
PROBABILISTIC MODELING AND REASONING IN

MULTIAGENT DECISION SYSTEMS

ZENG YIFENG

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PROBABILISTIC MODELING AND REASONING IN

MULTIAGENT DECISION SYSTEMS

ZENG YIFENG

(M. ENG., Xia’men University, PRC)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

I

Acknowledgements

As I will soon get my PHD degree from the NUS, I would like to express my heartfelt

gratitude to the many people who I am indebted to.

First and foremost, I would like to thank my supervisor, professor Poh Kim Leng. He has

offered many fresh insights on how I should conduct my research work. Besides, he has

also helped me in writing some comprehensive and well-motivated academic papers. I am

grateful to his advice, encouragement and patience under his supervision.

I would also like to thank professor Leong Tze Yun. She has been supporting my research

work and research activities since I joined the Biomedical Decision Engineering (BiDE)

group four years ago. She has pointed out many mistakes in earlier versions of this

dissertation, and given many valuable suggestions on the revision. I must also

acknowledge professor Marek J. Druzdzel in University of Pittsburgh (U. S.), who has

offered great advice on a part in this dissertation. He has been helping the building of my

academic career.

My colleagues at the BiDE group, including Li Guoliang, Jiang Changan, Liu Jiang, Chen

Qiongyu, Rohit, Yin Hongli, Ong Chenhui, Zhu Peng, Zhu Ailing, Xu Songsong, and Li

Xiaoli, has all asked interesting questions in my presentation, and offered helpful

comments on my research. I have enjoyed their company in our trips to meetings and

conferences abroad.

II

My juniors, including Cao Yi, Wang Yang, Wu Xue, Guo Lei, and Wang Xiaoying, have

been painfully reading the earlier versions of this dissertation. They has put much effort

into the correction of confusing sentences, and given useful remarks on my research.

The members of the system modeling and analysis laboratory (SMAL), including Han

Yongbin, Liu Na, Liu Guoquan, Zhou Runrun, Xiang Yanping, Lu Jinying, Bao Jie, and

Aini, have spent a lot of time with me during my stay in Singapore. We have all got along

very well. The lab technician, Tan Swee Lan, has provided an easy and convenient work

space for us. I will memorize the happy time there for ever.

Last but certainly the most important, I owe a great debt to my family members: my wife

Tang Jing, my father, my mother, and my brother. Their love and continual support on all

levels of my life are priceless.

III

Table of Contents

1 Introduction ... 1

1.1 Background and Motivation ...1

1.2 The Multiagent Decision Problem..3

1.3 The Application Domain ..4

1.4 Objectives and Methodologies..5

1.5 Contributions ..6

1.6 Overview of the Thesis ...7

2 Literature Review .. 11

2.1 Bayesian Networks and Influence Diagrams..11

2.1.1 Bayesian Networks and Multiply Sectioned Bayesian Networks11

2.1.2 Influence Diagrams and Multiagent Influence Diagrams...........................19

2.2 Intelligent Agents and Multiagent Decision Systems...27

2.3 Learning Bayesian Network Structure from Data ..31

2.3.1 Basic Learning Methods ...33

2.3.2 Advanced Learning Methods..36

2.4 Summary...39

3 Model Representation.. 41

3.1 Agency and Influence Diagrams...41

3.2 Multiply Sectioned Influence Diagrams and Hyper Relevance Graph...............43

3.2.1 Multiply Sectioned Influence Diagrams (MSID)46

IV

3.2.2 Hyper Relevance Graph (HRG) ... 49

3.3 Model Construction.. 53

3.3.1 MSID and HRG.. 53

3.3.2 Modeling Process ... 54

3.4 An Application ... 56

3.4.1 Case Description... 57

3.4.2 Model Formulation... 58

3.5 Summary .. 63

4 Model Verification..65

4.1 The Introduction ... 65

4.2 Foundation of Symbolic Verification... 67

4.3 Symbolic Verification of DAG structure ... 68

4.3.1 Basic Concepts ... 69

4.3.2 DPs with Algebraic Description... 70

4.3.3 Find DC .. 74

4.3.4 Complexity Analysis .. 75

4.3.5 Dealing with Verification Failure... 77

4.4 Symbolic Verification of Agent Interface .. 77

4.4.1 Process of Symbolic Verification... 78

4.4.2 Complexity Analysis and Further Discussion .. 81

4.4.3 Dealing with Verification Failure... 83

4.5 Pairwise Verification of Irreducibility of D-sepset .. 84

4.6 Summary .. 86

V

5 Model Evaluation... 87

5.1 The Introduction ...87

5.2 Cooperative Reduction Algorithms ..88

5.2.1 Legal Transformation ...89

5.2.2 Local and Global Elimination Sequence ..91

5.2.3 Global Elimination Sequence ...96

5.2.4 C-Evaluation and P-Evaluation ..104

5.2.5 Summary...111

5.3 Distributed evalID Algorithm...113

5.3.1 Evaluation Network ..114

5.3.2 Multiple Evaluation Networks..120

5.3.3 Distributed evalID Algorithms ...122

5.4 Indirect Evaluation Algorithm..125

5.4.1 Algorithm Design ...126

5.4.2 Evaluation of SARS Control Situation ...127

5.5 Comparison on the Three Evaluation Algorithms ..129

5.6 Summary...131

6 Case Study .. 133

6.1 Decision Scenario ...133

6.2 Model Formulation ...136

6.3 Model Verification..140

6.3.1 Verification of DAG Structures ..140

6.3.2 Verification of D-sepset..142

VI

6.3.3 Verification of Irreducibility .. 143

6.4 Model Evaluation ... 145

6.4.1 Solve I1 ... 146

6.4.2 Solve I2 ... 147

6.4.3 Solve I3 ... 147

6.4.4 Solve I4 ... 148

6.4.5 Solve I5 ... 148

6.4.6 Solve the MSID.. 149

6.5 Summary .. 151

7 Block Learning Bayesian Network Structures from Data153

7.1 The Challenge... 153

7.2 Block Learning Algorithm ... 155

7.2.1 Generate Maximum Spanning Tree ... 156

7.2.2 Identify Blocks and Markov Blankets of Overlaps 157

7.2.3 Learn Overlaps ... 161

7.2.4 Learn Blocks and Combine Blocks .. 162

7.3 Experimental Results.. 165

7.3.1 Experiments on the Hailfinder Network .. 166

7.3.2 Experiments on the ALARM Network .. 173

7.4 Theoretical Discussion ... 176

7.5 Further Discussion.. 179

7.6 Summary .. 182

8 Conclusion and Future Work ..185

VII

8.1 Conclusion ..185

8.2 Future Work..191

Reference... 193

VIII

[This page intentionally left blank]

IX

Summary

Multiagent decision problems under uncertainty are complicated by large dimensions and

agency features. New techniques for solving decision problems involving multiple agents

are the focus of current research because existing approaches are unable to address such a

large and complex decision problem and no effective methods can be utilized. To address

a multiagent decision problem, I investigate probabilistic graphical model representation

and evaluation methods as well as Bayesian learning algorithms. Bayesian learning

algorithms help the construction of graphical decision models. The main challenging work

is to solve a distributed decision problem involving multiple agents. In addition, learning a

large Bayesian network structure from small data sets is a more complex task.

I proposed a new framework, including Multiply Sectioned Influence Diagrams (MSID)

and Hyper Relevance Graph (HRG), to represent multiagent decision problems. This

framework extends influence diagrams and considers properties of multiple agents. MSID

is a probabilistic graphical decision model encoding agency features and is able to adapt to

the changing world for its distributed design while HRG quantifies organizational

relationships in multiagent systems. Then, I presented a symbolic method to verify a valid

representation of MSID and HRG. This novel method exploits the algebraic property of

probabilistic belief networks as well as the domain knowledge.

After that, I developed three evaluation algorithms to solve proposed decision models. The

three evaluation algorithms are categorized into two groups: one is a direct approach that

includes cooperative reduction algorithms and multiple evaluation networks; the other is

an indirect approach based on rooted cluster tree algorithms. These algorithms designed in

X

a distributed fashion adopt some optimization strategies to ensure information consistency

in the evaluation process. A case study on disease control involving multiple nations or

communities in the medical domain was used to demonstrate the practical value of model

representation and model evaluation algorithms. The results indicated that the new

framework of MSID and HRG could represent a multiagent decision problem and the

three evaluation algorithms are effective and efficient.

In addition, I investigated the issue of learning large Bayesian network structures in order

to build a probabilistic decision model from data. Adopting the divide and conquer

strategy, a novel learning algorithm, called block learning algorithm, was designed to

learn a large network structure from a small data set. Instead of learning a whole network

structure directly, the block learning algorithm learns individual blocks that constitute a

final structure. Experimental results on two golden networks (ALARM and Hailfinder

networks) showed that this new algorithm could be scaled up to learn a sizable network

structure from a small data set and the algorithm is easily configured in the

implementation. Hence the block learning algorithm provides a foundation to develop a

unifying Bayesian learning framework.

All results show that my proposed methodologies could be used to solve multiagent

decision problems. These methods could be generalized to solve many decision problems

in practice such as the decision problem of disease control in the medical domain.

XI

List of Tables

Table 3.1: Variable Identification of Agents ICC, NS and CS ...60

Table 6.1: DH and DT...141

Table 6.2: SPS for Common Nodes ..142

Table 6.3: PS for Common Nodes ..143

Table 6.4: Final Results ..143

Table 6.5: Pairwise Verification ...144

Table 6.6: Components in the Hybrid Evaluation Algorithm...146

Table 6.7: Elimination Sequence in Local Influence Diagrams150

Table 6.8: Elimination Sequence for D-sepnodes ..150

Table 7.1: Blocks, Centers and Block Elements (Hailfinder Network on 0.1K Cases) ...169

Table 7.2: Comparison 1 of BL and TPDA Algorithms...170

Table 7.3: Comparison 2 of BL and TPDA Algorithms...172

Table 7.4: Comparison 1 of BL and PC Algorithms ..174

Table 7.5: Comparison 2 of BL and PC Algorithms ..175

XII

[This page intentionally left blank]

XIII

List of Figures

Figure 2.1: A BN ..12

Figure 2.2: An MSBN...18

Figure 2.3: An Influence Diagram..21

Figure 3.1: An MSID for the SARS Control ..49

Figure 3.2: Two Basic Relevance Graphs ..51

Figure 3.3: The HRG for the MSID in Figure 3.1 ..53

Figure 3.4: Modeling Approaches ..56

Figure 3.5: An MSID for Agents ICC, CS and NS ...61

Figure 3.6: An HRG for Agents ICC, CS and NS...61

Figure 4.1: An Example Network...71

Figure 4.2: Another Example Network...79

Figure 5.1: An MSID of I1 and I2 ..96

Figure 5.2: Rough Elimination Graph ..98

Figure 5.3: Rough Elimination Graph for the Three Local Influence Diagrams..............101

Figure 5.4: Global Elimination Graph ..102

Figure 5.5: An MSID before Arc Reversal...107

Figure 5.6: An MSID after Arc Reversal..107

Figure 5.7: Flow Chart for Cooperative Reduction Algorithms.......................................113

Figure 5.8: Decision Networks ...116

Figure 5.9: Tails (Corresponding BNs) in Decision Networks ..116

Figure 5.10: Evaluation Networks ..118

Figure 5.11: Multiple Evaluation Networks (MEN)...122

XIV

Figure 5.12: A Multiple Rooted Cluster Tree .. 128

Figure 6.1: The MSID .. 138

Figure 6.2: The HRG for the MSID in Figure 6.1.. 139

Figure 6.3: Rooted Cluster Tree for I3.. 147

Figure 6.4: Rooted Cluster Tree for I4.. 148

Figure 6.5: Evaluation Network for I5.. 149

Figure 7.1: GMST Procedure ... 156

Figure 7.2: Procedure of Identifying Blocks .. 157

Figure 7.3: Procedure of Identifying Overlaps and Markov Blankets 159

Figure 7.4: An MST ... 160

Figure 7.5: Procedure of Learning Overlaps .. 161

Figure 7.6: Procedure of Learning Blocks ... 162

Figure 7.7: Procedure of Combining Blocks.. 163

Figure 7.8: The MST for the Hailfinder Network .. 168

Figure 7.9: Complexity Comparison of BL and PC Algorithms...................................... 177

Figure 7.10: A Unifying Learning Framework .. 182

1

1 Introduction

Decision making in our daily lives often involves a group of persons who cooperate to

achieve their goals. This decision problem can be modeled as a multiagent decision

problem in which each agent acts cooperatively to achieve the best expected outcome

in uncertain environments. The uncertainty, the dynamic nature of decision scenario

and the unique attributes of multiple agents make it hard to solve a multiagent decision

problem. Hence, it is worthwhile to investigate some effective and efficient

methodologies to solve the problem.

1.1 Background and Motivation

A simple decision problem is often related to a person’s scope of perception. In a large

social network composed of many individuals, decisions are beyond any individual’s

scope and tend towards a group decision that is more valuable. Decision making in

uncertain environments mainly concerns decision problems in which a number of

agents are involved. Making a good decision in a multiagent system is particularly

complicated when both the nature of decision scenario and the attributes of multiple

agents have to be considered.

Research in decision analysis, artificial intelligence, operations research, and other

disciplines has led to various techniques for analyzing, representing, and solving

decision problems in uncertain environments. Most of these techniques make use of a

Chapter 1: Introduction

2

graphical probabilistic model, such as influence diagrams (Howard & Matheson 1984),

limited memory influence diagrams (Lauritzen & Vomlelova 2001), unconstrained

influence diagrams (Jensen & Vomlelova 2002), and sequential influence diagrams

(Jensen et al. 2004). They provide a compact and informative representation for

modeling decision problems in an uncertain setting. However, these techniques lack

the ability to tackle multiagent decision problems because they are oriented to the

single agent paradigm without considering the features of multiple agents.

Recently, achievements in the multiagent reasoning system have cast light on research

about multiagent decision problems. Most work, such as Multiply Sectioned Bayesian

Networks (MSBN, Xiang 2002), focuses on the communication and reasoning in

multiagent systems. They have successfully developed a distributed and coherent

framework for solving probabilistic inference problems in multiagent systems. This

framework lays out a foundation for the research on the multiagent decision making.

The work on solving decision problems involving multiple agents benefits the building

of intelligent decision systems. The construction of intelligent decision systems is

always a burdensome task in a large knowledge domain. Existing approaches are not

able to build such large decision systems in practice. Hence, a flexible framework with

powerful evaluation algorithms is needed for an effective design of general

methodologies for dealing with a large and complex knowledge domain. Case studies

will show the practical value of my proposed techniques. On the other hand, a new

learning algorithm is utilized to build a large probabilistic model from a data set, which

enriches learning techniques that drive model construction.

Chapter 1: Introduction

3

1.2 The Multiagent Decision Problem

This work addresses multiagent decision problems in which agents reside in a

distributed, but connected setting and they cooperate to make decisions on the basis of

certain organizational relationships.

Some characteristics of this decision scenario are as follows: 1) Agents are distributed

geographically or physically. Each agent is an independent entity in the world. It is not

easy and reasonable to merge them into a single object. 2) Agents are cooperative.

Although each agent is an independent entity, it still needs some cooperation for

solving a certain decision problem. The cooperation is based on public information that

they share. 3) Agents’ privacy is protected. Although agents are in a cooperative

setting, they intend to hold their privacy. 4) Agents’ decisions and observations are

interleaved; however, their interactions follow a sequential order. In a distributed

environment, agents need some observations from their adjacent agents to support

decision making. 5) Agent’s organizational relationships exist. In a cooperative

decision problem, an agent may need some information for its decision making while

this information could only be obtained from its adjacent agents. Thus, a certain

organizational relationship exists among these agents. Meanwhile, this kind of

organizational relationship could be described by the relation between the information

property and the supported decisions. 6) Agents seek their individual objectives while

they expect a cooperative solution. In a distributed decision problem, every agent has

its own goal since it is selfish. It wants to make the best decision on its own through

the cooperation in which it could access some requisite information. For a cooperative

solution globally, agents contribute by releasing honest and up to date information

through which they expect to help the decision making in their adjacent agents. Hence,

in this kind of decision scenario, what cooperative agents do concern is the shared

Chapter 1: Introduction

4

information. They are unwilling to compromise their own utility with the consideration

of others’ decisions.

Accordingly, a complex and large knowledge domain complicates the multiagent

decision problem. The agency features, such as privacy and organizational

relationships, make the decision problem more intractable although these features

enrich the decision scenario.

1.3 The Application Domain

Medicine is a very rich domain for multiagent decision making. While the multiagent

decision problems that I address are general, the application domain that I examine is

focused on the policy design involving multiple communities or nations in medical

decision making. Differing from medical decision making on diagnostic test and

therapy planning (Leong 1994), the decision problem that I deal with is more related to

policy design for disease control. The large domain with multiple decision entities, the

uncertain information about disease and the intricate organizational relationships in the

domain complicate a policy design process. Furthermore, decision making in a

distributed and cooperative setting requires a trade-off among multiple objectives.

Hence, the disease control involves both uncertain domain knowledge and the

properties of multiple decision entities.

In the disease control domain, multiagent decision making will not only consider the

uncertain environment, but also take into account the information exchange among the

interacting units. The uncertain environment and the personal judgments comprise

uncertain information in the domain. The complex relationships among associated

decision entities determine the accessibility of public information and individual

Chapter 1: Introduction

5

objectives in collective actions. For instance, in Severe Acute Respiratory Syndrome

(SARS) control (http://www.who.int/csr/sars/en/), multiple nations would share some

information, like current status of SARS, and hold together aiming at alleviating the

damage of SARS; although each nation has her own interest and private consideration.

1.4 Objectives and Methodologies

The goal of this thesis is to establish new methodologies for solving the multiagent

decision problem, as well as develop novel techniques for learning large Bayesian

network structures from a small data set. To achieve this goal, I carry out several

stages as follows:

First of all, it is to build a new flexible framework. The main advantage of this

decision-theoretic framework lies in its capability for representing a large knowledge

domain in a distributed way. Furthermore, it adapts to a changing decision scenario by

self-organizing its components. Hence, this adaptive framework should support large

and complex decision systems in the changing world.

Then, it is to encode agency properties into a new representation. To personalize real

decision making, this new framework is to be enriched with some properties of

multiple agents. It not only describes the environment, but also reflects the

characteristics of decision makers in a decision scenario. This agency approach must

make probabilistic decision models more meaningful by strengthening their linkage

with artificial intelligence concepts.

After that, some evaluation algorithms are to be developed to solve the model.

Extended from basic methods for solving single agent based decision models, these

Chapter 1: Introduction

6

evaluation algorithms will be improved by overcoming some “bottleneck” issues of

existing approaches. Its effectiveness and efficiency will be shown in practical case

studies. Aiming at solving a large and complex decision model, these algorithms could

improve the existing approaches and could be implemented.

Finally, a novel technique is to be proposed to learn large Bayesian network structures

from a small data set. Adopting the divide and conquer strategy, the learning algorithm

will solve a learning problem step by step. Some experiments are to be designed to

show its learning ability. Armed with good strategies, this new learning algorithm is

comparable to some typical learning algorithms and may be implemented in a

commercial tool.

This study will address the issue of multiagent decision making under uncertainty with

probabilistic graphical decision models. Hence, the explored area is confined to

uncertainty in artificial intelligence and mostly concerns decision-theoretic systems.

The existing techniques relevant to this work are influence diagrams, Bayesian

networks and multiagent decision systems. This context will be illustrated in Chapter 2.

1.5 Contributions

The major contributions of this work are as follows:

Firstly, I have proposed a new probabilistic graphical model, as well as a relevance

graph, to represent a multiagent decision problem under uncertainty. This framework is

proposed for its ability to encode agency properties and for its capability to model a

large and complex decision problem. It will facilitate decision modeling languages to

solve a general class of decision problems.

Chapter 1: Introduction

7

Secondly, I have established a symbolic method to verify a probabilistic graphical

decision model. By holding an algebraic view on the model, this approach breaks the

traditional mold of graph-theoretic verification methods. These results will provide a

unique insight into the research on probabilistic graphical decision models.

Thirdly, I have developed three evaluation algorithms for solving a decision model.

Extended some basic evaluation algorithms for the single agent paradigm, these

algorithms are shown to be effective and efficient. To demonstrate their utility, I

formalize a case study in the disease control domain to highlight the capabilities and

limitations of each approach. These results clearly illustrate evaluation strategies and

will also contribute toward the design of adaptive solver systems.

Fourthly, I have presented a new algorithm on learning large Bayesian network

structures from a small data set. Adopting the divide and conquer strategy, this

learning algorithm has shown good performance in a series of experiments. A learning

tool with an implementation of this novel algorithm will be put into practical use.

Finally, this research has provided insights into the representation, verification, and

evaluation of multiagent decision problems. It also investigates the issue of learning

Bayesian network structure. These methodologies can be generalized for addressing a

class of general decision problems.

1.6 Overview of the Thesis

This chapter has given a concise introduction to some basic concepts in the field of

decision analysis, reviewed some major work related to the topics addressed in this

Chapter 1: Introduction

8

dissertation, and roughly described the methodologies used and the overall

contributions.

The rest of this thesis is organized as the following:

Chapter 2 introduces related work involving various graphical decision models and

evaluation algorithms used in these representations. Most of the current work on

Bayesian network structure learning is also covered.

Chapter 3 presents a graphical multiagent decision model to describe multiagent

decision problems. The main characteristics of this new representation are highlighted

and the model construction procedures are discussed in terms of a simple case.

Chapter 4 proposes a symbolic method to verify the decision model. The foundation

and detailed operations in this approach are fully described. In addition, the complexity

problem associated with this method is also analyzed and some measures are proposed

to handle the verification failure problem.

Chapter 5 presents three evaluation algorithms to solve the new decision model

proposed in Chapter 3. The comparison of these three algorithms shows their strengths

on solving different graphical structures of the decision model.

Chapter 6 focuses on a decision problem in the medical domain. The whole solution

procedures involving model representation, model verification, and model evaluation

are described in detail.

Chapter 7 proposes a novel learning algorithm to learn a large Bayesian network

structure from a small data set. Some experimental results and theoretical analysis

demonstrate a good performance of this new learning approach. The new learning

Chapter 1: Introduction

9

method also benefits the building of probabilistic graphical models from non-context

decision problems.

Chapter 8 summarizes this dissertation by discussing the contributions and limitations

of the whole work. It also suggests some possible directions for future research.

Chapter 1: Introduction

10

[This page intentionally left blank]

11

2 Literature Review

This chapter briefly surveys some related work: Bayesian networks and multiply

sectioned Bayesian networks, decision modeling with influence diagrams and

multiagent influence diagrams, intelligent agent and multiagent decision making, and

Bayesian network structure learning. The survey focuses on the major techniques on

which this work is based and serves as a basis to a more detailed analysis on the

capabilities and limitations of the existing approaches.

2.1 Bayesian Networks and Influence Diagrams

The concepts of Bayesian networks and influence diagrams are fundamental elements

in the probabilistic modeling and reasoning. They provide basic ideas and techniques

for the probabilistic expert systems and are to a large segment of the uncertainty in

artificial intelligence (AI) community what resolution theorem proving is to the AI

logic community.

2.1.1 Bayesian Networks and Multiply Sectioned Bayesian Networks

2.1.1.1 Bayesian Networks

A Bayesian network (Pearl 1988) is a compact representation of a joint probability

distribution over a set of random variables. Formally, a discrete Bayesian network (BN)

is a pair),(PG consisting of a directed acyclic graph (DAG) G and a multiplicative

factorization of the joint probability distribution P . Each node Gx∈ , which is called

Chapter 2: Literature Review

12

chance node in a BN, corresponds to a discrete variable x framed with a conditional

probability distribution))((xxp π :)((xπ parents of variable x) that composes P over

the domain ∏
∈

=
Gx

xxpP))((π . An arc between each pair of nodes indicates an influence

or causal relationship between the corresponding variables. A Markov blanket of node

Gx∈ is composed of parents, children of node x and parents of children of node x .

Figure 2.1 shows an example of BN.

Figure 2.1: A BN

The BN consists of seven nodes },,,,,,{ gfedcba and arcs between some of them. Each

value of a node in the BN has one conditional probability distribution given a

configuration of the values of its parents, such as node a with a conditional probability

),(cbap . A DAG structure and conditional probabilities in a BN define a unique

factorization of a joint probability distribution in the domain. For example, in Figure

2.1, the BN gives the joint probability distribution as

follows:),()()(),()()()(),,,,,,(eagpadpepcbapbfpcpbpgfedcbaP = . The Markov blanket

of node a includes nodes },,,,{ egdcb .

b c

a f

d g

e

Chapter 2: Literature Review

13

One important concept in Bayesian networks is d-separation (Geiger & Pearl 1989).

The d-separation encodes the independence relations specified by a DAG and follows

the criterion below:

Definition 2.1: Let G be a directed acyclic graph. If X , Y , and Z are disjoint subsets

of the nodes in G , then X and Z are said to be D-Separated given Y if there does not

exist a trail between a node in X and a node in Z s.t.:

1. For every intermediate node w in a converging connection (head-to-head),

either Yw∈ or w has a descendant in Y .

2. For every intermediate node w in a serial (head-to-tail) or diverging (tail-to-tail)

connection, Yw∉ .

If X and Z are not D-Separated given Y , then we say the X and Z are D-Connected

given Y . Each trail satisfying the conditions above is called active; otherwise, it is said

to be blocked. For example, node c and node d are D-Separated given node a .

Probabilistic reasoning is one of the most important issues which should be considered

in a Bayesian network framework; this task, however, has been proved to be NP-hard

(Cooper 1990). In the past two decades, various methods have been proposed for

inference in Bayesian networks. In general, these methods are divided into two groups:

exact approaches and approximate approaches. The exact approach includes the

junction tree method (Lauritzen & Spiegelhalter 1988; Jensen et al. 1990; Shafer 1996;

Madsen & Jensen 1998), loop cutset conditioning method (Pearl 1988; Suermondt &

Cooper 1991), direct factoring method (Li & Ambrosio 1994), variable elimination

method (Dechter 1996) and so on.

Chapter 2: Literature Review

14

Both the junction tree and loop cutset conditioning methods are based on the Kim and

Pearl’s message passing algorithm (Pearl 1988; Neapolitan 1990; Russell & Norvig

2003). The loop cutest conditioning method converts a general Bayesian network into

multiple simpler polytrees. Each polytree performs the message passing algorithm

resulting in a final combined answer. While the junction tree method transforms a

general Bayesian network into one clustering tree with some graph operations such as

moralization, triangulation, and so on, the propagation launches a message passing

algorithm. The direct factoring and variable elimination methods view the inference as

one combinatorial optimization problem. They target the query variables and

marginalize (sum) out the rest of the variables one by one from the product of a small

subset of probability distributions.

The approximate approach includes the search based inference (Henrion 1991; Poole

1993) and simulation based inference, like the logic sampling (Henrion 1988),

likelihood sampling (Fung & Chang 1989; Shachter & Peot 1992), Gibbs sampling

(Jensen 2001), self-importance sampling and heuristic-importance sampling (Shachter

1989), adaptive importance sampling (AIS-BN, Cheng & Druzdzel 2000), backward

sampling (Fung & Favero 1994), and importance sampling using evidence pre-

propagation (EPIS-BN, Yuan & Druzdzel 2003). The search based inference method

approximates the posterior probability of query variables by summing a small subset of

joint probability values that contains most of the probability mass. On the other hand,

the simulation based methods use Monte Carlo sampling techniques to simulate a

sufficient number of cases and compute the posterior probability from them. Other

approximate inference methods have also been proposed. These include the state space

abstraction (Wellman & Liu 1994), localized partial evaluation (Draper 1995), and

removal of weak arcs (Kjærulff 1994).

Chapter 2: Literature Review

15

In general, the exact inference methods provide precise results, but require a lot of

computational costs. In practice, currently, the exact algorithms using junction tree are

good enough for most small to medium sized networks, up to three dozens of nodes or

even larger. However, the performance of the exact algorithms largely depends on the

connectivity of networks. For large networks, or networks that are densely connected,

approximate algorithms are preferred. As with exact inference methods, the

approximate inference methods are also proved to be NP-hard within an arbitrary

tolerance (Dagum & Luby 1993). If evidence being conditioned upon is not too

unlikely, these approximate approaches converge fairly quickly. Currently, both AIS-

BN and EPIS-BN have very good performance even with unlikely evidence.

Accordingly, the approximate inference methods are good complements of the exact

inference approaches for the propagation in Bayesian networks, especially for

Bayesian networks with a large size.

To deal with some special cases, some extensions to Bayesian networks have been

proposed. For example, the dynamic Bayesian networks (DBN, Nicholson 1992;

Nicholson & Brady 1992; Russell & Norvig 2003), probabilistic temporal networks

(Dean & Kanazawa 1989; Dean & Wellman 1991), dynamic causal probabilistic

networks (Kjærulff 1997) and modifiable temporal belief networks (MTBN, Aliferis et

al. 1995, 1997) model the change over time. These BNs, such as DBN and MTBN, are

temporal extensions of BNs to facilitate normative temporal and casual modeling

under uncertainty. They have a joint BN model encoding every time slice so that they

could overcome the drawback of BNs which are not designed to model temporal

relationships explicitly. Specifying some real problems, other extensions of Bayesian

networks also appeared such as the probabilistic similarity networks (Heckerman

1990), hierarchical Bayesian networks (Srinivas 1994), object-oriented Bayesian

Chapter 2: Literature Review

16

networks (OOBN, Koller & Pfeffer 1997) and probabilistic relational models (PRM,

Koller & Pfeffer 1998; Koller 1999; Getoor 2001; Heckerman et al. 2004). The

probabilistic similarity networks have many advantages in solving a large knowledge

domain in which some variables are related to many mutually exclusive and exhaustive

variables. The hierarchical Bayesian network models hierarchical knowledge in a tree

structure so that the search space of models is reduced. The object-oriented Bayesian

network uses Bayesian network fragments to describe the probabilistic relations

between attributes of an objective in a large and complex domain. However, it is

unable to model the uncertainty about structures. The probabilistic relational model

evolves from OOBN and represents relationships between multiple instances of the

same object class. It introduces uncertainty into database schema resulting in a

combination of probabilistic reasoning and entity-relational schema in databases.

The above mentioned work is still around the probabilistic representation and

propagation in the single agent paradigm, which leads to its failure in treating

multiagent reasoning problems effectively.

2.1.1.2 Multiply Sectioned Bayesian Networks

Orienting towards the multiagent reasoning problem, the representation of multiply

sectioned Bayesian networks (MSBN, Xiang et al. 1993; Xiang 2002) is considered as

the milestone for solving the probabilistic reasoning in a multiagent system. It provides

a coherent framework for probabilistic reasoning in cooperative multiagent distributed

interpretation systems. It aims to solve a large and complex knowledge domain by

dividing the domain into several subnets each of which is related with an intelligent

agent. With a distributed fashion, an MSBN allows the privacy protection of intelligent

Chapter 2: Literature Review

17

agents and the active communication in a multiagent system. Formally, the definition

of an MSBN is given as follows (Xiang 2002).

Definition 2.2: An MSBN M is a triplet),,(PGN . ii NN U= is the total universe where

each iN is a set of variables. ii GG U= is a hypertree structure where nodes of each

DAG iG are labeled by elements of iN . Let x be a variable and)(xπ be all parents of

x in G . For each node x , exactly one of its occurrence (in a iG containing)(}{ xx πU)

is assigned))((xxP π , and each occurrence in other DAGs is assigned a constant table.

iGi PP Π= is a joint probability distribution, where each
iGP is the product of the

probability tables associated with nodes in iG . A triplet),,(
iGiii PGNS = is called a

subnet of M . Two distinct subnets iS and jS are said to be adjacent if iG and jG are

adjacent in G .

It can be seen that an MSBN comprises a set of Bayesian networks that share some

common nodes. Here, the common nodes compose an interface S between adjacent

Bayesian networks associated to individual agents. One important property of the

interface in an MSBN is stated as follows: the adjacent agents are independently

conditioned on the observation of states in the interface which is the only channel for

all their communication. Consequently, the definition of a d-sepset is followed to

implicate the agent interface.

Definition 2.3: Let G be a directed graph such that a hypertree over G exists. A node

x contained in more than one subgraph with its parents)(xπ in G is a d-sepnode if

there exists one subgraph that contains)(xπ . An interface S is a d-sepset if every Sx∈

is a d-sepnode.

Chapter 2: Literature Review

18

An example of an MSBN is shown in Figure 2.2. The MSBN is a DAG which

comprises two local BNs, namely 0BN and 1BN , each of which represents an

individual agent’s reasoning engine. Through common nodes },,{ cba coding their

public information, these two agents communicate with each other to obtain a full and

consistent reasoning in a multiagent system. In Figure 2.2, common nodes },,{ cba are

also d-sepnodes since all of their parents reside in one local BN. For example, the

parents of node b are nodes { }ad , which are in 1BN , the only parent of node a is node

d in 1BN while the parents of node c are nodes { }gb, residing in 0BN . Hence, these

common nodes form a d-sepset between 0BN and 1BN in the MSBN.

Figure 2.2: An MSBN

The definition of an MSBN addresses the issue of cooperative agents reasoning in a

compact model. Considering some properties of intelligent agents, an MSBN shows a

smart extension of the single agent based Bayesian Networks.

Once a multiagent MSBN is constructed, agents may perform probabilistic inference

through coherent communication initiated by some observations. The inference

methods in an MSBN are extensions of those for the single agent based Bayesian

f a

b

c g

a

b

c e

d

BN0 BN1

Chapter 2: Literature Review

19

networks. For example, the linked junction forest method (Xiang 1994) compiles each

subnet into a junction tree, called a local junction tree, and converts each d-sepset into

a junction tree, called a linkage tree. Then, the message passing algorithm is used in a

junction tree for a general Bayesian network. Other propagation methods in an MSBN

include the distributed forward sampling (Xiang 2002) extending the logic sampling

(Henrion 1988), the distributed cutset conditioning (DCC, Xiang 2003) extending the

loop cutset conditioning method in general Bayesian networks (Pearl 1988), the

distributed Markov sampling (DMS, Xiang 2003) extending the Gibbs sampling

(Jensen 1996), and so on.

With its distributed framework and efficient inference methods, an MSBN provides a

good solution for a multiagent reasoning problem. On the other hand, it does not

address the problem of decision making in a multiagent system. However, it provides a

foundation to develop a representation of multiagent decision problems.

2.1.2 Influence Diagrams and Multiagent Influence Diagrams

2.1.2.1 Influence Diagrams

An influence diagram (Howard & Matheson 1984) is a graphical modeling language

that represents the probabilistic inference and decision analysis model. An influence

diagram describes the dependencies in decision analysis and specifies the states of

information for which independencies can be assumed to exist. It can be considered as

a Bayesian network augmented with decision nodes D and a value node v . Formally,

an influence diagram is defined as follows (Zhang et al. 1994).

Definition 2.4: An influence diagram is a pair),(PGI = whose elements are defined as

follows:

Chapter 2: Literature Review

20

1.),(ANG = is a DAG such that }{vDCN UU⊆ , where C and D are disjoint, and

the following conditions are satisfied:

(a) The value node v is a sink node which has no successors;

(b) A directed path only consisting of all the decision nodes D exists in G ;

(c) Each decision node and its parents are parents to all of its subsequent decision

nodes;

2. DCiiPP U∈= }{ is a collection of families iP of conditional probability

distributions)()(ixxp π , with one distribution for each configuration of)(ixπ .

It can be seen that an influence diagram is a two-layer representation with a qualitative

level and a quantitative level. At the qualitative level, it is a directed acyclic graph G

with three types of nodes: chance nodes C , decision nodes D and a value node v . At

the quantitative level, a frame of numerical data iP is associated with each node. At the

same time, it is noticed that there are some constraints in the definition. Condition (b)

implies a single decision maker should perform the decisions in a chronological order.

Condition (c) is referred to as the no-forgetting constraint that information available at

the time of one decision must be available at the time of all subsequent decisions. An

influence diagram is always termed as a regular one when it satisfies all of the above

constraints (Zhang 1994).

For example, one influence diagram is shown in Figure 2.3. The decision maker

selects one alternative indicated in decision node d according to the evaluation of

expected values corresponding to combinations of different outcomes in value node v .

Chapter 2: Literature Review

21

Figure 2.3: An Influence Diagram

In an influence diagram, an arc from a chance node to a decision node is called

information arc which indicates chance nodes should be observed before the decision

making. Simultaneously, the chance nodes are called observed nodes, denoted as the

information set)(DI . An arc between chance nodes and value nodes or chance nodes

is called influence arc which indicates chance nodes should affect their downstream

nodes. Similarly, the descendants of decision node D , denoted as the set)(DDes , are

affected when decisions are made. For example, in Figure 2.3, the arc 1 is an

information arc while the arc 2 is an influence arc. The information set for decision d

is },{)(cbdI = and },{)(vedDes = depends on the outcome of decision d .

Currently, one relevant research issue is to determine requisite probability nodes
idRP

and requisite observation nodes
idRO for decision node id in an influence diagram.

Requisite probability nodes are those nodes for which conditional probability

distributions might be required to compute the utilities of decision node id given other

nodes. Requisite observation nodes are those observation nodes for which conditional

probability might be needed to compute the utilities of decision node id given other

nodes. Thus far, two approaches have appeared: one is the Decision Bayes-ball

procedure (Shachter 1998, 1999) and the other is the refined Decision Bayes-ball

2

1
d

a

b

c

e v

Chapter 2: Literature Review

22

procedure (Nielsen 2001). Both approaches are based on simple techniques that stem

from d-separation (Druzdzel & Suermondt 1994). The second procedure decides a

minimum set of relevant value nodes for decision nodes beforehand so that the set of

required nodes found in the procedure is more compact. Hence the basic Decision

Bayes-ball procedure to construct the sets of requisite probability nodes
idRP and

requisite observation nodes
idRO in an influence diagram with separable value nodes

V and decision node },,,,{ 1 mi dddD LL= is described here.

[Decision Bayes-ball]

FOR Iterate backwards for each earlier decision node },,,{ 1 mii dddDd LL=∈ ,

1,,Lmi = , DO

1. Let)}}(\)({{ 1+= iii dDesdDesVV I if mi < ; otherwise)}({ ii dDesVV I= ;

2. Run Bayes-ball algorithm on YX , where }{
1+

=
idi ROVX U if mi < , otherwise

iVX = , and)}({ ii dIdY U= , in the influence diagram while ignoring any

information arcs;

FOR every Xx∈ DO

a) Visit x from a parent or child, or both;

b) If Yx∉ and the visit to x is from a child;

i. If the top of x is not marked, then mark its top and visit each of its

parents;

ii. If the bottom of x is not marked, then mark its bottom and visit each

of its children;

c) If the visit to x is from a parent;

i. If Yx∈ and the top of x is not marked, then mark its top and visit each

of its parents;

Chapter 2: Literature Review

23

ii. If Yx∉ and the bottom of x is not marked, then mark its bottom and

visit each of its children;

d) Mark x as visited and let xXX \= .

END

3. If decision node id is not marked as visited then the decision is irrelevant to

decision makers’ value;

4.
idRP consists of all of the nodes marked on top starting with decision node md ;

5.
idRO consists of all of the nodes in)(idI marked as visited.

END

According to the analysis (Shachter 1998, 1999), the time computational complexity of

Decision Bayes-ball algorithm is linear in the number of nodes and incident arcs into a

node in an influence diagram.

In addition to the above research issues, evaluation algorithms for solving influence

diagrams have been discussed in detail in much literature (Garcia & Druzdzel 2004). A

basic and effective approach for solving a regular influence diagram is a reduction

algorithm (Shachter 1986, 1988). The reduction algorithm simplifies the solving

process by removing nodes from influence diagrams one by one. Some basic

operations are involved in the reduction algorithms such as node removal and arc

reversal. An improved reduction algorithm that avoids the operation of arc reversal

was proposed in potential influence diagrams (Ndilikikesha 1994). It seems that these

two algorithms are effective and easy to be implemented; however, determining an

optimal elimination order in a reduction algorithm has been shown to be NP-hard

(Cooper 1987).

Chapter 2: Literature Review

24

Noticing the close relationships between Bayesian networks and influence diagrams,

Shachter & Peot (1992) initiated research on an indirect method for solving influence

diagrams through two steps. First, an influence diagram is transformed into a Bayesian

network using the Cooper’s transformation (Cooper 1988). Then, a probabilistic

propagation is performed in the Bayesian network to obtain final decisions.

Two years later, Jensen et al. (1994) proposed the HUGIN architecture for solving

influence diagrams that is based on the message passing in a strong junction tree. A

strong junction tree representation of an influence diagram I is identified from its

triangulated graph (Nielsen 2001):

1. Remove all informational arcs from I ;

2. Moralize I and remove all value nodes resulting in the graph mI ;

3. Triangulate mI by eliminating the variables with a strong elimination order.

A strong junction tree T is composed of the cliques identified from the triangulated

graph. Of all these cliques in T , at least one distinguished clique R is called a strong

root, such that for each pair (1C , 2C) of adjacent cliques in T , it is true if 1C is closer to

R than 2C , there exists a partial order with nodes in the separator 21 CC I preceding

nodes in 12 \ CC .

After that, the strong junction tree is initialized by attaching each clique with the

probability potential and the utility function from the influence diagram and activated

to perform the message passing procedure. Message passing proceeds by absorbing

messages that contain both a probability potential CΦ and a utility function CΨ

associated to the clique C from the leaves towards the strong root. A clique can pass

Chapter 2: Literature Review

25

the message to its parent clique only if it has received the message from all of its

children cliques.

Let iC and jC be neighbouring cliques with separator jiij CCS I= . Then absorption

from iC to jC is involved with the following procedures: Firstly, to calculate the

probability potential and the utility function passed through separator ijS :

j

ijj

ij C
SC

S Φ=Φ Μ
\

 and
jj

ijj

ij CC
SC

S Ψ⋅Φ=Ψ Μ
\

 (where for chance variables, the symbol

Μ equals to the sum operation; while for decision variables, it equals to the max

operation); Secondly, to attach the clique iC with the new '
iCΦ and '

jCΨ :

ijii SCC Φ⋅Φ=Φ ' and
ij

ij

ij
S

S
CC Φ

Ψ
+Ψ=Ψ ' .

Finally, the optimal policy for a decision variable can be obtained from the potentials

associated with the closest clique to the strong root in T .

The strong junction tree algorithm for solving influence diagrams adopts the approach

of message passing in Bayesian network inference when it transforms the decision

model into a tree composed of cliques. Each clique is solved with the outcome of

probabilities or utilities which are further transmitted and compose final policies.

Influence diagrams involve with only one decision maker in a symmetric decision

problem. However, it provides a standard presentation to be extended to solve other

types of decision problems, such as the Dynamic Influence Diagram (DID, Tatman &

Shachter 1990), Valuation Bayesian Networks (VBS, Shenoy 1992), Multilevel

Influence Diagrams (MLID, Wu & Poh, 1998), Time-ctitical Dynamic Influence

Diagrams (TDID, Xiang & Poh, 1999), Limited Memory Influence Diagrams (LIMID,

Chapter 2: Literature Review

26

Lauritzen & Vomlelova 2001), Unconstrained Influence Diagrams (UID, Jensen &

Vomlelova 2002), and Sequential Influence Diagrams (SID, Jensen et al. 2004).

The above mentioned work has solved many kinds of decision problems. For instance,

the DID models a temporal decision problem, the TDID solves a time-critical dynamic

decision problem, and both UID and SID handle an asymmetric decision problem.

However, all these model representations orient towards the single agent paradigm.

This research work is insufficient to deal with the multiagent decision problem.

2.1.2.2 Decision Networks and Multiagent Influence Diagrams

To deal with decision problems involving with multiple agents, Zhang et al. (1994)

proposed decision networks by lifting some constraints of influence diagrams. On

representation, as with influence diagrams, decision networks still adopt traditional

modeling strategies: describing the whole decision scenario in one model. Hence, the

model size is intractable when the decision scenario becomes large and complex. On

evaluation, one of the best evaluation algorithms, called evalID algorithm, was

proposed in decision networks (Zhang 1998). Adopting the divide and conquer

strategy and Bayesian network inference methods, the evalID algorithm partitions

decision networks into several parts and solves each part individually with Bayesian

network inference methods. Thus, it overcomes the “bottleneck” of evaluation

approaches for solving decision problems with a large dimension. In all, a

representation of decision networks without considering the properties of multiple

agents still lacks the ability to describe a large and complex multiagent decision

problem; however, the evalID evaluation algorithm is a good basis for developing

efficient and effective evaluation algorithms for solving a general decision problem.

Chapter 2: Literature Review

27

Multi-agent Influence Diagram (MAID, Koller & Milch 2001) is considered as a

milestone regarding the research work on multiagent decision problems. It focuses on

the representation of games and tries to find Nash Equilibria (Nash 1950) in the games

with some strategies. A MAID extends the formalisms of Bayesian networks and

influence diagrams to represent game problems involving multiple agents. To take

advantage of independence structures in a MAID, a qualitative notion of strategic

relevance is defined to find a global equilibrium through a series of relatively simple

local computations. Since the goal of MAID is to represent and solve games involving

multiple agents, its solution strategies specify only on game problem that is a subnet of

decision problem. Furthermore, the MAID represents the whole decision scenario

within one decision model so that it lacks the ability to handle a complex and larger

problem domain..

Tracing the evolution of influence diagrams, it is found that some disadvantages still

exist on the representation when the multiagent decision problems are to be solved.

Two of these deficiencies are highlighted: one is that some properties of multiple

agents, such as privacy and sociality, have not been considered; the other is that no

effective and efficient methods have been proposed to cope with large and complex

problem domains.

2.2 Intelligent Agents and Multiagent Decision Systems

With the development of computer network and distributed computing technology

based on network, the research of intelligent agents and multiagent systems has been a

new focus in the field of computer science (Wooldridge & Jennings 1995; Wiess 1999).

An intelligent agent has the following attributes: 1) Reactivity: It can sense the

Chapter 2: Literature Review

28

environment and act responsively; 2) Autonomy: It does not need human intervention;

3) Social and collaborative behavior: It can work with other agents or humans toward a

common goal; 4) Inferential capability: It proactively seeks to meet its goals, including

analyzing its environment; 5) Temporal continuity: Its identity and state persist over

long periods; 6) Adaptivity: It can learn and improve with experience. In addition, one

of the most outstanding characters residing in an intelligent agent is the privacy.

Agents have the intention to protect their own privacy and only disclose the necessary

information under some agreements. This feature does match some phenomena in the

practical world. For example, an individual computer system or others, which could be

considered as an agent, is often designed by different vendors who are not willing to

release full details of their system design. Consequently, it is challenging work to make

workable integrated systems without knowing details of individual systems.

A single intelligent agent only displays an individual intelligence, which is not a focus

of artificial intelligence. One of the primary goals in artificial intelligence is to analyze,

represent, and control the behaviors of intelligent agents, including belief reasoning

and decision making, in a dynamic and uncertain environment. Not only does it focus

on the individual agent’s intelligence but also on the multiple agents’ intelligence.

Thus, research on multiagent systems is more promising. A multiagent system (Wiess

1999) can be viewed as an agent organization (by analogy with human organization) or

as an artificial society or organization. It has, like a human organization evolving in a

certain environment, goals to achieve and agents operate together to achieve these

goals. Meanwhile, the individual agents are self-organized with certain types of

relationships. For more complete characterizations and formalizations, five

relationships are identified (Zambonelli et al. 2001): 1) Control: It identifies the

authority structures with a system; 2) Peer: It identifies agents of equal status; 3)

Chapter 2: Literature Review

29

Benevolence: It identifies agents with shared interests; 4) Dependency: It identifies the

ways in which one agent may rely on another; 5) Ownership: It delimits organizational

boundaries. Hence, with the bonding of a certain organizational relationship, multiple

agents would cooperate to make decisions in a multiagent system, which is called

multiagent decision systems.

The traditional research on multiagent decision systems focuses on the Cooperative

Distributed Problem Solving (CDPS) which studies how loosely-coupled networks of

problems solvers can work together to solve problems that are beyond their individual

capabilities (Durfee et al. 1989a, 1989b). The main issues to be addressed in CDPS

include the task sharing, result sharing, and coordination. Some progress has been

achieved such as contract net for task sharing (Smith 1977, 1980a, 1980b; Smith &

Davis 1980), coordination through partial global planning (Durfee 1988, 1996).

Meanwhile, a large amount of research efforts have been invested in multiagent

decision systems, such as the protocol or mechanism design in agents’ interactions and

agents’ communication languages (Wooldridge 2002). The classic application is in

distributed sensing (Lesser & Erman 1980; Durfee 1988). For example, Lesser’s well-

known Distributed Vehicle Monitoring Testbed (DVMT) provides a ground for many

of today’s multiagent system development techniques. Other applications consist of

multiagent information retrieval systems (Wellman et al. 1996), policy modeling by

multiagent simulation (Downing et al. 2001) and so on.

One of the most important elements in multiagent decision systems is the interaction

among multiple agents which have their own sphere of influence (Jennings 2000). In

most of current literature, the study of multiagent encounters is oriented towards game

theory (Von Neumann & Morgenstern 1947). In general, Nash equilibrium is sought in

Chapter 2: Literature Review

30

order to guide what agents should do in any given scenario. Usually, two strategies 1s

and 2s are said to be in a Nash equilibrium between agent i and agent j if : 1) under

the assumption that agent i plays 1s , agent j can do not better than play 2s ; and 2)

under the assumption that agent j plays 2s , agent i can do not better than play 1s .

Hence, neither agent has any incentive to deviate from Nash equilibrium. Without

doubt, much research effort goes to the topic of searching for Nash equilibrium in

multiagent interactions. An insightful summary could be found in (Mckelvey &

McLennan1996; Von Stengel 2002). Concerning my research topics, I care more about

solving games with probabilistic graphical models, such as MAID. The approach is

called graphical models for games.

The classical work on graphical models for games is on game trees (Fudenberg &

Tirole 1991). A game tree represents agents’ actions within internal nodes and utility

value of outcomes within terminal nodes along with each branch. Hence, a game tree

has the curse of dimensions and obscures certain important structure that is often

present in real world game scenarios. To overcome these disadvantages of a game tree,

La Mura’s work on Expected Utility Networks (EUNs, La Mura & Shoham 1999) and

Game networks (G nets, La Mura 2000) incorporate both the probabilistic and utility

independence in a multiagent game setting. La Mura defined a notion of strategic

independence, and used it to break up the game into separate components so that it

facilitates an economical method for computing all equilibria in the game. On another

aspect, a variety of algorithms for identifying equilibria in a game have also appeared.

The TreeNash algorithm (Kearns et al. 2001a, 2001b) exploits the locality of

interaction that always exists in complex multiagent games described compactly in a

graphical structure. It also assumes that each agent’s reward function depends on the

actions of a subset of agents rather than all other agents’ actions. The multiagent

Chapter 2: Literature Review

31

algorithms (Vickrey & Koller 2002) use variable elimination methods to solve

graphical games.Here, a kind of gradient ascent algorithm was also proposed to

determine the equilibria profile. However, the running times of these algorithms

depend on the tree-width of the graph and these algorithms require multiple

interactions and no bound is currently known on the number of interactions required.

Recently, the continuous method (Blum et al. 2003) exploits game structures and

follows a trajectory of equilibria of perturbed games until the equilibrium of the

original game is found. A simple method (Ryan et al. 2004) formulates game problems

as a feasibility program and adopts some approaches, such as the general back-tracking

algorithm for solving Constraint Satisfaction Problem (CSP, Dechter 2003), to search

all equilibria in a game.

All of the above research work on multiagent decision systems is of a game-theoretic

orientation. It intends to seek a kind of equilibrium among multiple agents and to help

analyze their interactions with the aim to design a suitable strategy or protocol in

multiagent systems.

2.3 Learning Bayesian Network Structure from Data

Influence Diagrams can be considered as Bayesian networks consisting of only chance

nodes, with the addition of decision nodes and value nodes. The construction of

influence diagrams is to identify influence or information relationships between any

pair of chance nodes, decision nodes and value nodes. In general, determining

influence relationships between chance nodes is one of the most difficult tasks in the

probabilistic graphical model construction. Hence, building Bayesian networks from a

Chapter 2: Literature Review

32

domain becomes a popular research focus in the past two decades. It indirectly helps

the construction of influence diagrams or other graphical decision models.

A Bayesian network that is made up of structures and parameters can be built either

through domain knowledge or from data. The first approach is called Bayesian

network construction from domain knowledge while the second one is called Bayesian

network learning from data. Constructing Bayesian networks from domain knowledge

is a little subjective because of experts’ judgment, which often results in inconsistent

networks. Moreover, it is difficult to elicit dependence relationships and variable

probabilities from domain experts. Consequently, much effort has been made to devise

some engines for learning Bayesian networks from data.

In general, approaches for learning Bayesian networks are categorized according to

two cases: 1) whether the structure is known or unknown; and 2) whether the data set

is complete or incomplete. When the structure is known, the problem becomes a

parameter learning problem; otherwise, the problem becomes a structure learning

problem when the structure is unknown beforehand (Neapolitan 2004). It is also

possible to learn structures and parameters together from data. However, learning

structures is much more difficult than learning parameters. An incomplete data set

complicates the learning problem while a complete data set alleviates the learning

difficulty. The problem I address leans towards the issue of learning Bayesian network

structures from a complete data set also called learning Bayesian network structures

from data.

In this section, I would like to briefly review some typical techniques for learning

Bayesian network structures. I will discuss some basic learning methods which provide

Chapter 2: Literature Review

33

foundations to various learning algorithms, and some advanced learning methods

which are well designed recently.

2.3.1 Basic Learning Methods

The basic learning approaches which appeared in the last decade provide basic ideas

for learning Bayesian networks. Based on these concepts various learning approaches

have been developed. The task of learning Bayesian network structures is to find an

accurate structure that best fits the observed data. This task is hard because the number

of possible networks in the search space is super-exponential in the number of nodes in

Bayesian networks. The learning becomes intractable when the size of Bayesian

networks increases. For example, 10 variables in Bayesian networks result in 4.2x1018

possible searched structures (Glymour & Cooper 1999). Thus, a lot of heuristic search

approaches have been proposed to speed up the search in the structure space by finding

a local optimal structure.

The methods for learning structures are generally classified into two groups: scoring

based search and constraint based search. In the first approach, the algorithms view the

learning as an optimization problem. They try to find a structure that can best explain

dependence relationships among attributes in the data set based on some scoring

criteria, such as the Bayesian scoring method (Cooper & Herskovits 1992; Madigan &

Raftery 1994; Buntine 1994; Buntine 1996; Geiger & Heckerman 1995; Heckerman

1995; Heckerman 1996; Ramoni & Sebastiani 1997; Friedman & Koller 2000),

minimum description length method (Bouckaert 1993; Suzuki 1993; Lam & Bacchus

1994; Friedman & Goldszmidt 1996; Suzuki 1996; Tian 2000) or entropy based

method (Herskovits 1991; Steck 2000; Rebane & Pearl 1987; Herskovits & Cooper

1990; De Campos 1998). For example, the Bayesian score (Cooper & Herskovits 1992)

Chapter 2: Literature Review

34

for measuring the learned Bayesian network G is its posterior probability given the

database D :)(/),()(DPDGPDGp hh = where hG denotes the hypothesis of the Bayesian

network structure. Later, the BDe metric (Bayesian metric with Dirichlet priors and

equivalence) (Heckerman et al. 1995) evolves from the search for the network with the

largest posterior probability given Dirichlet priors over network structures and

parameters.

The typical scoring based algorithms include the K2 algorithm (Cooper & Herskovits

1992), the HGC algorithm (Heckerman et al. 1994), the WKD algorithm (Wallance et

al. 1996) and some heuristic algorithms such as genetic algorithm and evolutionary

programming (Larranaga et al. 1996; Larrañaga et al. 1996; Myers et al. 1999; Wong

et al. 1999), simulated annealing (Chickering et al. 1995), tabu search (Bouckaert 1995;

Muntenau & Cau 2000) and ant colony optimization (de Campos et al. 2002). Since

the search space in the scoring based approach is always large, local search methods

are imposed in some common algorithms (Buntine 1991; Chickering et al. 1995;

Heckerman et al. 1995; de Campos et al. 2003). The main idea of local search based

methods is to decide the “neighbor” structure of each node. A common definition of

“neighbor” refers to all structures that can be generated from the current structures by

adding, deleting or reversing a single arc, subject to the acyclicity constraint. For

instance, the K2 algorithm (Cooper & Herskovits 1992) first initializes nodes with no

parents, but with a prior order; then incrementally adds parents to increase the score of

the resulting structure. When no addition of a single parent can increase the score, it

stops adding parent nodes. On another aspect, the heuristic algorithm, like genetic

algorithm (Larranaga et al. 1996), starts from a network with or without node ordering.

Then it performs some operations with mutation or crossover operators, until the score

does not increase with these operations. Another typical learning algorithm is greedy

Chapter 2: Literature Review

35

search (Chickering 2002a). Greedy search starts at a specific point (an initial structure)

in the structure space, considers all the nearest neighbors, and moves to the neighbor

that has the highest score. If no neighbor has a higher score than the current point (i.e.

a local maximum is reached), the algorithm is terminated. In Chickering’s work

(Chickering 1996), it shows that greedy search with random restarts can produce better

models than a heuristic algorithm. Furthermore, Chickering (Chickering 1996;

Chickering 2002b) provides a theoretic justification of the greedy search method and

exploits the concept of equivalence classes of Bayesian network structures to facilitate

the search process. Two classes of Bayesian network structures are said to be

equivalent if their distributions represented by their corresponding graphical structures

are equal (Chickering 2002b).

In the constraint based approach, the algorithms try to infer the structure by identifying

dependencies from data through some conditional independency (CI) tests. In fact, the

CI tests are statistical tests on the data set. In order to use the results to reconstruct the

structure, some assumptions have to be made. The assumptions of causal sufficiency

and causal Markov condition ensure the reconstruction of causal models given data,

such as detecting the existence of edges between nodes and orienting their directions.

The assumption of faithfulness provides the justification of a constraint based approach

for recovering Bayesian networks from data (Spirtes et al. 1993). The typical methods

include the Wermuth-Lauritzen algorithm (Wermuth & Lauritzen 1983), boundary

directed acyclic graph algorithm (Pearl 1988), the SGS algorithm (Spirtes et al. 1990),

the IC algorithm (Pearl & Verma 1991), the PC algorithm (Spirtes et al. 1993). Most

of these proposed learning algorithms, such as the IC and PC algorithms, find

dependency structures from data by conducting CI tests to identify and/or orient arcs

between each pair of nodes. Hence, their complexity, like the complexity of the SGS

Chapter 2: Literature Review

36

algorithm, increases exponentially with the number of variables of the domain. The

complexity of the PC algorithm, which is considered as more efficient and popularly

used in many experiments, also increases exponentially with the degree of any node in

Bayesian networks (Spirtes et al. 1993).

There are also some hybrid algorithms that use a combination of constraint based and

scoring based approaches (Singh & Valtorta 1993; Singh & Valtorta 1995; Spirtes &

Meek 1995; Dash & Druzdzel 1999; Acid & De Campos 2000; Acid & De Campos

2001; De Campos et al. 2003). For instance, a clever method in Dash and Druzdzel’s

work (Dash & Druzdzel 1999) uses a constraint based method to search a space of

equivalent networks; then borrows the Bayesian score to evaluate the candidate models.

It can be seen that much progress has been made on learning Bayesian network

structures. However, most of these approaches do not aim at learning large Bayesian

networks with hundreds or thousands of variables. Furthermore, when the size of the

data set is quite small, the structure learning problem becomes more intractable. This is

especially true for the constraint based methods, where the reliability of CI tests

decreases when there is insufficient data. Here, the methods discussed above are

ranked as basic learning methods. Hence the challenging work of learning large

Bayesian networks from a small data set disables most of basic learning methods.

2.3.2 Advanced Learning Methods

The advanced learning approaches appear in recent years. They comprise much current

insightful research work on the edge of learning techniques. Some of them adopt well-

designed strategies and focus on the challenging work of learning a large Bayesian

network (from a small dataset), such as the Sparse Candidate algorithms (SC,

Friedman et al. 1999), the Three Phases Dependency Analysis algorithm (TPDA,

Chapter 2: Literature Review

37

Cheng et al. 2002), the Max-min Bayesian networks (MMBN, Tsamardinos et al. 2003)

and module networks (Segal et al. 2003).

The SC algorithm (Friedman et al. 1999) learns possible parents of each variable to

recover the whole network. However, in an unknown structure, it is difficult to set the

possible number of parent variables. Hence, many iterative learning processes have to

be performed to obtain a final optimal network. In the same year, an incremental

learning algorithm (Castelo & Siebes 1999) was proposed to learn a large Bayesian

network. This algorithm first groups several clusters of nodes in the network; then

recovers the whole network incrementally. However, it is only effective for a sparse

Bayesian structure and it is hard to set the cluster size.

The TPDA algorithm (Cheng et al. 2002) is a typical constraint based learning

algorithm that is based on information theory completely. It divides the learning

process into three phases: drafting, thickening and thinning. In the first two steps it

outputs a graph that catches all dependence between two nodes based on the criteria of

mutual information. In the third step, it identifies some conditional independence

relationships for each pair of nodes and removes the corresponding arcs to recover a

final structure. The TPDA algorithm has been successfully implemented in the

learning tool of Belief Network Power Constructor (BNPC, Cheng et al. 2002). The

SC and TPDA algorithms are able to learn a medium Bayesian network efficiently and

may have the potential ability to learn a large Bayesian network.

Two more promising algorithms for solving the challenging work are max-min

Bayesian networks and learning module networks. The MMBN algorithm learns the

Markov blanket of each node to recover the whole network. Each local structure in

Bayesian networks is discovered in a relatively large sample size in comparison with

Chapter 2: Literature Review

38

the size of a local structure, which makes the learned result more robust. However, the

MMBN algorithm is suitable for learning a sparse structure in which a large number of

nodes are prohibited in the Markov blanket. Otherwise, this algorithm is always not

quite efficient when a large local network contains numerous nodes from the Markov

blanket of each node. The other algorithm in learning module networks emphasizes a

set of variables that display some common features in the data set. Then, it clumps

these variables into some modules and learns each module individually. After this it

combines local modules to recover the final network. To ensure global optimization for

the combination, it is unavoidable that some constraints exist in this algorithm. For

example, it requires that all nodes in the same module must have the same parents.

Recently an inclusion-driven learning approach (Castelo & Kocka 2003) has been

proposed to learn Bayesian networks from a large dataset with 10,000 cases or so. This

new method utilizes partial orders encoded in conditional independencies, called

inclusion order, and searches the space of equivalent classes of Bayesian networks.

The idea is unique; however, it does not claim the ability to learn a large Bayesian

network from a small data set.

It can be seen that the challenging work is still unsolved although research on the topic

of learning Bayesian network structures in the past two decades has achieved much

progress. It is intractable for basic methods to learn large Bayesian network structures.

On the other hand, some deficiencies still exist in advanced approaches for learning

large Bayesian network structures from a small data set.

Chapter 2: Literature Review

39

2.4 Summary

Many researchers have exerted their effort on the topics that I will investigate in this

dissertation. They have proposed different representations to better capture

characteristics of decision problems, and developed various kinds of approaches for

learning Bayesian network structures from data. Based on this research work, I have a

solid foundation to study my research topics and carry out continuous research work.

This chapter gives a concise review of a variety of topics related to decision making,

multiagent decision systems and Bayesian network structure learning. Some terms and

concepts are introduced for a better understanding of the discussion in subsequent

chapters of this dissertation.

Chapter 2: Literature Review

40

[This page intentionally left blank]

41

3 Model Representation

This chapter provides the formal definition of Multiply Sectioned Influence Diagrams

(MSID) and Hyper Relevance Graph (HRG), followed by an intuitive description, and

then makes use of an example to illustrate the utilization of MSID and HRG in

representing a multiagent decision problem, that is a distributed decision problem

involving multiple agents. This chapter introduces the important properties of MSID

and HRG, and describes the model construction process as well.

3.1 Agency and Influence Diagrams

A good representation or model is a channel which should convey full information

about a problem domain in an intuitive and logical manner. It is required to capture the

characters of domain scenario. In some decision domains, agency is implicated in

some graphical decision models such as the mature representation language of

influence diagrams. It can be inferred that some common abstract foundations should

exist between agency and graphical decision models although they have been studied

separately in two parallel fields for a long time.

Intelligent agent has been a key concept in both AI and the main stream of computer

science. The agent-based technology plays an important role in software engineering.

In the past decades, the theory and application of agents have been well developed. As

for agency theory, many models or architectures for characterizing agents have been

Chapter 3: Model Representation

42

proposed. From an ideally theoretical and more practical perspective, the Belief-

Desire-Intention (BDI) agent model is widely accepted and implemented in many

fields (Rao & Georgeff 1995; Wooldridge & Jennings 1995; Wooldridge 2002).

In the field of decision science, some concepts, such as rational decision making and

normative decision systems, are always discussed. Influence diagram has been a

compact graphical model for representing decision problems under uncertainty. It

guides how to arrive at an optimal decision with respect to the preference of a decision

maker and the states of an uncertain environment. Accordingly, it is possible and

reasonable to model agents as influence diagrams in order to solve decision problems

in the agent-based system. In fact, the logical framework residing in both BDI agent

and influence diagrams does match with each other because both of them are based on

the essence of rational persons and want to solve decision problems with a rational

attitude.

A BDI model shows the information attitude (Belief) and pro-attitude (Desire and

Intention) of an agent. In detail, beliefs are related to the information on which an

agent thinks about the world it occupies. This information not only includes the agent’s

knowledge on what is the world, but also includes its attitude on what happens in the

world. Intentions can be seen as states of affairs that an agent has committed to bring

about. States of affairs are updated with agents’ actions or performances. Desires or

goals are objectives that an agent wants to realize while objectives reflect agents’

preferences.

In an influence diagram, chance nodes describe states of the environment which

intelligent agents are involved in. Hence, it is related to agents’ knowledge and

represents agents’ beliefs. Decision nodes provide decision options and indicate the

Chapter 3: Model Representation

43

sequential actions that an agent will perform. Finally, value nodes represent the

criterion against which different outcomes are evaluated. Thus utility nodes represent

agents’ preferences and determine the final optimal path that an agent should follow.

The above description shows that there are some corresponding implications between

variables or nodes (Henceforth, I shall make no distinction between variables and

nodes.) in influence diagrams and properties of intelligent agents. It shows again that

an influence diagram is a desirable alternative to model an agent-based decision

problem under uncertainty.

3.2 Multiply Sectioned Influence Diagrams and Hyper Relevance

Graph

Influence diagram is a well-designed probabilistic graphical model for representing an

uncertain decision problem. However, it is only for a single agent paradigm so that it

does not have a powerful ability for representing a distributed decision problem

involving multiple agents, also called a multiagent decision problem, such as the

following complex decision problem in the medical domain.

[Medical Domain]

Severe Acute Respiratory Syndrome (SARS) is a serious infectious disease that

could potentially develop into an epidemic or even an endemic. Its outbreak

causes unexpected loss everywhere in the world. Its uncertain and various

sources have frustrated the medical community and policy makers. Beyond all

doubt, it needs the collaborative effort of multiple nations concerning their own

local as well as global benefits.

Chapter 3: Model Representation

44

This is one decision problem of policy design for controlling the SARS to decrease

both social and economical loss in the world. The decision problem involves many

nations or communities, even those without the outbreak of the SARS. These involved

nations are collectively seeking good solutions to control the SARS in the whole

community in order to avoid more loss. They would share some valuable information

such as some available SARS reports. However, to protect privacy, the involved

nations could not release all of their own information in the cooperation. Summarily,

an individual privacy protection nation seeks its best decision while it has a full,

correct and consistent observation in a situation. They cooperatively solve a decision

problem in a distributed way. This kind of decision problems is what I call multiagent

decision problems. Intuitively, a multiagent decision problem always relates to a large

knowledge domain since it concerns a complex decision problem involving multiple

agents. The potential approach for solving multiagent decision problems should extend

traditional graphical decision models as well as exploit features of multiple agents.

The aforementioned decision scenario could not be solved using traditional methods of

influence diagrams and extensions of the representation which have been reviewed in

Chapter 2, such as the DID, VBS, MLID, TDID, LIMID, UID, SID, and decision

networks. Two major reasons are stated. Firstly, those formalisms emphasize the single

agent based decision problem. Thus they do not consider cooperation among multiple

agents and properties of multiple agents such as agents’ privacy and organizational

relationships. Secondly, those graphical models are not scalable. The multiagent

decision problem is a large and complex decision problem so that it is hard to

concisely represent a large number of elements and their relationships within a single

decision model.

Chapter 3: Model Representation

45

The most relevant work to my topic is the representation of MSBN. As an extended

model from Bayesian networks, an MSBN is a set of local Bayesian networks

connecting through the linkage of d-sepset. In my work, the concept of d-sepset is

extended to represent an intersection among adjacent subnets such as local Bayesian

networks, and not just between each pair of subnets. Furthermore, for a concise

representation of intricate interactions among adjacent agents, an irreducible d-sepset

is defined. An irreducible d-sepset is a set of d-sepnodes which encode the necessary

information. The necessary information includes the requisite information and the

supporting information for agents’ decision making. The requisite information is

encoded either in requisite probability nodes or in requisite observation nodes and is

required for agents’ decision making. Both of these required nodes belong to d-sepsets.

The supporting information, also encoded in d-sepnodes, is not required for agents’

decision making; however, this information supports their decision making. For

example, an agent may give the complementary information to its adjacent agents who

cannot access this information by themselves. Hence an irreducible d-sepset not only

provides a concise representation, but also indicates the most economical information

for supporting decision making in multiagent decision problems.

The representation of a multiagent decision problem requires a new graphical decision

model extending from the basic decision models such as influence diagrams. On the

other hand, an MSBN provides a coherent framework for multiple agents reasoning

although it does not address the decision making problem. This work provides a

foundation to define an MSID based on both the influence diagrams and the MSBN

formalism.

Chapter 3: Model Representation

46

3.2.1 Multiply Sectioned Influence Diagrams (MSID)

Definition 3.1: An MSID I is a set of influence diagrams jI such that each diagram

jI represents an agent j and the shared chance nodes among adjacent diagrams

kji III ,,, L comprise an irreducible d-sepset kijS L .

For instance, for two agents i and j , the MSID is denoted by ji III U= . The d-sepset

between influence diagram iI and influence diagram jI is denoted by ijS (ji ≠). It

can be seen that the MSID U
j

jII = involves two concepts: an agent-based influence

diagram jI and an irreducible d-sepset kijS L .

In brief, an MSID is a set of local influence diagrams that reflect an individual agent’s

knowledge, actions and preference. Agents communicate with each other through a d-

sepset that indicates public information. Except for the shared information in the d-

sepset, other information is protected in each local influence diagram. The shared

information indicates agents’ beliefs on their environment. It may be affected by

agents’ actions. Sometimes the information can also exert its influence on agents’

behavior. To make a consistent representation in an MSID, Bayesian networks

representing agents that are only information collecting entities without actions or

behaviors are called degenerated influence diagrams. Consequently, an MSID is a

hybrid probabilistic graphical model that could be a combination of Bayesian networks

and influence diagrams. In this sense, an MSBN is a special case of MSID in which all

agents do not make decisions and are represented by local Bayesian networks.

The definition of MSID implies that an MSID should comply with three constraints:

DAG structure, d-sepset of agent interface and irreducible d-sepset. The first constraint

Chapter 3: Model Representation

47

prohibits any directed cycle in an MSID. This is a graphical structure requirement in

probabilistic decision models following logical thinking in decision analysis (Robert &

Terry 2001). An MSID is a sizable decision model characterizing a large and complex

knowledge domain. Multiple agents have consistent thinking including causal

relationships on the same observation. Although their observations and decisions are

interleaved with each other, a sequential order exists in their interaction. The second

constraint requires that nodes shared by local influence diagrams should be d-

sepnodes, which means that all parents of a public node should be included in the same

local influence diagram. This constraint protects agent’s privacy and indicates that an

agent can decide its actions using local information only when the information in the

d-sepset is known. The final constraint is to ensure the compactness of MSID, and to

remove any redundant information. The information, including the requisite

information and the supporting information, encoded in a d-sepset between two agents,

is just what the two agents are willing to share. Unnecessary information would

complicate a model representation and confound the necessary information.

Besides the qualitative properties of MSID on DAG structure, an MSID also represents

a set of joint probability distributions encoded in an individual influence diagram. This

is to say ∏ ∏∏
∈

==
j DCxj

j
jj

xxPPP)))(((
U

π where ∏
∈ jj DCx

xxP
U

))((π is a collection of

conditional probability distributions for node x (belonging to either the set of decision

nodes jD or the set of chance nodes jC) given its parents)(xπ . For node x in d-sepset,

exactly one of its occurrences (in an jI containing)(}{ xx πU) is assigned ∏
∈ jIx

xxP))((π

while each occurrence in other local influence diagrams is assigned a uniform potential,

Chapter 3: Model Representation

48

such as 1. In this way, an MSID is able to ensure a consistent representation of joint

probability distributions.

In the aforementioned SARS decision problem, each nation or community can be

considered as an individual agent that is modeled as a local influence diagram. Figure

3.1 shows the MSID that represents this multiagent decision problem concerning the

SARS control. The MSID is defined as U
3,2,1=

=
j

jII . In this MSID, there are three local

influence diagrams)3,2,1,(=jI j that represent three agents)3,2,1,(=jA j respectively

(Agent A1: Nation 1; Agent A2: Nation 2 and Agent A3: Nation 3). Each local influence

diagram describes an individual agent’s knowledge that formalizes an agent’s

judgments on the situation. The three agents share some public information

represented as grey color nodes { }cba ,, such as the WHO (World Health Organization)

report on the SARS, status of transmission customers and the SARS report from a

certain nation (not all involved nations would like to release this information). The

information { }cba ,, indicates agents’ common beliefs on the same observation. Among

this information, the information },{ ba is not affected by agents’ decisions while the

information c is affected by agent A1’s decision 2d . Furthermore, their privacy, like

the SARS report from its own nation and states of hospital facilities (some nations

have to hide these information for their own benefit), is protected in local influence

diagrams such as g in A1, k in A2, and l in A3. The actions of agents are represented

as decision nodes in corresponding local influence diagrams such as temperature

checking at entries (1d in 1I), home quarantine policy (2d in 1I), experiments of

SARS virus (1d in 2I) and overseas tour policy (1d in 3I). The benefit for each agent

is defined as utility functions represented by utility nodes in the MSID. In Figure 3.1,

some agents can make decisions independently with the known information in the d-

Chapter 3: Model Representation

49

sepset. For example, with the known information c between 1I and 3I , A3 will make

the decision 1d without considering any effect of A1’s actions.

Figure 3.1: An MSID for the SARS Control

3.2.2 Hyper Relevance Graph (HRG)

An MSID has the ability of representing a multiagent decision problem concerning the

six characters of this decision scenario I discussed in the previous chapter. However, it

does not explicitly describe the property of organizational relationships among

multiple agents such as the required information for decision making. Moreover, in an

uncertain and dynamic environment, agents have to be regrouped to adapt to a new

surrounding. In this process, it is the organizational relationship that guides multiple

agents to construct an updated multiagent system. In Zambonelli’s work (Zambonelli

et al. 2001), five types of organizational relationships (Control, Peer, Benevolence,

Dependency and Ownership) between agents were discussed. However, from the

viewpoint of decision making and information flow in a multiagent system, these

v2

b

a
e

d1

h
g

d2

c

b

a

i

f

k

d1

v3

c

l

d1

v4 m

a

I1

I2

I3

v1

Chapter 3: Model Representation

50

relationships can be classified into only two types: Control and Communication. Hence,

the concept of Hyper Relevance Graph (HRG) is introduced to represent the

information implicated in the relationship.

Definition 3.2: A Hyper Relevance Graph (HRG) Η is composed of three types of

nodes: rectangular, triangular and oval nodes, and arcs between them. A rectangular

node denotes an individual agent jA associated with local influence diagram jI in an

MSID. A triangular node denotes the shared information C in d-sepset S that is

required for an agent’s decision D . An oval node denotes the shared information C in

d-sepset S that is not required by any agent’s decision D .

With the elements in an HRG, two kinds of basic relevance graphs, called Control

Relevance Graph and Communication Relevance Graph, can be built as shown in

Figure 3.2. Each is associated with a function that implies an organizational

relationship in a multiagent system.

1. Control Relevance Graph is associated with a function

},,{),,(Re 1 mkji ccdAAq L= , which indicates that the set of requisite information

},,{ 1 mcc L agent iA provides is required for agent jA ’s decision kd . It signifies

the Control relationship.

2. Communication Relevance Graph is associated with a function

},,{),(1 nji ccAASup L= which indicates that the set of supporting information

},,{ 1 ncc L flowing between agent iA and agent jA supports their decision

making; however, this information is not required for any of their decisions. It

signifies the Communication relationship.

Chapter 3: Model Representation

51

Figure 3.2: Two Basic Relevance Graphs

In a control relevance graph, the set of requisite information },,{ 1 mcc L flows from

agent iA to agent jA by the direction of the triangular node in Figure 3.2(a). This

information is required for the optimal decision making in agent jA . It is a subset of

both requisite observation nodes (RO) and requisite probability nodes (RP) for

decision kd in influence diagram jI . The requisite observation nodes for decision kd

are those which can be observed before decision kd that might be worth observing so

as to evaluate the decision problem starting with decision kd ; while, the requisite

probability nodes for decision kd are those for which conditional probability

distributions might be needed to evaluate the decision problem starting with decision

kd . Hence, in a control relevance graph, it is said that agent iA controls agent jA ’s

decision kd with the information },,{ 1 mcc L ; but not vice versa. In a communication

relevance graph, the supporting information },,{ 1 ncc L indicated in the oval node

implies common beliefs between agent iA and agent jA ; however, this information is

not required for their decision making.

Hence, an HRG can be driven and built based on the structural representation of an

Agent Ai

Agent Aj

Agent Ai

Agent Aj

c1, ···,cn

b) Communication
Relevance Graph

a) Control
Relevance Graph

c1, ···,cm
(dk)

Chapter 3: Model Representation

52

MSID and the organizational relationships in the problem domain. For example, the

HRG based on the MSID in Figure 3.1 is shown in Figure 3.3. The HRG in Figure 3.3

clearly shows that agent 1A controls agent 3A ’s decision 1d with the information c ,

representing that the nation 1’s SARS report affects overseas tour policies in nation 3.

Furthermore, the information c is affected by agent 1A ’s decision 2d . Thus it is said

that agent 1A ’s decision 2d exerts an influence on agent 3A ’s decision 1d . The HRG

also shows that agent 2A controls agent 1A ’s decision 1d with the information b ,

representing that temperature checking decisions at nation 1’s border crossing are

affected by the status of citizens from nation 2. In this case, agent 2A affects agent

1A ’s decision 1d by its judgment that is not affected by agent 2A ’s decision 1d .

Besides the public information },{ cb , these nations share the public information a that

conveys the indication of the WHO report on the SARS. However, this information is

not the requisite one for agents’ decision making. In other words, the HRG gives a full

picture of the relationships among the three nations modeled as agents 1A , 2A , and 3A .

The HRG in Figure 3.3 indicates that multiple nations are able to arrive at a good

decision on the SARS control with some cooperation, even without a central control

from the WHO.

Chapter 3: Model Representation

53

Figure 3.3: The HRG for the MSID in Figure 3.1

3.3 Model Construction

Model construction is a model refinement process with the aim to characterize decision

scenarios in a compact and accurate model. It requires some guidelines to facilitate the

building of a reliable and exact model.

3.3.1 MSID and HRG

An MSID represents both the knowledge of the environment and the properties of

intelligent agents while an HRG characterizes the organizational relationships in the

multiagent system. Evolving over time, intelligent agents are regrouped according to

new relationships represented in the HRG. Consequently, the MSID should be rebuilt

based on the updated HRG.

Triangular and oval nodes in an HRG have the exact chance nodes that can be obtained

from a d-sepset in an MSID. Elements in the HRG could be driven from a well-built

MSID through either Decision Bayes-ball or refined Decision Bayes-ball procedure.

These two procedures could obtain the required chance nodes, including requisite

A1

A2 A3

b
(d1)

c
(d1)

a a

a

Chapter 3: Model Representation

54

observation nodes and requisite probability nodes, for corresponding decision nodes.

These required chance nodes and the corresponding decision nodes are elements in

triangular nodes of the HRG. Except for these chance nodes, other nodes in the d-

sepset belong to elements in oval nodes. Extracted from a knowledge domain, the

organizational relationships related with two functions are confirmed in the HRG. On

another aspect, when an HRG is reorganized because of dynamic organizational

relationships in a multiagent system, it will lead to a reconstruction of the MSID. For

instance, it is to refine (decreasing or increasing) chance nodes in the d-sepset and to

reorient their relevance (adding or removing arcs) to decision nodes. Accordingly, the

MSID and HRG are regulated with each other to arrive at an elaborate framework.

A compact MSID requires that a d-sepset should be irreducible, which depends on the

relationship between intelligent agents. The information flowing through the d-sepset

is just what intelligent agents want according to their organizational relationships. The

necessary information is composed of the requisite information and the supporting

information which indicate the control relationship and the communication

relationship between agents respectively. An HRG is the exact model which could

encompass all the implications concerning the irreducibility of d-sepset. Hence it is

able to help the constraint (irreducibility of d-sepset) checking and the reconstruction

of an MSID.

3.3.2 Modeling Process

The MSID, together with the HRG, provides the basic elements to represent a large,

complex and distributed decision problem involving multiple agents. These two

models could be built from a certain decision domain in a simultaneous or a sequential

way.

Chapter 3: Model Representation

55

1) Simultaneous Approach: It is to build the MSID and HRG from domain

knowledge at the same time as shown in Figure 3.4 (a). In this way, both of the

initial models are built from decision scenarios directly. It is inevitable that the

model construction process incorporates much subjective consideration from

domain experts. After that, the two models go through the verification process

and do a further refinement. Finally, the refined MSID and HRG is output

when they are considered and satisfied by domain experts. The final model

should be valid and represent the real decision scenario accurately.

2) Sequential Approach: It is to build the MSID and HRG from domain

knowledge in a sequential way as shown in Figure 3.4 (b). An MSID is

constructed directly from the domain knowledge while an HRG is produced

based on the built MSID. In this way, it avoids much inconsistency between the

initial two models. Finally, after model verification and further refinement, the

satisfied models of the MSID and HRG are generated.

It can be seen that model construction is an iterative refinement process that requires

both an objective step of model verification and a subjective step of model elicitation

from domain knowledge. In Chapter 4, model verification will be discussed in length.

Since model elicitation from domain knowledge largely depends on the subjective

thinking on the domain, it is hard to figure out a formal elicitation approach. However,

if a model is elicited from data in the domain, there exist many mature methods. I will

focus on this topic in Chapter 7.

Chapter 3: Model Representation

56

Figure 3.4: Modeling Approaches

3.4 An Application

Multiagent decision problems are rather common and essential in our daily lives. They

are dominant in some specific problem domains such as military defense, air control,

medicine and so on. The MSID and HRG together provide a flexible, compact and

distributed framework for representing these kinds of decision problem. Besides the

aforementioned medical domain from which I have developed the corresponding

decision models, the maritime security domain also attracts my attention. In this

section, I will investigate one decision scenario in this domain and build decision

models of MSID and HRG that will be referred to in Chapter 4.

Unsatisfied
Satisfied

Satisfied
Unsatisfied

Output

Output

Generate
MSID

Generate
HRG

Verify Models

Refine Models

Generate
MSID

Generate
HRG

Verify Models

Refine Models

Domain
Knowledge

Domain
Knowledge

a) Simultaneous Approach

b) Sequential Approach

Chapter 3: Model Representation

57

3.4.1 Case Description

A multiagent decision problem could be formulated as a typical decision scenario in

the maritime security domain:

[Maritime Security Domain]

The issue of coast safety has long been a focus in the maritime security

domain. The task of an information collection center on the land is to ensure

the coast safety and ships’ normal activities along the coastline as well as to

monitor the status of entry into a harbor. In a long and broad coast, all kinds

of ships may leave and enter the coast at any time. For example, a navy ship

may go on its rounds on patrols or to invigilate reported incidents in the sea,

and a commercial ship may be carrying tourists for sightseeing or other

pleasure activities. As they share a common space, these ships have to

cooperate with each other in order to achieve their respective missions and

goals. An information collection center conveys some public information,

such as the weather information and the report on the condition and status of

sea, to a navy ship and a commercial ship. A navy ship may report back to

headquarters after it has observed any unusual happenings out there, such as

the abnormal status of sea and the unexpected performance of a commercial

ship. In the follow-up, the navy ship may decide to intercept the ship if the

navy ship is in good function and in a favorable position corresponding to this

ship. A commercial ship, on the other hand, must focus on its navigation and

take appropriate actions in reaction to the conditions of sea. For example, a

commercial ship may decide to seek help from the authorities when it feels

that its position is being endangered concerning the sea condition. This action

Chapter 3: Model Representation

58

transmits the information of its behavior to a navy ship. Also, the commercial

ship may adjust its work type, such as changing a tour line, when it does a full

evaluation of its mechanism function. While all these activities are going on,

public information should be accessible to them when operating in this area.

The above is an example encoded with a distributed decision problem involving

multiple agents (ships). There are two kinds of ships, namely a navy ship and a

commercial ship, and an information collection center. All of them share some

common information such as the weather information. Meanwhile, a commercial ship

shares the information of its performance with a navy ship. However, for privacy

protection, both a commercial ship and a navy ship would not release publicly the

information of their function and their position in the sea. On another aspect, agents

have their individual objectives, but their decisions and observations are interleaved

within multiple agents. For instance, a commercial ship needs the information of the

sea condition to make the decision on seeking help; and a navy ship needs to be

informed of the performance of a commercial ship before it takes the action of doing a

report. Accordingly this is a typical multiagent decision problem. Decision models of

MSID and HRG have the ability and capability to represent this decision problem.

3.4.2 Model Formulation

According to the above decision scenario in the maritime security domain, the

Information Collection Center (ICC), Navy Ship (NS) and Commercial Ship (CS) are

considered as an individual agent, and organized into a multiagent system. Each of

them is described as an (degenerated) influence diagram (1I , 2I and 3I) respectively

in an MSID. Some of the variables representing uncertainty and decisions are tabulated

as shown in Table 3.1.

Chapter 3: Model Representation

59

After variables are identified in the problem description, models of MSID and HRG

can be built simultaneously as shown in Figures 3.5 and 3.6 respectively. As I

discussed earlier, the HRG can be obtained in two ways. One is to produce the HRG

according to the implication of MSID. After that, the HRG is verified with the domain

knowledge. The other method is to produce the HRG with regard to the problem

description, then to verify it with respect to a constructed MSID. Here I adopt the

second approach and will discuss its verification in Chapter 4.

Chapter 3: Model Representation

60

Table 3.1: Variable Identification of Agents ICC, NS and CS

Information Collection Center in the land (ICC)
a) Uncertainty

Uncertainty Weather
(w)

Condition
of Sea

(c)

Status of
Entry

(e)

Status of
Sea
(s)

Other
Information

(i)
Good Good Blocked Normal Authentic Outcomes Bad Bad Unblocked Abnormal Inauthentic

Navy Ship (NS)

a) Uncertainty

Uncertainty Weather
(w)

Condition
of Region

(cr)

Position of
Self
(ps2)

Performance of
CS
(pp)

Function
(f2)

Good Good Favorable Expected Good Outcomes Bad Bad Unfavorable Unexpected Bad

Uncertainty
Status of

Sea
(s)

Normal Outcomes Abnormal

b) Decision c) Utility Value

Decision Intervene
(in)

Report
(re)

Yes Yes Alternatives No No

Commercial Ship (CS)

a) Uncertainty

Uncertainty Weather
(w)

Condition of
Sea
(c)

Position of
Self
(ps1)

Behavior of
Self
(pp)

Function
(f1)

Good Normal Danger Normal Good Outcomes Bad Abnormal Safety Abnormal Bad

b) Decision c) Utility Value

Decision Work Type
(wt)

Ask Help
(ah)

Old Yes Alternatives New No

Utility v2
in re Attributes f2 pp

Utility v1
c f1 Attributes wt

Chapter 3: Model Representation

61

Figure 3.5: An MSID for Agents ICC, CS and NS

Figure 3.6: An HRG for Agents ICC, CS and NS

I1
(ICC)

i

w

e

s

c

s

f2

ps2

pp

in

re

v2

I2
(NS)

ps1

w

c

wt

f1

v1

ah

pp

I3
(CS)

cr

w

Agent
ICC

Agent NS Agent CS

w w
c

(wt,ah)
s

(in, re)

w

pp
(in, re)

Chapter 3: Model Representation

62

In Figure 3.5, agent ICC is modeled as a degenerated influence diagram 1I in the

MSID. It provides public information to agents NS and CS, and does not make any

decision. Agents NS and CS take some actions based on their observations. Agents’

privacy, like agents’ functions and position, are protected in corresponding local

influence diagrams. From the HRG in Figure 3.6, it is noticed that agents ICC, NS and

CS share the public information w . This public information affects agents’

observations; however, this information does not control agents’ decisions. On the

other hand, some information from agent ICC controls decisions of agents NS and CS.

For example, agent ICC controls agent NS’s decisions },{ rein with the information s

and controls agent CS’s decisions },{ wtah with the information c . At the same time, it

is noticed that the information },{ sc is not affected by agent ICC’s decisions because

agent ICC is only an information collection center. In contrast, agent CS controls agent

NS’s decisions },{ inre with the information pp while this information is affected by

agent CS’s decision ah . It indicates that agent CS’s decision ah exerts an influence on

agent NS’s decisions },{ inre , which just matches the domain knowledge. Thus it can be

seen that the HRG explicitly describes the organization relationships among multiple

agents through quantifying the information support for decision making.

From the representation of MSID and HRG, it seems that this framework is flexible

and scalable since the model is designed in a distributed manner. It could solve a

decision problem in the changing world. For example, in the maritime security domain,

any new ship that enters the invigilated region could be modeled as a new local

influence diagram that would be added into the existing MSID without damaging other

components. On the other hand, currently, the model representation of MSID lacks the

Chapter 3: Model Representation

63

ability to handle game problems since it requires a sequential order between decisions

and observations among multiple agents.

3.5 Summary

Multiagent decision problems are difficult to be addressed by current representation

languages in probabilistic graphical models so that new methodologies need to be

proposed. This chapter provides a formal definition of the MSID and HRG which

could be utilized to represent a distributed decision problem involving multiple agents

in an uncertain environment. At the same time, this chapter describes many

opportunities of real world applications such as the policy design for avoiding more

loss due to the SARS in 2003 and ship models in the maritime security domain.

The content in this chapter serves as a basis for the discussion in the following chapters.

Chapter 3: Model Representation

64

[This page intentionally left blank]

65

4 Model Verification

Multiply Sectioned Influence Diagrams (MSID), together with Hyper Relevance

Graph (HRG), is a distributed and cooperative probabilistic graphical model to

represent multiagent decision problems. As shown in the definitions in Chapter 3, the

representations of MSID and HRG should satisfy three constraints: DAG structure, d-

sepset of agent interface and irreducible d-sepset. Thus model construction involves

one important process of model verification which will be illustrated in this chapter.

4.1 The Introduction

Model verification is an old but not obsolete topic in the engineering area and is an

essential process in practical applications (Cousot 2005). The aim of model

verification is to ensure a valid and reliable model. In general, model validation and

verification can be conducted through expert evaluation, data evaluation, and some

model consistency checking, such as finding and resolving conflicts by forming a

consistency matrix. In expert systems or knowledge based systems, model verification

always depends on both the knowledge of domain experts and the skills of model

builders. It is desirable that a valid and reliable model be generated from the problem

domain and this model can characterize the domain knowledge accurately and

conformably.

Chapter 4: Model Verification

66

In Chapter 3, I have proposed graphical decision models of Multiply Sectioned

Influence Diagrams (MSID) and Hyper Relevance Graph (HRG). An MSID represents

a decision problem involving multiple agents in a distributed and flexible fashion

while an HRG encodes the organizational relationships in the multiagent system. From

the definition, it can be seen that the MSID and HRG should obey the three constraints

such as the DAG structure, d-sepset of agent interface, and irreducible d-sepset.

Both distributed decision making and compact model representation require that the

MSID and HRG observe a set of constraints. These constraints need to be verified

before model evaluation with the aim to avoid “garbage-in-garbage-out”. In addition,

the verification process is a cooperative task for multiple agents whose knowledge is

encoded into local influence diagrams individually. Since agents are autonomous and

built by different vendors, agents’ privacy should be protected. Hence, verification of

these constraints raises a challenge.

In the field of decision analysis, a traditional approach to verify a graphical model

involves a detailed study on its graphical structure, like a graphical verification on

DAG in an MSBN (Xiang 1998; Xiang & Chen 2002). The method requires a good

knowledge on graph theory that always frustrates the novices. To relieve a knowledge

repertory with graph theory, a symbolic method is proposed to deal with the model

verification. The method considers the verification in an algebraic view that

characterizes a factorization joint probability in an MSID. Furthermore, to enrich

model verification, the issue of verification failure is investigated with some useful

comments on model correction.

Chapter 4: Model Verification

67

4.2 Foundation of Symbolic Verification

Basically, like influence diagrams, an MSID represents decision problems from two

points of view. One is a graphical structure G , which is a DAG; the other is a Joint

Probability Distribution (JPD) P , which is a set of multiplication of the factorization

product of conditional probabilities of nodes given their parents, like a recursive

factorization in Bayesian networks (Pearl 1998; Shachter et al. 1990; Wong & Wu

2002) ,

i.e. ∏ ∏∏
∈

==
j DCxj

j
jj

xxPPP)))(((
U

π

where jC and jD are sets of chance and decision nodes in local influence diagrams jI .

Essentially, the two viewpoints on an MSID display the same knowledge about a

problem domain and are consistent with each other. Taking advantage of this situation,

it is reasonable and possible to verify the structure by its corresponding part, like JPD.

Hence a new approach, called symbolic verification, deserves to be studied.

From a graphical perspective, an MSID is a set of local DAG structures (for influence

diagrams) that defines a DAG globally; however, from a symbolic view, it is a set of

individual JPD
jIP associated with local influence diagrams. Furthermore, with the

form of conditional probability, an individual JPD
jIP can be rewritten as

∏∏
==

==
n

j j

jj
n

j
jjI xp

xxp
xxpP

i

11))((

))(,(
))((

π

π
π (4.1)

where x is a chance node or a decision node in local influence diagrams.

Chapter 4: Model Verification

68

It is evident that the denominator of last term in Equation (4.1) implies parents of

nodes while the numerator includes a family of nodes. Collectively, they provide us

with the parental information on nodes in local influence diagrams, which is consistent

with the structural information. Conveniently, Equation (4.1) is called the algebraic

description of local influence diagrams which provides a foundation to a symbolic

verification.

4.3 Symbolic Verification of DAG structure

The first constraint, DAG structure, means that there should be no directed cyclic paths

in an MSID. The verification task is to ensure a global DAG structure in an MSID

although local influence diagrams are identified as a true DAG. The symbolic method

takes some basic operations based on the algebraic description of local models to test

the DAG structure in an MSID,

Theorem 4.1: An MSID without value nodes has the same DAG property as the

original MSID.

Proof. An MSID includes three types of nodes: chance nodes, decision nodes and

value nodes. Since a value node is a sink node without outgoing arcs in an MSID, it

cannot belong to any part of a directed cyclic path. Removing the value node ensures

the DAG property in an MSID. ▌

With Theorem 4.1, in the process of DAG structure verification, value nodes in an

MSID can be removed safely. After removing value nodes and considering decision

nodes as chance nodes in an MSID, the MSID has the same structure as an MSBN

Chapter 4: Model Verification

69

which is a set of local Bayesian networks. Here, a symbolic verification method,

instead of graphical methods, will be carried out in an MSBN.

4.3.1 Basic Concepts

Verification of DAG structure involves a global testing of directed cyclic paths in an

MSBN. It is clear that if a directed cyclic path exists in an MSBN, the path must

include d-sepnodes shared by adjacent subnets. This path is called a D-Cycle and is

defined as follows:

Definition 4.1: A D-Cycle (DC) is a cyclic directed path that includes at least one d-

sepnode globally.

Simarly, a directed path in a local subnet is called a D-Path (DP). It is likely to be a

part of a D-Cycle. The formal definition is as follows:

Definition 4.2: A D-Path (DP) is a directed path in a local subnet in which both the

source and sink nodes are d-sepnodes.

In each subnet, concerning the relationships between pairs of d-sepnodes, two types of

d-sepnodes can be classified as follows.

Definition 4.3: A D-Head (DH) set is composed of d-sepnodes that have out-going

arcs in iI . I use the notation { }ycaDH ,, L= to denote the D-Head set.

Definition 4.4: A D-Tail (DT) set is composed of d-sepnodes that have incident arcs

in iI . I use the notation { }zdbDT ,, L= to denote the D-Tail set.

When one d-sepnode belongs to both a DH and a DT , it is called a symmetric node.

The corresponding nodes in the DH and the DT are called a symmetric type of this d-

Chapter 4: Model Verification

70

sepnode, denoted by m and m . Thus, in each subnet, elements from a DH to a DT

respectively compose one DP . These DPs are formed into a set, denoted as

DTzdbDHycazydcbaDPs ∈∈•⊗⊗•⊗•= ,,,;,,,)()()(LLL

where the two operators • and ⊗ are defined as follows:

Denotation 4.1: Operator • denotes that there must be a DP between an element in a

DH and an element in a DT .

Denotation 4.2: Operator ⊗ denotes that there may be another DP whose nodes are

from different DPs .

Operator • has a higher priority compared with operator ⊗ and is denoted by ⊗• f .

4.3.2 DPs with Algebraic Description

From Equation (4.1), the JPD in each subnet can be expressed as follows:

∏
=

=
n

j j

jj
I xp

xxp
P

i

1))((

))(,(

π

π
. (4.2)

Obviously, the fact that))((jxp π equals to 1 implies node jx is a root node in iI .

Based on the definition of operators, firstly, some possible DPs could be described in

each subnet. From Equation (4.1),))((jj xxp π indicates that there is a directed path

from)(jxπ to jx . After that, based on Equation (4.2) and some operations (defined

later), DPs could be obtained for each subnet.

Chapter 4: Model Verification

71

The example network as shown in Figure 4.1 is used to illustrate some operations. This

example has the same structure as that in Xiang’s work (Xiang 1998) and its DAG

structure has been well discussed and analyzed by graphical methods.

Figure 4.1: An Example Network

Considering the three DAGs (1I , 2I and 3I) in Figure 4.1, each iI is a subnet in an

MSBN. Using Equation (4.2), the JPD of each subnet is written as follows:

)(
),(

)(
),(

),(
),,(

1
)(

),(
),,(

1
)(

1 dp
dbp

cp
cdp

dfp
dfepfp

fap
facpapPI ×××××= (4.3)

)(
),(

)(
),(

1
)(

)(
),(

),,(
),,,(

)(
),(

)(
),(

1
)(

2 np
nkp

np
nopbp

bp
bnp

najp
najmp

lp
lap

jp
jlpjpPI ×××××××= (4.4)

),(
),,(

)(
),(

)(
),(

1
)(

)(
),(

3 ghp
ghip

gp
ghp

kp
kgpkp

gp
gjpPI ××××= (4.5)

The DH and DT sets for each subnet iI are as follows:

{ }aIDH =)(1 , { }bIDT =)(1 ; { }jbaIDH ,,)(2 = , { }kaIDT ,)(2 = ; { }kIDH =)(3 , { }jIDT =)(3 .

These DH and DT sets can be identified based on an algebraic description of each

subnet. It involves the following operations:

Cancel Node: Nodes The operation of node canceling goes on when a node finds itself

in other terms.

f

e

c

d

a

b

a

b

l

m

n

j

k

o
I1 I2

j

k

I3

h
i

g

Chapter 4: Model Verification

72

Identify DH: For each d-sepnode in the denominator of each term in Equation (4.2),

the d-sepnode is in a DH if it can be cancelled by the same node in the numerator of

the same term; otherwise, it is not in a DH . For example, in Equation (4.3), the d-

sepnode a in the),(fap can be cancelled by a in the),,(facp . Hence the d-sepnode

a is in a DH .

In fact, if only the d-sepnode is included in the denominator, the d-sepnode should be

in a DH .

Identify DT: For each d-sepnode in the numerator of each term in Equation (4.2)

whose denominator does not equal to 1, the d-sepnode is in a DT if it cannot be

cancelled by the same node in the denominator of the same term; otherwise, it is not in

a DT . For example, in Equation (4.3), the d-sepnode b in the),(dbp is not cancelled

by the)(dp . Hence the d-sepnode b is in a DT .

It should be noted that during the DH identifying operation, the final result is a union

of all identifications. For example, in Equation (4.4), although d-sepnode a in the

numerator),,,(najmp can be cancelled by the),,(najp in the term
),,(

),,,(
najp

najmp , it is

still in a DT because it cannot be cancelled in the term
)(
),(

lp
lap . It is seen that a and a

are symmetric types of d-sepnode a . A d-sepnode in the numerator of the term whose

denominator equals to 1 must be in a DH . Hence, a DP will begin with these DH

nodes.

A DP in each subnet can be identified through the above denotations and the

following operations. For example, Equation (4.3) for subnet 1I could be rewritten as

follows.

Chapter 4: Model Verification

73

),(
),,(

1
)(

)(
),(

)(
),(

),(
),,(

1
)(

)(
),(

)(
),(

),(
),,(

1
)(

),(
),,(

1
)(

1 dfp
dfepfp

dp
dbp

cp
cdp

fap
facpap

dp
dbp

cp
cdp

dfp
dfepfp

fap
facpapPI ×××××=×××××=

Beginning with the DH node a the operations will be described as follows:

↑↑↑)(
),(

)(
),(

),(
),,(

1
)(

dp
dbp

cp
cdp

fap
facpap

OOO (4.6)

Operation 4.1: Let symbol O denote that a node in the numerator of a term tries to

find itself in the denominator of another term.

It is clear that the first node subjected to operation 4.1 must be a DH node.

Operation 4.2: Let symbol ↑ denote that a node in the denominator tries to cancel

the same node in the numerator and lets its children find themselves in the next

operation O .

For example, in the second term of Equation (4.6), nodes a and f will cancel node a

and node f in the denominator and only node c remains. Hence, node c will perform

the operation O in the third term and so on.

Hence, a selected DH node performs these two operations alternately until it meets a

DT node in the numerator and the operation cannot be performed any more. For

example, in Equation (4.6), the DH node a meets the DT node b and no operation

can be performed any more.

The termination of these operations produces a DP , such as the DP in Equation

(4.6): .)(baDPs •=

So far, for 1I , 2I and 3I , DPs formed based on Equations (4.3 ~ 4.5) are as follows:

1I :)(1 baDPs •= (4.7)

Chapter 4: Model Verification

74

2I :)()(2 kbajDPs •⊗•= (4.8)

3I :)(3 jkDPs •= (4.9)

4.3.3 Find DC

The DAG verification is to ensure that there is no DC in an MSBN. Hence all DPs

from local subnets should be integrated to test whether there is a DC globally. An

integration of DPs composes some DC Candidates (DCC). The steps are illustrated as

follows.

Firstly, integrate DPs from potential shared subnets and form each corresponding

DCC with a DP which only includes their shared d-sepnodes. For example, the

combination of Equations (4.7-4.9) generates one DCC .

)()()()(jkkbajbaDCC •⊗•⊗•⊗•= (4.10)

Secondly, find a DC by absorbing symmetric nodes in both sides of operator ⊗ such

as)()()()(jaabajba •⊗•≡•⊗• . Hence a and a will be absorbed. Moreover, the

action of absorbing is not limited by the number of symmetric nodes. It means that one

DH node can absorb more than one DT node and vice versa. If all the nodes in a DCC

are absorbed completely, there is at least one DC in the MSBN; otherwise no DC

exists.

Finally, verify a DAG structure. If there is no DC in the MSBN, the overall structure

of the MSBN is a DAG; otherwise it is not a DAG structure.

Theorem 4.2: A DC exists in an MSBN if and only if nodes in all DCCs are absorbed

completely.

Chapter 4: Model Verification

75

Proof. If a DC exists in an MSBN, each node in DCC must be a symmetric node.

They are on both sides of operator ⊗ and will be absorbed. Thus all the nodes in

DCC must and will be absorbed totally. Conversely, if all nodes in a DCC are absorbed

completely, it indicates that every node has two symmetric types on both sides of

operator ⊗ and each type of this node is connected with another node by operator • .

According to the priority of the operator ⊗• f , there must be a DP among these

relative nodes, and these DPs are formed into a DC . For instance, in Equation (4.10),

although in the second term { })()(kbaj •⊗• it is unknown whether nodes a and b are

connected; however, the connection is confirmed from the first term { })(ba • .

Consequently, all the nodes are connected to form a DC in an MSBN. ▌

For the aforementioned example, nodes in Equation (4.10) are absorbed completely.

Hence there must be a DC in the MSBN and a DAG structure of the MSBN is not held.

This conclusion can be verified through the graphical structure in Figure 4.1.

4.3.4 Complexity Analysis

Based on the operations described above, a symbolic verification of DAG structure in

an MSID can be described in the following steps:

 [Symbolic DAG Verification]

1) Convert an MSID into an MSBN;

2) Describe each subnet with the algebraic form;

3) Identify DH and DT ;

4) Find DP and build DPs ;

Chapter 4: Model Verification

76

5) Integrate DPs into DCCs ;

6) Find DC in each DCC ;

7) Verify the DAG structure.

To analyze the complexity of the symbolic verification, some notations are assumed as

follows (Xiang 1998):

m : the maximum number of nodes in each subnet;

t : the maximum cardinality of node adjacency in each subnet;

k : the maximum number of d-sepnodes shared by subnets;

n : the total number of subnets in an MSBN.

It is observed that)(kο d-sepnodes need to be identified in each subnet. Hence, in Step

3, a total of)(nkο d-sepnodes are identified in an MSBN. For each d-sepnode,)(mtο

nodes in each subnet have to be searched during the process of finding DP . Thus the

complexity of Step 4 is)(nkmtο . The most time-consuming part resides in Step 5 where

n2 DCCs may be formed. Fortunately, in practice, the number of subnets in an MSBN

is not so large. In Step 6, each node in a DCC will search)(nkο nodes during the

operation of absorbing. Hence the complexity of Step 6 is)(22knο .

The algorithm will be executed by the cooperation of agents associated with subnets.

In order to protect the privacy of each agent, each agent performs Steps 2 ~ 4

individually. Then, they will provide only DPs for further verification. Hence the last

two steps are executed by a coordinator agent that may be a computer or a human. In

this way, the algorithm can be performed in a distributed and centralized mode and

protects the privacy of the agents.

Chapter 4: Model Verification

77

4.3.5 Dealing with Verification Failure

Verification fails when there are some DCs in an MSID. In this case, it is expected to

identify the violated subnets with the aim of correcting the structure. Based on the

symbolic approach, the problem of verification failure is investigated in this section.

The verification of DAG structure depends on the DC test in each DCC . This means

that the verification fails once there is a DC in any DCC . Thus it is the subnets whose

DPs comprise a DCC that cause the failure. Furthermore, these subnets can be

identified by tracing back in Step 5 during the verification process. For example, the

DAG structure is not ensured in Figure 4.1. One DC has been found. At the same time,

in Step 6, it is known that a DCC is shared by 1I , 2I and 3I . Hence it is the combined

structure of 1I , 2I and 3I that leads to the failure of verification. The related subnets

need to be modified for the DAG structure.

In Step 5, it is known that the larger the set of DPs for each subnet, the larger the set of

DCCs and the more likely the failure can happen. Hence, the subnet with the largest set

of DPs has more chances to cause failure. Thus the corresponding subnets that share

the DCCs must be checked and the structure should be corrected. Based on this point,

it is expected to decrease the cardinality of the set of DT or DH in each subnet, which

will decrease the cardinality of the set of DPs .

4.4 Symbolic Verification of Agent Interface

The second constraint, d-sepset of agent interface, requires that every node in the agent

interface be a d-sepnode, which indicates that all of its parents should be included in at

least one local influence diagram.

Chapter 4: Model Verification

78

Theorem 4.3: An MSID without value nodes has the same d-sepset property as the

original MSID.

Proof. Since a value node is a sink node without outgoing arcs in an MSID, it cannot

become parents of public nodes in an agent interface. Removing it ensures the d-sepset

property in an MSID. ▌

In addition, only chance nodes in an MSID are included in the agent interface. Thus,

when considering decision nodes as chance nodes in an MSID, the method of

verification of d-sepset is similar to that in an MSBN. Here, based on an algebraic

description of local influence diagrams, a symbolic method is proposed to deal with

the verification and the issue of verification failure is also investigated.

4.4.1 Process of Symbolic Verification

Testing d-sepnode in an agent interface involves two main processes: one is to identify

parents of a common (or public) node; the other is to find and judge whether there is a

local subset that includes all the parents of this common node.

As the agents’ privacy must be protected, only the information of common nodes is

shared. To illustrate my approach, an example is shown in Figure 4.2. Each subnet jI

is a local BN (subnet) in the MSBN after removing value nodes and transforming

decision nodes into chance nodes in an MSID.

Chapter 4: Model Verification

79

Figure 4.2: Another Example Network

Step 1: (Algebraic Description) By Equation (4.2), each subnet can be described as

follows:

)()()()()(
1

apaypyxpxzpzbpPI ××××=
1

)(
)(
)(

)(
)(

)(
)(

)(
)(ap

ap
yap

yp
xyp

xp
zxp

zp
bzp

××××= (4.11)

)()()()()(
2

ydpypyxpxzpzcpPI ××××=
)(
)(

)1(
)(

)(
)(

)(
)(

)(
)(

yp
dyp

p
yp

yp
xyp

xp
zxp

zp
czp

××××= (4.12)

)()()()()(
3

xepxfpwxpgwpgpPI ××××=
)(
)(

)(
)(

)(
)(

)(
)(

1
)(

xp
exp

xp
fxp

wp
xwp

gp
wgpgp

××××= (4.13)

)()()()()(
4

wjpwpxipwxpxhpPI ××××=
)(
)(

1
)(

)(
)(

)(
)(

)(
)(

wp
jwpwp

xp
ixp

wp
xwp

xp
hxp

××××= (4.14)

Step 2: (Identify Parent Set) In the term
))((

))(,(

j

jj

xp
xxp

π
π

, for each subnet, if a public node

jx in the numerator cannot be cancelled in the denominator, nodes in the denominator

of this term must be the parents of jx that are elements of)(jxSPS (Sub-Parent Set). A

PS (Parent Set) of each public node jx is an integration of)(jxSPS for node jx in

each local subnet, denoted as)()(j
i

Ij xSPSxPS
iU= .

For example, for the local subnet 1I , public nodes are nodes { }zyx ,, between 1I and 2I .

Hence, based on Equation (4.11), parents of node x are identified as follows.

I1

b z

x

a y

I2

c

d

I3

e

x

wg

f

I4

h

x

w

i

j

z

x

y

Chapter 4: Model Verification

80

In the term
)(
)(

xp
zxp , node x in the numerator)(zxp can be cancelled by node x in the

denominator)(xp , but in another term
)(
)(

yp
xyp , node x in the numerator)(xyp cannot be

cancelled by node x in the denominator)(yp . On all accounts, the sub-parent set is

{ }yxSPS I =)(
1

 in the local subnet 1I .

The same operation required by node x is executed on other local sets based on

Equations (4.11 ~ 4.14). The SPS for node x is as follows: { };)(
2

yxSPS I =

{ };)(
3

wxSPS I = { }wxSPS I =)(
4

.

By the operator of union, the PS for node x in the MSBN is { }wy, , denoted as

{ }wyxPS ,)(= .

For the sake of the privacy protection of each agent, an SPS should not present details

about the private nodes in local subnets, including the name of the private nodes.

During the process, the notation ijε is used to implicate the j th private node in iI . In

this way, the SPS that the agent provides does not refer to the details about its privacy.

Step 3: (D-Testing) In Step 2, a PS of each public node is identified; in this step, it is

to find whether there is a local subnet that includes all the parents of a public node. It

means that judging the condition of a d-sepnode depends on whether there is an

iISPS equal to a PS .

Proposition 4.1: If an agent interface between adjacent agents is a d-sepset, for each

public node in the agent interface, there is no fewer than one
iISPS that equals to a PS .

The proof is trivial.

Chapter 4: Model Verification

81

Proposition 4.2: If there are more than one)(jI xSPS
i

 including node ijε , then the node

jx must not be a d-sepnode.

Proof. Assume one local DAG includes a node ijε ,)(jIij xSPS
i

∈ε and one of its

adjacent DAG includes another node kjε ,)(jIkj xSPS
k

∈ε . As it is known that any agent

does not include private nodes of other agents, imxSPS jIij m
≠∉),(ε and

kmxSPS jIkj m
≠∉),(ε , no local DAG including both ijε and kjε can be found. Thus the

difference set between any
iISPS and a PS will not be empty. The condition of d-

sepnode is not obeyed. ▌

The operation difference between two sets is employed to make a comparison between

an
iISPS and a PS . The empty set of the difference between any

iISPS and a PS

implies that they are equal and contain the same elements.

For example, the PS of node x is { }wy, . However, the
iISPS of node x are as follows:

}{
1

ySPSI = , }{
2

ySPSI = , }{
3

wSPSI = and }{
4

wSPSI = . There is no empty set between any

iISPS and the PS . Hence node x is not a d-sepnode, which causes the agent interface to

be an invalid d-sepset.

4.4.2 Complexity Analysis and Further Discussion

The complete agent interface verification process in an MSID is performed

symbolically in the following steps:

[Symbolic Verification of Agent Interface]

1) Remove value nodes and transform decision nodes into chance nodes in an

MSID;

Chapter 4: Model Verification

82

2) Describe each subnet in an MSBN with the algebraic form;

3) Identify a PS of every public node in an agent interface;

4) Test the condition of d-sepset.

To analyze the complexity of the symbolic verification process, the following

notations (Xiang & Chen 2002) are assumed:

s : the maximum number of adjacent agents to any agent;

 t : the maximum cardinality of nodes in a local subnet (DAG);

 k : the maximum number of nodes in an agent interface;

n : the total number of agents.

In the third step of the algorithm,)(kο nodes in the agent interface must be checked on

)(tο nodes in a local DAG. At the same time,)(nο agents should perform the process.

Hence the complexity is)(ntkο . In the last step, there are)(kο PSs that need to be

checked with)(sο SPSs . Consequently, the complexity is)(nskο .

From the complexity analysis, it seems that the main factors having a large effect on

the algorithm complexity are variables t (the maximum cardinality of nodes in a local

DAG) and n (the total number of agents). For a large and complex domain, their

product is just the same as the sum of nodes in an MSBN after an MSID has been pre-

processed. Hence, the point is how to partition a large domain into several small local

subnets, which gives a hint for further research on the topic of partitioning a large

domain. At least, a reasonable method should consider the effect on the algorithm

complexity.

Chapter 4: Model Verification

83

For the same reason, an individual agent will provide only the SPS of its own to a

coordinator agent that will deal with the D-Testing operation and make a final decision.

The introduction of a coordinator agent that may be a computer or a human being is

necessary for privacy protection because, except the coordination agent, all other

agents have no idea about a PS . At the same time, the introduction is helpful for the

dealing with verification failure.

4.4.3 Dealing with Verification Failure

When the verification of d-sepset fails through a symbolic verification in D-Testing,

there should be no empty difference set between any SPS and a PS . One measure is

proposed to fix this problem.

Firstly, find the largest cardinality of)(jI xSPS
k

, named as)(jI xLSPS
k

. It is known that

no fewer than one)(jI xSPS
k

 equals to a PS if the condition of d-sepnode is satisfied.

One way to correct the verification failure is to let a more promising)(jI xSPS
k

, such

as)(jI xLSPS
k

, be equal to the PS .

Secondly, identify elements in the difference set between)(jI xLSPS
k

 and a PS . If the

element ε is identified, only the local subnet including the element ε should be

corrected; otherwise, other subnets that share the element should be referred to.

However, the problem of correcting an MSID structure to satisfy the d-sepset condition

is related to other constraints of the MSID. It must be considered in an overall way.

Chapter 4: Model Verification

84

4.5 Pairwise Verification of Irreducibility of D-sepset

The irreducibility of d-sepset is to ensure the compactness of MSID and HRG, and to

remove any redundant information in this model representation. The irreducibility of

d-sepset depends on organizational relationships among agents and information

flowing through the d-sepset. The information should be composed of the requisite

information and the supporting information (for agents’ decision making) which

indicate the control and communication relationships among agents respectively. An

HRG is just an effective framework that can be used to test this constraint. Hence, the

verification of two basic relevance graphs in an HRG is discussed as follows.

Control Relevance Graph: Figure 3.2 (a) shows the Control relationship between

agent iA and agent jA denoted by the function },,{),,(Re 1 mkji ccdAAq L= . To

verify the irreducibility of a d-sepset amounts to testing whether the information

(encoded in) },,{ 1 mcc L agent iA provides belongs to the required information

for agent jA ’s decision kd .

It is known that the procedures Decision Bayes-ball and refined Decision Bayes-ball

could be used to obtain the required information for any decision node in an influence

diagram. Through these procedures, the information },,{ 1 mcc L required for agent jA ’s

decision kd can be obtained. Assuming Control is a unique relationship between agent

iA and agent jA and the d-sepset is ijS ; thus, lityIrreducibidAAqS
k

kjiij ⇔⊆U),,(Re .

Communication Relevance Graph: Figure 3.2 (b) shows the Communication

relationship between agent iA and agent jA denoted by the

function },,{),(1 nji ccAASup L= . The irreducibility of d-sepset means that the

information passing through a d-sepset is the supporting information that both

Chapter 4: Model Verification

85

agent iA and agent jA could access; however, this information is not required

for their decision making. The verification depends on the domain knowledge.

For example, domain expert could tell what kind of information is unavailable

to one agent while its adjacent agents could provide such kind of information.

Assuming Communication is the unique relationship between agent iA and

agent jA , and the d-sepset is denoted as ijS ; therefore,

lityIrreducibiAASupS jiij ⇔⊆),(.

Mixed relationships (both control and communication) between agent iA and agent jA

exist with an integrated verification as follows.

lityIrreducibi

AASupdAAqdAAqS ji
k k

kijkjiij

⇔

∪∪⊆)),())),,(Re()),,(Re(((U U
 (4.15)

For example, given the MSID in Figure 3.5, the d-sepsets are },{12 wsS = , },{23 ppwS =

and },{13 cwS = .From the procedure of Decision Bayes-ball, nodes },{ cs are required for

decisions of agents NS and CS respectively. The cases are characterized as

cahAAq CSICC =),,(Re , cwtAAq CSICC =),,(Re , ppinAAq NSCS =),,(Re , ppreAAq NSCS =),,(Re ,

sinAAq NSICC =),,(Re , and sreAAq NSICC =),,(Re . Assuming the irreducibility of d-sepset

and according to the Equation (4.15), it follows that wAASup ji =),(where

CSNSICCji ,,, = and ji ≠ . Based on this analysis, the HRG can be produced as shown

in Figure 3.6.

At this time, the HRG could be evaluated by domain experts whether it realistically

reflects the actual knowledge domain. If it does, the irreducibility of d-sepset is

verified; otherwise, the HRG will be modified. The modeling process is iterative until

both the HRG and the MSID are acceptable.

Chapter 4: Model Verification

86

The complexity of verification process lies in the procedure Decision Bayes-ball that is

analyzed in detail in some literature (Shachter 1998; Nielsen 2001). It will not be

discussed here. One feature of this verification process is a combination of both MSID

and HRG which makes full use of knowledge domain. It verifies the fact that a valid

and meaningful representation is essentially related with the problem domain.

4.6 Summary

Verification of a graphical decision model is essential in the cycle of decision analysis.

The representation of MSID and HRG describes a multiagent decision problem in a

distributed and cooperative framework. Its definition is accompanied by three

constraints: DAG structure, d-sepset of agent interface and irreducible d-sepset.

In this Chapter, I proposed a symbolic method for the verification of DAG structure

and d-sepset of agent interface in an MSID. It utilizes an algebraic description in an

MSID. The symbolic method is cooperative while protecting agents’ privacy in the

verification process. My method has the ability to provide essential information when

verification fails (i.e., a global cycle is detected) to correct the offending parts of the

network. Furthermore, it provides an alternative view, so called an algebraic angle, on

the research of an MSID. For the verification of irreducible d-sepset, a pairwise

approach is designed with the consideration of the MSID structure and the HRG

implication. It ensures that the decision model could represent a real decision problem

accurately.

87

5 Model Evaluation

The aim of decision analysis is to provide optimal policies to decision makers based on

an evaluation of valid and accurate models which fully represent the corresponding

decision scenario. The output of solving decision models largely depends on the

effectiveness and efficiency of evaluation algorithms which have been designed to

decode models. In the previous chapters, valid decision models of MSID and HRG

have been developed to represent multiagent decision problems. This chapter will

discuss three evaluation algorithms in detail to solve these proposed decision models.

5.1 The Introduction

Multiagent decision problems refer to a kind of distributed decision problems

involving multiple agents in an uncertain environment. Within such a decision problem,

there are intricate interactions between observations and decisions of multiple agents.

For example, one agent’s observations may have an influence on other agents’

decisions which in turn may affect more of other agents’ decisions. Moreover, agents’

features, such as their privacy and organizational relationships, should not be lost in

their interactions. An individual agent seeks the best decision while it has a full,

correct and consistent observation in the situation through the communication with its

adjacent agents. As one of the characters of a multiagent decision problem indicates

agents seek their individual objectives while they expect a cooperative solution.

Chapter 5: Model Evaluation

88

Solving a multiagent decision problem is to find out individual objectives of agents in

a distributed setting cooperatively. An individual agent has its own goal and wants to

make the best decision after obtaining a full and consistent observation from its

adjacent agents. The motivation of their cooperation is to access the full and consistent

information in order to maximize their own utility as well as to release the relevant and

honest information in order to help their partners’ decisions. Hence, the core of this

cooperation is the accessibility of the full, consistent and honest public information.

This decides that potential approaches for solving multiagent decision problems should

be a cooperative method in a distributed setting.

In Chapter 3, the representation of MSID and HRG has been proposed to model

multiagent decision problems. An MSID is a distributed graphical decision model

which connects local influence diagrams together through d-sepsets while an HRG

explicitly represents the information support for decision making in the MSID. Model

evaluation is to solve an MSID to produce optimal decisions with the consideration of

the implication of an HRG.

In this chapter, three evaluation algorithms, called a cooperative reduction algorithm in

Section 5.2, a distributed evalID algorithm in Section 5.3 and one indirect evaluation

algorithm in Section 5.4, are proposed to solve an MSID.

5.2 Cooperative Reduction Algorithms

A direct method for solving influence diagrams adopts some basic operations, such as

node removal and arc reversal, to reduce a full decision model according to a node or

variable elimination sequence (Olmsted 1983; Shachter 1986, 1988). A potential

approach for solving an MSID could extend the basic reduction algorithm. Since an

Chapter 5: Model Evaluation

89

MSID is a set of local influence diagrams connected by d-sepnodes, a cooperative

reduction algorithm shall be constructed to coordinate the evaluation of local influence

diagrams through a cooperative evaluation on d-sepnodes. In this way, local influence

diagrams are ensured to have a consistent and full evaluation with each other in the

process of solving an MSID. Hence, a reduction algorithm for solving an MSID is said

to be cooperative if d-sepnodes could be evaluated simultaneously.

To formalize a cooperative reduction algorithm, the relevant issues, such as model

transformation and node elimination sequence, should be investigated in an MSID. In

this section, firstly, the concept of a legal transformation is defined in an MSID. Then,

a local elimination sequence in local influence diagrams and a global elimination

sequence for d-sepnodes are investigated respectively. A global elimination sequence

is the cornerstone of a cooperative reduction algorithm. The validity and efficiency of

an elimination sequence are discussed in detail. Finally, a cooperative reduction

algorithm is further studied based on different data representations of an MSID.

5.2.1 Legal Transformation

The basic operations, such as node removal and arc reversal, transform an original

MSID into a series of interim MSIDs in a cooperative reduction algorithm till the

MSID is solved finally. To ensure no loss of relevant information, a legal

transformation is defined as the one that satisfies both the semantic level and the

strategic level. The semantic level is satisfied when an interim MSID is a new MSID

that follows three constraints: DAG structure, d-sepset of agent interface and

irreducibility of d-sepset. The strategic level is satisfied when the optimal strategies for

a final MSID, together with the associated partial strategies (recording the decision

Chapter 5: Model Evaluation

90

functions upon removing a decision node), could comprise the optimal strategies for

the original MSID.

Model transformation through basic operations involves an update of both graphical

structures and associated data. Both of them have an effect on the transformation

process, even on a specific transformation operation. For the graphical structure, a

certain elimination sequence could be identified and it guides the transformation

process. For the associated data, different data representations in a decision model

could have different operations in a reduction algorithm. Recently, two kinds of data

representations, namely conditional probability tables c (Howard & Matheson 1984)

and potential representation Ψ (Ndilikikesha 1994), allow the joint probability

distribution of an MSID to be defined as follows.

))((∏∏∏ ==
j i

jiji
j

I xxcPP
j

π or)(∏∏∏ Ψ==
j i

ji
j

I xPP
j

where)(jixπ are parents of node jix in local influence diagrams jI .

For instance, the Ψ representation could avoid the operation of arc reversal in a

reduction algorithm when compared with the c representation. This could help to

design different evaluation strategies in a cooperative reduction algorithm for solving

an MSID. For convenience, the evaluation of an MSID based on the c representation

is called C-Evaluation while the evaluation based on the Ψ representation is called P-

Evaluation. Hence, a legal model transformation has to be verified with respect to the

C-Evaluation and the P-Evaluation respectively.

Chapter 5: Model Evaluation

91

5.2.2 Local and Global Elimination Sequence

5.2.2.1 Foundation

The goal of evaluating influence diagrams is to find an optimal strategy iδ for each

decision node id and to maximize an expected utility function µ . The computation is

based on the following expression:

∑∑ −− =
ni

ni
i

c
nini

c
dd

id ddccccPcdc µδ),,,,,,,(maxmaxarg),,,(111121 LLLLL

where µ is the utility function specified by value node v ; ic and id are chance nodes

and decision nodes respectively in influence diagrams.

To obtain optimal strategies, variables are eliminated by the operator in a certain order

in the computation. A legal elimination sequence is acceptable if all nodes are

eliminated by following a partial order of chance nodes in information sets and

decision nodes (Nielsen & Jensen 1999). However, determining an optimal elimination

sequence has been shown to be NP hard (Cooper 1987). Instead of providing such an

elimination sequence, I investigate the issue on the efficiency and validity of an

elimination sequence in both local influence diagrams and a global MSID. An

elimination sequence is said to be legal if it is acceptable. On the other hand, an

elimination sequence is said to be efficient if it could avoid some expensive operations,

such as arc reversal, as much as possible.

The idea of identifying an elimination sequence in influence diagrams was mentioned

in some previous work (Shachter 1986; Rege & Agogino 1988); however, it has not

been formalized and highlighted in a reduction algorithm. In reality, a good

elimination sequence could avoid some unnecessarily expensive operations, such as

Chapter 5: Model Evaluation

92

arc reversal, to save the computational cost. For solving an MSID, a cooperative

reduction algorithm should emphasize the development of an efficient and legal

elimination sequence.

5.2.2.2 Elimination Sequence

Terminology: Consider (local) influence diagrams),,(vDCI 1 where there are n nodes

including chance nodes C , decision nodes D and value node v .

t : Time to represent the latest influence diagram that has all updated data, new

evidences or observations;

>< yx, : A directed arc from node x to node y , where)(DCx U∈ , }){(vDCy UU∈ .

Node x is called a direct predecessor of node y , denoted by)(Pr yex = , while node y

is a direct successor of node x , denoted by)(xSucy = ;

))((Pr xeNum ,))((xSucNum : The number of direct predecessors and successors of node x

respectively;

),(yx : A directed path from node x to node y , where)(DCx U∈ , }){(vDCy UU∈ ;

},{)(><= yxxyI , Dy∈ : An information set for decision node y ;

},{)(><= yxxyC , }{vCy U∈ : An influence set for chance node or value node y ;

)(xf : An index function for node x . Each node x is associated with a unique integer

number },,1{ ni L∈ in the node list, denoted by ixf =)(. It is the order of node x in a

node list;

1 To avoid complex denotations, subscripts specifying local influence diagrams are omitted. Since a
regular influence diagram is considered, only one value node exists.

Chapter 5: Model Evaluation

93

R1: Rule 1: Set)()(lk cfcf < if there exists an arc >< lk cc , ;

R2: Rule 2: Set)()(lk cfcf < if))(())((lk cSucNumcSucNum > ;

)(tNL : A node list at time t . A node list is generated in an ascending order of)(xf ;

)(tES : A relative elimination sequence at time t . It is generated by sorting nodes

(excluding value node) in a descending order with index function)(xf .

),(xtES : An order for node x in an elimination sequence)(tES at time t . It follows

)(),(xfnxtES −= .

),(xtBES : A base order for node x in an elimination sequence)(tES at time t . It is the

earliest order in which node x can be removed.

),(xtES and),(xtBES are always abbreviated as)(xES and)(xBES without considering

time t .

The process GSL (Generate Sequences Locally) to generate an efficient legal

elimination sequence in local influence diagrams is divided into the following steps.

Step 1: Pick up decision nodes Ddi ∈ and value node v to compose an initial node list

)(tNL denoted by },,,,{ 1 vddd mi LL in which)()()(1 vfdfdf m <<<L exists;

Step 2: Identify the information set)(idI for a decision node Ddi ∈ and the influence

set)(vC for the value node v . (1) When node))(()(I I
i

idIvCx∈ ,))(min()(idfxf < is

set; (2) When node)(vCx∈ but)(idIx∉ ,)()()(vfxfdf i << is set. Here node x is

categorized into)(vC ; (3) When node I
i

idIx)(∈ but)(vCx∉ ,))(min()(idfxf < is set;

Chapter 5: Model Evaluation

94

(4) When nodes)(, idIyx ∈ or)(, vCyx ∈ , two alternatives are available. The first

alternative is to follow R1 and R2. The second one is to set either)()(yfxf < or

)()(xfyf < . After that, the node list)(tNL is updated as

}),(,),(,,),(,,),({ 11 vvCddIddIddI mmii LL after inserting)(idI . Finally, the),(xtBES is

generated for all nodes as follows;

⎪
⎩

⎪
⎨

⎧
=

∈+−
=

;,0
;,

);(,1)()))(((
),(

otherwise
vxn

dIdxxfdIdfMax
xtBES

UU

Step 3: Identify the influence set)(icC for chance node)()(vCdIc ii U∈ where Ddi ∈ .

(1) When node I
i

icCx)(∈ where)(vCci ∈ ,))(min()(icfxf < is set; (2) When node

I
i

icCx)(∈ where)(ii dIc ∈ but)(vCci ∉ ,)))((min()())(max(xSucfxfdf j << is set; (3)

When nodes)(, icCyx ∈ , R1 and R2 are followed; otherwise, either)()(yfxf < or

)()(xfyf < is set arbitrarily. After that, the node list)(tNL is updated until all nodes ic

are exhausted;

Step 4: Repeat step 3 until all chance nodes)(ii cCc ∈ are exhausted;

Step 5: Generate an elimination sequence)(tES .

The basic idea of the process GSL is based on decision windows in influence diagrams.

In Step 1, decision nodes are identified based on a chronological order in influence

diagrams. After that, in Step 2, it deals with nodes in both an information set and an

influence set. The first case ensures a valid operation imposed on nodes that precede a

value node. The second case indicates a removal of a node that is near the value node.

The third case is based on the chronological order of associated decision nodes. The

Chapter 5: Model Evaluation

95

fourth case considers nodes in the same information set or influence set. The rule R1

indicates the removal of a node that is near the value node. The rule R2 avoids an

operation imposed on a node with multiple successors so that a large amount of

computation cost is saved. After Step 2, the earliest elimination order for a node,

namely a base order, could be driven. In Step 3, it considers all nodes in an influence

set. The first case removes a node near the value node. The second case ensures

subsequent valid operations imposed on the decision node. The third case considers

nodes in the same influence set. The two rules R1 and R2 are followed with the same

aim. Step 4 enters a loop and searches all the nodes in an influence set. Finally, in Step

5, an elimination sequence is produced according to the index function.

Lemma 5.1: If regular influence diagrams are pruned (by removing barren nodes), the

process GSL to generate an elimination sequence always terminates.

Proof. Without barren nodes and with a finite number of nodes in a regular influence

diagram that has a directed acyclic graphical structure, the process GSL terminates

after searching all chance nodes in the fourth step. ▌

Theorem 5.1: The elimination sequence generated in the process GSL is legal.

Proof. Step 1 and Step 2 deal with the elimination sequence of decision node Ddi ∈

and chance node)(idIx∈ . In the second step, all the nodes in the information set are

assigned a lower index function than their corresponding decision nodes. In this way,

the elimination sequence order satisfies the partial order of chance nodes in the

information set and decision nodes. Thus it is acceptable. ▌

Theorem 5.2: The elimination sequence generated in the process GSL is efficient.

Proof. It will be discussed in the C-Evaluation and the P-Evaluation respectively. ▌

Chapter 5: Model Evaluation

96

5.2.3 Global Elimination Sequence

A cooperative reduction algorithm is a cooperative evaluation of local influence

diagrams in an MSID. The cooperation is valid only if there is a global elimination

sequence for d-sepnodes since an MSID connects local graphs through the linkage of

d-sepset. In the previous section, a legal elimination sequence)(tES j (mj L1=) is

produced through the process GSL in each local influence diagram jI . Each local

elimination sequence could generate a specific elimination sequence locally for d-

sepnodes. It is unknown whether a global elimination sequence for d-sepnodes does

exist in an MSID since different elimination sequences for d-sepnodes always happen

in local influence diagrams.

Figure 5.1: An MSID of I1 and I2

For instance, in Figure 5.1, the MSID adopts the c representation. The two local

influence diagrams 1I and 2I share d-sepnodes },{ cb . Through the process GSL , either

},,,,{)(111 vbadctES = or },,,,{)(111 vabdctES = is obtained in 1I ; and

},,,,,{)(222 vcdebftES = is obtained in 2I . Both elimination sequences in 1I indicate

that node c should be removed after node b . However, node c has to be removed

d1

a

v1

b

c

I1

d2

v2

b

c

f

e

I2

Chapter 5: Model Evaluation

97

before node b in 2I based on },,,,,{)(222 vcdebftES = . Consequently, a cooperative

reduction algorithm does not exist since there is no global elimination sequence for d-

sepnodes. This problem motivates my investigation on a global elimination sequence

for d-sepnodes in an MSID.

5.2.3.1 Elimination Sequence for D-sepnodes

A final elimination sequence in local influence diagrams is always not unique since

flexible elimination orders may be assigned to nodes in the process GSL . It is difficult

to determine an absolute elimination order for each node. However, in the first two

steps of the process GSL , a legal elimination sequence should be generated for both

decision nodes and chance nodes in information sets. This legal elimination sequence

outputs a base elimination order)(xBES which is the foundation of a final elimination

sequence for all nodes. Concerning the base elimination order)(xBES , nodes with a

zero value have a flexible relative elimination order while nodes with a non-zero value

have a fixed relative elimination order in a final elimination sequence. Hence a global

elimination sequence for d-sepnodes should be developed according to the base order.

Furthermore, only those d-sepnodes with a non-zero base elimination order should be

considered since they may constrain their elimination sequence among local influence

diagrams.

Assuming that d-sepnodes, mjxx jnj ,,1},,,{ 1 LL = , are considered in local influence

diagrams jI , the global elimination order can be generated in the process GER

(Generate Elimination Order) below.

Step 1: Divide d-sepnodes },,{ 1 jnj xx L into two sets according to a base elimination

order)(xBES . One set, defined as a flexible set },,{ jljk xx L , includes nodes having

Chapter 5: Model Evaluation

98

0)(=xBES ; the other set, defined as a fixed set },,{ jsjr xx L , includes nodes having

0)(>xBES . If a fixed set is empty, the process GER terminates. Any global elimination

sequence could be an output;

Step 2: Sort the fixed set },,{ jsjr xx L in an ascending order of),(xtBES to obtain a

new set }{)1(jsrjjrj xxxDS pLpp += ;

Step 3: Collect all mjxxxDS jsrjjrj LpLpp 1},{)1(== + , to compose a rough

elimination graph as shown in Figure 5.2;

Figure 5.2: Rough Elimination Graph

In Figure 5.2, a large rectangular node indicates a node (in the above long frame)

shared by some local influence diagrams (indicated in the below small frame). An

arrow is triggered when its tail nodes are removed. For example, in Figure 5.2, nodes

rx and)1(+rx are shared by local influence diagrams jI and iI . Following the direction

of the arc in Figure 5.2, it indicates that node rx must be removed before node)1(+rx .

In a rough elimination graph, a node is to be removed if and only if all of its incident

arcs are triggered. An arc is triggered when its tail node, such as node rx , is removed.

(Similarly, node)1(+rx is called head node.) This trigger rule helps us identify a global

elimination sequence in Step 4.

xr

j i …
x(r+1)

j i …

Chapter 5: Model Evaluation

99

Step 4: Identify a global elimination sequence for d-sepnodes in a rough elimination

graph built in Step 3.

Step 4.1: Test the existence of a global elimination sequence for d-sepnodes. This

is to confirm the possibility of a cooperative reduction algorithm for solving an MSID.

The method is to check directed cycles in a rough elimination graph. If there is a

directed cycle in a rough elimination graph, a global elimination sequence does not

exist. The process GER terminates here. Thus there is no cooperative reduction

algorithm.

Step 4.2: Build a global elimination graph for d-sepnodes. Firstly, detect a pair of

nodes that are connected with multiple directed paths. These paths exist since, after the

test in Step 4.1, an elimination graph that has no directed cycle remains. Secondly,

build a global elimination graph. This graph is built when a directed arc between the

detected pair-wise nodes is removed.

Step 4.3: Obtain a global elimination sequence for d-sepnodes. A global

elimination sequence is identified through searching multiple paths from source nodes

to sink nodes in a pruned elimination sequence graph. All nodes in a directed path

from a source node to a sink node compose an “island” i of an elimination sequence,

denoted as }{)1(srri xxxGES pLpp += . In general, a global elimination sequence is

made out of several islands of elimination sequences because multiple directed paths

always exist between a source node and a sink node as well as multiple source nodes

and sink nodes always exist in a final elimination graph. Hence a global elimination

sequence is produced as follows U
i

iGESGES = , where i is the island number.

Chapter 5: Model Evaluation

100

The process GER depends on the pruning on an elimination graph to obtain a global

elimination sequence. In the first three steps, a rough elimination graph only describes

d-sepnodes which have a non-zero base elimination order since they coordinate the

evaluation of local influence diagrams. The case that all d-sepnodes have a flexible

relative elimination order in their associated local influence diagrams could output any

global elimination sequence which may refer to any local elimination sequence

obtained in the process GSL . This output global elimination sequence would not make

any local elimination sequence invalid. In Step 4.1, a unique elimination sequence for

d-sepnodes would not cause any directed cycle in a rough elimination graph. Hence,

testing the existence of a global elimination sequence is equivalent to checking

directed cycles. After the existence of a global elimination sequence is confirmed, the

approach of pruning arcs is utilized to build a global elimination graph in Step 4.2. A

directed arc is removed between a pair of nodes if there are multiple paths connecting

these two nodes in a rough elimination graph. Since no operation happens with the arc

between this pair of nodes, the arc removal is to ensure a head node to be triggered at a

later time when other paths are followed. In Step 4.3, multiple paths in an elimination

graph are considered. Every path shows a cooperation of local influence diagrams to

remove d-sepnodes. Finally, a global elimination sequence GER is generated.

Theorem 5.3: A global elimination sequence generated in the process GER allows a

cooperative reduction algorithm.

Proof. The first step could generate any global elimination sequence which allows a

cooperative evaluation of local influence diagrams. Otherwise, a global elimination

sequence may or may not exist. In the fourth step, the possibility of a global

elimination sequence is tested to confirm a cooperative reduction algorithm. Hence a

Chapter 5: Model Evaluation

101

global elimination sequence GES which is obtained through some operations in a

global elimination graph is valid in the process GER . This allows a cooperative

reduction algorithm for solving an MSID. ▌

Suppose there are three local influence diagrams, namely 1I , 2I and 3I , in an MSID.

Each of them has d-sepnodes with an ascending order on)(xBES such as

}{ 11111 feabDS ppp= , }{ 22222 dcabDS ppp= and }{ 33333 fedcDS ppp= . Firstly, a

rough elimination graph is built in Figure 5.3. In Figure 5.3, d-sepnode e is removed

after triggering arcs >< ea, and >< ed , . This requires the removal of node a (between

1I and 2I) and node d (between 2I and 3I).

Figure 5.3: Rough Elimination Graph for the Three Local Influence Diagrams

After that, directed cycles are checked in the rough elimination graph. In Figure 5.3, it

is confirmed that there is no directed cycle. Hence it is possible to obtain a global

elimination sequence in a cooperative reduction algorithm. In Figure 5.3, two directed

ways (an arc >< ea, and a path),(ea) are detected between node a and node e .

Following the method in Step 4.2, the directed arc >< ea, is deleted and the graph is

pruned as shown in Figure 5.4.

b

1 2

a

1 2

e

1 3

f

1 3

c

2 3

d

2 3

Chapter 5: Model Evaluation

102

Figure 5.4: Global Elimination Graph

In the global elimination graph, there is only one source node b and one sink node f .

In Step 4.3, only one island of elimination sequence is found. Hence a final global

elimination sequence is generated as }{ fedcabGES ppppp= . In fact, according to a

global elimination graph, a cooperation order coordinating the evaluation of local

influence diagrams can be determined when the sequence of d-sepnodes is followed in

a path. For example, in Figure 5.4, the cooperation between 2I and 3I follows the

cooperation between 1I and 2I .

5.2.3.2 Discussions

The process GER produces a global elimination sequence with the consideration of all

local elimination sequences in an MSID. Only with a global elimination sequence, a

cooperative reduction algorithm is valid; otherwise, reduction algorithms have to be

carried out separately in local influence diagrams without the cooperation. To

distinguish these two cases, two types of algorithm implementations, namely on-line

algorithm and off-line algorithm, are defined.

Definition 5.1: On-line algorithm is implemented when reduction algorithms are

carried out in a cooperation of local influence diagrams through d-sepset with the

timely information.

b

1 2

a

1 2

e

1 3

f

1 3

c

2 3

d

2 3

Chapter 5: Model Evaluation

103

 Definition 5.2: Off-line algorithm is implemented when reduction algorithms are

carried out in local influence diagrams individually without any cooperation after the

d-sepset is initialized.

An on-line algorithm is a real implementation of a cooperative reduction algorithm.

One of the advantages behind an on-line algorithm is the ability to access the up-to-

date information globally in a distributed system. However, an on-line algorithm

requires the possibility of a cooperative reduction algorithm. Furthermore, it is costly

to connect all local systems and to coordinate reduction algorithms in local influence

diagrams. In contrast, an off-line algorithm is free to perform reduction algorithms

locally without the cooperation. It does not require a cooperative reduction algorithm.

Thus the latest information in d-sepnodes cannot be accessed since local influence

diagrams are kept alone and evaluated separately in an off-line algorithm. As for the

computational memory, an off-line algorithm has to keep more copies of d-sepnodes

while an on-line algorithm operates on only one copy. In summary, an on-line

algorithm is suitable for a distributed system which is sensitive to any new information

or evidence while an off-line algorithm is suitable for a resource-constrained system.

Solving an MSID requires a cooperative reduction algorithm so that local influence

diagrams could be evaluated with the full and consistent information on d-sepnodes. It

is the intention that agents could seek their goal while accessing the information to

support their own decision making as well as releasing the information to help their

adjacent agents’ decision making. Hence an on-line algorithm is a desirable

implementation.

Chapter 5: Model Evaluation

104

5.2.4 C-Evaluation and P-Evaluation

A cooperative reduction algorithm involves a series of model transformations in an

MSID when some basic operations, such as node removal and arc reversal, are

imposed on local influence diagrams. A legal transformation demands that the

transformation satisfy both the strategic and the semantic level. Solving an MSID is to

find out the individual optimal decision policy for each agent which has obtained the

full and consistent information from its adjacent agents. In a cooperative reduction

algorithm, a legal transformation is satisfied automatically in the strategic level since

each local influence diagram adopts the traditional reduction algorithm and d-sepnodes

are evaluated in the cooperation with its adjacent diagrams. As for the semantic level,

the validity of a legal transformation has to be investigated in this section.

The semantic level concerns a graphical structure of interim models when some basic

operations are imposed on an MSID. It requires that an interim MSID be a valid model

which satisfies three constraints: DAG structure, d-sepset and irreducibility of d-sepset.

Since different data representations in a decision model have different operations

which drive a model transformation, a legal transformation should be studied in the C-

Evaluation and the P-Evaluation respectively.

5.2.4.1 C-Evaluation

The C-Evaluation for solving an MSID adopts the c representation of joint probability

distribution in an MSID. That is to say,))((∏∏∏ ==
j i

jiji
j

I xxcPP
j

π . The C-

Evaluation adopts four basic operations in regular influence diagrams (Shachter 1986;

Tatman & Shachter 1990). Before going on, the term of a node accessibility is defined

as follows.

Chapter 5: Model Evaluation

105

Definition 5.3: Accessibility on node x from node y indicates that node x is

reachable from node y through a directed path. Accessibility increasing on node x

from node y indicates that the first directed path between them is just built.

Accessibility decreasing on node x from node y indicates that some of the directed

paths between them are blocked or removed.

The C-Evaluation in regular influence diagrams consists of four basic operations.

1) Barren node removal: It is to remove a barren node without any operation on

other nodes, which does not change the accessibility on other nodes.

2) Chance node removal: Any chance node x whose successor)(xSuc is a single

chance node or value node can be removed. Its successor)(xSuc inherits all

predecessors of chance nodes)(Pr xe . The accessibility on node x decreases

while the accessibility on other nodes does not change.

3) Decision node removal: A decision node can be removed if its only successor

is a value node and the information set of this decision node belongs to the

influence set of the value node. The value node inherits no predecessor of the

decision node. The accessibility on the value node decreases.

4) Arc reversal: The arc >< yx, between two chance nodes x and y can be

reversed if no other path between them is found. Both nodes inherit each

other’s predecessors. The accessibility on node y decreases while the

accessibility on node x increases.

The four basic operations reduce local influence diagrams step by step according to a

local elimination sequence. Various elimination sequences lead to different

Chapter 5: Model Evaluation

106

combinations of basic operations. An efficient elimination sequence does not require

an expensive operation such as arc reversal in the C-Evaluation. Now, Theorem 5.2 is

revisited here.

Theorem 5.4: The elimination sequence generated in the process GSL is efficient in

the C-Evaluation.

Proof. The most intricate and expensive operation is the arc reversal in the C-

Evaluation. In the process GSL , Rule 2 decreases the possibility of multiple successors

on a certain node while Rule 1 specifies the removal of nodes which are near the value

node. This increases the chance that a value node becomes one of)(xSuc in all

operations. Hence the operation of arc reversal is avoided as much as possible. In

conclusion, an elimination sequence generated in the process GSL is efficient in the C-

Evaluation.▌

The four basic operations ensure that a legal transformation of local influence

diagrams is satisfied in the semantic level. However, it is unknown whether the

semantic level is satisfied when the transformation is imposed on the whole MSID.

For example, in Figure 5.5, an arc between node b and node c has to be reversed in

order to remove node b in 1I . After the arc reversal, DAG is ensured in 1I ; however, it

is violated in the resulting MSID. In Figure 5.6, there are two directed cycles such as

elkfgbe →→→→→→ and elkfgbce →→→→→→→ .

Chapter 5: Model Evaluation

107

Figure 5.5: An MSID before Arc Reversal

Figure 5.6: An MSID after Arc Reversal

The problem raises my investigation into the issue of legal transformations (in the

semantic level) based on the four basic operations. After a transformation, a new

MSID must follow three constraints: DAG structure, d-sepset of agent interface and

irreducibility of d-sepset. Hence the four basic operations will be studied in detail

concerning their effect on the holding of these constraints in an MSID.

Irreducibility of d-sepset: As a transformation is a reduction approach, it simplifies an

MSID by removing one node at a time. Thus the constraint of irreducible d-sepset is

satisfied when any of the four basic operations is imposed.

d

a

v1

c

b

g

e

f

I1

k

v2

e

f

l

I2

d

a

v1

c

b

g

e

f

I1

k

v2

e

f

l

I2

Chapter 5: Model Evaluation

108

d-sepset of the agent interface: This constraint requires that all parents of a public node

should be included in the same local influence diagram. It is not expected that any of

the basic operations would introduce new parents for public nodes. The operations of

barren node removal, decision node removal and chance node (with a value node as a

single successor) removal do not introduce new parents for public nodes. As for

chance node (with chance nodes as its single successor) removal, it is possible to

introduce new parents to a public node if the public node is a successor of the removed

nodes. However, Rule 1 in the process GSL avoids this operation. As for the operation

of arc reversal, new parents are introduced into the related nodes. Thus the constraint

can’t be ensured if the operation is imposed on public nodes. Fortunately, this

constraint can be relaxed when no cause-effect is considered in an MSID similar to

that in an MSBN (Xiang 2002).

DAG structure: The definition of the accessibility indicates that an increasing

accessibility on nodes (expect value nodes) leads to more chances of producing new

directed cycles. Based on the accessibility analysis on basic operations, an increasing

accessibility occurs in the operation of arc reversal. Hence, the constraint is not

satisfied in an MSID although a DAG structure is ensured in local influence diagrams

after this operation.

Thus, Theorem 5.5 is obtained.

Theorem 5.5: With an operation of arc reversal, a legal transformation in an MSID is

not ensured in the C-Evaluation.

Chapter 5: Model Evaluation

109

5.2.4.2 P-Evaluation

The P-Evaluation for solving an MSID adopts the p representation of joint probability

distribution. That is to say,)(∏∏∏ Ψ==
j i

ji
j

I xPP
j

. In the P-Evaluation, there are

three basic operations, namely barren node absorption, chance node absorption and

decision node removal (Ndilikikesha 1994).

1) Barren node absorption : A barren decision node is removed simply without

other operations. A barren chance node is removed with an operation: add (as

necessary) an arc from another of its predecessors to the one with the highest

number)(xf .

2) Chance node absorptions: A chance node x is removed with the following two

operations:

a. Add an arc from every direct predecessor)(Pr xe to every direct

successor)(xSuc ;

b. Add an arc from other successors)(xSuc to the successor)(xSucy∈ with

the highest)(yf . If node j receives an arc from another node k , add an

arc from every direct predecessor of k to j . The accessibility on node

y increases;

3) Decision node removal: A decision node whose successor is a single value

node can be removed directly if all other predecessors of the value node are

also direct predecessors of this decision node.

Chapter 5: Model Evaluation

110

Similar to the efficiency analysis of an elimination sequence in the C-Evaluation,

Theorem 5.2 is revisited here following the above three operations in the P-Evaluation.

Theorem 5.6: An elimination sequence generated in the process GSL is efficient in the

P-Evaluation.

Proof. Generally, it is always assumed that influence diagrams are evaluated after

pruning all barren nodes. Hence barren node absorption does not cost much. The most

computation consuming operation is chance node absorption in the P-Evaluation.

Similar to the proof for Theorem 5.4, Rule 1 and Rule 2 produce few numbers of

)(xSuc , and try to let a value node become one of)(xSuc . Thus the operation of adding

arcs is seldom applied and becomes a more economical operation when the process

GSL is followed to produce the elimination sequence.▌

Comparing with the C-Evaluation having the four operations, the P-Evaluation

requires no operation of arc reversal. It is this operation that causes a violation of the

DAG structure constraint in an MSID when the C-Evaluation is used. In the P-

Evaluation, a possible violation of the DAG structure constraint is the operation of

chance node absorption. The possibility to increase the accessibility on chance nodes is

avoided if both Rule 1 and Rule 2 are followed in the process GSL . With these two

rules, the accessibility increasing always happens on value nodes. However, this leads

to no chance of violation on a DAG structure since a value node is a kind of sink node.

Hence, Theorem 5.7 follows.

Theorem 5.7: A transformation in an MSID is legal in the P-Evaluation.

Proof. The constraint of d-sepset irreducibility is followed since the transformation is a

reduction method. The second constraint of d-sepset for agent interface and the third

Chapter 5: Model Evaluation

111

constraint of DAG structure are obeyed if Rule 1 and Rule 2 are followed in the

transformation as discussed above. Thus the transformation is legal.▌

 In conclusion, an elimination sequence generated in the process GSL is efficient in

both the C-Evaluation and the P-Evaluation. On another aspect, a legal transformation

is ensured in the P-Evaluation while it does not hold in the C-Evaluation. The reason is

due to the fact that the P-Evaluation avoids the basic operation of arc reversal in a

reduction algorithm.

A cooperation reduction algorithm requires a legal transformation imposed on an

MSID. The C-Evaluation always causes an invalid transformation that violates the

constraint of DAG structure in an MSID. It is not expected to adopt the C-Evaluation

in a cooperation reduction algorithm. The P-Evaluation is preferred since it not only

ensures a legal transformation, but also provides economical computation in the data

updating. On another aspect, both the C-Evaluation and the P-Evaluation could be

adopted in an off-line algorithm since it does not require a legal transformation. An on-

line algorithm could only choose the P-Evaluation. However, economical computation

in the P-Evaluation relieves large resources consumed in an on-line algorithm.

Consequently, the choice of C-Evaluation or P-Evaluation helps a good design of a

cooperation reduction algorithm in an MSID.

5.2.5 Summary

Many issues deserve a serious study for solving an MSID with a cooperative reduction

algorithm. Extending traditional reduction algorithms in influence diagrams, a

cooperative reduction algorithm is proposed and developed in this section. It stands on

a legal and efficient elimination sequence for both local influence diagrams and d-

Chapter 5: Model Evaluation

112

sepnodes. It also involves a legal transformation discussed in both the C-Evaluation

and the P-Evaluation.

In summary, a flow chart for solving MSID is described in Figure 5.7. It is a

distributed and cooperative reduction algorithm. Firstly, after initializing an MSID,

elimination sequences for each local influence diagram are identified through the

process GSL . Secondly, in the process GER , a global elimination sequence is checked

in the MSID. If a global elimination sequence exists in the MSID, a cooperative

reduction algorithm is applied; otherwise, the MSID has to be solved with the

implementation of an off-line algorithm. Finally, either the C-Evaluation or the P-

Evaluation is selected to solve the MSID. It is also worthwhile to mention here that

during the cooperation, an intelligent agent is in charge of its corresponding local

influence diagrams, and only discloses information on the d-sepset thus protecting the

agent’s privacy.

Chapter 5: Model Evaluation

113

Figure 5.7: Flow Chart for Cooperative Reduction Algorithms

5.3 Distributed evalID Algorithm

The basic methods for solving an MSID are extensions of evaluation algorithms on

single agent-based influence diagrams such as the reduction algorithm (Shachter 1986).

The evalID algorithm is presently considered as one of the most efficient algorithms,

especially in decision networks (Zhang 1998). Hence it may facilitate the design of

evaluation algorithms for solving an MSID.

Initialize
an MSID

Local Elimination
Sequence 1

Local Elimination
Sequence i

Local Elimination
Sequence m

Solve
 the MSID

Have a Global
Elimination Sequence?

On-line
Algorithms

Off-line
Algorithms

Yes

No

Choose C-Evaluation
or P-Evaluation

Chapter 5: Model Evaluation

114

In this section, a distributed evalID algorithm is proposed to solve an MSID. A

distributed evalID algorithm is well developed based on a framework of multiple

evaluation networks which coordinates an evaluation of local influence diagrams.

Multiple evaluation networks are composed of a set of evaluation networks which

formulate basic ideas of the evalID algorithm for solving decision networks.

5.3.1 Evaluation Network

Before the concept of an evaluation network is described, the evalID algorithm is

revisited in decision networks. The aim of the evalID algorithm is to solve decision

networks by decomposing whole networks. Adopting the divide and conquer strategy,

firstly, the evalID algorithm divides decision networks into two parts: a tail Τ and a

body Β . The tail only consists of relative nodes (in cΤ and vΤ which will be defined

later.) with respect to the tail decision node d (the last decision in a decision sequence

in decision networks). Hence, the tail can be solved with ease resulting in optimal rules

for the tail decision node. Secondly, the evalID algorithm attaches an artificial value

node u to the body. The value node u carries an evaluation function Τe from the

optimal solution of the tail decision node. (rd ,π denotes parents of decision node d

and vM denotes the maximum value of value node v .)

drd

Vv
vrd

rd
c

v

P

MdvP

de
Ω

=

=
Τ

∈
Τ

Τ

∑
)(

),,1(

),(
,

,

,
2

π

π

π

where cΤ is obtained from a tail Τ by pruning nodes outside of an ancestral set of rd ,π ,

vΤ is obtained from a tail Τ by pruning nodes outside of an ancestral set of rd ,π and

{ }vd , , and dΩ is the number of possible values with respect to a decision node d .

Thirdly, the evalID algorithm considers the identified body (in the first step) as new

Chapter 5: Model Evaluation

115

decision networks and solves the body with the same methods applied to the original

decision networks. Thus, a new tail and a new body are produced. Finally, the evalID

algorithm reduces the original network into a body which has a single decision node.

The final body is called the value network and is solved by the Cooper’s

transformation (Cooper 1988) which transforms decision nodes and value nodes into

chances nodes. Accordingly, the final optimal decision rules are composed of decision

rules for every tail node and the final decision node in the value network. The optimal

decision value comes from the expected values for decision nodes in the corresponding

tails and the value network.

In the evalID algorithm, decision networks are divided into several tails with respect to

every decision node (a tail decision node) besides the final value network. Take the

example (Jensen et al. 1994; Zhang 1998) in Figure 5.8. After identifying the tail)(idΤ

for each decision node id step by step, the decision networks are divided into four BNs

(iBN , 4,3,2,1=i) and one value network (0BN). (Decision nodes and value nodes except

those in value networks are transformed into chance nodes mc and mv respectively

through the Cooper’s transformation; while mu indicates the evaluation function Τe for

the preceding tail decision node.) After the value network is transformed into a BN,

there are five BNs connected with each other as shown in Figure 5.9. Hence, if the

evalID algorithm is followed, the decision networks in Figure 5.8 could be solved

when every BN is solved individually in the sequence (from 4BN to 0BN). Now, the

structure in Figure 5.9 is utilized to help the formulation of an evaluation network.

Chapter 5: Model Evaluation

116

Figure 5.8: Decision Networks

Figure 5.9: Tails (Corresponding BNs) in Decision Networks

Intuitively, the network in Figure 5.9 composed of five BNs (iBN , 4,3,2,1,0=i) has an

MSBN structure (here, an MSBN is considered in a graphical structure, not in a

T(d4), BN4

c2

Value Network,
BN0

c1 c5

c10

d2

u4

c3

c4

c5

c6

d1 v1

u2

u3

d3

v2

c9

c7

c6

c8

v3

v4 d2

c10

c11

c12

d4

T(d1), BN1
T(d2), BN2

T(d3), BN3 c2 u1

c1

c2

c3

c4

c5

c6

d2

d3

d1

c10

d4

c11

c12

v1 c7

c8

c9

v3

v2

v4

Chapter 5: Model Evaluation

117

hypertree level) (Xiang 2002). In fact, this is not a coincidence as demonstrated by the

following proposition.

Proposition 5.1: A structure of networks (if cΤ exists for every tail node jd)

composed of tails and a value network is the same as the graphical structure of an

MSBN.

Proof. A graphical structure of an MSBN should follow two constraints: DAG

structure and d-sepnode. In the evalID algorithm, value nodes (denoted as mu) are

added into the final networks. However, this operation could not violate the constraint

of DAG structure since a value node is a sink node. Furthermore, the final networks

composed of tails and value networks are obtained when some arcs are removed in the

procedure of identifying tails and bodies in the original decision networks. Thus the

final network should satisfy the DAG structure.

It is found that public nodes shared between tails)(idΤ and)(1−Τ id (1≥i) are nodes in

cΤ belonging to)(1−Τ id . Besides, all parents of nodes in cΤ of)(1−Τ id belong to)(idΤ .

Hence, parents of these public nodes are included in the tail)(idΤ which is the body

with respect to the tail)(1−Τ id . Also, a value network is the body of the tail)(1dΤ

(Assuming that id succeeds jd if ji > .). Thus the second constraint is followed. ▌

Furthermore, it is noticed that the evaluation function Τe formulated with the variables

muΤ (
mvΤ) and cΤ has an additive form associated with artificial utility variables (mu)

and utility variables (mv). This motivates the formulation of an evaluation network.

For example, the evaluation network for decision networks discussed in Figure 5.8 and

Figure 5.9 is constructed as shown in Figure 5.10.

Chapter 5: Model Evaluation

118

Figure 5.10: Evaluation Networks

An Evaluation Network (EN) is composed of three types of nodes: diamond, pentagon

and hexagon nodes, and arcs between them. A diamond node denotes original value

nodes in decision networks. A pentagon node denotes the final value network in

decision networks, called sink node. (Since only one value network exists after the

evalID algorithm is imposed on decision networks.) A hexagon node denotes tails in

decision networks, called tail node. An arc from a value node to a tail node is called a

utility arc while an arc between tail nodes is called an evaluation arc. (To avoid

redundant denotations, nodes and variables are interchangeable in the representation.)

Based on utility and evaluation functions, an EN represents decision networks at two

levels: quantitative level and qualitative level. At the qualitative level, an arc indicates

the dependency between utility variables and evaluation functions in the tail node. Its

direction tells the decision sequence that decides the computation of evaluation

functions. Tracing directed paths in an EN results in a partial decision order. The

1vTP

3uTP

3vTP

2vTP

3dTc
P Ω

1dTc
P Ω

4uTP

2dTc
P Ω

4uTP

4dTc
P Ω

4vTP

1def
2def

u1

v1

v4

v2

v3

3def

4def

Chapter 5: Model Evaluation

119

number of incident arcs into nodes in an EN indicates the number of items in the

additive form of an evaluation function. A sink node terminates with the maximum

expected value. For example, in Figure 5.10, the evaluation function in the tail node

1def depends on the utility variable 1v and the evaluation function
2def . The partial

decision order follows 421 ddd pp .

At the quantitative level, a utility node is associated with a utility function and the

output is the maximum value of the utility function. The tail node is framed with data

on the ratio of the joint probability of cT and the number of decision alternatives. It

sums out the maximum value of an evaluation function after combining all maximum

utility values and evaluation functions (from incident arcs). The sink node indicates a

final computation in an EN. The arc incident into the tail node
jdef carries the joint

probability of required nodes (with respect to jd) to compute ju (in tail node
jdef). For

example, in Figure 5.10, the tail node
1def keeps the data of

1dTc
P Ω and receives the

maximum utility values
1vM , in addition to the maximum value

2uM and
3uM from

the evaluation function on the tails
2def and

3def , respectively. At the same time, the

tail node obtains the joint probability of
1vTP ,

4uTP and
3uTP attached to three incident

arcs individually. Hence, the output is the sum of some items as in the following

equation.

1

332211

1)(

),,1(),,1(),,1(
),(

2

123122121
12)(

dT

uTuTv
dT

cP

MdcuPMdcuPMdcvP
dce

c

vuvT

Ω

=+=+=
=

It can be seen that an EN clearly describes the components of the expected value in

decision networks and the required computation in every component. An EN displays

the dependency of the utility value with respect to decision nodes, which allows a

Chapter 5: Model Evaluation

120

distributed evaluation algorithm in decision networks. An EN can be described as the

extended form as shown in Figure 5.10 as well as other forms without the

representation of numerical values.

5.3.2 Multiple Evaluation Networks

The definition of an HRG includes two functions: qRe and Sup . Nodes included in the

functions connect local influence diagrams to form an MSID. Nodes in qRe consists

of RO (requisite observation nodes) and RP (requisite probability nodes) that can be

identified by Decision Bayes-ball or refined Decision Bayes-ball procedure2; while

nodes in Sup can be removed safely without affecting the optimal solutions since they

have no contribution to the evaluation on any decision node. Hence, the following

proposition is obtained.

Proposition 5.2: No nodes in Sup are included in an EN.

In addition, tracing the process of obtaining tails and bodies in decision networks and

the procedure Decision Bayes-ball, it is found that they are based on the same concept

of d-separation in a probabilistic graph (Pearl 1988, Shachter 1998). Both procedures

have the same goal to find RO and RP . Thus, the following Lemmas are obtained:

Lemma 5.2: Nodes in Τ are composed of required nodes, including RO and RP ,

obtained in the procedure Decision Bayes-ball.

Lemma 5.3: Nodes in rd ,π are requisite observation nodes RO obtained in the

procedure Decision Bayes-ball.

2 In the following parts, Decision Bayes-ball is used to denote these two procedures.

Chapter 5: Model Evaluation

121

Lemma 5.4: Nodes in vΤ or uΤ are required nodes, including RO and RP , obtained

for the utility variables v and u in the procedure Decision Bayes-ball.

Hence both RO and RP connect local ENs with respect to local influence diagrams in

an MSID. Both of them are involved in the computation of evaluation functions;

however, they are not required to be evaluated simultaneously. In fact, the following

proposition 5.3 can be proven.

Proposition 5.3: The evaluation of RO for decision node id is involved in the

computation of tail node
)1(−idef .

Proof. The computation of Τe could be analyzed as follows since rd ,π are root nodes

in vT .

drd

v
Vv

rdTrdT

drd

v
Vv

rd

rd
c

cvV

c

v

P

MdvPP

P

MdvP

de
Ω

=×

=
Ω

=

=
Τ

∈
Τ

Τ

∈
Τ

Τ

∑∑
)(

),,1()(

)(

),,1(

),(
,

,/,

,

,

,
22

π

ππ

π

π

π

(cv TT / denotes node subtraction in two graphs.)

Thus the evaluation of RP is required in
idef while the evaluation of RO is counted in

the later
)1(−idef . ▌

Consequently, the combination of ENs through public nodes, namely RO and RP ,

provides an efficient and distributed framework to solve an MSID. The framework is

called Multiple Evaluation Networks (MEN) based on the algorithm evalID . Arcs

from RO or RP to tail nodes in a local EN indicate that they are involved in the

computation of an evaluation function.

Chapter 5: Model Evaluation

122

For example, in Figure 5.11, it is assumed that RO and RP are public nodes among

1EN , 2EN and 3EN . Each evaluation network is associated with a local influence

diagram in an MSID. With the consideration of required nodes with respect to decision

nodes, RO and RP are classified in an individual EN as follows:
idRO ,1 and

idRP ,1 are

required nodes for decision node id in 1EN ,
kdRO ,2 and

kdRP ,2 are required nodes for

decision node kd in 2EN while
jdRO ,3 and

jdRP ,3 are required nodes for decision node

jd in 3EN . According to the MEN, the sequence for solving public nodes could also

be defined. (In Figure 5.11, a dotted arc into a tail node indicates other tail nodes exist

in the local EN.)

Figure 5.11: Multiple Evaluation Networks (MEN)

5.3.3 Distributed evalID Algorithms

Global optimal solutions for an MSID consist of global optimal strategies and global

maximum expected values. In a multiagent decision problem, an agent is concerned

EN1

)1(−idef

u1

v1

1def

kdef

u1

v1

1def

)1(−kdef

EN2

jdef

u1

v1

1def

vj

mdef

EN3

idef

)1(−jdef

RPRO

Chapter 5: Model Evaluation

123

with its own utility and would not compromise its utility with the consideration of

other agents’ decisions. However, it wants the cooperation with the aim to make full

use of available information to make the best decision for its own and to release some

useful information in order to help other agents’ decisions. Hence global optimal

solutions depend on local optimal solutions in local influence diagrams and

cooperative evaluation of public nodes. Agents expect to access the full and consistent

information in a cooperative evaluation. Since the evalID algorithm ensures a local

optimal solution in local influence diagrams, what is of concern is the evaluation of d-

sepnodes in an MSID.

D-sepsets are channels through which agents hold good communication. Both RO and

RP nodes in d-sepsets would affect a cooperative evaluation of local influence

diagrams in an MSID. To ensure consistent information in a cooperative evaluation,

both RO and RP nodes should join the evaluation and be removed simultaneously

when solving an MSID. As shown above, an MEN indicates an appropriate sequence

in the evaluation of RO and RP if the directions of arcs in a local EN are followed.

Thus, every local EN in an MEN could be evaluated using the evalID algorithm

individually while both RO and RP nodes could be evaluated and removed

simultaneously from the MEN. Combining all the above discussion, a distributed

algorithm evalID based on an MEN is formulated as follows

[Distributed evalID Algorithm]

1) Update all information in an MSID;

2) Build an EN for local influence diagrams in an MSID;

3) Build an MEN with the implication of an HRG;

4) Obtain a global evaluation sequence for RO and RP nodes based on the MEN;

Chapter 5: Model Evaluation

124

5) Solve the MEN and produce optimal solutions.

In this algorithm, the first step is to update all numeric values associated with nodes in

an MSID as well as the graphical structure. The updated MSID represents the latest

decision scenario accurately. Then, for an individual local influence diagram, a

corresponding EN is built through identifying tails and bodies in the subnet. After that,

in the third step, all ENs are combined together to form an MEN through the linkage of

d-sepnodes. Nodes associated with the qRe function in the HRG are kept in the MEN

and are classified into two types: RO and RP . Nodes associated with the Sup function

are removed safely. Consequently, only RO and RP nodes in the d-sepset join the

evaluation process They should be removed simultaneously to hold consistent

information in a cooperative evaluation of local influence diagrams. Hence the

sequence in which RO and RP nodes are evaluated is very important since it

coordinates the evaluation of local ENs in the MEN. Since both RO and RP nodes are

required for decision nodes associated with tail nodes in an EN, following the

directions of arcs in the EN will generate a partial order for decision nodes locally.

This partial order indicates the sequence for evaluating RO and RP nodes. Hence, in

the fourth step, after obtaining a partial order for tail nodes in local ENs, a global

evaluation sequence for RO and RP nodes could be produced. This sequence will

guide the evaluation process in the MEN in the final step.

For model evaluation in an MSID, RO , together with RP , is vital to obtain a global

optimal solution. Only if they are evaluated among local influence diagrams at the

same time, will the full and consistent information associated with them be ensured in

the whole evaluation process. The distributed evalID algorithm which is well designed

above is to achieve this aim. Thus, Theorem 5.8 is obtained.

Chapter 5: Model Evaluation

125

Theorem 5.8: A distributed evalID algorithm generates global optimal solutions in an

MSID.

5.4 Indirect Evaluation Algorithm

In Sections 5.2 and 5.3, a cooperative reduction algorithm and a distributed evalID

algorithm have been discussed in detail to solve an MSID. A cooperative reduction

algorithm is one of the basic evaluation algorithms for solving an MSID. It directly

solves influence diagrams with some basic operations such as node removal and arc

reversal. On the other hand, a distributed evalID algorithm is an advanced evaluation

algorithm for solving an MSID. It extends the evalID algorithm in decision networks.

Both of these two algorithms belong to direct methods. They are a kind of reduction

algorithms which remove elements from an MSID directly for solving the MSID.

The principle of direct methods for solving an MSID is easy to be understood and

formulated in an intuitive way. However, it needs some efforts to design a good

evaluation process. As we know, the indirect method for solving influence diagrams

(Jensen et al. 1994) is an alternative approach in the model evaluation. It first

transforms an influence diagram into a rooted cluster tree (Jensen et al. 1994); then, it

solves the rooted cluster tree. Furthermore, as the process of transforming an MSID is

similar to that in an MSBN (Xiang 1996), I would like to discuss an indirect method

for solving an MSID in this section. Some relevant strategies in this indirect method

will be highlighted.

Chapter 5: Model Evaluation

126

5.4.1 Algorithm Design

Like solving influence diagrams, indirect evaluation algorithms to solve an MSID

follow two steps: transforming an MSID into a multiple rooted cluster tree composed

of a set of interconnected rooted cluster trees (Shachter 1999), and solving the multiple

rooted cluster tree.

1) Transforming an MSID: The methods to transform an MSID into a multiple

rooted cluster tree are combinations of evaluation algorithms in both influence

diagrams and MSBN (Jensen et al. 1994; Shachter 1999; Xiang 2002). Firstly,

a modified MSID is being built. For each local influence diagram, requisite

observation nodes are identified using Decision Bayes-ball procedure. Then,

arcs are added between identified required nodes and their corresponding

decision nodes. Finally, a multiple rooted cluster tree is built in a cooperative

algorithm (Xiang 2002). The basic idea of this algorithm is to transform local

influence diagrams into a local rooted cluster tree as well as to transform d-

sepsets into linkage trees. The linkage trees connect the transformed local

rooted cluster trees together into a multiple rooted cluster tree. In this process,

an index is introduced to show a clique sequence in the local rooted cluster tree.

2) Solving a multiple rooted cluster tree: A multiple rooted cluster tree is a tree

structure for an MSID. It is a set of local rooted cluster trees connecting with

the linkage trees. Thus, evaluating an MSID amounts to solving these local

rooted cluster trees as well as the linkage trees. The local rooted cluster tree is

evaluated following a partial decision order in a local influence diagram. The

linkage tree among local rooted cluster trees coordinates the computation of

adjacent cliques to make sure that d-sepnodes are evaluated at the same time.

Chapter 5: Model Evaluation

127

Hence, d-sepnodes in a linkage tree could be removed simultaneously. This has

to involve a relative elimination order for d-sepnodes in an MSID. The relative

elimination order could be obtained by considering the clique index in local

rooted cluster trees globally. A good relative index on cliques allows the

linkage trees to be evaluated cooperatively among adjacent local rooted cluster

trees.

In summary, an MSID is solved in a distributed way following the above two steps. In

this work, I do not focus on the process of developing a multiple rooted cluster tree

since it could be found in detail in much literature (Jensen et al. 1994; Shachter 1999;

Xiang 2002). I emphasize more on the solving of linkage trees in a multiple rooted

cluster tree, which is illustrated in the following case.

5.4.2 Evaluation of SARS Control Situation

Take the example in Figure 3.1. The three influence diagrams 1I , 2I and 3I are

transformed into three local rooted cluster trees 1T , 2T and 3T respectively. The d-

sepsets are transformed into linkage trees. For the MSID in Figure 3.1, the d-sepset

transformation is simple because each chance node in the d-sepset composes one

linkage tree. These local rooted cluster trees and linkage trees compose a multiple

rooted cluster tree in Figure 5.12.

Chapter 5: Model Evaluation

128

Figure 5.12: A Multiple Rooted Cluster Tree
(Nodes without color denote cliques and nodes with grey color denote linkage trees.)

The d-sepnodes in the linkage tree adjust the evaluation of cliques in adjacent local

cluster rooted trees since they have to be removed simultaneously. The removal of d-

sepnodes must follow an elimination order in a local cluster rooted tree. For example,

in 1T , nodes },{ ca have to be removed before node b although there is no fixed

elimination order for nodes },{ ca . However, in 3T , the removal of node a precedes the

removal of node c . Hence a legal elimination order for d-sepnodes in the computation

of the multiple rooted cluster tree exists: node a is removed before the node c which

should be removed before node b . It is also noticed that the arc associated with the

linkage tree including node c is from 1T to 3T in Figure 5.12. This follows with the

implication of the HRG in Figure 3.3. It indicates that agent A1 controls agent A3’s

decision 1d by the information c . For the linkage tree among 1T , 2T and 3T , the arc

T2 d1, e, b

g, d1, e

a, g, e
h, g, d1

h, g, d2

c, d2, g

f, d1 f, b, i

k, f, b
a, k

a, m

c, l, d1, m

b

a

c

T1

T3

Chapter 5: Model Evaluation

129

direction depends on an elimination order for d-sepnodes if this order exists; otherwise,

it is optional.

Following the above procedures, the MSID for the SARS model is solved by

evaluating local influence diagrams individually and combining all local optimal

solutions. The consistent information, implicated in the d-sepset in an MSID and

restricted in organizational relationships in an HRG, is guaranteed throughout the

evaluation process. If the shared information is inconsistent, the decision making is

prone to be wrong. For example, with reference to the MSID in Figure 3.1, if Nation 1

deliberately hides its SARS report (represented by node c), decision 1d in Nation 3

will definitely be wrong. Consequently, decisions in the whole community will lead to

quite a large loss, which has been the fact in the SARS control in 2003. Accordingly, a

true model of MSID and HRG not only provides good decisions for policy makers, but

also allows a large number of simulations to report some alerts in order to avoid a

destructive loss.

5.5 Comparison on the Three Evaluation Algorithms

Solving a multiagent decision problem is to seek the best decision for multiple agents

in a cooperative and privacy protection setting. Every agent aims to obtain an optimal

solution while it cooperates with its adjacent agents. An agent, without disclosing its

privacy, wants to access the full and consistent public information in order to

maximize the decision value. Here, the global optimal solution of the multiagent

decision problem is defined as the combination of best decision solutions from

multiple agents which have full and consistent observations.

Chapter 5: Model Evaluation

130

An MSID represents a multiagent decision problem with a set of local influence

diagrams. These local influence diagrams are connected with d-sepsets. Through the

information in the d-sepset, local influence diagrams could affect their adjacent ones.

Hence, in the evaluation process, some relevant strategies should be adopted to avoid

the incomplete and inconsistent information in the d-sepset. To achieve this goal, d-

sepnodes should follow a uniform elimination order in an evaluation algorithm so that

they could be evaluated and removed from an MSID simultaneously. Through this way,

it is believed that an agent has obtained a full, correct and consistent observation so

that each agent’s benefit is maximized in a distributed and unpredictable situation.

Following the above principles residing in evaluation algorithms for solving an MSID,

the three evaluation algorithms, namely cooperative reduction algorithm, distributed

evalID algorithm and indirect evaluation algorithm, have been discussed in the

previous sections. In general, all of these three evaluation algorithms can be utilized to

solve an MSID. However, every method has its own advantages. For example, a

distributed evalID algorithm could deal with a general MSID while a cooperative

reduction algorithm could only deal with a regular MSID in which local influence

diagrams are regular. A cooperative reduction algorithm is easily understood and is

suitable to solve an MSID with no large dimension; however, a good formulation

needs much effort. Moreover, both an indirect evaluation algorithm and a distributed

evalID algorithm could make full use of Bayesian inference algorithms in the

evaluation process. Accordingly, it is hoped that some strategies be designed with the

aim to select an appropriate evaluation algorithm for solving an MSID.

On the other hand, the three evaluation algorithms are special forms for the solving of

an MSID by removing nodes from the MSID step by step. In fact, they have a common

Chapter 5: Model Evaluation

131

interest to decide an elimination order for nodes in the MSID. Hence, the three

evaluation algorithms could be generalized into simple procedures for identifying the

elimination order for nodes. They could be used to solve general graphical decision

models.

5.6 Summary

This chapter described three evaluation algorithms, namely cooperative reduction

algorithm, distributed evalID algorithm, and indirect evaluation algorithm, for solving

an MSID. All of these three evaluation algorithms extend those for solving influence

diagrams or decision networks. A cooperative reduction algorithm extends basic

reduction algorithms in influence diagrams. A distributed evalID algorithm is based on

the evalID algorithm in decision networks while an indirect evaluation algorithm

originates from the junction tree method for solving influence diagrams. The three

algorithms are analyzed theoretically as well as illustrated in some simple examples.

Chapter 5: Model Evaluation

132

[This page intentionally left blank]

133

6 Case Study

This chapter illustrates a comprehensive case study – policy design for avoiding more

loss due to the SARS in 2003 - which extends the example in the medical domain in

Chapter 3. This work puts together my proposed methodologies of Multiply Sectioned

Influence Diagrams (MSID) and Hyper Relevance Graph (HRG) which consist of

model representation, model verification and model evaluation discussed in Chapters 3,

4, and 5, respectively. It shows how these methods can be utilized to address a

complex practical problem.

6.1 Decision Scenario

Policy design for controlling disease spread is one of the important issues in the

medical domain. For example, currently, the disease of bird flu seems to be widespread

in the world and is endangering human beings without notice. The involved or

uninvolved nations (communities) have been trying to design some policies to avoid

the further spread of the disease. Although they are separated geographically, they

want to cooperate with each other to alleviate the loss through a full exchange of some

useful and consistent information. Hence, this is a kind of multiagent decision

problems. Besides, the control on the Severe Acute Respiratory Syndrome (SARS)

case is another practical decision problem in the medical domain. In Chapter 3, I have

briefly described the decision scenario. Now, this case is extended here and discussed

in detail.

Chapter 6: Case Study

134

The SARS is a serious infectious disease that could potentially develop into an

epidemic or even an endemic. Its outbreak causes unexpected loss everywhere in the

world. Its uncertain and various sources have frustrated the medical community and

policy makers. Beyond all doubt, it needs the collaborative effort of multiple nations

concerned with their own local as well as global benefits. Assume that there are several

nations or communities (51 ~ AA) which are involved in a decision scheme for the

SARS control.

Nation 1A concentrates on the SARS control in an airport and plans to build

quarantine centers around the airport. It is concerned with decisions of changing

the airline schedule denoted by3 11d , having the SARS screening in the airport

12d and building quarantine centers 13d . The relevant uncertain variables are as

follows: (1) The SARS situation indicated in the WHO’s report a ; (2)

Permission from airlines 1b ; (3) Sign of the SARS with the fever symptom 1c ; (4)

The total number of customers in the airport d ; (5) Health condition of overseas

customers h ; (6) 1A ’s hospital facilities f ; (7) Loss without controlling the

SARS in the airport 1g . Nation 1A is concerned with the benefit-cost of building

quarantine centers around the airport 1v .

Nation 2A puts its effort to control and prevent the SARS in the society. Hence,

it needs to investigate some decisions such as adopting the home quarantine

measure 21d , arranging more ambulances around communities 22d , and building

special hospitals 23d . The involved uncertain variables are as follows: (1) The

SARS situation indicated in the WHO’s report a ; (2) The SARS situation

3 Subsequently, in this case, the words “denoted by” will be omitted before the symbol which is the
variable representing the front sentence.

Chapter 6: Case Study

135

indicated in nation 2A ’s report 2d ; (3) The SARS distribution 2c in nation 2A ;

(4) The SARS situation indicated b in the official report of nation 2A ; (5) The

SARS virus spread 2e ; (6) The loss without controlling the SARS 2f ; (7) Nation

2A ’s hospital facilities g . Nation 2A is concerned with the benefit-cost of

building special hospitals 2v .

Nation 3A intends to avoid the input of the SARS virus and considers the

citizens’ health. Thus it has a plan 31d whether to reschedule its tour groups to

nation 2A in which there is an outbreak of the SARS. The decision involves the

following uncertain variables: (1) The SARS situation indicated in the WHO’s

report a ; (2) The SARS situation indicated in nation 2A ’s report b ; (3) The

SARS situation indicated in nation 3A ’s report 3a ; (4) Possibility of catching the

SARS when traveling to nation 2A 3c ; (5) Loss for travelers when catching the

SARS 3d ; (6) Economic loss for tour groups 3e ; (7) The number of travelers to

nation 2A 3f . Hence nation 3A is concerned with the benefit-cost of a tour in

nation 2A 3v .

Nation 4A is a neighbor of nation 1A and has a wide affiliation with nation 1A .

For example, there are many people traveling between nation 1A and nation 4A

for business or education. Hence, the joint effort from both nation 4A and nation

1A contributes a lot to the SARS control. It is a benefit that both nations could

release some relevant information if new measures are taken. Here, nation 4A

investigates some foreign affairs with 1A such as controlling the quota of

travelers 41d and requiring medical examinations from travelers 42d . Many

uncertain variables exist as follows: (1) The SARS situation indicated in nation

Chapter 6: Case Study

136

1A ’s report 1a (depends on nation 4A ’s evaluation); (2) The SARS situation

indicated in nation 4A ’s report 4b ; (3) Profit for applicants to nation 1A 4c ; (4)

Loss for travelers with the SARS 4g ; (5) Possibility of identifying the SARS

through the health checking 4e ; (6) Cost of the health checking 4f ; (7)

Fluctuation of travelers to nation 1A after controlling the quota of travelers d ; (8)

Health status of travelers to nation 1A h . Nation 4A considers the benefit-cost

for applicants to nation 1A 4v .

Community 5A is one of the international organizations that would like to offer

some assistances to the SARS-affected nations (1A and 2A) such as distributing

the medicine 51d , sending out rescuers 52d and developing the SARS vaccine

53d . It has to consider many uncertain variables as follows: (1) The SARS

situation indicated in the WHO’s report a ; (2) The SARS situation indicated in

nation 1A ’s report 5c (depends on community 5A ’s evaluation); (3) The SARS

situation indicated in nation 2A ’s report b ; (4) Nation 1A ’s hospital facilities f ;

(5) Nation 2A ’s hospital facilities g ; (6) Effect of the distributed medicine 5d ;

(7) Effect of the SARS vaccine 5e ; (8) Risk of rescuers 5h ; (9) Passion of

volunteers 5i ; (10) Benefit of local patients 5j . Community 5A has to consider

the benefit-cost of both rescuer assignment 51v and vaccine development 52v .

6.2 Model Formulation

Clearly, the decision scenario above is a typical multiagent decision problem. The

involved organizations 51 ~ AA are interrelated with each other and share some

common information. Each nation or community is considered as an agent 51 ~ AA

Chapter 6: Case Study

137

respectively and is modeled as a local influence diagram in an MSID. Hence, there are

five local influence diagrams 51 ~ II in the MSID as shown in Figure 6.1. (Chance

nodes with grey color indicate public nodes among local influence diagrams.) The

public information is encoded in d-sepsets in the MSID and exerts its influence on the

decision making while agents’ privacy is protected in local influence diagrams.

Also, their organizational relationships can be represented in an HRG. On the basis of

the MSID in Figure 6.1, the corresponding HRG can be built in Figure 6.2. The HRG

characterizes organizational relationships among the involved nations. The HRG

shows that the international organization 5A has strong and complicated relationships

with other nations since it makes its decisions based on the input information from

adjacent entities. For example, 2A controls 5A ’s decision 52d with the required

information },{ gb . It is noticed that the information g depends on 2A ’s decision 21d

while the information b is 2A ’s judgment which is not affected by 2A ’s decisions.

Hence, 2A ’s decision 21d may affect 5A ’s decision 53d . For the adjacent agents 1A

and 5A , the information f controls both 1A ’s decision 13d and 5A ’s decision 51d so

that the authentic information benefits their decisions. 4A supports 1A with the

information d while controls 1A ’s decision 12d with the information }{h . Finally, it is

noticed that the information a is a key element that connects most agents. It may be

the required information for some agents’ decisions such as 5A ’s decision 51d and

2A ’s decision 23d . On the other hand, the information a may be the only public

information shared among adjacent agents. For example, it can be accessed by agents

1A and 3A ; however, it is not needed for the computation of their decisions.

Chapter 6: Case Study

138

Figure 6.1: The MSID

d11 d12

h d

g1b1
c1

d13

v1
a f

a d31

a3
v3

c3 d3 e3

b f3

I1

I3

I2

b

d2 d23

a

g d21
v2

d22

c2 e2 f2

e4

d42 v4 g4

f4

b4a1 c4

h d d41

I4

I5

f v51

h5

j5

i5

d52

g d5d53

d51 b v52

c5 a e5

Chapter 6: Case Study

139

h
(d12)

A3
b

(d31)

a

A2

a
(d23)

b
(d52) a

(d51)
g

(d52)

A5

A1

A4

d

f
(d51)

 (d23)
a

a
(d51)

f
(d13)

Figure 6.2: The HRG for the MSID in Figure 6.1

Concerning the information a that indicates the SARS status in the WHO’s report,

agents may have different judgments on this observation. In this case, an interval

probability could be utilized to unify their beliefs. It allows the involved nations to

make a good decision with the consideration of the WHO’s report.

This case study shows that graphical decision models of MSID and HRG can represent

a large and complex decision problem involving multiple agents. Furthermore, the

Chapter 6: Case Study

140

decision models are reusable and scalable. Any of the existing local influence diagrams

can be removed at any time without affecting other components. At the same time,

new components can be added into the existing model through connecting them with

relevant parts. For example, in the MSID shown in Figure 6.1, 4I can be removed

without changing the structures of 1I , 2I , 3I and 5I . The nation that recently involves

the SARS may join the global control group easily only if a corresponding local

influence diagram is put into the existing MSID.

6.3 Model Verification

Model verification amounts to checking whether the three constraints of MSID and

HRG are obeyed: DAG structures, d-sepset of agent interface and irreducible d-sepset.

I adopt the symbolic methods in Chapter 4 to verify the MSID and HRG in Figure 6.1

and Figure 6.2 respectively.

6.3.1 Verification of DAG Structures

The task of verifying a DAG structure is to ensure that there is no directed cycle in the

MSID as shown in Figure 6.1. According to Theorem 4.1, firstly, value nodes can be

removed from local influence diagrams. After that, the algebraic description for each

local influence diagram 51 ~ II in the MSID is obtained as follows:

),,(
),,,(

1
)(

1
)(

1
)(

1
)(

),,,(
),,,,(

1
)(

),,(
),,,(

),(
),,(

1
)(

12

12131

1

111

11112

1

1111
1

fdhp
fdhdpgp

fpcphp
cfhdp

cfhddpdp
badp

baddp
adp

adbpappI

××

×××××××=

 (6.1)

Chapter 6: Case Study

141

1
)(

),(
),,(

),,(
),,,(

)(
),(

1
)(

)(
),(

),,(
),,,(

)(
),(

),,,(
),,,,(

1
)(

221

22122

22

22

2

221

2

2

22

22221

222212

2

22

22

2223
2

gp
cdp

cddp
cdap
cdabp

dp
ddp

dp
dp

dcp
cddp

cddep
ep

efp
gedap

gedadpapp I

××××

×××××=
 (6.2)

),,(
),,,(

1
)(

),(
),,(

),(
),,(

)(
),(

),,(
),,,(

)(
),(

1
)(

3133

31333

3

313

3133

31

3133

3

331
3

dcap
dcadp

ap
dfp

dfep
dbp

dbfp
bp

bcp
abap

abadp
ap
abpapp I

×

××××××=
 (6.3)

),,(
),,,(

1
)(

),(
),,(

)(
),(

),(
),,(

),(
),,(

)(
),(

1
)(

),(
),,(

1
)(

44

44424

414

4144

41

41

44

4441

44

44

4

444

44

4444
4

fdep
fdedpfp

dfp
dfcp

dp
ddp

bap
badp

ebp
ebhp

ep
ebpep

eap
eagpap

pI

×××

××××××=

 (6.4)

1
)(

)(
),(

1
)(

),,(
),,,(

)(
),(

)(
),(

1
)(

),(
),,(

)(
),(

)(
),(

1
)(

),,,,(
),,,,,(

1
)(

5

555

5

551

5

5

5

5

553

51

515

52

525

55

55525
5

gp
cp

cjpcp
cabp

cabdp
cp
cap

ap
abp

ep
adp

addp
dp

ddp
dp

dhpfp
gdfibp

gdfibdpip
pI

××××××

××××××=

 (6.5)

Based on the above algebraic description, the sets of DH and DT for each local

influence diagram are identified as shown in Table 6.1.

Table 6.1: DH and DT

jI)(jIDH)(jIDT

1I },,,{)(1 adhfIDH = Φ=)(1IDT

2I },{)(2 gaIDH = },{)(2 bgIDT =

3I },{)(3 baIDH = }{)(3 bIDT =

4I }{)(4 dIDH = },{)(4 hdIDT =

5I },,,{)(5 bagfIDH = },{)(5 abIDT =

Then, the two operations 4.1 and 4.2 in Chapter 4 are used to find DPs for local

influence diagrams. Only one DP is found in 3I . That is baDPs •=
3

. Similarly, the

Chapter 6: Case Study

142

path appears in 2I and 5I . In this case, no directed cycle would be formed. Hence, it is

verified that the MSID in Figure 6.1 follows the constraint of DAG structure.

6.3.2 Verification of D-sepset

Verification of d-sepset is to check whether all common nodes are d-sepnodes in the

MSID as shown in Figure 6.1. It is equivalent to verifying whether all the parents of

every common node belong to at least one local influence diagram in the MSID.

According to the algebraic descriptions (Equations 6.1~6.5), first, the SPS for each

common node is obtained in Table 6.2.

Table 6.2: SPS for Common Nodes

Common node
jISPS

a Φ=)(
1

aSPS I , Φ=)(
2

aSPS I , Φ=)(
3

aSPS I , }{)(55
caSPSI =

b },,{)(222
cdabSPS I = , }{)(

3
abSPS I = }{)(

5
abSPS I =

d Φ=)(
1

dSPS I , }{)(414
ddSPS I =

g }{)(212
dgSPS I = , Φ=)(

5
gSPS I

h Φ=)(
1

hSPS I , },{)(444
ebhSPS I =

f Φ=)(
1

fSPS I , Φ=)(
5

fSPS I

After that, the union operation is used to get the PS for each common node as shown

in Table 6.3.

Chapter 6: Case Study

143

Table 6.3: PS for Common Nodes

Common Nodes PS

a }{)(5caPS =

b },,{)(22 cdabPS =

d }{)(41ddPS =

g }{)(21dgPS =

h },{)(44 ebhPS =

f Φ=)(fPS

Finally, the step of D-Testing compares SPS in Table 6.2 with PS in Table 6.3 to get

Table 6.4. It can be seen that the d-sepset of agent interface in the MSID is verified

successfully.

Table 6.4: Final Results

Common Node Results D-sepnode?

a }{)()(55
caSPSaPS I == YES

b },,{)()(222
cdabSPSbPS I == YES

d }{)()(414
ddSPSdPS I == YES

g }{)()(212
dgSPSgPS I == YES

h },{)()(444
ebhSPShPS I == YES

f Φ==)()(
1

fSPSfPS I or Φ==)()(
5

fSPSfPS I YES

6.3.3 Verification of Irreducibility

The irreducibility has to concern with whether both MSID and HRG are the exact

representation of domain knowledge. In fact, in the case of Figure 6.1 and Figure 6.2,

Chapter 6: Case Study

144

the decision models were built in a sequential way. Under this case, the HRG in Figure

6.2 is driven from the MSID in Figure 6.1. Hence, at this stage, the domain knowledge

would help to verify the accurate representation of decision models. This is a bit

subjective since the verification process largely depends on domain experts and model

builders. Thus, I focus on the pairwise verification of the MSID and HRG in this

section.

The main task of pairwise verification is to judge the property of d-sepnodes in the

MSID and to compare the results with the HRG. Through the procedure (refined)

Decision Bayes-ball, d-sepnodes are identified as to whether they are required chance

nodes for decision nodes in local influence diagrams. Then, the correct representation

of the HRG is evaluated. The whole results are shown in Table 6.5.

Table 6.5: Pairwise Verification

Pair Local Influence
Diagrams iI and jI

ijS },,{),,(Re 1 mkji ccdAAq L= and
},,{),(1 nji ccAASup L=

1I and 2I }{12 aS = }{),(21 aAASup =

1I and 3I }{13 aS = }{),(31 aAASup =

1I and 5I },{15 faS = }{),,(Re 5151 fdAAq = , }{),,(Re 5151 adAAq =
and }{),,(Re 1315 fdAAq =

1I and 4I },{14 hdS = }{),,(Re 1214 hdAAq = and }{),(41 dAASup =

2I and 3I },{23 baS = }{),,(Re 2323 adAAq = and }{),,(Re 3132 bdAAq =

2I and 5I },,{25 gbaS = }{),,(Re 2325 adAAq = , },{),,(Re 5252 gbdAAq = ,
and }{),,(Re 5152 adAAq =

3I and 5I },{35 baS = }{),,(Re 3135 bdAAq = , }{),,(Re 5253 bdAAq = ,
and }{),,(Re 5153 adAAq =

Chapter 6: Case Study

145

From Table 6.5, it is verified that each pair of local influence diagrams satisfies the

equation:))),())),,(Re()),,(Re(((ji
k k

kijkjiij AASupdAAqdAAqS ∪∪⊆ U U . Hence,

the constraint of irreducible d-sepset is followed.

So far, the verification of the MSID and HRG in Figure 6.1 and Figure 6.2 is

completed. However, the output of valid decision models could be further refined by

domain experts and model engineers.

6.4 Model Evaluation

Model evaluation is to solve decision models in order to obtain optimal decisions for

decision makers. In Chapter 5, three evaluation algorithms, namely cooperative

reduction algorithm, distributed evalID algorithm, and indirect evaluation algorithm,

have been proposed to solve an MSID. The core of these evaluation algorithms is to

design various strategies in order to remove d-sepnodes simultaneously. Through this

way, it is ensured that the consistent and updated information, especially in the d-

sepset, is involved in solving an MSID. Hence, building a framework which guides the

process of removing d-sepnodes from the MSID is vital. On another aspect, as

discussed in Chapter 5, these three evaluation algorithms have their own advantages

for solving an MSID. In fact, this phenomenon depends on the corresponding structure

of local influence diagrams in an MSID. It requires some strategies to choose a suitable

evaluation algorithm for solving a local influence diagram. This topic will be covered

in my future work. In this section, a hybrid evaluation algorithm is designed to solve

the MSID in Figure 6.1. It is composed of the three evaluation algorithms in Chapter 5.

Each evaluation algorithm is selected to solve a local influence diagram by considering

the graphical structure of each local influence diagram. The hybrid evaluation

Chapter 6: Case Study

146

algorithm is designed as shown in Table 6.6. In this hybrid evaluation algorithm, I

emphasize the elimination sequence for evaluating d-sepnodes in the MSID. The aim

of this work is to obtain a global elimination sequence for d-sepnodes. With a valid

elimination sequence for d-sepnodes, local influence diagrams could be evaluated

cooperatively. Consequently, the whole MSID could be solved in a distributed fashion

without incurring any inconsistent computation in the evaluation process. To design

the hybrid evaluation algorithm, first, each local influence diagram is analyzed by the

selected evaluation algorithm. The analysis generates a local elimination sequence for

d-sepnodes. After that, a global elimination sequence for d-sepnodes is built after

adjusting some conflicting local elimination sequences. Finally, local influence

diagrams are evaluated by the selected evaluation algorithm. Meanwhile, the global

elimination sequence is followed when d-sepnodes are evaluated.

Table 6.6: Components in the Hybrid Evaluation Algorithm

Local Influence Diagram Evaluation Algorithm

1I Reduction Algorithm

2I Reduction Algorithm

3I Rooted Cluster Tree

4I Rooted Cluster Tree

5I evalID algorithm

6.4.1 Solve I1

The local influence diagram 1I in the MSID in Figure 6.1 is a regular one and has a

sparse structure, which motivates the adoption of a basic reduction algorithm. Thus it

Chapter 6: Case Study

147

is easy to use the GSL process to obtain the local elimination sequence for all nodes in

1I : },,,,,,,,,{)(1111121311 adbdchfddgtES = 4.

6.4.2 Solve I2

The local influence diagram 2I in the MSID in Figure 6.1 is also a regular one and has

a sparse structure. Thus the GSL process is utilized to obtain the local elimination

sequence in 2I : },,,,,,,,,{)(22122222322 ddcdeagdfbtES = .

6.4.3 Solve I3

The local influence diagram 3I in the MSID in Figure 6.1 is composed of a large

number of chance nodes and one decision node. It is convenient to use an indirect

evaluation algorithm to solve 3I since it is easy to transform the local influence

diagram into the rooted cluster tree as shown in Figure 6.3.

Figure 6.3: Rooted Cluster Tree for I3

From Figure 6.3, one local elimination sequence for nodes in 3I is obtained as follows:

},,,,,,,{)(33133333 baaddceftES = .

4 Here, value node is neglected since it is always the last one to be removed.

c3, d3, a3, b

d3, d31, a3, b

a, b

d3, e3, d31 f3, b, d31

Chapter 6: Case Study

148

6.4.4 Solve I4

The local influence diagram 4I in the MSID in Figure 6.1 seems to have a complex

structure. Here, the indirect evaluation method is utilized. After the transformation, the

rooted cluster tree associated with 4I is shown in Figure 6.4.

From Figure 6.4, one local elimination sequence for nodes in 4I is obtained as follows:

},,,,,,,,,{)(44414442444 badedfdgchtES = .

Figure 6.4: Rooted Cluster Tree for I4

6.4.5 Solve I5

The local influence diagram 5I in the MSID in Figure 6.1 is not a regular one and has

a dense structure. It is hoped that using the evalID algorithm could relieve the

computation task. Here, the evaluation network for 5I is developed as shown in Figure

6.5.

e4, b4, h

e4, d41, a4, b4

d, d41

g4, f4, e4, a4,
d42, d41

g4, f4, c4,
d42, d41

Chapter 6: Case Study

149

Figure 6.5: Evaluation Network for I5

From the evaluation network in Figure 6.5, a partial order to remove nodes in 5I could

be obtained as follows: }),,,,,,,,(,,),,{()(5555515255355 adcihdbgfdjdetES = 5. The absolute

elimination sequence depends on what kind of inference engine is utilized to evaluate

tail nodes which compose the evaluation network. However,

}),,,,,,,,(,,),,{()(5555515255355 adcihdbgfdjdetES = provides a base elimination order to

all nodes in 5I .

6.4.6 Solve the MSID

The challenging work in solving an MSID is to obtain a valid global elimination

sequence for d-sepnodes because a unique local elimination order may not exist. A

valid elimination sequence allows a cooperative evaluation of local influence diagrams

in an MSID. In the cooperative evaluation process, the d-sepnodes are removed

simultaneously so that the consistency is ensured in the solving of the MSID.

Based on the analysis in Sections 6.4.1 – 6.4.5, the elimination sequence for each local

influence diagram in the MSID in Figure 6.1 has been built. It is repeated in Table 6.7.

5 Elimination order of elements in the bracket could be exchanged.

v52 d53, e5

a

f, g, b,
d52, h5, j5,

f, g, b, d51,
h5, c5, i5, d5

v51

Chapter 6: Case Study

150

Table 6.7: Elimination Sequence in Local Influence Diagrams

jI Elimination Sequence

1I },,,,,,,,,{)(1111121311 adbdchfddgtES =

2I },,,,,,,,,{)(22122222322 ddcdeagdfbtES =

3I },,,,,,,{)(33133333 baaddceftES =

4I },,,,,,,,,{)(44414442444 badedfdgchtES =

5I }),,,,,,,,(,,),,{()(55555152553535 adcihdbgfdjdetES =

Since an elimination sequence for d-sepnodes coordinates the evaluating of local

influence diagrams in an MSID, a conflicting elimination order is not allowed. Hence,

only the elimination order for d-sepnodes)(tESDSi is shown in Table 6.8.

Table 6.8: Elimination Sequence for D-sepnodes

jI Elimination Sequence for D-sepnodes

1I },,,{)(1 adhftESDS =

2I },,{)(2 agbtESDS =

3I },{)(3 batESDS =

4I },{)(4 dhtESDS =

5I }),,,{()(5 abgftESDS =

From the elimination sequence for d-sepnodes shown in Table 6.8, it seems that only

the elimination order for d-sepnodes },{ ab conflicts among local influence diagrams 2I ,

3I and 5I . Node b is needed to be removed after node a in 3I while it has to be

removed before node a in both 2I and 5I . However, from the rooted cluster tree in

Figure 6.3, the elimination order for nodes },{ ab could be adjusted as },{)(3 abtESDS = .

Thus no conflicting elimination sequence for d-sepnodes exists in all local influence

Chapter 6: Case Study

151

diagrams. Consequently a global elimination sequence for d-sepnodes GES is elicited

as follows: },,,,,{ agbdhfGES = . Following this elimination sequence, the d-sepnodes

could be removed simultaneously from local influence diagrams in the MSID. Hence

local influence diagrams are evaluated cooperatively. On the other hand, other (private)

nodes in local influence diagrams could be removed independently while they follow

the local elimination sequence)(tES j in each local influence diagram. In summary, the

MSID in Figure 6.1 is solved in a distributed way and the evaluation process is

coordinated through the global elimination sequence of d-sepnodes.

6.5 Summary

This chapter studies the SARS case in the medical domain. All of my proposed

methodologies on MSID and HRG are revisited and used to solve the meaningful and

complex decision problem. This work fully demonstrates that the proposed

methodologies are significant and applicable in solving practical problems.

Chapter 6: Case Study

152

[This page intentionally left blank]

153

7 Block Learning Bayesian Network Structures from Data

In the preceding chapters, I mainly discuss the methodologies for solving multiagent

decision making problems, which consist of model representation, model verification

and model evaluation. This work can be utilized to solve a large and distributed

decision problem involving multiple agents. However, building a decision model, such

as the Multiply Sectioned Influence Diagrams (MSID), depends largely on domain

knowledge which is elicited from the decision scenario. Hence this elicitation process

consists of some subjective factors and is always called model construction. On

another aspect, in the research field of normative decision systems, Bayesian networks

are basic elements of decision models. For example, influence diagrams augment

Bayesian networks by decision nodes and value nodes. Thus extensive research work

on Bayesian networks appears in a large amount of literature, which includes Bayesian

model learning, Bayesian propagation and so on. In this chapter, I will emphasize on

the topic of Bayesian network learning, which is to construct Bayesian networks from

data.

7.1 The Challenge

Bayesian network has been an important concept in normative decision systems. It

compactly represents probabilistic knowledge and explicitly spells out dependencies

among involved variables. Moreover, Bayesian reasoning provides a probabilistic

approach to inference, prediction and planning. Hence, many domains such as medical

Chapter 7: Block Learning Bayesian Network Structures from Data

154

informatics domain (Friedman et al. 2002; Galan et al. 2002) and military domain

(Sanguk & Gmytrasiewicz 1998), have adopted Bayesian networks as knowledge

representation and inference engine in decision systems. Despite these successful

applications, the construction of Bayesian networks is a piece of arduous and tedious

work many system engineers have to face. One technique that may resolve this

difficulty is to learn Bayesian networks from data obtained in the relevant domain. It

includes parameter learning and structure learning in Bayesian networks (Heckerman

et al. 1994). However, it is more difficult to learn structures than it is to learn

parameters. My current work focuses on structure learning.

Various techniques for learning Bayesian network structures from data have appeared

in the past decades such as the PC algorithm (Spirtes et al. 1993, 2000), Sparse

Candidate algorithms (SC) (Friedman et al. 1999), Three Phases Dependency Analysis

(TPDA) algorithm (Cheng et al. 2002) and Max-min Bayesian networks (MMBN)

(Tsamardinos et al. 2003). These approaches have largely relieved the laborious task

for building a precise Bayesian structure. However, recently some practical issues

disable the applications of the existing learning techniques. For example, in gene

expression data in the biomedical informatics domain, enormous variables are involved

and available data is insufficient. Hence, the state-of-art learning algorithms will run

into computational and statistical problems concerning the following two aspects.

Since learning Bayesian network structure is a time-consuming process, the learning

process deteriorates with a growing network size, such as memory running out in the

computational process. Also, since some learning approaches like constraint based

learning algorithms (Neapolitan 2004), depend on statistical tests to detect

independencies, insufficient data weakens the reliability of the tests, leading to an

Chapter 7: Block Learning Bayesian Network Structures from Data

155

inaccurate learned structure. As such, the task of learning large Bayesian network

structures from small data sets provides a motivation for this research.

7.2 Block Learning Algorithm

As investigated in Chapter 2, the existing learning algorithms have partly addressed the

challenging work of learning large Bayesian network structures from a small data set.

However, different research views on this learning problem could also motivate some

simple and applicable methods to solve this challenging work.

The constraint based approach learns a network structure by using some statistical

hypothesis tests in order to detect dependencies or (conditional) independencies among

variables or attributes in a data set. The approach is more sensitive to failures in

conditional independence (CI) tests when there is insufficient data. At the same time, a

huge dimension of variables in a data set leads to an increasing order in the statistical

tests and makes the learning task intractable. A naïve idea to cope with this problem is

to decompose the learning task into several stages. Thus, a block learning algorithm is

proposed to illustrate this idea. The novel algorithm includes several procedures as

follows: Generating the Maximum Spanning Tree (GMST), Identifying the Blocks and

Markov Blankets of Overlaps (IBMB), Learning the Overlaps (LO), Learning the

Blocks (LB), and Combining the Blocks (CB). These procedures are executed

sequentially. In the block learning algorithm, a maximum spanning tree is built in the

first procedure. Based on the maximum spanning tree, several blocks and their overlap

nodes are found in the second procedure. Then, V-structures are identified in the

learned structures of the overlaps in the third procedure. After that, each block is

Chapter 7: Block Learning Bayesian Network Structures from Data

156

learned with the constraint of V-structures related to the block nodes. Finally, the

learned blocks are combined together into the whole Bayesian networks.

7.2.1 Generate Maximum Spanning Tree

Bayesian network structures exhibit the dependency among variables in a data set. A

strong dependency among variables always gathers them into one local density graph.

In other words, these tightly linked variables are potential variables that will be

enclosed in the same block. Hence, an initial graph has to be generated so as to identify

such blocks. The graph must be able to characterize a strong dependency for every pair

of variables. One of the mature methods to build this graph has been developed in

Chow and Liu’s work (Chow & Liu 1968). The algorithm uses the mutual information

to construct a tree called the Maximum Spanning Tree (MST). Amongst all the tree-

shaped models, the algorithm finds the model that maximizes the likelihood of the

data.

Consider a finite set },,{ 1 nxx L=χ of discrete random variables and a training data set

},,{ 1 NxxD L= , a Bayesian network B that matches D best is to be found. The

procedure to Generate MST (GMST) is formulated in Figure 7.1.

Figure 7.1: GMST Procedure

In the procedure GMST, an MST is built after computing the mutual information

Procedure GMST

Input: A data set },,{ 1 NxxD L=
Output: MST M

1. Load the data set D

2. Build M based on the mutual information

Chapter 7: Block Learning Bayesian Network Structures from Data

157

between every pair of variables. For n variables, the tree is developed with)(2nΟ

steps using weight comparisons so that expensive CI tests are avoided.

7.2.2 Identify Blocks and Markov Blankets of Overlaps

The MST developed in the procedure GMST is just the graph in which blocks can be

identified. A block is composed of variables that have a strong dependency with each other.

The variable with a large cardinality of connectivity, called block center iS , will absorb its

neighbors and leaf nodes connected to these neighbors to compose a block. The procedure

of Identifying Blocks (IB) is formulated in Figure 7.2.

Figure 7.2: Procedure of Identifying Blocks

Procedure IB

Input: A graph M

Output: Blocks iB

1. Initialize an individual block iB (ni L1=) as one block center iS

with its family)(iSFam in M

2. Merge blocks iB and jB (ji ≠) that have the same cardinality of

connectivity and share the number of nodes larger than 1ComNum

3. Search leaf nodes connected to those nodes in)(iSFam and enclose

them into block iB

4. Merge block iB and jB (ji ≠) that share the number of nodes larger

than 2ComNum

5. Finalize Blocks iB (ri L1=)

Chapter 7: Block Learning Bayesian Network Structures from Data

158

In the initialization phase, there are n blocks each of which centers around every node in

M . Each block includes both a center node iS and its family)(iSFam which is adjacent to

the center node. The number of the shared nodes between a pair of blocks, called

1ComNum or 2ComNum , determines the criteria to merge these rough blocks. In general,

their values are decided according to the connectivity of the M structure. Usually, the

value of 2ComNum is larger than the value of 1ComNum because the blocks formulated in

the later stage always have more nodes than the initial blocks. After the merging and

absorbing operations, the blocks composed of the majority of variables become the final

blocks that divide M into r pieces. Every final block also centers around one variable

with a large cardinality of connectivity. It can be seen that no CI test is involved in this

procedure. Assuming that k is the maximum cardinality of node adjacency in M , the

procedure requires at most)(nkΟ ,)(2nΟ ,)(2nΟ ,)(nkΟ , and)(2nΟ basic operations in

Step 1- 5, respectively. In the worst case (nk =), the complexity of each step is at most

)(2nΟ .

Blocks are overlapped with each other to compose the whole network. Generally, the

number of nodes in the overlaps is much smaller than that in the blocks. Hence, learning

overlap structures is more operational and reliable. Moreover, I am concerned with the

dependencies between the overlaps and the blocks, because the overlap structure will be

utilized to combine the learned blocks in the last phase. The overlap ijO includes common

nodes between block iB and block jB . A novel idea is to learn the Markov blanket of

those nodes in the overlaps. From the learned Markov blanket, some dependencies

between the overlaps and the blocks could be detected. The procedure of Identifying the

Markov Blanket of nodes in the overlaps (IMB) is formulated in Figure 7.3.

Chapter 7: Block Learning Bayesian Network Structures from Data

159

Figure 7.3: Procedure of Identifying Overlaps and Markov Blankets

The nodes found in Step 2 in each set of the procedure IMB do not exactly equal those

nodes in a real Markov blanket of nodes in the overlaps. By comparison, the resulting

ijMB includes more nodes some of which do not belong to the real Markov blanket of the

overlap nodes. Assuming that t is the maximum number of nodes in an overlap, Steps 1

and 2 require at most)(2rΟ and)(22ktrΟ basic operations respectively.

To illustrate the procedures IB and IMB, it is assumed that there is one MST in Figure 7.4

and the two parameters 1ComNum or 2ComNum are assigned with the values of 1 and 2

respectively. In the initialization phase of IB, there exist 14 blocks (14,,1, L=iBi)

corresponding to each individual node },,,,,{ nmlba L as block center iS . For example, the

block 1B centers on the node aS =1 whose family consists of the nodes },,,,{ ebhga and

the connectivity cardinality of this block is 4. Among these blocks, the two blocks 1B and

3B centering on nodes a and c have the largest connectivity cardinality of 4; however,

they do not share any node. The two blocks 2B and 4B centering on nodes b and d

respectively have the connectivity cardinality of 2 and they share two nodes },{ db . Hence,

in the second step in the procedure IB, the two blocks 2B and 4B could be merged into the

block },,,{2 dcbaB = centering on the node b . In this step, only these two blocks 2B and

Procedure IMB

Input: Blocks iB (ri L1=)
Output: Overlaps ijO , Markov Blankets of Overlaps ijMB

1. Identify ijO between blocks iB and jB (ji ≠)

2. Search all nodes within two lengths away from nodes

in ijO and pull them into ijMB

Chapter 7: Block Learning Bayesian Network Structures from Data

160

4B are merged. In the third step, the block 1B absorbs the leaf nodes f and i since they

are connected to nodes e and h respectively in its family. The block 2B also absorbs the

nodes },{ kg . Similarly, the block 3B absorbs the nodes },{ ml . Then, in the fourth step,

many blocks are merged into a larger one. For example, the blocks 96 ~ BB are merged

into the block 1B and the blocks 1411 ~ BB are merged into the block 3B . Hence, after the

fourth step, there exist three blocks: 1B is with family nodes },,,,,,{ ifebhga centering on

the node aS =1 , 2B is with family nodes },,,,,{ kgdcab centering on the node bS =2 and

3B is with family nodes },,,,,,{ nmljkdc centering on the node cS =3 . Finally, the blocks

2B and 1B are merged into the block 1B since they share 3 nodes },,{ gab . Hence, the

output of the procedure IB has two blocks: 1B is with family nodes },,,,,,,,,{ cdifebhkga

centering on the node aS =1 and 3B is with family nodes },,,,,,{ lmjnkdc centering on the

node cS =3 .

Figure 7.4: An MST

In the procedure IMB, the two blocks 1B and 3B are the input. In the first step, the overlap

},,{13 kdcO = is identified. Finally, a rough Markov blanket of these overlap nodes is

searched and denoted as },,,,,,,,{13 lnkmjcdbaMB = . It can be seen that the Markov blanket

g

e

f

a

h i

b d c

k

n

l j m

Chapter 7: Block Learning Bayesian Network Structures from Data

161

even has a larger capacity than the block 3B . Hence, some improvement could be made in

this step. However, the approach adopted in the second step is a simple one to identify a

rough Markov blanket of overlap nodes.

7.2.3 Learn Overlaps

Overlaps connect adjacent blocks to compose a whole network and the overlap

structures can be obtained through learning their Markov blankets. Any of the existing

learning algorithms, called ALG1, can be utilized to identify the structure of the

Markov blanket. For example, the PC algorithm, the GS algorithm (Margatitis 203)

and the IAMB algorithm (Tsamardinos 2003) are able to learn ijMB . The resulting

Markov blanket provides a foundation to identify some V-structures associated with

overlap nodes. The procedure of Learning Overlaps (LO) is formulated in Figure 7.5.

Figure 7.5: Procedure of Learning Overlaps

The robust V-structures relevant to ijO avoid error spread in learning blocks when VS(ijO)

is set as constraints in the learning process. It can be seen that a large amount of

computations happen in the process of learning ijMB . Assuming that the PC algorithm is

used in this procedure, Step 1 requires))((22 ktkrΟ CI tests while Step 2 requires at most

Procedure LO

Input: A data set },,{ 1 NxxD L= and ijMB
Output: V-structure of ijO : VS(ijO)

1. Load the data set D and learn ijMB using ALG1

2. Identify the V-structure of ijO from the learned ijMB

3. Produce VS(ijO)

Chapter 7: Block Learning Bayesian Network Structures from Data

162

)(2tkrΟ basic operations. If the PC algorithm is terminated without orienting edges in the

final phase (Spirtes et al. 1993), Step 2 can be avoided.

7.2.4 Learn Blocks and Combine Blocks

Learning Bayesian network structures with some constraints, like a partial order for

some variables, speeds up the learning process because some CI tests may be avoided.

In the procedure LO, VS(ijO) is obtained and is set as the constraints when learning

the corresponding blocks. Here the size of the blocks iB , denoted by im , may be

expanded to include the variables in VS(ijO) from all of its adjacent blocks jB .

Clearly, any of the existing learning algorithms, denoted as ALG2, can be used to learn

blocks in the procedure of Learning Blocks (LB). Subsequently, the whole network

structure is recovered after combining the final learned block in the procedure of

Combining Blocks (CB). These two procedures are formulated in Figure 7.6 and

Figure 7.7 respectively.

Figure 7.6: Procedure of Learning Blocks

Procedure LB

Input: A data set },,{ 1 NxxD L= , iB and VS(ijO)
Output: Learned iB (ri L1=)

1. Load the data set D and learn iB using the ALG2 with constraints VS(ijO)

2. Produce the learned iB (ri L1=)

Chapter 7: Block Learning Bayesian Network Structures from Data

163

Figure 7.7: Procedure of Combining Blocks

The procedure CB is relevant to the research work on the combination of Bayesian

networks. This issue on Bayesian network structure combination has been investigated

in much research work (Mckelvey & McLennan 1996; Joseph et al. 1998). Currently,

Jiang’s work (Jiang et al. 2005) proposes some heuristic methods to combine several

Bayesian networks simultaneously. Most of these existing methods try to output a

valid Bayesian network structure which should be a directed acyclic graph. However,

these methods are not guaranteed to yield an optimal solution as it is a NP-hard

problem (Mckelvey & McLennan 1996).

One of the most important tasks in the procedure CB is to build the final B which

disallows directed cycles. Hence, the procedure CB is concerned with a valid method

for combining the learned blocks. The basic idea in my approach is to make overlap

nodes follow one uniform partial order before the combination operation is carried out.

A directed acyclic graph does not allow opposite orders in a set of nodes, even in a pair

of nodes. Thus, in this way, a valid Bayesian network could be output after the

combination.

Procedure CB

Input: Learned iB and VS(ijO) (rji L1, = and ji ≠)
Output: B

1. Identify iλ , jλ for the nodes in ijO between blocks iB and jB

2. For the two blocks iB and jB (ji ≠): if ji λλ = , combine iB and

jB ; otherwise if ji mm < , combine iB and jB following iλ

3. Produce B

Chapter 7: Block Learning Bayesian Network Structures from Data

164

Assume that the blocks iB and jB (ji ≠) linked by ijO are ready to be combined into a

new large block ijB , and a partial order for nodes in ijO is identified in the block iB

and the block jB individually, denoted by iλ and jλ . The following proposition can

be proved.

Proposition 7.1: The fact that iλ equals to jλ ensures no directed cycle in ijB

composed of iB and jB (ji ≠).

Proof. A directed cycle in ijB must involve at least two nodes in ijO . Hence, there is

no uniform order for those involved nodes in ijB . For example, a directed cycle

contains two nodes 1x and 2x that should respect different orders: 21 xx → in iλ and

12 xx → in jλ , or vice versa. A uniform order for those involved nodes ensures no

directed cycle in ijB .▐

In the case that the reversal orders are obtained in iλ and jλ for the variables in ijO ,

they have to be forced to follow one uniform order in the block iB that has a smaller

size im , assuming ji mm < . The reason lies in the consideration of statistical tests in a

data set. For the same cases or instances, the fewer the variables, the more reliable the

dependencies among nodes are tested. Figure 7.7 clearly shows this strategy. In fact,

when overlap nodes ijO in the block jB are forced to follow the uniform order

associated with overlap nodes ijO in the block iB , the structure of the corresponding

nodes in a directed path along overlap nodes ijO has to be reconstructed to an

equivalent one in the block jB . In this process, it involves the operation of arc reversal

to get the equivalent structure of jB concerning the uniform order of overlap nodes ijO .

Chapter 7: Block Learning Bayesian Network Structures from Data

165

This discussion is beyond the scope of this thesis. Details could be found in Jiang’s

work (Jiang et al. 2005). However, in a series of experiments in Section 4, overlap

nodes always have uniform partial orders in adjacent blocks. Hence the combination

procedure is not hard in practice.

The procedures LB and CB conclude the block learning algorithm. Assuming that the

PC algorithm is adopted in LB and m is the maximum number of nodes in a block, the

procedure LB requires))((kmrΟ CI tests while the procedure CB only requires at most

)(2tkmrΟ basic operations.

7.3 Experimental Results

The aim of the following experiments is to demonstrate the ability of the block

learning algorithm for learning a large Bayesian network structure from a small data

set as well as its capability for encompassing other learning techniques. I evaluated the

block learning algorithm on two networks as benchmarks: the ALARM network

(Beinlich et al. 1989) and the Hailfinder network (Edwards 1998). Several versions of

these two networks have appeared in the current literature; the version I adopted in this

experiment can be accessed with the link:

http://www.cs.huji.ac.il/labs/compbio/Repository/. The data set was generated from the

script in http://www.cs.huji.ac.il/labs/compbio/Repository/networks.html. To utilize

the huge resource of BNT in http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html,

all procedures of the block learning algorithm were implemented with MATLAB,

except for ALG1 in LO and ALG2 in LB. The implementation of ALG1 and ALG2

can make use of the existing learning tools. All these experiments were conducted on a

Pentium 2.6 GHZ PC with 512 MB of RAM running under Windows XP.

Chapter 7: Block Learning Bayesian Network Structures from Data

166

7.3.1 Experiments on the Hailfinder Network

The Hailfinder network (Edwards 1998) is a normative system that forecasts severe

summer hail in northeastern Colorado. It consists of 56 nodes and 66 arcs. The number

of node states in the Hailfinder network is up to 11. For the large size of network

structure, much research work has adopted it as a benchmark for algorithm evaluation.

From the available resources in the literature, the tool of BNPC (Believe Networks

Power Constructor (BNPC) implements the TPDA algorithm.), winner of 2001 KDD

cup, shows quite good learned results on the Hailfinder network. However, it did not

display any ability for addressing the learning problem when insufficient data exists.

To show the ability of the block learning algorithm for learning a large Bayesian

network structure from a small data set, I designed a series of experiments to compare

the block learning algorithm with the TPDA algorithm implemented in BNPC. Five

sample sizes were generated: 8K6 cases, 5K cases, 1K cases, 0.3K cases and 0.1K

cases. The procedures GMST, IBMB and CB in the block learning algorithm were

executed in MATLAB while the procedures LO and LB were run in BNPC with the

default parameters, such as the threshold with 1 time of default value. The values 2 and

3 are assigned to the parameters 1ComNum and 2ComNum respectively in order to

identify blocks in the procedure IB. In the procedure LO, V-structures were identified

from the Markov blanket of overlaps that was learned in BNPC. Finally, BNPC was

also used to learn the blocks. Additionally, to compare the block learning algorithm

with the TPDA algorithm, I directly used BNPC to learn the whole Hailfinder network

from the four samples. The settings in BNPC were all default.

To illustrate the mechanism of the block learning algorithm, I traced all procedures

6 1K =1000 Cases

Chapter 7: Block Learning Bayesian Network Structures from Data

167

throughout one experiment based on 0.1K cases. For example, in the process of

learning the Hailfinder network from this dataset, the MST was generated in Figure

7.8. Compared with the node distribution in the original Hailfinder network, the MST

produced in the procedure GMST was the appropriate graph which could be utilized to

identify the blocks. Based on the MST in Figure 7.8, seven blocks (71, L=iBi) were

identified in the procedure IB. The block centers (71, L=iSi) and the block variables

were found in Table 7.1.

Chapter 7: Block Learning Bayesian Network Structures from Data

168

Figure 7.8: The MST for the Hailfinder Network

1: N0_7muVerMo, 2: SubjVertMo, 3: QGVertMotion, 4: CombVerMo,
5: AreaMeso_ALS, 6: SatContMoist, 7: RaoContMoist, 8: CombMoisture,
9: AreaMoDryAir, 10: VISCloudCov, 11: IRCloudCover, 12: CombClouds,
13: CldShadeOth, 14: AMInstabMt, 15: InsInMt, 16: WndHodograph,
17: OutflowFrMt, 18: MorningBound, 19: Boundaries, 20: CldShadeConv,
21: CompPlFcst, 22: CapChange, 23: LoLevMoistAd, 24: InsChange,
25: MountainFcst, 26: Date, 27: Scenario, 28: ScenRelAMCIN,
29: MorningCIN, 30: AMCINInScen, 31: CapInScen, 32: ScenRelAMIns,
33: LIfr12ZDENSd, 34: AMDewptCalPl, 35: AMInsWliScen, 36: InsSclInScen,
37: ScenRel3_4, 38: LatestCIN, 39: LLIW, 40: CurPropConv
41: ScnRelPlFcst, 42: PlainsFcst, 43: N34StarFcst, 44: R5Fcst,
45: Dewpoints, 46: LowLLapse, 47: MeanRH 48: MidLLapse,
49: MvmtFeatures, 50: RHRatio, 51: SfcWndShfDis 52: SynForcng,
53: TempDis, 54: WindAloft, 55: WindFieldMt, 56: WindFieldPln

17

15

14

16

29 31

19

20

25

28

42

44

43

18

10 11

12

6 7

8

1

4

9 313 5 2

56

26 30 32 39 37 45 41 46 47 48 49

51

27

38

40 3635

24 23 33 34

50

52
53

54
55

21

22

Chapter 7: Block Learning Bayesian Network Structures from Data

169

Table 7.1: Blocks, Centers and Block Elements (Hailfinder Network on 0.1K Cases)

Bi Si Block Elements

B1 31 21 22 30

B2 44 25 42 43

B3 12 10 11 45

B4 15 14 16 17 20 25 44

B5 35 23 24 33 34 36 41

B6 4 1 2 3 5 9 13

B7 27 4 6 7 8 9 12 16

 17 18 19 29 26 28 30

 31 32 33 35 37 38 39

 40 41 45 46 47 48 49

 50 51 52 53 54 55 56

 As shown in Table 7.1, these blocks included the exact nodes that had strong

dependency so that their dependency structures would not be damaged when the

network was learned locally. After the overlaps and the blocks were learned

respectively in the procedures LO and LB, the final Hailfinder network was recovered

when all the learned blocks were combined together in the procedure CB.

Similar procedures in the block learning algorithm were executed in other experiments

for learning the Hailfinder network from data set with 8K, 5K, 1K, and 0.3K cases

respectively. At the same time, to evaluate the TPDA algorithm, BNPC is directly used

to learn the whole network from the five data sets. Both the block learning algorithm

and the TPDA algorithm are run in 10 different data sets with each size. The structures

learned by these two algorithms in each round were compared with the original

Hailfinder network. One set of comparison results for every data set is shown in Table

Chapter 7: Block Learning Bayesian Network Structures from Data

170

7.2.

Table 7.2: Comparison 1 of BL and TPDA Algorithms

Cases ALG NB EE ME

8K TPDA N/A 10 18

 BL 8 8 16

5K TPDA N/A 8 16

 BL 7 8 17

1K TPDA N/A 33 25

 BL 8 24 25

0.3K TPDA N/A 31 30

 BL 7 28 26

0.1K TPDA N/A 33 34

 BL 7 30 29
 BL: Block Learning Algorithm; ALG: ALGorithm;
 NB: Number of Blocks; EE: Extra Edges; ME: Missing Edges.

In Table 7.2 results show that the block learning algorithm is able to discover more

accurate structures than the TPDA algorithm. In the structure learned by the block

learning algorithm, more correct edges are detected and more error edges are removed.

For example, in Table 7.2, for the data set with 8K cases, 16 edges are lost and only 8

extra edges exist in the structure learned by the block learning algorithm. However, 18

edges are missed and 10 extra edges are wrongly identified in the structure learned by

the TPDA algorithm. The advantages of the block learning algorithm are more

noticeable when only a small data set is available. In Table 7.2, for the data set with

0.1K cases, the performance of both learning algorithms deteriorates. However, the

block learning algorithm still produces more precise structures than the TPDA

algorithm. It can be seen that 29 correct edges are missed and 30 extra edges are

Chapter 7: Block Learning Bayesian Network Structures from Data

171

wrongly added in the structure learned by the block learning algorithm. On the other

hand, 34 correct edges are lost and 33 extra edges are wrongly identified in the

structure recovered by the TPDA algorithm. Hence, the block learning algorithm

shows a good ability for learning a large Bayesian network structure from a small data

set compared with the TPDA algorithm. (Here, I want to mention that the experimental

results are based on the datasets that were produced in the experiment. The datasets

may be quite different from those in other publications (Cheng et al. 2002). The two

algorithms are compared when they were utilized to learn the same dataset generated

in each round.)

To do a further comparison, the Euclidean distance d of the sensitivity and specificity

from the perfect score 1 was used to judge the algorithm performance (Tsamardinos et

al. 2003).

22)1()1(yspecificitysensitivitd −+−=

where the sensitivity of the algorithm is the ratio of correctly identified edges

(undirected arcs) over the total number of edges in the original network while the

specificity is the ratio of edges correctly identified as not belonging in the graph over

the true number of edges not present in the original network. Moreover, to evaluate the

robustness of the block learning algorithm different data sets with the same size are

explored 10 rounds in the experiment. In this comparison, the average µ of sensitivity,

specificity and distance, as well as their standard deviation δ , are reported as shown in

Table 7.3.

Chapter 7: Block Learning Bayesian Network Structures from Data

172

Table 7.3: Comparison 2 of BL and TPDA Algorithms

Sens.(%) Spec. (%) Dist.

TPDA BL TPDA BL TPDA BL
Cases

µ δ µ δ µ δ µ δ µ δ µ δ

8K 72.24 1.61 75.16 1.28 99.32 0.08 99.42 0.06 0.26 0.02 0.24 0.01

5K 75.00 0.80 76.62 1.06 99.39 0.06 99.46 0.05 0.26 0.01 0.24 0.01

1K 63.64 1.81 63.64 1.33 97.76 0.10 98.37 0.10 0.36 0.02 0.36 0.05

0.3K 55.30 1.25 61.36 1.06 97.93 0.12 98.13 0.09 0.45 0.01 0.39 0.02

0.1K 49.24 1.64 56.06 1.24 97.80 0.05 97.96 0.05 0.51 0.02 0.44 0.01
Sens.: Sensitivity; Spec.: Specificity; Dist.: Distance

In Table 7.3, the results show that the average sensitivities of the block learning

algorithm are 75.16% and 76.62% for learning the Hailfinder network structures from

the data set with 8K and 5K cases respectively. It decreases to 56.06% for the data set

with 0.1K cases. In comparison, the sensitivity of the TPDA algorithm decreases

significantly from 72.24% to 49.24% when the sample size shrinks from 8K cases to

0.1K cases. As shown in Table 7.3, the average specificity of these two algorithms is

close to 100% because there are a large number of potential edges in the Hailfinder

network. Even in this case, the block learning algorithm still has a higher specificity

than the TPDA algorithm.

The criterion of the distance d is a combination measure to evaluate the gap between

the learned structure and the original network structure. In Table 7.3, it shows that the

block learning algorithm does not have much larger average distance than the TPDA

algorithm when both of them are utilized to learn the Hailfinder network from large

data sets such as the 8K and 5K cases. The average distance of both learning

algorithms is almost the same for the data set with 1K, 5K and 8K cases. However, for

Chapter 7: Block Learning Bayesian Network Structures from Data

173

the small data set with 0.1K cases, the average distance of the block learning algorithm

is only 0.44 while the distance of the TPDA algorithm is 0.51. On the other hand, the

standard deviation of the distance of the TPDA algorithm seems a little worse than that

of the block learning algorithm when they are used in learning structures from small

data sets. For example, it is only 0.01 for the block learning algorithm while it is 0.02

for the TPDA learning algorithm in the 0.1K cases. Hence, all the experimental results

could demonstrate that the block learning algorithm is able to learn a large Bayesian

network structure from a small data set. Moreover, the block learning algorithm could

output more reliable results.

7.3.2 Experiments on the ALARM Network

The ALARM network (Beinlich et al. 1989) is a popular Bayesian network in the

medical domain. It consists of 37 nodes and 46 arcs. The number of node states is up to

4. The ALARM network has been widely utilized as a benchmark to evaluate state-of-

the-art learning algorithms in the literature.

To demonstrate the capability of the block learning algorithm for encompassing other

learning techniques, the PC algorithm was adopted in the learning procedures of the

block learning algorithm. In the procedures LO and LB, learning algorithms ALG1 and

ALG2 were set as the PC algorithm to learn overlaps and blocks. Hence, in the

experiment on the ALARM network, the procedures GMST, IBMB and CB in the

block learning algorithm were executed in MATLAB while the procedures LO and LB

were run in the tool of HUGIN (http://www.hugin.com/) that has successfully

implemented the PC algorithm. The PC algorithm was also used to learn the ALARM

network directly so that I could evaluate their performance according to the learned

structures.

Chapter 7: Block Learning Bayesian Network Structures from Data

174

To compare the block learning algorithm with the PC algorithm, I designed the

experiment to show the learned structure on the data set with different sizes. The data

sets with 0.1K cases, 0.3K cases, 1K cases, 5K cases, and 8K cases were generated

respectively for the ALARM network. The settings in HUGIN were all default. Each

learning algorithm is run 10 times individually on different data sets with the same

size. One set of the learned results is chosen as shown in Table 7.4.

Table 7.4: Comparison 1 of BL and PC Algorithms

Cases ALG NB EA RA MA

8K PC N/A 0 1 4

 BL 6 0 1 4

5K PC N/A 0 1 4

 BL 6 0 1 4

1K PC N/A 2 2 6

 BL 8 1 2 4

0.3K PC N/A 2 4 14

 BL 6 1 2 10

0.1K PC N/A 4 6 20

 BL 6 3 4 14
 EA: Extra Arcs; RA: Reversed Arcs; MA: Missing Arcs.

From Table 7.4, it is noticed that there is no difference between the structures learned

by the block learning algorithm and the PC algorithm for the data sets with 8K and 5K

cases. Both algorithms miss 4 correct arcs and wrongly orient 1 arc in the learned

structure in comparison with the original ALARM network. This is due to the fact that

the learned structure is almost near the margin of the original ALARM network. It is

difficult for both algorithms to break through the learning bottleneck. In this case, the

block learning algorithm has the only merit that the computation time decreases

Chapter 7: Block Learning Bayesian Network Structures from Data

175

sharply (I will discuss this in the next section). On the other hand, for the small data set

with 0.1K cases, the block learning algorithm retains its advantages on more precise

structures that were learned. For instance, the block learning algorithm only misses 14

correct arcs and wrongly adds 3 arcs. However, the PC algorithm loses 20 correct arcs

and adds four more arcs. Moreover, 6 arcs are reversed in the PC algorithm while only

4 arcs are misdirected in the block learning algorithm.

To further investigate the performance of both algorithms, I provide the analysis on the

average µ of sensitivity, specificity and distance, and their corresponding standard

deviation δ . The results are shown in Table 7.5.

Table 7.5: Comparison 2 of BL and PC Algorithms

Sens.(%) Spec. (%) Dist.

PC BL PC BL PC BL
Cases

µ δ µ δ µ δ µ δ µ δ µ δ

8K 91.30 0.92 91.30 0.92 100.00 0.08 100.00 0.08 0.09 0.01 0.09 0.01

5K 86.30 1.45 91.30 1.45 100.00 0.08 100.00 0.07 0.09 0.01 0.09 0.01

1K 88.96 1.12 91.30 1.12 99.68 0.10 99.84 0.11 0.13 0.01 0.09 0.01

0.3K 67.39 1.60 78.26 1.47 99.68 0.10 99.84 0.08 0.33 0.02 0.22 0.01

0.1K 56.52 2.00 67.39 1.47 99.19 0.13 99.52 0.09 0.43 0.02 0.32 0.01

Table 7.5 shows that the average sensitivity of the block learning algorithm remains

the same (91.30%) for different data sets with 8K, 5K, and 1K cases. However, the

average sensitivity of the PC algorithm decreases sharply from 91.30% down to

88.96% when the sample size shrinks. When the sample size shrinks to 0.1K the

average sensitivity of the PC algorithm is only 56.52% while the average sensitivity of

the block learning algorithm still catches the value 67.39%. On the other hand, the

Chapter 7: Block Learning Bayesian Network Structures from Data

176

average specificity of both algorithms is close to 100.00% despite different sample

sizes. This is because enormous potential edges exist in the ALARM network.

On another aspect, the average distance of the PC algorithm increases from 0.09 to

0.43 intuitively when the sample size decreases from 8K to 0.1K. However, the

average distance of the block learning algorithm only rises from 0.09 to 0.32 in spite of

the shrinking cases. Thus, it shows that the performance of the PC algorithm

deteriorates with decreasing sample size while the block learning algorithm still retains

a good result. Also, it is noticed that the block learning algorithm has more reliable

results when learning networks from small datasets. For example, the standard

deviation of the block learning algorithm is 0.01 for both sample sizes with 0.3K cases

and 0.1K cases while there is a larger value 0.02 for the PC algorithm when it learns

the structure from these two different small sample sizes. Thus the block learning

algorithm has more reliable learned results.

Hence, the experiment on the ALARM network repeats in showing the ability of the

block learning algorithm for learning a large network from a small data set. At the

same time, it also verifies that the block learning algorithm is able to encompass other

learning techniques so that it is easy to be configured.

7.4 Theoretical Discussion

The experimental results demonstrate two advantages of the block learning algorithm:

1) the ability of learning a large Bayesian network structure from a small data set; 2)

the capability of encompassing other learning techniques. In fact, this phenomenon can

be analyzed theoretically.

Chapter 7: Block Learning Bayesian Network Structures from Data

177

Firstly, the intractable learning task is decomposed in an effective way so that it is easy

to handle the structure learning problem. Instead of learning the whole network, the

block learning algorithm learns individual blocks that have a much smaller size. It is

known that the typical learning algorithm, such as the PC algorithm, learns Bayesian

network structures with the complexity of)(knO while the block learning algorithm

only requires))((kmrO where rmn ≈ . It seems that these two learning algorithms have

the same algorithm complexity because of)())((1−= kkk rnOmrO . However, the divide

and conquer strategy allows the block learning algorithm to be executed in an

economical time. Figure 7.9 shows this phenomenon intuitively. Here, I assume that

both k and r equal to 6 although k may be larger and r increases with the expanding

size of the network in practice. In Figure 7.9, the number of variables in the Bayesian

network indicates the size of the network structure. Figure 7.9 clearly shows that the

complexity of the PC algorithm rises abruptly with the growing size of a network

structure. However, there is little change in the complexity of the block learning

algorithm when the size of a network structure increases. Hence, the block learning

algorithm is scalable to learn a sizable Bayesian network structure.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

30 40 50 60 70 80 90 10
0

Number of Variables

C
om

pl
ex

ity
 (*

10
)

PC
BL

Figure 7.9: Complexity Comparison of BL and PC Algorithms

Chapter 7: Block Learning Bayesian Network Structures from Data

178

Secondly, the localization strategy allows each variable to be estimated on a relatively

large sample size so that the block learning algorithm is able to provide good results

when they are used to address the learning problem with a small data set. In a large

dimension domain with insufficient data, the confounding information always

disallows the removal of spurious correlations among variables. Since the block

learning algorithm learns blocks which always include a small number of variables, it

will easily discover the dependency among variables. Thus the learned results are more

reliable.

Thirdly, the localization strategy also allows learning blocks independently. In the

learning procedures of the block learning algorithm, various learning techniques can be

utilized to configure ALG1 in LO and ALG2 in LB. Furthermore, the block learning

algorithm can adopt suitable learning algorithms to learn the corresponding overlaps or

blocks. Hence, the block learning algorithm is able to encompass other learning

techniques without damaging the learning quality.

Finally, the block learning algorithm overcomes the main deficiency in the constraint

based approach. In the constraint based approach, a small error on CI tests will

subsequently exert a bad influence on the learning process globally, which causes a

poor structure. In comparison with other constraint based approaches, the block

learning algorithm confines possible errors in the separate blocks so as to avoid the

spread of structure errors in the whole network. Furthermore, V-structures, which are

the most reliable structures that can be discovered, are kept and set as constraints for

learning blocks in the block learning algorithm. Accordingly, the block learning

algorithm prohibits the spread of structure errors while it forwards the benefit of

accurate structures in the learning process. These effective strategies ensure the good

performance of the block learning algorithm.

Chapter 7: Block Learning Bayesian Network Structures from Data

179

7.5 Further Discussion

Current algorithms for learning Bayesian network structures involve enormous

paradigm nomenclatures and implementation considerations in the literature. A novice

is always confused by the core ideas behind these algorithms. In fact, some of the ideas

are translations of each other; some are extensions while others are combinations of the

existing ideas. Hence, a unifying learning framework will provide a uniform view on

various learning techniques and will facilitate the wide applications of learning tools.

The block learning algorithm enriches various techniques for learning Bayesian

network structure. With outstanding features, it not only addresses the challenging

work of learning a large network structure from a small data set, but also provides a

foundation to generate a unifying learning framework. In this section, I will investigate

the issue of building a unifying learning framework on the basis of the block learning

algorithm.

Firstly, the block learning algorithm has a natural learning granularity. In the past

decades, various learning algorithms composed of basic learning approaches and

advanced learning approaches have appeared to cope with a variety of learning

problems. Although the context in which these learning techniques exist is quite

different, the proposed learning algorithms have unconsciously been following a

principal idea for decreasing the learning dimensionality. In the last decade, the basic

learning methods, such as the IC algorithm, the SGS algorithm, and the PC algorithm,

have taken a coarsely granular view on the learning problem. They directly learn the

whole network without taking any optimization strategy so that they are always

disabled with a large dimension of network structure. Later, the advanced learning

methods, such as the SC algorithm, the GS algorithm, and the MMPC algorithm

Chapter 7: Block Learning Bayesian Network Structures from Data

180

(Brown et al. 2004), have adopted a finely granular view on the learning problem.

They emphasize a local structure like a Markov blanket of variables, and learn the

whole network stage by stage. They successfully avoid the computation problem.

However, the property of local structure inhibits the general application of these

advanced learning approaches. Hence, these two kinds of learning approaches, namely

basic and advanced learning methods, stand in the two ends of learning granularity.

Clearly, the block learning algorithm falls in the middle concerning the learning

granularity. It does not painstakingly seek the learning size to decrease the learning

complexity; however, it utilizes the variable dependency to decide a suitable learning

size naturally. A “block” could be defined as one “whole network” in terms of basic

learning methods while it could be identified as one “Markov blanket” in terms of

advanced learning methods.

Secondly, the block learning algorithm is equipped with an adaptive learning engine. A

reservoir of structure learning algorithms exists in the available literature. The new

learning approaches appear continuously while the old ones are never obsolete. This

phenomenon arises since the existing learning techniques have their own ability or

advantages for dealing with a certain type of learning problems. Moreover, some

hybrid learning algorithms (Dash & Druzdzel 1999) are designed in order to absorb the

advantages of the available learning techniques. Consequently, the accumulated

learning algorithms with various paradigms are always confused.

As the block learning algorithm has a capability of encompassing other learning

methods, it is easy to be configured with preferred learning techniques in the

implementation. The parameters ALG1 and ALG2 allow desired learning techniques to

be embedded in the block learning algorithm. For instance, the block learning

Chapter 7: Block Learning Bayesian Network Structures from Data

181

algorithm became “the PC algorithm” in the second experiment on the ALARM

network and “the TPDA algorithm” in the first experiment on the Hailfinder network.

Hence, the block learning algorithm could be customized with any learning technique.

It provides a uniform view on various learning approaches.

Finally, the block learning algorithm aids a distributed design. For a large amount of

computation involved in the learning process, a good algorithm expects to exploit the

power of computing technologies for the purpose of constructing a network in

reasonable time. The parallelized or distributed learning algorithms (Chu & Xiang

1997; Lam & Segre 2002) have saved a lot of computation time to learn a proper

network. Adopting the divide-and-conquer strategy, the block learning algorithm

supports a distributed design. For instance, the procedures LO and LB in which a

majority of computation time is involved could be implemented and run in separate

computing nodes in a distributed computing environment. Hence, the block learning

algorithm is also a distributed framework. Furthermore, the block learning algorithm is

prone to be run in a grid.

In conclusion, the block learning algorithm is not just a type of learning algorithm but

a kind of learning strategy. It provides a unifying framework for learning Bayesian

network structure. The unifying framework is built in Figure 7.10.

In Figure 7.10, the unifying framework is developed on the basis of the block learning

algorithm. Step 2 is to build a rough dependency graph for identifying blocks. It is the

procedure GMST. In fact, many approaches on detecting dependency can be used to

generate this kind of graph. In addition, Step 2 can be avoided if the original network

becomes the block. Steps 3-5 provide the power to unify all of the current learning

algorithms or learning strategies. Step 3 decides the learning dimensionality, like the

Chapter 7: Block Learning Bayesian Network Structures from Data

182

procedure IBMB. Step 4 configures the learning engine with preferred learning

techniques. Hence, the unifying framework can be customized into a hybrid learning

framework. Step 5 is concerned with the implementation of the learning framework. It

expects to be equipped with advanced computing technology, such as distributed

computing and grid computing (Foster et al. 2002). Steps 6-7 are similar to the

procedures LO, LB and CB. Hence, the unifying learning framework evolves from the

block learning algorithm and may become a general architecture for learning Bayesian

network structures.

Figure 7.10: A Unifying Learning Framework

7.6 Summary

This chapter describes the block learning algorithm. Adopting the divide-and-conquer

strategy, the block learning algorithm is proposed to address the challenging work -

A Unifying Learning Framework

Input: Data set D
Output: Bayesian Network Structure B

1. Load the data set D

2. Generate an MST

3. Determine the block (block, network, Markov blanket···)

4. Configure learning engine (all available learning techniques)

5. Design learning environment (serial, distributed···)

6. Learn the overlaps and blocks

7. Combine the learned blocks

8. Recover the whole network B

Chapter 7: Block Learning Bayesian Network Structures from Data

183

learning Bayesian network structures from small data sets. After generating a rough

dependency graph called MST, the block learning algorithm divides the whole network

into several blocks that may have some overlaps. Then, the block learning algorithm learns

blocks separately with the constraints from the learned overlaps. Finally, the whole

network structure is recovered from the combination of the learned blocks.

A series of experimental results on the Hailfinder network and the ALARM network

demonstrate the learning ability of the block learning algorithm on a small data set. They

also show the capability of the block learning algorithm for encompassing other learning

techniques. Subsequently, a theoretical analysis further verifies the advantages of the block

learning algorithm.

With outstanding features, the block learning algorithm may provide a uniform view

on the current learning algorithms. Its natural learning granularity, flexible

configurations on learning engines and distributed implementation design facilitate the

building of a unifying learning framework. Evolving from the block learning

algorithm, the unifying framework generalizes the existing learning techniques. It also

provides a concise and powerful template for a novice to categorize and study various

learning approaches.

Chapter 7: Block Learning Bayesian Network Structures from Data

184

[This page intentionally left blank]

185

8 Conclusion and Future Work

In this Chapter, a summary of the merits and the limitations of the work conducted is

offered and areas for future research are suggested to conclude this dissertation.

8.1 Conclusion

In this study, I developed approaches for solving multiagent decision problems in an

uncertain environment, as well as techniques for learning large Bayesian network

structures from small data sets.

Firstly, I developed a novel framework to represent multiagent decision problems. This

framework comprises Multiply Sectioned Influence Diagrams (MSID) and Hyper

Relevance Graph (HRG). An MSID is a probabilistic graphical decision model

encoding agency features. It consists of a set of local influence diagrams that represent

beliefs, capabilities and preferences of individual agents. The common portion of d-

sepset between adjacent local influence diagrams in an MSID indicates the public

information shared by the corresponding agents. Except for the public information in

the d-sepset, the agents’ privacy is protected in the local influence diagrams in an

MSID. With the known information in the d-sepset, agents are able to make decisions

using only their local information. Hence, an MSID not only describes the states of

unpredictable environments, but also characterizes the properties of multiple agents.

Chapter 8: Conclusion and Future Work

186

On the other hand, an HRG describes organizational relationships in a multiagent

system. It categorizes the agents’ organizational relationships into two types: control

and communication. Within this categorization, an HRG quantifies the information

support for decision making of adjacent agents. In an HRG, the required information

for the agents’ decisions in the control relationship is distinguished from the

supporting information in the communication relationship. Elements in an HRG can be

obtained from a relevant MSID through the Decision Bayes-ball procedure. Due to its

emphasis on the domain knowledge, an HRG is able to ensure a compact and accurate

MSID.

It is clear that an MSID, together with HRG, is scalable to represent larger decision

problems involving multiple agents. Moreover, with a distributed design, they are

flexible and reusable to describe decision problems in the changing world.

Consequently, this new framework could be utilized to address a general decision

problem in the real world.

Secondly, I proposed a symbolic method to verify a valid model representation of

MSID and HRG. A valid MSID must obey three constraints: DAG structure, d-sepset

and irreducible d-sepset. The first two constraints are more relevant to a valid

graphical structure while the third one concerns a compact and accurate knowledge

representation. Concerning the verification of the first two constraints, I proposed a

symbolic method that exploits an algebraic description of Bayesian networks. The

combination of a factorization of joint probability distribution and a form of

conditional probability results in a meaningful algebraic description that encodes a

Bayesian network structure. Utilizing this algebraic description, the symbolic method

is able to test the two constraints of DAG structure and d-sepset through some simple

procedures that do not involve graphical operations. It seems that the symbolic method

Chapter 8: Conclusion and Future Work

187

does not require a strong foundation of graph theory which always complicates the

traditional verification of graphical structures. At the same time, the symbolic method

initiates an algebraic view on the research of Bayesian network and probabilistic

decision models.

For the third constraint of irreducible d-sepset, I proposed a pairwise verification

method that utilizes the joint information connecting an MSID with a corresponding

HRG. An HRG explicitly represents the organizational relationships with the

information support for decision making. Its elements could be obtained either from an

MSID or from the abstraction of domain knowledge, or a combination of both of them.

A pairwise verification method compared a d-sepset in an MSID with elements

obtained in the Decision Bayes-ball procedure. These elements could be traced or

verified in a relevant HRG. In this way, the pairwise verification method ensured a

consistent and accurate representation of domain knowledge in a compact decision

model of MSID and HRG.

Besides the verification methods, I also addressed the issue of verification failure.

Gathering useful information in the verification process, I provided instructional

strategies to correct the parts that cause the verification failure. However, a corrected

model requires new verification from scratch, which may cause a correction cycle.

Without doubt, future work on a local verification will benefit the solving of

verification failure and facilitate the verification process.

Thirdly, I proposed three evaluation algorithms for solving the decision model of

MSID. The three evaluation algorithms are categorized into two groups: one is a direct

approach that includes a cooperative reduction algorithm and a distributed evalID

algorithm; the other is an indirect approach that is based on junction tree algorithms for

Chapter 8: Conclusion and Future Work

188

influence diagrams. A cooperative reduction algorithm extended reduction algorithms

in influence diagrams. The procedures GSL and GER were developed to produce a

local and global elimination order for the involved nodes in order to design a valid and

effective reduction algorithm in a distributed fashion. Furthermore, the P-Evaluation

was recommended to preserve a valid decision model in the evaluation process. A

distributed evalID algorithm was built based on the evalID algorithm in decision

networks. A framework of multiple evaluation networks was designed to facilitate the

distributed evalID algorithm. It ensured consistent information in the evaluation

process and allowed an efficient computation process. On the other hand, an indirect

approach solved an MSID in two steps: transformation and evaluation. It transformed

an MSID into a multiple rooted cluster tree and solved the tree directly. In this

approach, a multiple rooted cluster tree was developed to generate helpful working

strategies. Clearly, all evaluation algorithms adopted effective strategies to ensure

consistent information in an evaluation process. Moreover, they were designed in a

distributed fashion so that an efficient computation process was executed.

 I also compared these three evaluation algorithms. The comparison results show the

outstanding features of these evaluation algorithms and indicate appropriate evaluation

techniques for a relevant MSID. The cooperative reduction algorithm is more suitable

to solve a typical MSID that includes regular influence diagrams while the other two

algorithms have the capability to solve a large and complex MSID. For an MSID

including local Bayesian networks, the indirect approach based on junction tree

algorithms is recommended. The comparison also indicates that the three evaluation

algorithms could be generalized to solve probabilistic decision models. Based on this

work on evaluation algorithms in an MSID, it is recommended that an adaptive

evaluation framework be built with the integration of more advanced computing

Chapter 8: Conclusion and Future Work

189

technologies. The adaptive evaluation framework could select appropriate algorithms

for solving various MSIDs that cold be developed.

Fourthly, I illustrated a case study to demonstrate the practical applications of my

proposed methodologies. The case concerned a decision problem of disease control in

the medical domain. It involved a collaboration of multiple nations with the aim to

control the spread of the SARS so as to achieve the best benefit for both individual

nations and the whole world. I represented this decision problem with MSID and HRG

as well as investigated the model validity, scalability and adaptability. To determine

the optimal strategies for decisions, I adopted a hybrid evaluation algorithm that was

composed of the three evaluation algorithms I proposed in this thesis. A detailed

analysis on this case study showed my proposed methodologies could be utilized in

practice. For future research, a practical tool should be developed to build the model of

MSID and HRG effortlessly, to verify a built model automatically and to solve an

MSID efficiently.

Finally, I proposed a block learning algorithm to learn a large Bayesian network

structure from a small data set. The block learning algorithms adopted the divide-and-

conquer strategy. Instead of learning a whole network structure, it learned individual

blocks that have a small size. These learned blocks were combined to recover a whole

network. Experimental results on the ALARM network and the Hailfinder network

demonstrated that the block learning algorithm outperformed the TPDA algorithm and

the PC algorithm. The results also indicated that the block learning algorithm is able to

learn a large network structure from a small data set and can be easily configured by

other learning techniques. In a theoretical way, I investigated the block learning

algorithm and validated its advantages. Moreover, a unifying learning framework was

Chapter 8: Conclusion and Future Work

190

built on the basis of the block learning algorithm. It may provide a uniform view for a

novice to apprehend various learning techniques.

It seems that the block learning algorithm could be a good structure learning

algorithms in current literature. However, much effort should be put into the refining

of some technical parts in the block learning algorithms such as designing various

approaches to identify blocks and to find V-structures. More experiments are required

to test the performance of the block learning algorithm and the unifying learning

framework. Currently, the block learning algorithm is only tested on the structure

learning problem. For the parameter learning problem, the block learning algorithm

may have the same advantages as those shown in the structure learning problem. An

avenue for future work would be the development of the block “parameter” learning

algorithm and its theoretical discussions.

In conclusion, my proposed model representation of MSID and HRG is scalable to

describe a large and complex decision problem since the model is designed in a

distributed manner. It could be extended to solve a general decision problem in

practice. However, it is only partly adaptive to model decision problems in the

changing world since the MSID and HRG are a kind of advanced modeling language

that disconnects the communication between model engineers and decision analysts.

Future work on an evolutionary decision model may facilitate the modeling process.

Also, my proposed model verification methods are the first graph verification methods

that do not depend on a known graphical structure. The symbolic method provides an

algebraic view on the research on probabilistic decision graphs. Future work could

concentrate on the issue of model correction when the verification fails. My designed

evaluation algorithms have shown a strong ability to solve an MSID and are able to

solve general decision models effectively and efficiently. They can serve as a basis to

Chapter 8: Conclusion and Future Work

191

build an adaptive evaluation framework for solving decision models. However, their

practical applications are not so extensive in the real world since there is a linear

assumption on a global optimal solution. Further effort on more applications could

improve these evaluation algorithms. Finally, my proposed block learning algorithm

provides a unifying framework for learning Bayesian network structures. It seems that

the same advantages in the block “structure” learning algorithm could be retained in

the block “parameter” learning algorithm. Future work on the block learning algorithm

for Bayesian network parameters should enrich the learning techniques for Bayesian

networks. Thus it is worth developing a learning tool based on the block learning

algorithm.

8.2 Future Work

This work has provided insights into the solving of multiagent decision problems as

well as the block learning Bayesian network structures. The future agenda of this

research work will be carried out in the following two aspects.

Firstly, on the theoretical aspect, there exist some improvements on my proposed

methodologies. As mentioned above, the graphical decision models of MSID and HRG

still lack enough ability to be adaptive in the changing world. Future work on the

formal language design of decision models may facilitate the research work on

adaptive decision making. Moreover, it is very significant work to explore the topic of

evaluation algorithm selection for solving decision models. It will not only make full

use of the existing algorithm reservoir, but will also provide an intelligent inference

engine to solve decision models. As for the block learning algorithm, future effort

should be invested in the parameter selection in the IB procedure. The theoretical

Chapter 8: Conclusion and Future Work

192

foundation which will help the development of the unifying learning framework

deserves further investigation.

Secondly, on the practical and implementation aspect, there also exists much

worthwhile work in the future. The goal of this research work is to pursue some new

ideas or methodologies. The ability and capability of MSID and HRG have been

demonstrated through a case study in the medical domain; however, some unexpected

problems may arise in some agency domains that are more complex. Thus future work

on extensive applications of my proposed methodologies on MSID and HRG is

desirable and necessary. Concerning the block learning algorithm, future work should

emphasize on the tool development. In addition, more effort should put into more

experiments and comparisons with other learning algorithms.

193

Reference

Acid, S. and De Campos, L. M. (2000), Learning Right Sized Belief Networks by

Means of a Hybrid Methodology, Lecture Notes in Artificial Intelligence

1910, pp. 309-315.

Acid, S. and De Campos, L. M.. (2001), A Hybrid Methodology for Learning Belief

Networks: Benedict, International Journal of Approximate Reasoning 27, pp.

235-262.

Aliferis, C. F. & Cooper, G. F. (1995), A New Formalism for Temporal Modeling in

Medical Decision-support Systems, In Proceedings of the Nineteenth Annual

Symposium on Computer Applications in Medical Care, pp. 213-217.

Aliferis, C. F., Cooper, G. F., Pollack, M. E., Buchanan, B. G. and Wagner, M. M.

(1997), Representing and Developing Temporally Abstracted Knowledge as a

Means Towards Facilitating Time Modeling in Medical Decision Support

Systems, Computers in Biology and Medicine 27(5), pp. 411-434.

Beinlich, I. A., Suermondt, H. J., Chavez , R. M. and Cooper, G. F. (1989), The

ALARM Monitoring System: A Case Study with Two Probabilistic Inference

Techniques for Belief Networks, In Proceedings of the Second European

Conference on Artificial Intelligence in Medicine, pp. 247-256.

Blum, B., C. R. Shelton and Koller, D. (2003), A Continuation Method for Nash

Equilibria in Structured Games, In Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence, pp. 757-765.

Reference

194

Bouckaert, R. R. (1993), Belief Networks Construction Using the Minimum

Description Length Principle, Lecture Notes in Computer Science 747, pp.

41-48.

Bouckaert, R. R. (1995), Bayesian Belief Networks: From Construction to Inference,

Ph.D. Thesis, University of Utrecht.

Brown, L.E., Tsamardinos, I., Aliferis, C.F. (2004), A Novel Algorithm for Scalable

and Accurate Bayesian Network Learning, In Proceedings of the Eleventh

World Congress on Medical Informatics (MEDINFO), pp. 711-716.

Buntine, W. (1991), Theory Refinement of Bayesian Networks, In Proceedings of the

Seventh Conference on Uncertainty in Artificial Intelligence, pp. 52-60.

Buntine, W. (1994), Operations for Learning with Graphical Models, Journal of

Artificial Intelligence Research 2, pp. 159-225.

Buntine, W. (1996), A Guide to the Literature on Learning Probabilistic Networks

from Data, IEEE Transactions on Knowledge and Data Engineering 8, pp.

195-210.

Castelo, R. and Kocka, T. (2003), On Inclusion-Driven Learning of Bayesian

Networks, Journal of Machine Learning Research 4, pp. 527-574.

Castelo, R. and Siebes, P. (1999), Scaling Bayesian Network Discovery through

Incremental Recovery, Technical Report INS-R9901, CWI, Amsterdam.

Cheng, J. and Druzdzel, M. (2000), AIS-BN: An Adaptive Importance Sampling

Algorithm for Evidential Reasoning in Large Bayesian Networks, Journal of

Artificial Intelligence Research 13, pp. 155-188.

Cheng, J., Greiner, R., Kelly, J., Bell, D. A. and Liu, W. (2002), Learning Bayesian

Networks from Data: an Information-Theory Based Approach, The Artificial

Intelligence Journal 137, pp. 43-90.

Reference

195

Chickering, D. M., Geiger, D. and Heckerman, D. (1995), Learning Bayesian

Networks: Search Methods and Experimental Results, In Preliminary Papers

of the Fifth International Workshop on Artificial Intelligence and Statistics,

pp. 112-128.

Chickering, D. M. (1996), Learning Equivalence Classes of Bayesian Network

Structures, In Proceedings of the Twelfth Conference on Uncertainty in

Artificial Intelligence, pp. 150-157.

Chickering, D. M. (2002a), Optimal Structure Identification with Greedy Search,

Journal of Machine Learning Research 3, pp. 507-554.

Chickering, D. M. (2002b), Learning Equivalence Classes of Bayesian-Network,

Journal of Machine Learning Research 2, pp. 445-498.

Chow, C. K. and Liu, C. N. (1968), Approximating Discrete Probability Distributions

with Dependence Trees, IEEE Transactions on Information Theory 12, pp.

462-467.

Chu, T. and Xiang, Y. (1997), Exploring Parallelism in learning Belief Networks, In

Proceedings of the Thirteenth Conference on Uncertainty in Artificial

Intelligence, pp. 90-98.

Cooper, G. F. (1987), Probabilistic Inference Using Belief Networks is NP-hard,

Knowledge Systems Laboratory, Stanford University, Memo KSL-87-27.

Cooper, G. F. (1988), A Method for Using Belief Networks as Influence Diagrams, In

Proceedings of the Twelfth Conference on Uncertainty in Artificial

Intelligence, pp. 211-219.

Cooper, G. F. (1990), The Computational Complexity of Probabilistic Inference Using

Bayesian Belief Networks, Artificial Intelligence 42, pp. 393-405.

Reference

196

Cooper, G. F. and Herskovits, E. (1992), A Bayesian Method for the Induction of

Probabilistic Networks from Data, Machine Learning 9, pp. 309-347.

Cousot, R. (2005), Verification, Model Checking, and Abstract Interpretation, Lecture

Notes in Computer Science 3385, Springer.

Dagum, P. and Luby, M. (1993), Approximating Probabilistic Inference in Belief

Networks is NP-hard, Artificial Intelligence 60(1), pp. 41-48.

Dash, H. D. and Druzdzel M. J. (1999), A Hybrid Anytime Algorithm for the

Construction of Causal Models from Sparse Data, In Proceedings of the

Fifteenth Annual Conference on Uncertainty in Artificial Intelligence, pp.

142-149.

De Campos, L. M. (1998), Independency Relationships and Learning Algorithms for

Singly Connected Networks, Journal of Experimental and Theoretical

Artificial Intelligence 10, pp. 511-549.

De Campos, L. M., Fernández-Luna, J. M., Gámez, J. A. and Puerta, J. M. (2002), Ant

Colony Optimization for Learning Bayesian Networks, International Journal

of Approximate Reasoning 31, pp. 291-311.

De Campos, L. M., Fernández-Luna, J. M. and Puerta, J. M. (2003), An Iterated Local

Search Algorithm for Learning Bayesian Networks with Restarts based on

Conditional Independence Tests, International Journal of Intelligent Systems

18, pp. 221-235.

Dean, T. and Kanazawa, K. (1989), A Model for Reasoning about Persistence and

Causation, Computational Intelligence 5, pp. 142-150.

Dean, T. and Wellman, M. P. (1991), Planning and Control, Morgan Kaufmann

Publishers, San Mateo, CA.

Reference

197

Dechter, R. (1996), Bucket Elimination: A Unifying Framework for Probabilistic

Inference, In Proceedings of the Twelfth Conference on Uncertainty in

Artificial Intelligence, pp. 211-219.

Dechter, R. (2003), Constraint Processing, Morgan Kaufmann.

Downing, T. E., Moss, S. and Pahl, W. C. (2001), Understanding Climate Policy Using

Participatory Agent-based Social Simulation, In Multi-Agent-Based

Simulation, pp. 198-213.

Draper, D. (1995), Localized Partial Evaluation of Belief Networks, PhD Thesis,

Department of Computer Science, University of Washington.

Druzdzel, M. J. and Suermondt, H. J. (1994), Relevance in Probabilistic Models:

"Backyards" in a "Small World", In Working Notes of the AAAIFall

Symposium Series: Relevance, pp. 60-63.

Durfee, E. H. (1988), Coordination of Distributed Problem Solvers, Kluwer Academic,

Boston, MA.

Durfee, E. H. (1996), Planning in Distributed Artificial Intelligence, In Foundations of

Distributed Artificial Intelligence (Eds.: G. M. P. O’Hare and N. R. Jennings),

pp. 231-245.

Durfee, E. H., Lesser, V. R. and Corkill, D. D. (1989a), Cooperative Distributed

Problem Solving, In Handbook of Artificial Intelligence 4 (Eds.: E. A.

Feigenbaum, A. Barr and P. R. Cohen), pp. 83-147.

Durfee, E. H., Lesser, V. R. and Corkill, D. D. (1989B), Trends in Cooperative

Distributed Problem Solving, IEEE Transactions on Knowledge and Data

Engineering 1(1), pp. 63-83.

Edwards, W. (1998), Hailfinder: Tools for and Experiences with Bayesian Normative

Modeling, American Psychologist 53, pp. 416-428.

Reference

198

Foster, I., Kesselman, C., Nick, J. and Tuecke, S. (2002), The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration,

Open Grid Service Infrastructure WG, Global Grid Forum.

Friedman, N. and Goldszmidt, M. (1996), Learning Bayesian Networks with Local

Structure, In Proceedings of the Twelfth Conference on Uncertainty in

Artificial Intelligence, pp. 252-262.

Friedman, N., Nachman, I. and Pe’er, D. (1999), Learning Bayesian Networks

Structure from Massive Dataset: The “Sparse Candidate” Algorithm, In

Proceedings of the Fifteen Conference on Uncertainty Artificial Intelligence,

pp. 206-215

Friedman, N. and Koller, D. (2000), Being Bayesian about Network Structure, In

Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, pp. 201-210.

Friedman, N., Ninio, M., Pe’er, I. and Pupko, T. (2002), A structural EM Algorithm

for Phylogenetic Inference, Journal of Computational Biology 9, pp. 169-191.

Fudenberg, D. and Tirole, J. (1991), Game Theory, The MIT Press.

Fung, R. and Chang, K. C. (1989), Weighting and Integrating Evidence for Stochastic

Simulation in Bayesian Networks, In Proceedings of the Fifteenth

Conference on Uncertainty in Artificial Intelligence, pp. 475-482.

Fung, R. and Favero, B. (1994), Backward Simulation in Bayesian Networks, In

Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence,

pp. 227-234.

Galan, S. F., Aguado, F., Diez, F. J. and Mira, J. (2002), NasoNet: Modeling the

Spread of Nasopharyngeal Cancer with Networks of Probabilistic Events in

Discrete Time, Artificial Intelligence in Medicine 25(4), pp. 247-264.

Reference

199

Garcia, S. D. and Druzdzel, M. J. (2004), An Efficient Sampling Algorithm for

Influence Diagrams, In Proceedings of the Second European Workshop on

Probabilistic Graphical Models, pp. 97-104,.

Geiger, D. and Heckerman, D. (1995), A Characterization of the Dirichlet Distribution

with Application to Learning Bayesian Networks, In Proceedings of the

Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 196-207.

Geiger, D., Verma, T. and Pearl, J. (1989), D-separation: From Theorems to

Algorithms, In Proceedings of the Fifth Workshop on Uncertainty in

Artificial Intelligence, pp. 118-125.

Glymour, C. and Cooper, G. F. (1999), Computation, Causation, and Discovery,

Cambridge, MA, USA, MIT press.

Heckerman, D. (1990), Probabilistic Similarity Networks, PhD Thesis, The MIT Press.

Heckerman, D., Geiger, D. and Chickering, D. M. (1995), Learning Bayesian

Networks: The Combination of Knowledge and Statistical Data, Machine

Learning 20, pp. 197-243.

Heckerman, D. (1995), A Tutorial on Learning Bayesian Networks, Technical Report

MSR-TR-95-06, Microsoft Research.

Heckerman, D. (1996), Bayesian Networks for Knowledge Discovery, In Advances in

Knowledge Discovery and Data Mining (Eds.: Fayyad, U. M., Piatetsky-

Shapiro, G., Smyth, P. and R. Uthurusamy), Cambridge: MIT Press, pp. 273-

305.

Heckerman, D., Meek, C. and Koller, D. (2004), Probabilistic Models for Relational

Data, Technical Report, Microsoft Research.

Reference

200

Henrion, M. (1988), Propagating Uncertainty in Bayesian Networks by Probabilistic

Logic Sampling, In Uncertainty in Artificial Intelligence 2 (Eds.: Lemmer, J.

F. and L. N. Kanal), pp. 149-163.

Henrion, M. (1991), Search Based Methods to Bund Diagnostic Probabilities in Very

Large belief Nets, In Proceedings of the Seventh Conference on Uncertainty

in Artificial Intelligence, pp. 142-150.

Herskovits, E. (1991), Computer-based Probabilistic Network Construction, Doctoral

Dissertation, Medical Information Sciences, Stanford University, Stanford,

CA.

Herskovits, E. and Cooper, G. F. (1990), Kutató: An Entropy-driven System for the

Construction of Probabilistic Expert Systems from Databases, In Proceedings

of the Sixth Conference on Uncertainty in Artificial Intelligence, pp. 54-62.

Howard, R. A. and Matheson, J. E. (1984), Influence Diagrams. In Readings on the

Principles and Applications of Decision Analysis 2 (Eds.: Howard, R. A. and

J. E. Matheson), pp. 719-726.

Jennings, N. R. (2000), On Agent-base Software Engineering, Artificial Intelligence

117, pp. 227-296.

Jensen, F. V., Lauritzen, K. G. and Olesen, K. G. (1990), Bayesian Updating in Causal

Probabilistic Networks by Local Computations, Computational Statistical

Quarter 4, pp. 269-282.

Jensen, F., Jensen, F. V, and Dittmer, S. L (1994)，From Influence Diagrams to

Junction Trees, In Proceedings of the Tenth Conference on Uncertainty in

Artificial Intelligence, pp. 367-374.

Jensen, F. V. (1996), An Introduction to Bayesian Networks, Springer, New York.

Jensen, F. V. (2001), Bayesian Networks and Decision Graphs, Springer, New York.

Reference

201

Jensen, F. V. and Marta Vomlelova (2002), Unconstrained Influence Diagrams, In

Proceedings of the Eighteenth Conference of Uncertainty in Artificial

Intelligence, pp. 234-241.

Jensen, F. V., Nielsen, T. D. and P. P. Shenoy (2004), Sequential Influence Diagrams:

A Unified Asymmetric Framework, In Proceeding of the Second Workshop on

Probabilistic Graphical Models, pp. 121-128.

Jiang, C.A., Poh, K.L. and Leong, T.Y. (2005), Integration of Probabilistic Graphic

Models for Decision Support, In Proceedings of the 2005 AAAI Spring

Symposium on Challenges to Decision Support in a Changing World, pp. 40-

47.

Joseph, L., Parmigiani, G. and Hasselblad, V. (1998), Combination Expert Judgment

by Hierarchical Modeling: An Application to Physician Staffing,

Management Science 44, pp.149-161.

Kearns, M., M. L. Littman and Singh, S. (2001a), Graphical Models for Game Theory,

In Proceedings of the Seventeenth Conference on Uncertainty in Artificial

Intelligence, pp. 253-260.

Kearns, M., M. L. Littman and Singh, S. (2001b), An Efficient Exact Algorithm for

Singly Connected Graphical Games, In Proceedings of the Fourteenth

Conference on Neural Information Processing Systems, pp. 817-823

Kjærulff, U. (1994), Reduction of Computation Complexity in Bayesian Networks

Through Removal of Weak Dependencies, In Proceedings of Tenth

Conference on Uncertainty in Artificial Intelligence, pp. 374-382.

Kjærulff, U. (1997), A Computational Scheme for Reasoning in Dynamic Probabilistic

Networks, In Proceedings of Eighth Conference on Uncertainty in Artificial

Intelligence, pp. 121-129.

Reference

202

Koller, D. and Pfeffer, A. (1997), Object-Oriented Bayesian Networks, In Proceedings

of the Thirteenth Conference of Uncertainty in Artificial Intelligence, pp.

302-313.

Koller, D. and Pfeffer, A. (1998), Probabilistic Frame-based Systems, In Proceedings

of the Fourteenth Conference of Uncertainty in Artificial Intelligence, pp.

580-587.

Koller, D. (1999), Probabilistic Relational Models, In Proceedings of the Ninth

International Workshop on Inductive Logic Programming (ILP-99), pp. 3-13.

Koller, D. and B. Milch (2001), Multi-Agent Influence Diagrams for Representing and

Solving Games, In Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence, Seattle, Washington, pp. 1027-1034.

La Mura, P. (2000), Game Networks, In Proceedings of the Sixteenth Conference on

Uncertainty in Artificial Intelligence, pp. 335-342.

La Mura, P. and Shoham, Y. (1999), Expected Utility Networks, In Proceedings of the

Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 366-373.

Lam, W and Bacchus, F. (1994), Learning Bayesian Belief Networks: An Approach

Based on the MDL Principle, Computational Intelligence 10(4), pp. 269-293.

Lam, W. and Segre, A. M. (2002), A distributed Learning Algorithm for Bayesian

Inference Networks, IEEE Transactions on Knowledge and Data

Engineering 12(1), pp. 93-105.

Larranaga P., Poza M., Yurramendi Y., Murga R. H. and Kuijpers C. M. H. (1996),

Structure Learning of Bayesian Networks by Genetic Algorithms: A

Performance Analysis of Control Parameters, IEEE Transactions on Pattern

Analysis and Machine Intelligence 18(9), pp. 912-926.

Reference

203

Lauritzen, S. L. and D. J. Spiegelhalter (1988), Local Computations with Probabilities

on graphical Structures and Their Applications to Expert Systems (with

discussion), Journal of the Royal Statistical Society Series B 50, pp. 157-224.

Lauritzen, S. L. and D. Nilsson (2001), Representing and Solving Decision Problems

with Limited Information, Management Science 47, pp. 1238-1251.

Leong, T. Y. (1994), An Integrated Approach to Dynamic Decision Making under

Uncertainty, TR-631, MIT Laboratory for Computer Science.

Lesser, V. R. and Erman, L. D. (1980), Distributed Interpretation: A Model and

Experiment, IEEE Transactions on Computers 29(12), pp. 1144-1163.

Getoor, L. (2001), Learning Statistical Models from Relational Data Networks, PhD

Thesis, Stanford University.

Li, Z. and Ambrosio, B. D. (1994), Efficient Inference in Bayes’ Nets as a

Combinatorial Optimization Problem, International Journal of Approximate

Reasoning 4, pp. 55-81.

Madigan, D. and Raftery, A. (1994), Model Selection and Accounting for Model

Uncertainty in Graphical Models Using Occam's Window, Journal of the

American Statistics Association 89, pp. 1535-1546.

Madsen, A. L. and Jensen F. V. (1998), Lazy Propagation in Junction Trees, In

Proceedings of the Fourteenth Conference on Uncertainty in Artificial

Intelligence, pp. 211-219.

Margatitis, D. (2003), Learning Bayesian Network Model Structure from Data, PhD

Thesis, School of Computer Science, Carnegie Mellon University.

Matzkevich, I. and Abramson, B. (1992), The Topological Fusion of Bayes Nets, In

Proceedings of the Eighth Annual Conference on Uncertainty in Artificial

Intelligence, pp. 191-198.

Reference

204

Mckelvey, R. and McLennan, A. (1996), Computation of Equilibria in Finite Games.

Handbook of Computational Economics, pp. 87-142.

Muntenau, P. and Cau, D. (2000), Efficient Score-based Learning of Equivalence

Classes of Bayesian Networks, Lecture Notes in Artificial Intelligence 1910,

pp. 96-105.

Myers, J. W., Laskey, K. B. and Levitt, T. (1999), Learning Bayesian Networks from

Incomplete Data with Stochastic Search Algorithms, In Proceedings of the

Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 476-485.

Nash, J. (1950), Equilibrium Points in N-Person Games, PNAS 36, pp. 48-49.

Neapolitan, R. E. (1990), Probabilistic Reasoning in Expert Systems, Wiley and Sons,

New York.

Neapolitan, R. E. (2004), Learning Bayesian Networks, Prentice Hall.

Ndilikikesha, P. (1994), Potential Influence Diagrams, International Journal of

Approximate Reasoning 11, pp. 251-285.

Nicholson, A. E. (1992), Monitoring Discrete Environments Using Dynamic Belief

Networks, PhD Thesis, Department of Engineering Sciences, Oxford.

Nicholson, A. E. and Brady, J. M. (1992), The Data Association Problem When

Monitoring Robot Vehicles Using Dynamic Belief Networks, In Proceedings

of the Tenth European Conference on Artificial Intelligence, pp. 689-693.

Nicholson, A. E. and Brady, J. M. (1992), Sensor Validation Using Dynamic Belief

Networks, In Proceedings of the Eighth Conference on Uncertainty in

Artificial Intelligence, pp. 207-214.

Nielsen, T. D. (2001), Graphical Models for Partially Sequential Decision Problems,

PhD Thesis, Department of Computer Science, Aalborg University.

Reference

205

Nielsen, T. and Jensen, F. V. (1999), Well-defined Decision Scenarios, In Proceedings

of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp 502-

511.

Olmsted, S. M. (1983), On Representing and Solving Decision Problems, PhD Thesis,

Department of Engineering-Economic Systems, Stanford University.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference, Morgan Kaufmann.

Pearl, J. and Verma, T. S. (1991), A Theory of Inferred Causation, In Principles of

Knowledge Representation and Reasoning (Eds.: Allen, J. F., Fikes, R. and E.

Sandewall), pp. 441-452.

Poole, D. (1993), Probabilistic Horn Abduction and Bayesian Networks, Artificial

Intelligence 64(1), pp. 81-129.

Ramoni, M. and Sebastiani, P. (1997), Learning Bayesian Networks from Incomplete

Databases, In Proceedings of the Thirteenth Conference on Uncertainty in

Artificial Intelligence, pp. 401-408.

Rao, A. S. and Georgeff, M. P. (1995), BDI Agents: From Theory to Practice,

Technical Report 56, Australian Artificial Intelligence Institute, Melbourne,

Australia.

Rebane, G. and Pearl, J. (1987), The Recovery of Causal Poly-trees from Statistical

Data, In Uncertainty in Artificial Intelligence 3 (Eds.: Kanal, L.N., Levitt,

T.S. and J. F. Lemmer), Amsterdam: North-Holland, pp. 222-228.

Rege, A. and Agogino, A. M. (1988), Topological Framework for Representing and

Solving Probabilistic Inference Problems in Expert Systems, IEEE

Transactions on Systems, Man and Cybernetics 18 (3), pp. 402-414.

Reference

206

Robert, T. C. and Terry, R. (2001), Making Hard Decisions with Decision Tools,

Duxbury/Thomson Learning.

Russell, S. and Norvig, P. (2003), Artificial Intelligence: A Modern Approach, Prentice

Hall, Englewood Cliffs.

Ryan, P., Eugene, N. and Shoham, Y. (2004), Simple Search Methods for Finding a

Nash Equilibrium, In Proceedings of American Association for Artificial

Intelligence (AAAI), pp. 664-669.

Sanguk, N. and Gmytrasiewicz, P. J. (1998), Rational Communicative Behavior in

Anti-air Defense, In Proceedings of the Third International Conference on

Multi-Agent Systems, pp. 214-221.

Segal, E. Pe'er, D., Regev, A., Koller, D. and Friedman, N. (2003), Learning Module

Networks, In Proceedings of the Nineteenth Conference on Uncertainty in

Artificial Intelligence, pp. 7-15.

Shachter, R. D. (1986), Evaluating Influence Diagrams, Operations Research 34 (6),

pp. 871-882.

Shachter, R. D. (1988), Probabilistic Inference and Influence Diagrams, Operations

Research 36, pp. 589-605.

Shachter, R. D. (1999), Efficient Value of Information Computation, In Proceedings of

the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 594-

601.

Shacthter, R.D., B. D’Ambrosio, B. and B. A. Del Favero (1990), Symbolic

Probabilistic Inference in Belief Networks, In Proceedings of the Eighth

National Conference on Artificial Intelligence I, pp. 126-131.

Reference

207

Shachter, R. and M. A. Peot. (1989), Simulation Approaches to General Probabilistic

Inference on Belief Networks, In Proceedings of the Fifth Conference on

Uncertainty in Artificial Intelligence, pp. 311-318.

Shachter, R. and M. A. Peot. (1992), Decision Making Using Probabilistic Inference

Methods, In Proceedings of the Eighth Conference on Uncertainty in

Artificial Intelligence, pp. 276-283.

Shafer, G. (1996), Probabilistic Expert Systems, Society for Industrial and Applied

Mathematics, Philadelphia.

Shenoy, P. (1992), Valuation-Based Systems for Bayesian Decision Analysis,

Operations Research 40 (3), pp. 463-484.

Singh, M. and Valtorta, M. (1993), An Algorithm for the Construction of Bayesian

Network Structures from Data, In Proceedings of the Ninth Conference on

Uncertainty in Artificial Intelligence, pp. 259-265.

Singh, M. and Valtorta, M. (1995), Construction of Bayesian Network Structures from

Data: A brief Survey and an Efficient Algorithm, International Journal of

Approximate Reasoning 12, pp. 111-131.

Smith, R. G. (1977), The CONTRACT NET: A Formalism for the Control of

Distributed Problem Solving, In Proceedings of the Fifth International Joint

Conference on Artificial Intelligence, pp. 472.

Smith, R. G. (1980a), The Contract Net Protocol, IEEE Transactions on Computers

29(12), pp. 1104-1113.

Smith, R. G. (1980b), A Framework for Distributed Problem Solving, UMI Research

Press.

Reference

208

Smith, R. G. and Davis, R. (1980), Frameworks for Cooperative in Distributed

Problem Solving, IEEE Transactions on Systems, Man and Cybernetics 11(1),

pp. 24-33.

Spirtes, P., Glymour. G. and Scheines, R. (1990), Causality from Probability, In

Proceedings of Advanced Computing for the Social Sciences, Williamsburgh,

VA.

Spirtes, P., Glymour, G. and Scheines, R. (1993), Causation, Prediction and Search,

New York, Springer-Verlag.

Spirtes, P. and Meek, C. (1995), Learning Bayesian Networks with Discrete Variables

from Data, In Proceedings of the First International Conference on

Knowledge Discovery and Data Mining, pp. 294-299.

Spirtes, P., Glymour. G. and Scheines, R. (2000), Causation, Prediction and Search,

Cambridge, Mass, MIT Press.

Srinivas, S. (1994), A Probabilistic Approach to Hierarchical Model-Based Diagnosis,

In Proceedings of the Tenth Conference of Uncertainty in Artificial

Intelligence, pp. 538-545.

Steck, H. (2000), On the Use of Skeletons When Learning in Bayesian Networks, In

Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, pp. 558-565.

Suermondt, J., and Cooper, G. (1991), Initialization for the Method of Conditioning in

Bayesian Belief Networks, Artificial Intelligence 50, pp. 83-94.

Suzuki, J. (1993), A Construction of Bayesian Networks from Databases Based on the

MDL Principle, In Proceedings of the Ninth Conference on Uncertainty in

Artificial Intelligence, pp. 266-273.

Reference

209

Suzuki, J. (1996), Learning Bayesian Belief Networks Based on MDL Principle: An

Efficient Algorithm Using the Branch and Bound Technique, In Proceedings

of the International Conference on Machine Learning.

Tatman, J. A. and Shachter, R.D. (1990), Dynamic Programming and Influence

Diagrams, IEEE Transactions on Systems, Man and Cybernetics 20 (2), pp.

365-379.

Tian, J. (2000), A branch-and-bound Algorithm for MDL Learning Bayesian Networks,

In Proceedings of the Sixteenth Conference on Uncertainty in Artificial

Intelligence, pp. 580-587.

Tsamardinos, I., Aliferis, C. F., Statnikov, A. and Brown, L. E.(2003), Scaling-Up

Bayesian Network Learning to Thousands of Variables Using Local Learning

Technique, DSL TR-03-02, March 12, 2003, Vanderbilt University, Nashville,

TN, USA.

Tsamardinos, I., Aliferis, C. F., and Statnikov, A. (2003), Algorithms for Large Scale

Markov Blanket Discovery, In Proceedings of the Sixteenth International

FLAIRS Conference.

Vickrey, D. and Koller, D. (2002), Multi-Agent Algorithms for Solving Graphical

Games, In Proceeding of American Association for Artificial Intelligence

(AAAI), pp. 345-351.

Von Stengel, B. (2002), Computing Equilibria for Two-Person Games, Handbook of

Game Theory, pp. 1723-1759.

Von Neumann, J. and Morgenstern, O. (1947), The Theory of Games and Economic

Behavior, Princeton: Princeton University Press, 2nd Edition.

Reference

210

Wallace, C., Korb, K. B. and Dai, H. (1996), Causal Discovery via MML, In

Proceedings of the Thirteenth International Conference on Machine Learning,

pp. 516-524.

Weiss, G. (1999), Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence, The MIT Press.

Wellman, M. P. and Liu, C. L. (1994), State-space Abstraction for Anytime Evaluation

of Probabilistic Networks, In Proceedings of the Tenth Conference on

Uncertainty in Artificial Intelligence, pp. 567-574.

Wellman, M. P., Birmingham, W. P. and Durfee, E. H. (1996), The Digital Library As

a Community of Information Agents, IEEE Expert 11(3), pp. 10-11.

Wermuth, N. and Lauritzen, S. (1983), Graphical and Recursive Models for

Contingency Tables, Biometrika 72, pp. 537-552.

Wong, M. L., Lam, W. and Leung, K. S. (1999), Using Evolutionary Computation and

Minimum Description Length Principle for Data Mining of Probabilistic

Knowledge, IEEE Transactions on Pattern Analysis and Machine

Intelligence 21, pp. 174-178.

Wong, S. K. M. and Wu, D. (2002), An Algebraic Characterization of Equivalent

Bayesian Networks, In Proceeding of the Seventeenth World Computer

Congress - TC12 Stream on Intelligent Information, pp. 177-187.

Wooldridge, M. and N. R. Jennings (1995), Intelligent Agents: Theory and Practice, In

Knowledge Engineering Review 10 (2), pp. 115-152.

Wooldridge, M. (2002), An Introduction to Multiagent Systems. John Wiley and Sons

Ltd.

Reference

211

Wu, X. and Poh, K. L. (1998), Decision Model Construction with Multilevel Influence

Diagrams, In Proceedings of AAAI 1998 Spring Symposium on Interactive

and Mixed-Initiative Decision Theoretic Systems, pp. 142-147.

Xiang, Y. (1996), A Probabilistic Framework for Cooperative Multi-agent Distributed

Interpretation and Optimization of Communication, Artificial Intelligence 87

(1-2), pp. 295-342.

Xiang, Y. (1998), Verification of DAG Structures in Cooperative Belief Network

Based Multiagent Systems, Networks 31, pp. 183-191.

Xiang, Y. (2002), Probabilistic Reasoning in Multiagent Systems: A Graphical Models

Approach, Cambridge University Press.

Xiang, Y. and Chen, Y. (2002), Cooperative Verification of Agent Interface, In

Proceedings of the First European Workshop on Probabilistic Graphical

Models, pp. 194-203.

Xiang, Y., Poole, D. and Beddoes, M. P. (1993) Multiply Sectioned Bayesian

Networks and Junction Forests for Large Knowledge Based Systems,

Computational Intelligence 9(2), pp.171-220.

Xiang, Y., Pant, B., Eisen, A., Beddoes, M. P. and Poole, D. (1993), Multiply

Sectioned Bayesian Networks for Neuromuscular Diagnosis, Artificial

Intelligence in Medicine 5, pp. 293-314.

Xiang, Y. (1994), Distributed Multi-agent Probabilistic Reasoning with Bayesian

Networks, Methodologies for Intelligent Systems (Eds.: Z. W. Ras and M.

Zemankova), pp. 285-294.

Xiang, Y. (2003), Comparision of Multiagent Inference Methods in Multiply Sectioned

Bayesian Networks, International Journal of Approximate Reasoning 33(3),

pp. 235-254.

Reference

212

Xiang, Y. P. and Poh, K. L. (1999), Time-Critical Dynamic Decision Making, In

Proceedings of Fifteen Conference on Uncertainty in Artificial Intelligence,

pp. 688-695.

Yuan, C. and Druzdzel, M. J. (2003), An Importance Sampling Algorithm Based on

Evidence Pre-propagation, In Proceedings of the Nineteenth Conference on

Uncertainty in Artificial Intelligence, pp. 624-631.

Zambonelli, F., Jennings N. R. and Wooldridge, M. (2001), Organizational

Abstractions for the Analysis and Design of Multiagent Systems, In Agent-

Oriented Software Engineering (Eds.: Ciancarini, P. and M. Wooldridge),

Springer-Verlag Lecture Notes in Artificial Intelligence.

Zhang, N. L. (1994), A Computational Theory of Decision Networks, Ph.D.

Dissertation, Department of Computer Science, University of British

Columbia.

Zhang, N. L., R. Qi and D. Poole (1994), A Computational Ttheory of Decision

Networks, International Journal of Approximate Reasoning 11(2), pp. 83-158.

Zhang, N. L. (1998), Probabilistic Inference in Influence Diagrams, Journal of

Computational Intelligence 4, pp. 476-497.

