algorithm. 

Proof.  The first step could generate any global elimination sequence which allows a 

cooperative evaluation of local influence diagrams. Otherwise, a global elimination 

sequence may or may not exist. In the fourth step, the possibility of a global 

elimination sequence is tested to confirm a cooperative reduction algorithm. Hence a 
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global elimination sequence GES  which is obtained through some operations in a 

global elimination graph is valid in the process GER . This allows a cooperative 

reduction algorithm for solving an MSID. ▌ 

Suppose there are three local influence diagrams, namely 1I , 2I  and 3I , in an MSID. 

Each of them has d-sepnodes with an ascending order on )(xBES  such as 

}{ 11111 feabDS ppp= , }{ 22222 dcabDS ppp=  and }{ 33333 fedcDS ppp= . Firstly, a 

rough elimination graph is built in Figure 5.3. In Figure 5.3, d-sepnode e  is removed 

after triggering arcs >< ea,  and >< ed , . This requires the removal of node a  (between 

1I  and 2I ) and node d  (between 2I  and 3I ).  

 

Figure 5.3: Rough Elimination Graph for the Three Local Influence Diagrams  

After that, directed cycles are checked in the rough elimination graph. In Figure 5.3, it 

is confirmed that there is no directed cycle. Hence it is possible to obtain a global 

elimination sequence in a cooperative reduction algorithm. In Figure 5.3, two directed 

ways (an arc >< ea,  and a path ),( ea ) are detected between node a  and node e . 

Following the method in Step 4.2, the directed arc >< ea,  is deleted and the graph is 

pruned as shown in Figure 5.4. 
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Figure 5.4: Global Elimination Graph 

In the global elimination graph, there is only one source node b  and one sink node f . 

In Step 4.3, only one island of elimination sequence is found. Hence a final global 

elimination sequence is generated as }{ fedcabGES ppppp= . In fact, according to a 

global elimination graph, a cooperation order coordinating the evaluation of local 

influence diagrams can be determined when the sequence of d-sepnodes is followed in 

a path. For example, in Figure 5.4, the cooperation between 2I  and 3I  follows the 

cooperation between 1I  and 2I . 

5.2.3.2 Discussions  

The process GER  produces a global elimination sequence with the consideration of all 

local elimination sequences in an MSID. Only with a global elimination sequence, a 

cooperative reduction algorithm is valid; otherwise, reduction algorithms have to be 

carried out separately in local influence diagrams without the cooperation. To 

distinguish these two cases, two types of algorithm implementations, namely on-line 

algorithm and off-line algorithm, are defined.  

Definition 5.1: On-line algorithm is implemented when reduction algorithms are 

carried out in a cooperation of local influence diagrams through d-sepset with the 

timely information. 
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 Definition 5.2: Off-line algorithm is implemented when reduction algorithms are 

carried out in local influence diagrams individually without any cooperation after the 

d-sepset is initialized.   

An on-line algorithm is a real implementation of a cooperative reduction algorithm. 

One of the advantages behind an on-line algorithm is the ability to access the up-to-

date information globally in a distributed system. However, an on-line algorithm 

requires the possibility of a cooperative reduction algorithm. Furthermore, it is costly 

to connect all local systems and to coordinate reduction algorithms in local influence 

diagrams. In contrast, an off-line algorithm is free to perform reduction algorithms 

locally without the cooperation. It does not require a cooperative reduction algorithm. 

Thus the latest information in d-sepnodes cannot be accessed since local influence 

diagrams are kept alone and evaluated separately in an off-line algorithm. As for the 

computational memory, an off-line algorithm has to keep more copies of d-sepnodes 

while an on-line algorithm operates on only one copy. In summary, an on-line 

algorithm is suitable for a distributed system which is sensitive to any new information 

or evidence while an off-line algorithm is suitable for a resource-constrained system.   

Solving an MSID requires a cooperative reduction algorithm so that local influence 

diagrams could be evaluated with the full and consistent information on d-sepnodes. It 

is the intention that agents could seek their goal while accessing the information to 

support their own decision making as well as releasing the information to help their 

adjacent agents’ decision making. Hence an on-line algorithm is a desirable 

implementation.  
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5.2.4 C-Evaluation and P-Evaluation 

A cooperative reduction algorithm involves a series of model transformations in an 

MSID when some basic operations, such as node removal and arc reversal, are 

imposed on local influence diagrams. A legal transformation demands that the 

transformation satisfy both the strategic and the semantic level. Solving an MSID is to 

find out the individual optimal decision policy for each agent which has obtained the 

full and consistent information from its adjacent agents. In a cooperative reduction 

algorithm, a legal transformation is satisfied automatically in the strategic level since 

each local influence diagram adopts the traditional reduction algorithm and d-sepnodes 

are evaluated in the cooperation with its adjacent diagrams. As for the semantic level, 

the validity of a legal transformation has to be investigated in this section. 

The semantic level concerns a graphical structure of interim models when some basic 

operations are imposed on an MSID. It requires that an interim MSID be a valid model 

which satisfies three constraints: DAG structure, d-sepset and irreducibility of d-sepset. 

Since different data representations in a decision model have different operations 

which drive a model transformation, a legal transformation should be studied in the C-

Evaluation and the P-Evaluation respectively.  

5.2.4.1 C-Evaluation 

The C-Evaluation for solving an MSID adopts the c  representation of joint probability 

distribution in an MSID. That is to say, ))((∏∏∏ ==
j i

jiji
j

I xxcPP
j

π . The C-

Evaluation adopts four basic operations in regular influence diagrams (Shachter 1986; 

Tatman & Shachter 1990). Before going on, the term of a node accessibility is defined 

as follows. 
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Definition 5.3: Accessibility on node x  from node y  indicates that node x  is 

reachable from node y  through a directed path. Accessibility increasing on node x  

from node y  indicates that the first directed path between them is just built. 

Accessibility decreasing on node x  from node y  indicates that some of the directed 

paths between them are blocked or removed. 

The C-Evaluation in regular influence diagrams consists of four basic operations.  

1) Barren node removal: It is to remove a barren node without any operation on 

other nodes, which does not change the accessibility on other nodes. 

2) Chance node removal: Any chance node x  whose successor )(xSuc  is a single 

chance node or value node can be removed. Its successor )(xSuc  inherits all 

predecessors of chance nodes )(Pr xe . The accessibility on node x  decreases 

while the accessibility on other nodes does not change.  

3) Decision node removal: A decision node can be removed if its only successor 

is a value node and the information set of this decision node belongs to the 

influence set of the value node. The value node inherits no predecessor of the 

decision node. The accessibility on the value node decreases.  

4) Arc reversal: The arc >< yx,  between two chance nodes x  and y  can be 

reversed if no other path between them is found. Both nodes inherit each 

other’s predecessors. The accessibility on node y  decreases while the 

accessibility on node x  increases.  

The four basic operations reduce local influence diagrams step by step according to a 

local elimination sequence. Various elimination sequences lead to different 
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combinations of basic operations. An efficient elimination sequence does not require 

an expensive operation such as arc reversal in the C-Evaluation. Now, Theorem 5.2 is 

revisited here. 

Theorem 5.4: The elimination sequence generated in the process GSL  is efficient in 

the C-Evaluation. 

Proof. The most intricate and expensive operation is the arc reversal in the C-

Evaluation. In the process GSL , Rule 2 decreases the possibility of multiple successors 

on a certain node while Rule 1 specifies the removal of nodes which are near the value 

node. This increases the chance that a value node becomes one of )(xSuc  in all 

operations. Hence the operation of arc reversal is avoided as much as possible. In 

conclusion, an elimination sequence generated in the process GSL  is efficient in the C-

Evaluation.▌ 

The four basic operations ensure that a legal transformation of local influence 

diagrams is satisfied in the semantic level. However, it is unknown whether the 

semantic level is satisfied when the transformation is imposed on the whole MSID.  

For example, in Figure 5.5, an arc between node b  and node c  has to be reversed in 

order to remove node b  in 1I . After the arc reversal, DAG is ensured in 1I ; however, it 

is violated in the resulting MSID. In Figure 5.6, there are two directed cycles such as 

elkfgbe →→→→→→  and elkfgbce →→→→→→→ . 
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Figure 5.5: An MSID before Arc Reversal 

 
Figure 5.6: An MSID after Arc Reversal 

The problem raises my investigation into the issue of legal transformations (in the 

semantic level) based on the four basic operations. After a transformation, a new 

MSID must follow three constraints: DAG structure, d-sepset of agent interface and 

irreducibility of d-sepset. Hence the four basic operations will be studied in detail 

concerning their effect on the holding of these constraints in an MSID. 

Irreducibility of d-sepset: As a transformation is a reduction approach, it simplifies an 

MSID by removing one node at a time. Thus the constraint of irreducible d-sepset is 

satisfied when any of the four basic operations is imposed. 
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d-sepset of the agent interface: This constraint requires that all parents of a public node 

should be included in the same local influence diagram. It is not expected that any of 

the basic operations would introduce new parents for public nodes. The operations of 

barren node removal, decision node removal and chance node (with a value node as a 

single successor) removal do not introduce new parents for public nodes. As for 

chance node (with chance nodes as its single successor) removal, it is possible to 

introduce new parents to a public node if the public node is a successor of the removed 

nodes. However, Rule 1 in the process GSL  avoids this operation. As for the operation 

of arc reversal, new parents are introduced into the related nodes. Thus the constraint 

can’t be ensured if the operation is imposed on public nodes. Fortunately, this 

constraint can be relaxed when no cause-effect is considered in an MSID similar to 

that in an MSBN (Xiang 2002). 

DAG structure: The definition of the accessibility indicates that an increasing 

accessibility on nodes (expect value nodes) leads to more chances of producing new 

directed cycles. Based on the accessibility analysis on basic operations, an increasing 

accessibility occurs in the operation of arc reversal. Hence, the constraint is not 

satisfied in an MSID although a DAG structure is ensured in local influence diagrams 

after this operation. 

Thus, Theorem 5.5 is obtained. 

Theorem 5.5: With an operation of arc reversal, a legal transformation in an MSID is 

not ensured in the C-Evaluation. 
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5.2.4.2 P-Evaluation 

The P-Evaluation for solving an MSID adopts the p  representation of joint probability 

distribution. That is to say, )(∏∏∏ Ψ==
j i

ji
j

I xPP
j

. In the P-Evaluation, there are 

three basic operations, namely barren node absorption, chance node absorption and 

decision node removal (Ndilikikesha 1994).  

1) Barren node absorption : A barren decision node is removed simply without 

other operations. A barren chance node is removed with an operation: add (as 

necessary) an arc from another of its predecessors to the one with the highest 

number )(xf . 

2) Chance node absorptions: A chance node x  is removed with the following two 

operations:  

a. Add an arc from every direct predecessor )(Pr xe  to every direct 

successor )(xSuc ;  

b. Add an arc from other successors )(xSuc  to the successor )(xSucy∈  with 

the highest )(yf . If node j  receives an arc from another node k , add an 

arc from every direct predecessor of k  to j . The accessibility on node 

y  increases;  

3) Decision node removal: A decision node whose successor is a single value 

node can be removed directly if all other predecessors of the value node are 

also direct predecessors of this decision node. 
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Similar to the efficiency analysis of an elimination sequence in the C-Evaluation, 

Theorem 5.2 is revisited here following the above three operations in the P-Evaluation. 

Theorem 5.6: An elimination sequence generated in the process GSL  is efficient in the 

P-Evaluation. 

Proof. Generally, it is always assumed that influence diagrams are evaluated after 

pruning all barren nodes. Hence barren node absorption does not cost much. The most 

computation consuming operation is chance node absorption in the P-Evaluation. 

Similar to the proof for Theorem 5.4, Rule 1 and Rule 2 produce few numbers of 

)(xSuc , and try to let a value node become one of )(xSuc . Thus the operation of adding 

arcs is seldom applied and becomes a more economical operation when the process 

GSL  is followed to produce the elimination sequence.▌ 

Comparing with the C-Evaluation having the four operations, the P-Evaluation 

requires no operation of arc reversal. It is this operation that causes a violation of the 

DAG structure constraint in an MSID when the C-Evaluation is used. In the P-

Evaluation, a possible violation of the DAG structure constraint is the operation of 

chance node absorption. The possibility to increase the accessibility on chance nodes is 

avoided if both Rule 1 and Rule 2 are followed in the process GSL . With these two 

rules, the accessibility increasing always happens on value nodes. However, this leads 

to no chance of violation on a DAG structure since a value node is a kind of sink node. 

Hence, Theorem 5.7 follows. 

Theorem 5.7: A transformation in an MSID is legal in the P-Evaluation. 

Proof. The constraint of d-sepset irreducibility is followed since the transformation is a 

reduction method. The second constraint of d-sepset for agent interface and the third 
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constraint of DAG structure are obeyed if Rule 1 and Rule 2 are followed in the 

transformation as discussed above. Thus the transformation is legal.▌  

 In conclusion, an elimination sequence generated in the process GSL  is efficient in 

both the C-Evaluation and the P-Evaluation. On another aspect, a legal transformation 

is ensured in the P-Evaluation while it does not hold in the C-Evaluation. The reason is 

due to the fact that the P-Evaluation avoids the basic operation of arc reversal in a 

reduction algorithm. 

A cooperation reduction algorithm requires a legal transformation imposed on an 

MSID. The C-Evaluation always causes an invalid transformation that violates the 

constraint of DAG structure in an MSID. It is not expected to adopt the C-Evaluation 

in a cooperation reduction algorithm. The P-Evaluation is preferred since it not only 

ensures a legal transformation, but also provides economical computation in the data 

updating. On another aspect, both the C-Evaluation and the P-Evaluation could be 

adopted in an off-line algorithm since it does not require a legal transformation. An on-

line algorithm could only choose the P-Evaluation. However, economical computation 

in the P-Evaluation relieves large resources consumed in an on-line algorithm. 

Consequently, the choice of C-Evaluation or P-Evaluation helps a good design of a 

cooperation reduction algorithm in an MSID. 

5.2.5 Summary 

Many issues deserve a serious study for solving an MSID with a cooperative reduction 

algorithm. Extending traditional reduction algorithms in influence diagrams, a 

cooperative reduction algorithm is proposed and developed in this section. It stands on 

a legal and efficient elimination sequence for both local influence diagrams and d-
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sepnodes. It also involves a legal transformation discussed in both the C-Evaluation 

and the P-Evaluation.      

In summary, a flow chart for solving MSID is described in Figure 5.7. It is a 

distributed and cooperative reduction algorithm. Firstly, after initializing an MSID, 

elimination sequences for each local influence diagram are identified through the 

process GSL . Secondly, in the process GER , a global elimination sequence is checked 

in the MSID. If a global elimination sequence exists in the MSID, a cooperative 

reduction algorithm is applied; otherwise, the MSID has to be solved with the 

implementation of an off-line algorithm. Finally, either the C-Evaluation or the P-

Evaluation is selected to solve the MSID. It is also worthwhile to mention here that 

during the cooperation, an intelligent agent is in charge of its corresponding local 

influence diagrams, and only discloses information on the d-sepset thus protecting the 

agent’s privacy. 
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Figure 5.7: Flow Chart for Cooperative Reduction Algorithms 

5.3 Distributed evalID Algorithm 

The basic methods for solving an MSID are extensions of evaluation algorithms on 

single agent-based influence diagrams such as the reduction algorithm (Shachter 1986). 

The evalID  algorithm is presently considered as one of the most efficient algorithms, 

especially in decision networks (Zhang 1998). Hence it may facilitate the design of 

evaluation algorithms for solving an MSID. 

Initialize 
an MSID 

Local Elimination 
Sequence 1 

Local Elimination 
Sequence i 

Local Elimination 
Sequence m 

Solve 
 the MSID 

Have a Global 
Elimination Sequence?

On-line 
Algorithms 

Off-line 
Algorithms 

Yes

No 

Choose C-Evaluation 
or P-Evaluation 



Chapter 5: Model Evaluation 
 

114 

In this section, a distributed evalID  algorithm is proposed to solve an MSID. A 

distributed evalID  algorithm is well developed based on a framework of multiple 

evaluation networks which coordinates an evaluation of local influence diagrams. 

Multiple evaluation networks are composed of a set of evaluation networks which 

formulate basic ideas of the evalID  algorithm for solving decision networks. 

5.3.1 Evaluation Network 

Before the concept of an evaluation network is described, the evalID  algorithm is 

revisited in decision networks. The aim of the evalID  algorithm is to solve decision 

networks by decomposing whole networks. Adopting the divide and conquer strategy, 

firstly, the evalID  algorithm divides decision networks into two parts: a tail Τ and a 

body Β . The tail only consists of relative nodes (in cΤ  and vΤ  which will be defined 

later.) with respect to the tail decision node d  (the last decision in a decision sequence 

in decision networks). Hence, the tail can be solved with ease resulting in optimal rules 

for the tail decision node. Secondly, the evalID  algorithm attaches an artificial value 

node u  to the body. The value node u  carries an evaluation function Τe  from the 

optimal solution of the tail decision node.  ( rd ,π  denotes parents of decision node d  

and vM  denotes the maximum value of value node v .) 
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where cΤ  is obtained from a tail Τ  by pruning nodes outside of an ancestral set of rd ,π , 

vΤ  is obtained from a tail Τ  by pruning nodes outside of an ancestral set of rd ,π and 

{ }vd ,  , and dΩ  is the number of possible values with respect to a decision node d . 

Thirdly, the  evalID  algorithm considers the identified body (in the first step) as new 
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decision networks and solves the body with the same methods applied to the original 

decision networks. Thus, a new tail and a new body are produced. Finally, the evalID  

algorithm reduces the original network into a body which has a single decision node. 

The final body is called the value network and is solved by the Cooper’s 

transformation (Cooper 1988) which transforms decision nodes and value nodes into 

chances nodes. Accordingly, the final optimal decision rules are composed of decision 

rules for every tail node and the final decision node in the value network. The optimal 

decision value comes from the expected values for decision nodes in the corresponding 

tails and the value network. 

In the evalID  algorithm, decision networks are divided into several tails with respect to 

every decision node (a tail decision node) besides the final value network. Take the 

example (Jensen et al. 1994; Zhang 1998) in Figure 5.8. After identifying the tail )( idΤ  

for each decision node id  step by step, the decision networks are divided into four BNs 

( iBN , 4,3,2,1=i ) and one value network ( 0BN ). (Decision nodes and value nodes except 

those in value networks are transformed into chance nodes mc  and mv  respectively 

through the Cooper’s transformation; while mu  indicates the evaluation function Τe  for 

the preceding tail decision node.) After the value network is transformed into a BN, 

there are five BNs connected with each other as shown in Figure 5.9. Hence, if the 

evalID  algorithm is followed, the decision networks in Figure 5.8 could be solved 

when every BN is solved individually in the sequence (from 4BN  to 0BN ). Now, the 

structure in Figure 5.9 is utilized to help the formulation of an evaluation network. 
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Figure 5.8: Decision Networks 

 

 

 

 

 

 

 

 

Figure 5.9: Tails (Corresponding BNs) in Decision Networks 
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hypertree level) (Xiang 2002). In fact, this is not a coincidence as demonstrated by the 

following proposition. 

Proposition 5.1: A structure of networks (if  cΤ  exists for every tail node jd ) 

composed of tails and a value network is the same as the graphical structure  of an 

MSBN. 

Proof. A graphical structure of an MSBN should follow two constraints: DAG 

structure and d-sepnode. In the evalID  algorithm, value nodes (denoted as mu ) are 

added into the final networks. However, this operation could not violate the constraint 

of DAG structure since a value node is a sink node. Furthermore, the final networks 

composed of tails and value networks are obtained when some arcs are removed in the 

procedure of identifying tails and bodies in the original decision networks. Thus the 

final network should satisfy the DAG structure. 

It is found that public nodes shared between tails )( idΤ  and )( 1−Τ id  ( 1≥i ) are nodes in 

cΤ  belonging to )( 1−Τ id . Besides, all parents of nodes in cΤ  of )( 1−Τ id  belong to )( idΤ . 

Hence, parents of these public nodes are included in the tail )( idΤ  which is the body 

with respect to the tail )( 1−Τ id . Also, a value network is the body of the tail )( 1dΤ  

(Assuming that id  succeeds jd  if ji > .). Thus the second constraint is followed. ▌ 

Furthermore, it is noticed that the evaluation function Τe  formulated with the variables 

muΤ  (
mvΤ ) and cΤ  has an additive form associated with artificial utility variables ( mu ) 

and utility variables ( mv ). This motivates the formulation of an evaluation network. 

For example, the evaluation network for decision networks discussed in Figure 5.8 and 

Figure 5.9 is constructed as shown in Figure 5.10. 
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Figure 5.10: Evaluation Networks 

An Evaluation Network (EN) is composed of three types of nodes: diamond, pentagon 

and hexagon nodes, and arcs between them. A diamond node denotes original value 

nodes in decision networks. A pentagon node denotes the final value network in 

decision networks, called sink node. (Since only one value network exists after the 

evalID  algorithm is imposed on decision networks.) A hexagon node denotes tails in 

decision networks, called tail node. An arc from a value node to a tail node is called a 

utility arc while an arc between tail nodes is called an evaluation arc. (To avoid 

redundant denotations, nodes and variables are interchangeable in the representation.) 

Based on utility and evaluation functions, an EN represents decision networks at two 
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direction tells the decision sequence that decides the computation of evaluation 

functions. Tracing directed paths in an EN results in a partial decision order. The 

1vTP  

3uTP

3vTP

2vTP

3dTc
P Ω  

1dTc
P Ω  

4uTP

2dTc
P Ω  

4uTP

4dTc
P Ω  

4vTP

1def  
2def

u1

v1 

v4

v2

v3

3def

4def



Chapter 5: Model Evaluation 

119 

number of incident arcs into nodes in an EN indicates the number of items in the 

additive form of an evaluation function. A sink node terminates with the maximum 

expected value. For example, in Figure 5.10, the evaluation function in the tail node 

1def  depends on the utility variable 1v  and the evaluation function 
2def . The partial 

decision order follows 421 ddd pp . 

At the quantitative level, a utility node is associated with a utility function and the 

output is the maximum value of the utility function. The tail node is framed with data 

on the ratio of the joint probability of cT  and the number of decision alternatives. It 

sums out the maximum value of an evaluation function after combining all maximum 

utility values and evaluation functions (from incident arcs). The sink node indicates a 

final computation in an EN. The arc incident into the tail node 
jdef  carries the joint 

probability of required nodes (with respect to jd ) to compute ju (in tail node 
jdef ). For 

example, in Figure 5.10, the tail node 
1def  keeps the data of  

1dTc
P Ω  and receives the 

maximum utility values 
1vM , in addition to the maximum value 

2uM  and 
3uM  from 

the evaluation function on the tails 
2def  and 

3def , respectively. At the same time, the 

tail node obtains the joint probability of 
1vTP , 

4uTP  and 
3uTP  attached to three incident 

arcs individually. Hence, the output is the sum of some items as in the following 

equation. 
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It can be seen that an EN clearly describes the components of the expected value in 

decision networks and the required computation in every component. An EN displays 

the dependency of the utility value with respect to decision nodes, which allows a 
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distributed evaluation algorithm in decision networks. An EN can be described as the 

extended form as shown in Figure 5.10 as well as other forms without the 

representation of numerical values. 

5.3.2 Multiple Evaluation Networks 

The definition of an HRG includes two functions: qRe  and Sup . Nodes included in the 

functions connect local influence diagrams to form an MSID. Nodes in qRe  consists 

of RO (requisite observation nodes) and RP (requisite probability nodes) that can be 

identified by Decision Bayes-ball or refined Decision Bayes-ball procedure2; while 

nodes in Sup  can be removed safely without affecting the optimal solutions since they 

have no contribution to the evaluation on any decision node. Hence, the following 

proposition is obtained. 

Proposition 5.2: No nodes in Sup  are included in an EN. 

In addition, tracing the process of obtaining tails and bodies in decision networks and 

the procedure Decision Bayes-ball, it is found that they are based on the same concept 

of d-separation in a probabilistic graph (Pearl 1988, Shachter 1998). Both procedures 

have the same goal to find RO  and RP . Thus, the following Lemmas are obtained: 

Lemma 5.2: Nodes in Τ  are composed of required nodes, including RO  and RP , 

obtained in the procedure Decision Bayes-ball. 

Lemma 5.3: Nodes in rd ,π  are requisite observation nodes RO  obtained in the 

procedure Decision Bayes-ball. 

                                                 
2 In the following parts, Decision Bayes-ball is used to denote these two procedures. 
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Lemma 5.4: Nodes in vΤ  or uΤ  are required nodes, including RO  and RP , obtained 

for the utility variables v  and u  in the procedure Decision Bayes-ball. 

Hence both RO  and RP  connect local ENs with respect to local influence diagrams in 

an MSID. Both of them are involved in the computation of evaluation functions; 

however, they are not required to be evaluated simultaneously.  In fact, the following 

proposition 5.3 can be proven. 

Proposition 5.3: The evaluation of RO  for decision node id  is involved in the 

computation of tail node 
)1( −idef .  

Proof. The computation of Τe  could be analyzed as follows since rd ,π  are root nodes 

in vT .  

drd

v
Vv

rdTrdT

drd

v
Vv

rd

rd
c

cvV

c

v

P

MdvPP

P

MdvP

de
Ω

=×

=
Ω

=

=
Τ

∈
Τ

Τ

∈
Τ

Τ

∑∑
)(

),,1()(

)(

),,1(

),(
,

,/,

,

,

,
22

π

ππ

π

π

π  

( cv TT /  denotes node subtraction in two graphs. ) 

Thus the evaluation of RP  is required in 
idef  while the evaluation of RO  is counted in 

the later 
)1( −idef . ▌ 

Consequently, the combination of ENs through public nodes, namely RO  and RP , 

provides an efficient and distributed framework to solve an MSID. The framework is 

called Multiple Evaluation Networks (MEN) based on the algorithm evalID .  Arcs 

from RO  or RP  to tail nodes in a local EN indicate that they are involved in the 

computation of an evaluation function.  
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For example, in Figure 5.11, it is assumed that RO  and RP  are public nodes among 

1EN , 2EN  and 3EN . Each evaluation network is associated with a local influence 

diagram in an MSID. With the consideration of required nodes with respect to decision 

nodes,  RO  and RP  are classified in an individual EN as follows: 
idRO ,1  and 

idRP ,1  are 

required nodes for decision node id  in 1EN , 
kdRO ,2  and 

kdRP ,2  are required nodes for  

decision node kd  in 2EN  while 
jdRO ,3  and 

jdRP ,3  are required nodes for decision node 

jd  in 3EN . According to the MEN, the sequence for solving public nodes could also 

be defined. (In Figure 5.11, a dotted arc into a tail node indicates other tail nodes exist 

in the local EN.) 

 

Figure 5.11: Multiple Evaluation Networks (MEN) 
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Global optimal solutions for an MSID consist of global optimal strategies and global 
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with its own utility and would not compromise its utility with the consideration of 

other agents’ decisions. However, it wants the cooperation with the aim to make full 

use of available information to make the best decision for its own and to release some 

useful information in order to help other agents’ decisions. Hence global optimal 

solutions depend on local optimal solutions in local influence diagrams and 

cooperative evaluation of public nodes. Agents expect to access the full and consistent 

information in a cooperative evaluation. Since the evalID  algorithm ensures a local 

optimal solution in local influence diagrams, what is of concern is the evaluation of d-

sepnodes in an MSID.  

D-sepsets are channels through which agents hold good communication. Both RO  and 

RP  nodes in d-sepsets would affect a cooperative evaluation of local influence 

diagrams in an MSID. To ensure consistent information in a cooperative evaluation, 

both RO  and RP  nodes should join the evaluation and be removed simultaneously 

when solving an MSID. As shown above, an MEN indicates an appropriate sequence 

in the evaluation of RO  and RP  if the directions of arcs in a local EN are followed. 

Thus, every local EN in an MEN could be evaluated using the evalID  algorithm 

individually while both RO  and RP  nodes could be evaluated and removed 

simultaneously from the MEN. Combining all the above discussion, a distributed 

algorithm evalID  based on an MEN is formulated as follows 

[Distributed evalID  Algorithm] 

1) Update all information in an MSID; 

2) Build an EN for local influence diagrams in an MSID; 

3) Build an MEN with the implication of an HRG; 

4) Obtain a global evaluation sequence for RO  and RP  nodes based on the MEN; 
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5) Solve the MEN and produce optimal solutions. 

In this algorithm, the first step is to update all numeric values associated with nodes in 

an MSID as well as the graphical structure.  The updated MSID represents the latest 

decision scenario accurately. Then, for an individual local influence diagram, a 

corresponding EN is built through identifying tails and bodies in the subnet. After that, 

in the third step, all ENs are combined together to form an MEN through the linkage of 

d-sepnodes. Nodes associated with the qRe  function in the HRG are kept in the MEN 

and are classified into two types: RO  and RP . Nodes associated with the Sup  function 

are removed safely. Consequently, only RO  and RP  nodes in the d-sepset join the 

evaluation process They should be removed simultaneously to hold consistent 

information in a cooperative evaluation of local influence diagrams. Hence the 

sequence in which RO  and RP  nodes are evaluated is very important since it 

coordinates the evaluation of local ENs in the MEN. Since both RO  and RP  nodes are 

required for decision nodes associated with tail nodes in an EN, following the 

directions of arcs in the EN will generate a partial order for decision nodes locally. 

This partial order indicates the sequence for evaluating RO  and RP  nodes. Hence, in 

the fourth step, after obtaining a partial order for tail nodes in local ENs, a global 

evaluation sequence for RO  and RP  nodes could be produced. This sequence will 

guide the evaluation process in the MEN in the final step.  

For model evaluation in an MSID, RO , together with RP , is vital to obtain a global 

optimal solution. Only if they are evaluated among local influence diagrams at the 

same time, will the full and consistent information associated with them be ensured in 

the whole evaluation process. The distributed evalID  algorithm which is well designed 

above is to achieve this aim. Thus, Theorem 5.8 is obtained. 
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Theorem 5.8: A distributed evalID  algorithm generates global optimal solutions in an 

MSID. 

5.4 Indirect Evaluation Algorithm 

In Sections 5.2 and 5.3, a cooperative reduction algorithm and a distributed evalID  

algorithm have been discussed in detail to solve an MSID. A cooperative reduction 

algorithm is one of the basic evaluation algorithms for solving an MSID. It directly 

solves influence diagrams with some basic operations such as node removal and arc 

reversal. On the other hand, a distributed evalID  algorithm is an advanced evaluation 

algorithm for solving an MSID. It extends the evalID  algorithm in decision networks. 

Both of these two algorithms belong to direct methods. They are a kind of reduction 

algorithms which remove elements from an MSID directly for solving the MSID.  

The principle of direct methods for solving an MSID is easy to be understood and 

formulated in an intuitive way. However, it needs some efforts to design a good 

evaluation process. As we know, the indirect method for solving influence diagrams 

(Jensen et al. 1994) is an alternative approach in the model evaluation. It first 

transforms an influence diagram into a rooted cluster tree (Jensen et al. 1994); then, it 

solves the rooted cluster tree. Furthermore, as the process of transforming an MSID is 

similar to that in an MSBN (Xiang 1996), I would like to discuss an indirect method 

for solving an MSID in this section. Some relevant strategies in this indirect method 

will be highlighted. 
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5.4.1 Algorithm Design 

Like solving influence diagrams, indirect evaluation algorithms to solve an MSID 

follow two steps: transforming an MSID into a multiple rooted cluster tree composed 

of a set of interconnected rooted cluster trees (Shachter 1999), and solving the multiple 

rooted cluster tree.  

1) Transforming an MSID: The methods to transform an MSID into a multiple 

rooted cluster tree are combinations of evaluation algorithms in both influence 

diagrams and MSBN (Jensen et al. 1994; Shachter 1999; Xiang 2002). Firstly, 

a modified MSID is being built. For each local influence diagram, requisite 

observation nodes are identified using Decision Bayes-ball procedure. Then, 

arcs are added between identified required nodes and their corresponding 

decision nodes. Finally, a multiple rooted cluster tree is built in a cooperative 

algorithm (Xiang 2002). The basic idea of this algorithm is to transform local 

influence diagrams into a local rooted cluster tree as well as to transform d-

sepsets into linkage trees. The linkage trees connect the transformed local 

rooted cluster trees together into a multiple rooted cluster tree. In this process, 

an index is introduced to show a clique sequence in the local rooted cluster tree.  

2) Solving a multiple rooted cluster tree: A multiple rooted cluster tree is a tree 

structure for an MSID. It is a set of local rooted cluster trees connecting with 

the linkage trees. Thus, evaluating an MSID amounts to solving these local 

rooted cluster trees as well as the linkage trees. The local rooted cluster tree is 

evaluated following a partial decision order in a local influence diagram. The 

linkage tree among local rooted cluster trees coordinates the computation of 

adjacent cliques to make sure that d-sepnodes are evaluated at the same time. 
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Hence, d-sepnodes in a linkage tree could be removed simultaneously. This has 

to involve a relative elimination order for d-sepnodes in an MSID. The relative 

elimination order could be obtained by considering the clique index in local 

rooted cluster trees globally. A good relative index on cliques allows the 

linkage trees to be evaluated cooperatively among adjacent local rooted cluster 

trees.  

In summary, an MSID is solved in a distributed way following the above two steps. In 

this work, I do not focus on the process of developing a multiple rooted cluster tree 

since it could be found in detail in much literature (Jensen et al. 1994; Shachter 1999; 

Xiang 2002). I emphasize more on the solving of linkage trees in a multiple rooted 

cluster tree, which is illustrated in the following case. 

5.4.2 Evaluation of SARS Control Situation 

Take the example in Figure 3.1. The three influence diagrams 1I , 2I  and 3I  are 

transformed into three local rooted cluster trees 1T , 2T  and 3T  respectively. The d-

sepsets are transformed into linkage trees. For the MSID in Figure 3.1, the d-sepset 

transformation is simple because each chance node in the d-sepset composes one 

linkage tree. These local rooted cluster trees and linkage trees compose a multiple 

rooted cluster tree in Figure 5.12. 
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Figure 5.12: A Multiple Rooted Cluster Tree 
(Nodes without color denote cliques and nodes with grey color denote linkage trees.) 
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linkage tree including node c  is from 1T  to 3T  in Figure 5.12. This follows with the 
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direction depends on an elimination order for d-sepnodes if this order exists; otherwise, 

it is optional.  

Following the above procedures, the MSID for the SARS model is solved by 

evaluating local influence diagrams individually and combining all local optimal 

solutions. The consistent information, implicated in the d-sepset in an MSID and 

restricted in organizational relationships in an HRG, is guaranteed throughout the 

evaluation process. If the shared information is inconsistent, the decision making is 

prone to be wrong. For example, with reference to the MSID in Figure 3.1, if Nation 1 

deliberately hides its SARS report (represented by node c ), decision 1d  in Nation 3 

will definitely be wrong. Consequently, decisions in the whole community will lead to 

quite a large loss, which has been the fact in the SARS control in 2003. Accordingly, a 

true model of MSID and HRG not only provides good decisions for policy makers, but 

also allows a large number of simulations to report some alerts in order to avoid a 

destructive loss.  

5.5 Comparison on the Three Evaluation Algorithms 

Solving a multiagent decision problem is to seek the best decision for multiple agents 

in a cooperative and privacy protection setting. Every agent aims to obtain an optimal 

solution while it cooperates with its adjacent agents. An agent, without disclosing its 

privacy, wants to access the full and consistent public information in order to 

maximize the decision value. Here, the global optimal solution of the multiagent 

decision problem is defined as the combination of best decision solutions from 

multiple agents which have full and consistent observations.  
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An MSID represents a multiagent decision problem with a set of local influence 

diagrams. These local influence diagrams are connected with d-sepsets. Through the 

information in the d-sepset, local influence diagrams could affect their adjacent ones. 

Hence, in the evaluation process, some relevant strategies should be adopted to avoid 

the incomplete and inconsistent information in the d-sepset. To achieve this goal, d-

sepnodes should follow a uniform elimination order in an evaluation algorithm so that 

they could be evaluated and removed from an MSID simultaneously. Through this way, 

it is believed that an agent has obtained a full, correct and consistent observation so 

that each agent’s benefit is maximized in a distributed and unpredictable situation.  

Following the above principles residing in evaluation algorithms for solving an MSID, 

the three evaluation algorithms, namely cooperative reduction algorithm, distributed 

evalID  algorithm and indirect evaluation algorithm, have been discussed in the 

previous sections. In general, all of these three evaluation algorithms can be utilized to 

solve an MSID. However, every method has its own advantages. For example, a 

distributed evalID  algorithm could deal with a general MSID while a cooperative 

reduction algorithm could only deal with a regular MSID in which local influence 

diagrams are regular. A cooperative reduction algorithm is easily understood and is 

suitable to solve an MSID with no large dimension; however, a good formulation 

needs much effort. Moreover, both an indirect evaluation algorithm and a distributed 

evalID  algorithm could make full use of Bayesian inference algorithms in the 

evaluation process. Accordingly, it is hoped that some strategies be designed with the 

aim to select an appropriate evaluation algorithm for solving an MSID.  

On the other hand, the three evaluation algorithms are special forms for the solving of 

an MSID by removing nodes from the MSID step by step. In fact, they have a common 
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interest to decide an elimination order for nodes in the MSID. Hence, the three 

evaluation algorithms could be generalized into simple procedures for identifying the 

elimination order for nodes. They could be used to solve general graphical decision 

models. 

5.6 Summary 

This chapter described three evaluation algorithms, namely cooperative reduction 

algorithm, distributed evalID  algorithm, and indirect evaluation algorithm, for solving 

an MSID. All of these three evaluation algorithms extend those for solving influence 

diagrams or decision networks. A cooperative reduction algorithm extends basic 

reduction algorithms in influence diagrams. A distributed evalID  algorithm is based on 

the evalID  algorithm in decision networks while an indirect evaluation algorithm 

originates from the junction tree method for solving influence diagrams. The three 

algorithms are analyzed theoretically as well as illustrated in some simple examples. 
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6 Case Study 

This chapter illustrates a comprehensive case study – policy design for avoiding more 

loss due to the SARS in 2003 - which extends the example in the medical domain in 

Chapter 3. This work puts together my proposed methodologies of Multiply Sectioned 

Influence Diagrams (MSID) and Hyper Relevance Graph (HRG) which consist of 

model representation, model verification and model evaluation discussed in Chapters 3, 

4, and 5, respectively. It shows how these methods can be utilized to address a 

complex practical problem. 

6.1 Decision Scenario 

Policy design for controlling disease spread is one of the important issues in the 

medical domain. For example, currently, the disease of bird flu seems to be widespread 

in the world and is endangering human beings without notice. The involved or 

uninvolved nations (communities) have been trying to design some policies to avoid 

the further spread of the disease. Although they are separated geographically, they 

want to cooperate with each other to alleviate the loss through a full exchange of some 

useful and consistent information. Hence, this is a kind of multiagent decision 

problems. Besides, the control on the Severe Acute Respiratory Syndrome (SARS) 

case is another practical decision problem in the medical domain. In Chapter 3, I have 

briefly described the decision scenario. Now, this case is extended here and discussed 

in detail.  
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The SARS is a serious infectious disease that could potentially develop into an 

epidemic or even an endemic. Its outbreak causes unexpected loss everywhere in the 

world. Its uncertain and various sources have frustrated the medical community and 

policy makers. Beyond all doubt, it needs the collaborative effort of multiple nations 

concerned with their own local as well as global benefits. Assume that there are several 

nations or communities ( 51 ~ AA ) which are involved in a decision scheme for the 

SARS control.  

Nation 1A  concentrates on the SARS control in an airport and plans to build 

quarantine centers around the airport. It is concerned with decisions of changing 

the airline schedule denoted by3 11d , having the SARS screening in the airport 

12d  and building quarantine centers 13d . The relevant uncertain variables are as 

follows: (1) The SARS situation indicated in the WHO’s report a ; (2) 

Permission from airlines 1b ; (3) Sign of the SARS with the fever symptom 1c ; (4) 

The total number of customers in the airport d ; (5) Health condition of overseas 

customers h ; (6) 1A ’s hospital facilities f ; (7) Loss without controlling the 

SARS in the airport 1g . Nation 1A  is concerned with the benefit-cost of building 

quarantine centers around the airport 1v . 

Nation 2A  puts its effort to control and prevent the SARS in the society. Hence, 

it needs to investigate some decisions such as adopting the home quarantine 

measure 21d , arranging more ambulances around communities 22d , and building 

special hospitals 23d . The involved uncertain variables are as follows: (1) The 

SARS situation indicated in the WHO’s report a ; (2) The SARS situation 

                                                 
3 Subsequently, in this case, the words “denoted by” will be omitted before the symbol which is the 
variable representing the front sentence. 
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indicated in nation 2A ’s report 2d ; (3) The SARS distribution 2c  in nation 2A ; 

(4) The SARS situation indicated b  in the official report of nation 2A ; (5) The 

SARS virus spread 2e ; (6) The loss without controlling the SARS 2f ; (7) Nation 

2A ’s hospital facilities g . Nation 2A  is concerned with the benefit-cost of 

building special hospitals 2v . 

Nation 3A  intends to avoid the input of the SARS virus and considers the 

citizens’ health. Thus it has a plan 31d  whether to reschedule its tour groups to 

nation 2A  in which there is an outbreak of the SARS. The decision involves the 

following uncertain variables: (1) The SARS situation indicated in the WHO’s 

report a ; (2) The SARS situation indicated in nation 2A ’s report b ; (3) The 

SARS situation indicated in nation 3A ’s report 3a ; (4) Possibility of catching the 

SARS when traveling to nation 2A  3c ; (5) Loss for travelers when catching the 

SARS 3d ; (6) Economic loss for tour groups 3e ; (7) The number of travelers to 

nation 2A  3f . Hence nation 3A  is concerned with the benefit-cost of a tour in 

nation 2A  3v . 

Nation 4A  is a neighbor of nation 1A  and has a wide affiliation with nation 1A . 

For example, there are many people traveling between nation 1A  and nation 4A  

for business or education. Hence, the joint effort from both nation 4A  and nation 

1A  contributes a lot to the SARS control. It is a benefit that both nations could 

release some relevant information if new measures are taken. Here, nation 4A  

investigates some foreign affairs with 1A  such as controlling the quota of 

travelers 41d  and requiring medical examinations from travelers 42d . Many 

uncertain variables exist as follows: (1) The SARS situation  indicated in nation 
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1A ’s report 1a  (depends on nation 4A ’s evaluation); (2) The SARS situation 

indicated in nation 4A ’s report 4b ; (3) Profit  for applicants to nation 1A  4c ; (4) 

Loss for travelers with the SARS 4g ; (5) Possibility of identifying the SARS 

through the health checking 4e ; (6) Cost of the health checking 4f ; (7) 

Fluctuation of travelers to nation 1A  after controlling the quota of travelers d ; (8) 

Health status of travelers to nation 1A  h . Nation 4A  considers the benefit-cost 

for applicants to nation 1A  4v . 

Community 5A  is one of the international organizations that would like to offer 

some assistances to the SARS-affected nations ( 1A  and 2A ) such as distributing 

the medicine 51d , sending out rescuers 52d  and developing the SARS vaccine 

53d . It has to consider many uncertain variables as follows: (1) The SARS 

situation indicated in the WHO’s report a ; (2) The SARS situation indicated in 

nation 1A ’s report 5c  (depends on community 5A ’s evaluation); (3) The SARS 

situation indicated in nation 2A ’s report b ; (4) Nation 1A ’s hospital facilities f ; 

(5) Nation 2A ’s hospital facilities g ; (6) Effect of the distributed medicine 5d ; 

(7) Effect of the SARS vaccine 5e ; (8) Risk of rescuers 5h ; (9) Passion of 

volunteers 5i ; (10) Benefit of local patients 5j . Community 5A  has to consider 

the benefit-cost of both rescuer assignment 51v  and vaccine development 52v . 

6.2 Model Formulation 

Clearly, the decision scenario above is a typical multiagent decision problem. The 

involved organizations 51 ~ AA  are interrelated with each other and share some 

common information. Each nation or community is considered as an agent 51 ~ AA  
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respectively and is modeled as a local influence diagram in an MSID. Hence, there are 

five local influence diagrams 51 ~ II  in the MSID as shown in Figure 6.1. (Chance 

nodes with grey color indicate public nodes among local influence diagrams.)  The 

public information is encoded in d-sepsets in the MSID and exerts its influence on the 

decision making while agents’ privacy is protected in local influence diagrams. 

Also, their organizational relationships can be represented in an HRG. On the basis of 

the MSID in Figure 6.1, the corresponding HRG can be built in Figure 6.2. The HRG 

characterizes organizational relationships among the involved nations. The HRG 

shows that the international organization 5A  has strong and complicated relationships 

with other nations since it makes its decisions based on the input information from 

adjacent entities. For example, 2A  controls 5A ’s decision 52d  with the required 

information },{ gb . It is noticed that the information g  depends on 2A ’s decision 21d  

while the information b  is 2A ’s judgment which is not affected by 2A ’s decisions. 

Hence, 2A ’s decision 21d  may affect 5A ’s decision 53d . For the adjacent agents 1A  

and 5A , the information f  controls both 1A ’s decision 13d  and 5A ’s decision 51d  so 

that the authentic information benefits their decisions.  4A  supports 1A  with the 

information d  while controls 1A ’s decision 12d  with the information }{h . Finally, it is 

noticed that the information a  is a key element that connects most agents. It may be 

the required information for some agents’ decisions such as 5A ’s decision 51d  and 

2A ’s decision 23d . On the other hand, the information a  may be the only public 

information shared among adjacent agents. For example, it can be accessed by agents 

1A  and 3A ; however, it is not needed for the computation of their decisions.  
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Figure 6.1: The MSID 
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Figure 6.2: The HRG for the MSID in Figure 6.1 

Concerning the information a  that indicates the SARS status in the WHO’s report, 

agents may have different judgments on this observation. In this case, an interval 

probability could be utilized to unify their beliefs. It allows the involved nations to 

make a good decision with the consideration of the WHO’s report.  

This case study shows that graphical decision models of MSID and HRG can represent 

a large and complex decision problem involving multiple agents. Furthermore, the 
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decision models are reusable and scalable. Any of the existing local influence diagrams 

can be removed at any time without affecting other components. At the same time, 

new components can be added into the existing model through connecting them with 

relevant parts. For example, in the MSID shown in Figure 6.1, 4I  can be removed 

without changing the structures of 1I , 2I , 3I  and 5I . The nation that recently involves 

the SARS may join the global control group easily only if a corresponding local 

influence diagram is put into the existing MSID. 

6.3 Model Verification 

Model verification amounts to checking whether the three constraints of MSID and 

HRG are obeyed: DAG structures, d-sepset of agent interface and irreducible d-sepset. 

I adopt the symbolic methods in Chapter 4 to verify the MSID and HRG in Figure 6.1 

and Figure 6.2 respectively.  

6.3.1 Verification of DAG Structures 

The task of verifying a DAG structure is to ensure that there is no directed cycle in the 

MSID as shown in Figure 6.1. According to Theorem 4.1, firstly, value nodes can be 

removed from local influence diagrams. After that, the algebraic description for each 

local influence diagram 51 ~ II  in the MSID is obtained as follows: 

),,(
),,,(

1
)(

1
)(

1
)(

1
)(

),,,(
),,,,(

1
)(

),,(
),,,(

),(
),,(

1
)(

12

12131

1

111

11112

1

1111
1

fdhp
fdhdpgp

fpcphp
cfhdp

cfhddpdp
badp

baddp
adp

adbpappI

××

×××××××=

       (6.1) 



Chapter 6: Case Study 

141 

1
)(

),(
),,(

),,(
),,,(

)(
),(

1
)(

)(
),(

),,(
),,,(

)(
),(

),,,(
),,,,(

1
)(

221

22122

22

22

2

221

2

2

22

22221

222212

2

22

22

2223
2

gp
cdp

cddp
cdap
cdabp

dp
ddp

dp
dp

dcp
cddp

cddep
ep

efp
gedap

gedadpapp I

××××

×××××=
       (6.2) 

),,(
),,,(

1
)(

),(
),,(

),(
),,(

)(
),(

),,(
),,,(

)(
),(

1
)(

3133

31333

3

313

3133

31

3133

3

331
3

dcap
dcadp

ap
dfp

dfep
dbp

dbfp
bp

bcp
abap

abadp
ap
abpapp I

×

××××××=
     (6.3) 

),,(
),,,(

1
)(

),(
),,(

)(
),(

),(
),,(

),(
),,(

)(
),(

1
)(

),(
),,(

1
)(

44

44424

414

4144

41

41

44

4441

44

44

4

444

44

4444
4

fdep
fdedpfp

dfp
dfcp

dp
ddp

bap
badp

ebp
ebhp

ep
ebpep

eap
eagpap

pI

×××

××××××=

         (6.4) 

1
)(

)(
),(

1
)(

),,(
),,,(

)(
),(

)(
),(

1
)(

),(
),,(

)(
),(

)(
),(

1
)(

),,,,(
),,,,,(

1
)(

5

555

5

551

5

5

5

5

553

51

515

52

525

55

55525
5

gp
cp

cjpcp
cabp

cabdp
cp
cap

ap
abp

ep
adp

addp
dp

ddp
dp

dhpfp
gdfibp

gdfibdpip
pI

××××××

××××××=

       (6.5) 

Based on the above algebraic description, the sets of DH  and DT  for each local 

influence diagram are identified as shown in Table 6.1. 

Table 6.1: DH and DT 

jI  )( jIDH  )( jIDT  

1I  },,,{)( 1 adhfIDH =  Φ=)( 1IDT  

2I  },{)( 2 gaIDH =  },{)( 2 bgIDT =  

3I  },{)( 3 baIDH =  }{)( 3 bIDT =  

4I  }{)( 4 dIDH =  },{)( 4 hdIDT =  

5I  },,,{)( 5 bagfIDH =  },{)( 5 abIDT =  

 

Then, the two operations 4.1 and 4.2 in Chapter 4 are used to find DPs  for local 

influence diagrams. Only one DP  is found in 3I . That is baDPs •=
3

. Similarly, the 
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path appears in 2I  and 5I .  In this case, no directed cycle would be formed. Hence, it is 

verified that the MSID in Figure 6.1 follows the constraint of DAG structure. 

6.3.2 Verification of D-sepset 

Verification of d-sepset is to check whether all common nodes are d-sepnodes in the 

MSID as shown in Figure 6.1. It is equivalent to verifying whether all the parents of 

every common node belong to at least one local influence diagram in the MSID.  

According to the algebraic descriptions (Equations 6.1~6.5), first, the SPS  for each 

common node is obtained in Table 6.2. 

Table 6.2: SPS for Common Nodes 

Common node 
jISPS  

a  Φ=)(
1

aSPS I , Φ=)(
2

aSPS I , Φ=)(
3

aSPS I , }{)( 55
caSPSI =  

b  },,{)( 222
cdabSPS I = , }{)(

3
abSPS I =  }{)(

5
abSPS I =  

d  Φ=)(
1

dSPS I , }{)( 414
ddSPS I =  

g  }{)( 212
dgSPS I = , Φ=)(

5
gSPS I  

h  Φ=)(
1

hSPS I , },{)( 444
ebhSPS I =  

f  Φ=)(
1

fSPS I , Φ=)(
5

fSPS I  

 

After that, the union operation is used to get the PS  for each common node as shown 

in Table 6.3. 
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Table 6.3: PS for Common Nodes 

Common Nodes PS  

a  }{)( 5caPS =  

b  },,{)( 22 cdabPS =  

d  }{)( 41ddPS =  

g  }{)( 21dgPS =  

h  },{)( 44 ebhPS =  

f  Φ=)( fPS  

 

Finally, the step of D-Testing compares SPS  in Table 6.2 with PS  in Table 6.3 to get 

Table 6.4. It can be seen that the d-sepset of agent interface in the MSID is verified 

successfully. 

Table 6.4: Final Results 

Common Node Results D-sepnode? 

a  }{)()( 55
caSPSaPS I ==  YES 

b  },,{)()( 222
cdabSPSbPS I ==  YES 

d  }{)()( 414
ddSPSdPS I ==  YES 

g  }{)()( 212
dgSPSgPS I ==  YES 

h  },{)()( 444
ebhSPShPS I ==  YES 

f  Φ== )()(
1

fSPSfPS I  or Φ== )()(
5

fSPSfPS I  YES 

 

6.3.3 Verification of Irreducibility 

The irreducibility has to concern with whether both MSID and HRG are the exact 

representation of domain knowledge. In fact, in the case of Figure 6.1 and Figure 6.2, 
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the decision models were built in a sequential way. Under this case, the HRG in Figure 

6.2 is driven from the MSID in Figure 6.1. Hence, at this stage, the domain knowledge 

would help to verify the accurate representation of decision models. This is a bit 

subjective since the verification process largely depends on domain experts and model 

builders. Thus, I focus on the pairwise verification of the MSID and HRG in this 

section. 

The main task of pairwise verification is to judge the property of d-sepnodes in the 

MSID and to compare the results with the HRG. Through the procedure (refined) 

Decision Bayes-ball, d-sepnodes are identified as to whether they are required chance 

nodes for decision nodes in local influence diagrams. Then, the correct representation 

of the HRG is evaluated. The whole results are shown in Table 6.5.  

Table 6.5: Pairwise Verification 

Pair Local Influence 
Diagrams iI  and jI  

ijS  },,{),,(Re 1 mkji ccdAAq L=  and 
},,{),( 1 nji ccAASup L=  

1I  and 2I  }{12 aS =  }{),( 21 aAASup =  

1I  and 3I  }{13 aS =  }{),( 31 aAASup =  

1I  and 5I  },{15 faS =  }{),,(Re 5151 fdAAq = , }{),,(Re 5151 adAAq =  
and }{),,(Re 1315 fdAAq =  

1I  and 4I  },{14 hdS =  }{),,(Re 1214 hdAAq =  and }{),( 41 dAASup =  

2I  and 3I  },{23 baS =  }{),,(Re 2323 adAAq =  and }{),,(Re 3132 bdAAq =  

2I  and 5I  },,{25 gbaS = }{),,(Re 2325 adAAq = , },{),,(Re 5252 gbdAAq =  , 
and }{),,(Re 5152 adAAq =  

3I  and 5I  },{35 baS =  }{),,(Re 3135 bdAAq = ,  }{),,(Re 5253 bdAAq = ,  
and }{),,(Re 5153 adAAq =  
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From Table 6.5, it is verified that each pair of local influence diagrams satisfies the 

equation: ))),())),,(Re()),,(Re((( ji
k k

kijkjiij AASupdAAqdAAqS ∪∪⊆ U U . Hence, 

the constraint of irreducible d-sepset is followed.  

So far, the verification of the MSID and HRG in Figure 6.1 and Figure 6.2 is 

completed. However, the output of valid decision models could be further refined by 

domain experts and model engineers.  

6.4 Model Evaluation 

Model evaluation is to solve decision models in order to obtain optimal decisions for 

decision makers. In Chapter 5, three evaluation algorithms, namely cooperative 

reduction algorithm, distributed evalID  algorithm, and indirect evaluation algorithm, 

have been proposed to solve an MSID. The core of these evaluation algorithms is to 

design various strategies in order to remove d-sepnodes simultaneously. Through this 

way, it is ensured that the consistent and updated information, especially in the d-

sepset, is involved in solving an MSID. Hence, building a framework which guides the 

process of removing d-sepnodes from the MSID is vital. On another aspect, as 

discussed in Chapter 5, these three evaluation algorithms have their own advantages 

for solving an MSID. In fact, this phenomenon depends on the corresponding structure 

of local influence diagrams in an MSID. It requires some strategies to choose a suitable 

evaluation algorithm for solving a local influence diagram. This topic will be covered 

in my future work. In this section, a hybrid evaluation algorithm is designed to solve 

the MSID in Figure 6.1. It is composed of the three evaluation algorithms in Chapter 5. 

Each evaluation algorithm is selected to solve a local influence diagram by considering 

the graphical structure of each local influence diagram. The hybrid evaluation 
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algorithm is designed as shown in Table 6.6. In this hybrid evaluation algorithm, I 

emphasize the elimination sequence for evaluating d-sepnodes in the MSID. The aim 

of this work is to obtain a global elimination sequence for d-sepnodes. With a valid 

elimination sequence for d-sepnodes, local influence diagrams could be evaluated 

cooperatively. Consequently, the whole MSID could be solved in a distributed fashion 

without incurring any inconsistent computation in the evaluation process. To design 

the hybrid evaluation algorithm, first, each local influence diagram is analyzed by the 

selected evaluation algorithm. The analysis generates a local elimination sequence for 

d-sepnodes. After that, a global elimination sequence for d-sepnodes is built after 

adjusting some conflicting local elimination sequences. Finally, local influence 

diagrams are evaluated by the selected evaluation algorithm. Meanwhile, the global 

elimination sequence is followed when d-sepnodes are evaluated.   

Table 6.6: Components in the Hybrid Evaluation Algorithm 

Local Influence Diagram Evaluation Algorithm 

1I  Reduction Algorithm 

2I  Reduction Algorithm 

3I  Rooted Cluster Tree 

4I  Rooted Cluster Tree 

5I  evalID  algorithm 
 

6.4.1 Solve I1 

The local influence diagram 1I  in the MSID in Figure 6.1 is a regular one and has a 

sparse structure, which motivates the adoption of a basic reduction algorithm. Thus it 
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is easy to use the GSL  process to obtain the local elimination sequence for all nodes in 

1I : },,,,,,,,,{)( 1111121311 adbdchfddgtES = 4. 

6.4.2 Solve I2 

The local influence diagram 2I  in the MSID in Figure 6.1 is also a regular one and has 

a sparse structure.  Thus the GSL  process is utilized to obtain the local elimination 

sequence in 2I : },,,,,,,,,{)( 22122222322 ddcdeagdfbtES = . 

6.4.3 Solve I3 

The local influence diagram 3I  in the MSID in Figure 6.1 is composed of a large 

number of chance nodes and one decision node. It is convenient to use an indirect 

evaluation algorithm to solve 3I  since it is easy to transform the local influence 

diagram into the rooted cluster tree as shown in Figure 6.3. 

 

Figure 6.3: Rooted Cluster Tree for I3 

From Figure 6.3, one local elimination sequence for nodes in 3I  is obtained as follows: 

},,,,,,,{)( 33133333 baaddceftES = . 

                                                 
4 Here, value node is neglected since it is always the last one to be removed. 

c3, d3, a3, b 

d3, d31, a3, b 

a, b 

d3, e3, d31 f3, b, d31 
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6.4.4 Solve I4 

The local influence diagram 4I  in the MSID in Figure 6.1 seems to have a complex 

structure. Here, the indirect evaluation method is utilized. After the transformation, the 

rooted cluster tree associated with 4I  is shown in Figure 6.4. 

From Figure 6.4, one local elimination sequence for nodes in 4I  is obtained as follows: 

},,,,,,,,,{)( 44414442444 badedfdgchtES = . 

 

Figure 6.4: Rooted Cluster Tree for I4 

6.4.5 Solve I5 

The local influence diagram 5I  in the MSID in Figure 6.1 is not a regular one and has 

a dense structure. It is hoped that using the evalID  algorithm could relieve the 

computation task. Here, the evaluation network for 5I  is developed as shown in Figure 

6.5. 

e4, b4, h 

e4, d41, a4, b4 

d, d41 

g4, f4, e4, a4,  
d42, d41

g4, f4, c4,  
d42, d41 
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Figure 6.5: Evaluation Network for I5 

From the evaluation network in Figure 6.5, a partial order to remove nodes in 5I  could 

be obtained as follows: }),,,,,,,,(,,),,{()( 5555515255355 adcihdbgfdjdetES = 5. The absolute 

elimination sequence depends on what kind of inference engine is utilized to evaluate 

tail nodes which compose the evaluation network. However, 

}),,,,,,,,(,,),,{()( 5555515255355 adcihdbgfdjdetES =  provides a base elimination order to 

all nodes in 5I . 

6.4.6 Solve the MSID 

The challenging work in solving an MSID is to obtain a valid global elimination 

sequence for d-sepnodes because a unique local elimination order may not exist. A 

valid elimination sequence allows a cooperative evaluation of local influence diagrams 

in an MSID. In the cooperative evaluation process, the d-sepnodes are removed 

simultaneously so that the consistency is ensured in the solving of the MSID. 

Based on the analysis in Sections 6.4.1 – 6.4.5, the elimination sequence for each local 

influence diagram in the MSID in Figure 6.1 has been built. It is repeated in Table 6.7. 

                                                 
5 Elimination order of elements in the bracket could be exchanged. 

v52 d53, e5

a 

f, g, b, 
d52, h5,  j5, 

f, g, b, d51, 
h5, c5, i5, d5 

v51 
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Table 6.7: Elimination Sequence in Local Influence Diagrams 

jI  Elimination Sequence  

1I  },,,,,,,,,{)( 1111121311 adbdchfddgtES =  

2I  },,,,,,,,,{)( 22122222322 ddcdeagdfbtES =  

3I  },,,,,,,{)( 33133333 baaddceftES =  

4I  },,,,,,,,,{)( 44414442444 badedfdgchtES =  

5I  }),,,,,,,,(,,),,{()( 55555152553535 adcihdbgfdjdetES =  

 

Since an elimination sequence for d-sepnodes coordinates the evaluating of local 

influence diagrams in an MSID, a conflicting elimination order is not allowed. Hence, 

only the elimination order for d-sepnodes )(tESDSi  is shown in Table 6.8. 

Table 6.8: Elimination Sequence for D-sepnodes 

jI  Elimination Sequence for D-sepnodes 

1I  },,,{)(1 adhftESDS =  

2I  },,{)(2 agbtESDS =  

3I  },{)(3 batESDS =  

4I  },{)(4 dhtESDS =  

5I  }),,,{()(5 abgftESDS =  

 

From the elimination sequence for d-sepnodes shown in Table 6.8, it seems that only 

the elimination order for d-sepnodes },{ ab  conflicts among local influence diagrams 2I , 

3I  and 5I . Node b  is needed to be removed after node a  in 3I  while it has to be 

removed before node a  in both 2I  and 5I . However, from the rooted cluster tree in 

Figure 6.3, the elimination order for nodes },{ ab  could be adjusted as },{)(3 abtESDS = . 

Thus no conflicting elimination sequence for d-sepnodes exists in all local influence 
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diagrams. Consequently a global elimination sequence for d-sepnodes GES  is elicited 

as follows: },,,,,{ agbdhfGES = . Following this elimination sequence, the d-sepnodes 

could be removed simultaneously from local influence diagrams in the MSID. Hence 

local influence diagrams are evaluated cooperatively. On the other hand, other (private) 

nodes in local influence diagrams could be removed independently while they follow 

the local elimination sequence )(tES j  in each local influence diagram. In summary, the 

MSID in Figure 6.1 is solved in a distributed way and the evaluation process is 

coordinated through the global elimination sequence of d-sepnodes.  

6.5 Summary 

This chapter studies the SARS case in the medical domain. All of my proposed 

methodologies on MSID and HRG are revisited and used to solve the meaningful and 

complex decision problem. This work fully demonstrates that the proposed 

methodologies are significant and applicable in solving practical problems. 
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7 Block Learning Bayesian Network Structures from Data 

In the preceding chapters, I mainly discuss the methodologies for solving multiagent 

decision making problems, which consist of model representation, model verification 

and model evaluation. This work can be utilized to solve a large and distributed 

decision problem involving multiple agents. However, building a decision model, such 

as the Multiply Sectioned Influence Diagrams (MSID), depends largely on domain 

knowledge which is elicited from the decision scenario. Hence this elicitation process 

consists of some subjective factors and is always called model construction. On 

another aspect, in the research field of normative decision systems, Bayesian networks 

are basic elements of decision models. For example, influence diagrams augment 

Bayesian networks by decision nodes and value nodes. Thus extensive research work 

on Bayesian networks appears in a large amount of literature, which includes Bayesian 

model learning, Bayesian propagation and so on. In this chapter, I will emphasize on 

the topic of Bayesian network learning, which is to construct Bayesian networks from 

data. 

7.1 The Challenge 

Bayesian network has been an important concept in normative decision systems. It 

compactly represents probabilistic knowledge and explicitly spells out dependencies 

among involved variables. Moreover, Bayesian reasoning provides a probabilistic 

approach to inference, prediction and planning. Hence, many domains such as medical 
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informatics domain (Friedman et al. 2002; Galan et al. 2002) and military domain 

(Sanguk & Gmytrasiewicz 1998), have adopted Bayesian networks as knowledge 

representation and inference engine in decision systems. Despite these successful 

applications, the construction of Bayesian networks is a piece of arduous and tedious 

work many system engineers have to face. One technique that may resolve this 

difficulty is to learn Bayesian networks from data obtained in the relevant domain. It 

includes parameter learning and structure learning in Bayesian networks (Heckerman 

et al. 1994). However, it is more difficult to learn structures than it is to learn 

parameters. My current work focuses on structure learning. 

Various techniques for learning Bayesian network structures from data have appeared 

in the past decades such as the PC algorithm (Spirtes et al. 1993, 2000), Sparse 

Candidate algorithms (SC) (Friedman et al. 1999), Three Phases Dependency Analysis 

(TPDA) algorithm (Cheng et al. 2002) and Max-min Bayesian networks (MMBN) 

(Tsamardinos et al. 2003). These approaches have largely relieved the laborious task 

for building a precise Bayesian structure.  However, recently some practical issues 

disable the applications of the existing learning techniques. For example, in gene 

expression data in the biomedical informatics domain, enormous variables are involved 

and available data is insufficient. Hence, the state-of-art learning algorithms will run 

into computational and statistical problems concerning the following two aspects. 

Since learning Bayesian network structure is a time-consuming process, the learning 

process deteriorates with a growing network size, such as memory running out in the 

computational process. Also, since some learning approaches like constraint based 

learning algorithms (Neapolitan 2004), depend on statistical tests to detect 

independencies, insufficient data weakens the reliability of the tests, leading to an 
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inaccurate learned structure. As such, the task of learning large Bayesian network 

structures from small data sets provides a motivation for this research. 

7.2 Block Learning Algorithm 

As investigated in Chapter 2, the existing learning algorithms have partly addressed the 

challenging work of learning large Bayesian network structures from a small data set. 

However, different research views on this learning problem could also motivate some 

simple and applicable methods to solve this challenging work.  

The constraint based approach learns a network structure by using some statistical 

hypothesis tests in order to detect dependencies or (conditional) independencies among 

variables or attributes in a data set. The approach is more sensitive to failures in 

conditional independence (CI) tests when there is insufficient data. At the same time, a 

huge dimension of variables in a data set leads to an increasing order in the statistical 

tests and makes the learning task intractable. A naïve idea to cope with this problem is 

to decompose the learning task into several stages. Thus, a block learning algorithm is 

proposed to illustrate this idea. The novel algorithm includes several procedures as 

follows: Generating the Maximum Spanning Tree (GMST), Identifying the Blocks and 

Markov Blankets of Overlaps (IBMB), Learning the Overlaps (LO), Learning the 

Blocks (LB), and Combining the Blocks (CB). These procedures are executed 

sequentially. In the block learning algorithm, a maximum spanning tree is built in the 

first procedure. Based on the maximum spanning tree, several blocks and their overlap 

nodes are found in the second procedure. Then, V-structures are identified in the 

learned structures of the overlaps in the third procedure. After that, each block is 
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learned with the constraint of V-structures related to the block nodes. Finally, the 

learned blocks are combined together into the whole Bayesian networks.  

7.2.1 Generate Maximum Spanning Tree 

Bayesian network structures exhibit the dependency among variables in a data set. A 

strong dependency among variables always gathers them into one local density graph. 

In other words, these tightly linked variables are potential variables that will be 

enclosed in the same block. Hence, an initial graph has to be generated so as to identify 

such blocks. The graph must be able to characterize a strong dependency for every pair 

of variables. One of the mature methods to build this graph has been developed in 

Chow and Liu’s work (Chow & Liu 1968). The algorithm uses the mutual information 

to construct a tree called the Maximum Spanning Tree (MST). Amongst all the tree-

shaped models, the algorithm finds the model that maximizes the likelihood of the 

data. 

Consider a finite set },,{ 1 nxx L=χ of discrete random variables and a training data set 

},,{ 1 NxxD L= , a Bayesian network B  that matches D  best is to be found.  The 

procedure to Generate MST (GMST) is formulated in Figure 7.1.  

 
Figure 7.1: GMST Procedure 

In the procedure GMST, an MST is built after computing the mutual information 

Procedure GMST 

Input: A data set },,{ 1 NxxD L=  
Output: MST M  

1. Load the data set D  

2. Build M  based on the mutual information 
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between every pair of variables. For n  variables, the tree is developed with )( 2nΟ  

steps using weight comparisons so that expensive CI tests are avoided.  

7.2.2 Identify Blocks and Markov Blankets of Overlaps 

The MST developed in the procedure GMST is just the graph in which blocks can be 

identified. A block is composed of variables that have a strong dependency with each other. 

The variable with a large cardinality of connectivity, called block center iS , will absorb its 

neighbors and leaf nodes connected to these neighbors to compose a block. The procedure 

of Identifying Blocks (IB) is formulated in Figure 7.2. 

 
Figure 7.2: Procedure of Identifying Blocks 

Procedure IB 

Input: A graph M  

Output: Blocks iB  

1. Initialize an individual block iB  ( ni L1= ) as one block center iS  

with its family )( iSFam  in M  

2. Merge blocks iB  and jB ( ji ≠ ) that have the same cardinality of 

connectivity and share the number of nodes larger than 1ComNum  

3. Search leaf nodes connected to those nodes in )( iSFam  and enclose 

them into block iB  

4. Merge block iB  and jB ( ji ≠ ) that share the number of nodes larger 

than 2ComNum  

5. Finalize Blocks iB  ( ri L1= ) 
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In the initialization phase, there are n  blocks each of which centers around every node in 

M . Each block includes both a center node iS  and its family )( iSFam  which is adjacent to 

the center node. The number of the shared nodes between a pair of blocks, called 

1ComNum  or 2ComNum , determines the criteria to merge these rough blocks. In general, 

their values are decided according to the connectivity of the M  structure. Usually, the 

value of 2ComNum  is larger than the value of  1ComNum  because the blocks formulated in 

the later stage always have more nodes than the initial blocks. After the merging and 

absorbing operations, the blocks composed of the majority of variables become the final 

blocks that divide M  into r  pieces. Every final block also centers around one variable 

with a large cardinality of connectivity. It can be seen that no CI test is involved in this 

procedure. Assuming that k  is the maximum cardinality of node adjacency in M , the 

procedure requires at most )(nkΟ , )( 2nΟ , )( 2nΟ , )(nkΟ , and )( 2nΟ  basic operations in 

Step 1- 5, respectively. In the worst case ( nk = ), the complexity of each step is at most 

)( 2nΟ . 

Blocks are overlapped with each other to compose the whole network. Generally, the 

number of nodes in the overlaps is much smaller than that in the blocks. Hence, learning 

overlap structures is more operational and reliable. Moreover, I am concerned with the 

dependencies between the overlaps and the blocks, because the overlap structure will be 

utilized to combine the learned blocks in the last phase. The overlap ijO  includes common 

nodes between block iB  and block jB .  A novel idea is to learn the Markov blanket of 

those nodes in the overlaps. From the learned Markov blanket, some dependencies 

between the overlaps and the blocks could be detected. The procedure of Identifying the 

Markov Blanket of nodes in the overlaps (IMB) is formulated in Figure 7.3.  
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Figure 7.3: Procedure of Identifying Overlaps and Markov Blankets 

The nodes found in Step 2 in each set of the procedure IMB do not exactly equal those 

nodes in a real Markov blanket of nodes in the overlaps. By comparison, the resulting 

ijMB  includes more nodes some of which do not belong to the real Markov blanket of the 

overlap nodes. Assuming that t  is the maximum number of nodes in an overlap, Steps 1 

and 2 require at most )( 2rΟ  and )( 22ktrΟ  basic operations respectively. 

To illustrate the procedures IB and IMB, it is assumed that there is one MST in Figure 7.4 

and the two parameters 1ComNum  or 2ComNum  are assigned with the values of 1 and 2 

respectively. In the initialization phase of IB, there exist 14 blocks ( 14,,1, L=iBi ) 

corresponding to each individual node },,,,,{ nmlba L  as block center iS . For example, the 

block 1B  centers on the node aS =1  whose family consists of the nodes },,,,{ ebhga  and 

the connectivity cardinality of this block is 4. Among these blocks, the two blocks 1B  and 

3B  centering on nodes a  and c  have the largest connectivity cardinality of 4; however, 

they do not share any node. The two blocks 2B  and 4B  centering on nodes b  and d  

respectively have the connectivity cardinality of 2 and they share two nodes },{ db . Hence, 

in the second step in the procedure IB, the two blocks 2B  and 4B  could be merged into the 

block },,,{2 dcbaB =  centering on the node b . In this step, only these two blocks 2B  and 

Procedure IMB 

Input: Blocks iB  ( ri L1= ) 
Output: Overlaps ijO , Markov Blankets of Overlaps ijMB  

1. Identify ijO  between blocks iB  and jB ( ji ≠ ) 

2. Search all nodes within two lengths away from nodes 

in ijO  and pull them into ijMB  
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4B  are merged. In the third step, the block 1B  absorbs the leaf nodes f  and i  since they 

are connected to nodes e  and h  respectively in its family. The block 2B  also absorbs the 

nodes },{ kg . Similarly, the block 3B  absorbs the nodes },{ ml . Then, in the fourth step, 

many blocks are merged into a larger one. For example, the blocks 96 ~ BB  are merged 

into the block 1B  and the blocks 1411 ~ BB  are merged into the block 3B . Hence, after the 

fourth step, there exist three blocks: 1B  is with family nodes },,,,,,{ ifebhga  centering on 

the node aS =1 , 2B  is with family nodes },,,,,{ kgdcab  centering on the node bS =2  and 

3B  is with family nodes },,,,,,{ nmljkdc  centering on the node cS =3 . Finally, the blocks 

2B  and 1B  are merged into the block 1B  since they share 3 nodes },,{ gab . Hence, the 

output of the procedure IB has two blocks: 1B  is with family nodes },,,,,,,,,{ cdifebhkga  

centering on the node aS =1  and  3B  is with family nodes },,,,,,{ lmjnkdc  centering on the 

node cS =3 .  

 

Figure 7.4: An MST 

In the procedure IMB, the two blocks 1B  and 3B  are the input. In the first step, the overlap 

},,{13 kdcO =  is identified. Finally, a rough Markov blanket of these overlap nodes is 

searched and denoted as },,,,,,,,{13 lnkmjcdbaMB = . It can be seen that the Markov blanket 
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even has a larger capacity than the block 3B . Hence, some improvement could be made in 

this step. However, the approach adopted in the second step is a simple one to identify a 

rough Markov blanket of overlap nodes.  

7.2.3 Learn Overlaps 

Overlaps connect adjacent blocks to compose a whole network and the overlap 

structures can be obtained through learning their Markov blankets. Any of the existing 

learning algorithms, called ALG1, can be utilized to identify the structure of the 

Markov blanket. For example, the PC algorithm, the GS algorithm (Margatitis 203) 

and the IAMB algorithm (Tsamardinos 2003) are able to learn ijMB . The resulting 

Markov blanket provides a foundation to identify some V-structures associated with 

overlap nodes. The procedure of Learning Overlaps (LO) is formulated in Figure 7.5. 

 
Figure 7.5: Procedure of Learning Overlaps 

The robust V-structures relevant to ijO  avoid error spread in learning blocks when VS( ijO ) 

is set as constraints in the learning process. It can be seen that a large amount of 

computations happen in the process of learning ijMB . Assuming that the PC algorithm is 

used in this procedure, Step 1 requires ))(( 22 ktkrΟ  CI tests while Step 2 requires at most 

Procedure LO 

Input: A data set },,{ 1 NxxD L=  and ijMB  
Output: V-structure of ijO : VS( ijO ) 

1. Load the data set D  and learn ijMB  using ALG1 

2. Identify the V-structure of ijO  from the learned ijMB   

3. Produce VS( ijO ) 
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)( 2tkrΟ  basic operations. If the PC algorithm is terminated without orienting edges in the 

final phase (Spirtes et al. 1993), Step 2 can be avoided. 

7.2.4 Learn Blocks and Combine Blocks 

Learning Bayesian network structures with some constraints, like a partial order for 

some variables, speeds up the learning process because some CI tests may be avoided. 

In the procedure LO, VS( ijO ) is obtained and is set as the constraints when learning 

the corresponding blocks. Here the size of the blocks iB , denoted by im , may be 

expanded to include the variables in VS( ijO ) from all of its adjacent blocks jB . 

Clearly, any of the existing learning algorithms, denoted as ALG2, can be used to learn 

blocks in the procedure of Learning Blocks (LB). Subsequently, the whole network 

structure is recovered after combining the final learned block in the procedure of 

Combining Blocks (CB).  These two procedures are formulated in Figure 7.6 and 

Figure 7.7 respectively.   

 
Figure 7.6: Procedure of Learning Blocks 

 

Procedure LB 

Input: A data set },,{ 1 NxxD L= , iB  and VS( ijO ) 
Output: Learned iB ( ri L1= ) 

1. Load the data set D  and learn iB  using the ALG2 with constraints VS( ijO ) 

2. Produce the learned iB ( ri L1= ) 
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Figure 7.7: Procedure of Combining Blocks 

The procedure CB is relevant to the research work on the combination of Bayesian 

networks. This issue on Bayesian network structure combination has been investigated 

in much research work (Mckelvey & McLennan 1996; Joseph et al. 1998). Currently, 

Jiang’s work (Jiang et al. 2005) proposes some heuristic methods to combine several 

Bayesian networks simultaneously. Most of these existing methods try to output a 

valid Bayesian network structure which should be a directed acyclic graph. However, 

these methods are not guaranteed to yield an optimal solution as it is a NP-hard 

problem (Mckelvey & McLennan 1996).  

One of the most important tasks in the procedure CB is to build the final B  which 

disallows directed cycles. Hence, the procedure CB is concerned with a valid method 

for combining the learned blocks. The basic idea in my approach is to make overlap 

nodes follow one uniform partial order before the combination operation is carried out. 

A directed acyclic graph does not allow opposite orders in a set of nodes, even in a pair 

of nodes. Thus, in this way, a valid Bayesian network could be output after the 

combination. 

Procedure CB 

Input: Learned iB  and VS( ijO ) ( rji L1, =  and ji ≠ ) 
Output: B  

1. Identify iλ , jλ for the nodes in ijO between blocks iB and jB  

2. For the two blocks iB  and jB ( ji ≠ ): if ji λλ = , combine iB  and 

jB  ; otherwise if ji mm < , combine iB  and jB following iλ  

3. Produce B  
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Assume that the blocks iB  and jB ( ji ≠ ) linked by ijO  are ready to be combined into a 

new large block ijB ,  and a partial order for nodes in ijO  is identified in the block iB  

and the block jB  individually, denoted by iλ  and jλ .  The following proposition can 

be proved. 

Proposition 7.1: The fact that iλ  equals to jλ  ensures no directed cycle in ijB  

composed of iB  and jB ( ji ≠ ). 

Proof. A directed cycle in ijB  must involve at least two nodes in ijO . Hence, there is 

no uniform order for those involved nodes in ijB . For example, a directed cycle 

contains two nodes 1x  and 2x  that should respect different orders: 21 xx →  in iλ  and   

12 xx →  in jλ , or vice versa. A uniform order for those involved nodes ensures no 

directed cycle in ijB .▐ 

In the case that the reversal orders are obtained in iλ  and jλ  for the variables in ijO , 

they have to be forced to follow one uniform order in the block iB  that has a smaller 

size im , assuming ji mm < . The reason lies in the consideration of statistical tests in a 

data set. For the same cases or instances, the fewer the variables, the more reliable the 

dependencies among nodes are tested. Figure 7.7 clearly shows this strategy. In fact, 

when overlap nodes ijO  in the block jB  are forced to follow the uniform order 

associated with overlap nodes ijO  in the block iB , the structure of the corresponding 

nodes in a directed path along overlap nodes ijO  has to be reconstructed to an 

equivalent one in the block jB . In this process, it involves the operation of arc reversal 

to get the equivalent structure of jB  concerning the uniform order of overlap nodes ijO . 
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This discussion is beyond the scope of this thesis. Details could be found in Jiang’s 

work (Jiang et al. 2005). However, in a series of experiments in Section 4, overlap 

nodes always have uniform partial orders in adjacent blocks. Hence the combination 

procedure is not hard in practice. 

The procedures LB and CB conclude the block learning algorithm. Assuming that the 

PC algorithm is adopted in LB and m  is the maximum number of nodes in a block, the 

procedure LB requires ))(( kmrΟ  CI tests while the procedure CB only requires at most 

)( 2tkmrΟ  basic operations. 

7.3 Experimental Results 

The aim of the following experiments is to demonstrate the ability of the block 

learning algorithm for learning a large Bayesian network structure from a small data 

set as well as its capability for encompassing other learning techniques. I evaluated the 

block learning algorithm on two networks as benchmarks: the ALARM network 

(Beinlich et al. 1989) and the Hailfinder network (Edwards 1998). Several versions of 

these two networks have appeared in the current literature; the version I adopted in this 

experiment can be accessed with the link: 

http://www.cs.huji.ac.il/labs/compbio/Repository/. The data set was generated from the 

script in http://www.cs.huji.ac.il/labs/compbio/Repository/networks.html. To utilize 

the huge resource of BNT in http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html, 

all procedures of the block learning algorithm were implemented with MATLAB, 

except for ALG1 in LO and ALG2 in LB. The implementation of ALG1 and ALG2 

can make use of the existing learning tools. All these experiments were conducted on a 

Pentium 2.6 GHZ PC with 512 MB of RAM running under Windows XP. 
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7.3.1 Experiments on the Hailfinder Network 

The Hailfinder network (Edwards 1998) is a normative system that forecasts severe 

summer hail in northeastern Colorado. It consists of 56 nodes and 66 arcs. The number 

of node states in the Hailfinder network is up to 11. For the large size of network 

structure, much research work has adopted it as a benchmark for algorithm evaluation. 

From the available resources in the literature, the tool of BNPC (Believe Networks 

Power Constructor (BNPC) implements the TPDA algorithm.), winner of 2001 KDD 

cup, shows quite good learned results on the Hailfinder network. However, it did not 

display any ability for addressing the learning problem when insufficient data exists. 

To show the ability of the block learning algorithm for learning a large Bayesian 

network structure from a small data set, I designed a series of experiments to compare 

the block learning algorithm with the TPDA algorithm implemented in BNPC. Five 

sample sizes were generated: 8K6 cases, 5K cases, 1K cases, 0.3K cases and 0.1K 

cases. The procedures GMST, IBMB and CB in the block learning algorithm were 

executed in MATLAB while the procedures LO and LB were run in BNPC with the 

default parameters, such as the threshold with 1 time of default value. The values 2 and 

3 are assigned to the parameters 1ComNum  and 2ComNum  respectively in order to 

identify blocks in the procedure IB. In the procedure LO, V-structures were identified 

from the Markov blanket of overlaps that was learned in BNPC. Finally, BNPC was 

also used to learn the blocks.  Additionally, to compare the block learning algorithm 

with the TPDA algorithm, I directly used BNPC to learn the whole Hailfinder network 

from the four samples. The settings in BNPC were all default.  

To illustrate the mechanism of the block learning algorithm, I traced all procedures 

                                                 
6 1K =1000 Cases 
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throughout one experiment based on 0.1K cases. For example, in the process of 

learning the Hailfinder network from this dataset, the MST was generated in Figure 

7.8. Compared with the node distribution in the original Hailfinder network, the MST 

produced in the procedure GMST was the appropriate graph which could be utilized to 

identify the blocks. Based on the MST in Figure 7.8, seven blocks ( 71, L=iBi ) were 

identified in the procedure IB. The block centers ( 71, L=iSi ) and the block variables 

were found in Table 7.1. 
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Figure 7.8: The MST for the Hailfinder Network 

 

1: N0_7muVerMo, 2: SubjVertMo, 3: QGVertMotion, 4: CombVerMo, 
5: AreaMeso_ALS,     6: SatContMoist, 7: RaoContMoist,   8: CombMoisture, 
9: AreaMoDryAir,   10: VISCloudCov, 11: IRCloudCover, 12: CombClouds, 
13: CldShadeOth,   14: AMInstabMt, 15: InsInMt, 16: WndHodograph, 
17: OutflowFrMt,     18: MorningBound, 19: Boundaries, 20: CldShadeConv, 
21: CompPlFcst,     22: CapChange, 23: LoLevMoistAd, 24: InsChange, 
25: MountainFcst,    26: Date, 27: Scenario, 28: ScenRelAMCIN, 
29: MorningCIN,     30: AMCINInScen, 31: CapInScen, 32: ScenRelAMIns, 
33: LIfr12ZDENSd, 34: AMDewptCalPl, 35: AMInsWliScen, 36: InsSclInScen, 
37: ScenRel3_4,      38: LatestCIN,   39: LLIW, 40: CurPropConv 
41: ScnRelPlFcst,   42: PlainsFcst, 43: N34StarFcst, 44: R5Fcst, 
45: Dewpoints,      46: LowLLapse, 47: MeanRH 48: MidLLapse, 
49: MvmtFeatures,   50: RHRatio, 51: SfcWndShfDis 52: SynForcng, 
53: TempDis,   54: WindAloft, 55: WindFieldMt, 56: WindFieldPln 
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Table 7.1: Blocks, Centers and Block Elements (Hailfinder Network on 0.1K Cases) 

Bi Si Block Elements  

B1 31 21 22 30     

B2 44 25 42 43     

B3 12 10 11 45     

B4 15 14 16 17 20 25 44  

B5 35 23 24 33 34 36 41  

B6 4 1 2 3 5 9 13  

B7 27 4 6 7 8 9 12 16 

  17 18 19 29 26 28 30 

  31 32 33 35 37 38 39 

  40 41 45 46 47 48 49 

  50 51 52 53 54 55 56 
            

 As shown in Table 7.1, these blocks included the exact nodes that had strong 

dependency so that their dependency structures would not be damaged when the 

network was learned locally. After the overlaps and the blocks were learned 

respectively in the procedures LO and LB, the final Hailfinder network was recovered 

when all the learned blocks were combined together in the procedure CB.  

Similar procedures in the block learning algorithm were executed in other experiments 

for learning the Hailfinder network from data set with 8K, 5K, 1K, and 0.3K cases 

respectively. At the same time, to evaluate the TPDA algorithm, BNPC is directly used 

to learn the whole network from the five data sets. Both the block learning algorithm 

and the TPDA algorithm are run in 10 different data sets with each size. The structures 

learned by these two algorithms in each round were compared with the original 

Hailfinder network. One set of comparison results for every data set is shown in Table 
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7.2.  

Table 7.2: Comparison 1 of BL and TPDA Algorithms 

Cases ALG NB EE ME 

8K TPDA N/A 10 18 

 BL 8 8 16 

5K TPDA N/A 8 16 

 BL 7 8 17 

1K TPDA N/A 33 25 

 BL 8 24 25 

0.3K TPDA N/A 31 30 

 BL 7 28 26 

0.1K TPDA N/A 33 34 

 BL 7 30 29 
 BL: Block Learning Algorithm; ALG: ALGorithm;  
 NB: Number of Blocks; EE: Extra Edges; ME: Missing Edges. 

In Table 7.2 results show that the block learning algorithm is able to discover more 

accurate structures than the TPDA algorithm. In the structure learned by the block 

learning algorithm, more correct edges are detected and more error edges are removed. 

For example, in Table 7.2, for the data set with 8K cases, 16 edges are lost and only 8 

extra edges exist in the structure learned by the block learning algorithm. However, 18 

edges are missed and 10 extra edges are wrongly identified in the structure learned by 

the TPDA algorithm. The advantages of the block learning algorithm are more 

noticeable when only a small data set is available. In Table 7.2, for the data set with 

0.1K cases, the performance of both learning algorithms deteriorates. However, the 

block learning algorithm still produces more precise structures than the TPDA 

algorithm. It can be seen that 29 correct edges are missed and 30 extra edges are 
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wrongly added in the structure learned by the block learning algorithm. On the other 

hand, 34 correct edges are lost and 33 extra edges are wrongly identified in the 

structure recovered by the TPDA algorithm. Hence, the block learning algorithm 

shows a good ability for learning a large Bayesian network structure from a small data 

set compared with the TPDA algorithm. (Here, I want to mention that the experimental 

results are based on the datasets that were produced in the experiment. The datasets 

may be quite different from those in other publications (Cheng et al. 2002). The two 

algorithms are compared when they were utilized to learn the same dataset generated 

in each round.) 

To do a further comparison, the Euclidean distance d  of the sensitivity and specificity 

from the perfect score 1 was used to judge the algorithm performance (Tsamardinos et 

al. 2003).  

22 )1()1( yspecificitysensitivitd −+−=  

where the sensitivity of the algorithm is the ratio of correctly identified edges 

(undirected arcs) over the total number of edges in the original network while the 

specificity is the ratio of edges correctly identified as not belonging in the graph over 

the true number of edges not present in the original network. Moreover, to evaluate the 

robustness of the block learning algorithm different data sets with the same size are 

explored 10 rounds in the experiment. In this comparison, the average µ  of sensitivity, 

specificity and distance, as well as their standard deviation δ , are reported as shown in 

Table 7.3. 
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Table 7.3: Comparison 2 of BL and TPDA Algorithms 

Sens.(%) Spec. (%) Dist. 

TPDA BL TPDA BL TPDA BL 
Cases 

µ  δ  µ  δ  µ  δ  µ  δ  µ  δ  µ  δ  

8K 72.24 1.61 75.16 1.28 99.32 0.08 99.42 0.06 0.26 0.02 0.24 0.01

5K 75.00 0.80 76.62 1.06 99.39 0.06 99.46 0.05 0.26 0.01 0.24 0.01

1K 63.64 1.81 63.64 1.33 97.76 0.10 98.37 0.10 0.36 0.02 0.36 0.05

0.3K 55.30 1.25 61.36 1.06 97.93 0.12 98.13 0.09 0.45 0.01 0.39 0.02

0.1K 49.24 1.64 56.06 1.24 97.80 0.05 97.96 0.05 0.51 0.02 0.44 0.01
Sens.: Sensitivity; Spec.: Specificity; Dist.: Distance 

In Table 7.3, the results show that the average sensitivities of the block learning 

algorithm are 75.16% and 76.62% for learning the Hailfinder network structures from 

the data set with 8K and 5K cases respectively. It decreases to 56.06% for the data set 

with 0.1K cases. In comparison, the sensitivity of the TPDA algorithm decreases 

significantly from 72.24% to 49.24% when the sample size shrinks from 8K cases to 

0.1K cases. As shown in Table 7.3, the average specificity of these two algorithms is 

close to 100% because there are a large number of potential edges in the Hailfinder 

network. Even in this case, the block learning algorithm still has a higher specificity 

than the TPDA algorithm.   

The criterion of the distance d  is a combination measure to evaluate the gap between 

the learned structure and the original network structure. In Table 7.3, it shows that the 

block learning algorithm does not have much larger average distance than the TPDA 

algorithm when both of them are utilized to learn the Hailfinder network from large 

data sets such as the 8K and 5K cases. The average distance of both learning 

algorithms is almost the same for the data set with 1K, 5K and 8K cases. However, for 
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the small data set with 0.1K cases, the average distance of the block learning algorithm 

is only 0.44 while the distance of the TPDA algorithm is 0.51. On the other hand, the 

standard deviation of the distance of the TPDA algorithm seems a little worse than that 

of the block learning algorithm when they are used in learning structures from small 

data sets. For example, it is only 0.01 for the block learning algorithm while it is 0.02 

for the TPDA learning algorithm in the 0.1K cases. Hence, all the experimental results 

could demonstrate that the block learning algorithm is able to learn a large Bayesian 

network structure from a small data set. Moreover, the block learning algorithm could 

output more reliable results. 

7.3.2 Experiments on the ALARM Network 

The ALARM network (Beinlich et al. 1989) is a popular Bayesian network in the 

medical domain. It consists of 37 nodes and 46 arcs. The number of node states is up to 

4. The ALARM network has been widely utilized as a benchmark to evaluate state-of-

the-art learning algorithms in the literature.  

To demonstrate the capability of the block learning algorithm for encompassing other 

learning techniques, the PC algorithm was adopted in the learning procedures of the 

block learning algorithm. In the procedures LO and LB, learning algorithms ALG1 and 

ALG2 were set as the PC algorithm to learn overlaps and blocks. Hence, in the 

experiment on the ALARM network, the procedures GMST, IBMB and CB in the 

block learning algorithm were executed in MATLAB while the procedures LO and LB 

were run in the tool of HUGIN (http://www.hugin.com/) that has successfully 

implemented the PC algorithm.  The PC algorithm was also used to learn the ALARM 

network directly so that I could evaluate their performance according to the learned 

structures.  
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To compare the block learning algorithm with the PC algorithm, I designed the 

experiment to show the learned structure on the data set with different sizes.  The data 

sets with 0.1K cases, 0.3K cases, 1K cases, 5K cases, and 8K cases were generated 

respectively for the ALARM network. The settings in HUGIN were all default. Each 

learning algorithm is run 10 times individually on different data sets with the same 

size. One set of the learned results is chosen as shown in Table 7.4. 

Table 7.4: Comparison 1 of BL and PC Algorithms 

Cases ALG NB EA RA MA 

8K PC N/A 0 1 4 

 BL 6 0 1 4 

5K PC N/A 0 1 4 

 BL 6 0 1 4 

1K PC N/A 2 2 6 

 BL 8 1 2 4 

0.3K PC N/A 2 4 14 

 BL 6 1 2 10 

0.1K PC N/A 4 6 20 

 BL 6 3 4 14 
    EA: Extra Arcs; RA: Reversed Arcs; MA: Missing Arcs. 

From Table 7.4, it is noticed that there is no difference between the structures learned 

by the block learning algorithm and the PC algorithm for the data sets with 8K and 5K 

cases. Both algorithms miss 4 correct arcs and wrongly orient 1 arc in the learned 

structure in comparison with the original ALARM network. This is due to the fact that 

the learned structure is almost near the margin of the original ALARM network. It is 

difficult for both algorithms to break through the learning bottleneck. In this case, the 

block learning algorithm has the only merit that the computation time decreases 
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sharply (I will discuss this in the next section). On the other hand, for the small data set 

with 0.1K cases, the block learning algorithm retains its advantages on more precise 

structures that were learned. For instance, the block learning algorithm only misses 14 

correct arcs and wrongly adds 3 arcs. However, the PC algorithm loses 20 correct arcs 

and adds four more arcs. Moreover, 6 arcs are reversed in the PC algorithm while only 

4 arcs are misdirected in the block learning algorithm.  

To further investigate the performance of both algorithms, I provide the analysis on the 

average µ  of sensitivity, specificity and distance, and their corresponding standard 

deviation δ . The results are shown in Table 7.5. 

Table 7.5: Comparison 2 of BL and PC Algorithms 

Sens.(%) Spec. (%) Dist. 

PC BL PC BL PC BL 
Cases 

µ  δ  µ  δ  µ  δ  µ  δ  µ  δ  µ  δ  

8K 91.30 0.92 91.30 0.92 100.00 0.08 100.00 0.08 0.09 0.01 0.09 0.01

5K 86.30 1.45 91.30 1.45 100.00 0.08 100.00 0.07 0.09 0.01 0.09 0.01

1K 88.96 1.12 91.30 1.12 99.68 0.10 99.84 0.11 0.13 0.01 0.09 0.01

0.3K 67.39 1.60 78.26 1.47 99.68 0.10 99.84 0.08 0.33 0.02 0.22 0.01

0.1K 56.52 2.00 67.39 1.47 99.19 0.13 99.52 0.09 0.43 0.02 0.32 0.01
 

Table 7.5 shows that the average sensitivity of the block learning algorithm remains 

the same (91.30%) for different data sets with 8K, 5K, and 1K cases. However, the 

average sensitivity of the PC algorithm decreases sharply from 91.30% down to 

88.96% when the sample size shrinks. When the sample size shrinks to 0.1K the 

average sensitivity of the PC algorithm is only 56.52% while the average sensitivity of 

the block learning algorithm still catches the value 67.39%. On the other hand, the 
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average specificity of both algorithms is close to 100.00% despite different sample 

sizes. This is because enormous potential edges exist in the ALARM network.  

On another aspect, the average distance of the PC algorithm increases from 0.09 to 

0.43 intuitively when the sample size decreases from 8K to 0.1K. However, the 

average distance of the block learning algorithm only rises from 0.09 to 0.32 in spite of 

the shrinking cases. Thus, it shows that the performance of the PC algorithm 

deteriorates with decreasing sample size while the block learning algorithm still retains 

a good result. Also, it is noticed that the block learning algorithm has more reliable 

results when learning networks from small datasets. For example, the standard 

deviation of the block learning algorithm is 0.01 for both sample sizes with 0.3K cases 

and 0.1K cases while there is a larger value 0.02 for the PC algorithm when it learns 

the structure from these two different small sample sizes. Thus the block learning 

algorithm has more reliable learned results. 

Hence, the experiment on the ALARM network repeats in showing the ability of the 

block learning algorithm for learning a large network from a small data set. At the 

same time, it also verifies that the block learning algorithm is able to encompass other 

learning techniques so that it is easy to be configured.  

7.4 Theoretical Discussion  

The experimental results demonstrate two advantages of the block learning algorithm: 

1) the ability of learning a large Bayesian network structure from a small data set; 2) 

the capability of encompassing other learning techniques. In fact, this phenomenon can 

be analyzed theoretically. 
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Firstly, the intractable learning task is decomposed in an effective way so that it is easy 

to handle the structure learning problem. Instead of learning the whole network, the 

block learning algorithm learns individual blocks that have a much smaller size. It is 

known that the typical learning algorithm, such as the PC algorithm, learns Bayesian 

network structures with the complexity of )( knO  while the block learning algorithm 

only requires ))(( kmrO  where rmn ≈ . It seems that these two learning algorithms have 

the same algorithm complexity because of )())(( 1−= kkk rnOmrO . However, the divide 

and conquer strategy allows the block learning algorithm to be executed in an 

economical time. Figure 7.9 shows this phenomenon intuitively. Here, I assume that 

both k  and r  equal to 6 although k  may be larger and r  increases with the expanding 

size of the network in practice. In Figure 7.9, the number of variables in the Bayesian 

network indicates the size of the network structure. Figure 7.9 clearly shows that the 

complexity of the PC algorithm rises abruptly with the growing size of a network 

structure. However, there is little change in the complexity of the block learning 

algorithm when the size of a network structure increases. Hence, the block learning 

algorithm is scalable to learn a sizable Bayesian network structure. 
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Figure 7.9: Complexity Comparison of BL and PC Algorithms 
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Secondly, the localization strategy allows each variable to be estimated on a relatively 

large sample size so that the block learning algorithm is able to provide good results 

when they are used to address the learning problem with a small data set. In a large 

dimension domain with insufficient data, the confounding information always 

disallows the removal of spurious correlations among variables. Since the block 

learning algorithm learns blocks which always include a small number of variables, it 

will easily discover the dependency among variables. Thus the learned results are more 

reliable. 

Thirdly, the localization strategy also allows learning blocks independently. In the 

learning procedures of the block learning algorithm, various learning techniques can be 

utilized to configure ALG1 in LO and ALG2 in LB. Furthermore, the block learning 

algorithm can adopt suitable learning algorithms to learn the corresponding overlaps or 

blocks. Hence, the block learning algorithm is able to encompass other learning 

techniques without damaging the learning quality. 

Finally, the block learning algorithm overcomes the main deficiency in the constraint 

based approach. In the constraint based approach, a small error on CI tests will 

subsequently exert a bad influence on the learning process globally, which causes a 

poor structure. In comparison with other constraint based approaches, the block 

learning algorithm confines possible errors in the separate blocks so as to avoid the 

spread of structure errors in the whole network. Furthermore, V-structures, which are 

the most reliable structures that can be discovered, are kept and set as constraints for 

learning blocks in the block learning algorithm. Accordingly, the block learning 

algorithm prohibits the spread of structure errors while it forwards the benefit of 

accurate structures in the learning process. These effective strategies ensure the good 

performance of the block learning algorithm. 



Chapter 7: Block Learning Bayesian Network Structures from Data 

179 

7.5 Further Discussion 

Current algorithms for learning Bayesian network structures involve enormous 

paradigm nomenclatures and implementation considerations in the literature. A novice 

is always confused by the core ideas behind these algorithms. In fact, some of the ideas 

are translations of each other; some are extensions while others are combinations of the 

existing ideas. Hence, a unifying learning framework will provide a uniform view on 

various learning techniques and will facilitate the wide applications of learning tools.  

The block learning algorithm enriches various techniques for learning Bayesian 

network structure. With outstanding features, it not only addresses the challenging 

work of learning a large network structure from a small data set, but also provides a 

foundation to generate a unifying learning framework. In this section, I will investigate 

the issue of building a unifying learning framework on the basis of the block learning 

algorithm.  

Firstly, the block learning algorithm has a natural learning granularity. In the past 

decades, various learning algorithms composed of basic learning approaches and 

advanced learning approaches have appeared to cope with a variety of learning 

problems. Although the context in which these learning techniques exist is quite 

different, the proposed learning algorithms have unconsciously been following a 

principal idea for decreasing the learning dimensionality. In the last decade, the basic 

learning methods, such as the IC algorithm, the SGS algorithm, and the PC algorithm, 

have taken a coarsely granular view on the learning problem.  They directly learn the 

whole network without taking any optimization strategy so that they are always 

disabled with a large dimension of network structure. Later, the advanced learning 

methods, such as the SC algorithm, the GS algorithm, and the MMPC algorithm 
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(Brown et al. 2004), have adopted a finely granular view on the learning problem. 

They emphasize a local structure like a Markov blanket of variables, and learn the 

whole network stage by stage. They successfully avoid the computation problem. 

However, the property of local structure inhibits the general application of these 

advanced learning approaches. Hence, these two kinds of learning approaches, namely 

basic and advanced learning methods, stand in the two ends of learning granularity.  

Clearly, the block learning algorithm falls in the middle concerning the learning 

granularity. It does not painstakingly seek the learning size to decrease the learning 

complexity; however, it utilizes the variable dependency to decide a suitable learning 

size naturally. A “block” could be defined as one “whole network” in terms of basic 

learning methods while it could be identified as one “Markov blanket” in terms of 

advanced learning methods.  

Secondly, the block learning algorithm is equipped with an adaptive learning engine. A 

reservoir of structure learning algorithms exists in the available literature. The new 

learning approaches appear continuously while the old ones are never obsolete. This 

phenomenon arises since the existing learning techniques have their own ability or 

advantages for dealing with a certain type of learning problems. Moreover, some 

hybrid learning algorithms (Dash & Druzdzel 1999) are designed in order to absorb the 

advantages of the available learning techniques. Consequently, the accumulated 

learning algorithms with various paradigms are always confused.  

As the block learning algorithm has a capability of encompassing other learning 

methods, it is easy to be configured with preferred learning techniques in the 

implementation. The parameters ALG1 and ALG2 allow desired learning techniques to 

be embedded in the block learning algorithm. For instance, the block learning 
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algorithm became “the PC algorithm” in the second experiment on the ALARM 

network and “the TPDA algorithm” in the first experiment on the Hailfinder network. 

Hence, the block learning algorithm could be customized with any learning technique. 

It provides a uniform view on various learning approaches. 

Finally, the block learning algorithm aids a distributed design. For a large amount of 

computation involved in the learning process, a good algorithm expects to exploit the 

power of computing technologies for the purpose of constructing a network in 

reasonable time. The parallelized or distributed learning algorithms (Chu & Xiang 

1997; Lam & Segre 2002) have saved a lot of computation time to learn a proper 

network. Adopting the divide-and-conquer strategy, the block learning algorithm 

supports a distributed design. For instance, the procedures LO and LB in which a 

majority of computation time is involved could be implemented and run in separate 

computing nodes in a distributed computing environment.  Hence, the block learning 

algorithm is also a distributed framework. Furthermore, the block learning algorithm is 

prone to be run in a grid.   

In conclusion, the block learning algorithm is not just a type of learning algorithm but 

a kind of learning strategy. It provides a unifying framework for learning Bayesian 

network structure.  The unifying framework is built in Figure 7.10. 

In Figure 7.10, the unifying framework is developed on the basis of the block learning 

algorithm. Step 2 is to build a rough dependency graph for identifying blocks. It is the 

procedure GMST. In fact, many approaches on detecting dependency can be used to 

generate this kind of graph. In addition, Step 2 can be avoided if the original network 

becomes the block. Steps 3-5 provide the power to unify all of the current learning 

algorithms or learning strategies. Step 3 decides the learning dimensionality, like the 
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procedure IBMB. Step 4 configures the learning engine with preferred learning 

techniques. Hence, the unifying framework can be customized into a hybrid learning 

framework. Step 5 is concerned with the implementation of the learning framework. It 

expects to be equipped with advanced computing technology, such as distributed 

computing and grid computing (Foster et al. 2002). Steps 6-7 are similar to the 

procedures LO, LB and CB. Hence, the unifying learning framework evolves from the 

block learning algorithm and may become a general architecture for learning Bayesian 

network structures.  

 
Figure 7.10: A Unifying Learning Framework 

7.6 Summary 

This chapter describes the block learning algorithm. Adopting the divide-and-conquer 

strategy, the block learning algorithm is proposed to address the challenging work - 

A Unifying Learning Framework 

Input: Data set D  
Output: Bayesian Network Structure B  

1. Load the data set D  

2. Generate an MST 

3. Determine the block (block, network, Markov blanket···) 

4. Configure learning engine (all available learning techniques) 

5. Design learning environment (serial, distributed···) 

6. Learn the overlaps and blocks 

7. Combine the learned blocks 

8. Recover the whole network B  
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learning Bayesian network structures from small data sets. After generating a rough 

dependency graph called MST, the block learning algorithm divides the whole network 

into several blocks that may have some overlaps. Then, the block learning algorithm learns 

blocks separately with the constraints from the learned overlaps. Finally, the whole 

network structure is recovered from the combination of the learned blocks.  

A series of experimental results on the Hailfinder network and the ALARM network 

demonstrate the learning ability of the block learning algorithm on a small data set. They 

also show the capability of the block learning algorithm for encompassing other learning 

techniques. Subsequently, a theoretical analysis further verifies the advantages of the block 

learning algorithm.  

With outstanding features, the block learning algorithm may provide a uniform view 

on the current learning algorithms. Its natural learning granularity, flexible 

configurations on learning engines and distributed implementation design facilitate the 

building of a unifying learning framework. Evolving from the block learning 

algorithm, the unifying framework generalizes the existing learning techniques. It also 

provides a concise and powerful template for a novice to categorize and study various 

learning approaches. 
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8 Conclusion and Future Work 

 
In this Chapter, a summary of the merits and the limitations of the work conducted is 

offered and areas for future research are suggested to conclude this dissertation. 

8.1 Conclusion 

In this study, I developed approaches for solving multiagent decision problems in an 

uncertain environment, as well as techniques for learning large Bayesian network 

structures from small data sets.  

Firstly, I developed a novel framework to represent multiagent decision problems. This 

framework comprises Multiply Sectioned Influence Diagrams (MSID) and Hyper 

Relevance Graph (HRG). An MSID is a probabilistic graphical decision model 

encoding agency features. It consists of a set of local influence diagrams that represent 

beliefs, capabilities and preferences of individual agents. The common portion of d-

sepset between adjacent local influence diagrams in an MSID indicates the public 

information shared by the corresponding agents. Except for the public information in 

the d-sepset, the agents’ privacy is protected in the local influence diagrams in an 

MSID. With the known information in the d-sepset, agents are able to make decisions 

using only their local information. Hence, an MSID not only describes the states of 

unpredictable environments, but also characterizes the properties of multiple agents.  



Chapter 8: Conclusion and Future Work 
 

186 

On the other hand, an HRG describes organizational relationships in a multiagent 

system. It categorizes the agents’ organizational relationships into two types: control 

and communication. Within this categorization, an HRG quantifies the information 

support for decision making of adjacent agents. In an HRG, the required information 

for the agents’ decisions in the control relationship is distinguished from the 

supporting information in the communication relationship. Elements in an HRG can be 

obtained from a relevant MSID through the Decision Bayes-ball procedure. Due to its 

emphasis on the domain knowledge, an HRG is able to ensure a compact and accurate 

MSID.  

It is clear that an MSID, together with HRG, is scalable to represent larger decision 

problems involving multiple agents. Moreover, with a distributed design, they are 

flexible and reusable to describe decision problems in the changing world. 

Consequently, this new framework could be utilized to address a general decision 

problem in the real world.  

Secondly, I proposed a symbolic method to verify a valid model representation of 

MSID and HRG. A valid MSID must obey three constraints: DAG structure, d-sepset 

and irreducible d-sepset. The first two constraints are more relevant to a valid 

graphical structure while the third one concerns a compact and accurate knowledge 

representation. Concerning the verification of the first two constraints, I proposed a 

symbolic method that exploits an algebraic description of Bayesian networks. The 

combination of a factorization of joint probability distribution and a form of 

conditional probability results in a meaningful algebraic description that encodes a 

Bayesian network structure. Utilizing this algebraic description, the symbolic method 

is able to test the two constraints of DAG structure and d-sepset through some simple 

procedures that do not involve graphical operations. It seems that the symbolic method 
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does not require a strong foundation of graph theory which always complicates the 

traditional verification of graphical structures. At the same time, the symbolic method 

initiates an algebraic view on the research of Bayesian network and probabilistic 

decision models.  

For the third constraint of irreducible d-sepset, I proposed a pairwise verification 

method that utilizes the joint information connecting an MSID with a corresponding 

HRG. An HRG explicitly represents the organizational relationships with the 

information support for decision making. Its elements could be obtained either from an 

MSID or from the abstraction of domain knowledge, or a combination of both of them.  

A pairwise verification method compared a d-sepset in an MSID with elements 

obtained in the Decision Bayes-ball procedure. These elements could be traced or 

verified in a relevant HRG. In this way, the pairwise verification method ensured a 

consistent and accurate representation of domain knowledge in a compact decision 

model of MSID and HRG. 

Besides the verification methods, I also addressed the issue of verification failure. 

Gathering useful information in the verification process, I provided instructional 

strategies to correct the parts that cause the verification failure. However, a corrected 

model requires new verification from scratch, which may cause a correction cycle. 

Without doubt, future work on a local verification will benefit the solving of 

verification failure and facilitate the verification process.  

Thirdly, I proposed three evaluation algorithms for solving the decision model of 

MSID. The three evaluation algorithms are categorized into two groups: one is a direct 

approach that includes a cooperative reduction algorithm and a distributed evalID  

algorithm; the other is an indirect approach that is based on junction tree algorithms for 



Chapter 8: Conclusion and Future Work 
 

188 

influence diagrams. A cooperative reduction algorithm extended reduction algorithms 

in influence diagrams. The procedures GSL  and GER  were developed to produce a 

local and global elimination order for the involved nodes in order to design a valid and 

effective reduction algorithm in a distributed fashion. Furthermore, the P-Evaluation 

was recommended to preserve a valid decision model in the evaluation process. A 

distributed evalID  algorithm was built based on the evalID  algorithm in decision 

networks. A framework of multiple evaluation networks was designed to facilitate the 

distributed evalID  algorithm. It ensured consistent information in the evaluation 

process and allowed an efficient computation process. On the other hand, an indirect 

approach solved an MSID in two steps: transformation and evaluation. It transformed 

an MSID into a multiple rooted cluster tree and solved the tree directly. In this 

approach, a multiple rooted cluster tree was developed to generate helpful working 

strategies. Clearly, all evaluation algorithms adopted effective strategies to ensure 

consistent information in an evaluation process. Moreover, they were designed in a 

distributed fashion so that an efficient computation process was executed. 

 I also compared these three evaluation algorithms. The comparison results show the 

outstanding features of these evaluation algorithms and indicate appropriate evaluation 

techniques for a relevant MSID. The cooperative reduction algorithm is more suitable 

to solve a typical MSID that includes regular influence diagrams while the other two 

algorithms have the capability to solve a large and complex MSID. For an MSID 

including local Bayesian networks, the indirect approach based on junction tree 

algorithms is recommended. The comparison also indicates that the three evaluation 

algorithms could be generalized to solve probabilistic decision models. Based on this 

work on evaluation algorithms in an MSID, it is recommended that an adaptive 

evaluation framework be built with the integration of more advanced computing 
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technologies. The adaptive evaluation framework could select appropriate algorithms 

for solving various MSIDs that cold be developed.  

Fourthly, I illustrated a case study to demonstrate the practical applications of my 

proposed methodologies. The case concerned a decision problem of disease control in 

the medical domain. It involved a collaboration of multiple nations with the aim to 

control the spread of the SARS so as to achieve the best benefit for both individual 

nations and the whole world. I represented this decision problem with MSID and HRG 

as well as investigated the model validity, scalability and adaptability. To determine 

the optimal strategies for decisions, I adopted a hybrid evaluation algorithm that was 

composed of the three evaluation algorithms I proposed in this thesis. A detailed 

analysis on this case study showed my proposed methodologies could be utilized in 

practice. For future research, a practical tool should be developed to build the model of 

MSID and HRG effortlessly, to verify a built model automatically and to solve an 

MSID efficiently. 

Finally, I proposed a block learning algorithm to learn a large Bayesian network 

structure from a small data set. The block learning algorithms adopted the divide-and-

conquer strategy. Instead of learning a whole network structure, it learned individual 

blocks that have a small size. These learned blocks were combined to recover a whole 

network. Experimental results on the ALARM network and the Hailfinder network 

demonstrated that the block learning algorithm outperformed the TPDA algorithm and 

the PC algorithm. The results also indicated that the block learning algorithm is able to 

learn a large network structure from a small data set and can be easily configured by 

other learning techniques. In a theoretical way, I investigated the block learning 

algorithm and validated its advantages. Moreover, a unifying learning framework was 
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built on the basis of the block learning algorithm. It may provide a uniform view for a 

novice to apprehend various learning techniques.  

It seems that the block learning algorithm could be a good structure learning 

algorithms in current literature. However, much effort should be put into the refining 

of some technical parts in the block learning algorithms such as designing various 

approaches to identify blocks and to find V-structures. More experiments are required 

to test the performance of the block learning algorithm and the unifying learning 

framework. Currently, the block learning algorithm is only tested on the structure 

learning problem. For the parameter learning problem, the block learning algorithm 

may have the same advantages as those shown in the structure learning problem. An 

avenue for future work would be the development of the block “parameter” learning 

algorithm and its theoretical discussions. 

In conclusion, my proposed model representation of MSID and HRG is scalable to 

describe a large and complex decision problem since the model is designed in a 

distributed manner. It could be extended to solve a general decision problem in 

practice. However, it is only partly adaptive to model decision problems in the 

changing world since the MSID and HRG are a kind of advanced modeling language 

that disconnects the communication between model engineers and decision analysts. 

Future work on an evolutionary decision model may facilitate the modeling process. 

Also, my proposed model verification methods are the first graph verification methods 

that do not depend on a known graphical structure. The symbolic method provides an 

algebraic view on the research on probabilistic decision graphs. Future work could 

concentrate on the issue of model correction when the verification fails. My designed 

evaluation algorithms have shown a strong ability to solve an MSID and are able to 

solve general decision models effectively and efficiently. They can serve as a basis to 
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build an adaptive evaluation framework for solving decision models. However, their 

practical applications are not so extensive in the real world since there is a linear 

assumption on a global optimal solution. Further effort on more applications could 

improve these evaluation algorithms. Finally, my proposed block learning algorithm 

provides a unifying framework for learning Bayesian network structures. It seems that 

the same advantages in the block “structure” learning algorithm could be retained in 

the block “parameter” learning algorithm. Future work on the block learning algorithm 

for Bayesian network parameters should enrich the learning techniques for Bayesian 

networks. Thus it is worth developing a learning tool based on the block learning 

algorithm. 

8.2 Future Work 

 
This work has provided insights into the solving of multiagent decision problems as 

well as the block learning Bayesian network structures. The future agenda of this 

research work will be carried out in the following two aspects. 

Firstly, on the theoretical aspect, there exist some improvements on my proposed 

methodologies. As mentioned above, the graphical decision models of MSID and HRG 

still lack enough ability to be adaptive in the changing world. Future work on the 

formal language design of decision models may facilitate the research work on 

adaptive decision making. Moreover, it is very significant work to explore the topic of 

evaluation algorithm selection for solving decision models. It will not only make full 

use of the existing algorithm reservoir, but will also provide an intelligent inference 

engine to solve decision models. As for the block learning algorithm, future effort 

should be invested in the parameter selection in the IB procedure. The theoretical 
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foundation which will help the development of the unifying learning framework 

deserves further investigation. 

Secondly, on the practical and implementation aspect, there also exists much 

worthwhile work in the future. The goal of this research work is to pursue some new 

ideas or methodologies. The ability and capability of MSID and HRG have been 

demonstrated through a case study in the medical domain; however, some unexpected 

problems may arise in some agency domains that are more complex. Thus future work 

on extensive applications of my proposed methodologies on MSID and HRG is 

desirable and necessary. Concerning the block learning algorithm, future work should 

emphasize on the tool development. In addition, more effort should put into more 

experiments and comparisons with other learning algorithms. 
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