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SUMMARY

Recently, cross-layer design has been identified as a promising approach

which achieves good performance for energy-constrained wireless networks. In

general, cross-layer design refers to the methodology in which multiple layers in

the communication protocol stack are designed in an integrated manner, with

the intra-layer and inter-layer dynamics being taken into account. In this thesis,

we study cross-layer scheduling and transmission strategies that provide good

system performance, in terms of throughput, while conserving nodes’ energy.

First, we consider a cross-layer adaptive transmission problem for single-

user systems with stochastic data arrivals, finite-length buffer operating over

a time-varying wireless channel. The objective is to adapt the transmit power

and rate according to the buffer and channel conditions so that the system

throughput is maximized, subject to an average transmit power constraint. We

demonstrate that this problem can be solved by reformulating it as a Markov

decision process. We then identify an important structural characteristic of

the throughput optimal policy, which is in sharp contrast to the structure of

policies that achieve capacity of fading channels. We also consider the adaptive

transmission problem when only a partial observation of the buffer or channel

states is available.

Next, we consider a multiple-access scenario in which multiple users share

a single channel to transmit data to a center node. There are two control

decisions to be made in each time slot, i.e., a scheduling decision which assigns

the channel to one of the users, and a transmission decision which sets the

transmit power and rate. All scheduling/transmission policies employed must

satisfy the average transmit power constraint of each node. We first look at

ix



the problem of finding the optimal cross-layer adaptive scheduling/transmission

policy which adapts to the buffer and channel conditions of all users so that the

total system throughput is maximized. We then use the performance of this

optimal policy as a benchmark to assess the performance of simpler adaptive

scheduling/transmission schemes which also adapt to the buffer and channel

conditions. This allows us to draw some useful guidelines for controlling energy-

constrained multiple-access systems.

Finally, we study a problem of combining scheduling, transmission, and data

compression to conserve energy in a spatially correlated cluster-based sensor

networks. Since wireless transmission is inherently broadcast, when one sensor

node transmits data to the cluster head, other nodes in its coverage area can

receive the transmitted data. When data collected by different sensors are cor-

related, each sensor can utilize the data it overhears from others’ transmissions

to compress its own data and conserve energy in its own transmissions. Based

on this observation, we formulate a problem in which sensors in each cluster are

scheduled to transmit so that they can collaborate in joint source compression

in order to maximize the network lifetime. We show that this lifetime opti-

mization problem can be solved by a sequence of linear programming problems.

We also develop a heuristic scheme which has low complexity and achieves near

optimal performance.
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CHAPTER 1

INTRODUCTION

Many modern and future wireless networks comprise nodes that operate

based on small and energy-limited batteries. Examples of such networks include

mobile cellular systems, wireless local area networks, wireless ad hoc networks,

and wireless sensor networks. In these energy-constrained wireless networks, a

fundamental design challenge is to achieve good system performance while con-

serving nodes’ energy. We address this challenge by studying different energy-

efficient scheduling and transmission strategies for wireless networks. In doing

so, we adopt the cross-layer design approach, which designs and controls the

operations of different layers of the network architecture in an integrated fash-

ion. This is in contrast to the popular layered design approach, that has been

widely followed in designing wired computer networks. This chapter gives the

background information of our research, the specific problems we study, and the

main contributions we have made.

1.1 Energy-constrained Wireless Networks

Based on their architecture, wireless networks can be classified into two main

categories, i.e., infrastructure-based wireless networks and infrastructure-less

wireless networks. In both categories, there are wireless nodes that operate

with highly limited power and energy sources.

1.1.1 Infrastructure-based Wireless Networks

Infrastructure-based wireless networks are set up based on some preexisting

network backbones. These backbones comprise wired or microwave links capable

1
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of carrying data at high speeds. Thus, in terms of the system connectivity,

the main function of an infrastructure-based wireless network is to provide the

wireless extension from a backbone to wireless devices.

Examples of infrastructure-based wireless networks are cellular mobile com-

munication systems. In such a system, the geographical area is divided into

subareas called cells. Within each cell placed a base station that directly com-

municates with all mobile terminals locating in the cell over the wireless medium.

Base stations are linked by a backbone network which is connected to the public

switch telephone network (PSTN) or the Internet through a number of gate-

ways. In addition to voice services, modern and future cellular systems also

support data and multi-media applications.

Other examples of infrastructure-based wireless networks are wireless local

area networks (WLANs). Today, WLANs following the IEEE 802.11 standard

([CWKS97]) are becoming more and more popular. An WLAN consists of a

number of access points that are wired to the Internet backbone. Wireless

devices such as laptops and personal digital assistants (PDAs) communicate

with a nearby access point using wireless transmission. Note that apart from this

star-topology, peer-to-peer architecture is also supported by the IEEE 802.11

standard.

It should be noted that, as base stations and access points are connected to

some network backbone with stable power supplies, energy constraint is usually

not a critical design issue for the downlink, i.e., the link from base stations or

access points toward wireless terminals. On the other hand, wireless terminals

such as mobile phones, PDAs, and laptops are small in size and can only be

equipped with limited batteries. Moreover, the users of these devices can access
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wireless services while on the move, making batteries recharging and/or replac-

ing undesirable. As a result, power and energy constraints must be taken care

of in the design of the uplink, i.e., the link from wireless devices toward base

stations or access points.

1.1.2 Infrastructure-less Wireless Networks

Infrastructure-less wireless networks are designed to be deployed without the

support of any preexisting network infrastructure. With respect to infrastructure-

based networks, they have the advantages of shorter deployment time, flexibility

in network architecture, and robust to single-point failures [GW02]. Examples

of infrastructure-less wireless networks are wireless ad hoc networks and wireless

sensor networks.

In wireless ad hoc networks, connectivity is built upon peer-to-peer com-

munication between nodes. When two wireless nodes are far apart so that no

direct communication is possible, connectivity can be provided by multihop

routing. This leads to the fact that, depending on the network topology and

routing decisions, nodes may have to act as both data hosts and routers. When

this is the case, the energy and power constraints of a node affect not only its

own performance, but also the performance of other nodes that utilize it as

router/relayer. As a result, power and energy conservation is a critical design

criterion for wireless ad hoc networks.

A wireless sensor network (WSN) consists of a large number of low-cost, low-

power, and tiny sensors. These sensors are capable of collecting statistics from

the environment, processing collected information, and communicating data

toward some command centers using wireless transmission. In the literature,
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WSNs are sometimes regarded as a class of wireless ad hoc networks [GW02].

However, it can be argued that, with respect to general wireless ad hoc networks,

WSNs deserve a separate treatment due to the following reasons. First of all,

a WSN can be much denser compared to a typical wireless ad hoc network.

Due to the short distance between sensor nodes, the energy consumed in data

transmission is greatly reduced. In fact, this energy consumption is comparable

to the energy consumed in the processors and electronic circuits of sensor nodes.

This means that for each sensor node, energy consumed in processing, receiving,

and transmitting must all be taken into consideration. Secondly, nodes of WSNs

can be much smaller than those of a typical wireless ad hoc network. Typical

wireless ad hoc networks comprise laptops, PDAs, and other handheld devices.

On the other hand, WSNs are envisaged to consist of nodes as small as a dust

[KKP99]. This implies that sensor nodes are much more energy-constrained

and prone to failure. Finally, a very special characteristic of WSNs is that data

collected by sensors can be correlated. This is fundamentally different from the

assumption of independent flows in the design of wireless ad hoc networks.

Before moving on, it is important to note that, even though wireless ad

hoc networks and WSNs are infrastructure-less, their architectures need not be

totally flat [GW02]. In particular, a hierarchical structure can be set up to assist

data delivery. For example, in an wireless ad hoc network, some nodes can be

elected to act as base stations or to form some network backbone to improve

network reliability and capacity [Haa00, BTD01]. Similarly, sensor networks

can be organized in to clusters, which each cluster being controlled by a cluster

head [HCB00, HM05a].
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1.2 Design Approaches

Layered design has been regarded as a major factor behind the proliferation of

wired data networks [KK05]. However, for energy-constrained wireless networks,

there are strong motivations for a more flexible design methodology, called cross-

layer design, which can adapt and take advantage of various characteristics

of the wireless medium [GW02, SRK03, KK05]. We will discuss these design

approaches next.

1.2.1 Layered Architectures and Layered Design

Layered design is based on some layered network architectures. In such an

architecture, the network functions are divided into different layers of a protocol

stack. Protocols are designed within each layer, in a manner independent to the

internal operation of other layers.

Examples of layered architectures are the Open System Interconnection

(OSI) reference model and the TCP/IP model of the Internet. The OSI model

consists of seven layers, i.e., from bottom up, physical, data link, network, trans-

port, session, presentation, and application, while the TCP/IP has four, i.e.,

link, network, transport, and application. In these architectures, each layer uti-

lizes the functions of the layer right below it in order to provide services for the

layer above. It is important to note that interactions between adjacent layers

are based on relatively static interfaces. For example, in the OSI model, the

task of the physical layer is to provide a constant bit stream for the data link

layer. In turn, the data link layer is expected to provide the network layer with

some constant packet transmission rate and packet loss probability.
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It is evident that the layered design approach has been a cornerstone for

the success of the wired data networks in general and the Internet in particu-

lar [KK05]. By dividing the network functions into separate layers, it breaks

down the complex task of network design into a set of independent and more

manageable problems. The layered approach also allows engineers to work on

designing different layers in parallel, i.e, work in one layer can be carried out

without worrying about the detailed operation inside other layers. An impor-

tant long-term effect is that the layered design approach ensures that continuous

innovations can happen within each layer. By this we mean that each layer can

be continuously optimized, as long as this conforms with the specifications of

the layered architecture, the newly optimized layer will work fine with the rest

of the protocol stack.

1.2.2 Cross-layer Design

Despite the success of the layered design approach for wired data networks, there

are fundamental differences between the wired and wireless media that call for

a more flexible design methodology for energy-constrained wireless networks.

The most fundamental difference between wired and wireless networks is in

the concept of a link. This difference can be separated into two factors: the

existence of a link and the property of a link. In wired networks, a link exists

between a pair of nodes if and only if there is a transmission cable connecting

them. Furthermore, the property of a wired link, i.e., a transmission cable, is

relatively static. A wired link is usually characterized as a constant bit stream

with a constant bit error probability. On the other hand, whether or not a link

exists between a pair of wireless nodes depends on the transmitting/receiving
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decisions of these two nodes and the surrounding nodes. In particular, as long as

the transmit power is large enough to overcome path loss, fading, interference,

and noise, for the receiver to carry out reliable decoding, data can be transmitted

between the two nodes. In other words, the existence of a wireless link is not

a binary variable, rather, it depends on control decisions of nodes. In terms

of link property, the wireless link is much more flexible than the wired counter

part. The transmission rate and bit error probability of a wireless link can be

varied by varying the transmit power.

The difference in the concept of a link makes the design and control of wire-

less networks much more dynamic and allows for much richer layer interactions,

relative to the wired networks. For example, transmission decisions at the phys-

ical and data link layers of a wireless network can change the network topology.

This in turn can affect the routing operation of the network layer. In the other

direction, routing and scheduling decisions at the network and data link layers

determine how multiple nodes transmit and receive data. This can affect the

interference level and the link quality of the physical channel. The close interac-

tions among different layers in a wireless network need to be carefully handled

and at the same time, can be taken advantage of. To do so requires a more

flexible design methodology which allows stronger interaction between layers in

the protocol stack.

Another fundamental difference between wired and wireless design is in the

transmission coverage. Links in wired networks are essentially point-to-point

while wireless transmission is point-to-multipoint. In particular, due to the

broadcast property, when one wireless node transmits, multiple nodes within

the coverage of its antenna can receive the data. On one hand, this may cause
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unwanted interference which requires careful power control to mitigate. On the

other hand, the wireless broadcast property can also be exploited to improve

performance and conserve energy. Let us discuss some ideas that exploit the

wireless broadcast property next.

Multicasting is an important problem of the network layer. Essentially,

data need to be transmitted from a source to a set of nodes in the network.

The idea of exploiting the broadcast nature of wireless media for the problem of

multicasting in wireless ad hoc networks has been considered in [WNE00, SSZ01,

DMS+03]. In particular, by observing that when one node transmits, the data

reach multiple nodes, the number of required transmissions can be reduced to

conserve energy. The wireless broadcast property also offers an opportunity

for node to cooperate in routing. In particular, when a source transmits data

to a destination, the surrounding nodes that receive the broadcast data can

assist the transmission in different ways such as amplify and forward, decode

and forward, and compress and forward. In Chapter 6, we will show how the

wireless broadcast advantage can be exploited at the MAC layer for nodes in a

sensor networks to jointly compress their data and conserve transmission energy.

Last but not least, an important characteristic of the wireless channel which

differentiates it from the wired link is the time-varying channel gain. Due to

node mobility, the channel condition between a pair of wireless nodes varies over

time. Different effects such as pathloss, shadowing, and multipath fading, result

in changes in the channel quality. The effects of this time-varying characteristic

are twofold. Firstly, it require the control scheme to be adaptive to the fluctua-

tion in the channel. Secondly, the changes in link condition will lead to changes

in network topology. These changes will inevitably affect the operation of the
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whole network protocol stack. We can either fight fading or exploit fading. In

fact it is shown that fading introduces a form of multiuser diversity, that can

be exploited by allocating the bandwidth to the user with good instantaneous

channel condition [KH95, TH98a, TH98b].

All the above characteristics, coupled with the need to conserve energy for

wireless nodes, make it important to allow more interdependencies, more infor-

mation sharing, and more flexibility in the design of energy-constrained wire-

less networks. This motivates the concept of cross-layer design. In general,

cross-layer design is used to refer to the design approach in which protocols at

different layers of the network architecture are designed in an integrated man-

ner, with their dynamics and interdependencies being taken into account. For

a detailed and concrete definition of cross-layer design, please refer to [Vin05].

In summary, the author of [Vin05] classifies cross-layer design into one of the

three categories, i.e., cross-layer design based on information sharing across lay-

ers, cross-layer design based on vertical optimization of multiple protocols, and

finally cross-layer design based on combining two or more adjacent layers.

Before moving on, it is important to note that cross-layer design is not

only motivated by the characteristics of the wireless media. Other factors such

as stochastic data arrivals, limited memory and bandwidth, and the need to

guarantee quality of service (QoS) also play important roles. In fact, it is the

combination of all the variations and constrains at multiple layers of wireless

networks that gives rise to cross-layer design.
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1.3 Thesis Focus and Contributions

This thesis focuses on cross-layer design for the first two layers of the network

protocol stack, i.e., the physical (PHY) layer and the data link layer. In par-

ticular, we study different cross-layer scheduling/transmission strategies that

achieve good performance, in terms of the system throughput or lifetime, while

conserving energy. As a note, within the data-link layer, we mainly deal with

the operation of the medium access control (MAC) sublayer. Therefore, in this

thesis, we use the term ”MAC layer” to refer to the MAC sublayer in the OSI

model.

We note that cross-layer design for the MAC and PHY layers are an im-

portant topic due to the following reasons. First of all, in wireless networks,

a large portion of energy consumption is due to data transmitting/receiving

activities, which are directly controlled by scheduling/transmission schemes at

the MAC and PHY layers. Secondly, as has been discussed, the variations of

different parameters of the MAC and PHY layers, such as data traffic, buffer

occupancies, and channel conditions, and the different concept of a wireless link

are the major motivations for cross-layer design.

Our work can be divided into three main problems. We start with the first

problem, which focuses on cross-layer adaptive transmission in a single-user

scenario. Then in the second problem, we consider cross-layer joint adaptive

scheduling/transmission in a multiple access scenario. The first and second

problems are relevant in a wide range of energy-constrained networks, including

cellular networks, WLANs, and wireless ad hoc networks. Finally, in the third

problem, we consider a problem of combining scheduling, broadcasting, and

data compression specifically for spatially correlated sensor networks. The three



11

problems are discussed next.

1.3.1 Problem 1: Cross-layer Adaptive Transmission for

Single-user Systems

We consider a discrete-time single-user system with stochastic data arrival and

time-varying channel condition. Time is divided into slots of equal length and

during each time slot, data packets arrive to a finite-length buffer according to

some stochastic distribution. When the buffer is full, all arriving packets are

dropped and considered lost. Packets are transmitted out of the buffer to a

receiver over a time-varying wireless channel. The channel is represented by a

finite state Markov channel (FSMC). Assume that, together with the statistics

of the data arrival process and the channel variation, instantaneous buffer oc-

cupancy and channel condition are known to the transmitter and receiver. Our

objective is to vary the transmit power and rate according to the buffer and

channel conditions so that the system throughput is maximized, subject to an

average transmit power constraint. Here the system throughput is defined as

the rate of successful packet transmission. In other words, the system through-

put is equal to the rate of packet arrival subtracting the rate of packet loss due

to buffer overflow and transmission errors. We also consider the case when the

transmit power and rate can only be chosen based on some partial observation

of the buffer occupancy and channel state.

Conventional link adaptation problem only adapts the transmission parame-

ters, i.e, power and rate, according to the condition of the time-varying channel.

On the other hand, apart from the channel condition, our adaptive transmis-

sion schemes take the data arrival statistics and buffer occupancy into account.
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This implies that the transmission parameters, which are the parameters of the

PHY layer, are adapted to some parameters of the MAC layer. Therefore, the

resultant adaptive transmission schemes can be classified as cross-layer.

In the context of link adaptation, this problem is directly related to works

concerning capacity of time-varying channel with channel side information at

the transmitter and receiver [GV97, GC97, ZW02]. In the context of cross-layer

adaptive transmission, our work is closely related to the works in [CC99, SRB01,

BG02, HGG02, GKS03, RSA04]. We defer the discussion of the related works

until Chapters 2, 3 and 4.

The novelty and contributions of the work done for this problem can be

summarized as follows.

• We formulate the problem of buffer and channel adaptive transmission for

maximizing the system throughput, subject to an average transmit power

constraint. In particular, our throughput definition incorporates effects of

data arrival, buffer overflow, and transmission errors.

• We consider the throughput maximization problem under two different

scenarios, i.e., when transmission is subject to a fixed bit error rate (BER)

constraint and when the BER constraint is relaxed. In both scenarios, we

show how optimal buffer and channel adaptive transmission policies can

be obtained using dynamic programming.

• We identify an interesting and important structural property of the through-

put maximizing policies, i.e., for certain correlated channel model, the op-

timal transmit power and rate can increase as the channel gain decreases

toward outage. This is in sharp contrast to the well known water-filling
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structure of the transmission policy that achieves information theoretic

capacity of a time-varying channel.

• We identify different practical scenarios under with the transmit power

and rate can only be adapted to partial observations of the buffer and

channel conditions. In those cases, we show how buffer and channel adap-

tive transmission can still be carried out.

The above results are discussed in Chapters 3 and 4. In particular:

• Chapter 3 is for the case when a complete observation of the instantaneous

channel and buffer state information is available.

• Chapter 4 is for the case when only a partial observation of the system

state is available.

1.3.2 Problem 2: Cross-layer Adaptive Scheduling / Trans-

mission in Multiple-access Systems

In this problem, we consider a discrete-time, multiple-access scenario in which a

group of nodes (users) share a common wireless channel to transmit data packets

to a center node. This can be regarded as the extension of the first problem to

the multiple-access scenario. Again, during each time slot, data packets arrive

to the finite-length buffers of transmitting nodes according to some stochastic

distribution. All buffers are finite in length and packets arriving to a full buffer

are lost. For each time slot, two control decisions need to be made, i.e., a

scheduling decision which assigns the common channel to one of the nodes and

a transmission decision which sets the transmit power and rate for the scheduled
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node. All scheduling/transmission policies employed must satisfy the average

transmit power constraint of each node. The objective is to adapt the scheduling

and transmission decision according to the buffer and channel conditions so that

the total system throughput is maximized, subject to each user average transmit

constraint.

It is clear that this problem belongs to cross-layer design as i) the scheduling

and transmission schemes are designed in an integrated manner and ii) the

parameters from both layers, i.e., the data arrival statistics, buffer occupancies,

channel statistics, and channel gain are all taken into account when making

scheduling and transmission decisions.

In the context of maximizing the total system throughput, this problem is

related to the work in [KH95], which concerns the sum-of-rate capacity of a

multiple-access system, with channel side information at the transmitters and

receiver. We will review the result of [KH95] in Chapter 2, Section 2.2.2. In the

context of adapting the scheduling/transmission decisions to both buffer and

channel conditions, our work is related to [TE93, AKR+01, SS02b, NMR03,

LBH03, AKR+04]. These related works will be discussed in Chapter 5.

The contributions of this work are as follows.

• We formulate an optimization problem to find optimal cross-layer adaptive

scheduling/transmission policies that maximize the system throughput of

a multiple access system, subject to some average power constraints for

all users.

• We show how MDPs can be formulated to obtain optimal as well as sub-

optimal adaptive scheduling/transmission policies.
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• By analyzing the performance and complexity of different class of adap-

tive scheduling/transmission policies, we come up with a design guideline,

that can be used to determine the appropriate adaptive policy given a

particular system setting.

The above results will be discussed in detail in Chapter 5.

1.3.3 Problem 3: Combining Scheduling, Broadcasting,

and Data Compression in Sensor Networks

We note that the first and second problems described above focus heavily on

adapting to different sources of variations in the parameters of the MAC and

PHY layers. The problems considered in these two problems are also relevant to

a wide range of energy-constrained networks, from cellular systems to WLANs

to wireless ad hoc networks. The third problem we consider is specific to the

scenario of spatially correlated wireless sensor networks. Through this work, we

demonstrate that cross-layer design is still highly beneficial at the MAC and

PHY layers, even when there are no variation and randomness in the system

parameters.

We consider a cluster-based wireless sensor network in which sensors are

organized into clusters, each cluster is responsible for monitoring a geographical

area. The sensing activity is periodic, i.e., time is divided into data-gathering

round and during each round, each sensor collects a fixed amount of data from

the monitored field. The collected data must be transmitted directly from

sensors to the corresponding cluster head. Here we assume that, within each

cluster, the distance between sensors and the cluster head is short and signal

strength is only affected by the free-space path loss. This means that for each
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sensor, both the data arrival process and channel condition are static.

Suppose that during each data gathering-round, the data collected by differ-

ent sensors within the same cluster are correlated. We propose a novel approach

that exploits the broadcast nature of the wireless medium so that, when one

node transmits its collected data, other nodes in the same cluster can receive

and use the data in compressing their own data. By doing so, they reduce the

amount of data transmitted to the cluster head and conserve energy. Based

on this approach, we formulate an optimization problem in which the schedul-

ing, broadcasting, and compression decisions are made in order for sensors to

collaborate in joint source compressing and conserve energy.

This problem is closely related to the works concerning joint source com-

pression, especially distributed source coding [CPR03, ANJ05]. The idea of

combining scheduling and data compression is also similar to the idea of com-

bining routing and data compression, proposed in [SS02a]. In a broader context,

this problem is based on the idea of exploiting the broadcast nature of the wire-

less media. Earlier works in this area include [WNE00, SSZ01, DMS+03]. These

related works will be discussed in details in Chapter 6.

The novelty and contributions of this problem can be summarized as follows.

• For spatially correlated sensor networks, we propose a novel approach

called collaborative broadcasting and compression (CBC), i.e., when one

sensor transmits its collected data to a central node, surrounding sensors

can catch the transmitted data and use them to compress their own data

and therefore conserve transmission energy.

• We show how to solve for an optimal collaborative scheduling / broadcast-

ing / compression scheme that follows the CBC approach to maximize the
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lifetimes of nodes in a cluster-based sensor networks.

• Finally, a heuristic algorithm, which performed well and can be obtained

at lower complexity, was also proposed.

This problem will be discussed in detail in Chapter 6.

1.4 Organization of Thesis

In Chapter 2, we discuss our general system model and introduce different cross-

layer scheduling and transmission strategies that will be studied in the rest of

the thesis. In Section 2.1, we define the models of data arrival processes, the

finite state Markov channels. Important results concerning the information ca-

pacity of time-varying channel, with channel side information available at the

transmitter and receiver, are reviewed in Section 2.2. These results will be re-

ferred to in Chapters 3, 4, and 5. In Section 2.3, we discuss the need to take

into account not only the channel conditions but also the buffer occupancies and

data arrival statistics. This motivates our buffer and channel adaptive schedul-

ing and transmission problems. Finally, in Section 2.4, we discuss a cross-layer

scheduling, transmission, and data compression approach that can be applied to

a sensor system with deterministic data arrivals and channel conditions. This

approach will be studied in details in Chapter 6.

In Chapter 3, we study the problem of cross-layer adaptive transmission for

single-user systems. The important assumption made in Chapter 3 is that the

transmitter and receiver have a perfect knowledge of the instantaneous buffer

occupancy and channel state for making transmission decisions. We start by

reviewing related works in Section 3.1. Then, a concrete definition of the buffer
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and channel adaptive transmission problem is given in Section 3.2. We consider

the problem under different scenarios, when a BER is always required (Sec-

tion 3.3) and when this constraint is relaxed (Section 3.4). In Section 3.3.2,

we present important result concerning the structural property of the optimal

buffer and channel adaptive transmission policies. In Section 3.5, numerical re-

sults are also obtained to illustrate the performance of our cross-layer adaptive

transmission policies.

In Chapter 4, we continue studying the single-user problem for scenarios

when the control decisions can only be made based on some partial observation

of the buffer occupancy and channel state. As discussed in Section 4.1, partial

observation of the system state includes delayed and/or imperfectly estimated

channel gain and quantized buffer occupancy. In Section 4.2, general approaches

for buffer and channel adaptive transmission under imperfect SSI are discussed.

In Section 4.3, we show that optimal adaptive policies can be obtained when

some delayed but error-free channel state information is available. When this

is not possible, we discuss various heuristics that achieve good performance

(Section 4.4). Numerical results are provided in Section 4.5 to support our

theoretical development. We note that the reader can skip this chapter and

move on with Chapter 5 without loss of continuity.

In Chapter 5, the problem of cross-layer adaptive scheduling/transmission

in a multiple-access scenario is studied. In Section 5.1, we discuss related works.

The problem of cross-layer adaptive scheduling/transmission for maximizing the

system throughput is described in Section 5.2. In Section 5.3, we show how an

optimal joint adaptive scheduling/transmission policy can be obtained. In Sec-

tion 5.4, we briefly discuss a class of statistic oblivious scheduling policies. These
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class of policies do not take the statistics of the data arrival and channel into

account. In Sections 5.5 and 5.6, max-gain scheduling optimal transmission

policies and round-robin scheduling optimal transmission policies are respec-

tively considered. The performance of these two classes of suboptimal policies

are studied numerically in Section 5.7. Hybrid scheduling optimal transmission

is discussed in Section 5.8.

Chapter 6 is for the problem of combining scheduling, broadcasting, and

data compression in spatially correlated sensor networks. We note that for the

sake of understanding, the reader can go straight to this chapter while skipping

Chapters 3, 4, and 5. In Section 6.1, we motivate the idea of exploiting the

wireless broadcast property for sensors node to share data and carry out joint

source compression. Section 6.2 is where related works are discussed. In Sec-

tions 6.3 and 6.4, the system models and general approach are introduced. The

problem of combining scheduling, transmission, and joint source compression

for maximizing sensors’ lifetimes is defined and solved in Sections 6.5 and 6.6

respectively. In Section 6.7, a heuristic scheme which can be obtained at low

complexity and achieves near optimal performance is presented. Some reflec-

tions on the design approach is given in Section 6.8. In Section 6.9, numerical

results are presented to support our analysis.

Finally, in Chapter 7, we conclude this thesis by summarizing our main

results, drawing important conclusions, and outlining possible avenues for future

research.



CHAPTER 2

CROSS-LAYER SCHEDULING AND TRANSMISSION

STRATEGIES

In this chapter, we start by discussing important system components that in-

fluence the design of scheduling and transmission strategies for energy-constrain-

ed wireless networks. These factors include the stochastic data arrival processes,

finite-length buffers, and time-varying channels. Next, adaptive scheduling and

transmission policies which achieve the information theoretic capacity of time-

varying channels are reviewed. These adaptive policies only take into account

the channel conditions while ignoring the dynamics of the data arrival pro-

cesses and buffer occupancies. We then motivate the need to adapt not only

to the channel conditions but also to the buffer occupancies and introduce our

cross-layer adaptive scheduling and transmission problems. These problems will

be studied in detail in Chapters 3, 4, and 5. Finally, we discuss a cross-layer

scheduling, transmission, and data compression approach that can be applied to

a sensor system with deterministic data arrivals and channel conditions. This

approach will be studied in detail in Chapter 6.

2.1 General System Model

The general system model considered in this thesis can be depicted in Fig.

2.1. There are N nodes (users) that communicate with a center node over

the wireless medium. N users are numbered: 1, 2, . . . N . We consider a

discrete-time system in which time is divided into slots, each of length equal to

Ts seconds, Ts > 0. Time slot i, i ∈ N, denotes the time period [iTs, (i+1)Ts).

During each time slot, data, in terms of fixed-sized packets, arrive to the buffer

20
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Figure 2.1: A wireless system in which multiple wireless nodes communicate
their data toward a center node.

of each user. The users then transmit data from their buffers, in a first-in-first-

out (FIFO) manner, over the wireless channel toward the center node.

The system model in Fig. 2.1 can fit into different scenarios of energy-

constrained wireless networks discussed in Chapter 1. In a cellular system,

this model represents the uplink communication from mobile terminals to a

base station. In a WLAN network, Fig. 2.1 models multiple wireless nodes

transmitting data toward an access point. Fig. 2.1 can also be thought as a

portion extracted from a wireless ad hoc network. Finally, for sensor network

applications, Fig. 2.1 depicts the scenario in which a number of sensors forward

collected data toward a data aggregation/fusion center.

It is clear that whenN is set to 1, we have a single-user system. The problems

considered in Chapters 3 and 4 will be for the single-user system while Chapter

5 will deal with the multiple-access scenario.
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2.1.1 Data Arrival Processes and Buffer Dynamics

Let Ani denote the number of data packets that arrive to the buffer of user n

during time slot i, i ∈ N and n ∈ {1, 2, . . . N}. Depending on the specific ap-

plication, the arrival process {Ani } can be either deterministic or stochastic. For

example, in data-logging sensor networks, each sensor collects a fixed amount

of data periodically [KDN03]. On the other hand, data and multimedia traf-

fics are usually stochastic in nature and can be modeled by different stochastic

processes such as Poisson processes and Markov modulated Poisson processes

([AN98]). In Chapters 3, 4, 5, we assume that the data arrival processes are

independent and identically distributed (i.i.d.) over time and across all users.

However, this assumption can be relaxed and the results in those chapters can

be easily extended to the case of Markov arrival processes.

Let Bn denote the size (in packets) of the buffer of user n. Also, let Bn
i

denote the buffer occupancy, i.e., the number of queueing packets, of user n at

the beginning of time slot i. We assume that packets that arrive to the buffer

during time slot i are only added to the buffer at the end of time slot i. If there

is no space left in the buffer, arriving packets are dropped and considered lost.

Suppose Un
i , U

n
i ≤ Bn

i , is the number of packets that are emptied from the

buffer of user n during time slot i, we can write

Bn
i+1 = min{Bn, Bn

i − Un
i + Ani }. (2.1)

2.1.2 Finite-state Markov Channels

In Chapters 3, 4, 5, we consider discrete-time block-fading channels with addi-

tive white Gaussian noise (AWGN). W (in Hz) and No/2 (in Watts/Hz) denote
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the channel bandwidth and the noise power density respectively. The fading

process seen by each user is represented by a stationary and ergodic K-state

Markov chain. It is assumed that the channel stays in the same state for an

entire time slot. Let Gn
i denote the channel state of user n during time slot

i, we assume that the steady-state distribution as well as the transitioning

probabilities of Gn
i are known at both the transmitters and the receiver. This

assumption is reasonable in systems where the fading process is slow enough so

that necessary statistics can be estimated at the receiver and fed back to the

transmitters.

In general, finite-state Markov channels (FSMCs) are suitable for modeling

slowly varying frequency-flat fading [Gud91, WM95, HGG02, BG02]. An FSMC

can be constructed for a particular fading distribution by first partitioning the

range of the fading gain into a finite number of sections. Then each section of

the fading gain corresponds to a state in the Markov chain. Given the statistics

of the fading process, the stationary distribution as well as the channel state

transitioning probabilities can be determined.

As an example, let us demonstrate how a slowly-varying Rayleigh fading

channel can be represented by an FSMC. The following derivations are extracted

from [WM95].

First, let γ denote the instantaneous channel power gain, which is propor-

tional to the squared envelope of the received signal. For Rayleigh fading, the

probability density function (p.d.f.) of γ can be written as

pΓ(γ) =






1
γ

exp
(
−γ

γ

)

0, γ < 0
(2.2)

where γ is the average channel gain [Pro01].
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Let the channel gain γ be partitioned into K intervals using K + 1 levels:

0 = γ0 < γ1 < . . . < γK−1 < γK = ∞. We say that the channel is in state

k, k ∈ {0, 1, . . .K−1} if γk ≤ γ < γk+1. From (2.2), the steady-state probability

of channel state k is

pG(k) = exp

(
−γk
γ

)
− exp

(
−γk+1

γ

)
. (2.3)

We still need to calculate the state transitioning probabilities for the K-state

channel model. From [Jak74], the channel cross over rate, i.e., the expected

number of times per second γ crosses a particular level γk (in either up or down

direction), is

Nk =

√
2πγk
γ

fD exp

(
−γk
γ

)
, k ∈ {0, 1, . . .K − 1}, (2.4)

where fD is the maximum Doppler frequency of the channel. Given that the

mobile terminal moves at speed v (meters/second) and the carrier frequency is

f ,

fD = f
v

c
, (2.5)

where c (in meters/second) is the speed of light. Now, if we assume that the

fading is slow enough so that the channel gain stays in the same state during

each time slot and state transitions after each time slot only happen between

adjacent states, the state transitioning probabilities of the K-state channel after
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each time slot can be written as

PG(k, k − 1) =
NkTs
pG(k)

, k ∈ {1, 2, . . .K − 1},

PG(k, k + 1) =
Nk+1Ts
pG(k)

, k ∈ {0, 1, . . .K − 2},

PG(k, k) = 1− PG(k, k − 1)− PG(k, k + 1), k ∈ {1, 2, . . .K − 2},

PG(0, 0) = 1− PG(0, 1),

PG(K − 1, K − 1) = 1− PG(K − 1, K − 2).

(2.6)

Now the K-state Markov channel model has been completely specified with

the steady-state probability in (2.3) and the state transition probabilities in

(2.6).

2.2 Capacity-achieving Strategies for Fading Channels

In this section, we review results concerning the information theoretic capacity

of time-varying wireless channels, with channel side information available at

both the transmitter and receiver. We consider two scenarios, i.e., for single-

user systems and for multiple-access systems. Note that as the information

theoretic capacity is of concern, the data arrival statistics and buffer condition

are not taken into consideration.

2.2.1 Single-user Scenario

Consider a single-user system in which a transmitter sends data to a receiver

over a time-varying wireless channel. As before, the instantaneous channel

power gain is denoted by γ. The probability distribution of γ is pΓ(γ).

Assuming that the instantaneous value of γ is available at both the transmit-

ter and the receiver, a power control policy is defined as a function P (γ) which
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sets the transmit power when the channel gain is γ. Suppose that all power

control policies employed must satisfy the average transmit power constraint
∫

γ

P (γ)pΓ(γ)dγ ≤ P . (2.7)

We are interested in the capacity of this system, i.e., the maximum transmission

rate that can be achieved with some power control and coding schemes such that

the probability of error is arbitrarily small. In [GV97], Goldsmith and Varaiya

give the following definition for the fading channel capacity and subsequently

prove a channel coding theorem and converse.

Definition 2.2.1. ([GV97]) Given the average power constraint (2.7), define

the time-varying channel capacity by

C(P ) = max
P (γ):

R
γ
P (γ)pΓ(γ)dγ ≤ P

∫

γ

W log2

(
1 +

P (γ)γ

NoW

)
pΓ(γ)dγ. (2.8)

In particular, it is shown in [GV97] that the power control policy which maxi-

mizes (2.8) exhibits the following interesting structure.

P (γ)

NoW
=





1
γ∗
− 1

γ
, γ ≥ γ∗

0, γ < γ∗.
(2.9)

Equation (2.9) tells us that there is a cutoff value γ∗ below which no transmission

should be carried out. Above this cutoff value, the power allocation follows a

water-filling ([Gal68, BV04]) structure in time, with more transmit power (and

rate) being allocated when the channel gain increases. The value of γ∗ depends

on the channel gain distribution and the power constraint through
∫ ∞

γ∗
NoW

(
1

γ∗
− 1

γ

)
pΓ(γ)dγ = P . (2.10)

Substituting (2.9) into (2.8) gives us the capacity of fading channel, with

channel side information at both the transmitter and the receiver. The cod-

ing/decoding scheme which achieves this capacity is described in [GV97]. The
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main idea is to multiplex multiple coding and modulation schemes, each opti-

mized for a particular fade level. The resultant coding/decoding scheme is both

variable-power and variable-rate.

We note that the results discussed above are for the information theoretic

capacity, which can not be achieved with practical coding/decoding schemes.

In [GC97], Goldsmith and Chua consider a similar problem of communicating

over a time-varying channel, but in a practical setup. Adaptive transmission is

based on a variable-power variable-rate M-ary quadrature modulation (MQAM)

scheme. In particular, by fixing the symbol rate while varying the signal con-

stellation size, different transmission rates can be achieved. Similar to the in-

formation theoretic setup, the transmission rate and power are varied based on

instantaneous channel gain. The objective is to find an adaptive MQAM scheme

that maximizes the average transmission rate, subject to the constraints on av-

erage transmit power and bit error rate. It is interesting to see that the optimal

adaptive MQAM scheme that maximizes the expect transmission rate also fol-

lows the water-filling structure [GC97]. In particular, more transmit power (and

rate) is allocated when the channel gain increases.

2.2.2 Multiple-access Scenario

The capacity of a multiple-access system is characterized by its capacity region,

i.e., the set of all possible rate vectors that can be supported by the system

with arbitrarily small probability of error. Within this capacity region, an

important performance metric is the sum-of-rate capacity, i.e., the maximum

total achievable rates for all users.

Let γ be the vector of instantaneous channel gain of N users, with γn being
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the channel gain for user n, n ∈ {1, 2, . . .N}. Again, we assume that the

instantaneous value of γ is available at the transmitters and receiver. Let P n(γ)

be a power control scheme that set the transmit power for user n when the

instantaneous channel gain is γ. In [KH95], Knopp and Humblet study the

problem of maximizing the sum-of-rate capacity of a multiple-access system,

subject to the average transmit power constraint of each node. In particular,

the objective is to maximize

C(P ) =

∫

γ1

∫

γ2

. . .

∫

γN

W log2

(
1 +

n∑

n=1

P n(γ)γn

NoW

)
p(γ)dγ, (2.11)

subject to

∫

γ1

∫

γ2

. . .

∫

γN

P n(γ)p(γ)dγ ≤ P
n
, ∀n ∈ {1, 2, . . .N}. (2.12)

Note that in (2.11) and (2.12), P = (P
1
, P

2
, . . . P

N
) where P

n
is the average

power constraint of user n.

It is shown in [KH95] that the power allocation scheme that maximizes (2.11)

has the following form.

P n(γ)

NoW
=





1
γn∗ − 1

γn , γ
n ≥ γn∗, γn

γn∗ >
γm

γm∗ , m 6= n

0, otherwise.
(2.13)

From 2.13, it can be seen that at each time instance, the channel is allocated to

at most one user. The user who is assigned the channel must have the relatively

best channel gain. Moreover, for the selected user, transmit power is again

allocated according to a water-filling structure in time.
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2.3 Taking Arrival Statistics and Buffer Occupancies into

Account

The results regarding the information theoretic capacity of single-user systems

and the sum-of-rate capacity of multiple-access systems highlight the impor-

tance of adapting to the instantaneous channel gain. In particular, these results

motivate the intuitive approach of exploiting favorable channel conditions when

communicating over time-varying wireless channels. Here, channel variations

happen over time and across users. By definition, the power and rate adaptive

policies described in Section 2.2 achieve the corresponding capacities. However,

as we will illustrate next, when other factors of a practical system are taken into

account, these capacity-achieving policies may not guarantee the best system

throughput.

Consider a single-user system with stochastic data arrival, a finite-length

buffer, and a time-varying channel (as a special case of the general model de-

scribed in Section 2.1). If the capacity-achieving adaptive power and rate is

employed, we will transmit at higher power and rate when the channel gain

increases. However, due to the random data arrival process and limited buffer

space, there can be time when the channel is good but the buffer is near empty

and prohibits transmission at a high rate. There can also be time when the

channel condition is not favorable but the buffer is close to overflow and re-

quires transmission at high rate. This suggests the importance of taking into

account not only the channel condition, but also the statistics of the data arrival

process and the buffer occupancy when making transmission decisions.

Similar situations arise in multiple-access systems with stochastic data ar-
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rival and limited buffers. According to the policy derived by Knopp and Hum-

blet, the common channel is always assigned to the users with the relatively

best channel gain. However, due to random arrival and limited buffers, user

with the best channel condition may have a near empty buffer. In that case, it

is wiser to assign the common channel to a user with a less favorable channel

condition but near-overflow buffer.

Finally, we note that the results regarding the information theoretic capacity

assume that very long codewords can be used in data transmission. Using long

codewords incurs long delay at both transmitters and receivers and that can

violate some delay requirements of the application. Long queueing delay at

the transmitter buffer also leads to higher probability of buffer overflow, which

directly affects the system throughput. Last but not least, with small buffers, it

is also not possible to use codewords that are long enough to guarantee arbitrary

small error probability. As a result, all transmission will suffer some positive

error probability.

2.3.1 System Throughput

The above discussion motivates us to study scheduling/transmission strategies

under some performance metric that is more meaningful to the applications.

Depending on different applications and system scenarios, there can be different

suitable performance metrics. These metrics include, but not limited to, average

queueing delay, deadline violation rate, buffer overflow probability, packet error

probability, and throughput. However, we are more interested in the system

throughput, as this metric allows us to relate to the results concerning the

information theoretic capacity.



31

For our system, a definition of the system throughput should take into ac-

count the effects of stochastic data arrival processes, finite buffer lengths, and

transmission errors. We observe that stochastic data arrival and finite buffer

lengths lead to packet loss due to buffer overflow while transmission errors can

result in erroneous packets being discarded. Therefore, we propose the following

definition for the system throughput:

throughput = arrival rate − overflow rate − error rate. (2.14)

Here arrival rate is the long term average rate at which data arrive to the

buffers, overflow rate is the rate at which packets are dropped due to buffer

overflow, and error rate is the rate at which packets are discarded due to trans-

mission errors. Note that in multiple user systems, the rates are summed up

across all users.

2.3.2 Buffer and Channel Adaptive Policies

For a single-user system, let Si = (Bi, Gi) denote the system state at time i,

i = 0, 1, . . .. Here Bi is the number of packets queueing in the buffer at the

beginning of time slot i while Gi is the channel state during time slot i. We are

interested in adaptive policies that adapt the transmit power and rate according

to the system state Si. Let Pi and Ui be the transmit power and rate for time

slot i. We will study the following throughput maximization problem.

Throughput Maximization Problem (for single-user systems): For

each time slot i, based on the system state Si, select the transmit power Pi and

rate Ui so that the system throughput is maximized, subject to the average trans-

mit power constraint.
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The above throughput maximization problem will be studied in Chapters 3

and 4, under different scenarios. As it will be shown, the optimal buffer and

channel adaptive transmission policies that maximize the system throughput

may exhibit a structural property that is very different from that of capacity-

achieving policies described in Section 2.2.1.

For the multiple-access system in Fig. 2.1, the system state includes the

buffer and channel states for all N users, i.e.,

Si = (B1
i , B

2
i , . . . B

N
i , G

1
i , G

2
i , . . . G

N
i ).

There are two decisions to make in each time slot, i.e., i.e., a scheduling decision

which assigns the common channel to one of the nodes and a transmission

decision which sets the transmit power and rate for the scheduled node. In

Chapter 5, we will study the following problem.

Throughput Maximization Problem (for multiple-access systems):

For each time slot i, based on the system state Si, select a user to access the

channel and for this user, assign the transmit power Pi and rate Ui so that the

system throughput is maximized, subject to average transmit power constraint

for each of the N users.

2.4 A Cross-layer Strategy under Deterministic Data

Arrival and Deterministic Channel

So far, we have motivated cross-layer scheduling/transmission schemes that

adapt to the randomness and time variations of the data arrival processes and

fading channels. These schemes will be studied in detail in Chapters 3, 4, 5.
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In this section, we will introduce another cross-layer scheme, which is applied

for system with deterministic data arrival and channel conditions. This can be

considered as a different type of cross-layer design, which focuses on the coop-

eration of protocols at different layers in the protocol stack. This scheme will

later be studied in Chapter 6.

2.4.1 A Periodic Sensing Scenario with Spatial Data Cor-

relation

To begin with, we note that Fig. 2.1 can be used to depict a sensing application

scenario in which multiple sensors transmit data toward a center node who

is responsible for data aggregation/fusion. Let us consider a periodic sensing

scenario in which sensors collect a fixed amount of data during each time slot.

At the end of time slot, all sensors need to communicate that data toward the

common node.

An important characteristic in sensing application is that data collected by

different sensors can be correlated. This is particularly true for sensors located

close to one another. In that case, if sensors node can collaborate with each

other, they can jointly compress data before transmission. That can help reduce

transmission energy. We will address compression of correlated information

source next.

2.4.2 Compression of Correlated Information Sources

Let us consider two information sources that generate correlated discrete ran-

dom variables X and Y . VariableX takes values from a set X with a probability

distribution pX(x). Similarly, Y takes values from a set Y with a probability
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distribution pY (y). Furthermore, the correlation between X and Y is specified

by a probability distribution pXY (x, y). We supposed that the two informa-

tion sources are compressed by two encoders and then decoded by a common

decoder.

If X and Y are encoded/decoded independently, Shannon’s Theorem states

that the average number of bits per source symbol required to noiselessly encode

X and Y are H(X) and H(Y ) respectively, where

H(X) = −
∑

x∈X

pX(x) log2 pX(x) and H(Y ) = −
∑

y∈Y

pY (y) log2 pY (y) (2.15)

are the entropies of variables X and Y .

However, the correlation between X and Y can be exploited to reduce the

total number of bits required to reliably encode them. In particular, if the

encoders of X and Y can access each other’s information, X and Y can be

compressed without loss to the rates RX and RY that satisfy:

RX ≥ H(X), (2.16)

RY ≥ H(Y ), (2.17)

RX +RY ≥ H(X, Y ), (2.18)

where H(X, Y ) is the joint entropy of X and Y and can be calculated as:

H(X, Y ) = −
∑

x∈X ,y∈Y

pXY (x, y) log2 pXY (x, y). (2.19)

As an example, suppose that the encoder of Y explicitly knows X. Then X

and Y can be losslessly compressed at rates RX = H(X) and RY = H(X, Y )−

H(X) = H(Y |X). Note that

H(Y |X) = −
∑

x∈X ,y∈Y

pXY (x, y) log2 pY |X(y|x) (2.20)
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where pY |X(y|x) is the conditional probability distribution of Y given X.

In the above discussion, we have assumed that the encoders of X and Y

can share information with each other. However, in [SW73], Slepian and Wolf

presented an important result, which showed that X and Y can be encoded

and decoded with arbitrarily small probability of error at rates RX and RY

satisfying (2.16), (2.17), (2.18), even when the two encoders work independent

to each other. As long as the two encoders know the correlation statistics of X

and Y , noiseless compression can be carried out. The encoding/decoding scheme

proposed by Slepian and Wolf is usually termed distributed source coding.

2.4.3 Exploiting Wireless Broadcast Property for Data

Compression

Getting back to the sensing scenario described in Section 2.4.1, the theories

of compression of correlated sources motivate us to allow sensors that collect

correlated data to carry out joint data compression. As discussed in Section

2.4.2, joint data compression can be done by either letting sensors to explicitly

share their collected data, or following the distributed source coding approach

of Slepian and Wolf.

In Chapter 6, we propose a novel approach that allows sensors to carry out

joint data compression based on explicitly sharing their collected data. One

advantage of encoding based on explicit information, over distributed source

coding, is that the encoding/decoding schemes can be much simpler [SS02a].

The core idea of our approach is as follows. Since wireless transmission is

inherently broadcast, when one sensor transmits its collected data, other sensors

in its coverage area can receive the transmitted data. These sensors can therefore
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utilize the data they overhear from other nodes in compressing their own data

so that transmission energy can be conserved. Based on this idea, we proposed

the following approach.

Collaborative Broadcasting and Compression (CBC): Given a set

of sensors transmitting correlated data to a center node, schedule their data

transmission and reception so that joint data compression based on explicit in-

formation can be carried out, with the objective of conserving sensors’ energy

and extending their lifetimes.

From the system design point of view, the CBC approach is cross-layer in that

it integrates the scheduling, transmission, reception, and data compression op-

erations for the sensor nodes.

2.5 Summary

In summary, we presented the general system model that will be used in the

studies of Chapters 3, 4, and 5. Important components of the system model, i.e.,

the data arrival processes, the buffer dynamics, and the time-varying channels,

have been discussed.

We also reviewed policies that achieve the information theoretic capacity of

single-user systems and sum-of-rate capacity of multiple-access systems, both

with time-varying channels. Note that the channel side information is as-

sumed to be perfectly available at the transmitters and receiver. The capacity-

achieving policies tend to favor good channel conditions (either over time or

across users) by setting higher transmit power and rate when the channel gain

increases.
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However, as these capacity-achieving policies are only concerned with the

”maximum achievable rate”, they do not take into account the data arrival

statistics and buffer occupancies. This leads to sub-optimality, in terms of the

actual throughput that can be achieved. This motivated us to define cross-layer

adaptive scheduling/transmission problems which take into account not only

the channel statistics, but also the data arrival statistics and buffer occupancies.

These problems will be studied in detail in Chapters 3, 4, and 5.

As can be noted, the cross-layer adaptive scheduling/transmission problems

introduced in this chapter are largely motivated by the need to adapt to the

stochastic time-variations in different parameters of the MAC and PHY layers.

In Chapter 6, with a system model similar to that of Fig. 2.1, we will present

a cross-layer approach which is beneficial to the system even when there is no

time-varying factor in the system components. To get a quick look at this

problem, the reader can skip Chapters 3, 4, 5 altogether and go straight to

Chapter 6.



CHAPTER 3

BUFFER AND CHANNEL ADAPTIVE TRANSMISSION: FULLY

OBSERVABLE SYSTEM STATES

In this chapter, we study a problem of cross-layer adaptive transmission

in a single-user scenario. This problem has been introduced in Chapter 2,

Section 2.3. In our system, time is divided into slots of equal length and during

each time slot, data packets arrive to a finite-length buffer according to some

stochastic distribution. When the buffer is full, all arriving packets are dropped

and considered lost. Packets are transmitted out of the buffer to a receiver over

a time-varying wireless channel. Assume that, together with the statistics of the

data arrival process and the channel variation, instantaneous buffer occupancy

and channel gain are known to the transmitter and receiver. The objective

is to vary the transmit power and rate according to the buffer and channel

conditions so that the system throughput is maximized, subject to an average

transmit power constraint. The system throughput is defined as the rate of

successful packet transmission and can be calculated by subtracting the rate

of packet loss due to buffer overflow and transmission errors from the packet

arrival rate.

We note that, apart from the channel condition, our adaptive transmission

problem takes the data arrival statistics and buffer occupancy into account. In

other words, the transmission parameters of the PHY layer are varied based on

some parameters of the MAC layer. Therefore, the resultant adaptive transmis-

sion schemes can be classified as cross-layer.

We first consider the case when transmission is subject to a fixed bit error

rate (BER) constraint. In that case, the packet error rate (PER) is also fixed

38
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and maximizing the system throughput is equivalent to minimizing the rate

of packet loss due to buffer overflow. This may be appropriate in situations

where a certain quality of service is mandated by communication standards

or specific user applications. When the BER constraint is relaxed, we have a

trade-off between packet loss due to transmission errors and packet loss due

to buffer overflow. In that case, we solve for a buffer and channel adaptive

transmission policy that minimizes the total packet loss due to buffer overflow

and transmission errors.

The main results of this chapter can be summarized as follows.

• We formulate a problem of adapting the transmit power and rate according

to the buffer occupancy and channel gain so that the system throughput

is maximized, subject to an average transmit power constraint.

• We solve the above throughput maximization problem in two scenarios,

when adaptive transmission is carried out with and without a BER con-

straint.

• We show that for some throughput-maximizing policies, the optimal trans-

mit power and rate can increase as the channel gain decreases toward the

outage threshold. This effect is in contrast to the water-filling property of

the policies that achieve the information theoretic capacity of time-varying

channels.

• We present numerical results to support the theoretical development.

We note that some of the above results have been presented in [HM02, HM03,

HM04a, HM05d].

The rest of this chapter is organized as follows. In Section 3.1, work related



40

to the problem considered in this chapter is reviewed. In Section 3.2, the system

model and the throughput maximization problem is defined. In Section 3.3, we

study the throughput maximization problem when transmission is subject to

a BER constraint. In particular, in Section 3.3.1, we describe our approach of

formulating the problem as a Markov decision process (MDP) and using dy-

namic programming to solve it. Section 3.3.2 discusses an interesting structural

property of the optimal policies. In Section 3.4, we remove the BER constraint

and consider the problem of minimizing total packet loss rate due to both buffer

overflow and transmission errors. In Section 3.5, we present numerical results

and discussion. The chapter ends with some concluding remarks in Section 3.6.

3.1 Related Work

In the context of link adaptation, our work is related to the works by Gold-

smith in [GV97, GC97]. In [GV97], the information theoretic capacity of a

time-varying channel is characterized for the case in which the channel state

information is available at both the transmitter and receiver. As has been dis-

cussed in Chapter 2, Section 2.2, the capacity-achieving transmission policy

in [GV97] adapts the transmit power and rate according to the instantaneous

channel condition. More specifically, the transmit power is allocated according

to a water-filling structure in time. In [GC97], a variable-rate, variable-power

M-ary quadrature amplitude modulation (MQAM) is proposed to maximize the

throughput of transmission over a time-varying channel. Again, the policy that

maximizes the system throughput allocates power according to a water-filling

rule.

We note that the objective of our work and that of [GV97, GC97] are similar,



41

i.e., to maximize the throughput of transmission over a time-varying channel

subject to an average power constraint. However, in our study, we take into

account the effects of a stochastic data arrival process, a finite-length buffer,

and transmission errors and adapt the transmit power and rate not only to

the channel gain but also to the buffer occupancy. With this formulation, we

point out an interesting structural property of the optimal adaptive transmission

policies, i.e., for certain correlated fading channel models, the optimal transmit

power and rate can increase as the channel gain decreases toward outage. This

is in sharp contrast to the water-filling property of the policies presented in

[GV97, GC97].

In the context of cross-layer adaptive transmission, our work is closely related

to the works in [CC99, SRB01, BG02, HGG02, GKS03, RSA04]. In all of these

related works, similar single-user system models with stochastic data arrivals

and time-varying channels are considered. In [CC99], Collins and Cruz study the

problem of adapting the transmit power and rate according to the instantaneous

buffer occupancy and channel state in order to minimize the average transmit

power, subject to some constraints on average delay and peak transmit power.

The results in [CC99] demonstrate that a good adaptive transmission policy

should take into account both the channel condition and user’s backlog. In

[BG02] and [GKS03], the problem in [CC99] is studied under more general

scenarios. In particular, the work of Berry and Gallager in [BG02] gives a

thorough characterization of the tradeoff between average delay and average

transmit power for the regime of asymptotically large delay. The objective of

[RSA04] is similar to that of [BG02], i.e., to characterize the optimal achievable

region of average transmit power and average delay. However, the system model
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of [RSA04] are more specific, with bounded data arrivals and only zero-outage

policies are considered.

If the works in [CC99, BG02, GKS03, RSA04] deal with the average delay,

the works in [SRB01, HGG02] are suitable for cases of packet transmission with

strict deadlines. In [SRB01], Shabharwal et al. consider the problem of buffer

and channel adaptive transmission to minimize packet loss for a system with

constraints on the average transmit power and maximum queueing delay. The

authors show that a small increase in the allowable delay leads to reduction in

packet loss probability. In [HGG02], a similar problem is considered, with the

objective of minimizing average transmit power, subject to a constraint on the

probability of packet loss due to deadline expiry.

We note that our work differs from the works in [CC99, SRB01, BG02,

HGG02, GKS03, RSA04] in several significant ways. First, while these related

works deals with delay, the objective of our work is to maximize the system

throughput which are related to buffer overflow and transmission errors. Second,

in [CC99, BG02, GKS03], the authors characterize how the optimal transmission

rate depends on the channel condition, however, their characterization is only

for the case when the fading process is independent and identically distributed

(i.i.d.) over time. In that case, the structure of the optimal policies is similar

to the water-filling structure. In our work, we look at the dependency when

the fading process is time correlated and show an interesting observation. In

Chapter 4, we also study the problem under cases when the transmitter only has

some incomplete knowledge of the system state information. Incomplete system

state observation is not considered in [CC99, SRB01, BG02, GKS03, RSA04].
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Figure 3.1: Single-user data communication system with stochastic data arrival,
finite-length buffer, and time-varying channel condition. Channel and buffer
conditions are signaled between the transmitter and receiver.

3.2 Problem Definition

3.2.1 System Model

The system model considered in this chapter and the following chapter is de-

picted in Fig. 3.1. We have a single-user data communication system with

stochastic data arrival, finite-length buffer, and time-varying channel condi-

tions. Important components of this system have been discussed in Chapter 2.

The main assumptions and notations can be summarized as follows.

• Time is divided into slots of equal length of Ts seconds. Slot i, i ∈ N,
refers to the time period [iTs, (i+ 1)Ts).

• The number of packets arriving to the buffer during slot i is denoted by

Ai. We assume that these Ai packets are only added to the buffer at the

end of slot i. In this work, we consider the case when {Ai} is independent

and identically distributed (i.i.d.) over time so that the index i can be

omitted. We note that the results can be extended to consider a time-

correlated arrival process in a straightforward manner. The distribution

of the number of packets arriving during each time slot is assumed known

and denoted by pA(a), i.e., pA(a) = Pr(Ai = a). The average packet

arrival rate is denoted by λ (packets/second).
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• All packets have the same length of L bits. The buffer can store up to B

packets and if a packet arrives when the buffer is full, it is dropped and

counted as a packet loss.

• We consider a discrete-time block-fading channel with additive white Gau-

ssian noise (AWGN). We use W (Hz) and No/2(Watt/Hz) to denote the

channel bandwidth and the AWGN noise power density respectively. The

fading process is represented by a stationary and ergodic K-state Markov

chain, with the channel states numbered from 0 to K − 1. The channel

power gain of state g, g ∈ {0, . . .K − 1}, is denoted by γg. During each

time slot, the channel remains in a single state. Let Gi denote the channel

state during time slot i, the channel state transition probability is defined

as

PG(g, g′) = Pr{Gi = g′ | Gi−1 = g}. (3.1)

The stationary distribution of each channel state g is denoted by pG(g).

We assumed that PG(g, g′) and pG(g) are known for all g, g′ ∈ {0 . . .K−1}.

• We denote the system state in slot i by Si = (Bi, Gi), where Bi ∈

{0, . . .B} is the number of packets in the buffer at the beginning of slot i

while Gi ∈ {0, . . .K − 1} is the channel state throughout slot i.

For more details on the data arrival process, buffer dynamics, and finite-state

Markov channels, please refer to Chapter 2, Section 2.1.

3.2.2 Adaptive Transmission

At the beginning of time slot i, we assume that the transmitter and the receiver

have a perfect knowledge of the current system state Si. This assumption is
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reasonable for cases when the channel changes slowly so that its state can be

reliably estimated and fed back within the control overhead. In Chapter 4, cases

when the transmission decisions can only be made based on some partial system

state information (SSI) will be considered.

We assume that, based on Si, the transmitter can vary its transmit power

and rate during each time slot. For time slot i, let Pi(Watts) and Ui(packets/slot)

denote the transmit power and rate respectively. We require that Ui ∈ {0, 1, . . .

Bi} and Pi ∈ P where P is the set of all power levels that the transmitter can

operate at. The most general case is when P is the set of all non-negative real

numbers R
+. A pair (Ui, Pi) is called a control action for time i.

Note that there are various ways for the transmitter to change its transmis-

sion rate Ui. It can be done by changing the channel coding scheme [Vuc91],

i.e. by encoding data bits in the buffer using different code rates while keeping

the transmission rate for the coded bits fixed. Ui can also be varied by keeping

the symbol rate fixed and changing the signal constellation size of a modulator

[WS95, GC97, HM02, HM03]. As an example, in the IEEE.802.11 standards,

different transmission rates are achieved by combinations of different coding and

modulation schemes.

An adaptive scheme that varies transmit power and rate based on the buffer

occupancy and channel state can be implemented as lookup table. At the be-

ginning of slot i, the system updates Si, which gives an index in the lookup

table of transmission parameters. Advances in communication devices, espe-

cially in software radio, will allow this adaptive functionality to be efficiently

implemented in transceivers. As an example, in a software radio based sys-

tem, adaptive policies, i.e., lookup tables, can be stored at a base station or
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downloaded over the air-interface and stored at mobile nodes. Also, by simply

changing some parameters, coding and modulation schemes can be reconfigured

when they are implemented in software.

3.2.3 Transmission Errors

We use Pb(g, u, P ) to denote the function that gives the bit error rate (BER)

when the channel state is g and the transmit power and rate are P and u

respectively. The packet loss rate, as a function of the BER, depends on the

specific packet error-correcting scheme being implemented. In this work, we

suppose that a packet is in error if at least l out of its L bits are corrupted.

Then we can characterize the packet error probability in terms of u, g, P as

Pp(g, u, P ) =

L∑

j=l

(
L

j

)
Pb(g, u, P )j

(
1− Pb(g, u, P )

)(L−j)
. (3.2)

We note that the function Pb(g, u, P ) depends on the specific coding, modu-

lation, and detection schemes used. As an example, let us vary the transmission

rate by varying the constellation size of an M-ary quadrature amplitude modu-

lator (MQAM) while fixing its symbol rate. When the channel is in a particular

state g, the fading gain is γg. With the channel state available at both transmit-

ter and receiver, the channel can be treated as AWGN. From [FS83], assuming

ideal coherent phase detection, the BER for a particular transmit power P and

rate u bits per QAM symbol can be upper-bounded by

Pb(g, u, P ) ≤ 2 exp

(
−1.5

Pγg
WNo(2u − 1)

)
. (3.3)

For u ≥ 2 and 0 ≤ SNR ≤ 30 dB, a tighter bound for the BER is given by

Pb(g, u, P ) ≤ 0.2 exp

(
−1.5

Pγg
WNo(2u − 1)

)
. (3.4)
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We will later use these upper bounds to approximate the transmit power needed

to meed a BER constraint.

3.2.4 Throughput Maximization Problem

From the system point of view, an important performance metric is the rate

at which data packets are successfully transmitted. In this work, we assume

that all packets that are dropped due to buffer overflow and all packets that

are discarded due to transmission errors are lost. However, our formulation can

also be extended to account for the retransmission of erroneous packets. We

give the following definition of the system throughput.

Definition 3.2.1. The system throughput is the long term average rate at which

packets are successfully transmitted. For an average packet arrival rate λ, a

buffer overflow probability Pof , and a packet error rate Pp, the system throughput

can be calculated as:

throughput = arrival rate − overflow rate − error rate

= λ − λPof − Pp(λ− λPof)

= λ(1− Pof )(1− Pp).

(3.5)

We consider the following optimization problem:

Throughput Maximization Problem: At the beginning of each time

slot i, given that the system state Si is completely known by the transmitter

and the receiver, select the transmission parameters (Ui, Pi) so that the system

throughput is maximized, subject to an average transmission power constraint

P .
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3.3 Satisfying a BER Constraint

In this section, let us assume an extra constraint on our adaptive transmission

scheme, that is the control action (Ui, Pi) must be selected so that a fixed BER

constraint of Pb is satisfied. From a practical point of view, many existing

communication protocols require that transmission must be carried out subject

to a BER constraint. Furthermore, enforcing a BER constraint enables us to

have a good comparison between our optimal adaptive transmission policies

and those obtained in [GC97, CC99, BG02], where a BER constraint is also

enforced.

Let P (u, g, Pb) be the power needed to transmit u packets in a time slot

of length Ts seconds when the channel state is g and the BER constraint is

Pb, and note that P (u, g, Pb) depends on the specific coding, modulation, and

detection schemes being used. For example, if an adaptive MQAM scheme as

described in Section 3.2.3 is employed, and supposing that a transmission rate

of u packets/slot is equivalent to mapping u bits to each modulated symbol,

then from (3.4) we can approximate P (u, g, Pb) by

P (u, g, Pb) =
WNo

γg

(− log(5Pb)(2
u − 1)

1.5

)
. (3.6)

In this work, we assume that P (u, g, Pb) has the general form of

P (u, g, Pb) =
WNo

γg
f(u, Pb), (3.7)

where f(u, Pb) is increasing in u and decreasing in Pb. f(u, Pb) can be thought

of as the received signal to noise ratio (SNR) needed to guarantee the BER of

Pb.

It should be noted that with the BER constraint, choosing a control action
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for time slot i, i.e., (Ui, Pi), is equivalent to choosing the transmission rate Ui,

as after that, the transmit power Pi can be readily calculated.

As the BER performance is always kept at Pb, from (3.2), the packet error

probability Pp is always kept unchanged. When both λ and Pp are fixed, from

(3.5), it is clear that maximizing the system throughput is equivalent to mini-

mizing Pof . So from now on, we concentrate on minimizing the rate at which

packets are dropped due to buffer overflow.

At the beginning of slot i, given that there are b packets in the buffer and we

decide to transmit at rate u packets/slot, u ∈ {0, 1, . . . b}, the expected number

of packets that are dropped at the end of slot i due to buffer overflow is

Lo(b, u) = E
{

max{0, A+ b− u− B}
}

(3.8)

where the expectation is with respect to the distribution of A, i.e., the number

of packets arriving in the slot. For example, if the arrival process is Poisson

distributed with rate λ packets/second,

pA(a) =
exp(−λTs)(λTs)a

a!
(3.9)

and

Lo(b, u) = (λTs)

(
1−

B−b+u−1∑

k=0

pA(k)

)
− (B − b+ u)

(
1−

B−b+u∑

k=0

pA(k)

)
.

(3.10)

Our optimization problem can be written as:

min
U0,...,UT−1

lim sup
T→∞

1

T
E

{
T−1∑

i=0

Lo(Bi, Ui)

}
(3.11)

subject to:

Ui ∈ {0, 1, . . .Bi} ∀i = 0, 1, . . . T − 1, (3.12)
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lim sup
T→∞

1

T
E

{
T−1∑

i=0

P (Ui, Gi, Pb)

}
≤ P. (3.13)

Here, we assume that the set P contains all power levels P (u, g, Pb) for all

u ∈ {0, . . . B} and all g ∈ {0, . . .K − 1}.

3.3.1 Optimal Policies (with a BER Constraint)

Instead of directly solving the above problem of minimizing the rate at which

packets are dropped due to buffer overflow given an average power constraint,

let us reformulate it as a problem of minimizing a weighted sum of the long

term packet drop rate and average transmit power. In particular, we will find

an adaptive transmission policy that minimizes

Javr = lim sup
T→∞

1

T
E

{
T−1∑

i=0

CI(Bi, Gi, Ui)

}
(3.14)

where CI(b, g, u) is the immediate cost incurred in state (b, g) when the trans-

mission rate is set at u packets/slot, i.e.,

CI(b, g, u) = P (u, g, Pb) + βLo(b, u). (3.15)

In (3.15), β is a positive weighting factor that gives the priority to reducing

packet loss over conserving power. In particular, by increasing β, we tend to

transmit at a higher rate in order to lower the packet loss rate at the expense

of more power being used. On the other hand, for smaller values of β, the

average transmission power will be reduced at the cost of increasing packet

loss rate. As it is pointed out in [BG02], if P β and Lβ are the average power

and packet loss rate (due to buffer overflow) obtained when minimizing Javr

for a particular value of β, then Lβ is also the minimum achievable loss rate
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subject to the average power constraint of P β. In other words, for each value

of β, minimizing Javr gives us a Pareto optimal point (Lβ , P β) in the Loss Rate

versus Power Constraint curve.

The problem of minimizing Javr is an infinite horizon average cost Markov

decision process (MDP) with system state Si = (Bi, Gi), control action Ui,

and immediate cost function CI(Bi, Gi, Ui). For an MDP to be completely

defined, we also need to characterize the dynamics of the system when different

control actions are selected. Supposing that the system state at time slot i is

Si = s = (b, g) and a control action u is taken, the probability of the system

being in state s
′ = (b′, g′) in the next time slot is

PS(s, s′, u) = Pr{Si+1 = s
′ | Si = s, Ui = u} = PG(g, g′)PB(b, b′, u). (3.16)

Here PG(g, g′) is the probability of transitioning from channel state g into chan-

nel state g′ and

PB(b, b′, u) = Pr{Bi+1 = b′|Bi = b, Ui = u}. (3.17)

As all packets arriving to the buffer during slot i, i.e. Ai, are only added to the

buffer at the end of this slot, we can write

Bi+1 = q(Bi − Ui, Ai) (3.18)

where

q(b, a) = min{b+ a, B}. (3.19)

Based on (3.16), (3.17), (3.18), the system dynamics are well defined.

Let π = {µ0, µ1, µ2, . . .} be a policy which maps system states into trans-

mission rates for each slot i, i.e., Ui = µi(Bi, Gi). We would like to find a policy
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π
∗
avr that satisfies:

π
∗
avr = arg min

π

Javr(π)

= arg min
π

{
lim sup
T→∞

1

T
E

{
T−1∑

i=0

CI(Bi, Gi, µi(Bi, Gi))

}}
.

(3.20)

This problem can be solved efficiently using dynamic programming techniques

[KV86]. Moreover, for our system in which all the states are connected, there

exists a stationary policy π
∗
avr, i.e. µi ≡ µ ∀ i ∈ N, which is the solution

to (3.20). Using a policy iteration algorithm, an optimal policy π
∗
avr can be

reached in a finite number of steps [KV86].

Finally, it is also useful to consider the discounted cost problem that finds:

π
∗
α = arg min

π
Jα(b, g,π)

= arg min
π

lim
T→∞

E

{
T−1∑

i=0

αiCI (Bi, Gi, µi(Bi, Gi)) |B0 = b, G0 = g

}
,

(3.21)

where 0 < α < 1 is the discounting factor and

Jα(b, g,π) = lim
T→∞

E

{
T−1∑

i=0

αiCI (Bi, Gi, µi(Bi, Gi)) |B0 = b, G0 = g

}
(3.22)

is the discounted cost given that the initial system state is (b, g) and policy

π = {µ0, µ1, µ2, . . .} is employed. As the immediate cost function CI is bounded,

the limit in (3.21) always exists. As shown in [KV86], when α→ 1, the solution

of the discounted cost problem, i.e., π
∗
α, is stationary and converges to that

of the average cost problem in (3.20). Moreover, let J∗
α(b, g) be the minimum

discounted cost when B0 = b and G0 = g, we have

J∗
α(b, g) = min

u

{
CI (b, g, u)

+ α
K−1∑

g′=0

∞∑

a=0

PG(g, g′)pA(a)J∗
α (q(b− u, a), g′)

}
.

(3.23)

Equation (3.23) is particularly useful for analyzing the structure of the optimal

policy.
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3.3.2 Structure of Optimal Policies

In this section, we will point out an interesting structural characteristic of the

optimal policy π
∗
avr that satisfies (3.20). In particular, for certain FSMC models

in which the fading process is correlated over time and when the transmission

power constraint is relatively large, the optimal transmission power and rate

are non-increasing in the channel gain. This is in contrast to the well known

water-filling structure of the capacity-achieving link adaptation policy, which

allocates more transmission power to good channel states and less power to bad

channel states [GV97, GC97].

We will show the above effect for a simple FSMC model which has three pos-

sible states with channel gains: 0 = γ0 < γ1 < γ2. Moreover, we further restrict

that channel state transitions after each time slot can only happen between adja-

cent states, i.e., PG(0, 2) = PG(2, 0) = 0 while PG(0, 0), PG(0, 1), PG(1, 1), PG(1, 0),

PG(1, 2), PG(2, 2), PG(2, 1) are all positive.

We will study the structure of the policy π
∗
α that satisfies (3.21). As when

α → 1, π
∗
α → π

∗
avr [KV86], a structural property that is true for π

∗
α, for all

α ∈ (0, 1), is also true for π
∗
avr.

Let us look at the insight behind the equation (3.23). When the system is

in state (b, g), b > 0, g > 0, there are two effects of taking a control action u.

By transmitting at rate u there is an immediate cost CI(b, g, u). However, the

more we transmit in slot i, the fewer number of packets are left to the future

stages. Therefore, the second effect of transmitting at rate u in state (b, g) is to

reduce the future cost

CF (b, g, u) = α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)pA(a)J∗
α (q(b− u, a), g′) . (3.24)
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For state (b, g) with b > 0, g > 0, let 0 ≤ u1 < u2 ≤ b be two possible

transmission rates. We introduce the following notation:

∆I(b, g, u1, u2) = CI(b, g, u2)− CI(b, g, u1) (3.25)

and

∆F (b, g, u1, u2) = CF (b, g, u1)− CF (b, g, u2). (3.26)

Here, ∆I(b, g, u1, u2) is the increase in immediate cost while ∆F (b, g, u1, u2) is

the reduction in future cost when the transmission rate is increased from u1 to

u2. Clearly, action u2 is more favorable than u1 in state (b, g) if and only if

∆I(b, g, u1, u2) < ∆F (b, g, u1, u2).

How the optimal transmission rate varies in g depends on how ∆I ,∆F vary

in g. From (3.7), (3.15), and (3.25), we have

∆I(b, 1, u1, u2)−∆I(b, 2, u1, u2)

= WNo

(
f(u2, Pb)− f(u1, Pb)

)( 1

γ1

− 1

γ2

)
.

(3.27)

We state the following lemma, of which a proof is given in Appendix A.

Lemma 3.3.1. For each buffer state b > 0, there exists a constant βo such that

for every β > βo and 0 ≤ u1 < u2 ≤ b, the following inequality holds:

∆I(b, 1, u1, u2)−∆I(b, 2, u1, u2) < ∆F (b, 1, u1, u2)−∆F (b, 2, u1, u2). (3.28)

An intuitive explanation is as follows. As derived in (3.27), the left hand

side of (3.28) does not depend on β. On the other hand, the right hand side of

(3.28) depends on β. Suppose the power constraint is set to such a high value

that the average cost is dominated by the buffer overflow cost at the outage

state (state 0). Then, the effect of transmitting u packets at state (b, g) can be
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approximated by the reduction in the number of packets present in the buffer

when the channel reaches outage some time later. As the fading process is

correlated, when g increases, the average time to reach outage from state g also

increases. Therefore, the future reward of transmitting u packets is decreasing

in g. Moreover, as this effect depends on the buffer overflow cost, which is in

turn scaled linearly by β, the rate at which ∆F decreases in g can be made

arbitrary large.

Given Lemma 3.3.1, we can prove the following structural characteristic of

the optimal policy.

Theorem 3.3.2. For each buffer state b > 0, let βo be defined as in Lemma

3.3.1 and β > βo, then the optimal transmission rate for each state (b, g), g > 0,

is non-increasing in g.

Proof. We present a proof by contradiction. Let u∗1 and u∗2 be the optimal

transmission rate at states (b, 1) and (b, 2) respectively. Suppose 0 ≤ u∗1 < u∗2 ≤

b. From (3.23) we have

CI(b, 1, u
∗
1) + CF (b, 1, u∗1) ≤ CI(b, 1, u

∗
2) + CF (b, 1, u∗2). (3.29)

Similarly

CI(b, 2, u
∗
2) + CF (b, 2, u∗2) ≤ CI(b, 2, u

∗
1) + CF (b, 2, u∗1). (3.30)

The inequality (3.29) implies:

∆I(b, 1, u
∗
1, u

∗
2) = CI(b, 1, u

∗
2)− CI(b, 1, u∗1)

≥ CF (b, 1, u∗1)− CF (b, 1, u∗2) = ∆F (b, 1, u∗1, u
∗
2).

(3.31)
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Similarly, from (3.30):

∆I(b, 2, u
∗
1, u

∗
2) ≤ ∆F (b, 2, u∗1, u

∗
2). (3.32)

From (3.31) and (3.32) we have:

∆I(b, 1, u
∗
1, u

∗
2)−∆I(b, 2, u

∗
1, u

∗
2) ≥ ∆F (b, 1, u∗1, u

∗
2)−∆F (b, 2, u∗1, u

∗
2), (3.33)

which contradicts Lemma 3.3.1 and therefore, u∗1 ≥ u∗2.

Comment 1: Theorem 3.3.2 states that for a certain correlated fading chan-

nel model and average transmission power constraint, the optimal transmission

rate is non-increasing in the channel gain. In fact, our numerical results show an

even stronger effect, i.e., in some cases, the optimal transmission rate decreases

when the channel gain increases. This is in sharp contrast to the water-filling

structure of the conventional optimal power allocation policy over fading chan-

nels [GV97]. Please refer to Section 3.5 for more details.

Comment 2: In [BG02] a similar approach in characterizing the structure of

the optimal transmission policy when the fading process is uncorrelated is given.

Given that the fading is uncorrelated, inequality (3.28) is always false as its left

hand side is always positive while the right hand side is always equal to zero.

In that case, [BG02] shows that the optimal transmission rate is non-decreasing

in channel gain.

3.4 Removing the BER Constraint

In the previous section, we assume that the transmit power and rate must be

chosen so that a fixed BER constraint is satisfied. This assumption are also
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made in other related works such as [GC97, CC99, BG02]. However, there are

two reasons for us to consider removing the BER constraint. First, by not

imposing a BER constraint, it is possible to trade off between packet loss due

to buffer overflow and packet loss due to transmission errors. For example,

the transmitter can choose either to transmit at a high rate to reduce buffer

overflow but suffering more transmission errors or to use a lower rate which

leads to higher buffer overflow but at the same time reducing the transmission

error probability. Second, it is not possible to meet a BER constraint when the

transmitter only has an imperfect estimate of the channel gain. In that case,

the transmitter can not calculate the transmit power and rate that guarantee

any fixed BER constraint. This situation will be studied in Chapter 4.

3.4.1 Taking Transmission Errors into Account

For specific coding, modulation, and detection schemes being used, given the

transmission rate u, power P , and channel state g, the bit error probability

Pb(g, u, P ) can be estimated. Then (3.2) can be used to calculate the packet er-

ror probability Pp(g, u, P ). As a total of u packets are transmitted, the expected

number of packets lost due to transmission error is

Le(g, u, P ) = uPp(g, u, P ). (3.34)

When the packet arrival rate is fixed, maximizing the system throughput is

equivalent to minimizing total packet loss rate due to both buffer overflow and

transmission errors. So we have the following optimization problem:

min
U0,...,UT−1,P0,...,PT−1

lim sup
T→∞

1

T
E

{
T−1∑

i=0

(Lo(Bi, Ui) + Le(Gi, Ui, Pi))

}
(3.35)
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subject to:

Ui ∈ {0, 1, . . .Bi} ∀i = 0, 1, . . . T − 1, (3.36)

Pi ∈ P ∀i = 0, 1, . . . T − 1, (3.37)

lim sup
T→∞

1

T
E

{
T−1∑

i=0

Pi

}
≤ P . (3.38)

3.4.2 Optimal Policies (without the BER Constraint)

Similar to the approach in Section 3.3.1, we can reformulate the constrained op-

timization problem in (3.35), (3.36), (3.37), (3.38) as a problem of minimizing

a weighted sum of the total packet loss rate (due to buffer overflow and trans-

mission error) and average transmission power. The only modification needed

here is for the immediate cost function, which now becomes:

C̃I(b, g, u, P ) = P + β
(
Lo(b, u) + Le(g, u, P )

)
. (3.39)

At time i, let the system state be Si = s = (b, g) and a control action (u, P )

is taken, the probability of the system being in state s
′ = (b′, g′) in the next

time slot is still characterized by (3.16), (3.17), (3.18). An important point to

note from (3.16), (3.17), (3.18) is that the chosen transmission power level P

does not have any effect on the system dynamics. Therefore, given a choice of

transmission rate u, the necessary and sufficient condition for a power level to

be optimal is that it must satisfy

P = arg min
P∈P

C̃I(b, g, u, P ) = arg min
P∈P
{P + βLe(g, u, P )} . (3.40)

In other words, in each system state, we only have to decide on which rate

the transmitter should use. After that, the power level will follow directly by

solving (3.40).
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Let π be a stationary policy which maps system states into transmission

rate for each slot i, i.e., Ui = π(Bi, Gi). Define

C∗
I (b, g, u) = min

P∈P
C̃I(b, g, u, P ) (3.41)

and

J̃avr(π) = lim sup
T→∞

1

T
E

{
T−1∑

i=0

C∗
I (Bi, Gi,π(Bi, Gi))

}
. (3.42)

We have to solve for

π
∗ = arg min

π

J̃avr(π). (3.43)

Again, this problem can be solved using dynamic programming techniques.

3.5 Numerical Results and Discussion

We have studied the problem of buffer and channel adaptive transmission under

two scenarios, when transmission must be carried out so that a target BER is

met and when transmission at flexible BER levels is allowed. In this section,

the structure and performance of the adaptive policies obtained will be studied

numerically. The performance criteria that we are interested in is the long term

packet loss rate, due to either buffer overflow or transmission errors, per time

slot. Also, we use the term normalized packet loss rate to refer to the packet

loss rate that is normalized by the arrival rate λ.

3.5.1 System Parameters

The system for our numerical study is as follows. Packets arrive to the buffer

according to a Poisson distribution with average rate λ = 103 and 3 × 103

packets/second. All packets have the same length of L = 100 bits. The buffer
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Table 3.1: Channel states and transition probabilities (an 8-state FSMC ob-
tained by quantizing a Rayleigh fading channel with average gain 0.8 and
Doppler frequency 10 Hz).

State k 0 1 2 3 4 5 6 7
γk 0 0.1068 0.2301 0.3760 0.5545 0.7847 1.1090 1.6636
Pkk 0.9359 0.8552 0.8334 0.8306 0.8420 0.8665 0.9048 0.9639
Pk,k+1 0.0641 0.0807 0.0859 0.0835 0.0745 0.0590 0.0361 n.a.
Pk,k−1 n.a. 0.0641 0.0807 0.0859 0.0835 0.0745 0.0590 0.0361
pk 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

length is B = 15 packets. The channel bandwidth is W = 100 kHz and the

power density of AWGN noise is No/2 = 10−5 Watt/Hz. We consider both cases

of correlated and i.i.d. fading channels. For the correlated channel model, we

use an 8-state FSMC as described in Table 3.1. This channel model is obtained

by quantizing the fading range of a Rayleigh fading channel that has the average

power gain γ = 0.8 and Doppler frequency fD = 10 Hz. Note that the value

of Doppler frequency fD in our study corresponds to users moving at a slow

speed. For example, if the carrier frequency is around 1GHz, then fD = 10

Hz corresponds to a movement at the speed of 3 meters/second. For the i.i.d.

channel model, the values of the channel gains are the same as in Table 3.1,

however, the channel evolves independently over time with all state transitions

equiprobable.

Adaptive transmission is based on a variable-rate variable-power M-ary quad-

rature amplitude modulation (MQAM) scheme similar to that described in

[GC97]. Let Tsym be the symbol period of the MQAM modulator and assume a

Nyquist signaling pulse, sinc(t/Tsym), is used so that the value of Tsym is fixed

at 1/W seconds. When the symbol period Tsym is kept unchanged, varying the

signal constellation size of the modulator gives us different data transmission
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rates. As has been specified in Section 3.2, the power and rate adaptation are

carried out in a slot-by-slot basis. Each time slot is F modulated symbol long

and therefore, Ts = FTsym. Here we set F = L = 100 so that when a signal

constellation of size M = 2u is used, exactly u packets are transmitted from the

buffer during each time slot.

As has been discussed in Sections 3.3 and 3.4, we consider two classes of

buffer and channel adaptive transmission policies. In the first class of adaptive

policies, transmit power and rate are selected subject to a BER constraint. We

use (3.6) to approximate the power needed to transmit u bits per QAM symbol

when the channel gain is γk and the BER constraint is Pb. This class of policies

is called MDP I, i.e., MDP class I. The other class of adaptive policies is called

MDP II. In MDP II policies, the BER constraint is removed and packet loss due

to transmission errors is taken into account in the optimization, as described

in Section 3.4. Also, for MDP II policies, we assume that the set P of possible

power levels is finite. This makes it easier to solve for P from (3.40). Obviously,

the more power levels we have, the better performance we would expect from

the adaptive policy.

3.5.2 An Interesting Structural Property

First, let us look at the structure of MDP I policies obtained by solving (3.20)

for the correlated FSMC given in Table 3.1. These policies are found by the

policy iteration algorithm given in [KV86]. In Fig. 3.2, we plot the optimal

transmission rates of a MDP I policy obtained when λ = 103 packets/sec, B =

15 packets, fD = 10 Hz, Pb = 10−3 and P = 16dB. As can be seen, when

the buffer occupancy is fixed, the optimal transmission rate increases when
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Figure 3.2: Structure of optimal policies, i.e., transmission rates (packets/slot)
for different channel states when the buffer occupancy is fixed at 1, 5, 10 and
14 packets. System parameters are: buffer length B = 15 packets, arrival rate
λ = 1 packet/slot, average power constraint P = 16dB (the rest is given in
Section 3.5.1). Channel model is correlated over time and given in Tab. 3.1.
As can be seen, when the buffer occupancy is fixed, the transmission rate can
increase when the channel gain decreases toward outage (state 0).

the channel gain decreases toward the outage point (state 0). This is consistent

with our discussion in Section 3.3.2. For comparison, we also obtain the optimal

policy for the i.i.d. channel model and plot its structure in Fig. 3.3. As can be

seen, for each buffer occupancy, the optimal transmission rate increases when

the channel gain increases. For numerous other sets of simulation parameters,

similar effects have also been observed.

3.5.3 Packet Loss due to Buffer Overflow

Now we compare the performance of MDP I policies with those of some other

less adaptive schemes. All transmission is subject to a BER constraint of
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Figure 3.3: Structure of optimal policies, i.e., transmission rates (packets/slot)
for different channel states when the buffer occupancy is fixed at 1, 5, 10 and
14 packets. System parameters are: buffer length B = 15 packets, arrival rate
λ = 1 packet/slot, average power constraint P = 16dB (the rest is given in
Section 3.5.1). The fading process is i.i.d. over time. As can be seen, when
the buffer occupancy is fixed, the transmission rate is non-increasing when the
channel gain decreases toward outage (state 0).

Pb = 10−3 and we only care about packet loss due to buffer overflow. We

consider two other classes of policies: channel inversion, i.e., C Inv, and channel

adaptive, i.e., C Adpt. For each C Inv policy, a fixed transmission rate is first

selected. Based on this selected rate, the required SNR to meet the target BER

is determined. Then, for each channel state with non-zeror gain, the transmit

power is calculated based on inverting the channel gain to meet the required

SNR. For channel state 0, i.e., when the channel gain is zero, the transmit-

ter is turned off. In a C Adpt policy, we use the optimal link-adaptive policy

that maximizes the transmission rate for our channel model under some aver-

age power constraint and with the assumption that there are always packets to
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Figure 3.4: Performance, in terms of normalized packet loss rate (due to
buffer overflow only) versus average transmission power, for MDP I, C Inv, and
C Adpt policies. System parameters are: buffer length B = 15 packets, arrival
rate λ = 3 packets/slot, BER constraint Pb = 10−3 (the rest is in Section 3.5.1).
Channel model is given by Table 3.1.

transmit. This scheme is equivalent to the variable-rate variable-power adaptive

MQAM proposed in [GC97] (see Chapter 2, Section 2.1 for more detail). The

performance of the three classes of policies, in terms of normalized packet loss

rate (due to buffer overflow) versus the average power consumption are plotted

in Fig. 3.4.

As it is expected, MDP I outperforms the other two classes of adaptive

policies. For low values of average transmit power, the performance of MDP I

policies and C Adpt policies are very close while that of the C Inv policies is

much worse. This is expected, since at low power, the structure of an MDP I

policy is similar to that of the C Adpt, and by focusing on conserving power,

the system performance is improved. At high power, the performance of MDP I
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and C Inv policies are close and it is interesting to see that, for the same average

transmit power, a C Inv policy can result in less packet loss rate relative to a

C Adpt policy. This means that at this high range of average transmission

power, if we only adapt to the channel, the performance can be worse than

not doing any rate adaptation at all. We have looked at the performance of

MDP I, C Adpt, and C Inv policies for different values of Doppler frequency

and observed that the performance of all schemes get worse when the Doppler

frequency decreases. However, the relative difference between performance of

different classes of adaptive policies does not seem to depend much on this

parameter. We have also obtained results for longer buffer capacity and lower

data arrival rate and observed that the performance trends of all schemes remain

unchanged.

It can be noted in Fig. 3.4 that the packet loss rates of all policies, MDP I,

C Adpt, C Inv, reach a floor when the transmit power is high enough. This floor

is represented by the asymptotic limit in Fig. 3.4. When the power constraint is

high enough, the transmitter will always empty the buffer except in state 0. In

that case, the floor for the normalized packet loss rate can be calculated exactly

by:

Lfloor =
1

λ

{
1

K

∑∞
n=1 PG(0, 0)n−1(1− PG(0, 0))La(n + 1)∑∞
n=1(n + 1)PG(0, 0)n−1(1− PG(0, 0))

+
K − 1

K
La(1)

}
,

(3.44)

where La(n) is the expected number of packets lost due to buffer overflow during

an interval of n time slosts, given that the buffer is empty at the beginning of

the interval and no packet is further transmitted. Similar to (3.10), La(n) can
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be calculated by:

La(n) = (λnTs)

(
1−

B−b+u−1∑

k=0

exp(−λnTs)(λnTs)k
k!

)

− (B − b+ u)

(
1−

B−b+u∑

k=0

exp(−λnTs)(λnTs)k
k!

)
.

(3.45)

Note that for the channel models in which there is no outage state, i.e., all

channel states have positive gain, the packet loss floor will be La(1). This

discussion also holds for the problem in Chapter 4.

3.5.4 Packet Loss due to Buffer Overflow and Transmis-

sion Errors

Now we take packet transmission errors into account and compare the perfor-

mance, in terms of total normalized packet loss rate versus average transmission

power consumed, of two classes of buffer and channel adaptive transmission poli-

cies, namely MDP I and MDP II. To have a fair comparison between MDP I

and MDP II policies, we also take into account packet transmission error for

MDP I policies. In particular, for a MDP I policy with BER constraint set to

Pb, the packet error probability is

Pp =

L∑

j=l

(
L

j

)
Pb

j (
1− Pb

)(L−j)
. (3.46)

The results, in terms of normalized packet loss rate (due to both buffer overflow

and transmission error) versus power consumed, are plotted in Figs. 3.5, 3.6,

3.7 and 3.8.

Fig. 3.5 is for the case of correlated channel model. We plot the performance

of the MDP I policies corresponding to BER values of 10−3, 10−4, 10−5, 10−6 and

a MDP II policies that have 20 different power levels, selected evenly from 4 to
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Figure 3.5: Performance, in terms of normalized packet loss rate (due to buffer
overflow and transmission error) versus average transmission power, for MDP I
and MDP II policies. System parameters are: buffer length B = 15 packets,
arrival rate λ = 3 packets/slot, the rest is given in Section 3.5.1. Channel model
is correlated over time and is given in Table 3.1.

40 dB. As can be seen, the MDP II policies outperform MDP I policies. MDP I

policies, corresponding to high values of BER, i.e. 10−3 and 10−4, perform well

in low ranges of transmission power while become much worse than the MDP II

policies in the high range of transmission power. On the other hand, for low

value of BER, i.e. 10−6, the performance of MDP I policies is much worse than

MDP II policies in low power range. This can be explained by looking at the

structure of the MDP II policies. As an MDP II policy can balance between

packet loss due to buffer overflow and transmission errors, when the constrained

power is low, it tends to transmit at relatively high BER values and when the

constrained power is high, it transmits at low BER levels. In other words, at low

power, the structure of a MDP II policy is similar to those of MDP I policies
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Figure 3.6: Performance, in terms of normalized packet loss rate (due to buffer
overflow and transmission error) versus average transmission power, for MDP I
and MDP II policies. System parameters are: buffer length B = 15 packets,
arrival rate λ = 3 packets/slot, the rest is given in Section 3.5.1. Channel model
is correlated over time and is given in Table 3.1.

corresponding to high BER constraints. On the other hand, when the power

constraint is high, MDP II policies are closer to MDP I policies with low value

of BER.

In Fig. 3.6, we plot the performance of different MDP II policies that cor-

respond to different numbers of possible power levels (from 4 to 40dB). As can

be seen, even with only 5 different power levels, the MDP class II scheme can

perform much better than MDP I schemes.

Figs. 3.7 and 3.8 show result for i.i.d. channel models and similar effects can

be observed.
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Figure 3.7: Performance, in terms of normalized packet loss rate (due to buffer
overflow and transmission error) versus average transmission power, for MDP I
and MDP II policies. System parameters are: buffer length B = 15 packets,
arrival rate λ = 3 packets/slot, the rest is given in Section 3.5.1. Channel model
is i.i.d. over time.

3.6 Conclusion

In this chapter, we considered the problem of buffer and channel adaptive trans-

mission for maximizing the system throughput subject to an average transmit

power constraint. Given that the instantaneous buffer and channel states are

available for making control decisions, we reformulate the throughput maximiza-

tion problem as a Markov decision process and solve for optimal transmission

policies. Scenarios of incomplete system state information will be considered in

Chapter 4.

This chapter highlights some important issues in wireless data communi-

cations. First, as nodes are only equipped with limited batteries and have to
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Figure 3.8: Performance, in terms of normalized packet loss rate (due to buffer
overflow and transmission error) versus average transmission power, for MDP I
and MDP II policies. System parameters are: buffer length B = 15 packets,
arrival rate λ = 3 packets/slot, the rest is given in Section 3.5.1. Channel model
is i.i.d. over time.

operate within a dynamic environment, i.e., with stochastic data arrivals and

time-varying channels, cross-layer design approach is essential to achieve good

performance. Second, when statistics at multiple layers are taken into account,

popular intuitions associated with layered design can be no longer true. For

example, our results show that the structure of the optimal buffer and channel

adaptive transmission policies can be the reverse of water-filling.



CHAPTER 4

BUFFER AND CHANNEL ADAPTIVE TRANSMISSION:

INCOMPLETE SYSTEM STATE INFORMATION

In this chapter, we continue studying the problem of buffer and channel

adaptive transmission for maximizing the throughput of a single-user system.

In Chapter 3, this problem has been studied under the assumption that the

current system state, which consists of the instantaneous buffer occupancy and

channel gain, is fully observable by both the transmitter and the receiver. Our

focus in this chapter is for the cases when transmission decisions can only be

based on some partial observation of the system state information (SSI).

In practice, for the SSI to be available at the transmitter and receiver, some

processing and signaling are always required. For example, the transmitter can

signal the receiver its buffer occupancy. At the same time, the channel state

can be estimated by the receiver and then fed back to the transmitter. In

Chapter 3, we assume that the process of estimating and signaling the channel

and buffer states between the transmitter and the receiver is perfect so that

control decisions can be made based on the exact knowledge of the current

buffer occupancy and channel gain. In this chapter, we consider cases when

the above processing and signaling are imperfect. In particular, the channel

estimation/signaling process introduces delay and/or errors. At the same time,

the buffer occupancy can be quantized to reduce the number of system states

and lower the frequency of adapting the transmission mode.

Our focus is to study different buffer and channel adaptive transmission

schemes that aim to maximize the system throughput given incomplete SSI.

The main results of this chapter can be summarized as follows.

71
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• We model different effects of incomplete SSI so that problem formulations

fit into the framework of a partially observable Markov decision process

(POMDP). Again, incomplete SSI includes quantized buffer occupancy

and delayed and/or imperfectly estimated channel state.

• We discuss how buffer and channel adaptive transmission can be carried

out given incomplete SSI. In particular, we show that optimal adaptive

policies can be obtained for the cases when some delayed but error-free

channel state information is available. When this is not possible, we pro-

pose various heuristics that achieve good performance.

• Finally, we present numerical results to support the theoretical develop-

ment.

We note that some of the above results have been presented in [HM04a, HM05c].

As discussed in Chapter 3, Section 3.1, the problem we are considering is

closely related to those studied in [GV97, GC97, CC99, SRB01, BG02, HGG02,

GKS03, RSA04]. Our work shares the same objective with [GV97, GC97], i.e.,

to maximize the throughput of data transmission over a time-varying channel.

In terms of cross-layer design, buffer and channel adaptive transmission schemes

are also considered in [CC99, SRB01, BG02, HGG02, GKS03, RSA04].

This chapter focuses on cross-layer adaptive transmission under incomplete

SSI. Works that study adaptive transmission under imperfect channel state in-

formation (CSI) include [GC97, Goe99, ZW02, OHH04, CG05]. Some of these

works focus on characterizing the effects of channel estimation errors and delay

on the spectral efficiency and BER performance of channel adaptive transmis-

sion schemes [GC97, OHH04]. Others explicitly incorporate imperfect channel
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estimates into the adaptation [Goe99, CG05, ZW02]. Especially, in [ZW02],

Zhang and Wasserman consider channel adaptive transmission schemes given

incomplete CSI and structure the problem as a POMDP. For more discussion

on channel adaptive transmission under imperfect CSI, please refer to [CG05].

However, we note that there are few works considering cross-layer adaptive

transmission under imperfect CSI. Two of the works following this line are

[ZW02] (discussed above) and [HGG02]. In [HGG02], Holliday et al. consider

the problem of buffer and channel adaptive transmission for minimizing the

average transmit power subject to a constraint on the probability of packet loss

due to deadline expiry. This work accounts for the effects of channel estimation

errors and delay on the probability of packet retransmission.

The rest of this chapter is organized as follows. In Section 4.1, we discuss

different situations in which the transmitter and receiver only have partial in-

formation about the current buffer and channel states. Section 4.2 is where we

introduce two general approaches for buffer and channel adaptive transmission

given incomplete SSI. One approach is MDP-based and the other is POMDP-

based. In Section 4.3, we show that optimal control policies can be obtained

when some delayed but error-free channel states are available for making deci-

sion. When this is not possible, we propose various heuristics to obtain policies

with good performance in Section 4.4. Numerical results and discussion are

given in Section 4.5. Finally, we conclude the chapter in Section 4.6.

4.1 Incomplete System State Information

In this section, let us discuss different scenarios in which only a partial obser-

vation of the current system state is available for making control decisions. In
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particular, the buffer occupancy can be quantized and the channel state can

suffer from delay and/or errors.

4.1.1 Quantized Buffer State Information

Although the transmitter normally knows exactly what the current buffer oc-

cupancy is, we may not always want to adapt the transmission parameters to

this exact value. The first reason is that the buffer occupancy can change fre-

quently, therefore, adapting to its exact value may require a significant amount

of signaling. Secondly, when the buffer length is long, the number of possible

buffer states is large. This results in high complexity to find and implement the

optimal buffer/channel adaptive policies.

We note that the need to quantize the buffer state will be even more impor-

tant for multiple access scenario (as will be considered in Chapter 5). In that

scenario, the base station may require the buffer information from all users in

the system and by quantizing the buffer occupancies, the ammount of signalling

and the size of the cntrol problem can be greatly reduced.

Due to the above reasons, we want to quantize the buffer occupancy using a

small number of thresholds and only update the transmit power and rate when

there is a threshold crossing. In this study, the buffer occupancy is quantized

using M + 1 thresholds, i.e., 0 = b0 < b1 < . . . < bM = L + 1. The buffer is

said to be in state m, m ∈ {0, 1, . . .M − 1}, if the number of packets currently

queueing satisfies bm ≤ b < bm+1. Denoting the quantized buffer occupancy at

time i by Bquant
i , we have

Bquant
i = bm, where m satisfies bm ≤ Bi < bm+1 . (4.1)
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4.1.2 Delayed Error-free Channel State Information

We assume that the channel gain is first estimated at the receiver, then quan-

tized into one of the possible values {γ0, γ1, . . . γK−1}, and finally fed back to the

transmitter. This process introduces both delay and errors in the transmitter

knowledge’s of the channel state. We discuss the delay factor first.

The delay in the channel state information available at the transmitter can

be broken into estimation delay τe and feedback delay τf . In particular, τe is

the processing time the receiver needs to obtain an estimate of the channel state

while τf is the time to signal the estimate to the transmitter. Therefore, the

estimated channel state is available at the transmitter after τ = τe + τf units of

time.

In our model, as channel state transitions only happen at the beginning of

each time slot, without loss of generality, we can assume that τ = mTs where

m is a non-negative integer. If we ignore the channel estimation errors for a

moment and only concentrate on the effect of delay, then at the beginning of

time slot i, the transmitter knows all channel states up to time slot i−m, i.e.,

{G0, . . . Gi−m}, i ≥ m.

4.1.3 Non-delayed Imperfect Channel Estimates

The channel state information available at the transmitter may suffer from

estimation errors at the receiver and/or transmission errors on the feedback link.

In this problem, we assume that a strong error correcting scheme is employed

on the feedback link so that the feedback error is negligible. During time slot

i, if we ignore the estimation/feedback delay, the sequence of imperfect channel

estimates available at the transmitter can be denoted by {Gest
0 , . . . Gest

i }, where
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Gest
i is an estimate of the channel state at time i. We account for the fact that

Gest
i can be erroneous by the following function:

Pce(g, ĝ) = Pr{Gest
i = ĝ | Gi = g} (4.2)

which gives the probability of wrongly estimating channel state g as channel

state ĝ. Note that Pce(g, ĝ) depends on the specific channel estimation technique

employed at the receiver. In this study, we assume that the channel estimation

error does not depend on the transmission parameters and is i.i.d. over time. We

also assume that Pce(g, ĝ) is known at the transmitter for all pairs (g, ĝ), g, ĝ ∈

{0, . . .K − 1}.

As an example, let us assume that the estimation noise has a Gaussian

distribution with zero mean and variance of σ2, i.e., if the actual channel state

is g, then the estimated channel gain prior to quantization is

γ̂ = γg + n, (4.3)

where n is a Gaussian random variable with zero mean and variance σ2. The

probability that γ̂ is closest to γbg can be written as

Pce(g, ĝ) =
1

2

(
erf
(γbg + γbg+1 − 2γg

2
√

2σ

)
−erf

(γbg + γbg−1 − 2γg

2
√

2σ

))
,

0 < ĝ < K − 1,

(4.4)

and

Pce(g, 0) =
1

2

(
1 + erf

(
γ0 + γ1 − 2γg

2
√

2σ

))
, (4.5)

Pce(g,K − 1) =
1

2

(
1− erf

(
γK−2 + γK−1 − 2γg

2
√

2σ

))
, (4.6)

where erf(.) denotes the error function.
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4.1.4 Delayed Imperfect Channel Estimates

If we take into account the effects of both delay and errors, then at time i, what

available at the transmitter is a sequence of delayed imperfect estimates of the

channel states up to time i−m, i.e., {Gest
0 , . . . Gest

i−m}, i ≥ m ≥ 0.

We also consider a special case in which the channel state information for

choosing the transmit power and rate at time slot i is of the form {G0, . . . Gi−m−n,

Gest
i−m−n+1, . . . G

est
i−m}, i ≥ m + n, m ≥ 0, n ≥ 0. This means that, at time i,

in addition to the imperfect channel estimates {Gest
i−m−n+1, . . . G

est
i−m}, the trans-

mitter knows all the exact channel states up to time i−m−n. This assumption

is justified by the fact that the accuracy of channel estimation can be improved

if the receiver is given extra time and information to do processing [GC97]. For

example, when a certain estimation delay is permitted, the receiver can inter-

polate between past and future estimates to obtain a more accurate prediction.

Therefore, our assumption corresponds to the case when the delay (m+n)Ts is

long enough so that the receiver can obtain a near perfect channel estimate.

4.2 Adaptive Transmission under Incomplete SSI - Gen-

eral Approaches

In this section, we will discuss two main approaches to construct a buffer and

channel adaptive transmission policy given incomplete SSI. One approach is

based on the MDP solution to the problem when the system state is fully ob-

servable (see Chapter 3, Section 3.3 and 3.4). The other approach is based on

formulating a partially observable MDP.

We note that, when the transmitter does not have the exact instantaneous
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channel state, it can not calculate the transmit power to guarantee a target BER

at a given transmission rate. Therefore, in this chapter, we will only consider

adaptive transmission policies that are not subject to a BER constraint (as in

Chapter 3, Section 3.4).

4.2.1 Employing the MDP Policy π
∗

Perhaps the most straightforward approach is to employ the stationary buffer

and channel adaptive policy π
∗ that minimizes a weighted sum of the long term

packet loss rate and average transmit power when the current system state,

i.e., buffer occupancy and channel gain, is completely known (see Chapter 3,

Section 3.4). At time i, given a quantized buffer occupancy Bquant
i , and a channel

estimate Gest
i−m, the chosen transmit power and rate are:

(Ui, Pi) = π
∗(Bquant

i , Gest
i−m). (4.7)

We term this approach the MDP approach.

The MDP approach blindly assumes that the quantized buffer occupancy

and/or estimated channel state are perfect. Later, we will introduce more com-

plex approaches that account for the partial observability of the channel state.

On the other hand, for quantized buffer occupancy, we will stick to this simple

MDP approach. This is due to the following reasons. First, the probability

distribution of the buffer occupancy depends on the adaptive transmission pol-

icy employed, therefore, it is highly complex to develop control schemes that

account for the effects of buffer quantization. Second, unlike the case of incom-

plete channel state information, which originates from the limitations of the

channel estimation and feedback process, quantization of the buffer occupancy
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is imposed to simplify the adaptive transmission policies. Therefore, we are not

interested in developing complex algorithms that deal with the effect of buffer

quantization.

For the rest of the chapter, when dealing with incomplete channel state infor-

mation, we assume that the buffer state information is exact. When the buffer

occupancy is indeed quantized, we will just use the quantized value directly in

the place of the exact buffer occupancy.

4.2.2 Partially Observable MDPs

Instead of using the MDP policy π
∗, which blindly ignores the fact that the SSI

available is incomplete, a more complex approach is to structure the problem as a

partially observable Markov decision process (POMDP) and look for appropriate

control policies. In addition to all components of an MDP, a POMDP model

also specifies a stochastic observation process, i.e.,

PO(x, o) = Pr{Oi = o | Xi = x} (4.8)

where Xi and Oi respectively denote the actual system state and its observation

at time i. In our problem, the observations can be delayed and/or imperfectly

estimated channel state.

In a POMDP, even though the underlying system is Markov, as the system

state is only partially observed, the observation process may be non-Markovian.

Therefore, the decision maker usually needs to keep track of some system mem-

ory or internal system state for choosing optimal control actions. Two popular

choices for the internal system state are the observation history and the so called

belief state. The observation history at time i is the sequence of all observations
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up to time i. Equivalently, a belief state which is a probability distribution over

the set of all system states can be maintained during time slot i.

The main challenge in obtaining an optimal control policy for a POMDP

is that the number of internal states is usually infinite. In that case, it is

not possible to apply efficient dynamic programming algorithms as in a fully

observable MDP. In our problem, when a delayed but error-free channel state

can be obtained, the number of internal states is finite and an optimal control

policy can be derived. For the cases when no error-free channel estimate can be

obtained, the internal state space is indeed infinite and we can only approximate

an optimal control policy. Details will be given in Sections 4.3 and 4.4.

4.3 Optimal Policies Given Delayed Error-free Channel

States

We consider the special case, described in Section 4.1.4, when a combination

of some delayed error-free channel states and less-delayed imperfect channel

estimates is available for making a transmission decision in each time slot. In

particular, the channel state information available at slot i is

{G0, . . . Gi−m−n, G
est
i−m−n+1, . . . G

est
i−m}, i ≥ m+ n, m ≥ 0, n ≥ 0.

This means that the transmit power and rate for time slot i can be chosen based

on all exact channel states up to time i −m − n and a sequence of imperfect

channel estimates {Gest
i−m−n+1, . . . G

est
i−m}. The justification for this scenario is

given in Section 4.1.4.

Due to the Markov property of the channel model, it is enough to only main-

tain a truncated sequence of the observation history, i.e., {Gi−m−n, G
est
i−m−n+1 . . .
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Gest
i−m}. Now, the internal channel state at slot i can be defined as the vector

GI
i = (Gi−m−n, G

est
i−m−n+1 . . . G

est
i−m). (4.9)

As there are K possible channel states, the number of all possible internal

channel states is Kn+1.

The important point to note is that even though the channel state infor-

mation is incomplete, the number of internal states is still finite. This allows

the problem of minimizing a weighted sum of the long term packet loss rate

and average transmit power in Chapter 3, Section 3.4, to be formulated as a

finite-state MDP, with the actual channel state Gi being replaced by the in-

ternal channel state GI
i . In order to fully specify the MDP, we need to derive

the dynamics of GI
i , together with the cost functions associated with choosing

transmission rate and power (u, P ) in state (Bi, G
I
i ). We will do this next.

4.3.1 Case When m = 0, n = 1

To simplify the derivations, we consider the case when m = 0, n = 1, i.e., at

time i, the transmitter knows the exact previous channel state Gi−1 and has an

estimate of the current channel state Gest
i . The derivations for general values of

m and n are similar.

When m = 0, n = 1, the internal channel state at time i is:

GI
i = (Gi−1, G

est
i ). (4.10)

The probability of transiting from state GI
i = (gd1, ĝ1) into state GI

i+1 = (gd2, ĝ2)



82

can be written as:

P I
G((gd1 , ĝ1), (g

d
2, ĝ2)) = Pr{GI

i+1 = (gd2, ĝ2) | GI
i = (gd1 , ĝ1)}

= Pr{Gi = gd2, G
est
i+1 = ĝ2) | Gi−1 = gd1 , G

est
i = ĝ1)}

= G(gd1, ĝ1, g
d
2)

K−1∑

g=0

Pce(g, ĝ2)PG(gd2 , g).

(4.11)

Given that GI
i = (gd, ĝ), we can write down the probability distribution of the

current channel state, i.e.,

G(gd, ĝ, g) = Pr{Gi = g | GI
i = (gd, ĝ)}

= Pr{Gi = g | Gi−1 = gd, Gest
i = ĝ}

=
Pce(g, ĝ)PG(gd, g)

∑K−1
h=0 PG(gd, h)Pce(h, ĝ)

.

(4.12)

At time i, given a control action (u, P ) when the buffer occupancy is Bi = b

and the internal channel state is GI
i = (gd, ĝ), the average number of packets

lost due to buffer overflow is still given by Lo(b, u) while the expected number

of packets lost due to transmission error is

LIe(G
I
i , u, P ) =

K−1∑

g=0

G(gd, ĝ, g)Le(g, u, P ). (4.13)

Knowing the dynamics of GI
i together with the cost of a transmission action

in each state (Bi, G
I
i ), an MDP can be readily formulated to minimize the

weighted sum of the long term packet loss rate and average transmit power.

4.3.2 Case When n = 0

Note that the number of all internal channel states is Kn+1. When n = 0, i.e.,

GI
i = Gi−m, (4.14)
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the number of internal channel states is K. As the number of possible internal

channel states is the same as that of the actual channel states, the size of the

newly formed MDP is the same as the size of the MDP for the case of complete

channel state information (Chapter 3, Section 3.4).

4.4 Policies Given Imperfect Channel Estimates

In Section 4.3, we study cases when at each slot i, the transmitter knows exactly

what the channel states up to time slot i − m − n are. As discussed, when a

delayed but error-free channel state is available at the transmitter, the number

of internal states of the POMDP is finite and optimal control policy can be

obtained. Now, we consider the general situation, described in Section 4.1.4,

when a delayed error-free channel estimate is not available for choosing the

transmit power and rate. In particular, at time i, we assume that the transmitter

only knows a sequence of imperfect channel estimates {Gest
0 . . . Gest

i−m}.

4.4.1 Optimal Policies Given Delayed Imperfect Channel

Estimates with i.i.d. Channel Model

In the special case when the channel state is independent, identically distributed

over time, there is no extra information gained by keeping estimates of past

channel states. We suppose that during time slot i, the transmitter knows the

estimates of channel state Gi, i.e., Gest
i , then an internal channel state can be

defined as

GI
i = Gest

i . (4.15)
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The number of possible internal channel states is K and therefore, the problem

of minimizing the weighted sum of packet loss rate and average transmit power

can be formulated as a finite-state MDP. In particular, the dynamics of the

internal channel state are easy to write down:

P I
G(ĝ1, ĝ2) = Pr{Gest

i+1 = ĝ2 | Gest
i = ĝ1} =

K−1∑

g=0

Pce(g, ĝ2)pG(g). (4.16)

Also, during time slot i, given that the channel estimate is GI
i = ĝ, we can

derive the probability distribution of the current channel states as

G(ĝ, g) = Pr{Gi = g | GI
i = ĝ} = Pr{Gi = g | Gest

i = ĝ}

=
Pce(g, ĝ)pG(g)

∑K−1
j=0 Pce(j, ĝ)pG(j)

.
(4.17)

Given this distribution, all the cost functions can be derived.

4.4.2 Heuristic Policies Given Delayed Imperfect Chan-

nel Estimates

Now let us consider the case when the channel states are time-correlated. At

time i, the transmitter only knows a sequence of delayed imperfect channel

estimates {Gest
0 , . . . Gest

i−m}. To simplify the derivations, we further assume that

m = 0. However, when m > 0 the analysis is similar.

When the channel is correlated over time, the decision maker needs to keep

track of an entire channel estimation history, i.e., {Gest
0 , . . .Gest

i }, in order to se-

lect the optimal transmit power and rate. If we take the sequence {Gest
0 , . . . Gest

i }

as the internal channel state at time i, then the total number of internal channel

states is infinite. Another option for the internal system state, which is more

efficient to maintain, is the so called belief channel state. This is a K-element
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vector which specifies the probability distribution over K possible channel states

at time i. In particular, let Gi be the belief channel state at time i, then

Gi(g) = Pr{Gi = g | G0, G
est
0 , . . . Gest

i } (4.18)

where the initial probability distribution G0 is assumed known (in case G0 is

not given, it can be set to pG, i.e., the stationary distribution of the channel

states). The advantage of keeping a belief state for every time slot is that it

contains all relevant information for making control actions. Furthermore, in

the next time slot, given a new channel estimation Gest
i+1 = ĝ, the new belief

state can be readily derived from

Gi+1(g) =
Pce(g, ĝ)

∑K−1
g′=0 Gi(g

′)PG(g′, g)
∑K−1

g′=0 Pce(g
′, ĝ)

∑K−1
g′′=0 Gi(g′′)PG(g′′, g′)

. (4.19)

Unfortunately, maintaining a belief channel state for each time slot does not

solve the problem of having infinite number of possible system states. When the

number of system states is infinite, it is extremely hard to obtain an optimal

adaptive policy. Doing so may require infinite time and memory. Therefore,

instead of aiming for an optimal control policy, let us look at some approaches

that can be used to approximate it. All of these approximations start with the

assumption that we have already obtained the MDP policy π
∗ in (3.43), i.e.,

an optimal policy when the system state is fully observable.

Employing the MDP Policy π
∗

As discussed in Section 4.2.1, the most straightforward approach is to ignore

the partial observability of the channel state and just employ policy π
∗, i.e., an

optimal policy when the system state is fully observable. At time i, given the

channel estimate Gest
i and buffer occupancy Bi, the transmission parameters are
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set as:

(Ui, Pi) = π
∗(Bi, G

est
i ). (4.20)

The Most Likely State Heuristic

In this approach, we first determine the state that the channel is most likely in,

i.e.,

GMLS
i = arg max

g∈{0,...K−1}

{Gi(g)} (4.21)

Note that Gi is the belief channel state at time i and is calculated using (4.19).

Then the transmission parameters are set as:

(Ui, Pi) = π
∗(Bi, G

MLS
i ). (4.22)

This approach, which is usually termed the MLS approach, was proposed in

[NPB95].

The QMDP Heuristic

This approach is related to the discounted cost problem defined in Chapter 3

(equation (3.21)). In particular, let the Q function be defined as:

Q(b, g, u, P ) = CI(b, g, u, P )+α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)pA(a)J∗
α(q(b−u, a), g′). (4.23)

When the system state is fully observed, Q(b, g, u, P ) represents the cost of

taking action (u, P ) in state (b, g) and then acting optimally. The QMDP

heuristic takes into account the belief state for one step and then assumes that

the state is entirely known [LCK95]. In particular, the transmission rate and

power for time i is chosen by:

(Ui, Pi) = arg min
u∈{0,...Bi}, P∈P

{K−1∑

g=0

Gi(g)Q(Bi, g, u, P )
}
. (4.24)
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For more discussion on different approaches to approximate an optimal so-

lution for a POMDP, please refer to [Lov91].

The Minimum Immediate Cost Heuristic

Finally, in order to assess the effectiveness of the MDP, MLS, and QMDP ap-

proaches, which are all MDP-based, we introduce a non-MDP heuristics which

is called Minimum Immediate Cost (MIC). In MIC, at time slot i, given the

belief state Gi, the transmission parameters are selected so that the expected

immediate cost is minimized, i.e.,

(Ui, Pi) = arg min
u∈{0,...Bi}, p∈P

{K−1∑

g=0

Gi(g)CI(Bi, g, u, P )
}
. (4.25)

4.5 Numerical Results and Discussion

4.5.1 System Parameters

The system for our numerical study is similar to that used in Chapter 3. Packets

arrive to the buffer according to a Poisson distribution with average rate λ =

3× 103 packets/second. All packets have the same length of L = 100 bits. The

buffer length is B = 15 packets. The channel bandwidth is W = 100 kHz and

the power density of the AWGN noise is No/2 = 10−5 Watt/Hz. We use two

8-state FSMCs as described in Tables 4.1 and 4.2. The channel model in Table

4.1 is obtained by quantizing the fading range of a Rayleigh fading channel that

has average gain γ = 0.8 and Doppler frequency fD = 10 Hz while the one in

Table 4.2 corresponds to fD = 20 Hz.

Adaptive transmission is based on a variable-rate variable-power M-ary quad-

rature amplitude modulation (MQAM) scheme similar to that described in
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Table 4.1: Channel states and transition probabilities (an 8-state FSMC ob-
tained by quantizing a Rayleigh fading channel with average gain 0.8 and
Doppler frequency 10 Hz).

State k 0 1 2 3 4 5 6 7
γk 0 0.1068 0.2301 0.3760 0.5545 0.7847 1.1090 1.6636
Pkk 0.9359 0.8552 0.8334 0.8306 0.8420 0.8665 0.9048 0.9639
Pk,k+1 0.0641 0.0807 0.0859 0.0835 0.0745 0.0590 0.0361 n.a.
Pk,k−1 n.a. 0.0641 0.0807 0.0859 0.0835 0.0745 0.0590 0.0361
pk 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Table 4.2: Channel states and transition probabilities (an 8-state FSMC ob-
tained by quantizing a Rayleigh fading channel with average gain 0.8 and
Doppler frequency 20 Hz).

State k 0 1 2 3 4 5 6 7
γk 0 0.1068 0.2301 0.3760 0.5545 0.7847 1.1090 1.6636
Pkk 0.8718 0.7104 0.6668 0.6612 0.6841 0.7330 0.8097 0.9277
Pk,k+1 0.1282 0.1613 0.1718 0.1670 0.1489 0.1181 0.0723 n.a.
Pk,k−1 n.a. 0.1282 0.1613 0.1718 0.1670 0.1489 0.1181 0.0723
pk 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

[GC97]. Let Tsym be the symbol period of the MQAM modulator and assume a

Nyquist signaling pulse, sinc(t/Tsym), is used so that the value of Tsym is fixed

at 1/W seconds. When the symbol period Tsym is kept unchanged, varying the

signal constellation size of the modulator gives us different data transmission

rates. The power and rate adaptation are carried out in a slot-by-slot basis.

Each slot is F modulated symbol long and therefore, Ts = FTsym. Here we set

F = L = 100 so that when a signal constellation of size M = 2u is used, exactly

u packets are transmitted from the buffer during each time slot.

Given a particular system state (b, g) and a control action (u, P ), as derived
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in Chapter 3, the expected number of packets lost due to buffer overflow is

Lo(b, u) = (λTs)

(
1−

B−b+u−1∑

k=0

pA(k)

)
−(B − b+ u)

(
1−

B−b+u∑

k=0

pA(k)

)
(4.26)

where

pA(a) =
exp(−λTs)(λTs)a

a!
. (4.27)

We assume that a transmitted packet is in error if more than ten out of the 100

bits in the packet are in error. As in Chapter 3, the expected number of packets

discarded due to transmission errors can be approximated by

Le(g, u, P ) = u
L∑

j=11

((
L

j

)
(Pb(g, u, P ))j (1− Pb(g, u, P ))(L−j)

)
(4.28)

where

Pb(g, u, P ) = 0.2 exp

(
−1.5

Pγg
WNo(2u − 1)

)
. (4.29)

We will look at the performance of different approaches discussed in Sections

4.2, 4.3, and 4.4 given incomplete SSI. When the packet arrival rate is fixed,

maximizing the system throughput is equivalent to minimizing total packet loss

due to buffer overflow and transmission error. Therefore, we will plot the long

term packet loss rate versus average transmit power for each scheme.

4.5.2 Performance of MDP Policies Given Quantized Bu-

ffer Occupancy and Perfect Channel State

First, let us look at the performance of the MDP approach when the buffer

occupancy is quantized. When the buffer occupancy is quantized, the perfor-

mance of policy π
∗ depends on two factors, i.e., the number of quantized buffer

states, and the selected quantization thresholds. Clearly, the more the number

of quantized states, the closer the performance to the optimal. At the same
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Figure 4.1: Performance of MDP π
∗ policy under quantized buffer state in-

formation. The performance is in terms of normalized packet loss rate versus
average transmit power. System parameters are given in Section 4.5.1. Channel
model is given in Table 4.2.

time, given a fixed number of quantized states, the performance depends on the

set of selected thresholds. An intuitive way to select good quantization thresh-

olds is to divide the range of buffer occupancy more finely at the range of high

probability distribution. For example, if we know that most of the time, the

buffer occupancy is low, then more thresholds should be set at low values.

In Fig. 4.1, we plot the performance of the MDP approach, in terms of total

long term packet loss rate versus average transmit power, for different buffer

quantization schemes. The number of quantized buffer states is increased from

two to four. In particular, in the first quantization scheme, we set a single

threshold at 7. When the buffer occupancy is less than 7, it is quantized to 0,

otherwise, it is quantized to 7. Similarly, for the case of three quantized buffer

states, we set the two thresholds at 4 and 9, and for the case of four quantized
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buffer states, we set the three thresholds at 3, 6, and 10. As can be seen, when

only two quantized states are used, there is a significant loss compared to the

case of adapting to the exact buffer occupancy. However, the packet loss rate

is reduced significantly when the number of quantized buffer states is increased

to three and four. When four quantized buffer states are used, the performance

is quite near optimal. This suggests that we can quantize the buffer occupancy

in order to reduce the complexity of the adaptive transmission policy without

suffering significant performance degradation.

4.5.3 Performance of Different Approaches Given De-

layed Error-free Channel State

Let us look at the performance of different buffer/channel adaptive transmission

approaches when a delayed error-free channel state and an accurate buffer occu-

pancy are available for making control decisions. We consider two scenarios. In

the first scenario, at time slot i, the transmitter knows exactly what the channel

state at time i− 1, i.e., Gi−1, is. In the second scenario, in addition to knowing

Gi−1, the transmitter also has an estimate of the channel state at time i, i.e.,

Gest
i . Both of these scenarios have been discussed in Section 4.3. In both cases,

we have shown that optimal transmission policies, which maximize the system

throughput given incomplete channel state information, can be obtained. To

facilitate the discussion, we term the optimal adaptive policies under the first

scenario the POMDP I policies and the optimal adaptive policies under the sec-

ond scenario the POMDP II policies. Apart from these two classes of policies,

we also look at the MDP approach which employed policy π
∗ (Section 4.2.1).

We plot the packet loss rate versus average transmit power for each approach.
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Figure 4.2: Performance, i.e., normalized packet loss rate versus average trans-
mit power, for different adaptive transmission schemes given delayed error-free
channel state information. Three schemes are considered, i.e., MDP (Section
4.2.1), POMDP I, and POMDP II (Section 4.3). System parameters are given
in Section 4.5.1. Channel model is in Tab. 4.2.

Here, the packet loss rate is normalized by the average packet arrival rate.

Clearly, the packet loss rates of all approaches are lower-bounded by the packet

loss rate when optimal MDP policies are employed under perfect system state

information. The performance of POMDP I, POMDP II, and MDP schemes

are given in Figs. 4.2 and 4.3. Fig. 4.2 corresponds to channel model in Table

4.2 while Fig. 4.3 is for the channel model in Table 4.1.

In Figs. 4.2 and 4.3, we observe, as expected, that the performance of

all schemes under delayed channel state information is lower-bounded by the

performance of optimal transmission scheme with perfect channel knowledge.

More importantly, the performance degradation increases when the channel

changes faster (Fig. 4.2). This is expected because when the channel changes

faster, the delayed channel state contains less information about the current
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Figure 4.3: Performance, i.e., normalized packet loss rate versus average trans-
mit power, for different adaptive transmission schemes given delayed channel
state information. Three schemes are considered, i.e., MDP (Section 4.2.1),
POMDP I, and POMDP II (Section 4.3). System parameters are given in Sec-
tion 4.5.1. Channel model is in Tab. 4.1.

channel state.

The second observation that we can make from Figs. 4.2 and 4.3 is that the

more information an adaptive scheme has, the better its performance is. In par-

ticular, POMDP I policies perform better than MDP policies and POMDP II

policies perform better than POMDP I. The performance of POMDP II im-

proves when the quality of the channel estimate Gest
I is improved. For example,

when σ = 0.05, the performance of POMDP II is quite close to that of the

optimal scheme under perfect SSI. When the channel estimate Gest
i has high

error probability (σ = 0.1), the performance of POMDP II approaches that of

POMDP I. However, we note that the performance gain of POMDP II comes

at a cost of more complexity. In particular, the number of (internal) channel

states for POMDP II is K2 while it is K for POMDP I.
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4.5.4 Performance of Different Approaches Given Im-

perfect Channel Estimates

Now let us look at the performance of different buffer and channel adaptive

transmission approaches when no error-free channel state information is avail-

able at the transmitter. In particular, during time slot i, the transmitter only

has a sequence of channel estimates {Gest
0 , Gest

1 , . . . , Gest
i }. As has been dis-

cussed in Section 4.4.2, for the general case of correlated channel model, when

no perfect channel estimate is available at the transmitter, it is not practical

to look for optimal adaptive transmission policies. Instead, there are various

heuristics that can approximate optimal control policies at lower complexity.

These approaches are: MDP, MLS, QMDP and they have been discussed in

Section 4.4.2. Again, we plot the performance of different adaptive approaches

in terms of normalized packet loss rate versus average transmit power. The per-

formance of all policies obtained are compared to the case when optimal MDP

policies are employed under perfect SSI. The performance of different classes of

adaptive policies is given in Figs. 4.4 and 4.5. Fig. 4.4 is obtained for the case

when σ = 0.05 and Fig. 4.5 is for the case when σ = 0.1. In both Figs. 4.4 and

4.5, the channel model in Table 4.2 is used.

As can be seen, the MIC approach, which only tries to minimize the imme-

diate cost during each time slot and does not take the dynamics of the system

into account has the worst performance. Significant performance gain can be

achieved by using MDP, MLS, and QMDP approaches. This shows the im-

portant of structuring the problem as a (partially observable) Markov decision

process.

Among the three approaches MDP, MLS, and QMDP, it seems that QMDP



95

10 12 14 16 18 20 22
0.05

0.1

0.15

0.2

0.25

0.30.3

Power (dB)

N
or

m
al

iz
ed

 P
ac

ke
t L

os
s 

R
at

e

MIC
MDP
MLS
QMDP
MDP with perfect SSI

Figure 4.4: Performance, i.e., normalized packet loss rate versus average trans-
mit power, for different adaptive transmission schemes given imperfect channel
estimate. Three schemes are considered, i.e., MDP (Section 4.2.1), MLS (Sec-
tion 4.4.2), QMDP (Section 4.4.2), and MIC (Section 4.4.2). System parameters
are given in Section 4.5.1. Channel model is in Tab. 4.2. The standard deviation
of channel estimating noise is σ = 0.05.

performs best. We note that there is no significant extra complexity when using

QMDP instead of MDP or MLS, therefore, QMDP is a good choice to cope with

imperfect estimated channel state information. Between MDP and MLS, MLS

tends to perform better at low power range, while at higher power range, MDP

achieves better results. However, we note that the difference in the performance

of MDP and MLS is not significant, therefore, the simpler approach, i.e., MDP,

is preferable.
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Figure 4.5: Performance, i.e., normalized packet loss rate versus average trans-
mit power, for different adaptive transmission schemes given imperfect channel
estimate. Three schemes are considered, i.e., MDP (Section 4.2.1), MLS (Sec-
tion 4.4.2), QMDP (Section 4.4.2), and MIC (Section 4.4.2). System parameters
are given in Section 4.5.1. Channel model is in Tab. 4.2. The standard deviation
of channel estimating noise is σ = 0.1.

4.6 Conclusion

In this chapter, we considered the problem of buffer and channel adaptive trans-

mission for maximizing the throughput of a transmission over a time-varying

wireless channel, subject to an average transmit power constraint. We focused

on scenarios in which the system state information for making control decisions

is incomplete. This includes delayed and/or imperfectly estimated channel state

and quantized buffer occupancy. We modeled the effects of partial observability

so that they fit into the framework of a partially observable Markov decision

process and showed how buffer and channel adaptive transmission can still be

carried out.
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Together with Chapter 3, this chapter shows the importance of cross-layer

design in achieving good performance for wireless data communication system.

The work presented in this chapter also demonstrates that, even when the sys-

tem state is not fully observable, buffer and channel adaptive transmission can

still be implemented in an effective manner. This means that our general ap-

proach of cross-layer adaptive transmission is robust with respect to uncertainty

in knowledge of the system state.



CHAPTER 5

BUFFER AND CHANNEL ADAPTIVE

SCHEDULING/TRANSMISSION FOR MULTIPLE-ACCESS

WIRELESS CHANNELS

In Chapters 3 and 4, we have considered the problem of buffer and channel

adaptive transmission for single-user systems. The results presented are also

valid for multiple-access systems in which each user is assigned an orthogonal

channel to transmit data. However, for those systems in which a channel is

shared by multiple users, the results of Chapters 3 and 4 are not immediately

applicable. In particular, before carrying out adaptive transmission, we need to

consider how common channels are shared among users. This motivates us to

study the problem of buffer and channel adaptive scheduling and transmission

for multiple-access systems.

We consider a system in which multiple users transmit data packets to a

base station over a time-varying wireless channel. Time is discretized into slots

of equal length. During each time slot, data packets arrive to the buffers of

transmitting nodes according to some stochastic distribution. All buffers are

finite in length and packets arriving to a full buffer are lost. In each time slot,

two controls decisions are made, i.e., a scheduling decision which assigns the

common channel to one of the users and a transmission decision which sets the

transmit power and rate for the scheduled user. All scheduling/transmission

policies employed must satisfy an average transmit power constraint of each

node.

Part of the objective of this chapter is to study optimal joint adaptive

scheduling transmission policies that maximize the total system throughput.

98
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Similar to the approach in Chapters 3 and 4, we obtain such an optimal policy

by reformulating the throughput maximization problem as a Markov decision

process (MDP). We note that when there are many users in the system, the com-

plexity in obtaining and implementing the optimal joint scheduling/transmission

policies can be very high.

A more important part of this chapter focuses on using the performance

of optimal adaptive scheduling/transmission policies as a benchmark to as-

sess other suboptimal adaptive scheduling/transmission policies that can be

obtained and implemented at lower complexities. We start with two important

classes of suboptimal policies: namely, max-gain scheduling optimal transmis-

sion and round-robin scheduling optimal transmission.

In max-gain scheduling optimal transmission policies, during each time slot,

a user with the best channel condition is scheduled to transmit. Conditioned on

this scheduling rule, the transmit power and rate of each user are selected based

on the buffer and channel conditions so that the total system throughput is

maximized. We show that the complexity of obtaining and implementing max-

gain scheduling optimal transmission policies is significantly lower than that of

optimal scheduling/transmission polices.

Similarly, in our round-robin scheduling optimal transmission policies, con-

ditioned on a round-robin scheduling rule, the transmit power and rate of each

user are selected so that the system throughput is maximized. We show that

with the introduction of an effective system state, round-robin scheduling opti-

mal transmission policies can be obtained at the same complexity as that of a

single-user buffer/channel adaptive transmission problem.

Based on their performance, we identify the strength and weakness of each
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of the schemes: optimal, max-gain, and round-robin. We then propose hybrid

schemes, which combine advantages of different schemes. Details of the hybrid

schemes are given in Section 5.8.

In all adaptive scheduling/transmission schemes described above, it is as-

sumed that the statistics of the data arrival processes and the time-varying

channels are available for making control decisions. When this assumption is

not satisfied, it is reasonable to consider adaptive schemes that are oblivious to

these statistics. In [AKR+01], Andrews et al. propose a scheme in which the

user with the maximum product of the buffer occupancy and transmission rate

is allowed to access the channel. We compare the performance of this scheme

with the performance of those schemes described above.

The main results of this chapter can be summarized as follows.

• We formulate an optimization problem to find cross-layer adaptive schedul-

ing/transmission policies that maximize the system throughput of a multiple-

access system, subject to some average power constraints for all users.

• We show how MDPs can be formulated to obtain optimal as well as sub-

optimal adaptive scheduling/transmission policies.

• By analyzing the performance and complexity of different class of adap-

tive scheduling/transmission policies, we come up with a design guideline,

that can be used to determine the appropriate adaptive policy given a

particular system setting.

We note that some results of this chapter has been presented in [HM04b].

The rest of this chapter is organized as follows. In Section 5.1, we discussed

works that are related to the problem considered in this chapter. The prob-
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lem of buffer and channel adaptive scheduling/transmission for maximizing the

system throughput is described in Section 5.2. In Section 5.3, we show how

optimal adaptive scheduling/transmission policies can be obtained. In Section

5.4, we briefly discuss a class of statistics-oblivious scheduling policies. This

class of policies does not require the statistics of the data arrivals and channels.

In Sections 5.5 and 5.6, max-gain scheduling optimal transmission policies and

round-robin scheduling optimal transmission policies are respectively consid-

ered. The performance of these two classes of suboptimal policies are studied

numerically in Section 5.7. Hybrid scheduling optimal transmission is discussed

in Section 5.8. Finally, we conclude the chapter in Section 5.9.

5.1 Related Work

First, the problem considered in this chapter can be regarded as an extension

to the works on cross-layer adaptive transmission over time-varying channels

considered in Chapters 3, 4, and in [CC99, SRB01, BG02, HGG02, GKS03,

RSA04] to a multiple-access scenario. In particular, these works consider the

problem of adapting the transmit power and rate of a user to his buffer and

channel conditions so that to minimize average queueing delay or maximize

the system throughput. In our multiple-access setup, both the scheduling and

transmission decisions are made based on the buffer and channel conditions of

all users in the system.

The problem of maximizing the information theoretic capacity of a multiple-

access system has been studied in a well-known work of Knopp and Humblet

[KH95]. This work is discussed in details in Chapter 2, Section 2.2. The optimal

scheduling/transmission scheme presented in [KH95] exhibits interesting proper-
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ties: at each time instance, only a user who has the best channel condition is al-

lowed to transmit and his power is allocated according to a water-filling strategy

in time. However, always scheduling the user with the best channel condition

can lead to unfairness among users. In [BW01, LCS01, LK03], channel adaptive

scheduling policies that maximize the system throughput while satisfying differ-

ent fairness constraints have been considered. The fairness constraints here can

be in terms of the normalized throughput that each user has ([BW01, LK03])

or the fraction of resource each of them is assigned ([LCS01]). What makes our

work different from [KH95] (and also from [BW01, LCS01, LK03]) is that we

take into account the effects of a stochastic data arrival process and a limited

buffer at each transmitter. In [KH95], it is implicitly assumed that an infinite

amount of data is always available at each transmitter, therefore, the sched-

uled user can transmit at any rate that is determined by the water-filling power

allocation algorithm.

Scheduling policies that take into account not only the channel conditions

but also stochastic data arrivals and buffer occupancies have been considered

in [TE93, AKR+01, SS02b, NMR03, LBH03, AKR+04]. The common objective

of [TE93, AKR+01, SS02b, NMR03, AKR+04] is to find buffer and channel

adaptive scheduling policies that guarantee the system stability, if there exists

any scheduling policy that does so. In [TE93], for i.i.d. Bernoulli arrivals and

i.i.d. on/off channel models, it is shown that the scheduling rule which serves

the connected user with the longest queue makes the system stable. This result

is generalized in [AKR+01, AKR+04], which state that two classes of policy

called Modified Largest Weighted Delay First (M-LWDF) and Modified Largest

Weighted Unfinished Work First (M-LWWF) achieve the system stability. In
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[SS02b], another class of scheduling policies called the exponential rule is also

shown to guarantee system stability. In [LBH03], the objective of optimizing

the delay performance, which is captured by a utility function, is considered.

Here, the utility function decreases in the delay experienced by packets in the

buffers. The optimal policy that maximizes the system utility takes the packet

delay and user transmission rate into account.

The works in [TE93, AKR+01, SS02b, NMR03, LBH03, AKR+04] focus

mainly on the downlink scenario, i.e., from the base station to mobile terminals.

On the other hand, our work is for the uplink scenario, i.e., from mobile termi-

nals to the base station. It should be noted that the scheduling/transmission

problems for uplink and downlink scenarios are different in many important

aspects. Firstly, in the uplink scenario, the channel conditions of all users can

be estimated by the base station. On the other hand the channel statistics

must by estimated and fed back from individual users to the base station in the

downlink scenario. Secondly, in the downlink scenario, all the buffers are at the

base station, therefore, the buffer occupancies are readily available to the base

station. On the other hand, these statistics must be sent by individual users

to the base station in the uplink scenario. Finally, a fundamental difference is

that in the downlink scenario, power conservation is not a pressing issue, as the

base station is usually connected to a power supply. As a result, the works in

[TE93, AKR+01, SS02b, NMR03, LBH03, AKR+04] focus only on the issue of

scheduling multiple flows, and not on power and rate control.

Works that consider uplink scheduling or random access over wireless chan-

nels include [KQ03, VAT03, QB04]. In [KQ03], the problem of scheduling and

power control for maximizing the weighted sum of users’ achievable rates is con-
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Figure 5.1: Model of a multiple-access data communication system.

sidered. However, the problem formulated in [KQ03] is independent for each

time slot and does not take into account the fluctuations of wireless channels.

The effect of packet loss due to finite-length buffers is also not of concerns

in [KQ03]. The authors of [VAT03, QB04] propose different random access

schemes that are based on slotted-ALOHA and aim to exploit the variations

in channel conditions. The main contribution of the works in [VAT03, QB04]

is to adapt the centralized capacity achieving scheme in [KH95] to distributed

control scenarios.

5.2 Problem Description

5.2.1 System Model and General Notation

The system model considered in this chapter is depicted in Fig. 5.1. We have a

discrete-time multiple-access system with stochastic data arrivals, finite-length

buffers, and time-varying wireless channels. Important components of this sys-

tem have been discussed in Chapter 2, Section 2.1. For the ease of following,

we summarize the main assumptions and notations as follows.
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• Time is discretized into slots of length Ts and time slot i, i ∈ N, refers to

the time period [iTs, (i+ 1)Ts).

• There are N users transmitting data packets to a base station via a time-

varying wireless channel. N users are numbered from 1 to N and N =

{1, 2, . . .N} denotes the set of all users.

• During time slot i, there are Ani packets arriving to the buffer of user

n, n ∈ N . We assume that {Ani } is stationary, ergodic, independent

and identically distributed (i.i.d.) over time and across all users. Let

λ and pA(a) denote the average and the stationary distribution of Ani

respectively, λ and pA(a) are assumed known.

• Each user has a transmitter buffer of length B packets. Bn
i denotes the

number of packets queuing in the buffer of user n at the beginning of time

slot i. We assume that all packets arriving during time slot i are only

added to the corresponding buffer at the end of the time slot. Packets that

arrive when the corresponding buffer is full are dropped and considered

lost.

• The time-varying channel conditions of N users are represented by N sta-

tionary, ergodic, finite state Markov channel (FSMC) models. We assume

that the channel states stay constant during each time slot. Let Gn
i denote

the channel state of user n during time slot i, we assume that {Gn
i } is i.i.d.

across all users and take one of the K possible states {0, 1 . . .K − 1}. Let

g and g′ be two possible channel states, i.e., g, g′ ∈ {0, 1, . . .K−1}, pG(g)

denotes the steady-state probability of state g and PG(g, g′) denotes the

probability of transitioning from state g into state g′ after each time slot.
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• We define the system state in slot i as Si = (B1
i , B

2
i , . . . B

N
i , G

1
i , G

2
i , . . . G

N
i ).

Let S denote the set of all possible system states.

For more details on the data arrival processes, buffer dynamics, and finite-state

Markov channels, please refer to Chapter 2.

Remark : It can be noted that we are considering a symmetric multiple-access

system in which the parameters, i.e., data arrival statistics, buffer lengths, and

channel statistics, are the same for all N users. This assumption is necessary

for our proof of Theorem 5.3.1 in Section 5.3. Apart from that, the assumption

of symmetric systems can be removed. The main reason for us to make it is for

the sake of notational simplicity.

5.2.2 Cross-layer Adaptive Scheduling/Transmission

Policies

We assume that the common channel is time-shared by N users, i.e., during each

time slot, at most one user is allowed to transmit. Clearly, this assumption is

valid for all systems that employ time division multiple access (TDMA). More

generally, this assumption can be made in those systems in which the total

bandwidth is first divided into a number of orthogonal channels and then each

orthogonal channel is time-shared by a group of users. Note that the total

bandwidth can be divided into independent channels using time, or frequency, or

orthogonal code multiple access schemes. However, our time-shared assumption

is not valid for code division multiple access (CDMA) systems that do not

employ orthogonal codes.

When a user is assigned the channel, he can transmit data packets at different

power levels and rates. We assume that all transmission must be subject to a
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reliability constraint which is transformed into the minimum power required

to transmit at each particular rate. In particular, the power needed for each

user to transmit reliably at rate u packets per time slot when his channel state

is g, g ∈ {0, 1, . . .K − 1}, is denoted by P (u, g). P (u, g) is assumed to be

non-negative and bounded for all u and g.

Let Un
i denote the transmission rate of user n during time slot i. If user

n is not scheduled during time slot i, then Un
i is set to zero. Therefore, a

scheduling/transmission decision in time slot i can be fully specified by the

vector of transmission rate {U1
i , U

2
i , . . . U

N
i }. Based on this, we introduce the

following definition of an adaptive scheduling/transmission policy.

Definition 5.2.1. An adaptive scheduling/transmission policy is a sequence of

functions ψ = {φ0, φ1, . . .}, where for each time index i ∈ N, φi is a map from

S × N to the set of natural numbers N such that Un
i = φi(Si, n), ∀n ∈ N .

Furthermore, ψ is said to be feasible if and only if ∀ i ∈ N,

φi(Si, n)φi(Si, m) = 0 ∀m,n ∈ N , m 6= n, (5.1)

and

φi(Si, n) ≤ Bn
i ∀n ∈ N . (5.2)

In the above definition, (5.1) guarantees that at most one user can access

the channel in each time slot while (5.2) means that the scheduled user cannot

transmit more than what already available in his buffer. Note that in Definition

5.2.1, for different time slots, we allow different scheduling/transmission rules.

We are also interested in stationary adaptive scheduling/transmission policies

which are defined as
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Definition 5.2.2. An adaptive scheduling/transmission policy ψ = {φ0, φ1, . . .}

is said to be stationary if and only if φi = φj, ∀i, j ∈ N.

Let Ψ be the set of all feasible adaptive scheduling/transmission policies.

Also let Ψst, Ψst ⊂ Ψ, be the set of all stationary feasible adaptive schedul-

ing/transmission policies. Note that the cardinality of Ψ is infinite while that

of Ψst is finite. In general, it is more convenient to deal with stationary policies.

On the other hand, one advantage of non-stationary policies is that they can of-

fer certain system fairness that can not be satisfied by any stationary scheduling

policies. For example, when all users share the same buffer and channel condi-

tions, a fair scheduling rule should give every user an equal chance to access the

channel. This can be done in a non-stationary adaptive scheduling/transmission

policy, but can not be satisfied by stationary scheduling policies.

5.2.3 Throughput Maximization Problem

We are interested in the following optimization problem.

Throughput Maximization Problem: Find a feasible adaptive schedul-

ing/transmission policy ψ ∈ Ψ that maximizes the system throughput, subject

to the average power constraints of all N users. Here the system throughput is

defined as the sum of the rates at which data packets are transmitted by all users

in the system.

Similar to our argument in Chapter 3 and 4, when the arrival rates are

fixed for all users, maximizing the system throughput is equivalent to minimiz-

ing the total packet loss rate due to overflow at all the buffers. In time slot

i, given the system state Si = (B1
i , B

2
i , . . .B

N
i , G

1
i , G

2
i , . . . G

N
i ) and a schedul-
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ing/transmission decision (U1
i , U

2
i , . . . U

N
i ), the expected number of packets that

are dropped due to buffer overflow for user n ∈ N is calculated by the function

Lo(B
n
i , U

n
i ), where

Lo(B, u) = E
{

max{0, A+ b− u− B}
}

(5.3)

The expectation in (5.3) is with respect to A - the number of packets arriving

to the buffer of user n during the time slot of concern. Now, let P be the

average transmit power constraint that each user must satisfies, our throughput

maximization problem, or equivalently, the overflow minimization problem, can

be stated as:

min
ψ∈Ψ

lim sup
T→∞

1

T
E

{
T−1∑

i=0

N∑

n=1

Lo(B
n
i , φi(Si, n))

}
(5.4)

subject to:

lim sup
T→∞

1

T
E

{
T−1∑

i=0

P (φi(Si, n), Gn
i )

}
≤ P ∀n = 1, . . .N. (5.5)

Note again that in (5.4) and (5.5), ψ = {φ0, φ1, . . .}.

5.3 Solving the Throughput Maximization Problem

5.3.1 Converting into a Non-constrained Optimization

Problem

The problem of finding a throughput-maximizing adaptive scheduling/transmission

policy in Section 5.2.3 consists of one objective function and N constraints. We

study this problem using an approach similar to the one used in Chapters 3.
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In particular, the constrained optimization problem is first reformulated into a

non-constrained optimization problem of which the objective is to minimize the

weighted sum of the total packet loss rate and total average transmit power,

i.e.,

min
ψ∈Ψ

lim sup
T→∞

1

T

T∑

i=0

N∑

n=1

(
βP (φi(Si, n), Gn

i ) + Lo(B
n
i , φi(Si, n))

)
, (5.6)

where β is a weighting factor. Increasing β gives more priority to reducing

transmit power, at the cost of more packet loss due to buffer overflow. On the

other hand, reducing β puts more priority on reducing the packet loss rate, at

the cost of more transmit power.

The problem in (5.6) can be regarded as an infinite horizon average cost

Markov decision process (MDP). More importantly, as the weighted sum of

total packet loss and total transmit power in each time slot is bounded and

all the system states are connected, there exists a stationary policy ψβ ∈ Ψst

which is a solution to (5.6). Furthermore, the following theorem states the

relationship between the performance of ψβ and that of a policy solving the

constrained throughput maximization problem in (5.4) and (5.5).

Theorem 5.3.1. Let Lβo and P β be the average total packet loss rate and total

transmit power corresponding to some stationary policy ψβ that solves (5.6),

then Lβo is also the minimum achievable total packet loss rate when each of the

N users is subject to the average transmit power constraint of P β/N .

What stated by Theorem 5.3.1 is that, by solving (5.6) for a particular value

of β, we obtain a pareto optimal point on the curve of Packet loss rate versus
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Power constraint. When β is varied, we can obtain different points on the opti-

mal curve and that allows us to study the solution to the constrained throughput

maximization problem in (5.4) and (5.5). Before proving Theorem 5.3.1, let us

state the following lemma.

Lemma 5.3.2. For any stationary feasible adaptive scheduling/transmission

policy φ ∈ Ψst, let Lφo be the total packet loss rate of all users and P φ
n be the

average power consumed by user n when φ is employed, there exists a non-

stationary policy ψ ∈ Ψ such that

Lψo = Lφo while P ψ
m =

1

N

N∑

n=1

P φ
n , ∀m ∈ N , (5.7)

where Lψo is the total packet loss rate and P ψ
m is the average power consumed by

user m when policy ψ is employed.

A proof for Lemma 5.3.2 is given in Appendix B. Using this lemma, we

present a proof for Theorem 5.3.1 as follows.

Proof. From Lemma 5.3.2, given stationary policy φβ that solves (5.6) for a par-

ticular value of β, we can construct a non-stationary policy ψβ that achieve the

total packet loss rate of Lβo while guaranteeing that the average power consumed

by each user is P β/N .

Now, suppose there exists another policy ψ, ψ ∈ Ψ, that results in

Lψo < Lβo , while P ψ
n ≤ P β/N. (5.8)

This contradicts the assumption that φβ is the solution of (5.6). Therefore, Lβo

is the minimum achievable packet loss rate when all users are subject to the

average power constraint of P β/N .
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5.3.2 Markov Decision Process

The minimization problem in (5.6) can be regarded as an infinite horizon average

cost Markov decision process (MDP). This MDP is specified by the following

components.

System states : The system state at time i is Si = (B1
i , B

2
i , . . .B

N
i , G

1
i , G

2
i , . . .

GN
i ) with Bn

i ∈ {1, 2, . . .B} and Gn
i ∈ {0, 1, . . .K − 1}. Note that the number

of possible system states is finite.

Control actions: Given state Si the control actions is specified by an N -

element vector of integers (U1
i , U

2
i , . . . U

N
i ), where Un

i is the transmission rate of

user n in time slot i. Note that we must have:

Un
i ∈ {0, 1, . . .Bn

i } and Un
i U

m
i = 0, ∀n,m ∈ N , m 6= n. (5.9)

Immediate cost function: The immediate cost of choosing action (U1
i , U

2
i , . . .

UN
i ) in state Si is the sum of weighted total power consumed and total packet

loss due to buffer overflow, i.e.,

C(Si, U
1
i , U

2
i , . . . U

N
i ) =

N∑

n=1

(
βnP (Un

i , G
n
i ) + Lo(B

n
i , U

n
i )
)
. (5.10)

System dynamics : To fully specify the MDP, we also need to characterize

the system dynamics, i.e., the transitioning probability of the system states,

given control actions. The system states consist of the buffer occupancies and

channel states of all N users. We note that the channel transition probabilities

are independent of the control actions. For user n, n ∈ N , as all packets

arriving to the buffer during frame i, i.e. Ani , are only added to the buffer at

the end of this frame, we can write

Bn
i+1 = min{Bn

i − Un
i + Ani , B} (5.11)
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Knowing the channel state transition probabilities, as well as the distribution

of packet arrival processes, the dynamics of the system state can be readily

characterized.

The infinite horizon, average cost MDP in (5.6) can be solved using dynamic

programming techniques such as value iteration or policy iteration [KV86].

5.3.3 Complexity of Obtaining and Implementing

Throughput Maximizing Policies

The difficulty in obtaining a solution to the optimization problem in (5.6) using

dynamic programming techniques lies in the fact that the size of the system

state space of the corresponding MDP can be very large. In particular, the

total number of possible system states is (B + 1)NKN . This results in a high

complexity in solving the corresponding MDP when the number of users in the

system and their buffer length and/or number of channel states increase.

As the operation of optimal adaptive scheduling/transmission policies re-

quires knowledge of the buffer occupancies and channel states of all N users,

it is more reasonable to implement these adaptive policies at the base station,

rather than doing so at each individual node. The optimal policies can be stored

at the base station using a look-up table. At the beginning of each time slot,

all users signal their buffer occupancies to the base station. As for the channel

states, they can be estimated by the base station. The base station then outputs

a scheduling/transmission decision based on the current system state. We note

that when there are many users in the system and their buffer lengths are long,

the amount of signaling required to transmit the buffer occupancies to the base

station can be significant.
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5.4 Statistics-oblivious Adaptive Scheduling Policies

As has been discussed in Section 5.1, our work is related to the problem of

scheduling parallel queues over downlink time-varying wireless channels [TE93,

AKR+01, SS02b, NMR03, LBH03, AKR+04]. However, as power conservation

is not an objective for downlink scheduling, these works do not consider adapt-

ing the transmit power and rates. Instead, it is assumed that there are some

underlying mechanism at the physical layer to associate each channel state with

a transmission rate and the focus is on designing adaptive scheduling policies

that take buffer lengths and transmission rates into account.

An important result in the downlink scheduling problem is that there are

some classes of adaptive scheduling policies, which are oblivious to the data

arrival and channel statistics while still able to maintain the stability of the

system (if there is any other scheduling policy that does so). An example is the

policy which always assigns the channel to a user who has the maximum product

of instantaneous buffer occupancy and transmission rate [AKR+01, AKR+04].

Inspired by the above result, we consider the following class of adaptive

scheduling/transmission policies. For each channel state, associate a maximum

rate at which data can be transmitted. This maximum transmission rate can be

set by assuming that each user transmits at some fixed transmit power so that

transmission rate can be readily calculated for each channel state. For example,

let P c be some chosen transmit power for all users, then, if user n is scheduled

in time slot i, his maximum transmission rate is

Rn
i = max{r ∈ N | P (r, Gn

i ) ≤ P c}. (5.12)

Now, for time slot i, allow the user n who has the maximum Bn
i R

n
i to transmit.
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For the selected user, if there are enough data to transmit at the maximum rate,

then the maximum rate is used. Otherwise, transmit all the data in the bu-

ffer. In a more concrete form, we define a max-product scheduling/transmission

policy as follow.

Definition 5.4.1. A max-product scheduling adaptive transmission

policy is a feasible adaptive scheduling/transmission policy ψ = {φ0, φ1, . . .}, ψ ∈

Ψ, such that ∀i ∈ N, φi(Si, n) = 0 if:

Bn
i R

n
i < max

m∈N
{Bm

i R
m
i }. (5.13)

Note that max-product policies are oblivious to the statistics of the data

arrivals and channel fluctuations. All that are required are the instantaneous

buffer occupancies and transmission rates of all users. We will study the per-

formance of this class of policies in Section 5.7.

5.5 Max-gain Scheduling Optimal Transmission

We note that both optimal scheduling/transmission policies and max-product

scheduling policies require the buffer and channel states of all N users. This

makes these policies not suitable for implementing at each individual node. For

the implementation at the base station, significant amount of signaling may

be required to transmit the buffer occupancies to the base station. In this

section and Section 5.6, we will look at some scenarios in which the scheduling

rule is independently to the users’ buffer conditions. This reduces the amount

of signaling required when the adaptive policies are implemented at the base

station and even makes it possible to implement them at each individual nodes.
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5.5.1 Max-gain Scheduling Adaptive Transmission Poli-

cies

Let us consider an adaptive scheduling rule which, during each time slot, allows

a user with the best channel condition to transmit. We term this max-gain

scheduling. For the max-gain scheduling rule to be well-defined, we still need to

specify how the channel is assigned when there are more than one user with the

best channel condition. One way to do this is by assigning N distinct priority

levels to N users and when there are more than one user with the best channel

condition, the one with the highest priority level is scheduled. Another way

(which is used here) is to select the users with equally best channel condition

with equal probabilities. Formally, we define a max-gain scheduling adaptive

transmission policy as follows.

Definition 5.5.1. A max-gain scheduling adaptive transmission policy

is a feasible adaptive scheduling/transmission policy ψ = {φ0, φ1, . . .}, ψ ∈ Ψ,

such that ∀i ∈ N, φi(Si, n) = 0 if:

Gn
i < max

m∈N
{Gm

i }. (5.14)

In the above definition, Ψ is the set of all feasible adaptive scheduling/transmission

policies as defined in Definition 5.2.1.

Before moving on, we note that max-gain scheduling is inspired by the work

in [KH95], which shows that the variation in the channel conditions across users

introduces a form of multiuser diversity which can be optimally exploited by

always allocating all available bandwidth to the user with the best channel

condition. Now let Ψmg denote the set of all max-gain scheduling adaptive
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transmission policies, we would like to solve the following problem:

min
ψ∈Ψmg

lim sup
T→∞

1

T

T∑

i=0

N∑

n=1

(
βP (φi(Si, n), Gn

i ) + Lo(B
n
i , φi(Si, n))

)
. (5.15)

5.5.2 Obtaining Max-gain Scheduling Optimal Transmis-

sion Policies

We are going to show that (5.15) can be decomposed intoN simpler optimization

problems.

For user n, n ∈ N , let us consider the following problem

min
ψ∈Ψmg

lim sup
T→∞

1

T

T∑

i=0

(
βP (φi(Si, n), Gn

i ) + Lo(B
n
i , φi(Si, n))

)
. (5.16)

In (5.16), we would like to find a max-gain scheduling adaptive transmission

policy that minimizes the weighted sum of the packet loss rate and average

transmit power for user n. Due to its special structure, the problem in (5.16)

can be reduced in size. In particular, let us define the reduced system state of

user n in time slot i as

S
mg,n
i = (Bn

i , G
1
i , G

2
i , . . . G

N
i ). (5.17)

This reduced system state consists of the current buffer occupancy of user n,

together with the current channel conditions of all N users.

Conditioned on the max-gain scheduling rule, let Πmg
n be the set of all trans-

mission policies µ which set the transmission rate Un
i for user n based on Smg,ni ,

i.e., Un
i = µ(Smg,ni ). Clearly, all policies µ ∈ Πmg

n must satisfy the following

conditions in (5.18) and (5.19)

µ(Smg,ni ) ∈ {0, 1, . . .Bn
i }, (5.18)
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µ(Smg,ni ) = 0 if Gn
i < max

m∈N
Gm
i . (5.19)

Now, let µn,∗ be a (stationary) policy in Πmg
n such that

µn,∗ = arg min
µ∈Π

mg
n

lim sup
T→∞

1

T

T∑

i=0

(
βP (µ(Smg,n

i ), Gn
i )+Lo(B

n
i , µ(Smg,n

i ))
)
. (5.20)

Using the technique of homogeneous immediate reward partition (introduced in

[DG97]), it can be shown that any policy ψ ∈ Ψ that satisfies

ψ(Si, n) = µn,∗(Smg,ni ), ∀Si ∈ S, (5.21)

solves the optimization problem for user n in (5.16). Therefore, let ψ∗ ∈ Ψmg

be a max-gain scheduling adaptive transmission policy such that

ψ∗(Si, n) = µn,∗(Smg,n
i ), ∀n ∈ N , ∀Si ∈ S. (5.22)

Then policy ψ∗ is a solution to the optimization problem in (5.15).

Remark : The idea behind the above discussion is quite simple and intuitive.

When the scheduling rule, i.e., max-gain scheduling, does not depend on the

buffer condition of any user, the transmission decisions applied to one particular

user do not have any effect on the control of others. As a result, the problem

of jointly controlling N users can be decoupled into N problems of controlling

individual users.

5.5.3 Complexity of Obtaining and Implementing Max-

gain Scheduling Optimal Transmission Policies

We note that in order to obtain a max-gain scheduling optimal transmission

policy which is a solution to (5.15), we need to solve N reduced MDPs in (5.20).

The number of system states in each of these reduced MDPs is (B + 1)KN . In
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general, this is simpler than solving an MDP of size (B+1)NKN for the optimal

adaptive scheduling/transmission policies discussed.

At the base station, implementing a max-gain scheduling optimal trans-

mission policy is also simpler than doing so for an optimal adaptive schedul-

ing/transmission policy. At the beginning of each time slot, instead of asking

all N users to report their buffer occupancies, the base station first estimates

the channel conditions of all users and decides which one will be allowed to

transmit. Then, only this user will have to report the buffer condition to the

base station so that his transmit power and rate can be determined.

Max-gain scheduling optimal transmission polices can also be implemented

at each individual node. To do so, the base station broadcast the channel states

of all N users at the beginning of each time slot. Then, the user with the best

channel condition will decide what transmission rate and power to take, based

on his buffer occupancy and the channel states of all users.

5.6 Round-robin Scheduling Optimal Transmission

5.6.1 Round-robin Scheduling Optimal Transmission

Policies

In this section, let us consider a class of adaptive scheduling/transmission poli-

cies in which all N users are scheduled in a static round-robin manner. By static

round-robin, we mean that the users are scheduled according to some fixed se-

quence, regardless of their buffer and channel conditions. If the advantage of

max-gain scheduling is power efficiency, round-robin offers short-term fairness

to the users. In particular, it satisfies the need to frequently transmit data of
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all users. Without loss of generality, we assume that user n is assigned time

slots iN + n− 1, n ∈ N , i ∈ N.

Definition 5.6.1. A round-robin scheduling adaptive transmission pol-

icy is a policy ψ = {φ0, φ1, . . .}, ψ ∈ Ψ, such that ∀i ∈ N, φi(Si, n) > 0 only

if mod (i, N) = n− 1.

Now let Ψrr denote the set of all round-robin scheduling adaptive transmission

policies, we would like to solve the following problem:

min
ψ∈Ψrr

lim sup
T→∞

1

T

T∑

i=0

N∑

n=1

(
βP (φi(Si, n), Gn

i ) + Lo(B
n
i , φi(Si, n))

)
. (5.23)

5.6.2 Obtaining Round-robin Scheduling Optimal Trans-

mission Policies

Similar to the case of max-gain scheduling, the problem in (5.23) can be decou-

pled into N optimization problems with the objective of the nth problem is to

find a round-robin scheduling adaptive transmission policy that minimizes the

weighted sum of the packet loss rate and average transmit power for user n, i.e.,

min
ψ∈Ψrr

lim sup
T→∞

1

T

T∑

i=0

(
βP (φi(Si, n), Gn

i ) + Lo(B
n
i , φi(Si, n))

)
. (5.24)

The optimization problem (5.24) can be simplified by the following obser-

vation. The operation of user n can be divided into frames, each contains N

consecutive time slots. Frame i denotes the period from the beginning of time

slot Ni + n to the end of time slot N(i + 1) + n − 1. In the first time slot of

each frame, user n is assigned the channel and can transmit at a positive rate.

Then, in the following N − 1 consecutive time slots, user n is not scheduled
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and his transmission rate is set to zero. Therefore, in each frame, what really

matter for the adaptive transmission of user n are his buffer occupancy at the

beginning of the first time slot and the channel state during the first time slot.

This motivates us to define the effective channel state, buffer occupancy, and

transmission rate of user n in time frame i as

Brr,n
i = Bn

Ni+n, G
rr,n
i = Gn

Ni+n, and U rr,n
i = Un

Ni+n. (5.25)

The important thing to note is that, as {Gn
i } and {Bn

i } are Markov processes, so

are {Grr,n
i } and {Brr,n

i }. It is also straightforward to write down the dynamics

of the effective buffer and channel states. In particular, the dynamics of Brr,n
i

is

Brr,n
i+1 = min{Brr,n

i − U rr,n
i + Arr,ni , B} (5.26)

where

Arr,ni =

N−1∑

j=0

AnNi+n+j (5.27)

is the total number of packets arriving to the buffer of user n during time frame

i. Let V be the set of all (N + 1)-element vectors v such that v(0) = k,

v(N) = l, 0 ≤ k, l < K, and v(1),v(2), . . .v(N − 1) ∈ {0, 1, . . .K − 1}. The

transition probabilities of the effective channel state of user 1 after each time

frame can be written as

P rr
G (k, l) = Pr{Grr,n

i+1 = l | Grr,n
i = k} =

∑

v∈V

N−1∏

t=0

PG(v(t),v(t+ 1))

=
∑

v∈V

(
PG(k,v(1))PG(v(N − 1), l)

N−2∏

t=1

PG(v(t),v(t+ 1))
)
.

(5.28)

Let us define the effective system state for user n at time i as

S
rr,n
i = (Brr,n

i , Grr,n
i ). (5.29)
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In addition, let Πrr
n be the set of all transmission policies u that set the trans-

mission rate for user n, i.e., U rr,n
i = µ(Srr,ni ). Now, let un,∗ be a (stationary)

policy such that

un,∗ = arg min
u∈Πrr

n

lim sup
T→∞

1

T

T∑

i=0

(
βP (µ(Srr,n

i ), Gn
i ) + Lrro (Brr,n

i , µ(Srr,n
i ))

)
,

(5.30)

where Lrro (Brr,n
i , U rr,n

i ) is the expected number of packets lost for user n during

frame i, i.e.,

Lrro (Brr,n
i , U rr,n

i ) = E

{
max{0, Brr,n

i − U rr,n
i + Arr,ni −B}

}
. (5.31)

The expectation in (5.31) is with respect to Arr,ni (defined in (5.27)).

Now let ψ∗ ∈ Ψrr be a round-robin scheduling adaptive transmission policy

that satisfies

ψ∗(SiN+n−1, n) = un,∗(Srr,n
i ), ∀n ∈ N , ∀i ∈ N. (5.32)

It can be shown that ψ∗ is a solution to the optimization problem in (5.23).

5.6.3 Complexity of Obtaining and Implementing Round-

robin Scheduling Optimal Transmission Policies

We note that the complexity of finding a round-robin scheduling optimal trans-

mission policy is much smaller than those of the problems of finding optimal

adaptive scheduling/transmission (Section 5.2.3), or max-gain scheduling opti-

mal transmission policies (Section 5.5). In particular, the size of the MDP for

each of the N users is (B + 1)K, which is the same as that of the MDP for-

mulated for the single-user buffer/channel adaptive transmission considered in

Chapter 3. It is also simple to implementing a round-robin scheduling optimal
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Table 5.1: Channel states and transition probabilities.
Channel state k 0 1 2

γk 0 0.1 0.9
PG(k, k) 0.6 0.6 0.6

PG(k, k + 1) 0.4 0.2 n.a.
PG(k, k − 1) n.a. 0.2 0.4

pG(k) 1/3 1/3 1/3

transmission policy. Especially, in order to determine the transmission rate of

each user, no knowledge of other user channel or buffer condition is required,

the control can be carried out by each individual user, instead of a centralized

approach at the base station.

5.7 Numerical Results and Discussion

In this section, we numerically study the performance of different classes of

buffer and channel adaptive scheduling/transmission policies considered in Sec-

tions 5.3, 5.4, 5.5, and 5.6. For convenient of notation, let us respectively

denote by Opt, MP, MG, and RR the classes of optimal adaptive schedul-

ing/transmission policies, max-product scheduling policies, max-gain scheduling

optimal transmission policies, and round-robin scheduling optimal transmission

policies.

5.7.1 System Parameters

The system parameters for our numerical study are as follows. The number of

users in the system is set to N = 2. Data packets arrive to each user buffer

according to a Poisson distribution with the average rate of λ = 0.5 packets

per time slot. The buffer length of all users is set to 8 and 12 packets. The
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channel models are i.i.d. across users and are represented by a 3-state FSMC as

in Tab. 5.1. As will be discussed, we also vary some parameters of the channel

model to study their effects on the performance of different adaptive policies.

We assume that the power needed for a user to transmit reliably at rate u

packets per time slot when his channel gain is γk is

Pw(u, k) =
−WNo(2

u − 1)

1.5γk
log(cPb), (5.33)

where Pb = 10−3 is the required BER, c = 0.5 when u = 1 and c = 5 otherwise,

W = 100 kHz is the channel bandwidth, and the power density of AWGN noise is

No/2 = 10−5 Watt/Hz. Note that Pw(u, k) is the power needed for an uncoded

M-ary quadrature amplitude modulation (MQAM) system with constellation

size 2u to have the BER of Pb when the channel gain is γk [GC97].

5.7.2 Performance of Different Adaptive Scheduling/

Transmission Schemes

For each class of adaptive scheduling/transmission policies, i.e., Opt, MP, MG,

and RR, the performance metric we are interested in is the average packet

loss rate (due to buffer overflow) versus the average transmit power. Here,

the average packet loss rate is summed over all users and normalized by the

total packet arrival rate. Note that the normalized system throughput is equal

to one minus the normalized packet loss rate. The average transmit power is

calculated per user and in each of the policies considered, all users consume the

same average transmit power.

In Figs. 5.2, 5.3, 5.4, 5.5, we plot the performance, in terms of normalized

packet loss rate versus average transmit power, of Opt, MP, MG, and RR for
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Figure 5.2: Performance, in terms of the normalized packet loss rate versus the
average transmit power for different adaptive scheduling/transmission policies:
Opt, MP, MG, RR. Number of users N = 2, data packets arrive at rate λ =
0.5 packets/time slot with Poisson distribution, buffer length B = 12 packets,
channel model is described in Tab. 5.1.

N = 2 and different values for other system parameters. This allows us to

observe the general trends in the performance of the proposed classes of adaptive

scheduling/transmission policies.

The first observation is that Opt always performs best. This is expected as

in this class of policies, the scheduling and transmission decisions are jointly

optimized. In general, the performance of MP varies considerably across the

power range. At the high power range, the performance of MP is relatively

close to that of Opt. However, at mid-range of average transmit power, MP

performs quite far from optimal. MP does not offer a stable performance due

to the inflexibility of the transmission scheme.

The performance of MG and RR follows opposite trends. At low power,

MG outperforms RR and gets closer to the performance of Opt. On the other
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Figure 5.3: Performance, in terms of the normalized packet loss rate versus the
average transmit power for different adaptive scheduling/transmission policies:
Opt, MP, MG, RR. Number of users N = 2, data packets arrive at rate λ =
0.5 packets/time slot with Poisson distribution, buffer length B = 8 packets,
channel model is described in Tab. 5.1.

hand, in the high power range, RR performs much better than MG and closely

approaches the performance of Opt. These trends in performance can be ex-

plained as follows. Max-gain scheduling is good for achieving power efficiency,

as it allows a user with the best channel condition to transmit. As a result, the

max-gain scheduling policies perform well at low range of transmit power, where

the need for power efficiency is high. However, by favoring users with the best

channel condition, max-gain scheduling is (short term) unfair to others. When

transmission can be carried out at high power level, instead of power efficiency,

what important is every user is allowed to transmit frequently. This is what RR

does. Therefore, RR approaches optimal performance when average transmit

power is increased.

To see how the relative performance of Opt, MG, and RR depend on dif-
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Figure 5.4: Performance, in terms of the normalized packet loss rate versus the
average transmit power for different adaptive scheduling/transmission policies:
Opt, MP, MG, RR. Number of users N = 2, data packets arrive at rate λ =
0.5 packets/time slot with Poisson distribution, buffer length B = 12 packets,
channel model is the same as in Tab. 5.1 except that the gains for states
γ0, γ1, γ2 are set to 0, 0.5, 0.9 respectively.

ferent system scenario, we vary the system parameters and again compare the

performance of these schemes in Fig. 5.3, 5.4, 5.5. First, in Fig. 5.3, we reduce

the buffer size from 12 packets to 8 packets. As can be seen, all schemes perform

worse. However, it seems that MG suffers more from the reduction in buffer

length than RR does. This is shown by the fact that, when the buffer size is

reduced, at low power, the gap between MG and RR is less while for the high

power range, the gap between MG and RR is widen. This change in the relative

performance is explained by the fact that, when there are less storage space,

users are less capable of holding back data to wait for a good channel model,

i.e., it is more costly to do max-gain scheduling. This also means that there is

more advantage in scheduling every user regularly like in RR.
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Figure 5.5: Performance, in terms of the normalized packet loss rate versus the
average transmit power for different adaptive scheduling/transmission policies:
Opt, MP, MG, RR. Number of users N = 2, data packets arrive at rate λ =
0.5 packets/time slot with Poisson distribution, buffer length B = 12 packets,
channel model is the same as in Tab. 5.1 except that the probability of staying
in each channel state after each time slot is set to PG(k, k) = 0.8, k = 0, 1, 2,
probabilities of going up or down one channel state are equal.

Next, we look at the effect of changing the degree of fluctuation in the

channel gains. In particular, if in Fig. 5.2, the channel gains in three states are

0, i.e. outage, 0.1, and 0.9, then in 5.4, we set these gain to 0, 0.5, 0.9. This

means that there is less difference in the channel conditions in states 1 and 2.

Now, there is less channel diversity for Opt and MG to take advantage of. On

the other hand, RR, which schedules user without taking the channel conditions

into account, will suffer less performance loss. This is shown in Fig. 5.4. As

can be seen, the gap between MG and RR is less at the low power range and is

more at the high power range.

The last parameter of concern is how fast the channel changes. We vary
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the frequency at which channel changes by changing the probability that the

channel stay in each state after each time slot. In 5.2, this probability is set to

0.6 while it is increased to 0.8 in Fig. 5.5. This means the channel changes less

frequently. When the channel changes slowly, max-gain scheduling will suffer,

as some user with the best channel condition will hold the channel for long time,

leaving others no chance to empty their buffers. As a result, the performance

of MG decreases, relative to that of RR.

5.8 Hybrid Scheduling Schemes

5.8.1 Combined Round-robin and Max-gain Scheduling

From the system point of view, while round-robin scheduling offers fairness

among users, the main objective of max-gain scheduling scheme is transmit

power efficiency. Depending on the situation, it may be desirable to employ

scheduling policies that offer a good balance between fairness and efficiency.

This motivates us to look at the following hybrid scheduling scheme which is a

combination of round-robin and max-gain scheduling. In particular, the N users

in the system are divided into M separate groups. Let N = N1 +N2 + . . . NM ,

where N1, N2, . . . NM are M positive integers, user n belongs to group m if and

only if
∑m−1

i=1 Ni < n ≤ ∑m

i=1Ni 1 ≤ n ≤ N, 1 ≤ m ≤ M . The Hybrid

scheduling scheme selects a user to access the common channel in each time slot

in two steps:

• Step 1 : Select one user group among M user groups of the system in a

round-robin manner.

• Step 2 : Within the user group being selected in Step 1, select the user
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with the best channel condition to access the common channel.

We term this hybrid scheme Hb RR MG. It is clear that the Hb RR MG scheme

gives us a large degree of freedom to balance fairness and efficiency. As user

groups are selected in a round-robin manner, no user is allowed to access the

channel in two or more consecutive time slots. At the same time, within each

group of users, the user who has the best channel condition is selected to access

the channel, hence resulting in transmit power efficiency. It is also easy to see

that, the hybrid scheduling is equal to round-robin scheduling when M = N

and max-gain scheduling when M = 1.

5.8.2 Combined Round-robin and Optimal Scheduling

Another hybrid scheduling scheme can be formed by combining round-robin

scheduling and optimal scheduling. Similar to Hb RR MG, N users are divided

into M groups and the groups are scheduled in a round-robin manner. However,

when a user group is selected for a particular time slot, we optimally schedule

one of the users, based on the channel and buffer conditions of other users in

the group. We term this scheme Hb RR Opt. Note that Hb RR Opt has higher

complexity than Hb RR MG, but also offers better performance.

5.8.3 Hybrid Scheduling Optimal Transmission Policies

Conditioned on a hybrid scheduling scheme, the optimal adaptive transmission

scheme can be derived in a straightforward manner, by applying the approaches

in Sections 5.3, 5.5, and 5.6. In particular, like the case of the round-robin

scheduling, each user is controlled in a frame-by-frame basis, with each frame

consisting of M consecutive time slots. Using the same approach as in Section
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Figure 5.6: Performance, in terms of the normalized packet loss rate ver-
sus the average transmit power for different adaptive policies: MG, RR, MP,
Hb RR Opt, and Hb RR MG. Number of users N = 4, data packets arrive at
rate λ = 0.25 packets/time slot with Poisson distribution, buffer length B = 12
packets, channel model is described in Tab. 5.1.

5.6, with a frame length of M instead of N time slots, we derive the channel

transition probabilities for each user after each time frame. Now, using the same

approach as in Sections 5.3, 5.5, we can derive the optimal adaptive transmission

policy for a user in groupm when either Hb RR Opt or Hb RR MG is employed.

5.8.4 Performance of Hybrid Scheduling Optimal Trans-

mission Policies

Let us look at the performance of the Hb RR MG scheme first. Note that this

scheme is a combination of MG and RR. As MG and RR are good at either

low or high power regions, but not both, the aim of HB is to bridge the gap.

In Figs. 5.6 and 5.7, we plot the performance of Hb RR MG, MG, and RR,
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Figure 5.7: Performance, in terms of the normalized packet loss rate ver-
sus the average transmit power for different adaptive policies: MG, RR, MP,
Hb RR Opt, and Hb RR MG. Number of users N = 4, data packets arrive at
rate λ = 0.5 packets/time slot with Poisson distribution, buffer length B = 12
packets, channel model is described in Tab. 5.1.

in terms of normalized packet loss due to buffer overflow versus the average

transmit power. Here, there are N = 4 users in the system and for Hb RR MG

the 4 users are divided into M = 2 groups, each consists of 2 users. The

packet arrival rate is set to λ = 0.25 and 0.5 packets per time slot. As can be

seen, Hb RR MG offers a good balance between MG and RR. In particular, at

mid-range power levels, HB outperforms both MG and RR.

In Figs. 5.6 and 5.7, we also show the performance of the Hb RR Opt scheme.

Note that this scheme is the combination of Opt and RR. As can be seen,

Hb RR Opt policies always outperform RR policies. When compared to the

performance of MG, Hb RR Opt offers better performance in the mid range

and high range of transmit power.
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5.9 Observations and Conclusions

After studying the performance and complexities of different adaptive schedul-

ing and transmission policies for our multiple-access system, we make the fol-

lowing observations:

• Firstly, if the scheduling decisions depend on the channel and buffer con-

ditions of all users, then the optimal transmission policy of each user

must also take the buffer and channel conditions of all other users into

account. This results in a relatively high computational complexity as

well as signaling cost to obtain and implement optimal adaptive schedul-

ing/transmission policies.

• For those scheduling policies that only take the channel conditions into

account, max-gain scheduling is good for the range of low of power con-

straint, and when there are long buffers. When plenty of transmit power

is available, or when there is limited buffer space, round-robin scheduling

is a better choice. Note that max-gain, round-robin, and hybrid schemes

do not require knowledge of all buffer occupancies. This can greatly re-

duce the amount of signaling required to implement adaptive schedul-

ing/transmission.

• When the channel and data arrival statistics are not available, max-

product scheduling is a reasonable choice. Note that with max-product

scheduling, the complexity to obtain and implement optimal adaptive

transmission is as high as that of obtaining and implementing optimal

joint scheduling/transmission. Therefore, it is reasonable to not consider

adaptive power control when max-product scheduling is implemented.
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Cross-layer design, while promising significant performance improvement for

energy constrained wireless communication systems, can come with high com-

plexity in design and analysis. This general statement is also true for our prob-

lem of cross-layer adaptive scheduling/transmission to maximize the system

throughput, subject to average power constraints. Therefore, instead of focus-

ing on optimal adaptive scheduling/transmission policies, the main objective of

this chapter is to look at the trends in performance of different classes of sub-

optimal policies. The important contribution of this chapter is to identify how

different classes of suboptimal policies perform, in comparison to the optimal

performance.



CHAPTER 6

JOINT SCHEDULING, TRANSMISSION, AND SOURCE

COMPRESSION IN SENSOR NETWORKS

The problems of buffer and channel adaptive transmission and scheduling

studied in Chapters 3, 4, and 5 focus heavily on adapting to different sources of

variations in the parameters of the MAC and PHY layers. In this chapter, we

will demonstrate that cross-layer design is still highly beneficial at the MAC and

PHY layers, even when there are no variations and randomness in the system

parameters.

We propose a novel approach that exploits the broadcast nature of the wire-

less medium for energy conservation in spatially correlated wireless sensor net-

works. Since wireless transmission is inherently broadcast, when one sensor

node transmits, other nodes in its coverage area can receive the transmitted

data. When data collected by different sensors are correlated, each sensor can

utilize the data it overhears from other sensors to compress its own data and

conserve energy in its own transmissions.

We apply this idea to a class of cluster-based wireless sensor networks in

which each sensing node transmits collected data directly to its cluster head us-

ing time division multiple access (TDMA). We formulate the problem in which

sensors in each cluster collaborate their transmitting, receiving, and compress-

ing activities to optimize their lifetimes. From the system design point of view,

the problem considered in this chapter deals with scheduling, transmission, re-

ception, and data compression in an integrated manner. Therefore, it can be

characterized as an instance of cross-layer design.

The main results of this chapter can be summarized as follows.

135
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• We propose the collaborative broadcasting and compression (CBC) ap-

proach which allows sensors to cooperate in transmitting, receiving, and

compressing data in order to conserve energy (Section 6.4).

• We formulate an optimization problem of which the objective is to find

a CBC scheme that jointly optimizes the lifetimes of all sensors in each

cluster, with respect to some optimality criteria (Section 6.5). We show

that this lifetime optimization problem can be solved by a sequence of

linear programming problems (Section 6.6).

• When the number of sensors in each cluster is large, we propose a heuristic

CBC scheme that achieves near optimal performance at a lower complexity

(Section 6.7).

• We discuss how our CBC schemes perform under nodes’ startup cost and

transmission errors and also argue that the schemes are nearly independent

to the operation of the relaying network (Section 6.8).

• Finally, we obtain numerical results which show that by applying the CBC

approach, significant increase in sensor lifetime can be achieved (Section

6.9).

We note that some of the above results have been presented in [HM05a, HM05e,

HM05b].

6.1 Motivations

Recent advances in wireless communication and microelectronics have enabled

the possibility of wireless sensor networks (WSNs) [ASSC02], which can consist
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of hundreds or even thousands of low-cost, low-power, and small-in-size sensors.

As these cheap and tiny sensors can only be equipped with small batteries, and

in many applications, battery recharging/replacing is not desirable, achieving

energy-efficiency to increase sensors’ lifetimes is an important design criterion

for WSNs.

In many sensing networks, a high degree of spatial correlation exists among

the readings of different sensors. By allowing nodes to cooperate to carry out

joint data compression and aggregation, the amount of data communicated

within the network can be reduced. This can help conserve energy and extend

sensors’ lifetimes.

The work in this chapter deals with removing the redundancy due to spatial

correlation among nodes in WSNs. The novelty of our work lies in the fact that

we exploit the inherent broadcast nature of the wireless medium for nodes to

share and jointly compress their data. The core idea is that, when one node

broadcasts data, other nodes within the transmission range can receive and

utilize this data in compressing their own data.

We note that most of the works concerning data compression and aggregation

in WSNs adopt a common model for the wireless medium, in which a wireless

channel is abstracted as a single point-to-point link between a pair of nodes, e.g.,

[PR99, IGE00, SS02a, KEW02, GE03, CPR03, CLV04]. This point-to-point link

model, while simplifying design and analysis, ignores important advantages that

come with the inherent broadcast nature of the wireless medium. We contend

that the wireless broadcast property offers nodes in a WSN much more freedom

in carrying out joint data compression and achieving energy efficiency.

To illustrate our point, let us consider a simple system of four wireless sensor
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Figure 6.1: System of four wireless sensor nodes. Each wireless channel is
abstracted as a single point-to-point link. Transmission from (A) to (C) does not
reach (B). (A) and (B) can only carry out joint data compression by following
the complex distributed source coding approach.

nodes (A), (B), (C), and (D) depicted in Figs. 6.1 and 6.2. Nodes (A) and

(B) need to transmit collected data to (C), who then relays the data toward

(D). Note that both Figs. 6.1 and 6.2 represent the same network. The only

difference is that in Fig. 6.1, the wireless broadcast property is not considered,

while this is taken into account in Fig. 6.2.

In Fig. 6.1, when either (A) or (B) transmits to (C), the other node does not

receive and decode the transmitted data. With this point-to-point link model,

the only way for (A) and (B) to jointly compress their data is to carry out

distributed source coding [SW73, WZ76, PR99]. In Fig. 6.2, we suppose that

all nodes transmit using omni-directional antennas under the free-space path

loss model. Let (A) transmit its data to (C) first before (B) does. Furthermore,

assuming that the distance between (A) and (B) is not more than that between

(A) and (C), then when (A) transmits to (C), its data can be received by (B).

Now, if (B) receives the data of (A), it can utilize these data in carrying out

data compression. More specifically, node (B) can compress its data based on

the explicit knowledge of the data of (A), and therefore, avoid the complexity
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Figure 6.2: All nodes transmit using omni-directional antennas. Assuming the
distance between (A) and (C) is not less than the distance between (A) and
(B), then (B) can capture data sent from (A) to (C) and then uses that data to
compress its own data.

associated with implementing distributed source coding.

The above observations motivate us to exploit the wireless broadcast prop-

erty for nodes to carry out joint data compression in a spatially-correlated

cluster-based wireless sensor network. In our network model, there are two

types of nodes, i.e., sensing nodes and cluster head/relaying nodes. Each clus-

ter consists of multiple sensing nodes (also called sensors) and one cluster head.

Data collected by each sensor are forwarded to the corresponding cluster head

using direct transmission and time division multiple access (TDMA). The clus-

ter head in turn routes data collected in its clusters toward a command center

which can be accessed by the end users. This network is depicted in Fig. 6.3. We

also assume that sensing nodes are much more energy constrained compared to

cluster head/relaying nodes. The objective is therefore to conserve energy and

prolong lifetimes of sensing nodes in each cluster. This is achieved by schedul-

ing the data transmission and reception for sensor nodes in each cluster so that

they can carry out joint data compression in an efficient manner.



140

6.2 Related Work

Works that are most closely related to the problem considered in this chapter

are by Chou et al. [CPR03], Agnihotri et al. [ANJ05], and by Scaglione and

Servetto [SS02a]. In [CPR03], the authors propose an approach that combines

adaptive signal processing and distributed source coding for sensor nodes in

cluster-based WSNs to conserve energy. The main idea of [CPR03] is to let

sensors in each cluster blindly compress their data with respect to one another,

but without the need of explicit inter-sensor communication. The processing

burden in this case is shifted to the cluster heads, who need to perform decoding

with side information and adaptive filtering to estimate relevant correlation.

In [ANJ05], the authors follow a similar approach of implementing distributed

source coding for sensors to conserve transmission energy. Their objective is also

similar to ours, i.e., to maximize the lifetime of the sensor who dies first. For

more details on distributed source coding, please refer to [SW73, WZ76, PR99].

In [SS02a], the authors propose an approach which is opposite to that of [CPR03]

and [ANJ05]. In particular, they promote the idea of source coding based on

explicit data of other nodes in the network, which are made available through

routing. They argue that, as a routing scheme is already implemented in a

WSN, nodes in each routing path actually have explicit information of some

other nodes, and therefore, they can carry out classical source coding and avoid

the complexity of distributed source coding.

The approach proposed in this chapter combines the advantages of both

[CPR03], [ANJ05], and [SS02a] while avoiding their disadvantages. On one

hand, like [CPR03] and [ANJ05], we allow nodes in each cluster to carry out

data compression with respect to one another, and without any extra inter-
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sensor transmissions. The core idea here is the realization that as one node

transmits its data to the cluster head, due to the broadcast nature of the media,

its transmission reaches multiple other nodes. In addition, as nodes carry out

compression based on the explicit information that they receive when other

nodes broadcast, classical source coding can be employed as in [SS02a].

It is useful to further elaborate on the differences between our data compres-

sion approach and the distributed source coding approach in [SW73, WZ76]. In

terms of the enhanced network lifetime, the performance of our approach is

upper-bounded by the performance of the distributed source coding approach.

This is due to two reasons. Firstly, we constrain that each sensor can only com-

press based on the data of at most one other sensor (see Section 6.5.2). This

makes it not possible for CBC to achieve the optimal joint-entropy coding rate

of distributed source coding. Secondly, in our CBC scheme, before compressing,

each sensor needs to spend some extra energy to receive from another sensor,

this receiving energy is not required for distributed source coding. In terms

of implementation complexity, our approach is much easier to implement com-

pared to the distributed source coding approach. In particular, as CBC allows

sensors to compress their data based on explicit knowledge of other sensors’

data, simple compression scheme such as differential encoding can be employed.

On the other hand, to implement distributed source coding is highly complex

and requires exact knowledge of the correlation statistics.

The idea of exploiting the broadcast nature of wireless media for wireless ad

hoc networks has been proposed in [WNE00, SSZ01, DMS+03]. In [WNE00],

Wieselthier, Nguyen, and Ephremides propose a broadcast incremental power

(BIP) algorithm for minimum-power tree for wireless networks. This idea is
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then further developed in [SSZ01, DMS+03]. In this chapter, we apply this

philosophy of exploiting the wireless broadcast advantage to achieve energy

savings for wireless sensor networks.

6.3 Model of A Cluster-based Wireless Sensor Network

6.3.1 Network Architecture

We consider a small-to-medium-sized cluster-based wireless sensor network as

shown in Fig. 6.3. Sensor nodes are organized into clusters and each cluster

is responsible for monitoring a geographical area. We adopt a heterogeneous

model in which there are two types of nodes. Type I nodes are sensors whose

responsibility is to sense the surrounding environment and then transmitting

collected data directly to cluster heads who are type II nodes. Type II nodes

gather/aggregate the data collected in their corresponding clusters and relay

them toward a command center. We assume that type II nodes are less energy-

constrained than type I nodes. We note that the algorithms presented in this

paper will work with any clustering algorithms in which nodes are clustered

based on having correlated data. For the numerical analysis in Section 6.9,

we cluster nodes based on their location. In particular, each sensor will be

associated with the closest cluster head. Note also that in Fig. 6.3, broadcast

communication always takes place and the transmission of one node can be

received by every node in the coverage area. The arrows are used to indicate

intended destinations only. As will be explained in Section 6.3.4, our assumption

of direct transmission toward cluster heads is suitable for WSNs with small to

medium cluster size.
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Sensor
Cluster head/ 

Relay node Command Center

Figure 6.3: Model of a cluster-based wireless sensor network. There are two
types of nodes, i.e. sensing nodes (type I) and data-gathering/ relaying nodes
(type II). Sensing nodes transmit collected data directly to the corresponding
cluster heads, who then route the data toward a command center.
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6.3.2 Sensing and Communication

We consider a periodic sensing scenario in which time is divided into intervals

of equal duration called data-gathering rounds. In each data-gathering round,

each sensor collects useful information about the surrounding environment and

outputs a data packet. The data are then forwarded toward the command center

using the following mechanism.

• Within each cluster, sensors send data directly to the cluster head using

time division multiple access (TDMA). In particular, the duration of each

round is divided into slots and each sensor is assigned one slot to transmit

data. We assume that inter-cluster interference is negligible. One way to

achieve this is by assigning non-overlapping frequency bands to adjacent

clusters.

• Upon receiving data collected in their clusters, cluster heads carry out the

necessary data fusion/aggregation tasks. After that, the processed data is

routed toward the command center over the relay network formed by all

type II nodes.

We note that TDMA has been chosen in a number of WSN implementations

[HCB00, SCI+01] due to its simplicity, low overhead, short communication duty

cycle, and no packet collisions. All these factors help conserve sensor nodes’

energy. However, it should be noted that TDMA is only effective for scenarios

in which the number of transmitting nodes is relatively stable over time. This is,

in fact, true in our model of data-gathering WSN. For other sensing applications

in which the number of active nodes change frequently, such as those event-based

WSN, a contention-based approach would be more scalable than TDMA.
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Before moving on, we would like to highlight the fact that, within each

cluster, our system model is very similar to the multiple-access model considered

in Chapters 2 and 5. The major difference is that in this chapter, we are focusing

on exploiting the correlation among data collected by different sensor nodes.

6.3.3 Energy Model for Wireless Sensor Nodes

First of all, we assume that the sensing operation of each sensor consumes a

fixed amount of energy during each data-gathering round. In order to achieve

energy-efficiency for sensors, we only focus on controlling their communication-

related activities. For the communication-related energy consumption, we adopt

the first-order energy model used in [HCB00, HCB02]. In particular:

• The energy consumed to receive r bits is

Erx(r) = Eer (6.1)

where Ee (in Joules/bit) is the energy consumed in the electronic circuits of

the transceiver when receiving or transmitting one bit of information. Typical

values for Ee range from 10nJ/bit to 100nJ/bit.

• The energy consumed to transmit r bits over a distance of d meters is

Etx(r, d) = Eer + Ead
αr (6.2)

where α is the channel loss exponent which is typically in the range 2 ≤ α ≤ 4.

For short communication distances, a free-space path loss model can be assumed

and α = 2. As the distance increases, a multipath model is more appropriate

and α = 3 or 4 [Rap96]. Ea (in Joules/bit/mα) is the energy consumed in the

power amplifier to transmit one bit of information over a distance of one meter.
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Ea depends on the receiver sensitivity and its range is from 10pJ/bit/m2 to

100pJ/bit/m2 for the free-space path loss model.

• The energy consumed to compress r bits is

Ecp(r) = Ecr. (6.3)

where Ec (in Joules/bit) is the energy used by the processor to compress one bit

of information in a data packet based on given side information. In general, Ec

is much smaller than the electronic energy Ee. We note that a more complicated

model for the compression energy could take into account various factors such

as compression ratio and the amount of side information.

6.3.4 Direct Transmission versus Multihopping

At this point, let us justify our assumption of direct data transmission from

sensors toward corresponding cluster heads. Note that the same assumption has

been made in some related WSN works, i.e., [HCB00, ML02, CPR03, ANJ05]. In

small-to-medium-sized WSNs (which is our assumption), due to short distance

between nodes, the energy consumed for receiving is comparable to what is

consumed for transmitting a given amount of data. In such scenarios, it has

been pointed out in [HCB00] that direct transmission is in fact more energy-

efficient than multihop routing. Let us demonstrate this fact based on a simple

network in Fig. 6.4.

In Fig. 6.4, node (A) needs to communicate r bits to cluster head (C).

If (A) transmits the data directly to (C), from Section 6.3.3, the total energy

consumption would be:

Edirect = Eer + Ead
2
ACr, (6.4)
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Figure 6.4: A simple network with two sensors (A) and (B) communicating to

cluster head (C).

where dAC is the distance (in meters) between (A) and (C).

Now, consider using node (B), which lies somewhere in between (A) and

(C), to relay data from (A) to (C). In that case, the total energy consumed to

transmit r bits from (A) to (B), and then from (B) to (C) would be:

Etwo hop = (Eer + Ead
2
ABr) + (Eer) + (Eer + Ead

2
BCr)

= 3Eer + Ea(d
2
AB + d2

BC)r.

(6.5)

Note that when (B) lies in between (A) and (C) as in Fig. 6.4, we have:

d2
AB + d2

BC ≥ d2
AE + d2

EC = 0.5(d2
AC + (dAE − dEC)2) ≥ 0.5d2

AC. (6.6)

From (6.4), (6.5), (6.6), it can be seen that, for the network in Fig. 6.4, direct

transmission will be more energy-efficient than two-hop routing when:

dAC < 2
√
Ee/Ea. (6.7)

As an example, if we select some typical values asEe = 50nJ/bit, Ea = 100pJ/bit/m2,

then when dAC < 45m, it is more energy-efficient to employ direct communica-

tion than two-hop routing. In other words, the assumption of direct transmission

from sensors to cluster heads is reasonable in our model of small-to-medium-

sized WSNs.
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6.3.5 Spatial Correlation and Data Compression

The problem considered in this chapter aims to exploit the spatial correlation

among sensor readings for nodes to carry out data compression. In that light,

it is appropriate to discuss how spatial correlation and data compression are

related.

First we discuss a statistical/information-theoretic approach for specifying

spatial correlation and data compression. In this approach, the readings at

each sensor are regarded as samples of a random variable and the correlation

among readings at different sensors are characterized in an exact way, i.e., by

specifying their joint probability distribution [DGM+04], or by establishing the

relationship among the random variables [JP04], or by determining their joint

entropy [PKG04]. Given a spatial correlation model, the conditional entropy

of the quantized data of one sensor, given knowledge of some other sensors’s

data, can be computed. In general, it is expected that the conditional entropy

will decrease when nodes get closer. Using entropy coding, sensors can then

compress and transmit at a rate equal to the corresponding conditional entropy.

Now let us consider a more practical approach which is useful when all sen-

sors measure continuous values in the same range and then employ the same

quantization scheme. For sensors that are close to one another, the difference in

their quantized measures can be small. In that case, simple differential encod-

ing can be employed, i.e., when a node knows the quantized measure of another

node, it will only transmit the difference with respect to that measure. This

is suboptimal to the approach of characterizing the joint entropy and employ-

ing entropy encoding discussed above. However, it has the advantage of not

requiring nodes to know the exact spatial correlation structure.
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Using either entropy coding or differential encoding as described above, a

sensor can compress its data based on the data of another node and therefore,

eliminate or reduce the redundancy due to spatial correlation. This will allow

the compressing node to transmit less data in a data-gathering round.

6.4 Collaborative Broadcasting and Compression: A Sim-

ple Case

6.4.1 A Simple Cluster-based Sensor Network

Let us introduce our approach by considering a simple cluster-based WSN de-

picted in Fig. 6.2. This network consists of only one cluster, which is composed

of two sensors (A) and (B) and the cluster head (C), which gathers data col-

lected by (A) and (B) and routes them toward the command center (D). We

assume that all nodes transmit using omni-directional antennas and a free-space

path loss scenario (α = 2). By studying this simple network, we will illustrate

the main concepts of our approach. A more general network will be considered

in Sections 6.5, 6.6, and 6.7.

If the distance between (A) and (B) is not more than that between (A) and

(C), then when (A) transmits to (C), its transmission can also be received by

(B). Node (B) therefore has the option of first receiving the data of (A) and

then using these data to compress its own data. If (B) does so, for the sake

of brevity, we simply say (B) compresses based on (A). In addition, we refer to

the approach in which sensor nodes coordinate their transmission and reception

activities in carrying out joint data compression as collaborative broadcasting

and compression (CBC).
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6.4.2 Incentives for Collaboration

Let dAC, dBC , and dAB denote the distances (in meters) between (A) - (C), (B)

- (C), and (A) - (B) respectively. For this section, we assume that dAB ≤ dAC .

Let rA and rB be the amounts of uncompressed data (in bits) that (A) and (B)

need to send to (C) during each data-gathering round. Furthermore, let rB|A

be the amount of data that B needs to transmit to (C) if it compresses based

on (A).

Using (6.1), (6.2), and (6.3), the energy (B) consumes to transmit rB bits

to (C) without compressing based on (A) is

EB = EerB + Ead
2
BCrB. (6.8)

On the other hand, the total energy that (B) will spend if it receives from (A),

compresses based on (A), and finally transmits rB|A bits to (C) is

EB|A = EerA + EcrB + EerB|A + Ead
2
BCrB|A. (6.9)

To make it easier to identify the incentives for (B) to compress based on

(A), assume that rA = rB = R while rB|A = r, r ≤ R. Then from (6.8) and

(6.9), node (B) will save energy by compressing based on (A) when

r

R
<

Ead
2
BC − Ec

Ead2
BC + Ee

. (6.10)

We call r
R

the compression ratio as it is the ratio of the compressed and un-

compressed amounts of data that (B) sends to (C). Node (B) can choose its

compression ratio based on a variety of factors, including requirements on ac-

ceptable distortion at the receiver. Based on (6.8), (6.9) and (6.10), we note

that there is more incentive for (B) to compress based on (A) when
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• dBC increases, i.e., node (B) moves farther from the cluster head. In fact,

it is evident from (6.10) that there is a value of dBC below which com-

pression is ineffective, i.e., node (B) will spend more energy to compress

and transmit than not to compress at all.

• r
R

is small, i.e., a significant reduction in the size of the data of (B) can

be achieved by compression.

• node (B) consumes less energy due to the transceiver electronics and the

processor, i.e., when Ee and Ec decrease.

We illustrate the above observations by using the following numerical values:

Ea = 100 pJ/bit/m2, Ec = 5 nJ/bit, and Ee = 10, 50, 100, 200 nJ/bit. Fig. 6.5

shows the boundary of the region when it is beneficial for (B) to compress

based on (A). Specifically, the area below each curve corresponds to the values

of compression ratio r
R

and transmission distance dBC at which (B) should

compress based on (A).

6.4.3 Maximizing the Lifetime of the Node Who Dies

First

In this section, we consider the problem of finding the control scheme that

maximizes the time until one of the sensors in a cluster dies. For the network

in Fig. 6.2, we have two possible CBC policies:

• Policy µ1: Let (A) transmit to (C) first, (B) chooses either to transmit

uncompressed data to (C) or, if it is beneficial, to compress based on (A)

and then transmits to (C).
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Figure 6.5: The incentives for node (B) to compress based on (A) (for
the network in Fig. 6.2). Ea = 100pJ/bit/m2, Ec = 5nJ/bit and Ee =
10, 50, 100, 200nJ/bit. The area below each curve corresponds to the region
in which (B) can save energy by compressing based on (A).

• Policy µ2: Let (B) transmit to (C) first, (A) chooses either to transmit

uncompressed data to (C) or, if it is beneficial, to compress based on (B)

and then transmits to (C).

For policy µ1, the energy consumed by (A) will be

Eµ1

A = EA = EerA + Ead
2
ACrA, (6.11)

while the energy consumed by (B) will be

Eµ1

B = min

{
EB,

EB|A1(dAB ≤ dAC)

}
. (6.12)

In (6.12), 1(.) denotes the indicator function, which returns 1 if the expression

inside the brackets is true and returns 0 otherwise. Note that (B) can compress

based on (A) only when dAB ≤ dAC , if dAB > dAC then
EB|A1(dAB≤dAC)

= +∞ and

(6.12) gives Eµ1

B = EB.
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Similarly, when policy µ2 is applied, we can write the energy consumption

of (A) and (B) as:

Eµ2

A = min

{
EA,

EA|B1(dAB ≤ dBC)

}
(6.13)

Eµ2

B = EB. (6.14)

Note that in (6.13)

EA|B = EerB + EcrA + EerA|B + Ead
2
ACrA|B (6.15)

where rA|B is the amount of data that (A) needs to transmit if it compresses

based on (B).

Let eA and eB be the initial energies of (A) and (B) respectively. The

problem of maximizing the time until at least one of the nodes (A) and (B) dies

can be formulated as:

arg max
t1,t2

{t1 + t2} (6.16)

subject to:

t1 ≥ 0, t2 ≥ 0, (6.17)

Eµ1

A t1 + Eµ2

A t2 ≤ eA, (6.18)

Eµ1

B t1 + Eµ2

B t2 ≤ eB. (6.19)

Here t1 and t2 are the total numbers of data-gathering rounds that policies µ1

and µ2 are employed respectively. The constraints in (6.17) are obvious. The

constraint in (6.18) basically means that the total energy consumed by sensor

(A) during t1+t2 data-gathering rounds cannot exceed its initial energy storage.

Similar explanation is for constraint (6.19). We note that the order in which µ1

and µ2 are employed is not important. Also, for µ1, the t1 data-gathering rounds
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that this policy is employed do not have to be contiguous. The same is true

for µ2. In addition, t1, t2 must take integer values and the above optimization

problem is an integer linear program. However, for applications in which sensors’

lifetimes are much longer than each data-gathering round, t1, t2 can be treated

as real variables. Then the above optimization is a linear programming problem

and can be solved efficiently with standard methods [HL95].

6.5 Collaborative Broadcasting and Compression: A gen-

eral network

We now apply the CBC approach to control a general cluster-based sensor

network as depicted in Fig. 6.3. Note that our control will still be carried out

within each cluster.

6.5.1 General Notation

First of all, we ask the reader to bear in mind that the notation used in this

chapter is independent to that used in Chapters 2, 3, 4, and 5. We consider

a cluster composed of K sensors and a cluster head. The sensor nodes are

numbered from 1 to K and the cluster head is denoted by H . Let us introduce

the following notation:

• N = {1, . . .K} is the set of all sensors in the cluster.

• dik, i, k ∈ N, is the distance (in meters) between sensor i and sensor k.

dkH is the distance between sensor k and the cluster head.

• Nk = {i ∈ N, i 6= k | dik ≤ diH}, k ∈ N, is the set of all nodes whose

transmission to the cluster head can be received by k.
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• ek, k ∈ N, is the initial energy of sensor k.

• Ek(i), k, i ∈ N, i 6= k, is the total energy consumed by node k in each

round when it compresses based on i. We also use Ek(0) to denote the

energy consumed by k when it does not compress based on any other node.

Note that Ek(i) can be determined using (6.1), (6.2), (6.3).

6.5.2 Control During Each Data-gathering Round

During each data-gathering round, in order to specify how nodes collaborate

their data transmission and compression, two control decisions must be made.

Firstly, a transmission order needs to be specified, i.e., each sensor should be

assigned a time slot for data transmission. Secondly, given the transmission

order, each node needs to know which other nodes it should compress based on.

When there are more than two sensors in the cluster, each of them may

be able to compress based on more than one node. However, allowing sensors

to do so makes the control problem very complex. At the same time, as the

energy spent when receiving is significant, if a node already compresses based

on another node, it is likely to get very little gain when trying to receive and

compress based on one more node. Therefore, we restrict our control schemes

to those that satisfy the following constraint:

Constraint 6.5.1. During each data-gathering round, each sensor is allowed

to compress based on the data of at most one other sensor and that sensor must

transmit uncompressed data.

With the above constraint, we give the following definition for a CBC policy

that controls the sensors during each data-gathering round.
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Definition 6.5.2. Let v ⊆ N be a subset of the set of all K sensors, a CBC

policy is a function µ : v→ v ∪ {0} such that for i, k ∈ v, µ(k) = 0 if k is not

allowed to compress based on any other node while µ(k) = i if k is allowed to

compress based on i. Note that µ(k) = i implies µ(i) = 0.

Note that a particular CBC policy µ only controls the operation of those

sensors belonging to v, a subset of N. This makes Definition 6.5.2 applicable

even if not all K sensors in the cluster are active. It can be shown that, given

a CBC policy µ, a transmission order can always be determined so that each

node k ∈ v can carry out compression and transmission as specified by µ.

6.5.3 Control over Multiple Data-gathering Rounds

By definition, a particular CBC policy µ specifies how the sensors in the set

v ⊆ N operate during a particular data-gathering round. To control the sensors

over multiple data-gathering rounds, we define a CBC scheme as:

Definition 6.5.3. Let v ⊆ N be a subset of the set of all K sensors, a CBC

scheme is a policy-time set

Ψ =
{

(µ1, t1), . . . (µm, tm)
}

in which the pair (µi, ti), 1 ≤ i ≤ m, indicates that CBC policy µi is employed

on v for ti data-gathering rounds. Furthermore, let eresk be the residual energy

that node k has prior to the application of Ψ, then Ψ is said to be feasible if

and only if:
m∑

i=1

Ek(µi(k))ti ≤ eresk , ∀k ∈ v. (6.20)
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Condition (6.20) guarantees that when Ψ is applied, no sensor in v consumes

more than its residual energy.

6.5.4 Sensor Lifetime and System Performance

Let us suppose that some feasible CBC schemes are employed to control K

sensors until all of them use up their energy and die. The operation of the

cluster can be divided into K consecutive phases, with phase k starting when

k − 1 out of K sensors die and ending when k out of K sensors die. We then

define a lifetime vector of the cluster as follows.

Definition 6.5.4. The K- element vector L, with L(k) being the time when

phase k ends, is called a lifetime vector of the cluster. Furthermore, a lifetime

vector L is said to be achievable if it is the result of the application of some

K feasible CBC schemes, each controls one phase of the cluster operation.

It is straightforward to prove the following lemma, which states that by ap-

plying the CBC approach, every node in the cluster will achieve at least the

lifetime corresponding to the case when no node carry out joint data compres-

sion,

Lemma 6.5.5. Let L̃ be the lifetime vector achieved when no node carry out

joint data compression, then for every achievable lifetime vector L, L(k) ≥

L̃(k), ∀k ∈ N.

Now, let us examine some options for characterizing the cluster data-gathering

performance based on the lifetime vector L. For the most stringent performance,

the cluster ceases functioning when one of its K sensors dies, i.e., at time L(1).
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For the least stringent case, we may assume that the cluster keeps on functioning

until all of its sensors die, i.e., at time L(K). However, in reality, when sensor

nodes die one by one, what will be observed is a gradual decrease in the quality

of the data-gathering job. The decrease here is in terms of information-fidelity

and/or geographical coverage. This gradual decrease in performance can not be

captured by any single element of the lifetime vector L. Therefore, we propose

to maximize elements of L in sequence, with the maximization of the kth element

being carried out conditioned on the maximization of the 1st, 2nd, . . . (k − 1)th

elements. In a more concrete form, we adopt the following definition for the

optimality of the cluster lifetime vector:

Definition 6.5.6. An achievable lifetime vector L∗ is said to be optimal if for

every other achievable lifetime vector L, L 6= L∗, there exists k ∈ N such that

L∗(i) ≥ L(i), ∀i ∈ {1, . . . k}, (6.21)

with at least one strict inequality.

Note that our optimality criteria gives priority to improving the lifetimes of

nodes who die early. This will keep as many nodes to stay alive as possible, and

therefore, assure a high-level data-gathering performance for a long period of

time. This also leads to reduction in the variance among nodes’ lifetimes, i.e.,

nodes die closer together.

6.6 Lifetime Vector Optimization Problem

Based on Definition 6.5.6, we introduce the following lifetime vector optimiza-

tion (LVO) problem:
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Lifetime Vector Optimization (LVO) Problem: Given a cluster of K

sensors, find K feasible CBC schemes that respectively control K phases of the

cluster operation so that the resultant lifetime vector is optimal.

6.6.1 A General Approach to Solve the LVO Problem

The LVO problem can be solved by the following K-step procedure.

• Step 1: Given all K sensors with their initial energies, we find a feasible

CBC scheme that controls phase 1 of the cluster operation so that the

time when one of the K sensors dies is maximized. Step 1 gives us L∗
1

which is the maximum lifetime of the node who dies first.

• Step k, 2 ≤ k ≤ K: The first k − 1 steps give us L∗
1, . . . L

∗
k−1. Now

the task is to find k feasible CBC schemes that control the first k phases

of the cluster operation so that the time when i out of K sensors die is

L∗
i , ∀i < k, and the time when k out of K sensors die is maximized. This

conditional maximum time when k out of K sensors die is denoted by L∗
k.

Theorem 6.6.1. The K feasible CBC schemes obtained in Step K solve the

LVO problem.

Proof. After Step K, we obtain K feasible CBC schemes that achieve the life-

time vector (L∗
1, L

∗
2, . . . L

∗
K). We will prove that this lifetime vector is optimal

with respect to Definition 6.5.6.

Let L be any achievable lifetime vector and L 6= (L∗
1, L

∗
2, . . . L

∗
K). There

must be k, 1 ≤ k ≤ K, such that L(i) = L∗
i , ∀i < k and L(k) 6= L∗

k. Note

that L∗
k is the maximum time when k out of K sensors die, subject to the
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constraint that the time when i out of K sensors die is L(i), ∀i < k. Therefore,

we must have L(k) < L∗
k. In other words, k satisfies the optimality condition

in Definition 6.5.6 and (L∗
1, L

∗
2, . . . L

∗
K) is the optimal lifetime vector.

6.6.2 Linear Programming Formulation

Now let us show how each step in the K-step procedure described in Section

6.6.1 can be formulated as a linear programming (LP) problem. We do so for

Step 1 and 2. For Steps k, k > 2, the formulation is similar.

Formulating Step 1 as an LP

As the number of CBC policies in phase 1 can be very large, what we will do first

is to narrow down the policies that should be time-shared. Given a CBC policy

µ, let us denote by u the set of all nodes that transmit without compressing

based on another node. We must have:

∀k ∈ N\u, u ∩Nk 6= ∅. (6.22)

In other words, each node in N\u must be able to receive the transmission of

at least one node in u. Furthermore, we only need to consider those policies µ

that satisfy:

µ(k) = γk1 (u) =





0, ∀k ∈ u,

arg min
j∈u∩Nk

{Ek(j)} , ∀k ∈ N\u.
(6.23)

This is because given a set u of nodes that transmit without compressing, all

other nodes should choose to compress based on the node that result in the most



161

energy saving. As a result, each policy µ that we will time-share is completely

specified if the set of nodes that transmit without compressing is given.

Let U1 be the set of all subsets of N that satisfies condition (6.22), i.e.,

U1 = {u ⊆ N | ∀k ∈ N\u, u ∩Nk 6= ∅}. (6.24)

Also, let tu1 ,u ∈ U1, be the number of data-gathering rounds that all nodes

belonging to u transmit without compressing while all nodes not belonging

to u carry out data compression. Note that the subscript ’1’ of γk1 , U1, and

tu1 is used to indicate that these are function or parameters of phase 1. As

we have mentioned, when the lifetimes of sensors are much longer than each

data-gathering rounds, tu1 can be treated as real variables. Then, the problem

of maximizing the lifetime of the node who dies first can be written as the

following linear program:

arg max
tu
1
, ∀u∈U1

∑

∀u∈U1

tu1 (6.25)

subject to:

tu1 ≥ 0, ∀u ∈ U1, (6.26)

∑

∀u∈U1

(
tu1Ek(γ

k
1 (u))

)
≤ ek, ∀k ∈ N. (6.27)

Solving the above LP gives us a CBC scheme that maximizes the time until

at least one of the K sensors die. This maximum lifetime is denoted by L∗
1. For

this particular CBC scheme, let us denote by D1 the set of nodes that actually

die at time L∗
1. D1 can be determined just by checking the residual energies of

all K sensors after phase 1.



162

Formulating Step 2 as an LP

Let us first consider the case when the set D1, obtained by solving the LP for

Step 1, only has one element, denoted by k∗. In other words, only sensor k∗ dies

at time L∗
1. In phase 2 we are left with K − 1 nodes in the set N\{k∗}. Now,

similar to γk1 , U1, t
u
1 (∀u ∈ U1) of phase 1, we can define γk2 , U1, t

v
2 (∀v ∈ U2)

for phase 2. Then the task of Step 2, i.e., to find two CBC schemes that control

phases 1 and 2 so that the duration of phase 1 is L∗
1 and the duration of phase

2 is maximized, can be written as the following LP.

arg max
tu
1
, tv

2
, ∀u∈U1, ∀v∈U2

∑

∀v∈U2

tv2 (6.28)

subject to:

tu1 ≥ 0 ∀u ∈ U1, tv2 ≥ 0 ∀v ∈ U2, (6.29)

∑

∀u∈U1

tu1 = L∗
1, (6.30)

∑

∀u∈U1

(
tu1Ek∗(γ

k∗

1 (u))
)
≤ ek∗ , (6.31)

∑

∀u∈U1

(
tu1Ek(γ

k
1 (u))

)
+
∑

∀v∈U2

(
tv2Ek(γ

k
2 (v))

)
≤ ek, ∀k ∈ N\{k∗}. (6.32)

In the cases when D1 contains more than one node, we will need to formulate

the above LP for each possible value of k∗, and determine which one leads to

the maximum lifetime of phase 2.

3) Complexity of Solving Each Step by LP

Note that of all K steps, Step 1 involves solving the smallest LP. The size

of the LP for Step 1 depends on the cardinality of the set U1, which in turn

depends on the cluster topology and sensor’s energy model. In the worst case,
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U1 contains all non-empty subsets of N, and therefore, has the cardinality of

2K−1. This means it is only practical to solve the above LPs when the number

of nodes in the cluster is small.

6.7 Heuristic Algorithm

In this section, we propose heuristic CBC schemes which can be obtained at a

much lower complexity compared to solving the linear programming problems

in Section 6.6.2. In Section 6.9, we will present numerical results which show

that the heuristic schemes achieve a near optimal lifetime vector. We will focus

on the heuristic scheme that controls phase 1 of the cluster operation. The

schemes for other phases can be constructed in a similar manner.

In the heuristic CBC scheme that controls phase 1, i.e., {(µ1, t1), . . . (µm, tm)},

each policy µi is employed for an interval of T data-gathering rounds, i.e.,

ti = T, i = 1, . . .m, where T is a fixed integer. For each interval, a CBC pol-

icy is selected in a greedy way, with the objective of maximizing the minimum

residual energy of K nodes after the interval.

6.7.1 A CBC Policy for T Data-gathering Rounds

Let interval n, n = 1, 2, . . . , denote the time from the beginning of data-

gathering round (n − 1)T + 1 until the end of data-gathering round nT . Let

enk , e
n
k ≥ 0, k ∈ N, be the residual energy of node k at the beginning of interval

n. Also, let µn be the CBC policy being employed in interval n. If no node uses

up its energy during interval n, the residual energy of node k at the beginning

of interval n + 1 is

en+1
k = enk − TEk(µn(k)). (6.33)
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The lifetime of each node is directly related to its residual energy. There-

fore, during each interval, it is intuitive to employ a greedy CBC policy that

maximizes the minimum value of the residual energy of all K nodes after the

interval. In other words, for interval n, we will find the CBC policy µ∗
n that

satisfies

µ∗
n = arg max

µn

{
min
k∈N
{en+1

k }
}
. (6.34)

In order to obtain µ∗
n, we start with a CBC policy µ in which no node

compresses based on any other node and improve µ in each iteration. Policy

µ is improved by first identifying the node i∗ that will have the least residual

energy at the end of interval n if policy µ is applied and then let i∗ compress

based on another node. When there are more than one node that i∗ can compress

based on, i∗ will choose the node j∗ that satisfies

j∗ = arg max
j∈Q

{
min{eni∗ − TEi∗(j),

(
enj − TEj(0)

)
/1(j /∈ U)}

}
. (6.35)

The reason for i∗ to compress based on j∗ selected by (6.35) is that if we let i∗

compress based on some node j, then j is not allowed to compress based on any

node, and j can become the node who has the least residual energy at the end of

interval n. In (6.35), Q is the set of nodes that i∗ can compress based on while

U consists of nodes that are not able to compress and nodes that have already

been used by other nodes for their data compression. After improving en+1
i∗ by

letting i∗ compress based on j∗, we move to the next iteration and repeat the

process.

We name the above algorithm Single CBC and give its pseudo-code in

Fig. 6.6. Note that the inputs for algorithm Single CBC are the residual energies

of the K sensors at the beginning of interval n, i.e., (en1 , . . . e
n
K). The output of
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Single CBC is a CBC policy that controls K sensors during interval n. As has

been mentioned, U denotes the set of nodes that are either used by other nodes

for their data compression and/or not able to compress. Besides, V denotes the

set of nodes who compress based on some nodes in U.

6.7.2 A Heuristic CBC Scheme for Phase 1

By repeatedly applying the Single CBC algorithm until one of the sensor nodes

uses up its energy and dies, we obtain a set of CBC policies, each control the

collaboration of K sensors for T data-gathering rounds. We name the algorithm

that does so the Multiple CBC. The inputs for Multiple CBC are the initial

energy of K nodes, i.e., (e1, . . . eK). Multiple CBC outputs a sequence of CBC

policies that are employed until one of the sensors dies. The pseudo-code for

Multiple CBC is presented in Fig. 6.7.

6.7.3 Complexity of Heuristic Algorithm

Heuristic CBC schemes for controlling phases 2, 3, . . .K can be obtained in a

similar manner to that of phase 1. As the complexity for obtaining heuristic

CBC schemes is highest for phase 1, let us determine this complexity.

From the pseudo-code of Single CBC, it can be seen that the main tasks

inside the loop are to find i∗ and j∗. Both of these involve finding the minimum

value from a set of at most K elements and therefore, the complexity is of the

order O(K). At the same time, the main loop is repeated for no more than K

times. Therefore, we can conclude that the worst-case complexity of Single CBC

is O(K2).

During each iteration of Multiple CBC algorithm, Single CBC algorithm is
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Algorithm: Single CBC(en1 , . . . e
n
K)

µ(k)← 0, ∀k ∈ N

U← ∅; V← ∅

loop

i∗ ← arg min
k ∈ N\(U∪V)

{enk − TEk(µ(k))}

Q←
{
k ∈ Ni∗\V | Ei∗(k) < Ei∗(0)

}

if Q 6= ∅

j∗ ← arg max
j∈Q

{
min{eni∗ − TEi∗(j), (enj − TEj(0))/1(j /∈ U)}

}

µ(i∗)← j∗

U← U ∪ {j∗}; V← V ∪ {i∗}

else

U← U ∪ {i∗}

endif

if U ∪V = N

break

endif

endloop

return µ

Figure 6.6: Pseudo-code of algorithm Single CBC(en1 , . . . e
n
K). Inputs are the

residual energies of K sensors at the beginning of interval n, i.e., (en1 , . . . e
n
K).

Output is CBC policy µ that will be used to control K sensors during interval
n.
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Algorithm: Multiple CBC(e1, . . . eK)

Ψ← [ ]

eresk ← ek, ∀k ∈ N

loop

µ← Single CBC(eres1 , . . . eresK )

Ψ← [Ψ, µ]

eresk ← eresk − TEk(µ(k)), ∀k ∈ N

if mink∈N{eresk } ≤ 0

break

endif

endloop

return Ψ

Figure 6.7: Pseudo-code of algorithm Multiple CBC(e1, . . . eK). Inputs are
the initial energies of K sensors, i.e., (e1, . . . eK). Output is a sequence of CBC
policies, each policy is employed to control one interval of T rounds.
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carried out. The number of iterations being taken in Multiple CBC depends on

the lifetime of the node who dies first. We note that the energy consumed by

each node in a data-gathering round is lower-bounded by the energy consumed

in the electronic circuits. In particular, if in each data-gathering round, each

node is required to communicate a packet of length R bits (without compression)

to the cluster head, then no matter whether a node compresses based on other

nodes or not, the energy consumed in each round is lower bounded by Elb =

EeR. Therefore, the lifetime of sensor k, k = 1, . . .K, is upper-bounded by

Lub = ek

Elb
. As the upper-bound Lub does not grow with K, the number of

iterations of Multiple CBC algorithm does not grow with K either. As a result,

the complexity of Multiple CBC algorithm is of the same order of that of the

Single CBC algorithm, which is equal O(K2).

6.8 Reflections on the CBC Approach

6.8.1 Startup Cost of Sensor Nodes

For wireless sensors, startup cost refers to the energy consumed during the radio

startup transient [SCI+01], [RSPS02]. Note that no data can be transmitted or

received during this transient phase. One way to minimize the negative effect of

this (wasted) energy is to operate at a large packet size so that the total energy

consumed by the transceiver unit is dominated by transmission and reception

energy [SCI+01].

In our CBC schemes, when a node wants to receive and compress based

on the data of another node, its radio needs to be active during at least two

time slots in each data-gathering round, i.e., one is for receiving and the other
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is for transmitting data. If these receiving and transmitting time slots are

not adjacent to each other, in order to conserve energy, the node may need to

turn off the radio component after the receiving and then turn it on again for

transmission. Doing so will not cause any problem as long as the radio startup

cost is negligible.

For the case when the startup cost is significant, we can mitigate the problem

of non-adjacent receiving and transmitting time slots by constraining that in

each CBC policy, at most one node can compress based on any particular node.

This will allow a node to transmit right after receiving and compressing its data.

Note that the constraint can be easily incorporated into our linear programming

and heuristic approaches in Sections 6.6.2 and 6.7. In Section 6.9, we will present

numerical result to show that with this extra constraint, our CBC schemes still

yield a significant improvement for sensors’ lifetimes.

6.8.2 Packet Transmission Errors

So far, when studying the CBC approach, we have assumed that the packet

loss due to transmission errors is negligible. Now let us consider how our CBC

schemes perform when packet transmission errors are taken into account.

We suppose that, in a particular CBC scheme, sensor k is assigned to com-

press based on sensor i during some time interval. This will improve the lifetime

of k. However, due to transmission errors, in some data-gathering rounds, k may

not be able to receive packets sent by i and therefore, can not compress its data.

As a result, our CBC schemes will achieve less lifetime improvement, relative

to the case when all transmissions are successful.

Still referring to the above scenario, we assume that k actually receives a
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packet sent by i and used that to compress its own packet. However, let us

suppose that the packet of i is not received successfully by the cluster head H .

If H keeps on requesting i to resend its packet until a successful reception, then

the compressed packet of k will eventually be decoded. On the other hand, if

no retransmission is allowed, the loss of the packet of i will leads to the loss

of the packet of k as this packet can not be decompressed. As a result, under

our CBC schemes, those nodes who compress based on others’ data can incur

a higher packet loss probability.

For node k, the packet loss probability will be worst when the packet loss

processes corresponding to the transmission from i to H and the transmission

from k to H are independent. In that case, let P e
i and P e

k be the packet loss

probabilities for the transmissions from i and k (to H) respectively, the packet

loss probability for k can be written as:

P e
k|i = P e

k + P e
i − P e

kP
e
i ≈ P e

k + P e
i . (6.36)

As our CBC schemes may increase the packet loss rate for nodes that com-

presses based on others, apart from the lifetime improvement, it is useful to look

at the performance in terms of the total number of packets successfully transmit-

ted by each node throughout its lifetime. In Section 6.9 we will present result to

show that even with a high packet loss rate (10%), our CBC schemes still result

in significant increases in the total number of successful packets transmitted by

each node.

6.8.3 Effects on the Relaying Network

Now, let us discuss the effects that our CBC approach can have on the relay-

ing network formed by type II nodes. First of all, as nodes in each cluster
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jointly compress their data, the amount of data sent to the cluster heads will

be reduced. This can allow the cluster heads to spend less energy receiving.

Secondly, as nodes encode their data based on explicit side information, the

decoding scheme at each cluster head will not be complex. In fact, the cluster

heads may not want to decompress the data, since they will eventually perform

data fusion/aggregation. Finally, after data fusion/aggregation, there will be

no change on the amount of data flowing out of each cluster. Therefore, other

parts of the relaying network are not affected by the data compression carried

out within each cluster.

Based on the above discussion, we state that our CBC approach is indepen-

dent to the operation of the relaying network. Therefore, it can be applied in

conjunction with energy-efficient routing schemes that have been proposed for

WSNs ([IGE00]).

6.9 Numerical Study

In this section, we present numerical results which show the performance gain,

i.e., the increase in sensors’ lifetimes and number of packets successfully trans-

mitted, when the CBC approach is employed. We will compare the performance

of three control schemes, i.e., the optimal scheme obtained by solving the LPs

formulated in Section 6.6.2, the heuristic scheme proposed in Section 6.7, and

finally the scheme in which all sensors transmit to the cluster head without joint

compression.
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Figure 6.8: An example of a network of size 100× 100m. The monitoring area
is divided into four clusters. In each cluster, there are K = 10 sensing nodes
and one cluster head. Sensing nodes and cluster heads are deployed randomly
and uniformly within their cluster area.

6.9.1 Experimental Model

The monitored field is represented by a square area of size D meters. This

area is further divided into C2 disjoint clusters, each is a square of size D
C

. In

each cluster, there are K sensors and one cluster head. We assume that the

sensor nodes, together with the cluster head, are deployed randomly within

each cluster, with their coordinates uniformly distributed. In Fig. 6.8, a sample

network of size D = 100 meters, divided into four clusters and with K = 10

sensors per cluster, is shown.

The energy model of each sensor node is as described in Section 6.3.3 with:

Ea = 100pJ/bit/m2, Ec = 5nJ/bit, and Ee = 10, 50, 100nJ/bit. Each sensor

node has an initial energy storage of 5J. In each round, without compression,

each sensor needs to send a packet of length R = 400 bits to the cluster head.

For the sake of simplicity, we ignore the bits used in the packet header. This
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assumption is justified when the size of the packet header is much smaller than

that of the data payload. We also assume that, if a particular node k compresses

based on another node, then the compression ratio, i.e., r
R
, is fixed.

Each of the results presented in the following section is obtained by gen-

erating 500 instances of the network and averaging the performance of tested

schemes. Note that L(k), k = 1, . . .K, denotes the time when k out of the K

sensors in a cluster die when some control scheme is employed.

6.9.2 Results and Discussion

In Fig. 6.9, we show the percentage increases in sensors’ lifetimes when the

optimal control schemes and the heuristic control schemes are applied, relative

to when no node compresses its data. The percentage increases in the lifetimes

of nodes who die first, second, fifth, and tenth are plotted versus the compression

ratio r
R
. Here, we assume that all packets are successfully transmitted. As can

be seen, the lifetime improvements strongly depend on the compression ratio r
R
,

i.e., on the spatial correlation among data collected at different sensors. When

r
R

is low, the performance gain of both optimal and heuristic schemes are very

significant. The gain is largest for L(1) while there is negligible gain for L(10).

This is exactly what our objective is; we want to improve the lifetimes of those

nodes who die earlier than others. Another important observation is that the

performance of the heuristic scheme is nearly the same as that of the optimal

control scheme. This indicates that we can use the heuristic scheme, which has

much lower complexity without sacrificing performance.

We then look at how the performance of the heuristic scheme depends on

the number of sensors per cluster and the cluster size. In Fig. 6.10 we show the
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Figure 6.9: Percentage increases (relative to no compression) in sensors’ lifetimes
versus compression ratio when the optimal CBC and heuristic CBC schemes are
applied. L(1), L(3), L(5), L(10) are the lifetimes of nodes who die first, third,
fifth, and tenth, respectively. There are K = 10 nodes in each cluster and the
energy model is: Ea = 100pJ/bit/m2, Ee = 50nJ/bit and Ec = 5nJ/bit. Packet
loss is assumed to be negligible.

percentage increase for L(1) when the heuristic scheme is applied, as compared

to the case when no node carries out compression for different values of K and

D, i.e., K = 10, 25 and D = 100m, 200m. The percentage increase is plotted

against the compression ratio. As can be seen, the gain in lifetime increases in

the number of nodes per cluster. This can be explained by the fact that, when

there are more nodes in each cluster, the distance among them gets shorter,

each node has more options on which node it can used to compress its data. At

the same time, when the cluster size D is increased, the performance gain also

increases. This is because with a larger cluster size, the average distance from

sensors to the cluster head increases and in Section 6.4.2, we have shown that

this increase in the distance will give node more incentive to jointly compress
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Figure 6.10: Percentage increase (relative to no compression) in the lifetime
of the node who dies first versus compression ratio when the heuristic CBC
scheme is applied. The cluster size is D = {100, 200 m} and the number of
sensors/cluster isK = {10, 25}. The energy model is: Ea = 100pJ/bit/m2, Ee =
50nJ/bit and Ec = 5nJ/bit. Packet loss is assumed to be negligible.

data.

Next, we look at how the performance gain of the heuristic scheme depends

on the energy model of sensor nodes. In particular, we let the value of electronic

energy, i.e., Ee vary from 10 to 100nJ/bit while still keeping the amplifier and

processing energy unchanged. In Fig. 6.11, we plot the percentage increase for

the lifetime of the node who dies first versus the compression ratio for Ee =

10, 50 and 100nJ/bit. As expected, the gain decreases in Ee. However, even

when Ee = 100nJ/bit, the gain is still about 30% for the compression ratio of

0.5.

In Section 6.8.1, we suggest that to deal with the scenario when the radio

startup cost is significant, an extra constraint, i.e., no more than one node can
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Figure 6.11: Percentage increase (relative to no compression) in the lifetime of
the node who dies first versus compression ratio when the heuristic CBC scheme
is applied. There are K = 10 nodes in each cluster and the energy model is:
Ea = 100pJ/bit/m2, Ec = 5nJ/bit and Ee takes the values {10, 50, 100nJ/bit}.
Packet loss is assumed to be negligible.

compress based on any node can be enforced. In Fig. 6.12, we look at the

performance of the heuristic scheme with this extra constraint. Here we plot

the percentage increase in different components of the lifetime vector L. It is

obvious that by enforcing the extra constraint, the increase in sensor lifetime is

less, however, as can be seen in Fig. 6.12, the gain in L(1) is still very significant.

In particular, when the compression ratio is 0.5, applying the modified heuristic

scheme results in 30% increase in the lifetime of the node who dies first.

Finally, let us look at how our heuristic CBC schemes perform under packet

loss due to transmission errors. Here, we assume that the packet loss processes

for the transmissions between different pairs of nodes in the cluster are inde-

pendent (note that this is the worst case assumption) and with the same packet
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Figure 6.12: Percentage increases in L(1), L(3), L(5), L(10) versus compression
ratio when the heuristic CBC and pairwise heuristic CBC schemes are applied.
Pairwise heuristic CBC schemes alow at most one node to compress based on
any particular node. There are K = 10 nodes in each cluster and the energy
model is: Ea = 100pJ/bit/m2, Ee = 50nJ/bit and Ec = 5nJ/bit. Packet loss is
assumed to be negligible.

loss probability denoted by P e. In Fig. 6.13, we plot the performance of our

heuristic CBC schemes, in terms of the percentage increase in the total number

of packet successfully transmitted for the node who dies first. Different packet

loss probabilities are used, i.e., P e = 0, 1%, 5%, 10%. As can be seen, even

when the packet loss probability is relatively high, i.e., at 10%, the performance

gain for the node who dies first is still very significant. This suggests that our

CBC approach is robust against packet loss due to transmission errors. Note

also in Fig. 6.13 that the points at which performance curves cut the zero-level

line is where the CBC approach does not give any performance improvement.
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Figure 6.13: Percentage increases in the number of packets successfully trans-
mitted for the node who dies first when the heuristic CBC scheme is ap-
plied. There are K = 10 nodes in each cluster and the energy model is:
Ea = 100pJ/bit/m2, Ee = 50nJ/bit and Ec = 5nJ/bit. Packet loss processes of
different transmissions are independent and with the same packet loss probabil-
ity P e. The points at which performance curves cut the zero-level line is where
the CBC approach does not give any performance improvement.

6.10 Conclusion

In this chapter, we proposed a novel approach in which the inherent broadcast

nature of the wireless medium is exploited by sensor nodes to carry out joint data

compression and conserve energy. This is different from the usual abstraction of

a communication network by a communication graph, in which nodes interact

in a point-to-point fashion.

Our metric of interest is sensor network lifetime. We first presented algo-

rithms which optimize the lifetime vector of the network, meaning that any

other algorithm will not increase the lifetime of the node which dies first. We

then proposed a heuristic algorithm which has significantly lower computational
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complexity with near optimal performance. Important characteristics of wireless

sensor networks such as node startup cost and packet loss due to transmission

errors are also considered. Extensive numerical results are presented to support

our approach.

Taking a broader view, our work in this chapter highlights two important

issues in designing WSNs. Firstly, it is important to not over simplify the net-

work model when designing energy-constrained WSNs. One example of over-

simplification, we believe, is the popular point-to-point link abstraction of the

wireless medium. Secondly, our results show the importance of exploiting the

opportunity to collaborate in wireless settings. This is because on one hand,

different nodes in a WSN experience different performance/resource constraints

while on the other hand, what is important is not a sensor’s individual perfor-

mance, but rather the network’s collective performance.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we have studied different cross-layer scheduling and trans-

mission schemes for energy-constrained wireless systems. Our objective is to

achieve good system performance while conserving nodes’ energy. Let us wrap

up by summarizing the main contributions of this thesis and discussing some

avenues for future research.

We started by considering cross-layer adaptive transmission for a time-

slotted, single-user system with stochastic data arrival, finite-length buffer, and

time-varying wireless channel. The objective is to adapt the transmission power

and rate according to the buffer and channel conditions in order to maximize the

system throughput, subject to an average transmit power constraint. In Chap-

ters 3 and 4, we have studied this buffer and channel adaptive transmission

problems under various scenarios, i.e., with complete and incomplete system

state information, and with or without a bit-error-rate constraint. In all the

cases, we showed how good buffer and channel adaptive transmission schemes

can be obtained and provided numerical results for their performance. An inter-

esting structural property of optimal cross-layer adaptive transmission policies

have also been identified.

Next, in Chapter 5, we studied a multiple-access scenario in which multiple

users transmit data to a center node over a shared time-varying wireless channel.

Two control decisions are made in each time slot, i.e., a scheduling decision

which assigns the channel to one of the users, and a transmission decision which

sets the transmit power and rate. All scheduling/transmission policies employed

must satisfy the average transmit power constraint of each node. We solved the

180
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problem of finding optimal cross-layer adaptive scheduling/transmission policy

which adapts to the buffer and channel conditions of all users so that the total

system throughput is maximized. We then used the performance of this optimal

policy as a benchmark to assess the performance of simpler cross-layer adaptive

scheduling/transmission schemes. This allowed us to draw useful guidelines for

controlling energy-constrained multiple-access systems.

Based on the results in Chapters 3, 4, and 5, we can draw the following

general conclusions about cross-layer adaptation for physical and MAC lay-

ers. First, when nodes are equipped with limited batteries/buffers and operate

within a dynamic environment, cross-layer design is essential to achieve good

system performance. Second, when statistics of multiple layers are taken into

account, popular intuitions associated with layer design may no longer hold.

For example, as it has been shown in Chapter 3, under certain conditions, the

structure of the throughput-optimal adaptive transmission policies can be the

reverse of water-filling. Third, our results in Chapters 3, 4, and 5 demonstrated

that cross-layer adaptation can be applied in a wide range of system scenarios.

A challenging extension to the adaptive scheduling/transmission problem in

Chapter 5 is to consider cases when multiple users can simultaneously trans-

mit on the same channel. Then, interference needs to be taken into account.

For such cases, it is very complex to obtain optimal joint adaptive schedul-

ing/transmission policies and it is more reasonable to look for sub-optimal poli-

cies that perform well and can be obtained at lower complexity. We reserve this

problem for future research.

In Chapter 6, we studied a problem of combining scheduling, transmission,

and data compression to conserve energy in spatially correlated sensor networks.
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We considered a class of cluster-based wireless sensor networks with periodic

data gathering. Since wireless transmission is inherently broadcast, when one

sensor node transmits data to the cluster head, other nodes in its coverage area

can receive the transmitted data. When data collected by different sensors are

correlated, each sensor can utilize the data it overhears from other sensors to

compress its own data and conserve energy in its own transmissions. Based

on this observation, we formulated a problem in which sensors in each cluster

are scheduled to transmit to the cluster head so that they can collaborate in

joint source compression in order to maximize the network lifetime. We showed

that this lifetime optimization problem can be solved by a sequence of linear

programming problems. We also proposed a heuristic scheme, which has low

complexity and achieves near optimal performance.

With respect to the studies of cross-layer adaptive scheduling/transmission

in Chapters 3, 4, 5, the problem in Chapter 6 demonstrated that cross-layer

design can still be beneficial even when there is no variation in the system

parameters to adapt to.

The cross-layer work in Chapter 6 highlighted two important issues in de-

signing wireless sensor networks. Firstly, it is important to not over simplify

the network model when designing energy-constrained wireless sensor networks.

One example of over-simplification, we believe, is the popular point-to-point

link abstraction of the wireless medium. Secondly, our results show the im-

portance of exploiting the opportunity to collaborate in wireless settings. This

is because on one hand, different nodes in a WSN experience different perfor-

mance/resource constraints while on the other hand, what is important is not

a sensor’s individual performance, but rather the network’s collective perfor-
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mance.

There are several future directions for the work in Chapter 6. First, it will

be useful to obtain distributed algorithms that exploit the wireless broadcast

property to conserve sensors’ energy. Second, we can study a similar problem for

non-clustered sensor networks. Finally, the idea of exploiting wireless broadcast

advantage can be applied at higher network layers, for example, in designing

energy-efficient and reliable routing algorithms.



APPENDIX A

PROOF OF LEMMA 3.3.1

Before proving Lemma 3.3.1, let us prove the following Lemmas A.0.1, A.0.2,

and A.0.3.

Lemma A.0.1. For all 0 ≤ g < K, J∗
α(b, g) is increasing in the buffer occupancy

b.

Proof. This lemma can be proved by induction. First of all, let J0 be a bounded

and increasing function on the state space (b, g). For i = 1, 2, . . ., let

Ji(b, g) = min
u

{
CI(b, g, u)

+ α
K−1∑

g′=0

∞∑

a=0

PG(g, g′)× pA(a)× Ji−1

(
q(b− u, a), g′

)}
.

(A.1)

Note that from the value iteration algorithm for solving discounted cost problem

(3.23), we have J∗
α(b, g) = limi→∞ Ji(b, g) for all 0 ≤ b ≤ B and 0 ≤ g < K.

Now assuming Ji−1(b, g) is increasing in b for all g, we will show that Ji(b, g) is

also increasing in b for all g. Then by induction, J∗
α(b, g) is increasing in b for

all g.

For 0 < b ≤ B, let u∗ be the value that achieve the minimization in (A.1),

we consider the following two possibilities.

a) u∗ = 0

From (A.1) we have:

Ji(b− 1, g) = min
u

{
CI(b− 1, g, u)

+ α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)× pA(a)× Ji−1

(
q(b− u− 1, a), g′

)}

≤ CI(b− 1, g, 0) + α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)× pA(a)× Ji−1

(
q(b− 1, a), g′

)
.

(A.2)
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As CI(b− 1, g, 0) ≤ C(b, g, 0) and Ji−1

(
q(b− u− 1, a), g′

)
≤ Ji−1

(
q(b− u, a), g′

)

from (A.2) we have:

Ji(b− 1, g)

< CI(b, g, 0) + α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)× pA(a)× Ji−1

(
q(b, a), g′

)

= Ji(b, g).

(A.3)

b) u∗ > 0

From (A.1) we have:

Ji(b− 1, g)

= min
u

{
CI(b− 1, g, u)

+ α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)× pA(a)× Ji−1

(
q(b− u− 1, a), g′

)}

≤ CI(b− 1, g, u∗ − 1) + α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)× pA(a)× Ji−1

(
q(b− u∗, a), g′

)

< CI(b, g, u
∗) + α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)× pA(a)× Ji−1

(
q(b− u∗, a), g′

)

= Ji(b, g).

(A.4)

We have proved that if Ji−1(b, g) is increasing in b for all g then the same is

true for Ji(b, g). Therefore, by induction, J∗
α(b, g) = limi→∞ Ji(b, g) is increasing

in b for all g.

Lemma A.0.2. For all 0 ≤ b1 < b2 ≤ B and all 0 < g < K, J∗
α(b2, g)−J∗

α(b1, g)

is upper bounded when β increases.
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Proof. Let u∗1 be the optimal transmission rate in state (b1, g) then

J∗
α(b1, g) = CI(b1, g, u

∗
1) + CF (b1, g, u

∗
1). (A.5)

Now let u2 = u∗1 + b2 − b1, then as J∗
α(b2, g) is the optimal cost associated with

state (b2, g), we must have:

J∗
α(b2, g) ≤ CI(b2, g, u2) + CF (b2, g, u2). (A.6)

Therefore

J∗
α(b2, g)− J∗

α(b1, g)

≤ CI(b2, g, u2) + CF (b2, g, u2)− CI(b1, g, u∗1) + CF (b1, g, u
∗
1)

= CI(b2, g, u2)− CI(b1, g, u∗1) + CF (b2, g, u2)− CF (b1, g, u
∗
1).

(A.7)

As u2 = u∗1 + b2 − b1, we have CF (b2, g, u2) = CF (b1, g, u
∗
1) while

CI(b2, g, u2)− CI(b1, g, u∗1) = P (u∗1 + b2 − b1, g, P b)− P (u∗1, g, P b).

Therefore

J∗
α(b2, g)− J∗

α(b1, g) ≤
WNo

γg

(
f(u∗1 + b2 − b1, Pb)− f(u∗1, Pb)

)
. (A.8)

It is clear that the left hand side of (A.8) is bounded when β increases, so the

proof is completed.

Note that Lemma A.0.2 is for situation in which the channel state g > 0,

when g = 0, we have the following lemma.

Lemma A.0.3. For all 0 ≤ b1 < b2 ≤ B, J∗
α(b2, 0)−J∗

α(b1, 0) increases without

bound when β increases.
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Proof. When the channel is in state 0, no transmission is possible, therefore

J∗
α(b1, 0) = CI(b1, 0, 0) + α

K−1∑

g=0

∞∑

a=0

PG(0, g)pA(a)J∗
α

(
q(b1, a), g

)
,

J∗
α(b2, 0) = CI(b2, 0, 0) + α

K−1∑

g=0

∞∑

a=0

PG(0, g)pA(a)J∗
α

(
q(b2, a), g

)
.

(A.9)

Therefore,

J∗
α(b2, 0)− J∗

α(b1, 0)

= CI(b2, 0, 0)− CI(b1, 0, 0)

+ α

K−1∑

g=0

∞∑

a=0

PG(0, g)pA(a)
(
J∗
α

(
q(b2, a), g

)
− J∗

α

(
q(b1, a), g

))

> CI(b2, 0, 0)− CI(b1, 0, 0)

= β ×
(
L(b2, 0)− L(b1, 0)

)
.

(A.10)

The inequality in (A.10) is due to Lemma A.0.1. From (A.10), it is clear that

J∗
α(b2, 0)− J∗

α(b1, 0) increases without bound when β increases and the proof is

completed.

Using the results of Lemmas A.0.1, A.0.2, and A.0.3, let us prove the Lemma

3.3.1.

Lemma 3.3.1. For each buffer state b > 1, there exists a constant βo such

that for every β > βo and 0 ≤ u1 < u2 ≤ b, the following inequality holds:

∆I(b, 1, u1, u2)−∆I(b, 2, u1, u2) < ∆F (b, 1, u1, u2)−∆F (b, 2, u1, u2). (A.11)

Proof. First of all, we have

∆I(b, 1, u1, u2)−∆I(b, 2, u1, u2)

= WNo

(
f(u2, Pb)− f(u1, Pb)

)( 1

γ1
− 1

γ2

)
.

(A.12)
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Therefore, the left hand side of (A.11) does not depend on β. For the right

hand side of (A.11), we have:

∆F (b, g, u1, u2) =α

K−1∑

g′=0

∞∑

a=0

PG(g, g′)pA(a)(J∗
α(q(b− u1, a), g

′)

− J∗
α(q(b− u2, a), g

′)).

(A.13)

Now

∆F (b, 1, u1, u2)−∆F (b, 2, u1, u2)

= α
K−1∑

g′=0

∞∑

a=0

[ (
PG(1, g′)− PG(2, g′)

)
× pA(a)

×
(
J∗
α

(
q(b− u1, a), g

′
)
− J∗

α

(
q(b− u2, a), g

′
)) ]

(A.14)

= α
K−1∑

g′=1

∞∑

a=0

[ (
PG(1, g′)− PG(2, g′)

)
× pA(a)

×
(
J∗
α

(
q(b− u1, a), g

′
)
− J∗

α

(
q(b− u2, a), g

′
)) ]

+ α
∞∑

a=0

[ (
PG(1, 0)− PG(2, 0)

)
× pA(a)

×
(
J∗
α

(
q(b− u1, a), 0

)
− J∗

α

(
q(b− u2, a), 0

)) ]
.

(A.15)

When β increases, from Lemmas A.0.1 and A.0.2, the first term in (A.15) is al-

ways lower bounded while from Lemma A.0.3, the second term increases without

bound. This combined with (A.12) completes the proof.



APPENDIX B

PROOF OF LEMMA 5.3.2

Lemma 5.3.2. For any stationary feasible adaptive scheduling/transmission

policy φ ∈ Ψst, let Lφo be the total packet loss rate of all users and P φ
n be the

average power consumed by user n when φ is employed, there exists a non-

stationary policy ψ ∈ Ψ such that

Lψo = Lφo while P ψ
m =

1

N

N∑

n=1

P φ
n , ∀m ∈ N , (B.1)

where Lψo is the total packet loss rate and P ψ
m is the average power consumed by

user m when policy ψ is employed.

Proof. Given a stationary policy φ ∈ Ψst, we will construct a non-stationary

policy ψ ∈ Φ that satisfies (5.7). This is done by first formulating N − 1 other

stationary policies, φ1, φ2, . . . φN−1, and then time sharing φ, φ1, φ2, . . . φN−1.

Note again that each stationary scheduling/transmission policy φk, k = 1, 2,

. . . N − 1, is completely specified by the vector of transmission rates assigned

to the N users in each system state. In time slot i, the system state is Si =

(B1
i , B

2
i , . . . B

N
i , G

1
i , G

2
i , . . . G

N
i ). Let I

k, B
k
i , and G

k
i be the N -element vec-

tors obtained after carrying out k right cyclic shifts on vectors (1, 2, . . .N),

(B1
i , B

2
i , . . . B

N
i ), and (G1

i , G
2
i , . . .G

N
i ) respectively. We then set

φk(Si, n) = φ(Sk
i , I

k(n)) (B.2)

where S
k
i = (Bk

i ,G
k
i ) and I

k(n) is the nth element of I
k. Note that policy φk is

nothing but policy φ being applied to a modified system in which the sequence

of N users is permutated by carrying out k right cyclic shifts. As all N users

in the system are symmetric, i.e., they have i.i.d. data arrival processes, i.i.d.
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channel processes, and the same buffer lengths, when φk is employed the total

packet loss rate and average transmit powers are

Lφ
k

o = Lφo , while P φk

n = P
k(n) (B.3)

where P
k is the vector obtained after k right cyclic shifts of (P φ

1 , P
φ
2 , . . . P

φ
N).

For convenient of notation, we let φ0 = φ. Now, based on N stationary

policies φ0, φ1, φ2, . . . φN−1, we construct a non-stationary adaptive schedul-

ing/transmission policy ψ = {φi} that satisfies

φi = φk, where k =

⌊
mod (i, Nt)

t

⌋
, ∀i = 0, 1, 2, . . . . (B.4)

Note that in (B.4), mod (x, y) gives the remainder on division of x by y while

⌊x⌋ is the floor function. To put it simple, the system is control on a frame-by-

frame basis, each frame is of length Nt time slots. During each frame, N policies

φ0, φ1, φ2, . . . φN−1 are employed sequentially, each for t consecutive time slots.

When t → ∞ the averaging effect takes place and during each frame, we have

the average total packet loss rate is Lφo while the average power consumed by

user m is

1

N

N−1∑

k=0

P φk

m =
1

N

N∑

n=1

P φ
n .

This shows that ψ satisfies (B.1).
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